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Preface

Our relationship with energy has changed dramatically since the first industrial revolu-
tion which occurred in the late 18th century. Before this turning point, energy consumption
was constrained by the limitations of nature (supply of firewood for heating needs, muscle
power of men/draught animals and wind/water power for mechanical purposes). Economic
growth in such an environment could only be asymptotic. However, this situation changed
when societies began to access vast reservoirs of energy built up over the geological era.
Humans were no longer dependent on Nature, at least for a while, and exponential growth
became possible. From then on, industrial processes developed quickly, in particular thanks
to the invention of the steam engine, which converted heat energy into mechanical energy.

During the following two centuries, fossil fuels have been used intensively for around two
centuries in a large range of sectors: energy production, industry, transport, chemicals, etc.
Since they are finite resources, fossil fuel reserves will eventually run out. Based on this
observation, as far back as 1956, Hubbert stated that oil extraction follows a bell-shaped
curve: the production rate increases due to an abundance of easy-to-extract resources,
then reaches a peak before declining. The debate is still open as to when this peak will be
reached, but some energy scenarios expect an oil peak in the next three decades [1]. In 2005,
the Hirsch report [2] requested by the US Department of Energy regarding the impacts of
peaking oil production concludes that the decreasing supply of oil will lead to an increase
in fuel prices as well as political, economic and social instabilities. Fuel price is expected to
increase because of (1) population growth; and (2) less easy-to-extract resources.

Human economic growth has been possible thanks to large stocks of carbon-based ener-
gies. The combustion of these fossil fuels releases Greenhouse Gas (GHG) emissions which
are responsible for trapping heat in the atmosphere. When solar radiation reaches the
Earth’s atmosphere, part of it is reflected back into space while the other half is absorbed
by the surface, the atmosphere and clouds, which in return radiate infrared heat. This heat
is trapped by GHG, which are mainly transparent to incoming solar radiation but more ab-
sorbent to infrared radiation. This natural process contributed to the development of life on
Earth by providing a warm atmosphere, yet these ever-increasing rates of GHG are making
the planet hotter, which jeopardises the species living on it. The impact of global warming
on climate change is tremendous: glaciers are melting, sea levels are rising, extreme weather
events are becoming more frequent (e.g. floods, hotter heat waves, droughts, more powerful
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hurricanes, wildfires) [3].
These disasters directly threaten wildlife by disrupting habitats (climate changes alter

temperatures and water availability, which in return modify habitat and food availability and
force species to adjust rapidly). The temperature-induced phenomenon of coral bleaching
is one illustration of how species react to climate change. Nevertheless, through genetic
adaptation and a large reduction in carbon dioxide emissions could lead to a 20% to 80%
reduction in the bleaching rate of reefs expected by the year 2100 [4].

Human communities will not be spared by global warming. Among the direct and
indirect effects of climate change, rising sea level and extreme events such as floods are
likely to cause population exodus while drought events and fresh water supply issues will
put stress on food-producing systems. Such consequences could jeopardise the geopolitical
and economic stability of regions under pressure. Health issues are the object of serious
concerns [5]. The risk of illness and death is likely to increase, especially for older groups
of people as a result of increased heatwave intensity and frequency. Some studies have
highlighted the sensitivity of vector-borne and water-borne infectious diseases to climate:
for instance, higher temperature will expand the geographical distribution of malaria [6].
To conclude this paragraph on health issues, it is worth mentioning that the air pollution
situation described by Dickens in Bleak House is still present today, and is even more
worrying. In Europe, around 400, 000 premature deaths per year are due to exposure to
PM25 particles 2 resulting from anthropogenic activities [7]. The energy production sector is
the main contributor of GHG emissions (25% of worldwide emissions result from electricity
and heat generation [8]).

To have a significant impact on GHG reduction, radical measures must be taken. Several
options are being investigated and developed around the world. These include reducing our
energy consumption through the adoption of sober behaviours (i.e. promotion of the energy
sobriety concept which advocates reducing or avoiding energy consumption), and developing
energy-efficient building renovation strategies, among others. In parallel, an electricity pro-
duction paradigm shift has been initiated to replace carbon-based sources with renewable-
based sources (e.g. hydro-power, wind and solar power). Nonetheless, these production
means are highly weather-dependent, so that the large-scale integration of renewables raises
concerns regarding grid stability 3. Production forecasting appears as a promising solution
to deal with the variable and uncertain features of Renewable Energy Sources (RES). Yet,
several gaps remain to be filled to enable an adapted use in an industrial environment.

This situation provides the starting point for the present thesis. This work can be
viewed as a bridge between the academic and industrial fields, since it mobilises scientific
knowledge to respond to operational and tangible issues. This research work was per-
formed at the PERSEE Center 4 at Mines Paristech in collaboration with the Compagnie

2. Particulate matter with a diameter less than or equal to 2.5 µm.
3. At all times, electricity production must balance consumption.
4. Centre for processes, renewable energies and energy systems.
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Nationale du Rhône (CNR), which is France’s leading producer of exclusively renewable
energy. This work was developed under the supervision of Robin GIRARD (co-director),
Guillaume BONTRON (supervisor) and Georges KARINIOTAKIS (director).
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Chapter 1

Introduction

Smoke lowering down from chimney-pots, making a soft black
drizzle, with flakes of soot in it as big as full-grown snow-flakes —
gone into mourning, one might imagine, for the death of the sun.

Charles Dickens - Bleak House
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1.1. Context

1.1 Context

1.1.1 The goals of energy transition

To address the environmental crisis that we are facing, urgent actions must be undertaken
to decrease fossil fuel-based emissions and prepare the way for a decarbonised economy.

In 2015, the 21st Conference of the Parties (COP) of the United Nations Framework
Convention on Climate Change (UNFCCC) was held in Paris and gathered a total of 196
states. The Paris Agreement established the foundations of countries’ energy development
to limit the increase in average temperature to below 2°C in this century (with respect to
pre-industrial levels). By ratifying this agreement, states committed to propose plans to
reduce emissions and to turn to climate-resilient development. Despite, praise for the Paris
Agreement, no enforcement mechanism has been defined to assure real commitments. Thus,
each country can freely define its objectives. In France, several laws have been enacted, for
instance:

• The Energy Transition Law for Green Growth (Loi de Transition Energétique pour la
Croissance Verte (LTECV)) (2015) aims to reduce Greenhouse Gas (GHG) emissions
by 40% from 1990 to 2030 and to increase the share of renewable energies to 32% of
gross final energy consumption in 2030 [9].

• The Energie Climat law (2019) aims to achieve carbon neutrality by 2050 with a plan
to stop coal-based electricity production by 2022 [10].

To reach these goals, France has set up planning strategies including the National Low
Carbon Strategy (NLCS) [11] and the Multi Annual Energy Plan (MAEP) [12].

1.1.2 French energy mix

France has a very low-carbon electricity mix thanks to its high share of nuclear power
which accounted for around 67.1% of total production in 2020 [13], compared to 23.4% of
Renewable Energy Sources (RES) (Figure 1.1).

This situation is substantially due to the Messmer Plan initiated after the 1973 oil crisis
whose aim was to promote the country’s energy independence. This led to the construction
of 56 reactors over the next 15 years. Confronted with ageing fleets, in 2014, Electricité de
France (EDF) initiated the Grand Carénage investment program, which aims at enhanc-
ing reactor safety and extending their operation beyond 40 years. Nevertheless, France
expressed its willingness to reduce the share of nuclear power through the LTECV, which
initially targeted to reduce the nuclear share to 50% by 2025, then postponed to 2035 in
2019.

To promote the installation of RES power plants, governments have developed supportive
mechanisms, such as the Feed-in Tariff (FiT), which offers long-term contracts to producers
and remunerates them with a cost-based price for electricity injected into the electrical
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Figure 1.1 – French electricity generation mix in 2020 [13].

grid. In several European countries the FiT schemes have been progressively replaced by
a tender support scheme. This compensation mechanism consists in providing producers
with a premium tariff in addition to the sale price obtained on the electricity market to
cover installation costs and ensure their profitability. This investment security scheme has
permitted the growth of RES installed capacity in France (Figure 1.2).

Figure 1.2 – Evolution of installed capacity of RES in France. Source: International Renewable
Energy Agency (IRENA) data query tool [14].

This trend is set to continue and even speed up in the future to meet targets. Indeed, the
MAEP expects Photovoltaic (PV) installed capacity (roof- and ground-based units) to reach
20.1 GW and 35.1 − 44.0 GW by 2023 and 2028 respectively, while wind power installed
capacity is set to reach 24.1 GW by 2023 and between 33.2 GW and 34.7 GW by 2028.
Obviously, PV generation will be a key component of the French energy mix, all the more
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so as this technology is likely to benefit from an expected further decrease in installation
costs: 4% per year for ground-based units and from 5% to 7% for rooftop installations
according to the French Ministry of Ecological and Solidarity Transition [12].

1.2 The electrical grid

To understand how the electrical grid operates and how it is influenced by RES integra-
tion, it is necessary to adopt an holistic approach concerning energy generation, transport
and consumption.

1.2.1 Evolution of the electrical grid

In the late 19th century, the age of steam was replaced by the age of electricity [15].
During this period, locations with abundant of resources, such as coal and water, were key
drivers of industrial expansion and electrification. Thus, in 1882 Aristide Bergès used the
driving force of water to supply his paper mill with energy. At that time, the technological
breakthroughs initiated by the first industrial revolution made it possible to obtain steel to
incorporate in the turbines structure. Bergès then added a dynamo to convert hydropower
into electricity: la Houille Blanche (white coal).

At the beginning of the age of electricity, power generation means and industrial pro-
cesses were located in the same area for cost production efficiency reasons. The elementary
laws of electricity stipulate that the same amount of power can be delivered through a cable
by doubling its voltage and halving its current, while reducing heat losses owing to the
Joule effect. Thus, a high-voltage current could be used to transfer electricity over larger
distances. The first transmission of Direct Current (DC) over a large distance (i.e. 57
km) was performed in 1882 between Miesbach and Munich. In 1891, a 175 km Alternative
Current (AC) transmission line was erected between Lauffen and Frankfurt.

In Europe, the electrical network 1 currently in place was essentially developed after
World War II. Amidst the ashes left by war, Robert Schuman pronounced on 9 May 1950:
"The solidarity in production thus established will make it plain that any war between
France and Germany becomes not merely unthinkable but materially impossible”. This
speech expressed the will to build a peaceful Europe based on cooperation and initiated the
European Coal and Steel Community. During this period, the western Europe transmission
network became more interconnected, with more exchanges taking place between countries
and the establishment of a coordinating structure, namely the Union for the Coordination

1. The electrical grid is an interconnected network that ensures electricity delivery from producers to
consumers. Upstream, power plants convert primary energy (e.g. combustion of fossil fuels, kinetic energy of
wind) into electricity, which is consumed downstream by end users. Between the two, a set of transmission
lines (high voltage electric networks) and distribution lines (low voltage electric networks) associated with
substations ensures delivery.
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of the Production and Transmission of Electricity (UCPTE) 2. The main objective of this
association was to ensure the optimum operation of electric power plants (e.g. surplus
production in countries relying on hydropower could be used to balance a shortfall in other
countries whose production was based on oil) [16].

The next step was the Atomic Age, which provided the required technology to build
nuclear power plants [17], while the oil shocks of the 1970s developed the relevant economic
foundations for their expansion. The economic consequences of these shocks led to qua-
drupling of the price of oil by Organisation of the Petroleum Exporting Countries (OPEC)
nations, at that time when most electricity generation involved oil-burning plants. In re-
sponse to this situation, France pursued its ambition to ensure energy independence by
commissioning 44 nuclear reactors between 1978 and 1988 [18]. Owing to its high share
of nuclear power associated with a low generation cost and a high pressure of peak load
regulation, the country strengthened its transnational interconnections.

Today, the electrical grid is undoubtedly one of the largest and most complex machines
ever built by mankind. The synchronous grid of continental Europe counts more than
300, 000 km of transmission lines connecting 535 million customers and disposing of around
1, 000 GW of net generation capacity [19].

1.2.2 High-precision machinery

Precisely defining the constraints inherent to the grid would involve a tremendous
amount of work and also digress from the subject of this thesis. Nevertheless, a few el-
ements are presented below to provide the reader with a glimpse of the system’s complexity.

1.2.2.1 Fragile balance

Electricity is often taken for granted in western European countries. Yet an immense
effort is performed backstage to ensure the security of supply and the safe use of production
means and consumption devices. The fundamental rule of the network is that at all times,
production and consumption must be balanced. This rule stems from the fact that electricity
cannot be stored in large quantities.

In a perfect equilibrium, the European utility frequency is equal to 50 Hz (this value
results from a technical compromise between several phenomena, e.g. low-frequency cur-
rents are associated with the flickering of incandescent lamps, while high-frequency currents
generate mechanical stress on rotating turbines), while its voltage is equal to 230 V. In
practice, the frequency of the electrical grid varies around its nominal value, which is 50 Hz:
the frequency decreases when the grid is overloaded - the greater the load on the generator,
the slower it spins - but increases when it is underloaded (this phenomenon is illustrated in
Figure 1.3).

2. UCPTE is one of the predecessors of the European Network of Transmission System Operators for
Electricity (ENTSO-E).
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1.2. The electrical grid

Figure 1.3 – Representation of power balancing

To ensure electricity delivery without compromising the quality of the supply, a set of
ancillary services are required. Ancillary services refer to processes or operations used to
maintain a balance between production and consumption, to ensure the stability of the
transmission, and the quality of the electricity delivered. This kind of services consists in
controlling the frequency, or active power control, and the voltage, or reactive power control.
To better understand the actions involved during power balancing, let us focus on frequency
control.

1.2.2.2 Frequency control

Frequency deviations continuously occur under nominal operation due to load and gener-
ation variations. To prevent the grid from collapsing or damaging generators, the frequency
is monitored at all times, and actions are taken to readjust the frequency to its nominal
value when needed. This task is generally the responsibility of the Transmission System Op-
erator (TSO). Each country has its own set of technical rules regarding frequency balancing,
and so here we focus on the ENTSO-E guidelines. In normal operation, the frequency de-
viations must be maintained below ±1% of the nominal value [20]. When the frequency of
the electrical grid reaches an emergency condition (e.g. due to an incident like the loss of a
generator) a frequency control strategy is initiated by the TSO to restore power exchanges
in its control area within a maximum of 15-min at the latest. This strategy comprises at
least three (partially overlapping) balancing mechanisms with specific features, illustrated
in Figure 1.4.

1. The first level is primary control (also called R1). This is the fastest response
to frequency deviation; it is automatically initiated by production means just a few
seconds after the incident and lasts until the offset of deviation. Its Full Activation
Time (FAT) (i.e. the period between the activation request and the full delivery of
the reserve) is 30 s. When a frequency disturbance event occurs, the frequency vari-
ation is softened by the kinetic energy stored by the set of rotating masses within
the synchronous grid; this is called the inertial response. Then, the turbine speed
controllers that are already online, the so-called spinning reserves, increase the power
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Figure 1.4 – Illustration of the activation of balancing services in France, inspired from [21].

output. This action aims at rapidly stabilising the frequency at a quasi-steady-state
value within permissible limits but without restoring the system frequency to its ref-
erence value. Dispatchable power plants are typically in charge of primary control;
RES can also be involved in this process through curtailment actions (to reduce pro-
duction) or by intentionally working in clipped operation mode (i.e. the actual power
is lower than the nominal production to permit an increase in production if needed).
These production adjustments are performed by employing the Maximal Power Point
Tracking (MPPT) of inverters, which constantly look for the best operating voltage
to get the highest possible power from the arrays. Batteries can also be integrated to
mitigate grid fluctuations.

2. The second control action to be automatically committed is secondary control (R2).
This second level aims at restoring the nominal value of the system frequency, the
reserve of each generator used during the primary control, and the scheduled cross-
border exchanges with adjacent control areas. This process must be completed within
15-min at the latest. Like primary control, secondary control is composed of the spare
capacity at the disposal of the TSO: additional generation capacity can be requested,
or some production means can be stopped.

3. Tertiary control (R3) is primarily used to release the reserves enrolled during sec-
ondary control and return to a state of readiness when an equilibrium is reached.
This process is not automatic but is requested manually by the TSO. Since it is the
last level to be activated, more sources of flexibility can be considered (e.g. flexibility
services provided by industrial processes). In France, tertiary control is composed of
1 GW capacity, which can be activated in 15-min and for 2-hour [22]. It can also
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be activated to support the secondary control process in case of large incidents and
consequently to free power reserves activated during primary control.

4. In addition, some TSOs maintain a Replacement Reserve (RR) to release previously
activated Frequency Restoration Reserves (FRR) in case of new disturbances. This
new product is part of the Trans European Replacement Reserve Exchange (TERRE)
project, which aims at developing a European central platform for the exchange of
balancing resources (both an increase and decrease of active power). In France, this
reserve is composed of 0.5 GW which can be activated in less than 30-min and for
1.5-hour [22].

The reserve services are organised into contracts with the TSO and electricity producers
and large energy users to provide temporary extra resources or to request a reduction.
These services can also be provided through electricity import and export. These balancing
products are engaged through auctions within the balancing market, which is a real-time
market that ensures the balance of the power system.

1.2.3 Towards a smart power system with...

The electrical grid, by linking production areas to load centres, acts as the backbone
of the renewable-based energies transition. To cope with the ever-increasing variability
of consumption and production, the energy sector is undertaking a series of investments
to modernise the electrical grid. Thus, automation and communication devices are being
explored for their capacity to measure and eventually monitor the energy flows at any time
[23].

1.2.3.1 ... new uses

The shift to a sustainable low-carbon economy is closely tied to the electrification of
some high GHG emitting sectors. These include the transport sector and the gas industry.
In 2016, the former accounted for around 27% of European GHG emissions, slightly more
than the power generation and industry sectors [24]. To overcome this issue, the current
vehicle fleet running on fossil fuels is being replaced by greener technologies, such as Electric
Vehicles (EV) and hydrogen vehicles. In 2020, more than 10 million light-duty EVs were
on the world’s roads, this number could reach 145 or 230 million in 2030 depending on the
scenario [25]. The coupling of the electrification of such sectors and demographic growth
will result in an increase in electricity demand and the rise of new challenges regarding grid
constraints: for instance, the simultaneous charging of a large EV fleet might generate grid
congestions or peak demands.

1.2.3.2 ... new services

Far from being a burden on the grid, these new technologies can offer valuable opportu-
nities to improve the flexibility and security of the power system, especially in a context of
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high RES penetration. Different options are investigated in the literature. When considered
in vehicle-to-grid mode, EV can be used as a distributed energy storage unit: energy from
vehicles’ batteries is injected into the grid to flatten out RES intermittency, while reduc-
ing energy costs [26], or to shave demand peaks [27]. On the contrary, EVs are charged
during consumption dips, or when electricity pricing is at its lowest. Another option con-
cerns hybrid energy systems by which solar energy can be stored in an energy carrier such
as hydrogen [28] or in Battery Energy Storage Systems (BESS). This first approach based
on Power-to-Gas (P2G) architecture (i.e. a system that converts electricity into hydrogen
via electrolysis), produces hydrogen, which can be directly injected into the gas network or
later converted into electricity thanks to a fuel cell. In [29], the authors show that coupling
RES-based units with P2G technology can reduce the required capacity and curtailment of
plants. Moreover, grid-connected Proton Exchange Membrane (PEM) electrolyzers and fuel
cells technologies appear to be a feasible solution to provide the electrical grid with ancillary
services in terms of frequency regulation, voltage control and congestion management [30].
It is worth mentioning that most of these solutions, despite being technically feasible, are
not commercially viable at present: e.g. [31] highlights that the benefit of installing a BESS
is low compared to its installation cost.

1.2.3.3 ... new actors

This intelligent grid is designed to allow more flexibility from small distributed generation
units and consumption entities. Today, the electrical grid can still be viewed in a binary way,
with the producers on one side and the consumers on the other. Nevertheless, this dichotomy
is expected to diminish in the near future owing to the decentralisation of production and
the fact that consumers will play an increasing role in stabilising the network. Thus, a
new kind of actor is emerging, called the prosumer, who produces electricity thanks to
renewable-based means (e.g. rooftop PV units) but also consumes electricity from the grid.
The interactions between households and utilities will increase in order to better manage
network stability. For instance, during a consumption peak, some devices such as water
heaters could be automatically shut down to smooth the demand curve.

1.2.4 Electricity markets

1.2.4.1 From a monopoly situation to a liberalised market

EDF was founded in 1946 as a result of the nationalisation of a hundred energy pro-
ducers, TSOs and distributors, and went on to become the main electricity generation and
distribution company in France. This state monopoly was abolished in the 1990s by a Euro-
pean directive aimed at the gradual liberalisation of energy trading as well as the unbundling
of the main activities (transmission and distribution activities maintain their monopoly but
are placed under regulation schemes). This liberalisation aimed at opening the market to
new energy providers and establishing a competitive environment supposed to be beneficial
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for the customers through a cost of electricity reduction thanks to the competition. To sum
up, a shift took place from centralised generation, characterised by significant government
influence, to a free, competition-based paradigm open to aggregators. An aggregator is an
entity that aggregates a number of disparate consumers and/or producers and acts as a
liaison between them and the wholesale markets [32]. In this respect, in addition to being
France’s leading producer of exclusively renewable energy, Compagnie Nationale du Rhône
(CNR), which supported this research project, also acts as an aggregator on behalf of its
customers. It manages a portfolio of several RES plants with a perspective of optimising
their production sales on the markets.

1.2.4.2 Several markets for several products

Electricity is a tradable, fungible commodity that can be sold or bought on several
electricity markets that possess their own properties. Depending on the time horizons,
these markets can be classified into four types:

1. Futures and forwards markets are designed for purchasing products up to several
years ahead to secure business against price fluctuations.

2. Day-ahead markets are operated once a day and enable the hourly sale and purchase
of products for delivery on the next day. This market is liquid 3.

3. In intraday markets, participants trade continuously. These markets offer the pos-
sibility to trade electricity up to 5-min before delivery and to adjust balance. The
exchanged quantities of electricity are smaller than on the day-ahead markets inas-
much as the purchase results from unplanned consumption, and prices are generally
less attractive. The liquidity of this market is lower than that of the day-ahead market.

4. Unlike the two previous markets, which trade energy for the future, balancing mar-
kets deal with the purchase of services that can be committed to guarantee grid bal-
ancing. The real-time balancing of the grid is performed by the TSO, which has
previously purchased R1, R2 or R3 balancing products.

1.2.4.3 Financial costs

To ensure secure operation of the grid, the TSOs have to maintain a balance between
production and consumption within their control areas. They are supported in this mis-
sion by Balance Responsible Parties (BRP), such as CNR, that must ensure adequacy
between energy injections and extractions within their balance perimeters. These perime-
ters are portfolios of energy suppliers and consumers. Any mismatches observed in balance
perimeters result in financial penalties incurred by the TSO which had to engage reserve

3. Liquidity refers to the degree to which an asset can be quickly purchased or sold without inducing
price variation or significant transaction costs. A good indicator of the market liquidity is the volume of
transactions performed without affecting transaction prices: in this case a higher trading volume is associated
with a higher level of liquidity [33].
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mechanisms to maintain grid stability. Therefore, accurate forecasts are of prime interest
for BRPs dealing with RES units to mitigate these imbalance costs.

In addition, to promote large-scale integration of RES into the grid, states have proposed
incentive policies based on FiT or subsidies. Such mechanisms are coming to an end, since
producers are expected to bear the costs generated by the balancing of their own production.
This compels RES producers to integrate energy markets. This process requires producers
to have relevant forecasting tools to submit production schedule bids. Small entities that
do not possess such resources can outsource forecasting and bidding to aggregators. RES
production, which is variable by nature, is likely to deviate from schedules. Depending
on the regulatory framework of the country, this may lead to settlements because of a
contractual mismatch between the energy sold and the actual energy provided. For instance,
the Midcontinent Independent System Operator (MISO) 4 imposes a real-time price for
imbalances but without deviation penalties, while on the contrary Spain applies financial
penalties if the actual production deviates from the forecast, and in India, penalties are
enforced when forecast deviates by more than 30% [34].

1.2.4.4 Value of forecasting

The notion of value of forecasting refers to the potential economic benefit resulting from
an improvement in the forecast accuracy (i.e. reduction of the error). The financial impact is
obvious when it comes to power producers able to minimise their imbalance costs via better
forecasting tools. In this respect, [35] highlights that a reduction of day-ahead forecast-
ing uncertainties correlates with a profit increase from computing deviations between the
scheduled and actual production of a 1.86 MW utility-scale plant operating on the Iberian
electricity market. Whereas, the economic value of forecasting is not restricted to imbalance
charges, it may positively impact the entire power system operation by reducing operating
costs, while contributing to system reliability and security. In [36], the authors point out
that an improvement in solar power forecasts generates a reduction in the commitment of
inefficient power plants (e.g. gas and oil turbines) and PV curtailments, which leads to
a reduction in the overall operating costs. Moreover, large forecasting errors concerning
RES production increase intra-day prices and the size of the system imbalances needed to
accommodate RES variability and uncertainty [37].

1.3 Towards a sun-powered future?

The theoretical potential of solar energy striking the Earth’s surface in the space of one
and a half hours represents more energy than global energy consumption in 2001, which
makes sunlight the highest theoretical potential of RES [38].

4. A North American system operator.
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1.3.1 Harvesting technologies

Two technologies are typically used at utility scale to produce electricity from sunlight:
(1) PV systems and (2) Concentrated Solar Power (CSP) systems. The first is based on
the photovoltaic effect which converts light into electricity, while the second uses lenses
or mirrors to concentrate sunlight to heat a fluid (typically water), which then drives a
steam turbine or directly feeds an industrial process like water desalination [39]. CSP
technology has the ability to store energy (in the form of heat), which mitigates production
irregularity issues [40]. For domestic applications, solar energy is usually harvested for water
heating purposes as well as to produce electricity via rooftop PV panels. Fields of research
explore alternative ways of converting solar energy, one may mention the use of artificial
photosynthetic systems able to convert solar energy into solar fuels such as hydrogen from
water [41]. Thanks to impressive cost reductions in the last ten years, today PV production
systems represent the most dynamic market (compared to CSP systems) [42].

1.3.2 Photovoltaic effect

The active part of a solar cell is a wafer composed of silicon, which is a semi-conductive
material. This wafer can be broken down into three layers:

1. The top layer is a thin layer of silicon doped with group V atoms such as phosphorus.
The doping process consists in introducing impurity atoms into the semi-conductor
with the aim of improving its conduction characteristics. Phosphorus elements have
five electrons in their outer orbitals while silicon elements only have four. This fifth
electron has nothing to bond to, and can freely move, which makes this layer more
conductive. Due to this electron excess, this layer is called "negative-type" (n-type)
as it favours the transport of a negative charge.

2. The bottom layer is composed of silicon doped with group III atoms such as boron.
This dopant has three electrons in its outer orbital. A missing electron can be viewed
as a positive charge, hence the name of this layer: positive-type (p-type).

3. When the n-type and the p-type are put together, we observe a displacement of charge
carriers: (1) the nearest extra electrons on the n-type side migrate towards the holes
of the p-type layer and (2) alternatively the extra-holes from the p-type sides migrate
towards the atoms on the n-side which need holes.

On the one hand, the junction between each layer becomes depleted of charge carriers
(electrons and holes cancel each other out), and loses its conductive properties. On the
other hand, in the n-type layer, the region near the junction becomes positively charged
(the phosphorus atoms are fixed in the lattice and one electron is missing) while the p-
type region near the junction becomes negatively charged. Therefore, a potential difference
is formed between the top and bottom layers. An equilibrium is reached when (1) the
diffusion process (i.e. the migration of electrons to holes and vice versa) tends to increase
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the potential difference and (2) the resulting electrical fields, which tends to oppose the
charge carriers’ displacement, counteract each other. In such a component, the electrons
can only flow through the n-type side to the p-type side: this is known as a diode.

The PV effect occurs when a photon transfers its energy to an electron from the junction
area, pulling it out of its atom and leaving a hole. Due to the electric field, the electron is
driven to the n-type layer, while the hole moves towards the p-type conductor. Then, two
electrodes located at the upper and lower part of the solar cell permit the generation of an
electrical current (the electron goes towards the hole).

1.3.3 A higher share of photovoltaic in the future

Currently, the penetration level of PV production in France is still modest (i.e. 2.5%
for around 10 GW of installed capacity at the end of 2020 [13]). However, this coverage
rate could increase up to 9% − 37% (which represents respectively 40 GW and 185 GW
of installed capacity) in 2050 according to the scenarios provided by Réseau de Transport
d’Electricité (RTE) [43]. These scenarios, based on the NLCS and the MAEP, consider two
main directions for France: either a fully renewable-based production or a mix with new
nuclear units.

1.3.4 Solar production variability and predictability

RES are characterised by high variability (i.e. a change in generation during a certain
period of time), and limited predictability (i.e. due to the chaotic nature of the atmosphere,
future generation is difficult to assess accurately and, therefore it is more or less uncertain)
(Figure 1.5). This induces a limited forecastability inherent to the modelling strategy in-
volved. At this point, it is worth defining the concept of predictability and forecastability.
Both terms are often used interchangeably but differ by their meaning. Authors in [44] pro-
pose the following definition: predictability studies how trajectories of the system diverge,
while forecastability describes how a model trajectory diverges from the system trajectory.

PV generation variability can be broken down into a deterministic component and a
stochastic component. The Sun’s motion in the sky is governed by fully understood deter-
ministic astronomical laws, which are responsible for intra-daily and intra-yearly generation
variability. Intra-daily variability is characterised by a bell-shaped curve (i.e. low produc-
tion levels are associated with low solar elevation angles, while peak production is observed
when the Sun is at its highest), and seasonal variability is associated with lower production
rates during wintertime as well as shorter days (Figure 1.6). In addition, atmospheric con-
ditions such as cloud distribution or air turbidity affect the amount of light reaching the
ground as well as its spectral distribution.

Although the physical equations governing the atmospheric states were established in
the 19th century, today it is still not possible to provide perfect weather forecasts. This
shortcoming is due to the chaotic nature of the atmosphere. One of the most popular
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Figure 1.5 – Schematic representation of the concept of variability and uncertainty of PV
generation forecasts.

images of chaos is undoubtedly the butterfly effect, which states that small changes in the
initial state of a deterministic nonlinear system can result in a very different future state.
Thus, the deterministic nature of the atmosphere does not make it fully predictable because
of the impossibility of observing every detail of its initial state. Small errors in the initial
state are amplified with time, which leads to large errors in forecasts. The chaotic nature
limits the predictability to about 14 days.

1.4 Scope of this thesis

Among the conceivable options to deal with the variability of RES generation, this
PhD focuses on the forecasting field. RES forecasting appears as a cost-effective option to
anticipate power imbalances and thus to optimise the use of flexibility solutions or traditional
adjustment means. Typically, the Photovoltaic Production Forecasting (PVPF) domain can
be split into two groups (1) day-ahead forecasts that are used to find an optimal energy
trading strategy in the day-ahead energy market, but also for power system scheduling or
reserves estimation, and (2) intraday forecasts, which are vital to grid operators to define
a balancing schedule (i.e. spinning reserves or demand response that can be engaged to
tackle an expected imbalance), to manage congestion, and to define offers for the intraday
market. Our partner, CNR, which plays a dual role of aggregator and BRP has to balance its
renewable energy portfolio, while optimising profits on energy markets. This work focuses
on short-term forecast horizons. The short-term horizon terminology has not been precisely
defined by the PVPF community; here it should be understood as horizons ranging from
15-min to 6-hour ahead. The typical period of interest is 15-min, which implies that we
need to anticipate production at these horizons.
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Figure 1.6 – Intra-day and seasonal variability of PV generation. The plot refers to measurements
from a single PV plant that is normalised by the installed power of the plant. Red lines represent

sunrise and sunset times.

Considering the analysis of the state-of-the-art, which is developed throughout this doc-
ument, in this work we fix as objectives to propose a forecasting approach that meets the
following requirements: (1) that is as simple as possible to make it easy its use by a wide
range of end-users (from academics to RES forecasters and PV plant operators), (2) that is
suitable for online application (i.e. robust and rapid fitting), and (3) which is extensible in
the sense that additional inputs can be included and forecast horizons can extended.

As pointed out by Tawn in [45] future research directions suggest a greater prevalence of
probabilistic forecasting. Nevertheless, we chose to focus on point forecasting before turning
to probabilistic modelling. Our pursual of this counter-trend, may be justified by several
arguments. The first is that today in the state-of-the-art there is a tendency to go to complex
modelling approaches that are often black-box types of models. In this work we made the
choice to go back to the basic directions following a more physics informed approach in the
design of our prediction models. This is because we want to have a better interpretability of
the results. Second, deterministic forecasting provides us with the possibility to express and
analyse the relationships between the response and explanatory features. Moreover, point
forecasts are easier to analyse inasmuch as probabilistic forecasts also include reliability
properties to assess. Last, to some extent, we may assume that for the timescale under
study (namely from a few minutes to 6-hour ahead), the chaotic nature of the atmosphere
does not prevail. This premise may not hold true for in tropical climates.

16



1.5. State-of-the-art and positioning

1.5 State-of-the-art and positioning

In this Section we present an introductory analysis of the state-of-the-art that aims at
revealing the main gaps observed in the short-term PVPF field. For the sake of complete-
ness, additional information regarding the state-of-the-art will be supplied throughout the
following chapters.

RES generation forecasting clearly plays an important role to meet the challenges of
high shares of RES integration in power systems and electricity markets In this regard,
over the last decade, PVPF has been a very active field of research as reflected by the
increasing number of related publications (Figure 1.7), and significant progress has been
made. Interested readers may refer to [45–48], which provide fairly complete literature
reviews. In 2016, [49] stipulated, that PVPF was still an immature domain on the grounds of
the late development of solar power penetration -in comparison with wind power forecasting,
which dates back to the 1980s [50]. In light of the number of publications and international
collaborations dealing with renewable forecasting (e.g. the European Horizon 2020 project
Smart4RES 5 [51]), it is plausible to claim that this assessment is still pertinent.

Figure 1.7 – Evolution of the number of publications related to wind and PV generation forecasting
fields in the Scopus database.

To improve forecasting performances, three options are conceivable: (1) improve the
accuracy of the forecasting models, (2) consider high-quality sources of information, or (3)
a combination of both.

5. http://www.smart4res.eu
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1.5.1 Model classification

Traditionally, PVPF models can be divided into three groups with respect to the mod-
elling process: physical models, statistical models, and hybrid models that result from a
combination of the two.

Physics-based models are parametric models that consider PV generation as a white-box
where the irradiance-to-electricity conversion process is modelled explicitly via analytical
expressions. In this paradigm, the modelling of the atmosphere effects over incoming ir-
radiance is done by Numerical Weather Predictions (NWPs) models. To be efficient, this
approach requires accurate irradiance forecasts and thorough knowledge of the physical
characteristics of the conversion process at stake. Physics-based forecasting models are
particularly relevant for recently built PV systems, which do not possess past production
records to train statistical models.

On the other hand, statistical approaches do not presume any knowledge about the
physical process. In contrast to the physical approach, this is a data-driven one, which infers
conversion laws based on historical time series. This needs large datasets to train models
based on statistics or Machine Learning (ML) algorithms. Moreover, statistical models can
consider inputs’ systematic errors (e.g. this kind of models is able to integrate measurement
errors of inputs). Based on the previous analogy, this approach can be identified as a
grey-box or black-box modelling according to the degree of abstraction/transparency of the
models. With the increasing popularity of complex approaches such as Deep Learning
(DL) 6, the interpretability of ML-based models is receiving increasing attention in various
fields. The notion of interpretability can be defined as the ability of a human user to
understand the links created by the model between inputs and outputs. In other words, an
algorithm is interpretable when a human can understand how it (the algorithm) is using
the input information to generate the output. This notion is closely linked with the model’s
complexity: the more parameters a model has, the more difficult its analysis will be. Thus,
when it comes to analysing DL models with several hidden layers such understanding is
challenged: hence the black-box terminology. This opacity becomes a burden when it is
necessary to identify which patterns in the data are the most relevant for predictions. It
is worth mentioning that other ML algorithms such as Random Forest (RF) have specific
tools or "embedded mechanisms" to determine features importance.

Statistical approaches are the most frequent in the literature [47] and commonly outper-
form physical modelling [52]. In the author’s opinion, the literature dedicated to statistical-
based modelling principally focuses on the development of advanced forecasting models, to
such an extent that the physical properties of the parks are often left out (i.e. models are
supposed to learn and mimic the conversion process on their own). Thus, it is quite common
to provide regression models with raw NWPs model outputs, such as Global Horizontal Irra-

6. DL is a branch of ML based on Artificial Neural Networks (ANN). The adjective “deep” refers to the
use of multiple layers in the network to extract high-level features from inputs.
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diance (GHI). On the contrary, Physics-based models explicitly model the conversion of GHI
into electricity power taking into account the influence of temperature and the orientation
of panels for instance.

?

Main Research Gaps - Coupling of physics and statistics

Therefore, physics- and statistics-based modelling are two opposed
ways of estimating electricity production from irradiance forecasts.
These two fields seldom merge. Still, it could conceivably be possible
to improve forecast accuracy by including system-based knowledge
within statistical models. Such an approach could be implemented
as a preprocessing step that converts forecast irradiance into pre-
dicted electricity power. Then, the statistical model would polish
the output (e.g. by dealing with systematic errors of NWPs model
outputs). In addition, this could be seen as an attempt to preserve
model interpretability by injecting physics-based knowledge. The
coupling of physics and statistics raises two main issues:

1. Can statistical modelling strategies benefit from the integration
of system-based knowledge?

2. With the advent of ML- and DL-based models and an observed
tendency to black-box modelling, can we preserve models’ in-
terpretability without compromising performances?

1.5.2 Growing diversity of information sources

Several sources of information are currently investigated in the PVPF-related literature.
Each one possesses different characteristics, which make them horizon-specific (Figure 1.8).

For short-term PVPF (i.e. from a few minutes to 6-hour ahead), endogenous inputs,
namely past PV production measurements, are typically the main drivers. For this horizon
range, statistical models fed with lagged observations are able to assess the production
dynamic of the system. PV production parks are made up of several sub-components that
drive the conversion process (e.g. inverters, transformers) of DC produced by PV strings,
namely series-connected sets of modules.
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Figure 1.8 – Classification of inputs type according to the forecast horizons and the spatial
resolution (inspired from [46, 47]).

?

Main Research Gaps - Quality of production observations

The different elements of this chain are subject to malfunction, which
degrades the production rate of the whole plant. These failures re-
quire special attention from forecasters as they may negatively impact
the forecast accuracy of the statistical model trained on these faulty
observations. Yet in the PVPF-related literature, this topic receives
little coverage: most of the time researchers content themselves with
elementary verification rules. As a result, it is legitimate to delve
into the quality analysis of production observations. This raises the
following questions:

1. What resources can be used to assess observations associated
with production failures?

2. What is the impact of malfunction behaviour over forecast ac-
curacy?

For shorter lead times (i.e. nowcasting), All-Sky Imagers (ASI) are typically used. They
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offer real-time, on-site observations of passing clouds by taking photographs of the sky dome
above their point of installation. A network of several cameras (such as the Eye2Sky ASI
network [53]) makes it possible to estimate the spatial distribution and height of cloud
structures, and to compute cloud shadow maps [54]. A series of images are then used with
dedicated tools (e.g. optical flow or block-matching algorithms) to predict the cloud motion
and the corresponding shadow projection.

Observations of cloud cover can also be taken from above the sky. Space-borne pho-
tographs of Earth provide valuable information regarding the cloud distribution and optical
properties at a higher scale than what can be achieved with ASI. This thus extends the fore-
cast horizon: in astrophysics the observation the further out we look in space, the farther
back in time we see holds, while in the present context, the correct statement would be the
further out we look in space, the farther into the future we see 7. However, this extension
is performed at the cost of lower spatial resolution. The latter depends on the satellite
technology and the pixel position in the image, for instance, Meteosat Second Generation
satellite generates images with resolutions ranging from 3 km at the nadir to more than 12
km on the edges of the planet. They are updated regularly (e.g. every 15-min) practically
without delay of delivery and are typically used in the literature for prediction horizons
ranging from a few minutes to 6-hour ahead (e.g. [55]).

Satellite images provide spatially distributed observations of the atmosphere. Without
resorting to such complex devices, it is possible to employ off-site sensors like local weather
stations to get a glimpse of the weather situation in the vicinity of the power plant [56].
Such approaches rely on the Spatio-temporal (ST) dependencies that may exist between the
sensors and the site of interest. Their accuracy is highly dependent on the density of sensors
and their spatial distribution. Similarly, one can consider the production measurements of
a nearby PV system as a proxy of the level of irradiance [57, 58]. This idea seems to
have first been applied in the PVPF field in 2011 [59]. Such an approach is appealing
for a producer/aggregator inasmuch as it does not require extra sources of information or
additional costs.

For higher lead times, such as day-ahead, NWPs become the main source of information.
They are issued by physics-based numerical models that resolve the governing equations
of the atmosphere 8. Such models are greedy in terms of computational resources, which
compels to reduce output precision. Typically, NWPs have an hourly temporal resolution
and a grid resolution of around 10 km. Such features provide relevant information regarding
atmosphere trends but fail to capture the weather variability at the site. In this respect, it
is worth mentioning that ongoing studies are working on the development of RES-dedicated
weather forecasts with 10 − 15% improvement using various sources of data and very high-

7. The future temporal horizon being limited by the cloud’s lifespan.
8. The governing equations are resolved at the discretization scale, while lower scale phenomena are

parameterized (i.e. they are approximated because the processes involved are too small/brief or complex to
be explicitly integrated, and to reduce computational costs).

21



CHAPTER 1. INTRODUCTION

resolution approaches [60]. That is why, for the short lead-times considered in this paper,
NWPs are often neglected in the literature to the advantage of ST data. Nevertheless, we
will consider them as a potential input to be analysed since several results [55, 61] indicate
that they contribute to the improvement of forecast accuracy.

Therefore, each source of information possesses its own temporal and spatial character-
istics, which allows them to assess specific weather phenomena. The natural reaction is to
combine all these inputs within forecasting models. In [55], the authors show that com-
bining ground observations with exogenous data (satellite-based observations and NWPs)
improves the accuracy of intra-day irradiance forecasts.

1.5.3 A need for model adaptivity

PV generation depends on a large number of meteorological variables such as irradiance,
cloud cover, airflow motion, ambient temperature and even air humidity. The combinations
and interactions of these variables lead to a large range of weather states associated with
significant varied dynamics. For this reason, NWPs provide valuable information to PVPF
models by giving them information on the expected atmospheric state and how it is likely
to influence PV production.

The predicted weather information can be integrated in the PVPF modelling chain in
two different ways: either explicitly (i.e. additional explanatory features) and/or implicitly
(i.e. as state variables), which permits local modelling.

1.5.3.1 Explicit integration

The most straightforward method considers NWPs as additional explanatory features
inside the PVPF model (i.e. data are added linearly to the model). Only one model is
fitted for a large range of weather situations thanks to the atmosphere dynamics being
explicitly carried by NWPs. The result is a computationally inexpensive and easy way
to include weather forecasts in PVPF models. Several references in the literature (e.g.
[55, 61]) highlight that the use of NWPs as regressor features improves short-term forecasting
performances in comparison with models fitted only with past production observations.

1.5.3.2 Implicit integration

The alternative way to integrate weather information in a forecasting model is to con-
sider it as a state variable. In this paradigm, the weather information acts as a kind of
classification tool which associates PV generation data observed under similar atmospheric
states. The underlying assumption behind this approach is that similar PV production dy-
namics are observed under similar weather dynamics. From a mathematical point of view,
weather information is included in a nonlinear way to perform local regression (i.e. the
model is trained on a coherent data subset with similar weather-characteristics to the ex-
pected weather situation). To this end, a similarity metric must be defined to measure the
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likeness between two meteorological states. This approach provides a set of expert models
dedicated to specific atmospheric states and is adaptive in the sense that the training of
the model is conditioned to the weather situation. The terminology Weather-Conditioned
(WHCO) is employed to refer to an approach, that operates a weather-based selection or
classification in its learning dataset.

?

Main Research Gaps - Weather conditioning

This weather conditioning strategy offers the possibility to condition
several types of forecasting models, such as Auto-Regressive (AR)
[62], ANN [63], or Support Vector Machines (SVM) [64, 65] mod-
els. To provide statistical information regarding the uncertainty of
the forecast, conditioning methods can also be coupled with proba-
bilistic approaches: [66] proposes a Quantile Random Forest (QRF)
model trained on the 30 most similar days, while [67] derives proba-
bility distributions by applying a weighted kernel density estimation
model on the most similar PV production observations. The liter-
ature highlights that the WHCO models exhibit higher forecasting
skills than their counterparts trained on all past observations. Simi-
lar conclusions are drawn when NWPs are considered as explanatory
features. However, to the best of the authors’ knowledge, no studies
have compared the two integration modes. This raises the following
questions:

1. Between the explicit and implicit integration modes, which one
expresses the full potential of weather information?

2. With the use of nonlinear models — which are able to consider
a wide range of dynamics — is WHCO still relevant?

1.5.4 Spatio-temporal information

In the context of WHCO, spot NWPs data are usually used (i.e. weather parameters
predicted at the nearest grid point of the plant’s location). Such data allow us to work with
few inputs but mainly reflect the temporal evolution of local weather conditions without
providing information regarding their spatial characteristics (e.g. cloud distribution). As a
result, it seems difficult for the WHCO strategy to efficiently take advantage of ST informa-
tion. To fill this gap, [62] consider a WHCO approach based on forecasts of wind direction
at the site location to select relevant ST information.
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?

Main Research Gaps - Local or synoptic conditioning fea-
tures

The approach proposed in [62] is valid if the cloud motion remains
linear, which can be assumed for very short lead times but can be
contested for higher periods of time and high spatial scales. In the
context of precipitation forecasting [68], large-scale circulation pat-
terns represented by geopotential fields , namely gridded NWPs (i.e.
two-dimensional data), are used to select situations with similar pre-
cipitation dynamics owing to their proven influence over cloud gen-
eration. Inasmuch as one can derive pressure gradients that drive air
flow from high to low pressure regions from these fields, can these
fields be used to provide a set of observations sharing temporal and
spatial consistency and thus to improve the PVPF performances of
models based on spatially distributed information?

1.6 Motivations and contributions of the thesis

The main motivations of this thesis have been touched upon in this preliminary chapter.
In a few words, several flexibility solutions are investigated throughout the literature to
deal with the issues raised by a shift in production means. These include storage systems
[69] used to mitigate RES production variability and flexible loads [70] employed to adjust
consumption to production (also called demand response). In comparison, RES forecasting
appears as a cost-effective option. Wind generation forecasting is a widely studied area
of research, to such an extent that it is considered as mature by the scientific community
[49]. The situation is quite different regarding the PVPF realm, as illustrated by the gaps
observed above.

To preserve grid stability, relevant forecasting tools are vital to counter the intermit-
tency induced by the ever-increasing shares of renewables in the energy mix. This justifies
the overarching goal of this thesis, which consists in improving the accuracy of short-term
photovoltaic generation forecasts. To reach this objective, two main strategies have been
identified: (1) to combine several sources of information; and (2) to extend existing statis-
tical models. The first approach consists in analysing and exhibiting any spatio-temporal
correlations that exist within the inputs, while the second option aims at studying the cou-
pling of physics-based models with regression models as well as operating a shift from static
to adaptive models. These two lines of research are associated with various scientific gaps
that need to be overcome. A graphic summary can be seen in Figure 1.9. In addition, these
scientific gaps ramify into secondary research gaps spread through the following chapters.
To assist the readers, a summary is provided in Table 7.1 in the concluding chapter.

The main contributions related to the above-mentioned gaps are listed below:
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Figure 1.9 – Research gaps investigated throughout the thesis.

1. In the literature, there is a clear dichotomy between statistics-based and physics-
based forecasts. Little permeability is observed on the grounds of the assumed ability
of advanced regression algorithms to infer, on their own, the physical characteristics
of the process. With an ambition to link these two fields, we evaluate the influence
of considering power-like features instead of irradiance-related variables. Thus, this
contribution covers research gap [G.6] and helps address [G.7].

2. An in-depth quality analysis of PV production is proposed in response to the research
gap [G.1]. This approach aims at identifying and correcting production measurements
associated with abnormal behaviours or component failures. This identification is
based on a clustering algorithm coupled with a temporal segmentation approach. To
the authors’ knowledge, the proposed method is unique and no similar approaches have
been applied within the PVPF domain, despite its impact on forecasting performances.

3. Special attention is paid to ST information. Clear-sky based normalisation is in-
vestigated to remove the deterministic component of the irradiance-based signal to
facilitate correlation identification (i.e. research gap [G.2]). A novel method tackles
the issue of the high dimensionality of Satellite Derived Surface Irradiance (SDSI), and
has been the subject of a conference publication in [71]. The integration of satellite-
based information is investigated and compared through several modelling strategies
(this contributes to research gap [G.4]).

4. We propose a generic forecasting methodology to objectively condition any forecasting
models to weather parameters. This work was published in a conference article [72]
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and submitted to a journal. This directly addresses the research gaps [G.3] and [G.5].
This method is, for the first time, compared with the widespread approach consisting
in considering weather information as additional explanatory variables.

1.7 Methodology

1.7.1 Architecture of the modelling chain

Rather than proposing an umpteenth brand-new model, the distinctive feature of this
thesis is to focus on the different methodologies observed in the literature and to deduce best
practices. This project has an iterative structure in so much as its constituent elements can
be considered separately by interested readers. An overview of the modular architecture
is given in Figure 1.10. In essence, this forecasting architecture is composed of a set of
inputs (i.e. past production measurements, satellite-based information and NWPs) that are
pre-processed before feeding a forecasting model to derive PV production forecasts at lead
time t+ h. Data sources are introduced in Section 2.4. The quality analysis of production
observations is performed in Sections 4.2-4.3, the physical modelling of irradiance is the
subject of Chapter 3, feature selection approaches are described in Sections 2.2, 5.2.4.2, and
5.3.2, and the normalisation process is described in Section 4.4. Last, statistical models
are presented in Section 2.2, and the state conditioning model is described in detail in
Chapter 6. To guide the reader, the narrative will rely on this graph, and zoom in at
appropriate moments.

The main advantage of such an architecture is its flexibility: depending on the charac-
teristics investigated, it is possible to activate or put to sleep specific blocks. In addition,
the set of features can be easily extended according to needs. Within the scope of this study
we will focus on two state-of-the-art regression models; nevertheless, block number 5 makes
it possible to use this modelling strategy with a wider range of models.

1.7.2 Evaluation framework

To achieve higher forecasting skills, new forecasting architectures and information pre-
processing steps have been investigated throughout this thesis. To be retained in the whole
modelling chain, each new process developed needs to justify an enhancement. At this point
it is legitimate to ask how respective improvements can be evaluated.

1.7.2.1 Preprocessing steps validation scheme

Two alternatives have been considered regarding the validation of data preprocessing
steps (i.e. steps 1, 2, 3, and 4 in Figure 1.10).

The first option consists in assessing the predictability of the preprocessed time series. To
do so, entropy-based indicators, such as Approximate Entropy (ApEn) and Sample Entropy
(SampEn) from the information theory domain, are usually used [73]. These parameters

26



1.7. Methodology

Figure 1.10 – Main architecture of the forecasting chain.

characterise the predictability of a time series by describing its complexity and its degree
of self-similarity in terms of patterns. This a priori approach is appealing in a context of a
high number of time series to test.

The second option, which is also more computationally expensive, determines the fore-
casting enhancement induced by data preprocessing steps through an a posteriori approach.
The latter considers the use of a regression model to forecast PV production from prepro-
cessed features. Within this paradigm, relevant preprocessing steps are associated with the
most accurate forecasts.

An empirical comparison between both approaches highlighted that entropy-based indi-
cators may provide misleading conclusions (i.e. contradiction between entropy-based results
and forecast performances). This is assumed to result from a poor choice of parameters.
This motivates the use of the second option.
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1.7.2.2 Forecasting performance assessment

We observe in the literature a growing demand to provide reproducible results associated
with guidelines and frameworks for evaluating the quality of forecasts [45, 74, 75].

As forecasts are data-, location-, and time-step-, dependent, it is necessary to provide
data and codes to allow reproducible analysis. Unfortunately, as this project involves an
industrial partner, data and code sharing is not permitted. However, a special effort will
be made by the author to detail as much as possible the approaches developed and relevant
references will be provided throughout this study.

To comply with forecasting good practices, first, it is necessary to perform comparisons
with comparable elements. In [75], the author points out that conventional metrics alone
cannot be used to compare forecasts carried out with different datasets, locations or horizons.
Instead, such scores should be used in the perspective of a forecasting benchmark via a skill
score. A consistent benchmark approach found in several studies is the smart persistence
(i.e. a persistence model using the forecast Clear-Sky Index (CSI)) 9. This skill score is
computed with a set of common evaluation metrics, namely, the Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and the Mean Bias Error (MBE).

1.7.3 A real case study

The modelling architecture is built taking operational constraints into consideration,
while the evaluation framework is performed with real datasets.

Apart from PV production measurements of the CNR fleet, all data involved in this
thesis are issued by research institutes (NWPs are generated by the European Centre for
Medium-Range Weather Forecasts (ECMWF)) or private companies (TRANSVALOR S.A
provides SDSI) that are known actors in the PVPF field.

The model developed in this PhD aims at an operational application. As such, it seems
relevant to provide the computational time (Appendix A) needed to perform model fitting
and testing. Since such data are highly hardware-dependent, it is necessary to consider our
model in relation to a specific model.

1.8 Structure of the thesis

This opening chapter presents the main challenges associated with a high penetration
of renewable energy in the electrical grid and introduces the subject of PV generation
forecasting. Far from having disclosed all its secrets, this subject is still very active and
several research gaps have been identified. In the following chapters, we attempt to provide
some answers. To guide the reader, a roadmap depicting the structure of the different
chapters is presented in Figure 1.11. This graph details the methods and inputs used to

9. The output obtained by normalising irradiance-related features by the irradiance observed in a cloudless
sky. Such quantity possesses stationary-related properties.
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elaborate the preprocessing and forecasting steps introduced in Figure 1.10 as well as the
associated main research gaps presented previously.

Figure 1.11 – Graphical outline of the structure of the thesis. Grey boxes detail the methodology
(e.g. methods, algorithms, inputs) adopted within the chapters to answer the main research gaps

(Figure 1.9) represented by the yellow items, while green items represent modular blocks
numbering in Figure 1.10.
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The remainder of the document is organised as follows:

Throughout this manuscript, various investigations are carried out to design forecasting
models with greater capacities than those found in the literature. This will raise two main
questions (1) what do we want? and (2) how do we measure it? Several criteria exist to
compare forecasting models. In Chapter 2, the focus is on performance and more specifi-
cally on accuracy. Recommended standard practices observed in the literature to evaluate
forecasts are implemented to enable a precise quantification of accuracy and to allow com-
parison with other studies. After that, the different sources of inputs are introduced and
characterised.

Chapter 3 delves into the physical modelling of the conversion processes involved in
producing electricity from solar resources. The different steps are described, ranging from
the irradiance crossing the atmosphere to the increase in the voltage level performed by the
transformer. The technical characteristics of PV panels are also considered (e.g. modules
orientation, temperature response of the cells). This aims at deriving a physics-based model
that converts solar irradiance into electrical power from physics-based knowledge. This per-
formance module is then integrated into the forecasting architecture developed so far as a
preprocessing step before the regression model. The main ambition behind this method-
ology is to reduce the computational effort of the regression model by integrating known
information. This methodology is compared with the direct integration of raw information
(i.e. without the use of the physics-based model) in order to judge the statistical model’s
capacity to derive knowledge from its learning.

Chapter 4 proposes an in-depth analysis of the features used to forecast PV generation.
First, particular attention is paid to the reliability of PV production observations. Since
PV parks are composed of a set of conversion devices, the failure of one of the latter
deteriorates the quality of the production signal: in this case, production level variations
result from technical issues rather than meteorological variations. An identification and
imputation strategy is developed to filter and potentially correct abnormal behaviour (e.g.
curtailment, components shutdown). Second, irradiance-based features (i.e. PV production,
SDSI, or Surface Solar Radiation Downwards (SSRD)) are cleaned from their deterministic
component. The latter is linked with the Sun’s movement within the sky dome. Such
an approach shines a light on the part of the signal associated with cloud movement, and
consequently improves ST dependencies between features. Last but not least, this process
improves the stationary properties of the time series, a requirement for the use of specific
statistical tools.

The use of ST information, namely spatially distributed PV units and satellite-based
information, is developed in Chapter 5. First, the potential of Spatially Distributed Units
(SDU) information from the CNR network is investigated. A physics-based selection of
sites and relevant lags is proposed in line with prevailing winds. However, the north-south
distribution of sites contrasts with the east-west orientation of dominant winds. This legit-
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imates a resort to satellite-based information to freely select spatial observations. In this
regard, a novel method is introduced to perform relevant feature selection to maximise in-
formation relevance while reducing the computational burden induced by satellite-derived
observations. Given that such a variable is well suited for Convolutional Neural Networks
(CNN) architecture (i.e. due to its two-dimensions), we investigate a preprocessing method
aiming at establishing irradiance forecasts at the site location from the sequence of the last
maps. Finally, satellite maps derived from infra-red channels are included in the forecasting
architecture with the target of improving forecasts for the early morning.

Chapter 6 proposes a generic methodology to condition the learning of regression mod-
els to the weather state and to obtain weather-specific models. Such an approach can be
viewed as a way to make models adaptive by dynamically updating their parameters. These
expert models, based on local regression, are derived from the analogy principle widely used
in the meteorological domain. The conditioned learning is performed alternatively with
spot data (i.e. predictions at the park position) and gridded data (i.e. geopotential fields).
This aims at investigating how the nature of weather information influences ST dependen-
cies. Lastly, a forecasting performance comparison between conditioned and un-conditioned
models fed with several kind of explanatory features provides guidelines regarding the ap-
propriate family of models to use. The properties of probabilistic forecasting derived with
WHCO approach are also assessed.

Finally, Chapter 7 draws the main conclusions of this thesis as well as potential future
research opportunities.

1.9 List of publications, conferences and presentations

The present thesis led to the following publications:

1.9.1 Peer-reviewed journal

1. Bellinguer K., Girard R., Bontron G., Kariniotakis G., A Generic Methodology to Ef-
ficiently Integrate Weather Information in Short-term Photovoltaic Generation Fore-
casting Models (Accepted for publication in Solar Energy).

2. Bellinguer K., Girard R., Bontron G., Kariniotakis G., Short-term Photovoltaic Power
Forecasting Enhanced by Heterogeneous Sources of Spatio-temporal Data (Submitted
for publication).

1.9.2 Conference papers

1. Bellinguer K., Girard R., Bontron G., and Kariniotakis G., Short-Term Photovoltaic
Generation Forecasting Using Multiple Heterogenous Sources of Data. In 36th Eu-
ropean Photovoltaic Solar Energy Conference and Exhibition, Sep 2018, Marseille,
France, https://hal.archives-ouvertes.fr/hal-02314083.
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2. Bellinguer K., Girard R., Bontron G., and Kariniotakis G., Short-term Forecasting of
Photovoltaic Generation based on Conditioned Learning of Geopotential Fields, 2020
55th International Universities Power Engineering Conference (UPEC), Turin, Italy,
2020, pp. 1-6, https://hal.archives-ouvertes.fr/hal-02932018.

3. Bellinguer K., Girard R., Bontron G., and Kariniotakis G., Short-Term Photovoltaic
Generation Forecasting Enhanced by Satellite Derived Irradiance. 26th International
Conference & Exhibition on Electricity Distribution (CIRED 2021), CIRED, Sep 2021,
Virtual Event, Switzerland, https://hal.archives-ouvertes.fr/hal-03407898.

1.9.3 Conference presentations

1. Bellinguer K., Girard R., Bontron G., and Kariniotakis G., Short-term photovoltaic
generation forecasting using multiple heterogenous sources of data based on an analog
approach., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13790,
https://doi.org/10.5194/egusphere-egu2020-13790.

2. Bellinguer K., Girard R., Bontron G., and Kariniotakis G., Assessment of Alternative
Ways to Integrate Weather Predictions in Photovoltaic Generation Forecasting., EGU
General Assembly 2021, online, 19–30 Apr 2021, EGU21-16091, https://doi.org/

10.5194/egusphere-egu21-16091.

1.9.4 Additional communications

The 17th International Conference on the European Energy Market EEM20 set up a
competition to develop probabilistic forecasting tools of wind production at a regional level.
Our team, composed of Valentin MAHLER, Simon CAMAL and myself from Mines Paris-
tech, proposed a model that won the competition and led to a conference paper, and two
presentations at ISF20 and IEA Wind Forecasting 10:

• Bellinguer, K., Mahler, V., Camal, S., and Kariniotakis, G., Probabilistic Forecast-
ing of Regional Wind Power Generation for the EEM20 Competition: a Physics-
oriented Machine Learning Approach, 2020 17th International Conference on the Eu-
ropean Energy Market (EEM), Stockholm, Sweden, 2020, pp. 1-6, https://hal.

archives-ouvertes.fr/hal-02952589.

• Bellinguer K., Mahler V., Camal S., and Kariniotakis G., Forecasting regional wind
production based on weather similarity and site clustering for the EEM20 Competition.
40th International Symposium on Forecasting – ISF20. Virtual conference, October
2020, https://hal.archives-ouvertes.fr/hal-03157849.

10. https://www.youtube.com/watch?v=n0m3Sl8Zwtk
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1.10 Résumé en Français

Contexte

Depuis la révolution industrielle, les émissions de gaz à effet de serre n’ont cessé d’aug-
menter du fait des activités anthropogéniques, conduisant ainsi au réchauffement climatique.
Pour faire face à cette menace pressante, de profonds changements de nos modes de produc-
tion énergétique sont nécessaires. L’une des principales sources de gaz à effet de serre étant
la production d’électricité, les énergies renouvelables constituent une alternative louable au
gaz et au fioul. En 2015, se tenait la 21ème conférence des parties sur les changements cli-
matiques. Malgré la laudation des accords de Paris, aucun mécanisme visant à assurer le
respect des engagements établis n’a été défini si bien que chaque pays est libre de définir ses
propres objectifs. En ce qui concerne la France, plusieurs feuilles de routes (e.g. la Stratégie
Nationale Bas-Carbone (SNBC)) ont permis de définir les orientations à mettre en œuvre
afin d’assurer le respect des objectifs introduits dans les textes réglementaires tels que la
Loi de Transition Energétique pour la Croissance Verte (LTECV).

De par son histoire, la France repose aujourd’hui pour une part importante sur l’énergie
nucléaire. Ce parc se faisant vieillissant, la France a exprimé, au travers de la LTECV, sa
volonté de réduire la part du nucléaire dans le mix énergétique à 50% d’ici 2035, au profit de
l’augmentation des renouvelables. Ainsi, pour promouvoir leurs installations, des dispositifs
d’aide ont été mis en place par les différents gouvernements si bien que l’on observe une
croissance soutenue du PV (Figure 1.2) depuis 2010.

Dans nos pays occidentaux, l’électricité est considérée comme acquise pour bon nombre
d’entre nous. Pourtant, à chaque instant des efforts colossaux sont déployés pour assurer
son approvisionnement et l’utilisation en toute sécurité des moyens de production et de
consommation. A l’heure actuelle, il est difficile de stocker l’électricité à grande échelle, de
ce fait il est nécessaire d’assurer un équilibre parfait entre la consommation et la production.
On comprend alors que l’intégration à grande échelle des moyens de production renouvelable,
qui sont par nature intermittent, occasionne d’importantes contraintes quant à la stabilité
du réseau.

Outre l’augmentation de la part des renouvelables, la transition énergétique s’accom-
pagne d’une véritable transformation des usages, des services et des acteurs. On observe
l’électrification des secteurs fortement émetteurs en gaz à effet de serre : on peut penser
par exemple au secteur du transport avec le développement des véhicules électriques. Ces
mêmes véhicules seront en mesure de fournir des services au réseau électrique en y injectant
de l’énergie pour faire face au pic de consommation. Dans ce contexte, le consommateur peut
devenir un prosommateur en injectant l’énergie produite par exemple par les panneaux PV
de son habitation, ou il peut également rendre des services au réseau en autorisant l’arrêt
automatique de certains appareils lors des pics de consommation.

Pour assurer le bon fonctionnement du réseau, les opérateurs doivent maintenir l’équi-
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libre entre la production et la consommation. De ce fait, des pénalités financières sont
imputées aux responsables d’équilibres qui dérogent à cette règle au niveau de leur péri-
mètre d’équilibre. De plus, les mécanismes de support dédiés aux producteurs arrivent à
termes dans de nombreux pays européens, ce qui contraint ces derniers à intégrer les mar-
chés financiers de l’énergie. Dès lors les producteurs soumettent des offres concernant les
quantités d’énergie qui seront disponibles à la vente. Ils se doivent alors de respecter leurs
engagements au risque de payer des pénalités financières.

Deux types de technologies sont typiquement utilisés pour produire de l’électricité à
partir de la lumière du soleil : (1) les systèmes PV, et (2) les systèmes solaires thermo-
dynamiques à concentration. Cette dernière technologie utilise des lentilles ou des miroirs
pour concentrer la lumière du soleil et chauffer un fluide qui va activer une turbine à gaz ou
directement alimenter un processus industriel. Les systèmes PV quant à eux reposent sur
le principe photovoltaïque qui permet de convertir l’irradiance solaire en courant électrique
continu. Aujourd’hui, les systèmes PV représentent la part de marché la plus importante.
Même si le taux de pénétration du PV reste modeste en France (i.e. de l’ordre de 2.5%),
ce dernier est supposé augmenter jusqu’à 9% - 37% en 2050 selon les différents scénarii de
RTE.

La production PV est caractérisée par une forte variabilité mais également par une pré-
dictibilité limitée en raison de la nature chaotique de l’atmosphère. La variabilité de la
production PV peut être décomposée en une composante déterministe, résultat du mou-
vement du soleil qui induit une variabilité journalière et saisonnière, et une composante
stochastique qui est le fruit des mouvements de masses atmosphériques.

Etat de l’art

Dans la littérature plusieurs options sont étudiées afin de limiter les effets négatifs de la
variabilité de la production PV sur le réseau. A titre indicatif, on peut citer le développement
de systèmes de stockage d’énergie tels que les batteries électriques. Dans le cadre de ce
doctorat, nous avons fait le choix de nous focaliser sur le domaine de la prévision court-
terme de la production (i.e. de 15 minutes à plus 6 heures). L’objectif premier de ce sujet de
recherche est de proposer une approche de prévision (1) qui soit aussi simple que possible
afin de permettre son utilisation par le plus grand nombre, (2) qui puisse être utilisée en
temps réel (ce qui suppose une méthode robuste et rapide à caler), et enfin (3) qui puisse être
extensible dans le sens où elle permet l’addition de nouvelles variables. En dépit du fait qu’à
l’heure actuelle les grands axes de recherche sont orientés vers des modèles probabilistes, nous
avons fait le choix de nous intéresser aux modèles déterministes et ce pour plusieurs raisons.
Par exemple, les modèles déterministes permettent de comprendre aisément les relations
entre les données d’entrée et la sortie du modèle. Par ailleurs, l’analyse de la précision des
prévisions est plus simple que dans le cas probabiliste.

Traditionnellement, les modèles utilisés dans le domaine de la prévision PV se décom-
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posent en trois groupes : les modèles physiques, les modèles statistiques et une combinaison
des deux précédentes approches. Les modèles physiques peuvent être vu comme une boîte
blanche dans laquelle le processus de conversion de l’irradiance en puissance électrique est
explicitement modélisé. D’un autre côté, les modèles statistiques eux ne présupposent au-
cune connaissance a priori du processus, bien au contraire, ils infèrent les lois de conversion
à partir des données historiques. Cette dernière approche est majoritairement représentée
dans la littérature mais pose le problème de l’interprétabilité des résultats : les modèles, de
par leur complexité, sont assimilés à des boîtes noires et la relation établie entre l’entrée et
la sortie peut être plus ou moins opaque. A ce stade, on peut se demander si l’inclusion de
connaissance physique dans les modèles statistiques peut avoir un effet positif sur la qualité
des prévisions.

D’un autre côté, depuis quelques années déjà, nous observons une tendance qui consiste
à combiner des sources de données hétérogènes. Sur la plage d’horizon qui est la nôtre, il est
commun de considérer les dernières mesures de la production en tant que variables explica-
tives de la production future. Un parc PV est un système complexe composé de plusieurs
sous-composants. Ces différents éléments sont à même de subir des avaries et donc de ré-
duire artificiellement la production de manière plus ou moins aléatoire. Il est alors pertinent
de s’interroger quant à l’impact de ce signal de production détérioré sur les performances
prédictives des modèles. Bien loin de se cantonner à cette source de données, la littérature
considère également des observations de la situation atmosphérique pouvant revêtir diverses
formes. Par exemple, pour des horizons très court-termes, des observations sur site obte-
nues à partir de caméras hémisphériques sont généralement utilisées. Les observations de la
couverture nuageuse peuvent également être obtenues depuis le ciel via des satellites. Cette
source d’information possède l’avantage de couvrir une zone spatiale conséquente qui peut
atteindre plusieurs centaines de kilomètre mais ce, au détriment de la résolution spatiale
qui est usuellement de l’ordre de quelques kilomètres. Etant donnée la forte dimension des
images satellite, des méthodes de sélection ou de réduction doivent être mise en place. Ce
type d’information est généralement utilisé pour des horizons allant de quelques minutes à
environ 6 heures. Pour des horizons plus importants, nous nous tournons vers des prévisions
numériques du temps obtenues à partir de modèles physiques simulant l’atmosphère.

Ces prévisions numériques peuvent être intégrées dans les modèles de prévisions selon
deux approches distinctes. La première considère les données NWPs comme des variables
exogènes. Dans ce cas, la dynamique atmosphérique est explicitement portée par les va-
riables NWPs. La seconde approche considère quant à elle les données NWPs en tant que
variable d’état. Dans ce paradigme, les données NWPs agissent comme une variable de
classification et permettent l’obtention de modèles experts dédiés à certains types de dy-
namiques atmosphériques. Selon cette approche l’information pertinente est portée par les
variables explicatives. La littérature montre que ces deux approches offrent de meilleures
performances en comparaison à un modèle uniquement basé sur l’historique de production.
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Toutefois, à notre connaissance, aucune étude ne les compare simultanément. D’autre part,
cette stratégie de conditionnement par la situation météorologique est appliquée à une large
gamme de modèles de régression, néanmoins, on peut s’interroger quant à la pertinence
d’appliquer ce type d’approche à des modèles complexes tels que les modèles non-linéaires.

Dans un contexte de conditionnement par la situation météorologique, des prévisions
localisées au niveau du site d’intérêt sont utilisées. De telles données offrent l’avantage de
travailler avec un nombre limité de variables mais ne permettent pas de refléter les carac-
téristiques spatiales de la situation atmosphérique aux alentours du site (e.g. couverture
nuageuse). Ainsi, le conditionnement tel qu’on le trouve dans la littérature ne semble pas
être à même de valoriser l’information ST contenue dans des données telles que les observa-
tions obtenues par imagerie satellite. Dès lors, on peut se demander si des variables d’état
telles que les champs géopotentiels peuvent nous aider à caler des modèles ST en nous four-
nissant des situations qui partagent des similarités tant en termes d’évolution temporelle
que spatiale.

En résumé, nous avons identifiés les questions de recherche suivantes :

• RQ1 : Comment les défauts des composants principaux des centrales PV ont des
répercussions sur la précision des prévisions ?

• RQ2 : Quelle est la meilleure approche pour mettre en valeur l’information pertinente
contenue dans les séries temporelles de production ou d’irradiance ?

• RQ3 : Quelle est la stratégie optimale pour coupler plusieurs sources d’information ?

• RQ4 : Quelle stratégie pour gérer des jeux de données de grande dimension ?

• RQ5 : Quelle est la meilleure approche pour intégrer des connaissances physiques
dans un modèle statistique ?

• RQ6 : Comment pouvons-nous améliorer l’interprétabilité des modèles boîtes noires ?

Contributions de la thèse

L’objectif principale de ce sujet de recherche consiste en l’amélioration de la précision
des prévisions de la production PV. Pour ce faire, notre stratégie repose sur deux points
essentiels : (1) combiner plusieurs sources hétérogènes d’information, et (2) étendre de ma-
nière artificielle les modèles de régression. Au regard de la littérature nous proposons les
contributions suivantes :

1. Nous observons une dichotomie assez marquée entre les modèles dérivés des statistiques
et les modèles obtenus à partir des connaissances physiques. Cette faible perméabilité
peut être expliquée par la croyance en les capacités du modèle statistique à inférer
de lui-même les caractéristiques du processus physique. Avec l’ambition de relier ces
deux domaines, nous proposons de prétraiter l’irradiance afin de la convertir en une
puissance électrique via un modèle de conversion physique qui intègre un nombre
restreint de paramètres physiques.
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2. Une analyse approfondie de la qualité des données de production est proposée. Cette
approche vise à identifier et à corriger des observations associées à une anomalie de
production. L’identification est basée sur un algorithme de clustering couplé à une
segmentation temporelle alors que le processus de correction se base sur nos connais-
sances de l’architecture de la centrale PV. A notre connaissance, cette approche est
unique dans le domaine de la prévision PV.

3. Une attention toute particulière est portée aux données ST. La normalisation par
ciel-clair est étudiée afin de supprimer ou tout du moins réduire l’influence de la com-
posante déterministe de l’irradiance et faciliter l’identification de corrélations ST. Une
nouvelle approche de sélection de variables est également proposée dans l’optique de
réduire la dimension des données satellitaires. Contrairement à d’autres approches
clés de la littérature, la méthode proposée permet la sélection d’un ensemble de pixels
spatialement distribués, ce qui permet de minimiser la redondance de l’information
sélectionnée. Enfin, des observations satellitaires obtenues à partir de canaux infra-
rouges sont intégrées pour leurs influences positives sur les prévisions générées pendant
la nuit.

4. Nous développons les fondements mathématiques d’une méthodologie générique per-
mettant de conditionner n’importe quels modèles de prévisions à la situation mé-
téorologique. Initialement utilisée avec des modèles déterministes, cette approche est
également appliquée de manière préliminaire avec des modèles probabilistes.

Structure de la thèse

La suite de ce manuscrit est articulée de la manière suivante :
Le Chapitre 2 introduit la méthodologie adoptée tout au long de cette étude, à savoir

les modèles considérés, les diverses données d’entrée et également les critères d’analyse et
de comparaison des prévisions. Une étude préliminaire de notre jeu de données est proposée
et comparée à la littérature.

Le Chapitre 3 se plonge dans la modélisation physique du processus de conversion de
l’irradiance en puissance électrique. Les différents processus sont décrits alternativement et
leurs influences sur les performances prédictives sont étudiées.

Ensuite, une analyse approfondie de la qualité des données de production est propo-
sée au Chapitre 4. Tout d’abord, les données associées à une détérioration des systèmes
de conversion sont identifiées et éventuellement corrigées selon les données à disposition.
Non seulement ce chapitre cherche à effacer la variabilité artificielle induite par les avaries
techniques, mais en sus il cherche à supprimer la variabilité déterministe due à la course du
soleil.

L’utilisation de données ST est spécifiquement étudiée au Chapitre 5. Dans un premier
temps, nous nous intéressons aux données fournies par le réseau de centrales à notre disposi-
tion. Etant donnée l’inadéquation entre la distribution spatiale de ces sites et la distribution
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des vents dominants, nous nous tournons vers des données d’origine satellitaire. Deux types
de données sont considérés : (1) des estimations de l’irradiance au sol, et (2) des observations
de l’opacité nuageuse obtenues par canaux infrarouges.

Le Chapitre 6 quant à lui développe une méthodologie permettant de conditionner un
modèle de régression à la situation météorologique. Cette approche permet de rendre le
modèle adaptatif. Le conditionnement est réalisé soit avec des données localisées au niveau
du site d’intérêt, soit via des données 2D, en l’occurrence un champ géopotentiel. Ce cha-
pitre propose des recommandations concernant l’utilisation de telle ou telle variable selon
le modèle considéré. Pour finir, la méthodologie de conditionnement est appliquée sur des
modèles probabilistes.

Enfin, le Chapitre 7 tire les principales conclusions de cette thèse et propose de nouveaux
axes de recherche.
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Chapter 2

Forecasting Methodology

All models are false, but some are useful.

George Box (1979)
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CHAPTER 2. FORECASTING METHODOLOGY

2.1 Introduction

At least two directions are conceivable to improve forecast accuracy: (1) extend the
inputs to integrate more explanatory information on the process, or (2) reduce the model
uncertainty.

The former aspect is specifically tackled in Section 4.2 jointly employing several sources
of information. Due to physical constraints and modelling limitations, today it is not possible
to directly use Numerical Weather Predictions (NWPs) model outputs with enough accuracy
to forecast short-term irradiance at the precise location of a power plant. To fill this gap,
the great majority of forecasters turn to data-driven approaches, and increasingly rely on
several sources of information to extend the range of available information.

Selecting the optimal model for a specific application is not an easy task, as none out-
performs the others in all conditions, and a profusion of models is proposed in the Photo-
voltaic Production Forecasting (PVPF) domain, each with its own strengths and weaknesses
[46, 76, 77]. To deal with this issue, we consider a representative approach from the two
mainstream classes of parametric regression models, namely, the linear and nonlinear family
of models. To guide our selection, we consider criteria related to complexity, interpretabil-
ity, and scalability 1. An extensible modular framework depicted in Figure 1.10 is built
throughout this document. Initially based on state-of-the-art regression models, we extend
this framework with new modules in an incremental way, which allows us to increase the
complexity of the forecasting strategy. Lastly, we adopt a validation framework recom-
mended by the literature.

This chapter presents the forecasting models used to generate production forecasts as
well as the validation framework implemented to assess their quality. Then, the different
sources of information considered as inputs are introduced, and an implementation of the
forecasting and validation frameworks is provided. The general workflow of this chapter is
displayed in Figure 2.1.

2.2 Forecast generation

2.2.1 Baseline forecasting framework

The main objective of this work is to predict future Photovoltaic (PV) power generation,
h minutes ahead, based on fusing temporal and spatial information at the targeted site and
its neighbourhood.

Figure 2.2 depicts the modular architecture used as a baseline to forecast PV production.
This architecture is progressively extended throughout the course of this narrative. The fun-
damental modules implemented in this forecasting architecture are first the root model, and
second the (de)-normalisation model. The root model represents the data-driven framework

1. Scalability refers to the property of a model to handle an increasing amount of data.
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Figure 2.1 – General workflow of the chapter.

used to derive the forecast at time t + h from a set of regressors. A generic formulation is
provided by the following equation:

Yt+h|t = froot
(︂
Xt, B

h
)︂

+ ϵt. (2.1)

Yt+h|t Vector of the response variable at time t+ h,
froot Root regression model employed for the mapping of Xt to Yt+h,
Xt Vector of explanatory features which may contain past production and satellite-

derived observations as well as NWPs model outputs,
Bh Vector of the model’s parameters to be estimated,
ϵt Error term representing random errors or variability from sources not considered.

The normalisation framework is used to remove trends observed within solar-related
time series (e.g. PV production, Global Horizontal Irradiance (GHI) measurements) be-
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fore the processing of information by the regression tools. In this work, we consider the
clear-sky outputs normalisation approach. The latter consists of normalising a feature by
the theoretical irradiance (or alternatively PV production) that would have been observed
in a cloudless sky. This allows us to remove seasonal and diurnal trends of solar-related
features resulting from the Sun’s path. The output of this normalisation process is called
the Clear-Sky Index (CSI). In short, this CSI possesses better stationarity properties than
PV production, and highlights Spatio-temporal (ST) dependencies within features. The
normalisation process is detailed later on in Chapter 4. Lastly, the de-normalisation process
converts CSI predicted values back into predicted PV production values.

Figure 2.2 – Baseline forecasting framework. The normalisation process is detailed in Chapter 4.

All methods are implemented using R statistical programming language [78]. Despite R
not being the most popular programming language (it was ranked 6th by IEEE Spectrum
in 2017), it enables an easy interfacing with other programming languages such as Python-
based deep neural network libraries.

2.2.2 Choice of the models

When dealing with forecasting, the question arises of which froot model to use. This
choice may be motivated by model forecasting accuracy, computational costs, tuning com-
plexity, maturity, and even interpretability. Often the best choice is a trade-off between
these different options.

At first glance, interpretability appears to be an obscure concept that people refer to
when they want to get an insight into the logic built by the model during its learning phase.
Understanding how a model works is of prime importance, first, in order to check that
it is working correctly, but also to identify areas for improvement. A classic approach to
gain knowledge of the driving forces at work is to compute features importance. Features
importance is a way to assess the predictive impact of each input and can be used to select
the most relevant features or perform feature engineering. Intuitively, one can say that the
more complex an algorithm is, the less interpretable it is. In this prospective project, we
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made the choice to work with interpretable models as much as possible with an ambition
to improve forecasting performances by combining heterogeneous sources of information,
rather than increasing the root model’s complexity. However, the approach we developed is
general enough to provide conclusions that may be applied with more complex regression
strategies.

2.2.3 Linear model

In the solar irradiance and PV power forecasting field, the Auto Regressive Integrated
Moving Average (ARIMA) family [79] is the most widely used time series method [80]. To
explain this, the authors point out that it is a common choice for a reference method. Yet,
over the last ten years, this set of models has been used in a satisfying manner in the short-
term PV generation forecasting field: [61, 62, 81] consider Auto-Regressive with eXternal
inputs (ARX) models, while [82] proposes the Coupled Auto Regressive Dynamical System
(CARDS) model, just to name a few. ARX [56, 58, 82, 83] and Vector Auto-Regressive
(VAR) 2 [84, 85] models are also very present in the ST-related literature. The reasons for
this success may be attributed to the relative good accuracy, rapid training, low complexity
and maturity of this family of models. In this work, we chose to work with the Auto-
Regressive (AR) model. An AR model was chosen rather than a VAR model because the
former provides more flexibility, especially in terms of weather conditioning (notion defined
in Chapter 6). In simple terms, a conditioned model aims at dividing the dataset into
subsets of production levels observed under similar weather patterns. We understand that
such an approach may only be used with VAR models if the whole power plant network is
subject to the same weather conditions.

2.2.3.1 Autoregressive model

In the present study, the AR model (Equation 2.2) is considered as the linear root model
of our modelling strategy. This model provides easy-to-understand regression coefficients,
which allow an in-depth forecasting performance analysis. Given its low complexity, the AR
is not in a position to capture the broad range of PV generation dynamics associated with
each weather state. Therefore, to extend its forecasting capacities, Amaro et al. turn to
wind-conditioning in [62], whereas [61] proposes an adaptive model that favours most recent
observations by applying a Recursive Least Squares (RLS) method.

froot
(︂
Xt, B

h
)︂

= βh0 + βhX⊺
t (2.2)

2.2.3.2 Feature selection

An increasing number of explanatory variables makes the model more complex and can
undermine its accuracy. To tackle this issue, the Least Absolute Shrinkage and Selection

2. Model specifically designed for the analysis of spatially sparse ST data [84].
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Operator (LASSO) [86] (Equation 2.3) procedure is implemented in the AR model to per-
form feature selection and regularisation, while enhancing the interpretability of the model.
During the determination of the regression coefficients, we add a term composed of a tuning
parameter, called λ, multiplied by the sum of absolute values of the coefficients. This has
the effect of forcing coefficients with minor contributions to be equal to zero. When λ is
zero, it simply gives the least squares fit, but as the parameter grows, more variables are set
to zero. A k-fold cross-validation 3 approach performed in the training set is used to achieve
the best tuning of the λ parameter. In addition, this feature selection method proposes a
non-parametric approach regarding the selection of the AR model order L (i.e. the number
of PV production lags to consider in the model). By default, we consider the production
lags up to 2 hours, then, for each horizon, the optimal sets of regressor features is defined
by the LASSO.

(βh0
ˆ , βĥ) = arg min

βh
0 ,β

h

⎛⎜⎝1
2

N∑︂
t=1

⎛⎝yt+h − βh0 −
P∑︂
j=1

βhj xt,j

⎞⎠2

+ λ
P∑︂
j=1

⃓⃓⃓
βhj

⃓⃓⃓⎞⎟⎠ (2.3)

(βh0̂ , βĥ) Estimation of the regression coefficients,
λ Hyper-parameter that determines the amount of shrinkage in the LASSO,

(N,P ) Number of observations and variables.

The implementation of the AR and LASSO models is performed with the glmnet package
[87].

2.2.4 Nonlinear model

Being a linear model, the latter is not able to capture the wide range of weather be-
haviours. A more advanced model is thus needed. In the various scientific fields related to
forecasting, two families of advanced models are strongly represented, namely Deep Neural
Networks (DNN) and tree-based solutions. In [88], the authors compare both approaches
in the light of top-ranked models in forecasting competitions as well as their distribution
within the academic literature. It has been observed that tree-based models are often
among the top contestants in forecasting competitions, while DNN receive more attention
from the academic community. This phenomenon may be explained by the fact that the
deep-learning field is currently excited about the possibilities of DNN and their numerous
fields of application, and also because DNN are more prone to novel model work, which
is a prerequisite for scientific publications. Nonetheless, the authors highlight that DNN
models are often less robust than tree-based models: they require careful features scaling,

3. In this re-sampling procedure, the dataset is randomly partitioned into k equal-sized groups. Among
these groups, one is retained as the test set, while the remainder k-1 groups serve as training data. A model
is then fitted and evaluated. This process is repeated k times, in such a way that each sub-sample is used
once as the validation data. The k scores can then be averaged to produce a single estimation.
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hyper-parameter tuning, and skilful structural changes to obtain good performances on a
novel task. In contrast, tree-based models can provide very good performances with default
hyper-parameters. In addition, DNN are often more time-consuming to train and do not
support feature importance calculation, which is beneficial to identify directions for im-
provement. In view of these elements, we decided to focus on tree-based algorithms because
it is easier to tune the hyper-parameters of these models than to design the different layers
of a deep neural architecture.

Forest-based models such as Random Forest (RF) or Gradient Boosted Regression Trees
(GBRT) have been under active investigation for the last twenty years due to their good
performances. Regarding this, the top models employed in the field of Renewable Energy
Sources (RES) forecasting today are ensemble methods 4. The recent forecasting competition
organised by the 17th international conference on the European Energy Market (EEM20)
was won by an architecture based on a Quantile Random Forest (QRF) model [89]. RF
is often used as an advanced reference model to compare forecasting approaches due to its
higher forecasting skills (e.g. its tolerance to poor information [90] and its tendency to give
unbiased results [66]). Ultimately, the GBRT model has been ruled out due to the higher
complexity of its hyper-parameter tuning. Generally, three main hyper-parameters have to
be tuned (learning rate, depth of tree, number of trees) against one for the RF (number
of trees), which generates longer training time. Moreover, contrary to models with higher
complexity, RF can provide very good results without hyper-parameter tuning.

2.2.4.1 Random forest model

RF [91] is a data-driven model able to perform nonlinear mapping between a set of
input and output features. It is an ensemble learning method composed of several decision
or regression trees grown in parallel.

First and foremost, let us focus on the constituents of RF models, namely: trees. The
main idea behind tree models is to segment the inputs space into smaller coherent groups.
To this end, a set of splitting rules is used at each node of the tree. To get a better glimpse
of the tree algorithm principle, [92] proposes the following definition: "to build a prediction,
trees ask each observation a series of questions, each one being in the form ‘Is variable Xj

larger than a threshold s?’ where j,s are to be determined by the algorithm" (Figure 2.3).
As off-the-shelf models, decision/regression tree models have the advantage of being simple
to implement, flexible and easily interpretable, but they also have a tendency to over-fit the
training set (i.e. the model has a low bias but a high variance).

4. In statistics, ensemble methods are techniques based on a combination of multiple models with the
aim of obtaining better performances than what could be obtained from the constituent algorithms.

45



CHAPTER 2. FORECASTING METHODOLOGY

Figure 2.3 – Schematic diagram of the regression tree. X1 and X2 are two explanatory features
while s1 and s2 are splitting criteria determined by the algorithm. Ŷ 1, Ŷ 2, and Ŷ 3 are the

averaged values of the data in the terminal node.

One strategy to overcome the over-fitting issue and the lack of accuracy of the regression
tree model is to combine multiple deep trees (i.e. to create a forest). To avoid obtaining
similar or too-correlated trees while reducing the variance of the model, a bootstrap ag-
gregating (i.e. bagging) algorithm is implemented, i.e. a random sample selection with a
replacement of the training set is performed to feed each tree. Yet, it is still possible to
obtain a correlated forest because of the strong predictors that are present in most of the
trees. To tackle this issue, trees are fitted with a random set of features at each node (fea-
ture bagging). Lastly, the outputs of all trees are averaged (Equation 2.4), which reduces
the variance of the model.

Ŷ t+h|t = 1
T

T∑︂
j=1

fj(Xt) (2.4)

Ŷ t+h|t Estimation of the response variable,
Xt Vector of explanatory features,
fj jth regression tree,
T Number of regression trees (Here, T = 100).

2.2.4.2 Feature selection

RF has several built-in approaches for feature selection. One of them is based on impurity
(i.e. a criterion to evaluate the goodness of splits). In the case of decision trees, each node
can be viewed as a condition indicating how the input values are split into two sets, each of
which contains values of the dependent variable that are similar and different from the other
set. The importance of the feature is related to how pure the sets are. For regression, the
measure of impurity is the variance. Trees naturally rank features by how effectively they
improve the purity of the node: nodes with the greatest decrease in impurity are located
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at the top of the trees, while features associated with the lowest decrease in impurity are
located at the roots. As a result, one can keep most important features by pruning trees
below a certain node.

2.2.4.3 Features importance

Contrary to tree models, the main drawback of an RF lies in its lack of interpretability
owing to the fact that predictions result from the averaging of a large number of tree outputs.
Several options are proposed in the literature to counter this flaw [93]: the Mean Decrease
Impurity (MDI) sums up the gain in purity associated with all splits performed along a
given feature, while the permutation importance shuffles entries of a specific feature in the
test set and computes the difference between the error on the permuted test set and the
original test set (the features that have the biggest impact on performance are the most
important ones) [92]. In this work, we use the MDI option.

The RF model is implemented with the ranger package [94], which provides a fast
implementation of RF.

2.2.5 Forecasting paradigm

A forecasting model dedicated to a specific look-ahead horizon, h, is run in a rolling
manner over the whole evaluation set. As a result, if Pt+h represents the forecast PV power
for time t + h, t is a variable parameter, while h is constant. In this paradigm, there are
as many predicted time series as considered leading time (e.g. one predicted time series
is associated with the 1-hour ahead horizon, another one with the 2-hour ahead horizon,
etc.). In other words, a model is dedicated to a specific horizon. This treats the relative
importance of the last observations differently depending on the considered horizons. From
this point, the collection of 12 models (associated with the 12 horizons studied) will be
simply referred to as the AR or RF model. This approach should be distinguished from
plain forecasting, which delivers a set of forecasts associated with a unique launching time t.
This approach is fitted for day-ahead forecasting: t is a fixed parameter (usually, models are
run in the morning), while h is free. Moreover, to capture the specific features of each PV
plant in terms of production characteristics and local atmospheric conditions, a forecasting
model is fitted for each site. In a nutshell, we adopt a single-site and single-horizon forecast
architecture.

The models are trained over the year 2015 and evaluated on the period covering 2016.
The input explanatory variables and the PV power forecast outputs have a 15-min granu-
larity.
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2.3 Evaluation concept

To assess a forecast, it is necessary to first answer the question what is a good forecast?
From an economic point of view, forecasts may be assessed by their influence over decision-
makers, and the subsequent economic value that they may generate [35]. While, from
a forecasting perspective, a good forecast may be considered as a forecast that produces
small errors in light of observed data. In other words, do we measure the profitability of a
forecast (in the sense that it can generated additional value in decision-making processes)
or its accuracy?

In this document, we focus on the second aspect of forecasts, which leads to another
question: how can we measure forecast accuracy? The literature provides a large range
of metrics tailored for specific uses, for instance, Zhang et al. in [95] propose a suite
of 16 metrics, while [96] introduces two new metrics of which one quantifies the ability
of forecasts to follow ramp events. The verification framework developed in this section
is based on a set of well-established scoring rules and on visual diagnostic tools used or
encouraged by the literature. A recent paper [97], written in 2020 by many prominent
researchers in the solar forecasting field, points out the lack of standardised methods to
verify deterministic solar forecasts. As a response, the authors propose a general verification
framework to facilitate forecast analysis and comparison within the literature. The main
recommendation is to use two complementary approaches to assess forecast quality and to
assist forecasters to make informed decisions; namely a measure-oriented approach and a
distribution-oriented approach. The former, based on the Root Mean Square Error (RMSE)
skill score, is recommended for cross-work forecast comparison and is a good indicator of
the global skilfulness of the model. The second verification framework is based on the
joint distribution of forecasts and observations. To give a better idea of these approaches,
we can also classify them respectively as quantitative and qualitative metrics. The former
condenses the performance into a single value, while the latter offers a visual representation
of error distribution. In this regard, visualisation of forecast performances is an efficient
way of communicating the performance of a model. Thus, this medium is preferred over
tables of values.

At this point, we draw the reader’s attention to the fact that performances are al-
ways evaluated based on predictions that integrate the Sun’s path dependency. In the
case of clear-sky normalised inputs, predictions are post-processed to reinstate the Sun’s
path dependency. This is done by multiplying the clear-sky normalised prediction with the
associated value of the clear-sky model output.

2.3.1 Benchmark model: clear-sky index-based persistence model

In the literature on RES forecasting, the persistence approach is often used as a reference.
In simple words, the latter supposes that the meteorological situation does not change over
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time, consequently, prediction is equal to the last observation. This model only uses past
measurements and does not involve any modelling process. The main assumption behind
this approach is that the weather situation, and so the related PV generation, remains
unchanged for a certain amount of time. Despite being a naive approach, the persistence
model exhibits good performances for very short-term horizons for which the persistence
in cloud structures and distribution can be observed, and for situations with low weather
variability (e.g. clear-sky or very cloudy days). On days that are entirely clear or entirely
overcast, predictions of PV generation are straightforward: the CSI may be assumed as
constant (e.g. 1 in case of clear-sky days). In these specific cases, the persistence model
performs pretty well, and its forecasts can be difficult to surpass, especially for the very
first time-steps. On the contrary, on days with partially or intermittently cloudy skies,
PV generation forecasting becomes more challenging, and the persistence model exhibits
comparatively poor performances. As a result, it is often used as a fallback model when
advanced approaches fail.

In the literature, the persistence model features different formulations. For instance, the
forecast output for time t+h can either be equal to the last observation at time t [46], to the
observation on the previous day at the same leading time t+ h [98], or even to the mean of
the h previous observations [55]. Here we consider a clear-sky index-based persistence model
[97], which takes into account the yearly and daily seasonal cycles. Generally, persistence-
based models are blind when forecasts are generated at night, which artificially restrains the
performance of early morning forecasts. This promotes the generation of under-optimistic
forecasts, and consequently over-optimistic comparisons with other models. To tackle this
issue, we propose to consider the observations of the previous day at the same leading
time t + h for forecasts issued at night. This leads to the model defined in Equation 2.5.
Thereafter, this model is simply denoted as persistence.

ˆ︁P t+h|t =

⎧⎪⎨⎪⎩P t if Pt ̸= 0 (i.e. daytime)

P t+h−24H if Pt = 0 (i.e. nighttime)
(2.5)

.̄ The quantity is normalised by a clear-sky-based feature,
P t Clear-sky based normalised production observed at time t,ˆ︁P t+h|t Expected PV production at time t+ h based on elements available at time t.

2.3.2 Quantitative forecasting performance criteria

A large range of performance metrics has been defined by the scientific community, each
of which highlights a specific aspect of the forecasting error [96]. In the present study, we
use a set of well-established metrics to characterise the accuracy of the forecasting models,
while enabling comparison with other studies. In this respect, PV production is normalised
by the corresponding installed capacity of the site, P xc , to prevent dependence on power
plant size.
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The forecasting process is performed with clear-sky normalised inputs (the normalisation
process is detailed in Section 4.4.1). To compare production observations with forecasts, it
is necessary to obtain de-normalised outputs. To do so, the forecast outputs are multiplied
with the associated clear-sky model outputs. In addition, nighttime data are discarded from
the validation framework inasmuch as they do not offer relevant information. Observations
associated with low-Sun situations (i.e. zenith angles higher than 85°) are excluded from the
whole forecasting framework because the clear-sky based normalisation process has some
weaknesses (to be precise, the CSI reach unrealistic values) when used at early and late
hours of the day. Rather than implementing complex correction strategies like in [58], we
opt to reject fallacious values because the irradiance is too low to be significant in solar
power applications [97].

It is futile to base our quality analysis on a unique accuracy score, because two drastically
different forecasts can lead to the same scores [96]. Thus, we consider the three most pop-
ular metrics [80], namely the capacity-normalized Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and Mean Bias Error (MBE), which are respectively described by
Equations 2.6, 2.7, and 2.8. These metrics provide information on the long-term perfor-
mance of a model. The normalised Root Mean Square Error (nRMSE) score is based on the
square of the forecast error, while the normalised Mean Absolute Error (nMAE) considers
the absolute value of the forecast errors’ amplitude. Thus, the main difference between the
nRMSE and nMAE is that the former is very sensitive to large errors and outliers, while
the latter gives the same weight to all errors. The MBE describes the unconditional bias. A
positive/negative normalised Mean Bias Error (nMBE) represents an over-prediction/under-
prediction, where on average forecasts are higher/lower than observations. As pointed out
in [97], a small MBE is more of a baseline requirement rather than a creditworthy feature
among state-of-the-art forecasts because of the possibility to correct bias thanks to Model
Output Statistics (MOS) approaches. One drawback of this score is that over-estimation
and under-estimation may cancel each other out in separate observations. It is important
to note that throughout this work, model parameters are estimated with a loss function
analogous to the RMSE. As such, it is not surprising to observe forecasts that excel more
according to the nRMSE criterion than to the nMAE criterion.

nRMSEx(h) =

⌜⃓⃓⃓
⎷ 1
N

N∑︂
t=1

⎛⎝ ˆ︁P x
t+h|t − P x

t+h

P xc

⎞⎠2

(2.6)

nMAEx(h) = 1
N

N∑︂
t=1

⃓⃓⃓⃓
⃓⃓ ˆ︁P x

t+h|t − P x
t+h

P xc

⃓⃓⃓⃓
⃓⃓ (2.7)

nMBEx(h) = 1
N

N∑︂
t=1

⎛⎝ ˆ︁P x
t+h|t − P x

t+h

P xc

⎞⎠ (2.8)
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N Number of paired data,
P xc Installed capacity of site x,

P xt+h Observed production at time t+ h and site x.

On the one hand, due to its capacity to penalise large errors more heavily, the nRMSE
score seems appropriate to meet system operators’ concerns, as large imbalances require
committing more costly reserves. On the other hand, the nMAE score appears as an inter-
esting indicator for energy producers inasmuch as financial penalties are usually proportional
to the absolute imbalance between the forecast and the actual production. Consequently,
these three error metrics are displayed in parallel in all evaluation steps.

Scores are computed individually for the nine PV farms, but we average them for a more
compact presentation. Thus, we obtain scores that are only horizon- and model-dependent.

To gauge the skilfulness of a forecasting method, it is relevant to compare it with a ref-
erence model that can sufficiently reflect the difficulty (variability and uncertainty) inherent
to a forecast situation [97]. The persistence model is a suitable candidate for this goal.
Such a comparison offers a common basis with the literature for comparison purposes. We
consider the skill score defined as follows:

SSM (h) = AM (h) −ARef (h)
AP (h) −ARef (h) . (2.9)

A Measure of accuracy (e.g. nRMSE or nMAE),
AM (h) Accuracy score obtained with model M for horizon h,
ARef (h) Accuracy score of the Persistence model for horizon h,
AP (h) Accuracy score of a perfect forecast (for the nRMSE and nMAE metrics, a

perfect forecast implies AP (h) = 0).

The skill score is expressed as a percentage, representing the relative accuracy improve-
ment of the studied model over the reference model. A positive (negative) skill score implies
that the forecasting model has a smaller (higher) score than the reference method. A skill
score equal to zero means that the performances of both models are equal, while a perfect
forecast is obtained for a skill score of one. For instance, the skill score based on the nRMSE
is defined as:

SSM (h) = 1 − nRMSEM (h)
nRMSERef (h) . (2.10)

As the nMBE of the persistence method is often close to zero, the associated skill score is
undefined, which makes the nMBE score unsuitable for skill score computation considering
the persistence as the reference model.
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2.3.3 Significance of forecast differences

Throughout this thesis, we have been confronted with forecasts issued by different models
but characterised by very close accuracy scores. In this context, it becomes challenging to
determine whether the differences are statistically significant.

To assist us in this process, we turn to the Diebold-Mariano (DM) test. The DM test
compares the predictive accuracy of two forecast models. The time loss differential between
the two forecasts is denoted by d12,t = g(e1,t) − g(e2,t) with ei,t being the forecast error,
and g an arbitrary loss function. The two forecasts have equal accuracy if the expectation
of the loss differential is zero (which constitutes the null hypothesis: H0 : E(d12,t) = 0, ∀t).
Under the null hypothesis and for large samples, the DM test follows the standard normal
distribution (Equation (2.11)) [99]. We assume a significance level of 5%. As a result, DM
statistics that fall outside the range defined by the 2.5% and 97.5% quantiles of the normal
distribution (i.e. −1.96 and +1.96) enable the rejection of the null hypothesis.

DM12 = d12
σ̂d12

∼ N (0, 1) (2.11)

d12 The sample mean of the loss differential series (d12 = ∑︁T
t=1 d12,t),

σ̂d12
A consistent estimate of the standard deviation of d12 ([99]).

2.3.4 Qualitative forecasting performance criteria

Following the recommendations of [97], we implement the Murphy–Winkler framework
for distribution-oriented forecast verification. Within the scope of this work, this frame-
work takes the form of a forecast–observation scatter plot containing information regarding
joint and marginal distributions. Since it contains all of the time-independent informa-
tion about the forecast performance, this framework provides more information than the
measure-oriented method introduced in the previous section. Interested readers may re-
fer to the above-mentioned article regarding mathematical background of this framework.
Illustrations are provided in Figures 2.13 and 2.14.

Although this diagram provides a clear visual tool to inspect the quality of point fore-
casts, it is not suitable to efficiently compare of the different forecasting architectures inves-
tigated throughout this work. Instead, the measure-oriented framework is used for perfor-
mance comparison between models, while this distribution-oriented framework is used for
performance assessment of the best forecasting architectures developed.

2.4 Data overview

This section focuses on the different sources of information considered for PVPF. Proven
data consist of All-Sky Imagers (ASI), production and satellite-derived information, and
NWPs model outputs (Figure 1.8). In the literature [55, 60, 100], we observe a shift towards
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models combining multi-source inputs due to their capacity to improve forecasting accuracy.
This explains why the specialised literature is still growing and new sources of information
are currently being investigated; for instance, [53] experimentally demonstrates the use of
a network of ASI dedicated to PVPF nowcasting. The Smart4RES project aims at, inter
alia, developing a collaborative RES forecasting approach by providing a framework for data
sharing that preserves confidentiality constraints, and an incentive data market [60].

In addition, the pool of investigated data sources has shifted from temporal-based sources
of information to Spatio-temporal (ST)-based inputs. In the present context, the notion of
spatio-temporal data may be understood as a set of physical quantities that have the same
dimension, and are measured or computed at several spatial points. Such features are con-
sidered together in the forecasting architecture with the aim of valuing spatial and temporal
dependencies on PV production. The latter has the advantage of providing observations of
the spatial distribution of solar irradiance, and giving a glimpse of forthcoming cloud struc-
tures with spatial and temporal resolutions depending on the nature of the sensor. On the
other hand, temporal data refer to the physical parameters considered at the power plant
location, which are employed due to their temporal dependencies on power production.

In the scope of this work, production measurements, satellite-based observations and
NWPs model outputs have been considered for their proven interest regarding PVPF (Fig-
ure 2.4). With the aim of extending the current portfolio of available data, we could have
envisaged adding (1) non-professional weather station network observations, or (2) on-site
weather observations. The former option would be interesting owing to the democratisation
of connected personal weather stations, which provides varied and dispersed measurements
of physical parameters. Similarly, on-site observations of atmospheric parameters such as
wind velocity and direction could have been used as part of an ST-based approach [62].
Nevertheless, these options were not further investigated due to issues regarding missing
data management, quality control, and database rights.

We choose to feed short-term forecasting models with data that have a 15-min temporal
resolution. This time-step makes it possible to obtain a fine vision of weather variability
and is adapted to grid balancing. PV production and satellite observations are provided at
this time-step, but the NWPs model outputs still require a temporal interpolation.

2.4.1 PV production observations

We consider production records from nine fixed-tilt PV grid-connected systems located
in the south-eastern part of France, mainly along the Rhône river (Figure 2.5) and operated
by the Compagnie Nationale du Rhône (CNR).

Despite all sites being located in the same region, climate conditions vary from one place
to another: the southernmost sites are mainly influenced by a Mediterranean climate while
the westernmost site is subject to an Alpine climate. To get an insight into cloud structure
dynamics, we adopt the days classification proposed in [55] based on intraday clear-sky
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Figure 2.4 – Available options regarding data sources.

PV1 PV2 PV3 PV4 PV5 PV6 PV7 PV8 PV10

PV1 0.00 42.90 27.43 94.74 48.34 41.64 60.55 53.67 98.65
PV2 0.00 26.06 80.36 42.64 41.79 53.82 82.96 133.05
PV3 0.00 100.08 55.97 51.75 68.80 56.96 125.87
PV4 0.00 46.48 53.13 34.32 148.31 122.85
PV5 0.00 7.35 12.93 101.84 102.90
PV6 0.00 18.92 95.29 98.21
PV7 0.00 114.20 103.08
PV8 0.00 124.32

PV10 0.00

Table 2.1 – Distance between pairs of sites (in km).

average, k3
µ, and Intraday Variability (IV). On the one hand, the intraday clear-sky average

(Equation 2.12, with k3
t = PVt

PV sim
t

, the CSI defined in Section 4.4.1.2) enables us to assess
the day’s weather type, from overcast to clear atmosphere. On the other hand, the IV
(Equation 2.13) accounts for the weather variability of the day, from stable to very variable
throughout the day.

k3
µ =

∑︁Nd
t=1 k

3
t

Nd
(2.12)

IVt =

⌜⃓⃓⎷∑︁Nd
t=1

(︂
∆k3

t − ∆k3
µ

)︂
Nd

, with: ∆k3
t = k3

t+1 − k3
t (2.13)

Nd Number of observations of the day (except nighttime data).

The resulting classification is depicted in Figure 2.6. The southernmost power plants
experience a higher rate of stable sunny days (type CI) during summer, and are characterised
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Figure 2.5 – Spatial distribution of CNR’s PV sites, represented by the blue spots. These power
plants are located in southeast France.

by a dichotomous classification (globally such sites experience either overcast or sunny days).
Type B situations are highly variable, which suggests daily situations alternating between
sunny and cloudy weather. Northernmost sites experience more days with scattered clouds
(types BIII and BII), and are characterised by stable, overcast autumn days (type AI).
Comparatively, PV4 have fewer clear-sky days (type C) than the southernmost sites.

Due to its geographical position, PV10 is the only power plant subject to an Alpine
climate, and as such, it is more likely to experience low production rates resulting from snow
deposition. Snow deposition on modules may induce bias during model learning because low
production may not be associated with low incoming irradiance. Thus, snowfall from the
ERA5 reanalysis dataset is used to identify and reject days with accumulated snow greater
than 3 cm and an associated PV production lower than 10% of installed capacity (which
corresponds to 12 and 19 days for the training and testing periods respectively).

The installed power capacity ranges from 1.2 to 12 MWp, occupied areas vary from 1.3
to 12.0 ha (Table 2.2), and the distance between sites ranges from 7.3 to 133 km (Table 2.1).
To allow comparison between generation units, PV production is normalised by the corre-
sponding installed capacity Pc. Regarding this, power output is limited by the downsizing of
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(a) Weather variability observed on PV8 (southern-
most site).

(b) Weather variability observed on PV4 (northern-
most site).

Figure 2.6 – Distribution of days according to their intraday variability and intraday CSI
(described in Section 4.4.1) average adapted from [55]. High values of CSI are rejected. Roman

numbers (I, II, III) classify the variability, from stable to very variable weather. Letters (A, B, C)
represent weather type from overcast days to clear days.

the inverters. Such an approach is part of a trade-off between maximising energy yield and
minimising inverter costs [101]. Large power plants are subject to spatially variant ambient
environments [102]: for a given time, PV strings located farther away may exhibit distinct
power profiles due to being exposed to various irradiance levels. Such ST characteristics
can be valuable for nowcasting applications. Intuitively, the larger the plant, the lower the
power fluctuations. Yet, the standard deviation between PV2 and PV3, which are close
enough to experience the same weather climate, is very similar. This may result from an
excessively coarse sampling time [103].

Site
Name

Installed
power (MWp)

Occupied
area (ha)

Orientation
angle (◦)

Tilt
angle (◦)

PV1 4.05 2.85 176 25
PV2 12 7.65 180 25
PV3 1.3 0.82 180 25
PV4 4.21 2.65 180 25
PV5 3.43 2.25 180 25
PV6 4.12 3.13 180 25
PV7 2.42 1.53 180 25
PV8 2.94 2.39 180 25
PV10 2.88 1.74 180 25

Table 2.2 – Technical configuration of PV sites.

To build an effective model, it is essential that the model be trained and tested on
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data that share similar statistics. As a reminder, data from 2015/2016 are used during
the training/testing step. For instance, Figure 2.7 shows the normalised variability defined
by Equation 2.14 for each PV unit for the training and testing datasets (the CSI, k3, is
defined in Section 4.4.1.2). Overall, the testing set contains slightly more variability than
the training set: the average variability of the testing sets is around 4% higher than the
average variability of the training dataset. However, we assume that this low difference is
enough to consider that both datasets are compatible.

Figure 2.7 – Normalised variability of each PV site for the training and testing datasets. Dashed
lines represent average values over the nine PV sites.

V =

⌜⃓⃓⎷ 1
N

N∑︂
t=1

(k3
t − k3

t−1)2 (2.14)

2.4.2 Satellite-derived data

Two sources of satellite-derived information are investigated. The most widespread one is
the Satellite Derived Surface Irradiance (SDSI) (Figure 2.8a), which represents estimations
of solar irradiance reaching the ground. When forecasts are generated during the night for
the early morning, no relevant solar or past production observations are available, which
obliges the forecasting model to propose average values learnt during the training phase.
That is why we also consider cloud opacity maps derived from cloud classifications, which
are themselves generated from the infrared channels of satellites. Such datasets enable us to
access the clouds’ position during the nighttime (Figure 2.8b). To the authors’ knowledge,
this kind of input is still marginally used in the literature (e.g. [104] considers satellite
infrared images and the forecast of wind velocity to propose a cloud motion forecasting
method for the morning). Nevertheless, the state-of-the-art regarding the use of visible
satellite-based information highlights its relevance for horizons up to 6 hours ahead, which

57



CHAPTER 2. FORECASTING METHODOLOGY

may suggest similar benefits for infrared-based information.

(a) SDSI. (b) Cloud opacity (0 meaning a lack of clouds).

Figure 2.8 – Satellite-based maps of estimated GHI on the left, and cloud opacity on the right
observed on 2015-01-15 11:00:00. Purple points show the position of PV units.

Both sources of information are obtained with the geostationary Meteosat satellites.
Satellite-derived maps possess a spatial resolution of 3 km at the nadir and a temporal
resolution of 15-min. Depending on the forecasting tools used, satellite observations may
be considered either as a sequence of 2D maps or as a set of time series derived from each
pixel constituting these maps.

2.4.2.1 Ground irradiance

The SDSI data are extracted from the Helioclim-3 database [105], which stores 15-min
GHI maps with around a 5-km spatial resolution in Europe (0.0625◦ × 0.0625◦). This
database is generated by the Heliosat-2 method [106], which processes images collected by
meteorological geostationary satellites into maps of solar radiation. In simple terms, this
conversion process is performed by combining the output from clear-sky models (i.e. esti-
mation of the ground irradiance considering a cloudless sky) with a transmittance function
representing the impact of all cloud layers and surface interactions on the solar irradiance
at the Earth’s surface [107].

2.4.2.2 Cloud opacity

Opacity maps are derived from cloud classification maps provided by Meteo-France.
Classification maps are generated by the geostationary Meteosat second-generation satel-
lites. These satellites observe the Earth in 12 spectral channels, of which 8 are dedicated
to thermal infrared [108]. Each of these channels is associated with specific properties of
atmospheric air masses (e.g. the 8.7 µm channel provides quantitative information of thin
cirrus clouds) [109], which allows us (1) to generate a cloud mask showing the location of
clouds, and then (2) to allocate a meteorological cloud type to the identified clouds thanks
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to threshold-based algorithms [110, 111].
The clouds are classified into 19 types and associated with 3 levels of opacity (Table 2.3).

Cloud classifications in fact provide more detailed information but it is more difficult to
process. In accordance with internal practices performed at CNR, we choose to work with
opacity coefficients.

Code Designation
Opacity

coefficient

0, 20 Not coded
1-4 Cloudless pixel 0
6, 7 Very low clouds 2
8, 9 Low clouds 2

10, 11 Middle clouds 2
12, 13 High opaque clouds 2

14 Very high opaque clouds 2
15-17 High translucent clouds 1

18
High translucent clouds

above low or middle clouds
2

19 Scattered clouds 1

Table 2.3 – Coding used in cloud type classification and associated opacity coefficients.

In our case study, as data are only available from 04:00:00 UTC (Figure 2.9), this input
is mainly relevant for wintertime forecasts when the sunrise occurs a few hours later, but
has a very limited contribution during summertime when the Sun rises early in the morning.

Figure 2.9 – Opacity maps availability.

2.4.3 Numerical weather predictions

The NWPs used in this work are obtained from the highest resolution (HRES) config-
uration of the Integrated Forecast System (IFS) run by the European Centre for Medium-
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Range Weather Forecasts (ECMWF). This model is run twice a day, at 00:00:00 UTC, and
12:00:00 UTC providing parameters with a 1-hour temporal resolution and a 0.1◦ × 0.1◦

spatial resolution.

These discretisation scales result from a trade-off with the computational cost (smaller
scales involve determining more parameters). Therefore, sub-grid-scale weather phenomena
such as small cloud generation cannot be explicitly determined by solving the model’s phys-
ical equations. Instead, a parameterisation procedure based on physical representation (e.g.
radiation law) or statistical laws (e.g. inferring cloudiness from relative humidity) is used
to approximate small/brief, complex or poorly understood processes. The main limitations
of NWPs are their coarse spatial and temporal resolution: the former makes it impossible
to resolve most clouds but only provides an average cloud cover, while the latter does not
enable the assessment of time-dependent cloud cover variability [46]. Nevertheless, NWPs
provide valuable information regarding weather trends.

2.4.3.1 Use of the NWPs model

NWPs models are computed several times a day (here at 00:00:00 UTC and 12:00:00
UTC). These sets of forecasts are named runs. In an operational context, a run may need
up to 6 hours of computational and data delivery time before being available for end-users.
In the present paper, we neglect this aspect and consider that forecasts are available at the
launching time of the run.

Depending on the lead time, several predictions can be issued for the same time (e.g.
predictions for time 13:00:00 can be provided by the runs of 00:00:00 and 12:00:00 on the
same day). As a result, two approaches are considered according to the weather information
integration strategy.

First, one may consider that each run has distinctive features: the number and position
of initial observations used to initialise the numerical model may vary according to its
launching time, which may impact the quality of the forecasts. In other words, for the same
lead time, two runs may have different forecasting precision and bias. Therefore, when
NWPs are considered as state features, it is relevant to compare predictions with similar
errors. To do so, we consider runs delivered at the same time of day to characterise weather
situations (e.g. if the predictors describing the target situation for time t+ h come from a
12:00:00 run, then the predictors describing the candidate situations also come from 12:00:00
runs).

Alternatively, one may focus on the fact that forecasting precision tends to decrease as
the lead time increases. As a result, when NWPs are considered as explanatory variables,
only predictions from the most recent runs are considered.
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2.4.3.2 Local characterisation of the atmosphere

2.4.3.2.1 Choice of parameters In the PVPF field it is common practice to resort to
surface sensible weather features to account for PV production (e.g. GHI, 2-m Temperature
(T2M), and 10-m wind). Forecast parameters such as T2M, and Total Cloud Cover (TCC)
are computed by the physical parametrisation part of the IFS model (i.e. an approach
which replaces processes that are too small-scale or complex to be modelled physically by
simplified expressions), while irradiance is computed by a radiative transfer model based on
predicted values of temperature, humidity, cloud, and monthly mean aerosol climatologies
[112]. Here, we consider the following parameters: GHI, TCC, T2M for their proven interest
in PVPF [113]. These parameters are considered at the site position through a bi-linear
interpolation of the nearest grid points.

2.4.3.2.2 Modelling errors of irradiance features To get an idea of the errors con-
tained within features characterising the local atmospheric states (i.e. satellite-based ob-
servations and NWPs), the latter are compared with on-site observations of irradiance. On
the one hand, irradiance forecasts are obtained by gathering forecasts from the latest runs.
This alleviates forecast errors, which tend to grow as the forecast horizon extends. On the
other hand, we focus on satellite-based information derived at the site location.

As our datasets of on-site observations lack GHI-based features, we turn to Global
Tilt Irradiance (GTI) 5 measured by reference cells. This compels us to project the GHI,
provided by satellite observations and the NWPs model, into the Plane-of-Array (POA).
This projection model is detailed in Section 3.3.1.2.

Figure 2.10 highlights that both estimated GTI derived from (1) satellite-based GHI, and
(2) GHI predictions issued by the numerical weather model are centred on the identity line,
and match well with the vast majority of corresponding measurements. Yet, in both figures,
we observe an offset between the lowest values of simulated and measured irradiance. This is
thought to result from shading effects altering irradiance reception for low elevation angles.
In general, the dispersion of the scatter points results from mismatches between simulated
and observed values. These mismatches may be due to the coarse spatial resolution of data
(e.g. predicted data cannot assess small cloud structures which directly affect PV plant
production). In addition, differences may be accounted for by a mismatch between the
atmosphere turbidity at the site location and the climatologic values used in the Helioclim
and IFS models, and also by errors induced by the projection model. A higher dispersion
of the scatter points is observed in Figure 2.10b. This results from the facts that (1) 15-
min observations are compared with 1-hour based interpolated predictions, (2) the spatial
resolution of the NWPs is coarser than that of the SDSI, and (3) uncertainties are present
in predictions.

5. GTI represents the solar radiation incident on a tilt surface (in our case, it corresponds to the tilt
angle of the PV panels).
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(a) Modelled GTI obtained from SDSI. (b) Modelled GTI obtained from NWPs considering
latest forecasts of each run.

Figure 2.10 – Binned scatter plots for observed and modelled GTI of PV1 during 2015 and 2016.
GHI is projected into GTI thanks to the conversion model detailed in Chapter 3. GTI is measured

by reference cells. The red line represents the regression line obtained with the least-squares
method.

2.4.3.3 Global characterisation of the atmosphere

Sensible weather occurs on small scales and strongly depends on larger-scale features.
NWPs models have some difficulty forecasting phenomena whose the governing processes
occur at sub-grid scales, like explicit cloud formation, but turn out to be much more reliable
at forecasting large-scale atmospheric fields, such as synoptic-scale pressure fields, insofar
as such parameters are explicitly resolved within the models.

In the meteorological forecasting domain, geopotential fields (i.e. representation of large-
scale pressure patterns in the atmosphere) are commonly used to forecast precipitation
generation [68] and demonstrate strong influence over wind direction. They represent the
geopotential height at which the corresponding atmospheric pressure level is reached (e.g.
considering a 925 hPa pressure level, if at a specific location the geopotential height is 5, 300
m, it means that a 925 hPa atmospheric pressure is achieved at 5, 300 m above sea level).
From the geopotential fields one can derive the pressure gradient that drives the air flow
from high to low pressure regions, namely the geostrophic wind. In summary, geopotential
height is highly correlated with air flow and cloud generation, which makes it suitable to
work with PVPF.

2.5 Preliminary results

This section introduces preliminary results regarding forecasts generated solely from past
PV production observations.

Figure 2.11 gives a visual representation of the measure-oriented framework developed
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in Section 2.3.2. The left panel is composed of the nRMSE, nMAE, and nMBE scores,
while the right panel displays associated skill scores with respect to the persistence model.
Due to the very low bias of the persistence, the nMBE-based skill score contains limited
information. We observe that the three models exhibit very low bias. The persistence model
tends to under-estimate production, while the AR and RF models provide over-estimated
forecasts. In terms of nRMSE, both the AR and RF models outperform the persistence
approach. This may be partially accounted for by the fact that the parameters estimation
of the AR model is based on the Mean Square Error (MSE) loss function. On the contrary,
the nMAE scores of the AR model are lower than those reached by the persistence. The
RF model outperforms the AR model for both nRMSE and nMAE accuracy scores.

Figure 2.11 – Forecasting performances obtained considering former PV production observations.
Data have been quality checked with the method presented in Section 4.2, and normalised with the

method introduced in Section 4.4.1.

The nRMSE scores achieved within the scope of this study using the AR model are in
line with what can be observed in the literature (Table 2.4). Any divergences are assumed
to result from sites’ specific features (e.g. plant size, local weather).

Study Location 1-hour 6-hour

[83] (Fig 7) Portugal 8.5% 13.7%
[100] (Fig 2.15 (b)) France 6.25 − 11.5% 7 − 18.75%

Current study France 11.8% 17.8%

Table 2.4 – Comparison of nRMSE scores obtained with the AR model for 1-hour and 6-hour
forecast horizons with different studies. Information within parenthesis represents the figure from

which values have been visually determined.
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Figure 2.11 gives an overall view of the accuracy of forecasts during all sky conditions,
but it provides few details concerning the error distribution. To address this shortcoming,
let us consider the nRMSE distribution according to the solar elevation angle and the local
weather situation represented by the CSI (a low CSI indicates an overcast situation, while
a CSI close to 1 represents a sunny situation). Unsurprisingly, Figure 2.12 shows that
the forecast error increases as the forecast horizon extends. The graph highlights that
the greatest errors are observed when the Sun is at its highest point in the sky, which
corresponds to moments with high irradiance levels. The greatest errors are also associated
with overcast situations (i.e. low CSI). Both models perform well during sunny situations
(i.e. CSI close to 1) and for very low solar elevation angles, for which irradiance levels are
very low. We observe that the RF model tends to uniformly reduce forecast errors for all
weather situations and elevation angles compared to the AR-based forecasts.

Figure 2.12 – Regime-dependent nRMSE scores obtained with forecasts issued by the AR and RF
models as a function of classes of CSI, kP V (defined in Equation 4.16), and solar elevation angles

for PV3.

As a complement to our previous forecast quality analysis, we consider a visual imple-
mentation of the distribution-oriented framework developed in Section 2.3.4. Figures 2.13
and 2.14 represent the joint and marginal distributions of generation observations for sev-
eral forecast horizons based on the AR and RF models respectively. We only focus on the
analysis of Figure 2.13 as both graphs are rather alike. First, we observe that overall, for
the very first time-step, the scatter points are centred on the identity line, but a closer
examination of the 2D kernel density in low-production conditions reveals that forecasts
slightly drift above the identity line. For higher forecast horizons, the joint distributions
are no longer centred on the identity line. Predictions tend to be higher than observations
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for low-production levels, but an opposite tendency is observed for high-production rates.
This over-estimation of low-irradiance levels may be explained by the fact that forecasts
for the early morning (i.e. generated during nighttime) represent mean behaviour learnt
during the training phase in the absence of previous production observations. This issue is
fixed in Section 5.4 by considering nighttime observations or NWPs model outputs of the
irradiance. Histograms represent the marginal distributions of forecasts (on the right) and
observations (at the top). The histogram of forecasts for 15-min ahead corresponds well
with the observational data distribution (i.e. both histograms exhibit two maximums at
low- and high-irradiance rates). However, we observe the appearance of new maximums at
mid-irradiance rates for higher forecast horizons, in so much as the marginal distribution of
6-hour ahead forecasts is very different from the production observations histogram.

Figure 2.13 – Joint and marginal distributions of 15-min, 1-hour, 3-hour, and 6-hour ahead
forecasts and production observations considering the AR model at PV1. The contour lines
represent the 2D kernel densities. The red line represents the first bisector. Marginal plots

constitute histograms of forecasts and observed production.

2.6 Conclusions

This chapter lays the foundation of a modular forecasting framework, which is extended
throughout this thesis. The kernel of this architecture is a regression model chosen for its
proven performance, low computational cost, low complexity, and interpretability capabili-
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Figure 2.14 – Joint and marginal distributions of 15-min, 1-hour, 3-hour, and 6-hour ahead
forecasts and production observations considering the RF model at PV1. The contour lines

represent the 2D kernel densities, while the red line is the first bisector of the graph. Marginal
plots constitute histograms of forecasts and observed production.

ties.

We adopt a validation framework recommended by eminent solar forecasters to provide
in-depth accuracy analysis of forecasts, and to facilitate comparison with other studies.
This latter comparison is based on a quantitative and qualitative analysis. Accuracy skill
scores provide a good indicator of the global skilfulness of the models and allow cross-work
comparisons, while joint and marginal analyses of forecasts compared with observations
enable us to assess the error distribution.

To improve forecast accuracy, we also consider a pool constituted by several data sources,
namely past PV production observations, satellite-derived observations, and NWPs model
outputs. This choice is in line with the observed forecast paradigm shift from temporal-based
forecasting to ST-based forecasting. This study goes beyond what can be generally found
in the literature inasmuch as infrared sources of information are investigated in Chapter 5.

Lastly, the proposed methodology is implemented to illustrate the forecasting and val-
idation frameworks. These preliminary results act as baseline forecasting performances,
which are improved incrementally throughout this work.
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2.7 Résumé en Français

Pour prévoir la production PV nous utilisons une architecture modulaire que nous dé-
veloppons de manière incrémentale au fur et à mesure de ce manuscrit. Les modules fonda-
mentaux utilisés restent invariants et sont (1) un module propre aux données d’entrée, (2)
un modèle de normalisation permettant de s’affranchir de la composante déterministe du
signal de production/d’irradiance et de ne garder que la composante stochastique associée
aux déplacements de masses atmosphériques, (3) un modèle de régression qui constitue le
cœur de cette chaîne de modélisation, et enfin (4) un modèle permettant de dé-normaliser
la sortie du modèle de régression et d’obtenir une prévision équivalente à une puissance
électrique (Figure 2.2). Tous les modèles sont implémentés et développés via le langage de
programmation R.

Modèles de prévision

Sélectionner le modèle de prévision optimal pour une application spécifique n’est pas
une tâche aisée dans la mesure où aucun ne se différencie dans tous les domaines et qu’une
profusion importante de modèles est présente dans la littérature. Pour guider notre choix,
nous considérons des critères tels que la complexité, l’interprétabilité ou encore l’extensibilité
des modèles.

Dans le domaine de la prévision PV, les modèles ARIMA constituent la famille la plus
représentée en raison notamment de leur utilisation en tant que modèles de référence mais
également en raison de la précision de leurs prévisions, de leur interprétabilité aisée et de
la rapidité de leurs calages. Puisque dans les prochains chapitres nous serons amenés à
diversifier et augmenter les données d’entrée, il est judicieux de considérer une approche de
sélection des variables afin d’éviter des problématiques de surapprentissage et d’améliorer
l’interprétabilité des modèles générés. De ce fait, nous implémentons la procédure LASSO
avec le modèle auto-régressif (AR).

Puisque le modèle AR est un modèle linéaire, ce dernier n’est pas en mesure de capturer
l’ensemble des dynamiques atmosphériques. Un modèle plus avancé est donc nécessaire.
Typiquement, dans la littérature dévolue à la prévision de la production PV, deux grandes
familles de modèles sont représentées : les réseaux neuronaux profonds (DNN) et les modèles
dérivés des arbres de décisions. Ce phénomène peut s’expliquer par la popularité sans cesse
croissante des architectures neuronales et leur large gamme d’applications et par le fait que
les modèles dérivés des arbres de décisions se retrouvent bien souvent en haut du classement
des compétitions de prévision. Dans le cadre de ces travaux, nous avons choisi de travailler
avec le modèle RF principalement pour la simplicité de son calage en comparaison à d’autres
modèles tels que les GBRT.
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Cadre d’évaluation des performances

Pour évaluer les prévisions générées par les modèles de régression, il est nécessaire de
répondre à la question : « qu’est qu’une bonne prévision ? ». Les réponses peuvent être variées
selon le contexte d’étude. Ici nous considérons qu’une bonne prévision est une prévision
proche de la réalité observée, en d’autres termes, que l’erreur entre les deux variables est
faible.

Nous adoptons un cadre de validation des résultats prôné par la littérature. Celle-ci
fournie une large gamme de métriques pour quantifier les erreurs de prévision. Ici nous n’en
retiendrons que trois, en l’occurrence, lanRMSE, la nMAE, et la nMBE. Pour juger de la
performance d’un modèle au regard d’un autre, nous considérons le score de compétence
défini à l’Equation 2.9. Enfin, nous considérons la persistance de l’indice ciel clair comme
modèle de référence afin de fournir un point de comparaison avec la littérature. En quelques
mots, ce modèle suppose que la situation nuageuse à un instant t perdure jusqu’à l’instant
t+ h.

Nous verrons par la suite que, pour certaines configurations de modèles, il est possible
d’obtenir des performances prédictives si proches qu’il en devient difficile de savoir si les
différences sont réellement significatives. Pour pallier ce problème, nous nous tournons vers
le test statistique de Diebold-Mariano qui compare la précision de deux modèles de prévision.

Données d’entrée

Pour alimenter nos modèles de prévisions, nous considérons trois sources hétérogènes
d’information, à savoir l’historique de production des centrales PV, des informations obte-
nues à partir de satellites, et des prévisions numériques du temps (NWPs).

Tout d’abord, nous avons à disposition l’historique de production de neuf centrales PV
réparties dans le sud-ouest de la France, principalement le long du Rhône. Malgré leur
localisation dans une région spécifique , elles sont néanmoins soumises à des conditions
climatiques diverses : les parcs les plus au Sud subissent un climat méditerranéen alors que
la centrale la plus à l’Est est influencée par un climat alpin.

De plus, l’usage de données d’origine satellitaire est également investigué. Cette source
de données se décline majoritairement sous la forme d’estimations de l’irradiance au sol
(SDSI). Cependant, lorsque les prévisions sont générées pendant la nuit, ce type de données
ne fournit aucune information pertinente. C’est pourquoi nous nous tournons vers des cartes
d’opacité obtenues à partir des canaux infrarouges des satellites. A notre connaissance, ce
type de données est très peu utilisé dans la littérature : nous avons identifié uniquement
deux articles les utilisant ([104, 114]). Les images obtenues à partir de satellites offrent
l’avantage de couvrir une région étendue autour de la centrale PV et donc renseignent sur
les perturbations météorologiques à venir. Le recours à ce type de données fait partie d’un
changement de paradigme que l’on observe depuis plusieurs années, et qui consiste à utiliser
des méthodes valorisant les dépendances ST entre les données.
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Jusqu’à présent, nous avons considéré des données observationnelles, désormais tournons-
nous vers des prévisions. Les prévisions météorologiques sont obtenues à partir de modèles
numériques de l’atmosphère représentant avec plus ou moins de simplifications les différents
processus physiques à l’œuvre. Dans cette étude, nous considérons deux types d’information :
des prévisions numériques au niveau du site d’intérêt (i.e. la moyenne des variables obtenues
à partir des quatre points de grille les plus proches) ou des prévisions sous forme de carte 2D
centrées au niveau des centrales. Ce premier type d’information est constitué de variables
sensibles telles que l’irradiance, la température ou encore la couverture nuageuse totale. Le
second type d’information quant à lui représente une variable synoptique, en l’occurrence le
champ géopotentiel. Cette variable fournie de précieuses informations concernant le type de
situations météorologiques à l’œuvre dans la région concernée (e.g. temps ensoleillé, orageux)
ainsi que des renseignements sur la direction des déplacements des masses nuageuses.

Résultats préliminaires

La dernière partie de ce chapitre présente quelques résultats préliminaires concernant
des prévisions obtenues uniquement à partir de l’historique de production. Dans ce cas de
figure particulier, le modèle RF surpasse le modèle AR pour l’ensemble des trois métriques
considérées. Néanmoins, les performances obtenues en considérant le modèle AR sont en
accord avec ce qui est observé dans la littérature. Cette partie est également l’occasion
d’introduire les outils graphiques utilisés pour analyser les performances des modèles.
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Chapter 3

Physics-based Modelling

We may regard the present state of the universe as the effect of its
past and the cause of its future. An intellect which at a certain

moment would know all forces that set nature in motion, and all
positions of all items of which nature is composed, if this intellect

were also vast enough to submit these data to analysis, it would
embrace in a single formula the movements of the greatest bodies of

the universe and those of the tiniest atom; for such an intellect
nothing would be uncertain and the future just like the past would

be present before its eyes.

Pierre Simon Laplace, A Philosophical Essay on Probabilities (1814)
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3.1 Introduction

Alternative Current (AC) power generated by a Photovoltaic (PV) power plant is the
result of a complex conversion process involving several components affected by specific
environmental and technological factors, the best example being the geometry-dependency
(i.e. orientation and inclination of modules) of PV production.

Several approaches are conceivable to derive production forecasts. The PV generation
forecasting field can be split into three main categories: (1) physical models, (2) statistical
models, and (3) hybrid models (i.e. a combination of both previous categories). The first
approach explicitly defines the conversion processes involved via physical laws (as such it
can be considered as a white box), while the second family uses statistical models to infer
these laws (i.e. grey- or black-box modelling depending on the model’s complexity). In
truth, the physical modelling class is not a set of forecasting techniques in itself inasmuch
as the forecasting effort is supported by Numerical Weather Predictions (NWPs) models.
This class of model is not widespread in the PV forecasting literature in comparison with
the statistical modelling family [47]. To account for this under-representation, [115] points
out the lack of data regarding plants’ design parameters.

The main objective of this section lies in investigating the potential interest of link-
ing physics- and statistics-based modelling. A rich Photovoltaic Production Forecasting
(PVPF)-related literature has been developed to account for physical effects intervening in
the irradiance-to-electricity conversion process [115], while usually statistical models neglect
this aspect for the benefit of better modelling of weather phenomena. This objective can
be viewed from a different perspective, namely, a way to integrate explicitly physics-based
knowledge within statistical models with the aim of reducing the inferring effort. Such an
ambition raises the following questions:

?

Research Gap - Global Horizontal Irradiance conversion

In the literature, most studies based on Machine Learning (ML) or
Deep Learning (DL) tools consider the irradiance information in the
form of Global Horizontal Irradiance (GHI). Such an approach postu-
lates that the transposition into the Plane-of-Array (POA) a is implic-
itly performed by the forecasting algorithm. Is it possible to reduce
the modelling efforts upon forecasting models and improve forecast-
ing performances by considering Global Tilt Irradiance (GTI), or
even the electrical power derived from NWPs? If so, what are the
critical modelling steps?

a. Plane of array irradiance quantifies the incident irradiance on a given solar
array.
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3.2 Methodology

To fulfil the aim of this chapter, it is necessary to develop a modelling chain able to con-
vert a set of inputs composed of weather variables and plant-specific parameters into electric
power. This physics-based chain converts the GHI data obtained from clear-sky, satellite-
based, or NWPs models, and even pyranometers observations, into electric power. The
resulting preprocessed irradiance is then injected into a forecasting model. This approach
offers the possibility to include explicitly physics-based knowledge in statistical models and,
therefore, leads us to develop a hybrid modelling strategy.

For each modelling step, a wide range of models is found in the literature. To limit
the choice of possible options, the design strategy of this conversion chain has to obey two
main criteria: simplicity and accuracy. The featured models must consider easily retrievable
inputs to enable large-scale use and little computing efforts.

A literature review identified the prevailing modelling steps within the scope of PVPF.
These processes are summarised in Table 3.1. Neglected processes may be implicitly taken
into consideration in the statistical forecasting model by providing relevant inputs (e.g.
ageing can be assessed if a time-based feature is provided).

Physical modelling Neglected processes

GHI decomposition Electricity conversion
GHI projection Angular losses (dust and soiling)

Shading effects (inter-row and far shading losses) Angular losses (spectral response)
Angular losses (reflection) Ageing

Irradiance-to-power modelling Shading effects (near shading losses)
Cells temperature

Table 3.1 – Explicitly modelled or rejected processes intervening in the conversion of irradiance
into electrical power.

To give the reader more insight into the physics-based modelling chain, Figure 3.1 rep-
resents the general architecture of the conversion process retained. The steps impacting
irradiance before it reaches the PV cells are detailed in Section 3.3, while Section 3.4 de-
scribes the conversion of irradiance into electrical power.

To evaluate the impact of the physics-based modelling on forecasting performances, two
strategies are adopted. First, performances are assessed within the clear-sky normalisation
framework (process defined in Section 4.4). In this sense, this work is an extension of results
provided in Section 4.4.2.2.3. Second, it is common practice in the PVPF field to resort
to non-normalised data (i.e. data which are not normalised by clear-sky-based features)
when using ML tools. Thus, it seems interesting to compare the forecasting performances
of models fed respectively with raw irradiance and preprocessed irradiance.
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Figure 3.1 – Physical PV production conversion chain composed of a decomposition model (3.3.1.1),
a transposition model a (3.3.1.2), a reflection model (3.3.3), a cell temperature model (3.4.2), a

power conversion model (3.4.4), and the modelling of shading losses (3.3.2) (graph based on [115]).

a. Step (0) may be optional if the components of irradiance are provided.

3.3 Effective irradiance reaching photovoltaic cells

When dealing with short-term PV generation forecasting, apart from past production
observations, irradiance data are the main impacting factor. This feature is usually provided
in the form of GHI by numerical models, which take into account the influence of the
atmosphere and its components. It is then necessary to transpose the horizontal irradiance
to the tilted plane of the PV modules to obtain the GTI. After crossing the atmosphere, the
solar irradiance has to cross the panel cover before reaching the PV cells. At this point, the
light beam can be altered by angular reflection and the presence of dust on the glass cover.

Figure 3.2 illustrates the geometrical angles used in mathematical formulations through-
out this section.

θS(t) Solar zenith angle formed by the direction of the Sun and the local vertical (°,
unless otherwise specified),

γS(t) Sun’s elevation angle (i.e. θS(t) + γS(t) = 90°) (°),
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Figure 3.2 – Angles describing the position of the Sun and the panel positioning. N, E, S, W
denote the north, east, south and west. Inspired from [116].

αS(t) Solar azimuth angle (°),
θ(t) Incident angle: angle comprised between the normal to the plane and the solar

rays (°),
β Inclination angle of the panel (°),
α Azimuth angle of the panel, i.e. angle between the projection of the normal to

the plane and the north direction (°).

3.3.1 Irradiance on the plane-of-array

3.3.1.1 Decomposition of the GHI

The incoming solar radiation reaching a horizontal plane on the ground is composed
of two main components, namely the direct solar radiation (i.e. Beam Horizontal Irra-
diance (BHI)) and the diffuse solar radiation (i.e. Diffuse Horizontal Irradiance (DHI))
(Equation 3.1). These parameters are crucial to derive solar radiation on a tilt plane or to
determine shading losses.

GHI(t) = BHI(t) +DHI(t) (3.1)

In the present study, the McClear model outputs [117] and the European Centre for
Medium-Range Weather Forecasts (ECMWF) numerical model 1 [118] provide respectively

1. The NWPs model provides the SSRD (surface solar radiation downwards) and FDIR (total sky di-
rect solar radiation at surface) parameters, which correspond to the GHI and BHI quantities. A simple
computation leads to the diffuse solar radiation.
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estimations and predictions of BHI and DHI components. On the contrary, the Satellite De-
rived Surface Irradiance (SDSI) maps database only provides GHI quantity. Consequently,
in this latter case, it is necessary to resort to a separation (or decomposition) model to
estimate the beam and diffuse components from the GHI 2.

Most of the decomposition models are empirically derived from irradiance measurements
[119] and aim at estimating the diffuse fraction, kD, (i.e. the ratio of the diffuse to the GHI,
Equation 3.2) as a function of the clearness index, kt (i.e. the ratio of the GHI to the horizon-
tal extraterrestrial irradiance) and other predictors (e.g. air mass, dew-point temperature,
relative humidity, zenith angle) [115]. Gueymard in [119] proposes a comprehensive evalu-
ation and validation study of around 140 separation models for five climatic regions, which
provides two interesting conclusions:

1. The ENGERER2 model [120] can be considered as a ’quasi-universal’ 1-min separation
model, wherever and whenever low-albedo conditions prevail,

2. The most recent models do not generally offer improved accuracy in comparison with
the first proposed separation models except for the local area that they are specifically
designed for.

kD(t) = DHI(t)
GHI(t) (3.2)

This ENGERER2 model has been specially developed to account for Cloud Enhance-
ment (CE) situations. The CE phenomenon occurs on partly cloudy days when the irradi-
ance temporarily exceeds the expected clear sky irradiance value. This situation is assumed
to result from reflections from cloud edges and strong forward Mie scattering inside the
cloud [121], which increase the diffuse part of irradiance. Typically, CE only appears in
high-resolution measurement data as it lasts from seconds up to a minute [121]. Thus, a
model as refined as the ENGERER2 model is not well suited to work with 15-min resolu-
tion data. Therefore, we turned to the Boland–Ridley–Lauret (BRL) decomposition model
developed in [122] as it is considered as one of the best separation models [115, 123] and
does not require measured or forecast predictors, but only variables, which can be easily
computed with solar geometry algorithms (Equation 3.3 and Equation 3.4). It is worth
mentioning that initially the model was developed with hourly data, but [124] proposes
verifying the usefulness of the model for minute data.

kD(t) = 1
1 + e−5.38+6.63k(t)+0.006AST (t)−0.007(90−θS(t))+1.75K(t)+1.31ψ(t) (3.3)

ψ(t) is a measure of persistence of global radiation level and K(t) is the daily clearness
index:

2. In this work, the decomposition model is used to make up for a lack of data (namely the diffuse and
direct irradiance derived from satellite-based devices). In an operational context it can also prove to be
relevant for cost reduction by avoiding the need to buy additional forecast products (i.e. diffuse irradiance),
but this may be to the detriment of accuracy.
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ψ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k(t−1)+k(t+1)

2 between sunrise and sunset,
k(t+ 1) at sunrise,
k(t− 1) at sunset.

K(t) =
∑︁N ′

d
j=1GHI(j)∑︁N ′

d
j=1 I

0h(j)
(3.4)

Where I0h(t) is the horizontal extraterrestrial irradiance (Equation 3.5), and I0n(t) is
the normal extraterrestrial incidence irradiance (Equation 3.9).

I0h(t) = I0n(t)cos(θS(t)) (3.5)

k(t) Clearness index (∅),
AST (t) Apparent solar time (hour),
θS(t) Solar zenith angle (°),
K(t) Daily clearness index (∅),
N ′
d Number of observations during the day (∅),

ψ(t) Clearness index persistence (∅).

3.3.1.2 Projection of the GHI

Now that the DHI and BHI are known, it is possible to project incoming irradiance (i.e.
the GHI) on the POA to derive the GTI (Figure 3.3).

(a) Ground Horizontal Irradiance (GHI). (b) Ground Tilt Irradiance (GTI).

Figure 3.3 – Illustration of the GHI and the GTI.

The first transposition (or projection) models appeared in the 1960s. This family of mod-
els estimates the irradiance on a tilted surface with arbitrary orientation from the horizontal
irradiance data. Generally, in the literature, we found two distinct groups of models: (1)
physics-based approaches, which model the irradiance in the sky, and (2) machine learning-
based methods (e.g. [125]), which learn the transposition relationship between the GHI
and the GTI. In this document we focus on physics-based approaches. The global tilted
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irradiance is the sum of the beam (or direct irradiance, but the term beam is preferred to
avoid any confusion when acronyms are used), the diffuse, and the ground-reflected compo-
nents over the plane of array. The projection of the horizontal components is modelled via
transposition factors (Equation 3.6).

GTI(t) = BTI(t) +DTI(t) +RTI(t), with:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
BTI(t) = BHI(t) ·Rb(t)
DTI(t) = DHI(t) ·Rd(t)
RTI(t) = ρ ·GHI(t) ·Rg

(3.6)

3.3.1.2.1 Diffuse component The main difference between the various transposition
models available in the literature lies in the way diffuse irradiance is computed [115, 126].
In [127], the authors classify the methods for calculating the diffuse tilted irradiance into
three categories: (1) methods assuming an isotropic sky, (2) models based on an an-isotropic
sky by considering circumsolar radiation (i.e. radiation from the bright region surrounding
the solar disc), and (3) models including a horizon brightening component. Such models
represent idealised cases, where the foreground is assumed to be un-shaded and infinite. A
wide variety of projection models are available in the literature. In this regard, [126] provides
a fairly comprehensive review and benchmarks twenty-six models: the authors identify the
Perez family of models as the overall best performer. This transposition model splits the
sky hemisphere into three areas: the circumsolar disc, the horizon band and the isotropic
background. We choose to consider the model 3 presented in [128] and defined hereafter. To
characterise the weather situation, the sky’s clearness, ϵ(t), and the sky’s brightness, ∆(t)
are used:

ϵ(t) =
DHI(t)+BNI(t)

DHI(t) + 1.041
(︂
π

180θ
S(t)

)︂3

1 + 1.041
(︁
π

180θ
S(t)

)︁3 ∆(t) = DHI(t) ·AM(t)
I0n(t) (3.7)

AM(t) is the relative optical air mass 4 [129] (Equation 3.8) and I0n(t) is the normal
extraterrestrial incidence irradiance [130] (Equation 3.9) where I0 is the solar constant (here
I0 = 1361 W/m2 [116]), and nt is the day of the year.

AM(t) = 1
cos(θS(t)) + 0.50572 ((90 − θS(t)) + 6.07995)−1.6364 (3.8)

I0n(t) = I0

(︃
1 + 0.033cos

(︃360nt
365

)︃)︃
(3.9)

3. The Perez model is derived from 13 sites located in Switzerland, France and the USA (climatic envi-
ronments of experimental datasets are provided in Table 2 from [128]).

4. This is the ratio between the length of the optical path through the atmosphere of solar radiation and
the path length at the zenith. This quantity is dependent on the Sun’s position and allows us to characterise
the solar spectrum.
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The diffuse transposition factor,Rd, is determined with Equation 3.10. Fi,j parameters
depend on the sky’s clearness, ϵ, (see Table 1 and Table 6 from [128] to obtain the value of
the function depending on the discrete sky’s clearness categories).

Rd(t) =
(︂
1 − F 1

t (ϵ(t),∆(t), θS(t))
)︂

· Fvf⏞ ⏟⏟ ⏞
Isotropic component

+ F 1
t (ϵ(t),∆(t), θS(t)) ·

(︃
a

b

)︃
⏞ ⏟⏟ ⏞

Circumsolar component

+

F 2
t (ϵ(t),∆(t), θS(t)) · sin(β)⏞ ⏟⏟ ⏞
Horizon brightening component⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fvf = 1 + cos(β)
2 · F 1

t (ϵ(t),∆(t), θS(t))

= F11(ϵ(t)) + F12(ϵ(t)) · ∆(t) + F13(ϵ(t)) · θS(t)

F 2
t (ϵ(t),∆(t), θS(t)) = F21(ϵ(t)) + F22(ϵ(t)) · ∆(t) + F23(ϵ(t)) · θS(t)

a = max(0, cos(θ(t)))

b = max(cos(85°), cos(θS(t)))

(3.10)

It is worth mentioning that this model considers only one row of PV modules. Thus,
when dealing with a series of adjacent parallel rows of panels, the soft shading (i.e. the
reduction of diffuse light due to adjacent lines) is not taken into account. In the same
manner, the foreground is usually assumed to be infinite, but in practice, ground reflection
on modules outside the front row may be overestimated.

3.3.1.2.2 Direct and reflected components The projection of the beam component,
Beam Tilt Irradiance (BTI), is based on geometry [131], while the ground-reflected com-
ponent, Reflected Tilt Irradiance (RTI), is obtained by considering isotropic irradiance and
the ground albedo, ρ [132] (Equation 3.11).

Rb(t) = max

(︃
0, cos(θ(t))
cos(θS(t))

)︃
Rg = 1 − cos(β)

2 (3.11)

With the angle of incidence, θ, defined as [130]:

cos(θ(t)) = cos(θS(t)) · cos(β) + sin(θS(t)) · sin(β) · cos(αS(t) − α) (3.12)

θ(t) Angle of incidence: angle between the beam radiation on a surface and the
normal to that surface,

θS(t) Solar zenith angle,
αS(t) Solar azimuth angle,
β, α Inclination and azimuth angles of the panel,
ρ Ground albedo (ρ = 0.2).

At this point, the irradiance reaching the PV module’s cover has been quantified. Let
us focus on the losses generated during the crossing of the glass cover of the module.
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3.3.2 Shading effects

3.3.2.1 Inter-row shading

The partial shading of PV devices can result from weather phenomena (i.e. displacement
of clouds, snow, dust) or from nearby structures that alter sunlight (i.e. neighbouring
solar panels, buildings or trees). In this section, we focus on this last category and more
specifically on adjacent panel rows.

Ground-mounted PV plants with multiple parallel structure rows may induce energy
losses owing to adjacent rows creating shade over each other. Inter-row shading depends
on the inter-row distances and is observed for low solar elevation angles (i.e. mainly during
winter time, sunrise and sunset). In this regard, row spacing is typically determined during
the planning phase of the solar plant to avoid shading at noon at winter solstice [127], but
[133] put forward that it is not rare to find plants with low spacing between rows, which
leads to significant row-to-row shading effects. Such configurations may originate from high
land costs combined with low module prices.

Inter-row shading results in unevenly distributed irradiance on the plane of PV modules:
(1) the un-shaded part benefits from direct, diffuse and ground-reflected solar irradiance,
while (2) a part of this irradiance is blocked for shaded regions. The shading from adjacent
mounting structures is purely geometrical, while the associated mismatch losses (notion
defined in Focus 3.1) depend on the network architecture (e.g. presence of bypass diodes,
implementation level of Maximal Power Point Tracking (MPPT)) and the interconnection
schemes (e.g. series-parallel, total-cross-tied) [127]. Usually, the proportion of electric shad-
ing losses is higher than the decrease in irradiance because a single shaded cell can limit the
current of all the series-connected cells [134]. Partial shading can also prevent the system
from operating at the Maximum Power Point (MPP): due to non-uniform irradiation lev-
els, multiple MPP are available on the P-V characteristics, which challenges conventional
MPPT to track the global maximum [135]. As a result, to model inter-row shading losses
it is necessary to have complete knowledge about the connection and arrangement of the
modules. Besides, the PV fields are rarely perfectly flat (Figure 4.2). Such topographies
lead to some bias because the following equations accounting for shading effects are de-
signed for horizontal planes. For the present study, we consider that the required modelling
complexity to account for such effects is not justified by the added modelling accuracy.

In [133], the authors propose a fairly simple formulation of the shaded fraction of the
module area as a function of the site configuration and the Sun’s position. This approach
assumes that the beam irradiance is the only component affected by the light obstruction
from adjacent row panels. In fact, the diffuse and reflected components are also affected:
e.g. the lower portion of the sky is obscured by adjacent rows which modify the isotropic
diffuse transposition factor presented in Equation 3.10. To account for this phenomenon, it
is possible to replace the term Fvf , which represents the view-factor of the first row, by the
view-factor proposed in equation (1) in [138] (this expression can be applied to rows in a PV
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Focus 3.1 – Mismatch effects

A PV module is usually composed of a set of 60 PV cells connected in a series. This
configuration increases the entire voltage output of the module, while the same current
value flows through all the cells. The series connection forces all the cells in a string (i.e.
a set of components connected in a series) to work at the same current, which leads to
mismatch losses if one cell is operating at a different point. In simple terms, the mismatch
loss can be defined as the difference between the expected and actual output power from
a PV module. This operating point is determined by the cell’s physical properties result-
ing from the manufacturing process (cells are binned during module fabrication) and from
external conditions (i.e. irradiance, temperature). Thus, heterogeneous irradiance distri-
bution reaching the PV module (due to partial shading, and even dust deposition) alters
the conversion efficiency of a PV module - and to a larger extent - of a string of modules.
Thus, if one cell in the string receives less irradiance than the others, the maximum current
of the module is that of the shaded cell (i.e. the module can be considered as shaded).
Such a situation can be challenging: indeed, unevenly distributed irradiance affects the
pattern of power-voltage characteristic curves of each module, which results in multiple
maximum points, increasing the challenge for the MPPT system to find the global power
peak point [136]. Besides, mismatch losses can also irreversibly deteriorate and shorten the
service life of PV cells due to the rise in temperature. Hot-spot heating appears when the
reduced short-circuit current of affected cells becomes lower than the operating current of
the module. When such a condition occurs, the affected cell or group of cells is forced into
reverse bias, acting as an internal load and dissipating generated power produced by the
other good cells in the form of heat [137]. To prevent energy losses and cells damage, bypass
diodes are connected in reverse parallel with the PV cells to provide an alternative path
for the current to flow. Owing to costs concerns, a standard module is usually composed
of three sub-strings protected by three bypass diodes [127]. The module is then divided
into three groups of 20 cells along its short edge [134].

panel composed of N modules placed one above the other [139]). Depending on the position
of the module in the panel, the amount of isotropic diffuse irradiance varies: lower modules
are more impacted than higher ones. Thus, such an approach makes the computational
chain more complex by requiring the computation of the view-factor for each module. A
more advanced model has been presented recently in [127] which performs better than
approaches considering only direct shading. This approach takes into account the impact
of shading over the diffuse components (e.g. the hard-shading effect over the circumsolar
diffuse irradiance) and the reflected components. Yet, including only the beam shading
improves the overall modelling accuracy of the irradiance-to-power conversion chain [115].
In the scope of this thesis, we focus only on the beam irradiance shading (Equation 3.13).
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fshading(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎣
⃓⃓⃓
L·sin(β)
tan(γS(t))

⃓⃓⃓
−
⃓⃓⃓

s
cos(αS(t)−α)

⃓⃓⃓
⃓⃓⃓
L·sin(β)
tan(γS(t))

⃓⃓⃓
+
⃓⃓⃓

L·cos(β)
cos(αS(t)−α)

⃓⃓⃓
⎤⎦ if |γS(t) − β| < π

2

0 if |γS(t) − β| ≥ π

2 or γS(t) < 0

(3.13)

γS(t) The Sun elevation angle (θS(t) + γS(t) = π
2 ) (rad),

L Panel length (m),
s Module row interspacing distance (m).

3.3.2.2 Near-shading and far-shading losses

Depending on the location of the plant, the surrounding landscape can be composed of
obstructions that cast shade on the PV receivers. Near-shading results from surrounding
objects, such as tress or buildings, while far-shading refers to projected shades from distant
mountains or hills.

The plants under study are mainly located in rural areas. From Google Earth-based
observations, we observe that the PV site surroundings are quite clear, although some are
near trees, bearing in mind that even high-voltage lines can shade some outlying panels,
but the phenomenon is too limited to justify its modelling.

Most of the PV plants (8 out of 9) are located in the Rhone valley which is surrounded by
the Alps to the east and by the Massif Central to the west. As a result, relief heterogeneity
is a distinctive feature of this area. To account for distant hills or mountains, the horizon
profile for each plant’s location is obtained from [140]. The horizon profile is a 360°elevation
map representing the profile of the surrounding area computed from elevation measurements
(Figure 3.4). If the Sun is below the horizon line, the direct component of irradiance is
blocked.

3.3.2.3 Dust and soiling

Soiling on the front glass of the module cover generates additional optical losses due to
absorption, scattering and reflection of the incoming sunlight. Soiling has a negative impact
on the economic profitability of the PV plants, not only because it reduces the yield, but
also because it generates additional cleaning costs [141]. To date, no passive anti-soiling
technology completely removes the need for cleaning, which can be performed manually,
semi-automatically (e.g. truck-mounted) or fully automatically [141].

Most of the models proposed in the literature rely on experimental data [142], which
makes them very environment-dependent. In this area, [143] highlighted that the dust
deposition phenomenon has mainly been studied in Middle East region, but few studies
have been carried out in Central Europe.

Airborne dust concentration and rain frequency are the main factors affecting soiling.
Rainfall seems to have a limited effect on small dust particles (2-10 µm) but is more efficient
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Figure 3.4 – Horizon line at PV10. Blue and red dashed lines represent the Sun’s elevation angles
at the June and December solstices.

to wash away larger dust particles (e.g. pollen) [143]. In [144], the authors showed that
in the south of Spain during summertime, soiling losses are greater owing to less frequent
rainfall. While rain is an effective way to clean off dust, wet surfaces resulting from relative
humidity strongly enhance dust adhesion [141]. In this regard, several field studies have
shown that dust settlement rates decrease as the tilt angle of modules increases.

The dataset under study is composed of PV plants mainly located along the Rhône
River. Their surroundings are characterised as a rural background composed of fields,
roads, copses and stony pathways. The Compagnie Nationale du Rhône (CNR) does not
perform any cleaning activities, considering that rainfall is sufficient. We tried to confirm,
a posteriori, this hypothesis by adopting an approach similar to the one found in [145]. A
pseudo-performance index is computed as the ratio of the sum of the soiled device power
measurements over a day, and the sum of the simulated power over the day. The theoretical
power is obtained by considering the model developed in this section with SDSI at the site
position. Nevertheless, it was not possible to identify performance degradation over time
or performance improvement after rainy events. This is assumed to result from various
measurement and modelling errors within the forecasting chain, which are higher than the
performance decrease associated with soiling. Therefore, we assume soiling losses to be
negligible.

Snow deposition in winter is observed mainly on the easternmost power plant. Days
associated with snowfall are rejected (Section 2.4.1).
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3.3.3 Optical effects

3.3.3.1 Angular losses

A PV module is composed of several layers (i.e. protective cover(s), solar cells), which
induce reflection and absorption of solar radiation [146]. Such losses can hardly be neglected
as they can reach between 2% and 3% [127]. In [147], the authors emphasised that cell
technology has a second order influence over the optical losses, which originate mainly from
the reflection of the incident light at the air-glass interface. Although light reflection is
wavelength-dependent, the literature showed that this dependence can be neglected [148].

The angular response varies according to the components of the solar radiation.

1. Direct radiation can be characterised by the incidence angle θ(t). As the incidence
angle increases, the amount of reflected light increases to such an extent that significant
effects occur at incidence angles higher than 65° [149]. In other words, reflection losses
of direct radiation are preponderant when the Sun is low in the atmosphere for PV
panels with typical inclination angles.

2. Diffuse and ground-reflected irradiance can be assumed to be isotropic (i.e. radiation
intensity is the same and independent from direction), and as such it is necessary to
integrate the contribution of each solid angle unit on the PV module. Moreover, the
proportion of each component varies according to the Solar Zenith Angle (SZA), θS(t)
(e.g. as the SZA increases, the contribution of direct radiation decreases, but the
diffuse radiation part increases), and also according to the cloud coverage (in clear-
sky conditions, direct radiation is the main contributor to the GTI, while in cloudy
situations, the diffuse part of the solar radiation gains more weight).

Thus, to consider the various behaviours, it is necessary to model angular losses with
specific formulations for each component.

To account for the optical losses, two types of model can be considered [115]: (1) theo-
retical models derived from optical laws (e.g. Snell and Fresnel equations), or (2) empirical
models. The first class of models aims at accounting for the reflectance and/or the ab-
sorption effects occurring at the cover layer of the PV module. With the ever-increasing
number of module configurations/technologies, the second family of models is appealing
because it provides generic formulations with specific fitted parameters depending on the
module’s features [147, 150]. Here, we choose to use the theoretical model presented in
[151]. This model can be viewed as an extension of the air-glass reflection and absorption
model proposed in [149] (for more in-depth mathematical developments, the reader may re-
fer to [152]): the authors included the possibility of considering an Anti-Reflective Coating
(ARC) layer and highlighted that the absorption part of the equation can be ignored. This
model has been selected because our portfolio of PV plants is composed of 5 plants with
ARC and 4 without. To minimise reflection losses, multiple layers of ARC can be applied in
combination with surface texturing of solar cells (silicon material possesses a high refractive
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index [153]). Here, due to the lack of technical information and for the sake of simplicity, we
neglected the influence of texturing and we assume that the ARC possesses only two layers
(Figure 3.5).

Figure 3.5 – Diagram of the ARC.

To compute the direct radiation optical losses, first, the transmittance through the ARC,
τARC , is computed with Fresnel’s equation:

τARC(t) = 1 − 1
2

(︄
sin2(θARC(t) − θ(t))
sin2(θARC(t) + θ(t)) + tan2(θARC(t) − θ(t))

tan2(θARC(t) + θ(t))

)︄
(3.14)

Where, the angle of refraction into the ARC, θARC(t), is determined from Snell’s law:

θARC(t) = arcsin

(︃
nair
nARC

sin(θ(t))
)︃

(3.15)

Then, the transmittance through the glass, τglass, is calculated similarly:

τglass(t) = 1 − 1
2

(︄
sin2(θglass(t) − θARC(t))
sin2(θglass(t) + θARC(t)) + tan2(θglass(t) − θARC(t))

tan2(θglass(t) + θARC(t))

)︄
(3.16)

With:

θglass(t) = arcsin

(︄
nARC
nglass

sin(θARC(t))
)︄

(3.17)

nair Refractive index of air (nair = 1) (∅),
nARC Refractive index of the ARC layer (nARC = 1.3 based on [154, 155]) (∅),
nglass Refractive index of glass (nair = 1.526 [149]) (∅),

Lastly, the effective transmittance through the ARC, τcover, modules is given by Equa-
tion 3.18. When PV plants without ARC are considered, only the transmittance of the glass
is investigated (i.e. τcover = τglass).

τcover = τARC · τglass (3.18)
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The diffuse and ground-reflected solar radiations are considered as isotropic 5, which al-
lows us to integrate the beam transmittance of module’s cover over an appropriate range
of incidence angles to derive the diffuse and ground-reflected transmittances of the system.
Indeed, the transmittance of a system for hemispherical isotropic diffuse radiation can be
approximated as the transmittance of the same system for the beam radiation at a specific
incidence angle [156]. In [156], the authors performed this integration operation for a va-
riety of configurations and proposed two equivalent angles of incidence to approximate the
transmittance of the same system for diffuse and ground-reflected radiation (Equation 3.19).
The authors do not stipulate the whole range of configurations tested, but we can assume
that ARC was not among the experimental data. This may be neglected, as diffuse and
ground-refracted radiation are of second-order influence in comparison with direct radiation.

⎧⎨⎩ θeg = 90 − 0.5788β + 0.002693β2

θed = 59.38 − 0.1388β + 0.001497β2
(3.19)

θeg Equivalent incident angle for ground-reflected radiation (°),
θed Equivalent incident angle for diffuse radiation (°).

We would like to emphasise the contradiction between the Perez projection model,
which assumes an an-isotropic diffuse irradiance, and the optical model, which considers
an isotropic diffuse irradiance. It is assumed that the inaccuracy generated by this simpli-
fication is relatively low compared to the errors induced during the forecasting process of
PV power.

3.3.3.2 Spectral response

The efficiency of PV cells is sensitive to variations in both the power and spectrum of
the incident light.

The spectral distribution of light reaching the ground in clear-sky conditions is mainly
characterised by the presence of absorption lines due to some molecules, such as ozone,
oxygen, and water vapour present in the atmosphere [116]. This distribution also depends
on the path length of the ray through the atmosphere: for low solar elevation angles, sunlight
passes through a greater proportion of the atmosphere, which leads to a significant Rayleigh
scattering of short wavelengths. Besides, clouds alter PV production, not only because they
reduce the available downwelling solar irradiance, but also because they act as a spectral
filter (water absorbs much more radiation in the near-infrared than in the visible) [148].

Only a few papers try to improve PV power modelling by including the Spectral Response
(SR) of modules [148]. This situation can be accounted for by the fact that standard
outputs of atmospheric models are broadband data (i.e. integrated over the full short-wave
domain), which do not provide any information regarding the spectral distribution. In such

5. This statement can be challenged when considering the circumsolar component of the diffuse radiation
(Section 3.3.1.2).
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a situation, the spectral effects can be estimated thanks to empirical formulations: [149] uses
an air mass modifier which takes into account the Air Mass (AM) that the beam radiation
has to cross, while [157, 158] proposes a spectral mismatch factor to account for the fact
that the spectral irradiance distribution in the field differs from that of the reference AM1.5
spectrum 6.

The SR of a PV system, i.e. the fraction of available irradiance that is converted into cur-
rent, is technology-dependent, which means that some technologies can be more or less sen-
sitive to certain bands of the solar irradiance spectrum [159]. For instance, mono-crystalline
and multi-crystalline silicone-based modules, which represent more than 90% of the total
production [160], are more sensitive to the near-infrared region than to ultraviolet photons
[159, 161]. In the PV power modelling literature, the spectral influence upon the conversion
performances is below 1% for standard crystalline silicon modules [162, 163] but around 3%
for amorphous silicon modules [163]. The spectral mismatch of Crystalline Silicon (c-Si)
modules is the lowest among the different PV technologies [115, 158]. The effect of spec-
tral variations can be neglected in this study inasmuch as all PV plants under study are
composed of such modules.

?

Research Gap - Irradiance component

The two previous sections highlight that shading and optical losses
behave differently according to the nature of irradiance (i.e. direct
or diffuse). Yet, it is common practice to solely consider the GHI in
forecasting models. As a result, we might wonder whether forecast-
ing performances could benefit from the consideration of irradiance
components instead of GHI.

3.4 Conversion of irradiance into electricity

3.4.1 Irradiance-to-power modelling

3.4.1.1 Modelling strategies

In the literature, three main approaches are investigated to determine the power output
of a PV system.

1. Equivalent electric circuit-based models: The current-voltage characteristic of
a PV cell varies according to the value of irradiance and the cell’s temperature. To
assess these characteristics, it is common practice to model the physical behaviour of
the cell using an equivalent electric circuit [149] composed of a current source, one or

6. Standard terrestrial solar spectral irradiance distributions, such as the reference Air Mass 1.5 spectrum,
can compare the performances of PV devices produced from different technologies or manufacturers. This
spectrum is representative of the illumination conditions of the Sun at an elevation angle of about 41° in
geographical mid latitudes and under a clear sky.

87



CHAPTER 3. PHYSICS-BASED MODELLING

two parallel diodes and a combination of resistances placed in series and in parallel.
The double-diode model is accurate when dealing with low irradiance levels but is
outperformed by the single-diode model, which is more relevant for higher illumination
conditions. The latter model is more widespread in the literature because it offers a
good trade-off between simplicity and accuracy. As the diode model is a nonlinear
problem, the parameters estimation is not trivial. Several approaches are presented
in literature: (1) analytical solutions can be reached with sets of approximations, (2)
iterative methods can be employed, (3) numerical methods are widespread owing to
their accuracy and speed of calculation but they may suffer convergence issues due to
bad initial conditions [164].

2. Empirical models: Another alternative consists in parameterising the physical re-
lation of the PV system [165–167]. Contrary to the previous set of methods, which
estimates the power output under varying operating conditions, empirical models as-
sume that the PV cell operates at its MPP. This class of models provides explicit
methods and relative easy calculations to obtain the conversion efficiency [168].

3. Data-based models: This last class of models avoids the explicit formulation of the
physical phenomena that occur during the irradiance conversion process. Instead, the
relation is inferred thanks to ML models [168, 169] fed with inputs such as irradiance,
ambient temperature and Sun position angles.

This panorama of modelling strategies can be attributed to the areas from which they
originated. For instance, laboratories specialised in PV measurements tend to use empir-
ical models, while universities, which are more accustomed to theoretical studies, are the
cradle of circuit-based models [170]. These approaches possess advantages and disadvan-
tages. First, both equivalent electric circuit-based models and empirical models emerge
from physics-based knowledge. The main distinction lies in the precision of the modelling:
the diode modelling strategy is more complex (and usually requires more information) but
provides more accurate production estimations [164, 171]. It is worth mentioning that, apart
from the parameters estimation of the diode model, the parameters estimation method also
plays an important role [115]: improved performances are expected if the estimation is per-
formed on experimental values rather than on values from data sheets. Both studies based
their comparison on small installed capacity systems, viz. 2.2 kWp and 9.0 kWp respectively.
For such installations, it is relevant to assume that physical parameters and ageing are ho-
mogeneous across the various modules. But for large-scale PV plants, such as those under
study (Pc ∈ (1.3, 12) MWp), the variable weather conditions affect each cell differently (e.g.
shading effects, small clouds). As a result, the diode modelling strategy seems oversized for
our specific case study.

Lastly, data-based modelling is an out-of-the-box solution that does not assume any
physical knowledge regarding the conversion process but needs some kind of expert knowl-
edge regarding model tuning. The main limitation to this approach is the need to have
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available data for the training process.
In the present work, the empirical model strategy was chosen owing to its low complexity

(and the subsequent small programming effort), and its low computational cost.

3.4.1.2 Empirical model

The literature provides us with plenty of power conversion models [166], which aim at
integrating the influence of cell temperature over conversion efficiency. Here, we consider
three distinct models (Figure 3.6) that we name: (1) power conversion model [165, 172], (2)
low irradiance model [165], and (3) efficiency model [173]. These models have been chosen
because they require few parameters, which can be found in the technical data sheet 7.

Figure 3.6 – Considered options for the conversion of irradiance into electrical power

The power conversion model (Equation 3.20) is the model most frequently encountered
in the literature, probably due to its simplicity and the low number of parameters required.
This model supposes a linear dependence between cell temperature and conversion efficiency.

P (t) = PSTC · GTI(t)
GTISTC

·
[︂
1 + γ ·

(︂
T cell(t) − T cellSTC

)︂]︂
(3.20)

P (t) Nominal capacity at time t (W ),
PSTC Nominal capacity at STC (W ),

GTISTC GTI at STC (W/m2),
T cell(t) Cell temperature at time t (°C),
T cellSTC Cell temperature at STC (°C),

γ Maximum power correction factor for temperature (°C−1).

7. Usually Standard Test Conditions (STC) parameters are: GT IST C = 1000 W/m2, AM0 = 1.5, T cell
ST C =

25°C
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The relationship between the efficiency of a cell and the POA irradiance is nonlinear: as
the intensity of incident irradiance decreases, so does the conversion efficiency. This phe-
nomenon is referred to as low irradiance losses [174] and is generally explained by the low
shunt resistance of PV modules [175]. Here we consider the two irradiance range models
proposed by [165] and defined by Equations 3.21-3.22. The authors highlighted that this
approach provided better modelling accuracy than Equation 3.20, yet this approach is not
widely used in the literature. Usually, low irradiance losses are neglected by most heuristic
models because the dominant contribution to the energy yield comes from higher irradiance
[176]. Coefficient k represents the irradiance correction factor and is highly technology-
dependent (Table 4 from [165]). For a same family of technology, the spread of k is quite
large (e.g. k ∈ [0.003 − 0.022] for single-crystal Si module).

For GTI(t) ≤ 200W/m2:

P (t) = PSTC ·
(︄
GTI(t)
GTISTC

·
[︂
1 + γ ·

(︂
T cell(t) − T cellSTC

)︂]︂
− k

[︄
1 −

(︃
1 − GTI(t)

200

)︃4]︄)︄
(3.21)

For GTI(t) > 200W/m2:

P (t) = PSTC ·
(︃
GTI(t)
GTISTC

·
[︂
1 + γ ·

(︂
T cell(t) − T cellSTC

)︂]︂
− k

GTISTC −GTI(t)
GTISTC − 200

)︃
(3.22)

The efficiency model (Equation 3.23) proposes an alternative where the efficiency is
modelled as a linear function of cell temperature under constant air mass and irradiance,
but it takes into account nonlinear dependence on air mass and irradiance [173]. p, q, m, r,
s, u are technology-dependent parameters (Table 1 from [173]). The production efficiency
η is then used to derive PV production (Equation 3.24).

η(t) = p

[︃
q
GTI(t)
GTISTC

+
(︃
GTI(t)
GTISTC

)︃m]︃
×
[︄
1 + r

T cell(t)
T cellSTC

+ s
AM(t)
AM0

+
(︃
AM(t)
AM0

)︃u]︄
(3.23)

P (t) = η(t) ·A ·GTI(t) (3.24)

A Active cell area of the module (m),
AM(t) Relative air mass (Equation 3.8) (∅),

For the sake of brevity, we do not include a forecasting performance comparison of these
three power conversion models. Within the frame of this thesis, it has been observed that
the efficiency model outperforms other modelling strategies.

3.4.2 Operating temperature

When irradiation reaches the PV cell, some of the energy is converted into electricity
while the remaining part becomes heat, which significantly increases the temperature of
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the module and reduces its efficiency [167]. Actually, the increase in temperature causes
a narrowing of the band-gap energy (i.e. the minimum amount of energy required for an
electron to break free from its bound state), which induces a higher generation of electron-
hole pairs and increases the short-circuit current. However, at the same time, the higher
temperature also decreases the PV voltage [177]. Ultimately, the increase in current is
not enough to offset the decrease in voltage, which results in a power drop. Apart from
the absorbed incoming irradiance, the PV cell’s temperature is also influenced by ambient
climatic conditions (e.g. temperature and wind) as well as the module technology (e.g. cell
technology, optical properties of cover). Wind reduces the operating temperature thanks
to forced convection: Fig.5 from [178] shows a wind cooling effect of around 17°C for wind
speeds of 9 − 10 m/s at a 1000 W/m2 global irradiance.

Thus, the influence of temperature cannot be ignored: the technical data sheet of the
60P250-Sillia poly-crystalline module [179] reports a 0.42% drop in maximum power pro-
duced for each degree rise in temperature w.r.t. STC. A variation in cell temperature of
40°C results in a 16.8% drop in the maximum power (at 65°C the module’s maximum power
drops from 250 Wp to 208 Wp). During summer clear-sky days, a cell’s temperature can
easily reach 60°C for free-standing systems in central Europe [180].

A comparison between several models estimating cell temperature highlights that [180]:

• the inclusion of the cooling effect resulting from wind provides better estimations of
the cell’s temperature,

• wind data from an NWPs model allows an estimation of the module temperature with
an error of the same order of magnitude as in-situ data.

Following the conclusions of this article, we consider the module temperature model
introduced in [181] and defined by Equations 3.25-3.26.

T cell(t) = UPV (w(t)) · T a(t) +GTI(t) · [τcover · αcell − ηSTC (1 + βSTC · TSTC)]
UPV (w(t)) − βSTC · ηSTC ·GTI(t) (3.25)

With:

UPV (w(t)) = 26.6 + 2.3 · w(t) (3.26)

Upv(w) Heat exchange coefficient for the total surface of the module,
T a(t) Ambient temperature at time t (°C),
τcover Transmittance of the cover system,
αcell Absorption coefficient of the cells,
ηSTC Efficiency coefficient of maximal power under STC,
βSTC Temperature coefficient of maximal power under STC (°C−1),
w(t) Local wind speed close to the module (m/s).
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The authors used τcover ·αcell = 0.81. Lastly, the wind speed at ground level is obtained
via the power law:

w(t) = w10(t) ·
(︃
Z

10

)︃( 1
7 )

(3.27)

w10(t) Wind amplitude at 10m height (m/s),
Z Panel height (m).

3.4.3 Ageing

A PV system is generally expected to be in operation for at least 20 years. Over time, PV
modules and electric conversion components (e.g. inverters) degrade under actual operating
conditions, which reduces their energy yield. Cell performance degradation mechanisms
are mainly material ageing, corrosion, metal mitigation through the p-n junction, cracked
cells, bypass diode failures, and changes in the module series resistance [182]. In addition,
external factors such as shading (which induces hot spots) and high temperature increase the
energy-yield degradation rates of modules [183]. The authors highlight that the degradation
of modules occurs at approximately −0.5%/year, which is in line with the findings of [162],
which proposes an average annual decrease in performance of approximately 0.8%.

As the influence of ageing is negligible, this process has not been modelled within the
physics-based conversion architecture. However, for further studies, a linear degradation
of the conversion efficiency according to the time can be considered. In the context of a
statistics-based model, the notion of flow of time can be easily integrated in the regression
model by considering a proxy of time.

3.4.4 Electricity conversion

The last stage consists in converting electricity to comply with grid injection require-
ments. Power inverters are used to convert Direct Current (DC) generated by modules to
AC and synchronise it with the grid voltage, while the transformer increases the voltage
before interfacing with the electrical grid.

In general, the efficiency of a PV inverter is a function of the input power and input
voltage. At medium to high levels of irradiance, the inverter has a high efficiency, typically
greater than 90%, while at very low irradiance levels, the efficiency drops sharply [184].
Fig 1.4 from [184] shows that inverter efficiency can be considered as constant over a wide
range of output power (namely for output power higher than 20% of rated power). An
investigation study performed in [185] examined several approaches to model the efficiency
of grid-connected inverters. Three inverter efficiency models (including the one proposed
in [185]) are investigated in [115]. These models are considered within a physics-based
conversion chain of irradiance into AC power. The results indicate that inverter models
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have a minor impact on the overall performance of the modelling chain. Therefore, the
impact of the inverter efficiency is neglected in this work.

?

Research Gap - Accuracy

Physics-based models are generally chosen due to their easy imple-
mentation and reduced computing efforts. Such requirements lead
to model simplifications that can induce a lack of accuracy. In addi-
tion, several processes in the conversion chain have been neglected,
while parameters such as site geometry may be spurious (Section 4.2).
Thus, it is legitimate to wonder whether a regression model fed with
preprocessed irradiance would outperform the same model trained
on a relevant set of inputs accounting for the physics behind the con-
version chain. The objective is to determine whether a statistical
model, provided with the relevant features, is able to derive irradi-
ance conversion laws in addition to extrapolating weather variations.
In other words, can we improve forecast accuracy by converting irra-
diance inputs into power-like feature?

3.5 Evaluation

The previous section enables us to get an insight into the various processes involved in the
conversion of irradiance into AC power. A detailed summary of the selected models and the
resulting architecture is presented in Figure 3.1. Figure 3.7 gives a simplified representation
of the conversion chain. In this section we focus on the projection, shading, optical and
efficiency models respectively defined in Sections 3.3.1.2, 3.3.2, 3.3.3, 3.4.1.2.

Figure 3.7 – Schematic representation of the conversion chain.

3.5.1 Explicit conversion of irradiance

In this section we investigate the impact of the proposed conversion architecture over
the properties of irradiance features as well as the impact on forecasting performances.
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3.5.1.1 Linear dependency on production

Figure 3.8 represents the evolution of the linear relationship existing between pre-
processed irradiance (in the absence of on-site GHI observations, satellite-based observa-
tions and NWPs model outputs are examined) and observed production. The different
pre-processing steps consist in the projection of GHI onto the POA (and the consideration
of shading and optical effects) and in the conversion of GTI into an electrical power-like
feature. First, Figure 3.8a exhibits a clear linear dependency between the GHI and the
observed production, and a significant spread of points. The projection model introduced in
Section 3.3.1.2 increases the concentration of points along the diagonal, while improving the
coefficient of determination (Figure 3.8c). The power conversion model has little influence
over the coefficient of determination. However, we observe in Figure 3.8e that the latter
corrects the deviation due to temperature for high levels of irradiance. Similar conclusions
are reached when considering forecast irradiance instead of satellite-derived irradiance (Fig-
ures 3.8b, 3.8d, 3.8f). Overall, scatter plots obtained with irradiance forecasts are broader.
The spread of the scatter plot is due to the coarse spatial resolution of the numeric weather
model as well as inherent forecasting errors. The collinearity degree of data is mainly due
to the projection model, while few contributions are observed from the shading and optical
modelling (which are not shown for the sake of clarity), and the irradiance-to-electricity
conversion.

Consequently, the proposed modelling chain strengthens the linear relationship between
the response and explanatory features. Such characteristics may be sought when on-site
measurements are used to assess the quality of production measurements.

3.5.1.2 Impact on forecasting performances

In the ML-related literature, it is common practice to resort to features (namely GHI)
which have not been normalised by clear-sky model outputs. Therefore, it is insightful to
analyse the impact of the different elements of the irradiance-to-electricity conversion chain
on forecast irradiance in the context of PVPF.

Figure 3.9 represents the forecasting performances of the RF model fed with past pro-
duction observations and features derived from irradiance forecasts. This figure clearly
demonstrates that in the case of non-normalised inputs, the projection of forecast irradi-
ance over the POA (i.e. RF + GTI(P) model) improves forecasting performances for the
three scores under study. The inclusion of shading and optical effects (i.e. irradiance reflec-
tion) slightly improve the normalised Root Mean Square Error (nRMSE) and normalised
Mean Absolute Error (nMAE) scores. However, the consideration of the efficiency variations
slightly degrades the scores.

Given that the forecasting performances of the models fed with pre-processed forecast
irradiance are very close, it is insightful to look at the statistical significance of forecast dif-
ferences. Figure 3.10 represents the Diebold-Mariano (DM) statistic between RF+GTI(P),
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(a) Irradiance on a horizontal plane (SDSI). (b) Irradiance on a horizontal plane (NWPs).

(c) Irradiance projected on POA (SDSI). (d) Irradiance projected on POA (NWPs).

(e) Production derived from irradiance (SDSI). (f) Production derived from irradiance (NWPs).

Figure 3.8 – Binned scatter plots of observed production and preprocessed irradiance. The figures
on the left are obtained considering SDSI observations, while those on the right result from forecast

irradiance at (PV6) for the years 2015 and 2016. The red line represents the regression line
obtained with the least-squares method.
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Figure 3.9 – Performances obtained with Random Forest (RF) fed with non-normalised inputs (i.e.
past PV observations and irradiance forecasts). The influence of the projection (P), shading (S),

optical (O), and efficiency (E) models are analysed.

RF+GTI(P-S-O), and RF+GTI(P-S-O-E) models. The graph shows that the difference
between forecasts produced with the RF+GTI(P-S-O) and RF+GTI(P) models are statis-
tically significant. This highlights the relevance of the shading and optical models.

�

Research Answer - GHI conversion

Section 3.5.1.2 shows that the conversion of irradiance has a positive
impact on forecasting performances. In the case of non-clear-sky nor-
malised forecast irradiance, the major source of improvement results
from the projection model, which is in line with findings in [115].

3.5.2 Implicit derivation of physical laws

In Sections 3.3 and 3.4, we developed a physics-based conversion chain based on primitive
features (e.g. irradiance components, solar angles, temperature), which generates AC power
from irradiance data. In Section 3.5.1, we highlighted that the explicit conversion of GHI into
products including plant characteristics achieves higher accuracy in the context of PVPF.
At this point, we seek to determine whether statistical algorithms are able, to some extent,
to implicitly derive conversion laws from initial features rather than post-processed ones. In
other words, our aim is to investigate the optimal set of inputs with which to provide the
model to obtain the highest forecast accuracy.

First, we investigate the influence of forecast radiation components (i.e. BHI and DHI)
on the skill of the PVPF model. We opt for the RF model and its nonlinear capabilities.
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Figure 3.10 – DM statistic (defined in Section 2.3.3) between the RF models outputs fed with
non-normalised features derived from irradiance forecasts. The influence of the projection (P),
shading (S), optical (O), and efficiency (E) models are analysed. The red dotted lines show the

borders delimiting the validation and rejection of the null hypothesis.

In Figure 3.11, we observe that the forecasting performances achieved by the model fed
with irradiance components outperform those of the model based solely on GHI in terms
of nRMSE, nMAE and normalised Mean Bias Error (nMBE). Therefore, knowledge of the
diffuse and direct parts of irradiance allows a better characterisation of the atmosphere and
consequently a better inference of production laws. However in the end, these improvements
are eclipsed by the consideration of the power-like feature within the RF + Power(P-S-O-E)
model.

�

Research Answer - Irradiance components

In the case of the nonlinear model, the consideration of the irradiance
components improves nRMSE and nMAE scores w.r.t. to a similar
approach considering GHI. Nonetheless, the best performances are
reached when considering the power-like feature or simply the GTI
(Figure 3.9 depicts small performance differences between the RF
models fed with these inputs).

Second, we investigate the ability of the RF to work with the initial features used to
model the irradiance-to-electricity conversion laws. To do so, we compare the performances
of the model fed with the primitive features w.r.t. the same model fed with pre-processed
irradiance. We consider the following sets of initial features 8:

1. Features set 1: DHI, BHI, AM, θ, αS , θS ,

2. Features set 2: DHI, BHI, AM, θ, αS , θS , temperature, and wind amplitude.

The first set is related to the projection, shading and optical effects, while the second
takes into account the thermal dependence of the efficiency. We observe in Figure 3.12 that

8. The incidence angle is added because it carries information regarding the plant’s geometry.
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Figure 3.11 – Forecasting performances of the RF models fed with GHI, BHI-DHI forecast, and
pre-processed irradiance (i.e. RF + Power(P-S-O-E)). To highlight performance variations, the

reference model is set as RF + GHI.

the RF model fed with features set 1 outperforms the forecasts derived from the physics-
based conversion of irradiance (i.e. model RF + Power(P-S-O-E)) both in terms of nRMSE
and nMAE. This is associated with an increase in bias, but this is of secondary order due to
the very low values observed. A hasty conclusion would be to think that the RF is better
at modelling the conversion process than the methodology that we propose. However, we
have to keep in mind that the RF deals with several processes, including the prediction
and the conversion processes. Within the scope of prediction, solar angles play a significant
role, all the more so as we consider non-normalised clear-sky features in this section. This
analysis is corroborated by the fact that the model RF + Power(P-S-O-E) + Solar angles
outperforms the model RF + Power(P-S-O-E).

Moreover, it is possible to slightly extent forecast accuracy (at least in terms of nMAE)
by considering temperature and wind amplitude. Given the low accuracy improvement,
the inclusion of features related to thermal effects is of secondary order compared to other
features such as solar angles. This observation is corroborated by Figure 3.13, which rep-
resents the features importance of RF + Features set 2 model. The graph highlights that
main features are irradiance components and solar angles. This low importance of temper-
ature may be explained, to some extent, by the fact that irradiance and temperature are
correlated. Therefore, we can assume that the regression model is able to implicitly account
for thermal-based efficiency drop thanks to the knowledge of irradiance levels reaching the
panels.

Based on these results, it is difficult to point out which methods is preferable considering
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Figure 3.12 – Forecasting performances of the RF models fed with pre-processed forecast irradiance
and solar angles (i.e. RF + Power(P-S-O-E) + Solar angles) as well as sets of initial features used
to derive electrical production from GHI. To highlight performance variations, the reference model

is set as RF + Power(P-S-O-E).

(1) pre-processed features, or (2) initial features. In terms of accuracy, the former leads to
slightly better nRMSE scores, while the latter provides a significant improvement for the
nMAE metric. The second approach possesses the advantage of a low modelling complexity
inasmuch as solar angles are easily retrievable from dedicated packages. Given the close
accuracy of forecasts obtained with initial or pre-processed features, we can assume that
nonlinear regression tools such as RF are able to implicitly derive physical conversion laws
from the features sets considered. We may hypothesise, for instance, that when knowing the
irradiance levels and solar angles, the model is able to divide its search space into sub-spaces
for which modules have experienced a similar spectral response.

�

Research Answer - Accuracy

In the case of nonlinear forecasting models, the use of physics-based
models to convert irradiance into electrical power improves forecast-
ing performances by explicitly integrating the physical knowledge
of the processes at stake. However, we highlighted that a statistical
model fed with a relevant set of features intervening in the conversion
chain also leads to a significant performance improvement. Based on
forecast accuracy it is difficult to determine which option is the best,
but the latter option does not need explicit modelling.
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Figure 3.13 – RF impurity-based feature importance (defined in Section 2.2.4). The model
generates forecasts for a 6-hour ahead horizon at plant PV1. The low importance of production
observations is due to the fact that for such horizons the main source of information is NWPs.

3.6 Conclusions

The work performed in this chapter provides an in-depth description of physical phenom-
ena occurring during the conversion of solar irradiance into AC power. From a knowledge
and information perspective, this study assesses the models available in the literature and
summarises the main factors impacting PV production. The methods developed can be
viewed as a way to inject physics-based information into the regression models.

The conversion of irradiance into electrical power is modelled through a modular chain of
several sub-models dedicated to specific aspects of the conversion. In the context of PVPF,
the conversion model is applied to irradiance information to derive plant-specific features
(such as GTI or power-like variables). This kind of physics-based approach is insightful
for newly built power plants without production records. In the case of ML models, we
highlighted that an explicit integration of physical knowledge through the pre-processing
of irradiance leads to higher forecast accuracy w.r.t. a straightforward integration of the
GHI. In addition, the description of the conversion processes highlighted that the irradiance
components are affected differently according to the physical process at stake. This inspired
the use of DHI and BHI instead of the global irradiance. The former approach turns out
to be more efficient in terms of forecast accuracy. In the same vein, we shown that directly
using the primitive inputs (namely inputs intervening within the conversion steps) to fit
an RF model provides somewhat comparable forecasting performances to the output of the
physics-based modelling. Therefore, ML tools such as RF are able to reckon conversion
laws when fed with relevant information. In both cases, the projection model is the critical
one, which is in line with [115]. The consideration of thermal effects is of secondary order
compared to the influence of solar angles.

In line with the quality analysis performed in Chapter 4, physics-based models are vital
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to convert on-site or off-site observations before using them as proxies of production per-
formances. The work performed in this chapter is continued in the next chapter. More
precisely, the impact of the conversion chain is analysed in the context of clear-sky normal-
isation in Section 4.4.

3.7 Résumé en Français

Pour générer des prévisions de la production PV, plusieurs approches s’offrent à nous.
Il est possible d’utiliser, comme nous l’avons vu dans le précédent chapitre, des modèles
de régression statistique. Dans ce cas, le modèle se charge d’inférer la relation entre les
variables d’entrée et la variable de sortie et agit comme une boîte noire ou grise, suivant
la complexité du modèle utilisé. L’alternative consiste à modéliser explicitement la chaîne
de conversion de l’irradiance en électricité via les lois physiques appropriées. La conversion
de l’irradiance en courant électrique alternatif est un processus complexe mobilisant de
nombreux composants et dépendant de facteurs externes, le meilleur exemple étant l’impact
de la géométrie (i.e. l’orientation et l’inclinaison des modules) sur la production. En soit,
cette famille de modèle ne réalise pas des prévisions puisque cette tâche est dévolue aux
modèles NWPs en charge de prévoir l’irradiance et les variables entrant dans la chaîne de
conversion. Les modèles physiques sont très peu utilisés dans la littérature traitant de la
prévision de la production PV. Ce phénomène peut s’expliquer par le manque de données
techniques concernant l’architecture et la configuration des centrales PV.

Les objectifs de ce chapitre sont doubles : on cherche d’une part à modéliser la conversion
de l’irradiance en puissance électrique via un ensemble de formules simples et ne nécessitant
que très peu de paramètres, et d’autre part à intégrer ces connaissances dérivées de la
physique dans le modèle de prévision statistique dans l’optique de réduire l’effort de calcul
de ce dernier et d’accroître sa précision. Afin de guider le lecteur, la Figure 3.1 nous fournit
une vision synoptique de la chaîne de modélisation.

Altération de l’irradiance

La première étape de cette chaîne consiste à modéliser les altérations que subit l’irra-
diance avant d’atteindre la cellule PV.

Généralement, les modèles NWPs, les modèles ciel clair ou tout simplement les mesures
réalisées par un pyranomètre nous fournissent la valeur de l’irradiance globale sur une surface
horizontale au niveau du sol. Il est donc d’abord nécessaire de projeter cette quantité sur
le plan des modules. Pour ce faire, il nous faut connaitre la valeur des trois composantes
de l’irradiation globale horizontale, à savoir la composante diffuse, directe, et celle reflétée
par le sol. Ces informations peuvent être directement fournies par les modèles ou certains
appareils de mesure. Dans le cas contraire il est nécessaire de recourir à un modèle de
décomposition. Dès lors, il est possible de projeter chaque composante via un modèle dédié.
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La projection de la composante diffuse se décline sous une multitude de modèles en raison
de la complexité de sa modélisation, alors que la projection des deux autres composantes
est plutôt éprouvée.

La connaissance des trois composantes permet également de modéliser l’ombrage inter-
rangées. Les ombres portées par les structures alentours telles que les constructions humaines
ou la végétation ne sont pas prises en compte. Par contre, un masque est appliqué pour
prendre en considération les reliefs topographiques locaux.

Nous avons également tenté de prendre en compte l’effet de l’encrassement des modules.
Le seul nettoyage que subissent ces derniers est celui apporté par les pluies. Or, à partir des
données à disposition, nous n’avons pas été en mesure de mettre en évidence d’éventuelles
variations de la puissance avant et après les précipitations. Ceci est supposé résulter de
diverses erreurs de mesures et de modélisation qui sont supérieures à la baisse de performance
induite par l’encrassement des panneaux. Enfin, les effets optiques sont intégrés à la chaîne
de modélisation.

Un module PV est composé de différentes couches qui réfléchissent et absorbent l’ir-
radiance différemment. En ce qui concerne la composante directe, ces phénomènes sont
modélisés via les équations de Fresnel et de Snell. Une modélisation spécifique est apportée
pour les deux autres composantes et repose sur des données empiriques. L’efficacité des
cellules PV est tributaire du niveau d’irradiance mais également du spectre de la lumière
incidente. Dans la mesure où la majorité des sites étudiés est constituée de modules silicone
cristallin (c-Si), matériau relativement peu sensible au décalage spectral, nous avons fait le
choix de négliger cet effet.

Conversion de l’irradiance en électricité

La seconde étape de ce processus de conversion réside en la conversion de l’irradiance
en électricité et en sa transformation avant injection sur le réseau. Tout d’abord, les cellules
PV permettent de convertir la lumière incidente en courant continu. Cette étape peut être
modélisée selon trois approches distinctes : via (1) un modèle électrique équivalent (i.e.
modèle diode), (2) un modèle empirique ou (3) une modélisation statistique (e.g. modèle de
ML). Dans la mesure où cette dernière option est gourmande en données, et que la première
modélisation est relativement complexe, nous avons fait le choix d’opter pour l’approche
empirique. Ce type de modèle requiert en entrée des paramètres standard propres à la
cellule considérée que l’on peut facilement trouver sur les fiches techniques des modules,
ainsi que l’irradiance incidente et la température de la cellule. En effet, plus la température
de la cellule est importante et moins le rendement de conversion est bon. Cette influence
est modélisée en prenant en compte des paramètres soit empiriques, soit spécifiques à la
technologie employée, ainsi que la température extérieure et le vent à proximité du sol.

Le processus de conversion du courant continu en courant alternatif est laissé à la discré-
tion du modèle statistique dans la mesure où la littérature met en avant la faible influence
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des rendements de conversion des onduleurs et transformateurs vis-à-vis du reste de la chaîne
de conversion.

Impact de la modélisation physique sur les performances prédictives

Notre modèle de conversion est maintenant achevé. La suite de ce chapitre consiste à en
évaluer l’influence sur les modèles de prévision.

Dans le domaine de la prévision de la production PV, et plus spécifiquement le pan
de littérature traitant des modèles d’apprentissage machine, il est courant de considérer
directement l’irradiance globale sur plan horizontal sans aucune étape de prétraitement.
Nous mettons en évidence que la projection de l’irradiance globale sur plan incliné permet
d’améliorer les performances du modèle RF, et que la prise en compte de l’ombrage et des
effets optiques a également une influence positive, mais moindre, sur la précision.

A ce stade, nous avons cherché à savoir si le modèle de régression était capable d’intuiter
les relations de conversion en jeu. Pour ce faire, nous lui avons fourni en entrée les variables
« élémentaires » (e.g. la composante directe et diffuse de l’irradiance, les angles solaires).
Il se trouve que lorsque le modèle RF est alimenté par ces variables élémentaires, il atteint
des niveaux de précision supérieurs à ceux obtenus en considérant l’information prétraitée
par la chaîne de modélisation définie précédemment. Ceci prouve la capacité du modèle
non-linéaire à déterminer implicitement les relations de conversion. Il est toutefois possible
d’améliorer les performances du modèle RF calé sur la puissance électrique dérivée du modèle
de conversion en adjoignant les angles solaires.
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Chapter 4

Data Characterisation

To believe with certainty we must begin with doubting.

Stanislas Leszczynski (1764)
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4.1 Introduction

Today, data may be considered as the new oil of our 21th century economy [186, 187].
Both are raw materials that, combined with relevant technologies, provide the foundations
of specific products and services that we resort to in our daily life. For instance, fuel, plastic
and pills are derived from petrochemicals, while autonomous cars, industrial automation,
and product recommendations are made possible thanks to Artificial Intelligence (AI)-driven
technology 1. The latter involves Machine Learning (ML) algorithms, which can learn some
specific tasks from historical databases without being explicitly programmed. Therefore,
this emerging digital economy relies on data-driven technologies. Most of the time, data
cannot be simply fed into ML algorithms but rather have to be pre-processed to extract their
valuable product: information. This process can be viewed as a kind of data refinement,
which involves expert skills to exhibit relevant patterns, while ensuring data integrity.

4.1.1 Objectives

This chapter aims at assessing the characteristics of the different sources of information
that we have at our disposal and to define the limits and potential of their applications
in the scope of Photovoltaic Production Forecasting (PVPF). Irradiance-related sources of
information are complex signals composed of distinct components. Examples include (1)
the deterministic influence of the Sun over seasonal and daily variation patterns, (2) the
stochastic impact of weather structures (e.g. clouds) and, in the case of power production
(3) variations due to the failures of production components. This raises several challenges:

1. First, inasmuch as power observations result from real-world measurements, they may
be incomplete or corrupted. The very first challenge lies in identifying these fallacious
data and providing appropriate treatment.

2. Second, dependencies between the different inputs can be spoiled because of these sev-
eral sources of variability. Indeed, in the context of Spatio-temporal (ST) forecasting,
stations aligned on the east-west axis could exhibit high correlation scores because of
the Sun’s path rather than effective cloud dependencies. Therefore, the second chal-
lenge tackled in this chapter is related to the expression of the relevant information
contained within the inputs.

In a nutshell, the main objective of this chapter is to define the characteristics of inputs
and highlight their dependencies by eliminating sources of variability that are not directly
related with stochastic weather phenomena impacting Photovoltaic (PV) production.

1. Artificial intelligence can be defined as the field of computer science that tries to mimic human intel-
ligence.
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4.1.2 Methodology

In this thesis, we adopt a multi-source approach to extend the forecasting performances
of traditional models. As a reminder, Section 2.4 details characteristics of production ob-
servations, satellite-based observations and Numerical Weather Predictions (NWPs) model
data. Section 4.2 proposes an imputation strategy based on a clustering algorithm to deal
with the corrupted production observations. Then, in Section 4.4 temporal and spatio-
temporal correlations observed within production time series and with spatially distributed
production observations or satellite-based datasets are investigated. The general workflow
of this chapter is displayed in Figure 4.1.

Figure 4.1 – General workflow of the chapter.

4.2 Data quality analysis

At this stage, it becomes relevant to question the integrity of available data. Our aim
here is to perform a critical analysis to identify data that may deviate from an objective
characterisation of reality. This section is motivated by the fact that manually written log
files summarising production failures are hardly usable due to a lack of precision regarding
event type and temporal occurrence.

4.2.1 Metadata reliability

The first step of our investigation consisted in reassessing the system metadata: namely
the tilt and azimuth angles of the modules. These angles directly impact the projection of
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irradiance on the plane of array. Under our latitudes, β = 25° and α = 180° are typical
values used during project sizing but reality on the ground can be somewhat different: e.g.
panel orientation may be imposed by local topography (Figure 4.2).

Figure 4.2 – Photograph of PV2 [188].

A basic approach was investigated at a very early stage of the thesis to determine a
set of angles (α, β) in line with the actual site configuration. These angles are used in the
forecasting process, and more precisely during the normalisation step of the PV production
(i.e. module 2 of Figure 1.10), which involves the projection of the clear-sky irradiance
onto the Plane-of-Array (POA) (Section 3.3.1.2). The main idea behind this approach was
to assume that the set of optimal angles would provide the most accurate forecasts. This
led us to a grid-search algorithm aimed at optimising the forecast accuracy through the
orientation angle values. Ultimately, the computed angles were not retained owing to some
wide deviations from standard values and the weakness of the proposed approach. Thus,
the angles from the technical specifications were kept.

Retrospectively, other methods could have been employed. For instance, it is possible to
filter out a set of observed clear-sky production curves and to select angles that lead to the
best fit with the modelled clear-sky production curves. This idea is implemented in [189],
where the authors apply a nonlinear least-squares solver to derive orientation angles and
the loss factor from the equation Pmeas,cs Psim,cs(α, β, LF ) (an average accuracy in terms
of the system orientation of 4° is achieved). In our case, such an approach could be used
with the physics-based modelling described in Chapter 3, but it was not implemented due
to time constraints. In the context of this thesis, we must consider that some parks have
undersized inverters, which impacts the shape of the clear-sky production profile.

4.2.2 Production observation reliability

PV power plants are complex systems involving several physical processes to convert so-
lar irradiance into Alternative Current (AC). The sources of variability associated with the
output energy result mainly from the weather conditions, but they may also be impacted
by technical failures. The latter can induce information losses in the form of missing or
erroneous observations which do not reflect reality. In such conditions, it becomes challeng-
ing to establish relevant statistical models dedicated to forecast generation when exogenous
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sources of data are used.

In the PVPF literature it is common practice to filter out easy-to-identify abnormal
behaviours or system downtime (Section 4.2.2.1) and replace them with missing values
(represented as Not Available (NA) values). More advanced methods are developed in dedi-
cated research fields. For instance, [190] provides a fairly complete review of fault detection
and diagnosis methods dealing with hot spots, arc faults, short-circuits and inverter failures
among other things.

In this section we focus on power loss analysis associated with macro failures (i.e. at the
inverter/transformer level), which have a high impact on production rates. The impact of
failures at the module or cell levels is negligible in comparison. Some articles reviewed for this
work propose methods that detect PV faults from the production time series itself ([191]),
while others compare observed production with simulated data (from on-site measurements:
[189, 192–194] and off-site observations: [195]) or predicted values ([196]). Such approaches
generally assume that defaults are associated with high deviations between measured and
simulated values. Most of the statistical approaches are based on normal standard deviation
limits (±1 SD or ±3 SD) algorithms ([189, 192, 193]), user-defined statistical thresholds
(percentile-based approach developed in [191]) or statistical test analysis comparing the
theoretical and the measured power ([194] uses the t-test). Regression models are also
used; the authors of [196] compare the effective production with estimations derived from
decision trees trained with environmental information (i.e. irradiance and temperature).
The main issue associated with regression models is the need to possess a sufficiently large
training dataset associated with normal operating conditions. Moreover, some approaches
are site-dependent: [191] develops a statistical analysis framework based on a statistical
clear-sky curve. The methodology identifies the causes of system performance variations (i.e.
de-ratings due to shading, clouds and outages) from inverter-based power measurements
of rooftop PV systems in semi-arid locations. This kind of climate is well adapted to
derive statistical clear-sky curves from previous observations, however it can be difficult
to generalise this approach to regions with higher cloud cover rates. To the best of our
knowledge, none of the reviewed articles deal with faulty observations in the specific context
of PVPF.

Here, we aim to go further into quality control by proposing a robust anomaly detection
and correction algorithm even in the presence of noisy data. The option investigated is
to identify and potentially correct abnormal production behaviours via proxies of the park
production. The first proxies that come to mind are irradiance estimations from satellite-
based observations or irradiance modelled with NWPs models. Nonetheless, such sources
of information are dismissed inasmuch as inherent modelling errors are present and, in our
case, the coarse spatial resolution (and temporal resolution in the case of NWPs) of data
prevents a clear distinction between normal and deteriorated production modes. As a result,
special attention is paid to on-site observations of irradiance for which we neglect sensors
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observational errors but which are subject to measurement defaults. In addition, produc-
tion measurements at the transformer levels are also considered. The proposed methodology
includes two steps; first a preprocess of the inputs makes it possible to reject erroneous ob-
servations. Then, a clustering algorithm, requiring a few user-defined parameters, associates
each production observation with a production regime.

4.2.2.1 Preliminary control

Some basic cleaning can be performed without any additional information apart from
the production time series to identify corrupt data or behaviour deviating from normal
operating conditions. This preliminary control is decomposed into three steps:

1. Global checking,

2. Basic quality control,

3. Constant data control.

4.2.2.1.1 Global checking Firstly, we check that, (1) Daylight Saving Time (DST) is
not implemented in the data, (2) no solar eclipse occurred, and (3) production observations
are lower than the installed capacity (given the 15-min temporal resolution of time series,
Cloud Enhancement (CE) phenomenon is dismissed).

4.2.2.1.2 Basic quality control Then, the quality control of the PV power measure-
ments proposed in [189] is applied (the criteria used are summarised in Table 4.1). A low
daily mean production may indicate an overcast situation, a potential system failure, or
even the covering of the modules by snow. Given the low occurrence of such situations,
a visual comparison with production measurements and irradiance forecasts enables us to
retain days with high cloud coverage and to flag other days as faulty.

Label Criteria Description

Upper limit
Comparison of production with

extraterrestrial irradiance in the POA
Pmeas < 1.5 · I0 · cos(θ)1.2

for θ < 85°

Lower limit
Lower boundary of

production measurements
Pmeas ≥ 0

Sundown
Production limited to
zero during the night

Pmeas = 0
for θS > 95°

Daily energy ratio
Days associated with a

very low level of produced
energy are flagged

∑︁T

t=1
Pmeas∑︁T

t=1
Psim,cs

> 0.05

Table 4.1 – Filtering criteria for quality control of the PV production measurements[189].
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Pmeas Measured power normalised by Pc (% of Pc),
Pc Installed capacity (MW ),
I0 Extraterrestrial irradiance normalised to 1 kW/m2,
θ Incident angle (°),
θS Solar zenith angle (°),

Psim,cs Normalised simulated power in clear-sky conditions (performance and clear-sky
models are respectively introduced in Chapter 3 and Section 2.2.1) (% of Pc).

4.2.2.1.3 Constant data control PV plants can experience total shutdown or curtail-
ment events (i.e. limitation of power output). Curtailments can be mixed up with frozen
data phenomena resulting from measurement or recording malfunctions. To avoid assimilat-
ing a local shading effect with plant failure, production observations below a 10° elevation
angle threshold are disregarded. In both situations, electric production remains constant
over a certain period of time. Such behaviours can be easily identified by taking into account
the derivative of the production signal. Besides, to avoid misclassifying observation points
that slightly deviate from shutdown or curtailment conditions, a degree of flexibility is im-
posed: |dPdt | ≤ ϵ, where ϵ is an empirically chosen threshold (here, ϵ = 0.02). Lastly, to be
labelled as an anomaly, the constant production must last at least a certain period of time
(here, 1 hour is imposed). Figure 4.3 (a)-(b) and Figure 4.3 (c) illustrate two production
behaviours identified respectively as curtailment and shutdown.

(a) Curtailment of PV10 plant pro-
duction.

(b) Curtailment of PV7 plant pro-
duction.

(c) Shutdown of PV7 plant.

Figure 4.3 – Production anomalies observed on PV7 and PV10 plants. Red points represent
production measurements identified as anomalies.

Table 4.2 highlights that the rate of curtailed production is rather low in comparison with
null production resulting from shutdowns; PV7 and PV10 are the plants which experience
the highest rates of curtailment. Further investigations with the Compagnie Nationale du
Rhône (CNR) revealed that for some plants (e.g. PV3 and PV7) curtailment associated with
high production rates results from transformer power under-sizing w.r.t. the PV installed
capacity. In such a configuration, we assume that the maximum production rate is rarely
reached, as a result, production is maximised during morning and afternoon periods but at
the risk of a possible saturation at noon. PV9 and PV10 stand out owing to the frequency
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of their shutdowns.

Site Name Curtailment (%) Shutdown (%)
2015 2016 2015 2016

PV1 0.55 0.33 0.88 0.93
PV2 0.00 0.08 0.55 0.63
PV3 0.79 0.38 2.05 1.34
PV4 0.06 0.03 1.46 0.38
PV5 0.33 0.27 1.02 1.15
PV6 0.03 0.00 0.93 1.48
PV7 1.15 0.71 0.77 0.14
PV8 0.71 0.38 2.79 1.34
PV9 0.00 0.22 7.08 3.24
PV10 1.13 0.82 4.83 14.9

Table 4.2 – Duration of estimated anomalies w.r.t. an effective year of production.

4.2.2.2 Additional sources of variability

Grid-connected PV plants are composed of several sub-components responsible for con-
verting irradiance into high-voltage electricity (Figure 4.4). First, PV modules produce
Direct Current (DC) electricity from irradiance. As the output voltage of a module is low,
modules are gathered into series to form a string. Then, the combiner box brings the out-
put of several strings together into a common bus. The DC output is converted into an AC
power through the inverter. Lastly, transformers increase the low-voltage power for grid
interconnection purposes. To monitor power production, sensors are set up at several levels
of the conversion chain.

Figure 4.4 – Diagram of a grid-connected PV plant.

In addition to the aforementioned production/measurement defaults, the quality of the
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production time series is affected by other factors:

• Missing data in the raw time series resulting from communication or measurement
failures at the distribution station level,

• Component shutdowns resulting from scheduled preventive maintenance works,

• Component failures, which necessitate corrective maintenance.

The present dataset is free from missing observations resulting from communication or
measurement errors. However, phenomena such as component failure or site downtime,
which are independent from local weather conditions, are a source of additional variability
and bias which makes it more difficult for the PVPF model to derive relevant forecasting
laws. This observation is all the more relevant in an ST context, as a transformer/inverter
failure at one site could be viewed as a cloudy situation by a neighbourhood plant. This
motivates the identification of behaviours that deviate from nominal operation, and the
question of how to deal with them. The easiest approach consists in filtering them out (i.e.
replacing the associated values with NA). Depending on the nature of the missing data,
this approach, however, can alter the distribution of the dataset and induce bias during
the forecast. The other possibility is to implement a corrective approach to approximate
the power that would have been produced in nominal operation. This last option preserves
the historical dataset (in the sense of the number of observations), which is essential to
establish statistical models, but requires additional computational efforts depending on the
imputation method used.

4.2.2.3 Issues associated with missing data

Missing data are typically classified into three categories depending on how much they
bias the results:

1. Missing Completely at Random (MCAR): concerns all data points for which
the probability of being missing is independent from any features in the dataset.
The complete dataset (i.e. without any missing points) has the same distribution as
the original one. This type of missing point does not introduce bias during model
estimation.

2. Missing at Random (MAR): means that missing data points are not related to
the missing value itself but do depend on the value of other features.

3. Missing Not at Random (MNAR): refers to data points for which the probability
of being missing depends on the value that these points would have taken. In such a
situation, the resulting distribution deviates from the original one, which induces bias
modelling.

Thus, missing data induce an obvious loss of information but may also degrade forecast-
ing performances by introducing bias in the modelling process if they are not MCAR. As
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seen previously, some plants experience a clipping of their power during peak production
due to undersized transformers, but in general, plants are more likely to be curtailed close
to their rated power due to grid constraint issues. In addition, preventive maintenance
works carried out by CNR on power plant parts (i.e. transformers, inverters) are sched-
uled during wintertime to minimise financial losses. Therefore, such events do not follow
MCAR requirements due to their weather dependence, whereas component failures may be
associated with a random process.

In [197], the authors study the properties and effects of missing data and imputation
methods on the performances of wind power forecasts based on a Vector Auto-Regressive
(VAR) model. A preprocessing step rejects data associated with maintenance works and
curtailment while individual turbine shutdowns are corrected by re-normalising the site
production. The generation of various missing data rates in the training set, mimicking
patterns seen in real datasets, highlights that forecasting errors increase at the same time
as the rate of missing data. Similar conclusions are reached in [198] for the computation of
degradation rates in PV production: as the percentage of MCAR-missing data increases in
the incomplete data set, the Absolute Percentage Error (APE) associated with the computa-
tion of the degradation rates also increases. Very few studies have applied data imputation
to the PVPF field. To name one, [199] proposes an ML framework that enables knowledge
transfers from a PV unit to another unit experiencing similar conditions with the aim of
filling observation gaps. All of these studies highlight that imputation strategies enhance
models’ accuracy in comparison with models based on incomplete data sets.

Statistical tools such as mean substitution and imputation based on regression models
are usually considered to fill missing data. We opt to employ a physics-based approach
considering the proxy data of the production to respect the potential ST dependencies that
may exist between the plants.

?

Research Gap - Identification strategy

The presence of erroneous data tends to bias forecasting models owing
to the discrepancy between production anomalies and explanatory
features. At this stage, we might wonder whether the bias associated
with the presence of erroneous data would be greater than the bias
that results from the removal of fallacious data. In such a situation,
the identification strategy of spurious observations would be point-
less. For the purpose of improving forecast accuracy, is it better to
remove or to retain power measured under faulty behaviour?

4.3 Identification and imputation strategy

A power plant can operate under three production modes:

1. An optimal mode during which all of its sub-components are working properly,
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2. A deteriorated mode during which some of its sub-components are experiencing failure,

3. A shutdown mode when all sub-components are down.

The present section aims at (1) distinguishing the Working Condition Without Failures
(WCWF) regime (i.e. optimal mode) from default regimes (i.e. deteriorated and shutdown
modes), and (2) refining the partitioning to specify the technical characteristics of each
default regime in preparation for correction. To obtain an in-depth quality control of the
production time series, the latter alone is no longer sufficient. Thus, we consider a multi-
variate time series composed of the observed PV production and a variable acting as a proxy
of the weather state at the site location. Both features are thereafter denoted respectively
as the target and the proxy. The proxy feature is used to identify deviant behaviours of
the target time series. The proposed methodology only considers two inputs (i.e. the time
series to analyse and its proxy) but it can be extended to higher dimensions. The approach
proposed below possesses several advantages: (1) considered data can be easily retrieved by
power producers, (2) it requires low computational efforts, (3) operational forecasts are not
compromised because of the possibility to correct data on the fly.

4.3.1 Proxies

4.3.1.1 Available data

Figure 4.5 – Considered proxies.

Several data sources can be considered to account for the atmospheric situation at the
site location (Figure 4.5). A first option could be to turn to Satellite Derived Surface Irra-
diance (SDSI) and NWPs for their good correlation with the PV production (Figure 2.10).
Nevertheless, such data do not allow us to identify abnormal production measurements due
to their relative low spatial and/or temporal resolutions. In addition, these sources have
been excluded to prevent potential bias during forecasting.
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In addition, dependencies between parks have been exploited. Coupled with the inves-
tigated model, such inputs are relevant for very close sites but exhibit poor performances
otherwise. This conclusion depends on the model used; [199] considers a more robust model
based on ST patterns shared by several plants to impute missing data.

As a consequence, we turn to on-site measured parameters. Such a consideration assumes
that the spatial variability of irradiance that exists on large-scale installations is overlooked.
To obtain a fine vision of the plant’s state, production measurements at the inverter level
were first considered. Nevertheless, this source was not further investigated due to poor
data quality (e.g. non-constant temporal shifts, frozen data, missing values). Ultimately, we
consider two proxies: (1) production measured at transformer level, and (2) PV production
estimations derived from on-site irradiance observations provided by reference cells and the
performance model developed in Chapter 3. The main idea behind transformer-based data
is to access the production of each transformer to easily identify deviant behaviour such as
transformer shutdowns and even inverter shutdowns. As a result, only sites with at least
two transformers are considered (PV3, PV7 and PV9 plants are dismissed).

4.3.1.2 Critical analysis of data

Contrary to electrical power measured at the distribution station, measurements at the
transformer stations and outputs from reference cells are not directly exploited by CNR.
This leads to a lack of periodic maintenance of sensors and the presence of spurious and
missing measurements. As a result, a data integrity control is performed to reject fallacious
observations (e.g. frozen data) from both datasets.

The irradiance quality control procedure for Global Horizontal Irradiance (GHI) pro-
posed in [200] is applied with reference cell observations. The key difference between the
scope of use of the proposed formulas and our PV installations is that none of them are
horizontal. Therefore, the extraterrestrial irradiance in the POA is considered via the use
of the angle of incidence. Any reported value that exceeds the limits imposed by Equa-
tions 4.1-4.2 is flagged as erroneous and replaced by the NA value (similar mathematical
notation to Table 4.1).

• Quality control based on extrema:

GTI(t) < min
(︂
1.2 · I0, 1.5 · I0 · cos(θ(t))1.2 + 100

)︂
(4.1)

• Quality control based on rare observations:

GTI(t) < 1.2 · I0 · cos(θ(t))1.2 + 50 (4.2)

A visual-based correction of temporal shifts retains the transformer time series of sites
PV1, PV5, PV6, PV8, PV10, while the quality of time series of PV2 and PV4 are too
poor to be exploitable. The main issue with transformer production datasets is that ob-
servations corresponding to a component failure (i.e. Ptr = 0) or a communication loss
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independent from a component failure (i.e. Ptr ̸= 0) are both labelled as null production
by the data logged. A simple way to diagnose the origin of these observations is to aggre-
gate all transformer production time series and then compare the resulting value with the
power measured at the distribution station. Any deviation from the WCWF regime can be
imputed to a communication default and dismissed. This identification is performed by the
algorithm proposed in next section.

?

Research Gap - Correction strategy

In the present work, selected proxies contain erroneous observations
that have been rejected. Nevertheless, we cannot guarantee that
these datasets are completely free from fallacious data. In this re-
spect, the correction step of the following algorithm will likely gener-
ate some uncertainties. As a result, is it better to reject or to correct
deviant production observations?

4.3.2 Preliminary identification of abnormal regimes

The main idea behind this methodology is based on the strong linear relationship between
the target and the proxy features (Figure 4.6). The coefficient of determination R2 indicates
the strength of the linear relationship between the observed and simulated power: a value
of 1 means that the data perfectly fit a straight regression line. In such a configuration,
the regression line characterising the nominal operating mode has a slope very close to 1,
which can be easily determined with a Robust Linear Regression (RLR) model. On the
other hand, production observations resulting from anomalies are distributed along lines
with a lower slope. Potential clusters located above the nominal mode are associated with
proxy faulty measurements, and are thus dismissed. Knowing the number and capacity of
installed transformers allows us to define production regimes, which can be associated with
the different clusters observed in the scatter plot. From there, rejection or correction of
data is conceivable.

A clustering approach is implemented to differentiate the various production modes.
Such approaches seek to minimise the intra-cluster distance while maximising the inter-
cluster distance. First, we draw on [192] which defines a model to identify faults from the
system efficiency and in-plane solar irradiance variables. The irradiance feature is binned 2 in
such a way that each bin contains the same number of observations. Within these bins, the
distributions of system efficiency values are represented by a normal distribution. To define
the upper and lower boundaries of the cloud, a 95% confidence interval is used: if the prob-
ability of occurrence of an efficiency value is lower than 2.5% (i.e. 1.96 standard deviations
below the mean), it represents faulty performance. Lastly, WCWF regime observations can

2. The continuous values of the irradiance levels are placed into “bins”, namely ranges of values. In other
words, the binning process divides the irradiance feature into distinct groups (e.g. irradiance may belong to
the following bins [0, 100[, . . . , [900, 1000]).

117



CHAPTER 4. DATA CHARACTERISATION

Figure 4.6 – Scatter plot of the normalised observed production w.r.t. the normalised simulated
production based on on-site irradiance observations.

be separated from default regime data by combining the results for all bins. The distinctive
characteristic of our dataset is that production observations within bins may follow a mul-
timodal normal distribution when default regimes occur. The identification method is then
adapted by considering a Gaussian Mixture Model (GMM) to identify the different produc-
tion modes, based on the assumption that production from normal and anomalous regimes
follow different Gaussian distributions. Nevertheless, this approach reaches its limits when
it comes to identifying production regimes for low irradiance level (lower left-hand corner
of Figure 4.6); in such a region all of the regimes’ regression lines are too close to permit
a clear demarcation. Similar conclusions were drawn by considering traditional clustering
algorithms (e.g. Kmeans algorithm) in other features spaces.

4.3.3 Methodology

Thus, clustering the time series into a single unit seems like an attractive option due
to its simplicity. However, with such datasets, clustering models perform poorly because
the variety of dynamics observed during a year makes it difficult to distinguish the various
operating modes. Therefore, the idea is to divide the multivariate time series into smaller
segments (typically one or two days) to allow for more detailed clustering. This approach
can be assimilated to a sliding window. Then, the temporal segments are transferred into a
feature space built from the target and proxy features. This space is composed of the ratio
of the target feature over its proxy, and the difference between the clear-sky indexes of the
target and proxy features. Within this space, a clustering algorithm gathers observations
into groups sharing similar properties. These groups are then associated with production
regimes and eventually a correction factor is applied to spurious production observations.

For the reader to better understand the identification and correction processes developed

118



4.3. Identification and imputation strategy

through this section, a schematic is provided in Figure 4.7. In addition, Figure 4.8 displays
a summary of the different options investigated before the end of the proposed methodology.

Figure 4.7 – Schematics of the identification and correction processes of data measured during
deteriorated or shutdown modes corrected with the reference cell proxy. The identification process

of spurious production from transformers observations is slightly different and is detailed in
Section 4.3.3.2.2.
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Figure 4.8 – Set of explored options.

4.3.3.1 Clustering algorithm

First, the features space we are working with is constituted by two variables F1 and
F2 defined by Equations 4.3-4.4. We observe in Figure 4.7 (3) that F2 ∈ [0, 1.7]. The
highest values reached by F2 are associated with low solar elevation angles. In that case,
the irradiance levels measured by the proxy are higher than those simulated by the clear-sky
model. This may result from a measurement bias of the reference cell or a poor modelling
of the local weather conditions (e.g. atmospheric turbidity) by the clear-sky model. As
this behaviour is recurrent and does not impact the clustering approach, no action has been
taken.

F1 = Pmeas
Pproxy

(4.3) F2 =
⃓⃓⃓⃓
⃓ PproxyPsim,cs

− Pmeas
Psim,cs

⃓⃓⃓⃓
⃓ (4.4)

Pmeas Measured power normalised by Pc (% of Pc),
Pc Installed capacity (MW ),

Pproxy Simulated power obtained from the proxy feature (the conversion of irradiance
into electric power is developed in Chapter 3), and normalised by Pc (% of Pc),

Psim,cs Normalised simulated power in clear-sky conditions (performance and clear-sky
models are respectively introduced in Chapter 3 and Section 2.2.1) (% of Pc).

In the features space, a clustering method is then applied in order to group observations
into meaningful sub-classes according to a certain definition of similarity. For instance, k-
means clustering [201] aims at grouping n observations into k clusters by minimising the sum
of Euclidean distances between the data points and their respective cluster centroid. Here,
we turn to the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm introduced in [202]. This method relies on the notion of density: within each
cluster, the density of points is higher than outside the cluster and the density within an
area of noise is lower than the density in any of the clusters. The key idea behind DBSCAN
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is that for each point of a cluster the neighbourhood of a given radius, ϵ (Equation 4.5) has
to contain at least a minimum number of points denoted as MinPts.

Nϵ(p) = {q ∈ D|dist(p, q) ≤ ϵ} (4.5)

Nϵ(p) The ϵ-neighbourhood of point p,
p, q Two points of the database,
D The database on which is performed the clustering.

Several classes of points are defined [202]:

• Core points: q is a core point if at least MinPts points are within distance ϵ from
it (Card(Nϵ(q)) ≥ MinPts),

• Directly density-reachable: p is directly density-reachable from q if (p ∈ Nϵ(q))
where q is a core point,

• Density-reachable: p is density-reachable from q if there is a chain of points p1, ..., pn

where p1 = q and pn = p such that pi+1 is directly density-reachable from pi,

• Density-connected: p is density-connected to q if there is a point o such that both
p and q are density-reachable from o.

A cluster is defined as a set of density-connected points, while outliers are a set of points
which do not belong to any cluster. This method does not require any domain knowledge
regarding the number of k clusters, and has the ability to identify clusters of any shape as
well as outliers. The value of MinPts is a user-defined parameter while ϵ can be chosen
using a k-distance graph [202]. To reduce misclassification rates, observations within a
cluster must have a temporal continuity, otherwise they are excluded from the identification
and correction process. As a result, parameter MinPts can be understood as the minimal
duration of a failure, here we consider MinPts = 4 (i.e. 1-hour).

In 2013, a hierarchical clustering extension of DBSCAN was proposed in [203]. Among
other things, Hierarchical Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) is able to consider clusters with different density levels (i.e. different values of
ϵ) and requires only MinPts as an input parameter. In the scope of this work, HDBSCAN
turned out to be less relevant inasmuch as it tends to identify a higher number of outliers
w.r.t. the DBSCAN algorithm. These additional outliers are located at the clusters’ border
and are identified as such due to a lower density in this area. This misclassification generates
correction bias during the correction step. In other words, the PV production observations
identified as outliers are not corrected or dismissed during the forecasting approach despite
their proximity with default regimes. Due to time constraints, only the feature space de-
veloped with the DBSCAN method has been investigated. Conclusions may be different in
other features spaces.
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4.3.3.2 Regime identification

4.3.3.2.1 Proxy: reference cells The previous section clustered the different observa-
tions depending on their production dynamics. Now it is necessary to associate each cluster
with the corresponding production state of the power plant.

Let a power plant composed of NI inverters (NI > 1) and sji be the state of operation of
the inverter i associated with the operating regime j of the park. Each inverter can either
operate in normal conditions (sji = 1) or be down (sji = 0). Thus, the power plant can
experience a total of NR = 2NI regimes represented by the set S = {j ∈ J1, NRK, Sj} where
Sj is a combination of the different inverters’ states. By convention, we impose that S1 and
SNR

represent respectively the states where all inverters are on and off. For a specific state
Sj , the total available capacity, P c,Sj

Site , is defined by Equation 4.6 where P Ii
c is the capacity

of the inverter Ii.

P
c,Sj

Site =
NI∑︂
i=1

sji · P Ii
c (4.6)

To account for system failures, we introduce the reliability ratio, âj , which is defined as
the ratio of the capacity of the plant experiencing sub-component failures with respect to the
plant capacity in WCWF (Equation 4.7). These parameter values range from 0 (i.e. power
plant entirely down) to 1 (i.e. absence of failure). With respect to the convention imposed
on Sj , we have â1 = 1, while âNR

= 0. A plant is composed of several converting units
which can have identical or rather close sizing, thus the reliability ratio can take identical or
rather close values while they represent different failure configurations. Since knowing which
converting unit is on or off does not provide any relevant information, similar values of âj
are dismissed except for one. In other words, a selection is performed to reject redundant
information.

âj = P
c,Sj

Site

P c,S1
Site

(4.7)

When the proxy feature accurately represents the PV production process, the param-
eter âj can be assimilated to the slope of the regression lines of the different production
behaviours observed in Figure 4.6. However, in practice the real production regimes slightly
deviate from the theoretical ones. This can be explained by processes not explicitly ac-
counted for by the proxy (e.g. conversion losses, simplified modelling). Taking this gap
into consideration, a corrective factor is applied to the reliability ratios. This corrective
factor is assumed to be independent from the reliability ratios by supposing that losses are
proportional to the level of energy produced. Scatter plots comparing the target and the
two proxies highlight that the power plants are operating in WCWF for the vast majority
of observations. Therefore, the idea is to perform a RLR to derive the apparent reliability
ratio of the nominal production mode. In such a context, the corrective factor, x, is just
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the linear coefficient associated with the proxy variable. The corrected reliability ratios, aj ,
are then derived with Equation 4.8:

aj = âj · x (4.8)

Figures 4.7-2 and 4.7-3 illustrate two production dynamics observed the same day, and
associated with two distinct groups during the clustering process described in Section 4.3.3.
Outliers typically stand for intermediate values between different production modes. In the
next step, the objective is to associate each group of observations with a reliability ratio. To
do so, it is necessary to compute the distance, d(P, aj), between all points P belonging to the
same cluster Ck, with each reliability ratio aj , j ∈ J1, NIK. The shortest distance between
the points, P , and the line of slope aj (namely the perpendicular distance of the points to
the line) is computed via Equation 4.9. Then, the average distances, D̄j

k, of all points from
clusters Ck w.r.t. each reliability ratio is computed with Equation 4.10. Lastly, each cluster
is assigned to the reliability ratio for which it has the shortest averaged distance. In the
example of Figures 4.7, Cluster 1 and Cluster 2 are respectively associated with reliability
ratios a1 and a6.

d(P, aj) = |yP − ai · xP |√︂
a2
j + 12

(4.9)

D̄
j
k = 1

Card(Ck)
∑︂
P∈Ck

d(P, aj) (4.10)

4.3.3.2.2 Proxy: transformer production A somewhat different approach is applied
when dealing with transformer production observations. In this situation, comparing the
proxy with the target offers no information inasmuch as shutdowns are present in both time
series. However, the comparison of the production time series of the different transformers
provides valuable information regarding the state of production of each transformer, and
allows correction of the whole site production through a corrective factor. Power output at
the transformer level is not usually used by CNR, as a result, associated sensors are not
checked periodically and measurements are subject to malfunction. First, it is necessary to
distinguish a power shutdown from a communication loss.

The idea is to use the previous clustering methodology, defined in Section 4.3.3.1, with
the target feature (i.e. the production observations of the park) and the aggregation of
observations at the transformer level to discriminate shutdowns from communication errors.
In the case of effective shutdowns, the production of the site is in line with the aggregated
production measured at the transformer level, while gaps are observed for communication
losses. In other words, in a 2-D scatter plot built from observed production at the site level
and aggregated production at the transformer level, communication losses can be easily
identified as the "production regimes" that deviate from the regime associated with the
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reliability ratio closest to 1. Thus, communication loss-free observations are located in the
cloud of points near the first diagonal.

In a next step, we adopt a more straightforward approach to identify and correct sub-
component failures. Subsequent observations that are free from communication losses are
then considered in the space composed of features representing the production of the different
transformers (Figure 4.9). This representation makes it possible to easily discriminate the
various production regimes. The cloud of points along the red line stands for observations
associated with a nominal operation of all the transformers, while other line-shaped clouds
represent deteriorated production modes. For instance, the cloud along the diagonal of the
plane constituted by the TR01 and TR02 features represents a production mode where
transformer TR03 is down while the two other transformers are working properly.

Figure 4.9 – Space composed of the production observations of each transformer at the power
plant. The red line represents the nominal mode. Linear groups of points stand for various

production modes.

Henceforth, it is necessary to link each group of observations to the relevant production
modes. We adopt a regime identification approach similar to what was developed in the
previous section dealing with reference cell measurements, except that we do not consider
production at the site level but at the transformer level. For a specific state Sj , the total
available capacity, P c,Sj

k , at transformer, k, is defined by Equation 4.11.

P
c,Sj

k =
Nk

I∑︂
l=1

sjk,l · P Il
c (4.11)
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Nk
I Number of inverters for transformer k,

sjk,l Operation mode (on or off) of inverter l from transformer k associated with state
j.

In addition, we introduce the reliability vector defined at Equation 4.12, which gathers
reliability ratios at the transformer level and represents the directions of the various ab-
normal regimes in the transformer features space. To get a better idea of this vector, let
us consider Figure 4.9 and assume that the state j = 2 represents the situation for which
transformer TR03 is done. In this specific situation NT = 3, and a1

2 = a2
2 = 1, while a3

2 = 0.
The reliability vector, v2⃗ = (1, 1, 0), represents the slope associated with the cloud of points
located along the diagonal in the plane (TR01, TR02). The reliability ratio of the whole
park for a specific state j is then defined by Equation 4.13.

vj⃗ =
(︂
a1
j , ..., a

NT
j

)︂
, with, akj = P

c,Sj

k

P c,S1
k

(4.12)

aj =
∑︁NR
k=1 a

k
j · P c,S1

k∑︁NR
k=1 P

c,S1
k

(4.13)

Lastly, a clustering approach attributes points from the transformer features space to
the different operating state of the plant, Sj . This is done by associating points with the
nearest line defined by vector vj⃗ (the Euclidean distance is used). For configurations with
more than two transformers, the metric distance used is an extension of Equation 4.9 for
higher dimensions.

4.3.3.3 Regimes correction

Two proxies have been used to identify abnormal production behaviours. In this section,
a methodology to correct the production of the site is proposed.

As each reliability ratio is associated with the number and capacity of operational invert-
ers, it becomes easy to correct observations of the target feature by applying Equation 4.14.
This approach can be applied with the production observed at the transformer levels and
the reference cells output.

P (t) = P (t)j
aj

(4.14)

P (t)j Raw observed production associated with state Sj (where P (t)j ̸= 0),
P (t) Corrected observed production.

However, only the reference cells output provides information regarding available re-
sources in case of a complete outage of the power plant. To obtain an estimation of pro-
duction in this situation, the RLR performed on the dataset is used to convert estimated
power from reference cells into the target feature.
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4.3.3.4 Results

4.3.3.4.1 Example of spurious observations corrected The aforementioned iden-
tification and correction algorithms are successively applied with observations at the trans-
former level and then with reference cell outputs. This combined approach aims at mitigat-
ing the rate of common missing values present in both datasets.

The influence of the correction process is highly site-dependent. Figure 4.10a exhibits
very few variations before and after the correction is applied. On the other hand, PV10
(Figure 4.10b), which is more often subject to parts failure, is positively impacted by the
correction: observations flagged as abnormal observations (i.e. curtailed observations or
production defaults) are realigned with the nominal regime.

(a) Influence of the correction process over PV2 ob-
servations.

(b) Influence of the correction process over PV10 ob-
servations.

Figure 4.10 – Evolution of the scatter plots before and after the correction process. The normalised
output production and the simulated production from irradiance based on reference cells are

represented.

Figure 4.11 highlights the strengths and weaknesses of the proposed methodology and
the proxies used. In light of the transformer production observations, Figure 4.11a represents
a coherent correction of the production observed at the distribution station. On the other
hand, the corrective process is challenged in the case of Figure 4.11b. The on-site measured
irradiance allows a fair correction for the beginning of the day (where both transformers are
down), then a transformer operates again at around 10h00, but obviously, the production
regime of this observation is misclassified and the corrective factor applied is not the correct
one.
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(a) Curated observations based on the transformer
dataset of site PV6.

(b) Curated observations based on the irradiance
measurements of site PV10.

Figure 4.11 – Comparison of raw and corrected production observed for a single day.

4.3.3.4.2 Forecasting performances To evaluate the impact of the identification and
correction processes on forecasting performances, we consider forecasts produced with a
forecasting model trained on three distinct datasets:

1. A dataset containing raw observations.

2. A dataset in which observations identified as erroneous are rejected (i.e. replaced by
NA).

3. A dataset in which observations identified as erroneous are corrected.

Next, there is the question of the nature of the testing set; should we perform evaluation
with a raw dataset or with a dataset in which observations identified as faulty have been
rejected or corrected?

We can consider that a raw dataset would be in line with a plant owner’s point of view
inasmuch as this database represents the actual production of the site, but that it would be
to some extent in conflict with a meteorologist’s viewpoint because it characterises both the
atmospheric state and the technical "reality" of the plant. Here, we assume that production
variations that result from technical defaults have to be separated from weather-induced
production variations. In an operational context, it is conceivable to reconcile both sources
of variability by updating forecasts generated from flawless observations with a corrective
factor taking into account the state of production of the plant. Currently, there are no
sensors dedicated to measuring the state of production of the different sub-components for
the parks under study, but we may assume that such features could be integrated for new
projects or as part of retro-fitting measures. Ideally, we aim to generate a dataset that
accurately represents the weather situation. However, both the correction and the rejection
of observations flagged as spurious have drawbacks. From a statistical point of view, spurious
events (e.g. curtailment, maintenance work) do not follow MCAR requirements, and as
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such, their rejection modifies the dataset distribution and generates a loss of information.
As highlighted in the previous paragraph, the correction process suffers from some flaws.
Lastly, we decided to work with a testing set based on corrected observations to preserve the
dataset integrity. To some extent, this dataset can be considered as our best representation
of the "meteorologist reality".

An Auto-Regressive (AR) model is then fitted on these datasets, while forecasting per-
formances are assessed on a common testing set. Forecasting performances are gathered
in Figure 4.12. On the one hand, the raw dataset contains observations associated with
WCWF and deteriorated regimes. Deteriorated regimes exhibit lower production levels
than the nominal regime. On the other hand, the correcting process applied to the testing
set increases the global production levels (because here a correction of production is always
associated with an increase in production). Therefore, the level of production observed
in the corrected set is higher than that observed in the raw dataset. This explains the
normalised Mean Bias Error (nMBE) scores of the models: the AR(Raw) model tends to
under-estimate production of the testing set compared to the two other models. Both cor-
rection and rejection strategies have a positive influence over normalised Root Mean Square
Error (nRMSE) scores. Thus, models fitted on the preprocessed observations tend to ex-
hibit fewer large errors than the model fitted on the raw dataset. As the forecast horizon
extends, forecasting errors increase. In the case of the AR(Raw) model, this tendency is
amplified by the model’s tendency to under-evaluate production. Conclusions regarding the
normalised Mean Absolute Error (nMAE) score are less straightforward. A degradation of
the score is observed up to 2 hours lead time compared to the other models. This means
that the model based on raw observations tends to make fewer small errors. As the raw
dataset is partially composed of faulty production measurements exhibiting a lower vari-
ability (e.g. constant level of production for complete shutdowns or curtailed situations)
than the two other datasets, we may assume that in the case of the AR (Raw) model, more
importance is given to the very last observation. In this case, this model behaves like the
persistence model, which would explain its good performances for very short-term horizons.
We observe similar behaviours with the Random Forest (RF) model (Figure 4.13). In this
case, performance variations between the different models are less pronounced but globally
the RF (Raw) model exhibits the worst scores, except for very short-term horizons but the
difference remains slight.
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Figure 4.12 – Influence of correction and rejection of abnormal observations over forecasting
performances. The AR model is either trained on raw observations or on a dataset whose fallacious

observations have been corrected or filtered out.

�

Research Answer - Identification strategy

For a dataset contaminated with fallacious observations resulting
from deviant production behaviours, the rejection of incriminated ob-
servations leads to an improvement of the model bias. A significant
positive impact is also observed for forecast horizons greater than 2
hours ahead in terms of nRMSE and nMAE. However, a degradation
of the nMAE score is observed for shorter lead times when consid-
ering the AR model. This ambivalent outcome may be attributed
to model-specific features or to the fact that the discrimination pro-
cess between fallacious and coherent production observations is in-
complete. Indeed, the proxy datasets used to identify the different
production regimes contain missing data.

Models fed with corrected or filtered-out datasets exhibit rather similar forecasting per-
formances in terms of nRMSE and nMAE, but the latter tends to have a better bias. Despite
close scores, Figure 4.14 demonstrates that both forecasts are significantly distinct from each
other. Therefore, surprisingly the correction strategy does not provide meaningful additional
information compared to the rejection of spurious observations. This may be explained by
the fact that the loss of information generated by the missing values is counterbalanced by
the noise induced by the correction step.
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Figure 4.13 – Influence of correction and rejection of abnormal observations over forecasting
performances. The RF model is either trained on raw observations or on a dataset whose fallacious

observations have been corrected or filtered out.

�

Research Answer - Correction strategy

In this specific case study, we have spotlighted that the correction or
rejection processes of spurious observations associated with abnormal
plant behaviours leads to close performances. Due to the alternating
performances of the variations in each model, it is difficult to decide
which approach is better. As a result, uncertainties generated by the
correction process counterbalance the loss of information in the sec-
ond approach. If plenty of data are available, it is more interesting to
reject fallacious observations because the correction process induces
extra computation steps.

From now on, the corrected dataset is considered because it contains more observations,
which is valuable when employing ST models.

4.4 Emphasis of extractable signal information

In the previous section, efforts were made to clean the production signal from the in-
fluence of technical issues over its variability. This strategy aims at removing information
contained in the signal which is not essential for the generation of forecasts, and so to spot-
light the valuable information. In this section we go deeper into the analysis of production
time series, and look at solar-related data in a more general way. Solar-related time series
are composed of two main components, a deterministic one that represents the Sun’s path
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Figure 4.14 – Diebold-Mariano (DM) statistic (defined in Section 2.3.3) between the AR
(Corrected) and AR (NA) models for different forecast horizons. The red dotted lines show the

borders delimiting the validation and rejection of the null hypothesis.

in the sky dome, and a stochastic one, which corresponds to cloud effects. The main idea
is to remove the deterministic variability so as to fully focus on the stochastic variability of
the time series.

Such an approach also has positive impacts in a context of using ST models. In this
paradigm, observations from spatially distributed PV systems are used as a source of addi-
tional information that is integrated in the forecasting model. ST models tend to provide
forecasts with higher accuracy compared to models based only on endogenous observations.
This is made possible thanks to the existence of correlations between the site of interest and
the network of Spatially Distributed Units (SDU). In a word, SDU act as a kind of sensor
that provides information regarding upcoming changes in weather. Nevertheless, the process
of using the power output of one site as a proxy of another is not necessarily straightfor-
ward. For instance, first, modules from both sites may have different orientations, which
directly impacts the level of received irradiance. Second, sites aligned on the west-east axis
tend to have higher degree of correlation due to the Sun’s movement in the same direction.
Therefore, to get the most from the information contained within spatially distributed data,
it is necessary to remove dependencies related to the plant’s architecture and environment.

This can be performed with the clear-sky normalisation approach.

4.4.1 Clear-sky normalisation

Irradiance that reaches the ground can be viewed as composed of two main variability
components: (1) a deterministic one associated with the Sun’s motion in the sky dome (i.e.
diurnal and annual variation due to the Earth’s rotation and orbit), and (2) a stochastic
part resulting from weather phenomena such as cloud displacements. A common way to
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(a) Observed and simulated clear-sky irradiance. (b) Normalised irradiance (CSI).

Figure 4.15 – Illustration of the normalisation process.

remove the deterministic component consists in normalising the observed irradiance time
series through the concurrent output of a clear-sky model, which estimates the part of solar
power reaching the ground assuming a cloudless sky. The resulting feature is called a Clear-
Sky Index (CSI) (Equation 4.15). With this methodology, the deterministic part of the
production signal is directly modelled by the clear-sky model, while forecasting models are
dedicated to the stochastic part.

This index is independent from the Sun’s path, as it can be observed in Figure 4.15,
which schematically represents the normalisation process. If the measured irradiance and
the clear-sky irradiance are both in the Plane-of-Array (POA), then, the normalisation pro-
cess also removes the dependency on panel orientation (the projection of GHI into Global
Tilt Irradiance (GTI) is performed by a projection model - Section 3.3.1.2). Regarding this,
in the PVPF related literature, it is common practice to directly normalise the measured
production through the ground clear-sky irradiance to avoid the projection and power con-
version modelling of GHI. Formally, the CSI is derived from irradiance datasets, but [204]
broaden the current definition to PV power by normalising the observed power with the
estimated power derived from clear-sky irradiance (Equation 4.16). This approach removes
the dependencies on the Sun’s path, the system orientation, and the effect of temperature.
As a result, kPV parameter acts as a proxy of the cloud cover.

kI(t) = I(t)
ICS(t) . (4.15) kPV (t) = P (t)

P sim,cs(t) . (4.16)

I Irradiance time series (W/m2),
ICS Clear-sky time series (W/m2),
kI Normalised irradiance time series (CSI) (∅),

kPV Normalised production time series (CSI for PV) (∅),
P sim,cs Simulated power obtained in clear-sky conditions (∅). The model converting

clear-sky irradiance into clear-sky "power" is developed in Chapter 3.
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4.4.1.1 Clear-sky model

The governing equations of the course of the Sun in the sky dome are perfectly known,
but the effects of light crossing the atmosphere are more difficult to model. This has led
to the development of numerous of clear-sky models [205]. The simplest approaches model
ground irradiance as the extraterrestrial irradiance by assuming a perfectly transparent at-
mosphere (in such a case, the terminology clearness index is consecrated to designate the
ratio of radiation measurements to their theoretical values). More advanced approaches are
also proposed in the literature. They can be based on a physical modelling of the atmo-
sphere [206, 207] or on a statistical modelling from production observations to bypass the
complexity of radiative transfer [189, 191, 208]. The latter option can be appealing in some
aspects inasmuch as it does not require the implementation of the decomposition/projection,
and power conversion modelling steps.

In [107], the authors provide a fairly complete comparison of some of the most highly
cited clear-sky solar radiation models. This review is based on 36 validation studies and
several versions of around ten clear-sky models. Due to methodological difficulties, the au-
thors were not in a position to draw general guidelines regarding best practices according
to the climatic conditions of the area of interest. However, they highlight that the use of
the Linke Turbidity (LT) factor 3 in some clear-sky models (such as the European Solar
Radiation Atlas (ESRA) [207], which is based on climatological monthly means of LT) is
a significant source of uncertainty. Similar conclusions are reached in [205]: the simplicity
of LT-based models does not compensate their limited accuracy and lack of universality.
In addition, this article represents a comprehensive validation study of 75 clear-sky irradi-
ance models tested with worldwide irradiance measurements from 75 ground stations. For
temperate climates, the MAC2 [210] and REST2v9.1 [211] models provide the best perfor-
mances. MAC2 is the best overall for all of the climate regions considered, despite being
one of the simplest models evaluated. Another advanced clear-sky model, McClear [212],
developed within the Monitoring Atmosphere Composition and Climate (MACC) project,
is also represented. In brief, this model aims at accounting for the optical state of the atmo-
sphere intraday variabilities by integrating concentration observations of some atmospheric
components (e.g. the total column ozone or the total precipitable water vapour). McClear
ranked 35th globally in [205].

Similar findings are reached concerning the clear-sky model’s complexity for solar fore-
casting applications in [213]. This study compares the forecasting performances obtained
with a naive reference method fed with CSI issued from three clear-sky models namely; the
average (Ineichen–Perez-[214]), good (McClear-[212]) and best (REST2-[211]) models ac-
cording to the classification derived in [205]. The study highlights that there is no evidence
proving that high-performance clear-sky models are superior to simpler ones in the forecast-

3. The LT factor approximates the atmospheric absorption and scattering of the solar radiation under
clear skies [209].
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ing domain. However, [215] concludes that the McClear model is superior by comparing the
latter with the ESRA model to estimate solar irradiance from satellite observations, before
using a Cloud Motion Vector (CMV) model to derive forecasts.

In the framework of this thesis, we have at our disposal the McClear and ESRA models.
The direct implementation of clear-sky models is not trivial, especially because a lot of inputs
need to be measured (i.e. total column ozone, aerosol optical depth) [216], and thus the
easy access to McClear output is welcome (outputs are accessible via a free online service 4

that simply requires registration). Other advanced models such as MAC2 and REST2
have been dismissed due to the need to access meteorological parameters. A preliminary
comparison between both models is performed in Appendix B, where an AR model is fitted
with production time series normalised by the two clear-sky models. Findings show that
the AR model fed with normalised production exhibits a lower nRMSE when coupled with
the McClear model. Subsequently, clear-sky time series derived from the McClear model
are considered in this study.

4.4.1.2 Clear-sky index

The CSI and clear-sky models are widely used in the solar-related literature (e.g. to com-
pute the components of ground irradiance, to derive irradiance from satellite observations)
and in the forecasting domain closely linked with time series. Regarding this, clear-sky
models allow the derivation of a naive forecasting approach based on the persistence of the
CSI (this point is detailed in Section 2.3.1). The values of the CSI also provide qualitative
and quantitative information regarding the cloud types and their distribution: values close
to 1 indicate clear-sky conditions, while lower values are associated with different degrees
of overcast situations. Such an analysis is performed in Figure 2.6 from on-site irradiance
observations. The CSI typically follows a bimodal distribution (Figure 4.16) with contribu-
tions from cloudless situations (i.e. the main mode is located near kPV = 0.9), and cloudy
situations (the second mode is achieved at kPV = 0.2). This pattern is observed and mod-
elled in the literature ([217, 218]). Overall, the CSI derived from all of the sites under study
follows the same pattern. The CSI also offers the possibility of identifying shading events
[204]. However, such an approach has not been investigated due to a normalisation issue:
aberrant normalised quantities (i.e. k or kPV >> 1) are observed for low solar elevation
angles.

We observe in Figure 4.17 that low solar elevation angles lead to artificially large kPV

values (similar behaviour is observed with kI). This may result from (1) numerical insta-
bilities of the CSI computation, (2) CE, (3) a bad modelling of the clear-sky, or (4) a lack
of accurate information regarding the plant’s geometry. The CE phenomenon is detailed
in Section 3.3.1.1. In brief, during a cloudy period, CSI can be greater than 1 due to light

4. http://www.soda-pro.com/. At the time of writing, this website provides us with past estimations up
to current day-2. In an operational context, it is possible to generate forecasts of clear-sky irradiance from
a personal implementation of the McClear model fed with forecasts of relevant quantities.
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Figure 4.16 – Histogram of the CSI for PV and its bi-modal distribution (PV7). To facilitate
visualisation, high values of kP V are truncated.

reflections from cloud edges. In these conditions the power of PV modules can be 30%
higher than in standard test conditions [189]. In the present situation, the temporal am-
plitude of this phenomenon is not large enough to explain the high kPV values (typically
CE events last 20-140s [189]). The other reason often invoked in the literature is the poor
clear-sky modelling for early morning and late afternoon hours [115, 219]. This flaw could
be explained by the fact that clear-sky models mainly consider integrated irradiance over
the whole spectrum; still, [220] highlights that the greatest spectral differences occur at
dawn/dusk or under heavy cloud cover. Besides, PV response depends on the light wave-
length. In addition, under-estimations may also result from an approximate knowledge of
the module’s orientation angles, which biases the projection onto the POA, thereby increas-
ing the uncertainties during the normalisation process.

The great majority of studies dealing with CSI prefer to reject data associated with low
elevation angles [61, 204, 219] (typically a 5° threshold is chosen) on the grounds of limited
energy produced during this period. Other approaches, such as [58], try to overcome the
normalisation weaknesses for low solar irradiation by proposing a statistical correction,
which is also beneficial for stationary properties. The ambition to provide operational
forecasts with a production schedule even for early and late hours of the day motivates [115]
to keep low irradiance data. Contrary to [115], which considers performance models, here,
we assume that high CSI values may bias forecasts performed with low-robust algorithms.
Thus, within the scope of this thesis, we decided to reject values observed for solar elevation
angles lower than 5°.

4.4.2 Signals dependencies

This section aims at assessing the dependencies present in the production observations
of a power unit as well as dependencies that may exist among distributed plants. Here, the
term dependence refers to the fact that the production of two sites may be correlated in the
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Figure 4.17 – CSI for PV as a function of the solar elevation angle. The sequence of null values is
assumed to result from shading effects or excessively low irradiance levels to engage the inverters.

sense that they both experience similar weather patterns with some temporal delay. Thus,
to assess such dependencies, it is necessary to quantify the degree of similarity between PV
outputs’ underlying patterns. To do so, several approaches are conceivable: we can think
of distance measures such as Euclidean distance or dynamic time warping [221]. Here, we
choose to focus on the correlation coefficient.

Real data exhibit two main properties: correlations (i.e. presence of a dependence
structure between two variables or between a signal and a delayed version of itself), and pe-
riodicity (i.e. the repetition of a certain pattern at regular time intervals). Auto-Correlation
Function (ACF) and Cross-Correlation Function (CCF) are widespread tools that provide
an insight into the correlation dynamics of data. However, these approaches were designed
to identify correlations in stationary and linear data. When applied with out-of-scope data,
such tools can be misleading. Let us assume a time series, Xt, with a large upward trend
and a high value of xt is likely to be followed by a high value of xt+1, which results in a
high auto-correlation. The latter is mainly due to the non-stationarity rather than the ac-
tual auto-correlation. As a result, detrending becomes vital to properly analyse correlations
by avoiding the manifestation of fake correlations and by magnifying genuine dependencies
[222]. Such approaches are referred to as Detrended Cross-Correlation Analysis (DCCA).

The presence of the deterministic component associated with the Sun’s path increases the
cross-correlation between irradiance-based signals (and inter-correlation of the production
signal) by diluting the impact of stochastic weather variations. Such characteristics are
thought to negatively impact the derivation of statistical laws and feature selection.

4.4.2.1 Stationarity

Irradiance-related features (e.g. irradiance, PV production) are non-stationary by na-
ture, which makes them more complex to investigate while reducing the set of statistical
tools available in time series analysis [46].
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In simple terms, stationarity means that the statistical properties of a time series do
not change over time. Different degrees of stationarity are defined in the literature; a time
series is said to be strictly stationary if the joint probability distribution function, F , of
the stochastic process, {Xt} is invariant under translation (Equation 4.17), while weak
stationary implies that the mean and the autocovariance do not depend on time and the
2nd moment is finite.

F (x1, ..., xt) = F (x1+h, ..., xt+h)∀h (4.17)

This property is often required by time-series-based forecasting models, like those from
the Auto Regressive Moving Average (ARMA) family. One generic approach to make time
series stationary consists in differentiating it (i.e. computing the differences between consec-
utive observations). Such a trick is part of the Auto Regressive Integrated Moving Average
(ARIMA) modelling strategy. Nevertheless, not all time series can be differentiated to
achieve stationarity because some may exhibit a strong seasonal behaviour such that the
entire auto-correlation structure of the series depends on the season [223]. This point is
verified experimentally by [58], who highlights that differentiation is not sufficient to re-
move non-stationarities from irradiance-related features. Several approaches are proposed
to deal with the non-stationary behaviour of PV production time series. The seasonal de-
composition procedure proposed in [224] breaks down a time series into seasonal, trend and
irregular components. After the decomposition, the seasonal cycle and the trend are sub-
tracted from the irradiance time series. Such an approach is used to feed an ARIMA model
in [225]. One can also find approaches based on Wavelet Transform (WT), which is a signal
pre-processing tool that decomposes PV production at different timescales [226–228]. For
further information regarding wavelet decomposition the reader may refer to [229].

It is common practice in the PVPF-related literature to resort to stationarity prepro-
cessing tools when dealing with ARMA-based models. On the contrary, such approaches
are not widespread in the field of ML-based forecasting (e.g. RF, Artificial Neural Networks
(ANN)). To the authors’ knowledge, only a few studies broach the subject: [46] assumes
that such a data preprocessing step might be beneficial for ANN by providing trend-free
time series; in [230], the clear-sky normalisation process is considered but mainly for its
normalisation property. In [213] the author remarks with humour that time series forecast-
ers and ML users have still not reached an agreement over the utility of normalising. The
latter faction assumes that a well-trained ML algorithm is able to automatically determine
the deterministic trend of the time series (i.e. its seasonal components) despite the Occam’s
razor.

?
Research Gaps - Normalisation process/ML

Thus, no clear evidence of the influence of data stationary properties
over ML-based forecasts has been found in the literature. Can the
normalisation process be valuable for forecasting performances?
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4.4.2.2 Evaluation of the normalisation process

In [58], the authors assume that the inclination does not affect the stationarity process,
since a corrective factor η converts clear-sky GHI into simulated power. Formally, the
resulting CSI is deprived from its seasonal dependence, while systems dependencies (i.e.
inclination, temperature) remain. Moreover, the projection of GHI onto the POA is a much
too intricate process to be simplified linearly (this process is detailed in Section 3.3.1.2).

?

Research Gap - Normalisation process/CS model

We already know that even the best clear-sky models are not able
to produce a stationary CSI time series [213], but we might wonder
whether it would be possible to improve the degree of stationarity of
the CSI by considering clear-sky series integrating the plant’s geom-
etry as well as local weather conditions (e.g. temperature)?

To answer this question, we define three CSI:

k1(t) = PV (t)
GHI(t) , k2(t) = PV (t)

GTI(t) , k3(t) = PV (t)
PV sim,cs(t) (4.18)

4.4.2.2.1 Qualitative inspection First, a visual inspection is performed to identify
periodicity, trend or change in variance. Figure 4.18 gathers the three aforementioned CSI.
The figure displays a yearly periodicity pattern for k1, while nothing apparent is observed
for the other two CSI, apart from a few sparks. However, it seems that the different CSI all
exhibit trends and changes in variance due to seasonal variations of weather states. Indeed,
in general, weather states observed during autumn and winter are mainly characterised by
overcast situations with a significant intraday variability, while summertime weather states
are mainly composed of clear-sky days with low intraday variability.

4.4.2.2.2 Statistical test Next, we turn to statistical hypotheses to test for stationar-
ity in the CSI time series. Stationarity tests allow us to check whether a series is stationary
or not. In the literature, popular tests include Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
[231], and Augmented Dickey-Fuller (ADF) [232], which are unit root-based tests 5. Here
we focus on the KPSS test, for which the null hypothesis (H0) stipulates that the series is
trend stationary (i.e. the mean can be growing or decreasing over time), while (H1): the
series has a unit root (i.e. it is non-stationary). From Table 4.3 we observe that for the
three CSI considered, the null hypotheses of the KPSS can be rejected. As a result, the
KPSS test reports that the series are not stationary. Further investigations highlight that
differentiating the CSI leads to stationary conclusions from both the KPSS and ADF 6 tests,

5. Let Φ(B), the polynomial notation of the backshift operator B (i.e. this operator shifts the data back
in time: B(yt) = yt−1), the process Yt is not stationarity if the Φ(B)Yt polynomial has a root equal to unity.

6. The hypotheses for the ADF test are (H0): the series has a unit root (i.e. the time series is non-
stationary), and (H1): the time series has no unit root and so the process is stationary.
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Figure 4.18 – Time series of the CSI considering three normalising strategies (Equation 4.18). PV7
is considered.

which indicates that these series are difference-stationary. These conclusions encourage the
use of integrated time series (i.e. ∆yt = yt − yt−1), but require the computation of the h
intermediate increment forecasts (ˆ︂∆yt+1 . . . ˆ︂∆yt+h) to derive ŷt+h.

CSI
KPSS
(0.146)

k1 2.73
k2 1.61
k3 1.54

Table 4.3 – Stationary tests studied at the 5% confidence level. For
the KPSS test, the null hypothesis (H0) stipulates that the series is
trend stationary, while (H1): the series has a unit root (i.e. it is non-
stationary). If the value of the test result is greater than the critical
value (in parentheses), the null hypothesis can be rejected in favour of
the alternative hypothesis at the 5% level of significance, otherwise, it
is accepted.

This step by step approach can be time consuming inasmuch as we consider 15-min
time-step data and forecast horizons up to 6 hours ahead. This motivates us to avoid time
series differentiation and to further explore the stationary properties of CSI, and especially
local stationary time series 7. To do so, we follow the methodology proposed in [213].
The main idea consists in comparing two samples to determine whether they follow the
same distribution. For the same CSI, different conditional distributions are generated and
compared pairwise via the two-sample Kolmogorov–Smirnov (KS) test. This non-parametric

7. Non-stationary time series with statistical properties that change slowly over time.
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test tests whether two samples come from the same distribution. Figure 4.19 reveals that
most of the KS tests reject the null hypothesis in the case of the k1 CSI (i.e. most of the
conditional distributions are not identical). On the other hand, k2 and k3 exhibit slightly
higher proportions of adjacent bins for which the null hypothesis is retained. This highlights
the slow evolution of the statistical properties and may presume local stationarity. The
property of local stationarity is a key assumption of Time Varying AutoRegressive (TVAR)
processes [233]. Chapter 6 proposes a way to derive time-dependent models based on a
physical characterisation of the atmosphere.

Figure 4.19 – Output of the two-sample KS test for pairwise comparison of conditional
distributions of CSI given the level of irradiance at 5% level of significance. (H0): the samples are

drawn from the same distribution.

4.4.2.2.3 Impact over forecasting performances Previous analyses provide valu-
able information regarding the statistical properties of CSI time series. To discriminate the
three normalisation processes associated with the CSI (k1, k2, k3), forecasting performances
are computed.

Figure 4.20 represents forecasting performances obtained with the AR model. It is obvi-
ous that the forecasting model based on the k3 CSI outperforms other approaches in terms
of nMAE. Conclusions are less straightforward considering the nRMSE score: forecasting
performances of the three approaches are rather close; notwithstanding, the model based on
the k2 CSI slightly outperforms its counterparts.
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Figure 4.20 – Forecasting performances derived with the AR model considering three CSI, namely
k1, k2, and k3.

�

Research Answer - Normalisation process/CS model

The three alternatives proposed to normalise production turned out
to be unable to provide stationary time series. However, the nor-
malisation approaches based on the irradiance-projection and perfor-
mance models seem to exhibit local stationarity properties. Further
investigations spotlight that the AR model based on production ob-
servations normalised either with the clear-sky irradiance projected
on the POA or with the simulated clear-sky power exhibits perfor-
mance improvements compared to a model whose inputs have been
normalised by the clear-sky GHI.

Subsequently, the normalisation process based on the clear-sky simulated power is re-
tained.

Henceforth, we investigate the impact of the clear-sky normalisation approach on ML
techniques. Forecasting models are either fed with raw production observations or with
normalised clear-sky inputs. On the one hand, the latter approach explicitly removes the
Sun’s movement patterns from the production signal before the regression process, but
reintegrates it later during the de-normalisation process (Figure 1.10). Thus, this kind
of model focuses on cloud-induced variability. On the other hand, the raw production
observation-based approach has to infer the Sun’s patterns as well as the impact of clouds
on production.

On the whole, Figure 4.21 highlights that the clear-sky-based normalisation process
clearly has a beneficial impact on the forecasting performances of the RF model. Indeed,
the RF(k3) model outperforms the RF(PV) model, both in terms of nRMSE and nMAE,
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whatever the forecast horizons under study. However, the large difference in accuracy be-
tween the RF(PV) and RF(k3) models is quite surprising.

Figure 4.21 – Forecasting performances of an RF model fed with clear-sky normalised data (i.e.
RF(k3), RF(k3) + Solar angles) or non-normalised inputs (i.e. RF(PV), RF(PV) + Solar angles).

At this point, it is necessary to point out that performances are assessed with forecasts
generated from sunrise to sunset. Yet, depending on the lead time considered, forecasts
for the early morning may be generated with nighttime production observations. In this
context, early morning forecasts may be quite inaccurate due to the lack of recent diurnal
observations. Thus, it is relevant to distinguish both types of forecast: Figure 4.22 represents
forecasting skill scores obtained with forecasts generated either with nighttime or daytime
observations. In other words, the left graph represents the accuracy of models fitted with
observations before sunrise, while the right graph is obtained with models fed with, at least,
the first observations after sunrise. We observe that the main gap between the RF(PV) and
RF(k3) model performances results from nighttime-generated forecasts. In this context, the
RF(k3) model only has to deal with signal variations due to clouds, in so much as it tends
to predict observed CSI trends, learnt during the training step (Figure 5.23). Then the
de-normalisation process allows us to explicitly "add the solar curve to the forecasts". In
the case of the RF(PV) model, this model has to infer simultaneously the influence of clouds
and the Sun’s path on the production profile. Given the low skill scores, the model struggles
to do so. When daytime observations become available, the accuracy of the RF(PV) model
remains low despite the solar profile being embedded in the production profile. This may be
explained by (1) a too restricted training set (only one year of observations is used, which
may be not sufficient to derive statistical laws regarding the Sun’s path), (2) the model is not
complex enough to deal with the different variability patterns, or (3) a lack of informative
inputs or easy extractable information.

To help the model perform better, we add features that explicitly characterise the posi-
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Figure 4.22 – Skill scores, w.r.t. the persistence model, of an RF model fed with clear-sky
normalised (i.e. RF(k3), RF(k3) + Solar angles) or non-normalised inputs (i.e. RF(PV), RF(PV)

+ Solar angles).

tion of the Sun (i.e. elevation and azimuth angles) at the target time (i.e. at time t + h).
The inclusion of this information improves forecast accuracy both for nighttime and day-
time generated forecasts to such an extent that the resulting performances of the RF(PV)
+ Solar angles model are similar or even better than those of the RF(k3) model. However,
when comparisons between models are performed with similar inputs, the results show that
the strategy based on clear-sky normalised inputs (i.e. the RF(k3) + Solar angles model)
attains the best skill scores. Thus, this suggests that the model is not able to learn the
variability patterns associated with the Sun’s path from past production observations and
solar angles.

Lastly, we assist the forecasting model based on non-normalised inputs by providing
it with additional explicit information regarding the Sun’s movement for the target time
(Figure 4.23). First, the clear-sky profile is added as an additional explanatory feature,
which leads to the RF(PV) + Solar angles + CS model. This new input has a positive
impact on both accuracy scores. Yet, this approach only slightly outperforms the RF(k3)
+ Solar angles model for the highest horizons considered. Second, we replace the clear-sky
profile feature with predictions of the Surface Solar Radiation Downwards (SSRD). The
approach based on raw inputs (i.e. RF(PV) + Solar angles + SSRD) is outperformed
by the method that normalises the irradiance-related inputs by the clear-sky irradiance
(i.e. RF(k3) + Solar angles + k(SSRD)). Performance differences are significant when
considering the nMAE criterion, but low with the nRMSE. With this last result, the Sun’s
patterns are directly carried by the SSRD predictions; however, the model based on non-
normalised inputs is outperformed by its counterpart fed with clear-sky normalised data.
This suggests that the normalisation process through spotlighting cloud-induced variability
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of the production signal is beneficial even for advanced forecasting algorithms.

Figure 4.23 – Forecasting performances of an RF model fed with clear-sky normalised data (i.e.
RF(k3) + Solar angles, RF(k3) + Solar angles + CS, RF(k3) + Solar angles + k(SSRD)) or

non-normalised inputs (i.e. RF(PV) + Solar angles, RF(PV) + Solar angles + CS, RF(PV) +
Solar angles + SSRD).

�

Research Answer - Normalisation process/ML (1/2)

In this section, we investigate the influence of clear-sky normalisa-
tion over forecast accuracy. In other words, the main objective is to
determine whether an ML-based model is able to learn Sun-related
variability patterns on its own. When the model considers only non-
normalised power observations, its accuracy is lower than when the
same model is fed with clear-sky normalised inputs. Thus, it is possi-
ble to improve the performances of the model by assisting it to assess
Sun-related variability patterns. To do so, we include the following
explanatory features: the elevation and azimuth angles of the Sun,
the clear-sky profile, and irradiance predictions. Despite the differ-
ent options investigated, comparisons performed between the model
fed with similar inputs reveal that normalising irradiance-related fea-
tures through clear-sky irradiance model outputs leads to the best
forecast accuracy.
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�

Research Answer - Normalisation process/ML (2/2)

In this section, the RF model is considered. As a complement, a
similar study is carried out with an ANN in Appendix B.2. Similar
conclusions are drawn, except that this model makes better use of
irradiance predictions to the extent that strategies based on clear-
sky normalised or non-normalised inputs provide very close accu-
racy scores. In a nutshell, the ANN model does not require clear-
sky normalisation when irradiance forecasts are included. However,
we advise forecasters to resort to clear-sky normalisation to facili-
tate the regression process and to achieve the highest accuracy for
a wide range of configurations. In particular, the normalisation pro-
cess should be used in an ST context to prevent the assimilation of
Sun-induced irradiance variations with cloud movements.

Thereafter, a variable X normalised by the output of a clear-sky model is simply denoted
as X̄.

4.4.2.3 Temporal dependency

A time series may be auto-correlated, that is to say, the instance at time t may be cor-
related with previous or following observations. Then, the question arises of which number
of lagged terms to include in the forecasting model. To investigate the time dependency of
CSI, the ACF and Partial Auto-Correlation Function (PACF) tools are used. Such tools
are widely used to identify the orders p and q (number of time lags) of an ARMA model.

On the one hand, the ACF at lag k computes the correlation between variable Yt and its
delayed copy Yt−k. This enables us to find repeating patterns in the time series. In other
words, the ACF measures the similarity between observations as a function of the time lag,
as such it can be seen as a rough measure of the ability to forecast the time series at time
t from previous observations. On the other hand, the Partial Auto-Correlations (PAC) at
lag k is the correlation measured after removing the effect of any correlations due to the
terms at shorter lags. A PAC which significantly differs from 0 indicates lagged terms that
are useful predictors of the feature Yt.

The correlogram (i.e. the left part of Figure 4.24) shows that the ACF exponentially de-
creases as the lag k increases, while the PAC associated with the first 9 lags are significantly
different from 0. According to Table 6.1 from [234], this characterises an AR process of
order 9. Given the high PAC observed for the very first lag, it could have been adequate to
resort to an AR(1) process, yet, we chose to add previous lags for the diversified information
they carry and let the model’s feature selection algorithms select the most relevant inputs.
In a nutshell, Figure 4.24 reveals that significant information is still present until the 9th

lagged term. The vector {Xt−135min, . . . , Xt−15min} of previously observed CSI is then used
as input to predict the value of yt+h.
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Figure 4.24 – ACF and PACF of the complete time series of normalised power (i.e. k3
t ) observed

during year 2016 but excluding periods with zero clear-sky irradiance. The blue dotted line shows
the zone outside which k3 has statistically significant correlations with its historical values.

4.4.2.4 Spatial dependency

The main idea of the present section is to highlight the spatial dependencies that may
exist among PV production sites and with satellite-based inputs. We can estimate the
correlation between pairs of stations with the Cross-Correlation Function (CCF). The latter
is a measure of the similarity between two time series as a function of the displacement (lag)
of one relative to the other. In this paragraph, we consider that the displacement is null
in order to focus only on the spatial correlation between features. To measure the spatial
dependence between features we adopt an approach inspired from [84, 235]. The focus is on
the changes in the CSI (∆kt = kt − kt−1) rather than on the CSI. Such an approach avoids
falsifying the correlation by removing the remaining seasonal effects. This is in line with
conclusions from the previous section, which states that CSI needs differentiation to achieve
stationarity. Then, the cross-correlation between the changes in the CSI of two time series
is computed.

In a first step, we investigate the spatial correlations that may exist between stations in
the fleet. Figure 4.25a reveals that PV6 possesses the highest correlations with its northern
and southern neighbours. This highlights that close sites are more related than distant ones.
However, given the north/south configuration of the network, it is difficult at this stage to
quantify the direction and strength of the spatial relationships. It is worth mentioning that
the correlation levels observed here differ from previous works (e.g. [236]) owing to the fact
that (∆kt) is considered instead of (kt). Figure 4.25b shows the exponential decay of the
station pair correlation as a function of station distance. In [237], the authors provide a
review of correlation formulations as a function of the station distance (d), the sampling
time (∆t) and the prevailing regional cloud speeds (V ). The experimental correlations in
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Figure 4.25b correspond well with Equation 4.19 which considers a regional prevailing cloud
speed of 19 km/h.

ρ = 1
1 + d

∆t·V
(4.19)

(a) Spatial correlation between PV6, represented by
the black dot, and the other power plants.

(b) Spatial correlation of the station pairs as a func-
tion of site-pair distance. Blue line represents Equa-
tion 4.19 with V = 19 km/h.

Figure 4.25 – Yearly spatial correlations between power unit observations.

Then, we move our focus on spatial correlations between production time series and
satellite-based irradiance observations. As for the distributed network of power units, we
observe a rapid decay in the correlation around the position of the plant of interest (Fig-
ure 4.26). This stresses the relevance of SDSI observations to account for the PV production
variations. The low value of the correlation may be explained by the difference in the spatial
resolution of both sources of information.

4.4.2.5 Spatio-temporal dependency

In a next step, to complete the correlation analysis it is necessary to assess the temporal
correlations between pairs of power units. To do so, we analyse the CCF for different values
of the displacement (or "lag") term.

At a restricted temporal scale (i.e. one day), Figure 4.27 clearly depicts that two distant
sites may be affected by the same cloud effects with a temporal lag which depends on
the distance and the atmospheric structures’ velocity. Here, a phase difference of around
15-minutes is quantified by computing the daily temporal lag between two stations that
maximises the cross-correlation of the two ∆kt time series. By considering the daily cross-
correlation we implicitly assume that cloud propagation remains consistent the whole day.

This method is then applied iteratively on yearly data. Figure 4.28a represents the
distribution of the daily temporal lag between two stations. The highest occurrences of
time lags gather between [−30min; +30min], which assumes that these two power units
are affected by similar events with about 30 minutes delay (which is plausible given the
low distance between the units). We observe a high frequency of inter-correlations reaching
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Figure 4.26 – Cross-correlation between production observations of PV6 and satellite-based
information. The central purple point stands for the position of the power unit.

their maximum values for a null temporal lag. This may be explained by the fact that close
sites experience similar weather conditions (e.g. overcast or sunny days). In a next step,
the distribution of the time lag maximising the daily cross-correlation is computed for all
the station pairs. The Hovmoller diagram displayed at Figure 4.28b shows the temporal
shift distribution for all possible pairs of power units as a function of the distance. As
the separation distance between station pairs increases, the magnitude of possible time
lags between two power units (i.e. the range of temporal lags associated with the highest
frequencies) increases. This illustrates metaphorically that "the further we look into time,
the further we look into space": as the lead time of forecasts extends, so does the distance
of plants used as explanatory features.

Lastly, ST dependencies between production observations and the SDSI are assessed. In
Figure 4.29, the propagation time of weather structures is computed between the PV power
unit and all the pixels of the satellite-based image as the temporal lag that maximises the
cross-correlation coefficient. Interestingly, this figure shows propagation from the eastern
longitudes towards the western longitudes. At first glance, this analysis refutes the wind
distribution observed in Figure 4.30a. The latter shows a dominant stream coming from the
northern direction, and a secondary prevailing stream coming from the south. The dominant
stream is associated with the Mistral, which is a strong, cold wind accompanied by clear cool
weather. As such, the Mistral does not play a significant part in the transport of clouds. On
the contrary, the south wind is associated with moisture-laden air coming in from the sea
that causes cloud cover. These prevailing north and south distributions can be accounted for
by the effects of topographic relief of mountains. Indeed, the Rhone valley is characterised
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Figure 4.27 – Production observations and associated changes in the CSI of PV6 and PV7 (18.91
km apart) on 2016-02-26. The production series are displayed in the top window while the change
in the CSI (∆kt) is shown at the bottom. A maximum correlation is attained for time t+ 15min.

The dotted line represents the 15-min lagged values of PV6.

(a) Distribution of the time lag maximising the daily
cross-correlation between change in CSI of PV6 and
PV7 (18.91 km apart).

(b) Hovmoller diagram [238] representing the prop-
agation of the daily distributions of time lags be-
tween pairs of stations as a function of distance.

Figure 4.28 – Distribution of time lags obtained with the cross correlation function. Only values
higher than the 95% confidence interval are retained.

by a funnel-shaped relief oriented along the north/south axis (Figure 5.9). At the 850 hPa
pressure level, we are still in the low layers of the atmosphere, which explains the orography
dependence of winds. At higher layers such as 500 hPa (Figure 4.30b), the influence of
the oceanic air flux (i.e. westerly winds) becomes significant. Clouds associated with this
flux are often more scattered than clouds associated with northward winds. Therefore, ST
structures advected by western winds are often more numerous. This explains the power
production dependencies of westerly weather structures.

Based on extreme temporal lags observed at the western edge of the correlation area,
which are roughly between −150-min and −100-min, a simple calculation gives an atmo-
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Figure 4.29 – Propagation time from the PV farm marked by a purple point. Propagation time is
associated with the maximum cross-correlation between normalised values of production and SDSI.

sphere structure speed displacement of around 40 − 60 km/h (i.e. 11.11 − 16.66 m/s). This
value is consistent with the western wind speeds observed in the wind rose (Figure 4.30b).
Such values are significantly distinct from the values derived at Figure 4.25b. These gaps
may be explained by the fact that Figure 4.29 exhibits a westerly tendency of weather struc-
ture displacement, while power plants are mainly located in the north-south axis, which may
invalidate Equation 4.19. It is worth mentioning that the observed predominance of east
winds does not result from the Sun’s path, and so a poor clear-sky normalisation approach.

(a) Wind speed and direction distribution at 850
hPa. Cumulus clouds usually form at this pressure
level [62]. Mean wind speed is 9.81 m/s.

(b) Wind speed and direction distribution at 500
hPa. Mean wind speed is 14.11 m/s.

Figure 4.30 – PV6 wind speed and direction histograms at 850 and 500 hPa for year 2015.

This analysis highlights the propagation of ST dependencies and confirms the interest
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of forecasting solutions based on temporal and spatial relationships among inputs.

4.5 Conclusions

The main objective of this chapter was to investigate the integrity of the datasets at our
disposal, while analysing and exhibiting the dependencies between the different features.

In a first step, an identification and imputation strategy is developed to deal with spuri-
ous power observations. Actions taken within this chapter highlight that in the presence of
a dataset contaminated with fallacious observations it is better to reject them, even though
the literature shows us that missing data tends to degrade forecasting performances (the
results were obtained within the wind power forecasting field, but it is assumed that such
conclusions can be extended to the PVPF field). The corrective approach developed in
this chapter shows that forecasts performed on datasets in which fallacious production have
been either removed or corrected exhibit rather similar accuracy. This behaviour may be
explained by the fact that: (1) the degradation induced by missing data is compensated by
errors generated by the corrective process due to the limited quality of proxy observations,
or (2) production malfunctions are associated with a MCAR process, which does not alter
the data distribution, and consequently has no impact on model estimations. To extend the
conclusions drawn in this chapter, it could be interesting to compare the developed correc-
tive approach with classic imputation strategies found in the literature such as tree-based
or mean-based imputation methods. These statistical methods differ fundamentally from
the one investigated here, which is derived from physics-based principles.

The clear-sky normalisation process is implemented to explicit the information contained
in the inputs. A performance- and test statistics-based comparison highlights that normal-
ising power observations with the clear-sky power leads to slightly higher performances. In
the ML-related literature, it is common to assume that models are able to account for signal
seasonality on their own, yet we highlight that such regression tools may benefit from the
normalisation process. Lastly, we demonstrate the presence of ST relationships between
inputs using the correlation coefficient.

4.6 Résumé en Français

Comme nous avons pu le constater au travers du précédent chapitre, la chaîne de conver-
sion de l’irradiance en électricité est longue et complexe, si bien que le système d’acquisition
de données est à même de subir diverses avaries et de remonter des données incomplètes
ou corrompues. Ce phénomène détériore la qualité du signal de production et a des réper-
cussions sur la précision des prévisions. Il convient alors d’identifier les données fallacieuses
et d’appliquer un traitement adéquat. En plus de contenir une composante liée aux avaries
techniques, le signal de production est également constitué de deux autres composantes :
l’une résultante du mouvement du soleil (qui induit une variabilité journalière et saisonnière)
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et l’autre associée aux mouvements de masses atmosphériques. Dans un contexte d’utilisa-
tion de méthodes de prévision ST, la composante déterministe liée à la course du soleil
peut altérer les dépendances entre plusieurs points d’observations spatialement distribués.
En effet, lorsque les stations sont alignées selon un axe Est-Ouest, ces dernières ont ten-
dance à montrer une plus forte corrélation, non pas en raison d’une plus grande dépendance
aux mouvements des masses atmosphériques mais plutôt en raison du déplacement du soleil
dans la voute céleste. Ainsi, ce chapitre a pour objectif de proposer une méthode permettant
d’éliminer les sources de variabilité qui viennent polluer le signal de production. En d’autres
termes, l’objectif est d’affiner les données afin de mettre en lumière l’information pertinente.

Identification et correction des données aberrantes

Dans un premier temps, notre questionnement portant sur la fiabilité des données de
production nous a conduit à remettre en question les informations disponibles concernant la
géométrie des centrales (i.e. angles d’inclinaison et d’orientation des modules). En effet, bien
souvent l’installation des modules est dictée par la topographie du terrain. Lors des premiers
temps de ce travail de recherche, une approche naïve avait été proposée pour déterminer
des angles plus en accord avec la réalité du terrain. Néanmoins, la faiblesse de la méthode
et les importantes déviations vis-à-vis des valeurs standard nous avaient conduit à préférer
les valeurs par défaut. Désormais avec le recul, il pourrait être pertinent d’identifier des
journées de production ciel clair, puis d’estimer la production théorique en condition ciel-
clair à partir des sorties de modèles ciel-clair et en utilisant le modèle de conversion proposé
au Chapitre 3. L’idée serait ensuite de retenir les angles conduisant aux plus faibles écarts
entre les deux jeux de données.

La suite de notre investigation consiste à identifier et éventuellement corriger les données
qui s’écarteraient d’une caractérisation fidèle de la réalité. Les défauts techniques peuvent
altérer les données ou même induire une perte d’information, ce qui en aucun cas ne re-
flète la réalité des choses. Dans ces conditions, on comprend qu’il devient difficile d’établir
des relations statistiques pertinentes lorsque des données exogènes telles que des variables
NWPs, qui sont exemptes de tels défauts, sont utilisées. Un contrôle préliminaire de la qua-
lité des données est tout d’abord réalisé en nous basant sur un contrôle générique des séries
temporelles :

1. Vérification globale de la série temporelle : absence de changements d’heure été/hiver,
absence d’observations associées à une éclipse solaire, absence de données supérieures
à la capacité installée.

2. Contrôle rapide de la qualité des observations : e.g. les jours pour lesquels le ratio entre
production observée et production théorique ciel clair est très faible sont identifiés
comme problématiques.

3. Contrôle des données constantes : on observe une production constante sur plusieurs
instances temporelles lorsque la production est bridée ou la centrale à l’arrêt.
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Les critères utilisés lors de cette étape préliminaire de validation sont aisés à implémenter
mais ne permettent pas d’identifier des avaries associées à des arrêts de sous-composants de
la chaîne de conversion (e.g. onduleur ou transformateur). L’objectif et la contribution phare
de ce chapitre résident dans le développement d’une stratégie d’identification et de correc-
tion des données de production aberrantes. Afin d’identifier avec certitude un comportement
déviant, nous utilisons un proxy de la situation météorologique sur site, en l’occurrence (1)
des observations de l’irradiance sur site et (2) des mesures au niveau des transformateurs.
Une première approche basée sur des prévisions NWPs et des observations satellite de l’irra-
diance n’a pas été concluante en raison de la résolution plus ou moins grossière des données
et des erreurs d’observations et/ou de modélisation. Dans la mesure où les données que nous
avons retenues ne sont actuellement pas valorisées parCNR, aucun suivi de l’instrumenta-
tion n’est réalisé, si bien que ces dernières sont entachées d’erreurs. Les données ont donc été
analysées afin d’identifier, par exemple, des phénomènes de données gelées ou des décalages
temporels.

Pour les deux types de données, des approches spécifiques ont été développées. Dans un
souci de concision, la suite de ce résumé est dévolue à la méthode basée sur des observa-
tions d’irradiance à partir de cellules de référence. Une comparaison visuelle sur plan 2D,
où chaque axe représente respectivement la production observée et la production simulée
à partir des observations et du modèle de conversion développé au Chapitre 3, met en lu-
mière plusieurs régimes de production. La méthodologie développée consiste tout d’abord à
segmenter les séries temporelles (typiquement en un ou deux jours). Ensuite, ces segments
sont transférés dans un nouvel espace construit à partir de la variable cible (i.e. les obser-
vations de production) et la variable utilisée comme proxy (i.e. la production simulée). A
l’intérieur de cet espace, l’algorithme de clustering DBSCAN permet de regrouper les dif-
férentes instances en des groupes partageant des spécificités communes. Ces groupes sont
ensuite associés à un régime de production et un facteur de correction est appliqué sur les
observations fallacieuses. Nous montrons par la suite que ce processus est fortement tribu-
taire du site étudié, ceci s’explique par des architectures plus ou moins complexes, et par
la qualité des données d’entrée utilisées comme proxy. Quoi qu’il en soit, cette approche
permet d’améliorer le coefficient de détermination entre les observations et les simulations
de la production.

Pour évaluer l’impact du processus développé ci-dessus, nous considérons successivement
(1) un jeu de données brutes, (2) un jeu de données pour lequel les données fallacieuses sont
rejetées (i.e. remplacées par la valeur NA), et enfin (3) un jeu de données où les observations
identifiées comme étant erronées sont corrigées. Ces différents ensembles de données sont
ensuite utilisés pour entraîner un modèle AR et un modèle RF. L’analyse des performances
se fait quant à elle sur des données corrigées afin de se rapprocher le plus possible de la
réalité météorologique. Nous observons pour le modèle AR que, quels que soient les hori-
zons considérés, les deux stratégies de rejet et de correction des données conduisent à une
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amélioration de la nRMSE par rapport à un modèle entraîné sur des données brutes. Les
conclusions concernant la nMAE sont moins tranchées : nous observons une dégradation
du score pour les horizons inférieurs à 120 minutes. Cela signifie que le modèle calé sur les
données brutes à tendance à faire moins d’erreurs faibles. Un comportement similaire est
observé pour le modèle RF. Dans ce cas, néanmoins, les variations de performances par rap-
port au modèle de référence sont moins prononcées. A notre étonnement, nous constatons
que le recours aux données corrigées n’améliore pas significativement la précision des prévi-
sions comparativement aux modèles générés à partir des données exemptes d’observations
fallacieuses. Ceci pourrait s’expliquer par le fait que la perte d’information générée par les
données manquantes est contrebalancée par le bruit introduit lors de la phase de correction.

Mise en évidence de l’information pertinente

La dernière partie de ce chapitre a pour but de mettre en valeur l’information pertinente
contenue dans le signal de production, ou les variables liées à l’irradiance d’une manière
générale. Pour ce faire, nous nous tournons vers le processus de normalisation qui consiste en
la division du signal étudié (e.g. la production PV, ou l’irradiance solaire) par une grandeur
analogue théoriquement observée sous un ciel dépourvu de nuage. La valeur qui en découle se
nomme alors l’indice ciel-clair. Cette approche permet de mettre en lumière la composante
stochastique liée à la variabilité des masses atmosphériques et de faire fi de la composante
associée à la course du soleil. Une étude bibliographique a permis de mettre en lumière les
spécificités des différents modèles présents dans la littérature. Notre choix s’est porté sur le
modèle McClear.

Les variables en lien avec l’irradiance sont par nature non-stationnaires. En un mot, la
stationnarité signifie que les propriétés statistiques d’une série temporelle ne changent pas
au cours du temps. Cette propriété est souvent un prérequis pour l’utilisation de nombreux
modèles de régression de série temporelle. Dans la littérature dévolue à la prévision de la
production PV, la normalisation par l’irradiance ciel-clair sur plan horizontal est souvent
utilisée comme moyen de stationnarisation. Nous mettons en évidence que, formellement,
cette approche ne permet pas d’obtenir des séries stationnaires. Néanmoins, la considération
de l’irradiance ciel-clair sur plan incliné ou même la puissance électrique associée permet
d’atteindre de meilleures propriétés de stationnarité locale et d’améliorer les performances
prédictives.

Dans la littérature consacrée à l’utilisation de modèles d’apprentissage machine (ML),
le recours à des grandeurs brutes (dans le sens où celles-ci ne sont pas non normalisées par
la sortie d’un modèle ciel clair) est souvent de mise. Ceci peut s’expliquer par la croyance
en les capacités du modèle à intuiter par lui-même les mouvements du soleil. Dans les faits,
nous montrons qu’un modèle RF alimenté par des variables normalisées par des sorties de
modèle ciel clair atteint des performances supérieures vis-à-vis du même modèle calé sur des
variables non-normalisées. Il est possible d’aider le modèle en lui fournissant des informations
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supplémentaires telles que les angles solaires (i.e. angles d’élévation et d’azimut) ou le profil
ciel clair.

Dépendance des différentes variables étudiées

Enfin, dans la mesure où la normalisation ciel clair permet de supprimer, ou tout du
moins, de réduire l’influence du mouvement du soleil, il a été possible de mettre en évidence
les dépendances ST pouvant exister entre les différents sites de notre cas d’étude ou avec des
données issues de l’imagerie satellite. Une analyse de la distribution des différents régimes
de vent au niveau des sites d’intérêts permet d’expliquer les dépendances observées.
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Chapter 5

Spatio-temporal Information

Many a trip continues long after movement in time and space have
ceased.

John Steinbeck, Travels with Charley: In Search of America (1962)
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CHAPTER 5. SPATIO-TEMPORAL INFORMATION

5.1 Introduction

With the growth of Photovoltaic (PV) energy, new production facilities are flourishing
just about everywhere. This development, combined with advances in smart monitoring and
measurements, paves the way for a paradigm shift in PV power forecasting from temporal- to
Spatio-temporal (ST)-based forecasting models. ST methods assume that weather features
exhibit correlations among close-by areas with temporal lags depending on the spatial dis-
tance between sites and the propagation speed of weather structures. This new paradigm
offers power producers the possibility to economically value information from geographi-
cally distributed solar plant networks in the form of forecast accuracy improvements due to
correlations between units, and prepares the ground for a data-sharing market [60].

Distributed PV production observations have been used in the literature on solar energy
short-term forecasting for a couple of years due to their proven advantages over temporal
forecasting methods [239], but they are still investigated in the light of new modelling strate-
gies. In 2015, [83] presented an ST forecasting method based on the Vector Auto-Regressive
(VAR) framework combining observations of solar generation collected by smart meters and
distribution transformer controllers. Recently, [240] proposed an ST deep learning frame-
work. In line with what was performed in Section 4.2, this information can also be used to
address partially corrupted observations in training datasets. In this regard, [241] proposes
a co-kriging strategy to complete data points for which data are not available based on
ST dependencies between sensor observations. Some preliminary studies performed as part
of this research have shown that for very close sites, ST dependencies could be used for
missing entry imputation. This avenue has not been further investigated because it cannot
be generalised to our whole PV unit network.

Depending on its distribution or density, a PV network may partially account for the
complex ST processes at stake (e.g. mainly sites located upwind or crosswind). To fill
these gaps, satellite-based observations are an appealing option. With recent developments,
geostationary satellites can capture images of Earth at a temporal resolution of less than
an hour, which enables operational uses. Aguiar et al. in [55] demonstrate the positive
impact of Satellite Derived Surface Irradiance (SDSI) observations on forecasts based only on
endogenous features for intra-day solar forecasting. In this study, Artificial Neural Networks
(ANN) are fed with past endogenous observations and a subset of 30 pixels obtained from
the Pearson correlation-based selection. In addition to traditional satellite-derived features
found in the literature, we also consider opacity maps obtained from infrared channels.
Despite being under-represented in the literature (only two studies have been found [104,
114]), infrared channel-based data present the advantage of offering nighttime observations,
which contributes to improve early morning forecasts.
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?

Research Gap - Mixing of data sources

Traditionally in the literature, distributed PV production and
satellite-derived observations are used separately. Yet both carry
different information due to their spatial resolutions (i.e., distributed
units enable the observation of smaller cloud structures). As a re-
sult, we might wonder whether used together, these inputs could
contribute to forecast accuracy.

Therefore, in this chapter, the focus is on the use of several sources of information rather
than on developing a dedicated forecasting model dealing with ST datasets. In this regard,
techniques are investigated to make the most of available information, while reducing the
computational burden inherent to spatial observations. The general workflow of this chapter
is displayed in Figure 5.1.

5.2 Spatially distributed PV plants

5.2.1 State-of-the-art

A variety of techniques can be applied to generate forecasts from ST observations. For
instance, kriging [238] refers to a group of geostatistical weighted interpolation methods
based on ST statistical dependencies, with weights derived from co-variances or correlations
among observations of a random field. These methods are widely used in the domain of
spatial analysis, and are currently applied to the solar and PV generation forecasting fields
(e.g. [85, 242, 243]). They enable predictions at unobserved locations, which offers the
possibility of quantifying the PV potential of new projects. One major drawback of kriging
is that it is computationally intensive. In this regard, [243] proposes a method to quantify
the spatial and temporal decorrelation distances (i.e. spatial and temporal distances from
which two sites are uncorrelated) to reduce the size of the problem (number of sites and/or
time-steps). In addition, it requires special care regarding the ST structure modelling and
the associated choice of covariance/correlation function. In [85], the authors highlight that
applications of kriging methods go far beyond the field of solar energy, which implies that
ST covariance functions may not model irradiance effectively. Lastly, kriging methods are
efficient with rich ST data, but not for a reduced number of measurement sites [84], which
can be an issue regarding the density of the PV unit network under study.

Computing correlation metrics between several PV power plants or satellite pixels can
be intense. Here, the option is to consider data-driven frameworks (i.e. the Auto-Regressive
(AR) and Random Forest (RF) models) that are not initially designed for forecasting tasks
involving ST correlations, but make it possible to easily consider ST features as additional
exogenous variables. A large part of the ST-related literature is dedicated to Auto Regres-
sive Integrated Moving Average (ARIMA)-based models due to their capability of including
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Figure 5.1 – General workflow of the chapter.

numerous data from different sources [56, 58, 62, 83, 244]. In 2015, Bessa et al. [83] were
among the very first researchers to present an ST forecasting method based on the VAR
architecture, combining observations of solar generation collected by smart meters and dis-
tribution transformer controllers. The results show that ST methods outperform temporal
methods for all the timescales under study. The results indicate that information from dis-
tributed PV generation can reduce the forecast error by between 8% and 12% on average
for the first three lead times compared to an AR model, and that improvement deteriorates
with the lead time. Later, in 2018, Agoua et al. [58] proposed a new normalisation technique
to overcome weaknesses of the Clear-Sky Index (CSI) for early and late hours of the day.
To take into account the local weather conditions in the ST model, the authors propose
an AR framework with weather-dependent coefficients. Compared to the ST model with
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fixed parameters, this model conditioned on wind speed shows a deteriorating reduction in
the Root Mean Square Error (RMSE) for the first two hours: for the 30-min horizon, the
improvement reaches around 2% and becomes non-existent beyond 2.5 hours. In the same
vein, in 2019, Amaro e Silva et al. [62] developed a wind regime-based approach, where
different Auto-Regressive with eXternal inputs (ARX) models are trained for different wind
speed and direction intervals within the scope of very short-term solar forecasting. This
regime-based approach detects different spatial patterns achieving skill scores greater than
20%. Tree-based approaches are also represented in the ST context. Huang et al. [245] pro-
pose a comparison between several data-driven models (i.e. Gradient Boosted Regression
Trees (GBRT), Support Vector Machines (SVM), ANN, ARX) with consideration of both
spatial information from large-scale neighbouring sites (i.e. 65 sites within 30 km) and tem-
poral information. The study highlights that the GBRT model gives the best performances
with the lowest normalised Root Mean Square Error (nRMSE) and the highest R2. The
authors explain this success by the ability of the model to take advantage of both the re-
gression trees and the boosting technique so that it is insensitive to outliers, flexible enough
to express solar data features, powerful enough to fit complex nonlinear relationships, and
capable of performing automatic feature selection. Nevertheless, no comparison between
temporal and ST modelling is provided. Persson et al. [246] investigate the potential use of
GBRT for short-term solar power generation forecasting in a multi-site framework composed
of 42 rooftop installations. The main findings are: (1.1) for the same inputs, the GBRT
model outperforms a recursive AR model, (1.2) AR-based forecasts are more accurate for
low-variability sites, and (2) the ST version of the model exhibits improved scores compared
to their temporal counterparts. These results motivate the use of tree-based models.

5.2.2 Model definition

Since ST information is considered as exogenous inputs, their integration in the root
forecasting models defined in Chapter 2 is straightforward. The new inputs vector is defined
as follows:

Xx,⊺
t =

[︂
P xt−l . . . P xt PS

t−l . . . PS
t

]︂
(5.1)

x Site of interest, for which the forecast is performed,
l Order of the AR model (i.e. number of temporal lags considered),

S Set representing the s neighbours of x included in the ST model.

5.2.3 Spatio-temporal correlations between plants

To avoid considering irrelevant sites that are too far away to have an influence over the
production of the site of interest, we assess the spatio-temporal correlations that may exist
between sites. The degree of correlation between features is measured though the Mutual
Information (MI) criterion, which is defined later on in Section 5.3.2.1.1.
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Figure 5.2 shows that as the forecast horizon extends, spatio-temporal correlations be-
tween sites decrease. A decrease in correlation is also observed with increased distance as
expected. Naturally, the highest MI score is reached at the horizon h = 00H15 for the
last production level measured at PV1 (i.e. at time t). Besides, PV1 and PV4 are hardly
correlated independently from the forecast horizon or lag considered, while we observe that
despite the distance, PV1 and PV8 exhibit interesting correlations. This is due to the fact
that in the Rhone Valley dominant streams come from a northern direction, while secondary
prevailing streams come from the south (Figure 4.30a). The former regime corresponds to
the Mistral (i.e. strong winds accompanied by clear, cool weather that do not play a signif-
icant role in the transport of clouds), while the latter is associated with moisture-laden air
coming in from the sea that causes cloud cover. Thus, plants in the north (such as PV4)
do not have a prevailing impact on ST correlation in comparison with PV8 which is located
in the south (the spatial distribution of plants is displayed in Figure 2.5). Surprisingly,
we observe that for the same horizon, the correlation level between PV1 and and the last
observation of PV10 is not negligible. As both sites are separated by nearly 100.00 km, it
is hardly conceivable that they experience similar atmospheric conditions 15 minutes apart.
Based on this observation, and the analysis performed in Section 4.4.2.5 from Chapter 4,
we consider data observed within a threshold distance of 80 km.

Figure 5.2 – MI between the differentiated CSI (i.e. ∆kt) of PV1 at time t+ h with the lagged ∆kt

of the different power plants. Sites are ordered as a function of pairwise distance. We consider the
9 previous lags.

5.2.4 Limits of embedded feature selection algorithm

A straightforward injection of Spatially Distributed Units (SDU) features in the regres-
sion models may lead to counter-intuitive behaviours.
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5.2.4.1 Performance degradation

Figure 5.3 represents the forecasting performances of different configurations of models
based on ST features (observations of neighbouring sites within an 80 km threshold distance
and their temporal lags) w.r.t. the same model based only on temporal information at the
site of interest. This graph demonstrates that (1) in a general way, the consideration of
neighbouring plants improves the forecast accuracy (the RF + SDU(t-9:t) model is generally
better than the RF model), except (2) on the very first horizon where the RF model leads
to better performances in terms of normalised Mean Absolute Error (nMAE).

Figure 5.3 – Forecasting performances of RF models considering temporal and ST information.
The lags of neighbour observations are indicated in parenthesis. The physics-constrained feature

selection refers to the methods introduced in Section 5.2.4.2.

Thus, the embedded feature selection algorithm of the RF model is not able to effi-
ciently select relevant features in an ST context for the very short-term horizons. Similar
behaviour has already been observed in the literature. The author in [244] notes that an
extra preselection step is useful to remove bad predictors. The latter, combined with the
Least Absolute Shrinkage and Selection Operator (LASSO), improves forecast accuracy
compared to a single-stage LASSO, even in the case of a low dimensional dataset (namely
17 radiometers). This motivates us to consider features preselection not only in space, but
also in time.

5.2.4.2 Physics-based time decorrelation distance

To reduce the number of inputs considered during the regression process, a physics-
constrained feature selection approach is studied. The idea is to consider the propagation
time of ST information from one site to another, derived from wind speeds, to select relevant
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input lags. It is worth mentioning that [244] proposes an option based on the Mueen’s algo-
rithm for a similarity search, which does not require any prior meteorological information.

First, the bearing 1 between the site of interest, x, and its neighbour, i, is computed.
Then, the first and third quartiles (i.e. 25th and 75th percentiles) of the wind speeds observed
in this direction are used to obtain an estimation of the minimal and maximal wind speeds
(respectively V min

i→x and V max
i→x ). Wind speeds at a 850 hPa pressure level (Figure 4.30a) are

considered because this value corresponds to the altitude at which cumulus clouds usually
form [62]. The minimal and maximal propagation times required for the information to
travel from one site to another 2 are then obtained considering Equation 5.2, where Dx↔i

is the distance between the site of interest, x, and its neighbour i. Considering the forecast
horizon h and the possible lag τlag, the relevant information is assumed to be contained
within the range defined by Equation 5.3.

⎧⎨⎩ Tmini→x = Dx↔i
V max

i→x

Tmaxi→x = Dx↔i

V min
i→x

(5.2) Tmini→x ≤ τlag + h ≤ Tmaxi→x (5.3)

Forecasting performances obtained with this feature preselection process are depicted
by the blue curve in Figure 5.3 (i.e. the RF + SDU(t-9:t/physics-constrained) model).
We observe that the proposed preselection approach enhances both nRMSE and nMAE
forecasting scores for horizons up to 2 hours ahead, and reduces computational time by
around 40% in comparison with the model considering all the lags and close neighbours (i.e.
model RF + SDU(t-9:t)). A slight degradation in the nRMSE scores is observed for greater
horizons.

A similar investigation was conducted with the AR model. Contrary to the RF model,
the physics-constrained preselection method did not contribute to improve forecasting ac-
curacy but was retained on account of the Occam’s razor and a reduced computational
time.

5.2.4.3 Feature importance

To get an insight into the inner workings of the forecasting model, we focus on the impor-
tance of the features attributed by the RF + SDU(t-9:t) model (Figure 5.4). As a reminder,
the determination of feature importance is presented in Section 2.2.4.3. An explanation of
the prevalence of some features can be found in the wind distribution analysis performed in
Section 4.4.2.5, where we highlighted the presence of three main wind regimes. The Mistral
is a dominant stream coming from the north. This wind does not play a significant role
in the transport of clouds, unlike the south wind, which is associated with moisture-laden
air. At higher layers of the atmosphere, western weather structure displacements associated
with oceanic air flux play a predominant role in the transport of cloud structures. The

1. Angle between the direction of the two plants and that of the north.
2. We adopt a Lagrangian description of the cloud movement.
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spatial distribution of PV plants is presented in Figure 2.5.

An analysis of feature importance reveals that the RF + SDU(t-9:t) model tends to give
relative high importance to PV8 for the 15-min ahead horizon. This prevalence is in line
with the distribution of the south wind, but is surprising given the distance between PV1
and PV8. Despite their distances, PV8-derived features contribute more to the forecast of
PV1 production than its closest neighbour PV3. The graph shows that the ST information
from PV7, PV5 and PV6 contributes little to forecasts performed at PV1 compared to other
sites such as PV3. This is due to (1) the spatial location of the sites: PV5 and PV6 are
located northward in the direction of the Mistral wind, while PV3 is westward, and (2) PV3
is closer than the two other sites. Observations made on PV7, which is the furthest site,
have very little importance in the forecast accuracy of PV1 production for 15-min ahead,
but feature importance slightly increases as the forecast horizon gets higher. This may be
explained by the propagation speed of the ST information from one site to another. Similar
observations are made with PV5 and PV6 features, which are located in the same direction
as PV7. This indicates the robustness of the results.

Figure 5.4 – Feature importance computed for the 15-min, 1-hour, 3-hour and 6-hour forecast
horizons from the RF models considering PV1 and its closest neighbours (i.e. model RF +

SDU(lag 0:9)). Colours represent the power units (ranked from the closest to the furthest) while
the x axis stands for the temporal lag of the features.

It is interesting to note that for the 3-hour and 6-hour ahead horizons, the last observa-
tions at PV3 (i.e. observations associated with lag 0) have more importance than those from
PV1. For the 15-min ahead horizon, we observe that the most informative lag at PV3 is the
very first, while PV2 is characterised by a bi-modal distribution with two modes present at
lag 0 and 3. These may illustrate the use of ST dependencies by the model. Nonetheless,
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we observe that in general the feature importance decreases as the lag gets higher for the
four forecast horizons to such an extent that the last observations are usually the most
informative ones. This behaviour is quite surprising. As the ST information has a finite
speed of propagation imposed by wind speed, we were expecting former lags to gain more
importance for higher lead times. A hypothesis to explain this phenomenon is that it is hard
for the fixed-coefficients regression model to identify ST dependencies between power units
due to the wide range of weather dynamics induced by clouds directions and speeds. As a
result, it focuses mainly on the last available observations to derive spatial dependencies.

5.2.4.4 Additional restrictions on lagged observations

This motivates us to test additional restrictions on the generation of inputs lags to retain
only the last observation, which is in general the most informative whatever the forecast
horizon considered. This approach achieves the best forecasting performances in terms
of nRMSE and nMAE for horizons lower than 120-min ahead (pink curve in Figure 5.3).
Significant improvements are observed for the 15-min ahead horizons between the models
RF + SDU(t) and RF + SDU(t-9:t) reaching 4% and 8% in terms of nRMSE and nMAE
respectively. Nevertheless, a slight drop in the nRMSE scores is observed for higher horizons.
This tends to support that the learning of the RF model is mainly based on the recognition
of similar spatial patterns rather than on the extrapolation of cloud motion based on ST
correlations. Henceforth, we only consider the RF fed with the last production level observed
on neighbouring plants. The terminology RF + SDU implicitly refers to RF + SDU(t).

5.2.5 Comparison of models’ accuracy

In this section we compare the forecasting performances of the AR and RF models fed
with temporal- or ST-based inputs (Figure 5.5).

The inclusion of distributed PV observations improves forecasting performances on the
whole horizon spectrum in comparison with temporal-based approaches for both models
under consideration. Yet, we observe that the ST information slightly degrades the bias
of the AR models. Contrary to the persistence model, the considered approaches tend to
over-forecast. We observe a slight degradation in the nRMSE score for the ST version of the
AR models at 6-hour ahead horizon. In accordance with what has been said previously, this
is thought to result from an overestimation of the spatial de-correlation distance performed
in Section 5.2.3. Overall, the performance improvement due to ST information is higher in
the case of RF for the three scores under consideration. For both AR and RF models, we
observe that the improvement resulting from neighbouring observations reaches its peak at
around the 1-hour ahead horizon, then progressively decreases to become negligible at the
6-hour ahead horizon. This is explained by the fact that for the very first forecast horizons,
the most relevant source of information is provided by previous production measurements
at the site location (due to the weather persistence), while for the highest forecast horizons,
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no relevant information is extracted from the sensor network because of the temporal de-
correlation distance and the chaotic nature of weather.

Figure 5.5 – Forecasting performances of the AR and RF models fed with observations at the sites
of interest and their ST versions.

The AR + SDU model improves the nRMSE and nMAE scores up to 5% and 4% respec-
tively, while for the same metrics the RF + SDU model reaches improvements of 7% and
6%. Bessa et al. in [83] compare performances of a VAR model considering Distribution
Transformer Controller (DTC) measurements and a Vector Auto-Regressive with eXoge-
nous inputs (VARX) model, which also integrates sensor observations. Figure 5 from the
aforementioned article shows that the global nRMSE improvement of VAR over AR varies
between 4.2% and 2%, while improvements due to the VARX framework range from 9% and
5.7%. These findings corroborate the performances shown in Figure 5.5 and suggest that a
denser source of information benefits forecast accuracy.

This section underscores the two main flaws inherent to the PV production network
under study: its low density and its north-south orientation which prevents observations of
western winds. To fill this gap, information from satellites is considered.

5.3 Irradiance satellite-based information

5.3.1 State-of-the-art

The literature employs several approaches to deal with satellite-based information. One
of the most widespread methods consists in extrapolating cloud displacement using motion
extraction techniques developed in the image processing field. Thus, a block-matching
method applied to two successive images makes it possible to identify positions of similar
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cloud structures, and then to derive displacement vectors. Cloud Motion Vector (CMV)
are then used to translate the most recent map by assuming that cloud structure remains
unchanged over time [247]. CMV-based methods reveal interesting forecasting performances
up to 2 hours ahead. Forecasting performances can be extended to further horizons by
considering wind velocity computed by Numerical Weather Predictions (NWPs) models as
displacement vectors. The main drawback of CMV approaches lies in their ineffectiveness
in the case of local cloud formations [248]. More recent studies resort to statistical or deep
learning approaches. For instance, [249] proposes a straightforward modelling chain, where
a satellite image is flattened and fed into an SVM model which provides a forecast of PV
production. In [250], the authors propose a Deep Neural Networks (DNN) architecture,
which extracts relevant features from three consecutive satellite images (via Convolutional
Neural Networks (CNN)), which are then combined with meteorological data and fed into
an ANN to derive irradiance forecasts.

The use of satellite-based information drastically increases the number of features in-
volved in the forecasting process, which at the same time increases the computational bur-
den. Here, the number of features of a dataset is referred to as its dimensionality. As the
dimensionality of a dataset extends, it becomes more and more difficult to derive accu-
rate forecasts from the dataset; this is called the curse of dimensionality. A related notion
named statistical curse of dimensionality implies that to obtain statistically reliable results,
the sample size grows exponentially with the data dimension. For these reasons, a reduc-
tion of the dimensionality of satellite-based information is needed while preserving relevant
information.

?

Research Gap - Dimensionality issue

Contrary to the spatial inflexibility inherent to PV networks,
satellite-based observations offer the possibility of covering the whole
vicinity of the site location, and much more. This raises new issues;
how can we efficiently capture the ST dynamics, while reducing the
dimensionality and avoiding the risk of overfitting?

5.3.2 Dimensionality reduction

The very first step to reduce the dimensionality of the satellite-derived maps is to limit
their radius. However, this approach is not sufficient: considering a radius of 100 km implies
injecting of 900 variables in the forecasting models (without counting potential features lags).

In this section, three preprocessing options are investigated with the forecasting architec-
ture defined in Figure 5.6. The first one aims at selecting a subset of N features considered
as relevant according to some criteria. The second approach projects the high-dimensional
data to a space with fewer dimensions. The last option proposes a dedicated model, which
derives forecasts at the site location from previous satellite observations.
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Figure 5.6 – Workflow of the forecasting architecture studied in this section.

5.3.2.1 Feature selection

To cope with this dimensional burden, it is common practice to resort to a straightfor-
ward approach: we can consider a set of well-chosen pixels fed to the forecasting model. This
selection step is performed on the training set in order to provide a subspace composed of
NSDSI satellite pixels. Usually, an Maximal Relevance Feature Selection (MRFS) selection
scheme is used [55, 67]. This scheme consists in selecting a user-defined number, NSDSI , of
features that have the highest correlation with the target variable. In other words, a cor-
relation scores analysis performed between satellite-derived information and h time-led PV
production is used to select pixels that have the highest scores depending on the forecast
horizon, h. The Pearson correlation criterion is often used in feature selection processes
[55, 236], while [67, 71] consider the MI criterion for its ability to identify nonlinear rela-
tionships. Here, we focus on the MI criterion and on an alternative feature selection scheme,
namely the minimal-Redundancy-Maximal-Relevance (mRMR) scheme. We do not include
results obtained with Pearson-based selection, because they are, overall, inferior to those
obtained with MI-based selection [71]. The focus is rather on the selection scheme rather
than on the correlation criterion. Figure 5.7 provides a graphic summary of the considered
options.

5.3.2.1.1 Mutual information criterion An MRFS selection scheme is usually im-
plemented: we uses a score to measure individually the dependence between the explanatory
features and the target variable, then the NSDSI features that have the highest relevance
are kept.

Carriere in [67] proposes to use the MI criterion instead of the Pearson correlation
score because of its capacity to assess nonlinear relationships. This criterion measures the
dependence between two random variables A and B, and more precisely the reduction of
uncertainties regarding one variable when the other one is known. The higher the MI, the
higher the reduction in uncertainties, while a zero MI indicates features independence. For
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Figure 5.7 – Considered feature selection methods.

two discrete random variables, the MI is computed as follows:

MI(A,B) =
∑︂
a∈A

∑︂
b∈B

pA,B(a, b) log
(︃
pA,B(a, b)
pA(a)pB(b)

)︃
. (5.4)

(A,B) A pair of discrete random variables with values over the space A × B,
pA,B Joint probability distribution of A and B,
pA Marginal probability distribution of A.

Figure 5.8 represents the MI score computed for each pixel from the SDSI dataset with
the PV production observations for several forecast horizons. It reveals that the correlation
area is highly influenced by the topography of the region (i.e. the funnel-shaped region
is due to the Rhone Valley, Figure 5.9). Two main observations can be made. First, this
approach tends to select westward points for 1-hour and 2-hour ahead time-steps. This
finding supports the analysis performed in Section 4.4.2.5, which suggests a predominance
of ST structures coming from the west. Second, the selected points tend to cluster. This
observation is all the more valid as the forecast horizon is low.

The main limitations to this approach become apparent when it comes to forecasting
PV production with cloud motions that do not result from the prevailing wind direction.
One option could be to increase the number of selected points, but it would hardly improve
forecasting performances due to the pixel aggregation phenomenon. To illustrate this state-
ment, we can say that the MI-based selection process makes the forecasting model blind in
some spatial directions while providing satellite pixels carrying redundant information.

170



5.3. Irradiance satellite-based information

Figure 5.8 – Position of the 10 satellite pixels that have the highest MI score (in black) with PV
production observations for PV1 (in purple) for different forecast horizons. The background

represents the annual inter-correlation map for all grid points.

Figure 5.9 – Topography of the Rhone Val-
ley. Relief map generated from https://www.

geoportail.gouv.fr.

5.3.2.1.2 Minimal-redundance maximal-relevance To address the issue of redun-
dancy among selected features, the mRMR incremental selection framework [251] is im-
plemented. An mRMR scheme is usually applied with gene expression data. This is an
incremental selection method that aims at finding a subspace of NSDSI features that min-
imise the MI criterion between selected features while maximising the MI criterion between
each selected feature and the target situation. Here, we consider a forward selection scheme
which intends to incrementally select NSDSI features from a features pool SM containing M
variables. First, the algorithm selects the feature s1 that has the highest MI with the target
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variable. Then, a second feature, s2 is selected from the set SM − s1 in such a way that
the redundancy within Z2 = {s1, s2} is minimised while the MI score between s2 and the
target is maximal. This incremental feature selection process is repeated until the number
of iterations NSDSI is reached.

Figure 5.10 displays the ten satellite pixels selected by the mRMR approach. Unlike the
MI selection, this procedure tends to select pixels in every direction. We can note that for
short-term forecast horizons, the selected points are no longer aggregated near the farm but
are located at some distance, which can be beneficial in an ST forecast context involving
several weather dynamics.

Figure 5.10 – Position of the 10 satellite pixels (in black) selected via the mRMR selection scheme
for PV1 (in purple).

In addition, this graph shows one limitation in this approach. To comply with the user-
defined number of pixels, some low-informative pixels are selected; for instance, the two
pixels with an MI lower than 0.2 for the first time-step. As observed in the previous section,
this may be detrimental to forecast accuracy.

5.3.2.1.3 Forecasting performances First, it is necessary to determine the optimal
number of features (or pixels) to include in the ST model (1) to obtain the best forecasting
performances, and (2) to avoid over-fitting. A sensitivity analysis performed on the number
of SDSI features (NSDSI ∈ [[5, 50]]) reveals that MI-based and mRMR-based selections
perform better when considering the first 10 features with the highest dependence scores.
Beyond these values, the increase in features does not improve forecasting performances.
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Similarly to the previous section, a cross-validation approach highlights that better fore-
casting performances are reached when considering lagged SDSI-features with the AR model,
while an opposite trend is observed with the RF model. In this latter case, only the last
observations of SDSI-based features are considered. It turns out that the AR model fed with
SDSI features is less parsimonious than the RF-based approach. This phenomenon may be
attributed to the nonlinear structure of RF. But in any case, the forecaster needs to remain
attentive because the embedded feature selection process of RF may reach its limits.

Figure 5.11 represents forecasting performances of the AR and RF models fed with the
sets of SDSI features provided by each feature selection process. First, we observe that
the feature selection approaches have very little influence for forecast horizons lower than
1-hour ahead. Nevertheless, the mRMR-based selection process exhibits higher skills for
higher horizons both with the AR and RF models. In the case of the RF model the nRMSE
score enhancement can reach around 4%. Such results have already been presented in [71]
but differ slightly in the performances gain obtained with the mRMR method compared with
MI-based selection. The main differences between the results presented in this section and
the former publication lie in the clear-sky normalisation process (addition of the physics-
based modelling of irradiance), and the correction of abnormal production observations.

Figure 5.11 – Influence of the SDSI feature selection processes over the forecasting performance of
the AR and RF models. The number of lags considered for the SDSI features as well as the feature

selection approach are given in brackets.
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�

Research Answer - Dimensionality issue (1/2)

Within the scope of feature selection, the mRMR framework im-
proves the forecasting accuracy of both linear and nonlinear models
compared to other methods based on the Pearson-based correlation
or the MI score, which are traditionally found in the literature.

5.3.2.1.4 Selected features Let us focus on the importance given to each SDSI feature
by the RF + SDSI(t/mRMR) model (Figure 5.12). For the first time-step, the embedded
feature selection approach mainly selects observations from the two closest pixels located
westward and southward. In this case, the farthest features are irrelevant inasmuch as the
main information is still carried by previous observations performed at the site’s location.
As the forecast horizon gets higher, the algorithm tends to widen its spectrum of selected
features. We observe that for the 1-hour and 3-hour ahead horizons, more importance is also
given to westward located features. On the whole, little importance is given to pixels located
in the north, which is in line with the wind regime analysis performed in Section 4.4.2.5.

Figure 5.12 – RF-based importance of features selected with the mRMR framework.

5.3.2.2 Feature reduction

After selecting a set of relevant features that carry the meaningful information contained
in the SDSI maps, in this section, we investigate the transformation of data from high-
dimensional spaces to low-dimensional representations, by means of a Principal Component
Analysis (PCA) [252].

PCA is an orthogonal linear transformation that transfers the data into a new coordinate
system. Let us consider a matrix where features are stored in columns (thus, rows represent
observations). Each feature of the dataset is considered as an individual dimension of a
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NPCA feature space. First, the data are centred so as to find the coordinate system origin.
Depending on the nature of the features, the latter can also be reduced (e.g. if features
are measured on different scales). Then, the main idea behind PCA consists in finding
an orthogonal basis constituted by NPCA dimensions, also called Principal Components
(PCs), in such a way that they capture the maximum data variation (i.e. these dimensions
are oriented in the direction of the largest variance in the dataset). Thus, keeping only
the NPCA∗ PCs, which explains most of the variance, reduces the dataset dimension while
minimising the information loss.

To obtain the PCs, first the co-variance matrix (if the features are centred) or respectively
the correlation matrix (if the features are standardised) is computed. This matrix describes
the dispersion of the measured features. Then, the eigenvectors and the corresponding
eigenvalues of the co-variance/correlation matrix are computed through a Singular-Value
Decomposition (SVD). The resulting eigenvectors, which are unit orthogonal vectors, cor-
respond to the PCs, while the eigenvalues quantify the importance of the PCs in terms of
explained variances. Thus, sorting the eigenvalues into a descending order allows us to as-
sess the importance of each PC. PCs accounting for a cumulative explained variance of 90%
are usually kept, while the others are discarded. Lastly, the original dataset is projected
into this new dimension-reduced space.

Considering 100-km radius SDSI maps and a 90% threshold on the cumulative explained
variance, 13 PCs are retained out of the 903 initial features (in this context, a feature
represents a time series derived from the value observed at a specific pixel). This roughly
represents a dimension reduction of 99%. Figure 5.13 represents the explained variance of
the 20 first PCs and their cumulative sum.

Figure 5.13 – Explained variance of each PC and their cumulative sum. Only the 20 first PCs are
represented.

The resulting NPCA∗ projected features are injected into the root forecasting models as
additional explanatory features.

175



CHAPTER 5. SPATIO-TEMPORAL INFORMATION

5.3.2.3 Feature forecast

Over the last few years, we observe a growing use of DNN algorithms in the renewable
energy forecasting field. Deep learning refers to a network composed of multiple stacked
layers (an input layer, an output layer and at least one hidden layer in between) able to
extract high-level features from inputs, which reduces the need for feature engineering.
Deep structures tend to achieve better forecasting accuracy compared to single layer models
for their complex nonlinear mapping capabilities. In addition to their proven interest for
datasets containing images or problems related to classification, deep neural networks tend
to dominate forecasting competition together with gradient-boosted decision trees [253].

The introduction of Convolutional Neural Networks (CNN) [254] opened the door to
the development of computer vision techniques. The main advantage of a CNN over an
ANN is its ability to work with 2D data, which preserves spatial patterns contained in
the images. Successive convolutional layers composed of convolutional filters allow the
identification of main features ranging from low-level features (e.g. lines) to more abstract
features (e.g. shapes or objects) in the higher layers. CNN has already been successively
applied to the solar power domain to extract relevant information from satellite images
[250] or to forecast production [255]. To capture patterns in sequences of data, such as
time series data, Long Short-Term Memory (LSTM) networks are a good option. LSTM
are an extension of Recurrent Neural Networks (RNN) able to retain information for long
periods of time thanks to their memory cell, which acts as an accumulator of the state of
information. Since CNN and LSTM are well-known methodologies, theoretical explanations
of these models are omitted but interested readers may refer to [256, 257].

To benefit from the feature extraction ability of the CNN and the memory capacity of
the LSTM network, a hybrid modelling has been developed. The CNN-LSTM [257] is com-
posed of a sequence of several convolutional layers, and a flattening layer used to provide
1D data to the LSTM layer. The authors prove that the proposed model outperforms both
CNN and LSTM architectures for day-ahead forecasts. For shorter horizons, namely 1-hour
ahead, [258] shows that CNN-LSTM network outperforms CNN but that both models are
less accurate than the Auto Regressive Moving Average (ARMA) model. The major draw-
back of this approach in handling ST information is that it is necessary to unfold the data
to 1D vectors to enable LSTM network processing. This step loses spatial information. The
ConvLSTM [256] on the other hand, is a specific layer dedicated to ST sequence forecasting
problems. In short, the ConvLSTM layer is similar to the LSTM layer except that matrix
multiplications are replaced by convolution operations, which allows us to keep the spatial
dimension of data. The authors highlight that the ConvLSTM network captures ST cor-
relations better and consistently outperforms LSTM. For a comprehensive description of
the mathematical formulation of CNN-LSTM and ConvLSTM, interested readers may refer
to [259]. In [259], a comparison of the forecasting performance of both hybrid models is
carried out with PV production data. The results show that for the one-day-ahead time
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horizon, the ConvLSTM-based architecture provides better forecasting performances. It is
worth mentioning that in this work both architectures slightly differ: the ConvLSTM-based
architecture possesses only one ConvLSTM layer, while the CNN-LSTM network has three
convolutional layers.

Figure 5.14 – Set of options investigated to extract relevant information from SDSI with
DNN-based models.

The CNN and Conv-LSTM architectures have been investigated (Figure 5.14) to derive
Global Horizontal Irradiance (GHI) forecasts at the plant location from SDSI maps. The
main idea is to forecast GHI at the PV plant location pixel using a ST cube representing
the temporal sequence of last observed 2D maps. This ST cube is then fed into a DNN
composed of n layers. The design of this network is inspired from what can be found in
the literature (e.g. [250]) and from a trial and error process. Each layer is first composed
of a convolutional/Conv-LSTM layer, directly followed by a batch normalisation layer. The
latter is known to speed up training and to improve performances by re-centring and re-
scaling inputs [260]. Then, a pooling layer is traditionally used, which downsamples the
feature map generated by a convolution layer by aggregating the features present in different
regions of the map (e.g. the maximum element from a region is selected). Despite observing
a fitting time reduction, empirical testing shows that better forecasting performances are
achieved by replacing this layer with a dropout layer. The dropout layer is a regularisation
technique used to improve training performances, which has been proven effective in reducing
over-fitting [260] by preventing a fraction (here 20%) of neurons from training at each
iteration. The last stage of a CNN-based architecture is composed of the flattening and
dense (also called fully-connected) layers. The flattening layer converts the data into a 1-
dimensional array, which is then injected into the dense layer. This is a layer that connects
every neuron in one layer to every neuron in another layer. The dense layer compiles the
data extracted by previous layers to form the prediction, per se. It is in this last layer that
the regression work is performed. The DNN architectures are illustrated in Figure 5.15.
These layers utilise the Rectified Linear Unit (ReLU) activation function. The network is
fitted by a state-of-the-art optimiser, namely the Adam optimisation algorithm [261], while
the Mean Square Error (MSE) of irradiance is defined as the loss function.
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Figure 5.15 – Topological structure of the CNN/Conv-LSTM algorithms integrated with the
objective of predicting solar irradiance at the site position (red area) at time t+ h. The ST cube of

past SDSI observations is used to train the CNN/Conv-LSTM models.

In this work, 4 and 3 levels are considered respectively for the CNN- and the Conv-
LSTM-based architectures. The high computational cost associated with this last model is
a significant issue: it takes up to 4 days to fit the Conv-LSTM-based model for a specific
site and the 12 forecast horizons under study. To simplify the modelling process and to
reduce the computational training time, Transfer Learning (TL) [262] is implemented. This
Machine Learning (ML) technique receives considerable attention in the literature because
it solves the problem of limited data or insufficient computer resources, and reduces fitting
time. The main idea behind this method is to pre-train a DNN for a specific task, and
then to transfer the knowledge learnt to another related field by performing fine-tuning of
the deepest network’s layers, while the first layers, acting as a general feature extractor,
remain untouched. For instance, a possible application of TL could be the re-training of a
dog classifier into a cat classifier. Here, a Conv-LSTM network is fitted on a specific plant,
and then TL is used to fine-tune the model for other locations. We choose to fit a model
for each site to integrate potential local weather dependencies.

Subsequently, models are trained over years ranging from 2010 up to 2014 to derive GHI
forecasts at PV plant locations for 2015 and 2016. The latter are injected in the AR and RF
models together with past PV production observations to forecast PV production for 2016.
Figure 5.16 shows that the RF model fed with the GHI forecast produced with the CNN
slightly outperforms its counterpart for horizons greater than 1-hour ahead both in terms of
nRMSE and nMAE, but performances are analogue for shorter horizons. Lastly, CNN-based
forecasts are retained for the lower computational cost induced by the algorithm.
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Figure 5.16 – Forecasting scores obtained with the RF model fed either with irradiance predictions
issued by the CNN or the Conv-LSTM models.

5.3.3 Comparison of the different approaches

Outputs obtained from the features extraction and reduction models are now injected
into the linear and nonlinear regression models. In addition, to get an insight of the full
potential of SDSI observations, a theoretical variable standing for the forecast irradiance,
which would be obtained with a perfect forecasting model from SDSI maps, is created. This
new feature is simply obtained by considering SDSI observations at time t+ h rather than
at a time prior or equal to t and is, thereafter, denoted as a Satellite-based Perfect Forecast
(SbPF).

Figure 5.17 and 5.18 gather respectively all the forecasting performances of the AR and
RF models fed with the different outputs extracted from SDSI maps. To help the reader
understand the nature of the inputs used in the regression models, the latter is explicitly
stated in the legend (t − 9 : t denotes that past observations from lag t − 9 to the current
observations used, t refers to the last observational data, while t+h means forecast features).

First, the AR-based approach provides the widest range of observed performances de-
pending on the feature processing method used (Figure 5.17). Forecasting performances are
poorest when considering the feature selection algorithm, while the best scores are reached
with forecasts issued by the CNN. In other words, complex preprocessing steps enable the
extraction of relevant and easily assimilable information, while reducing the computational
burden upon the AR model, which is observed in the form of a fitting time reduction. The
relatively poor performances achieved by the PCA-based forecasts, and to a larger extent
those obtained with the mRMR-based forecasts, highlight that cloud dynamics contained
in SDSI maps are too complex to be modelled with a linear model. In case of the use
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of CNN-based forecasts, we observe improvements due to the ST information that reach
around 18% and 22% in terms of nRMSE and nMAE respectively.

Figure 5.17 – Forecasting scores obtained with an AR model fed with past PV production
observations and outputs from dimension reduction methods applied with SDSI. SbPF represents

theoretical perfect irradiance forecasts at the site location from SDSI maps.

Regarding the use of the RF model, we observe in Figure 5.18 that the feature selection
and reduction approaches have very little influence on the nRMSE and nMAE scores for all
considered horizons. Yet, a closer look reveals that for horizons greater than 1-hour ahead,
the CNN-derived production forecasts have a higher nMAE than the mRMR-based forecasts
of around 1%. The use of PCA-based information tends to degrade the model bias.

As the nRMSE and nMAE differences are very low between the considered models, we
implement the Diebold-Mariano (DM) test [99] (defined in Section 2.3.3) to judge the statis-
tical significance of the differences. This test compares the predictive accuracy of two fore-
cast models. Figure 5.19 highlights that independently from the horizons, all of the points
(except one) are either outside the significance level of 5% or on the verge of being rejected.
This signifies that the difference between the forecasts delivered by the three approaches is
significant and that the information provided by the dimensionality reduction methods is
not the same. This is confirmed by a deeper analysis that simultaneously combines outputs
from the three proposed dimensionality reduction methods. This approach improves the
nRMSE and nMAE scores by around 2 to 3% compared to the best performances obtained
with the RF model fed with outputs from a unique dimensionality reduction method. How-
ever, this approach is not investigated in greater detail because the combination of the three
reduction methods creates a huge computation effort for forecasters.

A comparison performed in Table 5.1 with a similar approach to the one used in this
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Figure 5.18 – Forecasting scores obtained with an RF model fed with past PV production
observations and outputs from dimension reduction methods applied with SDSI. SbPF represents

theoretical perfect irradiance forecasts at the site location from SDSI maps.

Figure 5.19 – DM test (defined in Section 2.3.3) between the three SDSI feature selection and
reduction frameworks studied for different forecast horizons. The red dotted lines stand for the

borders delimiting the validation and rejection of the null hypothesis.

section 3 suggests that the RF model is able to extract more relevant information from SDSI
than an ANN used for horizons lower than 4 hours ahead. Unfortunately, based on the score
used by the authors, we cannot develop the comparison of forecast accuracy any further due
to the different nature of the quantities involved. In addition, it is difficult to draw definitive
findings given the different climates under consideration.

Figure 5.17 proves that for short-term horizons (i.e. up to 105 mins) the coupling of the

3. In the sense that it is based on a nonlinear model fed with SDSI information and similar inputs except
that the article focuses on irradiance forecasting.
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Study [55] (Table 5) Current study
Location Gran Canaria Island France

Model compared NN+SDSI / NN RF+SDSI(t/mRMR) / RF
1-hour 4.99 9.32
2-hour 6.87 11.88
3-hour 7.75 10.42
4-hour 6.53 8.46
5-hour 8.16 6.30
6-hour 5.33 4.35

Table 5.1 – Comparison of nRMSE skill scores obtained with forecasts based on ST information
w.r.t. predictions issued by temporal data from 1-hour to 6-hour ahead forecast horizons for

different studies. Information within brackets represents the table containing values in the article.
Authors in [55] forecast irradiance quantities.

AR model and DNN is able to extract all of the relevant information contained in SDSI maps.
Indeed, AR + SDSI(t+h/CNN) and AR + SDSI(t+h/SbPF) models lead to similar skill
scores on this range of horizons. Contrary to the RF model, the linear model used is not able
to derive accurate, very short-term forecasts from the last observations (obtained through
the mRMR pixels selection process or PCA performed on SDSI maps). This highlights
that linear modelling is not suitable to account for the complex atmospheric phenomena
occurring. In this case, the astutely fed RF offers an appealing alternative to the high
computational effort involved in modelling ST dependencies through DNN architectures.

�

Research Answer - Dimensionality issue (2/2)

In the case of RF, the choice of the dimension-reducing method has
little influence over forecasting performances - compared to the AR
model. The mRMR framework is recommended with this type of
regression tool on the grounds of its computational efficiency. The
AR model, due to its structure, is not able to extract the full ST
information from PCA- or mRMR-based features. Thus, a nonlinear
preprocessing of the SDSI maps is necessary. It is true that using
the DNN introduced in the previous section to directly forecast PV
production instead of GHI would have been easier, but it would have
wasted the interpretability advantage of AR model.

At this point, it is insightful to compare the best integration strategies obtained with
the AR and RF models. Figure 5.20 shows that the AR + SDSI(t+h/CNN) model out-
performs the RF + SDSI(t/mRMR) model for forecast horizons higher than 90 minutes
ahead in terms of nRMSE and nMAE. On the contrary, for shorter lead times, the RF +
SDSI(t/mRMR) model prevails. This model also leads to the best bias.
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Figure 5.20 – Comparison of forecast accuracy obtained with best dimensionality reduction
methods applied with AR and RF models.

To achieve higher accuracy for horizons greater than 1 to 2 hours ahead, the information
contained in the last SDSI map observations is potentially not sufficient. We may need to
look for additional features such as NWPs (e.g. wind direction and amplitude), which
constitutes a potential way of improvement.

5.3.4 Comparison with a distributed network of PV plants

Now it is the time to compare the predictive power carried, in a way, by the SDU- and
SDSI-based observations. Figure 5.21 and Figure 5.22 represent respectively the forecast
accuracy of the AR and RF models fed with two sources of ST information.

It is obvious that satellite-based forecasts are better than SDU-based forecasts both in
terms of nRMSE, and nMAE. Therefore, satellite-based observations offer an interesting
option when the plant network suffers from a low density of units or a spatial distribution
that does not match the wind distribution of the area. However, for the first three look-
ahead hours, the SDU-based features allow the RF to achieve a slightly lower bias compared
to the RF fed with SDSI. For that matter, in general, modelling strategies involving the RF
models have a lower bias than those considering the AR models.
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Figure 5.21 – Forecasting accuracy of the AR model fed with different sources of ST information.
The ST version of the RF model is displayed for comparison purposes.

�

Research Answer - Mixing of data sources

The simultaneous use of satellite and spatially distributed ground
observations exhibits significant nRMSE improvements up to 1 hour
and 2 hours ahead horizons with the AR and RF frameworks respec-
tively. Beyond that, the information is mainly drawn from satellite
measurements. This phenomenon may be explained by the fact that
satellite-based observations offer a 360-degree view of the weather
conditions in the vicinity of the plant, while SDU-based data are
spatially dispersed. In addition, both sources of information possess
different spatial resolutions; it is in the order of the km2 for SDSI
or the spatial size of the power plants in the case of SDU. In short,
SDU offer very localised information w.r.t. SDSI.

5.4 Opacity maps

5.4.1 An under-represented source of information

The main limitation associated with classic satellite-based methods, such as the one
used to derive SDSI observations, is that they only use visible spectrum channels. This
provides daytime information but prevents the derivation of early morning forecasts due to
a lack of time history. In this case, when forecasting models based on irradiance and/or
PV production observations are launched before sunrise, no recent data are available, which
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Figure 5.22 – Forecasting accuracy of the RF model fed with different sources of ST information.
The ST version of the AR model is displayed for comparison purposes.

obliges the model to propose generic values learnt during its training. This explains the
clear-sky profile observed at the beginning of the day in the forecast example displayed in
Figure 5.23.

To improve forecasting accuracy for the early morning at least two strategies are conceiv-
able: (1) considering NWPs, or (2) using nighttime observations of the cloud distribution.
The latter option is made possible thanks to the development of observational satellites with
infrared channels (which work day and night). In this regard, [114] provides a comprehen-
sive description of how this technology can be used to derive the nighttime cloud index from
the Spinning Enhanced Visible and InfraRed Imager (SEVIRI). In this section, we consider
opacity maps (defined in Section 2.4.2.2). Such data allow the computation of forecasts at
night so that they are available at sunrise (Figure 5.23).

In a context of operational forecasting, SDSI and opacity products are both generated
from space observations but differ in the way the information is processed and expressed.
Contrary to SDSI data, which are continuous variables, each pixel of opacity maps rep-
resents a categorical feature ranging from 0 (cloudless pixel) to 2 (pixel associated with
opaque cloud), which intuitively drastically reduces the amount of information carried by
the features.

?
Research Gap - Opacity maps compared with SDSI maps

Thus, it is legitimate to wonder to what extent the information car-
ried by both datasets is similar and whether one option prevails over
the other and should be preferred to reduce financial costs.
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Figure 5.23 – Observations and 3-hour ahead forecasts of PV production at PV2. Forecasts are
performed either with irradiance maps (i.e. daytime observations) or opacity maps (i.e. nighttime

and daytime observations).

Surprisingly, to the best of the author’s knowledge, only [114] and [104] consider infrared-
based satellite maps to improve forecasting accuracy in the early morning (both studies
propose CMV-based forecasting methods). Although PV production is very low during the
very first moments of dawn, we observe a significant production rise in the first hours. This
justifies developing research efforts to improve forecast accuracy, and all the more so as
power systems can be pressured due to a morning ramp in electricity demand. Based on
previous analysis performed on SDSI, we can stipulate that infrared satellite observations
could be beneficial to forecast accuracy up to 6 hours ahead. A reasonable explanation to
account for the under-representation of this type of input in the literature is that NWPs
could represent a more interesting option. This leads us to the following research gap:

?
Research Gap - Opacity maps compared with NWPs

What is the value of opacity map observations compared with NWPs
of GHI for early morning forecasts?

5.4.2 Forecast accuracy

Based on previous results obtained with SDSI maps, we consider the RF model as
the regression model and employ the mRMR feature selection process to extract relevant
features from opacity maps. This approach is chosen for its easy implementation. The
cloud-to-irradiance modelling is implicitly performed by the regression model.

A quantification of the forecast accuracy for the complete dataset 4 considering SDSI
and opacity maps is displayed in Figure 5.24. We observe that in general the use of opacity-

4. In the sense that forecasts run during nighttime and daytime are analysed together.
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based information improves forecast accuracy w.r.t. SDSI-based forecasts for all the horizons
greater than 2 hours ahead, but provides rather similar nRMSE and nMAE scores for lower
horizons. In addition, the information conveyed by the two types of input is complemen-
tary; proof of this is the improved performances obtained when considering both inputs
simultaneously. The lowest normalised Mean Bias Error (nMBE) scores are achieved with
models fed with opacity features.

Figure 5.24 – Forecasting scores of the RF model fed with SDSI and/or opacity maps. Spatial
information is preprocessed with the mRMR feature selection approach. Performances of models
already analysed in previous figures (e.g. RF + SDSI(t)) may differ from performances observed

here because of a change in the testing set due to the opacity maps’ availability (Figure 2.9).

This graph demonstrates the added value of opacity inputs but it prevents distinguishing
the respective impact of nighttime and ST information. To assess the influence of opacity
maps over forecasting accuracy in detail, we compare two types of forecast: (1) forecasts
generated during the night (i.e. relevant information is carried exclusively by opacity fea-
tures and/or NWPs, while the latest irradiance-based observations are equal to zero), and
(2) forecasts produced during the daytime (i.e. when the SDSI and/or the PV production
observations have an impact on forecasting). On the one hand, Figure 5.25 shows that
nighttime-generated forecasts clearly benefit from opacity features: improvement can reach
more than 20% and 30% in terms of nRMSE and nMAE respectively compared to forecasts
performed with irradiance-based information. We draw the reader’s attention to the fact
that the scores of the RF + Opacity(t) and RF + SDSI(t) + Opacity(t) models slightly
differ because the addition of SDSI-based features alters the partitioning process performed
by the RF model. On the other hand, when considering daytime forecasts, we observe that
the impact of ST information conveyed by infrared observations on forecasting scores is am-
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biguous. For very short-term horizons, the latter outperforms SDSI-based forecasts, while
beyond the 1-hour ahead horizon, we observe a decrease in the forecast skill (the right-hand
graph in Figure 5.25). This phenomenon may be explained, to some extent, by the lim-
ited number of classes used to encode opacity map pixels. However, as observed previously
in Figure 5.24, both inputs carry diversified ST information, which is highlighted by the
performance improvement resulting from the combination of inputs.

Figure 5.25 – Forecasting skill scores achieved with forecasts generated during nighttime and
daytime w.r.t. the RF model fed with SDSI features.

�

Research Answer - Opacity maps compared with SDSI maps

For daytime-issued forecasts, infrared-derived information proves to
be relevant for very short-term horizons (i.e. from 15-min to 45-min).
Beyond that, models fitted with this kind of input are outperformed
by the same models fed with SDSI features by around 2% and 3%
in terms of nRMSE and nMAE respectively. The highest forecasting
performances are achieved with models trained on both inputs. In
this case, we observed an improvement of around 1% compared with
forecasts derived solely from irradiance information.

Figure 5.26 represents the forecast accuracy obtained with the complete dataset consid-
ering the GHI from the NWPs model and/or opacity map-derived observations. It shows
that for the first horizons (up to +105 min), the forecasting performances achieved with
opacity features (the RF + Opacity(t) model) are higher than those obtained with NWPs
(the RF + GHI(t+h) model) in terms of nRMSE and nMAE. Beyond these forecast hori-
zons, the GHI-based approach clearly prevails. For the 6-hour ahead horizon, the nRMSE
scores achieved by the RF model fit on NWPs are around twice as good than those ob-
served with opacity information w.r.t. an RF model only fitted on past PV production.
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These high scores for high horizons result from two factors illustrated in Figure 5.27: (1)
better forecasts for the early morning, and (2) accurate GHI predictions. For this kind of
horizon, such results are consistent with the nature of the inputs: as the forecast horizon gets
higher, the information carried by NWPs prevails over observations. We also observe that
irradiance predictions and opacity features are complementary, and their combination gets
the best from both approaches. In that regard, forecasts achieved with this last approach
demonstrate the lowest bias.

Figure 5.26 – Forecasting scores of the RF models fed with GHI forecasts and/or opacity-based
features. Spatial information is preprocessed with the mRMR feature selection approach. We draw
the reader’s attention to the fact that performances observed in this graph are hardly comparable
with figures from other sections because of a change in the testing set due to the opacity maps’

availability (Figure 2.9).

If we focus on forecasts generated during the night for the early morning, we observe in
Figure 5.27 that most accurate forecasts are provided by models based on NWPs indepen-
dently of the considered horizon. Conclusions derived for daytime generated forecasts are
similar to those obtained with the complete dataset.

�

Research Answer - Opacity maps compared with NWPs

Thus, the added value provided previously by opacity information
with respect to SDSI for nighttime-generated forecasts is eclipsed by
numerical predictions of GHI (Figure 5.27). However, opacity maps
still offer a clear advantage for very short-term forecasts generated
during the daytime.

Therefore, considered separately, opacity data offer a clear advantage over SDSI obser-
vations for nighttime-generated forecasts. Yet, better performances are reached for the early
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Figure 5.27 – Forecasting skill scores achieved with forecasts generated during nighttime and
daytime w.r.t. RF models fed with past PV production observations.

morning when considering NWPs of GHI compared to opacity maps. In this respect, NWPs
should be preferred. The ST nature of opacity maps improves daytime generated fore-
casts, but their informative potential is slightly lower than that of SDSI maps for horizons
greater than 1-hour ahead. Thus, opacity maps appear as a variable able to compete with
SDSI and NWPs features, but the aforementioned results highlight that it cannot replace
them. Quite the contrary, we have shown that these sources of information are comple-
mentary and, when used together, they can improve forecasting accuracy. In that regard,
Figure 5.26 demonstrates that the simultaneous integration of opacity and SDSI maps and
GHI predictions provides the minimum nRMSE and nMAE scores, but that this gain is
made at the cost of a slight degradation in the bias. Therefore, this proves the scientific
interest of infrared-derived observations for the short-term prediction of PV power.

5.5 Conclusions

In this chapter, three sources of ST information have been investigated.
The integration of spatially distributed observations from nearby power plants exhibits

accuracy improvements similar to what can be observed in the literature compared to a
purely temporal approach. To reduce fitting time and overfitting issues, a time decorrelation
distance is used to restrict the number of lags of ST features.

Limitations inherent to the spatial distribution and density of the power plant network
under study lead us to consider SDSI. The most important impediment with this source of
data is dealing with the problem of dimensionality and the associated intense computational
costs. In this chapter, three dimensionality reduction methods have been investigated. The
findings show that a nonlinear model such as RF is able to extract most of the relevant
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information for the first hour-ahead horizons through a subset of a carefully selected set
of features. To reach similar accuracy, a linear model needs to rely on a DNN structure
to preprocess the information contained in the SDSI maps. Comparisons between SDU-
and satellite-based forecasts highlight that the information contained in satellite-derived
datasets is much richer despite a coarser spatial resolution. However, a combination of both
sources of information can positively impact very short-term horizons.

Lastly, from a perspective of widening the range of available sources of spatial infor-
mation, infrared-derived maps are studied. The findings show that their spatio-temporal
informative value is somewhat limited compared to SDSI maps: for lead times higher than
45-min, satellite-based irradiance information prevails. In addition, despite a significant
impact on the accuracy of nighttime-generated forecasts, the use of irradiance predictions
achieves higher performances. However, a combination of the three datasets (i.e. SDSI,
opacity maps, and NWPs) improves the RMSE and nMAE scores.

5.6 Résumé en Français

Avec le développement des sources d’énergies renouvelables, de nouvelles installations
PV fleurissement un peu partout dans le monde. Cette expansion, couplée aux améliora-
tions des moyens de télécommunication et des technologies de mesure, conduit à un nou-
veau paradigme centré sur les données spatio-temporelles. Les modèles qui en sont dérivés
permettent de mettre à profit les dépendances pouvant exister entre des observations tem-
porelles spatialement distribuées. Cette nouvelle classe de modèle de prévision permet, pour
un producteur, de valoriser les mesures de production de son réseau de centrales sous forme
d’une amélioration de la précision des prévisions. Ce paradigme ouvre également la voie à
un futur marché d’échange de données.

Observations de production spatialement distribuées

Dans ce chapitre, nous considérons un réseau de neuf centrales réparties majoritairement
le long du Rhône. La distance inter-sites varie de quelques kilomètres à plus d’une centaine
de kilomètres. Dans ces conditions, on imagine aisément que l’information relevée au niveau
des sites les plus éloignés aura peu ou pas d’influence sur les performances prédictives.
Ainsi, deux critères permettant de réduire le nombre de variables spatiales et temporelles
sont considérés : (1) une distance seuil au-delà de laquelle les sites les plus éloignés ne sont
pas considérés, et (2) un temps de propagation de l’information ST fini conduisant à un
nombre de retards parcimonieux. Une étude préliminaire effectuée à la Section 4.4.2.5 du
précédent chapitre met en avant l’inadéquation entre le régime de vent dominant auquel
sont assujettis les différents sites et leur distribution spatiale. Pour y remédier, nous nous
tournons vers une source de données plus flexible.
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Estimations de l’irradiance au sol par observation satellitaire

Contrairement aux réseaux de centrales de production, les observations d’origine satelli-
taire permettent de couvrir uniformément une zone géographique large avec une résolution
spatiale de l’ordre de quelques kilomètres. L’augmentation du nombre de variables (e.g. une
image avec un rayon de 100km est constituée de 900 variables) conduit à des problématiques
d’augmentation du temps de calcul et de surapprentissage des modèles. Pour y remédier,
trois approches de réduction de la dimensionalité sont analysées et comparées.

La première consiste à sélectionner un nombre prédéfini de variables. Typiquement dans
la littérature nous trouvons des approches basées sur la maximisation d’un critère de cor-
rélation (e.g. le coefficient de Pearson) par rapport à la variable cible, qui dans notre cas
est la production PV à l’instant t + h. Néanmoins, nous mettons en évidence que ce type
d’approche est loin d’être optimal dans la mesure où elle a tendance à sélectionner une
information redondante caractérisée par une proximité spatiale des pixels sélectionnés. Pour
remédier à cette lacune, nous considérons un autre schéma de sélection basé sur la mini-
misation de la redondance et la maximisation de la pertinence de l’information. A notre
connaissance, cette approche n’a jamais été appliquée dans le domaine de la prévision de
la production PV. L’utilisation de cette méthode permet la sélection de pixels spatiale-
ment distribués autour du site PV et conduit à une légère amélioration des performances
prédictives.

Ensuite, nous avons considéré une analyse en composantes principales visant à réduire
la dimension des données avant de nous tourner vers une approche basée sur un réseau
neuronal convolutionnel dont l’objectif est de prédire l’irradiance au niveau du site PV à
partir des dernières images satellite.

Une comparaison des différentes approches selon les deux modèles de régression consi-
dérés met en évidence que le modèle linéaire atteint de meilleures performances lorsqu’il est
alimenté avec des prévisions de l’irradiance obtenues via le réseau convolutionnel. Le modèle
non-linéaire, au contraire, est moins sensible au modèle de prétraitement utilisé. Enfin, nous
démontrons que la précision des prévisions est meilleure en considérant des données satellite
plutôt que des observations issues du réseau de centrale PV. Selon toute vraisemblance, ces
conclusions sont spécifiques à notre cas d’étude et sont le fait de sa distribution monotone.

Images d’opacité obtenues par canaux infrarouges

Enfin, dans une optique d’élargissement du spectre des données disponibles, la troisième
et dernière partie de ce chapitre s’intéresse aux images d’opacité issues des canaux infra-
rouges des satellites. Ces données permettent d’accéder à la couverture nuageuse pendant la
nuit et constituent donc une source d’information des plus pertinentes pour la génération de
prévisions pour le petit matin. A notre connaissance, ce type de données est sous-représenté
dans la littérature : uniquement deux références littéraires les utilisent ([104, 114]).

Dans un premier temps, nous confrontons les images d’opacité aux images d’irradiance.
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Nous montrons que naturellement les images d’opacité ont un impact significatif pour les
prévisions réalisées pendant la nuit (i.e. en l’absence d’observations récentes de l’irradiance
ou de la production). Par contre, lorsque le modèle de prévision est lancé pendant la journée,
le recours aux estimations de l’irradiance offre de meilleures performances pour des horizons
au-delà d’une heure (nous observons des améliorations de l’ordre de 2%/3% en termes de
nRMSE/nMAE).

Dans un second temps, les données d’opacités sont analysées vis-à-vis des prévisions
numériques de l’irradiance. Dans ce cas, l’avantage des cartes d’opacité concernant les pré-
visions générées pendant la nuit est éclipsé par les prévisions de l’irradiance, celles-ci main-
tiennent néanmoins une influence notable pour les premiers horizons de prévision. Dans les
deux cas, les meilleures performances sont atteintes en considérant simultanément les deux
types de données, ce qui souligne la complémentarité des images d’opacité, d’irradiance et
des prévisions numériques.
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Chapter 6

Conditioned Learning

In the spring I have counted one hundred and thirty-six different
kinds of weather inside of four and twenty hours.

Mark Twain (1876)
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6.1. Introduction

6.1 Introduction

The previous chapter investigates the use of spatially distributed observations as a means
to improve short-term forecasting accuracy. The model parameters are derived during the
training step and used unchanged during the testing phase. Therefore, the model fitting
mainly reflects the predominant situations encountered during its training stage. In an
Spatio-temporal (ST) context, such an approach can be detrimental inasmuch as relevant
spatially distributed features are not selected appropriately (e.g. in the case of a situation
with adverse winds, only features in line with the prevailing winds are considered). To
tackle this issue, we explore a dynamic modelling approach (i.e. which updates the model
parameters), instead of models with fixed parameters. In this paradigm, rather than train-
ing models on the complete dataset, models are trained on a batch of data sharing common
characteristics with the situation to predict. This leads to adaptive models. Special atten-
tion should be paid to have sufficient data to fit the models. So far, we have explored several
options to improve or to diversify the information supplied to the regression models (e.g.
clear-sky normalisation, use of satellite-derived observations). In this chapter, the main ob-
jective is to derive the mathematical foundations of a generic methodology to dynamically
update model parameters.

The general workflow of this chapter is displayed in Figure 6.1.

6.2 Integration of information within forecasting models

6.2.1 Integration of weather information

Photovoltaic (PV) generation depends on a number of meteorological variables such as
irradiance, cloud cover, airflow motion, ambient temperature and even air humidity. The
combinations and interactions of these variables lead to a large range of weather states
associated with significant varied dynamics. For this reason, Numerical Weather Predic-
tions (NWPs) provide valuable information to Photovoltaic Production Forecasting (PVPF)
models on the expected atmospheric state and how it will influence PV production. The
predicted weather information can be integrated in the PVPF modelling chain in two dif-
ferent ways: either explicitly (i.e. with additional explanatory features) and/or implicitly
(i.e. as state variables), which makes it possible local modelling.

6.2.1.1 Explicit integration

The most straightforward method considers NWPs as additional explanatory features
in the PVPF model (i.e. data are added linearly to the model). Only one model is fitted
for a large range of weather situations thanks to the atmosphere dynamics explicitly carried
by NWPs. This is a computationally inexpensive and easy way to include this type of
information in PVPF models. Several references in the literature (e.g. [55, 61]) highlight
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Figure 6.1 – General workflow of the chapter.

that the use of NWPs as regressor features improves short-term forecasting performances in
comparison with models fitted only with past production observations. The integration of
NWPs as inputs is beneficial as they inform on the tendency of future weather conditions.

6.2.1.2 Implicit integration

The alternative paradigm is to consider the weather information as a state variable.
Then, it acts as a kind of classification tool that gathers PV production data observed
under similar atmospheric states. The assumption behind this approach is that similar PV
production dynamics are observed under similar weather dynamics. From a mathematical
point of view, weather information is included in a nonlinear way to perform local regression
(i.e. the model is trained on a data subset that shares similar weather characteristics with the
expected weather situation). To this end, a similarity metric must be defined to measure the
likeness between two meteorological states. This approach provides a set of expert models
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dedicated to specific atmospheric states and is adaptive in the sense that the training of
the model is conditioned to the weather situation. Therefore, the atmosphere dynamics are
implicitly carried by the PV production observations. It can be implemented in two ways:
1) either through a regime-switching model approach [64, 65, 255, 263], where each model
is dedicated to a specific weather type (e.g. sunny or cloudy situations) or even through
binning of weather variables [62], or 2) by taking a dynamic approach, where the model
parameters are updated regularly [61, 66, 72].

The first option defines several pools containing situations with similar weather patterns;
therefore, it can be viewed as a clustering-based algorithm. This classification can be based
on weather types (e.g. sunny, cloudy, foggy, rainy) [64, 65] or on the binning of weather vari-
ables (e.g. [62] divides the learning set into eight groups depending on the wind direction).
For each cluster, a dedicated model is trained. To provide a PV production forecast, it is
necessary to determine the most representative cluster of the expected weather situation,
and then to apply the corresponding model. In an operational context, this approach is
relevant inasmuch as no model re-training is needed (a 98% reduction of the computational
time is observed w.r.t. the dynamic approach described hereinbelow. More information is
provided in Sections A and C.3), but forecasts may suffer from discontinuities (i.e. two
successive forecasts may be produced with two distinct models).

The other option, which is investigated throughout this chapter, consists in training
a new model for each situation based on the N most similar past situations. In a space
composed by the history of weather features, this approach searches the past situations
that are the closest to the situation defined by the predicted features at time t + h. In
that sense, this approach presents similarities to a k-Nearest Neighbours (kNN) algorithm.
The main drawback is the need to re-train the model for each new forecast, which can be
computationally expensive.

The literature proposes various terminologies to name these approaches: [62] proposes
regime-based models, [65] describes its approach as a weather status pattern recognition
model, while [264] bases its model on historical similarity. In an effort to unify these
different approaches, we introduce the terminology Weather-Conditioned (WHCO) to refer
to an approach, that operates a weather-based selection or classification in its learning
dataset.

In the literature, the WHCO approach is applied to a large range of forecast horizons:
from very short-term horizons [62], and short-term horizons [72], to day-ahead forecasting
[63, 66, 263]. In [67] the authors go even further by developing a seamless model (i.e. a
single model defined for several forecast horizons) which operates on a 5-min to 36-hour
ahead horizons range, while [113] forecasts PV production up to 72-hour ahead.

This strategy offers the possibility of conditioning several types of forecasting models,
such as Auto-Regressive with eXternal inputs (ARX) models [62], Artificial Neural Networks
(ANN) [63], and Support Vector Machines (SVM) [64, 65]. To provide statistical informa-
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tion regarding the uncertainty of the forecast, conditioning methods can be coupled with
probabilistic approaches. In [66], the authors propose a Quantile Random Forest (QRF)
model trained on the 30 most similar days, while [67] derives probability distributions by
applying a weighted kernel density estimation model on the most similar PV production
observations. It should be noted that [67] and [113] do not propose a WHCO approach as
defined in the body of this paper: they use PV production observed under similar weather
states to derive probabilistic laws, while here these data are fed into a regression model that
infers the statistical relationship between the inputs and output.

From a performance perspective, it is worth mentioning that WHCO models exhibit
greater forecasting skills than their counterparts trained on all past observations.

?

Research Gap - Comparison of integration modes

The literature highlights that the WHCO strategy outperforms fore-
casting models trained on all past production observations. Similar
conclusions are drawn when NWPs are considered as explanatory
features. However, to the best of the authors’ knowledge, no com-
parison has been performed to determine which approach provides
the best forecasting performances. Therefore, which strategy leads
to the most accurate forecasts?

?

Research Gap - Probabilistic forecasts

The WHCO strategy allows us to train forecasting models on data
subsets that share similar characteristics, namely production ob-
served under similar weather states. In a way, this approach reduces
the variability within the batch of datasets by focusing on obser-
vations that matter. Thus, in a probabilistic paradigm, can WHCO
improve forecast attributes such as its reliability a, and if so, its sharp-
ness b?

a. Reliability assesses the statistical consistency between each class of forecasts
and the corresponding distribution of observations.

b. Sharpness evaluates the concentration of the predictive distributions.

6.2.2 Integration of spatio-temporal information

In a similar way, ST information can be integrated in a PVPF model as either explana-
tory or state features.

On the one hand, the first option is the most common approach and can be based on
several sources of ST information: [57, 58] use the PV production measurements of spatially
distributed units, [55, 72] consider a selection of pixels derived from satellite imagery, while
[56] fits solar forecasting models on observations from nearby irradiance sensors.
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On the other hand, to the best of the authors’ knowledge, only [67] considers ST in-
formation (namely Satellite Derived Surface Irradiance (SDSI) features) as state variables.
This study considers variables from NWPs, in situ measurements, clear-sky profiles, and
SDSI observations to identify situations with similar PV production dynamics. It is worth
mentioning that in the scope of the paper, ST information is a means to improve the degree
of similarity between analog situations.

In the context of WHCO, spot NWPs data are usually used (e.g. weather parameters
predicted at the nearest grid point of the plant’s location). Such data allow us to work
with few inputs that mainly reflect the temporal evolution of local weather conditions with-
out providing information regarding their spatial characteristics (e.g. cloud distribution).
As a result, it seems difficult for the WHCO strategy to efficiently take advantage of ST
information. To fill this gap, [62] considers a WHCO approach based on wind direction
forecasts to select relevant ST information used as explanatory features. The authors pro-
pose a solar forecasting model for 10-second ahead conditioned by the wind features and fed
with spatially distributed irradiance observations and past measurements at the location of
interest. This study highlights that ST forecasting models benefit from a WHCO approach
based on features related to cloud motions. Indeed, wind-conditioned forecasting models are
able to select geographically distributed sensors in line with the cloud displacement, while
un-conditioned models only select sensors in the direction of the most dominant winds.

?

Research Gap - Gridded data

The approach proposed in [62] is valid if the cloud motion remains
linear, which can be assumed for very short lead times but can be
contested for higher periods of time and high spatial scales. In the
context of precipitation forecasting, large-scale circulation patterns
represented by geopotential fields, namely gridded NWPs (i.e. two-
dimensional data), are used as state variables [68] owing to their
proven influence over cloud generation. Inasmuch as we can derive
pressure gradients that drive air flow from high- to low-pressure re-
gions from these fields, we can wonder whether they could be used
to provide a set of observations sharing temporal and spatial con-
sistency. In other words, can geopotential fields be used to derive
sets of PV production measurements observed under weather situa-
tions that evolve likely both in time and space in order to improve
forecasting performances of the model based on SDSI information?

To the best of the authors’ knowledge, geopotential fields are mainly used in the me-
teorological forecasting field, with very few articles at the junction with the Renewable
Energy Sources (RES) forecasting field. For instance, in [265], the authors developed a
post-processing method that produces a regime-based confidence interval of point Global
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Horizontal Irradiance (GHI) forecasts. Synoptic scale geostrophic wind 1 forecasts are used
to characterise the likeness of a given local weather states (e.g. in the considered case study,
the clear-sky GHI forecasts associated with easterly geostrophic flow are more likely to be
accurate as cloudy conditions are unlikely). More recently, in connection with the wind gen-
eration domain, [266] proposes a probabilistic forecasting model of the daily surface wind
speed distribution from the geopotential field at 500 hPa at timescales ranging from 15-days
to 3-months. It is worth mentioning that in addition to providing relevant information at
the local scale, NWPs of features related to large-scale circulation of the atmosphere are
more accurate than NWPs of local features such as GHI or wind.

6.3 Proposed architecture for model conditioning

To fulfil the above-mentioned objectives, we need to characterise the interactions that
exist between (i) the different ways of integrating weather information, (ii) the state features
dimensionality (i.e. spot- or gridded-features), (iii) the nature of explanatory features (i.e.
temporal or ST), and (iv) the model family considered (i.e. linear or nonlinear regression
models).

To do so, a modular architecture allowing the inhibition or the activation of some specific
mechanisms occurring in the forecasting chain is proposed. It is composed of four main
building elements (Figure 6.2): (1) the WHCO block, (2) the forecasting block, (3) the state
variables block, and (4) the explanatory features block. This architecture may be seen as a
generic data-driven forecasting model enhanced by a physics-based conditioning approach,
which enables the model to perform local regression with respect to the atmospheric state.

6.3.1 Weather state conditioning

6.3.1.1 The meteorologist’s perspective

In the meteorology field, the analogy principle stipulates that similar weather states can
be observed throughout time. Perfect similarity is hardly attainable due to the atmospheric
variability, but similar situations can be found when considering large datasets and limited
geographical areas. This has led to the development of forecasting approaches derived from
Analog-based Method (AbM).

This set of methods can take many forms. For instance, such methods can be used as a
downscaling approach by assuming that similar large-scale phenomena induce similar local-
scale phenomena. In the precipitation forecasting field, AbM are used to derive probabilistic
relations between large-scale variables (e.g. geopotential fields), named predictors, and local-
scale features (e.g. precipitation) denoted as predictands [267].

1. It is the theoretical atmospheric flow for which the Coriolis and pressure-gradient forces are in equi-
librium. This flow can be derived from geopotential height fields (Equation 8-9 in [265]).
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Figure 6.2 – Modular structure used to investigate the interaction between input integration
strategies, input types, and model families.

In the present study, we assume that similar atmospheric states (i.e. predictor) lead to
similar PV production dynamics (i.e. predictand). Thanks to the analogy principle, we can
select a subset of past weather states similar to the future atmospheric situation. Instead of
using the associated PV production observations subset to derive an estimation of the future
production (this is performed in [67, 113]), here a dedicated forecasting model establishes
the statistical relationship that exists between this subset and the associated explanatory
features. This leads to weather-based expert regression models. Figure 6.3 illustrates how
the AbM is used throughout this study. The modelling steps shown in the figure are as
follows:

0. First, we build three datasets:

(a) The candidate archive that contains weather forecasts,

(b) The response archive that gathers the PV production observations,

(c) The explanatory archive that represents the explanatory features dataset.

1. A score of analogy, D (defined by Equation 6.2), measures the similarity between the
target meteorological situation at time t+ h with past forecasts at lead time +h from
the candidate situations archive, and ranks them. The N most similar meteorological
situations form the analog situations subset.

2. The N associated PV production observations at lead-time +h are selected as well as
the corresponding observations from the explanatory archive.

3. The selected elements from the response and explanatory archives are used to train a
forecasting model, while last observations of the explanatory features at time t enable
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the generation of PV production forecast at time t+ h.

Figure 6.3 – Schematic representation of the training of the analog-based approach, inspired from
[268, 269].

6.3.1.2 Local regression

From a mathematical point of view, WHCO may be assimilated to a local regression
approach [270]. Instead of fitting a regression model, denoted as root model, globally on the
whole dataset of available observations T , the fitting is performed locally on a subset TN
(Equation 6.1). This subset gathers N observations associated with the neighbourhood of
the focal point Zt+h, namely the forecast of weather parameters. Attention is drawn to the
fact that the fitting neighbourhood is defined within the state space (i.e. space containing
state features, Zt+h), while the model fitting is performed with explanatory features, Xt.
This operation is repeated for all of the fitting points of the testing set in a rolling manner.
We then obtain a dynamic architecture suited for online forecasting by updating the model
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parameters regularly.

ŷt+h|t = froot (Xt, β(Zt+h)) + ϵt+h|t. (6.1)

ŷt+h|t Response feature,
froot Root regression model employed for the mapping of Xt to yt+h,
Xt Vector of explanatory features,

Zt+h Vector of state features,
β(Zt+h) Vector of parameters to be estimated,
ϵt+h|t Error term from sources not considered.

?

Research Gap - Weather conditioning and model family

As shown in Section 6.2.1, the WHCO concept is already present
in the literature and is applied to a wide range of forecasting mod-
els. Since the WHCO strategy can be viewed as a means to include
nonlinear capabilities, what is its influence over linear and nonlinear
models?

Equation (6.2) [113] presents the distance metric, D, used to measure the degree of
similarity between the different observations of the state space, and to rank them according
to their degree of likeness with the focal point. Lastly, only the M closest elements are
kept (Equation (6.3)). This score outperforms the traditional Euclidean distance thanks
to the term under the square root, which takes into account the temporal evolution of the
features. Thus, this approach retains weather situations that are locally alike (e.g. same
irradiance level) and that evolve likely. In [113], the authors propose a grid search optimi-
sation procedure to determine the optimal set of weights ωAi , leading to the best forecasting
performances. At this stage, it is important to point out that the use of the analog situations
in our study differs from what is found in [67, 113]. In these studies, the Analog Ensemble
(AnEn) method derives non-parametric probabilistic forecasts from the distribution of past
PV production observations (e.g. in [67], the Probability Density Function (PDF) is gener-
ated from the analog situations through a Kernel Density Estimation (KDE)). Here, past
observations of the explanatory and response features are used to train parametric models.
In the present configuration, the grid search method is hardly conceivable due to the high
computation costs induced by the Random Forest (RF) model fitting. Thus, we presume
that the weights are uniform.

D(Zt+h, Zt′+h) =
NA∑︂
i=1

ωAi
σi

⌜⃓⃓⃓
⎷ ˜︁t∑︂
j=−˜︁t(zi,t+h+j − zi,t′+h+j)2. (6.2)
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t Moment when the forecast is generated,
h Lead-time of the forecast,
t′ Temporal observations from the learning set,
i Index referring to the analog predictors,
Z Vector of state features,
zi,t Element i of the state vector Z at time t,
NA Number of analog predictors,
ωAi Weight of analog predictors (∑︁NA

i=1 ω
A
i = 1),

σi Standard deviation of analog predictors,˜︁t Half-width of the time window over which the metric is computed (˜︁t = 1h00).

TN = {t′ ∈ T |D(Zt+h, Zt′+h) ≤ ϵNh }. (6.3)

ϵNh Threshold distance used to retain a pre-defined number, N , of analog situations.

For information purpose, [66] use the Kolmogorov–Smirnov (KS) statistic as a similarity
metric. This approach selects the 30 days that have the lowest KS distance between the
Empirical Distribution Function (EDF) of the irradiance forecast for the day to be predicted
and the EDF of the irradiance forecast for each day included in the database. This allows
us to select days with similar weather dynamics and to shorten computing times (i.e. the
same model is applied to all observations of the day).

6.3.1.3 Number of analog observations

In the literature, it is common practice to use a fixed number of analog situations to
reduce computational efforts. Yet, the number of observations needed to draw up a stable
statistical law is expected to vary depending on the variability of the weather situation, or
on the forecast lead time. In addition, a growing number of explanatory features and a few
analog-based observations can lead to overfitting issues.

We introduce a selection procedure that select the optimal number of analog situations
according to the forecast horizons, the site characteristics, the root model, and the number
of explanatory features. This set of optimal analog situations is obtained through a grid
search. The number of analogs associated with the forecasts that have the lowest normalised
Root Mean Square Error (nRMSE) score is selected. This optimisation process is performed
on the training dataset which is split into two subsets, one of which is dedicated to the model
training (80% of the learning set) while the other is used for validation purposes. To account
for seasonal effects, these two datasets are built in such a way that they contain the same
proportion of data from the four seasons.
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6.3.2 Forecasting models

The main element of this modelling chain is the root model which is employed to infer
the statistical relationship between the response variable and the explanatory features.

Auto Regressive Integrated Moving Average (ARIMA) models [79] constitute a family of
well-suited models to short-term PVPF [58, 61, 83]. Here, the ARX model (detailed in Sec-
tion 2.2.3) is considered as the linear root model of our modelling strategy (Equation 2.2).
The high number of available explanatory variables makes the model more complex and
can undermine its accuracy. To tackle this issue, the Least Absolute Shrinkage and Se-
lection Operator (LASSO) procedure [86] is implemented to perform feature selection and
regularisation (Equation 2.3).

froot
(︂
Xt, B

h
)︂

= βh0 + βhX⊺
t (6.4)

(βh0
ˆ , βĥ) = arg min

βh
0 ,β

h

⎛⎜⎝1
2

N∑︂
t=1

⎛⎝yt+h − βh0 −
P∑︂
j=1

βhj xt,j

⎞⎠2

+ λ
P∑︂
j=1

⃓⃓⃓
βhj

⃓⃓⃓⎞⎟⎠ (6.5)

froot Root regression model employed for the mapping of Xt to yt+h|t,
Xt Vector of explanatory features which may contain past production and satellite-

derived observations as well as NWPs model outputs,
Bh Vector of the model parameters to be estimated,

(βh0̂ , βĥ) Estimation of the regression coefficients,
yt+h PV production at time t+ h,
λ Hyper-parameter that determines the amount of shrinkage in the LASSO,

(N,P ) Number of observations and variables.

The second model considered is the RF model [91], which is a data-driven model able to
perform nonlinear mapping between a set of input and output features. It is an ensemble
learning method composed of several decision or regression trees grown in parallel, whose the
outputs are averaged (Equation 2.4). Today, RF is one of the mainstream models employed
in the field of RES forecasting: as an example, a recent forecasting competition was won by
an architecture based on a QRF model [89]. More details are provided in Section 2.2.4.

ŷt+h|t = 1
T

T∑︂
j=1

fj(Xt) (6.6)

ŷt+h|t Estimation of the response variable,
fj jth regression tree.
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6.3.3 State variables

To select PV production data observed under similar weather patterns, it is necessary
to work with weather parameters that accurately account for the PV generation process.
Several approaches can be considered depending on the nature of the desired analogy. Spot
data can identify analog situations on one particular location that evolves likely, but this
data format does not guarantee that spatial patterns are preserved. We consider synoptic
features (i.e. gridded-NWPs model outputs) to identify situations that evolve likely both in
the temporal and spatial domains.

6.3.3.1 Spot analogy

The features considered are the following outputs of the NWPs model: Surface Solar
Radiation Downwards (SSRD), 2-m Temperature (T2M), and Total Cloud Cover (TCC) at
the site position. These features are often used in the PVPF-related literature inasmuch as
they directly affect PV production [113]. In addition, the solar azimuth and elevation angles
(αS and γS respectively) (Figure 3.2) are added for two reasons: (1) despite irradiance-based
explanatory features are normalised by clear-sky model outputs, [56] highlights that some
periodical effects are still present in the normalised outputs; and (2) in a context of WHCO,
these inputs enable us to implicitly take into account effects due to dawn (e.g. shading). In
the spot analogy context, the vector of state features is built as:

Z⊺
t+h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

SSRDt+h

T2Mt+h

TCCt+h

αSt+h

γSt+h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5,N)

(6.7)

6.3.3.2 Synoptic analogy

6.3.3.2.1 Geopotential fields To account for the spatial and temporal evolution of
the weather state in the PV farm’s surroundings we consider the geopotential fields, which
are synoptic scale features (i.e. scale of the order of 1, 000 km), as state features. Local
weather parameters are directly influenced by synoptic pressure fields, which leads to the
development of down-scaling techniques using AbM. These approaches assume that simi-
lar synoptic states lead to similar small-scales variables, which makes it possible to draw
statistical relations between each scale. Geopotential fields are commonly used to forecast
precipitation generation [68], and they demonstrate strong influence over wind direction.
From the geopotential fields, we can derive the pressure gradient that drives the air flow
from high- to low-pressure regions. Thus, geopotential fields are highly correlated with air
flow and cloud generation, which makes them suitable to condition PVPF. Moreover, NWPs
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models encounter some difficulty forecasting phenomena whose the governing processes oc-
cur at sub-grid scales, like explicit cloud formation, but turn out to be more reliable for
forecasting large-scale atmospheric fields.

6.3.3.2.2 Analogy score In the literature specialised in precipitation forecasting, the
score S1 (Equation 6.8) [271] is usually employed to compute the degree of likeness between
two situations when geopotential fields are considered. This metric is tailored for geopoten-
tial fields data: contrary to traditional analogy metrics which look for similarities point by
point, this score compares the distance between the gradients of the target and candidate
situations. This approach has been applied in the scope of PVPF in a previous study [72].
The main drawback of this score is to prevent the integration of additional state features.

S1 = 100
∑︁I−1
i=1

∑︁J
j=1

⃓⃓⃓
∆i,T
i,j − ∆i,C

i,j

⃓⃓⃓
+∑︁I

i=1
∑︁J−1
j=1

⃓⃓⃓
∆j,T
i,j − ∆j,C

i,j

⃓⃓⃓
∑︁I−1
i=1

∑︁J
j=1 max

(︂⃓⃓⃓
∆i,T
i,j

⃓⃓⃓
;
⃓⃓⃓
∆i,C
i,j

⃓⃓⃓)︂
+∑︁I

i=1
∑︁J−1
j=1 max

(︂⃓⃓⃓
∆j,T
i,j

⃓⃓⃓
;
⃓⃓⃓
∆j,C
i,j

⃓⃓⃓)︂
Where:

⎧⎪⎨⎪⎩∆i,X
i,j = V X

i+1,j − V X
i,j X ∈ {C, T}

∆j,X
i,j = V X

i,j+1 − V X
i,j

(6.8)

T Target situation (i.e. future state),
C Candidate situation (i.e. from past records),

∆i,X
i,j East-west geopotential gradient,

∆j,X
i,j North-south geopotential gradient,
Vi,j Geopotential field at grid node (i,j).

The alternative explored in this study consists in performing a Principal Component
Analysis (PCA) [252] to reduce the dimension of the state feature (methodology detailed in
Section 5.3.2.2), and then to inject the projected data on the NPCA∗ Principal Components
(PCs) into the analogy score D. Figure 6.4 shows a set of analog situations obtained with
this approach when considering a geopotential field at 925 hPa. We observe that figures (a),
(b), and (c) exhibit a north-south dipole configuration (i.e. a low-pressure area in the north
and a high-pressure area straddling central Europe). The degree of likeness between the
target situation and its 100th analog is somewhat low. This is due to the high spatial extent
of the analogy window and the low historical depth: only diurnal data from the training
set are considered. This graph supports the proposed methodology to identify weather
situations with similar spatial patterns.

A similar graph is proposed in Section C.1 that represents a set of analog situations
obtained with the S1 score and considering the same target situation. We observe that the
1th, and the 10th analog situations are also very similar to the target situation. The main
difference between Figure 6.4 and Figure C.1 is that the 100th analog situation (Figure C.1d)
obtained with the S1 score visually possesses a higher degree of similarity with the target
than the 100th analog situation obtained with the coupling of the PCA approach and the
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analogy score D (Figure 6.4d). This may be explained by the fact that the last approach
integrates solar angles as additional state features while the S1 score is fed solely with the
geopotential field.

(a) Target situation (b) 1st analog situation

(c) 10th analog situation (d) 100th analog situation

Figure 6.4 – Examples of analog situations (b), (c), (d) with regard to the target situation (a)
obtained with the 925 hPa geopotential field by combining the PCA-based feature reduction

approach and the analogy score D.

Thereafter, to enable a fair comparison with the spot conditioning, we also integrate the
solar azimuth and elevation angles as a proxy of time. The resulting vector of state features
is:
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Z⊺
t+h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PC1,t+h
...

PCNP CA∗,t+h

αSt+h

γSt+h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(NP CA∗+2,N)

(6.9)

6.3.3.2.3 Choice of the pressure level and grid domain PV generation is affected
by various types of clouds evolving at different pressure levels. It is therefore important to
pay special attention to the geopotential field considered. Geopotential fields at pressure
levels of 500 hPa and 925 hPa are known to contain essential information about the dynamic
and thermodynamic physical processes behind precipitation generation and distribution
[272]. As geopotential fields are 2-dimensional features, it is also essential to demarcate the
spatial range of valuable information.

Thus, a sensitivity analysis is carried out on the pressure levels of geopotential fields
(500 hPa and 925 hPa) and three spatial windows centred on the Rhone Valley (Figure 6.5).
We considered the Auto-Regressive (AR) model to assess the forecasting performances and
the nRMSE and normalised Mean Absolute Error (nMAE) scores. This analysis highlighted
that the best forecasting performances are reached with the 925 hPa pressure level and the
spatial window (c) (Appendix C.2).

(a) Window 1. (b) Window 2. (c) Window 3.

Figure 6.5 – Grid domains used for analog research, (a): {N : 55◦,W : −5◦, S : 35◦, E : 15◦},
(b):{N : 50◦,W : 0◦, S : 40◦, E : 10◦}, (c):{N : 47.5◦,W : 2.5◦, S : 42.5◦, E : 7, 5◦}.

6.3.4 Explanatory variables

The root models in Equation 6.1 are fed with two kinds of explanatory variables: ei-
ther endogenous inputs (i.e. PV production) and/or exogenous inputs (i.e. spot NWPs
and SDSI). Within the scope of short-term PVPF, endogenous inputs are essential, and
consequently they are systematically integrated. In a next step, spot NWPs and SDSI fea-
tures are considered individually or together to assess their influence on forecasting skills.
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Equation (6.10) represents the regressor vector which contains all available inputs.

X⊺
t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pt−L:t

SDSI1:NSDSI

t−L:t

SSRDt+h

T2Mt+h

TCCt+h

αSt+h

γSt+h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
((L+1)·(NSDSI+1)+5,1)

(6.10)

Pt−L:t Last observations of PV production from lag t− L,
NSDSI Number of satellite pixels determined with the minimal-Redundancy-Maximal-

Relevance (mRMR) selection algorithm,
SSRD Surface solar radiation downwards at site position,
T2M 2-m temperature at site position,
TCC Total cloud cover at site position,
γS The Sun’s elevation angle at site position,
αS Solar azimuth angle at site position.

In Section 5.3.3, we perform a comparison between three information extraction methods
from satellite-based maps. They reveal that in the case of the ARX model, the pre-processing
of the ST information through a Convolutional Neural Networks (CNN) architecture leads
to the best accuracy. Here however, the WHCO approach is coupled with the mRMR
feature selection algorithm to investigate the potential benefits of their combined use. The
mRMR algorithm is run on the whole training dataset to select a fixed subset of NSDSI

features according to the forecast horizon h. As shown in Section 5.3.2.1.2, this procedure
tends to select SDSI features in every direction. In Chapter 5, the models are trained on
the whole training set which promotes predominant wind regimes in specific directions. In
this chapter, quite the contrary, the root model parameters are updated regularly using the
WHCO approach. This makes it possible to take into account the different wind regime
distributions that the plant experiences over time, and it is expected to value the spatial
distribution of SDSI features.

6.3.5 NWPs model outputs

6.3.5.1 Temporal granularity

The explanatory variables and the PV power forecast outputs have a 15-min granularity,
while the state variables consist in hourly predictions. Instead of performing expensive
temporal interpolations of the state variables at a 15-min time-step, we assume that the
atmospheric state remains constant from time t− 00h15 to time t+ 00h30. Thus, when two
situations, t1 and t2, are considered to be similar, the situations ranging from t1 − 00h15
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to t1 + 00h30 and the situations ranging from t2 − 00h15 to t2 + 00h30 are also considered
alike.

6.3.5.2 Runs of NWPs model

NWPs models are computed several times a day. These sets of forecasts are named runs.
Depending on the lead time, several predictions can be issued for the same time according
to the NWPs run considered (e.g. predictions for time 13:00:00 UTC can be provided by
the runs of 00:00:00 UTC and 12:00:00 UTC on the same day). As a result, two approaches
are considered according to the weather information integration strategy.

First, we may consider that each run has distinctive features: the number and position
of initial observations used to initialise the numerical model vary according to its launching
time, which may impact the quality of the forecasts. Therefore, when NWPs are considered
as state features, it is relevant to compare predictions with similar errors. To do so, we
consider runs delivered at the same time of the day when looking for analog situations.

Alternatively, we may focus on the fact that forecasting precision tends to decrease as the
lead time increases. Thus, when NWPs are considered as explanatory variables, predictions
from the most recent run are considered.

6.3.6 Considered architectures and terminology

To assist the reader in understanding the configurations assessed, Figure 6.6 gathers
model denominations as well as block diagrams representing the model architectures:

• Model ∈ {AR,RF}. The AR and RF models are investigated.

• X1, X2 ∈ {∅, NWPs, SDSI}. Forecasting models can be fed with PV production
observations and spot NWPs and/or neighbouring satellite pixels obtained by the
mRMR-based method detailed in Section 5.3.2.1.2.

• Z ∈ {Spot,Gridded}. PV production forecasts are conditioned either with spot- or
gridded-NWPs (they are denoted respectively as local and synoptic WHCO).

Figure 6.6 – Models designation and corresponding structures. CAR and CRF terminologies stand
for Conditioned-AR and Conditioned-RF.
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6.4 Local weather information

6.4.1 Optimal number of analog situations

In this paragraph, we evaluate the grid search optimisation framework introduced in
Section 6.3.1.3. To do so, we compare the forecasting performances of the CAR(local)+SDSI
model based either on a fixed number of similar weather situations or on the optimisation
framework. We choose a forecasting model fed with ST inputs to generate a configuration
with a high number of variables and to place ourselves in a situation prone to overfitting.
Figure 6.7 highlights that the optimisation framework improves forecasting performances
for very short-term horizons in comparison with the fixed analog number approach.

Figure 6.7 – Influence of the grid-search optimisation process on forecasting performances in
comparison with a model trained on a fixed number of analog situations. The grid-search algorithm

compares the performances of models trained with N = {200, 400, 800, . . . , 4000} analogs.

Figure 6.8 illustrates the variation of the optimal number of observations obtained with
the grid search algorithm according to the look-ahead time. We observe that the ST ap-
proach (i.e. CAR(local)+SDSI ) requires more observations during its training than its
temporal counterpart fed only with past production observations (i.e. CAR(local)). Thus,
a wider dataset (i.e. with more explanatory features) requires a deeper structure (i.e. with
more observations) to infer relevant statistical laws. Moreover, the figure shows that the
number of analog situations required during the learning phase decreases with the forecast-
ing horizon. This phenomenon may be explained by the fact that as the lead time increases,
the uncertainty regarding the future also increases which constrains the forecasting model
to focus on the most similar situations to derive relevant statistical laws.
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Figure 6.8 – Averaged number of analog situations determined by the optimisation framework for
the 9 PV farms under study in a temporal or an ST context.

6.4.2 Weather information integration in a linear model

6.4.2.1 Nonlinear dependent feature

The WHCO approach is a straightforward and efficient way to integrate explanatory
features that have a nonlinear relationship with the response variable in a linear model. To
illustrate this statement, we consider the integration of the azimuth angle, αS , in the ARX
model. Figure 6.9 shows that performances achieved by considering the azimuth angle as an
explanatory feature (i.e. the AR + Azimuth model) are outperformed by the state feature
integration mode (i.e. the CAR(Azimuth) model).

Figure 6.9 – Integration of the solar azimuth angle either as an additional explanatory feature or as
a state feature in an AR-based forecasting model.
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6.4.2.2 Two complementary approaches

Figure 6.10 represents the forecasting performances achieved by the ARX model fed with
the SSRD feature. The WHCO approach (i.e. the CAR(SSRD) model) performs poorly
compared to its counterpart (i.e. the AR+SSRD model). When the two integration modes
are simultaneously employed (i.e. the CAR(SSRD)+SSRD model), resulting performances
are the highest for both skill scores considered. Therefore, the extra-feature mode should be
preferred for features that have a linear dependence on the response variable. Yet, far from
being two opposed integration modes, the WHCO and the extra-features strategies assess
different kinds of information which can complement each another.

Figure 6.10 – Influence of the feature integration approach of the SSRD (i.e. as explanatory
feature, state feature or both) on forecasting performances.

�

Research Answer - Comparison of integration modes

In the case of a linear regression model, the WHCO approach makes
the best of features that have nonlinear dependencies on the response
variable in comparison with a straightforward integration as explana-
tory features. Nonetheless, features with a linear dependence provide
better performances when considered as explanatory features, but
higher scores can be reached when both modes are simultaneously
employed. These findings are valid for a linear model.
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6.4.3 Interaction between forecasting model families, sources of informa-
tion, and integration strategy of weather data

In this section, we compare the different forecasting architectures to determine the best
way of integrating data and obtaining optimal forecasting performances. Figure 6.11 and
Figure 6.12 gather the forecasting skill scores of the AR and RF models coupled with the past
PV production observations, and/or NWPs and/or SDSI observations. The conditioning of
these models on local NWPs is also evaluated.

Figure 6.11 – nRMSE skill scores with regard to the persistence model. Dark colours symbolise
forecasting models trained on the whole dataset, while light colours stand for WHCO models.

Columns represent the explanatory features, while rows indicate the lead time of the forecasts. The
number above the bars indicates the exact value of the improvement metric.
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Figure 6.12 – nMAE skill scores with regard to the persistence model. Dark colours symbolise
forecasting models trained on the whole dataset, while light colours stand for WHCO models.

Columns represent the explanatory features, while rows indicate the lead time of the forecasts. The
number above the bars indicates the exact value of the improvement metric.

6.4.3.1 PV production observations

When only PV production observations are available 2, the nonlinear model turns out
to be more accurate than the linear model, both in terms of nRMSE and nMAE. This
observation is valid for all of the forecast horizons under study.

6.4.3.2 PV production observations + SDSI

In an ST context , the RF+SDSI model outperforms the AR+SDSI model for all con-
sidered horizons and metrics. A comparison of the skill scores between temporal-based
forecasts (i.e. the AR and RF models) and ST-based predictions (i.e. the AR+SDSI and
RF+SDSI models) highlights that the nonlinear model is able to extract more information

2. In this case, we do not consider the CAR(local) and CRF(local) models which require NWPs data to
perform weather conditioning.
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from ST data sources than the linear model. For instance, for a 1-hour lead-time, ST infor-
mation improves the nRMSE score by 18.1 − 8.7 = 8.0% when considering the RF model,
while, we observe an increase of 10.1 − 5.0 = 3.7% with the ARX model.

6.4.3.3 PV production observations + NWPs

6.4.3.3.1 Explanatory features This approach explicitly considers the information
carried by the NWPs data. The AR+NWP model manages to extract relevant information
in such a way that it can improve nRMSE scores by up to 22.2% in comparison with the AR
model for 6-hour lead time. Accuracy improvement due to weather information increases
with lead time. Similar conclusions are drawn when comparing the RF+NWP model with
the RF model. Nevertheless, for all considered horizons, the RF+NWP model outperforms
its linear counterpart.

6.4.3.3.2 State features This approach considers the NWPs information as a way to
gather PV production measured under similar weather states. As a result, the dynamics
are directly carried by production observations. The CAR(NWP) model slightly performs
better than the CRF(NWP) model: on average, a performance increase by +1.64% and
+0.68% (in terms of nRMSE and nMAE) is observed in favour of the CAR(NWP) model.

To validate the quality of the different models, the residuals are checked for normally
distributed, and uncorrelated properties. Figure 6.13 represents the error distribution of
the Persistence, AR, CAR, RF and CRF models. First, the error distribution tends to get
wider for all models as the look-ahead time gets longer. Compared with other models, the
Persistence models tend to have centred and symmetrical distributions. On the other hand,
the WHCO process has ambiguous influence on the distribution of the forecast error. For
instance, the weather conditioning of the AR and RF models tends to reduce skewness of
errors obtained at short look-ahead times (i.e. h ≤ 180 min), while an opposite tendency is
observed for higher horizons. In addition, the distribution curves of the conditioned models
tend to be sharper (e.g. the standard deviation of the forecast error obtained with the
CAR(local) model is never greater than 10.08% of Pc, while the distribution of the AR
model error can reach 14.82% of Pc).

Figure 6.14 represents the Auto-Correlation Function (ACF) of the residuals obtained
with the Persistence, AR and RF models, as well as the weather conditioned AR and
RF models. For all of the models considered, we observe that as the forecast horizon
gets higher, so does the residuals correlation. For the 15-min ahead lead time, models
possess uncorrelated residuals except for the very first lag. On the contrary, for higher
horizons, there are patterns in the residuals: the auto-correlation values are significant for
a higher number of lags. Thus, this graph suggests that for these models there is still
information left in the residuals, and that better models exist. It is insightful to note
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Figure 6.13 – Distribution of normalised prediction errors (with bins representing 2.5% of the rated
power) at PV1 for the Persistence, AR, CAR(local), RF and CRF(local) models according to the
look-ahead times. Values in the upper-left corners represent the mean (m), standard deviation (s)

and skewness a (G) of the distributions. They are expressed in % of Pc.

a. Skewness is a measure of symmetry: a negative/positive value indicates that the mean of the data is
less/larger than the median, and the data distribution is left/right-skewed.

that, in general, the weather conditioning tends to slightly decrease the value of the auto-
correlation. For instance, at a 6-hour lead time, the ACF of the CRF(local) model displays a
more pronounced exponential decaying that the RF model. Thus in this situation, forecast
error at a specific time is less correlated to the previous forecasts errors. This may reflect
the adaptive capabilities of the model to deal with sudden weather changes.

6.4.3.3.3 Explanatory and/or state features In a next step, we focus on the best
way to integrate NWPs in a forecasting model. In the case of the linear model, the condition-
ing approach exhibits higher forecasting performances (i.e. the CAR(NWP) model is better
than the AR + NWP model for both metrics). Based on observations from Section 6.4.2,
this is assumed to result from a better integration of features that have a nonlinear correla-
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Figure 6.14 – ACF of the time series of errors for some selected horizons obtained with the
Persistence, AR and RF models as well as their WHCO forms. The difference between the
Clear-Sky Index (CSI) of the forecast and the CSI of the observation is analysed. PV1 is

considered. The red dashed lines represent the 95%-confidence bounds.

tion with the production. On the contrary, when dealing with nonlinear forecasting models,
it is better to include NWPs as explanatory features. Despite the improved performances
due to the conditioning approach, the CAR(NWP) model is outperformed by the RF+NWP
model.

It is possible to further improve the forecasting performance of the CAR(NWP)) model
by adding NWPs as extra features (which leads to the CAR(NWP)+NWP model). This
configuration leads to similar performances as those reached by the RF+NWP model (i.e.
on average, a 0.06% and −0.46% difference is observed between the CAR(NWP)+NWP and
RF+NWP models in terms of nRMSE and nMAE scores). In this respect, the integration
of NWPs as explanatory features in the CRF(NWP) model slightly decreases its forecasting
skills, possibly due to overfitting issues.

As a result, when dealing with production observations and NWPs, the best choice is
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either to consider nonlinear models fed with explanatory features or WHCO linear models
with weather-based explanatory features. In this regard, Figure 6.15 reveals that both
models generate forecasts with similar distribution (only the forecasts generated for the
3-hour lead time are represented, but similar conclusions are reached with other forecast
horizons): models tend to overestimate low-production levels. At this point, the choice of
the model results mainly from a computational cost and interpretability compromise.

(a) Forecasts obtained with CAR(local)+NWP
model.

(b) Forecasts obtained with RF+NWP model.

Figure 6.15 – Joint and marginal distributions of 3-hour ahead forecasts and production
observations at PV1. The contour lines represent the 2D kernel densities, while the red line is the

first bisector of the graph. Marginal plots constitute histograms of forecast and observed
production.

6.4.3.4 PV production observations + NWPs + SDSI

6.4.3.4.1 Forecasting performances When dealing with PV production, NWPs and
SDSI inputs, it is obvious that including these data as explanatory features in an AR model
leads to the worst performances both in terms of nRMSE and nMAE. Once again, the
WHCO approach improves significantly the forecasting performances of the linear model.
For instance, at a 15-min look-ahead time, the CAR(local)+SDSI model surpasses the
AR+NWP+SDSI model by 11.4−3.2 = 8.2% and 4.3−(−5.8) = 10.1% in terms of nRMSE
and nMAE. In addition, we observe that the nRMSE score of the CAR(local)+SDSI+NWP
model is slightly better than that of the CAR(local)+SDSI model.

Conditioning nonlinear models results in a decrease in performances compared to the
RF+NWP+SDSI model for both metrics.

To conclude, the CAR(local)+NWPs+SDSI model appears to be a good option inas-
much as it performs better on very short-term horizons and exhibits similar skill scores to
the RF+NWPs+SDSI model for high forecast horizons.
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6.4. Local weather information

Table 6.1 summarises the different findings regarding the choice of the optimal model
according to the inputs.

Inputs Best configuration

PV production RF
PV production+NWP CAR(NWP)+NWP / RF+NWP
PV production+SDSI RF+SDSI

PV production+NWP+SDSI CAR(NWP)+NWP+SDSI / RF+NWP+SDSI

Table 6.1 – Summary of the best model configuration (in terms of accuracy criteria) depending on
the type of input.

�

Research Answer - Weather conditioning and model family

On the one hand, the weather conditioning approach is well adapted
for linear model in the sense that it naturally improves its capabili-
ties, especially with features that have nonlinear dependencies on the
response variable. On the other hand, this approach seems redun-
dant with nonlinear models. In that case, it can induce performances
degradation for very short-term horizons compared to a direct inte-
gration of exogenous features. Due to its higher computation cost,
WHCO is not suitable for nonlinear models. These findings tend to
support that weather conditioning is not adapted to nonlinear mod-
els, therefore, it should be used carefully in the literature.

6.4.3.4.2 Model adaptability Figure 6.16 depicts the Feature Relative Importance
(FRI) of the satellite-based information obtained from the regression coefficients of the
CAR(local)+SDSI model and Equation 6.11. The right-hand graph highlights the annual
variability of the FRI of the SDSI dataset, which justifies the use of the WHCO approach as a
way to dynamically update the model parameters. This graph also shows that southernmost
features, namely points 6 and 8, contribute little compared to westward points located at a
similar distance from the park (i.e. points 7 and 10). Points 2, 5 and 9 visually exhibit a
seasonal dependence. Surprisingly features 2 and 9, which are in the same direction, show
opposed behaviours: the FRI of feature 2 is higher during summertime, while feature 9 is
prevailing during wintertime. This may indicate various wind regimes: low wind-speeds
occurrence is higher during summertime, while higher wind-speeds are associated with the
winter season. In this configuration, the forecasting model has to look further in space to
get information regarding incoming clouds. The graph also highlights that westward pixels
provide more information.
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FRIjt =

∑︁
l∈{−L...0}

s=j

|βl,s,t|

∑︁
l∈{−L...0}

s∈{1...NSDSI}

|βl,s,t|
(6.11)

j Considered SDSI feature,
NSDSI Number of SDSI features selected (here, NSDSI = 10),

L Lag order of the ARX model,
β Regression coefficient of the ARX model.

Figure 6.16 – The left-hand figure represents the spatial distribution of selected features from SDSI
maps, obtained with the mRMR feature selection approach (Section 5.3.2.1.2) for a 1-hour forecast

horizon at site PV1. Features (red points) are ordered by their distances from the park (blue
point). The right-hand graph represents the temporal evolution of the FRI obtained with the

CAR(local)+SDSI model coefficients and Equation 6.11.

6.4.3.4.3 Coupling of spatio-temporal information with the weather-condition-
ing approach In Section 5.3.3, we compared forecasting performances of an ARX model
fed with satellite-based information derived from the mRMR feature selection process and
from a CNN forecasting architecture. Figure 5.17 of the last chapter clearly depicts the inter-
est of pre-processing satellite-based maps with a Deep Neural Networks (DNN) architecture
(i.e. the AR+SDSI(t+h/CNN) model outperforms the AR+SDSI(t-9:t/mRMR) model up
to 15% in nMAE score). Therefore, CNN-derived forecasts are more informative than the
set of spatially distributed SDSI observations when injected in the ARX architecture. These
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6.4. Local weather information

satellite-derived features are now compared in the light of the Conditioned Auto-Regressive
(CAR) architecture. Figure 6.17 highlights that the difference in performances between the
CAR(local)+SDSI(t-9:t/mRMR) and CAR(local)+SDSI(t+h/CNN) models is lower than in
the case of the AR+SDSI(t-9:t/mRMR) and AR+SDSI(t+h/CNN) models (Figure 5.17).
This slight performance difference between ST models may suggest that the WHCO archi-
tecture is be able to emphasise information contained in past production observations, that
is similar, and so redundant, to that carried by the CNN-based irradiance forecasts.

Figure 6.17 – Forecasting performances of the CAR(local) models fed with SDSI-based explanatory
features. Satellite-based information is extracted via the mRMR feature selection process (i.e.
SDSI(t-9:t/mRMR)) (Section 5.3.2.1.2), or it is preprocessed to derive forecasts with a CNN

forecasting architecture (i.e. SDSI(t+h/CNN)) (Section 5.3.2.3). The terminology used is derived
from Section 5.3.3.

In addition, we observe that the coupling of WHCO approach and ST information is
well adapted to very short-term horizons. Indeed, the CAR(local)+SDSI(t-9:t/mRMR)
model exhibits improved scores up to +6% in nRMSE and nMAE compared to its temporal
counterpart (i.e. the CAR(local) model) for a 15-min lead time, while the ST-induced
improvement is not significant when considering the ARX model (Figure 5.17). Negative
skill scores of the CAR(local)+SDSI(t-9:t/mRMR) for higher forecast horizons are assumed
to result from overfitting issues. In such a case, it could be relevant to draw inspiration
from Section 5.2.3 to impose some constraints over the number of temporal lags. We observe
that for horizons greater than 30-min ahead, the model based on the CNN-derived feature
has better scores than the model based on the set of selected features. This assumes that
accuracy improvement from ST inputs is still possible when considering selected features
with the mRMR algorithm. At least two options are conceivable: we can either increase
the number of selected features at the risk of overfitting the model or consider a WHCO
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approach that respect ST dependencies. This last option is investigated in the following
section. So far, a local characterisation of the atmosphere has been considered. Such an
approach only takes into account the temporal evolution of weather parameters at the site
position. In the next step, the idea is to widen the spatial window on which the analog
research is performed to identify situations that evolve likely both in time and space.

6.5 Synoptic weather information

The present section compares the benefits provided by WHCO based on spot- or large-
scale weather predictions. The influence of the coupling between weather information scale
and ST inputs is then investigated. Only forecasts obtained with the ARX model are
considered, as the previous section highlighted that WHCO approach is not fitted for the
RF model (degradation in the forecast accuracy for very short-term horizons and higher
modelling complexity compared to the direct use of the RF model).

6.5.1 Temporal paradigm

As a first step, we focus on assessing the forecasting performances of the WHCO models
that only use temporal measurements, in other words, SDSI observations are left aside.

In the case of WHCO with gridded features, the best forecasting performances are
achieved with a higher number of analog situations compared to spot-NWPs conditioning
(Figure 6.18). This need for a higher number of training observations may be explained by
the variability of the training set itself, which is higher in the case of a conditioning based on
geopotential fields due to the nature of the predictor and the extent of the spatial window
considered. The WHCO based on spot-NWPs focuses on parameters observed at the site
location that directly impact PV production, while its counterpart based on gridded data
considers features impacting wind and cloud generation on a much larger scale. Therefore,
local weather situations may vary significantly even though the associated geopotential
fields are rather close (e.g. a high-pressure area is associated with clear skies, yet local
cloud structures may be present).

The fact that synoptic WHCO provides a set of observations that share similar large-
scale dynamics but potentially different local states may explain the poor performances of
the CAR(synoptic) model, observed in Figure 6.19, w.r.t. the CAR(local) model. Within a
set of analog situations provided by the synoptic WHCO approach, local weather states are
too heterogeneous to allow the establishment of an accurate forecasting model.

6.5.2 Spatio-temporal paradigm

Contrary to the spot conditioning, which only considers temporal evolution of features,
synoptic conditioning selects a set of situations that follow similar ST trends (e.g. same
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6.5. Synoptic weather information

Figure 6.18 – Averaged number of analog situations determined with the optimisation framework
for the 9 PV farms under study and that considers spot or gridded NWPs.

wind direction). In this section, the coupling of the synoptic WHCO architecture with ST
inputs is investigated.

Therefore, we focus on performance improvements resulting from the consideration of
SDSI features w.r.t. a configuration based only on temporal observations (i.e. production
observed at the site location). The left-hand graph in Figure 6.20 represents the ST gain in
accuracy obtained with a local conditioning, while the right-hand graph represents the same
gain considering a synoptic conditioning. The trend of the performance gain obtained from
ST information is similar between both approaches: a maximum is reached for very short-
term horizons (typically h ≤ 90 min) and it gradually decreases as the forecast horizon
increases. A visual comparison highlights that the gain obtained with SDSI is slightly
higher in the case of the synoptic conditioning. It is difficult to determine whether this
improvement results from a better integration of the ST information (e.g. the selection of
SDSI features is in line with the wind regime of the analog situations) or from the lower
performances achieved by the CAR(synoptic) model which lets more room for improvement.
Be that as it may, the performances developed by the CAR(synoptic)+SDSI model do
not beat its counterpart based on local conditioning (Figure 6.21). It could have been
interesting to combine both local and synoptic weather parameters within the analogy score
(Equation (6.2)) to obtain situations that are analog at the site position and its vicinity. A
similar idea is implemented in [67] that considers parameters at the site location as well as
a set of SDSI features located in the neighbourhood.
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CHAPTER 6. CONDITIONED LEARNING

Figure 6.19 – The CAR model conditioned either with local or synoptic features and fed with PV
production observations.

(a) Influence of ST inputs on the forecasting perfor-
mances of the locally conditioned model.

(b) Influence of ST inputs on the forecasting per-
formances of the synoptically conditioned model.

Figure 6.20 – Skill scores of ST models compared with temporal models.

�

Research Answer - Gridded data

The use of gridded data, and more precisely geopotential fields, do
not improve forecast accuracy, neither in the scope of temporal-based
forecasts nor with the use of ST features. This may result from a too
high variability within the candidate situations sets (and so, from
a too restricted historical archive), which prevents the derivation of
accurate models.
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Figure 6.21 – The CAR model conditioned either with local or synoptic features and fed with PV
production observations and SDSI observations.

6.6 Probabilistic forecasting

A forecast is inherently uncertain. To be able to quantify this uncertainty can be valu-
able in a context of decision-making [273]. In contrast with deterministic (or point) fore-
casting, probabilistic forecasting provides forecasters with additional information regarding
the uncertainty of a forecast. This uncertainty can take various forms, for instance, we find
ensemble forecasts especially in the field of weather forecasting, where a numerical model
is run with perturbed sets of parameter schemes and/or initial conditions to issue different
trajectories. We also find Prediction Interval (PI) that estimates the interval in which a
future observation is expected to fall, with a certain probability.

These probabilistic forecasts can be generated by dedicated models, or through generic
techniques to transform point forecasts into probabilistic ones. For instance, a generic
approach consists in bootstraping 3 PI from empirical errors obtained during the training
step. More recently, the Level Set Forecaster (LSF) technique has been presented in [88, 274].
The main idea is to gather instances of explanatory features from the training data associated
with close predictions, and then to derive predicted distributions from bins composed of
observations of the response feature associated with these selected inputs. In other words,
this approach identifies a set of training examples, Xt, that are mapped to the same (or close)
point forecast value ŷt+h = froot(Xt) from the testing set. Their corresponding true target
values (i.e. yt+h) from the training set are then collected within a bin. The bin associated
with a predicted value ŷt+h is then selected to produce forecasts intervals by picking the

3. Bootstrapping is a type of resampling technique with replacement.
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qth quantile of the true values in the bin. Bootstrapping techniques seem to be first applied
in the PVPF field in [226] (2015) but very few details were given regarding the underlying
process. Later in 2020, [227] proposed to derive prediction intervals by using bootstrap or
Quantile Regression (QR). The results demonstrate that the bootstrap approach leads to the
best performances. Confidence intervals for spot wind generation forecasting are assessed
from forecast error re-sampling in [275]. In the present context, such approaches can be
implemented while taking advantage of the analog-based structure developed throughout
this chapter. For example, we may contemplate using the bootstrap method to derive
confidence intervals through the set of past analog PV production observations by selecting
randomly and with replacement N values out of the analog sample. Then, this new sample
is sorted in ascending order and the 2.5% lowest and 97.5% highest values of that set are
selected. These three steps are repeated a large number of times to get a good idea of
the population. Such an approach should provides sharp intervals for analog subsets with
low variability. Nonetheless, due to time-constraints, we chose to make good use of the
proposed modular architecture by replacing deterministic root models with probabilistic
ones. This section must be viewed as a presentation of some preliminary works on the
weather conditioning of probabilistic forecasts. As a result, further developments are needed
to consolidate the results.

6.6.1 Probabilistic models

We replace the ARX and RF models with their probabilistic counterparts in a way, that
is to say the QR 4 [276] and QRF 5 [277] models. The aim of these models is to approximate
the conditional distribution of the random variable (in this case, PV production) by means
of quantiles. The τ th quantile of the random variable Yt is defined as P (Yt < x) = τ

where τ ∈ [0, 1]. A unique quantile provides only limited information regarding forecast
uncertainties, that is why we consider the following quantiles: τ ∈ [0.1, 0.2, ..., 0.8, 0.9]. The
QR and QRF models estimates the τ th conditional quantile function qt+h|t(τ).

6.6.2 Diagnostic analysis

In this section, we limit our study to the most common criteria of probabilistic perfor-
mances assessment, namely the reliability and the sharpness [278].

6.6.2.1 Reliability diagram

Reliability or calibration concept describes the ability of probabilistic forecasts to match
the observation frequencies. Reliability diagrams are a graphic tool that makes it possible to

4. This model expresses the conditional quantiles of the response feature as a linear function of the
explanatory variables.

5. Compared to the RF model which generates forecasts by averaging values in the leaf nodes, the QRF
model derives probabilistic predictions from these values.
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verify whether the proportion of data predicted by the quantile q̂τt+h|t of level τ is equal to the
associated proportion of actual data observed under this quantile. Ideally, the proportions
of each quantity should be close. Therefore, the closest to the diagonal, the better. The
empirical level of quantile forecasts is obtained through the following steps [279]. First, the
indicator function ξτt,h defined by Equation 6.12 is computed. It represents the series of hits
(i.e. the production outcome lies below the quantile forecast) and misses of the evaluation
set. The empirical level aτh of these quantile forecasts is given by the mean of ξτt,h over the
evaluation set.

ξτt,h = 1yt+h < q̂τt+h|t =

⎧⎨⎩ 1 ifyt+h < q̂τt+h|t

0 otherwise
(6.12)

q̂τt+h|t Quantile forecast issued at time t for lead time t+ h,
yt+h PV production outcome.

Figure 6.22 gathers the reliability diagrams of the QR and QRF models as well as their
WHCO forms. We observe that, in general, the different forecasts seem reliable due to their
close proximity with the diagonal. A closer analysis reveals that the model reliabilities tend
to decrease as the forecast horizon increases. The CQRF(local) model tends to exhibits
slightly better reliability properties than the QRF+NWPs model. On the contrary, the
QR+NWPs model is more reliable than the CQR(local) model.

(a) Reliability diagram of the QR model fed with ex-
ogenous inputs or conditioned to the local weather.

(b) Reliability diagram of the QRF model fed with
exogenous inputs or conditioned to the local weather.

Figure 6.22 – Reliability diagrams of forecasts at PV1. The dashed line represents forecasts with
perfect reliability. The headers of the sub-graphs represent the forecast horizons.
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6.6.2.2 Rank histogram

Rank histograms (sometimes called Talagrand diagrams) are another graphical way to
assess the reliability of an ensemble forecast compared to a set of observations 6. Thus, it
aims at checking the statistical consistency of the ensemble forecasts (i.e. that the predicted
probabilities agree statistically with the observed frequencies).

Rank histograms are built as follows. For each instance n ∈ (1, · · · , Nt) (Nt, the total
number of observations from the testing set), the M ensemble forecasts and the associated
observation are ranked together in an ascending order. The rank of the observation within
the group of M + 1 member is computed 7. A histogram is then derived from these ranks.

The main assumption behind rank histogram is that an observation is statistically an-
other member of the ensemble forecasts. In this context, the observation is equally likely to
fall between any two members. This leads to a flat diagram (i.e. a uniform distribution):
the observations are indistinguishable from any member of the ensemble and the ensemble
forecasts are said to be reliable. If the histogram is ∪-shaped (or ∩-shaped), then the spread
of the ensemble forecasts is too small (or to large): many observations fall at the tails of
the ensemble (or near its centre). A tilt or asymmetric histogram suggests that too many
observations fall outside (below or above) the ensemble members, which is typical of a biased
forecast.

Figure 6.23 represents the Talagrand diagram of QR and QRF models fed with NWPs
information either as explanatory or state features. At first glance, we observe that for
the great majority of models, the different ranks are close to the consistency band (i.e.
the red dashed line) for all considered horizons. The only exceptions are the CQR(local)
model associated with the 180-min and 360-min ahead forecast horizons, which demonstrate
high relative frequencies for the first rank. Overall, histograms are characterised by a
combination of two distinct shapes; namely a prevalence of the first rank and a convex
shape. This indicates that associated ensemble forecasts tend to be over-dispersed and
biased (i.e. production associated with clear-sky states is under-estimated, while overcast
states lead to an over-estimation of production). Models considering weather predictions
as exogenous inputs tend to express a convex shape, this phenomenon is corrected by the
weather conditioning approach at least for the 15-min ahead horizon (i.e. the CQR(local)-
and CQRF(local)-derived forecasts possess a flat rank distribution). Therefore, the analysis
of the rank histograms highlights that ensemble forecasts possess some reliability flaws. The
latter may be corrected by post-processing ensemble forecasts techniques such as Ensemble
Model Output Statistics (EMOS) 8 [280]. In the remainder of this section, we neglect these
reliability flaws due to the fact that histograms are dominated by a high number of rank

6. This graphical tool is often preferred by the meteorologist community because the reliability diagram
may be difficult to visually assess.

7. For instance, for the set of ordered predictions (0.12, 0.43, 0.51, 0.55, 0.62, 0.65, 0.70, 0.79, 0.81), the rank
of the observation (0.6) is 5, because the observation lies at the 5th position between 0.55 and 0.62.

8. Technique based on multiple linear regression that addresses both forecast bias and under-dispersion.
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distributions close to the consistency band. However, we draw the reader’s attention to the
fact that special attention should be paid to conclusions regarding the CQR(local) model.
This leads to further investigations about the sharpness of the forecasts.

(a) Rank histograms of the QR model fed with exoge-
nous inputs or conditioned to the local weather.

(b) Rank histograms of the QRF model fed with ex-
ogenous inputs or conditioned to the local weather.

Figure 6.23 – Verification rank histograms of PV1 considering the CQR(local), QR+NWPs,
CQRF(local), and QRF+NWPs, models at 15-, 60-, 180-, and 360-min lead times. The red dashed

line represents the theoretical relative frequency for a uniform distribution (here 1/10).

6.6.2.3 Sharpness assessment

Sharpness evaluates the concentration of predictive distributions, as such it constitutes a
complementary analysis tool to the reliability but does not provide any indication regarding
the quality of the forecasts. In simple words, the sharpness evaluates how tight the predictive
densities are, regardless of their forecasting abilities. Sharpness is determined from the
average width of centred PI. The width of a given PI, Îτt+h|t is the distance between its two
bounds for a given quantile level and horizon, h (Equation 6.13). The sharpness of these
interval forecasts is the average of δβt,h over the evaluation period. Therefore, given that the
forecasts are reliable, the objective of probabilistic forecasts is to maximise the sharpness,
and so to minimise the width of interval forecasts.

δβt,h = q̂
1− τ

2
t+h|t − q̂

τ
2
t+h|t (6.13)
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β Nominal coverage rate (β = 1 − τ).

Figure 6.24 represents the sharpness evaluation of forecasts issued by the QR and QRF
models as well as their WHCO forms. On the one hand, concerning the QR+NWP and
CQR(Local) models, we observe that for nominal coverage rates of 20% and 40%, both
models exhibit similar sharpness for all considered horizons. However, for nominal coverage
rates of 60% and 80%, the CQR(Local) model is sharper for lead times greater than 180-min.
On the other hand, the conditioned version of the QRF model is sharper for all horizons
and nominal coverage rates under study. As a result, the WHCO approach has a positive
impact on the model sharpness, whatever the model family (linear or nonlinear).

(a) Sharpness evaluation of the QR model fed with
exogenous inputs or conditioned to the local weather.

(b) Sharpness evaluation of the QRF model fed with
exogenous inputs or conditioned to the local weather.

Figure 6.24 – Sharpness evaluation of forecasts at PV1 as a function of the forecast horizon. The
headers of the sub-graphs represent the nominal coverage rates.

6.6.2.4 Continuous ranked probability score

The overall performances of the models are evaluated with the Continuous Ranked Prob-
ability Score (CRPS) [281–283]. This score, which is dedicated to probabilistic forecasts,
provides summary measures of the forecast quality. It is defined by Equation 6.14 for a given
Cumulative Distribution Function (CDF), Ft+h|t, and its observations yt+h. The CRPS is
negatively oriented (i.e. the smaller the score, the better), and is similar to the Mean
Absolute Error (MAE) when applied to point forecasts.

CRPSt,h =
∫︂ ∞

−∞

(︂
F̂ t+h|t(x) −H(x− yt+h)

)︂2
dx (6.14)

H(x) Heaviside function (H(x) = 0∀x < 0 and H(x) = 1 otherwise).

Figure 6.25 shows the CRPS of the forecasts from the QR and QRF models as well
as their WHCO forms. First, a visual comparison between Figure 6.25a and Figure 6.25b
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highlights that the QRF+NWPs model performs slightly better than other models. In
general, models based on the extra-features mode outperform WHCO models, except for
forecast horizons lower than 2-hour ahead in the case of the QR model.

(a) CRPS of the QR model fed with exogenous inputs
or conditioned to the local weather.

(b) CRPS of the QRF model fed with exogenous in-
puts or conditioned to the local weather.

Figure 6.25 – CRPS of forecasts at PV1 as a function of the forecast horizon.

�

Research Answer - Probabilistic forecasts

Weather conditioning tends to positively impact the sharpness of
forecasts compared to predictions produced with a straightforward
injection of the explanatory features in the model. However, the over-
all performances of conditioned models are slightly lower than those
of models fed with weather variables as explanatory features. Even
though differences of performances are slight, the computational cost
induced by weather conditioning does not justify a deeper analyse.

6.7 Comparison between analog- and cluster-based condi-
tioning

Models can be conditioned to the weather situation at least through two approaches:
either by (1) fitting models on clusters of production data associated with similar weather
states, and by (2) adopting a dynamical approach that updates models by fitting them on
situations that are analog to the situation to predict (this approach is investigated through-
out this chapter).

Due to time limitations, the cluster-based conditioning has not been investigated in
depth, but preliminary work is proposed in Appendix C.3. The methodology is presented as
well as performances comparison between the analog- and cluster-based conditioning. The
latter turns out to be significantly less time-consuming (Table A.1), while showing similar
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forecasting accuracy when considering the SSRD as a state feature and the AR model. Be
that as it may, further works are needed to characterise in detail the influence of the features
and model properties on the cluster-based conditioning approach.

6.8 Conclusions

In this chapter, we introduced the concept of WHCO based on the analogy principle.
This approach is materialised through the development of a generic methodology to integrate
weather information (or other features) into PV forecasting models either as explanatory
or state features. Within the scope of this thesis, this methodology is applied to short-term
PV generation forecasting, but nothing prevents its extension to higher forecast horizons
or its use in the wind generation field. The WHCO approach appears as a simple and
intuitive method to inject physics-based information in statistical regression models and to
derive expert models. This former point goes in the direction of a better interpretability of
models.

Performances of the WHCO-based approach depend on the number of analogs used
during the model fitting. In essence, this approach aims at reducing the training set to
retain only observations with similar characteristics, hence the threat to feed the model
with too little data. A grid search approach tackles this issue and shows that the number of
analogs leading to the best accuracy depends on the forecast horizon as well as the number
of features.

On the one hand, performances analysis highlights that the WHCO approach is well
suited for linear models inasmuch as it gets the best from features that have a nonlinear
dependence on the response variable. In the case of linear-dependent features, their simul-
taneous integration as explanatory and state features provides better scores than distinct
integrations. On the other hand, when applied to a nonlinear model, WHCO tends to
degrade the very short-term forecasting performances and to provide similar scores com-
pared with a straightforward integration of the features. Ultimately, similar forecasting
performances are reached when considering either the CAR(local)+NWPs model or the
RF+NWPs model.

In the literature, spot NWPs are typically used to characterise the weather situation at
the site location. Such an approach only focuses on the temporal dynamics of the weather
parameters and obliterate the ST dynamics. With an ambition to improve the integration
of ST features in regression models, we explored the use of geopotential fields as a state
feature. However, this approach did not turn out fruitful in terms of accuracy improvement.
This may result from an excessively high variability within candidate situations sets (i.e. a
too restricted historical archive), which prevents the derivation of accurate models.

A preliminary investigation, which considers the probabilistic versions of the AR and RF
models, points out that weather conditioning improves sharpness of the forecasts. Nonethe-
less, the best overall performances are reached by models fed with NWPs model outputs as
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explanatory features.
By way of conclusion, the comparison of the different ways of integrating information in

regression models made it possible to derive general guidelines for forecasters.

6.9 Résumé en Français

Jusqu’à présent, nous avons considéré une calibration statique des modèles dans la me-
sure où les paramètres internes de ces derniers sont déterminés lors de la phase d’entraîne-
ment puis gardés tels quels par la suite. Ainsi, le calage du modèle reflète les observations
les plus représentées dans les données d’entraînement. Ce type d’approche peut s’avérer
dommageable notamment dans un contexte spatio-temporel où uniquement les variables
localisées selon les axes des vents dominants seront retenues. Pour pallier ce problème, nous
faisons le choix d’adopter une approche dynamique permettant la mise à jour des para-
mètres du modèle selon la situation météorologique rencontrée. Ceci conduit donc à un
modèle adaptatif.

Définition de la méthodologie de conditionnement

L’objectif premier de ce chapitre réside en l’introduction du concept de conditionnement
par la situation météorologique et en la définition de ces fondements mathématiques. Typi-
quement dans la littérature, deux options sont étudiées pour générer des modèles dédiés à
des situations météorologiques spécifiques.

La première option consiste à regrouper les données d’observations selon certains critères
afin d’obtenir des groupes de données représentant des situations atmosphériques similaires
(e.g. des observations ensoleillées, pluvieuses, ou nuageuses), puis à caler un modèle pour
chaque groupe. Cette approche est détaillée à l’Annexe C.3.

Dans ce chapitre, nous considérons une approche dérivée des k plus proches voisins
qui consiste à ré-entrainer un même modèle sur les N observations les plus similaires à
la situation à prévoir. Les différentes étapes de modélisation se déclinent de la manière
suivante. Tout d’abord, trois jeux de données sont construits : (1) une archive contenant les
prévisions numériques du temps (ce jeu de données caractérise la situation météorologique),
(2) l’historique de production du site, et (3) une base de données regroupant les variables
explicatives du modèle. Ensuite, un critère d’analogie est utilisé afin de quantifier le degré
de similarité entre la situation cible (i.e. la prévision météorologique à l’instant t + h) et
les situations candidates (i.e. les prévisions météorologiques antérieures générées pour le
même horizon temporel). Ces situations sont ensuite classées selon leur degré de similarité.
Les N situations les plus similaires sont alors retenues pour constituer le sous-ensemble de
situations analogues. Les observations de la production PV associées à ce sous-ensemble ainsi
que leurs variables explicatives sont sélectionnées afin d’entraîner le modèle de prévision,
alors que les dernières observations des variables explicatives sont utilisées pour générer la
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prévision de la production PV à l’instant t+ h.
D’un point de vue mathématique, cette approche peut être vue comme une régression

locale. Ainsi, le conditionnement à la situation météorologique permet de non-linéariser un
modèle de régression. Dans ce cas, il est légitime de se demander quelle est l’influence de ce
type d’approche sur des modèles non linéaires. Dans la littérature, il est courant de considérer
un nombre fixe d’analogues quel que soit l’horizon considéré. Pourtant, on s’attend à ce que
le nombre d’observations nécessaires pour dériver une relation statistique stable varie selon
la variabilité de la situation météorologique. Nous effectuons donc une recherche de grille
afin de sélectionner le nombre optimal d’analogues nécessaires au calage de notre modèle.

Variables d’état

Outre le critère d’analogie utilisé pour comparer les états de l’atmosphère, une attention
toute particulière doit être portée aux variables les décrivant. Celles-ci doivent refléter avec
fidélité le processus étudié, qui dans notre cas concerne les variations de la production PV.

Les variations de production sont directement liées aux variations de l’irradiance, elles-
mêmes tributaires des perturbations atmosphériques (e.g. formations nuageuses, turbidité
de l’atmosphère) et également de la température ambiante. Donc naturellement nous consi-
dérons les prévisions de l’irradiance, de la température et de la couverture nuageuse totale au
niveau du site d’intérêt. Le format de ces données permet de trouver des situations évoluant
de la même manière dans le temps, mais ne garantit aucunement une quelconque simila-
rité parmi les schémas spatiaux des analogues retenus. Ainsi, nous considérons également le
champs géopotentiel, une variable 2D couramment utilisée pour prédire les précipitations,
et qui démontre une forte corrélation avec les déplacements de masse d’air.

Principaux résultats obtenus à partir de modèles déterministes

Dans le contexte de variables localisées, nous mettons en évidence que le conditionnement
météorologique est bien adapté aux modèles linéaires et permet une meilleure intégration des
variables non-linéaires. Au contraire, cette approche semble redondante en ce qui concerne
les modèles non-linéaires et tend à dégrader leur performance en comparaison avec une
approche directement basée sur l’intégration de variables exogènes.

Le recours aux variables synoptiques ne permet pas d’améliorer les performances pré-
dictives, que ce soit en considérant uniquement les informations au niveau du parc ou de
ses environs. Ceci est probablement dû à la faible profondeur de l’archive considérée qui ne
permet pas l’obtention d’analogues possédant un haut degré de similarité.

Etude préliminaire du conditionnement appliqué aux modèles probabilistes

Une prévision est par essence incertaine. Il est donc pertinent de proposer une quanti-
fication de cette incertitude afin de permettre aux décideurs de faire des choix éclairés. Il
existe plusieurs façons de générer des prévisions probabilistes. Dans le cadre de ce chapitre
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nous faisons le choix de nous tourner vers des modèles de régression probabilistes ayant fait
leurs preuves dans la littérature : le modèle AR est remplacé par la régression quantile, alors
que le modèle de forêts aléatoires est substitué par son homologue probabiliste ; le modèle
des forêts aléatoires quantile.

Nous démontrons que le conditionnement météorologique a un effet positif sur les mo-
dèles probabilistes en améliorant la finesse des prévisions, mais tend à dégrader leurs per-
formances comparativement à l’approche basée sur l’injection de variables explicatives. Ce
travail préliminaire met en avant que, même si les performances sont légèrement moindres,
l’important coût en termes de temps de calcul ne justifie pas le recours au conditionnement
dans le cadre des modèles probabilistes.

Conditionnement par groupes

Enfin le dernier volet de ce chapitre de thèse concerne la comparaison entre la méthode
de conditionnement basée sur les analogues et celle basée sur les clusters. Ce dernier point
est détaillé dans la Section C.3. En raison de contraintes temporelles, le conditionnement
par cluster n’a pu être investigué que de manière superficielle. Quoi qu’il en soit, les premiers
résultats montrent que cette approche permet un gain considérable en termes de temps de
calcul par rapport à la méthode des analogues qui consiste à ré-entraîner un modèle pour
chaque nouvelle simulation tout en atteignant des performances comparables.
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Chapter 7

Conclusions and Perspectives

One never notices what has been done; one can only see what
remains to be done.

Marie Curie
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7.1 Motivations

Due to environmental concerns and energy resources depletion, societies are taking action
to reduce greenhouse gas emissions. Among these low-carbon strategies, Photovoltaic (PV)
generation appears as a promising alternative to carbon-based energies. Since PV generation
is weather-dependent, it is characterised by high variability and limited predictability. When
PV constitutes a significant share in power systems, these features raise challenges for
power system operators, which have to ensure a high level of power quality and strike a
balance between production and demand. To deal with the issue of intermittency, Renewable
Energy Sources (RES) forecasting appears as a cost-effective option that can anticipate
power imbalances and lead to optimal use of flexibility solutions or traditional adjustment
means.

Nonetheless, PV forecasting is still considered as immature, as illustrated by the en-
thusiasm that this topic generates in the academic field. In addition to a clear profusion
of incremental improvements symbolised by a high rate of publication (Figure 1.7), some
consortiums, such as Smart4RES, aim at achieving a breakthrough by working together to
attain an increase of at least 15% in RES forecasting performance [60]. One step towards
this goal is to provide very high-resolution RES-dedicated weather forecasting with 10−15%
improvement.

This clear and crucial need to improve forecast accuracy constitutes the global objective
of this thesis. To achieve this goal, we have noted several research gaps in the literature.
Firstly, quality assessment of power measurements mainly consists of a sequence of basic
control steps, to the extent that observations are rarely questioned in more detail. Yet, key
components of PV farms may suffer from production shutdowns, which artificially reduce
the whole production level. In such a case, there is a discrepancy between the production
signal and the explanatory features, which may result in reduced accuracy when such data
are used to train forecasting models. Secondly, we observe a limitation in forecasting models
to exploit large and heterogeneous sources of data. Often, these models are horizon- and
data sources-dependent, which may impact their use in an operational context. Yet several
studies highlight that a combination of data is key to improving forecast accuracy and to
naturally extend the range of horizons. Thirdly, we observe a growing tendency to resort to
complex models, which often act like black boxes. In this context, it becomes challenging to
understand how the model will behave, which reduces the range of options to improve the
model’s performances. Fourthly, there is a clear dichotomy between physics- and statistics-
based forecasting. The former field uses physical equations to model the way PV parks
work, while the latter assumes that statistical models can learn how the plant works on
their own, given that relevant information are provided. Our literature review highlighted
several research questions, which structure this work:
RQ1: How do plants’ key components failures impact forecasting accuracy?

RQ2: What is the best way to emphasise relevant information contained in irradiance-related fea-
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tures?

RQ3: What is the optimal methodology to couple several sources of information?

RQ4: What strategy can deal with large datasets and horizon-dependent sources of information?

RQ5: What is the best way to integrate physics-based information in statistical regression models?

RQ6: How can we enhance the interpretability of black-box models?

7.2 Summary and main findings

The introductory chapter underlined that the extensive use of carbon-based fuels has
had disastrous consequences on wildlife. In this context, RES constitute a desirable option,
but their large-scale deployment may jeopardise the safe use of the electrical grid due to
their weather dependency. Hence the challenge of developing accurate forecasting tools.
However, as pointed out in the previous section, several hurdles must still be overcome.

Chapter 2 details the overarching methodology used throughout this work. First, the dif-
ferent models, which include regression and feature selection models, are presented. Before
looking closely at the different ways of improving forecasting performance, it is necessary
to know how to quantify a good forecast and develop a relevant verification framework.
This verification framework is based on a set of well-established scoring rules and on vi-
sual diagnostic tools used or encouraged by the literature. This facilitates forecast analysis
and comparison within the literature. In a next step, an overview of the different types
of inputs is provided. Preliminary results derived from past production observations are
generated. Given the inputs and lead-times considered, these results are in line with what
can be observed in the literature.

Usually, PV forecasts rely on statistical models. The latter are employed to infer a large
range of processes ranging from the displacement of weather structures to the conversion
process occurring within the plant. In chapter 3 we investigate the coupling of physical
knowledge with statistical modelling. The main idea is to consider processes that intervene
during the conversion of irradiance to electricity (e.g. shading, optical, and even thermal ef-
fects) to reduce the computational efforts in the regression model and improve the quality of
its fitting. In a nutshell, the different phenomena that may influence the level of power pro-
duced (apart from atmospheric conditions) are investigated, and a set of equations involved
in the conversion of Global Horizontal Irradiance (GHI) into electrical power is derived. In
a next step, the impact of this coupling is analysed from the angle of forecast accuracy.
Physics-based conversion is applied either on clear-sky irradiance (i.e. in the context of
the clear-sky normalisation) or on irradiance inputs derived from satellite observations or
Numerical Weather Predictions (NWPs) models (in this case, clear-sky normalisation is not
applied). Results show that in both cases the inclusion of the projection equations improves
forecast accuracy, and that the inclusion of equations related to optical effects has a posi-
tive impact in the case of normalised inputs, while the influence of thermal effects is more
ambiguous.
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Once the conversion model has been defined, we can use it to analyse the datasets at our
disposal and extract the relevant information they contain. That is the objective of Chap-
ter 4. In a first step, the quality of power measurements is investigated. Key components
of PV plants may experience inopportune shutdowns that reduce the level of production in
relation to the capacity of the impacted components. This can be viewed as a change of
weather and can negatively impact Spatio-temporal (ST) models or the fitting of models
based on predicted irradiance. A method based on the use of proxies is implemented to as-
sess the production levels of the park in normal conditions (i.e. without component failures).
Results show that removing fallacious observations from the dataset has a positive impact
on forecasting performances. The literature highlights that missing data may negatively
impact forecast accuracy because they alter the data distribution. That is why correction
is considered. However, in our case, the correction step does not improve the accuracy of
the forecasts; this may be attributed to noise or artificial correlations generated by the cor-
rective process. In a second step, the clear-sky normalisation of irradiance-related features
is investigated. This approach allows us to remove the deterministic trend associated with
the Sun’s path. We observe that the normalisation of power measurements with power-like
features derived from clear-sky irradiance leads to slightly better stationary properties. Ma-
chine Learning (ML) techniques are traditionally used with raw features, in the sense that
they are not normalised with clear-sky related features. However, the results tend 1 to show
a positive impact in terms of forecast accuracy when clear-sky normalisation is used.

The clear-sky normalisation process allows us to remove the misleading ST correlations
associated with the dependency of the irradiance on the Sun’s path, which makes the inte-
gration of spatially distributed sources of information possible. Three types of inputs are
investigated: (1) spatially distributed power units, (2) Satellite Derived Surface Irradiance
(SDSI), and (3) opacity maps derived from infrared channels. First, in the case of spatially
distributed power units, a pre-selection process based on physics-based time decorrelation
distance is implemented. This allows us to retain only features from sites that are close
enough to experience the same ST structures. Then, a feature selection process, such as
the Least Absolute Shrinkage and Selection Operator (LASSO), is implemented to select
relevant features. An analysis based on wind directions exhibits that preponderant winds
are associated with the north-south axis, which benefits to the spatial distribution of the
sites. However, these winds do not carry a lot of clouds, unlike winds from the west. This
motivates us to resort to satellite-based observations to deal with the issue of the low density
of the plant network and their monotonous distribution along the Rhône river (i.e. north-
south axis). To deal with the computational burden induced by this type of information, a
new feature selection scheme is implemented. The latter aims at selecting a set of features
with the lowest redundancy, while maximising the dependency on the target feature. The
forecasts issued with this method outperform the forecasts obtained with a traditional ap-

1. A significant improvement is observed in the case of Random Forest (RF) but no clear distinction is
made when an Artificial Neural Networks (ANN) is used.
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proach based on the maximisation of a dependency criterion. It is interesting to observe
that the structure of the Auto-Regressive (AR) model is not suitable to extract all the rele-
vant information carried by the subset of features derived from SDSI maps, while nonlinear
models such as RF are able to do so. With the ambition to improve forecasts generated for
the early morning, we consider satellite-based information derived from infrared channels.
This source of input is rather under-represented in the literature. This may be explained
by the fact that information carried by such data is more difficult to assess than irradiance
forecasts. In that regard, the results show that early morning forecasts generated with irra-
diance forecasts are more accurate. However, the integration of both sources of information
(i.e. irradiance forecasts and features derived from opacity maps) leads to higher accuracy.

In a ST context, the importance of features depends on the direction of displacement of
cloud structures [62]. Nonetheless, the models considered so far possess static parameters.
Therefore, the model fitting mainly reflects the predominant situations encountered during
its training step. Hence the idea of dynamically updating these parameters according to
the weather states. In this paradigm, models are trained on a batch of data sharing com-
mon characteristics with the situation to predict, which leads to adaptive models. This
approach is developed throughout Chapter 6, which lays the mathematical foundations of a
generic methodology to dynamically update models’ parameters. This Weather-Conditioned
(WHCO) approach can be viewed as a natural way of including nonlinear capabilities in
models. Results show that this approach is well adapted for linear models in the sense that
it naturally extends the models’ capabilities, especially with features that have nonlinear
dependencies on the response variable, while it seems redundant with nonlinear models.
Nevertheless, WHCO approaches are used in the literature with a wide range of regression
tools. Therefore, special care should be taken regarding the nature of the model. In the
case of a linear regression model, the WHCO approach gets the best from features that
have nonlinear dependencies on the response variable in comparison with a straightforward
integration as explanatory features. However, features with linear dependencies provide
better performances when considered as explanatory features. Ultimately, higher scores are
reached when both modes are employed simultaneously. The proposed approach is based
on the analogy principle and requires fitting a new model for each new forecast. A prelimi-
nary work highlighted that shorter computing times are achieved when considering models
trained on clusters of data sharing similar weather characteristics. Such an approach pro-
vides similar forecast accuracy. Last but not least, a preliminary investigation of the impact
of weather conditioning over probabilistic forecasting models is conducted. First results
show that WHCO tends to produce sharper forecasts, nonetheless, associated performances
are lower than in the case of considering explanatory features. Be that as it may, further
works are needed to consolidate these findings.

The different secondary research results provided throughout this document are sum-
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marised in Table 7.1.

Chapter
(Section)

Application Learning

Physics-based
Modelling
(3.5.1.2)

GHI conversion Projection of irradiance on the POA im-
proves forecast accuracy.

Physics-based
Modelling (3.5.2)

Irradiance components Forecasts based on BHI and DHI outper-
forms forecasts issued from GHI.

Physics-based
Modelling (3.5.2)

Physical knowledge de-
rived from statistical
model

A nonlinear model is able to derive conver-
sion laws when fed with relevant inputs.

Data Characteri-
sation (3.5.2)

Identification of spurious
observations

The rejection of fallacious observations leads
to an improvement of the model bias and
has a positive impact for forecast hori-
zons greater than 2-hour ahead in terms of
nRMSE and nMAE.

Data Characteri-
sation (4.4.2.2.3)

Clear-sky normalisation
(ML models)

RF model performs better when fed with
clear-sky normalised inputs.

Data Characteri-
sation (4.4.2.2.3)

Clear-sky normalisation
(stationarity)

The normalisation approaches based on the
irradiance-projection and performance mod-
els seem to exhibit local stationarity proper-
ties.

Spatio-temporal
Information
(5.3.2.1.3)

Dimensionality issue The mRMR framework improves forecasting
accuracy of both linear and nonlinear mod-
els compared to other methods based on the
maximisation of a correlation criterion.

Spatio-temporal
Information
(5.3.4)

Mixing of data sources The main source of information is provided
by satellite-based information.

Spatio-temporal
Information
(5.4.2)

Opacity maps compared
with SDSI maps

Opacity maps improve forecasts for the early
morning. For daytime-issued forecasts, mod-
els fed with this input are outperformed by
models based on SDSI.

Spatio-temporal
Information
(5.4.2)

Opacity maps compared
with NWPs

Irradiance forecasts provide more informa-
tive data. However, the combination of both
inputs leads to a global accuracy improve-
ment.

Continued on next page
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Table 7.1 – continued from previous page

Chapter
(Section)

Application Learning

Conditioned
Learning (6.4.2.2)

Comparison of integration
modes

In the case of linear models, the WHCO ap-
proach gets the best from features that have
nonlinear dependencies on the response vari-
able. Features with linear dependencies per-
form better when considered as explanatory
features, but higher scores are reached when
both modes are employed simultaneously.

Conditioned
Learning (6.4.3)

Weather conditioning and
model family

The explanatory and state features integra-
tion mode is well adapted to linear models.
On the contrary, nonlinear models perform
better with explanatory features.

Conditioned
Learning (6.5)

Gridded data The use of geopotential field does not im-
prove forecast accuracy, either in the scope
of temporal-based forecasts or with ST mod-
els.

Conditioned
Learning (6.6)

Probabilistic forecasts Weather conditioning tends to impact posi-
tively the sharpness of forecasts. Still, mod-
els fed with NWPs as explanatory features
reach higher performances than models con-
ditioned to the local weather state.

Table 7.1 – Summary of the main results and associated learning

7.3 Main take away messages

Henceforth, we have at our disposal all the information to answer the research questions
initially raised by the literature review.

RQ1: How do plants’ key component failures impact forecasting accuracy?
In this work, we investigated failures at the transformer and inverter levels. Shutdowns

of such key components deteriorate the quality of the production signal by introducing a new
variability component. After the identification of fallacious observations comes the question
of how to deal with them: is it better to remove them or correct them? A literature review
highlighted that introducing missing observations can deteriorate the accuracy of forecasts
by altering the data distribution. In our case study, we observed that removing fallacious
observations from both the learning and testing set improves the quality of forecasts.

RQ2: What is the best way to emphasise relevant information contained in
irradiance-related features?

We have highlighted that information contained in irradiance features can be empha-
sised in two ways. First, irradiance-related features can be viewed as a signal composed
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of (1) a deterministic component resulting from the Sun’s movement in the sky dome, (2)
a stochastic one associated with the displacement of weather structures, and, in the case
of power production: (3) a stochastic component resulting from abnormal production be-
haviour. The clear-sky normalisation approach makes it possible to remove the daily and
seasonal variability patterns resulting from the Sun’s movement, while the identification and
imputation strategy cancel shutdown-induced variability. Therefore, the irradiance-related
variable is purified, and the relevant information is magnified. Second, we have shown that
the clear-sky normalised time series do not fulfil stationary requirements. In other words,
variability patterns are still present. Empirical analysis highlighted that the integration of
features representing solar angles contributes positively to the assimilation of information
carried by irradiance-related features.

RQ3: What is the optimal methodology to couple several sources of infor-
mation?

In this document, we have investigated two ways of integrating information within a
regression model. The first one consists in adding the inputs linearly to the model by
considering them as explanatory features. The second approach considers data as state
features. In this paradigm, a model is fitted on observations for which the state features
are similar. Thus, the data are not openly used by the regression model, but still allow the
derivation of expert models by implicitly impacting the model’s parameters. In this work
we compared both approaches under the light of NWPs, but we logically assume that the
conclusions drawn can be extended to other sources of information. Results show that the
optimal way to couple several sources of information depends highly on the nature of the
regression model. In the case of a linear regression model, the WHCO approach gets the
best from features that have nonlinear dependencies on the response variable in comparison
with a straightforward integration as explanatory features. However, features with linear
dependencies perform better when considered as explanatory features. Ultimately, higher
scores are reached when both modes are employed simultaneously. In the case of nonlinear
models, it is desirable to resort to explanatory features.

RQ4: What strategy can deal with large datasets and horizon-dependent
sources of information?

In this work we have been confronted with dimensionality issues associated with the
use of satellite-derived information. In this specific case, we investigated several approaches
to reduce the computational burden. An innovative approach consisted in resorting to the
minimal-Redundancy-Maximal-Relevance (mRMR)-based feature selection scheme. This
algorithm offers an interesting option to deal with redundant information. In addition,
contrary to traditional correlation criteria such as the Pearson correlation, the mRMR ap-
proach, being based on the Mutual Information (MI) criterion, has the ability to identify
nonlinear relationships. This approach has been used in the context of satellite-based in-
formation, but it can be extended to other ST sources of information. In the introductory
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chapter, we have seen that the different sources of information are horizon-dependent (Fig-
ure 1.8). As such, it is necessary to include a feature selection model to select relevant
variables according to the look-ahead time.

RQ5: What is the best way to integrate physics-based information in statis-
tical regression models?

In this work, we chose to integrate physics-based knowledge through the pre-processing
of inputs. We reviewed the literature dedicated to the conversion of irradiance into electric
power to get an idea of the most relevant processes and their associated equations. Efficient
conversion laws require good knowledge of the plant’s properties, in particular its geometry.
Therefore, a conversion model has been produced taking into account available information,
computing efforts, and the relative impact of the conversion step. This conversion model
intervenes at different stages of the forecasting process. First, it is used to derive electrical
power from irradiance observations during the quality assessment of power observations.
Second, it can derive estimations of power under clear-sky conditions. Then, these features
are used to normalise power production observations, the resulting time series possess better
stationary properties than a similar time series obtained with a clear-sky estimation of
irradiance. Third, in a context of ML-based models, the conversion of irradiance features
into power-like features can achieve higher forecasting accuracy. Results show that the
critical conversion steps is the projection of irradiance on the Plane-of-Array (POA). The
difference in performances resulting from including temperatures and wind forecasts are of
second order. Per se, the normalisation process can be viewed as a way to integrate physics
into statistical models inasmuch as equations governing the Sun’s movement are used to
reduce the complexity of irradiance-related features.

RQ6: How can we enhance the interpretability of black-box models?

A model is interpretable when the user understands the way it works. The first step
to understand the inner workings of a model is to capture the importance it gives to each
feature. As a preliminary step, it is crucial in our opinion to prune irrelevant or redundant
features. In the case of satellite-based information, this can be performed with the mRMR
feature selection process or the LASSO in a more general way. In the context of black-box
models, the WHCO approach is appealing inasmuch as it derives expert models dedicated
to a certain type of weather. Even if the inner works of the model are not intelligible,
this approach makes it possible to assess the model’s behaviour according to the weather
situation. To gain knowledge of the driving forces at work in the forecasting model, it is
necessary to have a deep understanding of the processes impacting the conversion processes
(i.e. shading effect, temperature dependency of the efficiency) and the dynamics of the
irradiance variability (i.e. seasonality). Such knowledge gives precious indications on how
to improve forecast accuracy, and on the features’ dependencies on each other.
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7.4 Perspectives

This thesis opens up several research directions regarding PV generation forecasting.
This section briefly describes some that seem promising.

Extend the diversity of information sources
First, works performed during this thesis mainly rely on generic sources of information

traditionally used in the literature. In this regard, very short-term forecasts would benefit
from the integration of All-Sky Imagers (ASI)-based information. Many works, including
this one, have shown the benefits of integrating spatially distributed information. Real-time
sharing of data has become possible thanks to the advances in telecommunication and sensor
technologies. Therefore, it would be interesting to consider distributed observations in the
context of a data sharing market. Confidentiality constraints would require relevant feature
selection methods that could be built upon those presented in this document. Similarly,
the observations of non-professional weather station networks could be considered. This
source of information turns out to be interesting owing to the democratisation of connected
personal weather stations, which provides varied and dispersed measurements of physical
parameters. In such a case, close attention should be paid to measurement quality.

Extend the range of forecasts horizons
The second research direction that comes to mind is to extend the range of forecast

horizons investigated. In this work we confined our investigations to short-term horizons
ranging from 15-min to 6-hour ahead, but we could extend it to day-ahead forecast. Per
se, the use of ST features do not seem relevant for such lead times, but they could be used
to improve the degree of similarity between analog situations in the context of weather
conditioning models. In that regard, geopotential fields could be reconsidered inasmuch as
they are typically used for day-ahead forecasts [68] or higher lead-times [266].

Resort to sophisticated models
A limitation of this thesis is that we mainly rely on state-of-the-art regression models.

This deliberate choice results mainly from interpretability concerns. Nonetheless, it could
be interesting to investigate the forecast accuracy of Deep Learning (DL)-based tools fed
with heterogeneous inputs. In such a case, the pre-processing methods developed in this
document could be valuable. The ML and DL fields are evolving fast and sophisticated
approaches are emerging, including the transformer model [284], and the Generative Adver-
sarial Networks (GAN) [285]. Works performed in [286] suggests that transformer model
can be used to extract different levels of correlation between multiple wind farms and exhibit
higher accuracy than Long Short-Term Memory (LSTM) networks.

Derive probabilistic forecasts from analog-based methods
Given time constraints, the subject of probabilistic forecasts has only been touched on.

Nevertheless, the weather conditioning approach provides fertile ground for the generation
of probabilistic intervals from bootstrapping-based methods. Such approaches can easily
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convert point forecasts into probabilistic forecasts. For instance, we could contemplate
using the bootstrap method to derive confidence intervals through the set of past analog PV
production observations used to train the regression model. Such an approach assesses the
uncertainty associated with the transformation of the weather forecasts into PV production.
In addition, it could be interesting to supplement state features with ensemble forecasts to
get an insight into the uncertainty of weather forecasts.

7.5 Résumé en Français

Motivations

Afin de lutter contre la crise climatique qui nous touche actuellement, nos sociétés entre-
prennent diverses actions visant à réduire nos émissions de gaz à effet de serre. C’est dans
ce contexte que les énergies renouvelables ont pris leur essor. Contrairement aux énergies
carbonées qui sont pilotables, ces dernières sont tributaires des conditions météorologiques
et donc par essence intermittentes, ce qui peut avoir des conséquences néfastes sur la sta-
bilité du réseau. Pour anticiper les déséquilibres entre la production et la consommation, la
prévision de la production des énergies renouvelables devient alors primordiale. Cependant,
contrairement à la prévision de la production éolienne, la prévision de la production PV est
encore considérée comme un domaine immature. L’objectif clé de cette thèse réside donc
en l’amélioration de la précision de ces prévisions. Pour mener à bien cet objectif, plusieurs
questions de recherche ont été définies à partir de l’état de l’art.

Résumé et principaux résultats

Dans un premier temps, le Chapitre 2 présente la méthodologie utilisée tout au long de
ces travaux de recherche. Ainsi, sont présentés les modèles utilisés pour générer les prévisions,
les méthodes pour quantifier la précision de ces dernières, ainsi que les données d’entrée
considérées. Une analyse préliminaire des prévisions obtenues avec le modèle AR met en
avant des performances en accord avec la littérature.

Le domaine de la prévision PV est dominé par les modèles statistiques ou d’apprentissage
machine. Dans le Chapitre 3 nous cherchons à étudier le couplage possible entre ces modèles
et les connaissances acquises par la physique. L’idée première est de modéliser physiquement
le processus de conversion de l’irradiance en puissance électrique et de l’intégrer à la chaîne
de prévision afin d’en étudier l’impact sur la précision des sorties. Les résultats montrent
que la prise en compte de la projection de l’irradiance sur plan incliné, et dans une moindre
mesure des propriétés optiques des différents matériaux, permet d’améliorer les performances
prédictives en comparaison avec un modèle basé sur l’irradiance globale sur plan horizontal.

Une fois ce modèle implémenté, il nous est possible d’analyser finement les données à
disposition et d’en extraire l’information pertinente. Ceci constitue l’objectif du Chapitre 4.
Ainsi, une méthode y est développée afin d’identifier et éventuellement corriger les anoma-
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lies de production qui viennent entacher la qualité des données d’entrée. Nous mettons en
évidence la plus-value associée à l’identification et la correction des données en termes de
performances prédictives. Néanmoins dans notre cas, ces deux processus conduisent à des
résultats très proches. Ceci peut s’expliquer par le bruit généré lors de la phase de correc-
tion. Dans un second temps, nous portons notre attention sur la normalisation des données
par sortie de modèle ciel clair afin de mettre en exergue la composante aléatoire du signal.

Ce processus de normalisation permet de supprimer les corrélations ST associées au
mouvement du soleil. Trois types de données ST sont ensuite analysés et comparés au sein
du Chapitre 5 : (1) des observations de production PV spatialement distribuées, (2) des
estimations de l’irradiance au sol par imagerie satellite, et (3) des observations de l’opacité
nuageuse obtenues grâce aux canaux infrarouges des satellites. Une analyse basée sur la
direction des vents dominants associés aux déplacements de masses nuageuses significatives
met en évidence une inadéquation avec la configuration de notre cas d’étude. C’est pour
pallier ce problème que les données d’origine satellite sont considérées. Afin de gérer la
forte dimensionalité de cette source de données, plusieurs approches sont comparées : (1)
une approche de sélection des variables basée sur un algorithme de minimisation de la
redondance et de maximisation de la pertinence de l’information, (2) une réduction de la
dimension via une analyse en composante principale, et (3) une estimation via un réseau
convolutif de l’irradiance horizontal au niveau du site d’intérêt à partir des précédentes
images. La pertinence de chaque méthode de pré-traitement est tributaire du modèle de
régression considéré. Enfin, les images obtenues par canaux infrarouges sont considérées
dans l’optique d’améliorer les performances prédictives des prévisions générées pendant la
nuit, alors qu’aucune observation récente de la situation météorologique n’est disponible.
Cette source d’information est sous-représentée dans la littérature, à notre connaissance
seulement deux articles scientifiques en traitent [104, 114]. Nous démontrons la pertinence
de cette source pour des prévisions générées pendant la nuit et sa complémentarité avec les
estimations de l’irradiance au sol par imagerie satellite et les prévisions de l’irradiance.

Dans un contexte d’utilisation de données ST, l’importance des régresseurs est suppo-
sée dépendre de la direction de déplacement des masses atmosphériques. D’où l’idée de
mettre à jour de manière dynamique les coefficients des modèles de régression selon l’état de
l’atmosphère. Deux approches distinctes peuvent être considérées : soit recaler un modèle
pour chaque nouvelle prévision, soit proposer un ensemble de modèles dédiés à certaines
situations météorologiques. La première approche est retenue et fait l’objet du Chapitre 6.
Cette approche de conditionnement selon la situation météorologique peut être vue comme
une façon de non-linéariser les modèles. Ainsi, nous démontrons que cette méthodologie de
conditionnement est très bien adaptée aux modèles linéaires mais tend à dégrader les per-
formances des modèles non-linéaires. Le principal défaut de cette approche réside dans son
temps de calcul très important. La seconde stratégie de conditionnement présentée à l’An-
nexe C.3 constitue alors une alternative moins chronophage et conduisant, selon les premiers
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résultats, à des performances semblables. Enfin, une étude préliminaire du conditionnement
appliqué aux modèles probabilistes montre que cette méthodologie tend à produire des pré-
visions plus fines mais moins précises en comparaison avec des prévisions générées par le
même modèle mais en considérant les données NWPs en tant que variables exogènes.

Nous avons désormais tous les éléments pour répondre aux différentes questions de re-
cherche :

RQ1 : Comment les défauts des composants principaux des centrales PV ont
des répercussions sur la précision des prévisions ?

Les défauts au niveau des onduleurs et des transformateurs détériorent la qualité du
signal de production en introduisant une variabilité additionnelle. Dans notre cas, le rejet
des observations fallacieuses permet d’améliorer les performances prédictives.

RQ2 : Quelle est la meilleure approche pour mettre en valeur l’information
pertinente contenue dans les séries temporelles de production ou d’irradiance ?

La normalisation par ciel clair permet de supprimer la variabilité journalière et saison-
nière due à la course du soleil et donc de mettre l’accent sur la composante associée à la
variation due aux mouvements de masses nuageuses. Néanmoins, ce processus n’est pas suffi-
sant pour rendre les séries temporelles stationnaires. Une étude empirique souligne l’intérêt
d’ajouter des variables additionnelles telles que les angles solaires afin de permettre une
meilleure assimilation des informations par le modèle.

RQ3 : Quelle est la stratégie optimale pour coupler plusieurs sources d’in-
formation ?

La meilleure stratégie d’intégration de variables dépend essentiellement du modèle de
régression. Dans le cas d’un modèle linéaire, le conditionnement par la situation météoro-
logique permet de tirer le meilleur parti des variables ayant une dépendance non-linéaire
avec la variable à expliquer, alors qu’une intégration directe en tant que variable exogène
est indiquée dans le cas d’une variable linéaire. Dans le cas d’un modèle non-linéaire, il est
préférable de recourir aux variables explicatives.

RQ4 : Quelle stratégie pour gérer des jeux de données de grande dimension ?

Dans ces travaux, nous proposons d’utiliser une approche innovante permettant de sé-
lectionner des variables qui minimisent la redondance et maximisent la pertinence de l’in-
formation.

RQ5 : Quelle est la meilleure approche pour intégrer des connaissances phy-
siques dans un modèle statistique ?

Nous avons fait le choix d’intégrer des connaissances basées sur la physique en prétraitant
les données d’entrée. Nous avons donc réalisé une revue bibliographique afin de proposer un
modèle de conversion de l’irradiance en puissance électrique qui soit simple et performant.
Ce modèle peut être utilisé de trois manières : (1) dans le cadre de l’évaluation de la qualité
des données en convertissant l’irradiance observée sur site en puissance électrique, (2) lors
de la normalisation en dérivant une puissance électrique théorique ciel clair, et enfin (3) dans
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les modèles d’apprentissage machine en convertissant les données d’irradiance en puissance
électrique. Dans ces deux derniers cas de figure, l’utilisation du modèle physique conduit
à de meilleures performances. L’étape critique de ce processus est la projection sur plan
incliné.

RQ6 : Comment pouvons-nous améliorer l’interprétabilité des modèles de
type boîte noire ? Une étape préliminaire pour comprendre le fonctionnement d’un mo-
dèle est de supprimer les variables redondantes et non pertinentes. En ce sens, les différents
processus de sélection de variables implémentés tout au long de cette étude répondent à
la question soulevée. De plus, la méthodologie de conditionnement à la situation météo-
rologique est séduisante puisqu’elle propose des modèles spécialisés pour chaque type de
situation météorologique . Ainsi même si le modèle considéré est une boîte noire, il est
possible de comprendre le comportement de ce dernier selon la situation atmosphérique.

Perspectives

Enfin, cette thèse ouvre différentes directions de recherche. Tout d’abord, il est envisa-
geable d’étendre la diversité des sources d’informations, par exemple, via la prise en compte
d’images du ciel au niveau du site ou en considérant des données observées au niveau de
stations météorologiques amateures. Il est également concevable d’étendre les horizons de
prévisions, e.g. pour le lendemain. Dans ce contexte, la prise en compte des champs géo-
potentiels pourrait être judicieuse. Dans cette étude, nous nous sommes volontairement
restreints à des modèles de prévisions relativement peu complexes. Il serait donc intéressant
d’étudier des architectures plus complexes et novatrices telles que les réseaux antagonistes
génératifs. Un dernier axe pourrait consister en la génération d’intervalles de confiance à
partir de méthodes basées sur les analogues et le bootstraping.
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Appendix A

Computational Time

This section gathers the computational time (Table A.1) of the main models investigated
throughout this thesis. These times do not include the feature selection of SDSI. The
computations are performed on a virtual machine composed of 128 Go RAM and 32 central
processing units. To reduce the computational time of the forecast generations, forecasts
for the different horizons are run in parallel. Models are trained on data from year 2015
and performances are evaluated on year 2016.

The low computational cost of the CRF(local) + SDSI(t/mRMR) model compared with
the CAR(local) + SDSI(t-9:t/mRMR) is due to the fact that the former considers only the
last observations associated with the NSDSI = 10 selected SDSI features, while the AR-
based model also integrates lagged observations (Section 5.2.4.4). The high computational
costs of optimised WHCO models result from the fine grid used during the grid-search
optimisation (we evaluate 11 potential values of the number of analog situations: N =
{200, 400, 800, . . . , 4000}).
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Model Time (hour)

Without
optimisation

With
optimisation*

Persistence 00:00:10

AR 00:00:22
RF 00:00:22

AR + SDSI(t-9:t/mRMR) 00:01:00
RF + SDSI(t/mRMR) 00:00:38

AR + SDSI(t-9:t/mRMR) + NWPs 00:02:45
RF + SDSI(t/mRMR) + NWPs 00:02:37

CAR(local) 00:07:55 00:29:01
CRF(local) 00:06:02 01:00:37

CAR(local) + SDSI(t-9:t/mRMR) 00:19:49 01:01:58
CRF(local) + SDSI(t/mRMR) 00:06:11 01:16:37

CAR(local) + SDSI(t-9:t/mRMR) + NWPs 00:23:15 01:15:45
CRF(local) + SDSI(t/mRMR) + NWPs 00:08:35 01:40:04

CAR(SSRD) 00:07:51 00:27:08

cCAR(SSRD) 00:00:30

Table A.1 – Summary of typical computational times (training and testing) of the main fore-
casting architectures used in this thesis. Time should be understood as the time needed
to forecast the production of a site for the various lead times considered (namely h ∈
{15, 30, 45, 60, 75, 90, 105, 120, 180, 240, 300, 360}). *The optimisation of the number of analog sit-
uations is developed in Section 6.3.1.3.
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Supplementary material for
clear-sky normalisation

B.1 Choice of the clear-sky model

During this thesis, two clear-sky models have been investigated. To determine the best
model, we run the AR forecasting model with PV production normalised by the two models,
namely the European Solar Radiation Atlas (ESRA) [207] and the McClear [212] models.
These two models mainly differ in the way that they consider aerosols: the ESRA model
is based on a monthly climatology, while the McClear model is supplied with parameters
updated every 3 hours. As this work was performed in the early stage of this thesis, the
influence of the power conversion (i.e. the model that converts GHI into electrical power)
was not investigated.

B.1.1 Forecasting performances

Figure B.1 represents the forecasting performances of the AR model fed with production
observations normalised through either the McClear or the ESRA model outputs. In addi-
tion, the impact of the projection of GHI on the POA is also assessed. First, it is obvious
that whatever the clear-sky model considered, the normalisation approach has a positive
impact on the forecasting accuracy. We observe that the forecasting performances obtained
with inputs normalised by the McClear model are better in terms of normalised Root Mean
Square Error (nRMSE) (i.e. the AR(McClear-GHI) model outperforms the AR(ESRA-
GHI) model), but conclusions are less straightforward when considering the normalised
Mean Absolute Error (nMAE). Indeed, for forecast horizons lower than 2-hour ahead, the
AR(ESRA-GHI) model is better than the AR(McClear-GHI) model. This observation is
partly in line with the statement made in [107], which stipulates that the Linke Turbidity
(LT) factor – which is used in the ESRA model – is a source of uncertainty. In addition,
the projection of the GHI improves the nRMSE scores for both clear-sky models, while it
tends to degrade the nMAE scores.
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Figure B.1 – Forecasting performances obtained with the AR model fed with production normalised
either with the McClear or the ESRA clear-sky models outputs. Influence of the projection is also

investigated. Various configurations are assessed: (1) the AR(un-normalised) model fitted on
non-normalised inputs, (2) the AR(ESRA-GHI), and (3) the AR(ESRA-GTI) models are fed with
inputs normalised with ESRA-based outputs, and lastly (4) the AR(McClear-GHI), and (5) the

AR(McClear-GTI) models are fed with inputs normalised by the McClear model outputs.

All the regression models considered in this thesis aim at minimising the Root Mean
Square Error (RMSE) between observations and forecasts. Therefore, production observa-
tions are then normalised through clear-sky estimations provided by the McClear model.

B.2 Influence of clear-sky normalisation over an artificial neu-
ral network

In Section 4.4.2.2.3, we assess the influence of the clear-sky normalisation process over
the accuracy of RF-based models. As a complement, here we focus on an ANN architecture
[287] implemented with the keras package [288]. This architecture is composed of 5 layers
with respectively 256, 128, 64, 32, and 1 neurons. The Rectified Linear Unit (ReLU) function
is chosen as the activation function in all of the layers, except the last one, where a linear
function is used. To avoid overfitting, the L2 regularisation penalty is added to the loss
function, namely the mean squared error. The Adam optimiser is used.

Similarly to what have been done with the RF model, we compare the forecasting per-
formances of the ANN model fed with clear-sky normalised or non-normalised inputs. To
help the model to better assess the influence of the Sun’s movement on the signal variability,
we add features such as solar angles (elevation and azimuth angles). All the accuracy scores
are gathered in Figure B.2. First, we observe that the poorest accuracy is obtained with the
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model fed with non-normalised power measurements. The addition of solar angles features
improves performances both in terms of nMAE and nRMSE. Nonetheless, the ANN(k3) +
Solar angles model slightly outperforms the ANN(PV) + Solar angles model. In addition,
when we consider Surface Solar Radiation Downwards (SSRD) predictions, we observe that
the model based on the clear-sky normalisation approach (i.e. the ANN(k3) + Solar angles
+ k(SSRD) model), and the model fed with non-normalised inputs (i.e. the ANN(PV) +
Solar angles + SSRD model) lead to rather similar accuracy.

Figure B.2 – Forecasting performances of the ANN model fed with clear-sky normalised inputs (i.e.
ANN(k3), ANN(k3) + Solar angles, ANN(k3) + Solar angles + k(SSRD)) or non-normalised

inputs (i.e. ANN(PV), ANN(PV) + Solar angles, ANN(PV) + Solar angles + SSRD).

As the nRMSE and nMAE differences are very low between the considered models,
we implement the Diebold-Mariano (DM) test to judge the statistical significance of the
differences. Figure B.3 highlights that for very short-term lead times (typically horizons
lower than 1-hour ahead), forecasts produced by the ANN(k3) + Solar angles + k(SSRD)
and ANN(PV) + Solar angles + SSRD models are statistically different. On the contrary,
for horizons greater than 3-hour ahead, the models are not statistically different.

To conclude, similarly to the RF model, the use of clear-sky normalised inputs is relevant
when past power observations are considered. The use of additional information in relation
to the Sun’s path helps the model based on non-normalised inputs. The main distinction
between the RF and ANN models lies in the fact that the latter is able to make a better use
of irradiance predictions in a context of non-normalised data, in such a way that it reaches
similar performances than its counterpart based on clear-sky normalised inputs.
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Figure B.3 – DM test (defined in Section 2.3.3) between the ANN(k3) + Solar angles + k(SSRD)
and ANN(PV) + Solar angles + SSRD forecasting models for different forecast horizons. The red

dotted lines stand for the borders delimiting the validation and rejection of the null hypothesis.
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Supplementary material for
conditioned learning

C.1 Analogs obtained with the S1 score

Figure C.1 represents analog situations obtained by considering the score S1 defined in
Section 6.3.3.2.2. These sets of figures are to be compared with analog situations (Fig-
ure 6.4) obtained with the coupling of the Principal Component Analysis (PCA) approach
(Section 5.3.2.2) and the analogy score D (Equation 6.2).
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(a) Target situation (b) 1st analog situation

(c) 10th analog situation (d) 100th analog situation

Figure C.1 – Examples of analog situations (b), (c), (d) with regard to the target situation (a)
obtained with the 925 hPa geopotential field with the S1 score.
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C.2 Sensitivity analysis of geopotential fields

This section aims at determining the geopotential field level and the associated spa-
tial window which best characterise the atmospheric state at PV units location. To do so,
we adopt an a posteriori analysis framework: forecasting performances of the root model
conditioned to various state features are compared, and only the ones leading to the best
performances are retained. Figures C.2 and C.3 show the performances of the AR model
conditioned respectively with geopotential fields at 500 and 925 hPa for three spatial win-
dows. For the 500 hPa pressure level, we observe that the nRMSE- and nMAE-based skill
scores are similar for forecast horizons lower than 2-hour ahead, independently of the spatial
window. Beyond, forecasts based on the spatial window W1 stand out in terms of nRMSE
and nMAE scores. As regards forecasts issued with the geopotential field at the 925 hPa
pressure level, the best scores are obtained considering the window W3.

Figure C.2 – Forecasting performances of the AR model conditioned to the geopotential field at
500 hPa and the solar angles for the three spatial windows defined in Figure 6.5.

A comparison between the most accurate forecasts obtained with the 500 and 925 hPa
pressure levels is displayed in Figure C.4. Both approaches provide similar scores, but
forecasts based on the 925 hPa pressure level are slightly better. The DM test reveals that
generated forecasts are statistically different (Figure C.5).

C.3 Weather conditioning based on clusters

WHCO, as it is defined in Section 6.2.1, can take at least two forms; either a regime-
switching model approach, where each model is dedicated to a specific weather type (e.g.
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Figure C.3 – Forecasting performances of the AR model conditioned to the geopotential field at
925 hPa and the solar angles for the three spatial windows defined in Figure 6.5.

sunny or cloudy), or a dynamic approach, where the model parameters are updated regularly.
In this section, we adopt the former approach. Due to time constraints, the subject is
only touched upon, but the proposed methodology can be viewed as a guide for further
investigations.

C.3.1 Methodology

The definition of the various atmospheric regimes is performed by a clustering algorithm.
The goal of such an algorithm is to divide N points from a D-dimensional space into K
clusters in such a way that observations belonging to a same group share more similarity to
each other to those in other clusters.

The clustering space in which the determination of clusters is performed is inspired
from the analogy score defined in Equation C.1, formerly introduced in Section 6.3.1.2.
This metric possesses the property to attribute low scores for weather situations that have
parameters with close values and that evolve similarly. To keep these characteristics, we
define the clustering space as a combination of features zi,t and their corresponding lagged
and leading values: C = {z

i,t−˜︁t, zi, zi,t+˜︁t}. In other words, we build a space composed of
a set of weather forecast parameters at time t − ˜︁t, t, and t + ˜︁t (where ˜︁t = 60 min). As a
result, situations associated with weather parameters that have similar values and evolve
likely should be located in the same area of the clustering space. As a preliminary work,
the focus is on the SSRD feature normalised through the output of the clear-sky model.
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Figure C.4 – Comparison of forecasts obtained with AR model conditioned to geopotential fields at
500 and 925 hPa pressure levels and associated respectively with the spatial windows W1 and W3.

Figure C.5 – DM test (defined in Section 2.3.3) between forecasts obtained with AR model
conditioned to the geopotential fields at 500 and 925 hPa. The red dotted lines stand for the

borders delimiting the validation and rejection of the null hypothesis.

D(Zt+h, Zt′+h) =
D∑︂
i=1

ωAi
σi

⌜⃓⃓⃓
⎷ ˜︁t∑︂
j=−˜︁t(zi,t+h+j − zi,t′+h+j)2. (C.1)

t Moment when the forecast is generated,
t′ Temporal observations from the learning set,
i Index referring to the analog predictors,
D Number of analog predictors,
ωAi Weight of analog predictors (∑︁Nv

i=1 ω
A
i = 1),
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σi Standard deviation of analog predictors,˜︁t Half-width of the time window over which the metric is computed (˜︁t = 60 min).

Several definitions of cluster are proposed in the literature, which leads to the devel-
opment of specific algorithms (e.g. distance- or density-based algorithms). Here, two al-
gorithms are investigated, namely the Partitioning Around Medoids (PAM) [289] and the
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [202] algorithms.
In short, the PAM (or K-medoids) algorithm is a clustering algorithm very similar to the
K-means algorithm [290]. K-medoids 1 is a partitional algorithm that minimises the distance
(here, the Euclidean distance) between points from a cluster and the point designated as
the centre of that cluster (a medoid in the case of the K-medoids algorithm or a centroid
in the case of the K-means algorithm). The PAM algorithm is a more robust version of
the K-means regarding noise and outliers because the latter tends to move the centre of
the cluster towards the outliers, which in turn move other points away from the centre of
the cluster. On the other hand, DBSCAN algorithm relies on the notion of density: within
each cluster, the density of points is greater than outside the cluster and the density within
an area of noise is lower than the density in any of the clusters. The key idea behind
DBSCAN is that for each point of a cluster the neighbourhood of a given radius, ϵ, has
to contain at least a minimum number of points denoted as MinPts. This algorithm is
detailed in Section 4.3.3. Both algorithms need user-defined parameters (e.g. the number of
clusters K or a minimal neighbourhood radius ϵ). These parameters are determined through
a grid search approach where several parameters are tested and only those leading to the
best forecasting performances are retained. A comparison between forecasts issued by the
best-tuned versions of the PAM and the DBSCAN algorithms highlights that the former
provides the best accuracy when the AR model is used. This is supposed to result from the
lack of clear demarcation between the different regimes observed in the clustering space.
Indeed, Figure C.6 highlights that a density-based clustering approach is not fitted to the
data we are dealing with: no clear density variation is observed within the distribution of
points along the diagonal. This figure shows regimes with specific weather dynamics. For
instance, cluster 5 stands for sunny situations, cluster 14 characterises overcast situations,
while cluster 6 corresponds to crepuscular situations.

1. A medoid is a representative object of a dataset, in contrast to the centroid, or centre of mass that
may not necessarily belong to the dataset.
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Figure C.6 – 3-D scatter plot of clusters obtained with the PAM algorithm considering a space
composed of the SSRD normalised by clear-sky model outputs. Colours represent the 15 clusters.

One of the weaknesses of PAM algorithm is that it processes all features equally, in-
dependently of their actual relevance. This issue can be circumvented by considering a
weighted distance as a dissimilarity metric (such as the weighted Euclidean distance, Equa-
tion C.2). Then a grid search approach performed on the weights can be implemented to
obtain the tuning leading to the best forecasting accuracy. In order to simplify the process
of determining relevant weight for each features while reducing the computational time, we
can derive weights from the MI criterion (notion defined in Section 5.3.2.1.1) between the
features and the PV production observations as in [67]. Nonetheless, due to time constraints
none of these solutions have been investigated.

d(zi,mk) =
D∑︂
d=1

ωd(zi,d −mk,d)2 (C.2)

D Number of features considered in the clustering analysis,
k Considered cluster,
m Medoid of cluster k,
ωd Feature specific weight,

d(zi,mk) Dissimilarity measure between entity zi and medoid mk.

The determination of the clusters is performed on the training dataset, then characteris-
tics of the determined clusters are used to assign entities in the testing dataset. Eventually,
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D regression models are fitted on the clusters of the training set, and then applied to the
corresponding clusters of the testing dataset.

C.3.2 Results

The grid search regarding the number of clusters K to consider is performed with the
AR model. The best forecasting accuracy is reached when considering 15 clusters, beyond,
improvements are negligible. Figure C.7 gathers the forecasting performances of analog-
2 and cluster-based conditioned models. When SSRD is used only as a state feature, the
cluster-based conditioned (cC) model (i.e. the cCAR(SSRD) model) exhibits the best scores
compared to the analog-based model (i.e. CAR(SSRD)) in terms of nRMSE, nMAE, and
normalised Mean Bias Error (nMBE). Apart from providing forecasts with higher accuracy,
the cluster-based conditioning drastically reduces the computational time: it is around
50 times faster than the analog-based conditioning (Table A.1). The simultaneous use of
SSRD as a state and explanatory feature leads to ambivalent scores. Both models exhibit
rather similar nMAE scores, but the CAR(SSRD)+SSRD model slightly outperforms its
counterpart in terms of nRMSE, while the cCAR(SSRD)+SSRD model has slightly a lower
bias. Differences among these forecasts are significant for forecast horizons greater than
3-hour ahead (Figure C.8).

Figure C.7 – Comparison between forecasts issued by analog-based conditioning (i.e. CAR(SSRD)
and CAR(SSRD)+SSRD) and cluster-based conditioning (cC) (i.e. cCAR(SSRD) and

cCAR(SSRD)+SSRD) models.

2. Analog-based conditioning refers to the methodology investigated in Chapter 6 and defined in Sec-
tion 6.3.
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C.3. Weather conditioning based on clusters

Figure C.8 – DM test (defined in Section 2.3.3) between forecasts obtained with the AR model
conditioned to the SSRD either with the analog-based approach or the cluster-based approach. The

red dotted lines show the borders delimiting the validation and rejection of the null hypothesis.

C.3.3 Conclusions

The cluster-based conditioning approach appears as an appealing alternative to the
analog-based conditioning. Both approaches exhibit rather close forecasting performances,
but the main advantage of the cluster-based conditioning lies in its frugality in terms of
computing resources. Further investigations are needed regarding the integration and the
weighting of additional state features.
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MOTS CLÉS

Prévision court-terme de la production photovoltaïque, Données spatio-temporelle, Conditionement par la sit-

uation météorologique, Observations infrarouges, Correction de données aberrantes, Systèmes électriques

intelligents

RÉSUMÉ

Dans un contexte d’épuisement des ressources naturelles, les sources d’énergies renouvelables jouent un rôle croissant

dans le mix de la production électrique. Cependant, une part importante des renouvelables peut compromettre la stabilité

du réseau électrique en raison de leurs variabilités. Il est donc primordial de connaître la quantité d’énergie future

produite afin d’assurer l’équilibre entre production et consommation. Cette thèse porte sur l’amélioration de la précision

des prévisions court-terme de la production photovoltaïque. Pour y parvenir, un couplage entre modèles statistiques

et modèles physiques est proposé, en plus d’une architecture permettant de conditionner les modèles à la situation

météorologique. En outre, un large éventail de sources d’information est considéré. A cet égard, une analyse approfondie

des données permet de mettre en exergue l’information pertinente ainsi que les dépendances spatio-temporelles pouvant

exister entre les différentes variables.

ABSTRACT

In a context of natural resources depletion, weather-dependent renewable energy sources play an increasingly important

role in the electricity generation mix. Yet, high shares of renewables can jeopardise the safe operation of the power grid

due to their variable nature. To address this challenge, it is essential to know the future amount of energy produced

to balance production and consumption. In this thesis, we explore two main approaches that aim at improving the

accuracy of short-term photovoltaic generation forecasting. The first option is to extend the existing statistical models

found in the literature through the coupling with a physics-based model, and by operating a shift from static to weather-

adaptive models. The second option lies in extending the range of available sources of information. In this regard, an

in-depth quality analysis of production measurements emphasises relevant information, and exhibits the spatio-temporal

correlations that may exist between the inputs.

KEYWORDS

Short-term photovoltaic generation forecasting, Spatio-temporal data, Weather conditioning, Infrared-based

observations, Correction of fallacious observations, Smart grids
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