
HAL Id: tel-04083179
https://pastel.hal.science/tel-04083179v1

Submitted on 27 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mechanical submodels driven by machine learning :
application to structural dynamics

Hamza Boukraichi

To cite this version:
Hamza Boukraichi. Mechanical submodels driven by machine learning : application to structural
dynamics. Materials. Université Paris sciences et lettres, 2023. English. �NNT : 2023UPSLM003�.
�tel-04083179�

https://pastel.hal.science/tel-04083179v1
https://hal.archives-ouvertes.fr

Préparée à MINES Paris

Sous-modèles mécaniques pilotés par machine learning :
application à la dynamique des structures.

Mechanical submodels driven by machine learning:
application to structural dynamics.

Soutenance par

Hamza BOUKRAICHI
20 Mars 2023

École doctorale no621

Ingénierie des Systèmes,
Matériaux, Mécanique,
Energétique

Spécialité

Mécanique

Composition du jury :

Antony GRAVOUIL
Professeur, INSA Lyon Président

Icı́ar ALFARO
Professeure, Universidad Zaragoza Rapporteuse

Olga MULA
Professeure associée , TU Eindhoven Rapporteuse

Daniel RIXEN
Professeur, TUM Examinateur

Nissrine AKKARI
Ingénieure de recherche, SAFRAN SA Examinatrice

David RYCKELYNCK
Professeur, Mines ParisTech Directeur de thèse

Acknowledgement

I would like to express my sincere gratitude to the members of the jury for their time, attention,
and valuable feedback. I appreciate the effort that Prof. Alfaro and Prof. Mula have taken to review
my manuscript and provide me with their insightful comments. I would also like to thank Prof.
Gravouil, Prof. Rixen, and Prof. Rabin for accepting to be part of the jury of my thesis defense.
Your presence here today and your invested time and effort in evaluating my work means a lot to
me.

I am deeply grateful to my supervisors, David, Nissrine, and Fabien, for their guidance, sup-
port, and encouragement throughout my research journey. Their expertise and wisdom have greatly
influenced the direction and outcomes of my work. I appreciated working together on this thesis,
and I am grateful for the productive and healthy environment they created and maintained for the
fulfillment of my work. I could not have found better advisors, thank you for trusting me with this
research opportunity.

I would like to extend my thanks to my colleagues in the office and the lab for their support,
encouragement, and camaraderie, which made this journey more enjoyable and rewarding. Their
willingness to share their knowledge and expertise has been invaluable.

To my friends, thank you for your encouragement, support, and understanding. Your inspira-
tion has been a source of motivation for my work. I would like to express my heartfelt gratitude
to Zakaria, who has been a constant source of support and encouragement throughout my research
journey. Your unwavering belief in my abilities and your willingness to lend a listening ear have
been invaluable to me. I cannot thank you enough for your friendship and guidance during this
challenging but rewarding period of my life.

To my family, my parents, and my sister, I am grateful for your unwavering support and pa-
tience, and for pushing me to persevere. Without your support, this work would not have been
possible.

I would like to express my heartfelt appreciation to a wonderful person who will recognize
herself. Thank you for always being there for me and for encouraging me to go as far as possible.
I would not have been able to complete this thesis without your unwavering support and belief in
me. Your encouragement, guidance, and motivation have been invaluable to me throughout this
journey. I am grateful for the countless hours you have spent listening to my concerns and helping
me find solutions to the challenges I faced. Thank you for being my rock, my confidante, and my
partner.

Finally, I would like to express my gratitude to anyone who has contributed to the accomplish-
ment of this work.

3

Abstract
The primary goal of this thesis is to develop efficient and reliable numerical methods and deep

learning methods for the reduction of parametric and/or non-parametric contact models in struc-
tural dynamics, including impact zone scenarios that can evolve over time on cabin aeronautical
equipment. The approach is to determine a zone of interest in the physical model and construct
models capable of generating boundary conditions to the physical model around the zone of inter-
est. This modelisation will allow to explore the parametric space using the generative model while
keeping the high-fidelity caracteristics of the physical solutions by solving the physical problem
in the area of interest, and then use it to test out a variety of impact scenarios. Thus reducing the
computational cost of the physical model. Our source code for Europlexus will be used to create
the program. There will be more Python development for deep learning methods.

Keywords
Structural dynamics, Deep Learning, Machine Learning, Reduced Order Models, Generative

Models, Uncertainty Quantification, Submodeling, Structural Zoom, Supervised Learning, Re-
gression Models.

Résumé
L’Objectif principal de la thèse est le développement de méthodes numériques et des méthodes

de deep learning efficaces et robustes pour la réduction des modèles paramétriques et/ou non-
paramétriques de contact en dynamique des structures, avec des scénarios de zones d’impact qui
peuvent évoluer au niveau de l’équipement aéronautique en cabine. L’approche consiste à déter-
miner une zone d’intérêt dans le modèle physique et à construire des modèles capables de générer
des conditions aux limites autour de la zone d’intérêt pour le modèle physique. Cette modélisa-
tion permettra d’explorer l’espace paramétrique à l’aide du modèle génératif tout en conservant
les caractéristiques de haute fidélité des solutions physiques en résolvant le problème physique
dans la zone d’intérêt, puis de l’utiliser pour tester une variété de scénarios d’impact. Réduisant
ainsi le coût de calcul du modèle physique. Notre code source pour Europlexus sera utilisé pour
créer le programme. Il y aura plus de développement Python pour les méthodes d’apprentissage
automatique.

Mots clés
Dynamique des structure, Apprentissage profond, Apprentissage automatique, Modèles d’ordre

réduit, Modèles génératifs, Quantification d’incertitude, Sous-modélisation, Zoom structurel, Ap-
prentissage supervisé, Modèles de régression.

4

Contents

1 Introduction 5
1.1 Industrial context . 5
1.2 Related work . 5
1.3 Thesis objective . 8
1.4 Thesis organization . 9
1.5 Development environment . 11

2 State of The art 13
2.1 Introduction to Machine Learning . 13

2.1.1 Supervised learning paradigm . 15
2.1.2 Bias-Variance tradeoff . 15
2.1.3 Unsupervised Learning . 17
2.1.4 Ensemble learning . 17
2.1.5 Data scaling . 17

2.2 Dimension data reduction . 18
2.2.1 Singular value decomposition . 18
2.2.2 Proper Orthogonal Decomposition . 19
2.2.3 Gappy-POD . 20
2.2.4 Kernel Principal Component Analysis . 21
2.2.5 Multi dimensional scaling . 22
2.2.6 Proper generalized decomposition . 23

2.3 Introduction to Deep Learning . 23
2.3.1 Perceptrons . 24
2.3.2 Convolutional neural network . 25
2.3.3 Activation function . 26
2.3.4 Optimization step . 27
2.3.5 Autoencoder . 27
2.3.6 Neural nets are universal approximators 28
2.3.7 Physics Informed Neural Networks . 29

2.4 Generative adversarial networks . 29
2.4.1 Standard Generative Adversarial Networks 29
2.4.2 Conditional GAN . 33
2.4.3 IPM-based GANs . 34
2.4.4 Relativistic Discriminator . 37
2.4.5 Possible tasks with generative adversarial networks 39

2.5 Uncertainty quantification for physical models . 40
2.6 Bayesian techniques . 47

1

CONTENTS

3 Comparison between POD and CNN for regression in explicit dynamic 49
3.1 Introduction . 50
3.2 Problem Definition . 51
3.3 Methodology . 52

3.3.1 parameterized POD . 52
3.3.2 Parameterized Space-Time POD . 53
3.3.3 Parameterized Space-Time POD: Interpolation on Grassmann Manifolds . 53
3.3.4 Deep convolutional neural regressor . 56

3.4 Numerical Examples . 57
3.4.1 Data Sampling . 57
3.4.2 Data preprocessing . 58
3.4.3 Trained metamodels . 59
3.4.4 Results . 59

3.5 Conclusion . 66
3.6 Supplementary results . 66

4 Uncertainty quantification in a mechanical submodel driven by a Wasserstein Gener-
ative Adversarial Network 71
4.1 Introduction . 72

4.1.1 Related work . 73
4.1.2 Contribution . 73

4.2 Models . 74
4.2.1 Proper Orthogonal Decomposition (POD) 74
4.2.2 Deep Convolutional Neural Regressor . 75
4.2.3 Wasserstein Generative Adversarial Network 75

4.3 Use Case . 76
4.3.1 Domain definition . 76
4.3.2 Finite element models . 76
4.3.3 Dataset generation . 77

4.4 Numerical Results . 78
4.4.1 Data Sampling . 78
4.4.2 Trained submodels . 78
4.4.3 Parametric approach results . 79
4.4.4 Non-parametric approach results . 80

4.5 Conclusion . 84

5 Physics oriented data preprocessing for deep learning and optimization of deep learn-
ing architecture for physical data 85
5.1 Introduction . 86
5.2 Proposed Approach . 87

5.2.1 Background . 87
5.2.2 Canonical Polyadic Decomposition of convolutional filters 87
5.2.3 Approximation of the CPD of convolutional layers 89
5.2.4 A priori decomposed convolutional layers 89

5.3 Weight sharing . 91
5.4 Time regularization . 92
5.5 Developped models . 92

5.5.1 Models annotations . 93

2

CONTENTS

5.6 Physical Data preprocessing . 94
5.7 Numerical results . 97

5.7.1 2D Wave propagation with one source point and early stopping 97
5.7.2 2D wave propagation with one source point 102
5.7.3 2D wave propagation with four source points 105

5.8 Conclusion . 110

6 Uncertainty quantification in impact simulation via conditional Wasserstein Genera-
tive Adversarial Network 113
6.1 Introduction . 114
6.2 Problem Definition . 115

6.2.1 Data processing . 117
6.2.2 Data Sampling . 120

6.3 Models . 120
6.3.1 Deep Convolutional Neural Regressor . 121
6.3.2 Generative Adversarial Network . 121
6.3.3 Vanilla GAN . 121
6.3.4 Wasserstein GAN . 121
6.3.5 Gradient Penalty and Spectral Normalization 121
6.3.6 Relativistic Discriminator . 122

6.4 Numerical Results . 123
6.4.1 Regression - DcNR and Auto Encoder . 123
6.4.2 Adversarial Regression - GANs . 127
6.4.3 Uncertainty quantification by a conditional GAN 129

6.5 Conclusion . 132

7 Conclusion 133
7.1 Main results and contributions . 133
7.2 Publication and valorizations . 134
7.3 Perspectives . 135

Bibliography 145

3

Chapter 1

Introduction

1.1 Industrial context

As in many industrial fields, digital simulation is an essential tool, used in all stages of Safran’s
activities. It implements complex calculation codes, where the computational time of each simu-
lation can reach several hours, even several days. The context of this thesis is impact simulation
which is transient, stochastic in nature and parameterized by random variables. Optimization or
uncertainty propagation studies require predictions for a large number of realizations of these vari-
ables and parametric values, which increases drastically the simulation time. Also, in order to make
intensive computing possible for applications such as parametric studies, optimization and design
control, finite element models require acceleration techniques, for instance by using a reduction of
the number of unknowns.

We are particularly interested in the design of aeronautical components, where a large number
of operating regimes are to be expected on the basis of crash simulations involving fast dynamics.
Also, it becomes essential to take into account the variability and the different scenarios, through
multifidelity approaches which are based on methods of model order reduction of the equations
of physics but also on machine learning approaches. Thanks to these multi-fidelity approaches, it
would also be possible to integrate test data into the scale models in order to improve their robust-
ness and their predictability with respect to a wide range of scenarios. The main objective of this
thesis is to develop group-wide predictive, stochastic and multi-fidelity approaches to aeronautical
structures under impact.

For instance, during strong turbulence or during an event impacting an aircraft, the cabin equip-
ment, in particular the seats, undergo significant stress. In order to improve passenger safety,
studies and simulations are carried out in order to model the forces and tensions exerted on the
passenger seat belts and in particular on an area of interest of a mechanical part, called a spreader
(see figure 1.1), which connects a seat belt to a passenger seat. In addition to the forces exerted on
the area of interest of the spreader, uncertainties on the parameters of the spreader (see figure 1.2)
must be taken into account to dimension the mechanical part.

1.2 Related work

Highly nonlinear and large finite element models require very large resources, due to the fine
discretization of the domain in order to be able to take into account a wide range of spatial scales
associated with the underlying complex physics. Moreover, when using an explicit solver in fast
dynamics, a large number of time steps is required for the stability of the system of equations.
Model order reduction solves this problem, but its application in the context we described is com-

5

Chapter 1. Introduction

(a) Spreader stress experiment (b) Spreader stress simulation

Figure 1.1: Spreader Experiment vs Simulation

plicated, and not necessarily suitable in the form of linear dimension reduction. It is mainly based
on the projection of the underlying equations on a subspace of reduced dimension compared to the
space of the finite element base. This subspace is generally constructed using the method of proper
orthogonal decomposition (POD) Sirovich [1987] it results in spatial modes that describe the most
probable structures encountered in a solution of the equations of the physical model. For highly
nonlinear problems in structural dynamics, it is often necessary to carry out a hyper-reduction step
in order to make the nonlinear reduced order model resulting from the projection of the equations
efficient, thanks to anumerical approach which is based on a reduced integration domain. Two
hyper-reduction methods have been widely used in the literature for nonlinear finite element mod-
els in structural dynamics: A priori hyper-reduction Ryckelynck [2005] and the Energy Conserving
Sampling and Weighting (ECSW) method see An et al. [2008], Farhat et al. [2014] & Casenave
et al. [2020].

However, contact problems in structural dynamics remain a problem for the reduction of non-
linear models, because of the inequality constraints that describe the contact forces, see Simo and
Laursen [1992] & Wriggers [2006]. Solutions have been proposed to be able to build a robust
nonlinear scale model to describe the solutions of contact problems. In Balajewicz et al. [2016a]
the authors propose to build a reduced basis of the Lagrange multipliers which is positive in order
to guarantee the positivity of the Lagrange multipliers intrinsic to the reduced order model. This is
achieved by applying the non-negative matrix factorization (NNMF) algorithm as a positive version
to the Singular Value Decomposition (SVD) in the POD method. An extension of hyper-reduction
to contact problem can be found in Fauque et al. [2018]; Le Berre et al. [2022], by using a reduced
integration domain and linear dimensionality reduction for primal variables only. In these works,
the reduced integration domain acts as a submodel that reduces the computational complexity of
contact problems. Other works in the literature have also been proposed in the context of contact
model reduction: in Gastaldi et al. [2018], a linear and nonlinear model reduction technique is
proposed. The degrees of freedom associated with the forces of contact are reduced thanks to a
reduced basis obtained by the calculation of the Jacobian of the partial derivatives of the forces

6

1.2 Related work

Figure 1.2: Spreader Parameters Variation

of contact compared to displacements. This nonlinear reduced basis is associated with boundary
conditions in the contact zone. In Liu et al. [2018], a reduced order model of contact simulations
has been proposed, based on the ALE (Arbitrary Lagrangian Eulerian) formulation. The motiva-
tion behind the use of this formulation is associated with the different possible contact scenarios
for simulations of equipment in contact. The degrees of freedom related to the contact zone are
taken into account in the reduced model by the ALE formulation which provides at the same time a
precise mesh of the contact simulation. In Le Guennec et al. [2018], a non-intrusive and parametric
model reduction approach is proposed to reduce car crash simulations. The reduced-order model is
built using a statistical regression model based on a design of experiment that was built from a few
high-fidelity simulations. Clustering and linear programming tools are used to make regression
analysis more efficient. The parameters of the reduced model (whose number is 3 in this case)
correspond to those of the dimensioning of the structure. In Benaceur [2018], developments of
the reduced basis method (RB) and the empirical interpolation method (EIM) for nonlinear prob-
lems are presented. The works cited above consider for the most part parametrizable variations in
the model equations. The non-parametric aspect that an impact zone can have linked to strongly
nonlinear effects and even very high-dimensional variables is difficult to take into account by the
methods already mentioned.

In Akkari et al. [2018], a model reduction method has been developed in the context of ge-
ometric (non-parametric) exploration of explicit unsteady fluid flows. This approach is based on
an improvement of the classic Gappy-POD technique proposed by Everson and Sirovich [1995a],
in order to update POD modes thanks to a local calculation around an evolving geometry. This
method has been tested on semi-industrial cases of fluid flows representative of the complexity
of the real cases that we find, typically fluid flows in aeronautical injection systems with variable
geometry. The speed up obtained in the geometric exploration study was very interesting when
compared to the computation time associated with the phase of the transient in explicit dynamics.

A large number of scenarios are to be expected for fast dynamic crash simulations. To our
knowledge, there is no method in the state of the art that allows the consideration of a variable
impact zone not known in advance. Preliminary work on the application of convolutional and

7

Chapter 1. Introduction

adversarial neural networks in numerical simulations in fluid mechanics, shows the first interesting
leads on the representativeness of parametric and transient solutions belonging to a variety of very
high dimensions, by auto-encoders whose dimension of the latent space is reduced to the number
of parameters involved. The training of the auto-encoders could be done on data of reasonable
size. Generative adversarial networks GAN Goodfellow et al. [2014] have also made it possible
to generate physical solutions from a parametric and/or random normal distribution of very low
dimension. GANs have also been used for super-resolution, such as in imaging (see also Jolicoeur-
Martineau [2019], Arjovsky and Bottou [2017], Mescheder et al. [2018], Labatie [2019], Kim
et al. [2019] & Xie et al. [2018a]). They could advantageously be coupled with reduced models
to increase the spatial resolution in the contact zones and thus make it possible to better predict
the quantities of interest of the simulation. The nonlinear effect of the scenarios would then be
modeled by the GAN generator.

1.3 Thesis objective

The primary goal of this thesis is to develop efficient and reliable numerical methods and deep
learning methods for the reduction of parametric and/or non-parametric contact models in struc-
tural dynamics, including impact zone scenarios that can evolve over time on cabin aeronautical
equipment. The approach is to determine a zone of interest in the physical model and construct
models capable of generating boundary conditions to the physical model around the zone of inter-
est. This modelisation will allow to explore the parametric space using the generative model while
keeping the high-fidelity caracteristics of the physical solutions by solving the physical problem
in the area of interest, and then use it to test out a variety of impact scenarios. Thus reducing the
computational cost of the physical model. Our source code for Europlexus will be used to create
the program. There will be more Python development for deep learning methods.

The solution of partial differential equations modelling stationary or non-stationary physical
phenomena is a widely studied topic. The classical methods of discretization used for their solution
are the methods of finite differences, finite elements or finite volumes. Typically, these methods
require the resolution of large linear systems, either because a fine discretization is necessary
(necessary for example for the approximation of highly nonlinear solutions), or where a large-scale
problem is targeted, since the uniform sampling of a volume requires a number of samples which
grows exponentially with its dimension, an issue usually referred to as the Curse of Dimensionality.

On the other hand, artificial neural networks have been recently successfully employed in dif-
ferent fields, such as classification and regression, image or pattern recognition, to name a few.
Their promising performance encouraged also the spread of special neural network’s hardware
implementations, to decrease the computational training times and to provide a platform for ef-
ficient adaptive systems. Especially, artificial neural networks are well known for their excellent
flexibility in approximating complex high-dimensional nonlinear functions.

The interest in using a neural network can be indeed motivated by different factors. First, the
differential operator does not need to be discretized, and the approximate solution obtained pos-
sesses an analytic expression. This allows not only to have an approximation of the solution at
all the points of the training interval but also to perform extrapolation outside the interval with an
accuracy usually comparable to that obtained at the training points. This approach is useful espe-
cially in case of high dimensional equations and high dimensional parameters space, as it allows
to alleviate the effect of the curse of dimensionality. More importantly, this approach provides a
natural way to solve problems with nonlinear operators, with no need of linearisation.

One of the main issues with the use of artificial neural networks is to be able to successfully

8

1.4 Thesis organization

train them. The training is based on the solution of an optimization problem that can be large-
scale, like in the case of traditional techniques. This is the case of highly nonlinear solutions,
as a network with a large number of weights may be necessary to approximate the solution with
a sufficient accuracy. Gradient-based methods may exhibit a slow convergence rate and it may
be difficult to properly tune the learning rate. Several studies were already carried on for the
approximation of PDE’s using neural networks (see Han et al. [2018], Long et al. [2018], Raissi
et al. [2018], Raissi and Karniadakis [2018], Schaeffer [2017] & Mishra [2019]. In Calandra et al.
[2019] the solution of PDEs is approximated by a feedforward network, which is then trained by a
multilevel optimization method.

In this work, the proposed approach is to determine a zone of interest in the physical model
(see figure 1.3) and learn models capable of generating boundary conditions to the physical model
around the zone of interest (see figure 1.4). The zone of interest equiped with its boundary con-
ditions and related PDEs is termed submodel. This modelisation will allow the user to explore
the parametric space using the generative model while keeping the high-fidelity caracteristics of
the physical solutions by solving the physical problem in the area of interest. Thus reducing the
computational cost of the physical model. Similar work to this approach can be found in Launay
[2021] for contact-free static mechanical problems.

(a) Spreader zone of interest (b) Zone of interest boundaries

Figure 1.3: Spreader Zone of Interest

1.4 Thesis organization
In chapter 2 general state of the art method of machine learning, deep learning, linear model

reduction and bayesian methods will be discussed, as well as state of the art method for uncertainty
quantification in a physical configuration and in the presence of data generated from experiments
of Finite Element Method (FEM) solvers. Chapter 3 will be dedicated to presenting results of com-
parison of linear dimensional reduction methods with deep learning methods in the case of a 3D
impact simulation. We compared linear methods to deep convolutional neural regressor (DcNR)

9

Chapter 1. Introduction

Figure 1.4: Zoom approach vizualization

and we illustrate that for contact cases such as the one investigated, linear methods behave very
poorly and it is recommended to use non-linear data driven methods such as DcNR. We also il-
lustrate that having the time step as a parameter of the DcNR helps reducing the dependency of
the error with respect to the time. In chapter 4 an initial version of a nonparametric approach
for uncertainty quantification in a FEM submodel using generative models will be presented and
validated on a 2D use case. We have empirically shown that our methods obtain comparable and
slightly better estimation of physical fields than classical neural networks approaches, while reduc-
ing the dimensionality of the learning problem and thus reducing the training cost of our models
by restricting our attention to the boundary of a submodel, thus offering better generative behavior
in the exploration of density tails. Chapter 5 will be dedicated to presenting proposed methods
for adapting FEM models data to deep learning models as well as the optimization of neural nets
architecture for physical data and the stabilization of time informed neural network loss function,
the presented methods will be validated on a 2D use case. The compression approach proposed
can also be applied to learning data in higher dimensions since the complexity of the models is
linearly dependent of the dimension and actual deep learning code library only allow up to 3D data
learning. We demonstrate that compressed convolutional networks achieve better performance on
regression problems with fewer learnable parameters. Finally, in chapter 6 an optimized version
of the approach presented in the fourth chapter will be proposed and then validated on a 3D im-
pact simulation case. In this chapter we presente a novel method to assess for parametric and
non-parametric uncertainty quantification using the same model, a Conditional Wasserstein GAN,
relying on physical submodels over an area of interest. We used for training decomposition and
regularization methods for training deep learning models for physical data which were discussed
in length in this manuscript. We have empirically shown that our methods obtain good generative
abilities.

10

1.5 Development environment

1.5 Development environment
Convention: use of numpy array indices notations. Throughout this study, codes and experi-

ments will be done on the machine learning Python library: Pytorch Paszke et al. [2019]. FEM
models developments will be carried on the Python library Fenics Alnæs et al. [2015] for 2D cases
and Europlexus Beccantini et al. [2022] for 3D impact cases.

11

Chapter 2

State of The art

Abstract
In this thesis chapter, we provide an in-depth review of the latest state-of-the-art methods of ma-
chine learning, including deep learning, linear model reduction, and Bayesian methods. The chap-
ter also presents the latest methods for quantifying uncertainty in physical configurations, with a
focus on dealing with uncertainty in data generated from Finite Element Method (FEM) solvers.
Additionally, the chapter provides a detailed discussion on the use of Generative Adversarial Net-
works (GANs) for analyzing and generating physical data, including applications in areas such
as image processing and signal processing. The presented techniques and methods have potential
applications in various fields of research, including engineering, physics, and materials science.

Résumé
Dans ce chapitre de thèse, on propose une revue détaillée des dernières méthodes de pointe en
apprentissage automatique, y compris l’apprentissage profond, la réduction de modèle linéaire et
les méthodes bayésiennes. Le chapitre présente également les dernières méthodes pour quantifier
l’incertitude dans les configurations physiques, en mettant l’accent sur le traitement de l’incertitude
dans les données générées à partir de solveurs de méthode des éléments finis (MEF). De plus,
le chapitre offre une discussion approfondie sur l’utilisation des réseaux antagonistes génératifs
(GAN) pour analyser et générer des données physiques, y compris les applications dans des do-
maines tels que le traitement d’images et de signaux. Les techniques et les méthodes présentées
ont des applications potentielles dans divers domaines de recherche, y compris l’ingénierie, la
physique et les sciences des matériaux.

2.1 Introduction to Machine Learning
Machine learning (ML) is an area of study dedicated to understanding and constructing tech-

niques that "learn," which are ways that exploit data to enhance performance on some set of tasks.
In other words, ML seeks to understand and create methods that "learn." It is considered a com-
ponent of artificial intelligence (AI). To be able to generate predictions or choices without being
specifically programmed to do so, a model is created by machine learning algorithms by building it
based on sample data. This kind of data is referred to as training data. Machine learning algorithms
are used in a broad number of applications, including medical, email filtering, voice recognition,
agriculture, and computer vision. These applications are utilized in situations when it would be
difficult or impossible to design traditional algorithms to fulfill the necessary tasks. There is a

13

Chapter 2. State of The art

subset of machine learning that is closely connected to computational statistics, which focuses on
generating predictions using computers. However, statistical learning is not the same as machine
learning in its entirety. The study of mathematical optimization contributes to the science of ma-
chine learning by providing new methodologies, theoretical frameworks, and application fields.
Data mining is a related area of research that focuses on unsupervised learning as a method for
exploratory data analysis. Some applications of machine learning make use of data and neural net-
works in a manner that is intended to simulate the operation of a human brain. Predictive analytics
is another name for machine learning when used to the context of solving business challenges. The
primary objective of statistics is to draw conclusions about an entire population based on informa-
tion gleaned from a sample, whereas the objective of machine learning is to identify generalizable
predictive patterns. Although the two fields share a close relationship in terms of the methods they
use, they are fundamentally different. In certain circles, the use of machine learning techniques
has resulted in a new subfield of statistics known as statistical learning.

Common machine learning approaches may often be categorized into one of three classes,
which correspond to distinct learning paradigms. These classes are characterized by the features
of the signal available to the learning system, and they include the following:

• Supervised learning: is the approach used when the available data is comprised of labeled
instances, whereby each data point has both features (covariates) and a label. Feature vectors
(inputs) are used by supervised learning algorithms to develop a function that translates to
labels (outputs). It does this by inferring a function from a collection of training samples
that have been tagged. Each instance in supervised learning is a pair made up of an input
object and an expected output value. An inferred function that may be used to map fresh
instances is generated by a supervised learning algorithm, which examines the training data.
In a perfect world, the algorithm would be able to accurately assign labels to cases it has
never encountered. This necessitates reasonable generalization from the training data to
novel circumstances by the learning algorithm. The generalization error is a statistic used to
evaluate an algorithm’s statistical quality.

• Unsupervised learning: is an algorithm that uses untagged data to discover patterns. The
goal is that the model will be driven to construct a succinct representation of the data and will
subsequently be able to develop inventive material based on that representation. In contrast
to supervised learning, which requires labeling data, unsupervised approaches demonstrate
self-organization to capture patterns as probability densities or as a collection of neural fea-
ture preferences stored in the model weights and activations. Semi-supervised learning is
another degree of supervision in which a small fraction of the data is labeled.

• Reinforcement learning: is the study of how machines should behave in environments to
maximize some abstract concept called "cumulative reward". In order to achieve its objec-
tive, the learner engages with a changing environment (such as driving a vehicle or playing a
game against an opponent). The software receives feedback in the form of prizes as it solves
its challenge and strives to maximize these benefits. Unlike supervised learning, which re-
quires labeled input/output pairs to be given, reinforcement learning may function without
such pairings and can learn from examples where less-than-optimal acts are not explicitly
corrected. It is more important to strike a balance between exploring new territory and ex-
ploiting it (of current knowledge). Many reinforcement learning methods for this setting in-
clude dynamic programming approaches, therefore the environment is generally represented
as a Markov Decision Process (MDP). Reinforcement learning techniques aim to solve huge

14

2.1.1 Supervised learning paradigm

MDPs, which are beyond the scope of standard dynamic programming approaches since
they do not need prior knowledge of a precise mathematical model of the MDP.

In this thesis, approaches will mainly focus on supervised, unsupervised and self supervised
learning paradigms which is an intermediate form of unsupervised and supervised learning for
processing unlabelled data to obtain useful representations that can help with downstream learning
tasks.

2.1.1 Supervised learning paradigm

Given a set of N training examples of the form [(xi,yi)]i∈J1 , NK, a family of parametric
models Mλ = [fλ : X → Y] where X is the input space and Y the output or target space :
(∀i ∈ [|1,N|])(xi,yi) ∈ X×Y and an error function r : X×Y →R, a supervised learning algorithm
objective can be written as :

fob j = argmin
f∈Mλ

1
N

n

∑
i=1

r(f (xi),yi) (2.1)

The space Mλ is usually called the hypothesis space, and the function R : Mλ → R is called the
empirical risk defined as the empirical loss of the function f : R(f) = 1

N ∑
n
i=1 r(f (xi),yi).

For the choice of the error function r, differentiating between classification and regression
situations is crucial, where as an example for a regression objective the error function can the
squared difference of the targets and the predictions, and for a classification objective the error
function can be a binary response of predicting the right class by the model for each data sample.

2.1.2 Bias-Variance tradeoff

In Geman et al. [1992]; James [2003]; Goodfellow et al. [2016] it is noted that the balance
that must be achieved between bias and variation is the primary concern. Imagine that we have
access to a number of distinct training data sets, all of which are of the same high quality. A
learning algorithm is said to have a bias towards a certain input x if, after being trained on each
of these data sets, it consistently makes inaccurate predictions about what the appropriate output
should be for x. A learning algorithm is said to have a large variance for a certain input x if it
generates varied predictions for the value of the output variable after being trained on distinct sets
of training data. The sum of the bias and the variance of the learning process is connected to the
amount of mistake that is introduced by a learnt classifier’s predictions. In most situations, there is
a give-and-take relationship between bias and variation. In order to get good results with the data,
a learning algorithm with minimal bias has to have flexibility. However, if the learning algorithm
is too adaptable, it will match the parameters of each training data set uniquely and will thus have a
large variance. The ability of many supervised learning techniques to modify the balance between
bias and variance is an important feature that many systems share. This balancing act may be done
either automatically or by giving a bias/variance parameter that the user can alter.

Let R̃ be the the generalization risk associated to the supervised learning objective : R̃(f) =
E

(x,y)∈X×Y
[r(f (x),y)] and let f̃ = argmin

f∈Mλ

R̃(f) and f̂ = argmin
f∈Mλ

R(f), then the generalization error

of the empirically optimal model f̂ :

R̃(f̃)≤ R̃(f̂)≤ R̃(f̃)+2 max
f∈Mλ

|R̃(f)− R̃(f̂)| (2.2)

15

Chapter 2. State of The art

Thus, the generalization error is bounded by a bias term R̃(f̃) and a fluctuation term max
f∈Mλ

|R̃(f)−

R̃(f̂)| associated to the variability of f in Mλ . However, the two values cannot be reduced at
the same time. When the class Mλ is large, the bias diminishes but the fluctuations grow. The
objective is to identify classes of models with small sizes to limit the fluctuations (entropy) and to
minimize the risk associated to the problem while keeping the bias to a minimum. The Probably
Approximately Correct (PAC) theorem states that we seek uniform outcomes regardless of the
distribution of (X, Y) since it is unknown a priori, and that the fluctuation component goes to zero
for N approaching ∞.

PAC Theorem : if (∀ f ∈Mλ)R̃(f) is bounded and card(Mλ)< ∞ then:

P(max
f∈Mλ

|R̃(f)− R̃(f̂)| ≤ ε)≥ 1−δ (2.3)

Where N ≥ log(card(Mλ))+log(2
δ
)

2ε2 .
This means that to achieve a low error ε in the learning process with a high enough probability 1-δ
and a fixed number of samples N, the complexity and dimension of the space Mλ have to relatively
low but this will lead to higher values to the bias term.

The choice of the optimal model from the hypothesis space may be made using either an
empirical risk minimization strategy or a structural risk reduction strategy. When minimizing risk
empirically, it is preferable to choose a function that best matches the available data. The penalty
function in structural risk reduction regulates the bias/variance tradeoff.

The supervised learning method finds the optimal model that minimizes the empirical risk.
As a result, a supervised learning algorithm may be built by using an optimization technique to
determine the optimal model. Empirical risk minimization is identical to maximum likelihood
estimation where the model is a conditional probability distribution and the loss function is the
negative log likelihood.

When Mλ comprises a large number of candidate functions or the training set is too small,
empirical risk reduction results in high variance and poor generalization. The learning algorithm
may retain the training samples while not generalizing effectively. This is known as overfitting.
By introducing a regularization penalty into the algorithm, structural risk minimization attempts
to minimize overfitting. The regularization penalty may be thought of as a practical application
of Occam’s razor, which rewards less complicated functions over more elaborate ones. A broad
range of penalties have been used to correlate to various definitions of complexity. The squared
Euclidean norm of the weights, often known as the L2 norm, is a popular regularization penalty.
The L1 norm is one of the others. Let’s denote the penalty norm as C(fλ), the supervised learning
problem can be rewritten as :

fob j = argmin
f∈Mλ

R(fλ)+ γC(fλ) (2.4)

Where γ is a parameter that regulates the bias-variance tradeoff. When γ = 0, empirical risk
minimization with minimal bias and large variance is obtained. When γ is of higher values, the
learning algorithm will be biased and have a low variance. Cross validation may be used to deter-
mine the value of lambda.

16

2.1.3 Unsupervised Learning

2.1.3 Unsupervised Learning
Principal component and cluster analysis Roman [2019] are two of the most common ap-

proaches used in unsupervised learning. In unsupervised learning, cluster analysis is used to
organize or divide datasets with similar properties in order to deduce algorithmic links. Cluster
analysis is a subset of machine learning that organizes unlabeled, classified, or categorized data.
Cluster analysis, rather of reacting to input, discovers similarities in data and responds to the exis-
tence or lack of such similarities in each new piece of data. This method aids in the detection of
aberrant data points that do not fall into either category.

The topic of density estimation in statistics is a fundamental application of unsupervised learn-
ing, however unsupervised learning spans many other disciplines requiring summarizing and inter-
preting data aspects. It differs from supervised learning in that supervised learning seeks to infer a
conditional probability distribution based on the label of incoming data, while unsupervised learn-
ing seeks to infer an a priori probability distribution.

Method of moments is one of the statistical methodologies for unsupervised learning. In the
technique of moments, the unknown parameters (of interest) in the model are connected to the
moments of one or more random variables, and may therefore be estimated using the moments.
Moments are often approximated by empirical sampling. The fundamental moments consist of first
and second order moments. In particular, it is shown that the technique of moments is excellent
for learning the parameters of models with latent variables. Latent variable models are statisti-
cal models that include, in addition to the observable variables, a collection of unobserved latent
variables. In contrast of supervised learning, unsupervised learning approaches cannot be written
as a unique minimization problem since the objective function depends on the objective of the
application, in this work unsupervised learning will mainly be used for dimensionality reduction
of data and/or the construction of generative models. In the following examples of dimensionality
reduction methods and generative models construction will be presented.

2.1.4 Ensemble learning
Ensemble techniques Opitz and Maclin [1999] in statistics and machine learning combine many

learning algorithms to achieve greater prediction performance than each of the component learning
algorithms alone. In contrast to a statistical ensemble in statistical mechanics, which is normally
unlimited, a machine learning ensemble consists of just a specific finite number of different models,
but allows for far more flexible structure to exist within those possibilities. Bootstrapping involves
randomly selecting subsets of a dataset over a certain number of repetitions and variables. To pro-
vide a more potent outcome, these findings are then averaged. An example of an applied ensemble
model is bootstrapping. Some applications of this work contain ensemble learning algorithms and
bootstrapping such as Random Forest Regression (RFR) Breiman [2001]. The bootstrapping Ran-
dom Forest approach combines ensemble learning methods with the decision tree framework to
generate numerous randomly generated decision trees from the data, then averages the results to
get a new result that often leads to good predictions/classifications.

2.1.5 Data scaling
Many machine learning models or estimators are built on the premise that all characteristics

have values near to zero or, more crucially, that they all change on similar scales. Metric-based
and gradient-based estimators, in particular, often depend on data that is roughly standard (cen-
tered features with unit variances). Estimators based on decision trees, however, are resistant to

17

Chapter 2. State of The art

such changes in data size. Scalers vary in how they estimate the parameters needed to translate
and enlarge each feature, despite all being linear (or more properly affine) transformers. Scaling or
Feature Scaling is the process of changing the scale of certain features to a common one. This is
typically achieved through normalization and standardization. Normalization is the is converting
a set of numbers to a range between zero and one. This method is more prevalent and practical for
work involving regression analysis. Standardization refers to the process of transforming data into
a scale with a mean of 0 and a standard deviation of 1. It is more popular and beneficial for classifi-
cation jobs. Both scalers are feature-affine transformation of the training data, for standardization
the weight and the bias are respectively the empirical mean and empirical standard deviation of
data. In the presence of outliers in data, affine scalers are not efficient to eliminate outliers from
scaled data, non-linear scaling approaches have been proposed called Power Transformers Yeo and
Johnson [2000]; Box and Cox [1964], even though this approaches show good results in classifi-
cation tasks, they show poor performance in regression tasks since for regressive models inverting
the scaling in the output is necessary and for the non-linear approaches inverse function are not
always defined.

2.2 Dimension data reduction

In the manifold hypothesis Fefferman et al. [2016], it is proposed that many real-world high-
dimensional data sets really reside along low-dimensional manifolds within the corresponding
high-dimensional space. Many data sets that at first seem to need many variables to represent
may really be described by a very limited number of variables, analogous to the local coordinate
system of the underlying manifold, as a result of the manifold hypothesis. It is hypothesized that
this approach is what allows machine learning algorithms to be so successful in characterizing
high-dimensional data sets by looking at only a few of shared characteristics. Using nonlinear
dimensionality reduction methods in machine learning is connected to the manifold hypothesis,
on the basis of the premise that data exists on a low-dimensional submanifold. The next section
discussing linear dimensional reduction is partly inspired of Launay [2021], which provides a state-
of-the-art of linear reduction approaches adopting reduced basis method strategy Almroth et al.
[1978]. The reduced basis method (RBM) is a methodology for projecting data onto a subspace
defined by a set of functions chosen to represent the data for a specific research instance. Each
technique employs an efficient criteria for data selection in order to construct the reduced basis
that generates the approximation subspace. The greedy approach is utilized, which limits the
amount of Full Order Model (FOM) simulation to calculate while simultaneously limiting the size
of the RB used to shrink the model. Most methods are divided into two parts: an offline part,
also known as the training/learning phase, in which the reduced basis is also constructed using
parametric training data for various values in the parametric space, and an online part in which the
reduced problem that depends on the parameters is solved. Because the issue is projected on the
approximation subspace, its dimensionality is substantially lower than it was for the original data.

2.2.1 Singular value decomposition
The singular value decomposition (SVD) Eckart and Young [1936] is a factorization of a real

or complex matrix in linear algebra. It generalizes to any n×m matrix the eigendecomposition of a
square normal matrix with an orthonormal eigenbasis. Singular value decomposition is discussed
in the next section since it is often utilized in model order reduction. It does, in fact, provide a
compressed Reduces Basis by using certain snapshots. A rectangular matrix may be decomposed

18

2.2.2 Proper Orthogonal Decomposition

into three matrices with distinct characteristics using SVD.
Considering S ∈ Rn×m a matrix of rank d ≤min(n,m), by applying the SVD theorem it exists

a decomposition of S such that
S =U Σ V T (2.5)

Where U ∈Rn×n and V ∈Rm×m are orthogoanl matrices, UTU =UUT = In and V TV =VV T = Im
and Σ ∈ Rn×m is written as :

Σ =

(
D 0
0 0

)
∈ Rn×m with D = diag(σ1,σ2, ...,σd) such that σ1 ≥ σ2 ≥ ...≥ σd ≥ 0.

The column vectors U [:, i] and V [:, i] are respectively called left singular vectors and right singular
vectors of S. The σd are sorted in descending order and are called singular values. The left singular
values of S correspond to the eigenvalues of SST , the right singular values of S correspond to the
eigenvalues of ST S and the squared value of each singular value of S is equal to the corresponding
eigenvalue of SST and ST S. This is directly obtained through the following relations :

SST =UΣΣ
TUT (2.6)

ST S =V Σ
T

ΣV T (2.7)

Since Σ is a block defined matrix with 3 null blocks, the equation 2.5 can be simplified as :

S =U [:,1 : d] Σ V T [1 : d, :] (2.8)

Σ is unique in the decomposition, U and V can be determined in an unique manner by pre-
assigning both matrices signs. SVD finds the optimal Frobenius norm approximation of a matrix
S for a given number of vectors. Furthermore, the singular values are closely related to the ap-
proximation error. The singular vectors with the highest singular values are the ones that holds
the most descriptive information of the matrix S. The following is the relationship between the
approximation error of a matrix S of rank d by its truncated SVD S̃l of rank l ≤ d and the singular
values σi of S:

||S− S̃l||F =

(
d

∑
k=l+1

σ
2
k

) 1
2

where S̃l =U [:,1 : l] Σ[1 : l,1 : l] V T [1 : l,1 : l] (2.9)

2.2.2 Proper Orthogonal Decomposition

In order to isolate meaningful components in a chaotic flow, the notion of proper orthogonal
decomposition (POD) has been established Lumley [1967]. This technique has its origins in the
study of data. The purpose was to get down to a few key variables that captured the essence of the
original data. Many disciplines examined this overarching concept of data extraction. The SVD
described in 2.2.1 shares this core concept. One key distinction between Lumley’s and s Sirovich
[1987] POD snapshot technique is that the former takes use of a temporal average and a spatial
correlation, while the latter does the contrary.

By definition, a POD basis associated with g, is an orthonormal basis (φn)n>=1 of the space
(denoted X) determined so as to maximize the average respect to time of the kinetic energy con-
tained in the projections of the subspace generated by the ((φn)). The vector φ of this base is

19

Chapter 2. State of The art

solution of the problem:
< (g,φ)2

X >

||φ ||2X
= maxΦ∈X

< (g,Φ)2
X >

||Φ||2X
.

Where (,) and <,> respectively designate the scalar product on X and the temporal mean over
a certain interval denoted [0,T].

The maximization problem is equivalent to an eigenvalue problem, find (φi,λi)i∈J1 ; nK such as
:

Rφ = λφ

where :
R : X → X

Φ → < (g,Φ)>

R is a linear, compact, self-supporting and positive operator on X. Then according to the spec-
tral theory the eigenvalues and the eigenvectors solutions of the problem form an orthonormal
basis of X. The problem is then equivalent to a least square problem thanks to the Singular Value
Decomposition Eckart and Young [1936].

2.2.3 Gappy-POD

In Everson and Sirovich [1995b] the authors proposed a variant of the classic POD approach
where missing data on a matrix is recovered using a POD basis already calculated on data previ-
ously collected.

A non complete matrix is expressed as

g′(X) = m(X)g(X). (2.10)

Where m is a mask and X being the coordinate of the pixels of the matrix. The mask m takes 2
values : 0 for masked data and 1 elsewhere. The challenge is then to approach the real matrix g
using the POD basis (φn)[1..N] ie. find (a′n)[1..N] as :

g(x) =
N

∑
n=1

anφn. (2.11)

g′(x) =
N

∑
n=1

a′nφn. (2.12)

Using a least-squares criterion to achieve a best fit to determine (a′n)[1..N] we obtain :

(∀k) (m(x)g(X)−
N

∑
n=1

a′nφn,φk) = 0. (2.13)

Thus, using matrix form :
Ma′ = f (2.14)

where Mi, j = (φi,φ j) and fi = (m(x)ai,φi) = m(x)ai.

20

2.2.4 Kernel Principal Component Analysis

2.2.4 Kernel Principal Component Analysis

Principal component analysis (PCA) Pearson [1901] is a prominent approach for analyzing
huge datasets with a high number of dimensions/features per observation, boosting data inter-
pretability while maintaining the most information, and allowing multidimensional data visualiza-
tion. PCA is a statistical approach used to reduce the dimensionality of a dataset. This is achieved
by linearly converting the data into a new coordinate system in which the variance in the data
can be expressed with lower dimensionality than the original data. PCA is analogous to fitting
a p-dimensional ellipsoid to the data, with each axis representing a principle component. If the
variance along an ellipsoid axis is small, then the variance along that axis is likewise small.

Global nonlinear approaches aim to capture the full geometry of the data space in a mapping
to lower- dimensional space, which may be non-Euclidean. Kernel principal component analysis
(kPCA) is an extension of the principal component analysis (PCA) technique that allows nonlinear
characteristics or bases to be captured inside the PCA framework. Fundamental algorithms begin
with a transformation of the data into a new, often nonlinear, domain. Then, principal component
analysis is done on this new space (a kernel Hilbert space with well defined geometric features),
and the resulting bases are used. Gaussian kernels, sigmoid kernels, kernels of radial basis func-
tions, and linear kernels are all examples of popular mapping functions. Take into account n data
points in Rd . The data almost always can be represented in d > N dimensions, but they cannot be
linearly separated in d < N dimensions. The function Φ(xi) is introduced in such a way that:

Φ : Rd → RN (2.15)

A hyperplane may be readily defined here to allow for linear data partitioning. Since Φ generates
linearly independent vectors for each data point, an eigen decomposition, as would be performed
with conventional PCA, is unnecessary. Working in the feature space φ -space is usually avoided.
In the feature space, the covariance matrix is defined as:

C̄ =
1
n

n

∑
j=1

Φ(x j)Φ(x j)
T (2.16)

The eigenvalues λ and eigenvector V can be computed :

λV = C̄V (2.17)

The solution of the eigenvalues problem V lie in the span of Φ(xi) for i = 1, ...,n. Hence eq
2.18 can be written as :

λ (Φ(xi) ·V) = (Φ(xi) ·C̄V) for all i = 1, ...,n (2.18)

Moreover since V lie in the span of Φ(xi) for i = 1, ...,n, V can be written as a linear combina-
tion of these vectors. It follows :

V =
n

∑
i=1

αiΦ(xi) (2.19)

Hence eq. 2.18 can be written differently :

21

Chapter 2. State of The art

λ

n

∑
i=1

αi(Φ(xk) ·Φ(xi)) =
1
n

n

∑
i=1

αi(Φ(xk) ·
n

∑
j=1

Φ(x j)) ·
(
Φ(x j) ·Φ(xi)

)
, (∀k = 1, · · · ,n) (2.20)

The n×n kernel matrix is then introduced :

Ki j = Φ(xi) ·Φ(x j) (2.21)

It depicts the usually unsolvable feature space’s inner product space. The dual form that de-
velops during the formation of a kernel enables us to formally describe a version of PCA in which
the eigenvectors and eigenvalues of the covariance matrix in φ -space are never solved. The N-
elements in each column of K reflect the dot product of one converted data point with respect to
all transformed data points (N points).

So eq. 2.20 can then be written as :

NλKα = K2
α (2.22)

As K is symmetric, it has a set of eigenvectors which spans the whole space, thus :

Nλα = Kα (2.23)

The kernel formulation of PCA is limited in that it computes not the principal components
themselves, but rather the projections of our data onto those components, since we never operate
directly in the feature space.

2.2.5 Multi dimensional scaling
MDS Borg and Groenen [2005] is a technique for showing the degree of similarity between

individual examples in a collection. MDS is a technique for converting information about the
pairwise distances between a collection of n items or persons into a configuration of n points
mapped onto an abstract Cartesian space, commonly known as Principal Coordinates Analysis
(PCoA). The technique accepts the dissimilarity matrix D between the data as input and returns a
coordinate matrix in the MDS space X as output. This coordinate matrix seeks to minimize a loss
function known as strain. The strain is provided by:

S =

(
∑i, j(Bi j−XT

i X j)
2

∑i, j B2
i j

) 1
2

(2.24)

B is obtained by double centering of the proximity matrix P = D2
i j such as :

B =−1
2

CPC (2.25)

Where C is the centering matrix defined as :

C = In−
1
n

Jn (2.26)

Here n is the number of samples, In is the n×n identity matrix and Jn is a n×n matrix contain-
ing only ones. The eigenvalues Λii and eigenvectors Ei are obtained by diagonalizing the B matrix.

22

2.2.6 Proper generalized decomposition

Finally, in the MDS space X , the coordinate matrix may be derived as follows:

X = E[:, : m]Λ[:, : m]
1
2 (2.27)

In this case, m denotes the number of dimensions desired in MDS space. PCA and MDS are
comparable in the Euclidean situation. MDS is interested in obtaining a euclidean distance rep-
resentation based on a non Euclidean distance matrix. In this work, MDS will be mainly used in
adapting physical data to the euclidean standard necessary for deep learning models.

2.2.6 Proper generalized decomposition
Proper Generalized Decomposition (PGD) Chinesta et al. [2010] is a data dimensionality re-

duction strategy that allows you to avoid the difficulties associated by consecutive enrichment, the
PGD algorithm computes an approximation of the objective model. This implies that a new com-
ponent (or mode) is calculated and added to the approximation with each repetition. In general, the
more modes found, the closer the approach to the theoretical answer is. PGD modes, unlike POD
main components, are not always orthogonal to one another. A reduced order model of the solution
is constructed by choosing just the most relevant PGD modes. As a result, PGD is classified as a
model order reduction method. For a solution u ∈Ω1× ...×ΩD, the approximation of rank l of u
is represented with the equation 2.28 where l and the φ

j
i , with i ∈ [1, l] and j ∈ [1,D], are already

known.

u(i1, .., iD)≈
l

∑
i=1

φ
1
i ×·· ·×φ

D
i (2.28)

The number of terms l needed to obtain a good reference solution approximation depends on
how well it can be split. Functions φ

j
i are found by an iterative enrichment. At the enrichment

step n+1, the functions φ
j

i from the previous steps i ≤ n are already known and the new product
of the D functions φ

j
i has to be found. To do so, an approximation of rank n+ 1 of u in the

weak formulation of the problem is used. Hence a non linear system is obtained and needs to be
solved with an iterative algorithm such as a fixed point algorithm. The resolution of this system
is similar to solving a one dimensional problem for each of the D functions φ

j
i defined in Ω j.

The phenomenon, in high-dimensional models based on standard discretization approaches, where
the number of degrees of freedom (dof) rises exponentially with the size D of the problem, is
known as the curse of dimensionality. On the contrary, the number of dof in a PGD-based model
rises linearly with the approximation problem complexity. The PGD’s capacity to tackle high-
dimensional issues is its major benefit, its main disadvantage is that it is a somewhat invasive
procedure.

2.3 Introduction to Deep Learning
Artificial neural networks (ANN) or connectionist systems are computing systems that are

inspired by, but not identical to, biological neural networks that constitute animal brains. Such
systems "learn" to perform tasks by considering examples, generally without being programmed
with task-specific rules Goodfellow et al. [2016]. An ANN is composed of a collection of con-
nected units or nodes called artificial neurons, which loosely model the neurons in a biological
brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neu-
rons. An artificial neuron that receives a signal then processes it and can signal neurons connected
to it. In ANN implementations, the "signal" at a connection is a real number, and the output of

23

Chapter 2. State of The art

each neuron is computed by some non-linear function of the sum of its inputs. The connections are
called edges. Neurons and edges typically have a weight that adjusts as learning proceeds. A single
neuron is identified by its weight w and its bias b, for an input signal x ∈ R a neuron computes a
response y ∈ R as:

y = wx+b (2.29)

2.3.1 Perceptrons
The perceptron can be seen as the simplest type of neural network. It is a linear classifier or

regressor. This type of neural network contains no cycle, it is a network of forward propagation
neurons usually called feedforward network. In this network, information travels only in one
direction, forward, from the input nodes, through the hidden layers (if any), and to the output
nodes. Each layer of the network contains several weighted neurons connected to the different
inputs. The output of the network a is then the weighted sum of the inputs of the graph and a
bias passed in parameter of a function called the function of activation noted σ . The output of the
network can then be written :

y = σ(wT x+b) (2.30)

where w and b ∈Rn. This is then generalized for multi-layer networks by composition of function
considering the outputs of each layer as the inputs of the following layers.

Figure 2.1: Perceptron

24

2.3.2 Convolutional neural network

Figure 2.2: Multilayer Perceptron

The objective of the training is to adapt the different weights and biases of the network by seek-
ing to minimize the empirical risk as any supervised learning problem, typically for a regression
problem, the mean squared error is used as an error function.

2.3.2 Convolutional neural network

Convolutional networks LeCun et al. [1989], often known as convolutional neural networks
(CNNs), are a specific kind of neural network with a grid-like structure used to analyze input.
Time-series data, which can be seen as a 1-D grid sampling at regular intervals, and picture data,
which can be viewed as a 2-D grid of pixels, are two examples. In practical applications, convo-
lutional networks have proved quite effective. The term "convolutional neural network" suggests
that the network performs a mathematical procedure known as convolution. Convolution is a kind
of linear operation that is specialized. Convolutional networks are neural networks that substi-
tute convolution for ordinary matrix multiplication in at least one layer. A convolutional neural
network or convolutional neural network (CNN) is a type of acyclic artificial neural network, in
which the connection pattern between neurons is inspired by the visual cortex of animals. They
are often used in image processing problems. The CNN compares images fragment by fragment.
The fragments it looks for are called features. By finding approximate features that look roughly
alike in 2 different images, CNN is much better at detecting similarities than by an entire image-
to-image comparison. In Mallat [2016] convolutional 2D layers are defined as follows, given an
input x ∈ Rn×m the output of the convolution of x with a kernel K:

y(i, j) = (x⋆K)(i, j) =
n

∑
l=1

m

∑
h=1

x(l + i−1,h+ j−1)K(i, j) (2.31)

This approach can be generalized for higher dimension inputs with higher dimension kernels.
Thus, since a convolutional layer consists of a linear combination of the outputs of multiple con-
volution kernels passed in parameter for a non linear activation function, we can write for an input
x∈Rc×n×m, c being the numbers of channels in the input, and a collection of kernels K ∈Rck×nk×mk

where nk ≤ n and mk ≤ m and ck the number of Kernels defined the number of channels for the
output, which is usually called the feature map:

(∀ j ∈ [|1,ck|]) y[j, :, :] = σ(b+
c

∑
i=1

x[i, :, :]⋆K[j, :, :]) (2.32)

25

Chapter 2. State of The art

Where b ∈ Rck×nout×mout is the layer bias and y ∈ Rck×nout×mout .

Figure 2.3: LeNet architecture a convolutional neural network from LeCun et al. [1998]

In Mallat [2016] and LeCun et al. [2015] more details about other layers used in convolutional
networks adapted to image processing and computer vision such as max pooling. Since the objec-
tive of the thesis is to train generative models, we rely on deconvolution layers Zeiler et al. [2010a]
or transposed convolution. A deconvolutional layer is defined as the solution of a convolutional
equation. Given an input x and a kernel k, a deconvolution is solving the following equation for y:

x = k ⋆ y (2.33)

But since this operation is costly computationaly, in practice Dumoulin and Visin [2016] we
achieve inverse convolution via swapping the forward and backward passes of a convolution. If
the input and output were to be unrolled into vectors from left to right, top to bottom, the con-
volution could be represented as a sparse matrix C where the non-zero element are the elements
of the Kernel repeated across the sparse matrix to simulate the convolution. The kernel defines a
convolution, but how the forward and backward passes are performed determines whether it is a
direct convolution or a transposed convolution. Even while the kernel k provides a convolution
whose forward and backward passes are calculated by multiplying with C and CT , it also defines
a transposed convolution whose forward and backward passes are computed by multiplying with
CT and (CT)T = C. Thus one can use the same representation of the convolutional layer for the
transposed convolution. Inverse convolution terminology is no longer used since the real inverse is
not computed. With the representation of the convolution as a sparse matrix one can consider that
convolutional layers are sparse linear layers which only learn data similarities locally.

2.3.3 Activation function
The primary objective of any neural network is to convert non-linearly separable input data

into more linearly separable abstract characteristics by using a hierarchical structure of layers.
Combinations of linear and nonlinear functions compose these layers. The choice of activation
function depends on the architecture and the application or structure of the problem to solve using
neural networks. The chosen activation function must verify some regularity conditions, since
neural networks are optimized using gradient based methods. In Dubey et al. [2022] one can find
a very detailed survey on different activation functions used in neural networks training. Usually
the Rectified Linear Unit or ReLU x→ max(0,x) is used for image processing applications, in
this work, the sigmoid function σ(x) = 1

1+e−x and hyperbolic tangent Tanh(x) = 1−e−2x

1+e−2x are mainly
used, their respective output range are : [0,1] and [−1,1].

26

2.3.4 Optimization step

2.3.4 Optimization step
As mentioned before, neural networks weights and bias are updated by minimizing the empir-

ical risk. Nevertheless, two primary concerns emerge, considering neural networks with a large
number of layers and weights, computing gradients become computationaly expensive or infeasi-
ble, in addition considering a training data set of important size makes the gradient computation
even more expensive.

To tackle the first issue, the backpropagation algorithm has been proposed Rumelhart et al.
[1995] which relies on the chain rule to compute the gradient for each neural networks layer with
the value of the gradient of the previous layer. Feedforward neural networks training is then per-
formed through backpropagation of the error. Hence the quantities, for neural network f with
weights wi ∈ Rm, for the layer i, ∂R(f)

∂wi
are evaluated and used to update the weights. Consider-

ing the second issue, stochastic gradient descent methods Bottou and Bousquet [2007] have been
proposed. Often abbreviated SGD, stochastic gradient descent is an iterative technique for maxi-
mizing an objective function with sufficient smoothness and regularity as differentiability or subd-
ifferentiability. It might be considered a stochastic approximation of gradient descent optimization
since it substitutes an estimate for the real gradient, which is derived from the whole data set, as
a gradient calculated from a randomly selected subset of the data. This minimizes the very high
computational cost, particularly in high-dimensional optimization problems, resulting in quicker
iterations at the expense of a slower convergence rate. So combining both methods to compute
∂R(f)

∂wi
using the chain rule and a random subset of the training data, we can write the update rule of

the weights of a layer in a feedforward neural network as:

wi← wi−η
∂R(f)

∂wi
(2.34)

Where η is the learning rate considered.
Many optimization methods relying on stochastic gradient descent were proposed, Sun [2020]

offers a global overview on stochastic optimizers, in this work, the stochastic optimizer Adam
Kingma and Ba [2014] will mainly be used. Several studies have been carried on for the accelera-
tion of the convergence of neural networks training with SGD, as an example Batch Normalization
Ioffe and Szegedy [2015a] which is founded on the idea that covariate shift, which is known to
complicate the training of machine learning systems, also applies to sub-networks and layers, and
that eliminating it from the network’s internal activations may benefit in training. The suggested
solution derives from standardizing activations and embedding this standardization into the net-
work design itself. This guarantees that any optimization technique used to train the network
handles normalization in an acceptable manner. To allow stochastic optimization techniques typi-
cally used in deep network training, each mini-batch is normalized and backpropagates gradients
via the normalization parameters. Batch Normalization adds just two more parameters per activa-
tion, hence preserving the network’s capacity to represent data. Variants of this method have been
proposed as Weight Normalization Salimans and Kingma [2016] or Layer Normalization Ba et al.
[2016] which perform the normalization operation respectively on the weights or the layer. Layer
Normalization use statistics summed over all the minibatches for a unique normalization step that
doesn’t depend on the batch size, in this work Batch Normalization will mainly be used.

2.3.5 Autoencoder
AutoEncoders (AE) are a kind of unsupervised learning also termed self-supervised learning

that use neural networks for the purpose of representation learning. This unique neural network

27

Chapter 2. State of The art

architecture is designed in such a manner as to induce a bottleneck in the neuronal network’s hidden
layer. Since the desired output and input are identical, the bottleneck imposes a compressed version
of the original input. The two primary components of an autoencoder are the encoder, which maps
the input into a compressed latent space, and the decoder, which maps the compressed data from
the latent space to the original space. Due to the fact that the latent space is smaller than the
original space, autoencoders allow dimensionality reduction. Autoencoders are designed to reduce
the discrepancy between the input and output in the context of a reconstruction error. The encoder
and decoder can be defined as transition functions φ and ψ . if the L2 norm is taken for the loss
function it follows :

Φ : X → F,
Ψ : F → X ,

Φ,Ψ = argmin
Φ,Ψ

||x− (Ψ◦Φ)x||2,

dim(F)≪ dim(X).

(2.35)

Here X and F denote the input space and the latent space respectively. For example, a very
simple autoencoder is considered with one single hidden layer. The autoencoder takes as input
x ∈ Rd = X and maps it into h ∈ Rp = F .
In this case the hidden layer h is referred to as latent variables or latent representation. The func-
tions Φ,Ψ can be any of the types of neural networks, their respective weights being updated by
minimizing the reconstruction L2 error.

2.3.6 Neural nets are universal approximators
The main approach used in Calandra et al. [2019] consists in using a one hidden layer percep-

tron for approaching the solution of a partial differential equation. This approach is justified by
the universal approximation theorem Hornik et al. [1989] & Csáji et al. [2001], which states that a
feed-forward network with a single hidden layer containing a finite number of neurons can approx-
imate continuous functions on compact subsets of Rm, under mild assumptions on the activation
function.

Universal Approximation Theorem Let σ : R→R be a nonconstant, bounded, and continuous
function (called the activation function). Let Im denote the n-dimensional unit hypercube [0,1]m.
The space of real-valued continuous functions on Im is denoted by C(Im). Then, given any ε > 0
and any function f ∈ C(Im), there exist an integer N, real constants vi,bi ∈ R and real vectors
wi ∈ Rm for i = 1, . . . ,N, such that we may define:

F(x) =
N

∑
i=1

viσ
(
wT

i x+bi
)

(2.36)

as an approximate realization of the function f that is,

(∀x ∈ Im) |F(x)− f (x)|< ε (2.37)

In other words, functions of the form F(x) are dense in C(Im). This still holds when replacing Im
with any compact subset of Rm.

Thus, physical numerical data being solutions of stable PDE’s verify the conditions of being
approached by multi layer perceptrons. In this work, we don’t consider fracture mechanics that

28

2.3.7 Physics Informed Neural Networks

may produced discontinuous numerical data.

2.3.7 Physics Informed Neural Networks

As a subset of universal function approximators, physics-informed neural networks (PINNs)
Raissi et al. [2017a] are characterized by partial differential equations and may be trained with prior
knowledge of any physical rules that apply to a particular data-set (PDEs). The lack of resilience in
most state-of-the-art machine learning algorithms renders them unsuccessful in various biological
and engineering systems with limited data availability. To improve the accuracy of the function
approximation, previous knowledge of general physical principles is used as a regularization agent
during the training of neural networks. By doing so, the information value of the given data is
increased, making it easier for the learning algorithm to capture the proper answer and generalize
well even with a small number of training samples.

Considering a nonlinear PDE of general form:

u(t,x)+N [u,λ] = 0,(∀t,x ∈ [0,T]×Ω) (2.38)

Where u is the solution and N is a non linear operator parameterized by λ and ω is a subset of R.
First step being to compute data as solution of the equation for multiple parameter values to train a
classical data-driven neural network, then by approximating u as a neural network f (x, t)≈ u(x, t)
we can compute the residual of the PDE on the neural approximation and use it as an additional
loss function as follows for multiple parametric values called collocation points.

r(f ,λ) = | f (x, t)+N [f ,λ]|2 (2.39)

Thus we obtain a new class of universal function approximators that is capable of encoding any
underlying physical laws that govern a given data-set and can be described by partial differential
equation with few training data. The main drawback of this method is that it is quite intrusive and
it is not feasible for learning data from a FEM solver since for most case accessing the real PDE
solved is computationaly expensive and intrusive.

In Jia [2021] the authors presents a brand-new strategy called Physics-guided Machine Learn-
ing for utilizing the complimentary characteristics of modern machine learning models and
process-based models by integrating them. To better capture the dynamism of scientific systems
and increase our understanding of underlying physical processes, novel process-guided deep learn-
ing models are presented.

2.4 Generative adversarial networks

2.4.1 Standard Generative Adversarial Networks

GAN (Generative Adversarial Networks) technology, introduced in Goodfellow et al. [2014],
is an innovative programming approach for the development of generative models, that is to say
capable of producing data themselves, especially images. Generative adversarial networks are an
artificial intelligence method created to handle the challenge of generative modeling.
The objective of a generative model is to analyze a set of training samples and learn the probability
distribution that created them. The computed probability distribution may then be used by GANs
to produce new instances. Deep learning-based generative models are widespread, but GANs have

29

Chapter 2. State of The art

shown to be particularly effective (especially in terms of their ability to generate realistic high-
resolution images). GANs have been successfully applied to a broad range of problems (mainly
in research settings), but they continue to bring distinct difficulties and research possibilities since
they are based on game theory, while the majority of other methods to generative modeling are
focused on optimization. This type of network, as its name suggests, puts into competition 2 neural
networks, a generator and a discriminator which can be perceptrons or convolutional networks,
depending on the objective of the user. The discriminator’s mission is to classify the data or images
it receives as input into 2 classes, real or generated. While the aim of the generator is to generate
from noise input data or images very close to the real data in order to deceive the discriminator.
The goal of this type of network is then to learn how to generate images or data very close to
reality. Figure 2.4 shows a visualization of this architecture.

Figure 2.4: GAN architecture taken from Creswell et al. [2018]

Training

We can then model the training of a network of this type as a classic min max problem as
follows:

min
G

max
D

V (D,G) = Ex∼Pr [Log(D(x))]+Ez∼Pz[Log(1−D(G(z)))] (2.40)

Where G and D are the outputs of the generator and the discriminator, and Pr and Pz are the
distributions of the real data and of the noise at the input of the generator. Let θd and θg be the sets
of trainable parameters of respectively the discriminator and the generator, we propose the training
algorithm of a GAN Algorithm 1.

30

2.4.1 Standard Generative Adversarial Networks

Algorithm 1: GAN Training
for i in [1, itermax] do

Sample minibatch of m noise sample (Z1, ...,Zm)
Sample minibatch of m real data sample (X1, ...,Xm)
Update Discriminator by ascending its stochastic gradient :

∇θd(
1
m

m

∑
i=1

Log(D(Xi))+Log(1−D(G(Zi))))

Sample minibatch of m noise sample (Z1, ...,Zm)
Update Generator by descending its stochastic gradient :

∇θg(
1
m

m

∑
i=1

Log(1−D(G(Zi))))

end for

Properties

The theoretical analysis of the GAN was made on the basis of articles Goodfellow et al. [2014]
and Arjovsky and Bottou [2017], this section will be dedicated to synthesizing this analysis. For
the sake of clarity and conciseness, demonstrations of certain properties will not be proposed, for
more details please refer to these documents.

Global Optimality For a fixed generator G, the optimal discriminator which minimizes (2.40)
is:

D∗G(x) =
Pr(x)

Pr(x)+Pg(x)
(2.41)

Where Pr is the probability density of real data and Pg is the probability density of fake data
generated by the Generator.

Proof Let G be the fixed generator. We have then :

D = argmaxV (G,D) (2.42)

V (G,D) =
∫

χ

Pr(x)log(D(x))∂x+
∫

Z
Pg(z)log(1−D(G(z)))∂ z

=
∫

χ

(Pr(x)log(D(x))+Pg(x)log(1−D(x)))∂x
(2.43)

And the function x→ a log(x) + b log(1−x) restricted to [0,1] reaches its maximum on a
a+b .

Thus :

D∗(x) =
Pr(x)

Pr(x)+Pg(x)
(2.44)

Theorem 1 : If Pr and Pg have supports contained in 2 disjoint subsets R and G then it exists a
discriminator D∗ : χ → [0,1] smooth and optimal such as :

Pr[D∗(x) = 1] = 1, Pg[D∗(x) = 0] = 1, (∀x ∈M∪P) ∇xD∗(x) = 0 (2.45)

31

Chapter 2. State of The art

Definition We define the following norm which will be used later :

||D||= supx∈χ |D(x)|+ ||∇xD(x)||2

Theorem 2 Let gθ : Z→ χ be the generator output function, which induces a distribution Pg, Pr
the distribution of real data and D a differentiable discriminator.

If the conditions of Theorem 1 are satisfied and
∃ ε et M such as ||D−D∗||< ε and Ez∼Pz[||Jθ gθ (z)||22]< M2 then

||∇θEz∼Pz[Log(1−D(gθ (z)))]||2 <
Mε

1− ε

Where J is the Jacobian matrix.

Corollary
lim
ε→0
||∇θEz∼Pz[Log(1−D(gθ (z)))]||2 = 0

We conclude that the more the discriminant is driven towards optimality the more the generator
gradient tends towards 0 and updating its weights becomes impossible.

To correct the fact that the generator gradient tends towards 0, an alternative to the genera-
tor gradient is proposed in Arjovsky and Bottou [2017], by modifying the cost function Equation
6.8 we obtain for the gradient:

∇θ (Ez∼Pz[−log(D(gθ (z)))])

Theorem 3 Let gθ : Z→ χ be the generator output function, which induces a distribution Pg, Pr
distribution of actual data. Let us suppose that the hypotheses of Theorem 1 are verified and that
D is a discriminator such that D∗−D = ε is a Gaussian distribution indexed by x and independent
for each x. And ∇xD∗−∇xD = r.
Then each coordinates of Ez∼Pz[∇θ − log(D(gθ (z)))] is a Cauchy’s distribution centered on infinite
variance.

Proof Having D∗(gθ (z)) = 0 and ∇xD∗(gθ (z)) = 0 thus :

Ez∼Pz[∇θ (−log(D(gθ (z))))] = Ez∼Pz[−
Jθ gθ (z)∇xD(gθ (z))

D(gθ (z))
]

= Ez∼Pz[−
Jθ gθ (z)r(z)

ε(z)
]

We therefore have a ratio of 2 variables which follow normal distribution, we then obtain a Cauchy
distribution , and as the mean is calculated on the z, the distribution is centered.

We can conclude that this alternative for the gradient is unstable. This instability can be
corrected while training the network by adding noise to the output in the cost function.

32

2.4.2 Conditional GAN

2.4.2 Conditional GAN

The principle of GAN networks can be extended to a conditioned model Mirza and Osindero
[2014] if the generator and the discriminator are both conditioned by additional information y. In
the generator, noise and information are combined, while in the discriminator, noise and informa-
tion are considered as 2 network inputs. So the problem can be written:

Figure 2.5: Conditional GAN architecture taken from Mirza and Osindero [2014]

minG maxD V (D,G) = Ex∼Pdata[Log(D(x|y)]+Ez∼Pz[Log(1−D(G(z|y)))]

Thanks to this modified architecture the generation mode of the generator can be controlled, its
output will be dependent of a random noise vector θ and a set of deterministic parameters defined
p. A deep convolutional GAN is a variant of the GAN which is simply using Deep convolutional
networks for both the generator and the discriminator (sometimes for the Generator Only). In our
opinion, this architecture is more suited for physics driven approach, since using spatial aware
filters (2D or 3D) is more efficient to capture the physics properties of the data. A C-DCGAN
being a conditional and convolutional GAN, using both the previous architectures, we can then
consider the Generator (after successful training) as a class of conditional Monte Carlo estimator.
Physics informed approach for generative adversarial network Yang and Perdikaris [2019] have
been proposed where the generator is constrained with the residual of the PDE, another example in
Xie et al. [2018b] where the discriminator is trained on batch of temporal data to obtain temporally
coherent generative models for super resolution in a fluid simulation.

In Jolicoeur-Martineau [2019] the authors define generally GANs in terms of the discriminator
as follows:

LD = E
xr∼P

[f̃1(D(xr))]+ E
z∼Pz

[f̃2(D(G(z))] (2.46)

33

Chapter 2. State of The art

and the loss for the generator is the following:

LG = E
xr∼P

[g̃1(D(xr))]+ E
z∼Pz

[g̃2(D(G(z))] (2.47)

Where f̃1, f̃2, g̃1, and g̃2 are scalar-to-scalar functions, P is the distribution of real data, Pz
is often a multivariate normal distribution centered at 0 with variance 1. As we shown earlier
the Standard GAN (or Vanilla GAN) has two different cost functions for the generator saturating
Goodfellow et al. [2014] and non-saturating Arjovsky and Bottou [2017]. Non-saturating and sat-
urating loss functions can be used to categorize the majority of GANs. GANs that have saturating
losses have g̃1 = − f̃1 and g̃2 = − f̃2, whereas GANs that have non-saturating losses have g̃1 = f̃1
and g̃2 = f̃2. Since they can be seen as alternating between the same loss function’s maximiza-
tion and minimization, saturating GANs are intuitive. In contrast, non-saturating GANs can be
viewed as maximizing the same loss function but substituting fake input for real data (and vice-
versa). SGAN requires a cross-entropy loss, f̃1(D(x)) = log(D(x)) and f̃2(D(x)) = log(1−D(x)),
respectively. where D(x) = σ(C(x)), σ being the sigmoid activation function and C(x) is the non-
transformed discriminator output (which we refer to as the critic in accordance to Arjovsky et al.
[2017]). In most GANs, C(x) can be used to determine how realistic the input data is.

2.4.3 IPM-based GANs
Integral Probability Metrics (IPMs) are statistical divergences defined as :

IPMF (P||Q) = sup
C∈F

E
x∼P

[C(x)]− E
x∼Q

[C(x)] (2.48)

Equations 2.46 and 2.47 can be used to build IPM-based GANs. In these equations, D(x) =
C(x), and f1(D(x))= g2(D(x))=D(x), there is no alteration that takes place. It can be seen that the
loss functions for the discriminator and generator are both unbounded and, if directly optimized,
will diverge to ∞. IPMs, on the other hand, make the assumption that the discriminator belongs to
a particular class of function that grows slowly, preventing the loss functions from diverging. For
example, WGAN Arjovsky et al. [2017] assumes a Lipschitz D and WGAN-GP Gulrajani et al.
[2017] constraint the assumption of the Lipschitz discriminator using a gradient penalty. Each
IPM applies a specific condition on the discriminator. For IPM-based GANs the discriminator is
taken as having unbounded values in contrast to Standard GAN where the discriminator values are
bounded to [0,1], the discriminator in a IMP-based GANs will be referred to as the critic C and
for Standard GANs as the discriminator D where D(x) = σ(C(x)), σ being the sigmoid activation
function.

Wasserstein GANs

Wasserstein GANs (WGANs) introduced by Arjovsky et al. [2017] is an IPM-based GAN using
the Earth-Mover (EM) distance or Wasserstein-1, defined as follows:

W (Pr,Pg) = inf
η∈Π(Pr,Pg)

E
(x,y)∼η

[∥x− y∥] (2.49)

Where Π(Pr,Pg) denotes the set of all joint distribution whose marginals are respectively Pr
and Pg.

For GANs training, using the Earth-Mover distance instead of Jensen-Shannon divergence will
result in computing the distance between the real data distribution P and the image of the distribu-

34

2.4.3 IPM-based GANs

tion of noise input Pz by the generator function w.r.t the generator parameters ωG. Thus to optimize
such cost function the Wasserstein-1 distance has to fulfill some regularity requirements w.r.t ωG,
we denotes the distribute of fake data generated by the generator as G(Pz).

The authors Arjovsky et al. [2017] demonstrate that under the assumption that G is locally Lip-
schitz w.r.t ωG then W (Pr,G(Pz)) is continuous everywhere, and differentiable almost everywhere.
This assumptions is verified if G is a feedforward neural network and Pz has finite expectation.

Using the Kantorovich-Rubinstein duality Villani [2009] we can rewrite the Wasserstein-1 dis-
tance as follows:

W (Pr,Pg) = sup
∥ f∥L≤1

E
x∼Pr

[f (x)]− E
x∼Pg

[f (x)] (2.50)

The authors in Arjovsky et al. [2017] shows that having a generator G and a distribution Pz un-
der the same assumptions as before (G locally Lipschitz w.r.t to ωG and E

x∼Pz
[x]< ∞) are sufficient

conditions for the existence of f solution of:

max
∥ f∥L≤1

E
xr∼Pr

[f (xr)]− E
z∼Pz

[f (G(z))] (2.51)

and

∇ωGW (Pr,G(Pz))) =− E
z∼Pz

∇ωG[f (G(z))] (2.52)

Finding the function f to solve the maximizing problem in equation 2.50 is the next task. We
may train a neural network parameterized with weights ωC lying in a compact space W and then
backpropagate via E

z∼Pz
[fωC(G(z))], as we would with a normal GAN. W’s compactness means

that every fωC will be K-Lipschitz for any K that solely depends on W rather than the weights.
Thus approaching 2.50 up to a scaling factor and the capacity of the critic fωc . After each gradient
update, we can easily clamp the weights to a box (lets us say W = [0.01,0.01]l) to ensure that the
parameters ωC resides in a compact space.

Because the EM distance is continuous and differentiable, we may (and should) train the critic
until it is optimal. The reasoning is straightforward: the more we train the critic, the more accurate
the Wasserstein gradient becomes, which is important due to the fact that Wasserstein is almost
always differentiable. As the discriminator improves, the JS gradients get more accurate, but the
real gradient is 0 since the JS is locally saturated and we observe vanishing gradients, as shown in
2.4.1.

It is a big advantage to be able to use WGAN in order to fine-tune the training that the critic
receives. Once the critic has been completely trained, it will only provide a loss to the generator,
this will enable us to train the generator in the same manner that we would train any other neural
network. This is a promising indicator that we no longer need to stress about adjusting the capacity
of the generator and the discriminator. If the critic is of high quality, then the gradients that we
employ to train the generator will also be of high quality.

Results in Arjovsky et al. [2017] shows that WGAN improves the stability of GAN’s training
and solve the issue of mode collapse, nevertheless the clipping methods to ensure the Lipschitz
regularity of the critic isn’t robust and can lead to undesired behavior as shown in Gulrajani et al.
[2017].

35

Chapter 2. State of The art

Wasserstein GAN with gradient penalty

The authors in Gulrajani et al. [2017] propose and alternative way to ensure the Lipschitz
constraint on the critic, taking into consideration directly restricting the gradient norm of the critic’s
output with regard to its input since a differentiable function is said to be 1-Lipschtiz if and only if it
has gradients with norms of at most 1 everywhere. A a soft form of the constraint was implemented
in order to get around tractability concerns, and we do this by imposing a penalty on the gradient
norm for both real and fake samples. Thus the algorithm to train a Wasserstein GAN with gradient
penalty is presented in Algorithm 2. Although this method solves instability issues and propose a
better method to fulfill the Lipschitz constraint it is computationaly costly.

Algorithm 2: WGAN with gradient penalty. We use default values of λ = 10, ncritic = 5,
α = 0.0001, β1 = 0, β2 = 0.9

Require: The gradient penalty coefficient λ , the number of critic iteration per generator iteration
ncritic, the batch size m, Adam hyperparameters α,β1,β2

Require: Initial critic parameters ω0, initial generator parameters θ0
while θ has not converged do

for t = 1,...,ncritic do
for i = 1,...,m do

Sample real data x =(U,V) from training sets, latent variable z∼N (0,1), a random
number ε ∼U [0,1]
x̃← Gθ (z)
x̂← ε x̃+(1− ε)x
L(i)← Dω(x̃)−Dω(x)+λ (||∇x̂Dω(x̂)||2−1)2

end for
ω ← Adam(∇ω

1
m ∑

m
i=1 L(i),ω,α,β1,β2)

end for
Sample a batch of latent variables {z(i)}m

i=1 ∼N (0,1)
θ ← Adam(∇θ

1
m ∑

m
i=1−Dω(Gθ (zi)),θ ,α,β1,β2)

end while

Spectral Normalization

In Miyato et al. [2018] the authors suggest an innovative weight normalization approach known
as spectral normalization in order to make the training of discriminator networks more consistent
and thus enforce the Lipschitz constraint without computing any additional gradient, reducing the
computational cost of discriminator training. The Lipschitz constant of the discriminator function
f is controlled via spectral normalization, which is achieved by restricting the spectral norm of
each layer. The spectral norm of a matrix A is defined as follows:

γ(A) = max
h,h̸=0

∥Ah∥2

∥h∥2
= max
∥h∥2≤1

∥Ah∥2 (2.53)

Thus, for a linear layer f (h) = W T h the norm is given by ∥ f∥Lip = γ(W), then using the
inequality ∥ f1 ◦ f2∥Lip ≤ ∥ f1∥Lip∥ f2∥Lip considering a feedforward neural network with only 1-
Lipschitz activation functions, we can constraint the Lipschitz condition on the neural network
by applying Spectral Normalization to each layer. Spectral normalization normalizes the spectral

36

2.4.4 Relativistic Discriminator

norm of the weight matrix W so that it satisfies the Lipschitz constraint :

W̃SN =
W

γ(W)
(2.54)

Power iteration method Golub and Van der Vorst [2000] is used to estimate the Spectral Norm
at each optimization step of the Critic in a GANs optimization Setup, thus fulfilling the 1-Lipschitz
condition with less computational cost than gradient penalty. Nonetheless this regularization tech-
nique is also useful to stabilize training in Standard GAN, since it provides regularity in the Dis-
criminator.

2.4.4 Relativistic Discriminator
The intuition that the likelihood that real data are real D(xr) should decline as the likelihood

that fake data are real (D(G(z)) increases, is the main argument for the relativistic Discriminator
approach. This is the main missing attribute of SGAN. The authors (Jolicoeur-Martineau [2019])
offer three justifications for why Standard GAN ought to possess this quality. IPM-based GANs
measure how realistic real data is compared to fake data, which implicitly accounts for the fact that
some of the samples must be fake. This is the desirable behavior for Standard GAN.

For more understanding, we analyze the gradients of standard GANs with GANs built using
IPM. In a non-saturating SGAN, it can be demonstrated that the discriminator and generator gra-
dients are, respectively:

∇ωDL SGAN
D =− E

xr∼P
[(1−D(xr))∇ωCC(xr)]+ E

z∼Pz
[D(G(z))∇ωCC(G(z))] (2.55)

∇ωGL SGAN
G =− E

z∼Pz
[(1−D(G(z)))∇ωGC(G(z))JωGG(z)] (2.56)

Where C(x) ∈F the class of functions to determine the critic for the IPM and J is the Jacobian.
In an IPM-based GAN, it can be demonstrated that the discriminator and generator gradients are,
respectively:

∇ωDL IPM
D =− E

xr∼P
[∇ωCC(xr)]+ E

z∼Pz
[∇ωCC(G(z))] (2.57)

∇ωGL IPM
G =− E

z∼Pz
[∇ωGC(G(z))JωGG(z)] (2.58)

Based on these equations, we can see that SGAN has the same dynamics as IPM-based GANs
when:

1. D(xr) = 0 and D(G(z)) = 1 in the discriminator step of SGAN.

2. D(G(z)) = 0 in the generator step of SGAN.

3. C(x) ∈F .

Assuming that the generator and discriminator are trained to optimality in each step and that
it is possible to distinguish perfectly between the real and fake data (a strong assumption, but
typically true since the first steps training), we would have that D(xr) = 1, D(G(z)) = 0 in the
generator step and that D(xr) = 1, D(G(z)) = 1 in the discriminator step for most xr and z. Thus,
D(xr) = 0 in the discriminator phase would be the lone unmet assumption.

37

Chapter 2. State of The art

If all of the assumptions were maintained and the generator could indirectly impact D(xr), we
would have that D(xr) = 0 and D(G(z)) = 1, despite the fact that the scenario described above does
not reflect reality (due to the fact that we do not ever train G to optimality). Therefore, SGANs
would have gradients identical to those of IPM-based GANs. The authors Jolicoeur-Martineau
[2019] hypothesize that making SGAN more analogous to IPM-based GANs might perhaps result
in an increase in the system’s degree of stability.

D(x) = σ(C(x)) may be used to define the discriminator in a typical GAN in terms of the
untransformed layer C(x). A straightforward method for making the discriminator relativistic (i.e.,
having the output of D depend on both real and false data) is to sample from real/fake data pairs
x = (xr,G(z)) and define D(x) = σ(C(xr)−C(G(z)).

This alteration may be interpreted as follows: The discriminator evaluates the likelihood that
the provided real data is more realistic than a randomly picked set of fake data. In a similar
fashion, we may define Drev(x) = σ(C(G(z))−C(xr)) as the probability that the provided fake
data is more realistic than randomly picked real data. Another aspect of this discriminator is that
we do not need to incorporate Drev in the loss function through log(1−Drev(x)) since Drev(x) =
1−σ(C(G(z))C(xr)) = σ(C(x f)−C(G(z))) = D(x), hence, log(D(x)) = log(1−Drev(x)). The
discriminator and generator (non-saturating) loss functions of the Relativistic Standard GAN (RS-
GAN) may be stated as:

L RGAN
D = E

(xr,z)∼(P,Pz)
[log(σ(C(xr)−C(G(z))))] (2.59)

and
L RGAN

G = E
(xr,z)∼(P,Pz)

[log(σ(C(G(z))−C(xr)))] (2.60)

In general, we consider relativistic any discriminator defined as (C(xr)−C(G(z))), where a
is the activation function. This implies that nearly every GAN is capable of having a relativistic
discriminator. This creates a new class of models that we refer to as Relativistic GANs (RGANs).
Using a relativistic discriminator, these GANs take on the following structure:

L RGAN
D = E

(xr,z)∼(P,Pz)
[f̃1(C(xr)−C(G(z))+ f̃2(C(G(z))−C(xr))] (2.61)

and
L RGAN

G = E
(xr,z)∼(P,Pz)

[g̃1(C(G(z))−C(xr))+ g̃2(C(xr)−C(G(z))] (2.62)

Using the identity function (f̃1(y) = g̃2(y) = y, f̃2(y) = g̃1(y) = y) leads to a degenerate in-
stance since there is no supremum or maximum. However, if one adds a constraint such that
C(xr)−C(G(z)) is constrained, there is a supremum and one obtains IPM-based GANs. Thus,
although being distinct, IPM-based GANs share a very similar loss function centered on the dis-
tinction between critics. Importantly, g̃1 is typically disregarded in GANs since its gradient is 0
and the generator has no effect on it. In RGANs, however, g1 is affected by fake data, and therefore
the generator.

Relativistic Average GANs

In SGAN, the discriminator is interpreted substantially differently than in RSGAN. D(x) in
SGAN evaluates the chance that x is real, whereas D(xr−G(z)) in RGANs assesses the likelihood
that xr is more realistic than G(z). As a compromise, the authors proposed an alternative to the
Relativistic Discriminator that has about the same meaning as the discriminator in SGAN while

38

2.4.5 Possible tasks with generative adversarial networks

remaining relativistic. The Relativistic average Discriminator (RaD) works by contrasting the critic
of the input data with the average critic of samples of the opposite kind. It is possible to define the
discriminator loss function for this strategy as follows:

L RaSGAN
D =− E

xr∼P
[log(D(xr))]+ E

z∼Pz
[log(1−D(G(z)))] (2.63)

Where

D(x) =

 σ(C(x)− E
z∼Pz

[C(G(z))]) if x is real.

σ(C(x)− E
xr∼P

[C(xr)]) if x is fake.
(2.64)

RaD is more comparable to the conventional discriminator in its interpretation than the rela-
tivistic discriminator. RaD assesses the chance that the provided actual data is more realistic than
the false data on average. Using the same formula as previously, we can expand this technique to
work with any GAN loss function:

L RaGAN
D = E

xr∼P
[f̃1(C(xr)− E

z∼Pz
[C(G(z))])]+ E

z∼Pz
[f̃2(C(G(z))− E

xr∼P
[C(xr)])] (2.65)

and

L RaGAN
G = E

xr∼P
[g̃1(C(G(z))− E

xr∼P
[C(xr)])]+ E

z∼Pz
[g̃2(C(xr)− E

z∼Pz
[C(G(z))])] (2.66)

According to the findings of Jolicoeur-Martineau [2019], relativism has the potential to dras-
tically improve the data quality and stability of GANs with no additional computational expense.
In addition, combining a relativistic discriminator with other tools of the trade (such as spectral
norm, gradient penalty, and so on) may result in a more refined state of the art.

2.4.5 Possible tasks with generative adversarial networks
Generative adversarial networks are widely used for the approximation of high dimension prob-

ability densities Abbasnejad et al. [2019a]; Haas and Richter [2020] and also uncertainty quan-
tification for physical data using physics informed approach Yang and Perdikaris [2019], indeed
considering a GAN training paradigm, with partially conditional or unconditional GANs, the Gen-
erator (after successful training) can be seen as a class of non-parametric Monte Carlo estimator
for physical data for non-conditioned parameters and a parametric estimator for conditioned ones,
both approaches can be combined. In the other hand if the conditional approach is complete (all
parameters are conditioned), the GAN is then used in a regression purpose, this regression training
approach is called adversarial regression Bigolin Lanfredi et al. [2019]; Boget [2019]; Haas and
Richter [2020], and then more statistics could be computed with respect to the physical parameters
of the model. So as to gain precision in the Generator prediction, a mean over a certain number of
random vectors selections can be considered :

∑
n
i=1 G(Zi, p)

n
(2.67)

In this approach there is no nonparametric uncertainy, one can also view this approach as
training an uncertainty propagation tool around multiple parametric values, in the exploitation
phase, the generator can be viewed as a randomized and parameterized simulation generator trained

39

Chapter 2. State of The art

on deterministic data. Then one can use many predictions of the generator while varying the
random vector z as a tool to propagate uncertainties of simulations with respect to fixed parameters
p.

The Discriminator as a proxy

After training is complete, most systems relying on GAN training discard the Discriminator
and only retain the Generator to use in future data generation. As such, Turner et al. [2019] pro-
pose the Metropolis-Hastings GAN, a GAN that combine the generator with information from the
discriminator to create an improved generator. Both networks are combining using Markov Chain
Monte Carlo methods. Azadi et al. [2018] is another work that correct the generator sampling us-
ing the discriminator, where for each sample generated by the generator a rejection probability is
computed using the discriminator where only the samples in the adequate threshold are accepted.

Fréchet Inception Distance

Images generated by a generative model, such as a generative adversarial network, may be
evaluated using the Fréchet inception distance (FID) Heusel et al. [2017]. In contrast to the in-
ception score (IS) Barratt and Sharma [2018], which merely looks at how the generated data are
distributed, the FID compares your generated data to a real-world dataset, the training data set.
This score relies on the Fréchet Distance between two multidimensional Gaussian distribution
p1, p2 where pi ∼N (µi,Σi), defined as follow:

dF(p1, p2) = ||µ1−µ2||22 +Tr(Σ1 +Σ2−2(Σ1Σ2)
1
2) (2.68)

Inception score is then defined as the Fréchet distance between the output of the last convolutional
layer of the Inception Model Szegedy et al. [2015] trained on image classification for the generated
data with the generator and also the training data. The Gaussian is the maximum entropy distri-
bution for given mean and covariance, therefore we assume the coding units of Inception Model
for unseen data to follow a multidimensional Gaussian distribution. Let f be the Inception model
stripped from his last activation layer, the Fréchet Inception Score of a generative model G trained
on a data set (xi)1≤i≤n is defined as:

Fscore(G) = dF(f (x), f (G(z))) (2.69)

Where (z j)1≤ j≤ns is a set of random variable to sample data from the generator, ns to be de-
termined empirically. Although this score is adequate to assess generative capabilities of GAN
models trained on image generation, it is not suited for physical data, in Preuer et al. [2018] the
authors propose a method to adapt the Fréchet Inception Score for chemical data by swapping the
Inception model by a Chemb1Net model which was trained on molecular data. In Obukhov and
Krasnyanskiy [2020] authors propose methods to adapt FID for generic Generative Adversarial
Network by swapping Inception model with an adequate classifier depending on the distribution
being learnt. To our knowledge, no prior work has been carried on for adapting the FID for gener-
ative models training on physical data.

2.5 Uncertainty quantification for physical models
The aim of this section is to present the state of the art methods on uncertainty propagation for

physical models. In order to present a synthesis and clearly determine non-parametric approaches,

40

2.5 Uncertainty quantification for physical models

one has to define the differences between aleatory and epistemic uncertainty. Which are stated in
Batou et al. [2015] & You et al. [2020] :

• Aleatory uncertainties : the uncertainties relative to some model parameters induced by the
lack of knowledge related to those parameters. To process these uncertainties, parametric
approaches are used as the modelization of the uncertainty of the parameters by random
variables and fields in order to construct stiffness and mass matrices with respect to those
parameters.

• Epistemic uncertainties : also arises from lack of knowledge on parameters but based on
subjective perception, imperfect modeling, and limited data availability, such as interval
analysis, possibility theory, and fuzzy set theory. Parametric approaches are not suited for
this application.

Both these types of uncertainty are listed as model parameter uncertainty in Batou et al. [2015]
and also introduce a new type of uncertainty :

• Modeling Error : the uncertainties induced by the modeling errors within the choice of the
physical model.

Epistemic and modeling errors cannot be processed by fully parametric approaches. Non-
parametric and mixed approaches (see Batou et al. [2015]) are necessary such as :

• Probabilistic approach : random matrix theory (see Adhikari and Chowdhury [2010], Ad-
hikari and Chowdhury [2010], Guedri et al. [2012], Reynders et al. [2014], Murthy et al.
[2012], Wang et al. [2020] & Legault et al. [2012]).

• Possibilistic approach : Fuzzy variables & interval analysis (see You et al. [2020]).

In the following a detailled presentation of some of the state of the art in uncertainty quan-
tification for physical data is proposed. In Adhikari and Chowdhury [2010] a new reduced-order
non-parametric computational approach for damped stochastic linear dynamical systems for the
analysis of uncertainty of very large dynamical systems over a wide range of frequency is pro-
posed using Wishart random matrix distribution (as introduced in Soize [2005], relies on direct
Monte Carlo Simulation). The equation of a damped n-degree-of-freedom linear dynamic system
can be written as :

Mq̈(t)+Cq̇(t)+Kq(t) = f (t) (2.70)

The purpose of the work in Adhikari and Chowdhury [2010] is to look for a fast simulation ap-
proach for obtaining frequency response function (FRF) statistics using Wishart matrices. The
method is based on stochastic system transformation and reduction in the modal domain.

The dispersion parameter proposed by Soize [2005] for the construction of the random sub-
stitues of M and K :

δK =
E[∥K−K0∥2

F]

∥K0∥2
F

(2.71)

Where δk, δM, K0 and M0 are the parameters (mean and dispersion) for random matrices M, K.
The dynamic response of a proportionally damped stochastic system is characterized by the

eigensolutions of :
H = M−

1
2 KM−

1
2 (2.72)

41

Chapter 2. State of The art

where H ∼Wn(p,Σ). The major goal of the study in Adhikari and Chowdhury [2010] is to design a
Reduced Wishart technique, which is an effective reduced computing approach for large dynamical
systems. Considering the Laplace transformation of the equation of motion :

[s2M+ sC+K]q̄(s) = f̄ (s) (2.73)

the aim is to obtain statistical properties of q̄(s) ∈ Cn when the system is formed with random
matrices.

We obtain the undamped eigenvalues problem :

j ∈ [|1,m|] , KΦ j = ω jMΦ j (2.74)

Where Ω = diag([ω1, ...,ωm]) ∈ Rm×m and Φ = [Φ1, ...,Φm] ∈ Rn×m are the truncated modal ma-
trices. The modes are then only computed by solving the reduced order eigenvalue problem for
each realization of K and M. Since ΦT KΦ = Ω2 , ΦT MΦ = Im and Ω2 being symmetric define
positive : Ω2

r =ΨT Ω2Ψ and the damping is supposed proportionally modal i.e : C =ΦTCΦ= 2εΩ

One can deduce :
q̄(s) = ΦΨ[s2Im +2sεΩ+Ω

2]−1
Ψ

T
Φ

T f̄ (s) (2.75)

q̄(s) =
m

∑
j=1

XT
j f̄ (s)

s2 +2sε jω j +ω2
j
X j (2.76)

where X = ΦΨ.
Monte Carlo simulation is used to calculate physical statistical information after selecting the

number of modes to analyze and the degree of freedom of interest. The suggested method is
integrated with commercial finite element software by taking use of its non-intrusive nature.

Otherwise, epistemic uncertainties are due to a lack of accurate knowledge concerning the
physical laws governing the behavior of a component or interface and can generally be reduced
with a combination of more detailed modeling and experimental investigations.

In Guedri et al. [2012], is proposed to examine the robustness of a classical reliability analysis
with respect to both aleatory and epistemic uncertainty.

For reliability analysis the aim is to approach the failure probability or its density :

p f = p[g(x)≤ 0] =
∫

g(x)≤0
fx(X)δx (2.77)

where g is the state function. Since epistemic uncertainty is limited to parametric models, a com-
pletely parameterized modelization would be required in the presence of epistemic uncertainty.
Parameters are considered random variables : [X1, ...,Xn] to be sampled as well as the matrices (or
within) that form the stochastic model.

Considering the transfer function of a dynamic system :

H(ω) = [−ω
2M+ iωC+K]−1 (2.78)

Random matrices are defined as substitutes of M, C and K as symmetric define positive random
matrices as shown before : G = LT

n Ln where Ln is an upper triangular matrix formed by positive
random variables following positive valued gamma law.

K = L̄T
k GkL̄K. (2.79)

Where Lk being the upper triangle matrix obtained by the Cholesky factorization of K̄ = E[K]

42

2.5 Uncertainty quantification for physical models

Multiple random samples of these matrices are created and then used to calculate the system’s
response using:

• Direct Monte Carlo Simulation techniques :

p f =
N f

N
(2.80)

where N f is the number of failure samples and number of accumulated samples. To estimate
the precision of the technique, coefficient of variation :

COV (p f) =

√
1−

p f

N p f
(2.81)

• Importance sampling : parameters that have more impact are sampled more.

p f =
1
N

n

∑
i=1

I f
fx[X1,i, ...,Xn,i]

hx[X1,i, ...,Xn,i]
(2.82)

where fx is the original density, hx the importance density and I f a failure indication where
I f = 0 if failure, and I f = 1 for survival.

While the uncertainty quantification of physical numerical models is quite straightforward,
applying same methods to experimental data is less intuitive. Batou et al. [2015] deals with the
identification of a stochastic computational model using experimental eigenfrequencies and mode
shapes.

This relationship is established in this study by applying a modified transformation for the
calculated modal values. The converted computed modal values may then be compared with the
experimental data to determine the stochastic computational model’s parameters.

The purpose of the work in Batou et al. [2015] is to determine the hyperparameters of
an Stochastic Computational Model (SCM) using the observed natural frequencies and mass-
normalized mode shapes of a family of structures. In order to match the computational obser-
vations (computational eigenfrequencies and computational mode shapes) with the experimental
observation of each measured structure, the proposed method employs a random transformation of
the computational observations (computational eigenfrequencies and computational mode shapes).
In this study, uncertainty in model parameters and uncertainty in the model itself are addressed.
For model parameter uncertainty, random variables are substituted for parameter values.

Let M(h), K(h) the mass and stiffness matrices depending on a set of parameters h. h is re-
placed by a random vector H. Then random matrices stubstitues of M(H) and K(H) are constructed
with respect to Soize’s methodology on the probabilistic space of H. Then to account for model
uncertainties, new random matrices are built to substitute those for parameter uncertainty, on the
joint probabilistic space of the model and of H.

∀θ = (θ par,θ mod) ∈ (Θpar×Θ
mod), Mtot(θ) = LM(θ par)T GM(θ mod)LM(θ par) (2.83)

Those matrices being built, and an identification process with the different experimentations is
presented: For each experiment (configuration of structure) modes are identified Φexp j . Projection
operator from DOF of statistical model to the DOF of the experimentations : Φ̄ j = P jΦ. The
experimental modes cannot directly be compared to the computational mode (no correspondence).

43

Chapter 2. State of The art

Then the ROM is built as:
φ
′ j = φ̄

jQ j
opt (2.84)

with
Q j

opt(θ) = argminQ∈OST (n,n j)∥Φ̄
j(θ)Q−Φ

exp j∥. (2.85)

Then parameters are fitted using maximum likelihood method.
For structures with both random and fuzzy uncertainty, You et al. [2020] presents a novel

method for determining the membership function in fuzzy reliability with the Automatic Updating
Extreme Response Surface (AUERS) method, this method is then suitable for sizing optimization
problems since it consists in optimization in extremums. Analysis of reliability includes estab-
lishing aleatory uncertainty with a limit state function, which is evaluated as the likelihood that
a structural response exceeds a threshold limit. Automatic Updating Extreme Response Surface
(AUERS) is suggested in this study as a double loop system that combines the advantages of PSO
and NERS. Aleatory uncertainties are modeled using random variables, while epistemic uncertain-
ties are modeled with membership functions or intervals for possible outcomes.

Let G(x, x̄) be the unit state function, where x = [x1, ...,xm], x̄ = [x̄1, ..., x̄m] respectively being
independent random variables and independent fuzzy variables. Considering a cut of size α of the
interval xα ∈ [xL

α ,x
U
α] then the failure probability prα = p[G(xα > 0] ∈ [pL

rα , pU
rα] .

Those values are then determined using

µpr(pr) = µx(g−1(pr)) (2.86)

under each cut of the membership intervals, where µ are the respective membership functions.
Having :

pL
rα = p[G(x,θ L

extreme)] (2.87)

where θ L
extreme , θU

extreme are extreme points on the membership interval where the structure exhibit
minimum and maximum response. Those points are determined using a PSO algorithm to optimize
the limit state function.

A kriging model is built :

θαextreme(x) = f T (x)γ +Q(x). (2.88)

Where γ is the regression coefficient and Q(x)∼N (0,σ2)

Cov(Q(xi),Q(x j) = σ2R(xi,x j) with R(xi,x j) = e[−∑
N
p=1 ωp(xi

p−x j
p)

2], ω being the parameter of
the random variables x. These parameters are determined with a maximum likelihood method.

After identifying the most extreme point in each sample group, the kriging extreme response
surface is created at the current cut level. In addition, the Root Mean Squared Percentage Error
(RMSPE) is employed in each inner loop to determine if it might fall into the outer loop, which
then enters the FORM-based reliability calculation procedure. If the RMSPE is not met, the ran-
dom sample points will be added and the kriging extreme response surface will be re-fitted, so
completing the automated updating cycle.

In addition, work for uncertainty propagation in a wave propagation setup has been carried on in
Reynders et al. [2014] where a stochastic method for sound transmission loss prediction through a
wall in between two rooms, consisting of a hybridization of displacement-based and energy-based
modeling, has been presented. It is particularly appropriate for mid-frequency analysis, and the
condition in which the wall or floor is modally sparse has been studied in detail. Comparatively
to deterministic approaches such as finite element analysis or the wave-based method, this method
is computationally inexpensive since rooms are represented in a highly efficient, non-parametric

44

2.5 Uncertainty quantification for physical models

stochastic manner, as in statistical energy analysis. In the SEA subsystems, the approach automat-
ically adjusts for spatial differences in geometry, material qualities, and boundary conditions that
have an influence on wave scattering. It results in transmission loss estimates that are resistant to
such variations: not only are mean values and variances obtained, but also standard deviations. The
uncertainty created by random wave scatters is significant unless the modal overlap across rooms is
quite large. As was shown for a perforated brick wall with an unknown damping loss factor, addi-
tional parametric uncertainty may be compensated for in a straightforward manner if required. The
approach was thoroughly tested against a comprehensive modal model of a transmission suite with
random acoustic mass distribution as well as laboratory data for progressively complicated wall
systems. Within its range of validity, the hybrid technique demonstrated outstanding predictive
performance in every instance.

Equation of motion:
Dq = f (2.89)

with q being the amplitude vector for response and f load amplitude vector, and D dynamic stiffness
matrix, that can be decomposed as:

D = Dd +
n

∑
k=1

Dk (2.90)

with Dd stiffness matrix associated with master system and Dk the matrix associated with the kth

subsystem. Each of this matrices can be decomposed to a deterministic component and a random
component: Dk = Dk

d +Dk
ran where Dk

d = E[Dk]. Thus the equation of motion for the subsystem:
Dk

dq = fk + f k
ran where the reverberant force are defined as f k

ran = −Dk
ranq. Then for the whole

system :

Dtotq = f +
n

∑
k=1

f k
ran , Dtot = E[D]. (2.91)

Thus the mean of energy for every subsystem :

E[Pj] = ω(η j +ηd j)E j +∑ωη jkη j(
E j

η j
− Ek

ηk
). (2.92)

And then variance of response is computed the same so as to compute the mean of transmission
loss and its variance to compare it to values obtained from experiences.

Whereas in Murthy et al. [2012] authors presents the initial findings of a combined experimen-
tal and computational study focused on the validation of a reduced order model of geometrically
nonlinear structures in the presence of uncertainty. This technique to model validation is predicated
on the notion that the model is valid if the experimental data can be interpreted as random sample
responses of the stochastic system whose mean is the reduced order model. So, random matrices
are generated for stiffness and mass matrices constructed by maximization of the statistical entropy
:

A = L̄HHT L̄T (2.93)

where L̄ is the results of Cholesky decomposition of the mean Ā. And H is a lower triangular matrix

whose below diagonal element are all independent zero mean Gaussian variables. And Hii =
√

Yii
ν

where Yii is Gamma distributed (p(i)−1)
2 and p(i) = n− i+ 2λ − 1 , ν = n+2λ−1

2 , λ being the
hyperparameter to fit. The research proposes a way to extract stiffness matrix from reduced model
then construct the stochastic model with regard to the extracted matrix then utilize the stochastic

45

Chapter 2. State of The art

model in running Monte Carlo simulations. The aim of this study is the direct incorporation of
uncertainty into reduced order models of the nonlinear geometric response of structures based on
maximum entropy ideas. In addition, in Wang et al. [2020] the authors give more details of the
tuning performed to turn the system matrix extracted from the reduced model of the experiments
into a definite positive matrix. Tuning that may introduce additional error to the system since it
modifies the physical law. In case this tuning turns to be impossible an LDLT decomposition based
analysis is proposed :

K̄B = L̄kDL̄T
k , KB = L̄KHDHT L̄T

K. (2.94)

One of the main claims of the non parametric model of random uncertainty introduced by Soize
[2005] is its ability to account for model uncertainty. Legault et al. [2012] investigates this claim
by examining the statistics of natural frequencies, total energy and underlying dispersion equation
yielded by the non parametric approach.

In general, models of uncertainty will be based on a parametric or nonparametric representation
of uncertainty, or perhaps both. A parametric description of uncertainty indicates that the param-
eters of the dynamical model (material qualities, dimensions, etc.) are seen as uncertain variables
that may be defined statistically, by intervals, by fuzzy numbers, or by any other uncertainty model.
Various approaches, such as Monte Carlo simulations or the stochastic finite element method, are
then used to propagate uncertainty via the equations of motion. A non-parametric account of un-
certainty, on the other hand, believes that the system’s uncertainties can be characterized using
some form of universal uncertainty model, independent of their specific nature. Stiffness K, and
mass matrix M are defined as proposed by Soize.

Therefore, if the matrices K and M are translated back into physical coordinates, the random
matrices K and M associated with them will be completely filled. The randomization process will
couple degrees of freedom that were not initially coupled because they are not spatially adjacent
(degrees of freedom for which the associated coupling matrix entry is zero). It will be demonstrated
that the presence of this long-range coupling has significant physical consequences. This raises
problems regarding the analyst’s past expectations for the system, despite the fact that the specifics
are obscured by unknown model uncertainty. If it can be shown that the nominal model reflects
the mean of the unknown system matrices, and if this is the only available prior knowledge, then
it is logical to use the nonparametric method. The concept of maximal entropy suggests that in
such a situation, taking such a stance would be the most noncommittal option. Nonetheless, if the
available mean information is not considered to be in the matrix space, but rather in the response
space, in the sense that the mean modal density and modal norm of the system should be centered
on the asymptotic values, then the nonparametric approach, in its current form, leads to results that
may be at odds with these expectations (even though the deviations from the asymptotic values
may become significant only at high values of uncertainty). If the information that the mean
modal density and modal norm of the system should be centered around the asymptotic values was
considered to be known in addition to the mean matrices of system, then this knowledge might in
theory impose extra restrictions in the maximum entropy computation. Estimation of total energy
in the system is computed (as in Soize [2005]) and another useful quantity, the statistical overlap
factor :

S(ω) =
2var(ωn)

1
2

µ(ω)
=

2E[(ωn− ω̄n)
2]

1
2

µ(ω)
. (2.95)

where µ(ω) is the average frequency spacing between consecutive modes. These quantities as
modal density are computed using Monte Carlo simulation techniques.

In Farhat et al. [2018] is presented a projection based model order reduction method on a

46

2.6 Bayesian techniques

parametric problem denoted :

K(ρ)u(ρ) = ω(ρ)2M(ρ)u(ρ) (2.96)

Where K is the stiffness matrix and M the mass matrix of the problem. Then a projection based
model order reduction is performed by compressing the snapshot matrix collected using an SVD
method to construct reduced Kr and Mr. The problem is then projected using the eigenvectors (V):

Kr(ρ)ur(ρ) = ω(ρ)2Mr(ρ)ur(ρ) (2.97)

where Kr =V T KV , Mr =V T MV.

The problem is then solved for ur then u is deduced using u = Vur. The limitation of this
approach is that it is only expected to be accurate on the parameter point the snapshot matrix was
built on and possibly its immediate neighborhood. Then a greedy method which relies on sampling
a certain number of parameters point to build a generalized basis is presented, to overcome the
previous limitations. The efficiency of this approach is relative to the size of the problem, for a
parameter domain relatively small where a uniform sampling of a Latin hyper cube is possible
this approach is feasible. Finally a stochastic approach is presented where missing information
about the deterministic model are extracted from the data and infusing into a stochastic lower-
dimensional counterpart to adapt said model, being a data-driven model adaptation.

2.6 Bayesian techniques

Bayesian inference is the domain of statisitics where we would like to predict and compute
the true probability distribution of uncertain parameters or latent representative features associated
with observable data. This prediction can then be used in the approximation of uncertainty and
the error within the observable fields, which are associated with random parameters of mechanical
models or modeling choices or epistemic parameters. In this field we may distinguish also be-
tween parametric and non-parametric methods. The empirical Bayesian method Casella [1985] is
a parametric one that consists in finding hyper-parameters of statistical models that describe ran-
dom parameters or latent representative features that might be solutions of a reduced order model.
This method is based on the maximization of the logarithm-likelihood of the observation data and
the application of the Bayes theorem Adamson [2012]. The variational Bayesian method Blei
et al. [2017] is a non-parametric approach for finding the true posterior of random parameters or
epistemic parameters or representative latent features associated with observable data. It is based
on the maximization of the well known Evidence Lower BOund (ELBO) which is a natural lower
bound of the logarithm marginal likelihood Kullback [1997]. It is obvious that for random param-
eters of known probability distributions, the use of the parametric Bayesian empricial approach is
more robust. However, the use of the variational Bayesian technique may be more efficient. In this
case, a trade-off between efficiency and sharpness needs to be investigated. However, for epistemic
parameters and representative features, the use of the variational Bayesian method appears to be
more convenient as the true probability distribution is completely unkown in this case and not only
its hyper-parameters. In all cases, the knowledge of the true posterior distribution of the parame-
ters or the latent features of observable data and an approximation of the conditional probability
distribution of the observable data allow to perform efficiently a Monte Carlo of the whole function
with respect to the parameters or the latent features and, to deduce the probability distribution of
this function or quantities of interest from this function with respect to the parameters of interest

47

Chapter 2. State of The art

or the latent features. Therefore, following this philosophy, GANs can be seen as a non-parametric
Bayesian approach as the generator of the GAN is defined on a Gaussian multivariate distribution
allowing to perform efficiently a Monte Carlo of the whole function with respect to the parameters
of interest.

48

Chapter 3

Comparison between POD and CNN for regression in
explicit dynamic

Abstract
In the following chapter, a benchmark of different non-intrusive model reduction approaches is
performed on an explicit dynamic contact 3D− problem. The main purpose of this chapter is to
evaluate the stability of the reduced model with respect to time along with the precision of these
approaches with respect to the true solutions of interest, which are the displacement and velocity
fields. The precision of these approaches is also evaluated with respect to the evolution of some
materials parameters. Six parameters vary in this study and we would like to predict the whole
transient fast dynamic impact response with respect to each parameter. To this end, several models
are trained: Proper Orthogonal Decomposition (POD) and Deep convolutional Neural Network
(DcNN), in addition, a vectorized version of Interpolation in Grassman Manifolds is proposed.
The benchmark performed illustrates that using DcNN’s allows achieving the best precision and
stability in predicting physical fields.

Résumé
Dans le présent chapitre, un benchmark de différentes approches de réduction de modèle non in-
trusives est réalisé sur un problème de contact dynamique explicite en 3D. Le principal objectif de
ce chapitre est d’évaluer la stabilité du modèle réduit par rapport au temps ainsi que la précision de
ces approches par rapport aux véritables solutions d’intérêt, qui sont les champs de déplacement et
de vitesse. La précision de ces approches est également évaluée par rapport à l’évolution de cer-
tains paramètres de matériaux. Six paramètres varient dans cette étude et nous souhaitons prédire
l’ensemble de la réponse d’impact dynamique transitoire rapide par rapport à chaque paramètre.
À cette fin, plusieurs modèles sont entraînés : la décomposition en bases orthogonales (POD), des
réseaux de neurones convolutifs profond (DcNN), et une version vectorisée de l’interpolation dans
les variétés de Grassman est proposée. Le benchmark réalisé illustre que l’utilisation des DcNN
permet d’obtenir la meilleure précision et stabilité dans la prédiction des champs physiques.

49

Chapter 3. Comparison between POD and CNN for regression in explicit dynamic

Contents
3.1 Introduction . 50

3.2 Problem Definition . 51

3.3 Methodology . 52

3.3.1 parameterized POD . 52

3.3.2 Parameterized Space-Time POD . 53

3.3.3 Parameterized Space-Time POD: Interpolation on Grassmann Manifolds 53

3.3.4 Deep convolutional neural regressor . 56

3.4 Numerical Examples . 57

3.4.1 Data Sampling . 57

3.4.2 Data preprocessing . 58

3.4.3 Trained metamodels . 59

3.4.4 Results . 59

3.5 Conclusion . 66

3.6 Supplementary results . 66

3.1 Introduction
A large number of fast dynamic impact numerical simulations is crucial for optimization or un-

certainty quantification and propagation problems, in order to study the influence of different sce-
narios and regimes in engineering problems. Dimension reduction approaches such as the Singular
Values Decomposition Muller et al. [2004] and model reduction techniques such as non-linear re-
gressions based on Gaussian Process Regression Ranftl et al. [2021] or Deep Learning LeCun et al.
[2015], offer attractive alternatives to finite element impact problems in order to reduce the com-
putational cost in these multiple resolutions demanding tasks. Model Order Reduction based on
the projection of the continuous High-Fidelity Partial Differential Equations (PDEs) on a reduced
basis such as the one obtained by the Proper Orthogonal Decomposition Chatterjee [2000], is also
a very important complementary option to finite element impact problems. These model order
reduction approaches were considered in Balajewicz et al. [2016b] where a Non-Negative Matrix
Factorization is used to construct a reduced basis with the inequality constraints describing the
contact forces. A nodeless superelement approach was proposed in Géradin and Rixen [2016] for
the dual problem of the Lagrange multipliers, where the superlement dynamic is described by a set
of orthogonal static modes. In Giacoma et al. [2014], a multi-scale reduced order approach based
on the LATIN method Ladevèze et al. [2010] and a mutli-grid solver is proposed for frictional
contact problems. In Benaceur et al. [2020], the reduced basis method is applied for parameterized
variational inequalities in contact mechanics.

In the following work, we are only interested in non-intrusive and non-projection-based model
reduction approaches, i.e.without performing a projection of the continuous PDEs on a reduced
basis. Non-intrusive approaches rely only on data driven method of modeling without using any
physical information in the construction or the training of the reduced model, whereas intrusive
methods use all the physical information available such as the exact PDE solved to construct their
reduced model by projecting the equations on lower dimension spaces or constraining models with

50

3.2 Problem Definition

the equations in the training phase. The main motivation is the simplicity of the numerical frame-
work in this case. We would like to compare different algorithms for constructing these reduction
tasks, by resorting to non-linear regressions by Kriging, interpolation on Grassmann Manifolds,
and Deep Learning. More precisely, the Gaussian Process Regression and the Grassmann interpo-
lation are applied to predict the coefficients in the linear combination of Proper Orthognal Decom-
position modes as an approximation of the fields of interest. As for the Deep Learning method for
the non-linear regression, it is performed thanks to a deconvolutional neural network Zeiler et al.
[2010b] as an approximation of the mapping between the parameters of interest and the fields of
interest.

3.2 Problem Definition

(a) Before impact (b) Impact (c) After impact

Figure 3.1: Main steps of the simulation

In this chapter we investigate the reducibility of a contact case in structural dynamics. We
consider a cylinder of height Hcylinder and diameter Dcylinder which comes into contact with a
plate, a rectangular cuboid of length, height and width Lplate,Wplate,Hplate with an initial velocity
vz along the z-axis. Our objective is to study wave propagation and reflection phenomena on the
plate following the shock over a discretized time grid denoted T = (tk)k∈[|1,n|] with a time step ∆t.
This analysis requires the constructions of models to generate new parameterized simulations with
a lower cost than solving the governing physical equations. Therefore we choose to apply data-
driven methods such as metamodeling and deep learning models. Figure 6.1 shows the main steps
of the finite element method simulation. Both solids are considered formed by uniform elastic
and isotropic materials behaving linearly following the Hooke’s law, which is written in the matrix
form as

σ =
E

1+ν

(
ε+

ν

1−2ν
Tr(ε)

)
, (3.1)

where σ and ε are respectively the second-order stress and strain tensors, E is the Young modulus,
ν is the Poisson ratio, and Tr is the trace operator. Additionally, we denote the density of the
materials by ρ , which plays a part in the response of the plate in such transient dynamical regimes.
We introduce a unique parametrization of each simulation results :
let θ = (Ecylinder,ρcylinder,νcylinder,Eplate,ρplate,νplate) a parameters vector that defines a unique
finite element simulation denoted S(θ), S being the vector of the fields values on the grid of the
plate. The objective here is to construct regression models which function is to map the parameters
vector θ to the simulation vector S(θ). As physical fields, we considered both displacement and

51

Chapter 3. Comparison between POD and CNN for regression in explicit dynamic

velocity of the elements of the plate on the z-axis (uz,vz), both will be referred to as S in what
follows.

Since both solids in contact have linear material and kinematic behavior, and we consider only
the case of frictionless, adhesive-free normal contact, and considering a space discretization of both
solids relying on the Finite Element discretization, the dynamic contact problem can be written as
(see Balajewicz et al. [2015]) :

Mü+Ku = BT λ

Bu− c≤ 0
λ (Bu− c) = 0

λ ≥ 0
u(0) = u0
u̇(0) = u̇0.

(3.2)

Where a dot designates a time derivative, the first equation expresses the dynamic equilib-
rium of the two solids, the inequality constraint derives from the space discretization of the
Hertz-Signorini-Moreau contact conditions which are enforced by introducing dual Lagrange
multipliers. u is a space discretized displacement vector of the plaque and the cylinder degrees of
liberty, M and K are respectively the block diagonal mass and stiffness matrices for the two solids.
B is a signed boolean matrix which extracts from u the pair of dof governed by a contact condition,
c is the vector of initial clearances, and λ is the vector of descretized Lagrange multipliers.

Then an explicit time discretization is performed in the dynamic case, finally solving the dy-
namic problem can be written as:

∀n≥ 2,(un,λn) = argmin
v,µ

vT (
1

∆t2 M+K)v+
1

∆t2 vT M(−2un−1 +un−2)−µ
T (Bv− c) (3.3)

Where the superscript n designates the n-th time-step and ∆t designates the difference between
two consecutive time-steps.

Both solids are discretized in finite element meshes using 3D tetrahedric elements, 8546 nodes
combined between the two solids, around 5000 nodes for the plaque mesh.

3.3 Methodology
The present Section describes the different methodologies used in this work.

3.3.1 parameterized POD
In this Subsection, we recall the classic parameterized POD strategy for field prediction. A

dataset of N samples is considered: {θi,yi}i∈J1,NK, where θi ∈ Rd and yi ∈ Rn represent respec-
tively a vectorial parameter of moderate dimensionality and a high-dimensional output. The ob-
jective is to build a predictive model θ → ỹ(θ). The methodology is decomposed in the following
steps:

• Orthonormal basis generation. The data matrix M = [y1, ...,yN] ∈ Rn×N is considered. In
practice, note that the number of samples N is largely below the output dimensionality n. Its

52

3.3.2 Parameterized Space-Time POD

SVD decomposition yields
M =UΣV T , (3.4)

with U = [u1, ...,uN] ∈ Rn×N containing the spatial orthonormal eigenvectors satisfying
uT

i u j = δi j, the eigenvalues matrix Σ = Diag(σ1, ...σN) and V = [Vv1, ...,VvN] ∈ RN×N ,
VvT

i Vv j = δi j.

Another strategy implies the covariance matrix eigen-decomposition: C = MT M =V Σ2V T ,

with ui =
MVvi

σi
.

• Number of modes selection. Given an accuracy threshold ε , the number of modes r selected
is the smallest integer satisfying:

∑
r
i=1 σ2

i

∑
N
i=1 σ2

i
> 1− ε. (3.5)

The prediction is then sought in the span of the reduced orthonormal basis Ur = [u1, ...ur].

• Scalar coefficients in the reduced basis. The prediction is expressed as

ỹ(θ) =
r

∑
i=1

hi(θ)ui, (3.6)

with the scalar functions θ → hi(θ) satisfying

hi(θk) =< yk,ui >, (3.7)

<,> being the canonical scalar product in Rn.
Each of the coefficients hi is trained using a regression method (Kriging, RBF, ANN, random
forest,...) based on the DoE {θk,< yk,ui >}k, yielding a predictive function θ → h̃i(θ).

• Prediction. The sought predictive model finally reads

ỹ(θ) =
r

∑
i=1

h̃i(θ)ui. (3.8)

3.3.2 Parameterized Space-Time POD

In the context of space-time POD, the dataset is given as follows: {θi,Si}i∈J1,NK, where θi ∈Rd

and Si = [y(θi, t1), ...,y(θi, tm)] ∈ Rn×m. Each matrix Si contains the snapshots for all time steps.
For this case, we propose to consider the time as an independent parameter, and recast the dataset
to fit the framework of classic parameterized POD (Subsection 3.3.1: {θ̂k, ŷk}k∈J1,mNK where for
each k ∈ J1,mNK corresponds to a couple of integers (i, l) ∈ [J1,NK]× [J1,mK], with θ̂k = (θi, tl)
and ŷk = y(θi, tl). The previous framework is then used for training and prediction.

3.3.3 Parameterized Space-Time POD: Interpolation on Grassmann Mani-
folds

Friderikos et al. proposed a framework for parameterized space-time POD based on inter-
polation on Grassmann manifolds Friderikos et al. [2021], suitable for scalar parameters. The

53

Chapter 3. Comparison between POD and CNN for regression in explicit dynamic

underlying idea is to interpolate POD basis associated with a limited number of training points
on Grassmann manifolds, so as to obtain a robust non-intrusive ROM corresponding to a target
parameter, separating both reduced spatial and temporal basis. A methodology to extend this algo-
rithm for vectorial input parameters is proposed. The main steps of the algorithm are summarized
in Subsubsection 3.3.3. The proposed modifications for the extension to the vectorial case is given
in Subsubsection 3.3.3.

Scalar version (from Friderikos et al. [2021])

• Dataset : Similarly to Subsection 3.3.2, the dataset is given as follows: {θi,S(i)}i∈J1,NK,
where θi ∈R and Si = [y(θi, t1), ...,y(θi, tm)]∈Rn×m. This version is coined ’scalar’ because
it is restricted parameters θ taken as real numbers only.

• Set a number of modes r : We propose the following strategy to set the number of modes
r. We fix a given threshold accuracy ε = 10−12, then perform a SVD decomposition on the
mean output matrix. The number of modes r is then chosen according to the eigenvalues
decay, similarly to POD (Subsection 3.3.1)

S̄ =
1
N

N

∑
i=1

S(i) = Ū Σ̄V̄ T , (3.9)

with Σ̄ = Diag(σ1, ...,σm). r is the smallest integer satisfying:

∑
r
i=1 σ̄2

i

∑
m
i=1 σ̄2

i
> 1− ε. (3.10)

• Oriented SVD for each output matrix, with mode extraction of order p : For each output
matrix S(i), an oriented SVD Friderikos et al. [2021] decomposition is performed:

S(k) = Φ
(k)

Σ
(k)

Ψ
(k)T

. (3.11)

The r first modes are extracted, leading to matrices Φ
(k)
r ∈ Rn×r,Σ

(k)
r ∈ Rr×r,Ψ

(k)
r ∈ Rm×r.

The following reconstructed matrix output is also evaluated:

S(k)r = Φ
(k)
r Σ

(k)
r Ψ

(k)T

r , (3.12)

with k ∈ J1,NK.

• Interpolation on compact Stiefel manifolds : Using the datasets {θk,Φ
(k)
r }k∈J1,NK and

{θk,Ψ
(k)
r }k∈J1,NK, define a map θ → Φ̃(θ) ∈ Rn×r and (resp.) θ → Ψ̃(θ) ∈ Rm×r. Let us

denote by {θk,Yk}k∈J1,NK such a generic dataset of orthonormal basis, assuming Yk ∈ Rn×r.
A set of matrices {Zk}k is first evaluated:{

Z1 = 0Rn×r ,

Zk =Uktan−1(Σk)V T
k , k > 1,

(3.13)

where the orthonormal matrices Uk ∈ Rn×r, Vk ∈ Rr×r and the diagonal matrix Σk ∈ Rr×r

54

3.3.3 Parameterized Space-Time POD: Interpolation on Grassmann Manifolds

are computed by performing the SVD on the following matrix:

Yk(Y T
1 Yk)

−1−Y1 =UkΣkV T
k .

An interpolator θ → Z(θ) using linear Lagrange polynomial basis functions (Li)i∈[|1,N|],
suitable for scalar parameters, is then defined, as well as θ →U(θ),Σ(θ),V (θ) obtained by
applying a SVD decomposition on Z(θ):

Z(θ) =
N

∑
i=1

Li(θ)Zi =U(θ)Σ(θ)V T (θ), (3.14)

The final interpolator θ → Ỹ (θ) finally reads:

Ỹ (θ) = [Y1V (θ)cos(Σ(θ))+U(θ)sin(Σ(θ))]V (θ)T . (3.15)

• Square matrix of the mixed part: Interpolation : The following matrices are evaluated:

Mi = Φ̃(θi)
T S(k)r Ψ̃(θi) ∈Rr×r, i ∈ J1,NK. (3.16)

An interpolation θ → M̃(θ) suitable for scalar parameters similar to Eq. (3.14) is built:

M̃(θ) =
N

∑
i=1

Li(θ)Mi. (3.17)

• Final Predictor : The predictor of the entire solution reads:

S̃(θ) = Φ̃(θ)M̃(θ)Ψ̃(θ)T ∈Rn×m. (3.18)

Algorithm 3: Interpolation on Grassman manifolds algorithm.

Require: Dataset {θi,S(i)}i∈J1,NK, precision threshold ε

Perform SVD on Dataset S̄ =
1
N

∑
N
i=1 S(i) = Ū Σ̄V̄ T , Σ̄ = Diag(σ1, ...,σm).

Determine r the smallest integer satisfying
∑

r
i=1 σ̄2

i

∑
m
i=1 σ̄2

i
> 1− ε.

for k ∈ [|1,n|] do
Perform SVD on S(k) = Φ(k)Σ(k)Ψ(k)T

Perform SVD on Yk(Y T
1 Yk)

−1−Y1 =UkΣkV T
k , Yk being respectively Ψ

(k)
r or Φ

(k)
r

end for
Construct the matrices Z1 = 0Rn×r , Zk =Uktan−1(Σk)V T

k ,k > 1 for respectively Ψ
(k)
r or Φ

(k)
r

for k ∈ [|1,n|] do
Use Lagrange polynomial basis functions to obtain a mapping for (θi,Z(θi))i∈J1,NK

Ỹ (θ) = [Y1V (θ)cos(Σ(θ))+U(θ)sin(Σ(θ))]V (θ)T Yk being respectively Ψ
(k)
r or Φ

(k)
r

Mi = Φ̃(θi)
T S(k)r Ψ̃(θi) ∈Rr×r, i ∈ J1,NK

M̃(θ) = ∑
N
i=1 Li(θ)Mi

Prediction for θ S̃(θ) = Φ̃(θ)M̃(θ)Ψ̃(θ)T

end for

55

Chapter 3. Comparison between POD and CNN for regression in explicit dynamic

Vectorial version (contribution)

In this case, the dataset reads: {θi,Si}i∈J1,NK, where θi ∈ Rd and Si = [y(θi, t1), ...,y(θi, tm)] ∈
Rn×m. This version is coined ’vectorial’ because the parameters θ are now taken as real vectors.

The modifications proposed are performed on Equations (3.14) and (3.17): they permit to ob-
tain mappings θ → Ỹ and θ → M̃ based on datasets {θi,Yi}i∈J1,NK and {θi,Mi}i∈J1,NK respectively.
As Mi ∈ Rr×r with r relatively small, a regression based on random forests (using the Python
package scikit learn) is directly used on the components of the matrix.

Instead, as Yi ∈ Rq×r (with q = n or q = m) represents matrices of spatial or temporal
eigenvectors, possibly very large, a different strategy is adopted. As Yi = [Y (1)

i , ...,Y (r)
i] with

Y (l)
i ∈ Rq, l ∈ J1,rK, parameterized POD regressors as introduced in Subsection 3.3.1 are used

to obtain independent regressors for each column of Yi, denoted as Ỹ (l)(θ) built using the DoE
{θi,Y

(l)
i }i∈J1,NK. The regressor on the full eigenvector matrix reads:

Ỹ (θ) = [Ỹ (1)(θ), ...,Ỹ (r)(θ)]. (3.19)

3.3.4 Deep convolutional neural regressor

A Deep convolutional Neural Regressor (DcNR) consists in learning to generate the physical
data S over a grid with the parameters vector θ as an input. As indicated by its name, the internal
structure of this network is formed by a succession of transposed convolutional layers of adequate
dimensions in order to obtain a regression model of the physical field in the adequate size. The
objective function in this case being:

min
γ

√
E

(t,θ)
||S(θ , t)−N(γ,θ , t)||22, (3.20)

In practice, the empirical mean is used to approximate the expectation:

min
γ

R(γ,Θ,T) =

√
∑

(t,θ)∈(T×Θ)

1
|T ||Θ|

||S(θ , t)−N(γ,θ , t)||22, (3.21)

where N denotes the neural network, γ its trainable weights, Θ the training set of parameters
vectors and |Θ| its cardinal, T the the set of time steps and |T | its cardinal. The use of optimal
Latin Hyper Cube sampling with a significantly large data set ensures that the introduced bias due
to the use of the average to approximate the expectation is kept reasonably low. We trained two
types of DcNR, the first type generating the whole time series of the simulation at each call and
the second generating only one time step at each call, thus having the time step t as an additional
parameter. Both networks have the same architecture except for the number of filters at each feature
map. Both architectures start with a linear upscaling of the parameter vector then a succession
of 3D transposed convolution used for physical values in Bode et al. [2019] for the first time,
batch normalization Ioffe and Szegedy [2015b] and hyperbolic tangent activation. We used Adam
(Kingma and Ba [2014]) as the optimization algorithm for the descent step.

56

3.4 Numerical Examples

Table 3.1: Network architecture - Transposed convolutions

Layer Kernel Size Stride Padding n-filters Full n-filters time parameterized
1 (3,3,3) (1,1,1) (0,0,0) 1024 128
2 (3,3,3) (1,1,1) (0,0,0) 512 64
3 (3,3,4) (1,1,1) (0,0,0) 256 32
4 (5,5,5) (1,1,1) (0,0,0) 196 16
5 (4,4,5) (2,2,1) (0,0,0) 128 8

Algorithm 4: Training of DcNR. All experiments in this chapter used the default values
λ = 0.0001, m = 2000 simulations, ε0 = 1016, εob j = 10−3 , Epochs=10000.

Require: λ learning rate, m batch size, ε0 initial error of model, εob j error objective, Epochs
number of maximum epochs authorized, γ DcNr weights, M number of training simulations.
s← M

m
i← 1
while (i≤ E pochs) or (εob j ≤ εi) do

εi← 0
for j ∈ [|1,s|] do

Sample (tk,θk)
m
k=1 ∈ (Tbatch×Θbatch)

γ ← γ−λAdam(R(γ,Θbatch,Tbatch))
εi← εi +R(γ,Θ,T)

end for
εi← εi

s
i← i+1

end while
For reproducibility purposes, both Table 3.1 and Algorithm 4 show the architectures and the

training algorithm used in all experiments.

3.4 Numerical Examples

3.4.1 Data Sampling
In this section we present the data range used for sampling and generating data for the training

and testing phase. Values were chosen as: Lplate = 8m, Wplate = 4m, Hplate = 0.5m, Hcylinder = 4m,
Dcylinder = 1m, NT = 100, ∆t = 4×10−2s, and vz = 100m/s.

The variable parameters identified in Section 3.2 are sampled following Table 4.1 values with
a latin hypercube sampling framework. We sampled NTraining = 100 values for the training data
set and NTesting = 25 values for the testing data set.

Table 3.2: Parameters sampling

P Mean Value Variation (%) Min Value Max Value
Young modulusE 2.2×1011 MPa 20% 1.7×1011 MPa 2.64×1011 MPa

Densityν 7800kg/m3 20% 6240kg/m3 9360kg/m3

Poisson’s ratio ρ 0.3 20% 0.24 0.35

57

Chapter 3. Comparison between POD and CNN for regression in explicit dynamic

We define Ω as the discretized space of the plate and Ωz∗ the 2D surface resulting from
the intersection of the plate grid and the plan of equation z = z∗. As a quantity of inter-
est, we choose to train our models to predict displacement and velocity on the z-axis for the
plate, and to compare our models, we fix two time steps t1 = 0.01s and t2 = 0.03s, two pa-
rameters vectors θ1 =

(
2.12×1011,7.87×103,3.13×10−1,2.20×1011,6.47×103,2.72×10−1)

and θ2 =
(
1.71×1011,6.68×103,3.27×10−1,2.31×1011,6.86×103,3.41×10−1), two points

p1 = (1.66,0.88,0.2875) and p2 = (5,3.33,0.2875) and Ωz=0.2875 as parameterized points to asses
the precision of our models to predict values of interest.

We define a relative error indicator in order to quantify the precision of our metamodels, noted
η . For a metamodel M, a parameter vector θ , a space point p = (x,y,z), and a time value t:

ηp(M,θ , p, t) =
|M(θ , p, t)−S(θ , p, t)|√

E
p∈Ω
|S(θ , p, t)|2

. (3.22)

Then we define the global error indicator to compare models:

η(M,θ , t) = E
p∈Ω

[ηp(M,θ , p, t)]. (3.23)

3.4.2 Data preprocessing

To ensure that our simulation data can be processed by convolutional neural networks, a pro-
jection phase of the data on an Euclidean 3D grid is necessary, we choose the smallest box that
contains the whole range of displacement of the original grid, using the Finite Element basis func-
tions we construct the projection operator from the initial mesh onto the containing box in addition
to the inverse projection operator. Then after training our models and computation of test values,
an inverse projection operation is done on the original grid. Figure 3.2 shows a visualization of
this framework. Besides, since neural networks are more suited to learn from continuous fields,
we used extrapolation, using an extension of the finite element basis functions, over the area were
no motion of the grid is detected for each time step, see Figure 3.3. It prevents the neural network
from having to learn the sharp discontinuities of the boundaries of the plate. After the projection
operation is performed we scale the physical data using a standard affine scaler to standardize data
by removing the mean and scaling to the unit variance.

(a) Data generation on full
mesh

(b) Projection on containing
box

(c) Inverse projection on initial
mesh

Figure 3.2: Data processing steps

58

3.4.3 Trained metamodels

(a) Extrapolation (b) Zero-Fill

Figure 3.3: Extrapolation vs zero-fill projection

3.4.3 Trained metamodels
To provide extensive comparisons, we train multiple versions of each model described in Sec-

tion 3.3:

• POD: We train different POD models with multiple metamodels over the orthogonal pro-
jection coefficients (random forest, Gaussian process and linear). We choose to keep POD
models with random forest considering it held the best trade-off between precision and com-
putational cost for our problem:

– POD_p: it takes as input the parameter vector p and outputs the value of S over all the
area of interest and for all time steps.

– POD_pt: Time-Space POD, it takes as input the parameter vector p and the time value
t and outputs the value of S over all the area of interest at the instant t.

• Stief : We trained a generalized model for interpolation on Grassman manifolds using also
a random forest model for inference over parameters.

• DcNR: We train multiple DcNR :

– NN: it takes as input the parameter vector p and outputs the value of S over all the area
of interest and for all time steps.

– NN_t: it takes as input the parameter vector p and the time value t and outputs the value
of S over all the area of interest at the instant t.

Since the error threshold for the root mean squared error was set as 10−3 when training the
DcNR, we train our linear models (POD metamodels) with an error threshold of 10−6 and with the
same projected and scaled data to ensure fair comparison.

3.4.4 Results

(a) POD_pt displacement (b) POD_p displacement (c) Stief displacement

Figure 3.4: Singular values decay and modes selection for linear models - Displacement

59

Chapter 3. Comparison between POD and CNN for regression in explicit dynamic

(a) POD_pt velocity (b) POD_p velocity (c) Stief velocity

Figure 3.5: Singular values decay and modes selection for linear models - Velocity

Figures 3.4 and 3.5 show the different singular values decay for each linear model, all models
require more modes to fit the velocity which can be explained by the fact that velocity data are
less linearly reducible than displacement data. The PODpt model selects an inferior ratio of modes
than the PODp model, considering both parametric and time-space information in the construction
of the basis gives better approximation properties to the linear model. Nonetheless, the cost of
singular value decomposition operation done for the construction of the PODpt model is more
important and, the PODpt corresponding metamodel must learn coefficients in a high dimension
(m× r, where m is the number of the time steps and r are the retained POD modes) thus being
more difficult to train.

(a) Global error indicator (b) Pointwise error indicator on p1 (c) Pointwise error indicator on p2

Figure 3.6: Error indicator η for displacement averaged over test

(a) Global error indicator (b) Pointwise error indicator on p1 (c) Pointwise error indicator on p2

Figure 3.7: Error indicator η for velocity averaged over test

60

3.4.4 Results

(a) Displacement - (p1,θ1) (b) Displacement - (p1,θ2)

(c) Displacement - (p2,θ1) (d) Displacement - (p2,θ2)

(e) Velocity - (p1,θ1) (f) Velocity - (p1,θ2)

(g) Velocity - (p2,θ1) (h) Velocity - (p2,θ2)

Figure 3.8: Models prediction onp1 and p2

Figures 3.6 and 3.7 show that best precision is achieved by the neural networks, while within
the linear models, the PODpt holds the best behavior, which is also shown by the figure 3.8 where

61

Chapter 3. Comparison between POD and CNN for regression in explicit dynamic

the velocity is, as expected, harder to fit by all models. The intuition of comparing between a model
whose objective is to learn the whole physical simulation CNN and a model whose objective is to
learn a regression scheme over the time step CNNt is to test the hypothesis that a model who has
access to a full time interval of the simulation captures better the background physics. Nonetheless
the CNNt results shows slightly better results since CNN model is also more difficult to train as the
number of trainable parameters increases with the size of the time interval considered. Within those
figures, a time dependency of the accuracy can be seen over most models. This time dependency
is reduced when using the neural networks, and especially in the model CNNt .

(a) Displacement t1 (b) Displacement t2 (c) Velocity t1 (d) Velocity t2

Figure 3.9: CNN error on S averaged on test

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.10: CNN error on S for displacement

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.11: CNN error on S for velocity

Figures 3.9, 3.10 and 3.11 shows an introduced noise and error by the neural networks fol-
lowing the structure of the multiple convolution. A way of correcting this noise was developed in
Boukraichi et al. [2021] by using a physical submodel over an area of interest that takes as an input
boundary conditions learned by a neural network; this method was not used in this chapter. We
can also see a time dependency of the error, but globally the model achieves good accuracy.

62

3.4.4 Results

(a) Displacement t1 (b) Displacement t2 (c) Velocity t1 (d) Velocity t2

Figure 3.12: CNN_t error on S averaged on test

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.13: CNN_t error on S for displacement

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.14: CNN_t error on S for velocity

Figures 3.12, 3.13 and 3.14 shows that the introduced noise and error by the neural network
architecture is higher in the CNNt model but the time dependency on the error was completely
eliminated, globally the model achieves better accuracy results than the CNN model (1% of error
at t2 for CNNt vs around 3% for CNN).

(a) Displacement t1 (b) Displacement t2 (c) Velocity t1 (d) Velocity t2

Figure 3.15: POD_p error on S averaged on test

63

Chapter 3. Comparison between POD and CNN for regression in explicit dynamic

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.16: POD_p error on S for displacement

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.17: POD_p error on S for velocity

Figures 3.15, 3.16 and 3.17 shows that the error of the PODp model has a physical and struc-
tured shape and a poor precision. Time dependency of the error is highly present for this model
even though it cannot be seen over these figures but it is present on figures 3.6 and 3.7.

(a) Displacement t1 (b) Displacement t2 (c) Velocity t1 (d) Velocity t2

Figure 3.18: POD_pt error on S averaged on test

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.19: POD_pt error on S for displacement

64

3.4.4 Results

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.20: POD_pt error on S for velocity

Figures 3.18, 3.19 and 3.20 shows that the error of the PODpt model has also a physical and
structured shape, but a better precision over the test set than the PODp model (4% of error at t1 for
PODpt vs around 8% for PODp). Time dependency of the error is highly present for this model.

(a) Displacement t1 (b) Displacement t2 (c) Velocity t1 (d) Velocity t2

Figure 3.21: Stief error on S averaged on test

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.22: Stief error on S for displacement

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.23: Stief error on S for velocity

65

Chapter 3. Comparison between POD and CNN for regression in explicit dynamic

Figures 3.21, 3.22 and 3.23 shows that the error of the Stieff model is the highest within all
models and has a structured shape on the error. Nonetheless our generalization approach for Grass-
man manifolds interpolation shows some good prediction properties for some parametric values
and some region of the grid. So, we can conclude that our approach is still not optimal and requires
more investigation to generalize the scalar version.

3.5 Conclusion

In this chapter we investigate the capacity of linear models relying on modal analysis to con-
struct a regression model for a non-reducible problem, we also showed the benefits and the costs of
considering both parametric and time-space information in the modal analysis step. We also pro-
pose an approach to generalize Grassman manifold interpolation from scalar output to vector ones,
but it still requires further investigations. We compare all methods to deep convolutional neural re-
gressor and we illustrate that for contact cases such as the one investigated, linear methods behave
very poorly and it is recommended to use non-linear data driven methods such as DcNR. We also
illustrate that having the time step as a parameter of the DcNR helps reducing the dependency of
the error with respect to the time.

3.6 Supplementary results

In this section we present to the reader additionnal 2D visualization for further comparison
between models.

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.24: Real values of displacement

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.25: Real values of velocity

66

3.6 Supplementary results

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.26: CNN prediction on S for displacement

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.27: CNN prediction on S for velocity

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.28: CNN_t prediction on S for displacement

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.29: CNN_t prediction on S for velocity

67

Chapter 3. Comparison between POD and CNN for regression in explicit dynamic

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.30: POD_p prediction on S for displacement

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.31: POD_p prediction on S for velocity

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.32: POD_pt prediction on S for displacement

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.33: POD_pt prediction on S for velocity

68

3.6 Supplementary results

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.34: Stief prediction on S for displacement

(a) (t1,θ1) (b) (t1,θ2) (c) (t2,θ1) (d) (t2,θ2)

Figure 3.35: Stief prediction on S for velocity

69

Chapter 4

Uncertainty quantification in a mechanical submodel
driven by a Wasserstein Generative Adversarial Net-
work

Abstract
This chapter presents novel methods for submodeling using deep learning models for parametric
and non-parametric uncertainty quantification for fast dynamics. In the case of fast dynamics and
wave propagation, we investigate a random generator of boundary conditions for submodels by
using machine learning. Generative Adversarial Networks (GANs) are used to extract stochastic
boundary conditions for faster finite element predictions on a submodel. The framework can be
viewed as a randomized and parameterized simulation generator on the submodel, which can be
used as a Monte Carlo estimator. The objective of this work is to evaluate the performance of GANs
for uncertainty quantification in a physical configuration and in the presence of data generated from
experiments of Finite Element Method (FEM) solvers. The results show that GANs are a powerful
tool for predicting physical fields with high precision and stability in the presence of parametric
and non-parametric uncertainties.

Résumé
Ce chapitre présente des méthodes innovantes pour la modélisation de sous-ensembles à l’aide
de modèles d’apprentissage profond pour la quantification d’incertitudes paramétriques et non
paramétriques pour la dynamique rapide. Dans le cas de la propagation rapide des ondes, nous
étudions un générateur aléatoire de conditions aux limites pour les sous-modèles physiques en
utilisant l’apprentissage automatique. Les réseaux antagonistes génératifs (GAN) sont utilisés pour
extraire des conditions aux limites stochastiques pour des prédictions d’éléments finis plus rapides
sur un sous-modèle. Le système peut être considéré comme un générateur de simulation aléatoire
et paramétré sur le sous-modèle, qui peut être utilisé comme estimateur de Monte-Carlo. L’objectif
de ce travail est d’évaluer les performances des GAN pour la quantification d’incertitudes dans une
configuration physique et en présence de données générées à partir de solutions de méthode des
éléments finis (FEM). Les résultats montrent que les GAN sont un outil puissant pour prédire les
champs physiques avec une grande précision et stabilité en présence d’incertitudes paramétriques
et non paramétriques.

71

Chapter 4. Uncertainty quantification in a mechanical submodel driven by a Wasserstein Generative Adversarial
Network

Contents
4.1 Introduction . 72

4.1.1 Related work . 73

4.1.2 Contribution . 73

4.2 Models . 74

4.2.1 Proper Orthogonal Decomposition (POD) 74

4.2.2 Deep Convolutional Neural Regressor 75

4.2.3 Wasserstein Generative Adversarial Network 75

4.3 Use Case . 76

4.3.1 Domain definition . 76

4.3.2 Finite element models . 76

4.3.3 Dataset generation . 77

4.4 Numerical Results . 78

4.4.1 Data Sampling . 78

4.4.2 Trained submodels . 78

4.4.3 Parametric approach results . 79

4.4.4 Non-parametric approach results . 80

4.5 Conclusion . 84

4.1 Introduction
The analysis of parametric and non-parametric uncertainties of very large dynamical systems

requires the construction of a stochastic model of said system. Linear approaches relying on ran-
dom matrix theory Soize [2000] and principal component analysis can be used when systems
undergo low-frequency vibrations. In the case of fast dynamics and wave propagation, we investi-
gate a random generator of boundary conditions for fast submodels by using machine learning. We
show that the use of non-linear techniques in machine learning and data-driven methods is highly
relevant.

Physics-informed neural networks Raissi et al. [2017b] are a possible choice for a data-driven
method to replace linear modal analysis. An architecture that supports a random component is
necessary for the construction of the stochastic model of the physical system for non-parametric
uncertainties, since the goal is to learn the underlying probabilistic distribution of uncertainty in
the data. Generative Adversarial Networks (GANs) are suited for such applications, where the
Wasserstein-GAN with gradient penalty variant Gulrajani et al. [2017] offers improved conver-
gence results for our problem.

The objective of our approach is to train a GAN on data from a finite element method code
(Fenics) so as to extract stochastic boundary conditions for faster finite element predictions on a
submodel. The submodel and the training data have both the same geometrical support. It is a zone
of interest for uncertainty quantification and relevant to engineering purposes. In the exploitation
phase, the framework can be viewed as a randomized and parameterized simulation generator on
the submodel, which can be used as a Monte Carlo estimator. The aim of this chapter is to present

72

4.1.1 Related work

novel methods for submodeling using deep learning models for parametric and non-parametric
uncertainty quantification for fast dynamics, where approaches based on linear modal analysis are
computationally inefficient and inaccurate.

4.1.1 Related work
In order to determine parametric and non-parametric approaches, one has to define the differ-

ences between aleatory and epistemic uncertainty. These laters are stated in Batou et al. [2015]
and You et al. [2020]:

• Aleatory uncertainties: the uncertainties relative to some model parameters induced by the
lack of knowledge related to those parameters. To process these uncertainties, parametric
approaches are used as the modeling of the uncertainty of the parameters by random vari-
ables and fields in order, for instance, to construct stiffness and mass matrices with respect
to those parameters.

• Epistemic uncertainties: also arise from lack of knowledge on parameters but based on sub-
jective perception, and limited data availability, such as interval analysis, possibility theory,
and fuzzy set theory. Parametric approaches are not suited for this application. Batou et al.
[2015] introduces a new type of uncertainty the uncertainties induced by the modeling errors
within the choice of the physical model, which can also be considered epistemic.

Epistemic uncertainties and modeling errors cannot be processed by fully parametric approaches.
Non-parametric and mixed approaches (see Batou et al. [2015]) are necessary such as probabilistic
approach: random matrix theory (see Adhikari and Chowdhury [2010], Guedri et al. [2012]) and
possibilistic approach: Fuzzy variables and interval analysis (see You et al. [2020]). In this chapter,
both parametric and non-parametric approaches are investigated in the situation of both aleatory
and epistemic uncertainties. Modeling errors are not investigated.
The use of neural networks to learn solutions of partial differential equations (PDEs) have been
recently proposed for physics application (see Raissi et al. [2017b] , Raissi et al. [2019]), using the
real or an approximate of the residual from the PDE to enforce a physical constraint on the output
of the network. Such application exists for architectures like generative adversarial networks that
were introduced in Goodfellow et al. [2014] and optimized in Gulrajani et al. [2017]. More details
on these architectures can be found in Section 4.2.
Generative adversarial networks and adversarial training are used for non-parametric density es-
timation in general cases of random data (Abbasnejad et al. [2019b] and Singh et al. [2018]) and
also for physical data that are solutions of certain partial differential equations (Yang and Perdikaris
[2019]). Our study consists in using similar approaches to learn non-parametric densities over data
from a finite element model, without any information about the underlying partial differential equa-
tion solved. The models training is data-driven, no physical property is used in the optimization
step, but we enforce physical properties using a submodel in the area of interest in the exploitation
phase for uncertainty quantification.

4.1.2 Contribution
The aim of this chapter is to present two novel methods developed for the construction of

stochastic submodels for uncertainty quantification using data from a finite element model (FEM).
These two methods rely on the same general principle which is a stochastic submodel formed of
two components:

73

Chapter 4. Uncertainty quantification in a mechanical submodel driven by a Wasserstein Generative Adversarial
Network

• A neural network learning boundary conditions around a predetermined zone of interest.

• A finite element submodel in the zone of interest using boundary conditions generated by
the neural network. We assume that there is no modeling error in the zone of interest covered
by the proposed submodel.

The objective is to obtain comparable or/and better predictions than a classical learning process
of a neural network over physical data, while improving some physical properties. Indeed, during
the training of a physics-informed neural network, increasing precision over physical properties is
generally obtained using a penalization term given by the residual of the PDE in the cost function,
but with FEM models designed for engineering applications, it is quite intrusive to get access to
the residual of the PDE.
The development of deep neural networks that are thermodynamically-consistent is a key issue,
as explained in Hernandez et al. [2021]. In our approach, the known physical properties and
principles are enforced, online, using a submodel over the interest zone, here enforcing the output
of the whole reduced model to be a solution to the underlying FEM formulation on the submodel
zoom area. Also, the training of the neural networks is facilitated since every network learning
problem is one dimension lower. For a 3D problem on a Cartesian mesh, the network has to learn
the prediction over a 2D surface representing the boundary conditions instead of learning the data
over the whole 3D domain.
So to address both aleatory and epistemic uncertainties, we propose two methods as follows:

• Aleatory uncertainties: a deep convolutional neural regressor is trained to generate parame-
terized boundary conditions associated with the parameters of the simulation, for a paramet-
ric approach.

• Epistemic uncertainties: a Wasserstein GAN is trained to generate stochastic boundary con-
ditions by using the same training data. It aims at learning the underlying probabilistic den-
sity binding the simulation data and the parameters of the simulation, for a non-parametric
approach.

Both methods are then compared to a linear data reduction, using the Proper Orthogonal Decom-
position (POD) method, constructed over the same boundary data.

4.2 Models

4.2.1 Proper Orthogonal Decomposition (POD)

Let us denote by X = [L2(Ω)] the functional Hilbert space of the square integrable scalar func-
tions over a bounded 2D−open set Ω. We denote the L2(Ω)-inner product by (., .). Consider
U(p)(t,x,y) ∈ R the value of physical data over a mesh of Ω and associated to the parameters
vector p and to a time t. The mesh has a grid shape, so that U is also a tensor of data. A subspace
of the solution space is obtained thanks to the snapshots POD method Sirovich [1987]: if we dis-
cretize the time interval to m points, and the parameters domain into n points, then the snapshots
set is given as follows: S = {Up j(ti) ; i = 1, ...,m and j=1,...,n.}.
We denote by UI an element of the previous snapshots set with the subscript I evolving from 1
to m×n. The POD modes ΦJ , J = 1, ...,m×n, computed via the snapshots POD starts with the
solution of the eigenvalues problem with the correlations matrix:

CI J = (UI ,UJ), (4.1)

74

4.2.2 Deep Convolutional Neural Regressor

of size (m × n) × (m × n). Let us denote by (AJ)1≤J≤m×n =
(
AI ,J

)
1≤I ,J≤m×n and(

λJ

)
J=1,...,m×n, sets of respectively orthonormal eigenvectors and eigenvalues of the matrix C.

Then, the POD modes associated with λJ , are given by:

ΦJ (x,y) =
1√
λJ

m×n

∑
I=1

AI ,J UI (x,y) ,∀x ∈Ω. (4.2)

Snapshots are approximated by orthogonal projection on the space generated by a truncation of
the POD basis: U(p)(t,x,y)≈ Σm̂

k=1αk(p, t)Φk(x,y), where m̂≤ m×n, and αk are called the gen-
eralized coordinates. Meta-models are then trained to predict the generalized coordinates of a new
solution from the parameter values.

4.2.2 Deep Convolutional Neural Regressor

A Deep convolutional Neural Regressor (DcNR) consists in learning to generate the physical
data (U) over a grid with the parameters vector (p) as an input. As indicated by its name, the
internal structure of this network is formed by a succession of transposed convolutional layers of
adequate dimensions in order to obtain a regression model of the physical field in the adequate
size. The objective function in this case being the mean squared error:

min
θ

1
|T |× |PTrain| ∑

p∈PTrain

∑
t∈T
||U(p)(t)−N(p)(θ , t)||22 (4.3)

Where N denotes the neural network, θ its trainable weights, PTrain the training set of parame-
ters vectors, T the set of time steps and |.| the cardinal of each space.

4.2.3 Wasserstein Generative Adversarial Network

Generative adversarial networks were introduced in Goodfellow et al. [2014] as an unsuper-
vised framework to learn probabilistic densities over data. It showed an empirical success as an
efficient method for learning and sampling from a complicated multi-modal distribution. It relies
on the adversarial training of two neural networks:

• Discriminator: a neural network whose role is to compute the Wasserstein distance between
the real data distribution and the data generated by the second network distribution. Its
architecture is a succession of convolutional layers to determine distance values in R. The
Wasserstein distance is defined as follows :

W(Pr,Pg) = inf
η∈Π(Pr,Pg)

E
(x,y)∼η

[||x− y||2] (4.4)

Where Pr and Pg denote the real data distribution and the generated data distribution. In
Gulrajani et al. [2017], it has been shown that using Kantorovitch-Rubinstein duality, for a
function f with value in R, we obtain:

W(Pr,Pg) = sup
|| f ||L≤1

E
x∼Pr

[f (x)]− E
x∼Pg

[f (x)] (4.5)

75

Chapter 4. Uncertainty quantification in a mechanical submodel driven by a Wasserstein Generative Adversarial
Network

Where :

|| f ||L = sup
x ̸=y

| f (x)− f (y)|
||x− y||2

(4.6)

• Generator: a generative model, whose role is to generate new data resembling the real data
from a random vector (the input) in order to fool the discriminator. Its architecture is a
succession of transposed convolutional layers.

Then using the discriminator as the 1-Lipschitz function to compute the Wasserstein distance in an
objective function defined as follows:

min
θgen

max
θdisc

E
z∼N (0,1)

[D(θdisc,G(θgen,z))]

− E
p∈PTrain

[D(θdisc,U(p))]
(4.7)

will lead the generator to convergence and being able to sample from the real data distribution using
the random vector as a latent space descriptor. The 1-Lipschitz property of the discriminator has to
be preserved through training. In 6.9, G and D denote respectively the generator and discriminator
networks, θgen, θdisc their respective trainable weights, and E the mathematical expectation. In
practice the empirical mean is used to approximate the expectation. In the exploitation phase,
the discriminator is no longer used and the generator can be viewed as a randomized simulation
generator on the submodel, which can be used as a Monte Carlo estimator.

4.3 Use Case

4.3.1 Domain definition

We define two 2D Cartesian space grids Ωh and Ω′h, with Ω′h ⊂ Ωh representing the zone
of interest. Ωh and Ω′h are triangular space discretization of sizes [Nx,Ny] and [N′x,N

′
y] of the

domains [−Lx,Lx]× [−Ly,Ly] and [−L′x,L
′
x]× [−L′y,L

′
y]. And finally a temporal grid T is defined

as discretization of size NT of the space [0,Tf inal] and the time step ∆t = Tf inal
NT−1 .

4.3.2 Finite element models
The objective here is to train a generator on data from a FEM code (Fenics, see Alnæs et al.

[2015]) so as to extract boundary values for a submodel that occupies the zone of interest Ω′.
For visual representation of this approach, refer to Figure 5.3. Let g be the boundary values, g is
defined as Dirichlet boundary conditions for both models as:

• For the initial FEM model, zero Dirichlet boundary conditions (g = 0) are enforced on ∂Ω.

• For the FEM submodel, g is the output of the pretrained neural network (the generator).

Using the transformation ũ = u− g we can use the same formulation for both models. We
choose to solve the 2D wave equation, given as follows:

1
c2

∂ 2u
∂ t2 −∆u = f on Ω ∀t > 0

u = 0 on ∂Ω ∀t > 0
u = u0 on Ω f or t = 0

(4.8)

76

4.3.3 Dataset generation

where u is the amplitude of the wave. The variational problem can be written as:

∀v ∈Vh, a(un,v) = Ln(v) (4.9)

Where Vh is the is the Lagrange P1 finite-element space defined on Ωh.

The time discretization used for the FEM formulation is the second-order central difference
scheme:

∂ 2u
∂ t2 =

un−2un−1 +un−2

∆t2 (4.10)

Then we obtain for the FEM formulation (4.9):

a(un,v) =
∫

Ω

unvdx+∆t2c2
∫

Ω

∇un
∇vdx (4.11)

Ln(v) =
∫

Ω

(∆t2c2 f nv+2un−1v−un−2v)dx (4.12)

4.3.3 Dataset generation

A source point is determined for the problem resolution where (xS,yS) are the source point
coordinates, it is chosen to be outside the zoom domain: i.e. (xS,yS) ∈Ω\Ω′.
The source term at the right hand side of the wave equation is set as:

(∀t ∈ T), f (x,y, t) = sin(ωt)δ(xS,yS)(x,y) (4.13)

where δ(xS,yS) denotes the 2D Dirac distribution centered at (xS,yS). A three-dimensional parameter
vector p = (ω,xs,ys) is chosen and determined then sampled, (note that c is constant over all
samples since it is a parameter needed for the submodel). Sampling is done using latin hypercube
sampling routines. For every parameter vector p a simulation vector U(p) is generated using FEM
model described in section 4.3. One sample of data is then(p,U(p)) where p ∈ Dp ⊂ R3 and
U(p)(t) ∈Vh ⊂ RNX×NY .
Then, 4 datasets are generated as the following:

• Training data set: 100 samples generated, used for training parametric approach models.

• Training data set 2 : 20 samples generated, used for training non-parametric approach mod-
els.

• Test data set: 10 samples generated, used for testing the training process of each neural
network, and comparing the models we used in our study.

• Monte Carlo samples: 1000 samples generated, used for uncertainty quantification and com-
parison of the estimate of the real probability density with the density from the neural net-
works.

77

Chapter 4. Uncertainty quantification in a mechanical submodel driven by a Wasserstein Generative Adversarial
Network

Figure 4.1: Visualization of the FEM output on Ω and Ω
′

4.4 Numerical Results

4.4.1 Data Sampling
In this section we present the data range used for sampling and generating data for the training

and testing phase. Values were chosen as: Lx = 8m, Ly = 4m, L′x = 4m, L′y = 2m , Nx = 40, Ny = 20,
NT = 100, ∆t = 4× 10−5s, c = 2000m/s. We recall that boundary conditions for the model over
Ω are set to be zero Dirichlet boundary conditions.

The variable parameters identified in Section 4.3 are sampled following Table 4.1 values.

Table 4.1: Parameters sampling

P Mean Value Variation (%) Min Value Max Value
ω 5 kHz 5% 4.75 kHz 5.25 kHz
xS -1.85 m 17.5% of Lx -2.2 m -1.5 m
yS -0.65 m 28.75% of Ly -1.8 m 0.5 m

4.4.2 Trained submodels
For every model described in Section 4.2, we train multiple version in order to do a full com-

parison for the two approaches:

• POD: We train different POD models with multiple metamodels over the orthogonal pro-
jection coefficients (random forest, Gaussian process, linear ...). We choose to keep a POD
model with random forest considering it held the best trade-off between precision and com-
putational cost for our problem. It will be referred to as POD_RF.

• DcNR: We train multiple DcNR :

– NN: it takes as input the parameter vector p and outputs the value of U over all the area
of interest.

– NN_BC: it takes as input the parameter vector p and outputs the boundary values around
the area of interest.

78

4.4.3 Parametric approach results

– NN_t: it takes as input the parameter vector p and the time value t and outputs the value
of U over all the area of interest at the instant t.

– NN_BC_t: it takes as input the parameter vector p and the time value t and outputs the
boundary values around the area of interest at the instant t.

• GAN: Like for the DcNR, we trained two versions, both taking as an input a random vector
z and outputs the value of U over all the area of interest (WGAN) or the boundary values
around the area of interest (WGAN_BC).

Predictions of every model described before restricted to the boundary of Ω′ are also applied as
Dirichlet boundary conditions to the submodel, they would be denoted with a suffix "_ZOOM".
For information about training time of each neural network, refer to Table 4.2.

Table 4.2: Training time

Nets Training time GPU card
NN 12.4 Hours NVIDIA V100

NN_BC 2.7 Hours NVIDIA V100
WGAN 24 Hours NVIDIA A100

WGAN_BC 7.8 Hours NVIDIA A100

We define a relative error indicator over the time and space grid of the interest zone, in order
to quantify the precision of our submodels as ε . For a submodel M, a parameter vector p (resp.
random vector z for a GAN), and a time value t:

ε(M, p, t) =
E

(x,y)∈Ω′
[|M(p)(t,x,y)−U(p)(t,x,y)|]

max
x,y∈Ω′

|U(p)(t,x,y)|
(4.14)

For a comparison over the testing data set:

ε(M, t) = E
p∈PTest

[ε(M, p, t)] or E
z∼N (0,1)

[ε(M,z, t)] (4.15)

For a comparison of the prediction of physical quantities we choose to compute the kinetic
energy over the zone of interest grid using a finite difference scheme as follows:

Ke(p, t,x,y) =
m
2
(V (p)(t,x,y))2 (4.16)

Where:

V (p)(t,x,y) =
U(p)(t,x,y)−U(p)(t−dt,x,y)

dt
(4.17)

Since the mass (m) is constant over the space grid and over all parameter vectors, it will be
omitted when computing the relative error over the kinetic energy prediction.

4.4.3 Parametric approach results
For the parametric approach, comparison is done by computing the error indicator defined in

the previous section for all our parametric submodels, for all the samples in the testing data set
described in Section 4.3 in the area of interest.

79

Chapter 4. Uncertainty quantification in a mechanical submodel driven by a Wasserstein Generative Adversarial
Network

(a) NN (b) NN_ZOOM

Figure 4.2: Relative error ε

(a) Displacement (b) Ke

Figure 4.3: Pointwise relative error

Figure 4.2 shows one of the known problems when using convolutional layers to predict physi-
cal fields, which is errors and noise introduced in the output following the structure of the different
convolutions, this phenomenon is corrected by the zoom operation by the submodel. As shown, the
noise is still visible on the boundaries but not propagated inside the interest area. Figure 4.3 shows
that the submodels approaches are better in predicting physical values such as kinetic energy, this
can be explained by the fact that the submodels consists in running a partial physical model and
thus having better physical properties, and as expected the POD performs poorly against non-linear
methods.

4.4.4 Non-parametric approach results
For the non-parametric approach, since comparison on regression models is impossible, we

used our submodels as Monte-Carlo estimators of statistical quantities and compared the estimated
values with the same Monte-Carlo approach on the real data. We choose to estimate the mean and
compute the error indicator defined in the previous section. And to evaluate the generative capacity
of our models, we define a discrepancy indicator as follows:

σ(M, t,x,y) =
√

E
z∼N (0,1)

[(M(z)(t,x,y)−ETrain)2] (4.18)

80

4.4.4 Non-parametric approach results

Where M is a WGAN-based network and ETrain is the pointwise mean over the training data:

ETrain = E
p∈PTrain

[U(p)(t,x,y)] (4.19)

σ computes a point wise discrepancy value to show our models capacity to generate different
data from the training data. To evaluate this generative capacity we define a relative discrepancy
indicator as follows:

σrel(M, t) =
E

(x,y)∈Ω′
[|σ(M, t,x,y)−σTrain|]

max
x,y∈Ω′

σTrain
(4.20)

where σTrain is the pointwise standard deviation over the training data:

σTrain =
√

E
p∈PTrain

[(U(p)(t,x,y)−ETrain)2] (4.21)

We choose as physical value the maximum amplitude defined as follows:

A(p)(x,y) =
∣∣∣max

t
U(p)(t,x,y)−min

t
U(p)(t,x,y)

∣∣∣ (4.22)

(a) WGAN (b) WGAN_ZOOM

Figure 4.4: Pointwise relative error on mean

81

Chapter 4. Uncertainty quantification in a mechanical submodel driven by a Wasserstein Generative Adversarial
Network

(a) WGAN (b) WGAN_ZOOM

(c) Monte Carlo samples (d) GAN_BC_ZOOM

Figure 4.5: Point wise relative discrepancy indicator

(a) Mean (b) σrel

Figure 4.6: Error indicator on WGANs predictions

82

4.4.4 Non-parametric approach results

Figure 4.7: Histogram of maximum amplitude prediction

(a) Probability (b) Relative error

Figure 4.8: Threshold crossing probability predictions

Figure 4.4 shows that the zoom operation of the submodel helds the same correction properties
over the noise and errors introduced by the use of convolutional layers and also noise introduced by
the GAN’s random component. Figure 4.6 shows that our submodel approaches perform better on
the mean prediction. Figures 4.5 shows that our approach hold better generative properties that are
useful for uncertainty quantification, the WGAN_BC_ZOOM shows the best performance, since
higher discrepancy values in the other approaches can be explained by the accumulation of the error
on different non structured areas, furthermore the pointwise discrepancy in the WGAN_BC_ZOOM
approach shows a more structured shape holding more statistically representative physical infor-
mation. Figure 4.6 shows also the discrepancy indicator computed on the 1000 Monte Carlo sam-
ples described in Section 4.3 and that our approach performs better to match the discrepancy of
the Monte Carlo samples. In addition, our approach shows better generative capacity exploring
extremum values that have not been considered in the training set as shown in Figure 4.7 where
our approach has good generative capacity on the density tails, since our model learn has learned
from sparse and restricted data (Train) and was able to generate data similar to the Monte Carlo
framework on the physical model, the latter is not accessible in practice unlike the model in our
approach where the simulations are fast. Figure 4.8 shows that our approach is more accurate to
compute threshold crossing probabilities.

83

Chapter 4. Uncertainty quantification in a mechanical submodel driven by a Wasserstein Generative Adversarial
Network

4.5 Conclusion
In this chapter we presented novel methods for parametric and non-parametric uncertainty

quantification relying on physical submodels over an area of interest. We have empirically shown
that our methods obtain comparable and slightly better estimation of physical fields than classical
neural networks approaches, while reducing the dimensionality of the learning problem and thus
reducing the training cost of our models by restricting our attention to the boundary of a submodel.
We fulfill the necessary condition that the cost of each run of the physical submodel is smaller than
the cost of running the full physical model. Better precision is reached in the parametric view, by
using DCnR’s. Besides, in situation where the parameters distribution is unknown (epistemic un-
certainties), only non-parametric approaches are feasible. For that, using the Wasserstein-GAN as
a boundary conditions generator, we showed a higher value of the discrepancy in the Monte Carlo
sampling method compared to high-fidelity solutions, while keeping physical consistency thanks
to the learned boundary conditions, thus offering better generative behavior in the exploration of
density tails.

84

Chapter 5

Physics oriented data preprocessing for deep learn-
ing and optimization of deep learning architecture for
physical data

Abstract
Convolutional Neural Networks (CNNs) are widely used in various fields, such as image classi-
fication, medical imaging analysis, and autonomous driving cars. However, these models have
millions of parameters, making it challenging to install them on devices with limited memory.
Compression techniques, such as model pruning and weight quantization, can reduce the number
of parameters and complexity of the models, which also reduces overfitting and the time required
for predictions and training. In this chapter, we present a method for compressing CNN models
for Finite Element Method (FEM) physical data using a filter decomposition of each layer and
preprocessing approaches to optimize data for CNN training. We validate our compressed models
on physical data from an FEM model solving a 2D wave equation.

Résumé
Les réseaux de neurones convolutionnels (CNN) sont largement utilisés dans divers domaines, tels
que la classification d’images, l’analyse d’imagerie médicale et les voitures autonomes. Cepen-
dant, ces modèles ont des millions de paramètres, ce qui rend difficile de les installer sur des
appareils avec une mémoire limitée. Les techniques de compression, telles que l’élagage de
modèle et la quantification de poids, peuvent réduire le nombre de paramètres et la complexité
des modèles, ce qui réduit également le surapprentissage et le temps requis pour les prédictions
et l’entraînement. Dans ce chapitre, nous présentons une méthode de compression de modèles
CNN pour des données physiques de méthode des éléments finis (FEM) en utilisant une décom-
position de filtre de chaque couche et des approches de prétraitement pour optimiser les données
pour l’entraînement des CNN. Nous validons nos modèles compressés sur des données physiques
provenant d’un modèle FEM résolvant une équation d’onde 2D.

85

Chapter 5. Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for
physical data

Contents
5.1 Introduction . 86

5.2 Proposed Approach . 87

5.2.1 Background . 87

5.2.2 Canonical Polyadic Decomposition of convolutional filters 87

5.2.3 Approximation of the CPD of convolutional layers 89

5.2.4 A priori decomposed convolutional layers 89

5.3 Weight sharing . 91

5.4 Time regularization . 92

5.5 Developped models . 92

5.5.1 Models annotations . 93

5.6 Physical Data preprocessing . 94

5.7 Numerical results . 97

5.7.1 2D Wave propagation with one source point and early stopping 97

5.7.2 2D wave propagation with one source point 102

5.7.3 2D wave propagation with four source points 105

5.8 Conclusion . 110

5.1 Introduction

Convolutional neural networks are now seeing widespread use in a variety of fields, including
image classification, facial and object recognition, medical imaging analysis, and many more. In
addition, there are applications such as autonomous driving cars in which accurate forecasts in
real time with a minimal lag are required. The present neural network designs include millions
of parameters, which makes it difficult to install such complex models on devices that have lim-
ited memory. Compression techniques might be able to resolve these issues by decreasing the
size of CNN models that are created by reducing the number of parameters that contribute to the
complexity of the models. The overfitting phenomena will be reduced also. The time needed
to make predictions or time required for training using the original Convolutional Neural Net-
works model would be cut significantly if there were fewer parameters to deal with. In Chen et al.
[2015]; Pilipović et al. [2018] one can find surveys of compression techniques for CNN models
as model pruning and weights quantization, in Hameed et al. [2022] the authors use Kronecker
product decomposition for weights matrices for CNN to compress the models. In this chapter we
present a method of compressing convolutional neural networks for FEM physical data relying on
a decomposition of filters of each layers and adequate preprocessing of data, and approaches to
optimize data from FEM models for CNN training. Afterward we validate our compressed models
on physical data from a FEM model solving a 2D wave equation.

86

5.2 Proposed Approach

5.2 Proposed Approach

5.2.1 Background

Let us consider W = (wi,o) ∈ Rni,no the weight matrix for a fully connected layer, bias vectors
will be omitted in this section for simplification purpose, however, we can easily extend this ap-
proach by taking into account the bias. The output of a fully connected layer who takes as an input
a vector x ∈ Rni is a vector y ∈ Rno . y1

...
yno

=

 w1,1 · · · w1,ni
...

wno,1 · · · wno,ni

×
 x1

...
xni

 (5.1)

Where W is a dense matrix, usually initialized as (∀(i,o) ∈ [|1,ni|]× [|1,no|])wi,o ̸= 0. Let us
consider K ∈ Rkx×ky a 2D convolutional filter and x ∈ Rni,no a 2D image to which we would like
to apply the filter K. For visualization let us consider the example where kx = ky = 2, ni = no = 3,
developpements in this section are written in the case of 2D convolutional filters but can easily

be generalized for higher dimensions. Having : K =

[
k1,1 k1,2
k2,1 k2,2

]
and x =

 x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3

,

and considering the flattened vector of x, the flattened output of this convolutional layer is a vector
y ∈ R4:

y1,1
y1,2
y2,1
y2,2

=

k1,1 k1,2 0 k2,1 k2,2 0 0 0 0
0 k1,1 k1,2 0 k2,1 k2,2 0 0 0
0 0 0 k1,1 k1,2 0 k2,1 k2,2 0
0 0 0 0 k1,1 k1,2 0 k2,1 k2,2

×

x1,1
x1,2
x1,3
x2,1
x2,2
x2,3
x3,1
x3,2
x3,3

(5.2)

Thus convolutional layers can be considered as sparse fully connected layers that have a lower
computational complexity than dense layers.

5.2.2 Canonical Polyadic Decomposition of convolutional filters

Canonical Polyadic Decomposition (CPD) Kolda and Bader [2009]; Evert et al. [2022]; Hitch-
cock [1927] describes a tensor as a sum of rank one tensors. In contrast to the matrix scenario, the
CPD of a low rank tensor is unique given mild assumptions. CPD’s intrinsic distinctiveness makes
it a strong tool in many applications, allowing for the extraction of component information from a
signal of interest. The generalized eigenvalue decomposition (GEVD), which picks a tensor matrix
subpencil and then computes the generalized eigenvectors of the pencil, is a common approach for
algebraic calculation of a CPD.

87

Chapter 5. Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for
physical data

Figure 5.1: Canonical Polyadic Decomposition from Pham et al. [2018a]

Let us consider a CPD of the convolutional filter k defined in Section 5.2.1 with 2 vectors Q,R:

K ≈ Q⊗RT =

[
q1,1
q1,2

]
⊗
[

r1,1 r2,1
]
=

[
q1,1r1,1 q1,1r2,1
q1,2r1,1 q1,2r2,1

]
(5.3)

Where ⊗ denotes the outer vector product. Determining the values of Q,R will be discussed in a
following section. Thus, the Equation 5.2 can be rewritten:

y1,1
y1,2
y2,1
y2,2

=

q1,1r1,1 q1,1r2,1 0 q1,2r1,1 q1,2r2,1 0 0 0 0

0 q1,1r1,1 q1,1r2,1 0 q1,2r1,1 q1,2r2,1 0 0 0
0 0 0 q1,1r1,1 q1,1r2,1 0 q1,2r1,1 q1,2r2,1 0
0 0 0 0 q1,1r1,1 q1,1r2,1 0 q1,2r1,1 q1,2r2,1

×

x1,1
x1,2
x1,3
x2,1
x2,2
x2,3
x3,1
x3,2
x3,3

(5.4)

Which can be rewritten as:
y1,1
y1,2
y2,1
y2,2

= Q×R× x =

q1,1 0 q1,2 0 0 0
0 q1,1 0 q1,2 0 0
0 0 q1,1 0 q1,2 0
0 0 0 q1,1 0 q1,2

×

r1,1 r2,1 0 0 0 0 0 0 0
0 r1,1 r2,1 0 0 0 0 0 0
0 0 0 r1,1 r2,1 0 0 0 0
0 0 0 0 r1,1 r2,1 0 0 0
0 0 0 0 0 0 r1,1 r2,1 0
0 0 0 0 0 0 0 r1,1 r2,1

×

x1,1
x1,2
x1,3
x2,1
x2,2
x2,3
x3,1
x3,2
x3,3

(5.5)

Where R is the matrix of the linear operation of applying the filter R to every row of x ∈ R3×3

and Q is the matrix of the linear operation of applying the filter Q to every column of the output
of applying R to x, then we have rewritten the 2D convolutional layer of x by the filter K to
successfully applying two 1D filters, induced by the CPD of K, to different dimensions of x.

88

5.2.3 Approximation of the CPD of convolutional layers

5.2.3 Approximation of the CPD of convolutional layers
In the previous section we presented an approach to reduce the dimensionality of a trained con-

volutional layer using CPD of each filter, the main issue remaining is determining the components
of each decomposition. Generalized Eigenvalue Decomposition Domanov and Lathauwer [2014]
is the default go-to approach. In this work we propose an equivalent approach relying on Singular
Values Decomposition of filters. Let us first consider the case of 2D filters, let K ∈Rn1×n2 be a 2D
filter. The SVD of K is written as :

K ≈
r

∑
i=1

σiK
(L)
i ⊗K(R)

i . (5.6)

Where r is the number of singular values considered, (σi)(i≤r) the singular values and

(K(L)
i ,K(R)

i) respectively the left and right singular vectors. Equation 5.6 can be rewritten as:

K ≈
r

∑
i=1

K′(L)i ⊗K′(R)i . (5.7)

Where each vector K′(.)i =
√

σiK
(.)
i , and by construction, (K′(L)i ,K′(R)i) are rank one vectors, thus

we obtained a Polyadic Decomposition of the filter, which is not canonical since the SVD is not
unique, however it is a decomposition that fulfill a precision criteria which is sufficient for this
application.

Let us now consider the case of 3D filters, let K ∈ Rn1×n2×n3 a tensor of order 3, and let us
consider Kl = K[:, :, l], K can be written as:

K =
n3

∑
l=1

Kl⊗ Il (5.8)

Where (Il)l≤n3 are the vector rows of the identity matrix in Rn3×n3 , and each (Kl)l≤n3 is a 2D
matrix, thus a decomposition in the form of 5.7 is possible. Therefore K can be decomposed as:

K =
n3

∑
l=1

Kl⊗ Il ≈
n3

∑
l=1

r

∑
i=1

K′(L)i,l ⊗K′(R)i,l ⊗ Il. (5.9)

With straightforward work on sums indexes, one can rewrite this approximation as an unique sum
of outer products of rank one vectors. Thus, we define a recursive method to build decompositions
of a tensor of any dimension.

5.2.4 A priori decomposed convolutional layers
Applying this decomposition formalism to every kernel of convolutional layer leads to a com-

pressed representation of the convolutional layer. We show that the a priori decomposition requires
intermediate reshape and transpose operations on data. The new convolution approach is detailled
in what follows.

Let us first consider X ∈ RnB×nc×nt×nx a tensor of physical 2D data, formed by nB instances
(or samples of data) and nc channels (or features). In our target application, for each sample, nt
is the size of the temporal dimension of the data and nx the size of the spatial dimension. Let
K ∈ Rn f×nkt×nkx where n f is the number of 2D kernels considered, nkt and nkx respectively the
kernels sizes in temporal and spatial dimension, and let Y,β ∈RnB×n f×n′t×n′x being respectively the

89

Chapter 5. Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for
physical data

output and the biases of the convolutional layer. Using the equation (2.32) defining the output of a
convolution by a kernel we define the output Y of the convolution of X by K and β as :

Y (i, j,h, l) =
n f

∑
v=1

nkt

∑
o=1

nkx

∑
p=1

X(i,v,h+o−1, l + p−1)K(j,o, p)+β (i, j,h, l) (5.10)

In these developpements we consider the case where all inputs channels are convolved with all
output channels and default values are set for other convolution parameters (stride= 1, padding=
0, dilation = 1), generalizing these developpements for generic values or for higher dimension
convolutional layers is a straightforward work on indexes or data structure. Let us consider a formal
SVD of each kernel in K and only focusing on the first term of the sum (using more singular values
for the decomposition can be performed by using more channels in the decomposed kernels):

j = 1, K[j, :, :] = Kt
j⊗Kx

j +R[j, :, :] (5.11)

where R is the residual tensor of the rank one approximation of K. Thus we can extract two
subsets of 1D kernels forming 2 differents temporal and spatial 1D convolutional layers Kt

j ∈ Rnt

and Kx
j ∈Rnx . Let us consider Ỹ ∈RnB×nc×nt×n′x the output of the spatial convolutional layer Kx

j on
the columns of X without combining the ouptuts, we obtain:

Ỹ (i, j,h, l) =
nkx

∑
p=1

X(i,(j,h), l + p−1)Kx
j (p) (5.12)

where (j,h) is a multi index obtained by reshaping the data. In the sequel, the following transpose
operation is also required:

Ỹ T (i, j, l,h) = Ỹ (i, j,h, l) (5.13)

Let us now consider Ŷ ∈RnB×n f×n′t×n′x the output of the temporal convolutional layer Kt
j on the lines

of Ỹ and combining the ouptuts and then adding the same biases β ∈ RnB×n f×n′t×n′x , we obtain:

Ŷ (i, ĵ,h, l) =
n f

∑
j=1

nkt

∑
o=1

˜Y T (i,(j, l),h+o−1)Kt
j(o)+β (i, ĵ,h, l)

=
n f

∑
j=1

nkt

∑
o=1

(
nkx

∑
p=1

X(i, j,h+o−1, l + p−1)Kx
j (p)

)
Kt

j(o)+β (i, ĵ,h, l)

=
n f

∑
j=1

nkt

∑
o=1

nkx

∑
p=1

X(i, j,h+o−1, l + p−1)
(
Kx

j (p)Kt
j(o)
)
+β (i, ĵ,h, l)

(5.14)

where Kx
j (p)Kt

j(o) is the rank-one tensor approximation of the 2D convolution kernel. It follows
that:

Y (i, ĵ,h, l)− Ŷ (i, ĵ,h, l) =
n f

∑
j=1

nkt

∑
o=1

nkx

∑
p=1

X(i, j,h+o−1, l + p−1)R(j,o, p)
(5.15)

Therefore the smaller R, the smaller the discrepancy between Y and Ŷ .
Thus, using decompositions of kernels of a 2D convolutinal layers we obtained an approxima-

tion of the output of said layer by using the decomposed kernels in two consecutive 1D convolutinal

90

5.3 Weight sharing

layers with index manipulations via data reshaping and transpose operations.
Similarly, the rank-one decomposition can be extended to d-way kernels:

Ŷ (i, ĵ,h1, . . . ,hd) =
n f

∑
j=1

nk1

∑
p1=1

. . .
nkd

∑
pd=1

X(i, j,h1 + p1−1, . . . ,hd + pd−1)

Π
d
k=1Kk

j (pk)

+β (i, ĵ,h1, . . . ,hd)

(5.16)

Thus reducing the number of trainable parameters of the convolutional layer from Πk=1dnkk
to

∑
d
k=1 nkk. Therefore we decomposed a model which complexity is exponentialy dependent on the

dimension of the problem to a model which complexity is linealy dependent on the dimension,
thus alienating the curse of dimensionality. In addition, since we approximate d-way kernels with
a decomposition of d 1D convolutional layer, we can consider each layer appart and use activa-
tion functions after each 1D convolution, thus constructing a non linear decomposition of d-way
kernels. Indeed this a priori decomposition of CNNs assume that parameters on each kernel are
dimensionaly separable, nevertheless the update of those parameters while training the CNN de-
pends on every dimension of the problem solved since the gradients backpropagated depends on
all dimensions, then the dimensional separability of the problem is not a necessary hypothesis to
perform such decomposition. Nevertheless, the precision of such decomposition is not an indica-
tor of the precision of training models using this new form of convolutions. But it will rather be
inforced by solving the optimization problem related to the objective function.

5.3 Weight sharing

Weight sharing or layer coupling is a deep learning model order reduction method in which
multiple models which objective is to extract different features from same inputs share the first ex-
traction layers. In Xie et al. [2021] the authors present an overview of different implementation and
optimization method of weight sharing, as for Pham et al. [2018b] in which the authors present an
approach to builds a large computational graph with each subgraph representing a neural network
design, requiring all architectures to share their parameters. A policy gradient is used to train a
controller to find the subgraph that maximizes the reward on a validation set. Liu and Tuzel [2016]
propose a weight sharing approach for Generative Adversarial Network to learn joint distribution.

In our approach, weight sharing is a relevent choice, since the objective is to predict different
physical fields with respect to the same input parameters. Thus, instead of training two different
models, we train coupled models, therefore reducing the number of parameters in the first layers by
half. The weight of the shared layers are updated with gradients induced by the minimization of the
empirical risk for all physical fields predicted, the last regressive layers are updated by gradients
induced by the only physical field predicted.

Let us denote Md, Mv the models trained to approach the displacement and velocity fields
using weight sharing, let us denote Ns the operation of applying the shared layers on a parameters
vector input p, and Nd, Nv the operation of applying the remaining layers for the displacement and
velocity models to the outputs of Ns. Outputs of both models can be written as:{

Md(p) = Nd(Ns(p))
Mv(p) = Nv(Ns(p)) (5.17)

91

Chapter 5. Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for
physical data

5.4 Time regularization
In our approach, since the objective is to predict dynamic physical fields, predicting fields

that are dynamically linked is quite frequent, as for example predicting displacement and velocity
fields. We propose an approach for time regularization of the predicted fields by adding a residual
minimization in the cost function, which is quite similar to the approaches in Physics Informed
Neural Network Raissi et al. [2017b] in which the residual of the Partial Differential Equation is
minimized. Since for FEM models access to the residual of the PDE solved is intrusive and often
infeasible, we rely on the temporal regularity of the approximated physical fields.

Let us consider P and T sets of collocation points for the time residual computing, and let Mu
and Mv be two neural networks which objective is to predict displacement and velocity fields for
the same FEM models parameterized by p. We define the time residual as :

E
p∈P

E
t ′∈T
|∂Mu(p, t ′)

∂ t
−Mv(p, t ′)||22 (5.18)

For convolutional layers, computing the derivative of the output with respect to the inputs is not
always feasible, so we approach the time derivative with an Euler finite difference scheme. In
the following this regularization will be mentionned as the Euler regularization. Eventhough this
approach was not implemented and tested for Generative Adversarial Networks training, but only
for regression models, we propose the algorithm for training GANs with Euler regularization.

Algorithm 5: WGAN with gradient penalty and Euler regularization. We use default
values of λ = 10, ncritic = 5, α = 0.0001, β1 = 0, β2 = 0.9

Require: The gradient penalty coefficient λ , the number of critic iteration per generator iteration
ncritic, the batch size m, Adam hyperparameters α,β1,β2

Require: Initial critic parameters ω0, inital generator parameters θ0
while θ has not converged do

for t = 1,..., ncritic do
for i = 1,..., m do

Sample real data x =(U,V) from training sets, latent variable z∼N (0,1), a random
number ε ∼U [0,1]
x̃← Gθ (z)
x̂← ε x̃+(1− ε)x
L(i)← Dω(x̃)−Dω(x)+λ (||∇x̂Dω(x̂)||2−1)2

end for
ω ← Adam(∇ω

1
m ∑

m
i=1 L(i),ω,α,β1,β2)

end for
Sample a batch of latent variables {z(i)}m

i=1 ∼N (0,1)
Ui,Vi← Gθ (zi)

rEuler(zi)← ||Ui(t+∆t)−Ui(t)
∆t −Vi(t)||22

θ ← Adam(∇θ
1
m ∑

m
i=1−Dω(Gθ (zi))+ rEuler(zi),θ ,α,β1,β2)

end while

5.5 Developped models
All models in this following work can be categorized into 9 categories depending on how they

process each type of physical data and how spatial and temporal information is used to update the

92

5.5.1 Models annotations

weights at each training step. So for spatial and temporal information we distinguish 3 categories
each:

• Sampled: only one sample of spatial or/and temporal data is used to update the weights, the
models takes as inputs the spatial or temporal coordinates or both.

• Local: only a local amount of spatial or/and temporal data is used to update the weights, the
model predicts the whole simulation but uses convolutional layers to treat data localy.

• Global: the whole information across the spatial or temporal information or both is used
to update the weights, this is achieved in a convolutional layer by considering the global
dimension as the channels or with a fully connected layer.

Figure 5.2: Model complexity evolution

Figure 5.2 shows the evolution of model complexity according to the approaches considered
spatialy and temporally, in green approaches that were considered and developed in this work, in
blue feasible approaches but hold no interest whatsoever to our application and in orange non-
feasible approaches.

5.5.1 Models annotations
Regarding our developed model, time sampled approaches or time conditioned approaches will

be suffixed by ”_t”, spatialy local approaches are the convolutional networks that will be prefixed
by ”Conv” followed by their dimension, local and global temporal approaches can be distinguished
by the dimension of the convolutional net, for example using a 3D convolutional network to ap-
proach a 2D spatial and 1D physical field is temporally local, using a 2D convolutional layer to
approach the same field is temporally global. All fully connected models developed are spatialy
global and temporally sampled. All of these models can have multiple variants considering if
convolutional decomposition is performed a suffixe "N.5D" means that a convolutional layer of

93

Chapter 5. Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for
physical data

dimension N +1 has been decomposed using the decomposition approach presented in this chap-
ter, 2.5D means that the model has been decomposed to a 2D spatial layer and a 1D temporal
layer, 2.5Db means that a 3D model has been decomposed to three 1D layers. Additional variants
appears depending on the regularization technique used, Batch Normalization Ioffe and Szegedy
[2015b] is designated by ”BN”, Euler regularization by ”E”, Weight sharing or layer sharing by
”LR”, ”BASIC” will denote a network with no regularization applied. All these type of regulariza-
tion can be combined except for Batch Normalization and Euler, since Batch Normalization makes
the derivatives computed in Euler Regularization erroneous.

5.6 Physical Data preprocessing
One of the approaches developed in this chapter is the construction of submodels using data

from a finite element model (FEM). This method rely on the general principle which is a submodel
formed of two components:

• A neural network learning boundary conditions around a predetermined zone of interest.

• A finite element submodel in the zone of interest using boundary conditions generated by
the neural network. We assume that there is no modeling error in the zone of interest covered
by the proposed submodel.

For the validation of our approach we use the same FEM simulation of the 2D wave equation
defined in Section 4.3

We choose to solve the 2D wave equation. We define two 2D Cartesian space grids Ωh and
Ω′h, with Ω′h ⊂Ωh representing the zone of interest. Ωh and Ω′h are triangular space discretization
of sizes [Nx,Ny] and [N′x,N

′
y] of the domains [−Lx,Lx]× [−Ly,Ly] and [−L′x,L

′
x]× [−L′y,L

′
y]. And

finally a temporal grid T is defined as discretization of size NT of the space [0,Tf inal] and the time
step ∆t = Tf inal

NT−1 . The 2D wave equation is given as follows:
1
c2

∂ 2u
∂ t2 −∆u = f on Ω ∀t > 0

u = 0 on ∂Ω ∀t > 0
u = u0 on Ω f or t = 0

(5.19)

where u is the amplitude of the wave. A source point is determined for the problem resolution
where (xS,yS) are the source point coordinates, it is chosen to be outside the zoom domain: i.e.
(xS,yS) ∈Ω\Ω′.
The source term at the right hand side of the wave equation is set as:

(∀t ∈ T), f (x,y, t) = sin(ωt)δ(xS,yS)(x,y) (5.20)

where δ(xS,yS) denotes the 2D Dirac distribution centered at (xS,yS). A three-dimensional parameter
vector p = (ω,xs,ys) is chosen and determined then sampled, (note that c is constant over all
samples since it is a parameter needed for the submodel). Sampling is done using latin hypercube
sampling routines. For every parameter vector p a simulation vector U(p) is generated using FEM
model described in section 4.3. One sample of data is then(p,U(p)) where p ∈ Dp ⊂ R3 and
U(p)(t) ∈Vh ⊂ RNX×NY .
Then, 2 datasets are generated from the same uniform distribution as the following:

• Training data set: 100 samples generated, used for training parametric approach models.

94

5.6 Physical Data preprocessing

Figure 5.3: Visualization of the FEM output on Ω and Ω
′

• Test data set: 25 samples generated, used for testing the training process of each neural
network, and comparing the models we used in our study. All generated data are scaled with
a standard scaler.

Since our approach requires the extraction and the processing of boundary conditions in the
following we presents the approach adopted for our boundary data. For each parametric
simulation of the wave equation we extract the boundary values as 1D vectors aligned in a
specific order to maintain physical local information for the convolutional layers as shown in
Figure 5.4. An issue rises concerning the physical locality of information for the extremities
node, to solve this issue we use circular padding in the extremities in the convolution layers,
fully connected layers do not suffer from this issue. Learning boundary data instead of the
whole spatial information reduces the learning problem dimensionality in addition to the fact
that the submodeling approach maintains physical properties in the area of interest.

95

Chapter 5. Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for
physical data

Figure 5.4: Boundary Data Extraction

Figure 5.5: Temporal Boundary Data Extraction

Thus for each time step for a fixed parametric value, we can extract a boundary vector. All

96

5.7 Numerical results

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.6: Boundary data for different parametric values

boundary vectors for a particular parametric value p can then be aggregated in one 2D matrix in
which the lines represents the temporal evolution of values and the column the physical evolution
of values, as shown in Figure 5.5. Then, the boundary data for the whole simulation can be viewed
as a 2D image by convolutional layers. Figure 5.6 shows samples of boundary data for different
parametric values.

5.7 Numerical results

5.7.1 2D Wave propagation with one source point and early stopping

We trained all regression models defined in the previous section on both boundary and full
data for 1000 epoch using Adam Kingma and Ba [2014] optimizer and a learning rate of 1e−3.
In all tables, results in bold black indicate best results, results in blue indicate results within an
acceptable threshold, and results in red indicate unacceptable results.

97

Chapter 5. Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for
physical data

Table 5.1: Number of trainable parameters (million parameters)

Basic BN E SL BN & SL E & SL
FC t 14.34 14.37 14.34 14.22 14.26 14.22

Conv2D 23.30 23.31 23.30 12.63 12.64 12.63
Conv2D t 1.52 1.52 1.52 0.81 0.81 0.81
Conv3D 7.25 7.25 7.25 3.83 3.83 3.83

Conv2.5D 2.72 2.72 2.72 1.46 1.46 1.46
Conv2.5Db 1.63 1.64 1.63 0.85 0.86 0.85

FC t Boundary 0.27 0.28 0.27 0.26 0.26 0.26
Conv1D Boundary 6.98 6.99 6.98 3.65 3.66 3.65

Conv1D t Boundary 0.45 0.45 0.45 0.24 0.24 0.24
Conv2D Boundary 2.19 2.19 2.19 1.13 1.13 1.13

Conv1.5D Boundary 1.18 1.19 1.18 0.61 0.62 0.61

Table 5.1 shows the number of trainable parameters for each model combined with every reg-
ularization technique described before. As expected fully connected layers and approaches using
temporal dimension as feature maps have the highest number of parameters, and our decomposition
approach is efficient in reducing the number of trainable parameters in each model, Sharing Lay-
ers approach reduce drastically the number of parameters in convolutional layer, fully connected
layers cannot benefit from this approach since first layers have the lowest number of parameters.
Batch norm regularization only add a negligible number parameters.

Table 5.2: Train error on full displacement

Basic BN E SL BN & SL E & SL
FC t 2.27 0.54 2.28 2.02 0.55 2.02

Conv2D 4.61 0.22 4.86 4.90 0.43 4.66
Conv2D t 26.91 0.41 26.91 26.91 0.31 26.92
Conv3D 5.87 0.24 5.76 6.08 0.27 5.86

Conv2.5D 4.64 0.34 5.11 4.55 0.37 5.35
Conv2.5Db 4.66 0.54 5.37 4.27 0.79 0.61

Table 5.3: Train error on full velocity

Basic BN E SL BN & SL E & SL
FC t 2.26 0.63 2.42 2.27 0.60 2.25

Conv2D 4.30 0.18 4.55 4.55 0.22 4.31
Conv2D t 21.69 0.25 21.69 21.68 0.27 21.69
Conv3D 6.06 0.23 5.83 6.02 0.26 5.96

Conv2.5D 4.44 0.25 4.78 4.33 0.43 4.81
Conv2.5Db 4.47 0.63 4.80 4.18 0.58 0.54

98

5.7.1 2D Wave propagation with one source point and early stopping

Table 5.4: Test error on full displacement

Basic BN E SL BN & SL E & SL
FC t 1.34 0.37 1.37 1.24 0.46 1.29

Conv2D 3.25 0.24 3.15 3.22 0.31 3.46
Conv2D t 24.45 0.28 24.46 24.47 0.29 24.47
Conv3D 4.72 0.18 4.66 4.64 0.26 4.81

Conv2.5D 3.47 0.28 3.30 3.50 0.38 3.20
Conv2.5Db 3.33 0.43 2.81 3.72 0.73 0.53

Table 5.5: Test error on full velocity

Basic BN E SL BN & SL E & SL
FC t 1.60 0.43 1.61 1.55 0.48 1.55

Conv2D 3.02 0.18 2.88 2.95 0.24 3.19
Conv2D t 20.56 0.25 20.55 20.55 0.26 20.57
Conv3D 4.93 0.17 5.02 5.02 0.23 5.14

Conv2.5D 3.22 0.24 3.01 3.29 0.43 3.14
Conv2.5Db 2.92 0.58 2.60 3.30 0.54 0.48

Tables 5.2 and 5.3 show respectively the training error of each model variant for full data pre-
diction on Ω considering all the possible regularization methods described in the previous sections.
The tables indicate that the model that achieves the best accuracy in training is Conv2D with Batch-
Norm regularization, but achieves poor generalization error as shown by Tables 5.4 and 5.5 where
best compromise between training error and generalization error is achieved by Conv3D, this be-
havior can be explained by the overfitting occurring in Conv2D considering the large amount of
parameters within the model. Tables 5.2, 5.3, 5.4 and 5.5 show that the approaches using our
convolutional decomposition presented in this chapter achieve comparable training precision and
generalization error with much fewer parameters as shown by Table 5.1. Only the models with
the Batch Normalization regularization could achieve acceptable error threshold for training with
few epoch and a high learning rate. Euler regularization shows no improvements on the precision
of the models, however combined with sharing layers it achieves equivalent error threshold to the
Batch Normalization results.

99

Chapter 5. Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for
physical data

Table 5.6: Train error on displacement after zoom

Basic BN E SL BN & SL E & SL
FC t 2.01 0.49 2.06 1.83 0.47 1.88

Conv2D 4.75 0.13 4.80 4.74 0.17 4.61
Conv2D t 27.45 0.25 27.46 27.44 0.13 27.44
Conv3D 4.61 0.22 4.47 4.57 0.20 4.46

Conv2.5D 4.72 0.19 4.94 4.57 0.16 4.86
Conv2.5Db 4.69 0.28 5.07 4.43 0.51 0.29

FC t Boundary 1.59 0.48 1.64 1.58 0.41 1.48
Conv1D Boundary 4.62 0.19 4.80 4.70 0.14 4.84

Conv1D t Boundary 27.45 0.30 27.45 27.44 0.38 27.45
Conv2D Boundary 11.25 0.15 11.59 11.22 0.21 11.36

Conv1.5D Boundary 5.38 0.18 5.57 5.60 0.18 5.62

Table 5.7: Train error on velocity after zoom

Basic BN E SL BN & SL E & SL
FC t 2.80 0.65 2.85 2.64 0.65 2.71

Conv2D 4.42 0.12 4.47 4.41 0.15 4.29
Conv2D t 22.49 0.18 22.49 22.48 0.09 22.47
Conv3D 4.57 0.18 4.44 4.52 0.18 4.44

Conv2.5D 4.45 0.21 4.66 4.35 0.17 4.56
Conv2.5Db 4.42 0.39 4.66 4.23 0.55 0.37

FC t Boundary 2.35 0.62 2.42 2.28 0.54 2.21
Conv1D Boundary 4.30 0.16 4.45 4.37 0.13 4.48

Conv1D t Boundary 22.49 0.21 22.49 22.48 0.24 22.49
Conv2D Boundary 9.58 0.11 9.85 9.52 0.17 9.62

Conv1.5D Boundary 5.80 0.20 5.93 5.95 0.18 5.83

100

5.7.1 2D Wave propagation with one source point and early stopping

Table 5.8: Test error on displacement after zoom

Basic BN E SL BN & SL E & SL
FC t 1.34 0.37 1.37 1.24 0.46 1.29

Conv2D 3.25 0.24 3.15 3.22 0.31 3.46
Conv2D t 24.45 0.28 24.46 24.47 0.29 24.47
Conv3D 4.72 0.18 4.66 4.64 0.26 4.81

Conv2.5D 3.47 0.28 3.30 3.50 0.38 3.20
Conv2.5Db 3.33 0.43 2.81 3.72 0.73 0.53

FC t Boundary 1.02 0.22 1.08 1.06 0.24 1.07
Conv1D Boundary 5.01 0.13 4.84 4.94 0.08 4.79

Conv1D t Boundary 25.27 0.26 25.28 25.27 0.36 25.28
Conv2D Boundary 13.28 0.12 13.17 13.04 0.13 13.21

Conv1.5D Boundary 5.99 0.29 6.19 6.16 0.14 6.03

Table 5.9: Test error on velocity after zoom

Basic BN E SL BN & SL E & SL
FC t 2.13 0.43 2.28 2.11 0.43 2.08

Conv2D 2.84 0.14 2.80 2.90 0.19 3.02
Conv2D t 21.76 0.09 21.77 21.76 0.09 21.74
Conv3D 3.90 0.13 3.98 3.99 0.10 4.02

Conv2.5D 3.00 0.17 2.97 3.06 0.13 3.11
Conv2.5Db 2.97 0.30 2.77 3.26 0.43 0.39

FC t Boundary 1.77 0.35 1.76 1.65 0.38 1.79
Conv1D Boundary 4.39 0.12 4.25 4.27 0.07 4.20

Conv1D t Boundary 21.76 0.16 21.77 21.76 0.24 21.76
Conv2D Boundary 11.51 0.12 11.38 11.26 0.12 11.40

Conv1.5D Boundary 6.29 0.29 6.38 6.46 0.15 6.42

Tables 5.6, 5.7, 5.8 and 5.9 show respectively the training error and generalization error of
each model variant for full and boundary data prediction after the zoom operation in the area
of interest considering all the possible regularization methods described in the previous sections.
The tables indicate that the model that achieves the best training and generalization are boundary
generative models, achieving this results with even fewer trainable parameters, the convolutional
decomposition approaches achieve equivalent results with fewer trainable parameters.

101

Chapter 5. Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for
physical data

Table 5.10: Average time of one epoch

Basic BN E SL BN & SL E & SL
FC t 0.49 0.49 0.53 0.42 0.46 0.51

Conv2D 0.60 0.63 0.72 0.43 0.44 0.53
Conv2D t 0.37 0.40 0.65 0.34 0.37 0.62
Conv3D 0.32 0.36 0.78 0.26 0.30 0.73

Conv2.5D 0.69 0.75 1.07 0.68 0.75 1.03
Conv2.5Db 1.10 1.21 1.67 1.05 1.08 1.53

FC t Boundary 0.20 0.21 0.26 0.19 0.20 0.25
Conv1D Boundary 0.35 0.36 0.46 0.29 0.30 0.40

Conv1D t Boundary 0.34 0.36 0.51 0.35 0.36 0.54
Conv2D Boundary 0.22 0.23 0.30 0.19 0.21 0.28

Conv1.5D Boundary 0.69 0.73 1.05 0.65 0.69 1.03

The table 5.10 shows the average time for each model to train for one epoch, it indicates that
the convolutional decomposition approaches have higher training time, this can be explained by
comparing our first implementation with optimized implementation of the deep learning libraries,
the objective to attain comparable results with decomposed convolutional layers was achieved but
the optimization of training time is yet to be achieved.

5.7.2 2D wave propagation with one source point

We trained all models defined in the previous section on both boundary and full data for 10000
epoch using Adam Kingma and Ba [2014] optimizer and a learning rate of 1e−3 and learning rate
decay to achieve a learning rate of 1e−4 at the last epoch.

Table 5.11: Train error on full displacement

Basic BN E SL BN & SL E & SL
FC t 0.88 0.21 0.86 0.76 0.23 0.75

Conv2D 0.11 0.10 0.13 0.12 0.08 0.13
Conv2D t 0.22 0.19 0.24 0.25 0.21 0.28
Conv3D 0.12 0.09 0.12 0.14 0.11 0.15

Conv2.5D 0.15 0.15 0.14 0.13 0.12 0.17
Conv2.5Db 0.15 0.16 0.16 0.16 0.16 0.19

102

5.7.2 2D wave propagation with one source point

Table 5.12: Train error on full velocity

Basic BN E SL BN & SL E & SL
FC t 0.82 0.28 0.83 0.83 0.24 0.80

Conv2D 0.12 0.08 0.12 0.11 0.08 0.11
Conv2D t 0.25 0.19 0.20 0.23 0.22 0.22
Conv3D 0.14 0.10 0.13 0.13 0.12 0.15

Conv2.5D 0.14 0.16 0.13 0.13 0.13 0.16
Conv2.5Db 0.15 0.17 0.12 0.16 0.18 0.18

Table 5.13: Test error on full displacement

Basic BN E SL BN & SL E & SL
FC t 0.92 0.27 0.90 0.80 0.28 0.78

Conv2D 1.12 0.77 1.22 1.13 0.79 1.11
Conv2D t 0.24 0.22 0.26 0.27 0.23 0.31
Conv3D 0.23 0.20 0.24 0.23 0.19 0.24

Conv2.5D 0.55 0.64 0.54 0.53 0.58 0.51
Conv2.5Db 0.66 0.63 0.63 0.54 0.68 0.68

Table 5.14: Test error on full velocity

Basic BN E SL BN & SL E & SL
FC t 0.86 0.34 0.86 0.87 0.30 0.82

Conv2D 1.12 0.81 1.24 1.09 0.74 1.11
Conv2D t 0.26 0.21 0.22 0.25 0.23 0.24
Conv3D 0.28 0.21 0.32 0.22 0.20 0.24

Conv2.5D 0.54 0.63 0.50 0.49 0.55 0.48
Conv2.5Db 0.70 0.72 0.76 0.50 0.64 0.64

Tables 5.11 and 5.12 shows respectively the training error of each model variant for full data
prediction considering all the possible regularization methods described in the previous sections.
The tables indicate that the model that achieves the best accuracy in training is Conv2D with
BatchNorm regularization, but achieves poor generalization error as shown by Tables 5.13 and 5.14
where best compromise between training error and generalization error is achieved by Conv3D, this
behavior can be explained by the overfitting occuring in Conv2D considering the large amount of
parameters within the model. Tables 5.11, 5.12, 5.13 and 5.14 show that the approaches using
the convolutional decomposition presented in this chapter achieve comparable training precision
and generalization error with much fewer parameters as shown by Table ??. Results here show
that all model could converge thanks to the higher number of epochs and learning rate decay, thus

103

Chapter 5. Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for
physical data

combining Batch Normalization within our decomposition approach allow the models to learn and
have good generalization error with high learning rate and few epochs.

Table 5.15: Train error on displacement after zoom

Basic BN E SL BN & SL E & SL
FC t 0.79 0.17 0.75 0.64 0.19 0.61

Conv2D 0.04 0.03 0.05 0.05 0.03 0.05
Conv2D t 0.12 0.10 0.12 0.13 0.11 0.16
Conv3D 0.06 0.04 0.05 0.06 0.06 0.08

Conv2.5D 0.07 0.08 0.05 0.07 0.06 0.09
Conv2.5Db 0.07 0.08 0.07 0.08 0.07 0.12

FC t Boundary 0.55 0.17 0.56 0.52 0.17 0.51
Conv1D Boundary 0.03 0.02 0.03 0.04 0.02 0.05

Conv1D t Boundary 0.09 0.08 0.07 0.12 0.11 0.11
Conv2D Boundary 0.04 0.06 0.06 0.06 0.06 0.05

Conv1.5D Boundary 0.05 0.02 0.04 0.05 0.03 0.04

Table 5.16: Train error on velocity after zoom

Basic BN E SL BN & SL E & SL
FC t 1.23 0.24 1.18 1.05 0.27 0.99

Conv2D 0.05 0.04 0.06 0.05 0.03 0.06
Conv2D t 0.12 0.12 0.12 0.16 0.13 0.17
Conv3D 0.07 0.05 0.06 0.07 0.06 0.09

Conv2.5D 0.08 0.07 0.07 0.09 0.07 0.10
Conv2.5Db 0.09 0.10 0.10 0.11 0.10 0.12

FC t Boundary 0.90 0.25 0.92 0.84 0.25 0.84
Conv1D Boundary 0.03 0.02 0.03 0.03 0.02 0.04

Conv1D t Boundary 0.09 0.09 0.08 0.11 0.11 0.12
Conv2D Boundary 0.04 0.05 0.06 0.06 0.07 0.05

Conv1.5D Boundary 0.05 0.03 0.05 0.05 0.04 0.05

104

5.7.3 2D wave propagation with four source points

Table 5.17: Test error on displacement after zoom

Basic BN E SL BN & SL E & SL
FC t 0.92 0.27 0.90 0.80 0.28 0.78

Conv2D 1.12 0.77 1.22 1.13 0.79 1.11
Conv2D t 0.24 0.22 0.26 0.27 0.23 0.31
Conv3D 0.23 0.20 0.24 0.23 0.19 0.24

Conv2.5D 0.55 0.64 0.54 0.53 0.58 0.51
Conv2.5Db 0.66 0.63 0.63 0.54 0.68 0.68

FC t Boundary 0.60 0.23 0.62 0.58 0.25 0.58
Conv1D Boundary 1.51 1.42 1.55 1.57 1.33 1.45

Conv1D t Boundary 0.13 0.11 0.11 0.16 0.14 0.15
Conv2D Boundary 0.30 0.24 0.28 0.25 0.23 0.25

Conv1.5D Boundary 0.78 1.07 1.03 0.96 0.85 1.02

Table 5.18: Test error on velocity after zoom

Basic BN E SL BN & SL E & SL
FC t 1.25 0.30 1.21 1.08 0.33 1.01

Conv2D 1.01 0.85 1.08 0.95 0.88 1.09
Conv2D t 0.16 0.16 0.15 0.19 0.17 0.20
Conv3D 0.18 0.18 0.19 0.19 0.16 0.20

Conv2.5D 0.61 0.76 0.58 0.60 0.69 0.54
Conv2.5Db 0.76 0.77 0.74 0.61 0.84 0.82

FC t Boundary 0.93 0.31 0.96 0.88 0.33 0.88
Conv1D Boundary 1.42 1.35 1.46 1.48 1.26 1.36

Conv1D t Boundary 0.14 0.13 0.12 0.16 0.14 0.16
Conv2D Boundary 0.31 0.24 0.29 0.25 0.23 0.25

Conv1.5D Boundary 0.75 1.03 0.96 0.90 0.80 0.95

Tables 5.15, 5.16, 5.17 and 5.18 show respectively the training error and generalization error
of each model variant for full and boundary data prediction after the zoom operation in the area
of interest considering all the possible regularization methods described in the previous sections.
The tables indicate equivalent results as the results from the previous experiment, in the exception
of all models achieve equivalent performance as previously explained. Models relying on Euler
regularization achieve the best error threshold.

5.7.3 2D wave propagation with four source points
In this section we modify the 2D Wave equation used in the previous experiment to include

4 different source points, each with his own source frequency, the right handside of the equation
becomes:

(∀t ∈ T), f (x,y, t) =
4

∑
i=1

sin(ωit)δ(xSi,ySi)(x,y) (5.21)

105

Chapter 5. Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for
physical data

We obtain a then a parametrization of out FEM models with a vector of size 12, a frequency
and 2D coordination corresponding to each source points. The variable parameters identified are
sampled following Table 5.19 values.

Table 5.19: Parameters sampling

P Mean Value Variation (%) Min Value Max Value
ω1 5 kHz 5% 4.75 kHz 5.25 kHz
xS1 -1.85 m 17.5% of Lx -2.2 m -1.8 m
yS1 -0.65 m 17.5% of Lx -0.2 m 0.2 m
ω2 5 kHz 5% 4.75 kHz 5.25 kHz
xS2 -1.85 m 17.5% of Lx 3.25 m 3.45 m
yS2 -0.65 m 17.5% of Lx -0.2 m 0.2 m
ω3 5 kHz 5% 4.75 kHz 5.25 kHz
xS3 -1.85 m 17.5% of Lx -0.2 m 0.2 m
yS3 -0.65 m 17.5% of Lx -1.7 m -1.3 m
ω4 5 kHz 5% 4.75 kHz 5.25 kHz
xS4 -1.85 m 17.5% of Lx -0.2 m 0.2 m
yS4 -0.65 m 17.5% of Lx 1.3 m 1.7 m

Figure 5.7 shows an example of output with this configuration, and Figure 5.8 shows samples
of boundary data extracted as before. With the exception here that training points are sampled over
the simulation temporal grid, we use 25% of time steps sampled uniformly from the simulation
temporal grid. To set up the zoom operation we need prediction over the whole simulation tem-
poral grid, thus for models that are temporally conditioned we use the regressive property of the
models to generate data over the temporal grid, for temporally global approaches we use piecewise
polynomial interpolation for each sample. Let Mu, Mv be temporally global models trained on the
sampled displacement and velocity data, and p a parametric value from training or testing set, and
t1, t2 two points from the training sampled temporal grid, we generalize the output of Mu and Mv
for each time step t ∈ [t1, t2] as:

Mu(p, t) = α1t3 +α2t2 +α3t +α4
Mv(p, t) = 3α1t2 +2α2t +α3

(5.22)

Where α1,α2,α3,α4 are solution of the problem:
t3
1 t2

1 t1 1
t3
2 t2

2 t2 1
3t2

1 2t1 1 0
3t2

2 2t2 1 0

×

α1
α2
α3
α4

=

Mu(p, t1)
Mu(p, t2)
Mv(p, t1)
Mv(p, t2)

 (5.23)

This interpolation approach is similar to Hermit polynomial interpolation which is a generaliza-
tion of Lagrange polynomial interpolation in the presence of derivative values of the function
approached.

106

5.7.3 2D wave propagation with four source points

(a) Start of simulation (b) During Simulation

Figure 5.7: FEM Output with 4 source points

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: Boundary data for different parametric values

107

Chapter 5. Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for
physical data

Table 5.20: Train error on full displacement

Basic BN E SL BN & SL E & SL
FC t 37.57 21.63 38.88 36.75 13.02 36.71

Conv2D 1.88 1.71 1.76 1.73 4.62 1.76
Conv2D t 4.36 4.29 4.94 5.81 4.46 5.88
Conv3D 4.07 1.11 1.31 1.60 1.09 1.57

Conv2.5D 1.72 1.50 1.69 1.83 1.37 1.72
Conv2.5Db 4.24 2.86 2.96 2.44 2.30 1.97

Table 5.21: Train error on full velocity

Basic BN E SL BN & SL E & SL
FC t 9.75 3.32 8.43 8.58 4.29 7.76

Conv2D 2.89 2.96 3.66 2.80 4.44 3.03
Conv2D t 1.18 1.06 1.22 1.44 1.18 1.50
Conv3D 148.38 2.45 2.59 2.86 2.56 2.83

Conv2.5D 2.96 2.65 2.75 2.73 2.61 2.78
Conv2.5Db 3.14 2.97 3.38 3.15 2.88 2.85

Table 5.22: Test error on full displacement

Basic BN E SL BN & SL E & SL
FC t 11.85 5.38 13.05 10.12 5.42 9.81

Conv2D 0.67 0.52 0.52 0.55 1.38 0.54
Conv2D t 1.33 1.25 1.55 1.61 1.31 1.84
Conv3D 3.05 0.34 0.44 0.54 0.35 0.51

Conv2.5D 0.54 0.46 0.56 0.55 0.44 0.56
Conv2.5Db 1.09 0.81 0.81 0.76 0.69 0.61

Table 5.23: Test error on full velocity

Basic BN E SL BN & SL E & SL
FC t 5.06 1.86 5.10 4.81 2.44 4.81

Conv2D 2.21 2.15 2.25 2.14 2.64 2.18
Conv2D t 0.63 0.61 0.70 0.76 0.66 0.82
Conv3D 138.39 2.00 2.08 2.14 2.05 2.13

Conv2.5D 2.18 2.09 2.12 2.09 2.09 2.12
Conv2.5Db 2.29 2.26 2.36 2.25 2.19 2.19

108

5.7.3 2D wave propagation with four source points

Tables 5.20, 5.21 5.22 and 5.23 show respectively the training error of each model variant for
full data prediction considering all the possible regularization methods described in the previous
sections. The tables indicate equivalent results to the previous experiments with the exception
of networks with high numbers of parameters have very poor training performance and an even
poorer generalization error. The tables also shows that temporally global models which have been
interpolated achieve better precision than regressive models.

Table 5.24: Train error on displacement after zoom

Basic BN E SL BN & SL E & SL
FC t 29.61 11.52 32.84 23.34 8.42 25.88

Conv2D 0.32 0.21 0.41 0.26 0.31 0.26
Conv2D t 2.35 1.97 2.21 2.71 1.93 2.75
Conv3D 1.14 0.29 0.33 0.35 0.30 0.44

Conv2.5D 0.61 0.58 0.59 0.57 0.46 0.45
Conv2.5Db 0.85 0.78 0.82 0.72 1.01 0.72

FC t Boundary 27.66 9.58 22.90 27.24 9.90 19.77
Conv1D Boundary 0.12 0.08 0.11 0.15 0.10 0.10

Conv1D t Boundary 1.27 1.20 1.15 1.97 2.01 1.54
Conv2D Boundary 0.22 0.19 0.24 0.25 0.19 0.22

Conv1.5D Boundary 0.34 0.32 0.25 0.25 0.30 0.26

Table 5.25: Train error on velocity after zoom

Basic BN E SL BN & SL E & SL
FC t 17.62 6.93 18.39 13.90 6.00 14.49

Conv2D 0.31 0.23 0.36 0.29 0.30 0.28
Conv2D t 1.44 1.12 1.30 1.60 1.32 1.73
Conv3D 1.23 0.27 0.28 0.30 0.26 0.33

Conv2.5D 0.54 0.44 0.47 0.44 0.35 0.41
Conv2.5Db 0.61 0.60 0.64 0.60 0.63 0.55

FC t Boundary 13.19 5.81 13.05 12.94 5.86 10.50
Conv1D Boundary 0.15 0.10 0.13 0.16 0.13 0.13

Conv1D t Boundary 0.85 0.83 0.77 1.03 1.27 0.94
Conv2D Boundary 0.20 0.18 0.20 0.21 0.17 0.19

Conv1.5D Boundary 0.24 0.25 0.20 0.22 0.23 0.23

109

Chapter 5. Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for
physical data

Table 5.26: Test error on displacement after zoom

Basic BN E SL BN & SL E & SL
FC t 11.85 5.38 13.05 10.12 5.42 9.81

Conv2D 0.67 0.52 0.52 0.55 1.38 0.54
Conv2D t 1.33 1.25 1.55 1.61 1.31 1.84
Conv3D 3.05 0.34 0.44 0.54 0.35 0.51

Conv2.5D 0.54 0.46 0.56 0.55 0.44 0.56
Conv2.5Db 1.09 0.81 0.81 0.76 0.69 0.61

FC t Boundary 5.92 3.03 7.77 7.83 4.11 6.18
Conv1D Boundary 0.06 0.04 0.06 0.07 0.08 0.05

Conv1D t Boundary 0.41 0.44 0.42 0.55 0.65 0.53
Conv2D Boundary 0.11 0.07 0.09 0.10 0.08 0.11

Conv1.5D Boundary 0.12 0.11 0.10 0.11 0.11 0.11

Table 5.27: Test error on velocity after zoom

Basic BN E SL BN & SL E & SL
FC t 10.46 4.35 10.38 8.50 4.55 8.27

Conv2D 0.23 0.18 0.22 0.25 0.20 0.21
Conv2D t 0.90 0.75 0.77 0.96 0.87 1.14
Conv3D 1.75 0.17 0.21 0.22 0.18 0.23

Conv2.5D 0.33 0.27 0.30 0.30 0.24 0.29
Conv2.5Db 0.41 0.41 0.44 0.40 0.39 0.38

FC t Boundary 6.42 3.39 7.64 7.30 3.74 6.33
Conv1D Boundary 0.11 0.09 0.11 0.11 0.11 0.11

Conv1D t Boundary 0.48 0.48 0.46 0.58 0.73 0.56
Conv2D Boundary 0.14 0.11 0.13 0.14 0.11 0.14

Conv1.5D Boundary 0.16 0.14 0.14 0.16 0.16 0.15

Tables 5.24, 5.25 5.26 and 5.27 shows respectively the training error of each model variant
for full data prediction considering all the possible regularization methods described in the pre-
vious sections. The tables indicate that the zoom operation corrects various error from the full
data prediction and indication also that the boundary models achieves way better precision than
the full data approaches. Euler regularization shows a perceptible amelioration for some models
interpolated or regressed over the time grid for the zoom operation.

5.8 Conclusion
In this work, we presented a novel method of compressing convolutional neural networks for

FEM physical data and approaches to optimize data from FEM models for CNN training. Our
compression approach can also be applied to learning data in higher dimensions since the com-
plexity of the models is linearly dependent on the dimension and actual deep learning code library

110

5.8 Conclusion

only allow up to 3D data learning. After that, we validated our compressed models on physical
data derived from a FEM model that was used to solve a 2D wave equation, we combined each
approach with different regularization approaches, and showed that our convolutinal compression
technique achieves equivalent performance as classical convolutional layers with fewer trainable
parameters.

111

Chapter 6

Uncertainty quantification in impact simulation via
conditional Wasserstein Generative Adversarial Net-
work

Abstract
This chapter proposes a new training algorithm for Wasserstein Generative Adversarial Networks
(WGAN) to construct a stochastic model of large dynamical systems for uncertainty quantification.
The model is trained on data from a finite element method code, with the objective of extracting
stochastic boundary conditions for faster finite element predictions on a submodel. The proposed
framework is viewed as a randomized and parameterized simulation generator on the submodel,
which can be used as a Monte Carlo estimator. The algorithm is applied to an explicit dynamic
contact 3D problem to evaluate its stability and precision compared to true solutions of interest,
which are the displacement and velocity fields.

Résumé
Ce chapitre propose un nouvel algorithme d’entraînement pour les réseaux de neurones adversaires
génératifs de Wasserstein (WGAN) pour construire un modèle stochastique de grands systèmes dy-
namiques pour la quantification d’incertitudes. Le modèle est entraîné sur des données provenant
d’un code de méthode des éléments finis, dans le but d’extraire des conditions aux limites stochas-
tiques pour des prévisions plus rapides sur un sous-modèle. Le cadre proposé est considéré comme
un générateur de simulation randomisé et paramétré sur le sous-modèle, qui peut être utilisé comme
estimateur de Monte Carlo. L’algorithme est appliqué à un problème de contact dynamique ex-
plicite en 3D pour évaluer sa stabilité et sa précision par rapport aux vraies solutions d’intérêt, qui
sont les champs de déplacement et de vitesse.

113

Chapter 6. Uncertainty quantification in impact simulation via conditional Wasserstein Generative Adversarial
Network

Contents
6.1 Introduction . 114

6.2 Problem Definition . 115

6.2.1 Data processing . 117

6.2.2 Data Sampling . 120

6.3 Models . 120

6.3.1 Deep Convolutional Neural Regressor 121

6.3.2 Generative Adversarial Network . 121

6.3.3 Vanilla GAN . 121

6.3.4 Wasserstein GAN . 121

6.3.5 Gradient Penalty and Spectral Normalization 121

6.3.6 Relativistic Discriminator . 122

6.4 Numerical Results . 123

6.4.1 Regression - DcNR and Auto Encoder 123

6.4.2 Adversarial Regression - GANs . 127

6.4.3 Uncertainty quantification by a conditional GAN 129

6.5 Conclusion . 132

6.1 Introduction
In order to analyse non-parametric uncertainties of very large dynamical systems, it is nec-

essary to construct a stochastic model of said system that verifies the same physical properties.
Such models are usually built using physics-informed neural networks by increasing precision
over physical properties. This is generally obtained using a penalization term given by the resid-
ual of the Partial Differential Equation (PDE) as a cost function. However, with Finite Element
Method (FEM) models designed for engineering applications, it is quite intrusive to get access
to the residual of the PDE. Therefore, to address this issue, we propose a new training algorithm
for the Wasserstein Generative Adversarial Networks (WGAN) for the construction of a stochastic
model of dynamical systems. We show that this enables efficiency in the training stage and more
accurate results on mean quantities obtained in the generative stage. The objective of our approach
is to train a GAN on data from a finite element method code so as to extract stochastic bound-
ary conditions for faster finite element predictions on a submodel. The submodel and the training
data have both the same geometrical support. It is a zone of interest for uncertainty quantification
and we assume that such zone of interest is relevant to engineering purposes. In the exploitation
phase, the framework can be viewed as a randomized and parameterized simulation generator on
the submodel, which can be used as a Monte Carlo estimator. Finally we apply this algorithm to
an explicit dynamic contact 3D problem. The main purpose of this work is to evaluate the stabil-
ity of the training algorithm proposed and the precision of the Monte Carlo estimator constructed
with respect to the true solutions of interest, which are the displacement and velocity fields. The
dynamic contact 3D problem considered is formed by a sphere which comes into contact with a
plate, a rectangular cuboid, with an initial velocity along the z-axis. Our objective is to study wave

114

6.2 Problem Definition

propagation and reflection phenomena on the plate following the shock over a discretized time
grid. The sphere is considered formed by uniform elastic and isotropic materials behaving linearly
following the Hooke’s law, the plate is formed by elasto-plastic and isotropic materials behaving
following the Johnson-Cook law. The area of interest considered is the cuboid volume on the plate
under the area of contact.

6.2 Problem Definition

(a) Before impact (b) Impact (c) After impact

Figure 6.1: Main steps of the simulation

In this chapter we investigate the reducibility of a contact case in structural dynamics. We
consider a sphere of perimeter Rcylinder which comes into contact with a plate, a rectangular cuboid
of length, height and width Lplate,Wplate,Hplate with an initial velocity vz along the z-axis. Our
objective is to study wave propagation and reflection phenomena on the plate following the shock
over a discretized time grid denoted T = (tk)k∈J1 ; nK with a time step ∆t. This analysis requires the
constructions of models to generate new parameterized simulations with a lower cost than solving
the governing physical equations. To satisfy this requirement, we choose to apply data-driven
methods such as metamodeling and deep learning models.

In this chapter both epistemic and aleatory uncertainties are taken into account, while the ob-
jective is to construct a model capable of learning both uncertainties and offer tools to explore both
or any one of them following the user objective, this will be achieved using conditional generative
adversarial networks, where the conditioned dimensions will model the aleatory uncertainties and
the epistemic uncertainties will be captured by the random dimension of the GAN.

Figure 6.1 shows the main steps of the finite element method simulation. The sphere is con-
sidered formed by uniform elastic and isotropic materials behaving linearly following the Hooke’s
law, which is written in the matrix form as:

σ =
E

1+ν

(
ε+

ν

1−2ν
Tr(ε)

)
, (6.1)

The plaque is considered formed by elasto-plastic and isotropic materials behaving following
Johnson-Cook law with no temperature effects:

σ =
(

A1 +A2(ε
p
eq)

λ2)
)(

(1+λ1) ln(
ε̇

p
eq

ε̇
p
eq,re f

)

)
, (6.2)

115

Chapter 6. Uncertainty quantification in impact simulation via conditional Wasserstein Generative Adversarial
Network

where σ and ε are respectively the second-order stress and strain tensors, E is the Young modulus,
ν is the Poisson ratio, and Tr is the trace operator. A1,A2,λ1,λ2 are values determined experimen-
tally for lead components with the respective values 266, 229, 0.0294 and 0.8, ε̇

p
eq,re f is the refer-

ence strain rate. Additionally, we denote the density of the materials by ρ , which plays a part in the
response of the plate in such transient dynamical regimes. We introduce a unique parametrization
of each simulation results : let θ = (EPlaque,ρPlaque,νPlaque,Vz,Spherex,Spherey) a parameters
vector that defines a unique finite element simulation denoted S(θ), S being the vector of the fields
values on the grid of the plate. Vz being the initial velocity of the sphere, Spherex,Spherey being
the coordinate of the center of the sphere in the initial plane. Materials of the sphere are fixed as
ESphere = 2e9,ρSphere = 7800,νSphere = 0.03. Physical parameters are necessary for the submodel
of the area of interest, thus they will be conditioned into our models to represent the aleatory uncer-
tainty, the velocity and coordinates of the sphere are the parameters associated with the epistemic
uncertainty. The objective here is to construct generative models which function is to map the
parameters vector θ to the simulation vector S(θ). As physical fields, we consider displacement
of the elements of the plate on the z-axis (uz).

Since we consider only the case of frictionless, adhesive-free normal contact, and considering a
space discretization of both solids relying on the Finite Element discretization, the dynamic contact
problem can be written as (see Balajewicz et al. [2015]; Fauque et al. [2018]) :

Mü+Ku = BT λ

Bu− c≤ 0
λ (Bu− c) = 0

λ ≥ 0
u(0) = u0
u̇(0) = u̇0.

(6.3)

Where a dot designates a time derivative, the first equation expresses the dynamic equilib-
rium of the two solids, the inequality constraint derives from the space discretization of the
Hertz-Signorini-Moreau contact conditions which are enforced by introducing dual Lagrange
multipliers. u is a space discretized displacement vector of the plaque and the cylinder degrees of
liberty, M and K are respectively the block diagonal mass and stiffness matrices for the two solids.
B is a signed boolean matrix which extracts from u the pair of dof governed by a contact condition,
c is the vector of initial clearances, and λ is the vector of discretized Lagrange multipliers.

Then an explicit time discretization is performed in the dynamic case, finally solving the dy-
namic problem can be written as:

∀n≥ 2,(un,λn) = argmin
v,µ

vT (
1

∆t2 M+K)v+
1

∆t2 vT M(−2un−1 +un−2)−µ
T (Bv− c) (6.4)

Where the superscript n designates the n-th time-step and ∆t designates the difference between
two consecutive time-steps.

Both solids are discretized in finite element meshes using 3D tetrahedric elements, 8546 nodes
combined between the two solids, around 5000 nodes for the plaque mesh.

116

6.2.1 Data processing

(a) t1 (b) t10

Figure 6.2: Cut-away view of the impact zone

6.2.1 Data processing

This chapter develops a method simular to the previous chapters relying on FEM data to con-
struct generative models. This technique relies on the same concept, which is a submodel com-
prised of two different parts. A neural network that is trained to learn boundary conditions around
a preset zone of interest, and a finite element submodel that is constructed to use the boundary
conditions that were created by the neural network inside the zone of interest. We make the as-
sumption that there are no modeling error in the area of interest that the proposed submodel covers.
We choose as a region of interest a cuboid containing the zone of the impact of the sphere on the
plaque.

To carry out the projection phase of the data on a Euclidean 2D grid, which is necessary to
ensure that our simulation data can be processed by convolutional neural networks, we need to
map the 3D boundary grid of the 5 faces of the cuboid (see 6.3), to a 2D grid. The reversibility
of this operation is maintained by carrying an unique identifier for each node of the grid. The
different grid concerning this operation can be seen on figure 6.3 and results of data projection and
reconstruction on these grid on figures 6.4 and 6.5. Even though this method is only adapted for this
problem or for a similar grid, one can use generalized methods to construct the 2D representative
grid as Multi Dimensional Borg and Groenen [2005] Scaling and Mesh Parametrization Sheffer
et al. [2007].

Then, utilizing the finite element basis functions, we construct the projection operator from the
initial mesh onto the 2D grid, in addition to the inverse projection operator. This allows us to ensure
that our data can be processed by convolutional neural networks. The next step, which follows the
training of our models and the computing of test results, involves performing an inverse projection
operation on the initial grid. After the projection procedure has been completed, the physical data
are normalized by having the mean value removed and being scaled to the unit variance. This is
done with the use of a standard affine scaler.

117

Chapter 6. Uncertainty quantification in impact simulation via conditional Wasserstein Generative Adversarial
Network

(a) Zoom Mesh (b) Boundary Mesh (c) Unfolded Boundary
Mesh

(d) Cartesian Grid for
Convolution

Figure 6.3: Processing of the boundary of the area of interest

(a) Field On the Unfolded
Mesh

(b) Projected Field (c) Inverse Projection
Field

(d) Reconstruction Error

Figure 6.4: Different steps of projection and reconstruction error

(a) Maximum of reconstruction error (b) Mean of reconstruction error

Figure 6.5: Reconstruction error of the projection phase

Since our approach requires the extraction and the processing of boundary conditions in the
following we present the approach adopted for our boundary data. For each parametric simula-
tion of the impact we extract the boundary values as a 2D projected matrix in a specific order to
maintain physical local information for the convolutional layers as shown in Figure 6.6. Learning
boundary data instead of the whole spatial information reduces the learning problem dimensional-
ity in addition to the fact that the submodeling approach maintains physical properties in the area
of interest.

118

6.2.1 Data processing

Figure 6.6: Extraction of boundary data

Figure 6.7: Extraction of temporal boundary data

Thus for each time step for a fixed parametric value, we can extract a boundary matrix. All

119

Chapter 6. Uncertainty quantification in impact simulation via conditional Wasserstein Generative Adversarial
Network

boundary matrix for a particular parametric value θ can then be aggregated in one 3D tensor in
which the spatial matrices are stored in accordance with temporal evolution of values as shown in
Figure 6.7. Then, the boundary data for the whole simulation can be viewed as a 3D Video by
convolutional layers.

6.2.2 Data Sampling

In this section we present the data range used for sampling and generating data for the training
and testing phase. Values were chosen as: Lplate = 8m, Wplate = 4m, Hplate = 0.5m, RSphere = 0.1m,
NT = 100 and ∆t = 4×10−2s.

The variable parameters identified in Section 6.2 are sampled following Table 6.1 values with
a latin hypercube sampling framework. We sample NTraining = 100 values for the training data set
and NTesting = 25 values for the testing data set from the same uniform distibution.

Table 6.1: Parameters sampling

P Mean Value Variation (%) Min Value Max Value
Young modulus E 2.2×1011 MPa 20% 1.7×1011 MPa 2.64×1011 MPa

Densityν 7800kg/m3 20% 6240kg/m3 9360kg/m3

Poisson’s ratio ρ 0.3 20% 0.24 0.35
Vz -10 20% -12 -8

Spherex 0 4% of Hplate -0.01 0.01
Spherey 0 4% of Hplate -0.01 0.01

We define Ω as the discretized space of the plate. As a quantity of interest, we choose
to train our models to predict displacement on the z-axis for the plate, to visualy assess of
the performance of our model we fix two time steps t1 = 0.01s and t2 = 0.03s, two param-
eters vectors θ1 =

(
1.75×1011,7.61×103,2.44×10−1,−11.77,−3.38×10−3,−5.11×10−4)

and θ2 =
(
1.81×1011,7.36×103,2.9×10−1,−9.1,−6.88×10−3,−3.05×10−3), and two sur-

faces uz1,uz2 respectively the upper surface getting the impact and the free lower surface as surfaces
to asses the precision of our models to predict values of interest.

We define a relative error indicator in order to quantify the precision of our metamodels, noted
η . For a metamodel M, a parameter vector θ , a space point p = (x,y,z), and a time value t:

ηp(M,θ , p, t) =
|M(θ , p, t)−S(θ , p, t)|√

E
p∈Ω
|S(θ , p, t)|2

. (6.5)

Then we define the global error indicator to compare models:

η(M,θ , t) = E
p∈Ω

[ηp(M,θ , p, t)]. (6.6)

6.3 Models

In this section we present the different model developed for learning boundary data.

120

6.3.1 Deep Convolutional Neural Regressor

6.3.1 Deep Convolutional Neural Regressor
To assess of the precision of our submodeling approach we first solve a classical regression

problem using a Deep convolutional Neural Regressor (DcNR) which consists in learning to gen-
erate the physical data (S) over a grid with the parameters vector (p) as an input. As indicated by its
name, the internal structure of this network is formed by a succession of transposed convolutional
layers of adequate dimensions in order to obtain a regression model of the physical field in the
adequate size. The objective function in this case being the mean squared error:

min
θ

1
|T |× |PTrain| ∑

p∈PTrain

∑
t∈T
||S(p)(t)−N(p)(θ , t)||22 (6.7)

Where N denotes the neural network, θ its trainable weights, PTrain the training set of param-
eters vectors, T the set of time steps and |.| the cardinal of each space. Some of the regularization
and decomposition techniques presented in the previous chapter are used in this experiment, same
prefixes will be used.

6.3.2 Generative Adversarial Network

6.3.3 Vanilla GAN
To learn the induced epistemic and aleatory uncertainties presents in the data we use a condi-

tional GAN, where the parameters responsible for aleatory uncertainty are being conditioned and
the remaining uncertainty induced by unknown parameters is being modeled by the random di-
mension of the GAN. Let’s consider first classical GANs, introduced in Goodfellow et al. [2014]
as an unsupervised framework to learn probabilistic densities over data. It relies on the adversarial
training of two neural networks a generator and a discriminator. The cost function in this paradigm
called Standard GAN or vanilla GAN is:

min
G

max
D

V (D,G) = Ex∼Pr [Log(D(x))]+Ez∼Pz[Log(1−D(G(z)))] (6.8)

Models using this cost functions will be suffixed by ”_S”

6.3.4 Wasserstein GAN
In the other hand, in an IPM-Based GAN using the Wasserstein Distance and using the dis-

criminator as the 1-Lipschitz function to compute the Wasserstein distance in an objective function
defined as follows:

min
θgen

max
θdisc

E
z∼N (0,1)

[D(θdisc,G(θgen,z))]− E
p∈PTrain

[D(θdisc,U(p))] (6.9)

The principle of GANs can be extended to a conditioned model Mirza and Osindero [2014]
if the generator and the discriminator are both conditioned by additional information y. In the
generator, noise and information are combined, while in the discriminator, noise and information
are considered as 2 network inputs.

6.3.5 Gradient Penalty and Spectral Normalization
The authors in Gulrajani et al. [2017] propose a way to ensure the Lipschitz constraint on the

critic, taking into consideration directly restricting the gradient norm of the critic’s output with

121

Chapter 6. Uncertainty quantification in impact simulation via conditional Wasserstein Generative Adversarial
Network

regard to its input, since a differentiable function is said to be 1-Lipschtiz if and only if it has
gradients with norms of at most 1 everywhere. A a soft form of the constraint was implemented
in order to get around tractability concerns, and we do this by imposing a penalty on the gradient
norm for both real and fake samples. Thus the algorithm 2 to train a Wasserstein GAN with gra-
dient penalty. Although this method solves instability issues and propose a better method to fulfill
the Lipschitz constraint it is computationaly costly. In Miyato et al. [2018] the authors suggest
an innovative weight normalization approach known as spectral normalization in order to make
the training of discriminator networks more consistent and thus enforce the Lipschitz constraint
without computing any additional gradient, reducing the computational cost of discriminator train-
ing. The Lipschitz constant of the discriminator function f is controlled via spectral normalization,
which is achieved by restricting the spectral norm of each layer. Power iteration method Golub and
Van der Vorst [2000] is used to estimate the Spectral Norm at each optimization step of the Critic in
a GANs optimization Setup, thus fulfilling the 1-Lipschitz condition with less computational cost
than gradient penalty. Nonetheless this regularization technique is also useful to stabilize training
in Standard GAN, since it provides regularity in the Discriminator. Models trained by Gradient
Penalty will be denoted by ”GP” and using spectral normalization will be denoted by ”SN”.

6.3.6 Relativistic Discriminator
The intuition that the likelihood that real data are real D(xr) should decline as the likelihood

that fake data are real (D(G(z)) increases, is the main argument for this approach. This is the main
missing attribute of SGAN. The authors (Jolicoeur-Martineau [2019]) proposed D(x) = σ(C(x))
as a way to define the discriminator in a typical GAN in terms of the transformed layer C(x).
A straightforward method for making the discriminator relativistic (i.e., having the output of D
depend on both real and false data) is to sample from real/fake data pairs x = (xr,G(z)) and define
D(x) = σ(C(xr)−C(G(z)).

This alteration may be interpreted as follows: The discriminator evaluates the likelihood that
the provided real data is more realistic than a randomly picked set of fake data. In a similar fashion,
we may define Drev(x) = σ(C(G(z))−C(xr)) as the probability that the provided fake data is more
realistic than randomly picked real data, for an Average Relativistic Discriminator. Models having
a relativistic discriminator will be suffixed by ”_Rel” and for average relativistic discriminator the
suffixe ”_RelA” will be used.

Fréchet Inception Distance

Images generated by a generative model, such as a generative adversarial network, may be
evaluated using the Fréchet inception distance (FID) Heusel et al. [2017], the FID compares your
generated data to a real-world dataset, the training data set. This score relies on the Fréchet Dis-
tance between two multidimensional gaussian distribution p1, p2 where pi ∼N (µi,Σi), defined as
follow:

dF(p1, p2) = ||µ1−µ2||22 +Tr(Σ1 +Σ2−2(Σ1Σ2)
1
2) (6.10)

Inception score is then defined as the Fréchet distance between the output of the last convolutional
layer of the Inception Model Szegedy et al. [2015] trained on image classification for the generated
data with the generator and also the training data. The Gaussian is the maximum entropy distri-
bution for given mean and covariance, therefore we assume the coding units of Inception Model
for unseen data to follow a multidimensional Gaussian distribution. Let f be the Inception model
stripped from his last activation layer, the Fréchet Inception Score of a generative model G trained
on a data set (xi)1≤i≤n is defined as:

122

6.4 Numerical Results

Fscore(G) = dF(f (x), f (G(z)) (6.11)

Where (z j)1≤ j≤ns is a set of random variable to sample data from the generator, ns to be de-
termined empirically. Although this score is adequate to assess generative capabilities of GAN
models trained on image generation, it is not suited for physical data, in Preuer et al. [2018] the
authors propose a method to adapt the Fréchet Inception Score for chemical data by swapping the
Inception model by a Chemb1Net model which was trained on molecular data. In Obukhov and
Krasnyanskiy [2020] authors propose methods to adapt FID for generic Generative Adversarial
Network by swapping Inception model with an adequate classifier depending on the distribution
being learnt. In this chapter we propose an alternative to the inception model to compute the FID.
We train multiple Auto Encoder on our data and we use the latent space as a feature extractor for
computing the FID, every auto encoder model will be prefixed by "AE_".

The computation of the FID is an a posteriori approach to choose an appropriate GAN or
appropriate samples of the latent space of a GAN for which the generative phase of the generator
respects at best the distibution of the real physical data. In what follows, we only use the FID
to choose between several types of GANs (SGAN, WGAN, etc...) but not to choose subsamples
from the random latent space based on the FID computation. This intelligent subsampling may be
a prospect to this work in order to improve furthermore the generation mode of the generator. In
Akkari et al. [2021] the authors proposed a new cyclic architecture of the Variational AutoEncoder
(VAE) in order to improve the compression of the inputs training data within the Gaussian latent
space of the VAE. This cyclic architecture provides furthermore a practical criteria for stopping the
learning phase of a variational bayesian method which is in general a hard task. The VAE trained
by the cyclic architecture on reacting fluid flow instantaneous velocities and pressures, provided
in the generation phase velocity fields that respect the mass conservation principle, which gives
some insights to adapt the same paradigm to obtain physical stopping criteria for GANs training
and physical quality assessment of the Generator’s samples.

6.4 Numerical Results
All models were trained using Kingma and Ba [2014] optimizer and a learning rate of 0.0001,

1000 epoch for Regression models, and 10000 epochs for GAN models. In the following, all fig-
ures show results on the area of interest. In all tables, results in bold black indicate best results,
results in blue indicate results within an acceptable threshold, and results in red indicate unaccept-
able results.

6.4.1 Regression - DcNR and Auto Encoder

Table 6.2: Train error on boundary data

Basic BN
Conv2D t 1.63 1.19
Conv3D 2.15 0.82

Conv2.5D 1.71 1.07
Conv2.5Db 14.91 6.04

123

Chapter 6. Uncertainty quantification in impact simulation via conditional Wasserstein Generative Adversarial
Network

Table 6.3: Test error on boundary data

Basic BN
Conv2D t 2.99 2.73
Conv3D 3.63 2.34

Conv2.5D 2.51 2.27
Conv2.5Db 16.91 6.68

(a) (t1,uz1) (b) (t1,uz2) (c) (t2,uz1) (d) (t2,uz2)

Figure 6.8: Real values displacement : train example

(a) (t1,uz1) (b) (t1,uz2) (c) (t2,uz1) (d) (t2,uz2)

Figure 6.9: Real values displacement : test example

(a) (t1,uz1) (b) (t1,uz2) (c) (t2,uz1) (d) (t2,uz2)

Figure 6.10: Regression prediction : train

124

6.4.1 Regression - DcNR and Auto Encoder

(a) (t1,uz1) (b) (t1,uz2) (c) (t2,uz1) (d) (t2,uz2)

Figure 6.11: Regression prediction : test

(a) (t1,uz1) (b) (t1,uz2) (c) (t2,uz1) (d) (t2,uz2)

Figure 6.12: Regression error : train

(a) (t1,uz1) (b) (t1,uz2) (c) (t2,uz1) (d) (t2,uz2)

Figure 6.13: Regression error : test

125

Chapter 6. Uncertainty quantification in impact simulation via conditional Wasserstein Generative Adversarial
Network

Figure 6.14: Regression error

Tables 6.2 and 6.3 show the time averaged errors of each of the trained models, show also that
the model that achieved the best bias-variance trade off is the decomposed model Conv2.5D, which
we use to visualize field prediction and errors in figures 6.10, 6.9, 6.11 and 6.13. These figures
show that the zoom operation hold the regularization property over the error, since prediction error
from the neural networks on the boundary is damped and not propagated by the FEM Zoom model
inside the area of interest. Figure 6.14 as well as the figure cited before, shows that the model
holds an acceptable generalization error considering its training error.

Table 6.4: Train reconstruction error

Basic BN
Conv2D t 1.06 0.42
Conv3D 3.81 1.18

Conv2.5D 18.81 18.76
Conv2.5Db 19.77 19.04

Table 6.5: Test reconstruction error

Basic BN
Conv2D t 1.80 1.19
Conv3D 8.18 5.12

Conv2.5D 18.02 17.96
Conv2.5Db 19.05 18.29

Tables 6.4 and 6.5 show the time averaged reconstructions errors of each of the trained auto
encoder models, they also show that the model that achieved the best bias-variance trade off is
the model Conv2D_t which we use in computing the FID for every GAN model in the following
section.

126

6.4.2 Adversarial Regression - GANs

6.4.2 Adversarial Regression - GANs

A proposal for doing high-dimensional non-linear regression together with uncertainty esti-
mates is called adversarial regression. We were able to acquire an estimate of the whole predictive
distribution for a new observation by making use of a Conditional Generative Adversarial Network
conditioned by the full parameters vector, and considering a prediction is the mean over 20 samples
of the GAN.

Table 6.6: Train error on boundary data

GP SN GP Rel SN Rel GP RelA SN RelA
W Conv3D 3.33 98.24 2798.90 1294.64 786.27 699.39

W Conv2.5D 124.14 7.43 6265.38 27072.76 2549.51 7174.98
W Conv2.5Db 15.53 41.68 2200.40 2522.38 57.71 5865.62

S Conv3D 36.30 36.30 36.30 36.30 36.30 36.30
S Conv2.5D 38.40 38.40 38.40 38.40 38.40 38.40

S Conv2.5Db 37.72 37.72 37.72 37.72 37.72 37.72

Table 6.7: Test error on boundary data

GP SN GP Rel SN Rel GP RelA SN RelA
W Conv3D 4.67 98.97 2798.85 1308.06 864.86 694.23

W Conv2.5D 124.01 8.97 6282.58 27535.28 2552.15 7172.90
W Conv2.5Db 16.26 41.76 2213.97 2538.36 56.58 5913.20

S Conv3D 36.35 36.35 36.35 36.35 36.35 36.35
S Conv2.5D 38.55 38.55 38.55 38.55 38.55 38.55

S Conv2.5Db 37.82 37.82 37.82 37.82 37.82 37.82

Table 6.8: FID

GP SN GP Rel SN Rel GP RelA SN RelA
W Conv3D 2.97 40.42 45.69 41.74 40.49 50.61

W Conv2.5D 51.42 9.06 42.21 42.54 41.77 48.95
W Conv2.5Db 11.79 53.07 40.69 43.14 53.43 38.21

S Conv3D 63.12 63.12 63.12 63.12 63.12 63.12
S Conv2.5D 63.12 63.12 63.12 63.12 63.12 63.12

S Conv2.5Db 53.96 53.96 53.96 53.96 53.96 53.96

127

Chapter 6. Uncertainty quantification in impact simulation via conditional Wasserstein Generative Adversarial
Network

(a) (t1,uz1) (b) (t1,uz2) (c) (t2,uz1) (d) (t2,uz2)

Figure 6.15: Adversarial Regression prediction : train

(a) (t1,uz1) (b) (t1,uz2) (c) (t2,uz1) (d) (t2,uz2)

Figure 6.16: Adversarial Regression prediction : test

(a) (t1,uz1) (b) (t1,uz2) (c) (t2,uz1) (d) (t2,uz2)

Figure 6.17: Adversarial Regression error : train

(a) (t1,uz1) (b) (t1,uz2) (c) (t2,uz1) (d) (t2,uz2)

Figure 6.18: Adversarial Regression error : test

128

6.4.3 Uncertainty quantification by a conditional GAN

Figure 6.19: Adversarial regression error

Table 6.8 shows that the model that achieves the best FID (the lower the better since its a mesure
of dissimilarity with real data) is a Wasserstein GAN relying on gradient Penalty and Conv2.5D
architecture, thus having equivalent results to the tables 6.6 and 6.7 which show that this model
achieves the best training and testing errors. In addition it is the only model that achieves accept-
able scores, since most other models suffered from mode collapse during training, despite the fact
of using different regularization methods as Spectral Normalization and Relativistic discriminator.
The tables shows that Spectral Normalization does not suffice to enforce the Lipschitz constraint
on the Discriminator since the same model where we used SN instead of gradient penalty achieves
poor scores. Models with Standard cost functions suffered the most from mode collapse despite the
use of gradient penalty and or Relativistic discriminator, the use of the latter in Wasserstein GAN
with Gradient penalty seems to worsen the results even more. We use the WGAN-GP model with
a Conv2.5D architecture to visualize field prediction and errors in figures 6.15, 6.16, 6.17 and 6.18.
These figures show that the zoom operation hold the regularization property over the error, since
prediction error from the neural nets on the boundary is damped and not propagated by the FEM
Zoom model inside the area of interest. Figure 6.19 as well as the figure cited before, shows that
the model holds an acceptable generalization error considering its training error, an error superior
of the CNN generalization error, which can be explained by the random input of the generator, thus
it can be used as a parameterized uncertainty propagation tool for full parametric values.

6.4.3 Uncertainty quantification by a conditional GAN

Table 6.9: Train error on boundary data

GP SN GP Rel SN Rel GP RelA SN RelA
W Conv3D 4.60 66.01 452.31 258.70 142.19 176.07

W Conv2.5D 172.21 34.96 411.73 670.92 2691.18 1972.43
W Conv2.5Db 21.78 74.79 97.61 1621.86 58.24 162.57

S Conv3D 41.66 41.66 41.66 41.66 41.66 41.66
S Conv2.5D 46.42 46.42 46.42 46.42 46.42 46.42

S Conv2.5Db 48.78 48.78 48.78 48.78 48.78 48.78

129

Chapter 6. Uncertainty quantification in impact simulation via conditional Wasserstein Generative Adversarial
Network

Table 6.10: Test error on boundary data

GP SN GP Rel SN Rel GP RelA SN RelA
W Conv3D 5.20 59.60 811.07 483.07 75.23 210.59

W Conv2.5D 160.90 34.06 369.64 1682.36 3762.59 1942.01
W Conv2.5Db 21.05 72.71 101.29 2013.95 57.66 158.27

S Conv3D 41.39 41.39 41.39 41.39 41.39 41.39
S Conv2.5D 45.77 45.77 45.77 45.77 45.77 45.77

S Conv2.5Db 48.19 48.19 48.19 48.19 48.19 48.19

Table 6.11: FID

GP SN GP Rel SN Rel GP RelA SN RelA
W Conv3D 18.78 42.42 43.83 42.42 40.71 45.41

W Conv2.5D 54.81 46.00 46.00 51.62 41.51 44.41
W Conv2.5Db 14.36 58.62 44.74 44.25 46.77 42.66

S Conv3D 63.12 63.12 63.12 63.12 63.12 63.12
S Conv2.5D 53.96 53.96 53.96 53.96 53.96 53.96

S Conv2.5Db 63.12 63.12 63.12 63.12 63.12 63.12

(a) (t1,uz1) (b) (t1,uz2) (c) (t2,uz1) (d) (t2,uz2)

Figure 6.20: Mean over training data

(a) (t1,uz1) (b) (t1,uz2) (c) (t2,uz1) (d) (t2,uz2)

Figure 6.21: GAN mean prediction

130

6.4.3 Uncertainty quantification by a conditional GAN

(a) (t1,uz1) (b) (t1,uz2) (c) (t2,uz1) (d) (t2,uz2)

Figure 6.22: GAN mean error

Figure 6.23: GAN mean error

Figure 6.24: Maximum of amplitude histogram

Table 6.11 shows that the model that achieves the best FID is a Wasserstein GAN relying on
gradient Penalty and Conv2_5Db architecture, thus having equivalent results to the tables 6.9 and
6.10 which show that this model achieves the best training and testing errors. Also mostly equiva-
lent to results from adversarial regression where the same variant achieved the best scores but with
a different reduced architecture. In addition it is the only model that achieves acceptable scores,
since most other models suffered, again, from mode collapse during training, despite the fact of us-
ing different regularization methods as Spectral Normalization and Relativistic discriminator. The

131

Chapter 6. Uncertainty quantification in impact simulation via conditional Wasserstein Generative Adversarial
Network

tables demonstrate that Spectral Normalization is insufficient to fulfill its function of enforcing the
Lipschitz constraint on the Discriminator. This is because the scores obtained by the same model
when gradient penalty was substituted for SN were unsatisfactory. In spite of the application of
gradient penalty and/or relativistic discriminator, models that used standard cost functions were
the ones that suffered the most from mode collapse. Using relativistic discriminator in conjunction
with gradient penalty in Wasserstein GAN appears to make the results even worse. We use the
WGAN-GP model with a Conv2.5Db architecture to visualize statistical field prediction and his-
togram plots, we choose to predict the maximum of amplitude of the wave propagated following
the axis z. In figure 6.21, one can see that GAN achieve an acceptable error for estimating the
mean of the training data. The Figure shows that the zoom operation of the submodel helds the
same correction properties over the noise and errors introduced by the use of convolutional layers
and also noise introduced by the GAN’s random component. Figures 6.24 shows that our approach
hold generative properties that are useful for uncertainty quantification, although not exploring ex-
actly the same probabilistic space, behavior that should be explained by either a not converged
training or the effects of the low dimension size of the random vectors in GANs input (z) taken in
training, 3 in this work. This figure also shows that the GAN plus physical submodel approach still
holds acceptable generative properties that alloy the user to compute statistics over value of interest
using Monte Carlo methods which are not feasible with the high fidelity model. In addition, our
approach shows generative capacity exploring extremum values that have not been considered in
the training set as shown in Figure 6.24 where our approach has good generative capacity on one
of the density tails.

6.5 Conclusion
In this chapter we presented a novel method to assess for parametric and non-parametric uncer-

tainty quantification using the same model, a Conditional Wasserstein GAN, relying on physical
submodels over an area of interest. We used for training decomposition and regularization meth-
ods for training deep learning models for physical data which were discussed in length in this
manuscript. We have empirically shown that our methods obtain good generative abilities while
reducing the dimensionality of the learning problem and thus reducing the training cost of our
models by restricting our attention to the boundary of a submodel. We fulfill the necessary condi-
tion that the cost of each run of the physical submodel is smaller than the cost of running the full
physical model. Better precision is reached in the parametric view, by using DcNR’s. Besides, in
the situation where some of the parameters distribution is unknown (epistemic uncertainties), only
mixed approaches, like conditional GAN, are feasible. For that, using the Wasserstein-GAN as a
boundary conditions generator, we showed a high value of the discrepancy and generative ability
in the Monte Carlo sampling method, while keeping physical consistency thanks to the learned
boundary conditions, thus offering better generative behavior in the exploration of density tails.

132

Chapter 7

Conclusion

Contents
7.1 Main results and contributions . 133

7.2 Publication and valorizations . 134

7.3 Perspectives . 135

7.1 Main results and contributions

The thesis major goal was to develop effective and resilient numerical approaches, as well
as deep learning methods, for the reduction of parametric and/or non-parametric contact models
in structural dynamics, with impact zone scenarios that might grow over time on cabin aviation
equipment. It is a matter of being able to swiftly investigate various impact scenarios by learning
submodels and identifying the contact boundary conditions and/or the physical fields of the de-
formed seat. The examination of the spatial, temporal, and parametric variability of the scenario is
then refined using a stable physical reduced order model.

In this work, we were only interested in non-intrusive and non-projection-based model reduc-
tion approaches, i.e.without performing a projection of the continuous PDEs on a reduced basis.
Non-intrusive approaches rely only on data driven method of modeling without using any physical
information in the construction or the training of the reduced model, whereas intrusive methods
use all the physical information available such as the exact PDE solved to construct their reduced
model by projecting the equations on lower dimension spaces or constraining models with the
equations in the training phase. In our approach we started by investigating the capacity of linear
models relying on modal analysis to construct a regression model for a non-reducible problem, we
also showed the benefits and the costs of considering both parametric and time-space information
in the modal analysis step.

We compared linear methods to deep convolutional neural regressor and we illustrate that for
contact cases such as the one investigated, linear methods behave very poorly and it is recom-
mended to use non-linear data driven methods such as DcNR. We also illustrate that having the
time step as a parameter of the DcNR helps reducing the dependency of the error with respect to
the time.

Afterwards we proposed a random generator of boundary conditions for fast submodels by
using machine learning. We showed that the use of non-linear techniques in machine learning
and data-driven methods is highly relevant. Since the goal is to learn the underlying probabilis-
tic distribution of uncertainty in the data. We used a Generative Adversarial Networks where the

133

Chapter 7. Conclusion

Wasserstein-GAN with gradient penalty variant offered optimal convergence results for our prob-
lem.

The objective of our approach was to train a GAN on data from a finite element method code so
as to extract stochastic boundary conditions for faster finite element predictions on a submodel. In
the exploitation phase, the framework can be viewed as a randomized and parameterized simulation
generator on the submodel, which can be used as a Monte Carlo estimator. We have empirically
shown that our methods obtain comparable and slightly better estimation of physical fields than
classical neural networks approaches, while reducing the dimensionality of the learning problem
and thus reducing the training cost of our models by restricting our attention to the boundary of a
submodel, thus offering better generative behavior in the exploration of density tails.

Then we proposed a compression techniques for convolutional neural networks which is able to
decrease the size of CNN models that are created via the minimization of the number of parameters
that contribute to the models elevated levels of complexity. The overfitting phenomena is also
reduced. In this work we presented a method of compressing convolutional neural networks for
FEM physical data and approaches to optimize data from FEM models for CNN training. The
compression approach proposed can also be applied to learning data in higher dimensions since
the complexity of the models is linearly dependent of the dimension and actual deep learning code
library only allow up to 3D data learning.

Finally we apply the generative model with a structural zoom approach to an explicit dynamic
contact 3D problem. The main purpose of this work is to evaluate the stability of the training
algorithm proposed and the precision of the Monte Carlo estimator constructed with respect to
the true solutions of interest, which are the displacement fields. Our objective was to study wave
propagation and reflection phenomena on the plate following the shock over a discretized time
grid. In this work we presented a novel method to assess for parametric and non-parametric uncer-
tainty quantification using the same model, a Conditional Wasserstein GAN, relying on physical
submodels over an area of interest. We used for training decomposition and regularization meth-
ods for training deep learning models for physical data which were discussed in length in this
manuscript. We have empirically shown that our methods obtain good generative abilities while
reducing the dimensionality of the learning problem and thus reducing the training cost of our
models by restricting our attention to the boundary of a submodel. We fulfill the necessary condi-
tion that the cost of each run of the physical submodel is smaller than the cost of running the full
physical model. Besides, in the situation where some of the parameters distribution is unknown
(epistemic uncertainties), only mixed approaches, like conditional GAN, are feasible. For that,
using the Wasserstein-GAN as a boundary conditions generator, we showed a high value of the
discrepancy and generative ability in the Monte Carlo sampling method, while keeping physical
consistency thanks to the learned boundary conditions, thus offering better generative behavior in
the exploration of density tails.

7.2 Publication and valorizations

• Results from chapter 3 were submitted and accepted in ESAIM : Proceedings and Sur-
veys as proceedings following CEMRACS 2021 : Parametrized non-intrusive space-time
approximation for explicit dynamic fem applications, Hamza BOUKRAICHI, Nassim
RAZAALY, Nissrine AKKARI, Fabien CASENAVE, David RYCKELYNCK.

• Results from chapter 4 were submitted and accepted in IFAC-PapersOnLine following
Mathmod 2022 : Uncertainty quantification in a mechanical submodel driven by a

134

7.3 Perspectives

Wasserstein-GAN, Hamza BOUKRAICHI, Nissrine AKKARI, Fabien CASENAVE, David
RYCKELYNCK, IFAC-PapersOnLine,Volume 55, Issue 20, 2022.

• Results from chapters 5 and 6 will soon be submitted for publication in journals.

• Some results from chapters 5 and 6 have been the subject of a patent application.

• Developpement undertaken in 5 and 6 lead to a code library combining all the approaches
presented and developped in this thesis, this library is available open source (Repository links
will be added upon publication) for results reproducibility purposes.

7.3 Perspectives

Figure 7.1: Uncertainty quantification computation loop for the spreader

The principal perspective of this work might the implementation of the full computational
uncertainty quantification loop developed in this manuscript as it can be seen in Figure 7.1.

In addition, an extension of the work carried on this thesis is to focus on the reliability of
a GAN to produce fully coherent physical boundary data, even though convergence results have
been already published and metrics for quantifying their generative capabilities for image synthesis
has already been proven, but except in the paradigm of physics informed neural nets, there is no
metrics to assess for their reliability in physical uncertainty quantification context. A logical next
step would be the development of such metrics. Finally, given the recent research on generative
models, such as diffusion models, which outperformed GANs in most image synthesis problem,
one could consider adapting them to the same paradigm proposed here for generating boundary
conditions for FEM models.

135

Bibliography

Abbasnejad, M. E., Shi, Q., Hengel, A. v. d., and Liu, L. (2019a). A generative adversarial den-
sity estimator. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10782–10791.

Abbasnejad, M. E., Shi, Q., Hengel, A. V. D., and Liu, L. (2019b). A generative adversarial density
estimator. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Adamson, P. (2012). Stanford encyclopedia of philosophy.

Adhikari, S. and Chowdhury, R. (2010). A reduced-order random matrix approach for stochastic
structural dynamics. Computers & Structures, 88(21-22):1230–1238.

Akkari, N., Casenave, F., Daniel, T., and Ryckelynck, D. (2021). Data-targeted prior distribution
for variational autoencoder. Fluids, 6(10):343.

Akkari, N., Mercier, R., and Moureau, V. (2018). Geometrical reduced order modeling (rom) by
proper orthogonal decomposition (pod) for the incompressible navier stokes equations. In 2018
AIAA Aerospace Sciences Meeting, page 1827.

Almroth, B. O., Stern, P., and Brogan, F. A. (1978). Automatic choice of global shape functions in
structural analysis. Aiaa Journal, 16(5):525–528.

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J.,
Rognes, M. E., and Wells, G. N. (2015). The fenics project version 1.5. Archive of Numerical
Software, 3(100).

An, S. S., Kim, T., and James, D. L. (2008). Optimizing cubature for efficient integration of
subspace deformations. ACM transactions on graphics (TOG), 27(5):1–10.

Arjovsky, M. and Bottou, L. (2017). Towards principled methods for training generative adversar-
ial networks. In International Conference on Learning Representations.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks. In
International conference on machine learning, pages 214–223. PMLR.

Azadi, S., Olsson, C., Darrell, T., Goodfellow, I., and Odena, A. (2018). Discriminator rejection
sampling. arXiv preprint arXiv:1810.06758.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Balajewicz, M., Amsallem, D., and Farhat, C. (2015). Projection-based model reduction for con-
tact problems.

137

BIBLIOGRAPHY

Balajewicz, M., Amsallem, D., and Farhat, C. (2016a). Projection-based model reduction for
contact problems. International Journal for Numerical Methods in Engineering, 106(8):644–
663.

Balajewicz, M., Amsallem, D., and Farhat, C. (2016b). Projection-based model reduction for
contact problems. International Journal for Numerical Methods in Engineering, 106(8):644–
663.

Barratt, S. and Sharma, R. (2018). A note on the inception score. arXiv preprint arXiv:1801.01973.

Batou, A., Soize, C., and Audebert, S. (2015). Model identification in computational stochastic dy-
namics using experimental modal data. Mechanical Systems and Signal Processing, 50-51:307–
322.

Beccantini, A., Bliard, F., Bouda, P., de Lambert, S., Drui, F., Galon, P., Jamond, O., and Lelong,
N. (2022). Europlexus: un code de référence pour la dynamique rapide et l’interaction fluide-
structure. In CSMA 2022-15ème Colloque National en Calcul des Structures.

Benaceur, A. (2018). Réduction de modèles en thermique et mécanique non-linéaires. Theses,
Université Paris-Est Marne la Vallée.

Benaceur, A., Ern, A., and Ehrlacher, V. (2020). A reduced basis method for parametrized varia-
tional inequalities applied to contact mechanics. International Journal for Numerical Methods
in Engineering, 121(6):1170–1197.

Bigolin Lanfredi, R., Schroeder, J. D., Vachet, C., and Tasdizen, T. (2019). Adversarial regression
training for visualizing the progression of chronic obstructive pulmonary disease with chest
x-rays. In International Conference on Medical Image Computing and Computer-Assisted In-
tervention, pages 685–693. Springer.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877.

Bode, M., Gauding, M., Lian, Z., Denker, D., Davidovic, M., Kleinheinz, K., Jitsev, J., and Pitsch,
H. (2019). Using physics-informed super-resolution generative adversarial networks for subgrid
modeling in turbulent reactive flows. CoRR, abs/1911.11380.

Boget, Y. (2019). Adversarial regression. generative adversarial networks for non-linear regres-
sion: Theory and assessment. arXiv preprint arXiv:1910.09106.

Borg, I. and Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applications.
Springer Science & Business Media.

Bottou, L. and Bousquet, O. (2007). The tradeoffs of large scale learning. Advances in neural
information processing systems, 20.

Boukraichi, H., Akkari, N., Casenave, F., and Ryckelynck, D. (2021). Uncertainty quantification
in a mechanical submodel driven by a wasserstein-gan. arXiv preprint arXiv:2110.13680.

Box, G. E. and Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical
Society: Series B (Methodological), 26(2):211–243.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

138

BIBLIOGRAPHY

Calandra, H., Gratton, S., Riccietti, E., and Vasseur, X. (2019). On the approximation of the
solution of partial differential equations by artificial neural networks trained by a multilevel
levenberg-marquardt method. arXiv preprint arXiv:1904.04685.

Casella, G. (1985). An introduction to empirical bayes data analysis. The American Statistician,
39(2):83–87.

Casenave, F., Akkari, N., Bordeu, F., Rey, C., and Ryckelynck, D. (2020). A nonintrusive dis-
tributed reduced-order modeling framework for nonlinear structural mechanics—application to
elastoviscoplastic computations. International journal for numerical methods in engineering,
121(1):32–53.

Chatterjee, A. (2000). An introduction to the proper orthogonal decomposition. Current science,
pages 808–817.

Chen, W., Wilson, J. T., Tyree, S., Weinberger, K. Q., and Chen, Y. (2015). Compressing convolu-
tional neural networks. arXiv preprint arXiv:1506.04449.

Chinesta, F., Ammar, A., and Cueto, E. (2010). Recent advances and new challenges in the use of
the proper generalized decomposition for solving multidimensional models. Archives of Com-
putational methods in Engineering, 17(4):327–350.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and Bharath, A. A. (2018).
Generative adversarial networks: An overview. IEEE signal processing magazine, 35(1):53–65.

Csáji, B. C. et al. (2001). Approximation with artificial neural networks. Faculty of Sciences, Etvs
Lornd University, Hungary, 24(48):7.

Domanov, I. and Lathauwer, L. D. (2014). Canonical polyadic decomposition of third-order ten-
sors: Reduction to generalized eigenvalue decomposition. SIAM Journal on Matrix Analysis
and Applications, 35(2):636–660.

Dubey, S. R., Singh, S. K., and Chaudhuri, B. B. (2022). Activation functions in deep learning: A
comprehensive survey and benchmark. Neurocomputing.

Dumoulin, V. and Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv
preprint arXiv:1603.07285.

Eckart, C. and Young, G. (1936). The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218.

Everson, R. and Sirovich, L. (1995a). Karhunen–loeve procedure for gappy data. JOSA A,
12(8):1657–1664.

Everson, R. and Sirovich, L. (1995b). Karhunen–loeve procedure for gappy data. JOSA A,
12(8):1657–1664.

Evert, E., Vandecappelle, M., and De Lathauwer, L. (2022). Canonical polyadic decomposition
via the generalized schur decomposition. IEEE Signal Processing Letters, 29:937–941.

Farhat, C., Avery, P., Chapman, T., and Cortial, J. (2014). Dimensional reduction of nonlinear finite
element dynamic models with finite rotations and energy-based mesh sampling and weighting
for computational efficiency. International Journal for Numerical Methods in Engineering,
98(9):625–662.

139

BIBLIOGRAPHY

Farhat, C., Bos, A., Tezaur, R., Chapman, T., Avery, P., and Soize, C. (2018). A stochastic
projection-based hyperreduced order model for model-form uncertainties in vibration analysis.
In 2018 AIAA Non-Deterministic Approaches Conference, page 1410.

Fauque, J., Ramière, I., and Ryckelynck, D. (2018). Hybrid hyper-reduced modeling for contact
mechanics problems. International Journal for Numerical Methods in Engineering, 115(1):117–
139.

Fefferman, C., Mitter, S., and Narayanan, H. (2016). Testing the manifold hypothesis. Journal of
the American Mathematical Society, 29(4):983–1049.

Friderikos, O., Olive, M., Baranger, E., Sagris, D., and David, C. (2021). A non-intrusive space-
time interpolation from compact stiefel manifolds of parametrized rigid-viscoplastic fem prob-
lems. arXiv preprint arXiv:2102.09216.

Gastaldi, C., Zucca, S., and Epureanu, B. I. (2018). Jacobian projection reduced-order models
for dynamic systems with contact nonlinearities. Mechanical Systems and Signal Processing,
100:550–569.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the bias/variance
dilemma. Neural computation, 4(1):1–58.

Giacoma, A., Dureisseix, D., Gravouil, A., and Rochette, M. (2014). A multiscale large time
increment/fas algorithm with time-space model reduction for frictional contact problems. Inter-
national Journal for Numerical Methods in Engineering, 97(3):207–230.

Golub, G. H. and Van der Vorst, H. A. (2000). Eigenvalue computation in the 20th century. Journal
of Computational and Applied Mathematics, 123(1-2):35–65.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.
deeplearningbook.org.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing
systems, 27.

Guedri, M., Cogan, S., and Bouhaddi, N. (2012). Robustness of structural reliability analyses to
epistemic uncertainties. Mechanical Systems and Signal Processing, 28:458–469.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017). Improved training
of wasserstein gans.

Géradin, M. and Rixen, D. J. (2016). A ‘nodeless’ dual superelement formulation for structural
and multibody dynamics application to reduction of contact problems. International Journal for
Numerical Methods in Engineering, 106(10):773–798.

Haas, M. and Richter, S. (2020). Statistical analysis of wasserstein gans with applications to time
series forecasting. arXiv preprint arXiv:2011.03074.

Hameed, M. G. A., Tahaei, M. S., Mosleh, A., and Nia, V. P. (2022). Convolutional neural network
compression through generalized kronecker product decomposition. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages 771–779.

140

http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY

Han, J., Jentzen, A., and E, W. (2018). Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510.

Hernandez, Q., Badías, A., González, D., Chinesta, F., and Cueto, E. (2021). Deep learning of
thermodynamics-aware reduced-order models from data. Computer Methods in Applied Me-
chanics and Engineering, 379:113–763.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are univer-
sal approximators. Neural networks, 2(5):359–366.

Ioffe, S. and Szegedy, C. (2015a). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pages 448–
456. PMLR.

Ioffe, S. and Szegedy, C. (2015b). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167.

James, G. M. (2003). Variance and bias for general loss functions. Machine learning, 51(2):115–
135.

Jia, X. (2021). Physics-guided machine learning: A new paradigm for scientific knowledge dis-
covery. Microscopy and Microanalysis, 27(S1):1344–1345.

Jolicoeur-Martineau, A. (2019). The relativistic discriminator: a key element missing from stan-
dard GAN. In International Conference on Learning Representations.

Kim, B., Azevedo, V. C., Thuerey, N., Kim, T., Gross, M., and Solenthaler, B. (2019). Deep
fluids: A generative network for parameterized fluid simulations. In Computer graphics forum,
volume 38, pages 59–70. Wiley Online Library.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM review,
51(3):455–500.

Kullback, S. (1997). Information theory and statistics. Courier Corporation.

Labatie, A. (2019). Characterizing well-behaved vs. pathological deep neural networks. In Inter-
national Conference on Machine Learning, pages 3611–3621. PMLR.

Ladevèze, P., Passieux, J.-C., and Néron, D. (2010). The latin multiscale computational method
and the proper generalized decomposition. Computer Methods in Applied Mechanics and Engi-
neering, 199(21-22):1287–1296.

141

BIBLIOGRAPHY

Launay, H. (2021). Reduced models via machine learning to analyse the criticality of defects.
PhD thesis. Thèse de doctorat dirigée par Ryckelynck, David et Willot, François Mécanique
Université Paris sciences et lettres 2021.

Le Berre, S., Ramière, I., Fauque, J., and Ryckelynck, D. (2022). Condition number and clustering-
based efficiency improvement of reduced-order solvers for contact problems using lagrange mul-
tipliers. Mathematics, 10(9):1495.

Le Guennec, Y., Brunet, J.-P., Daim, F.-Z., Chau, M., and Tourbier, Y. (2018). A parametric
and non-intrusive reduced order model of car crash simulation. Computer Methods in Applied
Mechanics and Engineering, 338:186–207.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–444.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and Jackel, L. (1989).
Handwritten digit recognition with a back-propagation network. Advances in neural information
processing systems, 2.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Legault, J., Langley, R., and Woodhouse, J. (2012). Physical consequences of a nonparametric
uncertainty model in structural dynamics. Journal of Sound and Vibration, 331(25):5469–5487.

Liu, J.-P., Shu, X.-B., Kanazawa, H., Imaoka, K., Mikkola, A., and Ren, G.-X. (2018). A model
order reduction method for the simulation of gear contacts based on arbitrary lagrangian eulerian
formulation. Computer Methods in Applied Mechanics and Engineering, 338:68–96.

Liu, M.-Y. and Tuzel, O. (2016). Coupled generative adversarial networks. Advances in neural
information processing systems, 29.

Long, Z., Lu, Y., Ma, X., and Dong, B. (2018). Pde-net: Learning pdes from data. In International
Conference on Machine Learning, pages 3208–3216. PMLR.

Lumley, J. L. (1967). The structure of inhomogeneous turbulent flows. Atmospheric turbulence
and radio wave propagation, pages 166–178.

Mallat, S. (2016). Understanding deep convolutional networks. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065):20150203.

Mescheder, L., Geiger, A., and Nowozin, S. (2018). Which training methods for gans do actually
converge? In International conference on machine learning, pages 3481–3490. PMLR.

Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784.

Mishra, S. (2019). A machine learning framework for data driven acceleration of computations of
differential equations. Mathematics in Engineering, 1(1):118–146.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral normalization for genera-
tive adversarial networks. In International Conference on Learning Representations.

Muller, N., Magaia, L., and Herbst, B. M. (2004). Singular value decomposition, eigenfaces, and
3d reconstructions. SIAM Review, 46(3):518–545.

142

BIBLIOGRAPHY

Murthy, R., Wang, X., Perez, R., Mignolet, M. P., and Richter, L. A. (2012). Uncertainty-based
experimental validation of nonlinear reduced order models. Journal of Sound and Vibration,
331(5):1097–1114.

Obukhov, A. and Krasnyanskiy, M. (2020). Quality assessment method for gan based on modified
metrics inception score and fréchet inception distance. In Proceedings of the Computational
Methods in Systems and Software, pages 102–114. Springer.

Opitz, D. and Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal of
artificial intelligence research, 11:169–198.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Te-
jani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572.

Pham, G.-T., Boyer, R., and Nielsen, F. (2018a). Computational information geometry for binary
classification of high-dimensional random tensors. Entropy, 20(3):203.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018b). Efficient neural architecture search
via parameters sharing. In Dy, J. and Krause, A., editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 4095–4104. PMLR.

Pilipović, R., Bulić, P., and Risojević, V. (2018). Compression of convolutional neural networks: A
short survey. In 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH), pages
1–6. IEEE.

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and Klambauer, G. (2018). Fréchet chemblnet
distance: A metric for generative models for molecules. arXiv preprint arXiv:1803.09518.

Raissi, M. and Karniadakis, G. E. (2018). Hidden physics models: Machine learning of nonlinear
partial differential equations. Journal of Computational Physics, 357:125–141.

Raissi, M., Perdikaris, P., and Karniadakis, G. (2019). Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017a). Physics informed deep learning
(part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017b). Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2018). Numerical gaussian processes for time-
dependent and nonlinear partial differential equations. SIAM Journal on Scientific Computing,
40(1):A172–A198.

143

BIBLIOGRAPHY

Ranftl, S., von der Linden, W., and Committee, M. . S. (2021). Bayesian surrogate analysis and
uncertainty propagation. In Physical Sciences Forum, volume 3, page 6. MDPI.

Reynders, E., Langley, R. S., Dijckmans, A., and Vermeir, G. (2014). A hybrid finite element –
statistical energy analysis approach to robust sound transmission modeling. Journal of Sound
and Vibration, 333(19):4621–4636.

Roman, V. (2019). Unsupervised machine learning: Clustering analysis. Towards Data Science.

Rumelhart, D. E., Durbin, R., Golden, R., and Chauvin, Y. (1995). Backpropagation: The basic
theory. Backpropagation: Theory, architectures and applications, pages 1–34.

Ryckelynck, D. (2005). A priori hyperreduction method: an adaptive approach. Journal of Com-
putational Physics, 1(202):346–366.

Salimans, T. and Kingma, D. P. (2016). Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. Advances in neural information processing systems,
29.

Schaeffer, H. (2017). Learning partial differential equations via data discovery and sparse opti-
mization. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences, 473(2197):20160446.

Sheffer, A., Praun, E., Rose, K., et al. (2007). Mesh parameterization methods and their applica-
tions. Foundations and Trends® in Computer Graphics and Vision, 2(2):105–171.

Simo, J. C. and Laursen, T. (1992). An augmented lagrangian treatment of contact problems
involving friction. Computers & Structures, 42(1):97–116.

Singh, S., Uppal, A., Li, B., Li, C.-L., Zaheer, M., and Póczos, B. (2018). Nonparametric density
estimation under adversarial losses. arXiv preprint arXiv:1805.08836.

Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. Part III: dynamics and
scaling. Quarterly of applied mathematics, 45:583–590.

Soize, C. (2000). A nonparametric model of random uncertainties for reduced matrix models in
structural dynamics. Probabilistic Engineering Mechanics, 15(3):277–294.

Soize, C. (2005). Random matrix theory for modeling uncertainties in computational mechanics.
Computer methods in applied mechanics and engineering, 194(12-16):1333–1366.

Sun, R.-Y. (2020). Optimization for deep learning: An overview. Journal of the Operations
Research Society of China, 8(2):249–294.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and
Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1–9.

Turner, R., Hung, J., Frank, E., Saatchi, Y., and Yosinski, J. (2019). Metropolis-hastings generative
adversarial networks. In International Conference on Machine Learning, pages 6345–6353.
PMLR.

Villani, C. (2009). Optimal transport: old and new, volume 338. Springer.

144

BIBLIOGRAPHY

Wang, X., Mignolet, M. P., and Soize, C. (2020). Structural uncertainty modeling for nonlinear
geometric response using nonintrusive reduced order models. Probabilistic Engineering Me-
chanics, 60:103033.

Wriggers, P. (2006). Computational contact mechanics, volume 2. Springer.

Xie, L., Chen, X., Bi, K., Wei, L., Xu, Y., Wang, L., Chen, Z., Xiao, A., Chang, J., Zhang, X.,
et al. (2021). Weight-sharing neural architecture search: A battle to shrink the optimization gap.
ACM Computing Surveys (CSUR), 54(9):1–37.

Xie, Y., Franz, E., Chu, M., and Thuerey, N. (2018a). tempogan: A temporally coherent, volumet-
ric gan for super-resolution fluid flow. ACM Transactions on Graphics (TOG), 37(4):1–15.

Xie, Y., Franz, E., Chu, M., and Thuerey, N. (2018b). tempogan: A temporally coherent, volumet-
ric gan for super-resolution fluid flow. ACM Transactions on Graphics (TOG), 37(4):1–15.

Yang, Y. and Perdikaris, P. (2019). Adversarial uncertainty quantification in physics-informed
neural networks. Journal of Computational Physics, 394:136–152.

Yeo, I.-K. and Johnson, R. A. (2000). A new family of power transformations to improve normality
or symmetry. Biometrika, 87(4):954–959.

You, L., Zhang, J., Du, X., and Wu, J. (2020). A new structural reliability analysis method in
presence of mixed uncertainty variables. Chinese Journal of Aeronautics, 33(6):1673–1682.

Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R. (2010a). Deconvolutional networks.
In 2010 IEEE Computer Society Conference on computer vision and pattern recognition, pages
2528–2535. IEEE.

Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R. (2010b). Deconvolutional networks.
In 2010 IEEE Computer Society Conference on computer vision and pattern recognition, pages
2528–2535. IEEE.

145

MOTS CLÉS

Dynamique des structure, Apprentissage profond, Apprentissage automatique, Modèles d’ordre réduit,
Modèles génératifs, Quantification d’incertitude, Sous-modélisation, Zoom structurel, Apprentissage super-
visé, Modèles de régression.

RÉSUMÉ

L’Objectif principal de la thèse est le développement de méthodes numériques et des méthodes de deep learning effi-
caces et robustes pour la réduction des modèles paramétriques et/ou non-paramétriques de contact en dynamique des
structures, avec des scénarios de zones d’impact qui peuvent évoluer au niveau de l’équipement aéronautique en cabine.
L’approche consiste à déterminer une zone d’intérêt dans le modèle physique et à construire des modèles capables de
générer des conditions aux limites autour de la zone d’intérêt pour le modèle physique. Cette modélisation permettra
d’explorer l’espace paramétrique à l’aide du modèle génératif tout en conservant les caractéristiques de haute fidélité des
solutions physiques en résolvant le problème physique dans la zone d’intérêt, puis de l’utiliser pour tester une variété de
scénarios d’impact. Réduisant ainsi le coût de calcul du modèle physique. Notre code source pour Europlexus sera utilisé
pour créer le programme. Il y aura plus de développement Python pour les méthodes d’apprentissage automatique.

ABSTRACT

The primary goal of this thesis is to develop efficient and reliable numerical methods and deep learning methods for the
reduction of parametric and/or non-parametric contact models in structural dynamics, including impact zone scenarios
that can evolve over time on cabin aeronautical equipment. The approach is to determine a zone of interest in the physical
model and construct models capable of generating boundary conditions to the physical model around the zone of interest.
This modelisation will allow to explore the parametric space using the generative model while keeping the high-fidelity
caracteristics of the physical solutions by solving the physical problem in the area of interest, and then use it to test out a
variety of impact scenarios. Thus reducing the computational cost of the physical model. Our source code for Europlexus
will be used to create the program. There will be more Python development for deep learning methods.

KEYWORDS

Structural dynamics, Deep Learning, Machine Learning, Reduced Order Models, Generative Models, Uncer-
tainty Quantification, Submodeling, Structural Zoom, Supervised Learning, Regression Models.

	Introduction
	Industrial context
	Related work
	Thesis objective
	Thesis organization
	Development environment

	State of The art
	Introduction to Machine Learning
	Supervised learning paradigm
	Bias-Variance tradeoff
	Unsupervised Learning
	Ensemble learning
	Data scaling

	Dimension data reduction
	Singular value decomposition
	Proper Orthogonal Decomposition
	Gappy-POD
	Kernel Principal Component Analysis
	Multi dimensional scaling
	Proper generalized decomposition

	Introduction to Deep Learning
	Perceptrons
	Convolutional neural network
	Activation function
	Optimization step
	Autoencoder
	Neural nets are universal approximators
	Physics Informed Neural Networks

	Generative adversarial networks
	Standard Generative Adversarial Networks
	Conditional GAN
	IPM-based GANs
	Relativistic Discriminator
	Possible tasks with generative adversarial networks

	Uncertainty quantification for physical models
	Bayesian techniques

	Comparison between POD and CNN for regression in explicit dynamic
	Introduction
	Problem Definition
	Methodology
	parameterized POD
	Parameterized Space-Time POD
	Parameterized Space-Time POD: Interpolation on Grassmann Manifolds
	Deep convolutional neural regressor

	Numerical Examples
	Data Sampling
	Data preprocessing
	Trained metamodels
	Results

	Conclusion
	Supplementary results

	Uncertainty quantification in a mechanical submodel driven by a Wasserstein Generative Adversarial Network
	Introduction
	Related work
	Contribution

	Models
	Proper Orthogonal Decomposition (POD)
	Deep Convolutional Neural Regressor
	Wasserstein Generative Adversarial Network

	Use Case
	Domain definition
	Finite element models
	Dataset generation

	Numerical Results
	Data Sampling
	Trained submodels
	Parametric approach results
	Non-parametric approach results

	Conclusion

	Physics oriented data preprocessing for deep learning and optimization of deep learning architecture for physical data
	Introduction
	Proposed Approach
	Background
	Canonical Polyadic Decomposition of convolutional filters
	Approximation of the CPD of convolutional layers
	A priori decomposed convolutional layers

	Weight sharing
	Time regularization
	Developped models
	Models annotations

	Physical Data preprocessing
	Numerical results
	2D Wave propagation with one source point and early stopping
	2D wave propagation with one source point
	2D wave propagation with four source points

	Conclusion

	Uncertainty quantification in impact simulation via conditional Wasserstein Generative Adversarial Network
	Introduction
	Problem Definition
	Data processing
	Data Sampling

	Models
	Deep Convolutional Neural Regressor
	Generative Adversarial Network
	Vanilla GAN
	Wasserstein GAN
	Gradient Penalty and Spectral Normalization
	Relativistic Discriminator

	Numerical Results
	Regression - DcNR and Auto Encoder
	Adversarial Regression - GANs
	Uncertainty quantification by a conditional GAN

	Conclusion

	Conclusion
	Main results and contributions
	Publication and valorizations
	Perspectives

	Bibliography

