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Solides actifs élastiques :
mouvements collectifs, actuation collective & polarisation

Résumé : Les solides actifs sont constitués d’unités hors équilibre couplées élas-
tiquement. Ils sont centraux dans de nombreux processus biologiques comme la lo-
comotion, les oscillations spontanées et la morphogenèse. De plus, leurs propriétés
mécaniques et leur capacité à fournir du travail permettent d’imaginer de nouveaux
métamatériaux, multifonctionnels, et dotés d’une véritable autonomie. Néanmoins, les
mécanismes de rétroaction entre les forces actives et élastiques et la possible émergence
de comportements collectifs, restent encore peu explorés. En tirant profit d’unités actives
centimétriques, nous construisons une réalisation minimale de solide actif élastique. Les
unités actives polaires exercent des forces sur les nœuds d’un réseau élastique bidimen-
sionnel, et le champ de déplacement induit réoriente non-linéairement les agents actifs.
De ce couplage, dit élasto-actif, émergent quantités de nouveaux comportements. Dans
la première partie, nous montrons que, pour un faible couplage, la présence de modes
zéros dicte la nature et la géométrie des comportements collectifs. Sans conditions aux
limites, les solides actifs fournissent ainsi un moyen de mettre en mouvement collectif
une population d’unités actives couplées rigidement. Dans un second temps, nous con-
statons, pour un couplage suffisamment grand, l’émergence d’une oscillation collective
des nœuds du réseau autour de leurs positions d’équilibres. Nous appelons ce phénomène
l’actuation collective. Seuls quelques modes élastiques sont activés et, de manière cru-
ciale, ils ne sont pas nécessairement les modes de plus basses énergies. En combinant des
expériences modèles avec l’analyse numérique et théorique d’un modèle d’agents, nous
expliquons le scénario de bifurcation et le mécanisme de sélection par lequel l’actuation
collective a lieu. Nous proposons une théorie hydrodynamique des solides actifs pour
décrire leurs propriétés à grande échelle, et analysons certaines de ses conséquences. En
jouant avec les propriétés de vibrations du réseau, nous explorons également la grande
variété d’actuations collectives, et mettons en évidence les paramètres qui contrôlent la
dynamique. Enfin, nous étudions la manière dont le couplage avec un champ extérieur
polarise les solides actifs et affecte l’émergence de l’actuation collective. En définitive,
au-delà de la compréhension de notre système particulier, ce manuscrit tente d’établir
les fonctions mécaniques de la matière active à grande échelle.

Mots-clés : Matière active, solides actifs, mouvements collectifs, actuation collec-
tive, métamatériaux.



Active elastic solids:
collective motion, collective actuation & polarization

Abstract : Active solids consist of elastically coupled out-of-equilibrium units
performing work. They are central to autonomous processes in biological systems, e.g.
locomotion, self-oscillations and morphogenesis. Moreover, their shape-preserving prop-
erty and their intrinsic non-equilibrium nature make active solids a promising framework
to create multifunctional metamaterials with bona fide autonomy. Yet, the feedback
mechanism between elastic and active forces, and the possible emergence of collective
behaviors remains poorly understood. We take advantage of centimetric models of self-
propelled active units and introduce a minimal realization of an active elastic solid.
Polar active agents exert forces on the nodes of a two-dimensional elastic lattice, and
the resulting displacement field nonlinearly reorients the active agents. From this so-
called elasto-active feedback emerges numerous new collective behaviors. In the first
part, we show that for weak enough coupling, the presence of zero modes dictates the
nature and the geometry of the collective behaviors. Rigid body motions in free bound-
ary conditions thus provide a way to set a population a rigidly coupled active units into
collective motion. Then, we find that for large enough coupling, a collective oscillation
of the lattice nodes around their equilibrium position emerges, the so-called collective
actuation. We find that only a few elastic modes are actuated and, crucially, they are not
necessarily the lowest energy ones. Combining experiments with the numerical and the-
oretical analysis of an agents model, we unveil the bifurcation scenario and the selection
mechanism by which the collective actuation takes place. We propose a hydrodynamic
theory of active solids to describe their large-scale properties, and analyze some of its
consequences. Playing with the vibrational properties of the lattice, we also explore the
wide variety of collective actuations, and find control parameters and design strategies
for the emerging dynamics. Finally, we study how the coupling with an external field
polarizes active solids and affects the emergence of collective actuation. Altogether, be-
yond the understanding of our particular system, this manuscript is an attempt to unveil
the mechanical functionality of active matter as a continuum.

Keywords : Active matter, active solids, collective motion, collective actuation,
metamaterials.
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This manuscript is the result of my doctoral research, which I carried out at the
Gulliver laboratory (ESPCI Paris/PSL University), under the supervision of Olivier
Dauchot. Our work has given rise to the writing of five articles: [Stress-induced collec-
tive motion in active solids, In preparation ], [Selective and collective actuation in active
solids, 2022 ] [1], [Discontinuous tension-controlled transition between collective actua-
tions in active solids, 2023 ] [2], [Noise-induced collective actuation in active solids, In
preparation ], [Polarization-induced reentrance transition to collective actuation in active
solids, In preparation ], two of which being published [1, 2].

General context

Active matter is composed of a large number of active agents, each of which con-
sumes energy in order to move or exert mechanical forces. We consider that an active
agent is an object that breaks spatial and time-reversal symmetries, or, said differently,
an anisotropic object whose dynamics break detailed balance. Such systems are there-
fore intrinsically out of thermal equilibrium, and activity endows the agents with an
additional free degree of freedom in the form of polar, or dipolar, active forces. Active
matter designates a multidisciplinary field of research at the interface between biology
and physics, as most examples of active matter systems are of biological origin and span
all the scales of the living world, from self-organizing bio-polymers such as microtubules
and actin, to schools of fish and flocks of birds. It was progressively popularized since
the pioneering work of Tamás Vicsek in 1995 and the extensive study of his celebrated
model [9].

For the past 25 years, a large amount of work has dealt with studying active liquids,
which are relatively dilute phases of active matter, allowing for the spatial reorganization
of the active agents. They led the physics community to understand deeply the nature of
two important phenomena occurring in active systems: collective motion, and motility-
induced phase separation. However, for a broad class of active matter systems, the
description in terms of free-to-move agents does not hold anymore, for example, because
of the presence of strong position-based interactions, and new theoretical frameworks
are required. This situation generally arises when repulsive active units are put under
strong confinement, or for attractive active units, which spontaneously cluster together.

(a) (b) (c)

FIG. 1. Examples of systems combining activity and elasticity in the living world.
(a) Dense human crowd during the catastrophic stampede of the 2010 Duisburg Love Parade [3,
4]. (b) Fire ants forming living structures out of their bodies [5–7]. Credit: Adhi Prayoga. (c)
Cell monolayer under square confinement. The dynamics cannot be appreciated in this picture,
but the cells perform a collective oscillation around their reference configuration. Adapted from
[8].
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One can think about dense human crowds, ant colonies forming living structures, or
epithelial cells in confinement (Fig. 1). In such systems, the existence of a reference
configuration calls for a description in terms of active solids rather than active liquids.
Active solids are also interesting as they shed light on the physics of biological tissues,
which play crucial roles in physiology and morphogenesis. However, they remain largely
unexplored, and only very few experimental systems allow for strong elastic couplings
between active agents.

Material sciences have recently experienced its own revolution. Playing with the ar-
chitecture of the underlying structure, or with the constitutive laws of its constitutive
elementary “springs”, physicists and engineers have unveiled new behavior breaking the
laws of standard elasticity. Such features allow for the design of programmable materials,
displaying multiple elastic response, or peculiar responses such as negative Poisson ratio.
Yet, to date, such metamaterials are passive, limiting their properties and their range
of application. In particular, they are not robust to fluctuations and attenuation. Ac-
tive solids are therefore a promising framework for fabricating autonomous mechanical
metamaterials, because they could provide a controllable and completely endogenous
actuation mechanism for the mechanical functions of classical metamaterials. Under-
standing the mechanical functionality of active matter is essential to bridge the gap
between practical applications and the fundamental knowledge learned in the two fields
over the past decades.

Throughout this work, we focus on dry and polar active solids: polar because the ac-
tive units exert polar forces, and dry because momentum is taken from the ground to
generate such forces. Therefore, neither energy nor momentum is conserved, and space
dimension d = 2. In such systems, the active and elastic forces combine to produce an
active strain. Generically, this active strain tensor will act on the polarities of the active
units and reorient them, which in turn modifies the active strain. What we shall call
this elasto-active feedback is likely to provide mechanisms for interesting new collective
behaviors, which are the focus of this work, and shall be called Collective Actuation
(CA). Emerging collective behaviors in living active solids can be incredibly complex,
because of the large number of agents involved and of the nonlinearity of the couplings,
but also because additional processes might take place, like spatial reorganization, chem-
ical communication, or dipolar forces between agents. Nonetheless, as is often the case
in physics, our approach consists of reducing the complexity through the use of model
systems, the objective being to derive simple and fundamental principles governing the
physics of active solids.

Taking advantage of centimetric models of self-propelled particles, we build new model
active solids experiments, and study the collective behaviors that emerge in systems
with various sizes, shapes, and boundary conditions. In the presence of zero modes,
activity leads to the emergence of collective steady states dictated by said modes. In
contrast, we find that polar agents embedded in a mechanically stable spring network
spontaneously perform synchronized oscillations around their reference configuration.
Only a few normal modes are actuated, and crucially, they are not necessarily the lowest
energy ones. Combining experiments with the numerical and theoretical analysis of an
agents model, we unveil the minimum ingredients at the origin of CA, and find control
parameters and design strategies for the emerging dynamics. We show that mechanical
tension can be used to jump abruptly between different collective dynamics, and that
polarization by an external field, e.g. gravity, favors transverse oscillations. Finally, we



Introduction 12

derive a hydrodynamic theory of active solids aiming for their large-scale properties, and
analyze some of its consequences.

Presentation and summary of the results
This manuscript is articulated around eight chapters.

Chapter 1 : State of the art.
In this first chapter, we present the current common knowledge on active solids, with par-
ticular emphasis on dry and polar active solids with self-alignment interactions. Starting
with a historical discussion about active liquids, we review experimental and theoret-
ical approaches to understand motility-induced phase separation and the transition to
collective motion. Then, we present dense biological systems, whose phenomenology
clearly falls outside the scope of active liquids, and claim that new theoretical frame-
works are required. Finally, we elaborate on the two strategies explored to construct
active structures: increasing the confinement or density of an active fluid, and doping a
genuine elastic structure with active units. Overall, the two hallmarks of active solids
are autonomous actuation and odd elastic moduli, which give rise to locomotion, self-
oscillating behavior, and non-Hermitian skin effects.

Chapter 2 : Experiments.
In this chapter, we provide details on the experimental system, which is both the first
achievement and the central topic of this work. Each active unit is a so-called hexbug,
a centimetric self-propelled robotic cockroach. We introduce a general design principle
for making active solid systems, which consists of trapping active units in cylindrical
structures, so that the units can both push and freely reorient, while being embedded
in a spring network. The key ingredient of this system is the presence of a self-aligning
torque of the active unit’s polarity toward the velocity vector, which provides the so-
called elasto-active feedback. We also describe the measurement of the “microscopic”
parameters with simple experiments, and, eventually, elaborate on the tracking algo-
rithm.

Chapter 3 : Agent-based model.
In this chapter, we first elaborate on the physics of passive spring networks, from their
stability to their dynamics, paying particular attention to the harmonic approximation
and the normal modes picture. Then, we introduce the model of elastically coupled
active particles, by doping every node of the passive network with active units. We show
that, in the harmonic approximation, this model is governed by a single dimensionless
parameter, namely the elasto-active coupling π = F0/kla; where F0 is the amplitude of
the active forces, k is the stiffness of the springs, and la characterizes the self-alignment
property. In this pedestrian chapter, we analyze how active solids differ from their pas-
sive counterpart, and provide details on the numerical simulations.

Chapter 4 : Stress-induced collective motion.
For small enough activity, the vibrational modes of the solid are barely excited, and
the network can be considered effectively rigid. We thus theoretically study strictly
rigid structures, and show that in the presence of zero modes, any finite amount of
activity leads to the emergence of collective steady states, whose properties and stabil-
ity are governed by the geometry of the zero modes. Combining this framework with
numerical simulations and with the experimental study of rigid active solids, we show
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that our predictions are robust to imperfections and a finite amount of elasticity. We
demonstrate that translating states are unconditionally stable, while rotating states’
stability depends on the structure’s geometry and the alignment length. Eventually,
we investigate the effect of noise and show that the dynamics of active solids can map
to equilibrium situations, for which exact results exist in the thermodynamic limit. In
particular, mode selection and the existence of collective motion are determined by the
minima of a Landau-Guinzberg-like free energy. Eventually, we demonstrate that the
polarity dynamics of a large translating rigid active solid maps to a genuine mean-field
XY model; and thus, supports long-range order for finite noise amplitude.

Chapter 5 : Selective and collective actuation.
We characterize the emergence of selective and collective actuation in active networks
pinned at the edges. For large enough elasto-active coupling π, Synchronized Chiral
Oscillations (SCO) of the lattice nodes around their equilibrium position emerges. Only
a few elastic modes are actuated and, crucially, they are not necessarily the lowest en-
ergy ones. Combining experiments with the numerical and theoretical analysis of an
agents model, we unveil the bifurcation scenario and the selection mechanism by which
this specific CA takes place. Using simple toy models, we demonstrate that the spatial
heterogeneity of the selected modes governs the nature of the transition to CA, and
in particular, leads to discontinuous transitions and heterogeneous dynamical regimes.
Moreover, we show that the dynamics preferentially selects pairs of relatively low-energy,
but most importantly, extended and locally-orthogonal normal modes, two properties at
the root of the selection mechanism. Finally, we derive a coarse-grained model describing
the physics of active solids at large scales, study its mean field predictions, and propose
a scenario for the fates of the SCO phase in the thermodynamic and continuum elasticity
limits.

Chapter 6 : Tension-controlled switch.
This chapter is motivated by the recent observations of CA in dense biological systems.
On the one hand, Synchronized Chiral Oscillations (SCO) were reported in confined ep-
ithelial cells and dense bacterial suspensions. On the other hand, a collective dynamics
with the system performing Global Alternating Rotation (GAR) around its center, was
reported in bacterial bio-films. From a biomimetic point of view, active metamaterials
are therefore a promising framework for creating multifunctional materials with bona
fide autonomy. However, an explicit realization of active metamaterials exhibiting dif-
ferent CA regimes, with good control of the transition between these regimes, is still
lacking. In this chapter, we bridge this gap by (i) demonstrating the existence of both
SCO and GAR in the same active elastic structure, (ii) showing how mechanical tension
can be harnessed to manipulate the vibrational spectrum of an active solid and control
the transition between these different CA regimes. We first establish the experimental
proof of concept using a toy-model active solid. We then dissect the underlying mech-
anism and extend our findings to more general geometries, on the basis of an agents
model and theoretical arguments. The presence of hysteresis when varying tension back
and forth highlights the non-trivial selectivity of CA.

Chapter 7 : Polarization by an external field.
Living systems have the ability to respond to various types of environmental cues and
can polarize towards or away from these signals, e.g. by chemotaxis or galvanotaxis. Yet,
the effect of an external field on the collective dynamics of active solids remains, until
today, largely unexplored. In this chapter, we combine model experiments, numerical
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simulations of an agent-based model, and theory to investigate the effect of a polarizing
gravity field on the dynamics of active elastic structures. First, we reveal the existence
of a third CA regime, different from SCO and GAR, denoted Noise-Induced CA (NICA).
In this regime, the system performs CA along the lowest-energy mode, emerging from
the balance between activity, elasticity, and angular noise. Then we apply homogeneous
polarizing fields to SCO, NICA, and frozen regimes. We show that active unis tend
to polarize against the polarizing gravity field, and that this polarization decreases the
activity threshold for CA, leading to Polarization-Induced Reentrance (PIR). We then
establish the complete analysis of the single-particle case, and fully map out the inter-
play between activity, elasticity, and polarization. Eventually, using the coarse-grained
model derived in chapter 5, we explain the origin of NICA, and show that PIR is a
purely collective effect, inherited from the differential stability of the Frozen-Disordered
(FD) and Frozen-Polarized (FP) phases.

Chapter 8 : Perspectives.
In the last chapter, we discuss exciting future directions and ongoing work. The first
section links active solids and metamaterial, as we study the counter-rotating squares
mechanism, a paradigmatic mechanical metamaterial, with embedded active units. We
show that it is possible to excite selectively and periodically the soft mode of this struc-
ture using elasto-active feedback and angular noise. In the second section, we describe
experiments conducted to measure the mechanical properties of square lattices, and show
that, in this case, activity can be seen as a negative friction relaxing toward motion di-
rection. Finally, in the third section, we show that our design principle can be extended
to other dry active matter systems, namely the vibrated polar disks, paving the way for
the downsizing of active solids.

Appendix A presents the normal modes spectrum of all the structures presented in
this manuscript. Appendix B is complementary to chapter 4. Appendices C, D, E,
and F provide complementary results to chapter 5. Appendices G, H, I, and J provide
complementary results to chapter 6. Appendices K and L are complementary to chapter
7. Finally, the reader may find the blueprints for 3d printed structures in Appendix M.





Chapter 1

State of the art

We consider that an active agent is an object that breaks spatial and time reversal
symmetries; or, said differently, an anisotropic object whose dynamics break detailed
balance. Active matter, in turn, is composed of many such individual active units,
essentially identical, which all individually perform some work and interact with each
other. At the macroscopic level, these intrinsically out of equilibrium materials are prone
to develop new and interesting macroscopic physics. Looking for symmetries and con-
served quantities is an excellent way to classify the systems we are interested in. Because
the agents are able to perform work, energy conservation is broken at the microscopic
level, and such systems are intrinsically out of thermodynamic equilibrium. Moreover,
from the broken spatial symmetry, activity endows the agents with an additional free
degree of freedom in the form of polar (arrows n̂), or dipolar (tensors Q), active forces.
For completeness’ sake, one should mention that the active agents can also be chiral.
The nature of the active agents (polar/dipolar/chiral) constitutes the first classification
of active matter systems. Moreover, we call wet an active system immersed in a fluid,
while we call it dry if it evolves on a substrate. This second characteristic (dry/wet)
of active systems is crucial: it tells whether or not linear momentum is conserved. The
last characteristic of active systems is the nature of the interactions between the active
agents. They can, for instance, have nematic or polar alignment interactions with each
other or, conversely, have only isotropic repulsion interactions. In that case, the active
system is said scalar, as density is the only relevant macroscopic parameter. Eventually,
the active degree of freedom can be coupled with the position dynamics. This last case,
termed self-alignment, will be thoroughly discussed. The different classes of active mat-
ter systems are illustrated below using three simple questions on the system’s properties.

Classes of active matter systems:

• What is the nature of the active agents? polar, dipolar, or chiral.

• Is linear momentum conserved? wet or dry.

• What is the nature of the interactions between the active agents? nematic, polar,
scalar, or self-alignment.

Throughout this work, we focus on dry and polar active solids with self-alignment in-
teractions. We start by introducing active liquids and the two important phenomena
occurring in those systems: motility-induced phase separation, and collective motion,
with particular emphasis on agent-based models, hydrodynamics theories, and model
experiments. For a broad class of dense biological systems, however, a description in
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terms of free-to-move agents does not hold because of the presence of strong position-
based interactions. In such systems, the existence of a reference configuration calls for
a description in terms of active strain/active solids rather than active flows/active liq-
uids. We show that confined cell monolayers and bacterial biofilms are relatively faithful
realizations of dry and polar active solids, and introduce the main phenomena specific
to those systems. Finally, we focus on model active matter systems, and discuss two
strategies to fabricate active solids: first, by compacting dense active liquids, and second,
by constructing elastic structures doped with active agents.

1.1 Active liquids

For the past 25 years, a large amount of work has dealt with the study of active liquids,
which are relatively dilute phases of active matter, allowing for the spatial reorganization
of the active agents. Let us discuss the cases of polar particles with scalar interactions
or polar alignment in such dilute regimes separately.

1.1.1 Scalar active matter

When the active units interact only through scalar, position-based repulsive interactions,
the system boils down to a disordered active gas. Nonetheless, self-propelled particles
tend to accumulate where they move more slowly. They may also slow down at high
density for either biochemical [10, 11] or steric reasons [12, 13]. This creates a positive
feedback, which can lead to Motility-Induced Phase Separation (MIPS), a spontaneous
phase separation between a dense and a dilute fluid phase via steric or excluded volume
repulsion [14]. In microbiological studies, the formation of dense clusters from a uniform
initial population of motile bacterial cells is often encountered, and usually called aggre-
gation, or fruiting body formation rather than phase separation [15]. Note that bacteria
aggregation generally involves chemical communication between individual cells, but this
effect may still be representable partly as a density-dependent swim speed, v(ρ).

Agent-based model

The MIPS phenomenology has been confirmed in simulations of self-propelled particles
with scalar interactions [10, 13, 16–19]. In particular, in 2008, Tailleur et al. studied
a 1d model of interacting run-and-tumble particles [10] and showed that it exhibits
a spontaneous phase separation between a dense and a dilute phase for great enough
density. Later, models of interacting active Brownian particles (ABPs) were simulated
in 2d by Fily et al. [13] and in 3d by Stenhammar et al. [18] with similar conclusions. In
general, agent-based models for MIPS are formulated as a set of overdamped equations
of motion for the position ri and orientation n̂i of particle i:

γtṙi = F0n̂i + F int, (1.1a)
γrθ̇i = ξi, (1.1b)

where θi is the angle of the unit vector n̂i with respect to the x-axis, γt (resp. γr) is
the translational (resp. rotational) friction, F0 is the amplitude of the active polar force,
F int are repulsive position-based interactions, and ξi are i.i.d Gaussian white noise, with
zero mean 〈ξi〉 = 0 and correlations 〈ξi(t)ξj(t′)〉 = 2Dδijδ(t − t′). Note that steric
interactions F int are considered isotropic. In Eq. (1.1b), the absence of interactions
forbids the emergence of orientational order.
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Nature of the instability

The mechanism underlying MIPS can be intuitively captured by a relatively simple ar-
gument, well known in the literature [14, 20].

On the one hand, as stated above, self-propelled particles tend to accumulate where
they move more slowly. This follows directly from the master equation of a self-propelled
particle of spatially varying speed v(r) = F0/γt, where r indicates the spatial coordinate:

Ṗ (r, θ) = −∇r [v(r)n̂P (r, θ)] +D∆θP (r, θ) (1.2)

where the first term accounts for self-propulsion, and the second for angular diffusion.
For isotropic processes, Pstat(r, θ) ∝ 1/v(r) is always a steady-state solution of Eq.
(1.2), highlighting the propensity of the system to be denser where it is slower. On
the other hand, crucially, MIPS arises in assemblies of active particles exhibiting a
propulsion speed v that depends on the local particle density ρ, which is reminiscent of
the interactions between the particles. However, this dependence must be strong enough,
which is illustrated by the following criterion:

dv

dρ
(ρ0) < −v(ρ0)

ρ0
, (1.3)

corresponding to the linear instability of the homogeneous state, with density ρ0. Inter-
estingly, this equation correctly identifies the region where macroscopic MIPS is initiated
by spinodal decomposition.

Hydrodynamics theory

An equilibrium system undergoing diffusive fluid-fluid phase separation is governed on
continuum scales by the so-calledModel B in the classification of Hohenberg and Halperin
[21]. It consists of constructing a Landau free energy F as a quartic polynomial in the
conserved quantity φ, linearly related to the local density ρ, with square-gradient terms,
and assuming local diffusive dynamics. Such scalar φ4 field theories (or phase-field
models) have played a crucial role in understanding phase separation in systems with
time-reversal symmetry [21, 22]. In 2014, to create phenomenologically an active version
of the model, Wittkowski et al. added the simplest “non-integrable” gradient term to
what is otherwise the standard Model B [23]. The chosen gradient term breaks detailed
balance, which implies that the resulting Active Model B (AMB) cannot be derived from
any free-energy functional. The model can be formulated as:

φ̇ = −∇ ·
(
J +
√

2DΛ
)
, (1.4a)

J = −∇
[
δF

δφ
+ λ|∇φ|2

]
, (1.4b)

F [φ] =
∫ {

a

2φ
2 + b

4φ
4︸ ︷︷ ︸

f(φ)

+K

2 |∇φ|
2
}
dr, (1.4c)

where f(φ) is the bulk free-energy density, K > 0 governs the energetic cost of interfaces,
and Λ is Gaussian white noise with zero mean and unit variance. The composition
variable φ is related to the number density ρ(r, t) of active particles by a linear transform
φ = (2ρ − ρH − ρL)/(ρH − ρL), where ρH and ρL are the densities of the high- and
low-density coexisting phases, respectively. Thus, the local bulk contribution of the free
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energy f is even to quartic order, with the critical point at a = 0 and phase separation for
a < 0. Neglecting terms in f beyond quartic is justified only when the order parameter
φ remains small. The coexisting mean-field binodal densities ±φb obey φb =

√
−a/b;

these terms should therefore map under the linear transform onto ρ = ρc ± ∆ρb, with
∆ρb � ρc. Wittkowski et al. find that the additional non-integrable λ-term has modest
effects on coarsening dynamics, but alters the static phase diagram by creating a jump
in (thermodynamic) pressure across flat interfaces. Nonetheless, simulations of repulsive
ABPs reveal that during coarsening, the macroscopic droplets of dense liquid arising via
MIPS host a population of mesoscopic vapor bubbles that are continuously created in
the bulk, coarsen, and are ejected into the exterior vapor [18, 24]. The "boiling liquid" is
thus itself a microphase-separated state of vapor bubbles surrounded by dense liquid (or
"bubble phase"). Recently, a refined version of Active Model B, so-called Active Model
B+ (AMB+), was introduced to explain the origin of the bubble phases observed in the
phase separation [24].

Model experiments

In terms of model experiments, MIPS was exciting because it allowed the reusing of
experimental systems that were not aligning enough for collective motion (described be-
low). One can think about Janus colloids experiments [25–27], in which cluster formation
is reported. Note that it might be caused in part by attractive interactions rather than a
purely MIPS scenario. Moreover, in such systems, no "real" MIPS is observed, as cluster
formation ends up being interrupted. It is generally interpreted as a consequence of re-
maining polar alignment interactions [28], or additional hydrodynamics interactions [29,
30]. In summary, there is some evidence for MIPS in systems of bacteria and synthetic
colloidal swimmers, although more experimental work is needed to understand the effect
of alignment and hydrodynamics on MIPS interruption.

1.1.2 Collective motion

Collective Motion (CM), the spontaneous, macroscopic ordering of the velocities of a
system of many particles, is a phenomenon observed in real-life systems ranging from bird
flocks [31–37] and fish schools [38], to locus swarms [39, 40], down to bacterial suspensions
[41, 42]. It is specific to active systems composed of polar agents, interacting with
ferromagnetic-like, polar alignment. The observation of spectacular collective dynamics
in such systems of self-propelled polar objects led the physics community to devise models
able to capture their full richness and qualitative features.

Agent-based model

The transition to CM was first investigated in 1995 in an effective model, the so-called
Vicsek model. It describes the discrete-time evolution of self-propelled point-like par-
ticles moving at a constant speed, and aligning their velocities when they encounter:

ri(t+ ∆t) = ri(t) + vi(t)∆t, (1.5a)
θi(t+ ∆t) =

∑
j∈v(i)

(θj − θi) + ξi, (1.5b)

where ri(t) is the position of particle i at time t, vi(t) = v0n̂i(t) = v0 (cos θi(t), sin θi(t))
represents the instantaneous velocity of particle i at time t, oriented along its polarity
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n̂i(t), and v(i) denotes some kind of neighborhood of particle i, which originally desig-
nates all the particles within a circle of radius r surrounding particle i (Fig. 1.15-left).
The term ξi on the right-hand side of Eq. (1.5b) accounts for i.i.d. Gaussian variables
with zero mean 〈ξi〉 = 0 and correlations 〈ξi(t)ξj(t′)〉 = 2Dδijδ(t − t′), modeling an
angular noise. The Vicsek model displays a nonequilibrium phase transition from a
disordered state at low density or high noise to an ordered, coherently moving state at
high density or low noise [9, 43]. The orientational order is characterized by the classical
order parameter:

Ψ(t) =
∣∣∣∣∣ 1
N

N∑
i=1

vi(t)
|vi(t)|

∣∣∣∣∣. (1.6)

For high density or low noise, all velocities are aligned, thus Ψ = 1, while for low
density or high noise, the system is completely disordered, and Ψ = 0. Importantly, the
transition is discontinuous and occurs via the nucleation of elongated propagating bands
[44, 45]. The Vicsek model is very similar to the 2d XY model for magnetism [46] because
the active unit’s velocity, like the local spin of the classical XY model, also has a fixed
norm and continuous rotational symmetry. In the limit of zero self-propulsion v0 → 0, on
each time step the particles’ orientations evolve, but never actually move, and thus the
model reduces precisely to the dynamics of a 2d XY model, with the (small) particle’s
velocity playing the role of the XY spin. Since the 2d XY model does not exhibit a long-
range ordered phase at finite temperatures, its observation in the Vicsek model seems
very surprising. Indeed, in light of the Mermin-Wagner theorem1 for equilibrium systems
[47], its existence must depend on fundamentally dynamical, non-equilibrium aspects of
the model; or, somewhat equivalently, on some effective long-range interactions coming
from the flying nature of the active spins.

Hydrodynamics theory

A continuum effective theory for the flocking model of Vicsek et al. was proposed four
months after the original paper by Toner and Tu [48, 49] (see also [50]). They formulated
the continuum model phenomenologically, solely based on symmetry considerations. A
few years later, the same equations were derived in [51, 52] by explicitly coarse-graining a
binary-interaction version of the Vicsek model. These derivations provide a microscopic
basis for the hydrodynamic theory and lead to a deterministic coarse-grained description,
with the stochasticity of the Vicsek model reflected in an average sense through the dif-
fusion and relaxation terms. Let us introduce the continuum equations in their simplest
form and analyze some of their consequences. We consider that the particles are moving
on a frictional substrate, thus the only conserved field is the number density ρ(r, t) of
active particles. In addition, to describe the possibility of states with polar orientational
order, one must consider the dynamics of a polarization vector field p(r, t), that is a
broken symmetry, therefore slow, variable. These continuum fields can be defined as
follows:

ρ(r, t) =
∑
i

δ(r − ri(t)), (1.7a)

p(r, t) = 1
ρ(r, t)

∑
i

n̂i(t)δ(r − ri(t)), (1.7b)

1which states that continuous symmetries cannot be spontaneously broken at finite temperatures in
systems with sufficiently short-range interactions in dimensions d ≤ 2.
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the dynamical equations of which are written as:

∂tρ+ v0∇ · (ρp) = 0, (1.8a)

∂tp+ λ1(p ·∇)p = −
[
α(ρ) + β|p|2

]
p+K∇2p− v1∇ ρ

ρ0
+ λ2p(∇ · p) + λ3

2 ∇|p|2 + f .

(1.8b)

The first two terms on the right-hand side of Eq. (1.8b) control the mean-field contin-
uous order-disorder transition that takes place as the parameter α goes through zero.
In the derivation of Bertin et al. [51], α depends on the local density ρ and the noise
strength in the underlying microscopic model and turns negative at large enough ρ. A
reasonable phenomenological approach to describe the physics near the transition is to
take α(ρ) = a0(1 − ρ/ρc), changing sign at a characteristic density ρc. The coefficient
β happens to be positive, ensuring the stability of the bifurcated solution with respect
to homogeneous peturbations. The third term captures the energy cost for spatially
inhomogeneous deformations of the order parameter p, and the so-called Frank constant
K is positive. The three following terms are allowed in equilibrium systems with polar
symmetry [53, 54]. Finally, the last term on the right-hand side of Eq. (1.8b) captures
the fluctuations and is taken to be white, Gaussian noise, with zero mean and corre-
lations: 〈fα(r, t)fβ(r′, t′)〉 = 2Dδαβδ(r−r′)δ(t−t′); where the indices represent the axis.

The dynamical model described by Eqs. (1.8) exhibits by construction, in a mean-
field treatment of homogeneous solutions, a continuous transition from a disordered to
an ordered state. For α > 0, corresponding to an equilibrium density ρ0 < ρc, the
homogeneous steady state of the system is disordered or isotropic, with p = 0 and a cor-
responding zero mean velocity. For α < 0, corresponding to ρ0 > ρc, the system orders
in a state with uniform orientational order, with |p0| =

√
−α0/β, where α0 = α(ρ0). In

the ordered state, which is also a moving state, with v = v0p0, continuous rotational
symmetry is spontaneously broken. This mean-field analysis survives fluctuation correc-
tions in two dimensions [48, 49], evading theMermin-Wagner theorem. Finally, similarly
to the original Vicsek model, inhomogeneous perturbations destabilize the polar phase
close to the onset of CM, leading to fully nonlinear solutions in the form of solitary
bands, and making the transition generically discontinuous in large enough systems.

Model experiments

The development of model experiments like vibrated polar disks [55–58], colloid rollers
[59–61], or actin filaments on a molecular motor carpet [62, 63], in parallel with the-
oretical models, allowed for a better understanding of the mechanisms at the origin of
collective motion of real-life systems. Let us elaborate on the two first.

Large populations of colloid rollers were realized experimentally for the first time in 2013
by Bricard et al. [59]. The system consists of spherical colloidal particles of diameter
5 µm, which self-propel by rolling on solid surfaces. The self-propulsion results from
an electro-hydrodynamic phenomenon referred to as the Quincke rotation [64]: when an
electric field is applied to an insulating sphere immersed in a conducting fluid, the charge
distribution at the sphere surface is unstable above a critical field amplitude E > EQ.
This spontaneous symmetry breaking results in a net electrostatic torque on the sphere,
which thus rotates at a constant speed around a randomly picked direction transverse
to the electric field. When the sphere lies on a rigid surface, this spinning motion turns
into self-propulsion. The electric and hydrodynamic interactions rule the alignment and
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repulsion between the rolling colloids.

The motion of the rollers is confined to racetrack channels of width 500 µm < W <
5 mm (Fig. 1.1-a), by adding a patterned insulating film at the surface of the upper
transparent electrodes. When the area fraction φ of colloid rollers is small, the population
of rollers behaves as a gaseous phase (Fig. 1.1-b). All the particles move in random
directions at the same speed. When the area fraction is increased above a critical value
φc, collective motion emerges spontaneously: a macroscopic fraction of the population
moves coherently in the same direction. For area fraction greater but close to φc, the
system phase separates into a homogeneous isotropic phase and a denser polar phase,
which typically consists of a single macroscopic band that propagates at a constant
velocity (Fig. 1.7-c). Increasing further the area fraction, a homogeneous band-less polar
state develops, with the entire population of rollers cruising coherently along the same
direction and with homogeneous polarization Ψ (Fig. 1.7-d). These observations are very
much reminiscent of the transition to collective motion reported in the Vicsek model [9,
44, 45] (Fig. 1.7-e). However, one specificity of the ordered polar phase obtained in
the Vicsek model [9] and at the level of the large-scale hydrodynamics theory [48, 49] is
the presence of anomalously large density fluctuations. The first quantitative analysis of
the polar phase of colloidal rollers concluded they were absent; and it is only recently,
that it was shown that they are indeed present, conducting new experiments with larger
statistics and weaker confinement [61].

The second worth-mentioning model experimental system is that of walking grains. The
system consists of a collection of vibrated micro-machined disks of diameter d = 4
cm, with a built-in polar asymmetry (Fig. 1.2-a). Polar alignment emerges from the

(a)

(b) (c) (d) (e)

φc
φ

〈Ψ
〉 t

FIG. 1.1. Transition to directed collective motion in populations of Quincke rollers.
(a) Dark-field pictures of a roller population that spontaneously forms a macroscopic band prop-
agating along the racetrack; scale bar 5 mm. (b-d) Close-up views. The arrows correspond to
the roller displacement between two subsequent video frames. (b) Isotropic gas, (c) propagating
band, (d) homogeneous polar liquid; scale bar 500 mm. (e) Average order parameter 〈Ψ〉t as a
function of the area fraction φ. Collective motion occurs as φ exceeds φc = 3.10−3; error bars,
1 s.d.; e‖ (resp. e⊥) is the unit vector oriented along the tangent (resp. the normal) of the
racetrack confinement. Adapted from [59].
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dynamical relaxation of the particle polarity towards its velocity after each collision, and
induces collective motion at a moderate packing fraction (Fig. 1.2-b and [55, 58]). The
system is described as N self-propelled hard disks, with position ri, velocity vi, and a
body axis, or polarity, given by the unit vector n̂i. Between collisions, these parameters
evolve according to the dimensionless equations:

ṙi = vi, (1.9a)
τvv̇i = ni − vi, (1.9b)
τnθ̇i = (n̂i × vi)× n̂i. (1.9c)

In Eq. (1.9b), the competition between self-propulsion n̂ and viscous damping −v
lets the velocity relax to n̂ on a timescale τv. Similarly, in Eq. (1.9c), the polarity n̂
undergoes an overdamped self-alignment torque that reorients it toward v on a timescale
τn. Note that the latter is proportional to the velocity, giving rise to an alignment
length rather than an alignment time. Interactions between particles are considered
elastic hard-disk collisions, which change v but not n̂. After such a collision, v and n̂
are not collinear, and the particles undergo curved trajectories which are interrupted
by another collision. Simulations of Eqs. (1.9) very well reproduce the phenomenology
observed in experiments. Within periodic boundary conditions, varying only the noise
level and the packing fraction, a phase diagram akin to the Vicsek one was obtained
(Fig. 1.2-c), thereby establishing the evidence of truly long-range collective motion in an
experimentalo-silico system of self-propelled particles. This system is also conceptually
powerful because it demonstrates that collective motion arises even in the absence of
explicit aligning interactions between the active agents; ingredient that was historically
introduced to model birds flocks or fish schools but that is not generic to all active
matter; indicating that genuine physical interactions at the individual level are sufficient

+1−1

n̂

φ

γ

(a) (b) (c)

FIG. 1.2. Transition to directed collective motion in populations of self-propelled
hard disks. (a) Picture of a walking grain (top): a hard metallic disc with an off-center tip
and a glued rubber skate located at diametrically opposite positions; the velocity v is in general
not perfectly aligned with the polarity n̂. Under proper vertical vibration, the walker performs
a persistent random walk (bottom). (b) Snapshot of the experimental system. A thousand of
such discs confined in a flower-shaped arena, interacting through collisions, develop large-scale
collective motions. The black arrows indicate the particles’ polarity. The color-code ranges from
−1 (blue) to +1 (red), and corresponds to the relative alignment with the neighboring particles.
(c) Complete phase diagram, from simulations of Eqs. (1.9) in periodic boundary conditions in
a domain of size L = 200d, with γ the noise amplitude and φ the area fraction (gray square:
disordered phase; red triangles: homogeneous polar ordered phase; blue bullet: polar bands;
green bullets: inverse polar bands). Adapted from [55, 57].
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to set homogeneous active populations into stable collective motion [58].

1.2 Dense biological systems
In polar active liquids, free-to-move agents interact through explicit or effective aligning
interactions, leading to collective motion. However, for a broad class of active matter
systems, the description in terms of free-to-move agents does not hold anymore because
of the presence of strong position-based interactions. This situation generally arises when
repulsive active units are put under strong confinement, or for attractive active units,
which can spontaneously cluster together at any density. In such systems, the existence
of a reference configuration calls for a description in terms of active strain/active solids
rather than active flows/active liquids: new theoretical frameworks are required. Let
us illustrate this idea using two biological systems which have recently attracted the
attention of the physics community: (i) cell monolayers, and (ii) bacterial biofilms.

1.2.1 Cell monolayers experiments

One-cell-thick monolayers are the simplest tissues in multicellular organisms, yet they
fulfill critical roles in development and normal physiology. In early development, em-
bryonic morphogenesis results largely from rearrangements and deformations of such
monolayers due to internal stresses. Later, monolayers act as physical barriers separat-
ing the internal environment of organs from the exterior and must withstand externally
applied forces. Resisting and generating mechanical forces is an essential part of mono-
layer functions, highlighting the combined roles of elasticity and activity in those sys-
tems. Moreover, the presence of elasto-active feedback between tissue deformations and
cell polarizations, a typical realization of which is the contact inhibition of locomotion
(CIL) of cells2 [65–67] is likely to allow for the emergence of collective behaviors. There
exists a rich literature on cell monolayer experiments [8, 68–74]. We first elaborate on
collective migration experiments, somewhat reminiscent of the transition to CM in the
Vicsek model; and then discuss spontaneous self-oscillations, which arise when the spa-
tial confinement applied to the cell monolayer is strong enough.

Collective motion

Collective motion of cells has been observed experimentally and numerically in a pio-
neering work by Szabó et al. [68]. The authors studied the collective migration of a
large number of keratocytes3 using long-term videomicroscopy. By increasing the over-
all density of the migrating cells, they observed experimentally a phase transition from
a disordered into an ordered, coherently moving state (Figs. 1.3-a to f). As done in
flocking active liquids or magnetism, the orientational order is characterized by the clas-
sical order parameter Ψ(t) (Eq. (1.6)). A sharp increase of 〈Ψ〉t is observed around
ρ = 5 × 10−4 cells/µm2 (Fig. 1.3-j), highlighting the propensity of cells to organize
coherently when density is large enough. These experiments motivated the construction
of a flocking model that exhibits a continuous transition to the ordered phase, while
assuming only short-range interactions and no explicit information about the knowledge
of the directions of motion of neighbors. The overdamped equations describing the 2d
dynamics of model cell i with position ri and polarity orientation n̂i are:

2Process whereby a cell ceases motility or changes its trajectory upon collision with another cell.
3Keratinocytes are the primary type of cell found in the epidermis, the outermost layer of the skin.
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FIG. 1.3. Emergence of orientational order in systems of migrating cells. (a-c) Phase
contrast images showing the typical behavior of cells for three different densities. (a) 1.8, (b)
5.3, (c) 14.7 cells/100× 100 µm2; scale bar 200 µm. (d-f) Velocity of cells; scale bar 50 µm/min.
(g-i) Numerical simulations for different densities. The normalized number density ρ̄ = ρ/ρmax
are respectively 0.12 (g), 0.4 (h), 0.8 (i) (with ρmax = 2, which is approximately the density
where cells reach tight packing in simulations). (j) Average order parameter 〈Ψ〉t as a function
of the normalized cell density ρ̄, as obtained from experiments. Cell density is normalized with
the maximal observed density of 2.5× 10−3 cells/µm2 and error bars indicate the standard error
of the density and order parameter. (k) Average order parameter 〈Ψ〉t as a function of the
normalized number density ρ̄, as obtained from numerical simulations. Each data point was
obtained from at least 10 independent simulation runs with N = 1000 and η = 0.6. The insets
show the dependence of 〈Ψ〉t on [ρ− ρc(η)] /ρc. Adapted from [68].

ṙi = v0n̂i + µ
N∑
j=1
F (ri, rj), (1.10a)

θ̇i = 1
τ

arcsin
[(
n̂i ×

vi(t)
|vi(t)|

)
· ez

]
+ ξ, (1.10b)

where ez is a unit vector orthogonal to the plane of motion, and ξ is a delta correlated
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Gaussian white noise term with zero mean and correlations 〈ξ(t)ξ(t′)〉 = η2/12δ(t− t′).
Thus, each cell with mobility µ attempts to maintain a self-propelling velocity of magni-
tude v0 in the direction of the unit vector n̂i and experiences intercellular forces F (ri, rj).
Note that F (ri, rj) are not simple elastic interactions: they are repulsive at short dis-
tances, attractive at longer distances, and cells do not interact when they are too far
apart. Therefore, cells interact through forces deriving from a rather realistic but com-
plicated potential. Importantly, the direction of the polarity vector n̂i relaxes toward
the direction of motion vi = ṙi with a relaxation time τ , while also experiencing angular
noise ξ.

Simulations of Eqs. (1.10) show that a continuous transition to the ordered phase arises
when density is large enough (Figs. 1.3-g,h,i, and k), in line with the experimental ob-
servations, and that this transition also occurs as η decreases while ρ is held fixed. The
growing importance of position-based interactions leads to discrepancies with the Vicsek
model: the authors claim that the transition is continuous, and observed neither polar
bands nor density fluctuations at the transition to CM. This is quite surpringing and
might be attributed to a finite size effect. Eventually, modulo a few deviations from the
Vicsek scenario, collective migration can still be interpreted as emerging CM.

Note that once again, the polarity dynamics is assumed to evolve via a self-alignment
term. To our knowledge, the first flocking model to introduce a torque reorienting the
polarity of an active unit toward its motion direction was introduced as early as 1996
[75]. However, like in the work of Szabó et al., they considered a speed-independent
reorientation rate of the polarity vector.

Self-oscillation

In a recent paper [8], Peyret et al. describe a form of collective oscillations in confined
epithelial tissues in which the oscillatory motion is the dominant contribution to cellular
movements. The authors deposited human keratinocytes on square areas surrounded by
a nonadherent surface, imposing a confinement. Cells are initially sparse but progres-
sively expand within the square through cell proliferation until the tissue is confluent
and occupies all the available space. Individual cells then move along parallel ellipti-
cal trajectories with little net relative motion of cells with respect to each other, and no
swirling behavior is observed (Figs. 1.4-a). This highlights the emergence of a layer-scale
coordinated movement in which all the cells move together in a direction that rotates
slowly with time. The oscillatory nature of these collective movements is best revealed
by considering the total velocity 〈v〉ROI averaged over a region of interest (ROI) at the
center of the system. Although the magnitude |〈v〉ROI| is almost constant and nonzero,
the individual components 〈vx〉ROI and 〈vy〉ROI show clear oscillations (Fig. 1.4-c), with
a phase shift of π/2. The period of this rotation is typically 6 hrs, and was found to grow
linearly with the square domain size [8]. Finally, in rectangular, thus anisotropic confine-
ment, it has been shown that the motion along the long direction exhibits a transition
from global to multinodal standing wave as the aspect ratio of the rectangle increases
[8, 73].

An active phase-field model is introduced to describe the dynamics of the cell monolayers.
They consider a 2d tissue and describe each cell i independently by a polarity n̂i and a
phase field φi, where φi = 1 indicates the interior of the cell and φi = 0 its exterior. Each
cell is described implicitly, and its boundary is defined to lie at the midpoint φi = 1/2.
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The phase fields satisfy an overdamped dynamics given by:

∂tφi + vi ·∇φi = − δF
δφi

, (1.11)

where vi = (αn̂i+F tot
i )/ζ is the speed of the cell i, F is the free energy, α is the strength

of the motility, ζ is a friction coefficient, and F tot
i = F ster

i +F visc
i is the total force acting

on one cell’s surface (including steric and viscous interactions, the first one deriving from
the free energy F , and the second one from polarity imbalance between neighboring cells).
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FIG. 1.4. Coordinated oscillations of a confined cell monolayer. (a) Left column shows
snapshots of a confluent HaCaT layer in square confinement at various times and representative
trajectories of single cells; scale bar: 100 mm. Right column shows velocity fields from PIV
measurement at the corresponding times. (b) Snapshots of simulations showing an oscillating
tissue at different times. The left-hand panels show the individual cells, darker cells being
more compressed, and the right-hand panels show the corresponding velocity fields. (c) Time
evolution of the two projected components, Vx = 〈vx〉ROI and Vy = 〈vy〉ROI, and norm of the
velocity |V | =

(
V 2
x + V 2

y

)1/2, computed on a cropped area in the center of the square of panels
(a). (d) Average velocity projected on the x and y axes for the numerical system of panels (b).
Adapted from [8].
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The role of the total free energy F is both to maintain the cell integrity as well as to
define interactions between cells. It can be decomposed as follows: a Ginzburg-Landau
free-energy term responsible for the stabilization of the diffuse interfaces, a quadratic
soft constraint enforcing area conservation, and finally, two terms giving rise to repulsion
forces between cells and with the confining walls [76]. The sole source of activity in the
model is provided by α, which induces a propulsion in the direction of n̂i. The polarity
vectors are normalized, i.e. n̂i = (cos θi, sin θi), and the authors define the following
alignment dynamics for the angle:

∂tθi = −J |F tot
i |∆θi +

√
2Dηi, (1.12)

where ∆θi ∈ [−π, π] is the angle between n̂i and F tot
i ; and ηi is a Gaussian white noise.

The positive constant J represents the strength of the self-alignment torque. Interest-
ingly, as compared to the previous model of Szabó et al. (Eqs. 1.10), the self-alignment
term is now inducing a torque rotating the polarity vector n̂i toward F tot

i , with an am-
plitude proportional to its norm |F tot

i |, and linearly related to the angle between the two
vectors (while it is non-linear and independent of the amplitude in the work of Szabó et
al., see Eq. (1.10b)). Simulations of confluent monolayers in square confinement show
the emergence of sustained oscillations (Fig. 1.4-b and d). As the cells move toward
one of the edges, they start to compress each other, increasing the steric repulsion force
in the direction opposite to their motion, which then induces the reorientation of their
polarity. The authors pinpoint that the period T decreases with increasing J , and di-
verges as J vanishes, demonstrating that the oscillations effectively disappear when the
alignment mechanism is absent.

Such observations fall outside of the scope of active liquids and their phenomenologies.
When density is large enough and forbids spatial rearrangements, given that cells exert
polar forces and propel on a substrate, the above cell monolayers are faithful realiza-
tions of dry and polar active solids4. Interestingly, they could shed a new light on
the mechanisms at play during in vivo wound healing and embryonic development, in
particular tissue invagination, an essential but poorly understood process. Indeed, this
self-oscillation results in regular spatial and temporal patterns of deformations, which
translate into molecular signals at the cell level and could thus be relevant to several
shape-defining events. However, in such complex living systems, it is hard to disentangle
the feedback induced by chemicals, mechanotransduction, and elasto-active effects. This
strongly motivates the study of model and simpler systems.

1.2.2 Bacterial biofilms

A few months before this manuscript’s publication, the pioneering work of Xu et al.
demonstrated that bacterial bio-films are very convenient experimental systems to study
biological active solids on large scales [77]. They study quasi-2d and disk-shaped biofilms
composed of densely-packed bacteria, encased in a viscoelastic cell-derived extracellular
polymer matrix. A rim of immotile cells laterally confines the system. Strikingly, they
show that the biofilms are self-driven into local oscillatory motion, which self-organizes
into a pair of topologically-distinct global motion modes (Fig. 1.5). In one mode, all
tracked bacteria follow periodic and synchronized quasi-circular trajectories (Fig. 1.5-a),
similar to the observation of Peyret et al. [8], and referred to as oscillatory translation.

4Note that because of cell deformations, there is a nematic symmetry shape coupling too, but it
seems to be relatively small.
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In the other mode, all tracked bacteria follow periodic and synchronized concentric cir-
cular arcs around the center of the disk (Fig. 1.5-b), referred to as oscillatory rotation.
These two self-driven global modes are also evident from the temporal dynamics of the
spatially averaged velocity field (Figs. 1.5-c and d). The oscillatory translation is a
chiral regime reminiscent of a spontaneous chiral symmetry breaking. In this regime,
the two orthogonal Cartesian coordinate components of the spatially averaged velocity
oscillate periodically with π/2 or 3π/2 phase shifts depending on the spontaneous chi-
rality chosen by the system. On the other hand, in the oscillatory rotation, the polar
coordinate azimuthal component of the spatially averaged velocity oscillates periodically,
while the radial component is negligible. The most exciting feature of this system is that
elasticity and activity can be tuned independently: the extracellular matrix viscoelastic
moduli depend on temperature, and the activity of the bacteria can be decreased with
violet light illumination [78].

The above observations, amongst others, are rationalized using simulations of an agent-
based model. They consider a collection of self-propelled particles connected by Hookean
springs and arranged in a 2d triangular lattice. The position ri and polarity vector ni
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FIG. 1.5. Spontaneous self-oscillation of bacteria-based active solids under isotropic
lateral confinement. (a/b) Time sequences of collective velocity field in the global oscillatory
translation mode (panel a, period T = 5.6 s) and oscillatory rotation mode (panel b, T = 11.0
s). Arrows represent velocity direction, and the colormap indicates velocity magnitude in µm/s;
scale bar: 500 µm. (c/d) Temporal dynamics of spatially averaged collective velocity in the
global oscillatory translation mode (c) and oscillatory rotation mode (d). The spatially averaged
collective velocity is decomposed as Cartesian (yellow and blue traces) and polar-coordinate
components (red: azimuthal component, green: radial component). In the oscillatory translation
mode, the polar-coordinate components are negligible; in the oscillatory rotation mode, both the
radial and the Cartesian components are negligible. Adapted from [77].
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of particle i evolve according to the following governing equations:

ṙi = v0ni + Ξi
(
F i +Drξ̂r

)
, (1.13a)

ṅi = β
[(
F i +Drξ̂r

)
· n⊥i

]
n⊥i +Dθξ̂θ − ΓδFn

δni
, (1.13b)

where Ξi is the motility tensor, F i is the total external elastic force acting on the particle,
ξ̂r and ξ̂θ are randomly oriented and delta-correlated unit vectors, and where Dr, Dθ, β
and Γ are constants. The polarity dynamics is controlled by three terms in Eq. (1.13b):
a force-induced self-alignment, a noise term, and a term involving a Landau-type free
energy Fn = A

(
−2ni · ni + (ni · ni)2 + 1

2κ (∇ni)2
)
that penalizes the deviation of ni

from being a unit vector. The gradient part in Fn allows for extending the model to active
solids with microscopic geometrical anisotropy and orientational elasticity, by associat-
ing an energetic cost to inhomogeneous polarity fields, but the authors focus on κ = 0.
Simulations of Eqs. (1.13) show clear evidence that such an agent-based model captures
the emerging collective behaviors of bacteria-based active solids at the quantitative level.

1.3 Dense active matter phases

Motivated by the observation of new interesting collective dynamics in dense biological
systems, the physics community, and especially the active matter community, started
designing models able to understand more deeply the nature of these phenomena. Start-
ing from active liquids, the simplest way to make an active solid is to enforce mechanical
rigidity by compacting the system. When density becomes large enough, the active
units cannot reorganize spatially, and the system as a whole starts exhibiting elastic
properties. Depending on the microscopic model, this process can give rise to jammed
active solids, active crystals, or active glasses. We will omit a lengthy discussion on
active glasses for conciseness, and also because this literature focuses on the glassy dy-
namics, which is not our priority here. We then elaborate on self-propelled Voronoi
models, which have played a crucial role in understanding the mechanical rigidity of
dense cell monolayers. Throughout this section, we put particular emphazise on systems
for which self-alignment-like interactions dictate the polarity dynamics, consistently with
the above biological systems.

1.3.1 Jamming of active particles

In 2011, Henkes et al. [79] introduced a seminal model of self-propelled particles at
jamming, motivated by previous experiments on confluent monolayers of migratory ep-
ithelial and endothelial cells [68, 80–85]. They consider a collection of N polar soft disks
of polydisperse radii ai, positions ri, and polarity vectors n̂i = cos θix̂ + sin θiŷ, which
evolve according to the overdamped equations:

ṙi = v0ni + µ
∑
j

F ij , (1.14a)

θ̇i = 1
τ

(ψi − θi) + ηi, (1.14b)

where ψ is the orientation of the velocity vector vi = ṙi, ηi are Gaussian white noises
with zero mean and correlations 〈ηi(t)ηj(t′)〉 = σ2δijδ(t − t′), and F ij is the repulsive
contact force particle j exerts on particle i. Particles repulse each other at small enough
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FIG. 1.6. Active jamming of self-propelled soft particles. (a) Sample snapshots of the
system in the liquid phase (φ = 0.6, left) and in the jammed phase (φ = 0.95, right) for v0 = 0.025.
The glued boundary is shown in dark gray. The red arrows represent the instantaneous velocity
field, with v = v0 corresponding to an arrow of length 1 in units of the particle diameter. (b)
Histogram of normal modes (DOS) as a function of modes’ frequency ωk (dashed) and mean
squared projections of the displacements on the modes (solid, scaled for visibility) for φ = 0.86.
(c) Time projection of the displacements on the modes ak(t) for four representative modes in the
undamped and damped regions (φ = 0.86, v0 = 0.025). Adapted from [79].

distances: F ij = −k (ai + aj − rij) êij if rij < ai + aj ; and F ij = 0 otherwise, cor-
responding to soft disks. The relaxation time τ accounts for a linear5 self-alignment
term, similar to the work of Peyret et al. [8], but here the self-alignment torque is again
speed-independent. Moreover, particles are confined within a circular box with soft re-
pulsive boundary conditions, implemented using a row of immobile soft disks attached
to the boundary. They perform simulations at various densities and find that, while
the system is flowing for dilute regimes, at large density, particles are trapped in a cage
formed by their neighbors (Fig. 1.6-a). In the jammed, solid phase, they observe regular
oscillations of the particle displacements around their reference position, with a pattern
that strikingly resembles the low-frequency modes of jammed packings.

This observation is rationalized by projecting the agents model on the normal modes’
eigenbasis. They introduce the displacement field ui = ri − r0

i , where {r0
i } is the

reference configuration at mechanical equilibrium (and v0 = 0). We denote ω2
k (resp. ϕik)

the eigenvalues (resp. eigenvectors) of the corresponding dynamical matrix. Importantly,
they consider that the angle ψi − θi is very small, thus neglecting nonlinearities coming

5In the difference of angle.
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from Eq. (1.14b); assume homogeneous solutions, that is |ṙi| = vi =
[

1
N

∑
i v

2
i

]1/2
=

vrms; and somewhat, average over the angular noise. With such approximations, they
find the equation for the projection of the displacement field on a given normal mode
ak = 〈ϕk|u〉 = ∑

iϕ
i
k · ui:

äk + µ
[
ω2

min − ω2
k

]
ȧk + µω2

k

τ
ak = 0, (1.15)

where ω2
min is the smallest eigenfrequency. On long times, the dynamics is dominated

by undamped oscillations corresponding to the lowest energy mode of the jammed pack-
ing. This is confirmed by observations in silico (Figs. 1.6-b and c): after a transient,
the lowest energy mode dominates the dynamics, and the projections on higher energy
modes describe strongly damped forced oscillations at the same frequency.

As a final remark, note that this work is historically the first to introduce self-oscillations
of a genuine dry and polar model active solid with self-alignment interactions, and,
remarkably, already intuited the crucial role played by the normal mode spectrum of the
underlying elastic structure.

1.3.2 Active crystals

In the work discussed above, the polydispersity of the disks forbids the formation of
an ordered packing at large density. Understanding how active processes transform the
equilibrium picture of 2d crystallization [86] is also an important question. In the ab-
sence of alignment, it was shown that the crystallization of self-propelled disks with
scalar interactions follows a two-step melting scenario similar to the one reported at
equilibrium6. However, there is an absence of coexistence between the hexatic and the
liquid phase for large enough activity [87], and the transitions shift to higher density
as activity increases [87–89]. Finally, at large enough activity, in the liquid phase, a
critical point opens up a MIPS region, indicating that the two-step melting and MIPS
are independent phenomena.

The situation is far less clear when polar alignment between particles overcomes rota-
tional diffusion. On the one hand, a mesoscopic field theory [90] predicts a transition
from a resting crystal to a traveling crystalline polar state, where the particles migrate
collectively while keeping their crystalline order. On the other hand, simulations [91]
of a generalized Vicsek model with alignment as well as short-ranged repulsive interac-
tions, report a mutual exclusion of the polar and the structural order and thus refute the
generality of the theory. Crystallization with polar alignment and short-range repulsion
is still an open debate.

Let us mention, as an example, a traveling phase found experimentally by Briand et
al. with the walking grains experiments [92], discussed above. They demonstrate that
alignment survives at high density. In hexagonal confinement, the system develops both
polar and structural ordering on the experimental length scales, and organizes into a
coherent sheared flow, which is made possible by the localization of shear along inter-
mittent stacking faults (Fig. 1.7). Simulations of Eqs. (1.9) very well reproduce the

6One transition separates the liquid phase (short-range positional and orientational order) from a
hexatic phase (short-range positional yet quasi-long-range orientational order), and a second transition
at larger density separates the latter from a solid phase (quasi-long-range positional order and long-range
orientational order).
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FIG. 1.7. Spontaneously flowing crystal of self-propelled particles. Flowing crystal
configurations in the experiment at a finite noise level with geometrical frustration (N = 1104,
φ = 0.86), and in simulations at successive times, without noise and without geometrical frus-
tration. The gray levels code for the orientational order parameter; the colors blue and red code
for five and seven neighbors, respectively (N = 1141, φ = 0.88). Adapted from [92].

phenomenology observed in experiments. Moreover, within periodic boundary condi-
tions, they confirm the existence of a traveling ordered structure up to the largest scale
that was investigated. Note that the emergence of orientational order near close packing
is not trivial. Indeed, in this system, polar alignment arises effectively from the dy-
namical relaxation of the particle polarity after each collision; however, those collision
are extremely frequent, and orientations do not have the time to relax following binary
collisions.

1.3.3 Self-propelled Voronoi model

Arguably, a more refined description of cell monolayers should also account for the in-
herent confluence of the layer and the anisotropic shape deformability of the cells. These
aspects are naturally incorporated in the so-called vertex or Voronoi models, which rep-
resent cells as polygons that collectively tesselate the entire space [93] (Fig. 1.8-a). The
main difference between these models lies in the choice of the relevant degrees of free-
dom. In vertex models, the dynamical equations of motion are solved for the polygon
vertices, while in Voronoi models, the equations of motion apply to the Voronoi centers
of each cell (Fig. 1.8-a).

Vertex models got popularized since the pioneering work of Bi et al. [95, 96]. On the one
hand, the mechanical energy of each cell is governed by its perimeter P and surface area
A, effectively accounting for the bulk elasticity of the cell. On the other hand, activity
is taken into account by considering an active contractility, and a net line tension. In
cell monolayers, the latter arises from a competition between the cortical tension of the
active actomyosin layer near the cortex, which tends to minimize the area of cell-cell con-
tact, and intercellular adhesion forces, which maximize the area of cell-cell contact. The
cell shape can be non-dimensionalized in terms of the so-called shape index p = P/

√
A.

Based on their simulations, it was predicted that the confluent cell layer undergoes a
fluid-to-solid-like transition at an average value of p̄ ' 3.81. This value could also be
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associated with a change in the energy barrier heights of so-called T1 transitions, which
govern cell rearrangements in confluent layers.

For the incorporation of active cell motility, the Voronoi model is generally preferred
over a vertex model simulation, as the Voronoi centers provide a natural way to assign
a single active force to every individual cell. A later study by Bi et al. [94] focused
on the glassy dynamics of confluent cell layers using the so-called self-propelled Voronoi
model. The mechanical energy of the system was assumed to be the same as in the vertex
model, i.e. controlled by the cells’ perimeters and areas. In contrast with vertex models,
activity is taken into account by additionally considering self-propulsion forces. They
invoke an ABP-like equation of motion: the cells’ self-propulsive forces have a constant
magnitude v0, and do not interact with each other. The main result of this study is the
phase diagram shown in Figs. 1.8-b and c, which indicates regions of parameter space in
which the dynamics are glass-like and fluid-like, respectively. The role of the rotational
diffusion constant was also explored, revealing a monotonic shift in the glass-transition
line. Note that the rigidity transition of the Voronoi model in 3d is similarly controlled
by the surface-to-volume ratio of the cells [97].

Even more interesting in our case, several studies considered a self-alignment term in the
polarity dynamics of the self-propelled Voronoi model [72, 73, 98, 99]. In all cases, they
include the same self-alignment interactions as Henkes et al. [79], with an alignment
timescale τ of the polarity toward the velocity vector. In periodic boundary conditions,
Giavazzi et al. showed that when self-alignment is small as compared to angular noise,
the standard liquid and amorphous solid phases remain, and when self-alignment dom-
inates, it leads to the emergence of an amorphous flocking solid, and a flocking liquid
phase, both exhibiting collective directed motion or migration. Interestingly, using sim-
ple effective temperature and caging timescales arguments, they could understand and
predict the location of the transitions between these different phases [72]. In contrast,

(a) (b) (c)
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FIG. 1.8. Motility-driven glass and jamming transitions in a self-propelled Voronoi
model. (a) Illustration of the Voronoi model for confluent cells. (b) Glassy phase diagram for
confluent tissues as a function of cell motility v0 and target shape index p0 at fixed angular noise.
Blue data points correspond to solid-like tissue; orange points correspond to flowing tissues. The
dynamical glass transition boundary also coincides with the locations in phase space where the
structural order parameter q = 〈p〉 = 3.81 (dashed line). In the solid phase, q ' 3.81, and
q > 3.81 in the fluid phase. (c) Instantaneous tissue snapshots show the difference in cell shape
across the transition. Cell tracks also show dynamical arrest due to caging in the solid phase
and diffusion in the fluid phase. Adapted from [93] and [94].
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in the presence of confinement, Petrolli et al. found a transition between a global and a
multinodal standing wave, controlled by the confinement size, and identified two crucial
conditions to produce these oscillations: (i) a small enough self-alignment timescale, and
(ii) a very limited number of cellular rearrangement, in the solid-like regime [73].

1.4 Active elastic structures

We have seen that active systems under strong confinement can exhibit collective be-
haviors incompatible with an active liquid description. However, other strategies exist
besides increasing density or confinement to reach active solids physics. A more conve-
nient way consists of designing authentic solid structures, intrinsically out-of-equilibrium
due to active actuators, embedded in the elastic matrix. In this case, the structure is
genuinely an elastic solid, and active forces induce deformations that may couple with
the forces and start a feedback loop.

Interestingly, the physics of elastic materials has recently experienced its own revolu-
tion. Playing with the mesoscale architecture of the underlying structure, or with the
constitutive laws of its constitutive elementary “springs”, physicists and engineers have
unveiled new behavior breaking the laws of standard elasticity. Such features allow for
the design of programmable materials, displaying multiple elastic response, or peculiar
responses such as negative Poisson ratio [100–108]. Yet, to date, such meta-materials
are passive, limiting their properties and their range of application. In particular, they
are not robust to fluctuations and attenuation. One strategy to solve this problem con-
sists of actuating metamaterials using an external field that interacts with the structure,
e.g. using hydrodynamic pressure [109] or magnetic fields [110]. However, this requires
fine-tuning the externally driven actuation mechanism, and is not readily adaptable to
a new mechanical function. In this context, active solids are a promising framework to
fabricate autonomous mechanical metamaterials, because they could provide a control-
lable and completely endogeneous actuation mechanism for the mechanical functions of
classical metamaterials [111].

Over the past years, numerous experimental, numerical, and theoretical approaches have
been attempted to conceive active structures and revealed two essential features of those
systems: autonomous actuation, and odd elastic moduli.

1.4.1 Actuation of rigid body motions

Doping an elastic structure with active units was pioneered by Ferrante et al. in 2013
[112]. In their active crystal model, so-called Active Elastic Sheet (AES), N active agents
are embedded in a springs network in the 2d plane, and the position ri and orientation
θi of agent i follow the overdamped equations of motion:

ṙi = v0n̂i + α [(F i +Drξr) · n̂i] n̂i, (1.16a)

θ̇i = β
[
(F i +Drξr) · n̂⊥i

]
+Dθξθ, (1.16b)

where v0 is the self-propulsion speed, n̂i and n̂⊥i are two unit vectors pointing parallel
and perpendicular to the heading direction of agent i, and parameters α and β are the
inverse translational and rotational damping coefficients, respectively. The total force
over agent i is given by F i = ∑

j∈∂i(−k/lij)(|rij | − lij)rij/|rij | (with rij = rj − ri), a
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FIG. 1.9. Elasticity-based mechanism for the collective motion of self-propelled par-
ticles with spring-like interactions. (a) Active elastic sheet simulations of Eqs. (1.16). (A)
Hexagonal active triangular lattice at t = 0 (A1), 240 (A2), and 1700 (A3). (B) Rod-like active
square lattice with next-nearest neighbors interactions at t = 0 (B1), 400 (B2), and 1700 (B3).
(C) Active solid at same times as column B; darker agents symbolize higher local alignment. (b)
Kinetic energy (A), elastic energy (B), and spectral decomposition of the elastic energy (C) as
a function of time for an hexagonal N = 91 active triangular lattice simulation (with zero noise
and same initial condition as (a)) that converges to the translating state. Brighter points on C
indicate higher energies. Adapted from [112].

sum of linear spring-like forces with equilibrium distances lij and spring constants k/lij .
Each set ∂i contains all agents interacting with agent i and remains fixed throughout
the dynamics. This system is thus akin to a spring-mass model of elastic sheet where
masses are replaced by self-propelled agents that turn according to F i · n̂⊥i and move
forward or backward following F i · n̂i and their self-propulsion. Note that this model
being motivated by swarms of autonomous robots on wheels [43, 113], the elastic forces
are projected on the heading direction in Eq. (1.16a) to forbid for gliding, which is very
specific to this model. They also include two types of noise. First, an actuation noise
(fluctuations of the individual motion) by adding a term Dθξθ to Eq. (1.16b), where Dθ

is the angular noise amplitude and ξθ a random variable with zero mean and correlations
〈ξθ(t)ξθ(t′)〉 = δ(t − t′); and second, a sensing noise (errors in the measured forces) by
adding a term Drξr to F i in Eq. (1.16a), where Dr is the noise amplitude and ξr is a
randomly oriented unit vector.

Simulating Eqs. (1.16) on different mechanically stable spring networks with random
initial orientations of agents (Fig. 1.9-a panels 1), they find that regions of coherent mo-
tion develop (Fig. 1.9-a panels 2), deforming the elastic structure, until the group starts
translating or rotating collectively in steady state (Fig. 1.9-a panels 3). Remarkably,
the rotating states are metastable and relax to the translating state on long times. One
hallmark of this work is the characterization of the nonlinear energy cascade giving rise
to collective motion (Figs. 1.9-b). In the initial condition, the system has zero potential
energy and kinetic energy Ek = Nv2

0/2 (setting the agent mass to 1). As the sheet de-
forms during the transient, potential energy grows and becomes broadly distributed over
all modes, while kinetic energy drops. As time advances, the system rearranges itself into
configurations with lower elastic energy and higher kinetic energy. The elastic energy in
each mode oscillates while decaying, with the higher energy modes decaying faster than
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the lower ones. Self-propulsion thus feeds energy to lower and lower energy modes, until
eventually reaching selectively the translational or rotational zero modes, achieving CM.
Interestingly, the AES model also displays a discontinuous order-disorder transition with
noise similar to that of the Vicsek model, and supports long-range order at small enough
but finite noise amplitude. Note that the latter is far from trivial. Indeed, in section
1.1 we invoked the existence of effective long-range interactions coming from the flying
nature of the active units to violate the Mermin-Wagner theorem. However, here, the
active units only interact with their nearest neighbors.

1.4.2 Actuation of non-trivial zero modes

In the work above, the active dynamics is driving the system to actuate autonomously
the rigid body motions of the structure, i.e. translations and rotations. In a recent
paper, Woodhouse et al. demonstrate that activity also enables autonomous actuation
of coordinated mechanisms engineered through the network topology [114]. On the one
hand, they show that active Ornstein-Uhlenbeck particles activate selectively Infinites-
imal Zero Modes (IZM), which are normal modes with zero energy but resistance at
nonlinear order. On the other hand, they show that so-called Rayleigh activity (defined
below) can mobilize complex mechanisms, which also have zero energy but a finite range
of costless motion. The normal modes classification will be clarified in chapter 3.

The AES model from Woodhouse et al. differs from the one of Ferrante et al. in the
family of active particles embedded in the springs network, which are first chosen to be
Active Ornstein-Uhlenbeck Particles (AOUPs) [115]. The position ri of agent i obeys
the following overdamped equations:

ṙi = ξi + F i, (1.17a)
τ ξ̇i = −ξi + ηi, (1.17b)

where F i is the total elastic force applied to agent i, ηi,α are Gaussian white noises with
zero mean and correlations 〈ηi,α(t)ηj,β(t′)〉 = 2Dδijδαβδ(t − t′), and ξi is an Ornstein-
Uhlenbeck noise7. Note that in the limit τ → 0, the latter transforms back into thermal

(a) (b) (c)

FIG. 1.10. Active noise actuates an IZM while suppressing harmonic modes in a
pruned mechanical network. (a) A network of unit length, unit stiffness springs is designed
to contain exactly one IZM (arrows). White nodes are pinned. (b) Histograms of node positions
in the highlighted area of (a) when actuated by thermal noise (left) and correlated noise with
τ = 10 (right) of strength T = 10−3. (c) Thermal-relative amplitude 〈u2

i 〉τ/〈u2
i 〉τ=0 of the 21

lowest eigenvalue modes ui of (a) from numerical integration at 0 ≤ τ ≤ 10, with T = 10−3

fixed. The IZM (red) is barely affected, while harmonic modes (blues) diminish. Grey areas are
estimated 95 % confidence intervals from 20 realizations. Adapted from [114].

7The two-point correlation function of the active force expresses as 〈ξi,α(t)ξj,β(t′)〉 =
δijδαβ

D
τ
e−|t−t

′|/τ [114, 115].
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noise. The AOUPs are embedded into a triangular lattice, pinned at the edges to elimi-
nate rigid body translations and rotations, and pruned so that the lattice exhibit a single
non-trivial IZM (Fig. 1.10-a). Simulating Eqs. (1.17) on this network, they find that
while thermal noise (τ = 0) actuates the IZM with significant surrounding fluctuations
(Fig. 1.10-b left), the active process with τ > 0 damps harmonic modes fluctuations
with respect to those of the IZM (Fig. 1.10-b right). This effect is best illustrated in
Fig. 1.10-c, which represents the mean squared fluctuations of the displacement field
projections on the normal modes, relatively to the thermal case. The IZM amplitude
remains at its τ = 0 level, while harmonic modes excitations decay as τ increases.

The second system is the linear chain inspired by the Su-Schrieffer-Heeger (SSH) model
for polyacetylene [116]. This molecule has topologically protected electronic states local-
ized at its edges, and its mechanical analog, built from rigid bars and elastic springs (Fig.
1.11-a), has zero-energy vibrational modes with a non-trivial topological index, whose
eigenvectors are localized at one of the edges [117]. Remarkably, it was shown that this
zero mode can propagate along the chain in the form of a soliton of finite deformations
[100]. However, an external energy input is needed, either in the form of a “kick” on one
of the nodes, or in the form of global force field. Yet, propagation is difficult: motion by
a “kick” will inevitably slow down and stop due to dissipation, while an external field
needs regular adjustments to keep the mechanism moving. The authors embed Rayleigh
activity in this structure [118, 119], which takes the form of an active force F a

i along the

(a)

(b)

FIG. 1.11. Rayleigh activity spontaneously mobilizes a complex mechanism (a) Me-
chanical SSH model, which has a periodic mechanism comprising progressive flipping of the
masses from right to left and back again. Black (resp. blue) nodes are fixed (resp. mobile),
black (resp. red) lines are rigid bars (resp. elastic springs). (b) Endowing a 21-node chain
with Rayleigh activity spontaneously mobilizes the mechanism. The propagation speed depends
on the propulsion v0, seen through the time-dependent offsets ∆xi of mobile nodes from their
pinning points. Adapted from [114].
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particles’ velocity:

F a
i = γf

(
1− |ṙi|

2

v2

)
ṙi, (1.18)

where v is a characteristic speed, and γf sets the amplitude of the polar force. This term
can be interpreted as a negative friction coefficient, balancing with genuine friction force
−γṙi to give rise to a cruise velocity v0 = v|γf−γγf

|1/2. Note that here the overdamped
limit is not assumed. Not only does this activity model provide the same selection of
IZM in pruned triangular lattices as AOUPs, but it can also mobilize the free-moving
mechanism of the mechanical SSH chain (Fig. 1.11-b). The soliton cleanly propagates
at speed v0 for multiple cycles up and down the chain, with occasional stalls or reversals
caused by the complex interactions of the fluctuating active nodes.

It is now clear that activity can autonomously actuate the zero-modes of a structure,
whether they are rigid body motions or engineered through the network topology [112,
114]. Nevertheless, the work of Henkes et al. also demonstrated the autonomous actua-
tion of a harmonic mode [79], the lowest energy one, asking the general question of the
mechanical functionality of active matter, which remains an open question. In the next
section, we discuss one of the very few systems where the interplay between elasticity
and activity was studied experimentally, providing more insights into understanding the
physics of mechanically stable active solids.

1.4.3 Frustrated active chain

Motivated by the observations of self-oscillations in biological systems such as flagella
and cilia [121–123], Zheng et al. recently constructed a model system of dry and polar
active chain [120]. It is made of 7 centimetric self-propelled particles8, exerting po-
lar forces of amplitude Fa along their heading directions, and elastically coupled by a
laser-cut silicon rubber chain pinned at one end (Fig. 1.12-a). Interestingly, they can
manipulate the stiffness of the chain by tuning the width W of the connections. The
authors model this system with coupled active pendulums, represented by N non-linear
coupled ODEs that describe the motion of the elasto-active chain9. There are two di-
mensionless parameters: the elasto-active number σ = Fal/C, and the characteristic
damping timescale τ = γl2/C, where l (resp. C) is the length (resp. the torsional stiff-
ness) of the connections, and where γ is an effective friction coefficient.

8Hexbugs Nano, which is the former design of commercially available Hexbugs toys.
9Denoting θi the orientation of active agent i, the ODEs are:

0 = 2θ1 − θ2 − σ
N∑
j=1

sin (θ1 − θj) + τ

(
Nθ̇1 +

N∑
j=2

˙θj cos (θ1 − θj)

)
for i = 1, (1.19)

0 =2θi − θi−1 − θi+1 − σ
N∑
j=1

sin (θi − θj)

+ τ

(
(N − i+ 1)

i∑
j=1

θ̇j cos (θi − θj) +
N∑

j=i+1

(N − j + 1) θ̇j cos (θi − θj)

)
for i ∈ [2, N − 1] ,

(1.20)

0 = θN − θN−1 + τ

N∑
j=1

θ̇j cos (θN − θj) for i = N. (1.21)
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For the chain with the widest connection, i.e. the smallest elasto-active number σ,
any perturbation is damped (Fig. 1.12-b). As σ increases and exceeds the threshold
σc, spontaneous self-oscillations of the chain emerge (Figs. 1.12-c and d). This transi-
tion is illustrated by the abrupt increase of the amplitude Θ = θ7 − θ1 as σ increases
(Fig. 1.12-e), where θi represents the orientation of the ith active unit with respect to
the vertical direction. Notably, the transition is characterized by a finite frequency at
the onset of self-oscillations, monotonically increasing for larger activity (Fig. 1.12-f).
Combining the above experimental observations with the linear stability analysis of the
chain in its rest state, they demonstrate that a supercritical Hopf bifurcation governs
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FIG. 1.12. Emergence of self-oscillations in frustrated elasto-active chains. (a) Con-
figurations of 7 active particles connected by a flexible rubber chain, each exerting a polar force
F a in the chain’s direction. The width of the chain’s connections is denoted W . (b-d) Snapshots
of the trajectories of the active particles showing the oscillations changed from self-amplified
to overdamped with elasto-active number σ = 0.166, 0.214 and 0.695 respectively. (e-f) Hopf
bifurcation at σ = 0.16. Simulation (solid lines) and experimental (markers) results showing the
evolution of the amplitude

√
〈Θ2〉t (e) and of the dimensionless frequency fτ (f) of oscillation

with increasing σ. Inset: oscillation’s amplitude as a function of distance to the threshold in
log-log. The dashed gray line represents the 1/2 power-law. Adapted from [120].
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this transition. Here, non-linear elasticity is crucial as the underlying mechanism at the
origin of the transition is a nonlinear elasto-active feedback between the direction of the
active forces and the non-linear elastic deflections. Eventually, this active structure is
said here to be frustrated because active forces can only point along the chain’s direction.

Having discussed autonomous actuation, which results in locomotion or self-oscillating
behavior, we now elaborate on the second hallmark of active solids: odd moduli.

1.4.4 Odd elastic solids

One of the central assumptions of classical elasticity is that the work needed to qua-
sistatically deform a solid depends only on its initial and final states, putting strong
constraints on the allowed elastic moduli [124]. However, if the microscopic constituents
of the solid are active, then the work can be path-dependent. Very recently, Scheibner
et al. revealed that the presence of active, non-conservative interactions, can give rise to
new elastic moduli that would be absent in passive elasticity [125]. They consider the
network of masses connected by active bonds depicted in Fig. 1.13-a. When the bond
elongates or contracts, a gear system rotates the battery-powered propellers to produce
transverse forces. For small strains, the force law is linear in the displacements and is
given by

F (r) = (−kr̂ + kar̂⊥)δr, (1.22)

where δr = r− r0 is the radial displacement from the equilibrium length r0, and r̂ and
r̂⊥ are respectively the unit vectors parallel and perpendicular to the bond. Eq. (1.22)
describes a Hookean spring of stiffness k with an additional chiral, transverse force pro-
portional to ka. Note that the presence of such forces everywhere in the springs network
requires the system to be active, e.g. by providing power to the propellers. Nonetheless,
the interaction conserves linear momentum because the forces on each end of the bond
are equal and opposite.

The authors introduce a convenient representation of the additional elastic moduli of
a material built out of many such components (Eq. 1.23). While elastic potential
energy is not well defined because of the microscopic path dependence (Figs. 1.13-
d and e), a stress-strain relation exists and can be linearized for small deformations.
This approximation, known as Hooke’s law, is captured by the continuum equation
σij(x) = Cijmnumn(x), where umn(x) are the gradients ∂mun(x) of the displacement
vector un(x) and Cijmn is the elastic modulus tensor. In the absence of an elastic
potential energy, the most general linear relationship between stress and displacement
gradient for a 2d isotropic solid reads10:

 =


B 0 0 0
A 0 0 0
0 0 µ K0

0 0 −K0 µ




 . (1.23)

The displacement gradients on the right-hand side (resp. the stress vector on the left-
hand side) are decomposed into dilation, rotation, and the two shear deformations (resp.
pressure, torque, and the two shear stresses). For passive elasticity, only the bulk mod-
ulus B and shear modulus µ are present. In contrast, when lifting energy conservation,
two new moduli arise: A and K0. A couples compression to internal torque density,

10Adapted from [125].
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(a)

(b)

(d)

(c)

(e)

FIG. 1.13. Quasistatic work cycles with non-conservative active bonds. (a) A mechan-
ical realization of Eq (1.22). Two propellers, mounted on platforms connected by a Hookean
spring, are powered by batteries and blow air at a constant rate. As the platforms slide together
(or apart), a gear system rotates the propellers, giving rise to transverse forces. An elongated
configuration is shown. A triangular lattice built out of such active bonds exhibits odd elasticity.
(b-c), The concrete schematic (b) and conceptual diagram (c) illustrate the linearized force law,
given by Eq. (1.22). The key feature is an active transverse force (red arrows) proportional to
strain (black arrows). (d-e) When the bond is brought on a strain-controlled quasistatic cycle,
the work done by the radial forces Fr during legs 2-3 and 4-1 sums to zero. However, the trans-
verse force Fφ does work during leg 3-4 that is not compensated elsewhere during the cycle. For
small angles δφ and strains δr/r0, the work done by the bond on a quasistatic cycle is equal to
ka times the area enclosed. Adapted from [125].

while K0, like shear modulus µ, is a proportionality constant between shear stress and
shear strain. However, K0 mixes the two independent shears in an antisymmetric way.
Note that such an odd elasticity framework applies to active systems for which the active
forces derive from a stress tensor. Interestingly, this is not possible for the dry and polar
active solids that will be considered in this work, asking the question of the generaliza-
tion of odd elastic moduli to systems that do not conserve linear momentum.

In terms of phenomenology, odd elasticity emerging from microscopic non-conservative
interactions was shown to be at the origin of auxetic behavior and wave propagation
in overdamped media [125], self-sustained oscillations in living chiral crystals [126], and
non-Hermitian skin effects and work-generating limit cycles in non-reciprocal metama-
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terials [127–129]. Notwithstanding such systems conserve linear momentum, they are of
great interest as they allow for experimental platforms to explore the physics of active
solids in a more general sense. In the next section, we discuss an experimental system
that was designed to reproduce the type of microscopic interactions described above.

1.4.5 Non-reciprocal metametarials

Building on their earlier work on 1d active mechanical metamaterials [127, 128], Bran-
denbourger et al. have recently introduced a new experimental platform allowing for
non-reciprocal interactions in a 2d material [129].

In molecular edifice, ordinary angular or bond-bending interactions are approximated by
a potential energy E = κ

2
∑
i δθi, where δθi corresponds to the deviation from the equilib-

rium angle of bond i, and κ is the bending stiffness. The resulting torques τi are obtained
from the gradients of the potential, and given by the generalized force-displacement re-
lation τi = −κδθi. Brandenbourger at al. construct a mechanical realization with rigid
bars and motor-powered connections, described by two bond angles θ1 and θ2 (Figs.
1.14-a and d), and whose generalized force-displacement relation reads:(

τ1
τ2

)
=
(
−κ −κa
κa −κ

)(
δθ1
δθ2

)
. (1.24)

In addition to the diagonal, passive κ-terms, the matrix in Eq. (1.24) also has an off-
diagonal component κa. These terms are called odd, since they are antisymmetric under
the exchange of indices i and j. For κa > 0, when θ1 is contracted, θ2 contracts too
(Figs. 1.14-b and e); but when θ2 is contracted, θ1 expands instead (Figs. 1.14-c and f).
As discussed in the above section, when the vertices are deformed, the work done by the
vertices depends on the path taken and can be positive or negative, which implies that
Eq. (1.24) requires a source of energy (provided by the motor-powered connections). If
activity (or oddness) is large enough, the dynamical system will proceed to a nonlinear
limit cycle in which the energy injected by the non-conservative force balance with dissi-
pation. This is made possible by the nonlinear saturation of the motors’ torques at τmax
(Fig. 1.14-g). They show that the instability threshold of the rest state is written in
term of a dimensionless parameter ξ = κa/I

√
I/κ, where Γ is a dissipation coefficient,

and I is the moment of inertia of the bonds. When |ξ| < 1, dissipation and restoring
forces win and perturbations are damped (Fig. 1.14-h). In contrast, when |ξ| > 1, a Hopf
bifurcation occurs and a limit cycle of finite amplitude, proportional to τmax, emerges
(Fig. 1.14-i).

The authors then demonstrate how the above design principle can be used to construct
odd structures, and how their tendency to cycle can be harnessed to perform mechanical
functions. They first focus on an odd wheel, made of 6 active vertices connected on a
closed hexagon (Fig. 1.14-j). Due to the κa couplings, the odd wheel is able to perform
spontaneous work cycles between its two shear modes (Figs. 1.14-k and l), providing
the structure with the ability to self-propel on a substrate. Eventually, they study the
collision of a ball with a wall when either the ball or the wall is odd, and reveal more
autonomous functionalities of odd matter such as asymmetric and enhanced rebound
and steering of impact vibrations, which are reminiscent of non-Hermitian skin effects
[127, 128, 130]. Note that they could construct odd structures up to 120 motorized
vertices, getting relatively close to an active material [129].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 1.14. Odd forces induce nonlinear work generating limit cycles. (a) Three rigid
linkages are connected by motorized vertices. (b) A hand pushes in on the left, and the right
vertex contracts. (c) A hand pushes in on the right, and the left vertex expands. (d-f) Schematics
summarizing the asymmetric (or odd) stiffness for κa > 0. (g) The non-conservative force is
proportional to the angular deflection δθ for small amplitudes but saturates at a value τmax
at large amplitudes. (h-i) The dynamics are parameterized by the dimensionless quantity ξ =
κa/Γ

√
I/κ capturing the strength of the odd forces. For |ξ| < 1 the system relaxes to its rest

configuration. For |ξ| > 1, the interplay of odd stiffness, nonlinearity, and dissipation produces a
limit cycle at finite amplitude. Color indicates phase angle ϕ. (j-k) Six odd vertices are connected
in a hexagon, whose shape is summarized by 3 independent angles, θ1, θ3, θ5, or alternatively
three deformation modes: two shears S1 and S2, and a breathing mode B. (l) When initially
perturbed, the system evolves towards a limit cycle in the space of S1 and S2. Adapted from
[129].

1.5 Conclusion

Active solids consist of elastically coupled out-of-equilibrium units performing work.
Conceptually, they combine the central properties of simple elastic solids and active liq-
uids (Fig. 1.15). On the one hand, the positional degrees of freedom of their constituting
units have a well-defined reference state. On the other hand, activity endows these units
with an additional free degree of freedom in the form of polar or dipolar active forces,
or in the form of an active torque for chiral active agents. The active forces deform the
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elastic matrix, and induce an active strain Γ ({ri}, {n̂i}), which depends on the config-
uration of the forces. This active strain Γ will in turn reorient the forces. This generic
nonlinear elasto-active feedback, formulated without the need for explicit aligning inter-
actions, opens the path towards spontaneous collective excitations of the solid, which
we shall call collective actuation. Considering polar agents, a general agent-based model
accounting for the physics of active solids is:

γtṙi = F0n̂i + F el [{ri}] , (1.25a)
γrṅi = Γ ({ri}, {n̂i}) · n̂i, (1.25b)

where the interaction forces F int are now elastic, position-based forces F el [{ri}]. In-
terestingly, the elasto-active feedback reorients locally the active units according to the
active strain, without explicit alignment. In general, active agents do not obviously have
the processing and sensor capabilities to access their neighbors’ mean orientation, e.g.
for biological tissues, and thus such models are more likely to provide realistic mech-
anisms for the origin of collective behaviors in real-life active solids. Moreover, they
are particularly relevant for active systems where elasticity dominates over the spatial
reorganization of the agents.

Different communities have constructed active solids, by compacting a dense active liq-
uid or doping a genuine elastic structure with active units, revealing two hallmarks of
active solids: autonomous actuation and odd moduli. Autonomous actuation refers to
the spontaneous excitation of one or several normal modes, contrasting with equipar-
tition in equilibrium systems. In the presence of zero modes, autonomous actuation
resembles collective locomotion. In contrast, for mechanically stable elastic structures,
autonomous actuation might be seen as spontaneous self-oscillations. Eventually, the
existence of odd elastic moduli was demonstrated in the case of systems that conserve
linear momentum.

A myriad of open questions remain:

• How do the mechanical properties of the solid affect the emergence of collective

Active liquid Active solid Elastic solid

Reference configuration for the positions

Polarities are free to rotate

n̂ n̂

FIG. 1.15. Polar active solids principle. Polar active liquids (left) are composed of a large
number of self-propelled interacting spins with no particular spatial order. The gray area illus-
trates the interaction range between active agents. Conversely, for polar active solids (middle),
the positional degrees of freedom have a reference configuration, like in the case of standard
elastic solids (right), and free-to-rotate polarity vectors.
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behaviors? Are zero-mode actuation and self-oscillations two facets of the same
phenomenon?

• What mechanisms govern the transition to collective actuation?

• What principles determine the selection rules of the most actuated modes?

• What are the fates of these regimes in the continuum and thermodynamic limits?
What is the large-scale physics of active solids? Can one write a hydrodynamics
theory?

• How can one control the emerging collective behaviors, whether by design, or
external control?

• If odd elastic solids have to be active in some way, are dry and polar active solids
odd elastic? What can we say about the mechanical properties of active solids
which do not conserve momentum?

• What are the connections between non-reciprocal systems and active solids?

• Can we design an elasto-active feedback between active units’ orientations and
structure deformations, different than Zheng et al. [120], i.e. not frustrated, and
not relying on elastic nonlinearities?

Inspired by the above framework, we aim at addressing some of the above questions by
introducing a new experimental platform to investigate the collective dynamics of dry
and polar active solids. We embed centimetric model active units in a genuine spring
network, and take advantage of self-alignment to obtain a new feedback between the
deformations of the elastic structure and the active force field. We explore the emerging
dynamics in systems with various sizes, shapes, and boundary conditions; and combine
those findings with the numerical and theoretical analysis of an agents model. Finally,
we propose a hydrodynamics theory for dry and polar active solids with self-alignment
interactions.





Chapter 2

Experimental systems

In this chapter, we introduce our model active solid experiments, elaborate on their de-
sign and physical ingredients, and measure the microscopic parameters. We also provide
the full details on processing the experimental data, in particular the tracking algorithm.

2.1 Active units

2.1.1 How to make active particles?

Let us start by answering the first question an active matter experimentalist may wonder:
how to construct a model active particle in the lab? Whether working in dry or wet
active matter systems, the requirements are the same: give yourself an object (i) that
breaks some spatial symmetries (polar, dipolar, or chiral); and (ii) provide it with an
energy supply. The active particles can harvest the energy at the microscopic level from
their environment, like in the case of bacteria, robots, and swimming droplets; or it
can also be provided by a global energy source, like in light-driven Janus particles [26,
131–133], vibrated polar disks [55–58, 92, 134–137] or colloid rollers [59–61, 138]. Also,
note that the broken spatial symmetry the active particles must endow can be broken
by design (by explicitly designing asymmetric objects) or spontaneously broken (like
swimming droplets [139–141]). From the asymmetry of the particle, energy is dissipated
locally and anisotropically, providing the particle with out-of-equilibrium fluctuations,
e.g. self-propulsion.

2.1.2 Hexbugs as active particles

Hexbugs1 are centimetric self-propelled robotic cockroaches (Fig. 2.1). When switched
on, the vibration produced by the internal motor couples to their flexible legs, allowing
for directed motion in the 2d plane. Indeed, those robots satisfy the two requirements
described above to become self-propelled active particles: their legs are curved to the
back, breaking the font/tail symmetry, and the battery they carry supplies the internal
motor. The broken front/tail symmetry defines the polarity vector of the active particle,
denoted n̂ (Fig. 2.1-a). This ultimately defines the self-propulsion direction, oriented
forward, along the body’s nematic vector. Hexbugs were extensively studied in the past
years, particularly their individual dynamics in harmonic traps [142, 143], their interac-
tions with walls [144], their clustering in confinement [145, 146], and were used to create
chiral active fluids [147] and active elastic structures [120]. Note that a full zoology of
such self-propelled cockroaches exists, which differ in their number of legs, the materials

1Visit https://www.hexbug.com/ . Perfect for outreach activities and cats love them.
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FIG. 2.1. Hexbug anatomy and propulsion mechanism. (a) Hexbug nitro anatomy; (i)
side view (ii) bottom view (iii) top view. Polarity vectors are shown with red arrows, and square
sides are 1 cm long. In (i), the antennas were not cut, and the body was not painted black.
(b-d) Jump phase of a hexbug nitro. Pictures spaced by 5.2 ms and 3.4 ms. (b) Motor is up, the
hexbug is touching the substrate, and its front legs are charged with elastic energy. (c) Motor is
down, the hexbug’s front takes off as the legs release elastic energy. (d) The hexbug is jumping,
its front legs are up while its rear legs are touching the substrate.

used, and exact mass distribution, but all have similar physical properties. Unless stated
otherwise, we focus on the so-called hexbug nitro in the rest of this manuscript.

2.1.3 Anatomy

Hexbugs are somewhat elongated objects: their body length is 45.0 mm, width is 11.5
mm, and height is 14.5 mm (Fig. 2.1-a). The energy supply comes from a 1.5 V
AG13/LR44 battery inside the robot, which provides power to a rotating motor con-
nected to an eccentric mass. The majority of the mass lies in the battery, located at the
back of the particle; thus, the barycenter is closer to the tail than the front. A switch
allows for turning the motor on and off. The hexbugs bulk is made of hard plastic, while
the legs are made of a soft material that deforms under the action of the motor. When
freshly unpacked, the hexbugs are provided with antennas that allow the robot to turn
around if knocked down. In the following, we cut the antennas as low as possible to avoid
future parasitic mechanical coupling. Eventually, we paint the top part of the hexbugs
in black to easily identify them from the top on a white background.

2.1.4 Propulsion mechanism

Now let us elaborate on the hexbugs’ propulsion mechanism. As discussed above, when
switched on, the internal motor starts rotating the eccentric mass. From linear momen-
tum conservation along the z-direction, and from the position of the motor with respect
to the mass barycenter, when the motor’s mass goes up, the hexbug’s front goes down,
and reciprocally, resulting in a vertical vibration of the body’s front. Self-propulsion in
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the 2d plane results from the coupling of this vertical vibration with the curved flexible
legs. Indeed, when the hexbug stands on a horizontal substrate, as the motor goes up,
the body’s front goes down, charging elastically the front legs. As the motor goes down,
the legs’ elastic energy is released, and the body’s front is kicked in the legs’ direction,
i.e. vertically and along the polarity n̂ (Figs. 2.1-b and d). The hexbug starts its jump-
ing phase, during which the front of the particle is in the air, while the back legs rub
on the substrate. This friction and gravity ultimately recall the body’s front toward
the substrate. As the front legs land, they get charged again, and the process repeats.
Note that the motor’s frequency is way larger than the jump frequency, and these two
processes are not particularly synchronized. Combined with complicated 3d effects, the
propulsion regime is mostly chaotic. Nevertheless, observed on long timescales, hexbugs
travel at the well-defined cruise velocity, while their polarity n̂ diffuses. The repeated
kicks given on the substrate, which is held fixed by friction, are at the origin of the
overall non-conservation of linear momentum in the 2d plane.

To further characterize the propulsion mechanism, we apply different voltages from 0 to
3 V (twice the battery voltage) to the hexbugs. We weld copper cables to the hexbugs
battery pins, and connect them to a tunable DC power supply. The cables2 are very thin
and loose not to disturb the hexbugs’ motion. Using a standard microphone and Fourier
analysis, we first measure the motor’s frequency as a function of the applied voltage (Fig.
2.2-a). We find that for a small enough voltage (< 0.2V ), the motor is at rest. For large
enough voltage (> 0.2V ), the motor starts rotating, and the motor’s frequency increases
monotonically with voltage. Second, we measure the hexbugs speed as a function of the
applied voltage, and find a similar observation. Fig. 2.2-b shows how the cruise velocity
depends on the motor’s frequency, for two species of hexbugs, the nitro, and the nano.
In both cases, we find that speed scales mostly linearly with the motor’s frequency for
small driving, and ends up saturating at roughly 30 cm/s at large driving. This linear
relationship at small frequency was observed in other studies on Bristlebots3 locomotion
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FIG. 2.2. Hexbugs’ propulsion as a function of the applied voltage. (a) Main frequency
of the sound emitted by a hexbug (as given by the largest peak of its FFT) as a function of the
imposed voltage. (b) Cruise velocity of a hexbug as a function of its vibration frequency (a). On
both figures, blue markers account for the nitro hexbugs (6 legs), and red markers for the nano
hexbugs (10 legs).

2BLOCK, 100/0.15∅; 150 µm diameter enameled copper wires.
3General name given to vertically vibrated robots propelled thanks to curved flexible legs
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[148–150]. In the rest of the manuscript, unless stated otherwise, we restrict to the 1.5
V voltage provided with the batteries.

2.1.5 Left/right bias

It is worth noting that hexbugs are generally biased: they turn preferentially to the
left or right. This is due to both design and aging of the hexbugs. First, the rotating
motor already breaks the left/right symmetry of the active particle. To compensate for
this effect, the left legs are designed to be stronger than the right ones (slightly wider),
resulting in a mostly unbiased motion. However, lousy packaging, manufacturing errors,
and components variability give rise to particles biased either to the left or right. Aging
also plays a crucial role: emerging chiral behavior in previous experiments can induce
long-term bias in the particles involved. In section 2.1.7, we describe the procedure used
to select only the less biased hexbugs.

2.1.6 Self-alignment

In 2018, Dauchot and Démery [143] demonstrated that hexbugs exhibit self-alignment
properties: their polarity vector reorients toward the direction of motion. This ingre-
dient was shown to be at the root of orbital motion for a single hexbug embedded in
a harmonic trap (see chapters 3 and 5), and originates from the mass distribution of
the particle. Because the barycenter lies closer to the tail, when in motion, the particle
experiences more friction with the substrate on the back than on the front, resulting in
an effective self-alignment torque.

Let us illustrate the self-alignment properties of hexbugs using another simple bench-
mark experiment. We explore the effect of gravity on the dynamics of a single active
unit in free boundary conditions. Therefore, we study the motion of one hexbug freely
moving on a substrate, but the latter is also tilted by an angle α = 5.3◦ with respect to
the horizontal plane (Fig. 2.3-a). An hexbug’s starting block is designed with cardboard
to prepare the initial condition, perpendicular to the slope (Fig. 2.3-b). The dynamics
are recorded and tracked 10 times, and the possible left/right bias of the hexbug is taken
into account by performing each experiment twice, first with the slope running down

(a) (b)

Slope α

FIG. 2.3. Tilted experiments with gravity, and benchmark (a) Experimental setup pic-
ture. The tilt generates a gravity acceleration of amplitude gα = g sinα, where α is the angle of
the substrate with respect to the horizontal plane, and g is the gravity acceleration at the earth’s
surface. (b) Single hexbug dynamics in a gravity field. 10 trajectories are color-coded from blue
to red by increasing time for the two possible initial orientations of the hexbug; scale bar: 10 cm.
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on the left and then on the right. We find that the hexbug, initially perpendicular to
the slope, systematically reorients toward it. This effect is illustrated by the trajectories
represented in Fig. 2.3-b. As a matter of fact, we find that the hexbug aligns on average
toward a direction close to the gravity force direction, but not strictly. As discussed
below, this comes from the intrinsic left bias of the hexbug used for this experiment.

Inspired by the work of Dauchot and Démery [143], we consider the noiseless and over-
damped dynamics of a single hexbug in free boundary conditions, simply replacing the
central force toward the parabola’s origin by a constant gravity force. The position r
and orientation n̂ of the hexbug evolve according to the following equations of motion:

ṙ = v0n̂+mg/γ, (2.1a)
τ ṅ = ζ(n̂× ṙ)× n̂, (2.1b)

where g = g sinαeg, eg is a unit vector pointing toward the slope running down, m is
the hexbug’s mass, and v0 = F0/γ is the hexbug cruise velocity. Importantly, the term on
the right-hand side of Eq. (2.1b) is a self-alignment term, reorienting the polarity vector
toward the direction of motion. Note that this term is proportional to the velocity ṙ,
thus the alignment process is characterized by an alignment length la = τ/ζ. The polar
force does not contribute to rotating the polarity vector; only the gravity term does,
thus the polarity equation decouples from the position. The dynamical equation for the
angle θ between the polarity vector n̂ and the slope direction eg is:

θ̇ = −mg sinα
γla

sin θ. (2.2)

The orientation is relaxing toward the gravity direction, the same way an overdamped
nonlinear pendulum in a gravity field would. The transitory regime can be computed
analytically (see section 2.3), and mostly consists of a relaxation toward θ = 0 (running
down the slope) over a typical timescale γla/mg sinα. Adding a bias term ωn̂⊥ in the
polarity dynamics Eq. (2.1b), we find that independently of the initial orientation θ0,
the stationary angle θs reads:

sin θs = ω
γla

mg sinα, (2.3)

where ω is the hexbug bias rotation rate. For vanishing bias (ω = 0), the stationary
orientation is θ = 0, meaning that the polarity vector is aligned with the slope. For
finite bias (ω > 0), the polarity vector is misaligned with the gravity force, as given by
Eq. (2.3) and observed in the experiments shown in Fig. 2.3-b. Interestingly, Zion et al.
studied this alignment on gravity in free boundary conditions using kilobots4 augmented
with 3d printed exoskeletons [151]. They have shown that the design of the exoskeleton
allows for setting the sign of the alignment length la, and can therefore lead to alignment
(la > 0) or anti-alignment (la < 0) on gravity, according to the same equations as Eqs.
(2.1).

2.1.7 Hexbugs eugenics

Regardless of morals, in the following, we do eugenics and only keep the best hexbugs.
This decreases the heterogeneity among the active units and prevents too severe conse-
quences in the experiments. To find the best hexbugs among a large set5, the first step is

4Low-cost centimetric robots specifically designed for swarm robotics experiments.
5Our hexbugs fleet typically contains 100 active units.
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to change all their batteries. Then, the following criteria should be met to use a hexbug
in an experiment:

• It should run fast enough. As an arbitrary criterion, we ask the hexbugs to run at
speeds close enough to 20 cm/s.

• It should not appear to be biased on the length scale of a lab table. A biased
hexbug performs a circular motion, whose radius is given by R = v0/ωb, where v0
the cruise velocity and ωb the bias angular rotation rate. We select a hexbug only
if R > Rtable ' 1 m, which avoids considering too severely biased active units.

• It should adequately self-align when imposing a motion manually with the active
elastic building block (see section below). This is a completely arbitrary condition,
but it allows discarding hexbugs that perpendicular displacements would easily
knock down.

2.2 Active elastic building blocks

2.2.1 Design principle

In order to create a mechanical coupling between the hexbugs’ polarities and motion,
we embed them into little cages; made of a 3d printed ABS annulus (Fig. 2.4-a), and
covered by an elastic plastic film to restrict the vertical motion of the hexbugs. The
active unit induces self-propulsion of the whole building block along the polarity n̂. At
the same time, the effective friction of the hexbugs with the top plastic film and substrate
reorients the active unit. The annuli were designed to optimize both self-propulsion and
reorientation of the active units. On the one hand, the active building blocks are as
self-propelled as the annuli are light, because they create additional friction with the
substrate. On the other hand, reorientation by motion is as strong as the annuli are
heavy and their height is small.

2.2.2 Anatomy

The annuli’ internal diameter is 5 cm, their thickness is 3 mm, their height is 14 mm
(as the hexbugs themselves), and their overall mass (including hat and plastic film)

le
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t la

l0

n̂

k

(a) (b) (c)

FIG. 2.4. Active solids design principle. (a) Active unit: a hexbug is trapped in a 3d printed
annulus. (b) The active component, here confined in a linear track and attached to a spring
of stiffness k, produces an active force of amplitude F0 in the direction of the polarity n̂ and
elongates the spring by a length le = F0/k. (c) The mechanical design of the hexbug – mass
distribution and shape of the legs – is responsible for its alignment toward its displacement, here
imposed manually (see section 2.3 for a quantitative measure of the self-alignment length la).
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is 9.80 g. These 3d printed annuli have 6 overhangs (3 mm thick), that are pierced
with a milling machine in order to hold the edges of the springs. It is also simple to
design building blocks with a different number and repartition of overhangs to adapt to
other local arrangements, like honeycomb or square lattices. Eventually, we set a thin
polypropylene plastic film on the top of the annulus to restrict the vertical motion of
the hexbugs, which we fix using commercial glue6 and a 3d printed 1 mm thick ring.
The obtained active elastic building block is shown in Fig. 2.4-a. These elementary
components are connected by coil springs, fixed with commercial glue to the overhangs.
We use two kinds of springs, respectively the soft and stiff springs. Specifically, in
chapter 4, we will also use plastic straws as rigid7 connectors, which are light enough
not to affect the dynamics. All these connectors have the same outer diameters to fit
the overhang holes. Their properties are summarized in table 2.1.

Name Manufacturer k (N/m) l0 (cm) D (mm) d (mm) n
Soft Schweizer Federntechnik 1.2 8 5 0.18 67
Stiff Ets. Jean CHAPUIS 120 3 5 0.4 18
Rigid Dhaikkkd ∞ 15 5 - -

Table 2.1: Properties of the different springs. Stiffness k, rest length l0, outer diameter
D, wire diameter d, and winding number n for the two springs used. Notations are defined in
section 2.3.5 and Fig. 2.9

2.2.3 Main physical ingredients

Let us review the two main physical ingredients presented in Figs. 2.4-b and c, at the
root of the physics of these model active elastic systems: active force, and self-alignment.

Quite obviously, once springs are attached to form an active elastic network, we find that
the polar forces create deformations. This ingredient is illustrated in Fig. 2.4-b, using a
single active unit connected to a spring in a quasi-1d channel geometry, and frustrated
to point in the channel direction. As the hexbug is off, the spring is at its rest length l0.
When switched on, the polar force generated by the hexbug elongates the spring by an
additional length le, namely the elasto-active length. Force balance enforces le = F0/k;
where F0 is the amplitude of the polar active force in the direction of the polarity n̂,
and where k is the spring’s stiffness.

Moreover, the hexbugs maintain their self-alignment properties when embedded in the
active elastic building blocks. Manually imposing a displacement to the outer cylinder,
we indeed find that the internal hexbug spontaneously aligns toward the direction of
motion (Fig. 2.4-c). The self-alignment torque has the same origin as before: hexbugs
are subjected to more friction on the back than on the front, but here friction arises
from both effective contacts with the substrate and the top plastic film. Therefore,
when the polarity n̂ is not aligned with the displacement, it reorients until the two
vectors eventually point the same way. A feathered badminton shuttlecock experiences
the same self-aligning torque: when given a velocity, the shuttlecock reorients toward
the latter (Fig. 2.5-a). Note, however, that in the case of badminton, the self-alignment
process is underdamped, as the polarity overshoots the velocity vector when reorienting,
while for hexbugs, it is overdamped (Fig. 2.5-b).

6SADER, Répare tout.
7Rigid enough to neglect any elasticity.
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(a)

x

v
(b)

n̂ θ

FIG. 2.5. Self-alignment of a hexbug and a feathered shuttlecock. (a) Chronophotogra-
phies of shuttlecocks after an impact with a racket, showing the time evolution of the angle ϕ
between the shuttlecock orientation and its velocity U . The white line indicates 50 cm. The
time interval between each position is 5 ms. Adapted from [152]. (b) Reorientation of a hexbug
toward the imposed direction of motion, showing the time evolution of the angle θ between the
hexbug’s orientation and its velocity. The time interval between two pictures is 150 ms. The
precise figure description can be found in Fig. 2.8.

2.3 Measurement of the microscopic parameters
In this section, we describe three simple experiments we conducted to measure the
parameters of the active elastic building blocks. First, we evaluate the influence of inertia
and the relevance of the overdamped limit. Then we measure the alignment length la,
our model’s key parameter, as well as the angular noise Dθ. Finally, we measure the
active force F0 the hexbugs can exert.

2.3.1 Inertia

Experiments

We consider a single active unit, initially at rest, whose self-propulsion is switched on
at t = 0 and whose orientation is fixed (Fig. 2.6-a). This experiment cannot be realized
using the active elastic building block, as self-propulsion cannot be switched on while
the hexbug stands on the substrate inside the cage. Consequently, we build a hacked
hexbug (Fig. 2.6-b), powered by a DC generator8. A hole drilled on top of the hexbug
allows fitting a plastic sheath9 through which go two copper wires10, connected to the
battery pins. The cables feature a thin covering of enamel which acts as an electrical
insulator. To maintain hexbug’s mass and mass distribution, the battery is replaced
by a bolt with roughly the same mass11, covered with insulating varnish. Eventually,
the active building block is constructed by connecting the hacked hexbugs to the DC
generator, the wires going through a 21 mm diameter hole pierced in the middle of the
top plastic film (Fig. 2.6-a). The DC generator delivers a Heaviside signal of amplitude
1.5 V (same as the hexbug’s battery) at t = 0. We use two cardboard blockers12 on the
sides of the hexbug to prevent its polarity from rotating with respect to the annulus
orientation, setting the orientation n̂ essentially constant.

8AGILENT, E3631A, Triple Output DC Power Supply, 0-6V,6A/0-±25V,1A
9External diameter: 1.6 mm; internal diameter: 0.8 mm.

10BLOCK, 100/0.15∅; 150 µm diameter enameled copper wires.
11Battery mass: 1.99 g; bolt mass: 2.26 g.
125 mm thick, negligible mass.
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FIG. 2.6. Inertia measurement. (a) Experimental setup: an active unit is powered by a DC
generator that delivers a Heaviside signal of amplitude 1.5 V at t = 0. The hacked hexbug’s
polarity is fixed during the whole experiment. The dashed black circle indicates the hole pierced
in the covering plastic film. (b) A hacked hexbug. A hole on the hexbug’s top allows fitting a
plastic sheath (ii) through which go the two cables (i), connected to the battery pins. A bolt
(iii) replaces the battery to maintain mass and mass distribution. (c) Average speed 〈v〉 as a
function of time t for 20 realizations (blue markers), fitted by Eq. (2.5) (dashed black line) with
a least-squared method. Inset data are the fit parameters, with 1σ confidence intervals.

The acceleration experiments are performed 20 times, acquired at 75 frames per second.
The instantaneous speed is measured by differentiating the building block’s position as
a function of time. The average speed response to the Heaviside driving is shown in Fig.
2.6-c. The active building block’s speed first increases linearly with time and ends up
saturating at a cruise velocity v0 ' 20 cm/s. For t > 0.6-0.8 s, the wires are less and
less loose, and their growing influence leads to a decrease in the average speed.

Discussion

The general equation of motion for the position of a single active unit, without neglecting
inertia, expresses as (see chapter 3):

m
dv

dt
= F0n̂− γv, (2.4)

where m is the mass of the active particle, γ the effective friction coefficient, F0 is the
amplitude of the self-propulsive force, v the instantaneous velocity of the active unit, and
n̂ is the polarity vector. Note that the latter is considered fixed during the experiment,
n̂(t) = n̂0. Solving Eq. (2.4) projected on n̂0, for v(t = 0) = 0, we find:

v(t) = |v(t)| = v0(1− e−t/τd), (2.5)

that is, an exponential relaxation toward the long-time cruise velocity v0 = F0/γ, on a
typical acceleration time τd = m/γ = τvt0, where τv = mk/γ2 and t0 = γ/k are defined
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in chapter 3. The experimental data are in good agreement with this prediction (Fig.
2.6-c). The values v0 = 20.1 ± 0.2 cm/s and τd = 0.12 ± 0.01 s are obtained from a
least-squared fit of the averaged speed for t < 0.6 s, with ± indicating the 1σ confidence
intervals. For timescales larger than τd, such as those considered at the level of the
collective dynamics, inertia can be safely neglected.

2.3.2 Self-alignment

Experiments

In order to quantify the self-alignment properties, we measure the response of a hexbug’s
polarity when imposing a square motion to an active elastic building block (Figs. 2.7-a
and b). The motion and speed are controlled using a CNC translating stage13, and the
square’s sides are 20 cm long. At each corner of the square, the orientation of the velocity
v changes abruptly, and the polarity aligns with the newly imposed velocity. Snapshots
of this process are shown in Fig. 2.7-b for an entire square, and in Fig. 2.8-a for a single
alignment experiment. The device the hexbug is trapped in is designed to reproduce the

(a) (b)

(c) (d)

FIG. 2.7. Self-alignment experimental setup. (a) A camera is attached to the top of the
CNC arm, acquiring the orientation dynamics of a hexbug trapped in an alignment device. (b)
Reorientation of the active unit along the imposed square motion, at V = 10 cm/s. Each side of
the square corresponds to an alignment experiment. (c-d) Alignment device: (c) top view; (c)
side view.

13Translating stage ModuFlat P30; CNC stands for Computerized Numerical Control.
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mechanical conditions faced in the active elastic network experiments (Figs. 2.7-c and
d). It consists of a stiff square frame, at the middle of which lies a square active elastic
building block, connected to the frame with 4 regularly spaced stiff springs. The springs’
stiffness is such that the hexbug cannot displace enough to reorient thanks to its own
activity14, but only through the CNC-generated motion. Note however that the presence
of finite stiffness springs is essential, as it gives some springiness along the z-direction,
mimicking the conditions in the collective experiments. A camera15 and the alignment
device are both attached to the CNC machine arm, so the alignment process is acquired
in the reference frame of motion. The camera is attached to the top of the arm, while
the alignment device’s frame is positioned as close as possible to the substrate. We set
the displacement speed from 5 cm/s to 12 cm/s16, by steps of 0.5 cm/s, and perform 10
independent realizations for each speed value.

The orientation of the hexbug with respect to the direction of motion is denoted θ (Fig.
2.8-a). Several individual alignment processes performed at V = 10 cm/s are shown in
Fig. 2.8-b, and the average response is shown in Fig. 2.8-c. We find two regimes: (i)
the short-time transitory alignment regime (t < 1 s), during which the polarity reorients
toward the new velocity vector; and (ii) the long-time steady state (t > 1 s), during
which polarity and velocity are mostly aligned, self-alignment balancing angular noise.

Discussion

The equation of motion for the orientation θ, evolving through self-alignment and angular
noise, reads (see chapter 3):

τ
dθ

dt
= −V ζ sin(θ) +

√
2αξ, (2.6)

where V is the imposed speed, τ/ζ = la is the alignment length, and ξ is a Gaussian
random variable with zero mean 〈ξ(t)〉 = 0 and correlations 〈ξ(t)ξ(t′)〉 = δ(t− t′).

The short-time transitory alignment regime has nothing to do with noise, as it comes
from the self-alignment torque, reorienting the polarity toward the velocity. In the
absence of noise (α = 0), Eq. (2.6) transforms into a simple ODE, and the solution to
the initial condition problem with θ(t = 0) = θ0 = 90◦ is:

tan
(
θ(t)

2

)
= tan

(
θ0
2

)
e−t/τa , (2.7)

where the alignment time is τa = la/V . The polarity thus relaxes toward the velocity vec-
tor, on a typical timescale given by the ratio of the alignment length and motion speed.
Note that because of the sin non-linearity, it is not the angle θ which exponentially re-
laxes to zero, but tan(θ/2). The average alignment process (Fig. 2.8-c) is well described
by the prediction of Eq. (2.7). Fitting the short-time decay of log

[
tan(θ/2)/ tan(θ0/2)

]
with a linear function, we find the associated alignment time τa for a given speed V (Fig.
2.8-c, inset). Performing this measurement for all speeds (Fig. 2.8-d), we find that the
alignment time scales as the inverse of the imposed speed, in agreement with Eq. (2.7).
The agreement is better at large speed where the influence of noise on the measurements

14More precisely, the mechanical structure associated with the four springs and the boundary condition
has two degenerated normal modes of energy ω2

0 = 2; and π � ω2
0 .

15Camera: PixeLink PL-D734MU; Lens: PixeLink, f=25mm/F1.6
16Upper limit of the CNC.
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FIG. 2.8. Self-alignment experiments. (a) Single alignment experiment at V = 10 cm/s,
showing the time evolution of the angle θ between the hexbug’s orientation n̂ and its velocity
v. The time interval between two pictures is 150 ms. (b) Misalignments tan(θi/2) as a function
of time time, for 10 independent alignment experiments with V = 10 cm/s. One of them
is highlighted in black. (c) Average misalignment tan(θ/2)(t) = 1

N

∑
i tan(θi/2)(t) of the 10

independent realizations of (a) (blue markers), superposed with Eq. (2.7) (dashed black line).
Inset: the alignment time τa is measured by fitting the short times of tan (θ(t)/2) / tan (θ0/2)
with an exponential decay. (d) Alignment time τa as a function of the imposed speed V (blue
markers). Vertical error bars are the 1σ confidence intervals. The dashed black line is an inverse
power law whose prefactor gives an estimate of the alignment length la (e) Average standard
deviation σ̄ of misalignments as a function of the imposed speed V (blue markers). Vertical error
bars are the standard deviation of the standard deviations σ for each speed. The dashed black
line is given by Eq. (2.11).

is the weakest. We end up with a measure of the alignment length la = 2.5 ± 0.3 cm,
obtained by manually adjusting Eq. (2.7) to the experimental data at large enough
speed, with a reasonable confidence interval.
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In the long-time steady state, self-alignment balances angular noise, giving rise to a
stationary orientation distribution. Note that this state is accessible experimentally, as
the square sides are 20 cm, while the alignment length is only 2.5 cm. In the presence
of noise, the Fokker-Planck equation associated with Eq. (2.6) is

∂P

∂t
(θ, t) = ∂

∂θ

(
V ζ

τ
sin(θ)P (θ, t)

)
+ ∂2

∂θ2

(
α

τ2P (θ, t)
)
, (2.8)

where P (θ, t) is the probability distribution of the angle θ at time t. The stationary
probability density Ps(θ) satisfies:

d2Ps
dθ2 (θ) + sin(θ)V ζτ

α

dPs
dθ

(θ) + cos(θ)V ζτ
α

Ps(θ) = 0, (2.9)

which has the following solution:

Ps(θ) = N exp
(
V ζτ

α
cos(θ)

)
, (2.10)

where N is a normalization factor. In the vicinity of θ = 0 (aligned state), this distri-
bution is a Gaussian with a standard deviation

σ =
√

α

τζV
=
√
Dθla
V

, (2.11)

where Dθ = α/τ2 is the angular diffusion coefficient. We measure the average mis-
alignment σ̄ by averaging the standard deviations of misalignments

√
〈θ2〉 for the 10

realizations at a given speed (Fig. 2.8-e). Data are analyzed after two associated τa to
consider only the stationary distributions. As seen from Fig. 2.8-e, σ̄ decays in a way
that is consistent with the prediction of Eq. (2.11). This allows extracting an angular dif-
fusion coefficient Dθ = 1.75± 0.15 rad2s−1, by adjusting Eq. (2.11) to the experimental
data with a least-squared method, the ± indicating the 1σ confidence interval.

2.3.3 Active force

To evaluate the amplitude of active force, we restrict the motion of an active elastic
building block by trapping it in a sufficiently narrow rectangular channel, and we fix the
hexbug’s polarity so that it always points in the long direction of the arena, as shown
in Fig. 2.4-b. The active unit is attached to one end of the channel by a spring. As
activity is switched on, the hexbug moves forward, up to the point where the elastic force
balances the active one. As we know the spring’s stiffness17, the extension of the spring
in the steady state gives a measure of the active force F0 = 43± 3 mN. The uncertainty
is given by the standard deviation of the measurements on 5 different hexbugs.

2.3.4 Elasto-active coupling

Having extracted F0, we can obtain the elasto-active length le = F0/k for the different
springs used. Together with la, we are therefore in position to have the experimental
value for π = le/la, the central control parameter of the experiment (see chapter 3). The
estimated values are summarized in table 2.2. Using the soft or the stiff springs thus
gives rise to elasto-active coupling values close to unity or one hundredth.

17From the manufacturer. Soft springs: k ' 1.2 N/m; Stiff springs: k ' 120 N/m.
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Name le (cm) la (cm) π
Soft 3.6 2.5 1.4
Stiff 0.04 2.5 0.014
Rigid 0+ 2.5 0+

Table 2.2: Elasto-active coupling π for the different springs. Elasto-active length
le = F0/k, alignment length la, elasto-active coupling π = le/la.

2.3.5 Tuning springs stiffness

Playing with the length of the springs allows to obtain intermediate values of π. The
springs used to connect the active elastic building blocks are helical compression springs
(Fig. 2.9). They are good at standing elongation efforts, however, they bend almost
directly when submitted to compression, resulting in a pretty non-linear response18.
However, we are interested in varying their linear elastic properties. The stiffness k of
such a coil spring reads:

k = Gd4

8nD3 = Gpd4

8l0D3 , (2.12)

where G = E/2(1 + ν) is the wire’s material shear modulus, E and ν are respectively
the wire’s Young modulus and Poisson ratio, d is the wire’s diameter, n is the number
of windings, D is the winding’s diameter, and p is the pitch (Fig. 2.9). We tune the
stiffness of soft springs by varying their length, the stiffness k of a coil spring being
inversely proportional to l0, all other parameters held constants (Eq. (2.12)). This
allows for increasing the spring stiffness, i.e. decreasing the value of π.

l0

p

D

d

FIG. 2.9. Helical spring cartoon. Notations for the rest length l0, pitch p, wire diameter d
and winding diameter D. Adapted from [153].

2.4 Active networks

2.4.1 Active mechanical metamaterial

We create active mechanical metamaterials by combining the active elastic building
blocks into 2d spring networks (Fig. 2.12-a). We let the system evolve on a white 5
mm thick square PMMA plate, with 130 cm sides. The dynamics of the active elastic
structures are captured at 40 frames per second thanks to a camera19 attached to the
ceiling20, and standard tracking software is used to capture the position and orientation

18This is less true for the stiff springs, which have a relatively large bending rigidity.
19Camera: PixeLink PL-D734MU; Lens: SIGMA ZOOM, 24-70 mm, 1:2.8, EX DG MACRO, ∅82
20Distance from the PMMA plate: 255 cm
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dynamics of the particles (see section 2.5). Each node has a well-defined reference
position in the network, but will be displaced by the active particles. In contrast, the
polarity of each particle n̂i is free to rotate and reorients towards the node’s displacement
rate vi. This nonlinear elasto-active feedback between deformations and polarities is
controlled by the ratio π = le/la (see chapter 3), namely the elasto-active coupling; where
le (resp. la) is the elasto-active length (resp. alignment length). When this coupling is
large enough, we find that active units spontaneously organize into fascinating collective
steady states (Figs. 2.12-b to j), which are governed by the boundary condition of the
elastic structures.

2.4.2 Boundary condition

In the active elastic networks studied experimentally, a given node is either active, mean-
ing that the associated annulus contains an active unit, or pinned, meaning that the
associated annulus is empty and some constraints are applied to its degrees of freedom.
In the following, we make the distinction between two different pinnings:

Pinned annulus

A pinned annulus contains a cylinder of the same height and diameter slightly smaller
than the annulus’ internal diameter (4.9 cm). This cylinder is fixed in the 2d plane,
thanks to a small cleat fitting into holes pierced in the PMMA plate. In such a situation,
the translational degrees of freedom of the annulus are frozen, but it can still freely rotate.
This is the most common pinning condition in this work (Figs. 2.12-f to i), and it kills 2
degrees of freedom simultaneously (the x and y translational degrees of freedom). Note
that one of such pinning points forbids any structure to translate, and a second one also
kills the possibility of rotating freely. Eventually, a node of the network can be pinned
without being an annulus, as shown in Fig. 2.12-e, where a single active unit connects
via a rigid spring to a ball bearing (the so-called abandoned dog setup).

Embedded annulus

An embedded annulus stands below a massive object which forbids said annulus to trans-
late and rotate because of solid friction. In this case, free rotation is killed because of the
annulus’ finite size and the finite bending rigidity of the real springs used. This pinning
condition is illustrated in Fig. 2.12-j, and is only used in the associated experiment. It
kills 3 degrees of freedom simultaneously, the x and y translational degrees of freedom
and the rotational one.

2.4.3 Mechanical tension

In most of this work’s experiments, even in the absence of activity in the network, the
pinning condition prevents the springs from being at rest. The set of mechanical efforts
in the springs in the reference configuration is called the pre-stress. This frustration
has significant consequences on the mechanical properties of the networks and must
be taken into account (see chapter 3). As we will generally consider regular lattices,
the springs deform homogeneously to accommodate the pinning condition, for example,
by elongating. We define the extension α of a given spring as the ratio leq/l0, where
l0 is the rest length of the spring, and leq is the length of the spring in the stressed
reference configuration. The larger the mechanical tension, the less the springs can
explore compression during the dynamics, reducing nonlinearities coming from their
non-idealized nature.
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2.5 Tracking algorithm
Finally, we discuss the tracking algorithm used to extract data from the experimental
movies (Fig. 2.12). Note that it can be found on a Zenodo database21. Let us consider
a movie of Nframe images in greyscale illustrating the dynamics of N active units in an
active elastic network. The tracking algorithm converts the set of .png images into a
.csv file containing the trajectories {xi(t), yi(t), θi(t)}i∈[1,N ]; where xi(t) (resp. yi(t)) is
particle i’s annulus center along the x (resp. y) direction at time t; and where θi(t) is
the orientation of the particle i at time t. For each picture of a movie (like Fig. 2.10-a),
the algorithm goes through the following steps:

for t ∈ [1, Nframe] do
1. Load video frame It;
2. Clean It; . section 2.5.1
3. Detect circles {xi, yi, ri}i∈[1,N ]; . section 2.5.2
for i ∈ [1, N ] do

4. Ai ← It|[xi−r:xi+r],[yi−r:yi+r];
5. Threshold: Āi ← Ai;
6. Detect θi mod π; . section 2.5.3

end
if t > 1 then

7. Mapping from It to It−1; . section 2.5.4
end

end
8. Find the correct directions for the θi’s; . section 2.5.5
9. Determine the displacement field; . section 2.5.6
Algorithm 1: Main loop of the tracking algorithm

Note that our experimental movies are relatively easy to process because the annuli
never touch each other, being in an elastic network, and because the orientations of the
hexbugs are readily visible by the eye.

2.5.1 Image cleaning step

During this first simple step, one reduces the background noise to ease the annulus
detection. One first defines a threshold t (generally equal to 120) and a Region Of
Interest (ROI) in the image. Then, there are two stages:

• The image is restricted to the ROI.

• All pixels in the ROI with an intensity brighter than t are given the value t. This
step avoids parasitic detection of circles in the white background by suppressing
all kinds of fluctuations.

2.5.2 Annulus detection step

During the annulus detection step, the algorithm finds the circles {xi, yi, ri}i∈[1,N ] in the
cleaned image, where the ri’s are the circles’ radii. To do so, we use a Hough transform
- a feature extraction technique that aims to find imperfect instances of objects within a
certain class of shapes by a voting procedure. This voting procedure is carried out in a

21https://zenodo.org/record/6653906

https://zenodo.org/record/6653906
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(i)

(ii)

(iii)

(iv)

(a)

(b)

(c)

(i) (ii) (iii) (iv)

Ai

Āi

FIG. 2.10. Tracking algorithm illustration. (a) Typical image of a square active elastic
structure, superimposed with the detected annulus (black circles) and orientations (red arrows).
(b) Cleaned image restricted to the detected annulus. The black dashed circle represents the
secondary circle for the last cleaning step. (c) Cleaned and thresholded image restricted to
the detected annulus, superimposed with the sub-images barycenters (red markers) and main
orientations (red lines). Detected annulus are numbered consistently from (i) to (iv).

so-called accumulator space, from which object candidates are obtained as local maxima.
We use a built-in function of the Python package OpenCV called cv2.HoughCircles. This
function finds circles in a grayscale image using a modification of the Hough transform22,
and has many parameters. Hereafter we detail the most important ones and the way
they are set:

• minDist. Minimum distance between two detected circles’ centers. Set manually
by measuring the typical distance between annuli.

• minRadius. Minimum radius of detected circles. minRadius = r−∆, where r is the
typical annuli radius, and ∆ the accepted variance on the annuli radius (generally
10% of the annuli radius).

• maxRadius. Maximum radius of detected circles. maxRadius = r + ∆, where r
and ∆ are the same parameters as for minRadius.

• param1. Upper threshold for the internal Canny edge detector (the lower one is
twice smaller).

• param2. Threshold for center detection.

Nevertheless, the function cv2.HoughCircles cannot be given the number of circles trying
to be detected. Assuming param1 is well set to perform the appropriate edge detection,
if param2 is too large, there will not be enough circles detected, and reciprocally. Thus,
we algorithmically fine-tune the value of param2 in order to find the correct number of
circles N .

22A circle is represented mathematically as (x − xi)2 + (y − yi)2 = r2
i where (xi, yi) is the center of

the circle, and ri is the radius of the circle. From this equation, we can see we have 3 parameters, so we
need a 3d accumulator for the Hough transform, which would be highly ineffective. So OpenCV uses a
trickier method, the Hough Gradient Method, which uses the gradient information of edges.
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{xi, yi, ri}i∈[1,Nd] ← cv2.HoughCircles(param2 );
while Nd 6= N do

if Nd > N then
param2 ← param2+1;
{xi, yi, ri}i∈[1,Nd] ← cv2.HoughCircles(param2 );

else
param2 ← param2−1;
{xi, yi, ri}i∈[1,Nd] ← cv2.HoughCircles(param2 );

end
end

Algorithm 2: Loop for annulus detection

At the end of this step, we find N sub-images centered on the detected annuli, namely
Ai (Fig. 2.10-b).

2.5.3 Orientation detection step

To find the orientations of the hexbugs, we proceed by thresholding the sub-images Ai
and computing their moments. This step is divided into three stages:

• Last cleaning step. In this stage, we give all pixels outside of a secondary circle of
radius ri−∆ the value t (Fig 2.10-b). This allows for suppressing any shadows on
the annulus’ edges which could be confounded with the hexbug’s body during the
thresholding.

• Thresholding. The threshold is chosen so that the nb darker pixels are set black,
where nb is set manually by measuring the typical area of a hexbug. To make the
algorithm as robust as possible to shadows, this value is set to 90% of the measured
hexbug’s area (typically 2000 pixels).

• Compute image moments. This part of the algorithm is largely inspired from23.
One can find the main orientation θi of a set of black pixels by computing image
moments. They are defined as weighted averages of the image pixels’ intensities.
In a greyscale image with pixel intensities I(i, j), the raw (p,q)-moment Mp,q is
given by:

Mp,q =
∑
i

∑
j

ipjqI(p, q), (2.13)

where the I(p, q) are ones and zeros in a thresholded image. The zero-order moment
M0,0 gives the total number of pixels in the object, i.e. the object’s area. The first-
order moments M1,0 and M0,1, when normalized by M0,0 give the coordinates of
the barycenter in the horizontal and vertical directions, respectively:

x̄ = M1,0
M0,0

and ȳ = M0,1
M0,0

. (2.14)

Extracting the object orientation from the second-order moments M2,0, M1,1, and
M0,2 is not as immediate since one has to use the second-order central moments,
which differ from the second-order raw moments. They can be written as follows:

µ′2,0 = M2,0
M0,0

− x̄2, µ′1,1 = M1,1
M0,0

− x̄ȳ, µ′0,2 = M0,2
M0,0

− ȳ2. (2.15)

23Raphaël Candelier webpage http://raphael.candelier.fr/ ; see article Tracking object orienta-
tion with image moments.

http://raphael.candelier.fr/
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And the orientation θ of the object is given by:

θ = 1
2 arctan

(
2µ′1,1

µ′2,0 − µ′0,2

)
, (2.16)

defined modulo π rad. Measured barycenters and orientations are shown in Fig.
2.10-c. The correct direction is eventually determined in the last step.

2.5.4 Matching step

In order to obtain the full trajectories of particles during the movie, we perform the
association between the N detected particles at time t and at time t − δt. Matching
is easy to do because of the relatively large frame rate used. Indeed, the annuli move
so little between two images that the association can be done by simply identifying the
closest annuli between two images. In addition, we correct the possible orientation jumps
there could be for all particles between time t and time t − δt, as the orientations are
defined modulo π rad.

2.5.5 Finding the correct directions

Hexbugs tend to move in the forward direction on average, which allows us to find
the correct orientation for each active particle. They are determined by integrating
δri(t) · n̂i(t) along the dynamics, where δri(t) = ri(t+ δt)− ri(t), and determining its
sign for each hexbug. If it is positive, then the direction is the correct one, otherwise we
add π rad to the time serie of θi(t).

2.5.6 Determining the displacement field

Before to process the experimental trajectories, the last step is to determine the displace-
ment field {uxi (t), uyi (t)} from the positions {xi(t), yi(t)}, which requires the knowledge
of the reference configuration Ri. The displacements are defined as ui = ri −Ri.

Active and pinned nodes

Let us determine, from the experimental data, which nodes are pinned and which ones
are active. To do so, we apply a simple criterion on the standard deviation of the position
time series. If it is smaller than a given threshold (typically 5 pixels), then the associated
node is considered pinned. Conversely, it is considered active.

Find the reference configuration

Once the boundary condition is detected, the next step is to find the structure’s refer-
ence configuration. Because our systems are always symmetric, it can be done by first
explicitly measuring the pinned nodes’ reference positions, and then interpolating the
active nodes’ ones, using intersections of segments connecting pinned nodes (Fig. 2.11).

By convention, we consider that the reference position of a pinned node is given by
measuring its mean position during the dynamics, which allows averaging the tracking
errors on its position. Fig. 2.11-a represents the reference position of the detected pinned
nodes (black markers) for a triangular lattice with hexagonal pinned boundaries. Note
that all detected active and pinned nodes are numbered consistently from 0 to N − 1.
To find the reference position of active node i, we then use the symmetry of the lattice.
For a regular triangular lattice with hexagonal boundaries, the reference position of any



67 2.5. Tracking algorithm

(a) (b)

FIG. 2.11. Reference configuration from experimental data. Collective dynamics in an
active triangular lattice with hexagonal pinned boundaries (N = 19, α = 1.27), and illustration
of the experimental processing. (a) The reference configuration is found by triangulating the
equilibrium positions of the free nodes (blue markers) thanks to the intersections between seg-
ments of pinned nodes (black markers). (b) Representation of the instantaneous polarity and
displacement fields in the experiment. Red arrows: polarities n̂i; blue arrows: displacements ui.
Pinned nodes are represented with black markers.

Active node Segment a Segment b Segment c
0 (19,30) (24,33) (27,36)
1 (19,30) (22,34) (23,26)
2 (24,33) (20,29) (23,26)
3 (27,36) (25,32) (20,29)
4 (25,32) (19,30) (28,35)
5 (28,35) (21,31) (24,33)
6 (27,36) (22,34) (21,31)
7 (20,35) (21,25) (19,30)
8 (22,34) (21,25) (20,29)
9 (21,31) (20,35) (23,26)
10 (24,33) (22,28) (21,25)
11 (23,26) (22,28) (25,32)
12 (22,28) (26,31) (27,36)
13 (20,29) (28,35) (26,31)
14 (19,30) (29,34) (26,31)
15 (25,32) (29,34) (21,31)
16 (23,32) (24,33) (29,34)
17 (28,35) (23,32) (22,34)
18 (27,36) (23,32) (20,35)

Table 2.3: Mapping between free nodes’ reference positions and intersections of
segments of pinned nodes. The reference position of node i is given by the triangulation of
the intersections between the three segments of pinned nodes a, b and c.

of the free nodes is at the intersection of three segments linking opposite pinned nodes.
Table 2.3 gives the mapping between the index of a free node and the three segments
of pinned nodes in the case of the structure of Fig. 2.11-a. In experiments, because
some spatial disorder is intrinsically present, the three segments do not intersect at a
single point but at three locations. The reference position of the associated active node
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is triangulated at the barycenter of those intersections. Therefore, we find the complete
reference configuration, the {xeqi , y

eq
i }i∈[1,N ], shown in Fig. 2.11-a (blue markers).

At the end of this process, the trajectories {xi(t), yi(t), θi(t)}i∈[1,N ] are converted into
the displacement and polarity field time series {uxi = xi(t) − xeqi , u

y
i = yi(t) − yeqi , nxi =

cos θi, nyi = sin θi}i∈[1,N ]; represented in Fig. 2.11-b at a given time.

2.5.7 Error estimates

Positions

The detection errors on the annuli positions mostly come from the possibility of detecting
both the internal and external rings of the annulus. Once contours are detected, these
two rings are relatively similar, and because of noise in the picture, the tracking algorithm
may detect any circle between the two rings (can be slightly witnessed in Fig. 2.10-b, ii).
Moreover, the difference in ring radius is roughly 5 pixels. Consequently, the position
error on the annulus’ positions is typically 5 pixels, to compare with the annulus radius,
which is typically 50 pixels. Denoting the error on the detected positions ∆u, and the
annulus internal diameter d, we have ∆u/d ' 1/20.

Orientations

The orientation detection is precise and robust, because it measures the spatial organi-
zation of typically 2000 pixels. The bottleneck of orientation detection is related to the
annuli position detection. If the annulus’ position is measured with a too large error,
then the thresholding operation will cut the hexbug’s shape and bias the orientation
measurement. This error is tough to evaluate, but we estimated it manually, and found
that the angles are detected modulo a typical error of ∆θ ' 3◦.

Projections

Using the error estimates on the detected positions and orientations, we can also have
the error estimates on the displacement/polarity field projections on the normal modes
(see chapter 3, where the normal modes are properly defined an characterized). For the
normalized polarity field projection on a given mode 〈ϕk|n̂〉/

√
N , it yields:

∆
[〈ϕk|n̂〉√

N

]
=
∑
i

∆θi|ϕik|| sin θi|/
√
N ≤ ∆θ√

N

∑
i

|ϕik| = ∆θ
√
Qk, (2.17)

where we have assumed ∆θi = ∆θ and where Qk =
(∑

i |ϕik|
)2
/N is mode k’s participa-

tion ratio, bounded between 0 and 1 (see chapter 3). Therefore, the error on the polarity
field projection on a given mode depends on said mode’s extension. As an example, for
a plane-wave mode Qk ' 0.67, and we find ∆

[
〈ϕk|n̂〉2/N

]
= 2 〈ϕk|n̂〉√

N
∆
[
〈ϕk|n̂〉√

N

]
' 0.0524:

the fraction of active force injected in a given mode is thus given modulo a typical 5%
error due to tracking inaccuracies. For the normalized displacement field projection on
a given mode 〈ϕk|u〉/

√
N , the error can be written as follows:

∆
[〈ϕk|u〉√

N

]
=
∑
i

(
|ϕik,x|∆ui,x + |ϕik,y|∆ui,y

)
/
√
N,

= ∆u
∑
i

(
|ϕik,x|+ |ϕik,y|

)
/
√
N ' ∆u

√
Qk,

(2.18)

24Assuming a condensation fraction 〈ϕk|n̂〉
2

N
= 1, that is, all the active force injected in the same

mode (error upper bound)
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where we have assumed ∆ui,x = ∆ui,y = ∆u. Note that the last approximation under-
estimates the error from the Cauchy-Schwarz inequality, but the final formula is good
enough to provide reasonable confidence intervals. Interestingly, both for the projections
of the displacement and polarity fields, the error depends on the extension of the mode.

2.6 Conclusion
At the end of this chapter, we constructed model active solids experiments by embedding
hexbugs within genuine spring networks, and observed fascinating dynamics (Fig. 2.12).
The tracking algorithm then allows for determining the experimental trajectories of the
displacement and polarity vectors. The next chapter describes the theoretical framework
used to analyze those trajectories.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

FIG. 2.12. Overview of the experimental results. (a) The active elastic building blocks are
combined with coil springs to form an active elastic lattice. (b-j) Emerging collective dynamics
in model active solids with various boundary conditions. Red arrows: polarities n̂i; trajectories
color-coded from blue to red by increasing time; scale bars: 10 cm. (top line) Collective motions
in free boundary conditions (see chapter 4). (middle line) Collective rotations around a single
pinning point (see chapter 4). (bottom line) Collective actuation in mechanically stable elastic
structures (see chapter 5 and 6). (b) Stable translation regime. (c) Unstable rotation regime. (d)
Stable rotation regime. (e) Stable rotation of an abandoned dog. (f) Stable rotation for central
pinning. (g) Stable rotation for arbitrary pinning. (h) Orbiting regime of a single particle
embedded in a harmonic trap. (i) CA of a triangular lattice pinned at its edges. (j) CA of a
triangular lattice with embedded central pinning.
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Chapter 3

Agent-based model

We complement the experiments discussed in the previous chapter with the numeri-
cal simulations and theoretical analysis of a model of elastically coupled self-aligning
active particles [1, 143]. This chapter consists of a pedagogical derivation of the fol-
lowing equations, which describe our system within the overdamped limit and harmonic
approximation:

u̇i = πn̂i −Mijuj , (3.1a)
ṅi = (n̂i × u̇i)× n̂i +

√
2Dξin̂⊥i , (3.1b)

where the n̂i’s are the polarity vectors, the ui’s are the displacements vectors with
respect to the reference configuration, M is the dynamical matrix (see section 3.2.3),
and the ratio of the elasto-active and alignment lengths, π = le/la, which we refer to as
the elasto-active coupling, is the unique microscopic control parameter.

We first discuss the equations of motion for a single active particle in a harmonic trap.
We then remind the key concepts of the mechanics of passive discrete networks. By
combining these two frameworks, we find Eqs. (3.1), and examine their properties.
Finally, we elaborate on the numerical simulations of this agents model.

3.1 Single particle in a harmonic trap

The single active particle in a harmonic trap is the first ingredient of understanding. Let
us establish the equations governing its physics.

Experimentally speaking, a single active particle in a harmonic trap consists of a hexbug
evolving in a parabolic dish (Fig. 3.1). The combination of the surface’s geometry and
gravity creates a harmonic potential, driving the active unit toward the origin of the
parabolic dish. This system is the simplest instance combining activity and elasticity:
there is only one active particle, and elasticity is a purely linear restoring force along the
radial direction. The dynamics of an active particle in a harmonic potential was studied
experimentally, numerically, and theoretically by Dauchot and Démery in [143]. Here
we mostly adapt the analysis to make a consistent first step toward active solids.

We consider a single active self-aligning polar particle such as those described in [57, 58,
143]; and connected by a linear spring of stiffness k and zero-rest-length to the origin.
The elastic force can be written F el = −ku; where u the displacement of the active
particle with respect to the origin; which is equivalent to the force deriving from the

72
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(a)

(b)
n̂

O

u

n̂

(c)

FIG. 3.1. Single active particle in a harmonic trap. Hexbug (b) running in an actual
parabolic dish (a). Adapted from [143]. (c) Orbiting dynamics of a hexbug in an actual parabolic
dish, and notations. The origin is chosen to be the bottom of the harmonic well O. Red arrow:
polarity n̂; trajectory color-coded from blue to red by increasing time; scale bars: 10 cm.

gravitational potential energy in a parabolic well. The activity takes the form of a force
Fa = F0n̂ along the polarity n̂ of the particle. The equations describing the dynamics
of this system are

m
dv

dt
= F0n̂− γv − ku, (3.2a)

τ
dn̂

dt
= ζ(n̂× v)× n̂+

√
2αξn̂⊥, (3.2b)

where m is the mass of the active particle, γ the effective friction coefficient, and k
the stiffness of the spring. In the absence of confinement, the particle thus moves with
a cruise velocity v0 = F0/γ. The orientation dynamics Eq. (3.2b) contains the key
ingredient, specific to the model, namely the presence of a self-aligning torque of the ori-
entation n̂ towards the velocity v. At a conceptual level, this torque originates from the
fact that the dissipative force is not symmetric with respect to the propulsion direction
n̂ when v is not aligned with n̂. Importantly, the self-alignment torque is proportional
to the velocity, giving rise to an alignment length la = τ/ζ. Finally, the orientation dy-
namics contains a delta-correlated Gaussian noise ξ(t) with zero mean and correlations
〈ξ(t)ξ(t′)〉 = δ(t− t′); and α/τ2 is the rotational diffusion coefficient. Those orientation
fluctuations are not of thermal origin but model the mechanical noise present in the
experiments.

Rescaling length by the alignment length u0 = τ/ζ = la and time by t0 = γ/k, the
characteristic relaxation time of a 1d mass-spring system, the dimensionless equations
of motion read

τv
dv

dt
= πn̂− v − u, (3.3a)

dn̂

dt
= (n̂× v)× n̂+

√
2Dξn̂⊥, (3.3b)

with three parameters, τv = mk/γ2 the dimensionless inertia; π = F0/kla = le/la the
dimensionless activity, or active-elastic coupling; and D = αγ/kτ2, the dimensionless
angular noise. Note that π = le/la, where la = τ/ζ is the alignment length, that is the
length over which n̂ aligns toward v, and le = F0/k is the elasto-active length, which
is the distance that the active force can drive away the particle from its equilibrium
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position, given the elastic restoring force.

Dauchot and Démery demonstrated the existence of two dynamical states for which the
particle condensates at a finite distance from the trap center [143]. In the low-activity
climbing state, also found in other systems1, the particle points radially outward from the
trap, while diffusing along the azimuthal direction. In contrast, as activity increases, the
system transitions to the orbiting state (Fig. 3.1-b), where the particle performs circular
trajectories around the trap’s center. At low inertia (small τv), the transition happens
at π = 1 and is continuous. Crucially, it originates from the self-alignment torque in
the polarity dynamics; an ingredient initially introduced to explain the emergence of
collective motion in systems of vibrated polar discs [57, 58] and migrating cells [68]. For
large inertia, the transition is discontinuous and a coexistence regime with intermittent
dynamics develops. Interestingly, the authors show that the two states survive in the
overdamped limit or when the particle is confined by a hard curved wall.

Overdamped limit

In line with the prospect of describing biological systems, and in agreement with the
measurements of the experimental parameters, we take the overdamped limit of Eqs.
(3.3). It reduces to take τv → 0 in the position dynamics, Eq. (3.3a). It yields:

du

dt
= πn̂− u, (3.4a)

dn̂

dt
= (n̂× u̇)× n̂+

√
2Dξn̂⊥. (3.4b)

In the overdamped limit, the torque in Eq. (3.4b) reorients the polarity vector towards
the elastic force F el = −u acting on the active particle, because the term πn̂ does not
contribute to rotate n̂. Note that we have reached the one-particle version of Eqs. (3.1).

3.2 Mechanics of passive networks
In this section, we take a step back and review the basic elements of understanding
required to study the statics and dynamics of passive spring networks, from mechanical
stability to the harmonic approximation. In the first section, elasticity was a trivial
harmonic potential. We now consider a network ofN passive masses, or nodes, connected
by bonds occupied by central-force springs (also called a frame).

3.2.1 Mechanical stability

A crucial property of spring networks is mechanical stability - having a well-defined ref-
erence configuration satisfying mechanical equilibrium. This requires the spring network
to be stable with respect to any set of displacements of the nodes when it lies close to its
reference configuration. In the following, we start by discussing the general principles
governing the mechanical stability of frames in terms of constraint satisfaction problems.

the Maxwell rule

In 1864, James Clerk Maxwell undertook the first systematic study of the mechanical
stability of frames [154]. He defined a stiff frame as one in which “the distance between

1For example, ABPs in a parabolic trap only exhibit climbing dynamics.
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two points cannot be altered without changing the length of one or more connections”,
which is equivalent to the above definition for mechanical stability. He showed that a
stiff frame containing N sites in dimension d requires:

Nc = dN − f(d), (3.5)

connections, where f(d) = d(d+ 1)/2 is the number of rigid body translations and rota-
tions under free boundary conditions in dimension d. This relation, so-called Maxwell’s
rule, can be reexpressed as a critical coordination number:

zc = 2d− 2f(d)
N

. (3.6)

If the coordination z = 2Nc/N < zc, the system is not stiff, and if z > zc, it is (in the
2d plane, zc = 4). Unfortunately, the simple Maxwell’s rule for the stability of frames
requires modification [155, 156].

Generalized Maxwell relation

Let us start from scratch: N disconnected points in dimension d. Each site has d
independent translational degrees of freedom, and in the absence of connections, they
are all decoupled and form dN zero-energy displacement modes (without any restoring
force), which we will refer to as zero modes. Let us consider that each new connection
reduces the number of zero modes by one. Therefore, if there are Nc connections, there
are

N0 = dN −Nc, (3.7)

zero modes. Of these, f(d) are the trivial ones associated with rigid body translations
and rotations. Any other zero modes involve internal displacements of the sites and are
generally called floppy modes or mechanisms. Eq. (3.7), reexpressed in terms of the
number of mechanisms M , is

M = dN −Nc − f(d), (3.8)

which is also called Maxwell’s count. A frame is stiff if it has no mechanisms. Setting
M = 0 yields the Maxwell rule, Eq. (3.5). Fig. 3.2-a depicts a simple frame that
obeys Maxwell’s count. It consists of N = 6 nodes and Nc = 7 bonds, and it has
N0 = 2 × 6 − 7 = 5 zero modes and M = Nc = 5 − 3 = 2 mechanisms. However, the
simple Maxwell’s count does not apply to all frames, because each new connection does
not reduce the number of zero modes by one. Consider the pedagogical example given
in [156]: a two-square frame with N = 6 sites and Nc = 8 bonds, shown in Fig. 3.2-b.
It has one mechanism, as expected from the Maxwell count. If an extra bond is added,
Maxwell’s rule would say that the frame is stiff with no mechanisms. However, the extra
bond can be placed as a diagonal in the right square (Fig. 3.2-c), or as an extra diagonal
in the left square (Fig. 3.2-d). In the first case, there are no mechanisms, and Maxwell’s
count applies. In the second case, however, the mechanism present before the extra bond
was added remains, and Maxwell’s count is violated. Nevertheless, the left square with
crossed diagonal bonds has an extra redundant bond not needed for its rigidity. It also
has a new and interesting property: the outer bonds of the square can be placed under
tension (compression), and the inner diagonal bonds under compression (tension) such
that the net force on all sites is zero. This is a state of self-stress. This process can
clearly be repeated with each added bond, either decreasing the number of zero modes
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(a) (b) (c) (d)

FIG. 3.2. Floppy modes and self-stress states. (a-c) Frames satisfying the Maxwell rule.
(a) has 6 sites, 7 bonds, and 5 zero modes, among which there are two mechanisms, indicated
by the dotted bonds. (b) has 6 sites, 8 bonds, and 4 zero modes, among which there is one
mechanism. (c) and (d) are constructed from (b) by adding an additional diagonal bond. (c)
satisfies the Maxwell rule with only the three trivial zero modes. (d) has 4 zero modes and one
state of self-stress indicated by the arrows on the bonds in the left square. Adapted from [156]

or increasing the number of states of self-stress, to yield the generalized Maxwell relation
[156]:

M −Ns = dN −Nc − f(d), (3.9)
where Ns is the number of self-stress states. Given the number of self-stress states, one
can thus say if the structure is stiff.

Remarks

However, even the generalized Maxwell relation, Eq. (3.9), is not a sufficient condition
to assess the mechanical stability/number of zero modes of a structure. Indeed, as an
algebraic constraint counting relationship, it does not consider the pre-stress, i.e. the
set of stresses in the bonds in the reference configuration [157]. As it increases, the
structure’s deformation modes and their corresponding energies change via two mecha-
nisms. (i) Tension (compression) stiffens (weaken) the bonds, and the modes’ energies
increases/decreases/stagnate depending on how the geometry of the normal modes com-
pares to the stress pattern and bond orientations. In particular, the energy of a mode
increases if tension increases perpendicularly to its polarization2. (ii) Force balance on
the nodes changes their equilibrium positions, modifying the structure of the interactions
between them, which can have severe consequences on the vibrational properties. These
effects can transform a zero mode at the qualitative level, violating all the above rules.
In the rest of this work, a mechanically stable elastic structure refers to one in which
there are no zero modes, the conditions for which are yet to be discussed.

3.2.2 Equations of motion

We now describe spring networks from a dynamical system point of view. Let us consider
N passive masses, connected by linear springs of stiffness k and unstressed length l0.
The system’s physics reduces to N position dynamics equations:

m
d2ri
dt2

= −γ dri
dt

+
∑
j∈∂i

k (|ri − rj | − l0) êij , (3.10)

where ri is the position vector of particle i, m is the mass of the particles, γ is the
friction coefficient, k the stiffness of the springs, ∂i refers to the neighbors of node i, and
êij is the unit vector from i to j.

2This is commonly experienced when tuning a guitar string.
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ri = (xi, yi)

rj = (xj , yj)

êij

k

m

FIG. 3.3. Notations for passive springs network. The unit vector êij points from particle
i to particle j.

Next, we write down the dimensionless form of Eq (3.10) under two different choices of
time units, knowing there is only one length scale in this system (r0 = l0).

Inertial limit

The regular time scale chosen in elasticity is t0 =
√
m/k, the typical period of a 1d

mass-spring oscillator. We call this choice of units the inertial scheme:
d2ri
dt2

+ 1
√
τv

dri
dt

=
∑
j∈∂i

(|ri − rj | − 1) êij , (3.11)

where τv = mk/γ2 is the same dimensionless inertia as in section 3.1. In this scheme,
the overdamped limit (τv → 0) is singular and one would instead study the inertial limit
(τv →∞), for which friction becomes negligible:

d2ri
dt2

=
∑
j∈∂i

(|ri − rj | − 1) êij . (3.12)

Overdamped limit

When friction dominates over inertia, as in biological active solids, the unit of time is
chosen to be t0 = γ/k, the typical relaxation time of an overdamped 1d mass-spring
system. This is indeed more relevant when planning to use the overdamped limit to
avoid vanishing time units. We call this choice of units the frictional scheme:

τv
d2ri
dt2

+ dri
dt

=
∑
j∈∂i

(|ri − rj | − 1) êij , (3.13)

where τv = mk/γ2 is again the dimensionless inertia. In this scheme, the overdamped
limit (τv → 0), for which inertia becomes negligible, is well-defined:

dri
dt

=
∑
j∈∂i

(|ri − rj | − 1) êij . (3.14)

3.2.3 Harmonic approximation

In this section, we can put ourselves in the most general framework of a heterogeneous
springs network. In this case, the elastic force acting on node i can be written as follows:

F el
i =

∑
j∈∂i

kij
(
|ri − rj | − lij0

)
êij =

∑
j∈∂i

kij

(
1− lij0
|rj − ri|

)
(rj − ri) , (3.15)
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where kij (resp. lij0 ) is the dimensionless stiffness (resp. rest length) of the spring be-
tween nodes i and j. We introduce the displacement field ui, defined as the set of
displacements with respect to the reference configuration Ri, ri = Ri + ui, as done in
the Cauchy-Born theory of elastic solids [157]. Notably, in what follows, there is no need
for a well-defined reference configuration, as long as the system is in a stable mechanical
equilibrium at Ri. If, for some bonds lij0 6= lijeq, where lijeq is the dimensionless equilib-
rium length of the spring between nodes i and j in the reference configuration; then the
reference configuration has pre-stress.

The harmonic approximation consists of writing an approximate expression of the elastic
force close to the configuration Ri, written only in terms of the displacement vectors ui.

Geometrical nonlinearities

While the response of the springs is linear along their axis, the elastic force (Eq. (3.15))
is very much nonlinear due to the geometry of the unit vectors êij , which express as
(rj − ri) /|rj − ri|, and are dynamical quantities. It gives rise to what are called geo-
metrical nonlinearities, the effect of which is discussed in section 3.2.5. The next step is
to get rid of these nonlinearities.

Linearized elastic force and mechanical equilibrium

In the harmonic approximation, we linearize the elastic force expression (Eq. (3.15))
around the reference configuration Ri, given its existence and knowledge3. The ex-
pansion requires to assume that gradients of displacements are small: |uj − ui| � 1
(⇔ |uj−ui|/l0 ' ∇u� 1 in physical units). Therefore, while the nodes can move away
from their reference configuration, we consider displacements small enough so that the
unit vectors êij can be considered fixed, killing all nonlinearities. After some algebra,
the elastic force becomes:

F el
i = −Mijuj + o(|uj − ui|), (3.16)

where M is called the dynamical matrix, and where the summation over repeated indices
is implied. Mechanical equilibrium is defined by a strictly zero zeroth-order contribution
in this expansion for any particle i in the network. Projected onto the x and y axis, it
gives: ∑

j∈∂i

(
Rxj −Rxi

)(
1− lij0

lijeq

)
= 0,

∑
j∈∂i

(
Ryj −R

y
i

)(
1− lij0

lijeq

)
= 0,

(3.17)

with lijeq =
√∑

α

(
Rαi −Rαj

)2
.

Dynamical matrix

The dynamical matrix is the matrix of coefficients connecting the linearized expression
of the elastic force to the displacement vectors. Explicitly performing the expansion

3The reference consideration is generally obtained by using symmetry arguments to respect mechan-
ical equilibrium everywhere in the network. In the general case of non-crystalline structure, the best
hope is to simulate the overdamped dynamics with full elasticity (Eq. (3.14)), and let the system relax
and find a reference configuration, which might not be unique.
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leading to Eq. (3.16), we find, at first order in small quantities:

F el
j→i '

[(
1− lij0

lijeq

)(
uxj − uxi

)
+ lij0
lijeq3

(
Rxj −Rxi

)2 (
uxj − uxi

)
+ lij0
lijeq3

(
Rxj −Rxi

) (
Ryj −R

y
i

) (
uyj − u

y
i

)]
êx

+
[(

1− lij0
lijeq

)(
uyj − u

y
i

)
+ lij0
lijeq3

(
Ryj −R

y
i

)2 (
uyj − u

y
i

)
+ lij0
lijeq3

(
Rxj −Rxi

) (
Ryj −R

y
i

) (
uxj − uxi

)]
êy,

(3.18)

where F el
j→i is the force particle j exerts on particle i; and where F el

i = ∑
j∈∂i F

el
j→i.

This expression allows to construct the dynamical matrix for any structure, given the
reference configuration:

Miβjγ = −kijl
ij
0

lijeq3
(Riβ −Rjβ )(Riγ −Rjγ )− kijδαβ

(
1− lij0

lijeq

)
if j ∈ ∂i, 0 otherwise,

Miβiγ = −
∑
j 6=i

Miβjγ ,

(3.19)
where the indices i, j indicate the nodes considered, and β, γ = x̂, ŷ indicate the axis.
In the particular case of a homogeneous structure (kij = 1, lij0 = 1) without pre-stress
(lij0 = lijeq), the dynamical matrix simply expresses as:

Miβjγ = −(Riβ −Rjβ )(Riγ −Rjγ ) if j ∈ ∂i, 0 otherwise,
Miβiγ = −

∑
j 6=i

Miβjγ .
(3.20)

Finally, the dynamical matrix is also the matrix of coefficients for the second-order
expansion of the elastic energy in small gradients of displacements. The dimensionless
elastic energy U el stored in the springs deformations reads, to leading order in small
quantities:

U el = U el(r) ' 1
2〈u|M|u〉, (3.21)

where the ket |u〉 is the vector of the dN -components of the displacement field.

Normal modes

The dynamical matrix M is square, real, and symmetric. Therefore, one can find a
complete orthonormal basis in which it is diagonal, namely the normal modes |ϕk〉,
with corresponding eigenvalues ω2

k, namely the squared eigenfrequencies, also called the
modes’ energies. We define the scalar product 〈a|b〉 of two vectors of RdN as the sum
of the node-wise scalar products in Rd: 〈a|b〉 = ∑

i ai · bi. Orthonormality expresses as
〈ϕk|ϕp〉 = δkp. By convention, we sort the eigenvalues from the smallest to the largest
ω2

1 ≤ · · · ≤ ω2
i ≤ · · · ≤ ω2

dN . Note that there exist two kinds of modes depending on the
associated squared eigenfrequency:

• If ω2
k > 0, we say mode |ϕk〉 is a harmonic mode. The activation of such a mode

stretches bonds and induces a restoring force at first order in small displacements.
For a 1d mass-spring system where one mass connects to a single spring, the only
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mode of the system has unity squared eigenfrequency. For an arbitrary 2d system,
the squared eigenfrequency can thus be understood as the mode’s stiffness with
respect to a 1d spring.

• If ω2
k = 0, we say mode |ϕk〉 is a zero mode. They can be rigid body motions, or

involve internal displacements of the nodes, in which case they are called floppy
modes, or mechanisms (as discussed in section 3.2.1). Among them, two families
can be distinguished: finite mechanisms, in which finite-amplitude displacements
of sites stretch no bonds, and infinitesimal mechanisms, in which bond lengths do
not change to first order in the magnitude of displacements but do so to second
(or higher) order. The latter are also called Infinitesimal Zero Modes (IZM).

If the system’s modes are all harmonic, it is mechanically stable.

Normal modes extension

The concepts of strict localization and delocalization are reasonably clear when applied
to such cases as modes highly localized about defects in lattices, or the plane wave-like
vibrations of atoms in perfect crystals. However, the concept of degree of localization is
less clear for the more complicated situations which occur in between these two extremes.
To measure the spatial extension of normal modes in spring networks, we introduce the
participation ratio Qk of mode |ϕk〉:

Qk =
(∑

i

|ϕik|
)2

/N, (3.22)

where Qk gives some indication about the number of nodes participating in said mode
[158]. If the mode is completely delocalized, so all particles contribute equally, then
Qk = 1. At the other extreme, a mode localized on a single particle has Qk = 1/N .
In general, a mode delocalized on a subset of n nodes (involving only n nodes, with
equal amplitudes along each of them) has Qk = n/N . Eventually, one can show that
Qk ≤ 14. Note that one should not confound Qk with Pk =

[
N
∑
i

(
ϕik
)4]−1

, which
is also termed participation ratio in other works [159–161], and has similar properties.
The participation ratio Qk is an essential property of normal modes for active solids, as
discussed in the following chapters.

3.2.4 Symmetry considerations

The structures studied in this work have some sort of symmetry: some transformations,
namely the symmetry operations, leave the elastic structures looking the same after
they have been carried out. The symmetry of a structure is determined by its point
group. We will generally focus on the D2 and D6 point groups, which are respectively
the symmetry groups of a rectangle and a regular hexagon in the plane. To each point
group is associated a set of symmetry operations g. Note that:

U el(r) = U el(Γgr), (3.24)

4This is trivial from Jensen’s inequality:

Qk = 1
N

(∑
i

|ϕik|

)2

= N

(∑
i

1
N
|ϕik|

)2

≤ N
∑
i

1
N

(
ϕik
)2 = 1. (3.23)
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for all r ∈ RdN and for all symmety operations g of the point group, where Γg is the
matrix representation of the symmetry operation g. For example, ΓC6 is the block matrix
that maps every coordinate to the one rotated by 60 degrees from it, and also rotates
each vector by 60 degrees. We can take derivatives twice and find:

ΓgM = MΓg, (3.25)

and hence
[M,Γg] = 0. (3.26)

The dynamical matrix M commutes with the matrix representation of symmetry oper-
ations Γg. The normal modes |ϕk〉 are thus also eigenvectors of the matrix representa-
tion of the symmetry operation Γg, and are associated with the generalized eigenvalues
λgk = 〈ϕk|Γg|ϕk〉. This quantity allows to classify the normal modes by symmetry
classes, which are modified the same way by the symmetry operations.

Normal modes sorted by class of symmetry in D6 geometry

The symmetry group of the triangular, kagome and honeycomb lattices with hexagonal
boundaries is the dihedral group D6. It is generated by the rotation τ of angle π/3 and
a reflection σ (say, of axis y = 0), which satisfy τ6 = 1 and σ2 = 1. The eigenvalues of
σ are ±1. The eigenvalues of τ are exp(ikπ/3) for k ∈ {−2, . . . 3}:

SpecD6(τ) =
(
1, eiπ/3, e−iπ/3, e2iπ/3, e−2iπ/3,−1

)
.

The eigenmodes of D6 associated with the complex eigenvalues are complex and come in
pairs: to a mode |ϕ+〉 with eigenvalue einπ/3 is associated a mode |ϕ−〉 with eigenvalue
e−inπ/3 and with the same energy. These two modes can be combined into two real
modes |ϕ1〉 and |ϕ2〉 with the same energy as |ϕ±〉. |ϕ1〉 and |ϕ2〉 are not eigenvectors
of τ , but the 2-dimensional space they span is stable under the action of τ . The action
of τ on these modes is characterized by 〈ϕ1|τ |ϕ1〉 = 〈ϕ2|τ |ϕ2〉, which is the real part of
the eigenvalue of |ϕ±〉. Hence, the symmetry of a normal mode |ϕk〉 is characterized by
two real numbers,

〈ϕk|τ |ϕk〉 ∈ {1, 1/2,−1/2,−1}, (3.27a)
〈ϕk|σ|ϕk〉 ∈ {1,−1}. (3.27b)

For illustration, Fig. 3.4 represents the 30th first modes of a triangular lattice with
hexagonal boundaries in free boundary conditions (N = 331). The symmetry-classified
normal modes are color-coded with respect to their generalized eigenvalues according to
operation τ .

Normal modes sorted by class of symmetry in D2 geometry

The symmetry group of the line is the dihedral group D2. It is generated by the rotation
τ of angle π and a reflection σ (say, of axis y = 0). They satisfy τ2 = 1, σ2 = 1. Here,
the symmetry of a normal mode |ϕk〉 is thus characterized by two real numbers,

〈ϕk|τ |ϕk〉 ∈ {1,−1}, (3.28a)
〈ϕk|σ|ϕk〉 ∈ {1,−1}. (3.28b)
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|ϕ1〉
(1.0,−1.0)
ω2

1 = 0.000

|ϕ2〉
(0.5,−1.0)
ω2

2 = 0.000

|ϕ3〉
(0.5, 1.0)
ω2

3 = 0.000

|ϕ4〉
(−0.5,−1.0)
ω2

4 = 0.022

|ϕ5〉
(−0.5, 1.0)
ω2

5 = 0.022

|ϕ6〉
(0.5,−1.0)
ω2

6 = 0.029

|ϕ7〉
(0.5, 1.0)
ω2

7 = 0.029

|ϕ8〉
(−1.0, 1.0)
ω2

8 = 0.049

|ϕ9〉
(1.0, 1.0)
ω2

9 = 0.051

|ϕ10〉
(−1.0,−1.0)
ω2

10 = 0.055

|ϕ11〉
(−0.5,−1.0)
ω2

11 = 0.065

|ϕ12〉
(−0.5, 1.0)
ω2

12 = 0.065

|ϕ13〉
(−0.5,−1.0)
ω2

13 = 0.089

|ϕ14〉
(−0.5, 1.0)
ω2

14 = 0.089

|ϕ15〉
(−1.0,−1.0)
ω2

15 = 0.101

|ϕ16〉
(1.0,−1.0)
ω2

16 = 0.104

|ϕ17〉
(0.5, 1.0)

ω2
17 = 0.126

|ϕ18〉
(0.5,−1.0)
ω2

18 = 0.126

|ϕ19〉
(0.5, 1.0)

ω2
19 = 0.146

|ϕ20〉
(0.5,−1.0)
ω2

20 = 0.146

|ϕ21〉
(−1.0, 1.0)
ω2

21 = 0.163

|ϕ22〉
(1.0,−1.0)
ω2

22 = 0.169

|ϕ23〉
(1.0, 1.0)

ω2
23 = 0.176

|ϕ24〉
(0.5, 1.0)

ω2
24 = 0.189

|ϕ25〉
(0.5,−1.0)
ω2

25 = 0.189

|ϕ26〉
(−0.5, 1.0)
ω2

26 = 0.193

|ϕ27〉
(−0.5,−1.0)
ω2

27 = 0.193

|ϕ28〉
(0.5, 1.0)

ω2
28 = 0.224

|ϕ29〉
(0.5,−1.0)
ω2

29 = 0.224

FIG. 3.4. Normal modes of a triangular lattice in free boundary conditions. (top left)
triangular lattice in free boundary conditions, with hexagonal boundaries (N = 331). The modes
are sorted by order of growing energies, and colored by their associated eigenvalues with respect
to the rotation operation of the dihedral group of symmetry D6 of the structure. The modes are
computed for the experimental values of the tension, and only the 30th first modes are shown.
For every mode, the figure highlights the mode’s index k, the eigenvalues associated with the
symmetry operations (τ , σ), and the associated squared eigenfrequency ω2

k.
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3.2.5 Dynamics

Within the harmonic approximation

Now, let us solve the equations of motion (Eqs. (3.12) and (3.14)) using the elastic
force expression in the harmonic approximation (Eq. (3.16)). We introduce the dN
projections ak = 〈ϕk|u〉 of the displacement field |u〉 on the normal modes |ϕk〉.

Inertial limit. Combining Eqs. (3.12) and (3.16), we find the equation governing the
dynamics of a spring network in the inertial limit:

d2ui
dt2

= −Mijuj , (3.29)

for small gradients of displacements. We find a set of N linearly coupled ODEs, which
can be solved by projecting on the dN normal modes:

d2ak
dt2

= −ω2
kak. (3.30)

Hence, the projection of the displacement field on the mode |ϕk〉 oscillates at frequency
ωk. This is the common interpretation of the dynamical matrix eigenvalues. Note that
the modes are uncoupled: energy does not flow spontaneously from one mode to the
other and stays localized where it is initially injected. This is why they are called
normal modes: their dynamics are orthogonal.

Overdamped limit. Combining Eqs. (3.14) and (3.16), we find the equation govern-
ing the dynamics of a spring network in the overdamped limit:

dui
dt

= −Mijuj , (3.31)

for small gradients of displacements. We again find a set of N linearly coupled ODEs,
which can be solved by projecting on the dN normal modes:

dak
dt

= −ω2
kak. (3.32)

In the overdamped limit, the projection of the displacement field on the mode |ϕk〉 is
exponentially relaxing to zero on a time scale 1/ω2

k.

Including geometrical nonlinearities

For small deformations, elasticity is linear, and the normal modes picture is applicable.
However, when the deformations of the springs are large, the elasticity is non-linear,
and the normal modes can be coupled. Including geometrical nonlinearities results in
the addition of higher-order terms in the elastic force expression in mode space. The
right-hand side term of Eqs. (3.30) and (3.32) transforms into:

− ω2
kak +Akiakai +Bkijakaiaj + o(a3), (3.33)

where the third-order tensor A and forth-order tensor B express the nonlinear modal
coupling coefficients. From these couplings, elastic energy can now flow from mode to
mode, which opens the way to the thermalization of the elastic structure [162]. Never-
theless, there are symmetry constraints on the allowed energy leaks, which are detailed
in section 5. Note, for example, that if the elastic forces derive from a potential invariant
under u→ −u (ak → −ak), the term A must be zero.
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3.2.6 Thermodynamics

Equipartition theorem

The equipartition theorem states that for a system whose Hamiltonian H expresses as
a sum of quadratic functions of its coordinates pk; at thermodynamic equilibrium, the
averaged energy is evenly spread among all its composants and equals fkBT/2, where f
is the number of quadratic terms of the sum:

〈H〉 =
〈 f∑
k=1

αkp
2
k

〉
= fkBT/2. (3.34)

As we discuss below, equipartition holds for passive spring networks in contact with
a thermostat at temperature T , and gives strong constraints on the repartition of the
elastic energy.

Contact with a thermostat in real space

Coming back to the most general Eq. (3.13), and using the elastic force expression
within the harmonic approximation (Eq. (3.16)), we find:

τv
d2ui
dt2

+ dui
dt

+ Mijuj = 0. (3.35)

In this system, the total energy reads:

H =
dN∑
k=1

(1
2ω

2
ka

2
k + 1

2τvȧ
2
k

)
(3.36)

where the first (resp. second) term on the right-hand side is the spectral decomposition
of the elastic energy (resp. kinetic energy). Now, we consider that the spring network
couples to a thermostat at temperature T . Therefore, Eq. (3.35) is driven by a Langevin
term, such that:

τv
d2ui
dt2

+ dui
dt

+ Mijuj = ξi(t), (3.37)

where ξi = (ξxi , ξ
y
i ) is a two-dimensional random variable; and where the ξβi are i.i.d ran-

dom variables with zero mean 〈ξβi (t)〉 = 0, and correlations 〈ξβi (t)ξγj (t′)〉 = 2kBTδijδβγδ(t−
t′)5.

Contact with a thermostat in mode space

The elastic energy is not quadratic in the coordinates ui, but in the displacement field
projections on the normal modes ak. We thus project Eqs. (3.37) on the dN normal
modes:

τv
d2ak
dt2

+ dak
dt

+ ω2
kak = ξk(t), (3.38)

where ξk = 〈ϕk|ξ〉 can be shown to be i.i.d random variables, with zero mean 〈ξk(t)〉 = 0,
and same correlations as the ξβi , i.e. 〈ξk(t)ξk′(t′)〉 = 2kBTδkk′δ(t− t′). Interestingly, the
combined white noises on the particle positions result in i.i.d white noises in mode

5To map the canonical ensemble stationary probability distribution to the solution of the associated
Fokker-Planck equation, we must take 〈ξβi (t)ξγj (t′)〉 = 2νkBTδijδβγδ(t − t′) where ν is the viscous
dissipation, set to 1 in our dimensionless scheme.
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space. Computing the time correlation functions 〈ak(t)ak(0)〉 and 〈ȧk(t)ȧk(0)〉 using
Fourier transforms, we find:

1
2ω

2
k〈a2

k〉 = 1
2τv〈ȧ

2
k〉 = 1

2kBT, (3.39)

and thus, the equipartition theorem holds. At thermodynamic equilibrium, the normal
modes of a spring network all bear the same amount of elastic energy, or, said differently,
are excited in inverse proportion to their stiffness (〈a2

k〉 ' 1/ω2
k).

3.3 Active networks

3.3.1 Equations of motion

In this section, we combine the results obtained in section 3.1, for the dynamics of a
single active unit in a harmonic trap; and in section 3.2, for the dynamics of passive
spring networks.

Starting from Eqs. (3.10) for the dynamics of passive springs networks, we consider that
an active particle is embedded at every node of the network (Fig. 3.5). For each active
component, the activity takes the form of a force Fa = F0n̂i along the polarity n̂i of the
particle. The equations describing the dynamics of this system are

m
dvi
dt

= F0n̂i − γvi +
∑
j∈∂i

k (|ri − rj | − l0) êij , (3.40a)

τ
dn̂i
dt

= ζ(n̂i × vi)× n̂i +
√

2αξin̂⊥i , (3.40b)

where m is the mass of the active particles, γ the friction coefficient, k the stiffness of
the spring, ∂i refers to the neighbors of node i, and êij the unit vector from i to j.
The orientation dynamics, Eq. (3.40b), is the same as in the single-particle case, and
contains a self-alignment and a rotational diffusion term.

ri = (xi, yi)

rj = (xj , yj)

êij

n̂i

Fa

k

m

FIG. 3.5. Notations for active solids. The unit vector êij points from particle i to particle
j. The active force F a exerted by particle i has amplitude F0 along n̂i.

Rescaling length by r0 = l0 and time by t0 = γ/k (frictional scheme of section 3.2), the
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dimensionless equations of motion read

τv
dvi
dt

= F̃0n̂i − vi +
∑
j∈∂i

(|ri − rj | − 1) êij , (3.41a)

τn
dn̂i
dt

= (n̂i × vi)× n̂i +
√

2Dξin̂⊥i , (3.41b)

with four parameters, τv = mk/γ2, τn = τ/(ζl0), F̃0 = F0/kl0 and D = αγ/k(ζl0)2.
Note that τn = la/l0 and F̃0 = le/l0, where la = τ/ζ is the alignment length, and
le = F0/k is the elasto-active length.

Overdamped limit

Setting τv = 0 in Eq. (3.41a), we find:

vi = F̃0n̂i + F el
i , (3.42a)

τn
dn̂i
dt

= (n̂i × vi)× n̂i +
√

2Dξin̂⊥i , (3.42b)

with F el
i = ∑

j∈∂i (|ri − rj | − 1) êij the dimensionless elastic force acting on particle i,
and τn, D and F̃0 being the same quantities as before. In the overdamped limit, the
torque in Eq. (3.42b) reorients the polarity vector of particle i towards the elastic force
acting on it, because the term πn̂i does not contribute to rotate n̂i.

Harmonic approximation

The last step of the derivation is, as done in the previous section, to introduce the
displacement field ui, defined as the set of displacements with respect to the reference
configuration Ri, ri = Ri + ui; and to use the linearized expression of the elastic force
around Ri (Eq. 3.16). Note that as compared to the passive case, where the amplitude
of the displacements is dictated by the initial condition, in active networks, it is dictated
by the dimensionless active force F̃0, Eq. (3.42). The harmonic approximation thus
corresponds to assume F̃0 � 1. In that case, Eqs. (3.42) transform into:

vi = F̃0n̂i −Mijuj , (3.43a)

τn
dn̂i
dt

= (n̂i × vi)× n̂i +
√

2Dξin̂⊥i , (3.43b)

where M is the dynamical matrix. Within the harmonic approximation, the equations
of motion have an additional symmetry that reduces the number of parameters by one.
Rescaling displacements by τn = la/l0, we find back Eqs. (3.1), introduced at the
beginning of the chapter:

u̇i = πn̂i −Mijuj , (3.44a)
ṅi = (n̂i × u̇i)× n̂i +

√
2Dξin̂⊥i , (3.44b)

where D = αγ/kτ2, and the ratio of the elasto-active and alignment lengths, π =
le/la, which we refer to as the elasto-active coupling, is the unique microscopic control
parameter. Note that because of the last rescaling, the displacement field ui is written
in unit of alignment length la, the same way it would have been if lengths were rescaled
by la. At this point, it is worth making several comments on the structure of Eqs. (3.44):
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• The first equation describes the dynamics of the displacement vector, which relaxes
toward the reference configuration, and is now driven along the direction of the
polarity vector, with amplitude π.

• The elasto-active coupling π is the dimensionless activity, or the engines’ strength
with respect to elasticity. The larger it is, the more particles reorient upon elastic
deformations induced by activity. From the equation’s structure, π compares to
the modes’ energies ω2

k.

• The second equation describes the dynamics of the polarity vector, reorienting
through noise and self-alignment, which is a cubic nonlinearity.

Note that equivalently, Eqs. (3.44) can be formulated for the dynamics of the polarity
vector orientations θi:

u̇i = πn̂i −Mijuj , (3.45a)

θ̇i =
(
n̂⊥i · u̇i

)
+
√

2Dξi. (3.45b)

3.3.2 Projection on the normal modes

As done in section 3.2, we now decompose Eqs. (3.44) on the normal modes |ϕk〉.

Bra-ket notations

For the sake of simplicity, before to project, it is helpful to recast Eqs. (3.44) using
bra-ket notations:

|u̇〉 = π|n̂〉 −M|u〉, (3.46a)
|ṅ〉 = KTK|u̇〉 = −KTKM|u〉, (3.46b)

where 〈i|a〉 = ai, KT is the transpose of the matrix K; and where the matrix K, of
dimensionN×2N , with elements 〈i|K|j〉 = n̂⊥i δij , explicitly depends on the polarity field
configuration |n̂〉. Therefore, the matrix KTK is the projector on |n̂⊥〉. Equivalently,
Eq. (3.46b) can be formulated for the dynamics of the polarity vector orientations |θ〉:

|u̇〉 = π|n̂〉 −M|u〉, (3.47a)
|θ̇〉 = −KM|u〉. (3.47b)

Mode space

We decompose the displacement and polarity fields on the normal modes:

|u〉 =
∑
k

auk |ϕk〉, (3.48a)

|n̂〉 =
∑
k

ank |ϕk〉, (3.48b)

where the auk ’s (resp. ank ’s) are the coefficients of the spectral decomposition of the
displacement field (resp. polar force field). The equations of motion (3.46) translate
into

dauk
dt

= πank − ω2
ka
u
k , (3.49a)

dank
dt

= −
∑
lpq

ω2
qΓpqlkauqanl anp +

√
2Dξk, (3.49b)
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where ξk is a Gaussian white noise in mode space (as discussed in section 3.2.6), and
where we have introduced the inter-modal geometrical coupling coefficients

Γpqlk =
∑
i

ϕik ·
[
(ϕip ×ϕiq)×ϕil

]
=
∑
i

[
ϕip ×ϕiq

]
·
[
ϕil ×ϕik

]
. (3.50)

Note the cubic nonlinearity of the second equation, inherited from the self-alignment
dynamics of the polarity. In contrast with passive spring networks, the normal modes
are coupled at the level of the harmonic approximation, and active force can flow from
one mode to the other. The coupling coefficients Γpqlk are antisymmetric under the
exchanges p ↔ q and l ↔ k, and symmetric under the exchange (p, q) ↔ (l, k). This
implies for instance that ∑pl Γpqlkanl anp is symmetric under the exchange k ↔ q.

Note that compared to section 3.2, the geometry of the modes now plays a crucial role
in setting the amplitude of the active force transfers (see Eq. (3.49b)). The physics is
not only governed by the modes’ energies ω2

k, but also by the inter-modal geometrical
coupling tensor Γ, solely set by the modes’ geometry. Eventually, the structure of the
Γ couplings in Eq. (3.50) highlights that local-orthogonality, the property of two modes
to be node-wise orthogonal, increases their overall coupling, allowing for a more efficient
active force transfer from one mode to the other.

In addition to the dynamical equation, the normalization condition |n̂i| = 1 for all i im-
plies that the 2N polarity coefficients ank belong to a N -dimensional manifold isomorphic
to the N -torus. Since the normalization condition implies that ∑in

2
i = ∑

k a
n
k

2 = N ,
this manifold is included in the (2N − 1)-sphere of radius

√
N . This is a good reason

to define the normalized projections of the displacement and polarity fields, respectively
ãuk = auk/

√
N and ãnk = ank/

√
N , the latter satisfying |ãnk | < 1.

3.3.3 Numerical simulations

Let us briefly describe the numerical simulations of the active elastic networks, that
were used to vary the parameters more finely and in a broader range than in the ex-
periments. First, we discuss simulations performed within the harmonic approximation,
then, considering geometrical nonlinearities, and eventually, considering angular noise
in the polarity dynamics.

We simulate the Eqs. (3.1) with a vectorial Runge-Kutta method, already implemented
in the Python function scipy.integrate.solve_ivp6. The time step is adaptative, opti-
mized by the function to ensure a quick convergence while keeping relative local error
estimates smaller than 10−6. Unless stated otherwise, the initial condition is always at
rest (∀i,ui = 0), with polarities n̂i(t = 0) = (cos θi(t = 0), sin θi(t = 0)), where θi(t = 0)
is the initial orientation of particle i. Remember that within the harmonic approxima-
tion, the only microscopic parameter is the elasto-active coupling π. The elastic forces
are computed using Eqs. (3.16) and (3.19).

Compared to a simulation within the harmonic approximation, including geometrical
nonlinearities first means defining a finite dimensionless active force F̃0, which sets the
amplitude of said nonlinearities. Eventually, we simulate Eqs. (3.42) using τn = F̃0/π,
with a vectorial Runge-Kutta method7. As in the previous section, the time step is

6Documentation at https://docs.scipy.org/doc/scipy/reference/generated/scipy.
integrate.solve_ivp.html .

7scipy.integrate.solve_ivp also solves for non-linear ODEs.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
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adaptative, and the initial condition is at rest unless stated otherwise.

Finally, including angular noise transforms the previous coupled ODEs into coupled
SDEs. They are solved numerically using an Euler method with a fixed time step
δt = 10−3, and by adding a noisy angular contribution to each polarity vector at every
time step, drawn independently from a Gaussian distribution of zero mean and variance
2Dδt.



Chapter 4

Stress-induced collective motion

We choose to start with this mostly theoretical chapter because it makes a natural
link between collective motion and elastic structures. A free elastic structure, in the
sense that it is not pinned to a substrate, has translational and rotational zero modes
corresponding to the rigid body motions. As we shall see, when such a structure is
embedded with self-aligning active units, those zero modes are spontaneously excited,
and the associated motion takes place. This chapter results from a collaboration with
Gustavo Düring and Claudio Hernández López. They derived the rigid limit presented
in Appendix B, all the results presented in section 4.6 regarding the effect of noise, and
contributed to the analysis of the rigid theory.

4.1 Introduction

Collective motion is a spectacular and widely observed phenomenon in nature. Whether
observing bird flocks [36], bacteria colonies [41, 163], cellular tissues undergoing migra-
tion [80], locust swarms [39], or schooling fish [38], the common motif is the tendency
to move together. Artificial systems of self-propelled particles have played a crucial
role in understanding the emergence of ordered movements, such as vibrated polar disks
[55–58] or rods [164], interacting robots [165], and motile colloids [25, 59]. Generally,
flocking models invoke the existence of polar alignment interactions between the active
agents, like in the celebrated Vicsek model [9]. When only self-alignment interactions
are present, active systems are also known to achieve collective motion via pairwise
position-based interactions, such as elastic [112] or intermolecular-like forces [75] (see
chapter 1). In particular, it was shown that a traveling phase exists and is stable, with
numerical evidence of long-range order [112]. The latter is highly non-trivial, and must
violate the Mermin-Wagner theorem while strictly consisting of short-range interactions.
Remarkably, for small enough self-propulsion, not only do such systems stay below the
active yielding transition [79], remaining genuinely solids, but the vibrational modes of
the structure are also barely excited. Therefore, the coherently moving active solid can
be considered effectively rigid. However, to date, the mechanisms governing the emer-
gence of collective motion in rigid active solids remain unclear.

Here we develop a new theoretical framework for strictly rigid structures, demonstrating
how long-range stress propagation can lead to different forms of collective motion. We
show that in the presence of zero modes, any finite amount of activity leads to the
emergence of collective steady states, which are dictated by the geometry of said zero
modes. Combining this framework with numerical simulations and the experimental
study of our model active solids in rigid settings, we show that the predictions are robust

90
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to imperfections and a finite amount of elasticity. Finally, we investigate the effect of
noise, and find that the dynamics of rigid active solids can be mapped to equilibrium
systems, for which exact results exist. In particular, mode selection and the existence of
collective motion are determined by the minima of a Landau-Ginzburg-like free energy.

4.2 Experiments

We start by exploring the free boundary condition dynamics of triangular lattices with a
hexagonal shape, made with stiff springs (Figs. 4.1-a). As discussed in chapter 3, in the
absence of pinning, such systems have translational and rotational zero modes, which are
the three rigid body motions of 2d structures. Once this structure is doped with active
units, we let it evolve on the lab’s floor. We find two regimes: collective translation,
where all the active units are aligned, and the system coherently moves in a given direc-
tion, spontaneously breaking invariance by rotation (Fig. 4.1-d); and collective rotation,
where the active units organize into a vortex state that triggers the rotation of the struc-
ture clockwise or counter-clockwise, spontaneously breaking the chiral symmetry (Fig.
4.1-f). Translational solutions appear to be stable on the experimental timescales. Con-
versely, rotational solutions are not always stable. In the presence of an active unit at the
center of the structure, the rotation regime destabilizes toward the translation one (Fig.
4.1-e). Removing the central active unit allows for observing stable rotation regimes on
the experimental timescales (Fig. 4.1-f). Importantly, no significant deformations of the

(a) (b) (c)

(d) (e) (f)

FIG. 4.1. Stiff active solids with rigid body motions (a) Elastic architecture cartoon
(N = 37). (b-c) Only the central node (b) or an arbitrary point of the network (c) is pinned,
giving rise to a single rigid body rotation zero mode (N = 36). In both cases, the structure
collectively and steadily rotates around the pinning point; scale bars: 10 cm (d-f) Free boundary
conditions, with all annuli doped with active units (d-e), or all but the central one (f). (d) Stable
translation regime (N = 37). (e) Unstable rotation regime (N = 37). (f) Stable rotation regime
(N = 36). All trajectories are color-coded from blue to red by increasing time; scale bars: 20 cm
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structure are observed during the different dynamics.

We next consider lattices with a single zero mode. The simplest case corresponds to a
structure with a single pinning point, i.e a freely rotating structure, with a single rota-
tional zero mode. Indeed, by fixing a solid cylinder to the experimental table, a given
node can freely rotate but not displace, as seen in Figs. 4.1-b and c. Independently
of the chosen structure and pinning point, only collective rotations are found, and they
are always stable on the experimental timescales. We find that the structure rotates
with a well-defined average rotation rate 〈Ω〉 (Figs. 4.2-a and b), where Ω is obtained
by averaging the angular displacement measured between two frames over particles. As
discussed below, the latter depends on the geometry and inter-agent distances (Fig. 4.5).

Spectral decomposition of the polarity field in the experiments represented in Fig. 4.1-b
reveals that activation of non-zero modes is negligible in comparison with that of zero
modes. We introduce the condensation fraction λk on mode |ϕk〉:

λk =
〈

(ãnk)2
〉
t

= 1
T

∫ T [〈ϕk|n̂(t)〉√
N

]2
dt, (4.1)

where ãnk = 〈ϕk|n̂〉/
√
N is the normalized projection of the polarity field on mode |ϕk〉,

and satisfies |ãnk | < 1 (see chapter 3). λk corresponds to the fraction of active force
injected on average into mode |ϕk〉. Said differently, it measures how much the polarity
field is aligned with mode |ϕk〉 on average and is bounded between 0 and 1. We measure
the condensation fraction on the modes for the hexagonal structure with central pinning
condition (Fig. 4.2-c). Importantly, the normal modes are computed in the frame co-
rotating with the structure (see appendix A for the whole normal mode spectrum). The
main peak corresponds to the rotational mode, which is the only zero mode, and contains
roughly 80% of the total active force injected. Subsequent smaller peaks correspond to
breather modes, which belong to the same symmetry class as the rotation mode. As
discussed in the next chapter, the secondary peaks originate from the normalization of
the polarity field, which leads to the selection of an entire symmetry class. However,
in this chapter, the projection of the polarity field on non-zero modes being very small,
and their energies being relatively large, deformations of the structure can be neglected,
consistently with observations in real space.
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FIG. 4.2. Properties of collective rotations. (a) Instantaneous rotation rate of the whole
structure Ω as a function of time, for the structure of Fig. 4.1-b; and (b) its probability density
function. (c) Condensation fraction λk on the normal modes, sorted by order of growing ener-
gies. The symmetry classification of the normal modes is highlighted in the bottom panel. The
horizontal dashed line indicates equipartition. (d) Geometry of the 3 most activated modes.
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In the spirit of deepening our theoretical understanding of the existence, characteristics,
and stability of these different collective behaviors, we develop a framework that ignores
the contribution of harmonic modes. This amounts to considering the system in the
infinitely rigid limit, i.e virtually replacing the stiff springs with rigid bars.

4.3 Rigid equations

Our starting point is the standard overdamped dynamic for N active units (see chaper
3). We can safely use the harmonic approximation, given that the structures are rigid
and deformations can be neglected:

u̇i = πn̂i −Mijuj , (4.2a)

θ̇i =
(
n̂⊥i · u̇i

)
+
√

2Dξi, (4.2b)

where ui (resp. θi) is the displacement vector with respect to the reference configura-
tion (resp. polarity vector orientation, i.e. n̂i = (cos θi, sin θi)) of active unit i; and the
elasto-active coupling π = le/la is the ratio between the elasto-active length le = F0/k
and the alignment length la (see Eqs. (3.45)). Finally, the dimensionless noise amplitude
reads D = αγ/kτ2.

On the one hand, the units of length and time respectively read r0 = la, and t0 = γ/k (see
chapter 3). On the other hand, the rigid limit can be understood as a limiting procedure
with k → +∞, all other parameters being held constant. Therefore, we should change
the dimensionless scheme to avoid infinitesimal time units. Choosing the units of time
and length such that r0 = la and t0 = la/v0 = laγ/F0, Eqs. (4.2) re-cast into:

u̇i = n̂i −
1
π
Mijuj , (4.3a)

θ̇i =
(
n̂⊥i · u̇i

)
+
√

2Dξi, (4.3b)

where the dimensionless noise amplitude now expresses as D = Dθla/v0, where Dθ =
α/τ2 is the rotational diffusion coefficient.

Projecting the position dynamics, Eq. (4.3a), on the eigenmodes of the structure, it
re-casts as:

ȧuq = anq −
ω2
q

π
auq , (4.4)

where auq (resp. anq ) is the projection of the displacement (resp. polarity) field on mode
|ϕk〉, and ω2

k is the energy of mode |ϕk〉. As π → 0, e.g. because the spring stiffness k
diverges, the components of the eigenmode expansion of the displacements separate into
two disjoint sets depending on their associated eigenvalues. We denote F the set of zero
modes.

• For q ∈ F , ω2
q = 0, and Eq. (4.4) trivially becomes:

ȧuq = anq . (4.5)

For zero modes, auq evolves solely due to the projection of the polarity field on the
mode, anq .
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• For q 6∈ F , ω2
q > 0. Asumming π � ω2

q , ∀q 6∈ F , the dominant terms of Eq. 4.4
are:

ȧuq ' −
ω2
q

π
auq . (4.6)

For harmonic modes, auq is severely damped and relaxes to zero on a timescale
π/ω2

q , thus it vanishes asymptotically fast in the rigid limit. We place ourselve at
times larger than this typically transitory regime, so that displacements along the
harmonic modes can be safely neglected.

In the presence of zero modes, for small enough elasto-active coupling π � ω2
q , the

contributions from the harmonic modes can be neglected and the dynamics is dictated
by the structure of the zero modes. Coming back to real space, we can write the final
general equations in the rigid limit:

u̇i =
∑
q∈F

anqϕ
q
i , (4.7a)

θ̇i =
(
n̂⊥i · u̇i

)
+
√

2Dξi. (4.7b)

Eventually, re-injecting Eq. (4.7a) into the polarity dynamics Eq. (4.7b), we end up
with a closed equation for the dynamics of the orientations θi:

θ̇i = −∂V
∂θi

+
√

2Dξi, (4.8)

where:
V (θ1, . . . , θN ) = −1

2
∑
q∈F

anq (θ1, . . . , θN )2 . (4.9)

A few remarks are in order. First, there is only one dimensionless parameter: the noise
amplitude D (the elasto-active coupling π is eliminated in the rigid limit). Second, Eqs.
(4.7) and the theoretical framework presented here is quite general; a rigid description
can be obtained via a limiting procedure starting from a variety of interaction forces, in
particular springs as in the case of hexbugs. In Appendix B, we show that the rigid limit
can also be obtained starting from pairwise radially symmetric position-based interac-
tions. Third, if the normal modes are fixed throughout the dynamics (i.e. independent
of time1), the right-hand side of Eq. (4.7a) is slaved to the polarity dynamics, Eq. (4.8),
thus this equation is solved for free once the θi are known.

In the presence of a single zero mode (the set F contains a single zero mode), the min-
imum of the potential given by Eq. (4.9) is realized when the polarity field aligns with
said zero mode, leading to a steady state of Eq. (4.8). However, when several zero
modes are present, the situation becomes more complicated, and the emerging steady
states are dictated by the geometry of the zero modes and their inter-modal geometrical
couplings.

As a final remark, the lowest energy harmonic modes of the triangular lattices in free
boundary condition (Figs. 4.1-d to f) and central pinning condition (Fig. 4.1-b) have
energies ω2

min = 0.194 and ω2
min = 0.046, respectively. The value of π for stiff springs

being typically 0.01 (see chapter 2), the rigid limit requirement π � ω2
k for all harmonic

modes is satisfied.
1This is necessarily true if the structure is mechanically stable, but not always true in the presence

of zero modes.
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4.4 Single pinning point

We start by considering structures with a single global zero mode, i.e pinned systems.
Therefore, the set of zero modes reduces to the rotation mode around the pinning point
F = {|ϕR〉}. Let ri be the vector from the pinning point to particle i (see Fig. 4.3).
Defining φi as the angle between ri and the horizontal axis, the rotational zero mode
reads:

ϕRi = ri√
I

(− sinφix̂+ cosφiŷ) = r⊥i√
I

= ri√
I
êθ, (4.10)

where I = ∑
i r

2
i the massless angular inertia of the structure, and where êθ is the

azimuthal unit vector in polar coordinates. In the following, we aim to solve Eqs. (4.7a)
and (4.8), considering that the set F restricts to the rotation zero mode, given in Eq.
(4.10).

x

ri

Ω

φφi

θi

FIG. 4.3. Notations. The angle of the solid body with respect to the x-axis is denoted φ, and
thus rotates at a rate Ω = φ̇. The angle of the vector ri (resp. n̂i) is denoted φi (resp. θi).

4.4.1 Rigid equation in the co-rotating frame

In the presence of a rotational zero mode, the structure and the entire normal mode spec-
trum rotate as the rotation mode is actuated. To avoid contradicting the unicity of the
reference configuration and linear elasticity, we place ourselves in the frame co-rotating
with the structure. We denote φ the angle between this frame and the horizontal axis
(see Fig. 4.3). Let us determine the dimensionless rotational speed φ̇ of the structure.
Re-injecting Eq. (4.10) into Eq. (4.7a), we find:

u̇i = anRϕ
R
i = anR

ri√
I
êθ. (4.11)

With u̇i · êθ = riφ̇ from solid body rotation, we find:

φ̇ = anR√
I

= 1
I

(∑
i

r⊥i · n̂i

)
. (4.12)

As expected, the structure rotates as quickly as the polarity field projects on the rotation
mode, and as slowly as the rotational inertia is large. Note that translation modes,
absent in this setting, do not contribute to rotating the structure. Therefore, the above
expression is also valid in free boundary conditions. Then we can define θ′i = θi − φ
and φ′i = φi − φ, where the latter is now a constant quantity. Under this convention,
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and using the explicit rotation mode expression in Eq. (4.8), the noiseless equation of
motion of the angular variables is:

θ̇′i = −∂V
∂θi
− φ̇ = (ri · n̂i − 1) φ̇. (4.13)

Crucially, in the presence of a rotational zero mode, a new parameter appears, hidden
in the definition of the ri. Indeed, we can write ri = r̃il0/la = r̃i/τn, where τn = la/l0
is the alignment length la rescaled by the springs rest length l0, and where r̃i = r̃iêr
is the positions of the particle i with respect to the pinning point in the unit-length
lattice. Therefore, φ̇ scales like τn: for τn � 1, moving with the frame co-rotating with
the structure has no effects, because it happens on timescales much larger than those
of the polarity dynamics. Otherwise, the system has two parameters: the dimensionless
alignment length τn, and the noise amplitude D.

4.4.2 Steady rotation regime

A stationary rotating solution exists only if θ̇′i = 0, imposing the condition:

ri · n̂i = 1, (4.14)

for all particles. Hence
êr · n̂i = τn

r̃i
. (4.15)

This implies that the alignment between the two vectors increases as we look at particles
closer to the center of rotation: the closer from the pinning point, the more particles
point radially and not azimuthally. Therefore, a stationary solution of Eq. (4.13) exists
only if τn < r̃i ∀i. Applying this constraint to the smallest possible r̃i = 1, we find that
a steady rotating solution exists only if τn ≤ 1, i.e. l0 ≥ la. Condition (4.14) is enough
to determine the orientation of every active unit, and thus the angular speed φ̇ = Ω, Eq.
(4.12):

Ω = ±
∑
i

√
r2
i − 1∑

i r
2
i

, (4.16)

where the± indicates the two broken symmetry rotations, turning clockwise and counter-
clockwise. In dimensional form, it reads:

Ω = ±v0

∑
i

√
r2
i − l2a∑
i r

2
i

. (4.17)

Linear stability analysis reveals that this solution is stable independently of the geometry
and pinning point (see Appendix B), which is consistent with experimental observations
in Figs. 4.1-b and c for triangular lattices, and Figs. 4.4-a and b for square lattices.

To summarize, in the presence of a single rotational zero mode, a steady collective
rotation regime exists for τn < 1 and is unconditionally stable.

4.4.3 Rigid experiments

We now compare the prediction from Eq. (4.17) to numerical simulations of the rigid
equations in the presence of a single rotational zero mode, Eq. (4.13), and to experiments
performed with rigid links.
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(a) (b)

FIG. 4.4. Collective rotation for pinned square lattices (a-b) Only the central node (a) or
an arbitrary point of the network (b) is pinned, giving rise to a single rigid body rotation zero
mode. In both cases, the structure collectively and steadily rotates around the pinning point
(N = 24). All trajectories are color-coded from blue to red by increasing time; scale bars: 10
cm.
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FIG. 4.5. Rigid active solids with rigid body rotation only (a) Abandoned dog (N = 1).
(b) 1-ring triangular lattice with central pinning condition (N = 6). (c) 3-ring triangular lattice
with central pinning condition (N = 36); scale bars: 10 cm. (d-f) Scaled angular speed of the
networks depicted in (a-c) as a function of the inter-agent distances. Blue and red dots are
experimental data, and correspond respectively to experiments performed with rigid and stiff
connections. Error bars are given by the 1 − σ width of the instantaneous angular velocity
distributions (see Fig. 4.2-b). The solid black line corresponds to the theoretical prediction from
Eq. (4.17), and the dashed black line to the l0/la → +∞ asymptotic expression of the same
equation. The open black circles are numerical simulations. (d): la = 2.51 cm, v0 = 29.7 cm/s
(least-squared fit of Eq. (4.17)); (e): la = 2.94 cm, v0 = 20.5 cm/s (least-squared fit of Eq.
(4.17)); (f): la = 2.94 cm, v0 = 20.5 cm/s. Inset: individual rotation rates ωi illustrating the
spatial coexistence in numerical simulations; (left) l0/la = 0.47; (right) l0/la = 0.93.
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We construct triangular lattices with hexagonal boundaries, replacing the previous stiff
helical springs with plastic straws, that play the role of very light rigid links. Consistently
with the above section, the central node is pinned to consider only a single zero energy
rotation mode (Figs. 4.5-b and c). We also consider a single active unit, connected to
a pinned ball bearing via a rigid link, the so-called abandoned dog (Fig. 4.5-a), which
has one rotation zero mode, and a stiff harmonic mode along the radial direction. The
parameter τ−1

n = l0/la is varied by tuning the rigid connectors’ length, assuming that
the added/removed mass does not affect the other parameters of the system. We find
that the average rotation rate 〈Ω〉 depends on the geometry and inter-agent distances,
in good agreement with the rigid theory (Figs. 4.5-d,e, and f, blue markers). For large
l0/la, Ω decreases like (l0/la)−1, because angular inertia increases with l0; and as l0 ap-
proaches la, Ω vanishes critically like (l0−la)1/2, because of self-alignment. Moreover, we
find that the rotation rate’s fluctuations decrease with the number of active units. Note
that the rotation rate measured from the experiment with stiff springs (Fig. 4.1-b) also
matches very well with the prediction (Fig. 4.5-f, red marker), regardless of its residual
elasticity. Interestingly, in the rigid experiments, the measurements at the smallest l0
allow for measuring deviations from the large l0/la asymptotic regime (Figs. 4.5-d and
e), emphasizing the role of self-alignment. By construction, however, the inter-agent
distance l0 must be larger than the annulus diameter, which is larger than the alignment
length. Therefore, experimentally we cannot explore the range l0 ≤ la where the steady
collective rotation is expected to disappear.

We thus perform numerical simulations of Eq. (4.13) close to the transition. For the two
first structures studied experimentally (Figs. 4.5-a and b), there is only one distance
from the pinning point, r̃i = 1, thus the existence threshold for the steady rotating
solution given by Eq. (4.14) is reached everywhere in the lattice at l0 = la. It implies
that the steady rotation rate Ω continuously goes to zero as l0 approaches la from above.
At the transition, all active units point radially, and the rotation stops, as observed
numerically (Figs. 4.5-d and e, open black markers). In contrast, for larger structures,
as l0/la approaches 1, only the particles the closest to the pinning point stop verifying
condition (4.14). For l0 < la, the steady collective rotation ceases to exist, but is
replaced by unsteady collective rotations (Fig. 4.5-f, open black markers and insets),
which exist and are stable up to smaller values of l0/la. They are characterized by a
spatial coexistence between a frozen region close to the pinning condition, where polarity
vectors do not rotate on average; and a region where polarity vectors are synchronized
with the rotation of the whole structure, and rotate on average at the same rate. As
l0/la decreases further, the frozen region invades the system layer-by-layer, and the
heterogeneous unsteady regimes rotate slower and slower on average. Eventually, for too
small l0/la, the system ends up fully frozen and stops turning.

4.5 Free boundary condition

4.5.1 Rigid equation in the co-rotating frame

We will now consider a non-pinned structure, with three zero modes corresponding to
rigid body motions, F = {|ϕTx〉, |ϕTy〉, |ϕR〉}. In this case, the zero mode expressions
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are:
ϕTxi = x̂/

√
N,

ϕ
Ty
i = ŷ/

√
N,

ϕRi = ri√
I

(− sinφix̂+ cosφiŷ) = r⊥i√
I
,

(4.18)

where the vectors ri denote the position of the nodes with respect to the mass barycenter.
Re-injecting these expressions into Eqs. (4.7), we find the noiseless equation of motion
of the angular variables (see Appendix B):

θ̇′i = 1
N
n̂⊥i ·

∑
j

n̂j + (ri · n̂i − 1) φ̇. (4.19)

The first (resp. second) term on the right-hand side originates from the two translation
modes zero modes (resp. from the rotational zero mode).

4.5.2 Steady translation regime

Let us first study the translational solutions. They are defined by θi = θ ∀i. Clearly, the
first term on the right-hand side of Eq. (4.19) vanishes in the translating state. More-
over, from Eq. (4.12), the rotation rate φ̇ must be zero, killing the second right-hand
side term of Eq. (4.19). Therefore, independently of the structure, any translating state
oriented along θ corresponds to a stationary solution satisfying θ′i = 0 ∀i. The linear
stability matrix governing the damping of small perturbations has a null eigenvalue cor-
responding to a global rotation and N − 1 negative eigenvalues, ensuring the stability
of translational solutions (see Appendix B). The null eigenvalue reflects the marginal
stability of the latter, and gives rise to a diffusion process of the heading direction θ
when angular noise is present, in agreement with experimental observations.

To summarize, in free boundary conditions, the translational solution always exists and
is, overall, linearly stable.

4.5.3 Steady rotation regime

For non-pinned rotational solutions, Eqs. (4.14) and (4.17) still hold, where ri is now the
position of particle i with respect to the structure’s barycenter. However, stability analy-
sis reveals that there is a strong dependence on geometry (see Appendix B). Considering
the hexagon-like experimental structures, from Eq. (4.14), purely rotational solutions
do not exist when a central unit is present. This is in agreement with the system ob-
served in Fig. 4.1-e, where an initial pseudo-rotating state transitions to the more stable
translational solution. Note that this effect could have been anticipated from symme-
try considerations. When the solution exists, i.e. without a central active unit and for
τn < 1, stability depends on τn and the system’s size, defined by its number of layers (see
Appendix B). As Fig. 4.6-a shows that stability is ensured for τn < τ?n(N) < 1. Note
that the stability threshold τ?n approaches the rotational solution’s existence threshold
τn = 1 in the thermodynamic limit.

Once again, we turn to numerical simulations to study the destabilization of the rotating
solutions as τn exceeds the stability threshold. The dynamics is best described by the
two order parameters µR and µT , which respectively characterize the configurations fully
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aligned with the rotational and translational modes. As a general expression, the order
parameter µq characterizing the order along a given mode q can be written as:

µq =
〈
anq
〉

√
N

=

〈∑
iϕ

q
i · n̂i

〉
√
N

, (4.20)

where the outer brackets stand for a time average over the stationary state. For the
rotation mode, µR =

〈
φ̇
〉
/φmax, where φmax =

√
N/I; and for the translation modes,

µT = µTx + µTy = 〈|P |〉, where the P is the polarization, or orientational order param-
eter P = 1

N

∑
i n̂i.

Similarly to the case with a single pinning point, we find that large enough heterogene-
ity of the rotation mode allows for the spatial coexistence of rotating and translating
solutions as l0 decreases (Figs. 4.6-b and c). For l0/la > τ?n

−1(N), we find homogeneous
and stable steady rotation regimes, thus µT = 0 and µR is finite but below one, in
perfect agreement with the rigid theory (µR → 1 in the limit τn → 0). As l0 decreases
below the stability threshold, the steady rotation destabilizes. For a 1-ring structure,
with a fully homogeneous rotation mode, the destabilization drives the system toward
the stable translation regime, with µT = 1 and µR = 0 (Fig. 4.6-b). On the contrary,
for a 5-ring structure, we find spatial coexistence between the rotating and translating
solution (Fig. 4.6-c), the rotating solution being favored close to the edges, where the
rotation mode has the largest amplitude. As l0 decreases further, the heterogeneous
rotation regime also destabilizes, and the only remaining solution is a pure translation.

4.6 Influence of noise

The existence of multiple stable equilibrium states raises the natural question of mode
selection and the effect of noise. The stochastic angular evolution of each agent should
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FIG. 4.6. Collective rotation in free boundary conditions (a) Stability threshold of the
steady rotation regime 1/τ?n (black markers) as a function of the number of rings in a triangular
lattice without a central unit. The dashed black line represents the existence threshold of the
steady rotation. (b-c) Order parameters µR (red markers) and µT (blue markers) as a function
of inter-agents distance l0/la, as obtained from simulations of Eqs. (4.19). (b) 1-ring triangular
lattice (N = 7), (c) 5-ring triangular lattice (N = 91). The solid (resp. dashed) black vertical
lines represent l0/la = 1 (resp. the stability threshold of the steady rotation, as given by (a)).
The solid black lines represent the predicted value of µR from the rigid theory in the range
where steady rotation is stable, and the dotted black lines highlight the same prediction in the
region where it exists but is unstable. Inset: individual rotation rates ωi illustrating the spatial
coexistence in numerical simulations for l0/la = 0.86.
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allow the system to explore different polarity field configurations, potentially settling on
the most stable ones. Therefore, we now consider the Gaussian white noise ξi in the
polarity equation (4.7b).

4.6.1 Fokker-Planck equation

The stochastic evolution of the positional and angular degrees of freedom can be studied
by considering the probability density function Q(r1, . . . , rN ; θ1, . . . , θN |t), characteriz-
ing the time-dependent probability of observing a certain spatial/angular arrangement
of the system. It evolves according to the Fokker-Planck equation (see Appendix B):

∂Q

∂t
= −∇ri

∑
j

ϕkj · n̂j

ϕkiQ
+ ∂

∂θi

(
∂V

∂θi
Q

)
+D

∂2Q

∂θ2
i

, (4.21)

where the sum over repeated indices is implied. The last term on the right-hand side
comes from the angular diffusion of the active units, and the first one originates from
variations of the zero modes geometry as the system evolves (e.g. the rotation mode
rotates with the structure in free boundary conditions). The second term on the right-
hand side can be interpreted as a probability current driven by the gradient of a potential,
where:

V (θ1, . . . , θN ) = −1
2
∑
q∈F

anq (θ1, . . . , θN )2 . (4.22)

Finding a general solution for the probability density function Q is a complex problem.
However, we are mainly interested in the τn � 1 regime, where multiple equilibrium
solutions exist. In this limit, the zero mode variation timescale is expected to be much
smaller than the θi dynamics timescale. Indeed, ri scaling like τ−1

n , derivatives with re-
spect to ri scale like τn. This timescale separation, which also depends on the particular
geometry of the system, leads to a significant simplification of the dynamics. In such a
regime, we could consider the polarity field evolution keeping a frozen, or quasi-static
evolution of the zero modes. In practice, this approximation considers that the probabil-
ity density function Q is different from zero only for combinations of ri which preserve
the same zero modes. Therefore, integrating out positional degrees of freedom in Eq.
(4.21):

∂Q
∂t

= ∂

∂θi

(
∂V

∂θi
Q
)

+D
∂2Q
∂θ2

i

, (4.23)

where the reduced density probability function Q =
∫+∞
−∞ Qdr1 . . . drN . This Fokker-

Planck equation admits a steady-state solution given by:

Q = 1
Z
e−βV , (4.24)

where β = 1/D and the partition function Z =
∫ π
−π e

−βV dθ1 . . . θN . Remarkably, the
explicit expression of this partition function allows for using all the equilibrium systems’
toolbox, as discussed below.

4.6.2 Free-energy

Collective motion can be achieved along a zero mode only if the normalized projection
of the polarity vector over that mode is O(1). Such quantities define the order param-
eters µq = 〈anq 〉/

√
N , where the outer parentheses 〈•〉 stand for the average over the

stationary distribution (see Appendix B). Considering extended zero modes only, such
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as translations, rotations, or more exotic ones like auxetic modes [166], we can recast
the expression of the partition function as:

Z =
∫ +∞

−∞
e−Nβf(µ1,...,µM )dMµ, (4.25)

where M is the number of zero modes. The method consists of introducing conjugated
variables hq, and reformulating the partition function’s expression using Gaussian in-
tegrals tricks (see Appendix B). Therefore, mode selection in the stationary state is
governed by the minimum of the Landau-Ginzburg-like free energy:

f(µ1, . . . , µM ) = 1
2
∑
q∈F

µ2
q −

1
βN

∑
i

log(I0(βDi)), (4.26)

where In(z) are the modified Bessel functions of first kind, and where:

Di =

N ∑
q,l∈F

µqµl
(
ϕqi ·ϕ

l
i

)1/2

, (4.27)

couples the different zero modes. This description in terms of free energy is valid only in
the large N limit. For finite N a similar description can be obtained in terms of simple
integrals (as shown in appendix B).

Phase transition

In the following, we show that for a generic rigid structure with D > 1/2, the disordered
solution is a minimum of Eq. (4.26).

In the large noise limit, one expects that the order parameters are very small. We can
thus use the approximation ln(I0(x)) ' x2/4 and write the free energy close to the
disordered solution:

f [µq] '
1
2
∑
q∈F

µ2
q −

β

4
∑
i

∑
q,l

µqµl
(
ϕqi ·ϕ

l
i

)
,

= 1
2
∑
q∈F

µ2
q −

β

4
∑
q,l

µqµl〈ϕq|ϕl〉,

= 1
2

(
1− β

2

)∑
q

µ2
q ,

(4.28)

where the last equality is obtained from orthonormality. Generically, a phase transition
toward the disordered phase happens at β = 2, thus D = 1/2, along every zero mode,
with mean-field critical exponents.

Global minimum for small noise

As the noise goes to zero, β → +∞, we can use the asymptotic expression I0(x) ' ex to
approximate Eq. (4.26):

f [µq] '
1
2
∑
q∈F

µ2
q −

∑
i

 1
N

∑
q,l

µqµl
(
ϕqi ·ϕ

l
i

)1/2

. (4.29)
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Let us now minimize the above functional in the presence of a single mode, or said
differently, considering that a given mode q0 is selected by the active dynamics (µq0 ' 1
and µq 6=q0 ' 0). We find:

fq0 = 1
2µ

2
q0 −

1√
N

∑
i

µq0 |ϕ
q0
i |, (4.30)

which has a minimum corresponding to:

f̃q0 = − 1
N

(∑
i

|ϕq0
i |
)
. (4.31)

We want to maximize ∑i |ϕ
q0
i |, subject to the normalization constraint ∑i |ϕ

q0
i |2 = 1.

We can easily demonstrate that the maximum is achieved when all the components are
equal, i.e |ϕq0

i | = 1/
√
N . Then, in the β → +∞ limit, collective motion will align with

the least localized mode, i.e translations in an unpinned structure. In the case of a 1-
ring hexagon without a central active unit, because every particle is at the same distance
from the barycenter, translations and rotations result in the exact same minimum value,
and there is no preference for one over the other.

4.6.3 Application to free boundary conditions

Mode selection

To get a better insight into the mode selection, let us consider the most common case
of an active solid with rigid body motions. Considering the explicit expressions of the
translational and rotational zero modes in the Fokker-Plank Eq. (4.21), we can show that
the timescale separation approximation is controlled by the small parameter τn. A formal
perturbative expansion can be performed, where at leading order in small quantities, Eq.
(4.23) is obtained (see Appendix B). Thus, the steady state is determined by the minima
of the potential:

f = 1
2

[
〈P 〉2 + I

N

〈
φ̇
〉2]
− 1
βN

∑
i

ln(I0(βDi)), (4.32)

where
Di =

∣∣∣〈P 〉+ r⊥i
〈
φ̇
〉∣∣∣. (4.33)

We numerically studied the free energy landscape for different geometries, such as trian-
gular lattices arranged as in Fig. 4.1-f with an increasing number of rings, rigid square
lattices with different aspect ratios, and rigid rings. Figs. 4.7-a and b show this landscape
for a 9-ring hexagonal structure without a central unit for two different noise amplitudes.
We observed that purely rotational and purely translational solutions are local minima
of the free energy for D < 1/2. Interestingly, mixed translational/rotational states are
not steady-state solutions. As discussed in the limit D → 0, the translational solution
is indeed the global minimum. Despite the complexity of the free energy landscape, we
find that minima are separated by an energy barrier proportional to N , hence large-N
systems should remain trapped in a local minimum.

When the energy barrier between the two minima becomes comparable with the energy
scale β, we expect to see transitions on the experimental timescale between the two
states. This opens the possibility of designing structures with particularly tuned actua-
tion behaviors. In Figs. 4.7-c,d, and e, we can see the non-trivial behavior of a 2-ring
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FIG. 4.7. Finite systems’ energy landscape and noise-induced actuation mode switch-
ing. (a) Function f given by Eq. (4.32) for a 9-ring hexagonal structure without a central unit
(N = 270) as a function of the mean scalar polarization and the mean rotational speed. Land-
scapes are shown for D = 0.6 and (a) D = 0.1 (b). (c) Polarization and rotational speed as
a function of time for a simulated 2-ring hexagonal configuration similar to Fig. 4.5-c. for
D = 0.10, (d) D = 0.32 and (e) D = 0.35. For every system, τn = 0.1.

hexagon without a central unit, jumping between translational and rotational states
when β is small enough, with a persistence time that decreases with the noise ampli-
tude, and a clear preference for the translating solution. Further studies of geometrical
configurations in the finite N limit, i.e explicitly considering the distribution Q, could
shed light on the possibility of more complex mode-selection behaviors.

Collective translation

For large enough N , the energy barrier connecting rotational and translational states is
large enough for them to be considered separately. If only translational motion is allowed,
we can show that the Fokker-Plank Eq. (4.23) is exact, since translational zero modes
are position-independent. Furthermore, the free energy follows Eq. (4.32), taking φ̇ = 0.
An exact realization with only translational degrees of freedom is achieved using a rigid
triangular lattice with Periodic Boundary Conditions (PBC). Indeed, in that case, the
dynamics take place on the 2-torus, and solid body rotation is topologically forbidden.
Remember that in the thermodynamic limit, we have shown above that a phase transition
with the mean-field critical exponents generically happens at D = 1/2, which therefore
applies here. Extracting from simulations the polarization order parameter Ψ = 〈|P |〉
as a function of the noise amplitude, a very good agreement with the rigid theory is
observed (Fig. 4.8-a). For the PBC system, the potential function can be written as
follows:

V = − 1
2N

∑
i 6=j

cos(θi − θj), (4.34)
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FIG. 4.8. Noise-induced phase transition. (a) Polarization order parameter Ψ = 〈|P |〉 as a
function of the noise amplitude for a N = 100× 100 system with different parameters π, and the
same configuration in the rigid limit. (b) Rotational order parameter

〈∣∣φ̇|〉/φmax as a function
of the noise amplitude for a 9-ring hexagonal structure pinned at the center (N = 270), showing
the values predicted from the free energy minimization (T) and the average simulation values
(S).

which exactly corresponds to the 2d mean-field XY model. It is remarkable that, in
this case, the mean-field behavior of the system does not arise from an uncontrolled ap-
proximation. In a way, as soon as the network connectivity restricts local deformations,
stresses can propagate through the whole system without a defined decay length. These
stresses are responsible for the emergence of long-range order. This is a consequence of
considering perfectly rigid links. We would expect to observe deviations from this behav-
ior if we consider truly elastic springs. Indeed, by increasing le = F0/k, for instance by
keeping F0 fixed and decreasing k, the decay length of stress relaxation should decrease,
and as a consequence, the system should be more disordered for the same noise level.
This is confirmed by our numerical simulations of Eqs. (4.2). As Fig. 4.8-a shows, the
critical value D? decreases as π increases. Once elasticity is recovered, the nature of the
critical behavior and critical exponents remain unclear and call for more numerical and
theoretical work.

Collective rotation

In the purely rotational case, i.e a pinned system, the free energy corresponds to Eq.
(4.32) with P = 0. We perform numerical simulations of a 9-ring hexagonal structure
with central pinning, extracting the rotational order parameter

〈∣∣φ̇|〉/φmax as a function
of the noise amplitude. We compare those results with the rotational minimum of the free
energy for the same structure, and find a good correspondence between our simulations
and theoretical predictions when τn is small enough (Fig. 4.8-b). Note that the large-D
discrepancy is associated with a finite size effect.

4.7 Conclusion

In this chapter, we have studied the dynamics of non-deformable active solids, where
interaction forces are mediated by rigid links constraining the motion of each agent to
follow the zero modes of the structure. This stress propagation mechanism is sufficient to
induce collective motion along these modes, whose explicit geometry allowed us to make
general statements about the properties and stability of translating/rotating regimes,
for different boundary conditions. Note that the theoretical framework presented here
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is quite general; a rigid description can be obtained via a limiting procedure starting
from various interaction forces. Even though perfectly inextensible links are not feasible,
our experiments considering hard plastic links and stiff springs imply that the theory
is robust against small agent-agent distance variations and residual elasticity. However,
the effect of elasticity over the phase transition and the critical phenomena in the ther-
modynamic limit remains to be elucidated.

We have shown that for large systems and slow timescales of positional evolution, mode
selection privileges the least localized modes, e.g pure translations, with a noise-induced
continuous phase transition from order to disorder at a well-defined noise amplitude. Pre-
viously studied underdamped systems point to a different noise-induced phase transition
from a translational-dominated regime to a rotational-dominated one when considering
non-fixed topologies and short-range interactions [167, 168]. Further studies of rigid ac-
tive solids outside of the scope of our theory, i.e with τn ' 1 or including non-extended
modes, could reveal the existence of more complicated noise-induced transitions. Fur-
thermore, it has been observed in other active solids systems that translational collective
motion selects particular directions based on the lattice geometry [112]. Our numeri-
cal simulations hint at the same phenomenon, which our theory cannot account for. A
deeper analysis of the dynamical equations outside of the linear regime could shed light
on this selection mechanism.





Chapter 5

Selective and collective actuation

5.1 Introduction

If not held, active solids adopt the translational and/or rotational rigid body motion dic-
tated by the presence of zero modes, as discussed in the previous chapter, and reported
in other theoretical models. Nevertheless, the feedback mechanism between elastic and
active forces, and the possible emergence of collective behaviors in a mechanically stable
elastic solid remains poorly understood.

In this chapter, we introduce a minimal realization of an active elastic solid, in which
we characterize the emergence of selective and collective actuation resulting from the
interplay between activity and elasticity. Polar active agents exert forces on the nodes
of a 2d elastic lattice. The resulting displacement field nonlinearly reorients the active
agents. For large enough coupling, a collective oscillation of the lattice nodes around their
equilibrium position emerges. Only a few elastic modes are actuated, and crucially, they
are not necessarily the lowest energy ones. Combining experiments with the numerical
and theoretical analysis of an agents model, we unveil the bifurcation scenario and the
selection mechanism by which the Collective Actuation (CA) takes place. We perform
large-scale simulations, demonstrating that CA persists in the continuum limit, and show
that the transition to CA is essentially discontinuous, with a spatial coexistence between
frozen and collectively actuated regions. Finally, we coarse-grain the microscopic model,
and find its homogeneous, mean-field-like solutions.

5.2 Collective actuation in active networks

Combining the active elastic building blocks described in chapter 2 with soft springs, we
construct active triangular and kagome lattices. To avoid the presence of zero modes, we
entirely pin the edges of those structures, so their spectrum is only composed of harmonic
modes (see Appendix A). Therefore, each node has a well-defined reference position, but
will be displaced by the active particles. In contrast, the polarization of each particle is
free to rotate and reorients towards its displacement via self-alignment. Remember that
this nonlinear feedback between deformations and polarizations is characterized by two
length scales: (i) the typical elastic deformation caused by active forces le (Fig.2.4-c),
and (ii) the self-alignment length la (Fig.2.4-d), see chapters 2 and 3.

We complement the experiments with numerical simulations of elastically coupled self-
aligning active particles (see chapter 3). In the overdamped, harmonic, and noiseless
limit, the model reads:

108
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u̇i = πn̂i −Mijuj , (5.1a)
ṅi = (n̂i × u̇i)× n̂i, (5.1b)

where the ratio of the elasto-active and self-alignment lengths, π = le/la, which we
refer to as the elasto-active coupling, is the unique control parameter. The n̂i’s are
the polarization unit vectors, ui is the displacement field with respect to the reference
configuration, and M is the dynamical matrix.

5.2.1 CA regime

For both the triangular (Fig.5.1-top) and the kagome (Fig.5.1-bottom) lattice, we ob-
serve a regime where all the lattice nodes spontaneously break chiral symmetry and
rotate around their equilibrium position in a collective steady state (Fig.5.1-a), a so-
called CA regime. All the particles perform circular-like orbits, with an amplitude that
decreases as we consider particles closer to the boundary condition. This CA regime,
in the form of Synchronized Chiral Oscillations (SCO), is reminiscent of oscillations in
biological tissues [8, 77, 169], and is clearly different from collective motion in active
fluids [43, 59] and rigid body motion in active solids [90, 92, 112].

The two dynamics are best described when projected on the normal modes of the elastic
structures sorted by order of growing energies (see Appendix A). Thus, we measure the
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FIG. 5.1. Selective and collective actuation in 2d elastic lattices, pinned at the edges.
(top) Triangular lattice, N = 19, α = 1.27; (bottom) kagome lattice, N = 12, α = 1.02. (a)
When doped with active units, a large enough elasto-active feedback π drives the system towards
collective actuation dynamics (red arrows: polarities n̂i; trajectories color-coded from blue to red
by increasing time; scale bars: 10 cm). (b) Condensation fraction λk on the normal modes of the
lattices, sorted by order of growing energies (grey: experiments; blue: numerics). The horizontal
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modes (see appendix A). (c) Sketch of the two most excited modes, which are not necessarily
the lowest energy ones. (d) Normal modes components of the active forces as a function of the
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condensation fraction λk on mode |ϕk〉:

λk =
〈

(ãnk)2
〉
t

= 1
T

∫ T [〈ϕk|n̂(t)〉√
N

]2
dt, (5.2)

where ãnk = 〈ϕk|n̂〉/
√
N is the normalized projection of the polarity field on mode |ϕk〉,

and satisfies |ãnk | < 1 (see chapter 3). λk corresponds to the fraction of active force
injected on average into mode |ϕk〉. Said differently, it measures how much the polarity
field is aligned with mode |ϕk〉 on average and is bounded between 0 and 1.

The dynamics condensate mostly on two modes (Fig. 5.1-b), and describe a limit cycle
driven by the misalignment between the active forces and the displacements (Fig. 5.1-d).
In the case of the triangular lattice, the selected modes are the two lowest energy ones.
Interestingly, in the case of the kagome lattice, these are the fourth and fifth modes, not
the lowest energy ones. For both lattices, the selected pair of degenerated modes are
strongly polarized along one spatial direction; they are extended, and the polarization
of the modes in each pair is locally quasi-orthogonal (Fig. 5.1-c). Numerical simulations
of the overdamped dynamics in the harmonic approximation confirm the experimental
observations indicating that CA is already present for linear elasticity and is not of
inertial origin. It also allows for the observation of additional secondary peaks in the
spectrum, which belong to the same symmetry classes as the two most actuated modes
(Fig. 5.1-b and Appendix A), i.e. (1/2,±1), and of even smaller peaks in the classes
(−1,±1). As we shall see below, all these properties are at the root of the selection
principle of the actuated modes.

5.2.2 Transition to CA

The transition to the CA regime (Fig. 5.2) is controlled by the elasto-active coupling
π. The larger it is, the more the particles reorient upon elastic deformations. Experi-
mentally, π is varied by changing the length of the springs, as discussed in chapter 2.
We characterize the transition by measuring the average individual oscillation frequen-
cies/rotation rates 〈ωi〉t through a fit of the long-time behavior of 〈θi(t+ τ)− θi(t)〉t(τ)
with a linear power law, where θi refers to the orientation of particle i. With the help of
those quantities, we define the average collective oscillation frequency as Ω = 1

N

∑
i〈ωi〉t.

Note that it measures the amount of rotation rate the active system collectively experi-
ences, but not the phase synchronization of the particles from a Kuramoto point-of-view
[170, 171], as such a description seems extraneous1 here and is replaced by the projec-
tions on the normal modes, discussed above.

We find that below a first threshold πFD, the active solid freezes in a disordered state,
with random polarizations and angular diffusion. In noiseless numerical simulations, this
state corresponds to a zero-frequency regime Ω = 0, that stands on a stable fixed point.
Beyond a second threshold πCA, collective actuation sets in: synchronized oscillations at
frequency Ω > 0 take place, and the noiseless dynamics follow a limit cycle, composed
of several frequencies in rational ratios (Figs. 5.3-a,b, and c). In between, the system
is heterogeneous (Fig. 5.2-b), with the oscillating dynamics being favored close to the
center, while the frozen disordered regime invades the system layer by layer, from the
edges towards the center, as π decreases. Interestingly, in the noiseless simulations, we
find coexisting frozen disordered regimes for π beyond πFD, in a range that depends on

1Because the active particles only exert polar forces and are not driven at a constant rotation rate
as Kuramoto-like oscillators do.
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FIG. 5.2. Transition to collective actuation in 2d elastic lattices, pinned at the edges.
(a/b) Triangular lattice, N = 19, α = 1.27; (c/d) kagome lattice, N = 12, α = 1.02. (a/c)
Collective oscillation frequency Ω as a function of π. Black markers are experimental data, the
error bars corresponding to the 1-σ confidence intervals, inherited from the uncertainty on the
measurements of the microscopic parameters. Open circles are numerical data, obtained from
several random initial conditions at each value of π. Background colors code for the dynamical
regime (light blue: frozen and disordered; light green: heterogeneous (H); dark green: CA).
Triangular: πFD = 0.800, πCA = 1.29; kagome: πFD = 0.564, πCA = 0.600. (b/d) Scaled indi-
vidual oscillation frequencies ωi/ωm, where ωm is the maximum individual oscillation frequency,
illustrating the spatial coexistence in experiments and numerical simulations; (triangular lattice:
πexp/πnum = 1.22/1.09; kagome lattice: πexp/πnum = 0.723/0.564).
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the structure.

Fig. 5.3 describes the details of the discontinuous transition from the CA to the het-
erogeneous regime at π = πCA. In the CA regime, the polarities rotate at a given
mean frequency Ω, dressed with periodic modulations (Figs. 5.3-a and b). Indeed, as
the selected modes are not strictly locally orthogonal, the oscillation cannot occur at
a single-frequency, and is modulated by even multiples of the mean rotation rate (Fig.
5.3-c). As π decreases below πCA, the periodic CA regime turns unstable, and the
most-outer particles desynchronize from the mean oscillation. This yields a discontin-
uous jump in the collective oscillation frequency Ω, and aperiodic turnarounds of the
most-outer polarities (Figs. 5.3-d and e). The system has entered into the heterogeneous
regime, where the CA and the frozen regimes coexist spatially. This desynchronization
process repeats layer-by-layer as π decreases, and the system abruptly stops at πFD,
when the central particles stop sustaining the synchronized oscillation.

5.2.3 Large N systems

Simulations with increasing values of N , while keeping the physical size L constant in-
dicate that CA subsists for large N (Figs. 5.4 and 5.5).

We perform numerical simulations of Eqs. (5.1) for triangular, respectively kagome,
lattices, increasing the number of active units, up to N = 1141, respectively N = 930,
while keeping L constant, with an overall size L, such that the lowest energy modes have
unity squared eigenfrequencies. For π = 10, starting from random initial conditions, we
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FIG. 5.4. Collective actuation in large N lattices. (left) Triangular lattice pinned at the
edges, N = 1141, α = 1.0, and (right) kagome lattice pinned at the edges N = 930, α = 1.0; both
for π = 10. (a/b) Scaled individual oscillation frequencies ωi/ωm, where ωm is the maximum
individual oscillation frequency. (c/d) Condensation fraction λk of the dynamics on the normal
modes of the lattices, sorted by order of growing energies (only the first 80 modes are shown).
The bottom color bars code for the symmetry class of the modes.
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FIG. 5.5. Transition to collective actuation in large N lattices. (a) Radial distri-
bution of the individual oscillation frequencies ωi (left: triangular lattice, N = 1141; right:
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gular lattice, N = 1141; right kagome lattice, N = 930), π values as indicated. (c) Col-
lective actuation fraction fCA as a function of π for increasing N , color-coded from light
to dark blue. Inset: fCA at onset of collective actuation saturates to a finite value at
large N . (d) Collective oscillation frequency ΩCA as a function of π for increasing N , same
color code (triangular lattices, N = 7, 19, 37, 61, 91, 127, 169, 217, 271, 631, 1141; kagome lattice,
N = 12, 42, 90, 156, 240, 462, 930). Inset: condensation fraction on the selected symmetry classes,
λ1/2 as a function of π for increasing N . For panels (c) and (d): top row, triangular lattice; bot-
tom row, kagome lattice. All simulations are performed with α = 1.0.

find that the system converges toward the CA regimes represented in Figs. 5.4, cor-
responding to SCO. Most importantly, the spectrum demonstrates that inside the CA
regime, the symmetry class of modes that are selected is independent of the system size
(Figs. 5.4-c and d). The selection of the most actuated modes is again dictated by the
geometry of the modes, and not only by their energies. For the sake of illustration, in the
large kagome lattice pinned at the edges, the most activated modes are |ϕ40〉 and |ϕ41〉.
Note that this holds even though there is some spatial coexistence with a frozen phase
close to the boundary condition (Figs. 5.4-a and b), which contributes to thermalizing
the spectral decomposition.

To better characterize the transition to CA when π varies, we measure the fraction of
nodes activated in the center of the system, fCA, defined as the ratio of the number of
active units rotating at least at 90% of the maximum rotation frequency, over the total
number of active units. The collective actuation oscillation frequency ΩCA is defined
as the average of the individual rotation rates inside the collectively actuated region.
We quantify the condensation level by computing the averaged condensation fraction
in the symmetry classes (1/2,±1): λ1/2 = ∑

i∈[1/2] λi, where [1/2] refers to the modes
belonging to the (1/2,±1) symmetry classes. This quantity, bounded between 0 and 1,
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is the fraction of the dynamics condensed in the classes of the selected modes.

The successive de-actuation steps converge toward a regular variation of the fraction of
nodes activated in the center of the system, fCA (Fig. 5.5-c and d). At the transition
to the frozen disordered state, when π = πFD, the fraction of actuated nodes drops
discontinuously to zero, from a finite value f∗CA, which decreases with N , but saturates at
large N (Fig. 5.5-c, inset). In the case of the triangular lattices, the collective oscillation
frequency ΩCA decreases continuously to zero (Fig. 5.5-d, top). This is however non-
generic: in the case of the kagome lattices, very close to the transition, the dynamics
condensate on a different set of modes, pointing at the possible multiplicity of periodic
solutions. The transition is essentially discontinuous. In all cases, the condensation level
remains significant, with a large condensation fraction λ1/2 for a wide range of values of
π (Fig. 5.5-d, inset).

5.2.4 Role of noise

The role of angular noise is another matter of interest. In the noiseless and overdamped
framework, CA has been identified as an ordered dynamical regime, corresponding to
a limit cycle. In the presence of noise, Eqs. (5.1) turn into coupled non-linear SDEs,
with a Langevin term ξi(t) in the polarity dynamics, Eq. (5.1b), with zero mean and
correlations 〈ξi(t)ξj(t′)〉 = 2Dδijδ(t− t′). We focus on the case of the triangular lattice,
and compute the collective oscillation frequency in absolute value, 〈|Ω|〉t = 1

N

∑
i〈|ωi|〉t,

where 〈|ωi|〉t is measured by fitting the long-time behavior of 〈|θi(t+τ)−θi(t)|〉t(τ) with
linear power law2.

In the frozen disordered regime, the noise is responsible for the angular diffusion of the
polarities amongst the fixed points. In the CA regime, the noise level present in the
experiment does not significantly alter the dynamics. Numerical simulations confirm
a sharp transition at a finite noise amplitude Dc, below which collective actuation is
sustained (Fig. 5.6-a). For noise amplitude much lower than Dc, the noise merely
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triangular lattice pinned at the edges, N = 19, α = 1.27 (experimental conditions), including
angular noise. (a) Average oscillation frequency in absolute value 〈|Ω|〉t as a function of D, for
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1
N

∑
i (θi(t+ δt)− θi(t)).

2This quantity is still quite bad at measuring the average rotation rate close to the transition,
because the long-time behavior of 〈|θi(t+τ)−θi(t)|〉t(τ) is no longer linear due to the frequent stochastic
inversions.
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reduces the mean angular frequency Ω, and shifts the transition to CA to larger values
of elasto-active coupling π (Fig. 5.6-b). Closer to the transition, the noise allows for
stochastic inversions of the direction of rotation, restoring the chiral symmetry (Fig.
5.6-c). Exploring further the nature and the universality class of this transition would
be interesting but requires further numerical investigations.

5.2.5 Summary of observations

Altogether, our experimental and numerical findings demonstrate the existence of a
selective and collective actuation in active solids. This new kind of collective behavior
specifically takes place because of the elasto-active feedback, the reorientation of the
active units by the displacement field. The salient features of collective actuation are
three-fold:

(i) The transition from the disordered phase leads to a chiral phase with spontaneously
broken symmetry.

(ii) The actuated dynamics are not of inertial origin, take place on a few modes, not
always the lowest energy ones, and therefore obey non-trivial selection rules.

(iii) The transition follows a coexistence scenario, where the fraction of actuated nodes
discontinuously falls to zero.

In the remainder of the chapter, we unveil the physical origins of these three attributes.

5.3 A few exact results for N particles systems
This section gives general results for N particle systems, including the complete fixed
points linear stability analysis, selection rules from symmetry considerations, and a
framework of condensation on two modes.

5.3.1 Fixed points stability analysis

Equilibrium configurations of Eqs. (5.1) are given by:

π|n̂〉 −M|u〉 = 0, (5.3a)
KTKM|u〉 = 0, (5.3b)

where the braket notations were introduced in chapter 3. Eq. (5.3a) imposes |u〉 =
πM−1|n̂〉, where the matrix M is invertible as we consider mechanically stable elastic
structures. Eq. (5.3b) is always satisfied since KTK|n̂〉 = 0 by construction (remember
that KTK is the projector on |n̂⊥〉, see chapter 3). Therefore, to any configuration of
the polarity field |n̂〉 corresponds the fixed point

{
|u〉 = πM−1|n̂〉, |n̂〉

}
, and the set of

fixed points is isomorphic to the N -torus.

Generally, the linear destabilization threshold πc(|n̂〉) depends on the fixed point con-
figuration (see Appendix C). We show that a given configuration is stable for:

π ≤ πc(|n̂〉) = 1
max Spec (L (|n̂〉)) , (5.4)

where the matrix L reads:
Lij =

〈ϕi|KTK|ϕj〉
ωiωj

. (5.5)
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where ωk is the square root of mode k’s energy ω2
k. Therefore, the knowledge of the

dynamical matrix allows for assessing the linear stability properties of any fixed points.
We also find that these thresholds are bounded πmin

c ≤ πc(|n̂〉) ≤ πmax
c (see Appendix

C). A first fixed point becomes unstable for π = πmin
c = ω2

min, where ω2
min is the smallest

eigenvalue of the dynamical matrix M. This first unstable fixed point corresponds to the
configuration locally orthogonal to |ϕmin〉. An upper bound for πmax

c reads :

πupp = min
{i,j}

(
ω2
i + ω2

j

c(|ϕi〉, |ϕj〉)

)
, (5.6)

where the function

c(|ϕj〉, |ϕk〉) = 1− 1
2
∑
i

([(
ϕij

)2
+
(
ϕik

)2
]2
− 4

[
ϕij ×ϕik

]2)1/2

, (5.7)

only depends on the normal modes {|ϕk〉}. It is bounded between 0 and 1 and is maximal
when the modes |ϕj〉 and |ϕk〉 are extended and locally orthogonal. More specifically,
the pair of modes which dominates the dynamics, {|ϕ1〉 , |ϕ2〉} for the triangular and
{|ϕ4〉 , |ϕ5〉} for the kagome lattice, is precisely the one that optimizes the bound (Figs.
5.7-a and b). The construction of this bound is very general. It demonstrates that for
any stable elastic structure, there is a strength of the elasto-active feedback above which
the frozen dynamics is unstable, and a dynamical regime must set in. It also captures
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FIG. 5.7. Fixed points stability thresholds for the experimental structures. (top)
Triangular lattice pinned at the edges; (bottom) kagome lattice pinned at the edges. (b) Stability
thresholds upper-bound π

{j,k}
c,u computed from Eq. (5.6) for every pair of modes. The darker

the pixel, the greater the upper bound found. Remarkably, the best bound is always achieved
for the pair of modes concerned by the condensation (a). (c) Fraction of stable fixed points as a
function of π. The fraction of stable fixed points (blue markers) is computed by integrating the
histogram of the stability thresholds found with Eq. (5.4) for one million configurations of the
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c = 1.49. For the kagome lattice pinned at the edges
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c = 0.375, πmax
c = 0.751, πupp
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the mode selection in the strongly condensed regime.

We confirm the above results by evaluating the stability thresholds numerically for both
experimental structures. We do so for one million configurations of the polarity field,
sampled by drawing randomly and independently the orientations of each active unit
according to a uniform distribution in [0, 2π[. The results are shown in Figs. 5.7-c, and
highlight the fraction of configurations that remain stable for a given value of π. As
expected, we find no configurations destabilizing for π < πmin

c = ω2
min, where the first

configurations, locally orthogonal to the lowest energy mode, become unstable. The
values of πmax

c were found through a numerical optimization process of πc(|n̂〉). The
upper bound obtained by evaluating Eq. (5.6) for all pairs of modes captures mode
selection but could be sharper. As a final remark, note that the fact that some fixed
points lose stability does not imply that CA sets in: from these fixed points, the system
can either slide to a neighboring stable fixed point or condensate on some dynamical
attractor.

5.3.2 Symmetry considerations

Symmetry considerations contribute to the mode selection in two ways. First, the nor-
malization condition of the polarity field imposes the actuation of some specific symmetry
classes. Second, it sets the allowed nonlinear transfers between symmetry classes.

Let us first remind we sort the modes according to the classes of symmetry of the elastic
structures, as explained in chapter 3. The symmetry group of the triangular and kagome
lattices with hexagonal boundaries is the dihedral group D6, generated by the rotation
τ of angle π/3 and a reflection σ (say, of axis y = 0). Remember that for this symmetry
group, the symmetry of a normal mode |ϕk〉 is characterized by two real numbers,

〈ϕk|τ |ϕk〉 ∈ {1, 1/2,−1/2,−1}, (5.8a)
〈ϕk|σ|ϕk〉 ∈ {1,−1}. (5.8b)

Moreover, we have seen that the CA regime in triangular and kagome lattices pinned
at the edges corresponds to a condensation of the dynamics on modes belonging to the
classes (1/2,±1).

Normalization constraint

The normalization of the polarity field, or in other words, the fact that the active forces
are of constant modulus at every node imposes that the set of activated modes, as
a whole, must contain non-zero amplitude displacements on every single node. For
instance, in the case of the triangular lattice, the only modes for which the displacement
is non-zero on the central node are those which are eigenvectors of τ , the rotation
in the dihedral group D6, with eigenvalues e±iπ/3 (see Appendix A). The dynamics
must therefore have a finite projection on these modes. This demonstrates that the CA
regimes encountered in the triangular lattice pinned at the edges will necessarily include
actuations of the (1/2,±1) modes, as indeed observed. These considerations do not
apply to the kagome lattice, which has no central node.
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Nonlinear transfers

Assuming a condensation on a given symmetry class3, the nonlinear couplings control
the transfer of active force and elastic energy toward the other symmetry classes (Fig.
5.8).

The nonlinearities central to the present work come from the elasto-active feedback in the
polarity dynamics, which redistribute the active force between the normal modes. Also,
they are the only ones present in the numerical simulations of the harmonic dynamics.
Remember the polarity dynamics, written in mode space (see chapter 3):

dank
dt

= −
∑
lpq

ω2
qΓpqlkauqanl anp , (5.9)

where ank (resp. auk) is the projection of the polarity (resp. displacement) field on mode
|ϕk〉, and where Γpqlk are the inter-modal geometrical coupling coefficients. A mode with
eigenvalue λ with respect to a symmetry operation g can receive active force from modes
with eigenvalues λ′ only if they satisfy the relationship λ = λ′3. For every symmetry
class, we construct a table of allowed couplings (blue triangles in Fig. 5.8). We say class
i couples with class j if, assuming all the active force projects on modes belonging to
the class i, transfers are allowed toward class j.

Therefore, the elasto-active feedback allows for active force transfer from the selected
classes (1/2,±1) to themselves and to the classes (−1,±1). This explains the precise
selection of the secondary peaks in the residual pattern of actuation (Figs. 5.1-b and
Appendix A). In the simulations of large triangular and kagome lattices (Figs. 5.4-c
and d), it is also clear that the modes belonging to the selected classes (1/2,±1) are the
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FIG. 5.8. Nonlinear couplings between symmetry classes. (left) Inter-class couplings for
the dihedral group D2. (right) Inter-class couplings for the dihedral group D6. The upper left
blue (resp. lower right black) triangles correspond to the elasto-active feedback nonlinearities
(resp. geometrical nonlinearities) transferring active force (resp. elastic energy) from the class of
row i to the class of column j, assuming active force and elastic energy only projects on modes
belonging to the class of row i.

3Which means that the polarity and displacement fields have finite projections only on modes be-
longing to said symmetry class.
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most activated ones, followed by modes belonging to the classes (−1,±1). Importantly,
note that the interplay between heterogeneity and the normalization condition of the
polarity field is responsible for the selection of the whole (1/2,±1) classes: to construct
a normalized polarity field with a given symmetry, given that all the modes are hetero-
geneous, one must combine all those with the correct symmetry.

Finally, in the experimental system, there are large deformations of the springs for which
the harmonic approximation is not valid, and nonlinear elastic couplings between the
modes, so-called geometrical nonlinearities, also arise. The symmetries also restrict the
possible couplings (Fig. 5.8), but we find that the selected classes can transfer elastic
energy to all the other classes. Therefore, geometrical nonlinearities partly explain why
the selection of the classes (1/2,±1) is less pronounced experimentally. Finally, the
angular noise in the polarity dynamics also plays an essential role in thermalizing the
system.

5.3.3 N particles dynamics restricted to two modes

The strong condensation of the dynamics on a pair of modes cannot be strict, in general,
because of the normalization condition of each polarity. This is only possible if the two
modes ϕ1 and ϕ2 are fully delocalized and locally orthogonal: |ϕik| = |ϕjk| for every
sites i and j and k ∈ {1, 2}, and ϕi1 ⊥ ϕi2 for every site i. Apart from very specific
cases, like the one particle dynamics, the pairs of modes of an elastic structure pinned at
its boundary do not satisfy such conditions exactly. However, investigating the dynam-
ics restricted to two modes can still provide interesting insights into the transition to CA.

Starting from the equations of motion projected on the normal modes, Eqs. (3.49), the
dynamics restricted to two modes reads:

ȧu1 = πan1 − ω2
1a
u
1 , (5.10a)

ȧu2 = πan2 − ω2
1a
u
2 , (5.10b)

ȧn1 = −Γ12
(
ω2

1a
u
1a

n
2 − ω2

2a
u
2a

n
1

)
an2 , (5.10c)

ȧn2 = Γ12
(
ω2

1a
u
1a

n
2 − ω2

2a
u
2a

n
1

)
an1 , (5.10d)

where there is only one coupling constant (see Eq. (3.50)):

Γ12 = Γ1212 = −Γ2112 = −Γ1221 = Γ2121 =
∑
i

(
ϕi1 ×ϕi2

)2
. (5.11)

We note that an1 ȧn1 + an2 ȧ
n
2 = 0, hence the norm |an| =

(
an1

2 + an2
2
)1/2

is constant;
however, it is not necessarily 1. Introducing the rescaled quantities ānk = ank/|an|, where
ānk is now normalized, āuk = Γ12|an|auk and ω̄2

k = ω2
k/(Γ12|an|2), the above equations read

(
Γ12|an|2

)−1 ˙̄au1 = πān1 − ω̄2
1 ā
u
1 , (5.12a)(

Γ12|an|2
)−1 ˙̄au2 = πān2 − ω̄2

2 ā
u
2 , (5.12b)(

Γ12|an|2
)−1 ˙̄an1 = −

(
ω̄2

1 ā
u
1 ā

n
2 − ω̄2

2 ā
u
2a

n
1

)
ān2 , (5.12c)(

Γ12|an|2
)−1 ˙̄an2 =

(
ω̄2

1 ā
u
1 ā

n
2 − ω̄2

2 ā
u
2a

n
1

)
ān1 . (5.12d)
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Up to a rescaling of the time, these are the equations of motion of a single active
particle trapped in an elliptic harmonic potential (Eqs. (5.14)). In the degenerate case
ω̄2

1 = ω̄2
2 = ω̄2

0, rotating solutions exist for (see section 5.4)

π > ω̄2
0 = ω2

0
Γ12|an|2

. (5.13)

When the modes 1 and 2 are fully delocalized and locally orthogonal, the condensation
can be strict, and the restriction to these modes is exact. In this case Γ12 = 1/N and
|an| =

√
N , and one recovers the result obtained for one particle in the degenerate case

(see section 5.4). When these conditions are not satisfied, |an| <
√
N and thus more

modes are activated, which are selected by the other Γ couplings. For the sake of illus-
tration, from the normal modes of the triangular lattice pinned at the edges, we find
that |an12| < 0.93

√
N .

Altogether, one notes that the higher the scaled condensation level |an12|/
√
N and the

stronger the scaled coupling NΓ12, the lower the threshold for the existence of a periodic
dynamics. Therefore, less homogeneous and less locally-orthogonal normal modes shift
the transition to CA to larger values of π.

To conclude on the above N particles considerations, we found a connection between the
linear stability analysis of fixed points and the selection rules in the strongly condensed
regime. Long story short, the dynamics favor the selection of a pair of modes of low
energy, extended, and locally orthogonal. Moreover, using symmetry arguments, we
explained the pattern of secondary peaks and the selection of symmetry classes. However,
the connection we found cannot be made rigorous, and the discontinuity of the transition
forbids weakly nonlinear approaches. To proceed further, one must consider particular
and simpler systems, or way larger ones.

5.4 Single particle in a harmonic potential

The simplest instance of a system evolving according to Eqs. (5.1) consist of a single
active particle trapped in a harmonic potential. Given its trivial geometry, it is the
poor man, thus the first ingredient of understanding. In this case, as we shall see below,
all quantities of interest can be computed analytically, and we find a relatively exotic
bifurcation scenario from a frozen to a chiral oscillating regime. Note that this model
was already studied by Dauchot and Démery [143], including the effects of inertia and
angular noise, which will both be neglected here.

5.4.1 Experiments

The experimental setup is made of a single active unit connected to the three static
vertices of a regular triangle using soft springs (Figs. 5.9-a,d, and f). From symmetry,
the reference configuration satisfying mechanical equilibrium lies at the barycenter of the
three pinning points. Within the harmonic approximation, the elasticity of this struc-
ture is isotropic, and the normal modes consist of two orthogonal vectors, corresponding
to a pair of degenerated modes of energy ω2

0. The spring extension in the reference
configuration is always kept fixed, equal to α = leq/l0 = 1.29, imposing ω2

0 = 1.77. Once
again, the elasto-active coupling π is varied by tuning the length of the soft springs.
Eventually, we use polar coordinates to express the polarity n̂ = (cos θ, sin θ) and the
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FIG. 5.9. Single particle experiments. (a) A single active unit connected to the three static
vertices of a regular triangle. (b) Notations in an isotropic harmonic potential. R and ϕ are the
polar-coordinate components of the displacement vector u, θ is the orientation of the polarity
vector n̂, and we denote γ = θ − ϕ. (c) Rotation frequency Ω as a function of π. Black markers
are experimental data, the error bars corresponding to the 1-σ confidence intervals, inherited
from the uncertainty on the measurements of the microscopic parameters. The continuous line
represents Eq. (5.20c), and the dot-dashed line corresponds to numerical values in the presence
of a dimensional bias ω̃B = 0.4 rad/s; πc = ω2

0 = 1.77. (d-g) Experimental dynamics for
π = 1.19 < ω2

0 (d-e), and π = 2.69 > ω2
0 (f-g). (d/f) Dynamics in real space; red arrow: polarity

n̂; trajectories color-coded from blue to red by increasing time; scale bar: 10 cm. Inset: zoom
on the active unit. (e/g) pdf in the plane (θ,ϕ), integrated over the full dynamics. The solid
white line represents the fixed points (θ = ϕ). In panel (g), the white arrows indicate the main
dynamics direction, and the dashed white line represents the prediction from Eq. (5.20b).

displacement with respect to the reference configuration u = R (cosϕ, sinϕ), and define
the angle γ = θ − ϕ (Fig. 5.9-b).

For small activity, the system is Frozen-Disordered (FD): the active particle points radi-
ally, θ = ϕ, and its polarity dynamics is mostly diffusive (Fig. 5.9-d). This is clear when
measuring the probability density for the angles θ-ϕ integrated over the whole dynamics
(Fig. 5.9-e): the system fluctuates around θ = ϕ, and angular noise allows visiting all
possible orientations. In contrast, as activity increases, the system transition to a Chiral
Oscillation (CO) regime (Fig. 5.9-f), with the active particle spontaneously rotating
around the reference configuration. We find that this regime is associated with a finite
and constant misalignment γ = θ − ϕ (Fig. 5.9-g), driving the system in rotation at a
constant rate Ω. This rotation rate Ω increases as activity increases, and the transition
between the two regimes happens around π/ω2

0 = 1 (Fig. 5.9-c). The initial condition
selects the left-or-right chirality of the oscillating regime, which can also spontaneously
reverse because of angular noise. Finally, note that the rotation rate measured for the
frozen regimes cannot be zero, because of the finite left/right bias of the hexbug.
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Now, let us explain the above observations, determining solutions of Eqs. (5.1) for this
simple geometry.

5.4.2 Governing ODEs

A single particle in 2d has two normal modes, which we denote |ϕ1〉 and |ϕ2〉 (re-
spectively along x̂ and ŷ), with corresponding eigenvalues ω2

1 and ω2
2. We decompose

|u〉 = au1(t)|ϕ1〉+ au2(t)|ϕ2〉 and |n̂〉 = an1 (t)|ϕ1〉+ an2 (t)|ϕ2〉. The fact that there is only
one particle simplifies the problem:

• There is only one normalization condition an1 2 + an2
2 = 1.

• The only non-zero coupling coefficients (see Eq. (3.50)) are

Γ1212 = −Γ2112 = −Γ1221 = Γ2121 = Γ =
∑
i

(
ϕi1 ×ϕi2

)2
= 1.

General case

Using the above simplification in Eqs. (3.49), we find the ODEs governing the amplitude
of the displacement and polarity fields on each mode:

ȧu1 = πan1 − ω2
1a
u
1 , (5.14a)

ȧu2 = πan2 − ω2
2a
u
2 , (5.14b)

ȧn1 = −
(
ω2

1a
u
1a

n
2 − ω2

2a
u
2a

n
1

)
an2 , (5.14c)

ȧn2 =
(
ω2

1a
u
1a

n
2 − ω2

2a
u
2a

n
1

)
an1 . (5.14d)

Degenerate case

In the degenerate case, ω2
1 = ω2

2 = ω2
0, it is more convenient to use polar coordinates.

We introduce R, ϕ and θ such that au1 = R cos(ϕ), au2 = R sin(ϕ), an1 = cos(θ) and
an2 = sin(θ) (see Fig. 5.9-b). Using γ = θ − ϕ, the angle between the displacement and
polarity vectors, Eqs. (5.14) become:

Ṙ = π cos(γ)− ω2
0R, (5.15a)

ϕ̇ = π

R
sin(γ), (5.15b)

γ̇ =
(
ω2

0R−
π

R

)
sin(γ). (5.15c)

5.4.3 Fixed Points

General case

We use the polar angle of the polarity θ, such that an1 = cos(θ) and an2 = sin(θ). The
fixed points of Eqs. (5.14) are given by

ω2
1a
u
1 = π cos(θ0), (5.16a)

ω2
2a
u
2 = π sin(θ0), (5.16b)
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for any orientation θ0. The stability of the fixed points can be determined with Eq. (5.4).
The matrix L, from Eq. (5.5), reads

L =

 sin(θ0)2

ω2
1

− cos(θ0) sin(θ0)
ω1ω2

− cos(θ0) sin(θ0)
ω1ω2

cos(θ0)2

ω2
2

 , (5.17)

where the eigenvalues of L are 0 and sin(θ0)2

ω2
1

+ cos(θ0)2

ω2
2

, so that this state is stable for

π ≤ πc(θ0) = ω2
1ω

2
2

ω2
2 sin(θ0)2 + ω2

1 cos(θ0)2 . (5.18)

Degenerate case

In the degenerate case, the fixed points are given by R = π/ω2
0, ϕ = θ = θ0. The

rotational symmetry ensures that they are all equivalent and stable for

π ≤ πc = ω2
0. (5.19)

5.4.4 Orbiting solutions in the degenerate case

Orbiting solutions are defined by Ṙ = 0, γ̇ = 0 and ϕ̇ = Ω 6= 0. From Eqs. (5.15), we
obtain

R =
√
π

ω0
, (5.20a)

γ = ± arccos
(
ω0√
π

)
, (5.20b)

Ω = ±ω0

√
π − ω2

0, (5.20c)

where the ± indicates the two possible chiralities. This oscillating solution exists for
π > ω2

0, i.e. when the fixed points are unstable. Note that we recover the results from
[143], with ω2

0 = 1.

5.4.5 Bifurcation scenario

Below πc = ω2
0, the phase space for the displacements contains an infinite set of marginally

stable fixed points, organized along a circle of radius R = π/ω2
0 (Fig. 5.10-a). At πc,

the escape rate of the polarity, away from its frozen orientation, becomes faster than
the restoring dynamics of the displacement (Fig. 5.10-b). As a result, the latter per-
manently chases the polarity, and the stable rotation sets in. All fixed points become
unstable at once, and a limit cycle of radius R =

(
π/ω2

0
)1/2 and oscillation frequency,

Ω = ω0
√
π − ω2

0 branches off continuously (Figs. 5.9-c and 5.10-a). Note that the oscil-
lating dynamics does not arise from a Hopf bifurcation, but from the global bifurcation
of a continuous set of fixed points into a limit circle.

5.4.6 Influence of the bias

The hexbugs can be biased: they may preferentially turn to the right or the left. This is
due to fabrication imperfections and intrinsic asymmetry brought by the rotating motor
(see chapter 2). We take this effect into account by considering a constant dimensional
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FIG. 5.10. Single-particle instability mechanism. (a) Phase space structure of the dis-
placements: for π < ω2

0 , an infinite set of marginally stable fixed points forms a circle of radius
R = π/ω2

0 ; for π > ω2
0 , all such fixed points are unstable and a limit cycle of radius R =

(
π/ω2

0
)1/2

branches off continuously. (b) Instability mechanism cartoon. The black (resp. red) arrows in-
dicate the displacement u (resp. polarity n̂) vector. For π > ω2

0 , any perturbation of γ explodes
and reaches the limit cycle amplitude γ = arccos(ω0/

√
π). The displacement vector ends up

chasing the polarity vector at rotation rate Ω. For π < ω2
0 , any perturbation of γ vanishes at

long time, and all fixed points are marginally stable along ϕ. Note that the dynamics of R is
omitted here.

rotation rate ω̃B in the equation describing the dynamics of the particle’s polarity. Eq.
(5.15c) becomes

γ̇ =
(
ω2

0R−
π

R

)
sin(γ) + ωB, (5.21)

where ωB = t0ω̃B is the dimensionless bias, with the characteristic time t0 = γ/k.
Looking again for orbiting solution, Eq. (5.15a) and Eq. (5.15b) lead to the rotation rate

Ω = ω0

√(
π

Rω0

)2
− ω2

0, (5.22)

and, after substitution, Eq. (5.21) reads

(ρ− 1)2
(
ρ− π

ω2
0

)
+ ω2

B

ω4
0
ρ = 0, (5.23)

where we have introduced the variable ρ = R2ω2
0/π. The latter satisfies the following

conditions: by definition ρ ≥ 0. Moreover, from the angular velocity ρ ≤ π/ω2
0, and

assuming that sin(γ) and ωB are positive implies that ρ ≤ 1. Only the smallest solution
of the last equation satisfies these conditions, and the corresponding rotation rate is
shown in Fig. 5.11-a.

In Fig. 5.9-c, we show the rotation rate Ω as a function of π, and compare it to the result
of the above calculation. To do so, one must consider that, experimentally, π = F0/kla
is varied by changing k, and keeping all other experimental parameters constant. There-
fore, the characteristic time t0 = γ/k also varies, so that the dimensionless bias ωB is not
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FIG. 5.11. Biased single particle in a harmonic trap. (a) Rotation rate Ω as a function
of π for increasing dimensionless biases ωB ∈ [0.01, 0.1] by steps of 0.01 (blue solid lines). (b)
Rotation rate Ω as a function of π for increasing dimensional bias ω̃B ∈ [0.01, 0.1] by steps of
0.01 (blue solid lines). In (a) and (b), the dashed black curve represents the unbiased case of Eq.
(5.20). Here we use la/v0 = 1.

constant. To obtain the curve corresponding to the experimental data, one must there-
fore compute the angular velocity at constant dimensional bias ω̃B = ωBk/γ, namely at
constant ωBv0/πla, as illustrated in Fig. 5.11-b. In the presence of bias, the supercritical
pitchfork bifurcation in frequency transforms into an imperfect bifurcation.

As a final remark, we find that the transition to the chiral phase with spontaneously bro-
ken symmetry is already present at the single particle level. However, the two remaining
observations discussed in section 5.2.5, i.e., the non-trivial selection, and the coexistence
scenario at the transition to CA, cannot be explained within this framework, as they
clearly involve the geometry of the elastic structures. In the next section, we study
simple toy models where the effect of geometry can be taken into account analytically.

5.5 Simple models with heterogeneity

An exact theory to describe the condensation process leading to CA is still missing
in the general case, but can be formulated in the simpler, yet rich enough, cases of a
linear chain of N active particles fixed at both ends, and of two particles in a harmonic
potential. As we shall see, in both cases, the system’s geometry ensures the existence of
pairs of locally-orthogonal normal modes, hence allowing for further analytical progress
in the study of the dynamics.

5.5.1 Linear structures

Definition of the 1d chain, eigenmodes

Let us first consider a chain with N free particles 1 ≤ i ≤ N and pinned edges i = 0
and i = N + 1. The chain is oriented along x̂, so that the equilibrium positions are
xi = αi, yi = 0. The parameter α is the ratio between the length of the springs in the
equilibrium configuration leq and the natural length of the springs l0. The chain thus
bears a dimensionless tension T = α − 1. The dynamical matrix is equal to minus the
discrete Laplacian matrix in both directions, modulo a factor Aα = 1 − α−1 in the y
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direction, and reads

M =



2 0 −1 0 0 0 · · · 0
0 2Aα 0 −Aα 0 0 0
−1 0 2 0 −1 0 0
0 −Aα 0 2Aα 0 −Aα 0
... . . . ...
0 0 0 0 · · · −Aα 0 2Aα


, (5.24)

where odd (resp. even) lines and columns correspond to displacements along x̂ (resp.
ŷ). Notably, the directions x and y decouple. As a consequence, there are N eigenmodes
along x̂ (resp. ŷ), which we denote ϕx,k (resp. ϕy,k) with eigenfrequencies ωx,k (resp.
ωy,k):

ϕix,k =
√

2
N + 1 sin

(
ikπ

N + 1

)
x̂; ω2

x,k = 4 sin
(

kπ

2(N + 1)

)2
, (5.25a)

ϕiy,k =
√

2
N + 1 sin

(
ikπ

N + 1

)
ŷ; ω2

y,k = 4Aα sin
(

kπ

2(N + 1)

)2
. (5.25b)

The eigenmodes and eigenfrequencies for N = 2, 3, 4 and 5 are shown in Fig. 5.12. The
modes in the directions x and y are obviously locally-orthogonal. Moreover, modes with
the same index k have the same norm on each site, so that we introduce ϕik = ϕix,k · x̂ =
ϕiy,k · ŷ. Finally, in the limit α→∞, which corresponds to infinite tension or zero-rest-
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FIG. 5.12. Normal modes for linear structures. (a) N = 2, (b) N = 3, (c) N = 4, (d)
N = 5, sorted by order of growing energies, and colored by their associated eigenvalues with
respect to the rotation operation of the dihedral group D2, characterizing the symmetry of the
elastic structure (see chapter 3). Only the six first modes are shown. For every mode, we show
the mode’s index k, the eigenvalues associated with the symmetry operations (τ, σ), and the
associated squared eigenfrequency ω2

k.
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length, Aα → 1 and the modes are degenerated: ωx,k = ωy,k = ωk for 1 ≤ k ≤ N . We
restrict ourselves to this case in the following, which ensures rotational invariance.

CA regime

The specific geometry of the normal modes of zero-rest-length chains, which come in
pairs of degenerated and locally-orthogonal modes, allows us to find the explicit ex-
pression and stability of the CA regime for arbitrary N (see Appendix D). Using this
framework and numerical simulations, we find a unique solution corresponding to a peri-
odic actuation of the pair of modes |ϕx,1〉 and |ϕy,1〉 at frequency Ω (Fig. 5.14). We have
checked numerically that this periodic solution is the only one present, up to N = 20.

Moreover, we find that particles perform circular trajectories with radii Ri. The spatial
distribution of the Ri is set by that of the modes selected by the collective actuation,
with particles closer to the boundaries having typically a smaller radius of rotation than
the ones at the center. The threshold value πCA, below which the dynamics leave the
limit cycle, is precisely met when the particles at the boundary reach a radius of rotation
R = 1 (see Appendix D).

Linear stability thresholds

Let us elaborate on the linear stability thresholds πc(|n̂〉). The general bounds derived
above for πmin

c and πupp
c translate here into

ω2
1 ≤ πc (|n̂〉) ≤ 2ω2

1, (5.26)

where the upper bound πupp
c is obtained with the pair of modes |ϕx,1〉 and |ϕy,1〉, which

are locally-orthogonal. Therefore, like in the triangular and kagome lattices, the pair of
modes optimizing the bound πupp

c is also the one selected by the active dynamics.

The evolution of the stability of the fixed points and of their basins of attraction can
be largely understood by studying the N = 2 and N = 3 cases. For N = 2, the
eigenfrequencies are ω2

1 = 1 and ω2
2 = 3 (Fig. 5.12-a). Given the normal mode spec-

trum knowledge, we use Eq. (5.4) to determine the stability threshold for an arbitrary
configuration of the line πc(θ1, θ2). The results are represented in Figs. 5.13-b and c,
top. From invariance by rotation, we find that the instability threshold πc(θ1, θ2) only
depends on the difference θ1 − θ2, and in particular:

πc(θ1 − θ2) = 3
2 + | cos(θ1 − θ2)| . (5.27)

Therefore, for π < 1, all fixed points are stable, and for π > 1.5, they are all unstable.
In the range 1 < π < 1.5, we find a phase space coexistence between stable and unstable
fixed points. There are two basins of unstable fixed points, which can either slide to a
neighboring stable fixed point or meet the nonlinear limit cycle, that exists and is stable
for π > πCA = 1. Note that πmin

c = πCA.

For N = 3, invariance by rotation allows us to draw the landscape of stability thresholds
πc(θc+∆θ1, θc, θc+∆θ2), where θc is the orientation of the central node, see Figs. 5.13-b
and c, bottom. Restricting our analytical calculations to ∆θ1 = ∆θ2 = ∆θ, we find:

πc(∆θ) = 2
2 +
√

2| cos(∆θ)|
. (5.28)
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FIG. 5.13. Linear instability thresholds of small chains. (top) N = 2 chain, (bottom)
N = 3 chain. (a) Linear structure cartoon. Springs have zero rest length to ensure infinite
tension. (b/c) Linear instability thresholds πc(|n̂〉) computed from Eq. (5.4) for all configurations.
For the N = 2 chain, configurations are parametrized by the two angles θ1 and θ2. Invariance
by rotation decreases the number of degrees of freedom by one. Therefore, for the N = 3 chain,
configurations are parametrized by the two angles ∆θ1 = θ1 − θc and ∆θ2 = θ2 − θc the outer
particles make with the central one. (c) The green marker and its associated dashed horizontal
line represent πCA. (c, top) The dashed black line represents an arbitrary value of π chosen for the
sake of illustration. Zones I and III: unstable configurations; zone II: stable configurations. The
final configuration reached depends on the initial configuration θ1 − θ2. The red arrows indicate
where the corresponding fixed point goes once it destabilizes. (c, bottom) ∆θ′ = (∆θ2

1 + ∆θ2
2)1/2

and tanχ = ∆θ1/∆θ2 ∈ [0, π/4] are the polar-coordinate components of the vector (∆θ1,∆θ2).

The stability threshold ranges from πc(∆θ = 0[π]) = 2 −
√

2 to πc(∆θ = ±π/2) = 1.
We note that πc(∆θ = 0[π]) = πmin

c = ω2
min, confirming that these are the most unstable

fixed points. On the other hand, we confirm numerically that ∆θ = ±π/2 corresponds
to the most stable fixed points (Fig. 5.13-c, bottom). Similarly to the N = 2 case, there
exists a phase space coexistence between stable and unstable fixed points in some range
of π. However, here, πCA > πmin

c , which is a generic feature of heterogeneous systems.

Transition to CA

Now that we have understood the phase space structure, let us consider the nature of
the transition to CA as N increases, and draw the phase diagrams.

In the N = 2 case, we find a continuous transition (Fig. 5.14-a). The CA regime cor-
responds to a strict condensation of the active force on modes |ϕx,1〉 and |ϕy,1〉, and
therefore maps with the oscillation of the single particle. As π decreases, the oscillation
frequency Ω =

√
π − 1 and the trajectory radii Ri =

√
π both decrease. Given that

modes |ϕx,1〉 and |ϕy,1〉 are completely delocalized (Fig. 5.12-a), the two particles have
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FIG. 5.14. Transition to CA in zero-rest-length chains. (a) N = 2. (b) N = 3. (c)
N = 4. (top) Elastic structure cartoon. (middle) Bifurcation diagrams of stationary solutions
corresponding to single frequency limit cycles. Continuous line: limit cycle found analytically;
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FIG. 5.15. CA in a zero rest length chain of N = 7 nodes. (a) Average oscillation
frequency Ω as a function of π. Continuous line: limit cycle found analytically; horizontal lines
(Ω = 0): range of existence of only stable (continuous), only unstable (dashed) and coexisting
stable and unstable (dot-dashed) fixed points; (open markers): numerical data; same background
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(b) Elastic structure cartoon. (c) Individual oscillation frequencies ωi for increasing values of
π ∈ [0.20, 0.33, 1.0], in the N = 7 chain. Radii of the colored circles code for the average
trajectory radius. Black, respectively gray, contours indicate Ri ≥ 1 and Ri ≤ 1.
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the same trajectory radii, thus the stability condition Ri = 1 is reached everywhere in
the system at π = πCA, where the oscillation frequency simultaneously vanishes, and
the periodic solution ceases to exist. In the range 1 < π < 1.5, stable and unstable fixed
points coexist with the limit cycle.

In the N = 3 case, we find a discontinuous transition (Fig. 5.14-b). In this case, modes
|ϕx,1〉 and |ϕy,1〉 are not completely delocalized (Fig. 5.12-b); thus, even if the dynamics
select those modes, some active force projects on all the modes belonging to the same
symmetry classes. The modes heterogeneity is at the origin of the discontinuity: while
the oscillation frequency is still finite at πCA, the outer particles simultaneously reach
the stability condition Ri = 1, and the steady rotation ceases to exist. For π < πCA, the
whole system abruptly stops and finds a stable fixed point.

Eventually, for N ≥ 4, we find a discontinuous transition and a heterogeneous regime
(Figs. 5.14-c and 5.15). In this case, the selected modes heterogeneity is large enough
so that, when the outer particles reach the stability condition Ri = 1 at π = πCA, the
competition between outer particles, which want to freeze, and the central particles,
which want to cycle, leads to the sequential layer by layer de-actuation, illustrated in
Fig. 5.15-c for a linear chain with N = 7, and observed experimentally and numerically
in triangular and kagome lattices. The threshold value πFD is reached when, eventually,
the remaining particles at the center freeze and the system discontinuously falls into the
frozen disordered state. The physical origin of the spatial coexistence lies in the normal-
ization constraint of the polarity field, |n̂i| = 1, which translates into a strong constraint
over the radii of rotation. Whenever Ri becomes unity, the polarity and displacement
vectors become parallel, freezing the dynamics locally.

To conclude, the selected modes’ heterogeneity dictates the nature of the transition
to CA. For strictly homogeneous modes, we find that the transition is continuous. In
contrast, heterogeneity induces a discontinuous transition to CA, and allows for the
spatial coexistence between the oscillating and frozen phases.

5.5.2 Two coupled particles in a parabolic potential

We have seen above that the spatial heterogeneity of the most actuated modes governs
the nature of the transition to CA. However, for linear structures, both the number
of particles N and the spatial heterogeneity of the modes are varied; and, it is hard
to disentangle their respective effects. Therefore, we introduce below a model of two
coupled particles in a harmonic potential, in which the spatial heterogeneity can be
varied continuously, at fixed N .

The model consists of N = 2 active particles embedded in the elastic structure repre-
sented in Fig. 5.16-a. The two particles are connected with a spring of stiffness k, and
they are also connected to the origin with springs of stiffnesses k1 and k2, respectively;
all having zero rest length. Let us discuss the normal mode spectrum of this structure.
The first step is to write down the dynamical matrix M and compute its eigenvectors.
Here the x and y components decouple: writing the displacements as u = (x1, x2, y1, y2),
the dynamical matrix is:

M =
(
Mx 0
0 My

)
, (5.29)
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FIG. 5.16. Two coupled particles in a harmonic potential. (a) Elastic structure cartoon.
All springs’ rest lengths are zero. (b) Oscillation frequency as a function of the elasto-active
coupling π for δ = 0.75, as given by Eqs. (5.36) (black lines), and as obtained by numerical
integration of the equations of motion, Eqs. (5.35) (markers). The solid (resp. dashed) lines
represent stable (resp. unstable) solutions. The circle markers highlight steady orbiting regimes,
the plus markers heterogeneous regimes, and the diamond markers large-π aperiodic regimes.
Same background color as for Fig. 5.1. (c) Phase difference between the two particles as a
function of the elasto-active coupling π in stable steady orbiting regimes, for different asymmetry
δ ∈ [0, 1] by steps of 0.1, as given by the solutions of Eqs. (5.36). The gray vertical line represents
π = 1. Inset: log-log plot of the minimum elasto-active coupling for steady orbiting regimes πCA
as a function of asymmetry δ, as given by the solutions of Eqs. (5.36). The dashed black
line represents the square power law. (d) Oscillation frequency as a function of the elasto-active
coupling π, for different asymmetry δ ∈ [0, 1] by steps of 0.1, as obtained by numerical integration
of the equations of motion, Eqs. (5.35). The solid black line represents the prediction of Eq.
(5.37) for δ = 0. (e) Instability thresholds πc as given by Eq. (5.4) for all configurations,
parametrized by the angle θ between the two active particles’ orientations; and for different
asymmetry δ ∈ [0, 1] by steps of 0.05. The solid black line represents the prediction of Eq. (5.34)
for δ = 0. The color bar indicates the value of δ associated with the blue color code in panels
(c-e).

with

Mx = My =
(
k + k1 −k
−k k + k2

)
. (5.30)

Introducing δ = (k1 − k2)/2k, a = δ +
√

1 + δ2 and b = δ −
√

1 + δ2, the eigenvectors of
Mx can be written as:

ψ1 = 1√
1 + a2

(
1
a

)
,

ψ3 = 1√
1 + b2

(
1
b

)
,

(5.31)
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with eigenvalues
ω2

1 = k1 + k(1− a),
ω2

3 = k1 + k(1− b).
(5.32)

The matrix M has four eigenvectors, two with ψ1 and ψ3 for the x-components, which
we denote |ϕ1〉 and |ϕ3〉, and two with ψ1 and ψ3 for the y-components, which we
denote |ϕ2〉 and |ϕ4〉. Their energies are ω2

1 = ω2
2 and ω2

3 = ω2
4. Like for zero-rest-length

chains, the normal modes are locally-orthogonal, and the system is invariant by rotation.
Also, from Eqs. (5.31) and (5.32), it is clear that the symmetric case δ = 0 strictly maps
with the N = 2 chain. In the general case δ > 0, the larger the springs’ asymmetry, the
larger the heterogeneity of the normal modes over the two particles.

Linear stability analysis

Given the knowledge of the normal mode spectrum, from Eq. (5.4), we find the linear
destabilization threshold of any configuration of the polarity field πc(θ1, θ2). From in-
variance by rotation, we can choose n̂1 along x̂ and n̂2 = (cos θ, sin θ). The explicit
expression of the destabilization thresholds is very hairy in the general case4, but can
be found numerically (Fig. 5.16-e). In the symmetric case δ = 0, we recover the result
of the N = 2 zero-rest-length chain:

πc(θ) = 3
2 + | cos(θ)| , (5.34)

and in the general case, we find that larger asymmetry decreases the stability thresholds
of the fixed points.

Steady orbiting solutions

Starting from the general noiseless equations within the harmonic approximation:

u̇i = πn̂i + F el
i [u] , (5.35a)

ṅi = (n̂i × F el
i )× n̂i, (5.35b)

we look for steady solutions orbiting at a rate Ω. This means that u̇ = Ωu⊥ and
ṅ = Ωn⊥. Moreover, from invariance by rotation, we can set the phase of the orientation
of particle 1, say φ1 = 0. In the rest, we focus on k = 1, k1 = 1−δ, k2 = 1+δ, even though
the calculation can be done in the general case (see Appendix E). After some algebra,
we find that for a phase difference between the two particles φ2 = φ, the elasto-active
coupling π and the rotation rate Ω of the steady orbiting solution satisfy:

Ω± = −2 sinφ±
√

4 sin(φ)2 + 3δ2 − δ4

δ
, (5.36a)

π = 2 + δ − cosφ+ Ω2(2− δ + cosφ)− 4Ω sinφ− (2 + δ − cosφ) sin(φ)2

3− δ2 + sin(φ)2 , (5.36b)

4From the spectrum of the matrix:

Lij(θ) =


a2s2

ω2
1(1+a2) · · ·
−a2sc

ω2
1(1+a2)

1+a2c2

ω2
1(1+a2) · ·

−s2

ω1ω3
√

(1+a2)(1+b2)
sc

ω1ω3
√

(1+a2)(1+b2)
b2s2

ω2
3(1+b2) ·

sc

ω1ω3
√

(1+a2)(1+b2)
1−c2

ω1ω3
√

(1+a2)(1+b2)
−b2sc

ω2
3(1+b2)

1+b2c2

ω2
3(1+b2)

 , (5.33)

where c = cos θ and s = sin θ, and where the matrix L is symmetric.



133 5.5. Simple models with heterogeneity

The solutions are parametrized by an angle φ, ranging in [−π, π[; however, each angle
φ is not always associated with a solution. The numerical solution to Eqs. (5.36) is
compared to the numerical integration of the equations of motion in Fig. 5.16-b for
δ = 0.75. For each value of π in the CA regime, two solutions Ω are predicted in our
calculation. However, only one of them corresponds to a steady state observed in the nu-
merical integration, and the other one is unstable, as discussed below. Moreover, from
local-orthogonality, within the steady orbiting regimes, the particles perform circular
trajectories of radii Ri. We also observe a discontinuity at the transition to CA, as the
minimal value of Ω for steady oscillating solutions is not 0. This transition can once
again be understood as a threshold for the radii of the particles’ trajectories, i.e. Ri = 1.

In the limiting case of homogeneous modes, δ → 0, we find that φ = 0 is the only phase
difference allowing for steady orbiting regimes (Fig. 5.16-c) and recover the mapping
with the single particle’s oscillation. In particular, the oscillation frequency expresses as
follows:

Ω = ±
√
π − 1. (5.37)

For finite but small asymmetry, the minimum value of the elasto-active coupling allowing
for steady orbiting solutions converge toward 1, indicating that the discontinuity must
vanish as asymmetry goes to zero (Fig. 5.16-c, inset).

To study the stability of limit cycles, we introduce a small perturbation:

ui =
[
u0
i + u1

i (t)
]
eiΩt, (5.38a)

φi(t) = φ0
i + Ωt+ φ1

i (t). (5.38b)

Linearizing the dynamics around the limit cycle, we find the matrix governing the evolu-
tion of the vector (u1

1,x, u1
2,x, u1

1,y, u1
2,y, φ1

1, φ1
2), see Appendix F. Computing numerically

the eigenvalues of this matrix for the two branches discussed above, we find the picture
shown in Fig. 5.16-b, which perfectly matches the numerical simulations in the CA
regime.

Interestingly, we also find that there is a maximal value of Ω, associated with a maximal
value of π above which the steady orbiting solution ceases to exist. In this range of π,
the system is dynamical but aperiodic. Note that such a maximal value of π for CA
is also found in the zero-rest-length chain model, and in simulations of triangular and
kagome lattices. The large-π aperiodic regime is clearly a generic feature of heteroge-
neous systems, but was completely out of range experimentally, and thus omitted up to
now.

Finally, to explore the transition to CA beyond steady orbits and fixed points, we per-
form numerical simulations of the equations of motion, annealing from large to small π
for different asymmetries δ ∈ [0, 1] (Fig. 5.16-d). In the symmetric case, the transition
is continuous, and is in perfect agreement with Eq. (5.37). In contrast, we confirm
that small enough asymmetry leads to a discontinuous transition from CA to the fixed
points, and large enough asymmetry leads to the emergence of an unsteady heteroge-
neous regime with a discontinuous transition on both sides. However, in this simple
system, the heterogeneous regime remains a limit cycle. This two-particle toy model
convincingly demonstrates that the heterogeneity of the normal modes governs the na-
ture of the transition to CA, and is in qualitative agreement with the zero-rest-length
chain toy model and the numerical simulations of the triangular and kagome lattices.
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5.6 Coarse-grained description

At large scales, the dynamics of the displacement and polarization fields, U(r, t) and
m(r, t), the local averages of, respectively, the microscopic displacements ui and the
polarizations n̂i, are obtained from a coarse-graining procedure explained in detail below.

5.6.1 Continuous fields

Instead of a discrete elasticity problem, we consider a 2d continuous elastic sheet, defined
by the deformation field U(r, t), and densely doped with active units. The orientation
of the particles is described by a polarization field m(r, t), which can be understood as
the mean over the mesoscopic scale of the polarity vectors. Thus we can get rid of the
normalization condition the discrete formulation requires, and consider a polarization
field with varying amplitude at any point of the sheet, and whose orientation and ampli-
tude are governed by the elastic forces. First, we define the average over the mesoscopic
scale:

ρ(r, t)m(r, t) = 1
S

∫
v(r)

n̂(r, t)dr =
∑
i∈v(r)

n̂i(t)δ(ri − r), (5.39)

U(r, t) = 1
S

∫
v(r)

u(r, t)dr =
∑
i∈v(r)

ui(t)δ(ri − r), (5.40)

where v(r) is a disk of small radius, centered at position r and of surface S; and where
ρ(r, t) is the surface density of active force. Note that for a particle i inside v(r), the
local fields equal the average value plus the fluctuations, thus n̂i(t) = m(r, t)+δmi(r, t)
and ui(t) = U(r, t) + δU i(r, t), where 〈δmi(r, t)〉v(r) = 〈δU i(r, t)〉v(r) = 0. For the rest
of this derivation, we consider the density of active force constant in time and space,
equal at ρ0. Moreover, we consider this average density equal to unity, as it simply
rescales activity. Within such a framework, the normalization of the polarity vectors,
|n̂i| = 1, translates into the constraint |m(r, t)| ≤ 1 for the polarization.

5.6.2 Strain dynamics

The continuous limit of Eq. (5.1a) is obtained by averaging over v(r), which is trivial
as this equation is linear:

∂tU(r, t) = πm+ 1
S

∫
v(r)

f el(r, t)dr, (5.41)

∂tU(r, t) = πm(r, t) + F el(r, t), (5.42)

where, assuming the average over the local elastic forces leads to the Hooke’s law for the
continuum elastic force, F el = divσ = −LU(r, t), with:

σ = E

1 + ν

(
ε+ ν

1− 2νTr(ε)I
)
, (5.43)

ε = 1
2
(
∇U +∇U t

)
, (5.44)

where E and ν are respectively the Young modulus and the Poisson’s ratio of the elastic
material. The displacement field dynamics is composed of a driving term along the
polarization field direction, and a relaxation term, which is a second-order derivative in
space of the displacement field. The elastic term thus smoothes the displacement field
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on length scales smaller than l?, obtained from a scaling argument when balancing the
two terms:

l? ∼ 1/
√
π. (5.45)

As a consequence, for a coarse-graining length smaller than l?, we can safely ignore
the fluctuation of the displacement field. This assumption considerably simplifies the
coarse-graining of the polarity dynamics below.

5.6.3 Polarity dynamics

Let us re-cast the dynamics for the polarity Eq. (5.1b) using the projector to the normal
of n̂i

ṅi = (I− n̂i ⊗ n̂i)u̇i, (5.46)

where we neglect the angular noise, which is considered separately. Ignoring the fluctu-
ations of the displacement field, we find:

∂tm = (I− 〈n̂i ⊗ n̂i〉)∂tU . (5.47)

Now, we want to express the average 〈n̂i ⊗ n̂i〉 as a function of the macroscopic field
m. By symmetry (in particular, from invariance by rotation), there are only two terms
allowed:

〈n̂i ⊗ n̂i〉 = φ(m)I + ψ(m)m⊗m, (5.48)

where φ(m) and ψ(m) are two functions of m, which must satisfy one additional con-
straint: since Tr(n̂i ⊗ n̂i) = 1, one must have for any distribution of orientations:

Tr〈n̂i ⊗ n̂i〉 = 1. (5.49)

Eventually, the functions φ(m) and ψ(m) depend on the distribution of the orientations.
The limiting cases m = 0 and m = 1 follow from Eqs (5.48) and (5.49):

• m = 0⇒ φ(0) = 1/2 (from Eq. (5.49)).

• m = 1⇒ ψ(1) = 1 and φ(1) = 0 (from the equality of all polarity vectors).

As a simple ansatz, we write 〈n̂i⊗ n̂i〉 as the only second-order polynomial in m that is
compatible with the constraints above:

〈n̂i ⊗ n̂i〉 = 1−m2

2 I +m⊗m. (5.50)

We finally obtain

I− 〈n̂i ⊗ n̂i〉 = 1 +m2

2 I−m⊗m = 1−m2

2 I +m2(I− m̂⊗ m̂), (5.51)

where
m2(I− m̂⊗ m̂)A = (m×A)×m, (5.52)

hence
∂tm = (m× ∂tU)×m+ 1−m2

2 ∂tU . (5.53)

The first term on the right-hand side corresponds to a self-alignment term of the polariza-
tion toward the displacement rate, and comes from the average values of displacements of
polarizations. Note that, as in the microscopic model, only the elastic force contributes
to rotating the polarization vector. In contrast, the second term on the right-hand side
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(a) (b)

v(r) v(r)

m m

m2 = 1m2 < 1

πm− LU πm− LU
δmi

δmi = 0

FIG. 5.17. Representation of the effect of the polarization creation term. (a) Arbitrary
magnetization; the fluctuations reorient toward the averaged velocity ∂tU , which amplifies the
magnetization along the direction of πm − LU . (b) Fully magnetized; the fluctuations have to
be zero and therefore have no effects. In all cases, m rotates toward the elastic force −LU (not
represented).

is a polarization creation term, acting on the amplitude of m, and comes from the
coarse-graining of the polarization’s fluctuations. Note that the latter disappears as the
system is fully magnetized (|m| = 1), which is illustrated in Fig. 5.17. Altogether, the
coarse-grained equations read:

∂tU = πm+ Fel, (5.54a)

∂tm = (m× Fel)×m+ 1−m2

2 ∂tU . (5.54b)

5.6.4 Polarization relaxation

Additionally considering angular noise in the microscopic polarity dynamics, we find
that the polarization dynamics (Eq. 5.54b) is modified. Let us consider the following
microscopic polarity dynamics:

ṅi =
√

2Dξin̂⊥i , (5.55)

where ξi are i.i.d. Gaussian random variables with zero mean and correlations 〈ξi(t)ξj(t′)〉 =
δijδ(t − t′). It is possible to exactly coarse-grain this equation, following the approach
of [134]. We find:

∂tm(r, t) = −Drm(r, t), (5.56)

where Dr = D is inherited from the particles’ angular diffusion coefficient, contributing
to the polarization’s relaxation toward zero.

Eventually, the final form for the coarse-grained equations, considering both self-alignment
and microscopic angular noise, reads:

∂tU = πm+ F el, (5.57a)

∂tm = (m× F el)×m+ 1−m2

2 ∂tU −Drm. (5.57b)

5.6.5 Disordered phase

In the absence of the relaxation term, Dr = 0, any field m(r, t) such that the elastic
forces locally balance the activity (F el = −πm ∀r) is again a fixed point. However,
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any small amount of noise, of microscopic origin or effectively coming from the coarse-
graining procedure, will induce a non-zero relaxation term Dr > 0. In that case, any
stationary field with m 6= 0 relaxes to the only remaining fixed point U = m = 0.

The linearized equations of motion around this disordered rest state read, at leading
order in small quantities:

∂tδU = πδm+ F el [δU ] , (5.58a)

∂tδm = 1
2
(
πδm+ F el [δU ]

)
−Drδm. (5.58b)

If δU(r, t) = δa(t)φ(r) and δm(r, t) = δb(t)φ(r), where φ is an eigenmode of F el such
that F el [φ] = −ω2

kφ, and where δa and δb are small quantities, we get:

d

dt

[
δa(t)
δb(t)

]
=
(
−ω2

k π
−ω2

k/2 π/2−Dr

)
·
[
δa(t)
δb(t)

]
. (5.59)

The solutions λ to the eigenvalue problem satisfy:

λ2 − λ(π/2− ω2
k −Dr) +Drω

2
k = 0, (5.60)

and are represented in Figs. 5.18. In the limiting case Dr → 0, we find two real eigen-
values λ = 0 and λ = π/2 − ω2

k (Fig. 5.18-a). For π < mink(2ω2
k) = 2ω2

min, the fixed
point is marginally stable. For π > 2ω2

min, it is unstable, and the dynamics grow along
the lowest energy elastic mode. Therefore, the coarse-grained description, close to the
disordered state, does not contain the non-trivial selection observed in discrete systems.

For Dr > 0, we find that the nature of the bifurcation is modified. First, any finite
amount of noise creates a collision between the two eigenvalues below and above the
instability, opening a range of π with complex conjugate eigenvalues (Figs. 5.18-b), and
second, the instability threshold increases with the noise amplitude (Fig. 5.18-c).

Let us first focus on the small noise regime, for which the polarization relaxes much
slower than the elastic modes Dr � ω2

k.

1.5 2.0 2.5
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λ

1.5 2.0 2.5

π

λ

1.5 2.0 2.5

π

λ

(a) (b) (c)

Dr ↗

πc πc πc

FIG. 5.18. Disordered phase linear stability analysis. Solutions of Eq. (5.60) as a function
of the elasto-active feedback π, for ω2

min = 1. Black (resp. red) solid curves represent the real
(resp. imaginary) parts of the solutions. The dashed and dashed-dotted black curves respectively
represent the functions λ = π/2 − 1 and λ = (π/2 − 1 −D)/2. (a) Dr = 0, (b) Dr = 10−3, (c)
Dr = 10−2.
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• When |π2−ω2
min| > 2

√
Drω2

min (far enough from the noiseless instability threshold),
the two eigenvalues are real, with the same sign:

λ = 1
2

(
π

2 − ω
2
min

)
± 1

2

√(
π

2 − ω
2
min

)2
− 4Drω2

min. (5.61)

• When |π2 −ω2
min| < 2

√
Drω2

min (close enough to the noiseless instability threshold),
the two eigenvalues are complex conjugate, with the same real part’s sign:

λ = 1
2

(
π

2 − ω
2
min

)
± i

2

√
4Drω2

min −
(
π

2 − ω
2
min

)2
. (5.62)

Thus at the threshold π = 2ω2
min, the imaginary part of the eigenvalues is equal to

±i
√
Drω2

min. When π = πc, the fixed point turns unstable via a Hopf bifurcation.

Now, regarding the dependence of the instability threshold on the noise amplitude, a
simple analysis of Eq. (5.60) reveals that in the general case, the instability threshold
expresses as follows:

πc = 2
(
ω2
k +Dr

)
. (5.63)

Large noise stabilizes the disordered fixed point (Fig. 5.18-c). The oscillation frequency
resulting from this Hopf bifurcation is finite at the bifurcation, with an amplitude pro-
portional to D1/2

r , decreasing when π moves away from the instability threshold. Unsur-
prisingly, the linear destabilization properties tell us very little about the disconnected
nonlinear dynamics describing the SCO regime. In particular, the Hopf bifurcation’s
frequency has nothing to do with the limit cycle’s frequency.

5.6.6 Homogeneous phases

We are here interested in describing the physics in the bulk of the material, far from the
boundaries, where CA concentrates. In line with the physics of the triangular lattice,
let us assume the dynamics condensate on two degenerated modes, which, far from the
boundaries, are homogeneous and akin to two perpendicular translation modes. By
convention, their geometry can be written as follows: 〈i|ϕ1〉 = ex and 〈i|ϕ2〉 = ey. In
this context and neglecting the contributions from all the other modes, the elastic force
must be homogeneous F el [U ] = −ω2

0U , where ω0 is the eigenfrequency of the selected
pair of modes. The coarse-grained equations then read:

∂tU = πm− ω2
0U , (5.64a)

∂tm = −ω2
0(m×U)×m+ 1−m2

2 ∂tU −Drm. (5.64b)

We introduce the angles ϕ and θ, respectively, the angle of the displacement U with
respect to the x-axis, and the angle of the polarization m with respect to the x-axis;
and the norms R and m of the vectors U and m. Once again, we denote γ = θ − ϕ.
These variables obey the following dynamical equations:

∂tR = πm cos γ − ω2
0R, (5.65a)

R∂tϕ = πm sin γ, (5.65b)

m∂tθ = 1 +m2

2 ω2
0R sin γ, (5.65c)

m∂tm = 1−m2

2
[
πm2 − ω2

0Rm cos γ
]
−Drm

2. (5.65d)
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Fixed point

Due to the presence of the relaxation term in Eq. (5.65d), the only fixed point of Eqs.
(5.65) expresses as (R0 = 0, m0 = 0) and corresponds to the disordered phase.

The linearized equations around the fixed point are:

d

dt

(
δR
δm

)
=
(
−ω2

0 π
−ω2

0/2 π/2−Dr

)(
δR
δm

)
, (5.66)

and the eigenvalue problem reduces to solve the polynomial:

λ2 − λ(π/2− ω2
0 −Dr) +Drω

2
0 = 0. (5.67)

Thus we recover Eq. (5.60), with ω2
min = ω2

0; and the disordered fixed point is stable for
π < 2ω2

0, unstable otherwise.

Oscillating solution

Now we look for oscillating solutions of Eqs. (5.65) at frequency Ω > 0. It boils down
to solving the equation for the amplitude of the polarization:

Drm = 1−m2

2 m2(π − 2ω2
0

1 +m2 ). (5.68)

Without relaxation. In the limiting case Dr → 0, the only solution of Eq. (5.68)
giving Ω > 0 is m = 1. The non-linear saturation vanishes, and one recovers the equa-
tions for the single particle system, which predict a polarized solution with oscillation
at frequency Ω, amplitude R0 in displacements, and phase shift γ0 between polarity and
velocity vectors, such that:

m = 1, (5.69a)
R0 =

√
π/ω0, (5.69b)

cos γ0 = 1/R0, (5.69c)

Ω = ω0

√
π − ω2

0, (5.69d)

when π > ω2
0.

With relaxation. The presence of a small relaxation rate of the polarization ampli-
tude (Dr = ε � 1) modifies the picture. Assuming m = 1 − δm, we find, at leading
order in small quantities:

δm = ε

π − ω2
0
, (5.70a)

R0 =
√
π

ω0
, (5.70b)

cos γ0 = ω0√
π

(1 + 1
2δm), (5.70c)

Ω = ω0

√
π − ω2

0

[
1− δm

(
1 + 1

2
ω2

0
π − ω2

0

)]
, (5.70d)

for π > ω2
0. As expected, a noisy microscopic dynamics decreases both the polarization

and the phase shift γ0. These two effect balance, resulting in an unmodified value for R0.
The oscillation frequency Ω also decreases with Dr. The effect of noise is as dramatic as
the system is close to π = ω2

0.
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5.6.7 Phase diagram

Combining the results obtained in the two previous sections, we find the mean-field phase
diagram presented in Fig. 5.19, in the limiting case D → 0. The latter captures the
existence of the frozen-disordered and chiral phases and their phase space coexistence for
a finite range of the elasto-active coupling π. However, the disordered m = 0, and the
chiral m = 1 solutions being disconnected, the nature of the transition is controlled by
inhomogeneous solutions, which cannot be investigated within perturbative approaches.
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FIG. 5.19. Coarse-grained model phase diagrams at the mean-field level. The dis-
ordered, m = 0, phase (black line) coexists with the fully polarized, |m| = 1, chiral, Ω > 0,
phase (red line) for π ∈

[
ω2

0 , 2ω2
min
]
. Note that we consider the general case where ω2

min is not
necessarily the energy of the two degenerated translation-like modes ω2

0 .

5.6.8 Relation to non-reciprocal systems

It was recently shown that systems composed of microscopic degrees of freedom ex-
periencing non-symmetrical interactions, together with non-conservative dynamics, are
prone to develop chiral phases via a specific kind of phase transition, which Fruchart et
al. called non-reciprocal [172]. Our model system, composed of active units connected
by elastic springs, is a priori a good candidate for the study of this physics. Its dynamics
results from the coupling of N polarity vectors n̂i and N displacement vectors ui, where
one can recognize two abstract species A and B. We recall Eqs. (5.15), which govern
the dynamics of a single particle in a harmonic potential:

Ṙ = π cos(θ − ϕ)− ω2
0R, (5.71a)

ϕ̇ = π

R
sin(θ − ϕ), (5.71b)

θ̇ = −ω2
0R sin(ϕ− θ), (5.71c)

where ϕ (resp. θ) represents the angle of the displacement (resp. polarity) vector with
respect to the x-axis, and where R is the norm of the displacement vector. One sees
that the phases ϕ and θ are coupled non-symetrically, as Jn̂→u = π/R 6= Ju→n̂ = −ω2

0R,
in such a way that for π > πc, the phase of the displacement vector chases that of the
polarity (see Appendix F). It is therefore likely that the macroscopic dynamics for the
order parameters associated with the mean polarization and mean displacement experi-
ence the kind of transition towards a chiral phase described in [172]. More precisely, the
coarse-grained dynamics map on the general equations describing the dynamics of two
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vector order parameters va(t, x), which serve as the starting point in [172] :

∂tva = Aabvb + Babcd (vb · vc) vd +O(∇). (5.72)

They read

∂tU = πm+O(∇), (5.73a)

∂tm = π
1−m2

2 m+O(∇), (5.73b)

where the non-zero coefficients, Aum = π, Amm = π/2 and Bmmmm = −π/2 are clearly
non-symmetric.

This suggests a possible description of the transition to CA in terms of non-reciprocal
phase transitions. If this were to be confirmed by a more involved analysis of the large-
scale dynamics, it would motivate the study of the disordered to chiral phase transition
in active solids, which has yet to be addressed theoretically. In the same vein, one may
ask whether the coarse-grained system shall obey standard or odd elasticity [125].

5.7 Conclusion
In this chapter, we have seen that mechanically stable elastic structures doped with
active units exhibit selective and collective actuation. This new kind of collective be-
havior arises explicitly because of the elasto-active feedback, the reorientation of the
active units by the displacement field. For systems pinned at the edges, we find that
a pair of degenerated, translation-like modes are spontaneously selected, resulting in
a chiral regime oscillating between these two modes. Let us remind the three salient
features of CA in triangular and kagome lattices: (i) the transition from the disordered
phase leads to a chiral phase with spontaneously broken symmetry; (ii) the actuated
dynamics are not of inertial origin, take place on a few modes, not always the low-
est energy ones, and therefore obey non-trivial selection rules; (iii) the transition follows
a coexistence scenario, where the fraction of actuated nodes discontinuously falls to zero.

We have shown that the chiral phase with spontaneously broken symmetry, i.e. point
(i), is already present at the single particle level. Moreover, points (ii) and (iii) originate
from the crucial role played by the normal modes’ geometry. In particular, the non-trivial
selection is inherited from the fact that the dynamics favor the activation of modes that
are delocalized and locally-orthogonal, two properties met by the pair of translation-like
modes. Moreover, with the help of simple toy models, we demonstrated that the hetero-
geneity of the selected modes is at the origin of the discontinuity in the transition to CA,
and of the spatial coexistence between frozen and oscillating phases. Finally, we intro-
duced a coarse-grained model to describe the large-scale physics of polar active solids.
The coarse-graining procedure leads to an additional term in the polarization dynamics,
in the form of a polarization creation term in the direction of the local displacement rate.

Much work remains to be done to understand better the transition to CA at large scales,
which is generically governed by inhomogeneous solutions. Simulating the coarse-grained
equations in triangular elastic networks pinned at the edges, we find that the polarization
creation term indeed allows for sharp transition regions between the polarized-oscillating
phase and the frozen-disordered phase, in a way reminiscent of the large-N simulations
of the microscopic dynamics. This calls for simulations and theoretical analysis of the
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coarse-grained equations in simple settings, like disk-shaped active solids [77], and for
studying the non-trivial selection on continuum scales. Determining the critical expo-
nents related to the transition to CA, and the influence of orientational elasticity [173],
are other exciting avenues for future research.





Chapter 6

Tension-controlled switch
between collective actuation

6.1 Introduction

Collective actuation (CA) takes place when spontaneous activation of a few harmonic
modes occur, and was first reported in a numerical study of jammed active particles [79].
In the previous chapter, the experimental realization and theoretical study of CA in sta-
ble elastic structures demonstrated the key role of a nonlinear elasto-active feedback
between the deformations of the structure and the orientations of the active units. A
typical realization of CA is illustrated in Fig. 6.1-b. When an active triangular lattice is
pinned at the edges, its nodes perform a Synchronized Chiral Oscillation (SCO) around
their reference positions.

Very similar SCO dynamics have been reported in confined epithelial cells [8] and dense
bacterial suspensions [77, 174] (see chapter 1). Another collective dynamics, with the
system performing Global Alternating Rotation (GAR) around its center, was even re-
ported in bacterial bio-films [77, 175], and, quite remarkably, a transition from SCO
to GAR could be observed as activity decreases [77]. Nonetheless, its origin has yet to
be fully understood. From a biomimetic point of view, active metamaterials are there-
fore a promising framework for creating multifunctional materials [103, 106, 108–110]
with bona fide autonomy [107]. However, an explicit realization of active metamaterials
exhibiting different CA regimes, with a good control of the transition between these
regimes, is still lacking.

In this chapter, we bridge this gap by (i) demonstrating the existence of both SCO
and GAR in the same active elastic structure, (Figs. 6.1-a and b), (ii) showing how
mechanical tension can be harnessed to manipulate the vibrational spectrum of an active
solid and control the transition between these different CA regimes. We first establish the
experimental proof of concept using a toy-model active solid (Figs. 6.1-e and f). We then
dissect the underlying mechanism and extend our findings to more general geometries,
on the basis of an agents model and theoretical arguments. Apart from being a simple
design principle and an intuitive way to interact with active solids, mechanical tension is
of significant biological interest, as it is known to play a crucial role in growth processes
and mechanical responses [176–180], especially during morphogenesis.
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6.2 Boundary-condition-controlled dynamics

Our first, simple but important result, is that the GAR regime is readily obtained in the
same active network of springs by changing the boundary conditions.

We construct another active triangular lattice, connecting the active elastic building
blocks with stiff springs (see chapter 2). As discussed in chapter 4, when a given node
of the elastic structure is pinned, suppressing its translational degrees of freedom, the
system performs a collective steady rotation around the pinning point. Interestingly,
when a given node of the elastic structure, here the central one, is embedded, i.e. pinned
both in translation and rotation, the structure periodically alternates between clockwise
and counter-clockwise rotations around this node (Fig 6.1-a). Note that these observa-
tions are qualitatively preserved if the embedded node is arbitrary. Such a CA regime is
a GAR, contrasting sharply with the SCO observed for the active lattice of soft springs
pinned at the edges (Fig 6.1-b).
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FIG. 6.1. Experimental realization of a controlled switch between collective actua-
tions. (a) GAR in a triangular lattice with embedded central pinning; N = 36, α = 1.0. (b) SCO
in a triangular lattice under edge pinning; N = 19, α = 1.27. Left panel: dynamics in real space
(red arrows: polarities n̂i; trajectories color-coded from blue to red with increasing time; scale
bars: 10 cm); right panel: polarity dynamics projected on the translation and rotation modes of
the structures (vertical axis: 〈R|n̂〉, equatorial plane: 〈Tx/y|n̂〉), see notations and convention
in panel (c). (d) A switch between GAR and SCO is obtained in a model elastic structure, the
active Gerris, by tuning mechanical tension: condensation fraction on the rotation mode λR as
a function of tension α− 1 (red bullets are obtained from data averaged in the steady state; the
gray dots and arrows sketch the transitory regime when initials conditions enforce rotation at
large tension). (e-f) GAR, resp. SCO in the active Gerris at low (α = 1.0), resp. large (α = 1.8)
tension; N = 6.
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These two dynamics are best illustrated when decomposed on the elastic modes of the
structures (see Appendix A), which are the eigenvectors, |ϕk〉, associated with the eigen-
values, ω2

k, of the dynamical matrix, M. More specifically, we represent the dynamics
in the space spanned by the amplitude of the polarity field projected on three modes
of interest: the vertical axis represents the normalized projection on the rotation mode
aR = 〈R|n̂〉/

√
N , whereas the equatorial plane represents the normalized projections on

the two translational like modes aTx/y = 〈Tx/y|n̂〉/
√
N (Fig. 6.1-c). From the polarity

field normalization, the projections are confined inside the 3-sphere of radius
√
N , nor-

malized to 1. Note that the rotation and translational modes are the three lowest energy
modes for both boundary conditions (see Appendix A).

In the GAR regime, obtained from the central pinning condition, the polarity dynamics
alternatively condensate on the clockwise and counter-clockwise rotation mode (the poles
of the sphere), separated by fast reversal motion (Fig. 6.1-a). Conversely, in the SCO
regime, obtained from the edge pinning condition, the polarity dynamics condensate on
the translational modes spanning the equatorial plane of the sphere (Fig. 6.1-b), and
rotate clockwise or counter-clockwise on this plane, spontaneously breaking the chiral
symmetry.

As we shall now see, applying mechanical tension at the boundary allows switching
between the SCO and GAR regimes, while keeping the boundary condition and the
elasto-active coupling π fixed.

6.3 Active Gerris
We design a toy-model active elastic structure, which consists of N = 6 active units at
the vertices of a rigid inner hexagon, each connected radially to the vertices of an outer
pinned hexagon via soft springs (Figs. 6.2). We term this structure the active Gerris in
reference to the water strider bug. As we will see, even though it could appear somewhat
artificial, this structure allows studying the competition between two translational modes
and a third mode, here a rotation. It is therefore the simplest instance allowing for a

h

d

larm

αl0

(a) (b)

FIG. 6.2. Active Gerris’ structure. (a-b) Experimental active Gerris. (a) 3d representation
of the setup. Green cylinders represent springs, red structures are the six pinning points, and the
orange structure is the rigid inner structure. The distance between the structure’s barycenter
and the springs connections on the rigid inner structure is denoted d. The height h ' 30 mm of
the pinning points allows the Gerris to move without touching the pinning structures. (b) Top
view of the experiment. The spring ends are attached to the red (connection with the arm) and
black (connection with the pinning point) markers with freely-rotating pins.
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behavior switch.

6.3.1 Structure

The active Gerris structure is made of a 3d printed stiff frame with six regularly spaced
arms (larm ' 97 mm long), at the end of which are embedded the active units (Figs.
6.2-a, orange structure); which therefore sit at the vertices of a regular hexagon. Activity
cannot deform the arms as they are made of ABS, and their bending rigidity is large
compared to the active force produced by the hexbugs. This frame constitutes the rigid
inner structure of the active Gerris. It is connected to six pinning points (Figs. 6.2-a,
red structures) by soft springs (Figs. 6.2-a, green structures), on a plane above the
experiment. This way, there are no steric interactions between the rigid inner frame and
the pinning structures. The pinning points are located at the vertices of a regular outer
hexagon, larger than the inner one. There is one spring per arm, whose ends are attached
with freely rotating joints to the pinning point and the arm, at a distance d (' 33 mm)
from the barycenter. We model the active Gerris with the structure shown in Figs. 6.4-a
and 6.3. It describes well the experimental reality, modulo two approximations:

• The arm length larm is assumed to be equal to the soft springs’ rest length l0 for
simplicity.

• The distance d is chosen to be equal to larm, the rigid inner hexagon’s side length.
Indeed, choosing a shorter than larm distance d would just decrease the rotation’s
mode energy by a factor d/larm (and no effect on the translational modes), which
does not modify the picture qualitatively.

6.3.2 Normal mode spectrum

To explicit the normal mode spectrum, we must first determine the reference configura-
tion and the pre-stress. The pinning condition imposes α ≥ 1: the soft external springs
are elongated at mechanical equilibrium (Fig. 6.4-a). It is also mandatory to prescribe
how the inner structure dilates as tension is imposed on the structure. We call the inner
structure’s elongation factor αI . Assuming it is strictly rigid, the inner structure does
not dilate, thus αI = 1.

The Gerris is characterized by the three degrees of freedom of its inner structure: the
spatial coordinates of its barycenter u0 and its angular orientation φ (Fig. 6.3). The

u0

li

φ

FIG. 6.3. Notations for the Gerris. (left) The position of the active Gerris inner rigid
hexagon barycenter is denoted u0. (right) The angle φ characterizes the rotation of the active
Gerris inner rigid hexagon. The vectors li are the positions of the active nodes with respect to
u0.



Chapter 6. Tension-controlled switch between collective actuation 148

three associated normal modes are two degenerated translation modes |T x/y〉 and one
rotation mode |R〉, which are illustrated in Fig. 6.4-b, together with their energies as
a function of the imposed tension. Both the rotation and translation energies increase
with tension, but the energetic ordering of the modes is preserved, and their geometries
are unaffected. The three modes end up degenerated at infinite tension.

6.3.3 Tension-controlled switch

Experimentally, mechanical tension is controlled by a stepwise elongation of the soft
external springs. At low tension, GAR and SCO regimes are both observed and are
stable on the experimental timescale (Figs. 6.1-d and e). At large tension, only the SCO
regime is stable (Fig. 6.1-f), while the GAR regime is metastable (arrows on Fig. 6.1-d);
allowing for a one-way switch from GAR to SCO as tension increases.

Analyzing the dynamics in mode space, we find that the active Gerris convincingly
explores the same dynamics under the control of tension as the triangular lattices (Figs.
6.1-e and f). The dynamics are quantified by the condensation fraction on the rotation
mode, computed in the rotating frame of the Gerris1:

λR = 1
T

∫ T [〈R(t)|n̂(t)〉√
N

]2
dt, (6.1)

where the vector |R〉(t) is always azimuthal with respect to the inner structure. The
active Gerris switch is illustrated by the abrupt drop of this condensation fraction on
the rotation mode λR as tension increases (Fig. 6.1-d).

6.3.4 Numerical model

We investigate numerically the switch in the active Gerris, using the overdamped equa-
tions of motion (see chapter 3):

u̇i = πn̂i + F el
i , (6.2a)

ṅi = (n̂i × u̇i)× n̂i +
√

2Dξin̂⊥i , (6.2b)

where F el
i is the sum of the elastic forces acting on node i, and ξi are i.i.d gaussian

variables with zero mean and correlations 〈ξi(t)ξj(t′)〉 = δijδ(t − t′). We set π = 2.0,
a value consistent with previous calibrations (see chapter 3), and investigate the effect
of mechanical tension. The Gerris’ inner structure being rigid, the 2N equations for
the position dynamics, Eqs. (6.2a), reduce to the equations of motion for the degrees of
freedom u0 and φ (see Appendix H):

N u̇0 =
∑
i

[
πn̂i + F el

i

]
, (6.3a)

Nφ̇ =
∑
i

[
π sin(θi − φi) + |F el

i | sin(ψi − φi)
]
. (6.3b)

where θi is the orientation of the polarity vector n̂i, ψi is the orientation of the elastic
force vector F el

i [u0, φ], and φi is the orientation of the position vector ri = u0 + σφli,
with σφ the rotation matrix of angle φ.

1This avoids considering the geometrical nonlinearities coming from the large rotation angles, which
virtually transfer active force from the rotation to the dilation mode.
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Harmonic approximation level

We first simulate the noiseless, D = 0, active Gerris equations in the harmonic approx-
imation (see Appendix H), annealing back and forth between small and large tensions.
We find two linearly stable actuation branches, which we denote the TT and RT regimes
(Fig. 6.4-c, circle markers).

The TT regime is a strict condensation of the polarity field on the equator (Fig. 6.4-
d), with λR = 0, corresponding to a SCO of the Gerris. This is possible because
the translational modes are fully delocalized QTx = QTy = 1, and locally orthogonal.
Because they also are degenerated, the TT regime strictly maps onto the spontaneous
oscillation of a single particle in a harmonic potential [143], as discussed in chapter 5.
All quantities of interest can be calculated analytically, e.g., its oscillation frequency Ω
expresses as follows:

Ω = ±ωT
√
π − ω2

T , (6.4)

for π > ω2
T , where ω2

T refers to the squared eigenfrequency of the two degenerated trans-
lational modes. Surprisingly, despite the presence of a mode of lower energy than the
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α↗
FIG. 6.4. Active Gerris’s dynamics as a function of lattice tension. (a) Elastic architec-
ture cartoon. In gray: the rigid inner hexagon. The external springs are elongated by a factor α
at mechanical equilibrium. (b) Normal modes spectrum as a function of springs tension α − 1.
The red (resp. blue) solid line corresponds to the rotation mode (resp. degenerated translational
modes), shown in inset. (c) Condensation fraction on the rotation mode λR as a function of
lattice tension α − 1 (yellow-orange to black symbols: the different RT regimes; blue symbols:
TT regimes; (circles): harmonic approximation; (squares): including geometrical nonlinearities;
empty markers: backward annealing). (d) Side and top view of the 3d representations of the
polarity field steady dynamics projected on the rotation and translation modes for the regimes
RT4, RT3, RT2, RT1, TT , from left to right (vertical axis: 〈R|n̂〉, equatorial plane: 〈Tx/y|n̂〉).
The dashed black square highlights the switch of interest.
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translational ones, the TT regime is always stable, emphasizing the non-trivial selectiv-
ity of this SCO regime at the collective level. We can show that this effect is absent at
the single particle level, underlining the role of geometry in the non-trivial selection (see
Appendix J).

The RT regimes consist of a condensation of the polarity field on a plane, defined by
the rotation vector |R〉 and one of the six translational vector |T 〉, pointing toward one
of the hexagon’s main axis, in the equatorial plane (Fig. 6.4-d). They correspond to
a GAR of the Gerris. The six possible orientations of this plane define six equivalent
attractors, one of which is selected, spontaneously breaking the 6-fold symmetry of the
system (Figs. 6.5). Depending on the tension, we actually report different RT dynamics,
separated by hysteretic transitions, which differ in the precise trajectory of the alternat-
ing rotation. While the two selected modes are fully-delocalized QR = QT = 1, they
are not locally orthogonal. This prevents a strict condensation: during the turnarounds,
some active force must be transformed into mechanical stress of the rigid inner structure,
and the polarity field enters inside the circle in the plane of the two selected modes (Figs.
6.4-d and 6.6-a). More importantly, the translational and rotation modes are not de-
generated (Fig. 6.4-b): tension changes the energy ratio between the two selected modes.

Most of the RT regimes phenomenology can be understood qualitatively by studying the
dynamics of a single particle trapped in elliptic harmonic potentials ([181] and Appendix
I). As the energy ratio between the two modes increases, the single active particle or-
bits along circles, ellipses, lemniscates, and higher-order lemniscates [181], the so-called
elliptic regimes En (see Appendix I). In mode space, these limit cycles are more and
more condensed along the soft direction. Moreover, similarly to the active Gerris’ RTn
regimes, the En regimes are separated by hysteretic and discontinuous transitions. Such
a toy model is enough to explain the qualitative features of the dynamics in the selected
RT plane, as illustrated in Fig. 6.6 for regimes RT2 and E2.

Within the linear level of description, there is however no switch between the coexisting
RT and TT regimes.

(a) (b)

FIG. 6.5. Multiplicity of the RT regimes. Simulated harmonic dynamics of the active
Gerris with π = 2.0 and α = 1.1, shown in mode space; vertical axis: 〈R|n̂〉, equatorial plane:
〈Tx/y|n̂〉. The six RT4 attractors are found by simulating numerous random initial conditions.
Only the RT stationary states are shown. The black hexagon illustrates the orientation of the
inner hexagon with respect to the axis. (a) Top-side view. (b) Top view.
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FIG. 6.6. Mapping between the active Gerris’ RT regimes and the dynamics of a
single particle trapped in an elliptic harmonic potential. Illustration in the case of
regimes RT2 ↔ E2. (a-b) Active Gerris’s RT2 regime (α = 1.4), see Fig. 6.4-d. Polarity field
dynamics, restricted to the plane of the two selected modes (a), and as a function of time (b).
The solid red line (resp. solid blue line) represents aR (resp. aT ), where T refers to the linear
combination of the two translational modes giving the orientation of the plane in Fig. 6.4-d).
E2 dynamics of a single particle trapped in an elliptic harmonic potential, softer along the y-
direction (ω2

x = 1.0, ω2
y = 0.36, π = 2.0), see Appendix I. Polarity field dynamics in the x − y

plane (a), and as a function of time (b). The solid red line (resp. solid blue line) represents ay
(resp. ax). In (a/c), the dashed black circle represents the unit circle.

Including geometrical nonlinearities

Including the geometrical nonlinearities of the elastic forces (see Appendix H), we find
that the TT regime is unaffected, while the stability ranges of the RT regimes are
shifted toward smaller tensions (Fig. 6.4-c, square markers). More significantly, the RT
regime destabilizes towards the TT regime for large enough tension. We thus find that
geometrical nonlinearities allow for an irreversible, one-way switch, from the RT to the
TT regime as tension increases. Coming back to the analogy with the single particle in
asymmetric harmonic potentials, the switch is a discontinuous transition from an elliptic
regime E1 to a circular one E0, standing on planes perpendicular to one another (Fig.
6.4-d).

Including angular noise

The TT regime persists for all values of the tension and coexists with the RT regime.
We discuss the relative stability of the two attractors by adding a small noise, D = 10−2,
consistent with existing calibrations (see chapter 3). Starting from the RT regime, the
system first remains close to the initial RT attractor, then visits the six equivalent RT
attractors, before it eventually destabilizes into the TT regime at long times (Fig. 6.7-
a). The smaller the tension, the longer it takes for this destabilization to occur. We
evaluate the metastability of the RT regime, by simulating 80 independent runs with
random initial condition, for each value of the tension. At small tension, the probability
of ending up in a RT regime at t = 10000, PRT , is close to one and slowly decreases
with increasing tension. This is due to both the increasing size of the attraction basin
of the TT regime and the decreasing lifetime of the metastable RT regime. For tensions
α ≥ 1.2, PRT vanishes abruptly: all initial conditions end up in the TT regime at long
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FIG. 6.7. Active Gerris’s dynamics in the presence of noise (a) Projection of the polarity
field dynamics illustrating the effect of noise on the RT1 regime, at short, intermediate, and long
times (vertical axis: 〈R|n̂〉, equatorial plane: 〈Tx/y|n̂〉). (b) Density of condensation fraction on
the rotation mode ρλR

(color-coded as given by the color bar) and probability to end in a RT
regime at long times PRT (black markers) as a function of tension α− 1.

time.

As a final remark, let us comment on the comparison between the experimental results
(Fig. 6.1-d) and the numerical simulations, including geometrical nonlinearities and
angular noise (Fig. 6.7-b), which are the most realistic. There is clearly no quantitative
agreement, but note that this was not the point of the above analysis. We deciphered one
by one the ingredients that are necessary to capture the experimental phenomenology
in the correct range of parameter values: geometrical nonlinearities allow for a one-way
switch between the RT and TT regimes as tension increases, and noise governs the
metastability of the RT regimes at the transition.

6.4 Material-scale switch

Altogether the active Gerris establishes the proof of concept for the experimental control
of CA using mechanical tension. Its structure, which results from several experimental
compromises, is however admittedly rather artificial, raising the question of the possible
generalization of the above results to a genuine active material.

6.4.1 Homogeneously dilating structures

We theoretically show below that the tension-controlled switch is generically expected
even in the harmonic approximation. Consider an arbitrary lattice undergoing homoge-
neous dilation of factor α ∈ [1,+∞[, the dynamical matrix of which reads (see Appendix
G):

M (α) = 1
α
M0 +

(
1− 1

α

)
M1. (6.5)
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M0 is the dynamical matrix of the structure at zero tension, and M1 reads:

M1 =
(
Mxx

1 0
0 Myy

1

)
, (6.6)

where Mxx
1 = Myy

1 is the Laplacian matrix of the structure network Mαα
1,ii = Z (i),

Mαα
1,ij = −1 if i and j are neighbors and zero otherwise. Since M1 decouples the x and

y directions, its eigenvectors ϕn come in degenerated pairs with identical form, respec-
tively polarized along x and y. In particular, as a result of a discrete nodal domain
theorem [182–184] (see Appendix G), the lowest energy modes of M1 have the geometry
of translational modes. Increasing the mechanical tension, the spectral properties of
M1 progressively dictate that of the elastic structure, thereby favoring the emergence
of two degenerated low energy modes, with geometries akin to translation: extended
and locally-orthogonal. These are the perfect conditions for selecting the SCO regime
at large tension (see chapter 5). This is why any elastic structure, which, in the absence
of tension, exhibits some form of CA, different from the condensation on modes akin to
translation, will eventually switch to the SCO regime, when mechanical tension is large
enough.

This argument/recipe is strictly valid in the case of a homogeneous dilation, but one
expects it to persist as a design principle for CA switch in elastic structures which do
not dilate homogeneously, as long as tension is relatively evenly distributed. In the case
of the Gerris, the inner ring is rigid, thus the dilation is not homogeneous, and Eq. 6.5
does not apply. Would it hold, the two branches of eigenfrequencies, corresponding to
the TT and R modes, meet at infinite tension, and one would expect a transition at
infinite α. We however saw that geometrical nonlinearities enforce it at tensions, which
can be reached experimentally.

6.4.2 Large honeycomb

We confirm this design principle by considering a large regular honeycomb lattice, com-
posed of N = 180 nodes, pinned at its hexagonal edges (Fig. 6.8-a). Under small tension,
this lattice has a rotation mode |R〉 that lies at the bottom of its vibrational spectrum
(Fig. 6.8-b). As tension increases, the energies of both the degenerated translational
modes and the rotation mode increase, but at different paces, and eventually cross each
other for α = α∗ ' 1.1, as expected from Eq. (6.5). When simulating the dynamics of
the active honeycomb, within the harmonic approximation, with π = 0.055, we confirm
the presence of a tension-controlled switch between two linearly stable actuation regimes,
SCO and GAR (Fig. 6.8-c). Note that the condensation of the dynamics taking place on
modes that are not fully delocalized, the condensation fraction must be strictly smaller
than one: λk ≤ Qk < 1, with Qk =

(∑
i |ϕik|

)2
/N [158]. Therefore, we normalize the

condensation fraction by the participation ratio of the modes: λ̃k = λk/Qk (see chapter
3).

The SCO is a TT regime, very similar to the one discussed above (Fig. 6.8-d), except
for additional fluctuations taking place outside of the equatorial plane. Indeed, the
translational modes being heterogeneous, there is room for a spatial coexistence of a
collectively actuated region at the center of the system with a frozen/disordered one
close to the boundary (see chapter 5), which tends to thermalize the polarity dynamics.
The GAR regimes, with strictly positive λ̃R, exhibit richer dynamics than in the case
of the Gerris: for small enough tension, the GAR regimes are aperiodic, because of the



Chapter 6. Tension-controlled switch between collective actuation 154

(N = 180)
0.0 0.1 0.2

α− 1

0.00

0.01

0.02

0.03

ω
2 k

|R〉
|T 〉

0.0 0.1 0.2

α− 1

0.0

0.2

0.4

0.6

0.8

1.0

λ̃
k

λ̃R

λ̃T1 + λ̃T2

RT TTx6 x2

(a) (b) (c)

(d)

FIG. 6.8. Active honeycomb dynamics as a function of lattice tension. (a) Elastic
architecture cartoon (N = 180). (b) Normal modes spectrum as a function of lattice tension α−1.
The red (resp. blue) solid line corresponds to the rotation mode (resp. degenerated translational
modes), shown in inset; see Appendix A for the full spectrum. The dashed black vertical line
highlights the crossing of energies. (c) Normalized condensation fractions on the rotation mode
λ̃R (circles) and on the translational modes λ̃T1 + λ̃T2 (squares) as a function of lattice tension
α − 1; for π = 0.055. Colored markers and solid lines (resp. empty markers and dashed lines)
stand for simulations performed within the harmonic approximation (resp. including geometrical
nonlinearities). The dark red (resp. orange) branch represents the aperiodic (resp. periodic RT )
GAR regime, while the blue branches represent the TT regime. (d) Projection of the polarity
field dynamics in the steady states for the aperiodic GAR, RT and TT regimes, from left to
right (vertical axis: 〈R|n̂〉, equatorial plane: 〈Tx/y|n̂〉). The dashed black square highlights the
switch of interest.

many low energy modes, which couple to the rotational and translational modes (see
Appendix A). At large enough tension, one recovers the RT1 regime, condensed on a
RT plane in mode space (Fig. 6.8-d), modulo some fluctuations of the same origin than
in the TT regime. Annealing from small to large tension, the RT regime switches to
the TT one for a tension α > α∗ (Fig. 6.8-c). Additionally, performing the backward
annealing, the TT branch becomes unstable for a tension α < α∗. In the absence of
geometrical nonlinearities, the observed hysteretic switch must be attributed to the non-
trivial selectivity of CA: CA preferably takes place on low-energy modes, but also favors
pairs of modes that are maximally extended and locally orthogonal. As demonstrated
by the open symbols and dashed lines in Fig. 6.8-c, geometrical nonlinearities do not
alter the above picture.

6.5 Conclusion

Altogether, having unveiled a new CA regime arising in active solids with a low-energy
rotation mode (GAR), we demonstrate that mechanical tension is a robust control pa-
rameter to switch to a regime dominated by a pair of degenerated translational modes
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(SCO). This phenomenon is inherited from passive mechanics: for structures dilating
homogeneously, at large tension, the normal modes spectrum favors the SCO regime
because it generically contains a pair of degenerated, extended, and locally orthogonal
normal modes. Therefore, regardless of the low-tension CA regime, which can be de-
signed by playing with the normal mode spectrum, an abrupt switch can be engineered
by applying mechanical tension to the structure. It opens the path toward designing
more complex behavior switches, using different sets of mechanical efforts or different
low-tension CA regimes. Moreover, we find that the properties and stability of GAR
and SCO regimes depend on the elasto-active coupling π. Exploring the physics of the
above systems in the entire parameter space (α, π) could give rise to more subtle selec-
tion mechanisms.

On the meta-material science side, this work proposes a new way to construct multi-
functional active mechanical metamaterials, with bona fide autonomy and the possibility
to switch between drastically different actuation regimes, robust to dissipation and at-
tenuation. In the realm of bio-physics, it sheds light on the emergence of SCO and
GAR regimes, and suggests the possibility of such switching behavior, when contractil-
ity or confinement generates internal stresses. The recent observations of GAR and SCO
regimes in bacterial bio-films and epithelial monolayers, and of a switch between the two
as activity increases, offer a wide range of perspectives and applications for this work.



Chapter 7

Polarization by an external field

7.1 Introduction
The active units composing biological active solids have the ability to respond to various
types of environmental cues and can polarize towards or away from these signals, e.g.
by chemotaxis1 or galvanotaxis2. Yet, the effect of an external field on the collective
dynamics of active solids remains, until today, largely unexplored. In this chapter, we
explore the effect of a polarizing field on the dynamics of our model active solids. Fine-
tuning the tilt of the experimental setup with respect to the horizontal plane, we first
demonstrate that a frozen single active unit polarizes opposite to the gravity force. We
use this gravity-induced polarization mechanism as a tool to apply homogeneous polar-
izing fields to active solids in different settings.

We start exploring how polarization affects Synchronized Chiral Oscillations (SCO) in
a triangular lattice pinned at the edges. As polarization increases, the SCO regime is
replaced by synchronized transverse oscillations of all the active units, the so-called Syn-
chronized Windscreen Wiper (SWW) regime. For large enough polarization, however,
the amplitude of the transverse oscillations vanishes, and the system ends up frozen,
polarized opposite to gravity, in the so-called Frozen-Polarized (FP) regime. Then, we
focus on square lattices pinned at opposite ends. Without gravity, as activity increases in
such systems, CA along the lowest-energy mode emerges from the balance between activ-
ity, elasticity, and angular noise. This third CA regime, different from SCO and GAR,
is denoted Noise-Induced Collective Actuation (NICA). Similarly to the observations
done with SCO, we find that increasing polarization transforms NICA into SWW, and
eventually leads to a FP regime. Crucially, polarization decreases the activity threshold
for CA, leading to a so-called Polarization-Induced Reentrance (PIR).

These observations are rationalized by performing the complete analysis of the single
particle with a polarizing field, which sheds light on the physics of the triangular lattice
pinned at the edges. As activity increases, we find that the FP regime destabilizes
through a Hopf bifurcation. Interestingly, this system exhibits an exceptional point
at zero-polarization and critical activity, close to which all the regimes can be found
explicitly. Eventually, using the coarse-grained model derived in chapter 5, we explain
the origin of NICA, and show that PIR is a purely collective effect, inherited from the
differential stability of the Frozen-Disordered (FD) and Frozen-Polarized (FP) phases.

1Migration towards diffusible chemical cues.
2Migration towards or away from electric fields.
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7.2 Gravity-induced polarization
In this chapter, we propose to use gravity to polarize active solids. The gravity force is
varied by tilting the experimental setup with respect to the horizontal plane, as illus-
trated in Fig. 2.3-a. The originally flat PMMA substrate is replaced with two plywood
plates3 connected by hinges on one side to allow for a tilt α between them4. The tilt is
held fixed using two aluminum feet pinned on the other side of the plates, and is varied
from 0◦ to 21.4◦, by steps of roughly 1.0◦5. The PMMA plate is then placed back on
top, and the active solids experiments are performed the same way as in the rest of this
manuscript. As the camera attached to the ceiling is held vertically, movies acquired
with a finite slope must be processed to correct for perspective distortions. This is done
using planar homography (see Appendix K and [185]), which allows for changing the
perspective of a tilted experimental movie and sending it back to the perspective of
a flat experimental movie, given the position of at least four reference points on the
pictures.

7.2.1 Experimental observations

Let us consider a frozen single active unit as a benchmark to characterize the effect of
gravity. We employ the elastic structure used in chapter 2 to measure the self-alignment
properties of the hexbugs as a stiff elastic structure. It consists of a stiff square frame,
in the middle of which lies a square active elastic building block connected to the frame
with four stiff springs (Fig. 7.1-a). The frame is held fixed using double-sided scotch,
and the spring stiffness is such that the hexbug is completely frozen (π � ω2

0, where
ω2

0 = 2 is the energy of the pair of degenerated modes of this structure). The angle
between the particle’s orientation and the gravity direction is denoted θ.

As expected, without gravity, the particle is in the Frozen-Disordered (FD) regime, and
the orientation θ is diffusing (Fig. 7.1-c, dark red line). This is confirmed by computing
the Mean Squared angular Displacement 〈(θ(t+ τ)− θ(t))2〉t (MSD), which shows diffu-
sive behavior at short time (Fig. 7.1-d, τ < 1 s). At long time, we find a ballistic regime,
because the hexbug’s bias ends up dominating over diffusion at long time. We also find
that "switching on" gravity induces a polarization of the active unit’s orientation against
gravity (Fig. 7.1-c, light red line), which is centered on π rad modulo fluctuations orig-
inating from the angular noise. The system is Frozen-Polarized (FP). The long-time
ballistic regime is replaced by caging, and angular displacements saturate (Fig. 7.1-d).
The angular confinement is as strong and arises at as short lag times τ as gravity in-
creases. Note that the experiments were performed several times with differently biased
hexbugs, and Fig. 7.1 illustrates the results for the less biased of them. We find that
additional bias induces an average misalignment, and, when strong enough, a long-time
ballistic motion, while in the same conditions, the less biased hexbug remains caged (Fig.
7.1-d). This will drastically affect the measurements, so we restrict ourselves to the less
biased hexbug. For this one, all experiments performed at finite gravity exhibit long-time
caging.

To better characterize the polarization mechanism, we measure the experimental orien-
tation distributions for four minutes acquisitions with tilts ranging from 0◦ to 10.7◦ (Fig.
7.1-e). As one increases gravity, the orientation distribution is more and more peaked

3Thickness 5 cm to prevent any bending.
4The two hinges are visible in Fig. 2.3-a, and are bolted on both sides.
5α ∈ [0◦, 1.1◦, 2.2◦, 3.2◦, 4.3◦, 5.3◦, 6.4◦, 7.5◦, 8.5◦, 9.5◦, 10.7◦, 12.8◦, 15.0◦, 17.1◦, 19.3◦, 21.4◦]
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around θ = π rad, illustrating the average polarization against gravity. However, as
gravity vanishes, we find an orientation distribution that is not statistically compatible
with the fully homogeneous one. This apparently paradoxical situation is simply due
to the presence of a finite initial tilt of our frame, that is of the order of 1◦6: while we
impose no slope, the setup’s initial tilt generates a preferred orientation against apparent
gravity, which is small, but finite.

The localization of these distributions (Fig. 7.1-e) is measured using the magnetization
m [P (θ)]. It is a function of the full orientation distribution and is defined as:

m [P (θ)] =
∣∣∣∣∫ 2π

0
eiθP (θ)dθ

∣∣∣∣. (7.1)

For an utterly homogeneous orientation distribution, such that P (θ) = 1/2π, we find
m = 0; while for a completely localized distribution, say at θ = θ0 and such that
P (θ) = δ(θ−θ0), we find m = 1. The magnetization can also be seen as the orientational
order parameter computed over time. Fig. 7.1-f illustrates the magnetization, measured
from the distributions of Fig. 7.1-e, as a function of the tilt α. We find that it increases
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FIG. 7.1. A frozen single particle polarizes against gravity. (a) Experimental setup
picture. The orientation of the polarity vector with respect to gravity is denoted θ; scale bar:
10 cm. (b) Model elastic structure’s cartoon and normal mode spectrum. (c) Active unit’s
orientation θ as a function of time t for small gravity (dark red), i.e. α = 0◦ (regime FD), and
large gravity (light red), i.e. α = 5.3◦ (regime FP). (d) Mean squared angular displacement
〈(θ(t+ τ)− θ(t))2〉t as a function of lag time τ for different gravity. Curves are color-coded from
dark to light red as gravity increases. The two dashed black lines represent the slopes 1 and 2.
(e) Distributions of orientation θ for different tilts α. Curves are color-coded from dark to light
red as gravity increases. The gray area corresponds to 1/2π. (f) Magnetization m as a function
of the tilt α; as obtained from experiments (markers, color-coded as in (d) and (e)), and from
Eq. (7.10) assuming zero initial tilt and ε/D = 5.0 (solid black line).

6Without imposing any tilt, a smartphone inclinometer indicates an angle of 0.5◦ in the direction of
gravity, and 1.3◦ orthogonally to it.
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from 0.3 to roughly 1 within the range 0 to 5◦, and saturates to a value close to 1 for
larger tilts. Again, the value 0.3 obtained from α = 0◦ translates the presence of a small
initial tilt of our frame.

7.2.2 Discussion

As displacements induced by the polar forces and gravity are very small in this system,
we can safely use the harmonic approximation. We start with the equations of motion
for a single active unit in a harmonic trap (see chapter 5):

u̇ = πn̂− ω2
0u, (7.2a)

ṅ = (n̂× u̇)× n̂+
√

2Dξn̂⊥, (7.2b)

where π = le/la = F0/kla is the elasto-active coupling, u (resp. n̂) is the displacement
vector with respect to the reference configuration (resp. polarity vector), ω2

0 is the
squared eigenfrequency associated with the two degenerated normal modes of the single
particle, D = αγ/kτ2 = Dθle/v0 is the noise amplitude and ξ is a Gaussian random
variable with zero mean and correlations 〈ξ(t)ξ(t′)〉 = δ(t− t′).

Gravity relevance within the harmonic approximation

In this section, we show that (i) gravity induces a force and a torque, the latter reori-
enting the active unit against gravity; and that (ii) for small enough gravity, the gravity
term in the force balance does not affect the dynamics of active solids and can be re-
casted into a change of reference configuration.

Gravity plays two roles in this system. The first one is an additional constant force in
the position dynamics, Eq. (7.2a). The second one is an additional torque in Eq. (7.2b),
reorientating the hexbugs in the direction opposite to gravity. The mechanism is similar
to the relaxation of a non-linear pendulum in a gravity field (Fig. 7.2-a). The angle θ
of a pendulum with the vertical direction obeys the following relaxation dynamics:

τ θ̇ = − sin(θ), (7.3)

where we have considered the overdamped limit, and where τ is the relaxation time.
This relaxation mechanism of the pendulum towards the vertical direction comes from
the mass distribution of the body the pendulum is made of (Fig. 7.2-b). Similarly, an
hexbug in its annulus can be seen as a pendulum in a gravity field (Fig. 7.2-c). Because
of its asymmetry, the mass of the hexbug is not distributed evenly along the body’s axis.
The barycenter being close to the tail, a torque is generated when the polarity is not
aligned with the gravity direction, reorientating the active unit. The new equations of
motions, considering these two effects, yield:

u̇ = πn̂− ω2
0u+ g̃αêg, (7.4a)

ṅ = (n̂× u̇)× n̂− ε(n̂× gα)× n̂+
√

2Dξn̂⊥, (7.4b)

where g̃α = mgα/kla is the dimensionless gravity force in the scheme chosen for Eqs.
(7.2), gα = g sinα, and ε compares the relative strength of the self-alignment and po-
larization terms. This quantity can be seen as the inverse relaxation time toward gravity.

Changing variable to ũ = u− g̃αeg/ω2
0 in Eq. (7.4a) allows to find back Eqs. (7.2), the

single particle’s position dynamics without gravity, while Eq. (7.4b) remains unchanged.
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FIG. 7.2. Gravity-induced polarization mechanism. (a-b) Relaxation of a non-linear
pendulum toward gravity, in the case of an idealized (a) and of a physical (b) pendulum. The
black markers (resp. red marker) represent the pinning points (resp. the center of mass) (c)
Polarization of a hexbug opposite to gravity. It originates from the hexbug’s mass asymmetry
(the center of mass lies close to the particle’s tail), which induces a torque reorienting the active
unit in the direction opposite to gravity; scale bars: 10 cm.

Therefore, within the harmonic approximation, gravity in the force balance boils down to
a change of reference configuration. However, and quite importantly, the new reference
configuration7 is different from the zero-gravity one, affecting the vibrational proper-
ties of the underlying elastic structure. This effect is characterized by the parameter
mgα/kl0: if the typical deformations induced by gravity mgα/k are small compared to
the rest length l0, then the reference configuration can be considered mostly unchanged.
Otherwise, full elasticity should be considered to properly take into account gravity and
determine the new reference configuration, around which the harmonic approximation
can still be used to model the dynamics, given the new vibrational properties.

Altogether, within the harmonic approximation, and considering small mgα/k such that
the harmonic well remains isotropic, the equations of motion read:

u̇ = πn̂− ω2
0u, (7.5a)

ṅ = (n̂× u̇)× n̂− ε(n̂× gα)× n̂+
√

2Dξn̂⊥, (7.5b)

where we have omitted the tilda on the displacement vector u (denoting the change
of reference configuration). The second term on the right-hand side of Eq. (7.5b) is
a polarization term, originating from gravity. It is equivalent to a change of Galilean
frame of reference traveling at velocity V = −εgα with respect to the reference frame of
the lab8, or to an interaction between the polarity vectors and a homogeneous magnetic
field.

Strictly frozen active unit in a gravity field

Let us focus on the frozen single-particle experiments described above. Consistently
with observations in real space, we consider that activity is very small as compared to
the elastic forces π � ω2

0, which implies that we can safely neglect the displacement
dynamics (u̇ ' 0) and focus on Eq. (7.5b). Neglecting the contribution from the
self-alignment term (first term on the right-hand side), we obtain the following simple
Langevin equation:

θ̇ = gαε sin θ +
√

2Dξ. (7.6)
7Obtained from spring-like elastic forces and gravity, in the absence of active forces.
8A tilted active solid experiment is equivalent to the same experiment without tilt, performed on a

treadmill moving at velocity V = −εgα



161 7.3. N particle systems with a polarizing field

The Fokker-Planck equation associated with Eq. (7.6) reads:

∂P

∂t
(θ, t) = ∂

∂θ

(
− gαε sin θP (θ, t)

)
+D

∂2P

∂θ2 (θ, t), (7.7)

where P (θ, t) is the probability distribution of the angle θ at time t. The stationary
probability distribution Pss(θ) satisfies:

Pss(θ) = N exp
(
−gαε
D

cos(θ)
)
, (7.8)

where N is a pre-factor. As expected, the distribution Pss(θ) is centered on θ = π rad,
and is as peaked as gαε/D is large. Imposing normalization of the probability density,
we find:

N = I0(gαε/D), (7.9)

where In(x) are the modified Bessel functions of first kind. With this explicit expression
of the probability density, we find the magnetization for a given ratio gαε/D:

m(gε/D) = |I1(gαε/D)− I1(−gαε/D)|
I0(gαε/D) + I0(−gαε/D) . (7.10)

Interestingly, this is exactly the expression for the magnetization of an XY spin sub-
mitted to an external field and thermal fluctuations, which respectively play the role
of the polarization term and angular noise. The prediction from Eq. (7.10) correctly
describes the experimental data (Fig. 7.1-f), and provides an approximate value for the
ratio ε/D ' 5.0.

Altogether, gravity boils down to a polarization term in the polarity dynamics of hexbugs,
which is equivalent to a change of Galilean frame of reference. Increasing the amplitude
of the polarizing field, we find that a single active unit in the FD regime continuously
transitions to a FP regime, polarized opposite to gravity. Below, we use gravity-induced
polarization as a tool to study the dynamics of active solids in the presence of a polarizing
field.

7.3 N particle systems with a polarizing field

7.3.1 Triangular lattices pinned at the edges

We start characterizing the effect of a polarizing field on a triangular lattice pinned at
the edges. Without gravity, we have seen in chapter 5 that this system is FD for small
enough activity, and performs Synchronized Chiral Oscillations (SCO) for large enough
activity, with a transition between the two that is essentially discontinuous.

We start exploring the influence of polarization on the SCO regime. We progressively
increase the polarizing field, i.e. gravity, in the direction represented in Figs 7.3-b and c,
denoted êg. To characterize the tendency of the active units to point along or perpen-
dicularly to gravity at the collective level, we define the longitudinal (resp. transverse)
polarizations:

M‖/⊥(t) = 1
N

∑
i

n̂i(t) ·
(
−eg/e⊥g

)
, (7.11)

where the vector e⊥g is the unit vector orthogonal to eg. These quantities are bounded
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between −1 and 1 and say how strongly polarized the active units are, along or orthog-
onally to the direction opposite to gravity.

For small enough polarizing fields, we find that SCO is preserved (Fig. 7.3-a). SCO is
characterized by a spontaneous polarization in a direction that rotates with time. There-
fore, the transverse and longitudinal polarizations oscillate with a phase shift of π/2 or
3π/2 depending on the spontaneously broken chirality (Fig. 7.3-d). As the amplitude
of the polarizing field increases, we find that SCO transforms into a new dynamical
regime: the system polarizes longitudinally, and performs synchronized oscillations in
the transverse direction (Fig. 7.3-b). In this regime, the so-called Synchronized Wind-
screen Wiper (SWW), the transverse polarization oscillates with a smaller frequency
than SCO, and the longitudinal polarization is large and never changes sign, while being
modulated at twice the frequency of the transverse oscillations (Fig. 7.3-e). Finally, for
large enough polarizing fields, the amplitude of the transverse oscillations vanishes, and
the system freezes with a longitudinal polarization close to one (Figs. 7.3-c and f). This
is the so-called Frozen-Polarized (FP) regime. Altogether, we find that the presence of
a polarizing field transforms SCO into SWW, and large enough polarization stabilizes
the FP regime in the direction opposite to gravity.

Motivated by the above preliminary observations, we now study square lattices pinned
at opposite ends. Such systems have the advantage of exhibiting pairs of locally-
orthogonal normal modes, respectively the transverse and longitudinal modes (see chap-
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FIG. 7.3. Synchronized Chiral Oscillations (SCO) with a polarizing field. Triangular
lattice pinned at the edges (N = 19, α = 1.27) for different gravity. As the amplitude of the
polarizing field increases, SCO (a) are replaced by SWW (b), and finally by a FP regime (c).
(a-c) Experimental snapshots. Red arrows: polarities n̂i; trajectories color-coded from blue to
red with increasing time; scale bars: 10 cm. (d-f) Transverse M⊥ (red) and longitudinal M‖
(black) polarizations as a function of time, in the same conditions as (a-c). The gray areas
illustrate the range inside which is expected to lie the polarizations for purely random spins,
that is

[
− 1/

√
N, 1/

√
N
]
. (a/d) α = 0◦, (b/e) α = 10.7◦, (c/f) α = 21.4◦.
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ter 5). Therefore, gravity can be assigned to be strictly perpendicular to the activated
modes of those systems, which could arguably simplify the physics.

7.3.2 Square lattices pinned at opposite ends

We consider square lattices of stiff springs with rectangular shapes, composed of L
(resp. W ) active units along the long (resp. short) direction of the structure (Fig. 7.4).
The pinning condition imposes that the first and last columns of the square lattice are
fixed, so that the extension of the springs in the structure along the long direction is
(leq−l0)/l0 ' 0.289 in the stressed reference configuration. Once doped with active units,
we call such structures active ladders. Their normal mode spectrum is very gapped: the
first transverse mode |ϕ⊥,1〉 (Fig. 7.4, bottom) has a low energy ω2

⊥,1, comparable with
π, and all the other modes have way larger energies and cannot be activated.

Eventually, in order to vary both the amplitude of the polarizing field, and the ratio
between the elasto-active coupling π and the energy of the first transverse mode ω2

⊥,1,
we keep the size L and springs extension constants and perform the experiments with
W going from 2 to 4. The wider the structure, the stiffer the first transverse mode10,
and thus, the lower the ratio π/ω2

⊥,1.

Experimental observations

The polarizing field is applied along the longitudinal direction, i.e. eg = −e‖, so that
the longitudinal (resp. transverse) polarization defined in Eq. (7.11) corresponds to the
polarization along the long direction, i.e. e‖ (resp. short direction, i.e. e⊥) of the ladder
(Fig. 7.4). Let us start by describing the observations at zero gravity.

|ϕ⊥,1〉
L

W

Ltot

d

(k,l0)

gα

e‖
e⊥

FIG. 7.4. Active ladder architecture. Experimentally, the length L = 12, and W ∈ [2, 3, 4].
The unit vector e⊥ (resp. e‖) denotes the direction transverse (resp. longitudinal) to the long
direction of the ladder. The gravity force is applied along −ê‖. (bottom) Representation of the
lowest-energy, first transverse mode |ϕ⊥,1〉.

9The pinning condition imposes Ltot ' 109.8 cm; while, in the absence of pre-stress Ltot,0 = Ld +
(L+ 1)l0 ' 99.0 cm. Therefore, (Ltot − Ltot,0)/Ltot,0 ' 0.11, and because the annuli are inextensible:

leq − l0
l0

= Ltot − Ltot,0
Ltot,0

(
1 + L

L+ 1
d

l0

)
,

where leq is the length of the longitudinal springs is the stressed reference configuration. The other
quantities are defined in Fig. 7.4.

10Note that this stiffening is not present if one considers simply central-forces springs on an idealized
springs network, but is related to the finite bending and shear moduli of the real springs used, and to
the finite size of the annuli.
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NICA. At zero gravity, we find that large enough activity triggers the emergence of a
new form of CA along the first transverse mode, which we shall call Noise-Induced CA
(NICA), as we will see that it only takes place in the presence of angular noise.

On the one hand, for stiff enough transverse modes (large enough W ), the system is
Frozen-Disordered (FD): both the transverse and the longitudinal polarizations are small
(Fig. 7.5-f), and so are displacements (Fig. 7.5-c). On the other hand, for soft enough
structures (π/ω2

⊥,1 large enough), the system oscillates spontaneously along the trans-
verse direction (Figs. 7.5-a and d). The longitudinal polarization remains relatively
small, and lies within the range expected for random independent spins (Figs. 7.5-d and
e), confirming that no longitudinal modes are spontaneously activated. We also find
that the period is not completely well-defined.

This CA regime is very different from SCO and GAR in the sense that it corresponds to
the activation of a single mode. We have shown in chapters 5 and 6 that CA requires at
least two modes to develop spontaneously in the absence of noise. We thus conjecture
that this new dynamical regime is noise-induced. We checked numerically that, indeed,
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FIG. 7.5. Noise-Induced Collective Actuation (NICA) in square lattices. Active ladders
at zero gravity for different widths. For soft enough ladders (small enough W ), the system
performs NICA. (a/d) W = 2 (N = 24), (b/e) W = 3 (N = 36), (c/f) W = 4 (N = 48). (a-c)
Experimental snapshots of the active ladder dynamics. Red arrows: polarities n̂i; trajectories
color-coded from blue to red with increasing time; scale bars: 10 cm. (d-f) Transverse M⊥ (red)
and longitudinal M‖ (black) polarizations as a function of time, in the same conditions as (a-c).
The gray areas illustrate the range inside which is expected to lie the polarizations for purely
random spins, that is
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if the elasto-active coupling π is larger than ω2
⊥,1 but smaller than the energy of any of

the longitudinal modes, CA emerges only in the presence of angular noise; otherwise,
the system is frozen, polarized along the transverse direction. It is thus angular noise
that is responsible for the transverse polarization reversal at each period: every spin
reverses direction from ê⊥ to −ê⊥ independently, choosing randomly the direction ê‖
or −ê‖ at every turnaround. This is why the longitudinal polarization remains small
during the dynamics. Finally, note that the oscillation frequency seems to increase as
the transverse mode gets stiffer (Figs. 7.5-d and e).

NICA with a polarizing field. Now, we switch on the polarizing field in the longi-
tudinal direction (Fig. 7.4). For soft enough structures (π/ω2

⊥,1 large enough), NICA
emerges, as discussed above (Figs. 7.6-c and f). Increasing the amplitude of the po-
larizing field in the longitudinal direction, we find that NICA progressively transforms
into SWW (Figs. 7.6-a,b,d, and e). Indeed, instead of alternatively activating the first
transverse mode with stochastic turnarounds, the turnarounds are more and more biased
in the longitudinal direction ê‖, which changes the nature of the oscillation. Progres-
sively, the role of angular noise vanishes, and the turnarounds result from orientational
elasticity, which induces a restoring torque in the longitudinal direction. In the SWW
regime, the longitudinal polarization is large, oscillating at twice the frequency of the
transverse one (Fig. 7.6-d). Increasing the amplitude of the polarizing field, we find
that the longitudinal polarization increases monotonically (Figs. 7.7-b and c). However,
we find very little effect of gravity on the transverse oscillations, whose amplitudes are
mostly constants, roughly equal to 0.4

√
2 ' 0.57 (Figs. 7.7-a and b). Eventually, as

observed for triangular lattices, for even larger polarization fields, the amplitude of the
transverse oscillations vanishes, and the system is FP (Fig. 7.8-a and e).

Polarization-induced reentrance. We now apply a polarizing field to the FD regime,
observed for small enough π/ω2

⊥,1 (with W = 4). First, we find that small polarizing
fields transform the FD regime into a FP regime: the transverse polarization remains
small, and the longitudinal polarization increases monotonically (Figs. 7.8-c and g).
Crucially, we find that increasing the amplitude of the polarizing field at fixed activity
can induce a transition from the FP to the SWW regime (Figs. 7.8-b and f). This is illus-
trated in Fig. 7.7-a, where we find that for great enough polarizing fields, the transverse
polarization abruptly increases while the longitudinal polarization decreases, highlight-
ing a change of regime. This phenomenon is denoted Polarization-Induced Reentrance
(PIR) transition to SWW. Therefore, polarized frozen phases are more prone to desta-
bilize transversally than disordered ones: the geometry of the frozen phase affects its
stability.

7.3.3 Summary of observations

First, we have found a new CA regime, which corresponds to the spontaneous back-
and-forth activation of the lowest energy mode. In this so-called NICA regime, angular
noise plays a crucial role, allowing for polarization reversal at each period. Then, we
applied homogeneous polarizing fields to triangular and square lattices. In agreement
with the benchmark experiments of section 7.2, we find that the FD regime continuously
transforms into FP regimes, polarized along the direction opposite to gravity. In contrast,
the salient features of CA with a polarizing field are three-fold:
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FIG. 7.6. NICA with a transverse polarizing field. Experimental snapshots of the W = 2
active ladder (N = 48) for small, i.e. α = 0◦ (c), intermediate, i.e. α = 8.5◦ (b), and large,
i.e. α = 10.7◦ (a), gravity. Red arrows: polarities n̂i; trajectories color-coded from blue to
red with increasing time; scale bars: 10 cm. (d-f) Transverse M⊥ (red) and longitudinal M‖
(black) polarizations as a function of time, in the same conditions as (a-c). The gray areas
illustrate the range inside which is expected to lie the polarizations for purely random spins,
that is
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FIG. 7.7. Polarizations as a function of gravity. Root mean squared transverse
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(red) and longitudinal
√
〈M2
‖ 〉 (black) polarizations as a function of the imposed tilt α; forW = 4

(a), W = 3 (b), W = 2 (c). The gray areas illustrate the range inside which is expected to lie
the root mean squared polarizations for purely random spins, that is
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√
N
]
. The green area

in (a) highlights the range inside which PIR transition is observed.
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a function of time, in the same conditions as (a-d). The gray areas illustrate the range inside
which is expected to lie the polarizations for purely random spins, that is
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(i) Independently of the zero-gravity CA regime, increasing the polarizing field’s am-
plitude leads to SWW regimes, which correspond to spontaneous transverse oscil-
lations with a large longitudinal polarization.

(ii) Large enough polarizing fields stabilize the FP regime.

(iii) Polarization decreases the activity threshold for CA, leading to PIR.

In the rest of this chapter, combining numerical simulations and theoretical analysis, we
decipher the mechanisms at the origin of NICA and of the three attributes of CA with
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a polarizing field. First, we perform the complete analysis of the single particle with a
polarizing field. Then, using the coarse-grained model derived in chapter 5, we explain
the origin of NICA, and show that PIR is a purely collective effect, inherited from the
differential stability of the FD and FP phases.

7.4 Single particle actuation with a polarizing field
We start by analyzing the physics of a single particle with a polarizing field, which is the
first ingredient of understanding. We consider the elastic structure discussed in chapter
5 in the absence of gravity, and represented in Figs. 7.10-c, e, g and i. It is made of a
single active unit connected to the three static vertices of a regular triangle (Fig. 7.10),
using soft springs (see chapter 2). This structure has two degenerated normal modes,
whose energy is denoted ω2

0. The springs extension in the reference configuration is
always kept fixed, equal to α = l/l0 ' 1.16, imposing ω2

0 ' 1.70, and the elasto-active
coupling π is varied by tuning the length of the soft springs, like in chapter 5. The
displacement and polarity vectors are expressed in polar coordinates, notations being
defined in Fig. 7.9.

Let us remind the results without gravity (see chapter 5). For π < ω2
0, an infinite set of

marginally stable fixed points forms a circle of radius R = π/ω2
0: the system is frozen.

In the presence of angular noise, the particle can explore all the equivalent orientations,
and we say the system is FD. For π > ω2

0, all such fixed points are unstable, and a
limit cycle of radius R =

(
π/ω2

0
)1/2 and frequency Ω = ω0

√
π − ω2

0, the so-called Chiral
Oscillations (CO) regime, branches off continuously.

7.4.1 Experimental observations

At small enough gravity, the zero-gravity regimes are just decorated. As activity in-
creases, the system goes from a FD regime, where angular diffusion allows to visit all
possible fixed points configurations θ = ϕ (Fig. 7.10-g), to a CO regime (Fig. 7.10-i),
with finite γ = θ − ϕ, driving the system in rotation. These two regimes are best il-
lustrated by measuring the probability density in the plane θ − ϕ, integrated over four
minutes acquisitions. In the FD regime, the system indeed always lies close to θ = ϕ
(Fig. 7.10-h). However, the presence of a small polarization term, originating from the
tilt of our frame, induces a preferred orientation close to θ = 3π/2 rad. For the same
reason, in the CO regime, γ is not constant but is modulated in time at the same rate
as the rotation frequency (Fig. 7.10-j). Consistently with the results of chapter 5, the

R

gα n̂

u

ϕ

θ

γ

FIG. 7.9. Notations for the single particle with gravity. R and ϕ are the polar coordinates
components of the displacement vector u, and θ is the orientation of the polarity vector n̂. All
angles are defined with respect to gravity, and we denote γ = θ − ϕ.
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transition happens around π/ω2
0 = 1 (Fig. 7.10-a).

For larger gravity, however, the scenario is entirely different. Consistently with the
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FIG. 7.10. Single particle experiments with a polarizing field. (a) Experimental phase
diagram. Markers represent the different experiments and are color-coded by the dominant
dynamical regime; blue squares: frozen (FD and FP), light green circles: WW, dark green
diamonds: CO, dark green diamond inside light green circles: coexistence between WW and
CO. The top and bottom solid black lines represent respectively π = ω2

0 + gε and π = ω2
0 + 3gε.

(b) Magnetization m as a function of gravity gε/ω2
0 for various activity π/ω2

0 ∈ [0.74, 1.08, 1.24]
(stars in (a)), as obtained from experiments; same color and marker code as (a). (c/e/g/i)
Experimental realizations of the four different dynamical regimes in real space. Red arrows:
polarities n̂i; trajectories color-coded from blue to red with increasing time; scale bars: 10 cm.
(d/f/h/j) pdf in the plane (θ,ϕ), integrated over the whole dynamics. The white dot (resp. solid
white line) represents the configuration (θ,ϕ)=(π,π) (resp. θ = ϕ). When relevant, the white
arrows indicate the main dynamics direction (it is omitted in panels (d) and (h) because the
dynamics are diffusive or frozen). (i/j) CO regime (π/ω2

0 = 1.24, gε/ω2
0 = 0.0). (e/f) WW

regime (π/ω2
0 = 1.24, gε/ω2

0 = 0.11). (g/h) FD regime (π/ω2
0 = 0.91, gε/ω2

0 = 0.0). (c/d) FP
regime (π/ω2

0 = 0.91, gε/ω2
0 = 0.08).
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benchmark experiments of section 7.2, we find that the small-activity FD regime polar-
izes against gravity: angular noise does not allow the active unit to visit all orientations
anymore, and the system is FP, i.e. sits close to θ = ϕ = π rad (Figs. 7.10-c and d).
Increasing activity leads to a new dynamical regime, the so-called Windscreen Wiper
(WW) regime (Figs. 7.10-e and f). In this regime, the system oscillates around the
configuration θ = ϕ = π rad in the θ − ϕ plane, which translates in real space into a
back-and-forth motion perpendicularly to gravity, polarized opposite to gravity. We also
find that the activity threshold below which the frozen regime is the only stable one
increases with gravity (Fig. 7.10-a). For the largest gravity explored experimentally, we
only find FP regimes. Eventually, increasing further activity leads, after some coexis-
tence region, to the CO regime.

Lastly, we measure the magnetization m as a function of gravity gε/ω2
0 for various values

of activity π/ω2
0, above and below the threshold π = ω2

0 (Fig. 7.10-b). Consistently with
the previous section, for π < πc, the system is frozen and progressively polarizes accord-
ing to Eq. (7.10), which solely relies on the ratio gε/D. For π > πc, the magnetization
increases from 0 to 1 over a typical gravity range that now depends on and increases
with activity.

7.4.2 Numerical simulations

Our understanding of the different phases and transitions between them is limited by
our ability to fine-tune the experiment’s parameters. We escape this by simulating Eqs.
(7.5), without noise (D = 0), and start by identifying precisely the phase boundaries.
This is done by performing annealing simulations with decreasing gravity and various
values of activity π/ω2

0 between 1 and 10. We find the phase diagram presented in Fig.
7.11-a.

Numerical observations are consistent with experiments within the gravity and activity
ranges explored. Below the threshold π = ω2

0, the system is FP; any finite amount
of gravity polarizes the frozen regime. Above the threshold, we find the CO, then
WW and FP regimes as one increases gravity (Fig. 7.11-a). In particular, for π <
πc = ω2

0 + gε, we only find FP regimes. Notably, for large enough activity/gravity, in
between the WW (Fig. 7.11-e) and CO (Fig. 7.11-c) regimes, we find a stable limit
cycle that alternates in time between their respective properties (Fig. 7.11-d), and
that is termed the Second Windscreen Wiper (WW2) regime. Below a certain activity
threshold, this regime disappears, and the system transitions directly from CO to WW
as gravity increases or activity decreases (Fig. 7.11-a); around π = π? = ω2

0 + 3gε,
which is consistent with experimental observations (Fig. 7.10-a). We also perform three
gravity annealing simulations with the same parameters as the experiments shown in Fig.
7.10-b. The magnetization m as a function of gravity found numerically (Fig. 7.11-b) is
consistent with experimental results, but essential differences must be noted. While, in
noiseless simulations, the magnetization of FP regimes is strictly 1; in the experiments,
angular noise imposes that it saturates below 1. Moreover, the time coexistence between
the CO and the WW regimes observed in experiments is replaced by clearly separated
dynamical regimes, with well-defined magnetization m.

7.4.3 Discussion

Altogether, the experimental and numerical study of the single particle with a polarizing
field is consistent with the preliminary observations in triangular lattices pinned at the
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FIG. 7.11. Noiseless single-particle with a polarizing field. (a) Numerical phase diagram.
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m as a function of gravity gε/ω2

0 for various activity π/ω2
0 ∈ [0.74, 1.08, 1.24] (the same as Fig.

7.10-b), as obtained from simulations. (c-e) Different dynamical regimes attractors in the XY
(top) and θ-ϕ planes (bottom) for π/ω2

0 = 3.95; (c) CO regime (gε/ω2
0 = 0.62), (d) WW2 regime

(gε/ω2
0 = 1.15), (e) WW regime (gε/ω2

0 = 2.23). The dashed black lines represent the different
zero-gravity fixed points (R0 = π/ω2

0 ,γ0 = 0), the blue dots highlighting the one pointing against
gravity. The green lines represent the two CO regimes (R =

√
π/ω0,cos γ = ±ω0/

√
π).

edges. The four regimes observed at the collective level - FP, FD, SCO, and SWW - find
analogous regimes at the single particle level, the regimes FP, FD, CO, and WW.

In the following, we analyze Eqs. (7.5) and explain the origin of the different dynamical
regimes at the single particle level. Note that this work was done in collaboration
with Vincent Démery, who determined the mapping with the underdamped nonlinear
pendulum close to the exceptional point (see below).
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One particle dynamics in a gravity field

Real space. We remind the equations discussed at the beginning of this chapter, Eqs.
(7.5), describing the dynamics of the single particle with a polarizing gravity field:

u̇ = πn̂− ω2
0u, (7.12a)

ṅ = (n̂× u̇)× n̂− ε(n̂× gα)× n̂, (7.12b)

where we have omitted angular noise. Note that we have placed ourselves within the
harmonic approximation and assumed that the change of reference configuration in-
duced by gravity is small enough to be neglected. Nevertheless, this assumption can
be approximatively assessed for the experiments presented in Fig. 7.10. We estimate
the reference configuration by measuring the average position of the active unit over
the whole dynamics. We find that, for the largest gravity explored, the reference con-
figuration is shifted toward gravity by typically 0.2l0, which induces an increase (resp.
decrease) of the energy of the transverse (resp. longitudinal) mode by typically 18%.
Notwithstanding this effect, we still neglect it in the following for simplicity.

Polar real space. In polar coordinates, the above equations yield:

Ṙ = π cos(γ)− ω2
0R, (7.13a)

ϕ̇ = π

R
sin(γ), (7.13b)

γ̇ =
(
ω2

0R−
π

R

)
sin(γ) + gαε sin(γ + ϕ), (7.13c)

where we remind the definitions of R, ϕ and γ = θ − ϕ in Fig. 7.9.

Fixed points stability analysis

We look for fixed points of the dynamics such that Ṙ = ϕ̇ = γ̇ = 0. We find that they
satisfy:

R0 = π

ω2
0

cos(γ0), (7.14a)

sin(ϕ0) = 0, (7.14b)
sin(γ0) = 0, (7.14c)

where the only possible value of γ0 is zero, because the solution γ0 = π rad gives
negative radius R. Contrary to the zero-gravity case, we find that all configurations of
the polarity field are not fixed points: only the configurations along (ϕ0 = 0 rad) and
against (ϕ0 = π rad) gravity are fixed points of the dynamics. Let us evaluate their
stability. We introduce R = R0 + δR, ϕ = ϕ0 + δϕ, γ = δγ, and write, at first order in
small quantities, the linearized dynamics around the fixed points. It gives:

˙δR = −ω2
0δR, (7.15a)

˙δϕ = ω2
0δγ, (7.15b)

˙δγ = gαε cosϕ0δϕ+
(
π − ω2

0 + gαε cosϕ0
)
δγ. (7.15c)

The eigenvalue problem reduces to find λ such that

(λ+ ω2
0)
[
λ2 − λ

(
π − ω2

0 + gαε cosϕ0
)
− gαε cosϕ0

]
= 0. (7.16)

The eigenvalue along the radial direction is always negative (λR = −ω2
0). The stability

of the configurations ϕ0 = {0, π} rad is encoded in the two eigenvalues along ϕ and γ.
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Without gravity gα = 0. With this sanity check, we recover the usual result of the
symmetric single particle (λϕ = 0, λγ = π − ω2

0), see Figs. 7.12-a and d. All fixed
points are equivalent and marginally stable for π < ω2

0, and unstable for π > ω2
0. The

bifurcation results from one eigenvalue turning positive and invariance by rotation.

Finite gravity gα > 0. For gα > 0, one finds that the nature of the bifurcation is
modified:

• Configuration along gravity ϕ0 = 0 rad. Eq. (7.16) transforms into:

(λ+ ω2
0)
[
λ2 − λ

(
π − ω2

0 + gαε
)
− gαε

]
= 0. (7.17)

For any finite gα, a positive eigenvalue always exists (Figs. 7.12-b and c), and the
configuration is unconditionally unstable.

• Configuration against gravity ϕ0 = π rad. Eq. (7.16) transforms into:

(λ+ ω2
0)
[
λ2 − λ

(
π − ω2

0 − gαε
)

+ gαε
]

= 0. (7.18)

Stability now depends on π/ω2
0 and gαε/ω2

0 (Figs. 7.12-e and f). We find that the
stability threshold expresses as follows:

πc = ω2
0 + gαε, (7.19)
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FIG. 7.12. Fixed points stability analysis with a polarizing field. Solutions of the
eigenproblem Eq. (7.16) as a function of activity π/ω2

0 for increasing amplitude of the polarizing
field. Blue (resp. red) curves represent the solutions’ real (resp. imaginary) part. The squared
eigenfrequency ω2

0 is fixed and equals one. (a-c) Fixed point along gravity ϕ0 = 0. (d-f) Fixed
point against gravity ϕ0 = π rad. (a/d) No gravity gαε = 0.0; (b/e) small gravity gαε = 0.01;
(c/f) larger gravity gαε = 0.1.
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which corresponds to the numerical data (Figs. 7.11-a and 7.12-f). Consistently
with observations in large N lattices, gravity stabilizes the FP regime. Close to
this threshold, the general form of the eigenvalues solutions of Eq. (7.18) are:

λϕ,γ = 1
2 (π − πc)±

i

2

√
4gαε− (π − πc)2. (7.20)

Therefore, in the absence of noise, any finite gravity gα polarizes the frozen con-
figurations, and the only remaining fixed point is oriented against gravity. When
activity exceeds the threshold πc = ω2

0 + gαε, the FP regime destabilizes through a
Hopf bifurcation. Indeed, at threshold π = πc = ω2

0 +gαε, the eigenvalues are com-
plex conjugate, equal to ±i√gαε, and their real parts turn positive (Figs. 7.12-e
and f).

Close to the exceptional point

Now we focus on the physics close to (π/ω2
0 = 1, gε = 0), which is an exceptional point,

as demonstrated below. Starting from Eqs. (7.13), we change variables to θ = θ + π,
ϕ = ϕ+ π so that the polarized fixed point is θ = ϕ = 0:

Ṙ = π cos(γ)− ω2
0R, (7.21a)

ϕ̇ = π

R
sin(γ), (7.21b)

γ̇ =
(
ω2

0R−
π

R

)
sin(γ)− gαε sin(γ + ϕ). (7.21c)

We define ∆ = (π − ω2
0)/ω2

0, ρ = R− 1, G = gε/ω2
0. Rescaling time by ω2

0, we obtain:

ρ̇ = (1 + ∆) cos(γ)− 1− ρ (7.22a)

ϕ̇ = 1 + ∆
1 + ρ

sin(γ), (7.22b)

γ̇ =
(
ρ− ρ−∆

ρ+ 1

)
sin(γ)−G sin(γ + ϕ). (7.22c)

We are interested in the limit ∆ → 0, G → 0. Based on numerical simulations, we
expect the following regimes:

• ∆ > 3G: regime CO.

• G < ∆ < 3G: regime WW.

• ∆ < G: regime FP.

Rescaling. The scaling of the transition lines suggests different limit behavior when
∆→ 0 with G/∆ constant, as a function of G/∆. To identify the asymptotic solutions
to the equations of motion, we rescale the different quantities with ∆. The case without
gravity suggests:

ρ(t) = ∆ρ̃(
√

∆t), (7.23a)
φ(t) = φ̃(

√
∆t), (7.23b)

γ(t) =
√

∆γ̃(
√

∆t), (7.23c)
G = ∆G̃. (7.23d)

Inserting these scaling forms in the equations of motion and taking the limit ∆→ 0, we
next separate the different orders in ∆.
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Zeroth-order: the pendulum. At zeroth order, we find:

ρ̃ = 1− γ̃2

2 , (7.24a)
˙̃ϕ = γ̃, (7.24b)
˙̃γ = −G̃ sin(ϕ̃). (7.24c)

ρ̃ is actually a fast variable, which relaxes instantaneously to 1− γ̃2/2 in the limit ∆→ 0
(Eq. (7.24a)). The equations for ϕ̃ and γ̃ describe an underdamped pendulum (Eqs.
(7.24b) and (7.24c)): ¨̃ϕ = −G̃ sin ϕ̃. Interestingly, the pendulum contains both a small-
energy oscillating regime, which would correspond to the WW regime, and a large-energy
running regime, which would correspond to the CO regime. However, there is nothing to
select the orbit, which only depends on the initial conditions. For instance, the energy

E = γ̃2

2 − G̃ cos ϕ̃, (7.25)

is conserved.

Exceptional point. Exceptional points are spectral singularities in the parameter
space of a system in which two or more eigenvalues, and their corresponding eigen-
vectors, simultaneously coalesce [172, 186]. Such degeneracies are peculiar features of
nonconservative systems that exchange energy with their surrounding environment.

Let us show that (gε/ω2
0 = 0,π/ω2

0 = 1) is an exceptional point of Eqs. (7.13). We start
from the zeroth-order equations close to (gε/ω2

0 = 0,π/ω2
0 = 1):

˙̃ϕ = γ̃, (7.26a)
˙̃γ = −G̃ sin ϕ̃, (7.26b)

where we restrict to ϕ̃ and γ̃, ρ̃ being a fast variable at zeroth-order. Linearizing close
to the FP fixed points, we find:

d

dt

(
ϕ̃
γ̃

)
=
(

0 1
−G̃ 0

)(
ϕ̃
γ̃

)
. (7.27)

The eigenvalues of the above matrix are ±i
√
G̃, and are respectively associated with the

eigenvectors
t
(1,±i

√
G̃). This convincingly demonstrates that (gε/ω2

0 = 0,π/ω2
0 = 1) is

an exceptional point.

First-order: energy drift. To the next order in ∆, Eq. (7.24c) for γ̃ has another
term:

˙̃γ = −G̃ sin ϕ̃+
√

∆γ̃
[
1− γ̃2 − G̃ cos ϕ̃

]
, (7.28)

where we have used Eq. (7.24a) to eliminate ρ̃. Eqs. (7.24a) and (7.24b) are modified
only at order ∆. This new term introduces an energy drift:

Ė =
√

∆γ̃2
[
1− γ̃2 − G̃ cos ϕ̃

]
= 2
√

∆
[
E + G̃ cos ϕ̃

] [
1− 2E − 3G̃ cos ϕ̃

]
, (7.29)

which can be computed for any orbit of energy E using the exact expressions of the
pendulum solutions11. Eq. (7.29) is the central result of this section. Using it, one can

11The exact solutions of the underdamped pendulum equation:

d2θ

dt2
= −G̃ sin θ (7.30)
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find the energy drift averaged over one period (remember that the drift is slow, so that
the energy is almost constant over a period):

δE = 〈Ė〉T =
∫ T

0
Ė(t)dt. (7.33)

For a given value of G̃, to any orbit of energy E is associated an averaged energy drift
δE(E, G̃). If, for such orbit, δE > 0 (resp. δE < 0), the energy drift increases (resp.
decreases) energy over time. Equilibrium orbits satisfy δE = 0, and to be stable they
also require ∂δE/∂E < 0. Therefore, for a given value of G̃ = G/∆, one can find the
stable orbits spontaneously selected by the energy drift (Figs. 7.13-a and b). We can
study explicitly the limiting cases of very large and very small energies.

• E � G̃. When the energy is very large, we are in the fast chiral state with
ϕ̃(t) '

√
2Et. Averaging over a period the energy drift, we get at leading order:

δE = 2
√

∆E(1− 2E). (7.34)

This is negative for large E > 1/2, hence the energy decays.

• E � G̃. On the contrary, if the energy is small, then the amplitude ϕ̃m � 1, and
we can expand the cosine in Eq. (7.29). At leading order, we get:

Ė =
√

∆G̃(1− G̃)(ϕ̃2
m − ϕ̃2). (7.35)

Averaging over a period with 〈ϕ̃2〉T = ϕ̃2
m/2, we get:

δE =
√

∆
2 G̃(1− G̃)ϕ̃2

m. (7.36)

We find that if G̃ > 1, δE < 0: the minimum energy state is stable; this is the FP
regime. Conversely, if G̃ < 1, the minimal energy state is unstable, so we are in
regimes WW or CO.

can be expressed using the Jacobi elliptic functions [187]. Defining the total energy E = θ̇2/2− G̃ cos θ,
it can be shown that:

• For E < G̃, solutions are bounded, and:

T = 4K(k2)/
√
G̃, (7.31a)

θ(t) = 2 arcsin
(
ksn
{√

G̃
(
T

4 − t
)

; k2
})

. (7.31b)

• For E > G̃, solutions are unbounded, and:

T = 4K(1/k2)/
√

2
(
E + G̃

)
, (7.32a)

θ(t) = 2 arcsin
(
sn
{
t

√(
E + G̃

)
/2; 1/k2

})
. (7.32b)

where k = 1√
2

√(
1 + E

G̃

)
, K(m) is the complete elliptic integral of the first kind, and where sn(u;m)

refers to the Jacobi elliptic functions. The solutions are represented in Fig. 7.13-c
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Energy drift on the heteroclinic orbit. In order to decide whether the system is
in the WW or CO regime, we compute the energy drift for the heteroclinic orbit, E = G̃.
For E ≥ G̃, ϕ̃ explores [0, 2π], so that we can change variables in Eq. (7.33):

δE =
∫ 2π

0
Ė(ϕ̃) dt

dϕ̃
dϕ̃, (7.37)

where
dt

dϕ̃
= γ̃−1 =

(
2
[
E + G̃ cos ϕ̃

])−1/2
, (7.38)

so that

δE =
√

2∆
∫ 2π

0

[
E + G̃ cos ϕ̃

]1/2 [
1− 2E − 3G̃ cos ϕ̃

]
dϕ. (7.39)
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FIG. 7.13. Mapping with the underdamped nonlinear pendulum. (a) Energy drift δE
as a function of E/G̃ for different values of G̃, as obtained from Eq. (7.29). Stable orbits are
highlighted with a red marker. (b) Zoom on (a) close to E/G̃ = 1 for different values of G̃;
emphasizing the hysteresis range. (c) Exact solutions to the pendulum equation θ̈ = −G̃ sin θ
[187] for different energies E/G̃ in the plane θ− θ̇, where E = G̃ denotes the heteroclinic orbit’s
energy (solid black line). (d) Phase portrait of two transient regimes at G̃ = 1/3, with initial
energies E = G̃ ± δ, i.e. slightly above and slightly below the heteroclinic orbit’s energy. The
trajectories are color-coded from blue to red as time increases. The dashed black line represents
the separatrix. The stationary regimes obtained correspond to the stable orbits shown in panels
(a-b) for G̃ = 1/3.
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Applying to the heteroclinic orbit, E = G̃, we have:

δE =
√

2∆G̃
∫ 2π

0
[1 + cos ϕ̃]1/2

[
1− 2G̃− 3G̃ cos ϕ̃

]
dϕ. (7.40)

This last integral can be computed exactly and yields:

δE = 8
√
G̃(1− 3G̃). (7.41)

Hence:

• if G̃ > 1/3, the energy decays on the heteroclinic orbit: this is regime WW;

• if G̃ < 1/3, the energy increases on the heteroclinic orbit: this is regime CO.

Semi-analytic general solutions. Computing Eq. (7.33) using Eq. (7.29) and the
exact expressions of the pendulum solutions, Eqs. (7.31) and (7.32), we find the energy
drift δE for any value of G̃ (Figs. 7.13-a and b). The results confirm the asymptotic and
heteroclinic cases. For G̃ = 1/3, we actually report two stable solutions, one bounded
(E < G̃) and one unbounded (E > G̃). This is the hallmark of a hysteresis: two
stable solutions coexist within a given range of G̃. For large enough gravity G̃ > G̃+ '
0.3357, the only stable solution is bounded, corresponding to a WW regime. In contrast,
for small enough gravity G̃ < G̃− ' 0.3314, the only stable solution is unbounded,
corresponding to a CO regime. Within the range G̃− < G̃ < G̃+, the initial condition
sets the stationary solution reached by the system. Eventually, note that in the limit
∆ → 0, the dynamics is slow as it scales like

√
∆. The energy drift is even slower and

scales as ∆, indicating that the transient regime is slower and slower as the exceptional
point is approached.

Numerical simulations. First, we confirm the predicted hysteresis. We simulate Eqs.
(7.5), placing ourselves at G̃ = 1/3 for very small gravity gε = 10−4. We simulate twice
the dynamics, starting from two initial conditions, which, within the above mapping,
have energies E = G̃ ± δ, i.e. slightly below and slightly above the heteroclinic orbit’s
energy. We find that both initial conditions converge toward the stable orbits predicted
using the semi-analytic approach (Fig. 7.13-d). The transient regime is very long,
as expected close to the exceptional point. Having confirmed the hysteresis, we now
perform an annealing simulation, slowly varying G̃ back-and-forth around 1/3, keeping
gε = 10−4. We compare the main frequency of oscillation of ϕ (obtained from the
largest peak of its FFT) to the frequency of the stable pendulum solutions found from
the semi-analytic approach. We find a perfect agreement between the predictions and
the numerical data (Fig. 7.14-b), with an evident hysteresis loop, that span a very small
range of G̃. Note that this hysteresis was not seen in the simulations of Fig. 7.11,
because the stepwise variations of parameters were way too large. Interestingly, as one
approaches the transitions, the WW and CO regimes’ frequency never vanishes, meaning
that there are no stable pendulum orbits selected in the vicinity of the heteroclinic orbit.
This explains why we find that the oscillation amplitude of regime WW saturates as it
approaches the CO regime: θ and ϕ do not explore all the angles up to θ = ϕ = ±π,
but plateau at ±(π − θ?), where θ? ' 17◦ (Fig. 7.14-c).

Perturbative approaches

We have seen above that the physics close to the exceptional point reduces to that of
an underdamped nonlinear pendulum, whose orbits are selected according to an energy
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FIG. 7.14. Physics close to the exceptional points. (a) Zoom on the numerical phase
diagram close to (gε/ω2

0 , π/ω2
0) = (0, 1). The different colored regions correspond to different

regimes; dark green: CO, light green: WW. The black dots represent the transition found in
numerics. The dashed white line represents π = ω2

0 + 3gε. (b) Rescaled fundamental frequency
of oscillation of ϕ as a function of rescaled distance to threshold, for small gravity gε/ω2

0 = 10−4.
Colored markers represent numerical simulations, and the solid black lines are the solutions of
Eq. (7.29), using the exact expressions of the pendulum solutions. (c/d) WW (c) and CO
(d) regimes just above and below the transition line, for gε/ω2

0 = 10−2. From left to right:
attractor in the XY plane, in the θ-ϕ plane, and FFT of γ(t)−〈γ〉t (red), ϕ̇(t)−〈ϕ̇〉t (blue), and
R(t) − 〈R〉t (black), shifted vertically for the sake of clarity. The dashed black lines represent
the fundamental frequency and its harmonics.

drift, and found the exact expressions of the dynamical solutions in this limit. While
the exact expressions of the dynamical solutions are out of reach in the general case,
they can be found perturbatively close to the lines π = πc = ω2

0 + gε (regime WW) and
gε = 0 (regime CO), and far enough from the exceptional point.

For π = πc+δ, with δ � 1, the FP regime turns unstable through a Hopf bifurcation, and
any perturbation of θ or ϕ diverges. The amplitude of the nonlinear limit cycle branching
off from the FP regime, corresponding to regime WW, can be computed analytically
using multiple-scale analysis (see Appendix L). We find that θ and ϕ oscillate according
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to: (
ϕ(t, T )
θ(t, T )

)
= A(T )

(
a
1

)
eiΩt +A?(T )

(
a?

1

)
e−iΩt, (7.42)

where a = 1−i
√
G

1+G , G = gαε/ω
2
0, Ω =

√
gαεω2

0; and where the complex number A(T )
depends on the slow timescale T and can be written:

|A| ' 2.8284
√

δ

ω2
0

√
G+ 0.25

8G2 + 3G− 1 . (7.43)

For G > G? = (
√

41 − 3)/16 ' 0.21, the denominator of Eq. (7.43) is strictly positive,
and the amplitude of the square-root power law is well-defined: this is a supercritical
Hopf bifurcation. Nevertheless, as G approaches G?, the pre-factor of the square-root
power law diverges, and the multiple-scale analysis fails to predict the amplitude of
regime WW. As a matter of fact, comparing Eq. (7.43) with simulations of Eqs. (7.5)
close to the Hopf bifurcation (see Appendix L), we find that the prediction is faithful to
observations only for G > 1. Nevertheless, we find from the numerical simulations that
the bifurcation is always a supercritical Hopf, whatever the amplitude of gravity.

Finally, for very small gravity and far enough from the exceptional point, the gravity
term in Eq. (7.13c) can be seen as a small sinusoidal forcing perturbing the CO regime
at its own oscillation frequency. Therefore, the linear response of the system in the CO
regime provides an asymptotic expression of the dynamical solution (see Appendix L).

7.5 Coarse-grained description

To rationalize the observations done in large N square lattices, we now consider the
coarse-grained dynamics in the presence of a polarizing field. We are here interested in
describing the physics in the bulk of the material, far from the boundaries, where CA
concentrates. In line with the developments of chapter 5, let us assume the dynamics
condensate on two modes, which, far from the boundaries, are homogeneous and akin
to two perpendicular translation modes. By convention, their geometry can be written
as follows: |ϕ⊥/‖〉 = ê⊥/‖/

√
N . We also consider that they have different energies: the

transverse mode has a relatively low energy ω2
⊥, and the longitudinal mode, a relatively

large energy ω2
‖ ≥ ω

2
⊥. Consistently with the active ladder experiments, gravity expresses

as gα = −gαê‖. In the coarse-grained framework, the polarity field is described by the
magnetization m, which can take any value between −1 and 1 along the two directions
of the plane. The displacement U = U⊥ê⊥+U‖ê‖; and the magnetizationm = m⊥ê⊥+
m‖ê‖, obey the following equations (see chapter 5):

∂tU = πm+ F el [U ] , (7.44a)

∂tm = (m× [∂tU − gαε])×m+ 1−m2

2 [∂tU − gαε]−Dm. (7.44b)
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Projected on the two axes, they yield:

∂tU⊥ = πm⊥ − ω2
⊥U⊥, (7.45a)

∂tU‖ = πm‖ − ω2
‖U‖, (7.45b)

∂tm⊥ = ω2
‖m‖m⊥U‖ − ω

2
⊥m

2
‖U⊥ − gαεm⊥m‖ + 1−m2

2
(
πm⊥ − ω2

⊥U⊥
)
−Dm⊥,

(7.45c)

∂tm‖ = −ω2
‖m

2
⊥U‖ + ω2

⊥m⊥m‖U⊥ + gαεm
2
⊥ + 1−m2

2
(
πm‖ − ω2

‖U‖ + gαε
)
−Dm‖,

(7.45d)
where the polarization term has been coarse-grained together with the self-alignment
term, which results in a magnetization creation term opposite to gravity, along the
longitudinal direction. In the rest of this section, we decipher the respective effects of
the different ingredients composing the toy model (noise, polarization, activity).

7.5.1 Noise-induced collective actuation at zero-gravity

At zero gravity, we can restrict the analysis to the transverse direction, given that the
system cannot spontaneously mobilize the longitudinal direction (ω2

⊥ < π � ω2
‖). We

find that U⊥ and m⊥ evolve according to:

∂tU⊥ = πm⊥ − ω2
⊥U⊥, (7.46a)

∂tm⊥ = 1−m2
⊥

2
(
πm⊥ − ω2

⊥U⊥
)
−Dm⊥. (7.46b)

Fixed point

As discussed in chapter 5, in the coarse-grained model, and a fortiori in Eqs. (7.46), any
finite amount of noise D enforces the existence of a single fixed point (U⊥ = 0,m⊥ = 0),
which corresponds to the disordered phase. For π < πc = 2

(
ω2
⊥ +D

)
, the disordered

phase is stable; otherwise, it is unstable.

NICA limit cycle

We can apply the method of multiple-scales once again to compute the amplitude of the
nonlinear NICA limit cycle emerging as π exceeds πc (see Appendix L). For π = πc + δ,
with δ � 1, the disordered phase turns unstable through a Hopf bifurcation, and U⊥
and m⊥ oscillate according to:(

U⊥(t, T )
m⊥(t, T )

)
= A(T )

(
a
1

)
eiΩt +A?(T )

(
a?

1

)
e−iΩt, (7.47)

where a = 2
(
1− i√µ

)
, µ = D/ω2

⊥, Ω =
√
Dω2
⊥, and where the complex number A(T )

depends on the slow timescale T and is solution of the amplitude equation:
1
ω2
⊥

d|A|
dT

= |A| δ
ω2
⊥

3 + 2µ
4 (1 + µ) − |A|

3 3µ
2 . (7.48)

Eq. (7.48) is the normal form of a supercritical Hopf bifurcation: for δ < 0, the only
stable solution is |A| = 0, and for δ > 0, the linear Hopf instability leads the system
to a nonlinear limit cycle whose amplitude is given by Eq. (7.48), and is set by the
balance of activity, noise and elasticity. Importantly, in contrast with SCO, at the level
of homogeneous solutions, we find that the transition from the disordered phase to NICA
is continuous.
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7.5.2 Fixed points with a polarizing field

We look for the fixed points of Eqs. (7.45), i.e., in the presence of a polarizing field along
ê‖. We find only one, which satisfies (m⊥ = 0, m‖ > 0, U⊥ = 0, U‖ = πm‖/ω

2
‖), where

the value of m‖ is imposed by Eq. (7.45d):

Dm‖ =
1−m2

‖
2 gαε. (7.49)

The equilibrium magnetization, m0
‖(gα, D), for which noise balances the polarization by

gravity, can be written as follows:

m0
‖ = − D

gαε
+
√(

D

gαε

)2
+ 1. (7.50)

The equilibrium magnetization is solely a function of the ratio gαε/D (Fig. 7.15-a). For
gαε/D → +∞, m0

‖ → 1, while for gαε/D → 0, m0
‖ → 0. The crossover between these

two regimes arises for gαε ' D. We thus find a single fixed point corresponding to a FP
or FD regime, depending on the noise amplitude.

7.5.3 Stability of the frozen phase

We now study the stability of the frozen fixed point discussed above. We denote m⊥ =
δm⊥, m‖ = m0

‖ + δm‖, U⊥ = δU⊥, U‖ = πm0
‖/ω

2
‖ + δU‖; where m0

‖ is solution of Eq.
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(7.50). At first order in small quantities, Eqs. (7.45) become:

∂tδU⊥ = πδm⊥ − ω2
⊥δU⊥, (7.51a)

∂tδU‖ = πδm‖ − ω2
‖δU‖, (7.51b)

∂tδm⊥ = −δU⊥
(1 +m0

‖
2

2 ω2
⊥

)
+ δm⊥

(
−gαεm0

‖ −D +
1 +m0

‖
2

2 π

)
, (7.51c)

∂tδm‖ = −δU‖

(1−m0
‖

2

2 ω2
‖

)
+ δm‖

(
−gαεm0

‖ −D +
1−m0

‖
2

2 π

)
. (7.51d)

The solutions to this general eigenvalue problem can be found numerically. Fig. 7.15-b
shows the instability threshold πc above which the fixed point becomes unstable (at least
one eigenvalue has a positive real part), as a function of gravity and for various noise
amplitudes.

For small noise D � gαε, the system is polarized longitudinally, thus mapping with
the single particle discussed in section 7.4. We find that the instability threshold reads
πc = ω2

⊥ + gαε. On the contrary, for large noise D � gαε, we find that the instability
threshold is shifted toward larger values of activity πc = 2(ω2

⊥+D). In both asymptotic
cases (derived below), the instability threshold πc is monotonous in g. However, for
intermediate noise amplitude D ' gαε, given that D < ω2

0, we find a non-monotonous
variation of the instability threshold, which first decreases with gravity and then increases
back (Fig. 7.15-b). This behavior is at the origin of PIR. Note that the above results
do not depend on ω2

‖, as soon as ω2
‖ ≥ ω

2
⊥.

Asymptotic cases

Bifurcation in π in the limit gαε/D � 1. Let us consider that noise is large as
compared to gravity. In that case, from Eq. (7.49),m0

‖ = 0, and the system is disordered.
Eqs. (7.51) transform into:

∂tδU⊥ = πδm⊥ − ω2
⊥δU⊥, (7.52a)

∂tδU‖ = πδm‖ − ω2
‖δU‖, (7.52b)

∂tδm⊥ = −δU⊥ω2
⊥/2 + δm⊥

(
π

2 −D
)
, (7.52c)

∂tδm‖ = −δU‖ω2
‖/2 + δm‖

(
π

2 −D
)
. (7.52d)

Note that the transverse and longitudinal directions completely decouple. Without loss
of generality, we focus on the transverse direction. Eqs. (7.52a) and (7.52c) reduce to
the following eigenvalue problem:

λ2 − λ
[
π

2 −
(
ω2
⊥ +D

)]
+Dω2

⊥ = 0. (7.53)

And we recover the result discussed in chapter 5 for the disordered phase stability. The
disordered phase is stable for π < πc = 2(ω2

min + D) = 2(ω2
⊥ + D), unstable otherwise.

Note the importance of the factor 1/2 found in the derivation of the coarse-grained
equations.
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Bifurcation in π in the limit gαε/D � 1. Let us consider that noise is small as
compared to gravity. In that case, from Eq. (7.49), m0

‖ = 1, and the system is polarized.
Eqs. (7.51) transform into:

∂tδU⊥ = πδm⊥ − ω2
⊥δU⊥, (7.54a)

∂tδU‖ = πδm‖ − ω2
‖δU‖, (7.54b)

∂tδm⊥ = −δU⊥ω2
⊥ + δm⊥ (π − gαε) , (7.54c)

∂tδm‖ = −δm‖gαε. (7.54d)

Once again, the transverse and longitudinal directions decouple. Along the longitudi-
nal direction, the two eigenvalues are strictly negative. However, along the transverse
direction, we find the following eigenvalue problem:

λ2 − λ
[
π −

(
ω2
⊥ + gαε

)]
+ gαεω

2
⊥ = 0. (7.55)

And we recover the result discussed in section 7.4. The FP phase is stable for π < πc =
ω2
⊥ + gαε, unstable otherwise.

Phase diagram

Considering a value of noise consistent with experiments, D = 0.02, we solve numerically
the eigenvalue problem Eqs. (7.51) and draw the phase diagram illustrated in Fig. 7.15-c.
For low enough activity/gravity, the system is frozen, and the longitudinal polarization
increases with gravity at gε = D, when the FD phase transforms into the FP phase.
As gravity or activity exceeds a certain threshold, the system crosses the stability limit
of the frozen phase, and the system starts oscillating in the transverse direction. In
experiments, the presence of angular noise allows for PIR for W = 4, because in that
case 1 < π/ω2

⊥,1 < 2, while for W = 2 and W = 3, π/ω2
⊥,1 > 2.

7.5.4 Beyond fixed points

As activity increases, the frozen phase turns unstable. An exact description of the dy-
namical phases setting in as a function of gravity and activity is still lacking. The vast
majority of the technical challenge comes from the non-degeneracy of the two modes
|ϕ⊥〉 and |ϕ‖〉, which, already at the single-particle level and at zero gravity, leads to
elliptic regimes En, which are out of reach analytically (see Appendix I and [181]). Yet,
it is possible to determine qualitatively the nature of the dynamical regime which sets
in close to the instability, in the limiting cases of large enough and small enough gravity.

For large enough gravity, gε/D � 1; and below the instability πc = ω2
⊥+ gε, the system

is FP,m0
‖ → 1. In this limit, the coarse-grained model (Eqs. (7.44)) maps with the single

particle in an elliptic harmonic potential with a polarizing field. We studied this model
in the degenerate case above. In the non-degenerate case, little can be done. However,
we have seen that the longitudinal rigidity plays no role in the linear instability of the
FP phase, as illustrated by the decoupling of the longitudinal and transverse linearized
equations. Therefore, the dynamical regime setting in at the instability threshold for
large enough gravity has to be qualitatively analogous to regime WW (Fig. 7.15-c, top).
The SWW regimes observed in the square lattices at large gravity (Figs. 7.6 and 7.8)
convincingly demonstrate the qualitative similarity with the regime WW in the sym-
metric single-particle (Figs. 7.10-e and f).
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For very small gravity, gε/D � 1; and below the instability πc = 2(ω2
⊥ + D), the

system is FD, m0
‖ → 0. As activity increases and exceeds the stability threshold πc,

the system exhibits transverse oscillations which emerge via a transition to NICA (Fig.
7.15-c, bottom). As activity increases even further, the transverse polarization increases
because NICA develops, and the coarse-grained model resembles more and more the
single-particle in an elliptic harmonic potential. Assuming we can neglect the polarizing
field for small enough gravity, we anticipate the emergence of collective elliptic regimes
for π > ω2

‖ (see Appendix I), so-called SEn, which are analogous to the elliptic regimes
En in the plane (|ϕ⊥〉,|ϕ‖〉). Interestingly, such SEn regimes might be seen as the
generalization of the GAR regime12 to an arbitrary pair of non-degenerated normal
modes.

7.6 Conclusion
Let us summarize here the main results of this chapter.

First, we have introduced a new CA regime, NICA, which corresponds to a spontaneous
actuation of the lowest-energy mode of a structure at large enough activity. In contrast
with SCO and GAR, NICA allows for periodic activation of a single normal mode, thanks
to angular noise. Using multiple-scale analysis, we found the explicit expression of the
NICA limit cycle emerging as π exceeds πc = 2(ω0 + D), the stability threshold of the
FD phase. In contrast with SCO, at the level of homogeneous solutions, the transition
from the FD phase to NICA is continuous.

We also introduced gravity-induced polarization, a tool to apply homogeneous polarizing
fields to model active solids. This new ingredient induces a torque in the polarity dy-
namics of the active units, which reorients them in the direction opposite to the gravity
force, and is analogous to a change of Galilean frame of reference. Therefore, in the pres-
ence of a polarizing field, both the positional and orientational degrees of freedom have
a reference configuration. Applying polarizing fields to triangular and square lattices,
we find that both NICA and SCO regimes transform into SWW regimes, and eventu-
ally, large enough polarizing fields stabilize the FP regime. These observations are well
captured by a single particle with a polarizing field. We performed the linear stability
analysis of the only remaining fixed point in the presence of gravity, the FP regime, and
found a Hopf bifurcation at πc = ω2

0 + gε. Close to the exceptional point, the system
maps with the underdamped nonlinear pendulum, whose orbits are selected via a small
energy drift. The boundary π? = ω2

0 + 3gε separates the CO from the WW regimes, and
is found analytically, in agreement with experimental and numerical observations.

Crucially, we also find that polarization decreases the activity threshold for CA, leading
to PIR. We rationalized this observation using the coarse-grained model, and demon-
strated that PIR is inherited from the differential stability of the FD and FP phases.
Finally, we determined qualitatively the phase diagram of the coarse-grained model re-
stricting to homogeneous solutions with a pair of non-degenerated normal modes. Much
work remains to be done to understand precisely how SCO and SEn regimes connect to
the other regimes at the collective level.

The study of active solids with a polarizing field offers interesting and powerful analogies,

12For GAR regimes, the rotation mode plays the role of the soft mode of the elliptic potential.
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and allows for a better control of the collective behaviors emerging in such systems.
Moreover, the coupling between the polarity dynamics of active units and an external
field is biologically relevant. Indeed, cells can respond to various environmental cues,
and in many cases these cues induce directed cell migration towards or away from these
signals [188]. Typical realizations are chemotaxis or galvanotaxis. This may allow for
strong connections between this chapter and genuine biological systems, where external
fields play essential functions in wound-healing or embryogenesis [188].





Chapter 8

Perspectives

8.1 Counter-rotating squares mechanism

Auxetic materials exhibit the very unusual properties of becoming wider when stretched
and narrower when squashed: they have negative Poisson’s ratios. Consider the paradig-
matic metamaterial realizing a negative Poisson’s ratio (Fig. 8.1), which is based on a
mechanism consisting of counter-rotating hinged squares [102, 189–194]. As this mecha-
nism is actuated, the system compresses in both directions, up to reaching half its initial
area. When the counter-rotating squares touch each other, we say the system has re-
configured (Fig. 8.1-d). In contrast, in the initial state, we say the system is completely
open (Fig. 8.1-a).

In the following, we demonstrate that active units embedded at the nodes of a square
lattice spontaneously actuate the counter-rotating square mechanism, first in the case
of quasi-freely-rotating hinges, and then for a square spring network.

8.1.1 Case of a zero mode

Let us start with the simplest instance of the counter-rotating square mechanism: a 2×2
square lattice. To make this structure active, we combine four active elastic building
blocks. However, instead of connecting the blocks with springs, we embed them into a
frame made of rigid squares, connected by very flexible hinges (Fig. 8.2-a). The frame’s

(a) (b) (c) (d)

FIG. 8.1. Counter-rotating squares mechanism. Mechanism consisting of counter-rotating
hinged squares. From left to right, the mechanism is more and more actuated, and the compres-
sion in both directions illustrates the negative Poisson’s ratio of the structure. At (a), we say
the structure is open, and we say it has reconfigured in the limiting case where the squares touch
each other (d). The solid black lines illustrate the mapping with a square lattice of bending
springs.

188
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squares are designed to fit the active elastic building blocks perfectly, so this system is a
genuine realization of the metamaterial shown in Fig. 8.1, doped at every square center
with an active unit. The 3d printed frame (3 mm thick) is made of two materials. On
the one hand, the square’s bulk is made of VeroWhite© resin, a stiff material that does
not deform under the action of the hexbugs; on the other hand, the connections between
the squares are made of Agilus©1, a very soft plastic that plays the role of the freely
rotating hinges. However, we say they are only quasi-freely rotating because the material
has finite viscoelastic properties. The frame resting on top of the active elastic build-
ing blocks, the hexbugs support an additional mass that slightly changes the physics,
resulting in a smaller angular diffusion coefficient for the active units’ orientations. Fi-
nally, to kill the collective translation and rotation regimes described in chapter 4, we
pin a given node of the network, freezing its positional and rotational degrees of freedom.

Once the three remaining nodes are doped with active agents, the counter-rotating
squares mechanism is spontaneously actuated back-and-forth (Figs. 8.2-a to d). This
CA regime is best illustrated when considering the area spanned by the system as a
function of time (Fig. 8.2-e). We find that the latter alternates between two values, a
large area corresponding to the system completely open (Fig. 8.2-a), and a smaller area,
half of the large one, corresponding to the two system’s reconfigurations, clockwise (Fig.
8.2-b) or counter-clockwise (Fig. 8.2-d) around the pinning point. Note that the CA
regime observed is not completely periodic: while the reversals between two reconfigu-
rations are very similar, the time spent trapped in the states reconfigured fluctuates.

These observations can be understood considering that this system is rigid and exhibits
a single bounded zero mode (defined below). First, the hinges are very soft, therefore
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FIG. 8.2. Spontaneous back-and-forth actuation of the counter-rotating squares
mechanism for a hinged square lattice. Collective actuation of an active 2 × 2 hinged
square lattice with a single embedded node (N = 3). (a-d) Snapshots of the dynamics; time
increases from left to right; red arrows: polarities n̂i; trajectories color-coded from blue to red
by increasing time. (e) Area of the polygon defined by the outer particles as a function of time.
The area is normalized by its maximum. The dashed black lines represent the system completely
open and completely reconfigured.

1Agilus30, FLX935.
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the auxetic mode can safely be considered a zero mode. Being the only one of this rigid
structure, according to the results of chapter 4, any perturbation of the polarity field
along that mode explodes, and thus the system must actuate it. However, once the meta-
material reaches its reconfigured state, the auxetic mode becomes rigid in the direction
chosen initially, because of steric repulsion, and motion stops. The auxetic zero mode
is bounded: it consists of a flat elastic potential energy landscape with infinite energy
barriers on both sides, corresponding to the two reconfigurations. Angular noise then
allows for the polarity field to relax and fluctuate. Once the projection of the polarity
field on the auxetic mode reverses direction, it amplifies via self-alignment, and the mo-
tion starts the other way around. Note the essential role played by angular noise during
the motion reversals. This scenario explains well the experimental observations. Note
that this CA can also be interpreted as a NICA regime. Indeed, a single normal mode
is activated back and forth, and the reversals are triggered by angular noise. However,
the activated mode is not a simple harmonic mode, but a bounded zero mode, with a
strongly non-linear response.

The above system convincingly demonstrates that self-aligning active particles sponta-
neously actuate the counter-rotating square mechanism in the case where it is a bounded
zero mode of the structure. Let us now show that this observation also holds in the case
of a soft harmonic auxetic mode.

8.1.2 Case of a harmonic mode

To construct a harmonic auxetic mode, we return to the initial design and connect the
active elastic building blocks with stiff springs in a 5× 5 square lattice (Fig. 8.3-a). As
shown in Fig. 8.1, a square spring network exhibits the same auxetic mode as counter-
rotating hinged squares, with a direct mapping between the two when the springs can
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FIG. 8.3. Spontaneous back-and-forth actuation of the counter-rotating squares
mechanism for a spring square lattice. Collective actuation of an active 5 × 5 spring
square lattice with embedded central pinning (N = 24). (a-d) Snapshots of the dynamics; time
increases from left to right; red arrows: polarities n̂i; trajectories color-coded from blue to red
by increasing time. (e) Area of the polygon defined by the outer particles as a function of time.
The area is normalized by its maximum. The dashed black lines represent the system completely
open and completely reconfigured
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only bend [194]. However, when the springs’ bending rigidity is finite, the rotating
squares mechanism transforms into a harmonic mode: its actuation accumulates elastic
potential energy in bending the springs. Finally, we again prevent the system from col-
lectively rotating or translating by embedding the central node.

Once doped with active agents, the active square network spontaneously actuates back-
and-forth the auxetic mode (Figs. 8.3-a to d). First, we find that the CA regime is more
periodic than the 2× 2 network (Fig. 8.3-e). Second, the system only partially reconfig-
ures (Figs. 8.3-b and d). This is clear when considering the system’s area as a function
of time: the reconfiguration is only halfway at the motion reversal. This last observation
has two origins: (i) the auxetic mode is harmonic, and thus motion stops when the elastic
and active forces balance; (ii) the counter-rotations decay away from the center, which is
reminiscent of the observations of Coulais et al. [194]. At the passive level, mechanism-
based metamaterials have an intrinsic length scale that depends on the ratio between
the shear and bending moduli of the springs, and diverges in the pure mechanism limit.
Such a length scale quantifies the spatial extension of the auxetic mode, which localizes
near inhomogeneities such as boundaries, here the embedded center. Therefore, when
the springs used have a finite shear modulus, like in the experiments, the auxetic mode
must decay away from the center, bounding the maximum reconfiguration level. Indeed,
when steric repulsion stops the motion of the first layer around the pinning point, the
second layer has not entirely reconfigured.

Let us make a few final comments. First, the above system has the potential to become
a tunable and truly autonomous active mechanical metamaterial. It is not yet clear,
however, if this CA regime, and in particular the turnarounds, are the results of angular
noise only, similarly to the NICA regimes discussed in chapter 7, or if other modes of the
system contribute to these events, similarly to the GAR regimes discussed in chapter
6. More numerical work is required to answer this intriguing question. Eventually,
it could be interesting to study the effect of noise on the spontaneous activation of
bounded harmonic and zero modes; for example, by combining the present active solid’s
framework and first-passage time tools to predict the turnarounds and the period of the
CA regime in large systems.

8.2 Mechanical response

In this section, we explore the mechanical response of active elastic structures in simple
settings. These experiments were realized in collaboration with Corentin Coulais and
Jonas Veenstra during a visit to Amsterdam in February 2022.

8.2.1 Setup

We study the mechanical response of a 2 × 10 square lattice pinned at both ends. The
square lattice is oriented along êy, and the top end is sheared back-and-forth along êx
using a custom translating stage (Fig. 8.4-a). The translating stage imposes motion
speed from 6 cm/s to 18 cm/s, such that the top end moves alternatively to the left
or right with amplitude h and constant speed V (Fig. 8.4-b). Moreover, the vertical
separation W between the two force sensors is larger than the rest length of the spring
network: the whole structure is elongated by a factor α ' 0.09. The translating stage
is mounted with force sensors on both ends of the structure. On the one hand, the
top, moving force sensor measures the shear force exerted on the moving pinning point,
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Fm = Fm · êx, where Fm is the total force exerted on the moving pinning point. On
the other hand, the bottom, static force sensor measures the shear force exerted on the
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FIG. 8.4. Mechanical response of active and passive square lattices. (a) Experimental
setup in the passive case and notations. The ladder is pinned at both ends. The bottom pinning
is the static probe, fixed at rs, and measures Fs = F s · êx. In contrast, the top pinning is
the moving probe, measuring Fm = Fm · êx. (b) Motion of the moving probe (black line) as a
function of time. The dashed red line represents the instantaneous velocity of the moving probe.
For 0 < t < T/2 (resp. T/2 < t < T ), the moving probe travels to the right (resp. left) with
speed V . (c-f) Snapshots of the mechanical test for an active square lattice with V = 18 cm/s, at
different times. The white arrows represent the instantaneous velocity of the moving probe. (g-i)
Average shear force measured with the moving (g) and static (i) probes as a function of time;
in the passive (blue line) and active (red line) cases, for V = 18 cm/s. (j) Average difference
between the active and passive cases for the shear force measured by the static probe, for different
speeds V ∈ [6, 9, 12, 15, 18] cm/s. Curves are color-coded from light to dark red as V increases.
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static pinning point, Fs = F s · êx, where F s is the total force exerted on the static
pinning point. The static probe only measures the elastic forces exerted by the network,
F s = F el

s , while the moving probe is also submitted to friction, opposite to the motion
direction, Fm = F el

m +F f
m (Fig. 8.4-a). Finally, note that F el

s and F el
m are the opposite

of one another only in the passive and static case. We measure the shear forces exerted
by the active elastic network on the static and moving probes for 20 shear periods at
V = 18 cm/s (Figs. 8.4-c to f), and average the signals (Fig. 8.4-g and i, red curves).
Note that we can perform the same measurements in the passive case, i.e. running the
mechanical tests with empty annuli (Fig. 8.4-g and i, blue curves).

Let us discuss a critical aspect of comparing measurements performed in the passive and
active cases: solid friction. When the structure is doped with active agents, it does not
exhibit solid friction with the substrate as it is constantly vibrated by the robots. An
accurate comparison thus requires killing the static friction in the passive case. Impor-
tantly, we can take advantage of the translating stage designed by Corentin and Jonas:
it is constructed on top of an air table, that blows air vertically through little holes that
are small enough not to affect the hexbugs propulsion. For every measurement in the
passive case, we switch on this feature, and switch it off in the active case.

Next, we separate the discussion into two. We first explain the measurements performed
in the passive case, and then elaborate on the differences observed in the active case.

8.2.2 Discussion

Passive case

The response measured in the passive case can largely be explained by considering the
complete nonlinear elasticity of the spring network. Let us consider that the system
has no inertia, or that the measurements are performed quasi-statically. The elastic
forces exerted by the structure on the probes are equal and opposite, and proportional
to the elongation of the structure. The proportionality constant can be found explicitly
by combining the spring stiffness in series and parallel. Finally, the moving probe also
measures an effective friction force, opposite to the direction of motion. Altogether, the
forces on the moving and static probes can be written as:
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FIG. 8.5. Mechanical response of passive square lattices. Average shear force measured
with the static (a) and moving (b) probes as a function of time, as given by the experimental
measurements in the passive case, for V = 18 cm/s (blue line); and by Eqs. (8.1) (black line),
with γ = 5 kg.s−1.
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F els = κ

(√
x2
m +W 2 − L0

)
sinα, (8.1a)

F elm = −κ
(√

x2
m +W 2 − L0

)
sinα− γV, (8.1b)

where κ (resp. L0) is the system’s stiffness (resp. rest length), γ is a friction coefficient,
and α is the angle of the structure with the vertical axis when the moving probe is at
xm (tanα = xm/W ). Notably, we already know all the parameters of the Eqs. (8.1),
except for the effective friction coefficient on the moving probe γ; an estimate of which
is obtained by manually adjusting Eq. (8.1b) to the experimental data. We find a very
good correspondence between the measurements and the prediction for the static probe
(Fig. 8.5-a). In contrast, Eq. (8.1b) cannot be perfectly adjusted to the measurements
performed on the moving probe (Fig. 8.5-b). We attribute this discrepancy to the
presence of inertia, coming from the mass of the moving probe but also from the elastic
structure being tested, which induces oscillations of the force measured, more pronounced
on the moving than on the static probe. Overall, the response measured on the moving
(resp. static) probe is dominated by friction (resp. elasticity of the network).

Influence of activity

When the structure is doped at every node with active units, we find that the signal
of the moving probe is not significantly different from the passive case (Fig. 8.4-g).
Conversely, the signal on the static probe sheds light on the influence of activity (Fig.
8.4-i). We measure the average difference of shear force between the active and passive
cases for the static probe, 〈F as −F ps 〉, at different speeds V (Fig. 8.4-j). During the first
half-period, the moving probe translates to the right. At the same time, the active force
measured on the static probe is larger in the active than in the passive case, indicating
that the active particles, polarized toward the direction of motion through self-alignment
(Fig. 8.4-d), contribute to push/pull to the right the static probe. At t = T/2, the mov-
ing probe abruptly changes direction. During a short transitory regime, the excess of
force measured in the active case reorients toward the new direction of motion, and ends
up saturating in the opposite direction, contributing once again to the motion imposed
by the moving probe. Therefore, activity might be interpreted as a negative friction
coefficient, relaxing toward the direction of motion. This is clear when comparing the
response measured on the moving probe, dominated by friction, and 〈F as − F ps 〉: in first
approximation, they are simply the opposite of each other.

Interestingly, we measure a small dependence of 〈F as − F ps 〉 on the motion speed. First,
note that the transitory regime’s duration does not depend on the motion speed (Fig.
8.4-j), thus the latter happens over a characteristic distance, that is typically 2.6 cm.
This value clearly corresponds to the alignment length of the hexbugs, which reorient
toward the new direction of motion through self-alignment, as measured in chapter 2.
Second, the larger the motion speed, the larger the average negative friction, with a satu-
ration of 〈F as −F ps 〉 to typically 0.1 N at large speed. This observation can be interpreted
at the coarse-grained level. Remember from chapter 7 that a change of Galilean frame
of reference induces a net polarization toward the direction of motion, which balances
with the relaxation induced by angular noise. Here, the system is forced to translate to
the right or left, with a linear velocity profile, maximum at the moving probe, and zero
at the static probe. The larger the imposed motion speed, the larger the polarizing field,
thus the larger the active force contributing to the direction of motion. This is confirmed
by visual inspection of the orientational order for different velocities: the larger the mo-
tion speed, the larger the polarization. Note that this polarization is also expected to
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saturate, as discussed in chapter 7, consistently with experimental observations.

The above interpretation of activity in simple terms of a negative friction coefficient is
not completely satisfying. Scheibner et al. demonstrated the existence of odd elastic
moduli (for example, a coupling between the two shear deformations) in active solids
that conserve linear momentum [125]. This motivates constructing an experimental
system that could measure such odd moduli, which is not the case with the above
system. Altogether, more theoretical and experimental work is required to understand
the mechanical properties of dry and polar active solids.

8.3 Walking grains experiments
In this section, we exploit the walking grains experimental setup to demonstrate the
possibility of downsizing our active solid’s design principle, i.e. a network of annuli
connected by coil springs and doped with active units.

8.3.1 Setup

The walking grains were already discussed in chapter 1, and were historically introduced
as a model system of active liquids. They allowed for a better understanding of the
mechanisms leading to CM [55–58], but also shed light on the 2d crystallization [92, 135]
and mechanical pressure [136] of active systems. The experimental setup is made of two
parallel and horizontal glass plates, the bottom one being vertically vibrated. In the
gap between the two plates evolve little disks with a built-in polar asymmetry, which
enables them to move persistently in the 2d plane (Fig. 8.6-b). The polar particles are
micromachined copper-beryllium disks (diameter d = 4 mm) with an off-center tip and a
glued rubber skate located at diametrically opposite positions (total height h = 2 mm).
These two “legs”, with different mechanical responses, endow the particles with a polar
axis. Under proper vibration, the self-propelled polar (SPP) disks perform a persistent
random walk, the persistence length of which is set by the vibration parameters. We
also use plain rotationally invariant disks (same metal, diameter, and height), hereafter
called the “isotropic” (ISO) disks, as a control to ensure that all the effects reported here
are indeed due to the self-propulsion induced by the built-in polarity (Fig. 8.6-a).

The SPP walking grains have similar properties to the hexbugs: they are self-propelled
along their polarity vector n̂, and the latter reorients toward the direction of motion
via a self-aligning torque. The equations of motion for walking grains and hexbugs are
thus the same at the effective level. However, the walking grains are less active than
the hexbugs. First, the polar force they exert is way smaller than hexbugs2, making
it more complicated to find soft enough springs to construct the active elastic lattices.
Moreover, the polarity dynamics of the walking grains is noisier, favoring the emergence
of disordered regimes. Finally, the walking grains are more sophisticated to manipulate
because of their small size, and are therefore also more sensitive to imperfections of the
experimental conditions (parallelism and horizontality of the different plates, cleanliness,
heterogeneity of the walking grains). For all the above reasons, we initially decided to
use hexbugs as model active units. However, in this section, we show how the walking
grains can still be used as active units by downsizing the design principle introduced in
chapter 2.

2The polar force exerted by such bristle bots is typically proportional to their mass, and the walking
grains are very light compared to hexbugs.
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FIG. 8.6. Walking grains-based active solids. (a) Isotropic (ISO) grains. Under proper ver-
tical vibration, the walker performs a random walk (bottom). (b) Self-propelled (SPP) walking
grains: a hard metallic disc with an off-center tip and a glued rubber skate located at diametri-
cally opposite positions (top); the velocity v is in general not perfectly aligned with the polarity
n̂. Under proper vertical vibration, the walker performs a persistent random walk (bottom). (c)
Design principle for the walking grains experiments: the active units exert polar forces along the
polarity vectors n̂i, and are embedded in 3d printed annuli connected with coil springs of stiffness
k and rest length l0. The black dot indicates the tail of the SPP walking grain. (d-e) The active
elastic building blocks are combined into 2d lattices; (d) linear chain, (e) square lattice. The
bottom panels of (a) and (b) and adapted from [55].

8.3.2 Design principle

The design principle again consists of 3d printed annuli, made of VeroClear© resin3,
with the same height as the walking grains, and 0.5 mm thick (Fig. 8.6-c). The in-
ternal diameter is slightly larger than the walking grains’ diameter, allowing the units
to rotate freely inside their cages. We use helical compression springs4 (diameter: 1
mm, length: 10 mm) to connect the active elastic building blocks, attached manually
with commercial glue inside a hole (diameter: 1.2 mm, depth: 1 mm) designed in the
overhangs. We then construct different networks of active elastic building blocks, like
linear chains (Fig. 8.6-d), square lattices (Fig. 8.6-e), and honeycomb lattices (Fig. 8.8).

We first optimize the geometry of the design principle to make the active elastic build-
ing blocks as active as possible. We explore a few parameters: the internal diameter of
the annuli, denoted di, the gap between the two plates, denoted h, and the vibration
parameters. This exploration was not completely systematic; however, we could find
that the correct range of vibration frequency is f = 95 Hz, with an amplitude Γ ' 2.7,
where Γ = 2πfA/g is the dimensionless acceleration amplitude with respect to gravity.
The best design, which optimizes5 the spontaneous actuation of the lowest energy mode
of a linear chain (see below), is di = 4.4 mm, for a gap h = 2.5 mm. For this final

3VeroClear© is a transparent resin with similar mechanical properties to PMMA.
4Schweizer Federntechnik, stiffness: 1 N/m, wire diameter: 50 µm, number of windings: 67.
5The one maximizing the projection of the polarity field on that mode, while keeping the angular

noise as low as possible. The smaller di, the smaller the angular noise, but the larger the alignment
length, thus the less active the structure. The optimal design is therefore a compromise.
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design, we could estimate the value of the elasto-active coupling π ' 5.10−3 (see below),
highlighting that walking grains are less active than hexbugs, even considering hexbugs
connected with stiff springs (see chapter 2). For the elasto-active coupling π to exceed
the energy of some normal mode, we should consider larger structures than ever before.

Now, let us illustrate the collective dynamics observed in experiments for linear chains
and large honeycomb lattices, which are still ongoing work, but illustrate the potential
and generality of our design principle.

8.3.3 Linear chains

We construct linear chains composed of N = 18 active elastic building blocks, pinned
at both ends (Fig. 8.7-a). The chain is oriented along x̂ (denoted ê‖), so that the
equilibrium positions are xi = αi, yi = 0. The parameter α is the ratio between the
length of the springs in the equilibrium configuration leq and the natural length of the
springs l0. The chain thus bears a dimensionless tension T = α − 1. The normal mode
spectrum of linear structures was discussed in chapter 5. There are N eigenmodes along
ê‖ (resp. ê⊥), which we denote |ϕ‖,k〉 (resp. |ϕ⊥,k〉) with eigenfrequencies ωx,k (resp.
ωy,k):

ϕi‖,k =
√

2
N + 1 sin

(
jkπ

N + 1

)
x̂; ω2

‖,k = 4 sin
(

kπ

2(N + 1)

)2
, (8.2a)

ϕi⊥,k =
√

2
N + 1 sin

(
jkπ

N + 1

)
ŷ; ω2

⊥,k = 4Aα sin
(

kπ

2(N + 1)

)2
. (8.2b)

Longitudinal (along ê‖) and transverse (along ê⊥) modes are thus locally-orthogonal.
Moreover, modes with the same index k have the same norm on each site, so that we
introduce ϕik = ϕi‖,k · x̂ = ϕi⊥,k · ŷ. Finally, in the limit α → ∞, which corresponds to
infinite tension or zero-rest-length, Aα = 1 − α−1 → 1 and the modes are degenerated:
ωx,k = ωy,k = ωk for 1 ≤ k ≤ N .

For small tension, α ≤ αc ' 1.1, the system performs CA: the lowest energy mode,
|ϕ⊥,1〉, is spontaneously activated back-and-forth (Fig. 8.7-h), resulting in transverse
oscillations of the chain (Fig. 8.7-d). In contrast, for large enough tension α > αc, the
oscillation stops, and the system is frozen and apparently disordered (Figs. 8.7-g and
k). The transition is best illustrated by considering the transverse condensation fraction∑
k λ⊥,k, where λ⊥,k is the condensation fraction on mode |ϕ⊥,k〉, as a function of tension

(Fig. 8.7-b). We find that the low-tension CA regimes have an excess of transverse
condensation fraction with respect to the large-tension frozen regimes, indicating that
the spontaneous transverse oscillations induce self-alignment. However, note that the
effect is relatively weak (only a few percent), because of the significant noise present in
the experiments.

These observations agree with the results of chapter 7 concerning the spontaneous acti-
vation of a single normal mode in the presence of angular noise, i.e. Noise-Induced CA
(NICA). Let us consider a large system with a single normal mode of energy ω2

0. For
π < πc = 2(ω2

0 +D), activity is too small and the system is Frozen-Disordered (FD). For
π > πc, the disordered phase becomes linearly unstable through a Hopf bifurcation, and
a nonlinear NICA limit cycle of finite frequency f ∼

√
Dω2

0 and amplitude A ∼
√
π − πc

branches-off continuously.
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FIG. 8.7. Transition to CA in walking grains-based active chains. (a) Elastic structure
cartoon, N = 18 (top), and sketch of the two lowest energy and most activated modes (bottom).
(b) Transverse condensation fraction

∑
k∈⊥ λk as a function of tension α− 1. Background colors

code for the dynamical regime (light blue: frozen and disordered; dark green: CA) (c) Ensemble
averaged probability density function of orientations θ; θ = 0 (resp. θ = π/2) represents the
orientation parallel (resp. perpendicular) to the chain. Curves are color-coded from light to dark
blue as tension increases. (d-g) Snapshots of the experiments for different tensions α − 1; red
arrows: polarities n̂i; trajectories color-coded from blue to red by increasing time. (h-k) Polarity
field projections on the two lowest energy modes as a function of time for the tensions indicated
in (d-g). The solid black (resp. red) line represents the projection of the polarity field on mode
|ϕ‖,1〉 (resp. |ϕ⊥,1〉). The gray areas illustrate the range inside which is expected to lie the
polarizations for purely random spins, that is

[
−1/
√
N, 1/

√
N
]
.

Therefore, in the chains, the transition from the CA to the FD regime is attributed
to the increase of the transverse modes’ energy as tension increases. For α < αc,
π > πc = 2(ω2

⊥,1 + D): the disordered phase is unstable and the system self-oscillates
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along |ϕ⊥,1〉. As α increases, ω2
⊥,1 becomes larger and larger. For α > αc, π < πc, and

the disordered phase is the only stable solution. Note that the selection of |ϕ⊥,1〉 over
the other transverse modes in the CA regime is not completely trivial: at the linear level,
without tension, they are all zero-modes. Mode |ϕ⊥,1〉 might be favored because it is
relatively extended, or because of geometrical nonlinearities. Interestingly, the value of
α at the transition gives an estimate of the elasto-active coupling for the walking grains
active solids: π ' 5.10−3.

However, this set of experiments exhibits a problem of horizontality. Indeed, the trans-
verse condensation fraction does not converge toward 0.5 in the frozen regime, as ex-
pected from a disordered regime, but a smaller value, indicating that the polarity dy-
namics is biased toward the right end of the chain in the absence of motion (Fig. 8.7-b).
This is even clearer when measuring the distribution of orientations, averaged over par-
ticles and time (Fig. 8.7-c). Surprisingly, for all regimes, the active units are more prone
to be oriented along ê‖, even when the system spontaneously oscillates transversally.
The educated reader might remember from chapter 7 that this bias could be attributed
to a problem of horizontality. Being unable to determine a systematic method to solve
this problem, we did not exploit the experimental data further.

8.3.4 Large honeycomb

Finally, we construct the largest structure studied experimentally in this manuscript: a
large honeycomb lattice pinned at the edges (N = 180). To minimize the energy of the
normal modes, we impose zero tension on the structure. Note that at the linear level,
such a honeycomb lattice is not mechanically stable as it contains 73 IZMs. Unfortu-
nately, SPP grains embedded in the lattice do not perform a large-scale CA regime as
described in chapters 5 and 6 (Fig. 8.8-b). We find that the system is very disordered,
but exhibits complex correlation patterns, in the form of intermittent and localized mo-
tions. Those resemble rotations of the inner hexagons, or also motion along the lines of
the structure, and might be attributed to the spontaneous activation of localized low-
energy modes. As tension increases, we only observe frozen regimes.

(a)

ISO

(b)

SPP

FIG. 8.8. Experiments with walking grains-based active honeycomb lattices. Snapshots
of the experiments with large honeycomb lattices (N = 180, α ' 0), constructed out of ISO grains
(a); and SPP walking grains (b); red arrows: polarities n̂i; trajectories color-coded from blue to
red by increasing time.
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A few comments are in order. First, those observations must be related to the active
forces generated by the SPPs, given that the same system built out of ISO grains per-
forms thermal fluctuations around the reference configuration, without noticeable exotic
behavior (Fig. 8.8-a). Second, the experimental system is not ideal: the lattice is clearly
not regular, as seen in Fig. 8.8-a; and the mechanical tension is controlled modulo a
few percent, which has dramatic consequences on the normal mode spectrum. Further
experimental and numerical developments should allow for determining the origin of the
phenomena observed in this fascinating system.
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Intermediate conclusions and discussions have been made in this manuscript. In this
final conclusion, we intend to bring together and synthesize the main results of this work.

Within the harmonic approximation, the emergence of collective behaviors is dictated
by the elasto-active coupling π = le/la (see chapter 3), and the normal mode spectrum
of the underlying elastic structure. In the presence of rigid body motion zero modes, any
finite amount of activity leads to the emergence of collective translation and rotation
regimes, which could arguably be interpreted as collective motions (see chapter 4). How-
ever, when the structure is mechanically stable, and all the modes are harmonic, we find
a more subtle physics. First, at small enough activity, any configuration of the polarity
field is a marginally stable fixed point; the system is frozen. As activity increases, these
fixed points destabilize one by one, more disordered configurations being generally more
stable (we found the general expression of the stability thresholds in chapter 5). Eventu-
ally, when activity is large enough and stable fixed points no longer exist, the system is
attracted toward nonlinear limit cycles, which may coexist with the fixed points. They
are utterly different from collective motion in active liquids and rigid body motions in
active solids, and shall be called Collective Actuation (CA).

A CA regime is characterized by the tendency of the polarity field to only explore a
subset of normal modes, and in particular, selects one or two modes that completely
dominate the dynamics, resulting in a periodic actuation of the structure. In the ab-
sence of angular noise, at least two modes are required to perform a limit cycle. The
nontrivial feature of this selection mechanism is that it is not only based on the energy
of the modes, but also on their geometries, and how strongly they couple. As a rule of
thumb, the geometrical coupling between two modes is as strong as they are spatially
extended and locally orthogonal, which is inherited from the microscopic properties. In-
deed, each polarity vector is normalized, thus the modes which can make the most of this
homogeneous force field are those which are themselves the most extended. Moreover,
reorientation via self-alignment is fueled by perpendicular motion.

Motivated by the observation that the dynamics generally condensate on two modes,
we extensively studied the physics of a single particle, which has two locally-orthogonal
normal modes, |ϕx〉 and |ϕy〉:

(i) Degenerate single particle. In that case, ω2
x = ω2

y = ω2
0 (Fig. Cl.1-a, see chap-

ter 5).

Deterministic dynamics. For π < πc, the phase space is composed of a contin-
uous set of marginally stable fixed points, organized along a circle (Fig. Cl.1-a,
left). At π = πc, the system is at an exceptional point and the dynamics is in-
finitely slow (Fig. Cl.1-a, middle). For π > πc, all fixed points destabilize, and
a limit cycle branches off continuously, corresponding to the Chiral Oscillation
(CO) regime (Fig. Cl.1-a, right). This global bifurcation results from one eigen-
value turning positive, and invariance by rotation. The frequency of oscillation
reads Ω = ±ω0

√
π − πc, where the the ± indicates the two possible chiralities.

Effect of noise. For π < πc, angular noise is responsible for the diffusion amongst
the fixed points (because they are marginally stable), leading to a Frozen-Disordered
(FD) regime. For π > πc, a small angular noise merely affects the CO limit cycle,
but the presence of a marginally stable direction leads to a diffusion of the oscilla-



205 Conclusion

(a)
ω

2 x
=
ω

2 y
=
ω

2 0

π
c

=
ω

2 0

π < πc π = πc π > πc

FD CO

(b)

ω
2 x
>
ω

2 y

π
c

=
ω

2 x

π < πc π = πc π > πc

β

En

(c)

g
=
−
g
ê
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FIG. Cl.1. Summary of the different bifurcations at the single-particle level. Schematic
of the different fixed points and limit cycles as π increases (from left to right), in the space of
displacements. (a) Degenerate case, i.e. ω2

x = ω2
y = ω2

0 ; transition to regime CO. (b) Non-
degenerate case, considering ω2

x > ω2
y; transition to an elliptic regime En. (c) Case with a

polarizing field along |ϕy〉; transition to regime WW. (left) Fixed points for π < πc. Blue dots
and solid lines represent marginally stable fixed points; the red dot represents a linearly stable
fixed point; dashed black lines represent unstable fixed points. The angle β goes from π/2 rad
to 0 as π goes from ω2

y to ω2
x. (middle) Heteroclinic orbits for π = πc, represented by solid black

lines and arrows. The dynamics is infinitely slow in the thick regions. (right) Limit cycles for
π > πc, represented by solid green lines and arrows.

tion’s phase. Moreover, close to the threshold, angular noise allows for stochastic
inversions of the direction of rotation, restoring the chiral symmetry.

(ii) Non-degenerate single particle. In that case, ω2
x > ω2

y (Fig. Cl.1-b, see chapter
6 and Appendix I).

Deterministic dynamics. In the non-degenerate case, the stability threshold of the
fixed points depends on the configuration. At π = ω2

y , the first fixed points, or-
thogonal to the lowest-energy mode, thus along and opposite to |ϕx〉, destabilize.
For ω2

y < π < ω2
x, the fixed points progressively lose stability, up to the last stable

ones, along and opposite to |ϕy〉, which turn unstable at π = ω2
x (Fig. Cl.1-b,

left). At π = πc = ω2
x, a zero-frequency heteroclinic orbit connecting these two

fixed points emerge (Fig. Cl.1-b, middle), leading to elliptic regimes En for π > πc
(Fig. Cl.1-b, right), whose frequency also scale like

√
π − πc.
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Effect of noise. The effect of noise strongly depends on the range of activity.
Similarly to the degenerate case, for π < ω2

y , angular noise is responsible for the
diffusion amongst the fixed points, leading to a Frozen-Disordered (FD) regime.
For ω2

y < π < ω2
x, angular noise also allows for stochastic turnarounds between

the two basins of marginally stable fixed points. Finally, for π > πc, the elliptic
regimes En are merely affected by angular noise, the same way as CO regime.

(iii) Single particle with a polarizing field. In that case, there exists a polarizing
gravity field along |ϕy〉 (Fig. Cl.1-c, see chapter 7):
Deterministic dynamics. For π < πc = ω2

x + gε, any finite amount of gravity
polarizes the fixed points of the single particle: there is one unstable fixed point
oriented along gravity, i.e. along −|ϕy〉, and only one linearly stable fixed point,
oriented opposite to gravity, i.e. along |ϕy〉 (Fig. Cl.1-c, left). At π = πc, the fixed
point turns unstable through a Hopf bifurcation at a frequency scaling like √gε,
leading to Windscreen Wiper (WW) limit cycles oscillating at the same frequency
(Fig. Cl.1-c, right). In contrast with the above cases, the frequency is finite at the
onset of oscillations.

Effect of noise. For π < πc, noise allows for exploring the vicinity of the linearly
stable Frozen-Polarized (FP) regime, and for π > πc, the WW limit cycle is merely
affected by angular noise.

At the collective level, we discovered four different CA regimes, the nature of which are
dictated by the set of selected modes, and which resonate with the different regimes
observed at the single particle level:

1. Selection of a pair of degenerated and locally-orthogonal normal modes (SCO).

This first scenario was introduced in chapter 5 and extended in chapter 6. In real
space, this CA regime is characterized by Synchronized Chiral Oscillations (SCO)
of all the active units around their reference configuration (Fig. Cl.2-a). In mode
space, the polarity field rotates in the plane spanned by the two selected modes,
clockwise or counter-clockwise, depending on the chosen chirality. The selection
of a degenerated pair of modes arises preferentially when they are both maximally
locally-orthogonal and maximally extended. Crucially, we find that SCO arises
even in instances where this pair of modes is not the lowest energy one, illustrating
the nontrivial selectivity of this regime. At the level of homogeneous solutions and
for locally-orthogonal modes, SCO maps with the CO regime of the single particle.
However, in large-scale simulations and in the coarse-grained model, we find that
the transition from FD to SCO is essentially discontinuous and exhibits hysteresis.

2. Selection of one mode + turnarounds using other selected modes (GAR).

This second scenario was reported in chapter 6. This CA regime corresponds to
Global Alternating Rotations (GAR) of the structure around its pinning point:
the rotation mode is selected and activated back and forth (Fig. Cl.2-b). However,
CA cannot take place on a single mode in a noiseless framework, and other modes
must play a role in the turnarounds of the polarity field at each new rotation.
The modes selected for the turnarounds must couple with the rotation mode, thus
they must be as extended and as locally-orthogonal with the rotation mode as
possible. This regime also exhibits a nontrivial selectivity in the sense that it is
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NICA

SWW
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(d) gα

FIG. Cl.2. Summary of the different CA regimes. (a) Synchronized Chiral Oscillations
(SCO) in a triangular lattice pinned at the edges, see chapter 5. (b) Global Alternating Rotation
(GAR) in a triangular lattice with embedded central pinning, see chapter 6. (c) Noise-Induced
Collective Actuation (NICA) in a square lattice pinned at opposite ends, without gravity, see
chapter 7. (d) Synchronized Windscreen Wiper (SWW) in a square lattice pinned at opposite
ends, with a longitudinal polarizing gravity field (as indicated by the top right red arrow), see
chapter 7. Red arrows: polarities n̂i; trajectories color-coded from blue to red with increasing
time; scale bars: 10 cm.

observed even for instances where the rotation mode is not the lowest energy one.
We did not study in detail the transition to GAR as activity increases. At the level
of homogeneous solutions and for locally-orthogonal modes, GAR maps with the
elliptic regimes En of the asymmetric single particle. Therefore, the generalization
of GAR regimes to arbitrary pairs of non-degenerated normal modes shall be called
SEn regimes. However, we anticipate that the transition from FD to GAR/SEn is
also discontinuous for large systems.

3. Selection of the lowest energy mode + turnarounds with angular noise (NICA).

This scenario was reported in chapters 7 and 8. This CA regime is characterized
by self-oscillations of the system along a single normal mode, the turnarounds
being driven by the balance between activity, elasticity, and crucially, angular
noise (Fig. Cl.2-c). Noise-induced Collective Actuation (NICA) arises when a
given normal mode is very gapped with respect to the rest of the spectum, and
must preferentially take place along a mode that is maximally extended. This
regime apparently exhibits a trivial selection: it is only observed with the lowest
energy mode of the structure. Finally, the transition to NICA as activity increases
results from the destabilization of the FD phase through a Hopf bifurcation at
π = πc = 2(ω2

0 +D) at frequency Ω = ω0
√
D, where ω2

0 is the energy of the selected
mode. At the level of homogeneous solutions, the transition is continuous (both
the magnetization and displacements grow continuously), but in large systems, we
also anticipate that this transition becomes discontinuous.
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4. Polarization + selection of a transverse mode (SWW).

This last scenario originates from the presence of a polarizing gravity field, which
polarizes the active units’ orientations in a given direction. SWW is characterized
by spontaneous oscillations in the direction transverse to the polarizing field (Fig.
Cl.2-d). The selected transverse mode must couple with the polarizing field, thus it
must be as extended and as locally-orthogonal with gravity as possible. We did not
study the possibility of a nontrivial selection in that case. At the level of homoge-
neous solutions and for large enough gravity, SWW maps with regime WW of the
single particle. However, as gravity decreases and the longitudinal polarization be-
comes small, SWW transforms into NICA, and may exhibit Polarization-Induced
Reentrance (PIR).

Much work remains to understand precisely how CA regimes emerge and grow in large-
scale active solids, and also to predict which one is selected by the active dynamics.
Looking ahead, the recent miniaturization of autonomous active units [195] and the study
of large biological active solids [77] opens the path toward extending our design principle
to the scale of material science. In this context, expanding the relationship between the
structural design of active materials – including the geometry and topology of the lattice,
the presence of disorder, the inclusion of doping agents – and their spontaneous actuation
offers a wide range of perspectives. It is now time for active matter to become solid.
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Normal modes

In this appendix, we provide the normal mode spectrum of the structures studied ex-
perimentally in the different result chapters. The method used to compute the normal
modes and sort them by symmetry classes is explained in chapter 3.
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FIG. A.1. Normal modes spectrum of the Gerris. (top) Stiff heterogeneous hexagon
pinned from outside, without tension (α = 1.0). The thin outer springs have stiffness 1, the
inner thick springs have stiffness 1000. The inner structure’s neighboring graph is the complete
one. (bottom) Rigid heterogeneous hexagon pinned from outside, without tension (α = 1.0).
The inner structure is assumed to be fully rigid, thus all the harmonic modes whose energy scale
with the inner structure springs stiffness (k ≥ 4) have infinite energies. The modes are sorted
by order of growing energies, and colored by their associated eigenvalues with respect to the
rotation operation of the dihedral group of symmetry D6 of the structure. For every mode, the
figure highlights the mode’s index k, the eigenvalues associated with the symmetry operations
(τ, σ), and the associated squared eigenfrequency ω2

k.
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FIG. A.2. Normal modes spectrum of lattices with zero modes (top) Triangular lattice
in free boundary conditions (α = 1.0), and (b) with central pinning (α = 1.0). The modes are
sorted by order of growing energies, and colored by their associated eigenvalues with respect
to the rotation operation of the dihedral group of symmetry D6 of the structure. The modes
are computed for the experimental values of the tension, and only the twentieth first modes are
shown. For every mode, the figure highlights the mode’s index k, the eigenvalues associated with
the symmetry operations (τ, σ), and the associated squared eigenfrequency ω2

k.
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FIG. A.3. Normal modes spectrum of lattices pinned at the edges (top) Triangular lattice
pinned at the edges (α = 1.27), and (bottom) kagome lattice pinned at the edges (α = 1.02).
The modes are sorted by order of growing energies, and colored by their associated eigenvalues
with respect to the rotation operation of the dihedral group of symmetry D6 of the structure.
The modes are computed for the experimental values of the tension, and only the twentieth first
modes are shown. For every mode, the figure highlights the mode’s index k, the eigenvalues
associated with the symmetry operations (τ, σ), and the associated squared eigenfrequency ω2

k.
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FIG. A.4. Normal modes spectrum of large honeycomb lattices. Large honeycomb lattice
pinned at the edges (N = 180); (top) for low tension (α = 1.01); and (bottom) large tension
(α = 1.2). The modes are sorted by order of growing energies, and colored by their associated
eigenvalues with respect to the rotation operation of the dihedral group of symmetry D6 of the
structure. Only the fourteenth first modes are shown. For every mode, the figure highlights
the mode’s index k, the eigenvalues associated with the symmetry operations (τ, σ), and the
associated squared eigenfrequency ω2

k.
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Appendix B

Rigid limit

In this appendix, complementing chapter 4, we provide the derivation of the rigid limit in
the general case of pairwise radially symmetric forces between agents. We then perform
the linear stability analysis of the rotating and translating solutions for different bound-
ary conditions. Finally, we elaborate on the derivarion of the Fokker-Planck equation
and on the calculation of the Landau-Ginzburg-like free energy.

B.1 Rigid theoretical framework

B.1.1 Dimensionless scheme

The derivation of the rigid limit by Gustavo Düring and Claudio Hernández López is
written in a more general context of position-based interactions. The total elastic force
acting on particle i, F i, considers the sum of pairwise radially symmetric interaction
forces fij êij , where êij is a unit vector pointing from particle i to j, and fij(ri − rj)
represents the exact position dependence and sets the force amplitude. Thus, the total
force F i = ∑

j∈∂i fij êij where the sum runs over all interacting active units. Moreover,
they rescale the elastic forces by the amplitude of the active forces F i → F0F i. Note
that those differences completely vanish in the rigid limit.

Moreover, they use a different dimensionless scheme than the one of chapter 4: length
are rescaled by r0 = l0 (instead of la), and time by t0 = l0/v0 (instead of la/v0), resulting
in a global rescaling of units by τn. For the sake of consistency, the entire Appendix
is written in this dimensionless scheme. In this context, the overdamped equations of
motion read:

ṙi = n̂i + F i, (B.1a)

θ̇i = 1
τn

(
n̂⊥i · ṙi

)
+
√

2D
τn
ξi, (B.1b)

Note that this scheme is simpler when actually performing numerical calculations, be-
cause this way particles are connected by bonds of unit length, and τn appears as one
parameter in the equations.

B.1.2 Force determination

Let i and j be two agents connected by a rigid link. We may express the geometrical
inextensibility condition as:

d
dt |ri − rj | = êij · (ṙi − ṙj) = 0, (B.2)
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217 B.1. Rigid theoretical framework

where êij = (ri − rj) /|ri − rj |. If j refers to a pinned site, then the above condition
reads:

êij · ṙi = 0. (B.3)

There exist M such equations, where M is the number of edges of the system. We can
put them in a compact form using braket notation. Let m denote the link between
agents i and j. Eq. (B.2) can be re-casted as:

〈m|S|ṙ〉 = 0, (B.4)

where |ṙ〉 is a particle-space ket satisfying:

〈a|ṙ〉 = ṙa, (B.5)

and:
〈m|S|a〉 = êTij(δai − δaj), (B.6)

or, if j refers to a pinned site:
〈m|S|a〉 = êTijδai, (B.7)

are the matrix elements of the M × 2N operator S. The set of all such equations can
be expressed succinctly as:

S |ṙ〉 = 0. (B.8)

The same matrix can be utilized to decompose the net force on each agent as the sum
of the tensions along each edge. Indeed, given the generic elastic force expression:

F i =
∑
j∈∂i

fij êij . (B.9)

Let m denote the link between active particles k and j. Then:

F i =
∑
m

êmδik 〈m|f〉 , (B.10)

=
∑
m

(〈m|S|i〉)T 〈m|f〉 , (B.11)

=
∑
m

〈i|ST |m〉 〈m|f〉 , (B.12)

= 〈i|ST |f〉 , (B.13)

where we have used the completeness of the edge-space basis:∑
m

|m〉 〈m| = I. (B.14)

Finally, as F i = 〈i|F 〉:
|F 〉 = ST |f〉 . (B.15)

Using (B.8) and (B.15) in Eq. (B.1a), we find:

SST |f〉 = −S |n̂〉 . (B.16)

We can now decompose |f〉 in the eigenkets of SST :

|f〉 =
∑
q

fq |φq〉 =
∑
q∈F

fq |φq〉+
∑
q /∈F

fq |φq〉 , (B.17)



Appendix B. Rigid limit 218

where F is the set of zero modes of SST . We can then replace this expansion in B.16:∑
q /∈F

fqω
2
q |φq〉 = −S |n̂〉 , (B.18)

so that:
fq = −〈φ

q|S|n̂〉
ω2
q

∀q /∈ F. (B.19)

Then:
|f〉 =

∑
q∈F

fq |φq〉 −
∑
q /∈F

〈φq|S|n̂〉
ω2
q

|φq〉 . (B.20)

Before continuing, it is important to realize that SST shares a common set of eigenvalues
with STS, the dynamical matrix. Let |ϕp〉 be the p-th eigenket of the latter, then we
can write:

STS |ϕp〉 = ω2
p |ϕp〉 , (B.21)

such that:
SST (S |ϕp〉) = ω2

p (S |ϕp〉) . (B.22)
If |ϕp〉 /∈ ker(S), then S |ϕp〉 is an eigenket of SST with eigenvalue ω2

p. Then, every
nonzero eigenvalue of STS is also in SST , same with the zero eigenvalues associated
with kets that are not in the kernel of S. We can also go the other way around, consider
the q-th eigenket of SST . Then:

SST |φq〉 = ω̃2
q |φq〉 , (B.23)

such that:
STS

(
ST |φq〉

)
= ω̃2

q

(
ST |φq〉

)
. (B.24)

If |φq〉 /∈ ker(ST ), then ST |φq〉 is an eigenket of STS with eigenvalue ω̃2
q . Then, every

nonzero eigenvalue of SST is also in STS, same with the zero eigenvalues associated to
kets that are not in the kernel of ST . With this, we conclude that the two matrices
have the same nonzero eigenvalues, and share a subset of their zero eigenvalues, with
the non-shared part being associated with kets in the kernel of S or ST . We can then
write the following:

ST |φq〉 = αq |ϕq〉 , (B.25)
S |ϕq〉 = βq |φq〉 , (B.26)

so that:

SST |φq〉 = αqβq |φq〉 , (B.27)
STS |ϕq〉 = βqαq |ϕq〉 . (B.28)

We have established that ω̃2
q = ω2

q for eigenkets not in the kernel of S or ST . With this,
we conclude that:

ST |φq〉 = ωq |ϕq〉 , (B.29)
S |ϕq〉 = ωq |φq〉 , (B.30)

which works even if ST |φq〉 = 0 or S |ϕq〉 = 0 as in that case ωq = 0. Finally:

|F 〉 = ST |f〉 = −
∑
q /∈F
〈ϕq|n̂〉 |ϕq〉 , (B.31)

and using the resolution of the identity:

|F 〉 = − |n̂〉+
∑
q∈F
〈ϕq|n̂〉 |ϕq〉 . (B.32)
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B.2 Stability of translational and rotational solutions in
rigid structures

Let φ denote the angle of a certain point of the structure with respect to the horizontal
axis. We can define θ′i = θi − φ and φ′i = φi − φ as angles measured from the frame
co-rotating with the structure. From the rigid limit, φ′i is fixed, and we can write the
temporal evolution of θ′i from Eqs. (4.7b) and (4.12):

θ̇′i = θ̇i − φ̇, (B.33)

= 1
τn

∑
q∈F
〈ϕq|n̂〉

(
n̂⊥i ·ϕ

q
i

)
− 1
I

(∑
k

r⊥k · n̂k

)
. (B.34)

B.2.1 Pinned structure

The equation of motion for the angular degrees of freedom can be written as follows:

θ̇′i =
( 1
τn
ri cos(θ′i − φ′i)− 1

) 1
I

∑
k

rk sin(θ′k − φ′k) = fi(θ′1, . . . , θ′N ), (B.35)

where the steady-state rotational solution satisfies:

ri cos(θ′i − φ′i) = τn ∀ i. (B.36)

Let us designate this solution as θ̃′i. We will now perform a Taylor series expansion of
fi centered around this solution:

fi ≈
∑
j

Aij(θ′j − θ̃′j), (B.37)

where:

Aij = ∂fi
∂θ′j

∣∣∣∣∣
θ′
k
=θ̃′

k
∀k
. (B.38)

We have the following:

∂fi
∂θ′j

= − 1
τn
ri sin(θ′i − φ′i)

1
I

∑
k

rk sin(θ′k − φ′k) +
( 1
τn
ri cos(θ′i − φ′i)− 1

) 1
I
rj cos(θ′j − φ′k).

(B.39)
Now, from B.36, we can see that:

ri sin(θ′i − φ′i) = ±
√
r2
i − τ2

n, (B.40)

where every particle shares the same sign as we are studying a global rotation. Replacing
in B.39:

Aij = −

√
r2
i − τ2

n

I

∑
k

(√
r2
k − τ2

n

)
δij . (B.41)

This matrix is diagonal, and every entry is negative. Therefore, the rotating solution in
a pinned structure is always linearly stable.
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B.2.2 Non-pinned structure translational solution

The equation of motion for the angular degrees of freedom can be written as follows:

θ̇′i = − 1
τn

1
N

∑
k

sin(θ′i−θ′k)+
( 1
τn
ri cos(θ′i − φ′i)− 1

) 1
I

∑
k

rk sin(θ′k−φ′k) = fi(θ′1, . . . , θ′N ),

(B.42)
with the steady state solution θ′i = θ′ ∀i. We have:

∂fi
∂θ′j

= − 1
τn

1
N

∑
k

cos(θ′i − θ′k)δij + 1
τn

1
N

∑
k

cos(θ′i − θ′k)δkj

− 1
τn
ri sin(θ′i − φ′i)

1
I

∑
k

rk sin(θ′k − φ′k) +
( 1
τn
ri cos(θ′i − φ′i)− 1

) 1
I
rj cos(θ′j − φ′k).

(B.43)

Thus:

Aij = − 1
τn
δij + 1

τn

1
N

+ 1
I
rj cos(θ′ − φ′j)

( 1
τn
ri cos(θ′ − φ′i)− 1

)
. (B.44)

Consider the sum of the columns of matrix Aij :∑
j

Aij = − 1
τn

+ 1
τn

+ 1
I

( 1
τn
ri cos(θ′ − φ′i)− 1

)∑
j

rj cos(θ′ − φ′j) = 0, (B.45)

where the last sum is equal to zero as it corresponds to the position of the barycenter
with respect to itself along the x-axis. Therefore, Aij has at least one null eigenvalue.
Let us now demonstrate that the matrix has N − 2 eigenvalues λ = −1/τn. If vi ∀i
represent the components of one of these eigenvectors, then:∑

j

Aijvj = − 1
τn
vi, (B.46)

which implies that:
1
τn

1
N

∑
j

vj + 1
I

( 1
τn
ri cos(θ′ − φ′i)

)∑
j

rj cos(θ′ − φ′j)vj = 0. (B.47)

As the components vj cannot depend on i, then the eigenvector must satisfy two condi-
tions: ∑

j

vj = 0, (B.48)

∑
j

rj cos(θ′ − φ′j)vj = 0. (B.49)

These two restrictions imply that there exist N − 2 eigenvectors with eigenvalue λ =
−1/τn. Now, the characteristic polynomial of A reads:

λ

(
λ+ 1

τn

)N−2
(λ− λN ) = 0, (B.50)

where λN is the last unknown eigenvalue. We may recognize that
(

1
τn

)N−2
λN is the

coefficient of the linear term in this polynomial, and thus, it is equal to the trace of A:

λN = τN−2
n

(
− 1
τn
N + 1

τn
+ 1
τn

1
I

∑
i

(
ri cos(θ′ − φ′i)

)2) ≤ τN−3
n (2−N) , (B.51)

which proves that the stability of the translational solution is assured for any structure.
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B.2.3 Non-pinned structure rotating solution

We consider equation B.43 with the rotating condition given by B.36. We can write:

cos(θ′i − θ′k) = cos((θ′i − φ′i)− (θ′k − φ′k) + (φ′i − φ′k)), (B.52)
= cos((θ′i − φ′i)− (θ′k − φ′k)) cos((φ′i − φ′k))

− sin((θ′i − φ′i)− (θ′k − φ′k)) sin((φ′i − φ′k)),
(B.53)

= cos(φ′i − φ′k)
(
cos(θ′i − φ′i) cos(θ′k − φ′k) + sin(θ′i − φ′i) sin(θ′k − φ′k)

)
− sin(φ′i − φ′k)

(
sin(θ′i − φ′i) cos(θ′k − φ′k)− cos(θ′i − φ′i) sin(θ′k − φ′k)

)
,

(B.54)

= cos(φ′i − φ′k)
rirk

(
1 +

√
r2
i − τ2

n

√
r2
k − τ2

n

)
∓ sin(φ′i − φ′k)

rirk

(√
r2
i − τ2

n −
√
r2
k − τ2

n

)
,

(B.55)

= αik. (B.56)

Then:

Aij = 1
N
αij −


√
r2
i − τ2

n

I

∑
k

(√
r2
k − τ2

n

)
+ 1
N

∑
k

αik

 δij . (B.57)

B.3 Fokker-Planck equation

Consider a system described by a set of W random variables yi evolving under the
following stochastic differential equation:

ẏi(t) = Li(y1, . . . , yW |t) + σiξi(t), (B.58)

where ξi is a Gaussian white noise with zero mean and correlations 〈ξi(t)ξj(t′)〉 =
δijδ(t − t′). Let Q(y1, . . . , yW |t) be the probability density function of a particular sys-
tem configuration at time t. The Fokker-Planck equation describing the spatio-temporal
evolution of Q reads:

∂Q

∂t
= −

∑
i

∂

∂yi
(LiQ) +

∑
i

σ2
i

2
∂2Q

∂y2
i

. (B.59)

In our particular case, W = 3N . Furthermore, σi = 0 for all the equations describing
the particle positions. From the dimensionless dynamical equations in the rigid limit,
the Fokker-Planck equation reads:

∂

∂t
Q(r1, . . . , rN |θ1, . . . , θN |t) =

−
∑
i,q

∇xi · (〈ϕq|n̂〉ϕ
q
iQ) +

∑
i

∂

∂θi

( 1
τn

∂V

∂θi
Q

)
+ D

τn

∑
i

∂2Q

∂θ2
i

. (B.60)

Let us take a system in free boundary conditions, with two translational modes and a
rotational one. Then, the relevant variables are the position of the center of mass R,
the rotation of the structure φ and the polarization of each agent θi. We must write the
dynamical equation for each one of them. From the definition of the center of mass, we
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find the equation governing its temporal evolution:

Ṙ = 1
N

∑
i

ṙi, (B.61)

= 1
N

∑
i

n̂i, (B.62)

where the last equality is obtained because the sum of all the inter-particle forces vanishes
from reciprocity. In summary, the set of variables of interest evolves according to the
following equations:

Ẋ = 1
N

∑
j

cos(θ′j + φ), (B.63)

Ẏ = 1
N

∑
j

sin(θ′j + φ), (B.64)

φ̇ = 1
I

∑
j

rj sin(θ′j − φ′j), (B.65)

τnθ̇
′
i = −∂V

∂θ′i
− τnφ̇+

√
2Dτnξi = − 1

N

∑
j

sin(θ′i − θ′j) +
(
ri cos(θ′i − φ′i)− τn

)
φ̇+

√
2Dτnξi,

(B.66)

where X and Y and respectively the x and y components of the barycenter’s position
vector R. Then, Q(X,Y, φ, θ′1, . . . , θ′N |t) evolves according to the following equation:

∂Q

∂t
= − ∂

∂X

[
1
N

∑
i

cos(θ′i + φ)Q
]
− ∂

∂Y

[
1
N

∑
i

sin(θ′i + φ)Q
]

− ∂

∂φ

[
1
I

∑
i

rj sin(θ′i − φ′i)Q
]

+
∑
i

∂

∂θ′i

[(
1
τn

∂V

∂θ′i
+ φ̇

)
Q

]
+ D

τn

∑
i

∂2Q

∂θ′i
2 . (B.67)

Let us define the reduced probability distribution Q(θ′1, . . . , θ′N |t) such that:

Q =
∫
QdX dY dφ, (B.68)

and as neither ∂V/∂θ′i nor φ̇ depend on these variables, we are left with:

∂Q
∂t

=
∑
i

∂

∂θ′i

[(
1
τn

∂V

∂θ′i
+ φ̇

)
Q
]

+ D

τn

∑
i

∂2Q
∂θ′2i

. (B.69)

If φ̇ = 0 the stationary distribution can be found exactly and it corresponds to the
Boltzmann distribution:

Q ∝ exp(−βV ), (B.70)

with β = 1/D. We now perform a scaling analysis to study the magnitudes of terms
∂V/∂θ′i and θ̇. Note that:

∂V

∂θ′i
∼ −1 + hφ̇, (B.71)

φ̇ ∼ 1
h
, (B.72)
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where h is the characteristic agent distance from the center of mass. Therefore, if τn � h,
the approximation φ̇ = 0 is reasonably accurate. We introduce a series expansion of Q
as follows:

Q = Q(0) + τnQ(1) + . . . (B.73)

By plugging Eq. (B.73) back in Eq. (B.69), at order O(τn), we recover the steady-state
solution given by B.70. For any higher order O(τpn), the steady-state solution satisfies
the following equation:

∇ ·
(
e−βV ∇

(
eβVQ(p)

))
= β

∑
i

∂

∂θ′i

(
φ̇Q(p−1)

)
. (B.74)

B.4 Statistics of the adiabatic approximation

We can calculate the partition function as follows:

Z =
∫ 2π

0
exp

(
β

(
1
2
∑
q

(〈ϕq|n̂〉)2 +
√
N
∑
q

hq 〈ϕq|n̂〉
))

dNθ. (B.75)

where we have introduced a conjugated field hq. Note that, for a globally extended
mode, 〈ϕq|n̂〉 is O(

√
N). To recast this integral, we define the parameter µq via the

integral of the Gaussian function:

exp
(
β

2N
(√

N 〈ϕq|n̂〉
)2
)

=
√
Nβ

2π

∫ ∞
−∞

exp
(
−Nβ2 µ2

q +
(
β
√
N 〈ϕq|n̂〉

)
µq

)
dµq,

(B.76)
so that:

Z =
(
Nβ

2π

)M
2
∫ ∞
−∞

exp
(
Nβ

2
∑
q

µ2
q

)
I(µ1, . . . , µM ) dMµ, (B.77)

where:

I =
∫ 2π

0
exp

(
β
∑
k

(√
N 〈ϕq|n̂〉

)
(µq + hq)

)
dNθ. (B.78)

For any of the global modes, we can write:

|ϕq〉 = 1√
N

∑
i

rqi (cos(φqi)x̂+ sin(φqi)ŷ) , (B.79)

then:
I =

∫ 2π

0

∏
i

[exp (ai cos(θi) + bi sin(θi)) dθi] , (B.80)

where:

ai =
∑
q

(µq + hq)rqi cos(φqi), (B.81)

bi =
∑
q

(µq + hq)rqi sin(φqi). (B.82)

Thus:
I = (2π)N

∏
i

I0

(
β
√
a2
i + b2i

)
. (B.83)
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This expression can be rewritten in a more tractable way:

a2
i + b2i =

∑
q,l

(µq + hq)(µl + hl)rqirli (cos(φqi) cos(φli) + sin(φqi) sin(φli)) , (B.84)

=
∑
q,l

(µq + hq)(µl + hl)rqirli cos(φqi − φli), (B.85)

= N
∑
q,l

(µq + hq)(µl + hl)
(
ϕqi ·ϕ

l
i

)
, (B.86)

then we can define:

Di =

N∑
q,l

(µq + hq)(µl + hl)
(
ϕqi ·ϕ

l
i

)1/2

, (B.87)

so that, up to a multiplicative constant:

Z =
∫ ∞
−∞

exp (−Nβf(µ1, . . . , µM )) dMµ, (B.88)

where:
f = 1

2
∑
q

µ2
q −

1
Nβ

∑
i

ln (I0(βDi(µ1, . . . , µM ))) . (B.89)

Di is O(1), hence the free energy per particle in the thermodynamic limit is given by
the minimum of f . This minimum satisfies, for every mode q:

µ̃q = 1
Nβ

∑
i

∂ ln(I0(βDi))
∂µq

∣∣∣∣∣ hl=0 ∀l
µl=µ̃l ∀l

. (B.90)

We are interested in calculating the mean values of the projections of each mode over
the polarity field. From the partition function definition in B.75:

〈〈ϕq|n̂〉〉 = 1√
Nβ

∂ ln(Z)
∂hq

∣∣∣∣∣
hl=0 ∀l

. (B.91)

Note that Z depends on hq only through f . Then:

〈〈ϕq|n̂〉〉 = 1
Z

1√
Nβ

∫ ∞
−∞

exp (−Nβf)
(
−Nβ ∂f

∂hq

)
dMµ

∣∣∣∣∣
hl=0 ∀l

. (B.92)

Thus:
〈〈ϕq|n̂〉〉√

N
= 1
Nβ

1
Z

∫ ∞
−∞

exp (−Nβf)
(∑

i

∂ ln(I0(βDi))
∂hq

)
dMµ

∣∣∣∣∣
hl=0 ∀l

. (B.93)

From the explicit form of Di:
∂ ln(I0(βDi))

∂hq
= ∂ ln(I0(βDi))

∂µq
. (B.94)

Finally, ignoring fluctuations up to first order in the saddle point approximation:

〈〈ϕq|n̂〉〉√
N

= 1
Nβ

∑
i

∂ ln(I0(βDi))
∂µq

∣∣∣∣∣ hl=0 ∀l
µl=µ̃l ∀l

. (B.95)

Then, the values:
µ̃q = 〈〈ϕ

q|n̂〉〉√
N

, (B.96)

define a minimum of the free energy.





Appendix C

Fixed point stability analysis for
mechanically stable structures

In this appendix, we provide the complete linear stability analysis of an arbitrary fixed
point for mechanically stable structures (see chapter 5), and derive the lower and upper
bounds of stability thresholds.

C.1 Dynamics linearized around a given fixed point

To study the stability of a given fixed point
{
|u0〉, |n̂0〉

}
we consider small pertur-

bations |n̂〉 = |n̂0〉 + |δn̂〉 and |u〉 = |u0〉 + |δu〉, where n̂0
i = (cos θ0

i , sin θ0
i ) and

δn̂i = (− sin θ0
i , cos θ0

i )δθi = n̂0⊥
i δθi = 〈i|KT

0 |δθ〉. Linearizing Eqs. (3.46) one gets:

| ˙δu〉 = −M|δu〉+ πKT
0 |δθ〉, (C.1a)

|δ̇θ〉 = −K0M|δu〉 − πδK|n̂0〉. (C.1b)

Since δn̂⊥i = (− cos θ0
i ,− sin θ0

i )δθi = −n̂0
i δθi, we use the contraction δK|n̂0〉 = −|δθ〉.

Finally, rescaling time t→ π−1t leads to the following system:

| ˙δu〉 = −π−1M|δu〉+ KT
0 |δθ〉, (C.2a)

|δ̇θ〉 = −π−1K0M|δu〉+ |δθ〉. (C.2b)

Therefore the stability of the configuration |n̂0〉 is encoded in the 3N eigenvalues of the
matrix

D =
(
−π−1M KT

0
−π−1K0M I

)
. (C.3)

The matrix D depends on the parameter π, the network geometry, and the equilibrium
configuration of the polarities encoded in the matrix K0. In the following, we drop
the subscript 0, but one should remember that K depends on the configuration of the
polarities.

C.2 Properties of the spectrum valid for all fixed points
Consider the eigenvector |Ψ〉 = (|b〉, |c〉) of the matrix D with eigenvalue λ, then:

−π−1M|b〉+ KT |c〉 = λ|b〉, (C.4a)
−π−1KM|b〉+ |c〉 = λ|c〉. (C.4b)
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227 C.3. Stability threshold of a given fixed point

Multiplying Eq. (C.4a) by K and noting that KKT = I leads to:

− π−1KM|b〉+ |c〉 = λK|b〉. (C.5)

Comparing with Eq. (C.4b), we obtain that either K|b〉 = |c〉 or λ = 0.

• First, we consider the case λ = 0. From Eq. (C.5), |c〉 = π−1KM|b〉; using this
relation in Eq. (C.4a) leads to(

I−KTK
)
M|b〉 = 0. (C.6)

This means that M|b〉 must be an eigenvector of KTK with eigenvalue 1. The oper-
ator KTK is the projector on the space spanned by (|n̂⊥i 〉)i: it has N eigenvectors
|κi〉 = |n̂i〉 = n̂i|i〉 with eigenvalue 0 and N eigenvectors |κi〉 = |n̂⊥i 〉 = n̂⊥i |i〉 with
eigenvalue 1. Hence, for any equilibrium configuration, there are N eigenvectors
with eigenvalue 0, given by

|b〉 = M−1n̂⊥i |i〉, (C.7a)
|c〉 = π−1|i〉. (C.7b)

These eigenvectors span the tangent space of the N -dimensional fixed points man-
ifold. We also note that, consequently, the equilibrium configurations are all
marginally stable.

• Second, we consider the case K|b〉 = |c〉. Inserting this relation in Eq. (C.4a), we
obtain (

−π−1M + KTK
)
|b〉 = λ|b〉. (C.8)

λ should thus be an eigenvalue of the symmetric matrix

D̃ = −π−1M + KTK. (C.9)

Since D̃ is symmetric, λ is real; hence, the spectrum of D, Spec(D), is real and is given
by

Spec(D) = {0} ∪ Spec
(
D̃
)
. (C.10)

Since the eigenvalues of M are bounded between ω2
min and ω2

max, and the eigenvalues of
KTK are 0 and 1, the eigenvalues of D̃ are bounded by

− ω2
max
π
≤ Spec

(
D̃
)
≤ 1− ω2

min
π

. (C.11)

When π → 0, we see from Eq. (C.11) that Spec(D̃) → −∞. When π → ∞, D̃ → KTK,
which has eigenvalues 0 and 1 with N associated eigenvectors each.

C.3 Stability threshold of a given fixed point
A given fixed point is stable if Spec(D̃) ≤ 0, which is equivalent to the fact that for any
vector |b〉,

〈b|D̃|b〉 ≤ 0. (C.12)

With the explicit expression of D̃, this reads

〈b| − π−1M + KTK|b〉 ≤ 0. (C.13)
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We now project |b〉 on the eigenvectors of M; denoting bk = 〈ϕk|b〉, this reads∑
jk

bjbk
(
−π−1ωjωk + 〈ϕj |KTK|ϕk〉

)
≤ 0. (C.14)

Now defining b̃k = ωkbk, this becomes

∑
jk

b̃j b̃k

(
−π−1 +

〈ϕj |KTK|ϕk〉
ωjωk

)
≤ 0. (C.15)

Introducing the matrix

Ljk =
〈ϕj |KTK|ϕk〉

ωjωk
, (C.16)

the stability condition reads

Spec
(
−π−1I + L

)
≤ 0. (C.17)

But Spec
(
−π−1I + L

)
= −π−1 + Spec(L). Finally, the fixed point |n̂〉 is stable if

π ≤ πc (|n̂〉) = 1
max Spec (L (|n̂〉)) . (C.18)

0 1
λπ → +∞

2N N

(e)

0 1

λmax > 0
λπ > πc(|n̂〉)

N−ω2
max/π

(d)

0 1
λπ = πc(|n̂〉)

N + 1−ω2
max/π

(c)

0 1
λ0 < π < πc(|n̂〉)

N−ω2
max/π

2N
(b)

0 1
λπ → 0

N⇐2N (a)

FIG. C.1. Eigenvalue spectrum for an arbitrary fixed point {|u〉 = πM−1|n̂〉, |n̂〉}. The
fixed point is stable for π < πc(|n̂〉), where πc(|n̂〉) is given by Eqs. (C.18). (a) π → 0, N zero
eigenvalues and the 2N which are left are strictly negative, given by −ω2

k/π. (b) 0 < π < πc(|n̂〉),
N zero eigenvalues, and the 2N which are left are strictly negative. (c) π = πc(|n̂〉), N + 1 zero
eigenvalues, and the 2N − 1 which are left are strictly negative. (d) π > πc(|n̂〉), the greatest
eigenvalue is strictly positive. (e) π → +∞, 2N zero eigenvalues, N one eigenvalues.

C.4 First linear destabilization
We then determine a lower bound of the stability thresholds and show that this bound
is sharp.
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Let πmin
c be the smallest value of π for which there exists an unstable configuration. We

thus have πc (|n̂〉) ≥ πmin
c for all |n̂〉. From Eq. (C.11) there can be a positive eigenvalue

only if π > ω2
min, hence we have

πc (|n̂〉) ≥ πmin
c = ω2

min. (C.19)

We now exhibit a configuration |n̂min〉 that does destabilize at ω2
min. Consider the

eigenmode of M associated to the eigenvalue ω2
1 = ω2

min, |ϕ1〉; and a configuration |n̂min〉
where the orientation n̂i is orthogonal to ϕi1 for every particle i. For this configuration,
L11 = ω−2

min, hence max Spec(L) ≥ ω−2
min and πc(|n̂〉) ≤ ω2

min. With the lower bound
(C.19), we conclude that πmin

c = πc(|n̂min〉) = ω2
min: the lower bound (C.19) is sharp

and the first configuration to destabilize is related to the lowest energy mode in a simple
way.

C.5 Upper bound of the stability thresholds
We don’t have an explicit analytical expression for the largest destabilization threshold,
πmax
c , but we can determine an upper bound πupp

c of it above which there exists no stable
fixed point.

To do so, we look for a |n̂〉-independent lower bound of the maximal eigenvalue of D̃.
We use the restriction of the matrix D̃ to the two modes j and k, which is a 2×2 matrix
that we denote D̃{j,k}. We have

max Spec
(
D̃ (|n̂〉)

)
≥ max Spec

(
D̃{j,k} (|n̂〉)

)
,

= D̃jj + D̃kk
2 +

√
(D̃jj − D̃kk)2

4 + D̃2
jk,

≥ D̃jj + D̃kk
2 .

(C.20)

Explicitly,

D̃jj + D̃kk
2 = −

ω2
j + ω2

k

2π + 1
2
(
〈ϕj |KTK|ϕj〉+ 〈ϕk|KTK|ϕk〉

)
, (C.21)

= −
ω2
j + ω2

k

2π + 1
2
∑
i

[
(ϕij × n̂i)2 + (ϕik × n̂i)2

]
. (C.22)

Now we have to minimize the term in the sum over the orientations n̂i. This amounts
to finding the minimal eigenvalue of the matrix

ϕij
(
ϕij
)T +ϕik

(
ϕik
)T =

( (
ϕij,x

)2 +
(
ϕik,x

)2 (
ϕij,x

)(
ϕij,y

)
+
(
ϕik,x

)(
ϕik,y

)(
ϕij,x

)(
ϕij,y

)
+
(
ϕik,x

)(
ϕik,y

) (
ϕij,y

)2 +
(
ϕik,y

)2
)
,

=
(
c11 c12
c12 c22

)
,

(C.23)
which is

λmin = 1
2

[
c11 + c22 −

√
(c11 − c22)2 + 4c2

12

]
, (C.24)

= 1
2

(ϕij)2
+
(
ϕik

)2
−
([(

ϕij

)2
+
(
ϕik

)2
]2
− 4

[
ϕij ×ϕik

]2)1/2
 . (C.25)
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Using the fact that the modes are normalized, we finally get the bound

max Spec
(
D̃ (|n̂〉)

)
≥ −

ω2
j + ω2

k

2π +1
2

1− 1
2
∑
i

([(
ϕij

)2
+
(
ϕik

)2
]2
− 4

[
ϕij ×ϕik

]2)1/2
 .

(C.26)
All the fixed points are unstable when this bound is positive, which happens for

π ≥ π{j,k}c,u =
ω2
j + ω2

k

c(|ϕj〉, |ϕk〉)
, (C.27)

with

c(|ϕj〉, |ϕk〉) = 1− 1
2
∑
i

([(
ϕij

)2
+
(
ϕik

)2
]2
− 4

[
ϕij ×ϕik

]2)1/2

. (C.28)

Finally, the bound for π, above which there exists no stable fixed point is

πupp
c = min

{j,k}

(
ω2
j + ω2

k

c(|ϕj〉, |ϕk〉)

)
. (C.29)

Note that the function c(•, •) is bounded between 0, when j = k, and 1, when the pair
of modes (|ϕj〉, |ϕk〉) are locally orthogonal and of the same norm.





Appendix D

Zero-rest-length chains

In this appendix, we provide the derivation of the CA regime’s explicit expression in the
general case of a normal mode spectrum composed of pairs of degenerated and locally-
orthogonal eigenmodes (see chapter 5). We then analyze its stability. Eventually, we
apply this framework to zero-rest-length chains with N = 2, 3, and 4.

D.1 Single-frequency limit cycles.
We look for a CA regime such that all the particles turn with the same constant angular
velocity: the orientation θj(t) of the particle j follows

θj(t) = Ωt+ φj , (D.1)

where φj is a constant phase. Integrating Eq. (3.49a), we deduce that:

aux,k(t) = aux,k(0)e−ω2
kt + π

∑
j

∫ t

0
ϕjk cos(θj(t− t′))e−ω

2
kt
′ dt′, (D.2a)

auy,k(t) = auy,k(0)e−ω2
kt + π

∑
j

∫ t

0
ϕjk sin(θj(t− t′))e−ω

2
kt
′ dt′. (D.2b)

In the long time limit,

aux,k(t) = π

ω4
k + Ω2

∑
j

ϕjkfk(Ωt+ φj), (D.3a)

auy,k(t) = π

ω4
k + Ω2

∑
j

ϕjkfk

(
Ωt+ φj −

π

2

)
, (D.3b)

where we have defined
fk(θ) = ω2

k cos(θ) + Ω sin(θ). (D.4)
Using the above expressions in the equation for θ̇j = Ω, Eq. (3.47b), we get

Ω =
∑
k

ω2
kϕ

j
k

[
sin(θj)aux,k − cos(θj)auy,k

]
=
∑
k,i

πω2
k

ω4
k + Ω2ϕ

i
kϕ

j
kfk

(
φi − φj + π

2

)
. (D.5)

We obtain a set of N equations with N unknowns: Ω and N − 1 phases (we can always
fix one of them). Ω = 0 is always a solution, corresponding to a fixed point. Depending
on π, there may be other solutions. Note that the radii of rotation of the particles can
be computed at any time by summing over the modes:

Rj =
√
u2
j =

√∑
k,l

ϕjkϕ
j
l (ax,kax,l + ay,kay,l). (D.6)
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D.2 Stability of the limit cycles.
Each solution may be tested for stability. To determine the stability of a rotating
solution, we use the comoving frame and introduce the coefficients β such that:

aux,k(t) = βx,k(t) cos(Ωt)− βy,k(t) sin(Ωt), (D.7a)
auy,k(t) = βx,k(t) sin(Ωt) + βy,k(t) cos(Ωt). (D.7b)

We now write these coefficients as the rotating solution plus a perturbation:

βx,k(t) = β
(0)
x,k + β

(1)
x,k(t), (D.8a)

βy,k(t) = β
(0)
y,k + β

(1)
y,k(t), (D.8b)

θj(t) = θ
(0)
j (t) + θ

(1)
j (t), (D.8c)

with

β
(0)
x,k = π

ω4
k + Ω2

∑
j

ϕjkfk(φj), (D.9a)

β
(0)
y,k = π

ω4
k + Ω2

∑
j

ϕjkfk

(
φj −

π

2

)
, (D.9b)

θ
(0)
j = Ωt+ φj . (D.9c)

The dynamical equations for these perturbations are derived from (3.49a) and (3.47b):

β̇
(1)
x,k = −ω2

kβ
(1)
x,k + Ωβ(1)

y,k − π
∑
i

ϕik sin(φi)θ(1)
i , (D.10a)

β̇
(1)
y,k = −ω2

kβ
(1)
y,k − Ωβ(1)

x,k + π
∑
i

ϕik cos(φi)θ(1)
i , (D.10b)

θ̇
(1)
j =

∑
k

ω2
kϕ

j
k

[
sin(φj)β(1)

x,k − cos(φj)β(1)
y,k

]
+
∑
k,i

πω2
k

ω4
k + Ω2ϕ

i
kϕ

j
kfk(φi − φj)θ

(1)
j . (D.10c)

D.3 Geometrical restriction on the existence of rotating
solutions

A simple condition can be derived to determine the stability of the rotating solution
found above. Let us remind the equations for a single particle:

ẋi = πn̂i + F el
i , (D.11a)

θ̇i = F i · n̂⊥i , (D.11b)

where we may express Eq. (D.11b) as:

θ̇i = ẋi · n̂⊥i . (D.12)

Consider an active particle in the condensed state of the linear chain (i.e. circular
motion). From the dynamics periodicity, the angular speed of the position and polarity
vectors are the same. Thus:

ẋi = ΩRir̂⊥i , (D.13a)
θ̇i = Ω, (D.13b)
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where Ri is the radius of particle i’s trajectory. Then, replacing in Eq (D.12), and
discarding the Ω = 0 case:

1
Ri

= r̂⊥i · n̂⊥i = r̂i · n̂i ≤ 1. (D.14)

This means rotating solutions exist only when the trajectory radius of all the particles
is greater than 1. As π decreases, the radii of rotation of the active units in the rotating
solution decrease until the outer-most particles cross the threshold, and the steady rotat-
ing solution does not exist anymore. In this state, the whole system may stop abruptly
or transition to a heterogeneous regime, where those polarity vectors are frozen and
spatially coexist with oscillating ones.

D.4 Application to the chains

In the following, we apply the above framework to the example of the zero-rest-length
chains introduced in chapter 5.

N = 2 chain

Setting φ1 = 0 rad, Eqs. (D.5) for Ω and φ2 read

Ω = π

[Ω(1 + cos(φ2))− sin(φ2)
2(1 + Ω2) + 3Ω(1− cos(φ2)) + 3 sin(φ2)

2(9 + Ω2)

]
, (D.15a)

= π

[Ω(1 + cos(φ2)) + sin(φ2)
2(1 + Ω2) + 3Ω(1− cos(φ2))− 3 sin(φ2)

2(9 + Ω2)

]
. (D.15b)

We see that φ2 = 0 rad or φ2 = π rad. For φ2 = 0 the angular velocity is given by

Ω =
√
π − 1, (D.16)

which is a valid solution as long as π ≥ 1 (Fig. 5.14). To determine the stability of this
solution, we need to study the spectrum of the matrix

C2 =



−1 Ω 0 0 0 0
−Ω −1 0 0 π√

2
π√
2

0 0 −3 Ω 0 0
0 0 −Ω −3 π√

2 − π√
2

0 − 1√
2 0 − 3√

2 1 0
0 − 1√

2 0 3√
2 0 1


. (D.17)

We are interested in particular in the zero eigenvalues. This matrix always admits one
that corresponds to global rotations, which does not preclude the stability of the solution.
There is another null eigenvalue when π = 1, meaning that the rotating solution is stable
on its whole range of existence. We can also compute the radius of rotation and obtain
R =

√
π. This rotating solution strictly maps with the one of the single particle, which is

expected given the geometry of modes |ϕx,1〉 and |ϕy,1〉, which are completely delocalized
and locally orthogonal. Finally, one can show that the rotating solution corresponding
to φ2 = π rad is unstable.
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N = 3 chain

For symmetry reasons, we assume that φ1 = φ3, and set these phases to 0. From
Eqs. (D.5), we can establish the relation between Ω and π:

4 + 12Ω2 + Ω4

2π = 2 + Ω2 ± 8Ω(Ω2 − 2)√
4 + 140Ω2 + Ω4

. (D.18)

Plotting Ω versus π reveals a bifurcation that occurs for πCA ' 0.7310, ΩCA ' 0.1733
(Fig. 5.14): there is no rotating solution for π < πCA, while there are two solutions for
π > πCA, a stable one and an unstable one. Contrary to the N = 2 chain, the rotation
starts with a finite angular velocity ΩCA.

N = 4 chain

Assuming that φ1 = φ4 and φ2 = φ3, we derive from Eqs. (D.5) the equation for the
rotating solution:

1 + 7Ω2 + Ω4

π
= 3

2(1 + Ω2)± (1− Ω2)

√
1−

(1− Ω2

6Ω

)2
. (D.19)

The solution presents a bifurcation πCA ' 0.5987, ΩCA ' 0.2082 (Fig. 5.14).



Appendix E

Two coupled particles in a
harmonic potential

In this appendix, we provide the complete derivation of the orbiting solution expression
for the two-particles toy model (see chapter 5), and study its stability.

Orbiting solutions

Equations. Starting from the general noiseless equations within the harmonic approx-
imation:

u̇i = πn̂i + F el
i [u] , (E.1a)

ṅi = (n̂i × F el
i [u])× n̂i. (E.1b)

We look for steady solutions orbiting at a rate Ω. This means that u̇ = Ωu⊥ and
ṅ = Ωn⊥. The evolution equations become

Ωu⊥ = πn̂i + F el
i [u] , (E.2a)

Ωn̂⊥ = (n̂i × F el
i )× n̂i. (E.2b)

The right-hand side of Eq. (E.2b) is a projection of F el
i on n̂⊥i . Taking the scalar

product with n̂⊥i , it becomes
Ω = n̂⊥i · F el

i [u] . (E.3)

Taking the scalar product of Eq. (E.2a) with n̂⊥i , we get

n̂i · ui = 1. (E.4)

Hence our final equations are

Ωu⊥i − F el
i [u] = πn̂i, (E.5a)
ni · ui = 1. (E.5b)

There are 6 equations with 7 unknowns: the positions ui (4 unknowns), the polarities
n̂i (2 unknowns), and the orbiting rate Ω. From invariance by rotation, we can set the
phase of the orientation of particle 1, say φ1 = 0. This leaves us with 6 equations with
6 unknowns. However, this system is non-linear.
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Resolution. From Eq. (E.5b), we see that:

ui = n̂i + λin̂
⊥
i . (E.6)

Projecting Eq. (E.5a) on n̂i leads to

− λiΩ− n̂i · F el
i [u] = π. (E.7)

We can get rid of the parameter π by taking the difference between the two equations
(for i = 1 and i = 2):

(λ1 − λ2)Ω + n̂1 · F el
1 [u]− n̂2 · F el

2 [u] = 0. (E.8)

Now, projecting Eq. (E.5a) on n̂⊥i leads to:

Ω− n̂⊥i · F el
i [u] = 0. (E.9)

Formally, the set of Eqs. (E.8) and (E.9) is of the form:

A

(
λ1
λ2

)
= B, (E.10)

where A and B are 3 × 2 and 3 × 1 matrices. The 2 columns of A and B are vectors
in R3. If a solution to Eq. (E.10) exists, then B lies in the vector space spanned by
the 2 columns of A, meaning that these 3 vectors span only a 2d space. Hence, the
determinant of the 3× 3 matrix Ā composed of the 2 columns of A and the vector B is
0. The converse is not true, but we assume that it is true most of the time, and use the
determinant of Ā to determine whether a solution exists. Here:

Ā =

 k + k1 −k cos(φ) −Ω + k sin(φ)
−k cos(φ) k + k2 −Ω− k sin(φ)

Ω− k sin(φ) −Ω− k sin(φ) k1 − k2

 , (E.11)

where φ = φ2 is the phase difference between the two particles, and

det(Ā) = (k2 − k1)
[
Ω2 − 2k(2k + k1 + k2) sin(φ)

k2 − k1
Ω− k(k1 + k2)− k1k2

]
. (E.12)

In particular, when k = 1, k1 = 1− δ, k2 = 1 + δ, we find:

det(Ā) = −2δ
[
Ω2 + 4 sin(φ)

δ
Ω− 3 + δ2

]
. (E.13)

The roots of this second-order polynomial are:

Ω± = −2 sinφ±
√

4 sin(φ)2 + 3δ2 − δ4

δ
. (E.14)

Once the value of Ω is known, solving Eq. (E.9) gives the value of λi:(
λ1
λ2

)
= 1
k2 sin(φ)2 + kk1 + kk2 + k1k2

(
k + k2 k cos(φ)
k cos(φ) k + k1

)(
−Ω + k sin(φ)
−Ω− k sin(φ)

)
.

(E.15)
Then, using Eq. (E.7) with i = 1 gives the value of π:

π = k [1− cos(φ)] + k1 − Ωλ1 + k sin(φ)λ2. (E.16)

Inserting the value of λi above, we get an explicit expression for π. When k = 1,
k1 = 1 + δ, k2 = 1− δ, it reads:

π = 2 + δ − cosφ+ Ω2(2− δ + cosφ)− 4Ω sinφ− (2 + δ − cosφ) sin(φ)2

3− δ2 + sin(φ)2 . (E.17)

Below, we study the stability of the orbiting solution.
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Stability analysis. We introduce a small perturbation:

ui = RΩt
[
u0
i + u1

i (t)
]
, (E.18a)

φi(t) = φ0
i + Ωt+ φ1

i (t), (E.18b)

where RΩt is the rotation matrix of angle Ωt. Injecting in the equations of motion leads
to:

u̇1
i (t) = −Ωu⊥i + πφ1

i (t)n̂0
i
⊥ + F el

i

[
u1(t)

]
, (E.19a)

φ̇1
i (t) = −n̂0

i · F el
i

[
u0
]
φ1
i (t) + n̂0

i
⊥ · F el

i

[
u1(t)

]
. (E.19b)

Using Eq. (E.5a) for the rotating state, we obtain:

n̂0
i · F el

i

[
u0
]

= Ωu0
i
⊥ · n̂0

i − π = −Ωλi − π, (E.20)

where we have used Eq. (E.6). The evolution of the vector (u1
1,x, u1

2,x, u1
1,y, u1

2,y, φ1
1, φ1

2)
is linear and is given by the matrix:

−(k + k1) k Ω 0 0 0
k −(k + k2) 0 Ω 0 −π sin(φ)
−Ω 0 −(k + k1) k π 0
0 −Ω k −(k + k2) 0 π cos(φ)
0 0 −(k + k1) k π + λ1 0

−k sin(φ) (k + k2) sin(φ) k cos(φ) −(k + k2) cos(φ) 0 π + λ2


,

(E.21)
where we have used φ0

1 = 0 and φ0
2 = φ. The eigenvalues of this matrix can be calculated

numerically for a given rotating state.





Appendix F

Single particle mapping to
non-reciprocal systems

In this appendix, we draw connections between the dynamics of a single particle trapped
in a harmonic potential and non-reciprocal systems, specifically the model introduced
by Fruchart et al. [172] of non-reciprocally coupled XY spins. Assuming that the
dynamics along the radial variable is very fast, we first demonstrate the existence of
an exceptional point at the transition to spontaneous oscillations, and then provide the
mapping between the two models.

F.1 Single particle dynamics
Our starting point is the equations of motion for a single particle trapped in a harmonic
potential (see chapter 5):

Ṙ = π cos γ − ω2
0R, (F.1a)

ϕ̇ = π

R
sin(θ − ϕ), (F.1b)

θ̇ = ω2
0R sin(θ − ϕ), (F.1c)

where R and ϕ are the polar-coordinate components of the displacement vector, and θ
denotes the orientation of the active unit.

F.2 Exceptional points
Assuming the dynamics along R quickly relaxes to its stationary value R0, we restrict
ourselves to the equations for θ and ϕ. Copy-pasting Eqs. (F.1), we have:

ϕ̇ = π

R0
sin(θ − ϕ), (F.2a)

θ̇ = ω2
0R0 sin(θ − ϕ). (F.2b)

Let us linearize Eqs. (F.2) around the stationary states of the single particle above and
below the instability π = ω2

0, and write the Lagrangian of the system:

Fixed points. For π ≤ ω2
0, we linearize around the fixed point (R0 = π/ω2

0, ϕ0 = θ0).
The Lagrangian can be written as follows:

L =
(
−ω2

0 ω2
0

−π π

)
, (F.3)

240



241 F.3. Mapping of j+ and j−

which is diagonalizable for any π 6= ω2
0. However, at instability onset π = ω2

0, the
Lagrangian expresses as:

L = ω2
0

(
−1 1
−1 1

)
, (F.4)

which is not diagonalizable, highlighting the presence of an exceptional point.

Orbiting solution. For π ≥ ω2
0, we linearize around the orbiting solution (R0 =

√
π/ω0, ϕ0 = Ωt, cos γ0 = ω0/

√
π), where Ω = ω0

√
π − ω2

0 is the oscillation frequency
and γ0 = θ0 − ϕ0. The Lagrangian expresses as:

L =

−√πω2
0

√
πω2

0

−
√
πω2

0

√
πω2

0

 =
√
πω2

0

(
−1 1
−1 1

)
, (F.5)

which is not diagonalizable. The orbiting solution lies on a line of exceptional points.

F.3 Mapping of j+ and j−

The model of two non-reciprocally coupled XY spins introduced by Fruchart et al. [172]
reads:

θ̇A = JAB sin(θA − θB), (F.6a)
θ̇B = JBA sin(θB − θA), (F.6b)

which can be rewritten

˙̄θ = j− sin(∆θ), (F.7a)
∆̇θ = j+ sin(θ̄), (F.7b)

where θ̄ = (θA + θB)/2 and ∆θ = (θA − θB)/2, and where j+ = (JAB + JBA)/2 and
j− = (JAB − JBA)/2. Once again, assuming the dynamics along R quickly relaxes to its
equilibirum value R0, we restrict ourselves to the equations for θ and ϕ. We have:

ϕ̇ = π

R0
sin(θ − ϕ)↔ θA, (F.8a)

θ̇ = ω2
0R0 sin(θ − ϕ)↔ θB, (F.8b)

where, on the right-hand side, we specify the mapping with Eqs. (F.6). In the general
case, in the one particle system, the coefficients JAB and JBA of Eqs. (F.8) can be
written as follows {

JAB = π/R0(π, ω2
0)

JBA = −ω2
0R0(π, ω2

0) (F.9)

Fixed points. For π ≤ ω2
0, the system lies on the fixed points with R0 = π/ω2

0. Eqs.
(F.9) turn into {

JAB = ω2
0

JBA = −π ⇒

 j− = ω2
0+π
2

j+ = ω2
0−π
2

(F.10)
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−1 0 1
j+

0.0

0.5

1.0

1.5

2.0

j −

π = 0

π = ω2
0

FIG. F.1. Mapping of Eqs. (F.8) in the j+/j− plane. Graphical representation of the
results of Eqs. (F.10) and (F.11). The red (resp. blue) dot highlights the change of stability of
the fixed points at π = ω2

0 (resp. π = 0)

Orbiting solution. For π ≥ ω2
0, the system oscillates with R0 =

√
π/ω2

0. Eqs. (F.9)
turn into  JAB =

√
πω2

0

JBA = −
√
πω2

0
⇒
{
j− =

√
πω2

0
j+ = 0

(F.11)

Interestingly enough, in the oscillating regime, the radius R0 is “fine-tuned” so that j+
exactly vanishes.

To conclude, some connections can be drawn between non-reciprocally coupled XY spins
and the dynamics of a single particle trapped in a harmonic potential. However, remem-
ber that we neglected the dynamics of the radial variable, which plays a crucial role, and
therefore, all the above conclusions should be taken with a grain of salt.





Appendix G

Dynamical matrix of an
homogeneously dilated structure

In this appendix, we derive the expression of the dynamical matrix for structures dilating
homogeneously as a function of tension (see chapter 6).

We consider an elastic structure of springs with homogeneous rest length l0 and stiffness
k (which are both equal to 1 in the following). We denote Ri the reference configura-
tion of node i at zero tension, and M0 the dynamical matrix at zero tension. As in the
experimental settings, we consider that tension is applied on the lattice by stretching
uniformly its boundaries, such that springs are elongated by a factor α. The new ref-
erence configuration of node i reads Ri(α). Due to lattice pre-stress, its normal modes
and their corresponding eigenvalues change via two mechanisms [157]: (i) tension α− 1
stiffens the bonds, changing the normal modes energy and geometry; (ii) force balance
on the nodes changes their rest positions - modifying the structure of the dynamical ma-
trix. For homogenous dilation, the new positions are simply Ri → αRi for the extension
α = leq/l0. We consider small deviations from the equilibrium positions and define the
position of each particle ri = Ri + ui, where Ri = (αxeqi , αy

eq
i ) and ui = (uxi , u

y
i ). The

elastic force particle j exerts on particle i is:

Fij =
(

1− 1
|rj − ri|

)
(rj − ri) . (G.1)

Using the positions we defined and keeping only leading terms in u, we get:

|rj − ri| =

√√√√√√
[
α
(
xeqj − x

eq
i

)
+ uxj − uxi

]2
+
[
α
(
yeqj − y

eq
i

)
+ uyj − u

y
i

]2,

≈

√√√√√√√√√√
α2
[(
xeqj − x

eq
i

)2
+
(
yeqj − y

eq
i

)2
]

+ 2α
(
xeqj − x

eq
i

) (
uxj − uxi

)
+ 2α

(
yeqj − y

eq
i

) (
uyj − u

y
i

) ,

= α

√√√√√√√1 + 2
α

(
xeqj − x

eq
i

) (
uxj − uxi

)
+ 2
α

(
yeqj − y

eq
i

) (
uyj − u

y
i

) ,
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(
1− 1
|rj − ri|

)
≈ 1− 1

α
+

(
xeqj − x

eq
i

) (
uxj − uxi

)
α2

+

(
yeqj − y

eq
i

) (
uyj − u

y
i

)
α2 .

(G.2)

For simplicity, we focus on the forces along the x-axis, reduced so far to:

F xij ≈
(

1− 1
|rj − ri|

)[
α
(
xeqj − x

eq
i

)
+
(
uxj − uxi

)]
. (G.3)

Let us decompose the elastic force in orders of u. To 0th order in u we get
(
xeqj − x

eq
i

)
(1− α).

This contribution will cancel when summing over all the neighbors of particle i as the
lattice is in mechanical equilibrium at its reference configuration. To 1st order in u we
get:

F xij ≈
1
α


(
xeqj − x

eq
i

)2 (
uxj − uxi

)
+
(
xeqj − x

eq
i

) (
yeqj − y

eq
i

) (
uyj − u

y
i

)
+ (α− 1)

(
uxj − uxi

)
 . (G.4)

We recognize the first two contributions to be the unstressed dynamical matrix divided
by factor α. We conclude that the dynamical matrix of the stressed lattice is:

M (α) = 1
α
M0 +

(
1− 1

α

)
M1, (G.5)

where the correction M1 has elements: Mβγ
1,ij = −δβγ if i and j are neighbors, zero

otherwise; Mβγ
1,ii = Z (i) δβγ for Z (i) the number of neighbors of node i; and β, γ = x̂, ŷ

is the axis. At large tension M1 dominates the behavior. Note that M1 decouples the x
and y axes. Its eigenvectors ϕn would thus come in degenerated pairs with identical form,
once in the x-direction only and once in the y-direction only. It is also topological - it
is determined by the structure of neighbors in the lattice, independent of geometry. We
can decompose M1 to identical block matrices for x and y, each of them is a submatrix
of the Laplacian matrix of the connected graph that represents the lattice:

M1 =
(
Mxx

1 0
0 Myy

1

)
. (G.6)

The spectrum of M1 is the combined spectra of Mxx
1 and Myy

1 . Both are also real,
symmetric, and indecomposable (as the network is fully connected), with nonpositive
off-diagonal elements. As such, a discrete analog of Courant’s nodal domain theorem
applies - eigenvectors ϕn of Mαα

1 must have no more than n domains - subsets of adjacent
elements carrying the same sign, and n− 1 nodes [182–184].

We can now conclude that the first vibrational modes ϕ1 and ϕ2 are akin to transla-
tional modes in the large tension limit: they are degenerated, rather delocalized, locally
orthogonal, and have all elements in the same sign - all arrows pointing the same direc-
tion. This holds for any homogeneously dilated structure. For structures that do not
dilate homogeneously, the calculation cannot be done in the general case as the stressed
reference configuration is unknown. Nevertheless, for large systems, even for amorphous
structures, we expect the dilation to be homogeneous at large scale, broadening the
previous result’s range of application.



Appendix H

Active Gerris’ equations of
motion

In this appendix, we give further details on the active Gerris model and derive its equa-
tions of motion (see chapter 6).

Let us remind Eqs. (6.2), which govern the overdamped dynamics of N elastically-
coupled active particles:

u̇i = πn̂i + F el
i ,

ṅi = (n̂i × u̇i)× n̂i +
√

2Dξin̂⊥i ,

and apply it to the model active Gerris. Thus, we transform the set of Eqs. (6.2) into
a set governing the dynamics of:

• u0 the position vector of the inner structure’s barycenter,

• φ the solid rotation angle of the whole rigid inner structure,

These notations and other notations introduced later in these notes are shown in Fig.
H.1.

Position and velocity. The first step is to express the position and velocity of all
particles as a function of solely u0 and φ. We define the vectors li = Ri −R0, going
from the inner structure barycenter R0 to the particles reference configuration Ri, and
illustrated in Fig. H.1. The new positions and velocities express as:

ri = u0 + σφli, (H.2a)
ṙi = u̇0 + φ̇σφl

⊥
i , (H.2b)

where σφ is the rotation matrix of angle φ.

Polarity dynamics. The polarity dynamics equations read:

ṅi = (n̂i × ṙi)× n̂i, (H.3)

where ṙi is given by Eq. H.2b in term of u0 and φ only, and where we have omitted
angular noise. Note that there are N = 6 of these equations, one for each polarity vector.
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u0

li

φ

FIG. H.1. Notations for the Gerris. (left) The position of the active Gerris inner rigid
hexagon barycenter is denoted u0. (right) The angle φ characterizes the rotation of the active
Gerris inner rigid hexagon. The vectors li are the positions of the active nodes with respect to
u0.

Barycenter. The dynamics of the system’s barycenter is given by the balance of the
whole system’s dissipation and the sum of all the forces on the system’s nodes. It gives:

N u̇0 =
∑
i

[
πn̂i + F el

i

]
, (H.4)

Solid body rotation. The dynamics of the system’s orientation φ is given by the
torque equation.

Iφ̇ =
∑
i

ri
[
π sin(θi − φi) + |F el

i | sin(ψi − φi)
]
, (H.5)

where I = ∑
i r

2
i is the (massless) inertia, ri is the distance from node i to the system’s

barycenter, θi is the orientation of the polarity vector n̂i, φi is the orientation of the
vector ri, and ψi is the orientation of the vector F el

i . Note that the rigid condition
imposes that the nodes are at a fixed distance from the system barycenter, i.e. 1 in the
dimensionless model. Thus the previous equation simplifies to:

Nφ̇ =
∑
i

[
π sin(θi − φi) + |F el

i | sin(ψi − φi)
]
. (H.6)

Elastic force. Finally, one has to write the elastic forces as a function of solely u0 and
φ. In the following two paragraphs, we express the elastic force at the linear elasticity
(harmonic approximation) and full elasticity (including geometrical nonlinearities) levels.

• Full elasticity level. The general expression of the elastic force particle i is
submitted to reads:

F el
i =

∑
j∈∂i

(|ri − rj | − 1)êij , (H.7)

where ∂i denotes the set of neighbors of node i, and êij is the unit vector going
from node j to node i. Note that ∂i can be decomposed into the neighbors of i
belonging to the stiff inner structure ∂Ii, and the neighbors of i belonging to the
external pinned ring ∂Ei. Only the latter contributes to the elastic forces, as the
stiff inner structure is assumed not to deform. As the external pinned ring is held
fixed, we end up with a closed form for the elastic force on particle i:

F el
i =

∑
j∈∂Ei

(|ri − rj | − 1)êij =
(
|ri −Rip | − 1

)
êiip , (H.8)
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where ip refers to the only node of the external pinning ring particle i is con-
nected to. Note that êiip is the unit vector going from Rip to ri, where ri is the
instantaneous position of node i.

• Harmonic approximation level. At the linear level, the elastic force acting on
node i can be written as follows:

F el
i = −

∑
j

Mijuj , (H.9)

where M is the dynamical matrix. The rigid limit makes all the modes deforming
the inner structure infinitely energetics. Only the three trivial translations and
rotation of the rigid inner structure have finite energies (see Appendix A). From
orthonormality, one can write:

F el
i = −

∑
k

akω
2
k|ϕk〉, (H.10)

where ak = 〈ϕk|u〉 is the projection of the displacement field on mode k, and
where the summation is done only on the translations and the rotation, all the
other contributions being zero from the rigid limit imposed to the inner structure.
Finally, one has to express the projections ak solely as a function of u0 and φ. The
first step is to compute the displacement field at first order in u0 and φ:

ui = ri −Ri = u0 + (σφ − I)li. (H.11)

Linearizing the second term:

ui = u0 + σ̃φli + o(u0, φ), (H.12)

where
σ̃φ =

(
0 −φ
φ 0

)
. (H.13)

Last, we compute the projections mode by mode:

– Translation along x̂ (Tx). The mode geometry reads ϕiTx = x̂/
√
N . A simple

calculation leads to:
aTx =

√
Nux, (H.14)

where ux = u · x̂ is the x-axis component of the barycenter’s displacement.
– Translation along ŷ (Ty). The mode geometry reads ϕiTy = ŷ/

√
N . Symmet-

rically, it gives:
aTy =

√
Nuy, (H.15)

where uy = u · ŷ is the y-axis component of the barycenter’s displacement.
– Rotation (R). The mode geometry reads ϕiR = l⊥i /

√
N . A similar calculation

gives:
aR =

√
Nφ. (H.16)

Finally, reminding that ω2
Tx

= ω2
Ty

= ω2
T (α) and ω2

R = ω2
R(α), where α is the

elongation imposed to the external springs at mechanical equilibrium; and injecting
Eqs. (H.14), (H.15) and (H.16) in Eq. (H.10), one finds:

F el
i = −u0ω

2
T − φω2

Rl
⊥
i , (H.17)

which is the expression of the elastic force acting on node i at the linear level.
Only the term coming from the rotation mode depends on the given particle.
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H.1 Full elasticity level

ri = u0 + σφli, (H.18a)
ṙi = u̇0 + φ̇σφl

⊥
i , (H.18b)

ṅi = (n̂i × ṙi)× n̂i, (H.18c)

u̇0 = 1
N

∑
i

[
πn̂i + F el

i

]
, (H.18d)

φ̇ = 1
N

∑
i

[
π sin(θi − φi) + |F el

i | sin(ψi − φi)
]
, (H.18e)

F el
i =

(
|ri −Rip | − 1

)
êiip . (H.18f)

Here, only the vectors Rip depend on the elongation α. Their expression is Rip =
li(1 + α).

H.2 Harmonic approximation level

ri = li, (H.19.1)
ṙi = u̇0 + φ̇l⊥i , (H.19.2)
ṅi = (n̂i × ṙi)× n̂i, (H.19.3)

u̇0 = 1
N

∑
i

[
πn̂i + F el

i

]
, (H.19.4)

φ̇ = 1
N

∑
i

[
π sin(θi − φi) + |F el

i | sin(ψi − φi)
]
, (H.19.5)

F el
i = −u0ω

2
T − φω2

Rl
⊥
i . (H.19.6)

Here, only the squared eigenfrequencies ω2
R and ω2

T depend on the elongation α (see
chapter 6).

H.3 Additionally considering angular noise

ṅi = (n̂i × ṙi)× n̂i +
√

2Dξin̂⊥i , (H.20.1)

u̇0 = 1
N

∑
i

[
πn̂i + F el

i

]
, (H.20.2)

φ̇ = 1
N

∑
i

[
π sin(θi − φi) + |F el

i | sin(ψi − φi)
]
, (H.20.3)

where D is the amplitude of the angular noise, and the ξi are i.i.d. Gaussian variables
with zero mean and correlations 〈ξi(t)ξj(t′)〉 = δijδ(t− t′).



Appendix I

Asymmetric single particle

In this appendix, we discuss the different results obtained for the dynamics of a single
particle trapped in an elliptic harmonic potential. The symmetric case was studied in
[143] and chapter 5. Here we remind the main conclusions and additionally perform
numerical simulations of the dynamical regimes in the asymmetric case.

We study the different dynamical regimes and fixed points of Eqs. (3.49) in the case of
a system of one particle in dimension d = 2, which consequently has two eigenmodes
(Fig. I.1-a). We denote these eigenmodes |ϕ1〉 and |ϕ2〉 (respectively along x̂ and ŷ),
with corresponding eigenvalues ω2

1 and ω2
2. We decompose |u〉 = au1(t)|ϕ1〉 + au2(t)|ϕ2〉

and |n̂〉 = an1 (t)|ϕ1〉 + an2 (t)|ϕ2〉. The fact that there is only one particle simplifies
the problem: there is only one normalization condition an1

2 + an2
2 = 1. Therefore, the

polarity vector strictly stands on the 2-circle of radius 1 in the space of projections on
the normal modes.

Governing equations. We remind the ODEs governing the amplitude of the displace-
ment and polarity on each mode (see chapter 5):

ȧu1 = πan1 − ω2
1a
u
1 , (I.1a)

ȧu2 = πan2 − ω2
2a
u
2 , (I.1b)

ȧn1 = −
(
ω2

1a
u
1a

n
2 − ω2

2a
u
2a

n
1

)
an2 , (I.1c)

ȧn2 =
(
ω2

1a
u
1a

n
2 − ω2

2a
u
2a

n
1

)
an1 , (I.1d)

where π is the elasto-active coupling.

I.1 Fixed points stability analysis
We use the polar angle of the polarity θ, such that an1 = cos(θ) and an2 = sin(θ). The
fixed points are given by

ω2
1a
u
1 = π cos(θ0), (I.2a)

ω2
2a
u
2 = π sin(θ0), (I.2b)

for any orientation θ0. The stability of the fixed points in the general case was determined
in chapter 5: the configuration oriented along θ0 is stable for

π ≤ πc(θ0) = ω2
1ω

2
2

ω2
2 sin(θ0)2 + ω2

1 cos(θ0)2 . (I.3)
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FIG. I.1. Fixed point stability analysis for single particles in elliptic harmonic poten-
tials. (a) Elastic structure cartoon. (b/c) Summary of the stable fixed points depending on π
in the asymmetric (b) and symmetric (c) cases. Red areas highlight orientations corresponding
to stable fixed points.

This result is represented graphically in Fig. I.1-b. The angle β below which fixed points
are stable (considering that the soft direction is along x̂) is given by:

cos(β) =
√
ω2

2(ω2
1 − π)

π(ω2
1 − ω2

2) , (I.4)

for ω2
1 < π < ω2

2. For π < ω2
1, all the fixed points are stable. At π = ω2

1, the first
configuration, perpendicular to |ϕ1〉, thus along |ϕ2〉, destabilizes. At π = ω2

2, the last
configuration, along |ϕ1〉, destabilizes. For π > ω2

2, all the fixed points are unstable.

In the degenerate case, ω2
1 = ω2

2 = ω2
0, the rotational symmetry ensures that the fixed

points are all equivalent and stable for π ≤ πc = ω2
0 (Fig. I.1-c).

I.2 Dynamical regimes

I.2.1 Degenerate case

In the degenerate case, thoroughly discussed in chapter 5, there exist oscillating solutions
in the form of circular orbits of frequency:

Ω = ±ω0

√
π − ω2

0, (I.5)

for π > ω2
0, and of radius R =

√
π/ω0.

I.2.2 General case

In the case of a single particle in an asymmetric harmonic potential (ω2
1 < ω2

2), deter-
mining the expression of the dynamical solutions analytically requires a more involved
analysis. Thus, we turn toward numerical simulations to understand the influence of
asymmetry on the possible dynamical solutions. We consider that the ŷ direction is
softer than the x̂ direction, so that ω2

y = ω2
x/δ < ω2

x. The potential the active par-
ticle is submitted to is no longer a parabola, but an elliptical paraboloid, elongated
in the ŷ direction. We simulate the dynamics of an active particle in such a well, with
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1 < δ < 10, and with varying distances to the threshold above the instability π > ω2
x = 1.

First, let us discuss the geometry of the dynamical solutions the system finds when
asymmetry is plugged in. We perform an annealing simulation, initializing the system
with δ = 1 (symmetric parabola), and let the system finds the circular orbit, namely
solution E0 (Fig. I.3-a). In that case, the condensation fraction along the y-direction is
1/2 (Fig. I.2-a): the active force is evenly shared among the two directions. We then
slowly increase δ and study the new dynamical solutions. Figs. I.2 and I.3 summarize
the main results. For small asymmetry, we find that the circular orbit turns to an ellipse,
which belongs to the same branch as E0, but that is termed solution E1 (Fig. I.3-b).
For larger asymmetry, the ellipse destabilizes, and the system finds a new dynamical
solution, called E2, with a lemniscate geometry (Fig. I.3-c). At the transition between
the two regimes, there is a sharp increase in condensation fraction along the y-direction.
As asymmetry further increases, solution E2 also destabilizes and leads to a new branch
of solution, namely E3 (Fig. I.3-d), that is even more elongated in the y-direction (the
authors of [181] call such trajectories generalized higher order lemniscates), and with an
even greater condensation fraction along the y-direction, and so on. In summary, we find
a family of dynamical solutions that are stable for different ranges of asymmetry, and
as elongated in the y-direction as the asymmetry is strong. The family of solutions is
represented in Fig. I.3 up to regime E4. Note that there exists an equivalent of each of
these attractors turning the other way around, whose geometry is obtained by reflecting
the attractors of Fig. I.3 with respect to the y-axis. Once δ = 10 is reached, we also
perform the backward annealing. We find that the forward and backward transitions
are not happening at the same asymmetry values, highlighting some hysteresis from one
elliptical regime to the other (Fig. I.2-a).
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FIG. I.2. Elliptic regimes in asymmetric elliptic harmonic potentials. (a) Condensation
fraction on the soft direction (ŷ) as a function of the potential asymmetry (ω2

y/ω
2
x = 1/δ).

The forward (resp. backward) annealing is shown with empty (resp. full) markers. The two
annealings were performed with fixed active-elastic coupling π = 2.0. (b) Main frequency of
oscillation along the soft direction Ωy as a function of the active-elastic feedback π for several
asymmetry values δ ∈ [1, 3, 4, 5, 6, 7, 8, 9, 10]. The black dotted line corresponds to the prediction
of Eq. (I.5). The vertical gray line corresponds to π = 2.0. Inset: main frequency of oscillation
along the soft direction Ωy as a function of asymmetry δ for fixed active-elastic coupling π = 2.0.
The dotted black line corresponds to the inverse power law.
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FIG. I.3. Elliptic regimes phenomenology. Single particle simulations in asymmetric elliptic
harmonic potentials for π = 2.0, fixed ω2

x = 1, and varying ω2
y ≤ ω2

x. (left) Attractors’ repre-
sentation in real space. The circular attractor shown in (a) is superposed on all the dynamics
to compare the attractors’ sizes. (right) Polarity vector projections on x̂ (solid blue line) and
ŷ (solid red line) as a function of time. (a) δ = 1.0, regime E0. (b) δ = 1.5, regime E1. (c)
δ = 2.75, regime E2. (d) δ = 3.75, regime E3. (e) δ = 4.75, regime E4.

Now, let us discuss the frequency variations due to the asymmetry. For several asymme-
try values δ, we simulate the dynamics of the single particle, starting with π = 10, and
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slowly decrease π up to the stabilization threshold of the first fixed point, πc = ω2
x = 1.0,

at which the dynamical regime stops. We measure the main Fourier component of the
displacement along the y-direction, namely Ωy. The results are shown in Fig. I.2-b. We
find that for δ = 1.0 (symmetric parabola), the frequency variations are perfectly de-
scribed by Eq. (I.5). For increasing asymmetry values, we find that the frequency is still
critically slowing down at the same threshold π = 1.0, and that the large-π regime has
a square root dependence with π, like in the symmetric case. However, the asymmetric
curves are shifted in frequency by some prefactor compared to the symmetric case. In
the range of asymmetry explored, the prefactor scales like 1/δ, as shown in the inset of
Fig. I.2-b.





Appendix J

Single particle in 3d

In this appendix, complementing chapter 6, we study a single particle in 3d with a pair of
degenerated normal modes. We find that the TT regime, which corresponds to a chiral
oscillation condensed on the pair of degenerated modes, is unstable in the presence of a
third mode of lower energy.

Let us consider a single active unit evolving in a 3d space. The three normal modes
of the elastic structure, respectively along x̂ = |ϕT1〉, ŷ = |ϕT2〉 and ẑ = |ϕR〉, have
energies ω2

x = ω2
y = ω2

T and ω2
z = ω2

R. Consequently, in the equatorial plane, the two
normal modes are degenerated, mimicking two translation modes; and the third mode
plays the role of the rotation mode. The main difference with the active Gerris model
is that here the system has a trivial geometry.

J.1 General equations

The active unit is characterized by its position u = (uT1 , uT2 , uR) and orientation n̂ =
(nT1 , nT2 , nR). These variables obey the following dynamical equations:

u̇ = πn̂− ω2
TuT1 êx − ω2

TuT2 êy − ω2
RuRêz, (J.1a)

ṅ = (n̂× u̇)× n̂, (J.1b)

where we have omitted angular noise.

J.1.1 In cartesian coordinates

Expliciting the vectorial product in Eq. (J.1b), and projecting on the three space direc-
tions, we find:

u̇T1 = πnT1 − ω2
TuT1 , (J.2a)

u̇T2 = πnT2 − ω2
TuT2 , (J.2b)

u̇R = πnR − ω2
RuR, (J.2c)

ṅT1 = −n2
RuT1ω

2
T + nRnT1uRω

2
R + nT2nT1uT2ω

2
T − n2

T2uT1ω
2
T , (J.2d)

ṅT2 = −n2
T1uT2ω

2
T + nT1nT2uT1ω

2
T + nRnT2uRω

2
R − n2

RuT2ω
2
T , (J.2e)

ṅR = −n2
T2uRω

2
R + nRnT2uT2ω

2
T + nRnT1uT1ω

2
T − n2

T1uRω
2
R. (J.2f)
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FIG. J.1. Notations in spherical coordinates. (left) Spherical coordinates for the position
vector. (right) Spherical coordinates for the polarity vector.

J.1.2 In spherical coordinates

We introduce the spherical coordinates θu, θn, ϕu, ϕn and R, such that
• nT1 = cos θn sinϕn, nT2 = sin θn sinϕn, nR = cosϕn,

• uT1 = R cos θu sinϕu, uT2 = R sin θu sinϕu, uR = R cosϕu,
where θu/n (resp. ϕu/n) are the polar angles (azimuthal angles) in spherical coordinates
(see Fig. J.1). They obey the following dynamical equations:

Ṙ = π cos γ sinϕu sinϕn + π cosϕu cosϕn − ω2
RR cos2 ϕu − ω2

TR sin2 ϕu, (J.3a)

θ̇u = π

R

sinϕn
sinϕu

sin γ, (J.3b)

θ̇n = Rω2
T

sinϕu
sinϕn

sin γ, (J.3c)

ϕ̇u = π

R
(cos γ cosϕu sinϕn − cosϕn sinϕu) + cosϕu sinϕu

(
ω2
R − ω2

T

)
, (J.3d)

ϕ̇n = Rω2
R cosϕu sinϕn −Rω2

T sinϕu cosϕn cos γ. (J.3e)

Introducing γ = θn − θu, the previous equations become:

Ṙ = π cos γ sinϕu sinϕn + π cosϕu cosϕn − ω2
RR cos2 ϕu − ω2

TR sin2 ϕu, (J.4a)

θ̇u = π

R

sinϕn
sinϕu

sin γ, (J.4b)

γ̇ = sin γ
(
Rω2

T

sinϕu
sinϕn

− π

R

sinϕn
sinϕu

)
, (J.4c)

ϕ̇u = π

R
(cos γ cosϕu sinϕn − cosϕn sinϕu) + cosϕu sinϕu

(
ω2
R − ω2

T

)
, (J.4d)

ϕ̇n = Rω2
R cosϕu sinϕn −Rω2

T sinϕu cosϕn cos γ. (J.4e)

J.2 Oscillating regime on the equatorial plane
We study the oscillating regime, strictly condensed on the equatorial plane (ϕu = ϕn =
π/2).
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J.2.1 Stationary solution

The stationary solution with θ̇u = Ω > 0, for which Ṙ = γ̇ = ϕ̇u = ϕ̇n = 0, verifies
(R0 =

√
π/ωT , cos γ0 = ωT /

√
π, Ω = ωT

√
π − ω2

T ). We recover the regular orbiting
solution on a pair of degenerated normal modes, which exists for π > ω2

T .

J.2.2 Stability

To analyze the stability of the orbiting solution, we can restrict the analysis to Eqs.
(J.4e) and (J.4d) for the two azimuthal angles. We introduce the small quantities ϕu =
π/2 + δϕu, ϕn = π/2 + δϕn. At first order in small quantities, we find:

˙δϕu = −ω2
Rδϕu +

√
πω2

T δϕn, (J.5a)

˙δϕn = ω2
T δϕu −

√
πω4

R/ω
2
T δϕn. (J.5b)

The stability of the orbits is set by the solutions to the eigenvalue problem:

λ2 − λ
(
ω2
T − ω2

R

)
+ ω2

R

(
π − ω2

T

)
= 0. (J.6)

• If ω2
R = 0, we find (λ = 0, ω2

T ), thus the orbiting solution is unstable.

• If ω2
R > 0, we find that the eigenvalues have negative real parts for ω2

T < ω2
R.

Conversely, if the degenerated normal modes are not the lowest energy ones, the
eigenvalues have positive real parts, and the orbiting solution is linearly unstable.

At the single particle level, we find that the TT regime is not selective: in the presence
of a third mode of energy ω2

R < ω2
T , it is unstable.





Appendix K

Perspective distortions

In this appendix, we explain the backbone of the method used to correct perspective
distortions in chapter 7.

As the camera attached to the ceiling is held vertically, acquisitions from experiments
tilted with respect to the horizontal plane must be corrected for perspective distortions.
This is done using planar homography [185], which allows for changing the perspective of
a tilted experimental movie and sending it back to the perspective of a flat experimental
movie, given the knowledge of at least four reference points in both frames.

In a picture, every pixel is assigned a position (u, v) (measured in pixel units) in the
reference frame of the camera sensor. The coordinates of such points in the reference
frame of the experiments are called (x, y, z) (measured in meters). Noting that our
images were captured with a long focal length and from far enough, we neglect the lens’s
optical distortion. Given this assumption, the mapping between the experiments and
camera sensor coordinates takes the linear form:uv

1

 = C ·


x
y
z
1

 , (K.1)

where the so-called camera matrix C depends on the camera’s intrinsic parameters and
the precise location of the camera in space. To invert this relationship, we have to
further neglect the spatial extent of the experimental scene in the z-direction (defined
as perpendicular to the experimental plane), and assume that every point we see on the
image belongs to the z = 0 plane. Therefore, the mapping reduces to:uv

1

 = H ·

xy
1

 (K.2)

where H, usually called the homography matrix, is a priori invertible. The inversion
is performed using the functions cv2.findHomography and cv2.warpPerspective from the
Python package OpenCV, which take as input the coordinates of a set of at least four
points on a source image and a destination image, and explicitly performs the inversion.
Eventually, note that perspective distortions coming from the finite extension of the
system in the z-direction are not corrected for, leading to additional tracking errors on
the displacement detection, but with minimal effect on the orientation detection.
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Appendix L

Perturbative approaches

In this appendix, complementing chapter 7, we provide the perturbative approaches used
to determine the explicit expression of the dynamical regimes. First, using multiple-scale
analysis, we determine the expression of NICA at the level of homogeneous solutions of
the coarse-grained model, for zero-gravity. Then, again using multiple-scale analysis,
we determine the expression of regime WW for the single particle, far enough from the
exceptional point. Finally, we study the linear response to a small polarizing field in the
CO regime of the single particle.

L.1 Multiple-scale analysis

L.1.1 Coarse-grained toy model: NICA regime at zero-gravity

In this section, we consider the coarse-grained model, as presented in chapter 7 in simple
settings (see Eqs. (7.44)), i.e. restricting to homogeneous solutions. We focus on the
emergence of NICA at zero gravity, as one increases activity. For π < πc = 2

(
ω2
⊥ +D

)
,

the only solution is the disordered, |m| = 0, fixed point. Using multiple-scale analysis,
we find the amplitude equation for the nonlinear NICA limit cycle appearing as π exceeds
πc, and discuss its properties. We consider the coarse-grained Eqs. (7.44), and restrict
to the equations projected along the first transverse mode:

∂tU = πm− ω2
0U, (L.1a)

∂tm = 1−m2

2
(
πm− ω2

0U
)
−Dm, (L.1b)

where ω2
0 = ω2

⊥. This restriction to one mode consists of assuming mode |ϕ⊥〉 is the
only mode soft enough to be activated, so that we can neglect the projections elsewhere.

Scaling variables. We consider the elasto-active coupling very close to the stability
threshold: π = πc + δ, where δ = λ∆, with λ a small parameter; and introduce a slow
timescale T = λt. We propose the scalings U =

√
λU(t, T ) and m =

√
λm(t, T ), and

look for solutions of the form:

U(t, T ) = U0(t, T ) + λU1(t, T ) + . . . (L.2a)
m(t, T ) = m0(t, T ) + λm1(t, T ) + . . . (L.2b)

Perturbation. Re-injecting Eqs. (L.2) into Eqs. (L.1), we next separate the different
orders in λ:

262



263 L.1. Multiple-scale analysis

• At zeroth order in λ, we find:

∂

∂t

(
U0(t, T )
m0(t, T )

)
=
(
−ω2

0 πc
−ω2

0/2 πc
2 −D

)(
U0(t, T )
m0(t, T )

)
= D

(
U0(t, T )
m0(t, T )

)
. (L.3)

The eigenvalues of D are ±iΩ, where Ω =
√
Dω2

0. Imposing real solutions, we find:(
U0(t, T )
m0(t, T )

)
= A(T )

(
a
1

)
eiΩt +A?(T )

(
a?

1

)
e−iΩt, (L.4)

where a = 2
(
1− i

√
D
ω0

)
; where the complex number A(T ) depends on the slow

timescale T ; and where the two vectors t(a, 1) and t(a?, 1) are respectively the
eigenvectors associated with the eigenvalues iΩ and −iΩ.

• At first-order in λ, we find:

∂

∂t

(
U1(t, T )
m1(t, T )

)
= D

(
U1(t, T )
m1(t, T )

)
+
(

∆m0 − ∂U0
∂T

1
2∆m0 − πc

2 m
3
0 + ω2

0
2 m

2
0U0 − ∂m0

∂T

)
, (L.5)

where the matrix D is the same as in Eqs. (L.3). There is no need to solve
explicitly for U1 and m1: some terms drive the system at the resonance frequency
ω = ±Ω; and the system will generally have no solution. It will only have a solution,
leading to a bounded solution for Eq. (L.5), if the right-hand side satisfies a certain
constraint. This constraint we get from the Fredholm alternative theorem.

Fredholm alternative theorem. The resonant terms of the righthand side of Eqs.
(L.5) must be orthogonal to any vector of the kernel of the matrix (iΩI− D)?. A basis
for this subspace is the vector

t
(1

2
ω2

0+iω0
√
D

ω2
0+D , 1). Thus, the solvability condition reads:

(
∆m0 − ∂U0

∂T
1
2∆m0 + ω2

0
2 m

2
0U0 − πc

2 m
3
0 − ∂m0

∂T

)
Ωt
·

1
2
ω2

0+iω0
√
D

ω2
0+D
1

 = 0, (L.6)

where Ωt denotes that the associated expression is restricted to terms oscillating at Ωt.
Actually performing the tedious algebra and the scalar product, we find:

1
ω2

0

dA

dT
= A

∆
ω2

0

2 + µ+ i
√
µ

4 −A|A|2
(1 + µ)

(
3µ+ i

√
µ
)

2 , (L.7)

where µ = D/ω2
0.

Amplitude equation. Finally, introducing A = ReiΨ, we obtain the amplitude equa-
tion for the real amplitude R:

1
ω2

0

dR

dT
= R

∆
ω2

0

2 + µ

4 −R3 3µ (1 + µ)
2 . (L.8)

At first-order, we thus find that for π < πc (∆ < 0), the only stable solution is the
disordered fixed point; A = 0; and for π > πc (∆ > 0), the only stable solution is the
nonlinear limit cycle spontaneously oscillating along the soft mode. As one approaches
the bifurcation from above, the activity-independent frequency Ω =

√
Dω2

0 remains the
same, while the amplitude vanishes like a square root. The normal form, Eq. (L.8),
and the linear stability analysis are the hallmarks of a supercritical Hopf bifurcation.
Importantly, in contrast with SCO, at the level of homogeneous solutions, we find that
the transition from the disordered phase to NICA is continuous.
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Timescales separation. The long timescale corresponds to the typical relaxation
timescale of the transitory regime τrelax ' 1/δ; and the short one to the period of the
oscillations τosc ' 1/ω2

0
√
µ. The timescale separation condition can be written as follows:

δ � ω0
√
D, (L.9)

which is verified close enough to the threshold.

L.1.2 Single-particle: WW regime

In this section, we consider the single particle in a harmonic trap with a polarizing field
(see Eqs. (7.13)). Using multiple-scale analysis, we find the amplitude equation for the
nonlinear WW limit cycle appearing as π exceeds πc = ω2

0 + gαε, the stability threshold
for the polarized fixed point; and discuss its properties. There are two technical chal-
lenges. First, the presence of an exceptional point at zero gravity and critical activity.
Second, the multiple-scale method has to be applied to a system of three coupled non-
linear ODEs of very different natures; the radius dynamics Eq. (7.13a) boils down to
a first-order relaxation with very weak driving, while Eqs. (7.13b) and (7.13c) for the
angles ϕ and θ are very much coupled and strongly non-linear [196, 197].

Scaling variables. Starting from Eqs. (7.13), it is easier to describe the dynamics
through the angles ϕ and θ. Moreover, we change variables to ϕ→ ϕ+π and θ → θ+π
in order to keep oscillations of θ and ϕ around 0. It yields:

Ṙ = π cos(θ − ϕ)− ω2
0R, (L.10a)

ϕ̇ = π

R
sin(θ − ϕ), (L.10b)

θ̇ = ω2
0R sin(θ − ϕ)− gαε sin(θ). (L.10c)

We consider the elasto-active coupling very close to the stability threshold: π = πc + δ,
where δ = λ∆, with λ a small parameter; and introduce a slow timescale T = λt. Inspired
by simulation data, we propose the following scalings R = R(t, T ), ϕ =

√
λϕ(t, T ),

θ =
√
λθ(t, T ), and look for solutions of the form:

R(t, T ) = R0(t, T ) + λR1(t, T ) + . . . (L.11a)
ϕ(t, T ) = ϕ0(t, T ) + λϕ1(t, T ) + . . . (L.11b)
θ(t, T ) = θ0(t, T ) + λθ1(t, T ) + . . . (L.11c)

Perturbation. Re-injecting Eqs. (L.11) into Eqs. (L.10), we next separate the differ-
ent orders in λ:

• At zeroth order in λ, we find:
∂R0
∂t

+ ω2
0R0 = πc, (L.12a)

∂ϕ0
∂t

+ ω2
0ϕ0 − ω2

0θ0 = 0, (L.12b)
∂θ0
∂t

+ πcϕ0 − ω2
0θ0 = 0. (L.12c)

Eq. (L.12a)’s general solution expresses as:

R0(t, T ) = πc
ω2

0
+B(T )e−ω2

0t, (L.13)
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where the exponential factor vanishes at short times and is therefore discarded in
the following. Eqs. (L.12b) and (L.12c) can be recast into the following vectorial
form:

∂

∂t

(
ϕ0(t, T )
θ0(t, T )

)
=
(

−ω2
0 ω2

0
−ω2

0 − gαε ω2
0

)(
ϕ0(t, T )
θ0(t, T )

)
= D

(
ϕ0(t, T )
θ0(t, T )

)
. (L.14)

The eigenvalues of D are ±iΩ, where Ω =
√
gαεω2

0. Imposing real solutions, we
find: (

ϕ0(t, T )
θ0(t, T )

)
= A(T )

(
a
1

)
eiΩt +A?(T )

(
a?

1

)
e−iΩt, (L.15)

where a = 1−i
√
G

1+G and G = gαε/ω
2
0; where the complex number A(T ) depends on

the slow timescale T ; and where the two vectors t(a, 1) and t(a?, 1) are respectively
the eigenvectors associated with the eigenvalues iΩ and −iΩ. Eventually, at zeroth
order in λ, we find:

R0(t, T ) = πc/ω
2
0, (L.16a)

ϕ0(t, T ) = A(T )aeiΩt +A?(T )a?e−iΩt, (L.16b)
θ0(t, T ) = A(T )eiΩt +A?(T )e−iΩt. (L.16c)

• At first-order in λ, we find:

∂R1
∂t

+ ω2
0R1 = ∆− πc

2 (θ0 − ϕ0)2 , (L.17a)
∂ϕ1
∂t

+ ω2
0ϕ1 − ω2

0θ1 = −∂ϕ0
∂T

+ (θ0 − ϕ0)
[ ∆
R0
− πcR1

R2
0

]
− πc

6R0
(θ0 − ϕ0)3 ,

(L.17b)
∂θ1
∂t

+ πcϕ1 − ω2
0θ1 = −∂θ0

∂T
+ gε

6 θ
3
0 −

πc
6 (θ0 − ϕ0)3 + ω2

0R1 (θ0 − ϕ0) . (L.17c)

First, note that Eq. (L.17a) illustrates the origin of the frequency doubling of R(t)
in regime WW. We find that R1 is forced by constant terms and terms oscillating
at 2Ω, and this equation being linear, R1 oscillates at the same frequencies. We
find:

R1(t, T ) = ∆
ω2

0
−G|A|2 − A2

2

(
G+ i

√
G
)2

(1 +G)
(
1 + 2i

√
G
)e2iΩt + c.c., (L.18)

where c.c. denotes the complex conjugate. Similarly, Eqs. (L.17b) and (L.17c)
are forced at different frequencies. Again, there is no need to solve explicitly for
ϕ1 and θ1: some terms drive the system at the resonance frequency ω = ±Ω; and
the system will generally have no solution: the right-hand side must satisfy the
Fredholm alternative theorem.

Fredholm alternative theorem. The resonant terms of the right-hand side of Eqs.
(L.17b) and (L.17c) must be orthogonal to any vector of the kernel of the matrix
(iΩI− D)?, where ? indicates the adjoint matrix. A basis for this subspace is the vector
t(−1− i

√
G, 1). Thus, the solvability condition reads:(

−∂ϕ0
∂T + (θ0 − ϕ0)

[
∆
R0
− πcR1

R2
0

]
− πc

6R0
(θ0 − ϕ0)3

−∂θ0
∂T + gε

6 θ
3
0 − πc

6 (θ0 − ϕ0)3 + ω2
0R1 (θ0 − ϕ0)

)
Ωt

·
(
−1− i

√
G

1

)
= 0, (L.19)
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where Ωt denotes that the associated expression is restricted to terms oscillating at Ωt.
Actually performing the tedious algebra and the scalar product, we find:

0 = A
∆
ω2

0

(
G+ i

√
G
)
−Gb|A|2A, (L.20)

where the complex number b = bR + ibI has the following expression:

b = 3
2
(
G+ i

√
G
)

+ 1
2
G+ i

√
G

1 + 2i
√
G

+

(
G+ i

√
G
) (

1 + i
√
G
)2

(1 +G)
(
1 + 2i

√
G
) − 1

2 (1 +G) . (L.21)

Amplitude equation. Finally, introducing A = ReiΨ, we obtain the amplitude equa-
tion for the real amplitude R:

0 = ∆
ω2

0
R− bRR3. (L.22)

Note that br > 0 for G > G? = (
√

41 − 3)/16 ' 0.21, and br < 0 for 0 < G < G?. At
first order, we thus find that for π < πc (∆ < 0), the only stable solution is the polarized
fixed point; A = 0; and for π > πc (∆ > 0), we find two cases:

• For large enough gravity G > G?, the third order term in Eq. (L.22) provides the
non-linear saturation. We find:

|A| =
√

∆
ω2

0

1√
bR
' 2.8284

√
∆
ω2

0

√
G+ 0.25

8G2 + 3G− 1 , (L.23)

which is the hallmark of a supercritical Hopf bifurcation at frequency Ω =
√
gαεω2

0.
The predicted bifurcation scenario is illustrated in Fig. L.1-a for great enough
gravity, and is compared to simulations close to the threshold for a broad range
of gravity in Fig. L.1-b. We find that the first-order multiple-scale works well
for great enough gravity (G > 1), but fails close to G = G? and smaller gravity.
Nevertheless, we find from the numerical simulations that the bifurcation remains
a supercritical Hopf, even at small gravity, where the multiple-scale analysis fails
to predict the amplitude of the limit cycle (Fig. L.1-b, inset).

• For small enough gravity G < G?, the third-order term in Eq. (L.22) is positive,
and there is no non-linear saturation. Going to second order in λ should likely allow
finding the amplitude |A|(δ) for some larger range of G. Nonetheless, as gravity
decreases and the system gets closer to the exceptional point (G = 0, π/ω2

0 = 1),
we expect the amplitude of the nonlinear limit cycle to diverge, and going to second
order might not be enough to solve this problem. Close to the exceptional point,
one should instead use the mapping with the nonlinear pendulum discussed in
chapter 7.

Note that at first-order in λ, we also find a prediction for the radius of oscillations:

R(t) ' πc
ω2

0
+ λ∆
ω2

0
− λG|A|2 − λA

2

2
(G+ i

√
G)2

(1 +G)(1 + 2i
√
G)
e2iΩt + c.c. (L.24)

Timescales separation. The long timescale corresponds to the typical relaxation
timescale of the transitory regime τrelax ' 1/δ; and the short one to the period of
the oscillations τosc ' 1/ω2

0
√
G. The timescale separation condition can be written as

follows:
δ � ω2

0
√
G, (L.25)

which is verified close enough to the threshold.
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FIG. L.1. Bifurcation scenario for the emergence of regime WW. (a) Nonlinear limit
cycle ampitude |A| as a function of π, as given by Eq. (L.23) for great enough gravity (here
G = 1 > G?). Solid (resp. dashed) lines represent stable (resp. unstable) branches. The insets
represent typical trajectories in the (θ, ϕ)-plane, below (left) and above (right) the instability.
(b) Prefactor of the supercritical Hopf bifurcation as a function of gravity gαε/ω2

0 as obtained
from simulations (red dots), and from Eq. (L.23) (solid black line). The markers are color-coded
by gravity. The vertical (resp. oblique) dashed line represents the gravity threshold below which
the first-order multiple-scale fails (resp. the large gravity asymptotic regime predicted by Eq.
(L.23)). Inset: amplitude of the oscillation along θ as a function of the distance to the threshold
δπ/ω2

0 , as obtained from simulations. The dashed black line represents the 1/2 power law. The
color code indicates the associated gravity, as given by panel (b), and the curves are shifted
vertically for clarity.

L.2 Linear response in the CO regime

Here, we find the linear response of the CO regime to a small polarizing field. Starting
from Eqs. (7.13), we linearize the dynamics around the stationary CO regime (R0 =
√
π/ω0, cos γ0 = ω0/

√
π, ϕ̇ = Ω0 = ω0

√
π − ω2

0), and introduce the small quantities
R(t) = R0 + δR(t), γ(t) = γ0 + δγ, ϕ = Ω0t+ δϕ, gαε = δgαε. We find:

d

dt

δRδϕ
δγ

 =

 −ω2
0 0 −π sin γ0

−ω2
0 sin γ0 0 ω2

0
2ω2

0 sin γ0 0 0


δRδϕ
δγ

+ δgαε sin(γ0 + Ω0t)

0
0
1

 , (L.26)

where the matrix on the right-hand side not only allows access to the stability of the
CO regime, but also to the linear response of this regime to a small gravity field. We
find that assessing the stability boilds down to the following eigenvalue problem:

λ
[
λ2 + λω2

0 + 2ω2
0

(
π − ω2

0

)]
= 0, (L.27)

which only has one zero solution in the δϕ direction. We denote ∆ = ω4
0 − 8ω2

0
(
π − ω2

0
)

the determinant of Eq. (L.27) and δπ = π − ω2
0 the distance to the threshold. For

δπ/ω2
0 < 1/8, the two remaining eigenvalues are reals and negatives: λ =

(
−ω2

0 ±
√

∆
)
/2;

and for δπ/ω2
0 > 1/8, they are complex conjugates with negative real parts: λ =(

−ω2
0 ± i

√
−∆

)
/2. Thus, the zero-gravity CO regime is stable in its whole range of

existence. Introducing the complex amplitudes AR, Aϕ and Aγ , we look for solutions of
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the form (δR, δϕ, δγ) = (AR, Aϕ, Aγ)eiΩ0t. We find the following condition:−ω2
0 − iΩ0 0 −π sin γ0

−ω2
0 sin γ0 −iΩ0 ω2

0
2ω2

0 sin γ0 0 −iΩ0


ARAϕ
Aγ

 = Ag

0
0
1

 , (L.28)

where Ag = δgαεe
iΨ, and Ψ is an irrelevant phase shift. The matrix on the left-hand

side of Eq. (L.28) is invertible for π > ω2
0. At lowest order in δπ = π − ω2

0, the complex
amplitudes expresses as: |AR||Aϕ|

|Aγ |

 ' |Ag|
 1/ω2

0
1/δπ

1/ω0
√
δπ

 . (L.29)

The complex amplitudes for the modulations along ϕ and γ diverge as one gets closer to
the exceptional point, which induces a change of regime, well captured by the mapping
with a nonlinear pendulum (see chapter 7).
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Blueprints

Active elastic building block

(a) (b)

(c) (d)

FIG. M.1. 3D plan for the square active elastic building block. See section 2.2. (a-
b) Active elastic building block’s structure. (a) Top-side orthographic projection. (b) Side
orthographic projection. (c-d) Active elastic building block’s hat. (c) Top-side orthographic
projection. (d) Side orthographic projection. Quotes are written in mm.
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Pinner

(a) (b)

FIG. M.2. 3D plan for the pinner. See section 2.4. (a) Top-side orthographic projection. (b)
Side orthographic projection. Quotes are written in mm.

Self-alignment device

(a) (b)

FIG. M.3. 3D plan for the alignment device. See section 2.3.2. (a) Top-side orthographic
projection. (b) Back side orthographic projection. Quotes are written in mm.
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Active Gerris

(a) (b)

(c) (d)

FIG. M.4. 3D plan for the active Gerris. See section 6.3. (a-b) Active Gerris’s structure.
(a) Top orthographic projection. (b) Side orthographic projection of a single arm. (c-d) Active
Gerris’s hat (c) Top-side orthographic projection. (d) Side orthographic projection. Quotes are
written in mm.

(a) (b)

FIG. M.5. 3D plan for the active Gerris’s springs holder. See section 6.3. (a) Top side
orthographic projection. (b) Side orthographic projection. Quotes are written in mm.
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(a) (b)

(c) (d)

FIG. M.6. 3D plan for the active Gerris’s pinner. See section 6.3. (a-c) Pinner’s hat. (a)
Side orthographic projection. (b) Bottom orthographic projection. (c) Top side orthographic
projection. (d) Four pinner’s arm. Quotes are written in mm.
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MOTS CLÉS

Matière active, solides actifs, mouvements collectifs, actuation collective, métamatériaux.

RÉSUMÉ

Les solides actifs sont constitués d’unités hors équilibre couplées élastiquement. Ils sont centraux dans de nombreux
processus biologiques comme la locomotion, les oscillations spontanées et la morphogenèse. De plus, leurs propriétés
mécaniques et leur capacité à fournir du travail permettent d’imaginer de nouveaux métamatériaux, multifonctionnels, et
dotés d’une véritable autonomie. Néanmoins, les mécanismes de rétroaction entre les forces actives et élastiques et
la possible émergence de comportements collectifs, restent encore peu explorés. En tirant profit d’unités actives cen-
timétriques, nous construisons une réalisation minimale de solide actif élastique. Les unités actives polaires exercent des
forces sur les nœuds d’un réseau élastique bidimensionnel, et le champ de déplacement induit réoriente non-linéairement
les agents actifs. De ce couplage, dit élasto-actif, émergent quantités de nouveaux comportements. Dans la première
partie, nous montrons que, pour un faible couplage, la présence de modes zéros dicte la nature et la géométrie des com-
portements collectifs. Sans conditions aux limites, les solides actifs fournissent ainsi un moyen de mettre en mouvement
collectif une population d’unités actives couplées rigidement. Dans un second temps, nous constatons, pour un couplage
suffisamment grand, l’émergence d’une oscillation collective des nœuds du réseau autour de leurs positions d’équilibres.
Nous appelons ce phénomène l’actuation collective. Seuls quelques modes élastiques sont activés et, de manière cru-
ciale, ils ne sont pas nécessairement les modes de plus basses énergies. En combinant des expériences modèles avec
l’analyse numérique et théorique d’un modèle d’agents, nous expliquons le scénario de bifurcation et le mécanisme de
sélection par lequel l’actuation collective a lieu. Nous proposons une théorie hydrodynamique des solides actifs pour
décrire leurs propriétés à grande échelle, et analysons certaines de ses conséquences. En jouant avec les propriétés
de vibrations du réseau, nous explorons également la grande variété d’actuations collectives, et mettons en évidence
les paramètres qui contrôlent la dynamique. Enfin, nous étudions la manière dont le couplage avec un champ extérieur
polarise les solides actifs et affecte l’émergence de l’actuation collective. En définitive, au-delà de la compréhension de
notre système particulier, ce manuscrit tente d’établir les fonctions mécaniques de la matière active à grande échelle.

ABSTRACT

Active solids consist of elastically coupled out-of-equilibrium units performing work. They are central to autonomous
processes in biological systems, e.g. locomotion, self-oscillations and morphogenesis. Moreover, their shape-preserving
property and their intrinsic non-equilibrium nature make active solids a promising framework to create multifunctional
metamaterials with bona fide autonomy. Yet, the feedback mechanism between elastic and active forces, and the possible
emergence of collective behaviors remains poorly understood. We take advantage of centimetric models of self-propelled
active units and introduce a minimal realization of an active elastic solid. Polar active agents exert forces on the nodes
of a two-dimensional elastic lattice, and the resulting displacement field nonlinearly reorients the active agents. From
this so-called elasto-active feedback emerges numerous new collective behaviors. In the first part, we show that for
weak enough coupling, the presence of zero modes dictates the nature and the geometry of the collective behaviors.
Rigid body motions in free boundary conditions thus provide a way to set a population a rigidly coupled active units into
collective motion. Then, we find that for large enough coupling, a collective oscillation of the lattice nodes around their
equilibrium position emerges, the so-called collective actuation. We find that only a few elastic modes are actuated and,
crucially, they are not necessarily the lowest energy ones. Combining experiments with the numerical and theoretical
analysis of an agents model, we unveil the bifurcation scenario and the selection mechanism by which the collective
actuation takes place. We propose a hydrodynamic theory of active solids to describe their large-scale properties, and
analyze some of its consequences. Playing with the vibrational properties of the lattice, we also explore the wide variety of
collective actuations, and find control parameters and design strategies for the emerging dynamics. Finally, we study how
the coupling with an external field polarizes active solids and affects the emergence of collective actuation. Altogether,
beyond the understanding of our particular system, this manuscript is an attempt to unveil the mechanical functionality of
active matter as a continuum.

KEYWORDS

Active matter, active solids, collective motion, collective actuation, metamaterials.
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