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Laboratoire d’ingénierie des systèmes physiques et numériques,
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v



ACKNOWLEDGMENT

and Mr. Camille BURTON for their support on the computational resources. Without you, no dataset

would have been consolidated, and none of the work could have been completed.
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Abstract

The growing need for fast, organic, versatile, cost- and material-efficient products in the indus-

trial world drives the research to develop design approaches accounting for these criteria altogether.

Topology optimization (TO) falls in the category of these design approaches. It allows the generation

of shapes with curvatures and fine details, given parameters such as loads, boundary conditions, and

a volume fraction. The resulting design can have any shape and be defined as a 2D binary image

or a 3D binary voxel grid, such that the presence of a non-empty pixel/voxel means the presence of

the material. TO gained tremendous success in the 20th century during the industrial revolution of

the automotive and aerospace sectors, given its powerful potential to optimize a structure in terms of

material used while maintaining its recommended mechanical specifications and properties. Comple-

mentary comes additive manufacturing (AM), which allows the printing of any form. However, this

synergy is not as idealistic as it looks. On the one hand, TO uses an iterative, FE-based method that is

computationally expensive and relatively slow. On the other hand, AM requires the design’s shape to

comply with some geometrical criteria, like dealing with curvatures, overhanging patterns, the need for

supports, thin features, Etc., which are hardly integrated into TO’s formulation [1]. Thus, designing

optimal printable parts requires the intervention of experts to interpret the shapes proposed by TO to

comply with the manufacturing criteria. Nonetheless, this reinterpretation phase can compromise the

initial design’s optimality. Moreover, it is time-consuming and depends on the engineer’s expertise.

With the new advanced TO software, outputting a single design subjected to boundary conditions

and load configurations takes seconds to days, depending on the design’s complexity and surrounding

constraints. This aspect is acceptable if the process is limited to this single step. However, a me-

chanical engineer never relies on the first design (s)he tries, especially since TO, in its commercially

available form, does not consider geometrical constraints, manufacturing criteria, or other customized

industrial constraints (automotive, aeronautic, hydraulic, Etc.). (S)He always needs to explore sev-
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ABSTRACT

eral set-ups to find the optimal topology, shape, and sizing of the design to be manufactured. (S)He

also must ensure that his(her) final draft is creative, cost-efficient, and manufacturable. Hence, this

accumulated iterative exploration process can become slow, especially for large-scale designs. Conse-

quently, with the flourishing role of AM in the industry, it is further interesting to find a method that

simultaneously considers mechanical and geometrical constraints at the conceptual level known as the

discipline of Design for Additive Manufacturing (DfAM). Furthermore, a recent survey by Subedi et

al. [2] has shown that half of TO practitioners regret the absence of geometric and manufacturing-

related plugins in TO’s software. Accelerating DfAM’s cycle is a current hot research and industrial

topic. Consequently, researchers try to find workarounds to bypass these constraints and accelerate

the design optimization phase. We can find in the literature four general approaches to tackle the

problem. Accelerating the DfAM process consists of four major state-of-the-art approaches:

1. Formalizing AM design rules for engineers to consider at the CAD drawing phase. However, this

does not guarantee the initial design optimality and mechanical performance. Nevertheless, this

approach helped formalize AM constraints for novice users and guided engineers into creating

print-ready designs.

2. Integrating certain AM constraints at the FE-TO formulation. This approach allows the engi-

neers to have a first draft accounting for both constraints, thus preventing getting stuck in a loop

of re-drawing and re-testing the mechanical performance of the design. Nevertheless, not all AM

constraints can be analytically formulated. Also, this approach inherits the density-based TO’s

flaws. (1) FE-TO identifies the general shape at early iterations, inhibiting the method of mod-

ifying the shape to take account of geometrical constraints. (2) The convergence problem is not

guaranteed, especially when there are multiple constraints; it is hard to find a nash equilibrium

where all conditions are validated.

3. Assisting FE-TO methods with Machine learning (ML) and Deep Learning (DL). This approach

focuses on accelerating the TO phase of the DfAM process and does not dodge getting stuck in

a loop in later stages. Like the previous approach, most of TO’s problems are still inherited.

4. Replacing FE with ML and DL in TO. However, this approach does not integrate any manufac-

turing constraints and does not circumvent getting stuck in a loop in later phases of the DfAM

process.
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ABSTRACT

Our objective is to accelerate the whole DfAM process and have the best quality/cost ratio. Indeed,

the design phase has the lowest cost and highest impact on the overall product cost, quality, and

hence its lifecycle [3]. However, accelerating this phase alone is not enough, as we have seen with

state-of-the-art approaches. Moreover, while AM-FE-TO methods aim to accelerate the whole DfAM

process by preventing repetitive iterations, the analytical formulation of AM constraints, the meth-

ods’ convergence, and their computational costs are still a hurdle. Conversely, the introduction of ML

and DL only accelerated one phase. Thus, we propose to get the best of both worlds in this work.

Furthermore, this new DL approach allows manufacturing constraints’ integration within mechanical

ones concurrently at the same level. Therefore, any conditions, even ones lacking a mathematical

definition like experts’ rules and knowledge, benefit from DL’s speed and scalability advantages. It

is imperative to note that this approach is not intended to replace robust FE-TO but to help com-

pensate for its difficulties in integrating various complex constraints. Our work’s main contribution

is not only accelerating the TO phase but also identifying a way to tailor the design’s geometry and

manufacturability in order to generate a first draft design that complies with both mechanical and

geometric-manufacturing constraints to avoid getting stuck in a loop of updating and testing designs

and accelerate the whole DfAM process. The major contributions of our work can be summarized as

follows:

• Integration of mechanical and manufacturing constraints at the same level.

• Creation of a synthetic dataset of 2D designs alongside their mechanical and geometrical man-

ufacturing constraints.

• Benefitting from DL’s ability to learn spatial correlations and its speed and scalability. This ap-

proach integrates input mechanical and geometrical conditions at the conceptual level, generates

designs accordingly, and is computationally independent of the inputs’ complexity.

• Convergence is no longer an issue as long as the model is trained on converged designs.

• Any constraint can be easily integrated thanks to the flexibility of concatenating several input

types into DL models.

The advantages of our approach are:
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• Any AM constraint or other type of constraint (min overhang, thermal distortion, buckling,

experts’ informal rules, Etc.) can be integrated into the design model, not only analytically

formulated ones.

• Acceleration of the whole DfAM process, and not only the design phase, by generating a first

design draft complying with geometrical manufacturing and mechanical constraints and avoiding

repetitive iterations of design updating and evaluation.

• DL-AM-TO could be industrialized as a lighter generative design module to be implemented in

industrial design software in the future.

It is essential to highlight that this work is focused on SIMP among all TO approaches for two

major reasons. First, SIMP deals with the design as a distribution of material, in other terms, as

an image, which is compatible with our way of approaching the design using DL-based computer

vision techniques. Second, SIMP is the most implemented TO approach in industrial software, for its

simplest and less computationally expensive TO approach; SIMP is found in SolidWorks, ABAQUS,

Siemens NX, Altair Optistruct, and ANSYS Mechanical, which also includes the level set approach

[4]. The latter argument encourages us to work on compensating for its difficulties with DL and, in

the future, propose a lighter AI-based TO module to be incorporated into industrial software.

The work was divided into five parts:

1. Generation of a synthetic 2D-designs-dataset from the top common industrial topology opti-

mization method, SIMP (Solid Isotropic with material Penalization). This dataset consisted of

2D designs alongside the mechanical conditions, called DB1.

2. Since the designs of DB1 was truss-like structures, we have started with a simple geometrical

constraint, the number of bars, to build a proof-of-concept Deep Learning model that takes

as input the mechanical constraints alongside the number of bars (the geometrical one) and

generates a 2D design accordingly. We have used the GAN framework with three discriminators

to train our DL-TO model. The first one evaluated the generated designs’ conformity to the

mechanical constraints. The second one predicted the number of bars in the generated designs

and penalized DL-TO if they did not respect the input geometrical constraint. Finally, the third

one predicted the energy of deformation, known as the compliance over the generated designs,

and penalized DL-TO if the compliance was very high.
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3. Afterward, we needed to integrate more concrete geometric manufacturing-related constraints.

The problem was that there was no database with designs alongside their mechanical and geo-

metrical constraints. Thus we had to create this dataset ourselves. First, we generated more DB1

designs from given mechanical constraints (boundary conditions, loads configuration, and volume

fraction). Second, a DL model that maps designs to their corresponding mechanical conditions,

using the SIMP designs, is built; the model is referred to as DL-Mechanical-Conditions-Predictor.

Third, synthetic designs (inspired by the shapes of DB1 designs) with various geometric con-

straints are generated using pygmsh. Fourth, the previously learned DL-Mechanical-Conditions-

Predictor is used to predict their mechanical conditions. Finally, the target dataset ”GMCAD” is

consolidated; it consists of pairs of designs and their mechanical and geometric constraints. The

geometrical constraints are minimum/maximum thicknesses, minimum/maximum bar lengths,

angles, number of components, Etc.

4. Having GMCAD, we could start training a model that simultaneously integrates the mechanical

and geometrical-manufacturing-related constraints; we call this model DL-AM-TO. The geomet-

rical constraints chosen are the minimum overhang (the angle between the printing orientation

and the normal of a component’s surface in a design), the maximum length of a component,

the minimum thickness, and the number of components, such that a component is defined as a

rectangular bar. Building DL-AM-TO was divided into two steps. The first step consisted of

isolating every geometric constraint to check its effect on the design’s geometry and the other

conditions; in other terms, doing step 2 per geometrical constraint. Second, putting all geometric

constraints altogether to see their effects.

5. Finally, we validated DL-AM-TO by generating several geometries for the same mechanical

constraints, which differ only by one geometrical constraint each time. We compared these

geometries to the one proposed by SIMP, where the shape cannot be geometrically adjusted.

DL-AM-TO allows us to adjust the geometry of a design to meet the geometric-manufacturing

constraints in a few seconds. These geometries have a mechanical performance of the same order

as SIMP. Nevertheless, they are 1.4 times faster in the printing phase and require less support.

Keywords : Topology Optimization (TO), Additive Manufacturing (AM), Design for Additive

Manufacturing (DfAM), Deep Learning (DL), Generative Adversarial Networks (GAN), Convolutional
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Neural Networks (CNN).
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Résumé

Le besoin croissant de produits rapides, organiques, polyvalents, efficaces en termes de coûts et de

matériaux dans le monde industriel, incite la recherche à développer des approches de conception tenant

compte de tous ces critères. L’optimisation topologique (TO) entre dans la catégorie de ces approches.

Elle permet de générer des formes avec des courbures et des détails fins, en fonction de paramètres

tels que les charges, les conditions aux limites et la fraction volumique. Le design résultant peut avoir

n’importe quelle forme et être défini comme une image binaire 2D ou une grille de voxels binaires 3D,

de sorte que la présence d’un pixel/voxel non vide signifie la présence du matériau. La TO a connu

un succès considérable au 20e siècle lors de la révolution industrielle des secteurs de l’automobile et de

l’aérospatiale, étant donné son puissant potentiel d’optimisation d’une structure en termes de matériau

utilisé tout en conservant ses spécifications et propriétés mécaniques recommandées. D’autre part, la

fabrication additive (FA) vient en complément ; elle permet l’impression de n’importe quelle forme.

Cependant, cette synergie entre TO et FA n’est pas aussi idéaliste qu’il n’y parâıt. D’une part, le TO

utilise une méthode itérative, basée sur les éléments finis, qui est coûteuse en calculs et relativement

lente. D’autre part, la FA exige que la forme du design soit conforme à certains critères géométriques,

comme la gestion des courbes, des modèles en surplomb, la nécessité de supports, les caractéristiques

minces, etc. Ainsi, la conception de pièces imprimables optimales nécessite l’intervention d’experts

pour interpréter les formes proposées par la TO afin de respecter les critères de fabrication. Néanmoins,

cette phase de réinterprétation peut compromettre l’optimalité du design initiale. De plus, elle prend

du temps et dépend de l’expertise de l’ingénieur. Avec les nouveaux logiciels avancés de TO, la

sortie d’un design unique soumis à un ensemble de conditions limites et de configurations de charge

est une question de secondes à quelques jours selon la complexité de ce design et des contraintes

environnantes. Cet aspect est acceptable si le processus se limite à cette seule étape. Cependant,

un(e) ingénieur(e) en mécanique ne se fie jamais à la première ébauche qu’il/elle essaie, d’autant
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RESUME

plus que la TO, dans sa forme commerciale, ne tient pas compte des contraintes géométriques, des

critères de fabrication ou d’autres contraintes industrielles personnalisées (automobile, aéronautique,

hydraulique, etc.). Il/Elle doit toujours explorer plusieurs configurations pour trouver la topologie, la

forme et le dimensionnement optimaux du modèle à fabriquer. Il/Elle doit également s’assurer que

son projet final est créatif, rentable et manufacturable. Par conséquent, ce processus d’exploration

itérative accumulée peut devenir lent, surtout pour les designs à grande échelle. Par conséquent,

avec le rôle florissant de la fabrication additive dans l’industrie, il est intéressant de trouver une

méthode qui tienne compte simultanément des contraintes mécaniques et géométriques au niveau

conceptuel ou ce que l’on appelle la discipline de la conception pour la fabrication additive (Design

for Additive Manufacturing, DfAM). De plus, une enquête récente menée par Subedi et al. [2] a

montré que la moitié des praticiens de la TO regrettent l’absence de plugins géométriques liés à la

fabrication dans le logiciel de la TO. L’accélération du cycle du DfAM est un sujet de recherche et

un sujet industriel d’actualité. Par conséquent, les chercheurs tentent de trouver des solutions pour

contourner ces contraintes et accélérer la phase d’optimisation du design. Nous pouvons trouver dans

la littérature quatre approches générales pour aborder le problème. L’accélération du processus de

DfAM se compose de quatre approches majeures de l’état de l’art :

1. Formaliser les règles de design de la FA pour que les ingénieurs les prennent en compte lors de

la phase de dessin de la conception assistée par ordinateur (CAO). Cependant, cela ne garantit

pas l’optimalité de la conception initiale et les performances mécaniques. Néanmoins, cette

approche a permis de formaliser les contraintes de FA pour les utilisateurs novices et de guider

les ingénieurs dans la création de designs prêts à être imprimés ;

2. intégrer de certaines contraintes FA lors de la formulation TO basée sur les éléments finis (FE);

FE-TO . Cette approche permet aux ingénieurs de disposer d’une première ébauche prenant en

compte les deux contraintes, évitant une boucle de dessin et de test des performances mécaniques

du design. Toutefois, toutes les contraintes FA ne peuvent pas être formulées analytiquement.

En outre, cette approche hérite des défauts de la TO basée sur la densité. (1) FE-TO identifie la

forme générale dès les premières itérations, ce qui empêche la méthode de modifier la forme pour

tenir compte des contraintes géométriques. (2) Le problème de convergence n’est pas garanti,

surtout lorsqu’il y a des contraintes multiples ; il est difficile de trouver un équilibre où toutes

les conditions sont validées ;
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3. assister les méthodes FE-TO avec du Machine Learning (ML) et du Deep Learning (DL). Cette

approche se concentre sur l’accélération de la phase TO du processus DfAM et n’évite pas de

rester coincé(e) dans une boucle dans les étapes ultérieures. Comme pour l’approche précédente,

la plupart des problèmes de TO sont encore hérités ;

4. remplacer complètement les FE par du ML et DL dans la TO. Cependant, cette approche

n’intègre aucune contrainte de fabrication et ne permet pas d’éviter la boucle dans les phases

ultérieures du processus DfAM.

Notre objectif est d’accélérer l’ensemble du processus DfAM et d’obtenir le meilleur rapport qual-

ité/coût. En effet, la phase de conception a le coût le plus bas et l’impact le plus fort sur le coût

global du produit, sa qualité et donc son cycle de vie[3]. Cependant, l’accélération de cette seule phase

n’est pas suffisante, comme nous l’avons vu avec les approches de pointe. De plus, si les méthodes

TO-FA basées sur les FE visent à accélérer l’ensemble du processus DfAM en évitant les itérations

répétitives, la formulation analytique des contraintes FA, la convergence des méthodes et leurs coûts

de calcul restent un obstacle. À l’inverse, l’introduction de ML et DL n’a accéléré qu’une seule phase.

Ainsi, nous proposons d’obtenir le meilleur des deux mondes dans ce travail. En outre, cette nouvelle

approche DL permet d’intégrer les contraintes de fabrication aux contraintes mécaniques simultané-

ment au même niveau. Par conséquent, toutes les conditions, même celles qui n’ont pas de définition

mathématique, comme les règles et les connaissances des experts, bénéficient des avantages de vitesse

et d’évolutivité de la DL. Il est impératif de noter que cette approche n’est pas destinée à remplacer

les FE-TO robustes mais à compenser leurs difficultés à intégrer diverses contraintes complexes. La

principale contribution de notre travail n’est pas seulement d’accélérer la phase de TO mais aussi

d’identifier un moyen d’adapter la géométrie et la fabricabilité du design afin de générer une première

ébauche qui respecte les contraintes mécaniques et géométriques de fabrication pour éviter de rester

coincé dans une boucle de mise à jour et de test de designs et accélérer l’ensemble du processus de

DfAM. Les principales contributions de notre travail peuvent être résumées comme suit :

• l’intégration des contraintes mécaniques et de fabrication au même niveau ;

• la création d’un jeu de données synthétique de designs 2D avec leurs contraintes mécaniques et

géométriques de fabrication, GMCAD[5] ;
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• DL-AM-TO est une approche basée sur les réseaux convolutionnels de neurones. Elle bénéficie

de la capacité de ces réseaux à apprendre les corrélations spatiales, de leur rapidité à l’inférence

et de leur scalabilité. Ce qui lui permet de considérer les conditions mécaniques et géométriques

au même niveau conceptuel, et générer des designs tout en étant computationnellement indépen-

dante, sur le plan informatique, de la complexité des entrées ;

• la convergence vers une ébauche sujette à plusieurs contraintes n’est plus un problème tant que

le modèle DL-AM-TO est entrâıné sur des designs convergents ;

• la flexibilité d’intégration de tout type de contraintes grâce à la souplesse de concaténation de

plusieurs types d’entrées dans les modèles DL ;

• finalement, DL-AM-TO permet l’accélération de l’entité du process DfAM et non seulement de

la phase de design.

Les avantages de notre approche sont :

• toute contrainte FA ou autre type de contrainte (surplomb, déformation thermique, flambage,

règles métiers, etc.) peut être intégrée dans le modèle de conception, et pas seulement celles

formulées analytiquement ;

• l’accélération de l’ensemble du processus de DfAM en générant une première ébauche respectant

les contraintes géométriques de fabrication et mécaniques et en évitant les itérations répétitives

de mise à jour et d’évaluation du design ;

• un module de design génératif plus léger qui peut être implémenté dans un logiciel industriel de

design à l’avenir.

Il est essentiel de souligner que ce travail se concentre sur l’approche densité de TO, SIMP (Solid

Isotropic with material Penalization), parmi toutes les approches de TO pour deux raisons majeures.

Premièrement, SIMP traite le design comme une distribution de matériel, en d’autres termes, comme

une image, ce qui est compatible avec notre façon d’aborder le design comme une image en utilisant

des techniques de computer vision basées sur le DL. Deuxièmement, SIMP est l’approche TO la plus

implémentée dans les logiciels industriels, pour son approche TO la plus simple et la moins coûteuse

en calcul ; on retrouve SIMP dans SolidWorks, ABAQUS, Siemens NX, Altair Optistruct, et ANSYS
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Mechanical, qui inclut également l’approche level set [4]. Ce dernier argument nous incite à travailler

à la compensation de ses difficultés par la DL et, à l’avenir, à proposer un module de TO plus léger

basé sur l’Intelligence Artificial (IA), à intégrer dans les logiciels industriels.

Ce travail a été divisé en cinq parties :

1. la génération d’un ensemble de données synthétiques de designs 2D à partir de la méthode TO

industrielle la plus courante, SIMP. Cet ensemble de données, appelé DB1, est composé de

designs en 2D et de conditions mécaniques ;

2. pourvu que les designs de DB1 sont des structures en forme de treillis, nous avons commencé

par une contrainte géométrique simple, le nombre de barres, pour construire un modèle DL-

TO, une preuve de concept, qui prend en entrée les contraintes mécaniques ainsi que le nombre

de barres (la contrainte géométrique) et génère un design 2D en sortie. Pour entrâıner DL-

TO, nous avons utilisé l’approche générative GAN (Generative Adversarial Networks) avec trois

discriminateurs. Le premier évalue la conformité des designs générés aux contraintes mécaniques.

Le second prédit le nombre de barres dans les designs générés et pénalise DL-TO si ces derniers

ne respectent pas la contrainte géométrique d’entrée. Enfin, la troisième prédit l’énergie de

déformation (la compliance) des designs générés et pénalise DL-TO si elle est très élevée ;

3. ensuite, afin d’intégrer des contraintes géométriques de FA, et pourvu que la base requise n’existe

pas, nous avons été amenés à créer une base de designs 2D avec que leurs contraintes mécaniques

et géométriques. Tout d’abord, nous avons augmenté la base DB1. Deuxièmement, à l’aide de

DB1, nous avons entrainé un modèle DL qui prédit les conditions mécaniques à partir de de-

sign 2D en entée ; le modèle est appelé DL-Mechanical-Conditions-Predictor. Troisièmement,

des designs synthétiques (inspirés des formes des designs dans DB1) avec diverses contraintes

géométriques sont générés à l’aide de pygmsh, cette base est appelée DB2 . Quatrièmement,

le prédicteur DL-Mechanical-Conditions-Predictor précédemment appris est utilisé pour prédire

leurs conditions mécaniques. Enfin, le jeu de données cible “GMCAD” est consolidé ; il se

compose de paires de designs 2D et de leurs contraintes mécaniques et géométriques. Les con-

traintes géométriques sont les épaisseurs minimales/maximales, les longueurs de barres mini-

males/maximales, les angles, le nombre de composants, etc. ;

4. avec GMCAD, nous avons implémenté un modèle qui intègre simultanément les contraintes
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mécaniques et géométriques liées à la fabrication ; nous appelons ce modèle Deep Learning Ad-

ditive Manufacturing driven Topology Optimization, DL-AM-TO. Les contraintes géométriques

choisies sont le surplomb minimal (le surplomb est défini comme l’angle entre l’orientation de

l’impression et la normale de la surface d’un composant dans un design), la longueur maximale

d’un composant, l’épaisseur minimale et le nombre de composants, de sorte qu’un composant

soit défini comme une barre rectangulaire. La construction de DL-AM-TO a été divisée en deux

étapes. La première étape consistait à isoler chaque contrainte géométrique pour vérifier son effet

sur la géométrie du design et les autres conditions géométriques, en d’autres termes, à effectuer

l’étape 2 par contrainte géométrique. Dans un deuxième temps, nous avons rejoint toutes les

contraintes géométriques au même niveau que celles mécaniques pour entrainer notre approche

DL-AM-TO ;

5. enfin, nous avons validé DL-AM-TO en générant plusieurs géométries pour les mêmes contraintes

mécaniques qui ne diffèrent que par une contrainte géométrique à chaque fois. Nous avons com-

paré ces géométries à celle proposée par SIMP où la forme ne peut être ajustée géométrique-

ment. DL-AM-TO permet d’ajuster la géométrie d’un design afin de respecter les contraintes

géométriques de fabrication en quelques secondes. Ces géométries ont une performance mé-

canique du même ordre que SIMP. Mais, elles sont 1.4 fois plus rapide dans la phase d’impression

et demandent moins de support.

Mots clés : Optimisation Topologique (TO), Fabrication Additive (FA), Design pour la Fabrication

Additive (DfAM), Apprentissage Profond (DL), Réseaux génératifs antagonistes (GAN), Réseaux

Convolutionels de neurone (CNN)s.
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INTRODUCTION

The growing need for fast, organic, versatile, cost- and material-efficient products in the indus-

trial world drives the research to develop design approaches accounting for these criteria altogether.

Topology optimization (TO) falls in the category of these design approaches. It allows the generation

of shapes with curvatures and fine details, given parameters such as loads, boundary conditions, and

a volume fraction.

Complementary comes additive manufacturing (AM), which allows the printing of any form. However,

this synergy is less idealistic than it looks. Indeed, AM requires the design’s shape to comply with

some geometrical criteria, like dealing with curvatures, overhanging patterns, the need for supports,

thin features, Etc., which are hardly integrated into TO’s formulation [1]. Thus, designing optimal

printable parts requires the intervention of experts to interpret the shapes proposed by TO to comply

with the manufacturing criteria. Nonetheless, this reinterpretation phase can compromise the initial

design’s optimality, is time-consuming, and depends on the engineer’s expertise.

Consequently, with the flourishing role of AM in the industry, it is further interesting to find a method

that simultaneously considers mechanical and geometrical constraints at the conceptual level or the

discipline of Design for Additive Manufacturing (DfAM). A recent survey by Subedi et al. ([2]) has

shown that half of TO practitioners regret the absence of geometric and manufacturing-related plugins

in TO’s software. This survey’s results are unsurprising, for ”manufacturing is one of the fundamental

constitutions of a nation’s economy [3].” As a matter of fact, the top ten manufacturing countries

in the world are China (with 28.7% of global manufacturing output), the United States (US) (16%),

Japan (7.5%), Germany (5.3%), India (3.1%), South Korea (3%), Italy (2.1%), France (1.9%), United

Kingdom (1.8%) and Indonesia (1.6%) (Global Upside website); these countries constitute the top

most powerful economic forces in the world. Consequently, research has been focusing lately on im-

proving the chain of manufacturing from defining guidelines with consortium and standards to design

approaches, to manufacturing processes and materials, to production, and finally to certification and

marketing.

Indeed, manufacturing systems started as craft systems; the end products are used for essential func-

tions. In the 18th century, the English manufacturing systems were established; the machines replaced

humans in repetitive and laborious tasks, and the objective shifted from functionality to profit. At

the beginning of the 19th century, the American Manufacturing system introduced mass production:

interchangeable parts, assembly, and distributional manufacturing emerged; productivity and quality

2
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of production became central objectives. The manufacturing industry proliferated during this period

until saturating the market and reducing profit margins. Thus, came lean manufacturing to overcome

these problems; waste in production was eliminated, and product costs were reduced. Recently, we are

in the sustainable manufacturing system, a system that is aware of environmental problems (global

warming, scarcity of natural resources, carbon footprint, Etc.).

Along with their evolution, manufacturing systems replaced human involvement in the process one

step at a time. Nowadays, human-machine interaction consists of information and material flow ac-

tivities. Humans are still present in the product lifecycle: from the design stages to manufacturing

and marketing. Currently, the goal is to find the optimal solutions to balance and harmonize this

interaction to ensure a performant manufacturing system.

The manufacturing systems’ performance was proven to be optimized by computer-aided technologies

(CATs) in terms of lead time and costs.

While CATs are present in the design, analysis, manufacture, and assembly phases, the phase that

shows the highest impact on the KPI is the design phase. The design phase costs the least, has the

highest impact on the overall product cost (>70%), depends on the least on hardware, allows han-

dling of defects at a lower cost, and consequently has the highest added value in terms of products

competitiveness (Figure 1). A defective design will cost the company time and money to circumvent

these defects at the manufacturing and assembly phases. Defects detected in the design phase save

the company time and money (about 75% of the fixing costs) spent on eliminating the impacts of

these defects all along the product life cycle chain. From this, the concept of “first-time correct” has

emerged. The goal is to find the most optimal and free-from-defects design at the very early phase of

the product lifecycle [3].

Thus, much research has been put into exploring new design approaches to improve the design phase

and adapt it to the production constraints. While the top design approaches are the density-based

approach and the level-set approach, the method that is mainly implemented and found in about 70%

of the design software is the density-based approach, for it is easily implemented and requires less

computational power. These design approaches are far from perfect, and with the increasing pace

of technology, they are having difficulty keeping up with the new manufacturing processes. AM is

one of the emerging manufacturing processes and is most attractive in several industries, particularly

aerospace and automotive. It allows the production of complex organic shapes and prevents the need

3
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(a) The design phase shows the
most significant impact on the
overall product’s cost.

(b) Conceptual design has
the highest added value on
product competitiveness.

(c) Errors fixed on the design level re-
duce up to 70% the fixing costs at man-
ufacture time.

Figure 1: Reprinted/Adapted from “Computer Aided Design and Manufacturing, Chapter 1, figure
1.7, page 10, figure 1.8, page 11 and figure 1.9, page 11” [3]

for assembly. This makes parts cheaper (with many wholes, i.e., less material) and accelerates the

production chain (no assembly needed). Also, AM allows for customization, particularly in the medical

implant sector, where this characteristic is crucial; every person is unique and would need a unique

implant shape.

Thus, the research tried to adapt the design standards and approaches to consider the new constraints

that this new production process requires. In state-of-the-art, several experiments were conducted

to create a worksheet with recommendations for novice AM designers to help them create compliant

shapes that are less prone to fail during the printing phase. The second part worked on integrating

AM constraints into the design approaches. However, their efforts were limited by the nature of most

manufacturing constraints; most of them are geometrical and informal rules coming from experience

rather than mathematical logic; and by the additional computational power needed for the integra-

tion of these constraints, when possible; several approaches reported convergence issues when the

constraints become further complex. The third part worked on replacing the design approaches with

Deep Learning models and left the adaptation of the shape to AM to the designer. The former ap-

proach accelerated the design phase without resolving the issue of getting stuck in the reinterpretation

phase.

Hence, the problem is the following: How can we integrate manufacturing constraints into the design

phase while ensuring convergence to alleviate getting stuck in the reinterpretation phase?

Our solution is to merge the previous two approaches and get the best of both worlds. We will explore

Deep Learning generative capabilities, especially convolutional neural networks, to learn geometric

manufacturing-related constraints and to allow the integration of two types of constraints: mechanical
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and geometrical, concurrently at the same level of the design space. Our Deep Learning Additive

Manufacturing-driven topology optimization approach is trained within a Generative Adversarial net-

works framework, a recent state-of-the-art generative approach for neural networks.

Consequently, this thesis is organized as follows: Chapter 1 details the state of the art of Additive Man-

ufacturing, the design approaches known as Topology Optimization, the state-of-the-art approaches

developed to accelerate the design for the Additive Manufacturing process, the Deep Learning, the

convolutional neural networks, and the GAN training framework. Chapter 2 describes the general

methodology of DL-AM-TO. The first approach of DL-AM-TO, DL-TO, a proof of concept, is pre-

sented in Chapter 3; it integrates the mechanical constraints and one geometrical constraint, the

number of bars, at the same conceptual level and generates a 2D design. In chapter 4, the training

dataset GMCAD, the Geometric Mechanical CAD dataset, is consolidated. In chapter 5, DL-AM-TO

is detailed and put into action. DL-AM-TO takes the mechanical and four geometrical manufacturing-

related constraints as input, the number of bars, the minimum overhang, the maximum bar length, and

the minimum bar width, and generates a 2D design. This chapter validates DL-AM-TO’s capability

to tailor a design’s geometry. The geometries generated by DL-AM-TO were generated and validated

mechanically and geometrically. Finally, chapter 5.9 summarizes the methodology and its outcomes

and presents future perspectives.
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1.1. CONTEXT

Figure 1.1: Design for Additive manufacturing process as described by Martin Leary.
Reprinted from “Design for Additive Manufacturing, Chapter 3, figure 3.5, page 39” [7].

This section introduces Additive Manufacturing (Additive Manufacturing (AM)), topology opti-

mization (Topology Optimization (TO)), and the design for AM (DfAM) approaches. It addresses

their limitations and proposes a solution that leverages the usage of Deep Learning (DL) generative

methods to integrate geometrical manufacturing-related constraints at the conceptual level of design.

1.1 Context

1.1.1 Additive Manufacturing (AM)

Additive manufacturing (AM) or as known as 3D printing, is an all-digital manufacturing tech-

nology that fabricates products by sequential element-wise addition of material based on a discrete

digital geometry.

For several reasons, AM has gained hype in the industrial world in the last 50 years. First, it offers

a higher degree of freedom in design ; complex geometries challenging to fabricate with conventional

subtractive manufacturing (SM) are no longer problematic. Moreover, optimal layouts (in terms of

material and functionality) are not compromised anymore to ensure manufacturability [11].
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1.1. CONTEXT

(a) A design presenting overhanging fea-
tures versus a self-supporting design.

(b) Thin
feature in
red.

Figure 1.2: AM constraints.

For high production volume-based manufacturing, AM dominates SM in products where complexity

plays a role, especially that AM prints the part at once, thus eliminating the forging and joining

processes. The products falling in this category are mainly prostheses and implants.

Mass customization is one advantageous property of AM; AM allows the production of individually

customized products through an agile and flexible process, which is not the case for conventional man-

ufacturing where molds need to be fabricated every time a new custom product is required.

AM allows mechanisms that further reduce the need for material; hence, the cost of the part fabricated,

such as infills[12], multi-degree-of-freedom AM systems that reduce the need for support structures,

and the laborious post-processing [13].

AM reduces the fabrication’s waste and hence cost, particularly in low-volume production lines, and

allows customized products of complex geometries using custom materials. Most importantly, it lever-

ages generative design approaches due to its digital nature [7, 14]. Thus, AM is synergetic with TO;

TO proposes complex geometries printable via AM processes.

Design for AM (DfAM) summarizes the digital design process of a product. It consists of six major

steps, as detailed in Chapter 2 of [7] (Fig. 1.1):

1. Design specification: design requirements, constraints, and objectives are defined.

2. Embodiment design: digital design methods, mainly TO approaches, are applied to obtain the

first layout.

3. Detail design: computer-aided engineering (CAE) analysis, parametric optimization, tolerance

optimization, Etc.

4. Computer-aided design (Computer Aided Design (CAD)) creation: the designer draws the digital

design inspired by the geometry proposed by the previous steps while considering geometric
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manufacturing-related constraints.

5. Manufacture: it includes the generation of the volumetric geometry, which is a data format

compatible with the AM machine. This volumetric geometry is then sliced; for AM machines

prints a design layer by layer, in other terms, slice by slice, such that each layer has a constant

material thickness. Afterward, special software optimizes the tool path and process parameters.

Finally, the AM machine prints the design.

6. Inspection and certification: this step includes functional and quality assessment of the design

before delivery.

This process is iterative and time-consuming for several reasons.

Despite the success of AM, not all the designs could be manufactured. Steep curvatures, overhanging

patterns, the need for supports, tiny chamfers, thin features, and other geometrical constraints are

still a hurdle[1] (Fig.1.2). Moreover, AM constraints lack standardization [15] and are contradictory

between processes, materials, and applications. For example, in a metal Powder Bed Fusion (PBF)

process, support structures have a double role. They support overhanging features and help dissipate

the laser heat to prevent thermal deformation or cracks due to residual stress. On the contrary,

in polymer PBF, the unsintered powder material provides support for the overhanging features, and

hence support structures are not needed [16]. Thus, an optimal design identified in steps two and three

is prone to collapse during manufacture in step 5 if the manufacturing process changes. Similarly, a

modified design created in step 4 might not pass the certification in step 6.

Second, the TO are finite-elements (Finite Elements (FE)) based methods, hence computationally

expensive.

Third, in the CAD creation phase, the geometry is usually modified by the designer to comply with

the manufacturing geometrical constraints. Thus, the starting optimality computed in the third phase

might get degraded into an acceptable level, obliging the designer to re-draw a new shape and get

stuck in a loop.

Furthermore, manufacturing constraints are mostly geometric ones that are, at best, approximated

analytically, and integrating them into FE based TO, i.e., at the second phase, usually compromises

its convergence and limits its freedom[17, 18].

Finally, a recent survey[2] has shown that half of TO practitioners regret the absence of geometric and
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Figure 1.3: A design is represented as a distribution of elementary material densities xi with
0(absence of material) < xmin ≤ xi ≤ 1(presence of material).

(a) A mesh size of 100 × 100. (b) A mesh size of 50 × 50.

Figure 1.4: An example of the mesh-dependency setback of TO. SIMP outputs two different geometries
for two different mesh sizes for the same input mechanical conditions.

manufacturing-related plug-ins in TO’s software. Thus, research is focusing on integrating geometric

and manufacturing constraints into TO’s formulation.

Consequently, researchers tried finding workarounds to accelerate the DfAM process. The following

section details the different approaches found in state of the art.

1.1.2 Topology Optimization (TO)

Structural optimization (SO) is defined as the process of finding the optimal material distribution

within a physical volume domain to support the applied loading conditions and other constraints, e.g.,

increasing stiffness, reducing stress, reducing displacement, Etc. There is three major SO approaches

(i) size, (ii) shape, and (iii) TO [19].

In size/shape optimization, the designers are restricted to manipulating the structural elements’ size/

shape between their limits. However, if they are unaware of the optimal structure’s shape/ size limits

beforehand, then TO is their sole solution. TO is the most general form of SO [19]. It simultaneously

addresses the topology, shape, and sizing problems and ensures efficient material use.
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The increase in raw material cost, the environmental challenges (like energy consumption), the rise of

computational power, and the development of advanced programming methods made TO a prevalent

discipline in industrial design (Querin et al. [19]; Sigmund and Maute [20]). TO approaches can be

grouped into two categories: (i) Optimality Criteria (OC) like Homogenization, Solid Isotropic Material

with Penalization (SIMP), level-set and (ii) heuristic methods like Computer-Aided Optimization

(CAO)[19, 21, 22, 23]. For further reading about the TO approaches, one can refer to the review

article of Sigmund and Maute [20]. The topmost common commercial approach is Solid Isotropic

Material with Penalization (SIMP); also called the power-law approach [21, 24]. SIMP is a density

gradient-based iterative method that uses the penalization scheme of the intermediate non-binary

values of density material x to converge to an optimal binary design. SIMP represents a design as a

distribution of discretized square material elements e (material properties are assumed constant within

each e). They are modeled as the relative material density raised to some power times the material

properties of solid material. SIMP approach is based on the following assumptions:

• A design is represented by a specific distribution of discretized square material elements e;

• Material properties are assumed constant within each element e used to discretize the design

domain. They are modeled as the relative material density raised to some power times the

material properties of solid material;

• Variables are the element relative densities xi. xi represents either absence (0) or presence (1)

of the material at each point of the design domain (Fig.1.3); and

• A design is physically valid as long as the power p ≥ 3 for Poisson’s ratio = 1/3 [25] and is

combined with a parameter constraint, a gradient constraint or filtering techniques.

In this work, the objective function to minimize is the energy of deformation or compliance C(x) in

Joules (J):

minxC := UT KU =
N∑︂

e=1
xp

euT
e keue (1.1)

subject to:
V (x)
V 0 ≤ f

KU = F

0(absence of material) < xmin ≤ x ≤ 1(presence of material)

(1.2)
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where U and ue are the global and element-wise displacements, F the forces vector, K and ke are

the global and element-wise stiffness matrices and N the number of e. xmin the minimum x (non-zero

to avoid singularity), p the penalization power (typically 3). V0 and V (x) are the design domain and

material volumes1 respectively and f the volume fraction.

To efficiently solve the problem stated above, [24] adopted the optimality criterion approach. A mesh-

independency filter is applied to the element sensitivities to avoid checkerboard patterns. Following

OC, the design variables are updated as follows:

xe =

⎧⎪⎨⎪⎩
max(xmin, xe − m) if xeβη

e ≤ max(xmin, xe − m)
xeβη

e if max(xmin, xe − m) < xeβη
e < min(1, xe + m)

min(1, xe + m) if min(1, xe + m) ≤ xeβη
e

(1.3)

where m is a positive move limit, η = 1
2 is a numerical damping coefficient and βe is found from the

optimality condition as βe =
−∂c
∂xe

λ ∂V
∂xe

such that λ is a Lagrangian multiplier that can be found by a bi-

sectioning algorithm and the sensitivity ∂c
∂xe

of the objective function is found as ∂c
∂xe

= −pxp−1
e uT

e k0ue.

To ensure the existence of solutions to the problem and avoid checker-board patterns[24], some re-

strictions should be introduced to the resulting design. One example is to apply a mesh-independency

filter on the element sensitivities to ensure that the resulting design is mesh-independent. Thus, the

sensitivity of the objective function becomes ∂c
∂xe

ˆ = 1
xe

∑︁N

f=1 Hf̂

∑︁N
f=1 Hf̂ xf

∂c
∂xf

where the convolution

operator (weight factor) Hf̂

Hf̂ =
{︄

rmin − dist(e, f) with f ∈ N |dist(e, f) ≤ rmin for e = 1, ...N
0 outside the filter area.

and dist(e, f) is the distance between the center of element e and the center of element f .

1.2 Objective

1.2.1 State of the art of DfAM acceleration approaches

With the emergence of 3D printing processes, mainly AM, printing designs of higher complexity

and creativity became doable[1], and thus made TO further attractive in the research areas. TO aims

at finding the optimal material distribution inside a design domain given a set of mechanical con-

straints. The resulting design can have any shape and be defined as a 2D binary image or a 3D binary

voxel grid, such that the presence of a non-empty pixel/voxel means the presence of the material.

1The design domain (V0) is the design space defined by the designer at the beginning of the optimization; it is the
maximum with and height possible of the design. The design material (Vx) volume is the space taken by the geometry
at the end of the optimization. Hence, Vx ≤ V0.
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Approaches to accelerate the DfAM process

Formulating AM design
rules

Integration of AM con-
straints to Finite El-
ements based Topology
Optimization (FE-TO)

Machine and Deep Learn-
ing Usage to assist FE-
TO

Deep Learning Usage to
replace FE-TO

Adam et al. (2014) [1],
Booth et al. (2016) [26],
Gaynor et al. (2016) [27]

Mirzendehdel et al.
(2016) [28] Allaire et al.
(2017) [29], Guo et al.
(2017) [30], Langelaar et
al. (2017) [31], Mass et
al. (2017) [32], Zhang et
al. (2018) [33], Yoely et
al. (2018) [34], Zhang
et al. (2019) [17], Han
et al. (2019) [35], Bi et
al. (2020) [36], Xu et
al. (2020) [37], Li et al.
(2020) [38], Wang et al.
(2020) [39], Matos et al.
(2020) [40], Fernández et
al. (2020) [41].

Oh et al. (2018) [42], Sos-
novik et al. (2019) [43],
Wang et al. (2020) [44],
Kallioras et al. (2020)
[45], Bi et al. (2020)
[46], Chandrasekhar and
Suresh (2020) [47], Nie et
al. (2020) [48].

Ulu et al. (2016) [49],
Yu et al. (2019) [50],
Sharpe and Seepersad
(2019) [51], Rawat and
M-H Herman (2019) [52],
Hoyer et al. (2019) [53],
Abueidda et al. (2020)
[54], Malvia (2020) [55],
Rade et al. (2020) [56]

Table 1.1: Approaches to accelerate the DfAM process.
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TO gained tremendous success in the 20th century during the industrial revolution of the automotive

and aerospace sectors, given its powerful potential of optimizing a structure in terms of material used

while maintaining its recommended mechanical specifications and properties. Afterward, it spread its

applications to a broader range of disciplines: fluids, acoustics, electromagnetics, optics, Etc. However,

TO uses an iterative, FE-based method that is computationally expensive and hence relatively slow.

With the new advanced TO software, outputting a single design subjected to a set of boundary con-

ditions (BC) and load (F ) configurations is a matter of seconds to days depending on the design’s

complexity and its surrounding constraints. This aspect is acceptable if the process is limited to this

single step. However, a mechanical engineer never relies on the first design (s)he tries, especially since

TO, in its commercially available form [57, 58, 59, 60, 61], does not consider geometrical constraints

nor manufacturing criteria, nor other customized industrial constraints (automotive, aeronautic, hy-

draulic, Etc.). The mechanical engineer always needs to explore several set-ups to find the optimal

topology, shape, and sizing of the design to be manufactured. (S)He must also ensure its final draft

is creative, cost-efficient, and manufacturable. Hence, this accumulated iterative exploration process

can become slow, especially for large-scale designs.

Accelerating DfAM’s cycle is a current hot research and industrial topic. Consequently, researchers

try to find workarounds to bypass these constraints and accelerate the design optimization phase. We

can find in the literature four general approaches to tackle the problem (Tab.1.1).

In an attempt to identify process-independent AM-based design rules, the first line of research focused

on formalizing AM guidelines. Adam et al.[1] carried out several experiments over three types of

processes ([1]) and formalized design rules over gap heights and widths of transitions of non-bonded

elements, lengths of overhangs, positions of islands, Etc. Booth et al. [26] created a one-page visual

DfAM worksheet for novice AM users. The authors of [62] opted to modify the optimal layouts to

meet the overhang constraints and obtain printable designs without the need for support structures.

However, changing the optimal layout suggested by TO might compromise its intended functionality.

Thus, others integrated AM constraints analytically into TO’s formulation. Therefore, engineers tend

to manually reconstruct a shape inspired by TO’s output, implicitly considering the geometric and

manufacturing constraints. This re-interpretation phase is not straightforward, can compromise the

initial design’s optimality, and can be time-consuming; it depends on the engineer’s experience and

expertise.
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The second approach benefited from the synergy between TO and AM; the former proposes organic

geometries that the latter allows producing, and it integrated specific AM constraints at TO’s level.

Zhou et al.[63] integrated minimum length scale to TO via a computationally efficient FE-free filtering-

threshold scheme. The authors of [27, 29, 32, 33, 35, 36] adapted TO approaches to account for

overhang limitations; as it is one of the most general AM design-rule; and deliver self-supporting

and print-ready designs. Zhang et al. [17] generalized and improved their previous work to consider

directional-dependent overhang constraint and minimum length control and generated high-resolution

3D structures. Yoely et al. [34] proposed an optimization approach constraining the areas of holes and

curvatures of boundaries using the B-spline representation to obtain a manufacturable design. Xu et

al.[37] estimated a formulation for the hanging features and thin features and penalized the evolution

of densities in the domain space accordingly via a Bidirectional Evolutionary Structural Optimization

(BESO) to obtain AM friendly designs. Authors in [17, 38, 39, 40] focused on including the build

orientation into TO, especially since AM part’s accuracy and finishing (e.g., staircase effect, support

volume, support area, number of supports required, build time, surface roughness and quality, process

planning, post-processing, and cost) are affected mainly by its build orientation [40]. Fernandez et

al.[41] proposed to control not only minimum and maximum member sizes but also the minimum

gap between structural members to avoid the presence of a large number of thin features and small

cavities.

These approaches are limited for several reasons:

(1) AM constraints lack standardization [15] and are contradictory between processes, materials, and

applications, as explained previously in section 1.1.1.

(2) AM constraints are mostly geometric constraints that are, at best, approximated analytically, and

integrating them into FE based TO compromises its convergence and limits its freedom[17, 18]. As a

matter of fact, despite the previously listed advantages of TO (section 1.1.2), it suffers from a principal

setback. The general shape is usually identified at the very early iterations, making it difficult for TO

to modify it to account for other changes imposed by other constraints; hence, the output shape ends

up a local minimum [64]. Furthermore, for density-based TO, geometry cannot be clearly defined as

it depends on the mesh size (Fig.1.4). Hence, the geometric constraint controlling the design’s manu-

facturability cannot be easily incorporated in TO’s formulation. Last but not least, TO suffers from

a convergence problem despite the penalization scheme; the grey regions in the output designs are
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hardly interpretable physically (Fig.1.4). Moreover, TO’s convergence is further compromised when

the constraints increase in number and complexity; authors who tried integrating manufacturing con-

straints into traditional FE based TO methods reported a convergence to a design one time out of

10[65].

(3) These methods are still based on FE analysis and therefore are iterative and computationally inef-

ficient. While it converges for simple input constraints in a few seconds, its efficiency remarkably drops

when input design space (e.g., mesh size) increases and input conditions complexify. Converging to a

solution can quickly explode from seconds to days. Moreover, integrating geometric and manufactur-

ing constraints into its formulation, when possible, adds computational costs and often compromises

the convergence of the method[65].

Consequently, to compensate for these limitations, other research has turned to Machine Learning

(Machine Learning (ML), section 1.3.1) and DL (section 1.3.3) techniques to assist the traditional FE-

TO process by speeding up the evaluation of complex quantities of interest directly into the process.

DL architectures have proven efficiency and robustness in learning complex spatial correlations and

extracting high-level features (including geometrical or shape-related features) from real-world images

[66, 67, 68].

The third part used DL to assist traditional FE-TO [42, 43, 45, 46, 44, 47, 69, 48]. Oh et al.[42]

used a Boundary Equilibrium GAN (BEGAN) to propose new and creative wheel designs followed

by TO to assure mechanical validity. Sosnovik et al.[43] formulated the topological problem as an

image segmentation task and built an auto-encoder, which maps an intermediate structure outputted

by traditional TO solver to its final structure. Similarly, Wang et al.[44] created a super-resolution

neural network (Neural Networks (NN)) for structural TO to map low-resolution intermediate designs

to their corresponding high-resolution designs. Kallioras et al.[45] integrated a Deep Belief Network

between the first and last phases of Solid Isotropic Material with Penalization (SIMP) TO in order

to accelerate the optimization process. Bi et al.[46] replaced the gradient estimation step with a DL

network and used parallel computation on multiple central processing units (CPUs) and graphical

computing units (GPUs) to accelerate traditional TO. Chandrasekhar and Suresh[47] used the NN’s

activation functions as a representation of the SIMP density field to ensure FE mesh independence.

They enhanced their previous work [47] with a Fourier space projection to control the min/max length

scales (a geometrical constraint) without the need to explicitly add additional constraints to SIMP
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and automated the sensitivity computation through NN’s back-propagation [69]. Finally, Nie et al.[48]

generated 2D structures using a conditional Pixel2Pixel GAN architecture: the BC are transformed

into physical fields like the von Mises stress, strain energy, and displacement fields. The latter are

inputted to a DL-generator to output the optimal designs.

The fourth part tried to replace completely TO’s formulation by ML/DL [49, 50, 51, 52, 53, 54, 55, 56].

Ulu et al.[49] used Principal Component Analysis (PCA) to encode high-dimensional input configu-

ration (BC, F , etc.) to lower-dimensional features which were input into a shallow NN to output

the final optimal structure. Yu et al.[50] learned the mapping from BC to a high-resolution optimal

structure using two steps: an auto-encoder that encodes the boundary constraints and then outputs a

low-resolution design followed by a conditional GAN that reconstructs its original resolution. On the

other side, Sharpe and Seepersad[51] directly used a conditional GAN to output the optimal structure

given the BC as compact vectors in order to explore other designs (with different sets of constraints)

in a shorter time. Simultaneously, Rawat and M-H Herman[52] explored a conditional Wasserstein

GAN to generate 2D designs given the volume fraction as the input condition. However, they encoun-

tered a mode collapse: the generator succeeded in outputting only good designs for one value of the

volume fraction condition (0.4). Hoyer et al.[53] used Convolutional Neural Networks (CNN)s and the

Limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimizer to build a differentiable,

mesh-independent TO that outperforms traditional TO, especially in large scale problems. Abueidda

et al.[54] used the ResUnet architecture to generate 2D structures with nonlinearities; the encoder

compresses high-dimensional BC, (F ) configurations, and volume fractions into low-dimensional ma-

trices, and the decoder reconstructs the corresponding optimal 2D structure. Malvia [55] tested the

performance of four different types of CNN and GAN-based networks in generating 2D designs given

the boundary, loads, and volume fraction conditions. Their objective was to explore the potential of

DL and data augmentation techniques in accelerating the TO process. Rade et al.[56] built a frame-

work of three networks to predict the final optimal density given the initial compliance and volume

fraction. The first network takes the initial compliance and volume fraction and outputs an intermedi-

ate density prediction. The latter is inserted into a Compliance Prediction Network that predicts the

intermediate compliance. These two intermediate matrices are inserted back into the first network.

After five iterations of the previous steps, the last density prediction is inserted into a third network

that outputs the final optimal density.
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The previously listed works’ main contribution was accelerating partially or totally traditional TO.

Some still relied on iterative computationally expensive FE methods [43, 45] or FE analyses [48, 47, 69]

and none, except for Chandrasekhar and Suresh [69], integrated any geometric or manufacturing con-

straints.

To sum up, accelerating the DfAM process consists of four major state-of-the-art approaches:

1. Formalizing AM design rules for engineers to consider at the CAD drawing phase, but that

does not guarantee the initial design optimality and mechanical performance. Nevertheless, this

approach helped formalize AM constraints for novice users and guided engineers into creating

print-ready designs.

2. Integrating certain AM constraints at the FE-TO formulation. This approach allows the engi-

neers to have a first draft accounting for both constraints, thus preventing getting stuck in a loop

of re-drawing and re-testing the mechanical performance of the design. Nevertheless, not all AM

constraints can be analytically formulated. Also, this approach inherits the density-based TO’s

flaws. (1) FE-TO identifies the general shape at early iterations, inhibiting the method of mod-

ifying the shape to take account of geometrical constraints. (2) The convergence problem is not

guaranteed, especially when there are multiple constraints; it is hard to find a nash equilibrium

where all conditions are validated.

3. Assisting FE-TO methods with ML and DL. This approach focuses on accelerating the TO

phase of the DfAM process and does not dodge getting stuck in a loop in later phases. Like the

previous approach, most of TO’s problems are still inherited.

4. Replacing FE with ML and DL in TO. This approach does not integrate any manufacturing

constraints and does not circumvent getting stuck in a loop in later phases of the DfAM process.

1.2.2 Our approach

This chapter reviews the state-of-the-art approaches proposed to accelerate the DfAM process.

They were classified into four major approaches.

The first one consisted of creating AM guidelines for design engineers to help them in the re-interpretation

phase, i.e., the CAD drawing phase. While this approach was a significant step into the adoption of

design for AM, the designers still got stuck in the drawing phase due to the mechanical performance

19



1.2. OBJECTIVE

Advantages
Approaches to accelerate the DfAM process

Formulating
AM design
rules

Integration
of AM con-
straints to
FE-TO

ML and DL-
assisted FE-
TO

Full DL-TO

Speed + + ++ +++

Scalability + ++

Convergence - + ++

Mesh-
Independency

- - + ++

Geometrical
control at the
conceptual
level

+

Light gener-
ative design
module in
industrial soft-
ware

- + ++

DfAM process
acceleration

+ ++ + ++

Table 1.2: The state of the art approaches to accelerate the DfAM process. A blank cell means that
the concerned characteristic does not apply for the method. A “‘+”” sign defines the presence of the
characteristic; the higher the number of the “‘+”” sign, the better the method is when it comes to this
characteristic. A “‘−”” sign defines the absence of the characteristic.
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deterioration induced by updating the shape to comply with AM constraints.

Thus, for the reason mentioned previously, the second approach proposed integrating AM constraints

into FE-TO methods so that generated designs would be compliant with both mechanical and AM

constraints simultaneously. Nevertheless, this approach faced several challenges. AM constraints are

primarily informal and geometrical, which makes formulating them analytically challenging, especially

with FE-TO the geometry is unknown beforehand. Moreover, with FE-TO, the shape is identified at

early iterations, restraining the shape from changing to account for other constraints. Finally, FE-

TO has a hard time converging (i.e., finding the optimal design complying with all the constraints)

with the increasing number of constraints, and when it converged, the computational power needed

exploded.

The third approach modeled a hybrid TO method, they replaced some FE blocks with ML techniques.

Unfortunately, this approach focused on FE-TO and not the whole DfAM process and inherited the

flaws of FE like convergence and computational power.

The fourth approach totally replaced FE with DL models. This last approach accelerated TO and

eliminated all FE-TO setbacks but did not integrate any AM constraints and did not impede getting

stuck in a loop in later phases of the DfAM process.

Our objective is to accelerate the whole DfAM process and have the best quality/cost ratio. As we

have seen in the introduction, the design phase has the lowest cost and the highest impact on the

overall product cost, quality, and lifecycle. However, accelerating this phase alone is not enough, as

we have seen with state-of-the-art approaches. Moreover, while Additive Manufacturing driven Finite

Elements based Topology Optimization (AM-FE-TO) methods aim to accelerate the whole DfAM

process by preventing repetitive iterations, the analytical formulation of AM constraints, the meth-

ods’ convergence, and their computational costs are still a hurdle. On the other side, the introduction

of ML and DL only accelerated one phase. Thus, we propose to get the best of both worlds in this

work. This new DL approach allows manufacturing constraints’ integration within mechanical ones

concurrently at the same level, and any constraints, even ones lacking a mathematical definition [70]

like experts’ rules and knowledge while benefiting from DL’s speed and scalability advantages. It is

imperative to note that this approach is not intended to replace robust FE-TO but to help compensate

for its difficulties when it comes to integrating various complex constraints (Tab. 1.2).

Our work’s main contribution is not only accelerating the TO phase but also identifying a way to tailor
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the design’s geometry and manufacturability in order to generate a first draft design that complies

with both mechanical and geometric-manufacturing constraints to avoid getting stuck in a loop of

updating and testing designs and accelerate the whole DfAM process.

Thus, we formulate the problem as follows. We want to find the optimal material distribution in

a domain space subject to a set of mechanical and non-mechanical, or what is called in this work

geometric, constraints. More precisely, to find a generative function G(C, θ) of parameters θ, which

takes these constraints C as input and suggests a design x accordingly. The optimization problem can

be formulated as the following:

x = G(C, θ)
Cm1 : V (x)

V0
≤ f

Cm2 : KU = F
Cgi : cgi ≤ vgi or cgi ≥ vgi for i = 1, ..., |Cg|

(1.4)

where Cm are the mechanical constraints with Cm1 being the volume fraction constraint and Cm2 the

loads constraint, while Cg are the set of geometric constraints, vgi is the minimum/maximum value

acceptable for the geometric constraint gi. V0, Vx, f , K, U and F are defined in section 1.1.2.

The major contributions of our work:

1. Integration of mechanical and geometrical manufacturing-related constraints at the same level.

2. Creation of a synthetic dataset of 2D designs alongside their mechanical and geometrical man-

ufacturing constraints.

3. Benefitting from DL’s ability to learn spatial correlations and its speed and scalability. This ap-

proach integrates input mechanical and geometrical conditions at the conceptual level, generates

designs accordingly, and is computationally independent of the inputs’ complexity.

4. Convergence is no longer an issue as long as the model is trained on converged designs.

5. Flexibility of integrating any types of constraints thanks to the flexibility of concatenating several

input types into DL models

With our approach, we would like to test and validate the following hypotheses:

Hypothesis 1 (H1): Any AM constraint or another type of constraint (min overhang, thermal-distortion,

buckling, experts’ informal rules, Etc.) can be integrated into the design model, not only analytically

formulated ones.
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Hypothesis 2 (H2): Acceleration of the whole DfAM process by generating a first design draft complying

with geometrical manufacturing and mechanical constraints and avoiding repetitive iterations of design

updating and evaluating.

Hypothesis 3 (H3): A lighter generative design module that can be implemented in industrial design

software in the future.

It is essential to highlight that this work is focused on SIMP among all TO approaches for two

major reasons. First, SIMP deals with the design as a distribution of material, in other terms, as

an image, which is compatible with our way of approaching the design using DL-based computer

vision techniques. Second, SIMP is the most implemented TO approach in the industrial software

[4], for its simplest and less computationally expensive TO approach. It is found in SolidWorks[71],

ABAQUS[72], Siemens NX[73], and Altair Optistruct[74], and ANSYS Mechanical[75], which also

includes the level set approach [4]. The latter argument encourages us to work on compensating for

its difficulties with DL and, in the future, propose a lighter AI-based TO module to be incorporated

in industrial software.

1.3 Ingredients

1.3.1 Machine Learning (ML)

Machine Learning is the discipline of algorithms and statistical models that learn to perform a

task based on data instead of being explicitly programmed to do so.

Machine Learning algorithms can be divided into three major learning paradigms that differ according

to the available variables and task in hand: supervised, unsupervised, and reinforcement Learning

(RL).

In supervised learning, the algorithm learns to map some input to an output based on pairs of training

input-output data samples. The learning is forwarded by initializing a cost function that will update

the algorithm’s parameters until convergence via gradient descent; convergence is achieved when the

cost function is minimized. The trainable parameters are called the weights of the ML algorithm.

Linear/Logistic regression, Decision trees, Naive Bayes, Support vector machine, Etc., fall into the

supervised ML category.
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Conversely, Unsupervised ML deals with data where no labels are present. Clustering algorithms like

K-Means, K Nearest Neighbor, and feature reduction algorithms like Principle Component Analysis

fall into this category.

Similarly, in RL, no labels for data samples are present. RL defines a reward function instead of a loss

function and updates the weights of the algorithm in order to maximize this reward [76].

RL shares the same principle as unsupervised learning; no-true labels are available. However, it

differs from it in the way the learning works. RL involves an agent, an environment, and a reward

function. The learning consists of the agent acting in the environment and getting rewarded or

penalized accordingly.

ML algorithms fall into discriminative and generative categories. Discriminative algorithms model

the boundary between the different classes. It learns directly the conditional probability p(y|x) of the

label (y) given the data (x); hence, they are used in supervised learning. Generative algorithms model

the joint distribution p(x, y) [77].

1.3.2 Fully Connected Neural Networks (NN)

A fully connected neural network (NN) is an ML technique that consists mainly of three layers:

an input, a hidden, and an output layer. Its architecture was inspired by the human neural brain.

Each layer consists of a number of units or nodes connected to all nodes in the adjacent layer. The

connections linking nodes of different layers are defined as the weights. The inputs are multiplied by

the hidden weights and then summed. The latter undergo a non-linear function called an activation

function like the rectified linear unit (ReLU = f(x) = max(x, 0)), the sigmoid ( f(x) = 1
1+exp −x),

the softmax (f(x) = exp xi∑︁
jxj

) or the hyperbolic tangent (tanh = f(x) = exp x−exp −x
exp x+exp −x). The resulting

values are multiplied by the weights from the connections between the hidden and output layers,

then summed and passed through an activation function to get the output values [77]. The training

consists of updating the weights to map the outputs to the ground truth labels. The weight updating

procedure consists of computing a loss function between the predicted output and the ground truth,

like the mean absolute error (L1 norm), the mean squared error (L2 norm), etc. This error is back-

propagated through the network using the backpropagation algorithm [78]. ”Backpropagation uses

gradient descent for error reduction, by adjusting the weights based on the partial derivative of the

error with respect to each weight [77].” Figure 1.5 shows the diagram of a simple NN of three layers.

24



1.3. INGREDIENTS

Figure 1.5: A simple neural network of three layers: an input layer (consisting of three units x1, x2
and b), a hidden layer (consisting of four units h1, h2, h3 and b) and an output layer (consisting of one
unit ô). wl

ij is the weight of the connection between unit i from layer l to the unit j from layer l + 1.

bl is the bias from layer l. o1̂ is the output’s predicted value and o1 the ground truth. The forward

pass can be summarized by hl
i =

∑︁n
j=1(w(l−1)

ij × xj) + b
(l)
i with n the number of units in the layers

l − 1. The loss function L compares o1̂ and o1. In the backward pass, weights are updated using the
following equation wl

ij = wl
ij − α × ∂L

∂wl
ij

with α being the learning rate or the step size; it defines how

quickly the solution converges.
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1.3.3 Deep Learning (DL)

Most of ML applications are applied on processed inputs via hand-crafted features engineering.

However, this task requires domain expertise and is time-consuming. Hence, identifying these features

automatically could be beneficial technically and time-wise by finding new hidden features faster. The

latter characteristic is the Deep Learning (DL) specialty [79]. ”Deep learning is a specific kind of ma-

chine learning” [80]. Deep NN is a NN of more layers, thus, the term deep. The deeper the network,

the more complex the learned features [77].

Recent state-of-the-art DL architectures have revolutionized the way we solve several problems in com-

puter vision like object detection and recognition, video compression and generation via convolutional

neural networks (CNN) and their variants (Alexnet [81], VGGnet [82], GoogLeNet [83], Inception-v3

[84], Inception-v4 [85]), to text generation and text-to-image generation via recurrent neural network

(RNN) [86] and transformers [87], and the restricted Boltzmann machines [88].

In this work, we are dealing with 2D sketches that we approach as images. Thus, we are more interested

in CNN-based architectures, which is explained in the following section.

1.3.4 Convolutional Neural Networks (CNN)

CNNs differ from traditional NNs in the way neurons between successive hidden layers are con-

nected [89]. In a hidden layer, a neuron is only connected to a subset of neurons in the previous

layer called the local receptive field. This sparse connectivity implicitly allows CNNs to learn feature

maps and reduce the network’s complexity and overfitting phenomenon. Additionally, neurons of the

same feature map share the same weights reducing the parameters’ number and hence the network’s

complexity.

More formally, the kth feature map Fk can be defined as:

Fk = f(x ∗ Wk) (1.5)

with x the input, f(.) the activation function, Wk the convolutional filter of the kth feature map, and

∗ the 2D convolutional operator.

A convolution layer is modeled as a moving filter, which passes through the image. Its values are

multiplied by a neighborhood of pixels. Afterward, a pooling operation is applied to reduce the

number of parameters, known as down-sampling; the pooling operations are the sum, the average, or
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the maximum operations. This pooling layer is advantageous for the feature detection in the input

to be scale and orientation invariant. Finally, a non-linear activation function is applied. A simple

convolution operation is shown in figure 1.6(a). In reality, every convolutional layer applies several

filters that map an input into several outputs called features maps, such that a filter ki maps the input

to a particular feature map Fki
(Fig.1.6(b)).

A CNN is a stacking of several convolution and pooling layers (Fig.1.6(c)).

Deeper networks result in hierarchical feature extraction. CNNs have proven robustness in learning

spatial correlations in images for different use cases from object classification to object detection [90].

1.3.5 Generative adversarial networks (GAN)

Among the various ML techniques, the generative algorithms have gained great success recently for

their ability to learn the real distribution of the data and perhaps accelerate and improve the genera-

tion of different types of data. The top most common methods are the variational auto-encoder (VAE)

[91] and the generative adversarial networks (GAN) [92]. VAE learns to generate dispersed samples

by minimizing a pixel-wise reconstruction error between the generated and input samples, making the

VAE stable during training. However, this stable training, which consists of optimizing the average

reconstruction loss, suffers from a major drawback: blurry generated images. In 2014, Goodfellow

introduced the GAN architecture [92]. It outperformed VAE in generating sharper, aesthetically more

plausible, and more creative images. Nonetheless, GAN suffers from many issues during training, with

the most common being: difficulty in balancing the learning speed between the generator and the

discriminator resulting in a mode collapse (i.e., when the generator learns only to produce one mode

of samples) and instability of the generator and discriminator’s losses (they oscillate continuously and

never converge into a fixed point). Currently, research is focusing on solving these issues: Arjovsky

et al.[93] proposed to replace the Kullback-Leibler loss function with the earth mover distance. Metz

et al. [94] used an unrolled optimization of the discriminator’s objective during training. Others ex-

plored different training hacks (batch normalization, transposed convolutions, the choice of activation

functions and optimizers, Etc.)[95].

GAN is a method that learns to mimic any input data distribution. Its advantage is that it can

generate new samples following the same input data distribution.
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(a) A convolutional operation. The input is a 2D matrix of di-
mension 5×5. The convolution filter ki of size 2×2 is multiplied
by the input matrix. The values are then summed. Finally, an
activation function is applied to output the feature map Fki .

(b) A convolution layer of two kernels ki and kj . Weight units in
the feature map Fki share the same filter ki. Similarly, Weight
units in the feature map Fkj share the same filter kj .

(c) A convolutional network of two convolutional layers. k
(l)
i is the kernel . Weight units in the

feature map F
(l)
ki

share the same convolution filterk
(l)
i in layer l.

Figure 1.6: Schema of a convolutional neural network.

Figure 1.7: Diagram of a Conditional GAN.
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As explained in their paper [92], Goodfellow et al.compared the GAN to the money counterfeiters

versus the police situation. The counterfeiters try to produce fake money to fool the police, and the

police’s job is to detect this fake money. Every time the police catch fake money, the counterfeiters

need to enhance their skills to induce realism into fake money so that it goes indiscernible.

GAN consists of two differentiable functions, the generator G(z, θg); with θg its parameters and z a

latent random vector following a noise prior distribution pz; and the discriminator D(x, θd); with; θd its

parameters and x a real sample; each working against the other. G(z, θg) tends to output samples with

a distribution pg similar to the real data distribution pdata. However, D(x, θd) tries to discriminate

real samples (i.e., from pdata) from synthesized ones (i.e., from G(z, θg)). GAN’s primary purpose is

to optimize pg to produce creative and diverse samples without memorizing the original ones. Both

functions are learned in a minimax framework to improve the same loss function: the cross-entropy

loss L(G, D). This loss, as defined in the original paper (Goodfellow et al. [92]), is:

L(G, D) = min
G

max
D

Ex∼pdata(x) [log(D(x, θd))]

+ Ez∼pz(z)[log(1 − D(G(z, θg)))] (1.6)

The solution of this function is pg = pdata, i.e. when the generator starts to output data samples

following the same distribution as the real ones.

1.3.6 Conditional Generative adversarial networks (cGAN)

On the other hand, a Conditional Generative Adversarial Networks (cGAN) [96] is a GAN’s exten-

sion enabling the generation to be oriented by a specific input condition c. In this framework (Fig.1.7),

the basics of CGAN become: the conditional generator as G(z|c, θg), the conditional discriminator as

D(x|c, θd) and the loss function as:

L(G, D) = min
G

max
D

Ex∼pdata(x) [log(D(x|c, θd))] + Ez∼pz(z)[log(1 − D(G(z|c, θg)))] (1.7)

It is worth mentioning that conditional GANs have recently grabbed the interest of research. Its ap-

plications are spread amongst all fields, in computer vision (image synthesis, image-to-image, text-to-

image) [97], video generation [98], engineering [99], medical [100], agriculture [101], and cybersecurity

[102].
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To sum up, a convolutional CGAN is a CGAN with G(z|c, θg) and D(x|c, θd)’s architectures being

based on CNNs.
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1.4 French Summary

Avec l’émergence des procédés d’impression 3D, principalement la fabrication additive (FA), im-

primer des designs plus complexes et plus créatifs est devenue réalisable, ce qui a rendu l’optimisation

topologique (TO) encore plus attirante dans les domaines de recherche. La TO vise à trouver la dis-

tribution optimale des matériaux dans un espace de conception, compte tenu d’un ensemble de con-

traintes mécaniques. La topologie résultante peut avoir n’importe quelle forme et être définie comme

une image binaire 2D ou une grille de voxels binaires 3D, de sorte que la présence d’un pixel/voxel

non vide signifie la présence du matériau. La TO a connu un succès considérable au 20th siècle lors

de la révolution industrielle des secteurs de l’automobile et de l’aérospatiale, étant donné son puissant

potentiel d’optimisation d’une structure en termes de matériau utilisé tout en maintenant ses spéci-

fications et propriétés mécaniques recommandées. Par la suite, elle a étendu ses applications à un

plus grand nombre de disciplines : fluide, acoustique, électromagnétique, optique, etc. Cependant, la

TO utilise une méthode itérative, basée sur les éléments finis (FE), qui est coûteuse en calcul et donc

relativement lente.

Avec le nouveau logiciel de TO avancé, la production d’un design unique soumis à un ensemble de

conditions aux limites et de configurations de charge est une question de secondes à quelques jours

selon la complexité du design et des contraintes environnantes. Cet aspect est acceptable si le pro-

cessus est limité à cette seule étape. Cependant, un(e) ingénieur(e) en mécanique ne se fie jamais au

premier design qu’il essaie, d’autant plus que la TO, sous sa forme commerciale [57, 58, 59, 60, 61], ne

tient pas compte des contraintes géométriques ni des critères de fabrication, ni des autres contraintes

industrielles spécifiques au secteur dans lequel la pièce est fabriquée (automobile, aéronautique, hy-

draulique, etc.). L’ingénieur(e) en mécanique doit toujours explorer plusieurs configurations pour

trouver la topologie, la forme et le dimensionnement optimaux de la conception à fabriquer. Il/elle

doit également s’assurer que son projet final est créatif, rentable et manufacturable. Par conséquent,

ce processus d’exploration itératif peut devenir lent, en particulier pour les designs à grande échelle.

L’accélération du cycle du design pour la FA est un sujet de recherche et un sujet industriel d’actualité.

Par conséquent, les chercheurs tentent de trouver des solutions pour contourner ces contraintes et ac-

célérer la phase de la TO. Nous pouvons classer les approches de la littérature qui ont aborder le sujet

en quatre approches de pointe (Tab.1.1) :
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1. la formalisation les règles de FA pour que les ingénieurs les prennent en compte lors de la

phase de dessin des CAO, mais cela ne garantit pas l’optimalité initiale du design en termes de

performance mécanique. Cette approche a permis de formaliser les contraintes de FA pour les

utilisateurs novices et de guider les ingénieurs dans la création de designs imprimables ;

2. l’intégration de certaines contraintes de FA lors de la formulation FE-TO. Cette approche permet

aux ingénieurs de disposer d’une première ébauche prenant en compte les deux contraintes, évi-

tant ainsi de rester bloqués dans une boucle de redessiner et retester la performance mécanique

de l’ébauche. Néanmoins, toutes les contraintes FA ne peuvent pas être formulées analytique-

ment. En outre, cette approche hérite des défauts de la TO basée sur la densité. (1) FE-TO

identifie la forme générale dès les premières itérations, ce qui empêche la méthode de modifier

la forme, dans les itérations restantes, pour tenir compte des contraintes géométriques. (2) La

convergence n’est pas garantie, surtout lorsqu’il y a des contraintes multiples ; il est difficile de

trouver le design optimal où toutes les conditions sont validées ;

3. l’utilisation du Machine Learning (ML) et du Deep Learning (DL) pour assister les méthodes

FE-TO. Cette approche se concentre sur l’accélération de la phase TO du processus de design

pour la FA et n’évite pas de rester coincé dans une boucle dans les phases ultérieures. Comme

pour l’approche précédente, la plupart des problèmes de TO sont encore hérités ;

4. le remplacement total des éléments finis par du ML et du DL dans TO. Cette approche n’intègre

aucune contrainte de fabrication et ne permet pas d’éviter d’être coincé dans une boucle dans

les phases ultérieures du processus de design pour la FA.

Notre objectif est d’accélérer l’ensemble du processus de design pour la FA et d’obtenir le meilleur

rapport qualité/coût. Comme nous l’avons vu dans l’introduction, la phase de conception a le coût

le plus bas et l’impact le plus élevé sur le coût global du produit, sa qualité et donc son cycle de vie.

Cependant, l’accélération de cette seule phase n’est pas suffisante, comme nous l’avons vu avec les

approches de l’état de l’art. De plus, alors que les méthodes FE qui intègrent quelques contraintes de

FA visent à accélérer l’ensemble du processus de design pour la FA en évitant les itérations répétitives,

la formulation analytique des contraintes FA, la convergence de ces dernières et leurs coûts de calcul

restent un obstacle. D’autre part, l’introduction de ML et du DL n’a accéléré qu’une seule phase.

Ainsi, dans ce travail, nous proposons d’obtenir le meilleur des deux mondes. Cette nouvelle approche
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générative du DL permet d’intégrer les contraintes de fabrication aux contraintes mécaniques simul-

tanément au même niveau conceptuel du design, et toutes les contraintes, même celles qui n’ont pas

de définition mathématique, comme les règles métiers, tout en bénéficiant des avantages de vitesse et

d’évolutivité du DL. Il est impératif de noter que cette approche n’a pas pour but de remplacer le

robuste FE-TO mais de compenser ses difficultés lorsqu’il s’agit d’intégrer diverses contraintes com-

plexes (Tab. 1.2).

La principale contribution de notre travail n’est pas seulement d’accélérer la phase de TO, mais aussi

d’identifier un moyen d’adapter la géométrie et la fabricabilité de la conception afin de générer une

première ébauche de design qui respecte à la fois les contraintes mécaniques et géométriques de fab-

rication, afin d’éviter de rester coincé dans une boucle de mise à jour et de test des conceptions et

d’accélérer l’ensemble du processus de design pour la FA.

Ainsi, nous formulons le problème comme suit. Nous souhaitons trouver la distribution optimale des

matériaux dans un espace de domaine soumis à un ensemble de contraintes mécaniques et non mé-

caniques, ou ce que nous appelons dans ce travail des contraintes géométriques. Plus précisément,

trouver une fonction générative G(C, θ) de paramètres θ, qui prend en entrée ces contraintes C et pro-

pose une conception x en conséquence. Le problème d’optimisation peut être formulé analytiquement

comme suit :
x = G(C, θ)
Cm1 : V (x)

V0
≤ f

Cm2 : KU = F
Cgi : cgi ≤ vgi or cgi ≥ vgi for i = 1, ..., |Cg|

(1.8)

où Cm sont les contraintes mécaniques, Cm1 étant la contrainte de fraction de volume et Cm2 la

contrainte de charges, tandis que Cg sont l’ensemble des contraintes géométriques, vgi est la valeur

minimale/maximale acceptable pour la contrainte géométrique gi. V0, Vx, f , K, U et F sont définis

dans la section 1.1.2.

Les principales contributions de notre travail sont les suivantes :

1. l’intégration des contraintes mécaniques et géométriques de fabrication au même niveau con-

ceptuel du design ;

2. la création d’un jeu de données synthétiques de designs 2D avec leurs contraintes mécaniques et

géométriques de fabrication ;

3. bénéficier de la capacité du DL à apprendre les corrélations spatiales ainsi que de sa vitesse et
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de son évolutivité. Cette approche intègre les conditions mécaniques et géométriques d’entrée

au niveau conceptuel, génère des conceptions en conséquence et est indépendante sur le plan

informatique de la complexité des entrées ;

4. la convergence n’est plus un problème tant que le modèle est entrâıné sur des designs convergents

;

5. la flexibilité d’intégration de tout type de contraintes grâce à la possibilité de concaténer plusieurs

types d’entrées dans les modèles DL.

Avec notre approche, nous souhaitons tester et valider les hypothèses suivantes :

1. toute contrainte FA ou autre type de contrainte (contrainte de surplomb, distorsion thermique,

flambage, règles métiers, etc.) peut être intégrée dans le modèle de design, et pas seulement

celles formulées analytiquement ;

2. l’accélération de l’ensemble du processus de design pour la FA en générant une première ébauche

conforme aux contraintes géométriques de fabrication et mécaniques et en évitant les itérations

répétitives de mise à jour et d’évaluation du design;

3. un module de design génératif plus léger computationnellement qui peut être implémenté dans

un logiciel industriel de design à l’avenir.

Il est essentiel de souligner que ce travail se concentre sur l’approche densité, Solid Isotropic Material

with penalization (SIMP), parmi toutes les approches de TO pour deux raisons majeures. Première-

ment, SIMP traite le design comme une distribution de matériaux, en d’autres termes comme une

image, ce qui est compatible avec notre façon d’aborder le sujet en utilisant des techniques de vision

par ordinateur basées sur le DL. Deuxièmement, SIMP est l’approche TO la plus implémentée dans

les logiciels industriels [4], grâce à ces avantages informatiques ; elle est la plus simple et la moins

coûteuse en calcul. On la retrouve dans SolidWorks[71], ABAQUS[72], Siemens NX[73], et Altair

Optistruct[74], et ANSYS Mechanical[75], qui comprend également l’approche level set [4]. Ce dernier

argument nous incite à explorer des solutions afin de compenser les difficultés de TO par la DL et à

proposer à l’avenir un module de TO plus léger basé sur le DL à intégrer dans les logiciels industriels.
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2.1. METHODOLOGY: DATA DRIVEN DESIGN FOR ADDITIVE
MANUFACTURING

2.1 Methodology: Data driven Design for Additive Manufacturing

As we mentioned in section 1.2.2, our work’s main objective is to identify a way to accelerate

the whole DfAM process. Moreover, as we identified previously, it comes to avoiding getting stuck

in a loop of updating the design’s geometry to comply with manufacturing constraints and testing

the mechanical performance. This is achieved by integrating the manufacturing constraints in earlier

stages of the DfAM process, i.e., the design phase.

Previous work adopted this approach via FE-TO methods. Nevertheless, they reported several limita-

tions. Some geometrical-related constraints between structural members (e.g., angles between struc-

tural members) cannot be easily formulated analytically, and some (e.g., hanging features,AMexperts

rules) lack an exact mathematical description [70]. In [41, 17], several parameters must be chosen

carefully to avoid the introduction of non-linearities and ensure convergence of the optimization prob-

lem. Moreover, although some work tried to impose geometric constraints via density-filters [63] to

alleviate the computational cost of FE-TO or used NNs’ back-propagation [69] to compute expensive

sensitivity analysis, they still relied on iterative and computationally expensive FE-solvers and FE

analysis (Finite Elements Analysis (FEA)), and sometimes ended up with local optima.

Finally, whereas it is less intricate to impose a few geometric constraints, it is further complicated to

handle numerous ones simultaneously, especially inter-member constraints of a single structure, with

the analytical AM-oriented-TO formulations.

To compensate for these limitations, We propose a data-driven approach to explore the DL capa-

bility, particularly CNNs, to integrate the geometrical constraints concurrently at the same level as

the mechanical ones. CNNs have demonstrated their potential in learning spatial correlations and

extracting high-level features (including geometrical or shape-related features) from real-world images

[66, 67, 68], and DL outputs converged crisp black-and-white designs if trained on converged training

designs. Besides, their computational cost, in terms of operations and prediction time, is independent

of the inputs’ complexity, unlike FE methods, for which the number of operations and computational

time grow exponentially with the input’s complexity.

Since the problem is to generate designs, a data-driven generative method, particularly the Generative

Adversarial Networks (GAN), is chosen. GANs are distinguished for their flexible framework incorpo-

rating additional knowledge into the generator.

We recall that our goal is to find the optimal material distribution in a domain space subject to a set of
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2.2. INPUTS: MECHANICAL AND MANUFACTURING/GEOMETRICAL
CONSTRAINTS

mechanical and non-mechanical, or what is called in this work geometric, constraints. More precisely,

to find a generative function G(C, θ) of parameters θ, which takes these constraints C as input and

suggests a design x accordingly. The optimization problem can be formulated as the following:

x = G(C, θ)
Cm1 : V (x)

V0
≤ f

Cm2 : KU = F
Cgi : cgi ≤ vgi or cgi ≥ vgi for i = 1, ..., |Cg|

(2.1)

where Cm are the mechanical constraints with Cm1 being the volume fraction constraint and Cm2 the

loads constraint, while Cg are the set of geometric constraints, vgi is the minimum/maximum value

acceptable for the geometric constraint gi. V0, Vx, f , K, U and F are defined in chapter 1.1.2.

Inspired by the GAN framework, this problem can be solved by setting G(C, θ) as the conditional gen-

erator, Dm as a discriminator validating the conformity of the generated designs with the mechanical

constraints, and Dgi as the ith discriminator validating the conformity of the generated designs with

the ith geometrical constraint, with i = 1, ..., |Cg|. G(C, θ) is penalized not only for the aesthetics of

generated designs but also for their mechanical and geometrical conformity with the input conditions.

This is illustrated in figure 2.1. Figure 2.1(a) shows the training phase of the generator G(C, θ) (Deep

Learning Additive Manufacturing driven Topology Optimization, DL-AM-TO). Indeed, DL-AM-TO

takes the mechanical and manufacturing/geometrical constraints as input and generates a 2D design.

The latter is input to the discriminators; the mechanical discriminator penalizes the generator if the

design does not respect the mechanical input constraints, and the geometrical discriminator penalizes

the generator if the design does not comply with the geometrical/geometrical constraints. The er-

rors computed by the discriminators are fed back to the generator to update its weights and improve

its generation quality. Figure 2.1(b) shows DL-AM-TO during usage time, i.e., inference time. At

inference time, DL-AM-TO generates designs for any given input constraints within a fraction of a

second. These designs can be evaluated by the discriminators that helped with DL-AM-TO’s training,

as shown in figure 2.1(c).

2.2 Inputs: Mechanical and Manufacturing/Geometrical constraints

As mentioned previously, G(C, θ) takes several types of constraints, which do not share the same

format (i.e., shape) most of the time. This format problem can be solved by transforming all inputs

into the same shape. However, identifying this consolidated format is not straightforward and should
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2.2. INPUTS: MECHANICAL AND MANUFACTURING/GEOMETRICAL
CONSTRAINTS

(a) During Training, the mechanical and geometric/manufacturing constraints are
input into the Deep Learning Additive Manufacturing-driven Topology Optimization
(DL-AM-TO, the generator), which generates 2D designs. The latter is evaluated by
the mechanical discriminator penalizing the generator when the generated designs do
not comply with the mechanical conditions. The geometric/manufacturing discrim-
inator penalizes the generator when the generated designs do not comply with the
geometric/manufacturing conditions. These evaluators are also Deep Learning-based
networks that are trained simultaneously along with the generator.

(b) During Inference, the generator is used to output designs conforming to input
mechanical and geometric/manufacturing constraints.

(c) Evaluation of Generated designs (Optional). To evaluate the generated designs,
the user could use the Deep Learning evaluators.

Figure 2.1: Deep Learning Design Generation considering both Mechanical and Geomet-
ric/Manufacturing Constraints. The training procedure is based on the GAN framework.
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2.2. INPUTS: MECHANICAL AND MANUFACTURING/GEOMETRICAL
CONSTRAINTS

be assessed for every case.

For our case, the mechanical constraints considered are the boundary conditions (BC: BCx, BCy),

the loads (F : Fx, Fy) along the x and y axis and the volume fraction V .

The BC define the clamped part of the domain space; what nodes are restrained from translations

and/or rotations; they are represented as 2D matrices of size ((nx + 1), (ny + 1)) for a domain space

of dimension (nx, ny).

F define the loads along the x and y axis, such that Fx = |F | × cos(Fθ) and Fy = |F | × sin(Fθ) with

|F | the load’s magnitude (in this work, it is set to 1N1) and Fθ the load’s orientation. Fx and Fy are

represented as 2D matrices of size ((nx + 1), (ny + 1)) for a domain space of dimension (nx, ny).

V defines the fraction of the total material in the domain space. In other terms, the final design must

consist of, at most, V % material. In SIMP-TO, this constraint is initialized by setting the starting

x to a matrix of V value everywhere; the average value of an array of the same value val equals val.

Hence, V is represented as a 2D matrix of size ((nx + 1), (ny + 1)) for a domain space of dimension

(nx, ny) with the same value V .

From section 1.2.1, we can conclude that the most influential geometrical manufacturing-related con-

straints are the minimum overhang and the minimum and maximum member size.

1. The minimum overhang (Θmin). It is the most general AM constraint. It is the angle between

the normal of a bar and the build orientation. More importantly, it is the most impactful man-

ufacturing constraint that gained the highest attraction in research. Indeed, a design violating

this constraint has hanging features and hence needs support structures. The latter yields ad-

ditional material, slows the build time, damages the part’s accuracy and finishing, and induces

the need for post-processing, further delaying the fabrication [40]

2. The thin feature represented in this work as the minimum bar thickness (thmin). Thin features

usually present several defects: unmelted powder inclusions, internal voids, cracks, and shape

irregularities [103]. Moreover, controlling the bar thickness alleviates large thermal gradients

and improves resistance to buckling or localized damage [41].

3. The maximum bar length (lenmax). Long bars, called bridges, are unsupported features in a

design that collapse during manufacturing [26].

1N = Newton; an SI unit measure for forces.
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2.3. MODEL’S ARCHITECTURE

4. The total number of bars (Nbrbars). Engineers have a preference for simple geometries. Thus,

we defined the simplicity of a design by the total number of bars, primarily since our dataset

consists of truss-like structures. A simpler structure is a design having fewer bars.

These constraints are scalar values, thus, of a different shape than the mechanical ones.

In this case, there are three solutions to allow the concatenation of both constraints:

1. Compress the mechanical constraints i.e. convert the 2D matrices of size ((nx +1), (ny +1)) into

scalar values and represent the inputs as a 1D vector of dimension 1 × 9.

2. Expand the geometrical constraints into 2D matrices (by repeating the same value in the matrix)

and end up with an input of size 9 × (nx + 1) × (ny + 1); a nine-channel ((nx + 1) × (ny + 1))

image,

3. Keep all inputs’ shapes untouched and configure the generator’s architecture to handle the

constraints at different levels.

In our case, the second option was adopted for performance reasons; the generated designs were of

better quality, and the response to the geometrical constraints was more remarkable by representing

them as matrices than by scalars. This result is not conclusive. For other situations, the remaining

approaches might work as well.

For a better understanding, figure.2.2 illustrates the inputs to G(C, θ).

2.3 Model’s architecture

The model’s architecture depends on the inputs and outputs formats, whether they are scalars,

images, texts, Etc.

In our case, inputs are a mix of scalar and 2D matrix constraints converted into image-like inputs.

Thus, G(C, θ) is supposed to take these image-like constraints, encode them, and extract the features

that map them to an image-like geometry or a density-pixel distribution.

Consequently, the adequate architecture would consist of a sequence of convolutional neural networks

(CNN) 1.3.4 to encode the constraints, followed by a sequence of de-convolutions to decode the design.

Several state-of-the-art architecture based on CNNs can be found in the literature, we cite: ResNet
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2.4. TRAINING FRAMEWORK

Figure 2.2: Input to the generator G(C, θ). The input consists of (1) the mechanical constraints:
Boundary conditions (BCx, BCy), the loads (Fx, Fy) along the x and y axis and the volume fraction
V (2) and the geometrical constraints: the total number of bars (Nbrbars), the maximum bar length
(lenmax), the minimum overhang (Θmin), the minimum bar thickness (thmin). Following option three
in section 2.2, the scalar geometrical constraints are transposed to 2D matrices to be concatenated
with the mechanical ones. Consequently, the input to G(C, θ) is a nine-channel 2D image.

[104], U-net[105], Res-U-net [6], Inception architectures [83, 84, 85], etc. G(C, θ)’s architecture chosen

in this work is detailed in chapters 3 and 5.

2.4 Training Framework

Now that G(C, θ)’s architecture is chosen, It is time to set up the training workflow.

A simple training workflow consists of formulating a loss function that compares the generated designs

versus the ground truth, i.e., computing a reconstruction loss, which is propagated to penalize G(C, θ).

However, this training procedure does not fulfill our requirements. The objective is not simply to gen-

erate aesthetically plausible image-like designs but to generate mechanically valid designs conforming

to the input geometrical constraints; in other terms, designs respecting the same mechanical specs

but are not necessarily identical when it comes to geometry. Hence, every input constraint must be
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2.5. TRAINING DATASET

checked separately at every output design.

This mindset of training recalls the generative adversarial networks (GAN)[92] (section 1.3.5) where

the generator outputs data samples, and a discriminator tries to identify whether they came from the

real dataset or whether the DL generator outputted them.

The only difference between the original GAN and our case is that one discriminator is not sufficient

here because the input constraints are several and differ in nature (mechanical versus geometrical)

and magnitudes (for example, Fx and Fy are continuous bounded values ∈ [0, 1] while the Nbrbars are

integer scalars ≥ 1).

Therefore, the training workflow consists of two types of discriminators: mechanical and geometrical

ones, such that a geometrical discriminator per a geometrical condition and one mechanical discrimi-

nator representing the mechanical constraints.

The reason for all mechanical constraints to share the same discriminator while every geometrical

condition has its own is that the mechanical constraints, altogether, make a design, and thus evaluat-

ing each mechanical constraint separately does not make any sense; it is not physically interpretable.

However, two designs with two different numbers of bars can be interpreted as mechanically similar as

long as the mechanical key performance indicator (KPI) computed on both is similar. Moreover, we

recall that our initial objective is to be able to propose several geometries for the same well-defined

mechanical conditions in order to comply with the production requirements. Also, having an evaluator

per geometrical condition helps us in the evaluation phase; they will alleviate the need to manually

measure the geometrical constraints of all the generated designs.

2.5 Training Dataset

As mentioned, a dataset of designs alongside their mechanical and geometrical constraints is needed

to train G(C, θ).

Available datasets include mesh geometries (Boundary representations, B-rep)[106, 107], sketch graphs

[108] and parametric Computer Aided Designs (CADs) [109]. Unfortunately, these datasets are not

convenient for the task at hand; they contain geometrical information about designs, but none provide

the mechanical specs. Thus, we need to consolidate a synthetic dataset containing the designs alongside

the mechanical and geometrical constraints.
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2.6 Discussion

The objective is to create a generative model that maps a set of mechanical and geometrical

manufacturing-related constraints to a shape. Thus, we need a dataset of designs consisting of several

shapes per set of mechanical constraints, such that these shapes differ in only one geometrical con-

straint at a time. Consequently, we have identified a workflow to consolidate this dataset.

First, We will need to generate designs from a traditional FE-TO method (SIMP) by sampling the

mechanical constraints. Second, we will train Deep Learning models to predict the mechanical con-

straints from designs using the SIMP dataset. Third, we will need to draw CADs inspired by the

shapes proposed by TO; these shapes differ in the geometrical constraints. Finally, we will predict the

mechanical constraints of these synthetic CADs using the trained DL models. Hence, we will end up

with a dataset of designs and their geometrical and mechanical constraints.

Nonetheless, this data consolidation workflow is very complex and time-consuming. Another challenge

is the training dataset dimension; a tremendous amount of designs is needed to train a generative model

based on DL. successfully Consequently, before diving into this step, we will start with a proof of

concept to validate our proposed method. The first approach consists of choosing a simple geometry-

related constraint that is hardly analytically formulated; thus is challenging to be integrated into

FE-TO approaches. The first approach consists of creating a dataset by sampling the mechanical con-

straints and generating designs using the SIMP method. The SIMP designs are truss-like structures;

hence, as a first geometry-related constraint, the number of bars (Nbrbars) is chosen as the first geo-

metrical constraint. This approach trains a DL model that takes the mechanical constraints and the

(Nbrbars) as inputs and outputs a 2D design accordingly. The goal is to demonstrate that for a set of

fixed mechanical constraints, changing the geometrical condition will lead to several geometries while

always respecting these mechanical constraints in a fraction of a second. Thus, the design proposed is

not only mechanically valid but also geometrically valid, hence print-ready. Thus, the DfAM process

is accelerated not only the TO phase; the designer will no longer be blocked in a loop of designing

and testing the mechanical performance, and the geometry proposed in the design phase is already

compliant with the manufacturing constraint.

Thus, chapter 3 details the proof of concept approach and shows the results obtained. Next, the con-

solidation of the mechanical and geometrical CAD dataset is described in chapter 4. Then, chapter

5 improves on the proof of concept using the dataset created in the previous chapter and validates
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our objective, which is that a data-driven TO approach integrating both mechanical and geometrical

manufacturing-related constraints accelerates the whole DfAM process and not only the design phase.

Finally, Chapter 5.9 summarizes the methodology and its outcomes and presents future perspectives.

2.7 French Summary

Comme nous l’avons mentionné dans la section 1.2.2, l’objectif principal de notre travail est

d’identifier un moyen d’accélérer l’ensemble du processus de design pour la fabrication additive (FA).

En effet, il s’agit d’éviter la boucle des taches de mise à jour de la géométrie pour respecter les con-

traintes de fabrication et de tests mécaniques. Cet objectif est atteint en intégrant les contraintes

de fabrication à des étapes plus précoces du processus de design pour la FA, c’est-à-dire la phase de

conception.

Des travaux antérieurs ont adopté cette approche via des méthodes d’optimisation topologique (TO)

basées sur les éléments finis. Néanmoins, ils ont signalé plusieurs limitations.

Certaines contraintes géométriques entre les éléments structurels (par exemple, les angles) ne peuvent

pas être facilement formulées de manière analytique, et d’autres (par exemple, les contraintes de sur-

plomb, les règles métiers) manquent d’une description mathématique exacte [70]. Enfin, alors qu’il

est moins compliqué d’imposer quelques contraintes géométriques, il est encore plus compliqué d’en

traiter de multiples contraintes simultanément, en particulier celles entre les membres d’une même

structure, avec les méthodes de TO orientées FA.

Pour compenser ces limitations, nous proposons une approche basée sur les données pour explorer la ca-

pacité des DL, en particulier les réseaux convolutionnels de neurones (CNN), à intégrer les contraintes

géométriques simultanément au même niveau que les contraintes mécaniques. Les CNN ont démontré

leur potentiel dans l’apprentissage des corrélations spatiales et l’extraction de caractéristiques de haut

niveau (y compris des caractéristiques géométriques ou liées à la forme) à partir d’images du monde

réel. En outre, leur coût de calcul, en termes d’opérations et de temps de prédiction, est indépendant

de la complexité des entrées, contrairement aux méthodes basées sur les éléments finis, pour lesquelles

le nombre d’opérations et le temps de calcul croissent de manière exponentielle avec la complexité de

l’entrée.

Le problème étant de générer des designs, une méthode générative pilotée par les données, notamment

les réseaux antagonistes génératifs (GAN), est choisie. Les GAN se distinguent par leur flexibilité
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quant à incorporer des connaissances supplémentaires dans le générateur.

Nous rappelons que notre objectif est de trouver la distribution optimale de matériaux dans un espace

de design soumis à un ensemble de contraintes mécaniques et non mécaniques (i.e. géométriques).

Plus précisément, il s’agit de trouver une fonction générative G(C, θ) de paramètres θ, qui prend en

entrée ces contraintes C et propose un design x en conséquence (section 1.4, chapitre 1).

Inspiré des GAN, ce problème peut être résolu en définissant G(C, θ) comme le générateur condi-

tionnel, Dm comme un discriminateur validant la conformité des designs générés avec les contraintes

mécaniques, et Dgi comme le ième discriminateur validant la conformité des designs générés avec la

ième contrainte géométrique, avec i = 1, ..., |Cg|. Ceci est illustré dans la figure 2.1. La figure 2.1(a)

montre la phase d’apprentissage du générateur G(C, θ) (appelé Deep Learning Additive Manufactur-

ing driven Topology Optimization, DL-AM-TO). En effet, DL-AM-TO prend en entrée les contraintes

mécaniques et de fabrication/géométriques et génère un design 2D. Ce dernier est soumis aux discrim-

inateurs ; le discriminateur mécanique pénalise le générateur si le dessin ne respecte pas les contraintes

mécaniques d’entrée et le discriminateur géométrique pénalise le générateur si le dessin ne respecte

pas les contraintes géométriques/géométriques. Les erreurs calculées par les discriminateurs sont ren-

voyées au générateur pour mettre à jour ses poids et améliorer la qualité de sa génération.

La figure 2.1(b) montre DL-AM-TO pendant le temps. Au moment de l’inférence, DL-AM-TO génère

des designs pour toute contrainte d’entrée donnée en une fraction de seconde. Ces designs peuvent

être évalués par les discriminateurs qui ont participé à la formation de DL-AM-TO, comme le montre

la figure 2.1(c). Les entrés de DL-AM-TO sont les contraintes mécaniques ; les conditions aux bords

au long des axes x et y (BCx, BCy), les forces (Fx, Fy) et la fraction volumique (V ) ; et les contraintes

géométriques ; le minimum surplomb (Θmin), la minimum épaisseur d’une barre (thmin), la longueur

maximale d’une barre (lenmax) et le nombre de barres (Nbrbars). En TO, un domaine d’espace de

dimension (nx, ny) est discrétisé en ((nx + 1), (ny + 1)) éléments. Par suite, les BC, F , et V sont

formulées comme des matrices 2D de dimension ((nx + 1), (ny + 1)). Pour les conditions de bords,

nous les formulons comme des matrices avec des valeurs nulles partout à l’exception des nœuds où les

BC sont appliquées, ils prennent la valeur 1.0. Pareil, les F sont des matrices avec des valeurs nulles

partout à l’exception des nœuds où les F sont appliquées, ils prennent la valeur |F |.cos(FΘ) pour Fx

et |F |.sin(FΘ) pour Fy avec |F | la magnitude de la force en Newton et FΘ l’orientation de la force. La

fraction volumique V est la contrainte de pourcentage de matériau, il est formulé comme une matrice
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2D de même dimension ((nx + 1), (ny + 1)) avec la même valeur V partout.

D’autre part, les contraintes géométriques sont plutôt des valeurs scalaires de 1D, ce qui n’est pas com-

patible en termes de format avec les contraintes mécaniques de 2D. Par conséquent, pour des mesures

de compatibilité et de performance, nous avons choisis de transposer les contraintes géométriques

en 2D ; nous avons transformé la valeur scalaire en une matrice 2D avec cette même valeur répétée

((nx +1), (ny +1)) fois (2.2). Pour entrâıner DL-AM-TO, une base de données encapsulant des designs

2D avec leurs contraintes mécaniques et géométriques. Malheureusement, cette base n’existe pas. Par

conséquent, nous avons identifié un flux de travail pour consolider cet ensemble de données.

Premièrement, nous devrons générer des designs à partir d’une méthode FE-TO traditionnelle (Solid

Isotropic with Material Penalization, SIMP) en échantillonnant les contraintes mécaniques. Deux-

ièmement, nous formerons des modèles de DL pour prédire les contraintes mécaniques à partir de

designs en utilisant le jeu de données SIMP. Troisièmement, nous devrons dessiner des conceptions

assistées par ordinateur (CAO) inspirées des géométries proposées par TO ; ces formes diffèrent par les

contraintes géométriques. Enfin, nous prédirons les contraintes mécaniques de ces CAO synthétiques

à l’aide des modèles DL entrâınés. Nous obtiendrons ainsi un ensemble de données sur les dessins et

leurs contraintes géométriques et mécaniques. Néanmoins, ce flux de consolidation des données est

très complexe et prend beaucoup de temps. Un autre défi est la dimension de l’ensemble de données

d’entrâınement ; une quantité énorme de designs est nécessaire pour entrâıner un modèle génératif

basé sur la DL.

Par conséquent, avant de plonger dans cette étape, nous allons commencer par une preuve de concept

pour valider la méthode que nous proposons. La première approche consiste à choisir une contrainte

simple liée à la géométrie qui est difficilement formulable analytiquement et donc difficile à intégrer

dans les approches de TO basées sur les éléments finis. La première approche consiste à créer un jeu de

données en échantillonnant les contraintes mécaniques et en générant des designs à l’aide de la méthode

SIMP. Les designs SIMP sont des structures en forme de treillis ; par conséquent, le nombre de barres

(Nbrbars) est choisi comme première contrainte géométrique. Cette approche forme un modèle DL qui

prend les contraintes mécaniques et le nombre de barres (Nbrbars) en entrée et produit un design 2D

en conséquence. L’objectif est de démontrer que pour un ensemble de contraintes mécaniques fixes,

le changement de la condition géométrique conduira à plusieurs géométries en respectant toujours ces

contraintes mécaniques en une fraction de seconde. Ainsi, le design proposé est non seulement valide
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mécaniquement mais aussi géométriquement, donc prêt à être imprimé. Ainsi, le processus de design

pour la FA n’est pas seulement accéléré dans la phase TO ; le concepteur ne sera plus bloqué dans

une boucle de design et de test des performances mécaniques et la géométrie proposée dans la phase

de design est déjà conforme à la contrainte de fabrication.

Ainsi, le chapitre 3 détaille la démarche de preuve de concept et montre les résultats obtenus. Ensuite,

la consolidation du jeu de données CAO mécanique et géométrique est décrite dans le chapitre 4.

Ensuite, le chapitre 5 améliore la preuve de concept en utilisant le jeu de données créé dans le chapitre

précédent et valide notre objectif, qui est qu’une approche TO pilotée par les données et intégrant

les contraintes mécaniques et géométriques liées à la fabrication accélère l’ensemble du processus de

design pour la FA et pas seulement la phase de design. Enfin, le chapitre 5.9 résume la méthodologie

et ses résultats et présente les perspectives.
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3.1. METHODOLOGY

3.1 Methodology

This chapter is adapted from two of our articles:[110], and the other is currently in production.

The first approach aims to create a DL-TO method that simultaneously integrates mechanical and

geometrical constraints at the conceptual level. In other words, the training must ensure that DL-TO’s

network is penalized on the mechanical and geometrical constraints (input conditions). Therefore, a

conditional dual-discriminator GAN [96] is chosen to train DL-TO (the generator). The input con-

straints are formulated as images (Fig. 3.5). Hence, a CNN -based architecture was adopted.

As mentioned previously, DL-TO is trained along with two discriminators. Their role is to ensure

that it generates designs respecting input conditions. The first discriminator, the GAN’s traditional

one, differentiates between the real and the generated designs. The second one predicts the generated

designs’ Nbrbars.

The training procedure can be summarized as follows.

At every iteration of the training, the DL-generator (Res-U-Net Generator) takes as input the me-

chanical (Boundary conditions, loads configuration, and volume fraction) and geometrical ( Nbrbars)

constraints and outputs 2D designs (the Generated Designs). Then, the traditional discriminator is

trained in two stages. It is trained with the real designs alongside the constraint in the first stage

and with the generated designs alongside the constraints in the second. The counter discriminator is

trained with only the real designs and the mechanical constraints. At this level, the discriminators

are considered optimal and are used to evaluate the generated designs: the scores output by both

discriminators (the adversarial and counting losses) alongside the reconstruction loss are injected back

into the generator to train its weights.

The training workflow is illustrated in Fig.3.1.

This proof-of-concept approach targets the validation of the following hypotheses:

Hypothesis 4 (H4): DL-TO generates designs of good quality, mechanically and geometrically valid.

Hypothesis 5 (H5): DL-TO tailors the design’s geometry by simply modifying the input geometrical

variable Nbrbars.

Hypothesis 6 (H6): DL-TO generates designs with passive and active elements without being trained

to do so.
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3.1. METHODOLOGY

Figure 3.1: Training Procedure. (From left to right)
1) The mechanical constraints (Boundary conditions, loads configuration and volume fraction) are
concatenated with the geometrical condition (the Nbrbars). The later are input into the Generator,
which outputs the designs (Generated Designs). The generated designs are concatenated with all of the
input conditions and fed to the traditional discriminator, which predicts a score (the adversarial loss).
Then they are concatenated with only the mechanical conditions and fed to the counter discriminator,
which predicts their corresponding Nbrbars. The counting loss is the MSE between the input Nbrbars

and predicted one. Finally, the quality of generated designs is compared versus the real ones (the
Reconstruction error). All three loss are summed (a weighted sum) and the final score is fed-back to
the generator to update its weights. 2) The Traditional discriminator is trained at two levels: the first
one with the real designs alongside the input conditions and the second one with the generated designs
alongside the input conditions. The adversarial loss is fed-back to the network to update its weights.
3) The counter-discriminator is trained only with the real designs and their mechanical conditions.
The counting loss is fed-back to the network to update its weights.

3.1.1 Training framework

3.1.1.1 Generator’s architecture

The generator (DL-TO) is a deep Res-U-net network [6]. It is an encoder-decoder convolutional

architecture with residual (Res) and skip-connections between the outputs of encoder layers and the

inputs of decoder layers or what is called U-Net. The generator encodes input conditions formulated

as a six-channel-image (Boundary conditions and loads along the x and y-axis, volume fraction and

Nbrbars) and decodes the 2D design (Fig. 3.5). This architecture benefits from the U-Net and residual

advantages. The U-Net improves the information propagation from the encoder to the decoder and

compensates for the loss of finer details in the decoding process by combining low-level features with

their corresponding high levels [105]. The residual connection compensates for the degradation in

performance (usually due to vanishing gradients) in deeper networks (He et al. [104]). As per the
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3.1. METHODOLOGY

Figure 3.2: The architecture of the Res-U-Net Generator. The network can be divided into an encoder,
a bridge, and a decoder. The encoder is formed of 4 blocks, each consisting of a down-sampling layer (a
convolution of stride 2) and a residual unit([6]). The decoder comprises five blocks, each consisting of
an up-sample layer (a transpose convolution of stride 2) and a residual unit followed by a convolution
of kernel size 1 × 1 and a sigmoid activation. The bridge connection has the same architecture as an
encoder-block and combines the encoder with the decoder.
A residual unit block is a sequence of two blocks, each consisting of a batch normalization[6] followed by
a ReLU activation and a convolution of kernel size = 3 × 3 and stride 1. Its input is summed with its
output via an identity mapping connection. An identity mapping connection consists of a convolution
of kernel size = 1 × 1, a stride of 1, and padding of 0 followed by a batch normalization layer.

type of neural network used per encoding layer, it is the convolutional neural network (CNN ) that

is chosen for CNNs capture local spatial correlations in images, which is synergetic with our goal to

build a model that learns geometrical constraints. Transpose CNN s [111] are used in the decoding

phase; they are fractionally-strided convolutions that allow a top-down hierarchical construction of

the image, in our case, the design, from the encoded constraints.

The diagram of the complete architecture and the information about each layer’s kernel size, output

size, Etc., are detailed in Fig. 3.2 and Tab. 3.1.

3.1.1.2 Discriminators’ architectures

The first one, the traditional discriminator, takes the design along with all its conditions and

outputs the probability that it comes from the real data distribution to ensure the generator learns it.

The second one, the DL-counter, takes the design and only its mechanical conditions and outputs its

Nbrbars to ensure the generator respects the input geometrical condition.
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3.1. METHODOLOGY

Table 3.1: Generator (DL-TO) Res-U-Net Architecture. DL-TO’s architecture is composed of three
major components: the encoder, the decoder, and the bridge, which links the encoder to the de-
coder.The encoder is formed of 4 blocks, each consisting of a down-sampling layer (a convolution of
stride 2) and a residual unit([6]). The decoder comprises five blocks, each consisting of an up-sample
layer (a transpose convolution of stride 2) and a residual unit followed by a convolution of kernel size
1 × 1 and a sigmoid activation. The bridge connection has the same architecture as an encoder-block
and combines the encoder with the decoder. nf is the number of feature maps i.e. number of channels.
The input’s dimension is 101 × 101 × 6 and the output’s dimension is 101 × 101 × 1.
A residual unit block is a sequence of two blocks, each consisting of a batch normalization[6] followed by
a ReLU activation and a convolution of kernel size = 3 × 3 and stride 1. Its input is summed with its
output via an identity mapping connection. An identity mapping connection consists of a convolution
of kernel size = 1 × 1, a stride of 1, and padding of 0 followed by a batch normalization layer.

Block Level Layer Filter Stride Output Size

Encoder

Block1
Downsample 3 × 3/nf 2 50 × 50 × nf
Residual unit 3 × 3/nf 1 50 × 50 × nf

Block2
Downsample 4 × 4/nf × 2 2 25 × 25 × nf × 2
Residual unit 3 × 3/nf × 2 1 25 × 25 × nf × 2

Block3
Downsample 3 × 3/nf × 4 2 13 × 13 × nf × 4
Residual unit 3 × 3/nf × 4 1 13 × 13 × nf × 4

Block4
Downsample 3 × 3/nf × 8 2 7 × 7 × nf × 8
Residual unit 3 × 3/nf × 8 1 7 × 7 × nf × 8

Bridge
Block5

Downsample 3 × 3/nf × 16 2 4 × 4 × nf × 16
Residual unit 3 × 3/nf × 16 1 4 × 4 × nf × 16

Decoder

Block6
Upsample 3 × 3/nf × 8 2 7 × 7 × nf × 8

Residual unit 3 × 3/nf × 8 1 7 × 7 × nf × 8

Block7
Upsample 3 × 3/nf × 4 2 13 × 13 × nf × 4

Residual unit 3 × 3/nf × 4 1 13 × 13 × nf × 4

Block8
Upsample 3 × 3/nf × 2 2 25 × 25 × nf × 2

Residual unit 3 × 3/nf × 2 1 25 × 25 × nf × 2

Block9
Upsample 4 × 4/nf 2 50 × 50 × nf

Residual unit 3 × 3/nf 1 50 × 50 × nf

Block10
Upsample 4 × 4/nf

2 2 101 × 101 × nf
2

Residual unit 3 × 3/nf
2 1 101 × 101 × nf

2

Block 11 Convolution 3 × 3/1 1 101 × 101 × 1
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3.1. METHODOLOGY

3.1.1.2.1 Traditional discriminator’s architecture The traditional discriminator’s network consists

of DL-TO’s encoder followed by a dropout, then a fully connected layer. It outputs a probability p

regarding the design being real (p ≈ 1) or fake (p ≈ 0). It helps DL-TO learn the mapping from

constraints to designs (quality) and capture various constraints (diversity).

3.1.1.2.2 Bar counter discriminator’s architecture The counter discriminator consists of a stem,

an Inception/Reduction Resnet-v1-block-A, an Inception/Reduction Resnet-v1-block-B, an Inception

Resnet-v1-block-C followed by an average pooling layer, a dropout layer, and a fully connected layer.

The stem and inception/reduction blocks used defers from the original paper[85] only by the number

of input/output feature maps. They allow for increasing the network’s complexity without generating

any extra computational costs.

In this work, the counter is used at three levels: (1) to augment the training dataset, (2) to train, and

(3) to evaluate DL-TO.

It is pre-trained on manually labelled SIMP-designs (4347 samples) before the GAN’s full training;

the Nbrbars present in each design were manually counted (Fig.3.4).

This pre-trained counter is used to predict the Nbrbars on unlabeled train designs (to augment the

labeled training dataset). This pre-training hack improved DL-TO’s convergence.

At each training iteration, this discriminator is used to predict the generated designs’ Nbrbars and

penalize DL-TO.

At inference time, it is used to predict the Nbrbars on generated designs to evaluate DL-TO’s geomet-

rical performance (section 3.3).

The counter’s performance is detailed in section 3.3.2.

3.1.1.3 Loss function

This dual-discriminator GAN strives to train a DL-TO method that generates 2D designs of a good

quality conforming to input mechanical and geometrical conditions. Thus, the original adversarial loss

function (Ladv) used to train the generator (Eq. 1.7) was adjusted by the addition of a reconstruction

loss (Lr) and a counting loss (Lcount). The modified generator loss function LG adapted in the training

process is the following:

LG = λ1Lr + λ2Ladv + λ3AcccountLcount (3.1)
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Where Lr = 1
n

∑︁n
i=1(xi − x̂i)2, Lcount = 1

n

∑︁n
i=1(ŷi −yi)2, with xi, x̂i the true and predicted 2D design,

yi the input total bar-count, ŷi the predicted total bar count in the generated designs and n the batch

size. The accuracy of the counter discriminator Acccount = 1
N

∑︁N
i=1(t̂i == yi) with yi, t̂i the true and

predicted total bar count in the real designs and N the total number of training samples; this accuracy

is updated at the end of each epoch. λi with i ∈ 1, 2, 3 are regularizers to ensure the generator is

equally penalized over all three losses.

The adversarial loss encourages creativity and diversity in the generated 2D designs. The reconstruc-

tion loss boosts their aesthetic quality and conformity with the volume fraction constraint; the design’s

volume fraction is the average of the pixel values (element-wise densities). The counting loss assures

the generator respects the input geometrical constraint .

GAN’s training framework is known for its instability; losses oscillating continuously and never con-

verging, thus making a GAN converge requires careful updating and crafting training hacks [95]. In

this work, an additional challenge was encountered. The generator’s loss consists of different types of

losses having different orders of magnitude: 0 ≤ Lr ≤ 1, 0 ≤ Ladv ≤ 100; due to Pytorch Implementa-

tion of the Binary Cross Entropy Loss, 0 ≤ Acccount ≤ 1 and 0 ≤ Lcount ≤ 961; the maximum total bar

count in the training dataset is 31, hence the maximum Lcount is (31 − 0)2 = 961. Practically, during

training, Lr, Ladv, and Lcount seemed to decrease sharply after only few iterations: 0 ≤ Lr ≤ 0.1,

Ladv (0 ≤ Ladv ≤ 1) and 0 ≤ Lcount × Acccount ≤ 30; the counter discriminator is pre-trained before

the training (Acccount ≈ 0.8). Thus, to ensure that the generator is equally penalized over the three

losses, λ1, λ2 and λ3 were set to 10, 1 and 0.1 respectively.

The traditional discriminator’s loss remains intact: the binary cross-entropy (Eq. 1.7). The counter

discriminator’s loss is the Mean Error Squared (MSE) between the true and predicted total bar count

on the real designs (i.e., SIMP-based designs).

3.2 Topology Optimized designs dataset consolidation

To train the model, 21538 2D designs were generated following the SIMP via an in-house object-

oriented Python version of the academic open-source TO code written by Sigmund([112]). This code is

available on the GitHub repository: https://github.com/dbetteb/TOP_OPT.git. The geometrical

constraint (Nbrbars) is added by manual labeling over 4347 samples (which are used to pre-train the

counter discriminator), and then the Nbrbars of the remaining samples is predicted using the counter

55

https://pytorch.org/docs/stable/generated/torch.nn.BCELoss
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss
https://github.com/dbetteb/TOP_OPT.git
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discriminator.

A 2D design of size nx ×ny is discretized into a mesh of (nx +1)× (ny +1) nodes and is subject to two

major constraints: the boundary conditions (BC) i.e. the clamped nodes and the load configurations

(F ) i.e. the loaded nodes (figures 3.4 and 3.3).

Only truss-like structures were kept to train the GAN-based approach.

To generate a wide variety of designs, the mechanical constraints are sampled using the following

strategy [43]:

• The volume fraction follows a normal distribution of the mean of 0.3 and standard deviation of

0.05

• The number of loads follows a Poisson distribution of λ = 2

• The loads’ orientation follows a uniform distribution between 0 and 360 degrees

• The number of clamped nodes follows a Poisson distribution of λ = 50

• The locations of clamped and load nodes are limited to the edge ones and nx = ny = 100.

Following [112], the Young modulus E and the Poisson ration ν were set to 1.0 and 0.3.

BC along the x and y axis (BCx, BCy) are represented as (nx + 1) × (ny + 1) matrices with null

values everywhere except for the clamped nodes set to 1.0; for simplicity, encastrated designs are only

considered i.e. BCx and BCy are similar. Loads Fx and Fy are represented as (nx + 1) × (ny + 1)

matrices with null values everywhere except for the loaded nodes; a loaded node ne located at line

i and column j tilted θ degrees has Fx(i, j) = F.cos(θ) and Fy(i, j) = F.sin(θ); the magnitude F of

the loads were set to 1.0 N . To concatenate input conditions altogether, the 2D design, the volume

fraction (V ), and the Nbrbars are reshaped into a (nx + 1) × (ny + 1) matrix each (Fig. 3.5).

The dataset was separated into a train (80%) and a test (20%). The test set is used to evaluate the

generator’s performance.

3.3 Experiments and Results

In this section, we evaluate the aesthetics of the generated designs, as well as their conformity with

the input volume fraction and geometrical (Nbrbars) constraints. We also compute their compliance
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Figure 3.3: Input to SIMP. to output a 2D design, SIMP takes as input the dimension of the design
space (height nx and width ny), the mechanical constraints (the boundary conditions BC, the loads
F , and the volume fraction V ), the material criteria (the Young modulus E and the Poisson ration
ν), finally the mesh-independency filter rmin and the penalization power p.

Figure 3.4: Types of bars in a design. The design shown here is clamped from the upper-left edge
and loaded with two punctual external forces located in the bottom corners tilted 7 and 38 degrees.
Indeed, It has five clamped (red) bars, two externally loaded (green) bars outgoing from two nodes
corresponding to the forces locations and six internal-transmission (blue) bars, thus, a total of 13 bars.

Figure 3.5: Input of the DL-TO. The boundary conditions (BCx, BCy), load configurations (Fx, Fy),
volume fraction V and geometrical constraint Nbrbars(i.e. total number of bars) are formulated as a
six-channel image.
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(a) Without Threshold.

(b) With Threshold

Figure 3.6: This figure compares the aesthetics, volume fraction (eV%), compliance (eC%) and geom-
etry (∆Nbrbars) of the original (SIMP-based) versus generated (DL-based) designs with and with-
out Threshold. In both cases, DL-designs are barely indistinguishable, in terms of shape, from
SIMP-designs, achieve lower Volume Fractions (eV% ≤ 0) and respect the Complexity constraint
(|∆Nbrbars| ≤ 2). However, while the Compliance of DL-designs is higher than SIMP-designs before
the threshold, it is significantly reduced after the threshold.
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values to examine their mechanical performance.

Most state-of-the-art GANs evaluations are subjective, based on the creativity and aesthetics of the

generated samples. In this study, generated designs are assessed not only qualitatively but also quan-

titatively.

The metrics used for the volume fraction V and compliance Compliance, the energy of deformation

(C) are the relative errors eV% = Vg−Vo

Vo
× 100 and eC% = Cg−Co

Co
× 100 respectively. The metric of

Nbrbars is the bar-count difference ∆Nbrbars = Nbrbarsg − Nbrbarso. Where Xg, Xo refer to generated

and original respectively and {Xg, Xo : X ∈ {V, C, Nbrbars}}.

Vdesign is the mean of density material, i.e., the mean of the pixel values of the design. Cdesign is

computed via a compliance-FE-calculator coded in Pytorch. Cxdesign
is predicted via the DL-counter-

discriminator.

Section 3.3.1 presents the performance of DL-TO on a sample of the test set. Section 3.3.3 summarizes

the overall performance of DL-TO (considering all 4308 test samples). Section 3.4.5 demonstrates DL-

TO’s capability to tailor design’s geometry (via the total bar count). Section 3.4.6 shows DL-TO’s

capability to generate creative designs with previously unseen input constraints: boundaries of design

area (passive and active elements). Finally, section 3.4 shows the results of integrating a third dis-

criminator into DL-TO’s training framework and demonstrates DL-TO’s capability to account for this

additional constraint.

3.3.1 DL-TO’s performance

The figure 3.6(a) displays a sample of original versus reconstructed designs from the test set.

The generated designs are very similar to the SIMP-ones. The clamped and loaded bars are well-

reconstructed, showing that DL-TO respects the input boundary conditions and load configurations.

In the majority of cases, eV% is negative; in its worst case, it never exceeds 5% of extra material. In

other terms, DL-TO outperforms SIMP at finding the minimal material distribution (volume fraction).

However, eC% is relatively high (red values in Fig.3.6(a)); showing that the generated designs exhibit

high external stresses.

The underlying reason is that compliance is very sensitive to intermediate-density-pixel values. And,

generated designs (by SIMP or DL-TO) are continuous and hence can embed such intermediate val-

ues. Therefore, to account for this drawback, a threshold is applied to all designs, then the compliance
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is recomputed. Results are reported in Fig. 3.6(b). As expected, in most cases, the compliance of

the generated designs dropped and sometimes to an even lower value than that achieved by SIMP

(negative eC%).

It should be noted that the application of a threshold causes the volume fraction to increase. Yet,

DL-designs still achieve lower volume fraction than the SIMP-designs.

The geometrical constraint is well respected (after and before the threshold). Complex generated

designs (with Nbrbars ≥ 20) sometimes display additional or fewer internal bars. Figure 3.6 shows

that the range of bar-difference is at most of more or less two bars.

In the next section, additional statistics are computed over all the generated designs of the test set to

check for the DL-TO’s overall performance.

3.3.2 Counter-discriminator’s performance

As previously mentioned, the counter discriminator is pre-trained on manually labeled SIMP de-

signs (4347 samples) before the GAN’s full training.

The 2D designs in the dataset consist of structures with 3 to 31 components, which is a wide range for

the Nbrbars variable. An admissible prediction falls within an interval |∆Nbrbars| ≤ 2. The counter’s

performance on the train (3885 designs) and test (462 designs) sets:

1. on the train set: 99.8% of the predictions fall within |∆Nbrbars| ≤ 1 bar.

2. On the test set: 85.4% of the predictions fall within |∆Nbrbars| ≤ 1 bar while 94.9% of them

within |∆Nbrbars| ≤ 2 bars.

In conclusion, the counter-discriminator is validated.

3.3.3 Overall performance

This section summarizes the overall aesthetic, mechanical, geometrical, and computational perfor-

mance of the DL-TO on the test set.

The generated designs are aesthetically plausible; the average reconstruction error (MSE) of the gener-

ated test designs is 0.025 (Fig 3.7). Additionally, they respect the geometrical constraint within an er-

ror margin of ±2 bars. 86% of the DL-designs show, at most, 2 additional/fewer bars (|∆Nbrbars| ≤ 2).
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Figure 3.7: Distribution of the reconstruction error in the train and test sets before and after threshold.
The Mean Error Squared MSE = 1

n

∑︁n
i=1(xi − x̂i)2 where xi and x̂i are the original (SIMP-based)

and generated (DL-based) design.
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Figure 3.8: Overall Geometrical Performance of DL-TO. This figure plots the distribution of the
Nbrbars difference before and after threshold in the train and test sets.

61



3.3. EXPERIMENTS AND RESULTS

í�� � ��
�

����

���

í�� � ��
�

����

����

����

����

í�� � ��
�

����

����

����

����

í�� � ��
�

����

����

����

����

1
R
�7
K
U
H
V
K
R
OG

:
LW
K
�7
K
U
H
V
K
R
OG

7UDLQ 7HVW

Figure 3.9: Relative error of the volume fraction
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Figure 3.10: Relative error of the compliance

Figure 3.11: Overall Mechanical Performance of DL-TO. This figure plots the distribution of the
relative error of Volume fraction and compliance before and after threshold in the train and test sets.
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Table 3.2: Average Design Generation Time (in seconds) of SIMP (FE-based) versus DL-TO.

Dataset Train Test

SIMP (on CPU) 642.81 140.85

DL-TO (on CPU) 0.043 0.0389

DL-TO (on CPU) 0.0029 0.00288

Also, 94% of DL-designs achieve a lower volume fraction than that achieved by SIMP (Fig.3.9). Nev-

ertheless, DL-designs tend to exhibit higher external stresses. 50% of them score a compliance value

more than 1.2 times that obtained by SIMP (Cg ≥ 1.2 × Co, Fig.3.10).

One of the reasons is that the generator was not penalized explicitly on the compliance during the

training. The integration of a compliance predictor as a third discriminator into our GAN could im-

prove the generated designs’ compliance (Section 3.4). It is interesting to point out that the DL-designs

comply better with the Nbrbars and volume fraction constraints, for the generator was penalized on

the reconstruction error (it embeds the volume fraction constraint implicitly) and the Nbrbars error

during training.

The designs are also compared after the application of the threshold. As expected, after the elimina-

tion of intermediate-density values, the relative error of the compliance dropped; (eC% ≤ 20%) in 70%

of the cases.

Second rows of Figures 3.9 and 3.10 plot eV% and eC% distributions after the threshold. 83% of the

generated designs comply with the volume constraint with a relative error eV% ≤ 0% and 14.6% with

0 < eV% ≤ 5%. Hence, 97.6% of the test set respect the volume fraction within a relative error margin

of 5% of extra material; 5% of extra material is still admissible.

Also, 80% of the generated designs comply with the geometrical constraint within an error margin of

± 2 bars.

It is important to underline that applying a threshold is critical to the design’s mechanical and geo-

metrical performance: the lower the threshold, the higher the volume fraction (eV% increased slightly

after the application of the threshold), the higher the threshold, the lower the bar-count (∆Nbrbars

also increased after the application of threshold), and possibly the appearance of discontinuities in the

design. Consequently, a better approach is to apply a local threshold. Finally, the computational

performances of DL-TO FE-TO SIMP are compared. DL-TO generates a design 3500 times (141/0.04)

63
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Table 3.3: Generation Time (in seconds s) and Computational Complexity (in Gega Floating Point
Operations per Second GFLOPS) of SIMP (FE-based) versus DL-TO. CPU and CPU stands for
central and graphical processing unit, respectively

Input Constraints
Generation Time (s) Computational Complexity (GFLOPS)
SIMP DL-TO SIMP DL-TO

1 Load 68 0.02 62.81 2.27

2 Loads 132 0.02 125.89 2.27

10 Loads 656 0.02 620.28 2.27

faster on CPU and 47000 times (141/0.003) faster on CPU (Tab. 3.2).

On top of that, a DL-TO’s generation time and computational complexity are independent of the input

constraints, unlike traditional TO approaches as shown in Tab.3.3. For SIMP-TO, the computational

time and complexity increase with the complexity of the input constraint (here, the number of loads),

while they remain unchanged for DL-TO.

Furthermore, DL-TO is advantageous over SIMP in terms of geometrical control at the conceptual

level; it takes into consideration not only mechanical constraints but also a geometrical one, SIMP-TO

needs post-processing to integrate this additional constraint. This aspect is demonstrated in section

3.4.5.

To sum up, the overall performance of DL-TO is promising. It generates mechanically and geomet-

rically valid designs, indistinguishable to the naked eye from those generated by SIMP while being

thousands of times faster.

Thus, it offers the designer an alternative way to explore designs faster and to easily adjust their geom-

etry (here defined by the number of bars composing a design). Tuning the mechanical and geometrical

conditions can be done effortlessly, and the result is obtained in a fraction of a second.

3.4 Improving the performance of DL-TO

As proposed previously in section 3.3.3, one solution to improve the compliance of the generated

designs via DL-TO is to retrain the DL-TO with a compliance predictor as a 3rd discriminator.

Hence, in this section, a DL-TO is trained via a triple-discriminator-GAN framework: a traditional

discriminator, a DL-counter, and a DL-based-compliance-predictor. The major difference is in the loss

function, which will need to consider an additional error the compliance.
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Figure 3.12: This figure shows the relative prediction error of the DL-Compliance-Predictor and
compares its computational efficiency versus the traditional FE-based-compliance-calculator.

3.4.1 Compliance predictor discriminator’s architecture

The compliance predictor’s architecture is a sequence of seven residual convolutional layers with

squeeze-excitation layers in-between [113] followed by a dropout and a fully connected layer. It takes

an image-like 2D design as input and outputs an estimation of the compliance value. It is pre-trained

on real 2D designs (output by SIMP). Its performance is detailed in section 3.4.2. It is interesting to

highlight that an FE-based compliance evaluator could have conducted the training instead of a DL-

based one. However, this is disadvantageous in terms of training time. A FE-compliance computation

is thousands times slower than its DL-counterpart (section3.4.2).

3.4.2 Compliance-predictor’s performance

The DL compliance predictor’s performance is evaluated by two metrics: the computation time

(Fig. 3.12(a)) and prediction error e%, which is the relative error between the true and predicted

compliance values on the real designs (Fig. 3.12(b)). 87% of the test predictions fall into a 5% error

margin, and 93% of them are made within a 10% error margin. Moreover, it computes the compliance

of one design 16 times (on CPU) and 56 times (on CPU) faster than the FE-based calculator and 400

(on CPU) to 5000 (on CPU) times faster for a batch of designs (Fig. 3.12(a)). Thus, the advantage

of the DL compliance predictor over its FE counterpart is its prediction speed, especially in batch

prediction, allowing faster GAN training within an acceptable level of precision.
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3.4.3 Training Loss Function

This triple-discriminator GAN strives to train DL-TO to generate 2D designs of good quality and

compliant with the input mechanical and geometrical conditions. Thus, the original adversarial loss

function (Ladv) used to train the generator is adjusted by adding the reconstruction (Lr), counting

(Lcount) and compliance (LC) losses. The modified generator loss function LG adapted in training is

the following:

LG = λ1Lr + λ2Ladv + λ3AcccountLcount + λ4LC (3.2)

Where Lr = 1
n

∑︁n
i=1(xi − x̂i)2, Lcount = 1

n

∑︁n
i=1(ŷi − yi)2, LC = 1

n

∑︁n
i=1 |Ci − Ĉi| with xi, x̂i the true

and predicted 2D design, yi the input Nbrbars, ŷi the predicted Nbrbars of the generated design, Ci the

compliance of the real design, Ĉi the compliance predicted over the generated one, and n the batch

size. The accuracy of the counter discriminator Acccount = 1
N

∑︁N
i=1(t̂i == yi) with yi, t̂i the true and

predicted Nbrbars in the real designs and N the total number of training samples.

The adversarial loss encourages creativity and diversity in the generated 2D designs. The recon-

struction loss boosts their aesthetics and conformity with the volume fraction constraint; the design’s

volume fraction is the average of the pixel values. The counting loss assures the generator respects

the input geometrical constraint. Finally, the compliance loss compensates for the weak mechanical

performance exhibited in section 3.3.3.

GAN’s training framework is known for its instability; losses oscillating continuously and hardly reach-

ing a nash equilibrium. Thus, making a GAN converge requires careful updating and crafting training

hacks (Gui et al. [95]). In this work, an additional challenge was encountered. The generator’s loss con-

sists of different types of losses having different orders of magnitude: 0 ≤ Lr/LC ≤ 1, 0 ≤ Ladv ≤ 100;

its Pytorch implementation, 0 ≤ Acccount ≤ 1 and 0 ≤ Lcount ≤ 961; the maximum Nbrbars in the

training dataset is 31, hence the maximum Lcount is (31 − 0)2 = 961.

Practically, during training, Lr, Ladv, and Lcount seemed to decrease sharply after only few iterations:

0 ≤ Lr ≤ 0.1, 0 ≤ Ladv ≤ 1, and 0 ≤ Lcount × Acccount ≤ 30; the counter discriminator is pre-trained

before the training (Acccount ≈ 0.8). Thus, to ensure that the generator is equally penalized over the

three losses, λ1, λ2 and λ3 were set to 10, 1 and 0.1 respectively. λ4 was set to 0.01 after several trial-

and- error tests.

The traditional discriminator’s loss remains intact: the binary cross-entropy (Eq.3 in the manuscript).

The rest of the discriminators were frozen during the GAN training.
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3.4. IMPROVING THE PERFORMANCE OF DL-TO

Table 3.4: Comparison of DL-TOs trained without/with a Compliance Predictor as a 3rd discriminator.
MSE is the average mean squared error. eV% ≤ 5% is the percentage of DL-designs showing a volume
fraction less than 1.05 the SIMP-designs’ one. |eC% | ≤ 10% and |eC% | ≤ 5% are the percentages of
DL-designs within ±1.1 and ±1.05 the compliance achieved by SIMP, respectively. |∆Nbrbars| ≤ 2
is the percentage of DL-designs conforming with the Nbrbars constraint within an error margin of ±
2 bars. Adding a Compliance Predictor improved the generated designs’ compliance by 21.3% and
45.4% for an error margin of 10% and 5%, respectively.

Training Method
Aesthetics Mechanical Performance Geometrical Performance

MSE eV% ≤ 5% |eC% | ≤ 10% |eC% | ≤ 5% |∆Nbrbars| ≤ 2

Without Compliance 0.063 97.7% 52.4% 15.4% 82.4%

With Compliance 0.065 93.6% 73.7% 60% 73.7%

It is worth noting that the relative error is used to compare the generated designs’ compliance versus

the SIMPs, which is the L1 − norm between the compliances of the DL and SIMP designs divided

by the SIMP design’s compliance. Thus, using the L1-norm in the loss function penalizing DL-TO’s

training is the best choice, especially since the objective is to generate designs with lower compliance.

However, L2 − norm was also tested. With L2, the DL designs always showed higher compliances

than their SIMP counterparts. Consequently, the L1 − norm was chosen for the LC .

3.4.4 DL-TO’s Performance after training with three discriminators

This section summarizes the overall performance of DL-TO and compares the results obtained in

section3.3.3. The generated designs are thresholded to dampen any intermediate density values.

Table 3.4 clearly shows that C is improved by 21.3% with the integration of the compliance predictor

as a third discriminator without any loss of generality. Moreover, this improvement increases remark-

ably, by 45.4%, if we restrain the error to 5% (15.4% versus 60%).

For a better visualization, figure 3.13 plots eV% , eC% and ∆Nbrbars distributions of the test set using

DL-TO’s previous and improved version. The improvement over C is clear, the median eC% is 2.52%

versus 9.3%. The distributions of eV% and ∆Nbrbars remain similar. In other terms, the addition of

the third discriminator enhanced the compliance without deteriorating the initial performance.

A sample of the generated designs by DL-TO trained via the triple-discriminator-GAN framework

compared to the ones generated via a model trained by the double-discriminator-GAN is illustrated by

the figures 3.14(a) and 3.14(b), respectively; a global threshold is applied over the generated designs.
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Figure 3.13: The distributions of the relative errors of volume fraction and compliance (eV% and eC%)
and the difference between the number of design components (∆Nbrbars) computed over the test set
for the DL-TO trained with two versus three discriminators.

As expected, the ones generated from the new DL-TO version show lower deformation energy (C). It

is essential to underline that applying threshold is critical to the design’s mechanical and geometri-

cal performance: the lower the threshold, the higher the V ; the higher the threshold, the lower the

Nbrbars with possibly the appearance of discontinuities in the design. Hence, the optimal approach is

to privilege a local threshold.

To sum up, the overall performance of DL-TO is promising. It generates mechanically and geo-

metrically valid designs, indistinguishable to the naked eye from those generated by SIMP while being

thousands of times faster. Hypothesis 4 is validated.

Thus, it offers the designer an alternative way to explore designs faster and easily adjust their geom-

etry (here defined by Nbrbars). Tuning the mechanical and geometrical conditions is accomplished

fast and effortlessly. Furthermore, the choice of GANs is justified. The addition of discriminators is

advantageous, and when the right balance between their losses is found, transferring new knowledge

to the generator is possible and is demonstrated here.
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(a) Generation by DL-TO trained with an additional compliance predic-
tor.

(b) Generation by DL-TO trained via a double-discriminator-GAN frame-
work

Figure 3.14: Comparison between the generated designs from two DL-TO models, designs in
Fig. 3.14(a) are generated by a DL-TO trained with an additional DL compliance predictor. The
generated designs’ mechanical performance (the compliance) is improved after integrating the DL
compliance predictor as a third discriminator.

3.4.5 Tailoring the design’s geometry via DL-TO

DL-based generative models sometimes suffer from what is called a memorization problem; the

model memorizes the training dataset, and a slight variation in the input leads to noisy and mean-

ingless outputs; or a mode collapse; when the model reproduces only one mode, in our case, one

geometry [114]. Let us recall that the primary objective of DL-TO is to tailor the design’s geometry

while always respecting mechanical constraints; hence, to examine that DL-TO does not memorize

the input constraints and understands the mechanism of this geometric condition, this experiment is

realized. To validate DL-TO’s understanding of geometry, the mechanical conditions (BC, F and V )

were prepended, only Nbrbars is varied (Fig 3.15(a)). Indeed, the Nbrbars in the design increases with

the input variable.

However, the supplementary bars are blurry, and DL-TO struggles to conform with the input Nbrbars,

especially for the lower and upper extreme values (7 and 30).

In addition, V and Nbrbars of a design are correlated. Thus, a better approach would be to vary them

together (Fig. 3.15(b)).
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Modifying V and Nbrbars simultaneously improves DL-TO’s conformity with the input geometrical

and V constraints (∆Nbrbars and eV% decreased in Fig. 3.15(b)), and most importantly demonstrates

DL-TO’s creativity in adding/removing internal bars to/from the design. Nevertheless, while C im-

proved for Nbrbars = 20 and 30, it exploded for Nbrbars = 7. This phenomenon implies a minimum

Nbrbars for every set of mechanical conditions to guarantee the design’s integrity and resilience.

To identify this minimum value, a set of mechanical constraints are fixed, and Nbrbars is varied between

3 to 30 bars. Then, the designs are generated and evaluated (Fig.3.16). C and Nbrbars are inversely

correlated, and the minimum admissible Nbrbars of the considered example is 15, after which C does

not show any remarkable improvement. This information implies that the designer can choose any

design with 15 to 30 components and guarantee that its mechanical performance will not deteriorate,

knowing that this process takes a fraction of a second, thanks to DL.

To further explore this constraint, a new experiment is added to examine the effect of modifying locally

the Nbrbars input matrix on the generated designs. A sample of results are shown in Fig. 3.17.

There are six modifications in three different locations (top-left, middle-left, and bottom-left) and of

different sizes (alterations of 6 × 6 and 21 × 21).

When the local change is via the smaller matrix (of dimension 6 × 6, in Fig. 3.17 a), b), and c)), the

shape and, remarkably, the bars’ distribution are changed locally; its effect is local; it does not trigger

the modification of the whole shape. However, while the chosen value is 5, the added bars were not

exactly five.

On the other hand, when the local change is via the bigger matrix (of dimension 21 × 21, in Fig. 3.17

d), e), and f)), its effect is similar to adding an active element (a boundary of design areas) as demon-

strated in section 4.5 in the main article. Moreover, the shapes are not always interpretable, when

they are, the chosen value (here, 5) is not respected.

To sum up, controlling locally the Nbrbars is not precise via DL-TO. Nevertheless, it is important to

note that the input Nbrbars was shaped as a matrix only for convenience with the input conditions’

shape (all other inputs are 2D matrices) and not to control the Nbrbars locally. This objective might

be handled in future work.

Hypothesis 5 is validated; DL-TO tailors the geometry of a design globally, not locally.

Finally, it is essential to highlight that the geometrical constraint used in this work (Nbrbars) might

not be the most demonstrative example because Nbrbars is more precisely controllable by the primi-
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(a) Varying Nbrbars. (b) Varying Nbrbars and V proportion-
ally.

Figure 3.15: Tailoring the geometry of a design. a) The mechanical constraints (BC, F and V ) are
fixed and the geometrical condition Nbrbars is variable. b) BC and F are fixed while Nbrbars and V
are variable.

tives/supershapes methods [115, 116, 117]. However, it is proof that a geometrical constraint requiring

seeing the design as an image, typically an aesthetic constraint (filling the design space) or a compli-

cated constraint to formulate and control analytically (informal experts’ AM rule), can be integrated

via DL.

3.4.6 Generating designs with a new unseen constraint

Some spatial constraints can be enforced on the design area’s boundaries. These boundaries can

be defined by the V matrix.

This section examines DL-TO’s potential to propose new designs accounting for this constraint. It

should be noted that it was trained using only input V without any design area’s boundaries.

Since the input V is formulated as a matrix of (nx + 1) × (ny + 1) elements, the existence/absence of

material in particular locations of the design space is obtained by increasing/decreasing the values in

these locations.

This formulation allows many geometrical constraints to be integrated into the design, like passive

elements (e.g.,a hole for a pipe) or active elements (e.g.,a filled shape for an external pillar). It also

allows the addition of boundary and load conditions on these elements by modifying the BC and F

matrices. This aspect is not explored in this research.

Figure 3.18 illustrates a sample of constraints without/with different design area’s boundaries and

the corresponding generated threshold designs. In all three cases, DL-TO filled/emptied the locations
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Figure 3.16: Compliance versus Nbrbars variation for a set of fixed mechanical constraints. The
maximum admissible compliance is 450 J (the green line). The minimum admissible Nbrbars here is
15 bars, and the lowest compliance is achieved at Nbrbars = 30.

Figure 3.17: The effect of a local variation in the Nbrbars input matrix. Six modifications are consid-
ered: a) the Nbrbars input matrix is altered in the top-left by a matrix of 6×6 with the value equaling
to 5, b) in the middle-left by a matrix of 6 × 6 with the value equaling to 5, c) in the bottom-left by a
matrix of 6×6 with the value equaling 5, d) in the top-left by a matrix of 21×21 with the value equal
to 5, e) in the middle-left by a matrix of 21 × 21 with the value equal to 5 and f) in the bottom-left
by a matrix of 21 × 21 with the value equaling 5.
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with/from material where extra/no material is forced; it reshaped the internal truss-like shape cre-

atively to maintain the design’s integrity while preserving the original design’s outer shape. In other

terms, it respects the input BC and F configurations. As for the compliance, it decreased in 4 out of

15 cases, its increase was modest (eC% ≤ 10%) in 5 cases, and its increase was more than 10% in the

6 left cases (Figures 3.18 and 3.19).

Finally, this experiment was replicated using SIMP (Fig. 3.19). As clearly seen, SIMP does not al-

ways comply with the constraint. In Fig. 3.19.a., the additional material is on the left side of the

domain space; SIMP responded with thicker-bars designs instead of adding extra material only to the

left side; in other terms, the volume fraction constraint is considered globally and not locally. While

not conforming with the constraint, it is worth mentioning that these designs benefited from a lower

compliance.

In Fig. 3.19.b. where a hole was enforced, SIMP failed to converge to a solution.

To sum up, DL-TO shows an encouraging result in creatively conforming to geometrical constraints,

and its convergence is not easily compromised, especially when trained on converged designs.

To the best of the authors’ knowledge, DL-TO is the first strategy that allows for the natural handling

of active and passive elements while not explicitly being trained on such samples, demonstrating its

generalization capability. [55] has also generated designs with passive and active elements. However,

unlike our model, his was trained on such examples.

Hypothesis 6 is validated; DL-TO generates designs with active and passive elements without being

trained to do so.

3.5 Web application of DL-TO

An open-accessible web application called GAIMD (Generate Artificial Intelligent-based Mechani-

cal designs) was built by our intern Corentin MAGYAR, and presented at the 34th international con-

ference on Industrial, Engineering and Other Applications of Applied Intelligent Systems IEA/AIE

2021 [110] to facilitate the comparison between DL-based designs and SIMP designs.

Figure 3.20 shows the interface of the application.

The user defines the geometrical variable (Nbrbars), the volume fraction, the boundary conditions (the

user needs to turn on the BC button to enable their selection), the loads (the user needs to turn on

the F button to enable their selection, which triggers a textbox to fill the angle value of the load).
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Figure 3.18: Sample of DL-TO designs generated without versus with constraints on design area’s
boundary as input (Vinput). All designs are threshold. a) Additional material is added on the right
edge. b) A hole (passive element) of radius r = 30 is enforced at the bottom left of the design space.
d) An active element of radius r = 15 is enforced at the centre of the design space. The BC (in red)
and F (in green) conditions are only shown on the first row.
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Figure 3.19: A sample of SIMP designs generated without versus with constraints on design area’s
boundary as input (Vinput). All designs are threshold. a) Additional material is added on the right
edge. b) A hole (passive element) of radius r = 30 is enforced at the bottom left of the design space.
d) An active element of radius r = 15 is enforced at the centre of the design space. The BC (in red)
and F (in green) conditions are only shown on the first row.
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Figure 3.20: Interface of GAIMD. GAIMD is an open-accessible web application that takes the
mechanical conditions: the boundary conditions (BC), the loads (F ), and the volume fraction (V )
and the geometrical condition (Nbrbars) and generates a 2D design using a DL-TO and optionally the
SIMP method. Only edge nodes (blue nodes) from the design space can be selected to be the BC and
F nodes.

Figure 3.21 shows an example of how to use GAIMD. Inputs are selected in figure 3.21(a); the box

“Using Solid Isotropic Material with Penalization” is selected; hence, two designs will be outputted,

one by SIMP and the other by DL-TO. Figure 3.21(b) shows the results interface. The app returns

the design generated by DL-TO and the one outputted by SIMP from the top down, respectively. It

also computes the energy of deformation, C, and the V constraints for both designs and compares

them by calculating the relative errors. Finally, an additional threshold feature is added; the user can

threshold the DL-based design and download it along the input constraints and computed mechanical

performance.

3.6 Discussion

To recapitulate, the first approach, DL-TO, validates the following hypotheses. DL-TO is ca-

pable of generating designs of good mechanical and geometrical quality 4; section 3.4.4. DL-TO

demonstrated its capacity into tailoring the global geometry of a design while always respecting the

mechanical constraints 5; section 3.4.5. Finally, its generation performance goes beyond the training

dataset; it generates designs with passive and active elements without being trained to do so 6; section

3.4.6.

In conclusion, DL can compensate for the difficulties faced by TO when dealing with the mechanical
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(a) Selection of the mechanical (BC are the red nodes in the design space,
F is the loaded node with an angle of °, the V is set to 0.2 i.e. 20%) and
geometrical conditions (the Nbrbars is set to 6).

(b) Results interface of GAIMD. It shows the gener-
ated design by DL-TO (top design) versus the gen-
erated design by SIMP. It computes the compliance
values (in Joules) of both designs, the relative error of
the volume fraction and of the compliance before and
after the application of a pre-defined threshold value.
Section stats summarizes the input conditions.

(c) Section threshold in the results interface of
GAIMD. The user can apply a threshold on the gener-
ated design to obtain a crisper black-and-white design
and eliminate intermediate density values.

Figure 3.21: Interface of GAIMD. GAIMD is an open-accessible web application that takes the
mechanical conditions: the boundary conditions (BC), the loads (F ), and the volume fraction (V )
and the geometrical condition (Nbrbars) and generates a 2D design using a DL-TO and optionally the
SIMP method. Only edge nodes (blue nodes) from the design space can be selected to be the BC and
F nodes.
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and geometrical constraints concurrently without the need for explicit formulas for the geometrical

constraint. Furthermore, DL-TO allows tailoring the design’s geometry by modifying the input geo-

metrical variable. It offers the designer an alternative way to explore designs faster and quickly adjust

their geometry (here defined by the number of bars composing a design). Tuning the mechanical and

geometrical conditions can be done effortlessly, and the result is obtained in a fraction of a second.

On the other hand, DL-TO does not replace TO but compensates for its difficulties in integrating

geometric constraints. Accordingly, it is advisable to proceed with a hybrid approach where both

methods are used; the first draft is outputted by DL-TO and then optimized by some iterations of

SIMP.

Finally, the geometrical condition considered (the Nbrbars) is not a major manufacturing constraint,

only a simple geometry-related constraint.

Thus, we will generalize over more concrete manufacturing constraints like overhangs, bar lengths, and

bar thicknesses, which brings us to the creation of a dataset gathering the mechanical and geometrical

constraints of designs (chapter 4).
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3.7 French summary

Ce chapitre résume la première approche que nous proposons, DL-TO, une méthode TO basée

sur le DL qui prend en entrée les contraintes mécaniques (conditions limites BC, configuration des

charges F , et la fraction volumique V ) et une contrainte géométrique (Nbrbars) et génère un design

2D conforme à ces contraintes ; cette méthode est appelée DL-TO.

Par conséquent une approche GAN à deux discriminateurs est implémentée pour entrainer notre

générateur DL-TO. La procédure de formation peut être résumée comme suit.

La procédure d’entrainement peut être résumée comme suit (Fig.3.1).

À chaque itération de l’apprentissage, le générateur (de type Res-U-Net [6]) prend en entrée les con-

traintes mécaniques et géométriques et produit des designs 2D. Ensuite, le discriminateur traditionnel

est entrâıné en deux étapes. Dans un premier temps, il est entrâıné avec les designs réels et toutes les

contraintes, et dans un deuxième temps, avec les designs générés et les contraintes. Le discriminateur

de compteur de barres est entrâıné uniquement avec les designs réels et les contraintes mécaniques.

À ce niveau, les discriminateurs sont considérés comme optimaux et sont utilisés pour évaluer les

designs générés : les scores produits par les deux discriminateurs (les pertes adverses et de comptage)

ainsi que la perte de reconstruction (c’est l’erreur quadratique entre les designs réels et ceux générés

par DL-TO) sont réinjectés dans le générateur pour mettre à jour ses poids. La base de données

d’entrainement est issue d’un code SIMP (une méthode d’éléments finis de TO) qui prend en entrée

les contraintes mécaniques (BC, F, V ) et fournit en sortie la géométrie 2D ainsi que l’énergie de dé-

formation ou compliance C en Joules et d’une labélisation manuelle de ces designs pour ajouter la

contrainte de Nbrbars. Cette base a été ensuite augmentée en raison de performance de DL-TO. En

effet, nous avons utilisé la base de 4000 designs labélisés manuellement pour apprendre un modèle

de compteur de barres basé sur le DL (qu’on a utilisé après comme discriminateur géométrique pour

l’entrainement de DL-TO) et on a prédit sur les designs sortis par SIMP pour augmenter notre base

de designs labélisés.

L’entrainement de DL-TO terminé, nous avons testé sa performance sur une base de test qui n’a pas

été vu par le modèle pendant son entrainement. Les designs générés par DL-TO sont presque indiscern-

ables à l’œil nu de ceux générés par SIMP, ils respectent les contraintes mécaniques et géométriques

avec une marge de ± 2 barres et la génération était 3500 fois plus rapide que la méthode d’éléments

finis SIMP. Mais, ils souffrent d’une compliance plus élevée que celle enregistrée avec SIMP (Figures
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3.7, 3.8, 3.9, 3.11). Par conséquent, pour remédier à cet inconvénient, nous avons introduit un 3ème

discriminateur à la chaine des discriminateurs de la structure GAN pour pénaliser DL-TO quand les

designs générés montrent une compliance supérieure aux designs réels. En effet, la compliance est issue

d’un calcul d’éléments finis itératif et couteux pour des raisons de parallélisation de calculs, par suite,

l’introduire dans notre pipeline d’entrainement ralentira le process. Donc, nous avons opté à entrainer

un modèle DL qui va prendre en entrée un design 2D et prédire sa compliance. Après avoir entrainé

DL-TO avec trois discriminateurs, nous avons testé DL-TO avec le test set. Nous avons amélioré

21.3% la compliance des designs générés en conservant la performance du modèle sur les autres as-

pects mécaniques et géométriques (Tab.3.4). Afin de valider l’apprentissage de la notion de géométrie

par DL-TO tout en respectant les contraintes mécaniques, nous avons réalisé une expérience où nous

figeons les contraintes mécaniques (BC, F, V ) et nous changeons la contrainte géométrique (Nbrbars).

De cette expérience, nous avons conclu une corrélation entre la contrainte géométrique (Nbrbars) et la

contrainte de fraction volumique (V ) et nous avons validés la capacité de DL-TO d’ajuster la géométrie

d’un design afin de respecter la nouvelle valeur de la contrainte géométrique imposée tout en être tou-

jours conforme avec les contraintes de bords et les forces imposés (Figure 3.15).

De plus, nous avons examiné la capacité de généralisation de DL-TO pour prendre en considération

des contraintes jamais vues lors de l’entrainement ; des contraintes spatiales imposées aux limites du

domaine d’espace. La limite du domaine d’espace est définie par la matrice de fraction de volume. Un

exemple de limite du domaine d’espace : le design optimal final doit tenir compte du passage d’un

tuyau, le tuyau est appelé un élément passif. Un autre exemple : le design doit tenir compte d’un pilier

; le pilier est appelé un élément actif. Dans ce cas, les valeurs correspondant à l’emplacement du tuyau

dans la matrice de fraction de volume sont mises à zéro tandis que les autres restent intactes. La frac-

tion volumique d’entrée étant formulée sous la forme d’une matrice de ((nx+1)×(ny+1)) éléments pour

un design de dimension nx, ny pouvons toujours modifier cette matrice et forcer l’existence/absence

de matière à des endroits particuliers de l’espace de design en augmentant/diminuant les valeurs de

fraction volumique à ces endroits. Dans tous les cas testés, DL-TO a rempli de/vidé la matière dans

les endroits où un surplus/absence de matériau était imposé et a remodelé la forme interne en forme

de tronc de manière créative afin de maintenir l’intégrité du design. De plus, le design généré préserve

la forme extérieure du design original (c’est-à-dire qu’il respecte les conditions aux limites et les con-

figurations de charge d’entrée) (Figure 3.18). Il est important de noter que Malvia et Manoj [55] ont
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aussi généré des designs avec des éléments actifs et passifs mais leur modèle était entrainé à le faire,

le nôtre ne l’est pas.

Enfin, DL-TO a été encapsulée dans une API web appelé GAIMD (Generate AI based Mechanical

designs). Il s’agit d’une application interactive où DL-TO et SIMP sont tous deux implémentées.

L’utilisateur entre les contraintes mécaniques et le Nbrbars et l’application génère deux designs, l’un

à partir de DL-TO (où Nbrbars est pris en compte) et l’autre à partir de SIMP. Elle présente les deux

designs ainsi que leur évaluation, la compliance et la fraction volumique (Fig. 3.20).

Pour récapituler, la première approche, DL-TO, valide les hypothèses suivantes. DL-TO est ca-

pable de générer des designs de bonne qualité mécanique et géométrique 4 ; section 3.4.4. DL-TO

a démontré sa capacité à adapter la géométrie globale d’un design tout en respectant les contraintes

mécaniques 5 ; section 3.4.5. Enfin, ses performances de génération vont au-delà de l’ensemble de

données d’entrâınement ; elle génère des designs avec des éléments passifs et actifs sans être entrâınée

à le faire 6 ; section 3.4.6. En conclusion, DL peut compenser les difficultés rencontrées par TO

en traitant simultanément les contraintes mécaniques et géométriques sans avoir besoin de formules

explicites pour la contrainte géométrique. De plus, DL-TO permet de personnaliser la géométrie du

design en modifiant la variable géométrique d’entrée. Il offre au concepteur un autre moyen d’explorer

plus rapidement les designs et d’ajuster rapidement leur géométrie (définie ici par le nombre de barres

composant un design). Le réglage des conditions mécaniques et géométriques peut se faire sans effort,

et le résultat est obtenu en une fraction de seconde. En revanche, DL-TO ne remplace pas TO mais

elle compense ses difficultés quant à l’intégration des contraintes géométriques. La meilleure méthode

sera une forme hybride où les deux méthodes sont utilisées ; la première ébauche sortit par DL-TO

et après optimiser par quelques itérations de SIMP. Néanmoins, la condition géométrique considérée

(le Nbrbars) n’est pas une contrainte de fabrication majeure, mais une simple contrainte liée à la

géométrie.

Ainsi, nous allons essayer de généraliser DL-TO afin de l’adapter pour des contraintes de fabrication

plus concrètes comme la contrainte de surplomb, les longueurs et épaisseurs de barres, ce qui nous

amène à la création d’un jeu de données rassemblant les contraintes mécaniques et géométriques des

designs (chapitre 4).
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4.1. MOTIVATION

4.1 Motivation

In chapter 3, DL-TO proved the capacity of DL to tailor geometrically and mechanically a design

at the same level. While the Nbrbars is a geometrical condition that can be hardly formulated and

integrated into FE-TO methods, it still is not the most adequate manufacturing constraint. Therefore,

in this chapter, we will augment our training dataset to include the geometrical manufacturing-related

constraints listed in section 2.2 in chapter 2 in order to accomplish our goal and train DL-AM-TO,

a generative TO method that integrates at the same conceptual level mechanical and manufacturing

constraints.

This chapter is adapted from our article GMCAD: an original Synthetic Dataset of 2D Designs along

their Geometrical and Mechanical Conditions [5].

Nevertheless, creating a DL-AM-TO needs a rich training dataset with a wide variety of pairs of these

designs alongside their constraints. Creating this dataset is challenging, especially since no FE-based

TO method in the literature handles several geometric conditions at once. Thus, to achieve our goal,

we propose to resolve the problem inversely (detailed in section 4.2, Fig. 4.1).

First of all, we generate designs from given mechanical constraints (boundary conditions, loads con-

figuration, and volume fraction) using a modified version of the open-source code of Solide Isotropic

Material with Penalization (SIMP) written by Sigmond [112]. Second, a DL model that maps designs

to their corresponding mechanical conditions, using the SIMP designs, is built; the model is referred

to as DL-Mechanical-Conditions-Predictor. Third, synthetic designs (inspired by the shapes of SIMP

designs) with various geometric constraints are generated using pygmsh 1. Fourth, the previously

learned DL-Mechanical-Conditions-Predictor is used to predict their mechanical conditions. Finally,

the target dataset “GMCAD” is consolidated; it consists of pairs of designs and their mechanical and

geometric constraints. Consequently, we can train DL-AM-TO, which integrates mechanical and AM-

geometric constraints simultaneously at the conceptual level and allows the user to tailor its input

constraints easily and generate designs instantly. It is worth mentioning that a controllable design

generation in the AM field, combining the mechanical and geometrical natures exhaustively, is recently

been further explored [118]. In fact, with an adapted synthetic dataset as GMCAD and DL techniques,

DL-driven generative design approaches offering to manage several parameters, and constraints jointly

will motivate the implementation of lighter and faster modules in CAD software.

1Pygmsh is a python library to draw shapes in FreeCAD, https://pygmsh.readthedocs.io/en/latest/
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4.2. WORKFLOW

The rest of the chapter is organized as follows. Section 4.2 details GMCAD’s conception workflow.

Section 3.3 evaluates the DL-Mechanical-Conditions-Predictors, presents and evaluates a sample of

the resulting target dataset “GMCAD”. Section 4.4 summarizes the work and discusses the future

development of the method.

4.2 Workflow

As previously mentioned, GMCAD aspires to bridge the mechanics to the geometry at the design

level. TO generates layouts given mechanical constraints as inputs. However, it is rather complex

for it to handle geometric constraints. Therefore, we choose to resolve the problem inversely. We

can always learn to inverse TO’s job via DL, i.e., create a DL-Mechanical-Conditions-Predictor that

takes a design as input and predicts its mechanical conditions. Then, we create designs (with layouts

inspired by SIMP’s suggestions) accounting for the desired geometrical constraints and deduce their

mechanical constraints using the former DL-Mechanical-Conditions-Predictor. Now that we dispose of

a complete dataset with mechanical and geometrical constraints, we can go to the next step and train

a DL model that generates designs accounting for the mechanical and geometrical aspects jointly.

The global work is divided into two steps. The first step consists of consolidating the target training

dataset GMCAD, which makes the subject of the present article, in an inverse problem resolution way,

from the geometry to the mechanics. The second step involves training the DL-AM-driven-TO model

and is reported to future work.

The first step is partitioned into four stages: (1) The generation of DB1, a dataset of 2D designs from

mechanical conditions using SIMP-TO. (2) The training of a DL-Mechanical-Conditions-Predictor to

learn to map designs to their corresponding mechanical conditions. (3) The inception of DB2, a

synthetic dataset of CADs (inspired from SIMP-designs’ shapes) from geometric conditions. (4) The

completion of the synthetic dataset by predicting the mechanical conditions of the CADs. Conse-

quently, the target dataset, GMCAD, is built. It is a synthetic dataset joining designs along with their

geometric and mechanical conditions. GMCAD will be used in the future to train the DL-AM-driven-

TO model.
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Figure 4.1: The workflow is divided into two global steps. The first step consists of consolidating the
target training dataset GMCAD. The second step involves training the DL-AM-TO, a DL model that
generates designs from input mechanical and geometrical constraints.

Figure 4.2: Example of the evaluation metrics computation of BC-DL-Predictor. This figure compares
a predicted to a true BC matrix. The total number of predicted BC nodes is correct, while their
locations are erroneous. This error is detected by the metric e%locatins−BC−nodes which counts the
number of BC nodes in the correct locations, here none.

4.2.1 Generation of the SIMP dataset DB1

DB1 comes from the mechanical SIMP-TO code and consists of generating 2D designs (as images)

from various mechanical conditions (boundary conditions, loads configuration, and volume fraction).

For the present work, only edge-like boundary conditions and edge-like punctual loads were considered;

i.e., boundary conditions and loads were chosen along the circumference of the design space. Addi-

tionally, the maximum number of loads is one. A sample of SIMP designs alongside their mechanical

constraints are presented in Fig. 4.6.

It is important to emphasize that using SIMP-TO, the output layout is independent of the load in-

tensity, and the load orientations are of modulo 180°, i.e., a design subject to a load of 90° is similar

to another subject to a load of 270°.
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Figure 4.3: In this figure, the design space (3 × 3) is subjected to 2 loads: F1⃗ on the top-left edge
with θ = 45° and F2⃗ on the bottom left edge with θ = 90°. The 2D load matrix (4 × 4) consists of
null-values everywhere except for the loaded nodes set to their orientations. Next, since we only deal
with edge-like loads in this work, we reduce the load matrix to the circumference nodes. Finally, the
1D-load vector is normalized (a division by 180). To facilitate the angles prediction, we augment the
load matrices by a constant filter of kernel size 5 × 5, but for presentation purposes, the filter size
shown in the figure is 2 × 2.

4.2.2 Mechanical Conditions Prediction

The mechanical conditions that were considered in this work are the volume fraction V , the bound-

ary conditions BC, and the loads’ configurations F . The volume fraction constraint is the average

density values of a design, i.e., the average pixel values in the image-like design. The boundary con-

ditions (BC) and loads (F ) are 2D matrices of size (nx + 1, ny + 1) for a 2D design of size (nx, ny).

BC matrices are 2D matrices with null values everywhere except for the fixed nodes, which are set

to 1.0 (Fig. 4.2 shows an example of a BC matrix of size 4 × 4). F matrices are 2D matrices with

null values everywhere except for the loaded nodes, which are set to θ, where θ is the orientation of

the load. Thus, we develop a convolutional DL model that takes 2D designs and reconstructs the BC

and F matrices. Instead of predicting BC and F in a single shot, we create a model per constraint;

the BC-DL-Predictor and the F-DL-Predictor. The SIMP-based dataset DB1 was split into a train

(4538 samples) and a test (1140 samples) set to train the DL models. In this work, nx and ny are set

to 100, θ ∈ [0°, 180°] and |F | = 1N .

4.2.2.1 Deep Learning based boundary conditions predictor

The BC-DL-Predictor’s architecture was inspired by the convolutional Res-U-Net architecture [6].

The network is constituted of an encoder, a bridge, and a decoder. The encoder is formed of 4 blocks,
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each consisting of a down-sampling layer (a convolution of stride 2) and a residual unit 2. The decoder

comprises five blocks, each consisting of an up-sample layer (a transpose convolution of stride 2) and

a residual unit followed by a convolution of kernel size 1 × 1 and a sigmoid activation. The bridge

connection has the same architecture as an encoder block and combines the encoder with the decoder.

BC-DL-Predictor takes as input the 2D design and outputs a two-channel matrix corresponding to

the BC along the x- and y-axis, BCx, and BCy, respectively. The model was trained with a learning

rate of 0.0002, an Adam optimizer, a batch size of 64, and the mean squared error as a loss function.

4.2.2.2 Deep Learning based force Predictor

Predicting the loads′ matrices is a very intricate task. In the training set, load matrices are

sparse, where non-zero values can range from 5 to 180ř (loads orientations). Thus, to alleviate

the sparsity and wide range of values in the loads’ matrices and knowing that we are only dealing

with edge loads, we reduce the 101 × 101 sparse loads matrices to a 1D-normalized-vector consist-

ing of the circumference nodes, i.e., of dimension 1 × 400 with values range from 0 to 1 (Fig. 4.3).

We note that the minimum load orientation is 5ř to avoid confusion with the null values repre-

senting the absence of load. Predicting the load location and orientation precisely consisted of

two complementary models. The first is the F-DL-Locator model; it predicts the loads’ locations

with high precision. The second, the F-DL-Angle-Estimator model, predicts an augmented ver-

sion of the load vector. The final load vector is the product of the outputs of the former models

(Load vector = Location vector × Augmented Orientation vector). F-DL-Locator and F-DL-Angle-

Estimator share the same architecture, which consists of seven down-sampling layers, each followed by

a residual unit [104]. It takes a three-channel input (the 2D design, BCx, and BCy) and outputs a 1D

vector of dimension 1 × 400. Adding the BC as input to the load predictors helps enhance the models’

precision for a loaded node that is unlikely a fixed one (i.e., a BC node). F-DL-Angle-Estimator was

trained with a learning rate of 0.002, an Adam optimizer, a batch size of 64, and the mean squared

error as a loss function, and F-DL-Locator with a learning rate of 0.0002, an Adam optimizer, a batch

size of 64, and the L1 as a loss function.

2A residual unit block is a sequence of two blocks, each consisting of a batch normalization followed by a ReLU
activation and a convolution of kernel size = 3 × 3 and stride 1. Its input is summed with its output via an identity
mapping connection. An identity mapping connection consists of a convolution of kernel size = 1 × 1, a stride of 1, and
padding of 0 followed by a batch normalization layer [6].
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Figure 4.4: A sample of the synthetic dataset DB2, inspired from SIMP layouts, with various geometric
constraints: minimum/maximum element-length, minimum/maximum element-thickness, minimum
overhang, and the number of elements. The minimum overhang is computed with respect to the build
direction n⃗. Here, n⃗ is along the y-axis. NB: the overhang is the angle between the normal vector of
an element (purple arrow) and the build direction n⃗ (pink arrow).

4.2.3 Generation of the synthetic geometric dataset DB2

The synthetic 2D CAD dataset (DB2) is built using pygmsh (a python library, FreeCAD); the

CAD shapes are inspired by SIMP-TO’s designs. A synthetic design is defined as a connection of

beams where we know the four coordinates of every design’s beam. This geometry definition allows

us to extract all the geometric information we need from the length, width, overhang (corresponding

to a chosen build direction), Etc., and consequently obtain a dataset of a wide variety of geometric

constraints. Next, the CADs are converted to 2D images. The conversion from CADs to images

consists of reading the CAD as a cloud of points, then applying a convolutional filter followed by

a bilateral filter to smooth the image without compromising the design’s beam thicknesses. DB2

was generated by varying geometric element-wise (lengths and thicknesses) and inter-element (angles

between elements, number of elements) constraints. DB2 contains all the beams’ coordinates, lengths,

thicknesses, and angles between connected consecutive beams. However, we present here only the

geometric-AM-related measures that we will explore (the maximum and minimum element length, the

maximum and minimum element thickness, the minimum overhang, and the number of elements) with

the corresponding designs (Fig. 4.4). We would like to note that the length and thickness measures

are computed with respect to the design space’s dimensions (nx, ny) (here, nx == ny, i.e. a length of

1.0 is equivalent to 1.0×nx).
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4.2.4 The Consolidation of the target dataset GMCAD

At this stage, we dispose of DB2, a geometric dataset, a BC-DL-Predictor, and an F-DL-Predictor.

Consequently, we predict the mechanical constraints of DB2’s designs and end up with GMCAD, a

dataset with designs along with their mechanical and geometrical constraints. This step consists

of first predicting the BC of the designs and then their loads’ locations and orientations; since the

loads-predictor also needs the BC input. GMCAD’s mechanical and geometric-AM-related variables

distributions are shown in Fig. 4.7.

4.3 Results

4.3.1 Evaluation of the Mechanical Conditions Predictions

To evaluate the BC-DL-Predictor, we choose two metrics: e%Nbr−BC−nodes and e%locations−BC−nodes

that calculates the error over the number and location of predicted BC nodes, respectively; the errors

vary from 100% (erroneous model) to 0% (accurate model). However, we want to emphasize that

e%Nbr−BC−nodes is not sufficient to judge the BC-DL-Predictor’s performance, for, in our case, this

metric could be deceiving; the model predicts BC nodes in the wrong locations (an example of such

case is presented in Fig. 4.2). Thus, we compute e%locations−BC−nodes, which is the difference in the

number of BC nodes between the true and predicted BC matrices in the right locations. This metric

ensures that the model well recognizes the BC nodes’ locations.

The results of the former metrics are presented in Figure 4.5(a). As we can see, the precision (100%-

error) of the BC-DL-Predictor is very high; 83.5% of the test predictions are detected in the exact

locations, and 98% of them are within an error margin of 2%.

To evaluate the loads predictions, two metrics were considered: NbrF −nodes−in−right−locations and

∆θF . NbrF −nodes−in−right−locations computes the number of loads predicted in the exact location; it

measures the precision of the F-DL-locator model. ∆θF computes the difference between the true and

predicted loads orientations in the right loads’ locations; the results are illustrated in Fig. 4.5(b). In

the test set, the precision of the F-DL-locator is 83.3%, and only 25% of the angle predictions differ

from the true angle by ±20°.

Although predicting the loads’ angles is intricate, the first results are encouraging. We want to point

out that improving the precision of the F-DL-Angle-Estimator is still a work in progress. According
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(a) BC-DL-Predictor’s performance.
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(b) F-DL-Predictor’s performance.

Figure 4.5: Mechanical Conditions Predictors Performance over the train and test set.
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Figure 4.6: Comparison between the true and predicted boundary conditions (BC in red) and loads’
locations and orientations (F in green). The BC and F locations are predicted with high precision.
Most F orientations predictions differ from the true values within [-20°, +20°]. NB: The F orientations
are in the anti-clockwise direction.

to our knowledge, we are the first to predict the mechanical constraints from designs via DL models

to consolidate a complete dataset of designs with geometric and mechanical conditions altogether.

A sample of designs with their predicted versus true loads and boundary conditions is shown in

Fig. 4.6. As we can see, the BC predictions and F locations are very accurate. Also, most load

orientation predictions deviate from the true values within a range of [-20°, +20°].

4.3.2 GMCAD: dataset of designs with their geometrical & predicted-mechanical constraints

GMCAD’s variables distributions and a sample of the synthetic designs along their predicted me-

chanical conditions and performance are shown in figures 4.7 and 4.8, respectively. GMCAD contains

36181 distinct combinations of the geometric (Min/Max length/thickness, Min Overhang, Nbr of el-

ements) and mechanical (F orientations and BC nodes) variables. From Fig. 4.7, we can see that

GMCAD comprises a wide variety of designs with 3 to 12 elements, Min bar length ∈ [0.07, 1.0], Max

bar thickness ∈ [0.003, 0.4], Min overhang ∈ [0°, 65°], etc. In the future, we could complement GMCAD

with designs featuring more than 12 bars, a Max bar thickness ≥ 0.4, and a Min bar length ≥ 1.0.

The data can be found in GMCAD’s Git repository.

From figure 4.8, we can notice that changing one geometric condition can trigger a difference in the

load orientations predictions and its performance (Compliance in Joules J). In figure 4.8(a), the first

design’s performance twice improved by simply adding an element (2nd design, 12 elements instead of

11). It was further improved when we increased an angle between two bars (the minimum overhang

increased) and the thickness of the edge bars; the compliance dropped 16 times (from 412 to 25J , 5th

design). However, increasing the thickness of all bars seemed to deteriorate the functionality of the

design (the 3rd design’s compliance is 1.5e9J). The same behavior is detected in Fig 4.8(b). Con-
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Figure 4.7: GMCAD’s Descriptive Statistics. This figure shows the distributions of the geometrical
(Min/Max Length/Thickness, Number of elements, Min Overhang) and mechanical variables (Number
of BC nodes and F orientations) of GMCAD.

sequently, the mechanical performance of a design is sensitive to the very minor geometrical change,

and achieving the optimal design complying with all constraints takes several geometric modifications.

To further understand the influence of geometric constraints on mechanical performance, we generate

16 four-element designs by varying a constraint at a time and computing their compliance (Fig.4.9).

We can observe that the compliance decreases gradually with the non-constant thickness. However, it

fluctuates with the minimum overhang and minimum constant thickness. Thus, there is no apparent

relation between constant thickness/minimum overhang and the mechanical performance that can be

deduced or generalized.

To sum up, several changes in geometric constraints can improve mechanical performance. However,

the combinations of constraints are uncountable, and the inter-correlations or dependencies between

them are unknown. Moreover, the influence of geometric constraints over mechanical performance

cannot be generalized, which encourages the establishment of this dataset and its usage to train a DL

model that can jointly capture these correlations and generate designs complying with geometric and

mechanical conditions.

4.4 Discussion

GMCAD, a synthetic dataset of 2D designs alongside their mechanical and geometrical conditions,

is consolidated.

First, we generate mechanical designs using the FE-density-based-TO method (SIMP) and train DL
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(a) An 11-element design. (b) A 4-element design

Figure 4.8: Synthetic Designs with mechanical and geometrical constraints. In this figure, we show
a sample of synthetic designs alongside their predicted mechanical conditions. We also evaluate their
mechanical performance (Compliance in Joules).

models to predict the mechanical conditions. Then, we build synthetic CADs inspired by the SIMP de-

signs’ layouts accounting for various complex geometric constraints, which we complete by predicting

the mechanical conditions using the learned DL-Mechanical-Conditions predictors. Finally, we eval-

uate the synthetic designs’ mechanical performance. We showed that even slight geometric changes

could deteriorate the design’s functionality, and finding the best compromise between mechanical per-

formance and geometry can be very challenging because of the unlimited combinations of geometric

modifications and their unknown inter-correlations. Thus, it would be interesting to explore DL in

this area for its robustness in capturing spatial correlations and hence create a model that generates

designs accounting for mechanical and geometrical constraints concurrently at the conceptual level,

DL-AM-TO, which is the next step (Step 5 in the workflow detailed in Fig.4.1).

Here, we proposed an innovative, unconventional approach to facilitate the integration of complex un-

formulated geometric AM constraints at the design level without needing the FE expensive iterative

computations. Instead of formulating analytically complex geometric AM constraints, it suggests an

inverse problem resolution. Designs conforming with these spatial-related constraints are first created,

then DL models, particularly CNNs, are trained to learn them. The advantage of this approach is that

it can be generalized to incorporate any constraints, even descriptive ones because we do not need

to find a formula for the constraint but simply a sufficient number of examples describing it. Addi-

tionally, the usage of this dataset can be extended beyond AM, such as the reverse engineering field,

CAD automatic reconstruction, and CAD to CAE. This dataset can also drive DL-multi-objective

controllable design generation techniques that can be implemented into CAD software as a lighter and

faster generative design module.

Now, with GMCAD ready, we could train DL-AM-TO, a DL based AM driven TO method that
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(a) Compliance versus Overhang.
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(b) Compliance versus minimum constant thickness.

���� ���� ���� ���� ���

��

��

��

��

��

��

��

0LQ�9DULDEOH�7KLFNQHVV

&
R
P
S
OL
D
Q
F
H
��
-�

(c) Compliance versus minimum variable thickness.

Figure 4.9: Mechanical Evaluation of synthetic designs. In this figure, we vary one geometric con-
straint and evaluate the mechanical performance (Compliance in Joules) of the resultant design. The
geometric constraints are the minimum Overhang, the minimum constant bar-thickness (i.e., all ele-
ments have the same thickness), and the minimum variable bar-thickness (here, the contour bars have
a thickness twice the inner bar). 95
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integrates geometrical and mechanical constraints concurrently (Chapter 5).

4.5 French summary

Ce chapitre se concentre sur la création de la base de données qui va entrainer DL-AM-TO. Nous

nommons cette base GMCAD pour Geometric and Mechanical CAD dataset. Elle contient des CAO

2D en format .vtk et en format d’images .png ainsi que les contraintes mécaniques et géométriques

enregistrées dans des fichiers Excel.

Comme nous avons mentionné en chapitre 2, la création d’une base avec les deux natures de con-

traintes pose un grand défi. D’autant plus qu’aucune méthode TO basée sur les éléments finis dans la

littérature ne traite plusieurs conditions géométriques à la fois. Ainsi, pour atteindre notre objectif,

nous proposons de résoudre le problème de manière inverse (Fig. 4.1).

Tout d’abord, nous générons des designs à partir de contraintes mécaniques données (conditions aux

limites, configuration des forces et fraction volumique) en utilisant la librairie https://github.com/dbetteb/TOP OPT,

orientée objet et open-source, de Solid Isotropic Material with Penalization (SIMP) que nous avons

développé en se basant sur [112]. Cette base comprenant les designs en format images et les contraintes

mécaniques est appelée DB1.

Deuxièmement, deux modèles Deep Learning (DL) qui font correspondre les designs à leurs conditions

aux bords et forces correspondantes, en utilisant la base DB1, sont entrainés ; les modèles sont appelés

DL-BC-Predictor et DL-F-Predictor, respectivement.

L’architecture du BC-DL-Predictor s’inspire de l’architecture convolutive Res-U-Net [6]. Le BC-DL-

Predictor prend en entrée la conception 2D et sort une matrice à deux canaux correspondant aux BC

le long des axes x et y, BCx et BCy respectivement ; les BC sont représentés comme des matrices 2D

avec des zéros partout sauf pour les nœuds bridés, ils sont fixés à 1.0.

La prédiction des matrices de forces est une tâche très complexe. Dans l’ensemble d’apprentissage, les

matrices de forces sont des matrices creuses où les valeurs non nulles, correspondant aux nœuds chargés,

peuvent varier de 5 à 180° (orientations des charges). Ainsi, pour remédier à ce problème et sachant que

nous ne traitons que les forces sont appliquées aux bords de l’espace de design, nous réduisons les ma-

trices de forces creuses à un vecteur normalisé 1D constitué des nœuds de circonférence, c’est-à-dire une

dimension réduite avec des valeurs comprises entre 0 et 1 (Fig. 4.3). Nous notons que l’orientation min-

imale de la force est de 5° pour éviter toute confusion avec les valeurs nulles représentant l’absence de
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force. La prédiction précise de l’emplacement et de l’orientation de la charge a nécessité la séparation de

la tache en deux modèles complémentaires. Le premier est le modèle F-DL-Locator. Il prédit avec une

grande précision les emplacements des charges représentées par des matrices binaires 2D avec des zéros

correspondant à l’absence de charges et 1.0 à leur présence. Le second modèle F-DL-Angle-Estimator

prédit une version augmentée du vecteur de charge. Le vecteur de charge final est le produit des

sorties des deux modèles (Load vector = Location vector ×Augmented vector).Orientation vecteur).

F-DL-Locator et F-DL-Angle-Estimator partagent la même architecture. Ils prennent tous deux en

entrée trois matrice concaténées (le design 2D, BCx, et BCy). L’ajout du BC en entrée des prédicteurs

de forces permet d’améliorer la précision des modèles parce qu’un nœud chargé est normalement non

encastré (c’est-à-dire un nœud BC). Troisièmement, des designs synthétiques (inspirés des formes des

designs SIMP de la base DB1) avec diverses contraintes géométriques (des épaisseurs, longueurs et

angles différents) sont générés à l’aide de pygmsh 3 ; cette base comprenant des designs en format

images et CAOs ainsi que leurs contraintes géométriques est appelée DB2.

Finalement, afin de joindre les deux informations, mécanique et géométrique dans une seule base,

nous prédisons à l’aide de DL-BC-Predictor et DL-F-Predictor appris précédemment les conditions

mécaniques sur les designs de la base DB2.

Par conséquent, le jeu de données cible “GMCAD” est consolidé ; il est composé de paires de designs

et de leurs contraintes mécaniques et géométriques. Les données sont déposées dans le dépôt Git de

GMCAD.

3Pygmsh est une bibliothèque python permettant de dessiner des formes dans FreeCAD, https://pygmsh.

readthedocs.io/en/latest/
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5.1. DEEP LEARNING ADDITIVE MANUFACTURING DRIVEN TOPOLOGY
OPTIMIZATION

Figure 5.1: Training Procedure

5.1 Deep Learning Additive Manufacturing driven Topology Optimization

With the creation of GMCAD, DL-AM-TO detailed in section 2.1 can now be tested. Its goal is

to compensate for the difficulties faced in FE-TO methods when it comes to integrating geometrical

manufacturing-related and mechanical constraints at the same conceptual level.

5.2 Methodology

DL-AM-TO is a novel approach where the mechanical and geometrical constraints are no longer

in competition. DL-AM-TO is a generative model that takes mechanical (Boundary conditions (BC),

loads (F), and the volume fraction (V)) and geometrical conditions (the minimum thickness (thmin),

the maximum length (lenmax), the minimum overhang (Θmin), the number of bars (Nbrbars)) as inputs

and generates a 2D structure following these constraints.
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5.2.1 Training framework

DL-AM-TO needs to learn to map the mechanical constraints to a general shape (abstract) that

can be adjusted via the geometrical correlations learnt from the geometrical constraints. Moreover,

geometrical constraints are themselves correlated between each other; changing one geometrical con-

straint triggers the changing of the other. We will also need to check the influence of a a geometrical

constraint with respect to the other (their inter correlation) and check the one that dominates the

others. Henceforth, DL-AM-TO’s generated designs need to be penalized on every geometrical con-

straint independently. DL-AM-TO ’s training could be thought of in two ways. The first variant

consists of directly generating the design from all the constraints in a one shot learning. The second

variant follows the hierarchical learning, i.e. we start with DL-TO then follow with another network

to control the geometry. The preference for a particular variant is decided according to DL-AM-TO’s

performance (i.e., the generation quality).

Following the first approach detailed in chapter 3, we will first explore the first variant of DL-AM-TO.

5.3 First variant of DL-AM-TO’s training

The first variant consists of implementing one model that maps directly the mechanical (Boundary

conditions (BC), loads (F ), and the volume fraction (V )) and geometrical (the minimum thickness

(thmin), the maximum length (lenmax), the minimum overhang (Θmin), the number of bars (Nbrbars))

constraints into a design.

DL-AM-TO is trained within a five-discriminator-GAN [92] framework consisting of a generator (DL-

AM-TO) and five discriminators: the traditional adversarial discriminator and four geometric discrim-

inators, a bar counter, a thmin, lenmax and Θmin predictors (Fig.5.1).

5.3.1 Training Dataset

11719 samples of GMCAD are used for training and 4405 samples for test. It consists of 2D designs

(in a .png format) alongside their mechanical and geometrical constraints. The distributions of the

geometrical constraints values are shown in Fig. 5.2.
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Figure 5.2: Distribution of the geometrical constraints values in the train and test sets

5.3.2 Generator’s architecture

The generator, DL-AM-TO, inherits the residual[104] convolutional encoder-decoder architecture[6]

presented in section 3.1.1.1 with one difference; the skip-connections between the outputs of encoder

layers and the inputs of decoder layers were eliminated here for reasons of performance. It seems

that the skip-connections were making the generator memorize the constraints and not learn them;

i.e. when we fix all constraints but one geometrical condition, the generator was outputting a noisy

image, nothing that looked like a structure.

5.3.3 Discriminators’ architectures

The traditional discriminator consists of seven down-sample convolutional layers followed by a

dropout and a final fully connected layer (like the one used in chapter 3).

The Nbrbars discriminator’s inception-v4 [85] regression network described and trained in chapter 3,

section 3.1.1.2.2 was tested with GMCAD designs. Its input is the 2D design, the BC, the F , and

the V , and its output is a scalar value depicting the predicted Nbrbars present in the design. The

median ∆Nbrbars is 2; in other words, the counter predicts on 50% of the designs a Nbrbars higher
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than the ground truth by 2. The percentage of inadmissible predictions1 was 35%. Thus, we retrained

it for a few epochs with the training data samples, where it was poorly performing. As a result, the

percentage of inadmissible predictions dropped to 0% and the median ∆Nbrbars is 0.

With the success of the Nbrbars discriminator’s architecture, we have opted for the same architecture

for the new geometric (thmin, lenmax, and Θmin) discriminators with one difference. The stem block

of the lenmax and Θmin predictors consisted of additional five residual layers. The input of the three

geometric discriminators consists of the 2D design only, as there was no additional improvement in

their prediction ability when adding the mechanical conditions, as was the case with the Nbrbars

discriminator.

To train the geometric discriminators, we augmented the training dataset with three rotations of 90°,

180°, and 270°. However, training DL-AM-TO only consisted of the training dataset with no rotation.

The predictive performance of the geometrical discriminators is presented in Fig. 5.3. In order to

evaluate a predictor, an admissible error interval is set (predictions within the green lines in Fig.5.3

are considered correct). As we can see, the thmin predictor shows the highest number of inadmissible

predictions (predictions outside the green intervals). To quantify this observation, the percentage

of erroneous predictions for every geometrical discriminator is computed. We choose for the thmin

and lenmax the relative prediction error defined as e% = |T rue−P redicted|
T rue × 100, and for the Θmin and

Nbrbars the difference ∆ = |True − Predicted|. In the test set, the percentage of predictions that

fall within ethmin% > 5% is 46%, elenmax% > 5% is 1%, ∆Θmin > 5°is 3.15% and ∆Nbrbars > 1bar is

0.15% (Fig.5.3(c)). Consequently, we can conclude that all geometric discriminators are sufficiently

precise except for the thmin one, which needs further improvement. In fact, if we tolerate a higher

error interval of 10% for thmin, we would end up with 29.1% of inadmissible predictions.

5.3.4 Loss function

As we have detailed in chapter 3, section 3.1.1.3, the most challenging aspect of GANs is to find

an equilibrium between the generator and the discriminator and avoid the dominance of one over

the other. The loss function and other training parameters play an important role in stabilizing the

training and condemning the phenomenon of oscillating losses. In this work, the loss function is further

challenging; it has to also account for three additional geometrical (thmin, lenmax, Θmin) constraints.

1An admissible prediction falls within an interval |∆Nbrbars| ≤ 2 as referred in chapter 3, section3.3.2.
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(a) Train set.

(b) Validation set.

(c) Test set.

Figure 5.3: Performance of the geometric discriminators showing the predicted vs the true values of
thmin, lenmax, Θmin, & Nbrbars, from left to right, respectively, for the train, validation, and test sets.
The worst performant discriminator is clearly the thmin predictor.
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Thus, we adapted the loss function described in chapter 3, section 3.1.1.3 to account for these new

constraints.

LG = 1
6(Lr + λadversarialLadv + LNbrbars

+ Lthmin
+ Llenmax + LΘmin), with (1) the reconstruction

loss Lr = 1
N

∑︁N
i=1(xi − x̂i)2 s.t. xi and x̂i are the real and generated 2D design and N is the

batch size, (2) {Lc =
∑︁N

i=1 |ci − ĉi|, c ∈ {Nbrbars, thmin, lenmax, Θmin}} s.t. c and ĉ are the input

and predicted geometrical values respectively, and (3) the adversarial loss Ladv is the Binary Cross

Entropy (0 ≤ Ladv ≤ 100 in PyTorch). Hence, λadversarial was set to 0.01, so Ladv becomes of the

same order of magnitude of all other losses varying between 0 and 1.

5.3.5 Results

Figure 5.4 illustrates the Structural Similarity Index Measure (SSIM)[119] of the generated designs.

The blue distribution corresponds to the generator (DL-AM-TO) trained with all geometric discrimi-

nators. The average SSIM is 0.33, which demonstrates, aesthetically speaking, a weak generation. As

we have mentioned previously, the thmin discriminator is not predicting thmin with high precision, and

hence the generator is penalized with a less informative loss, which explains DL-AM-TO’s behavior.

Furthermore, thmin is a continuous complex quantity to be treated by DL, particularly convolutional

networks. We can find several designs with different minimum thicknesses that look indistinguish-

able in the dataset. Indeed, thmin is a texture feature, unlike Θmin, an edge feature, where a slight

variation can drastically modify the geometry and hence the pixels’ distribution. Additionally, the

thickness information can be compensated with post-processing over the skeletons of the designs; we

can erode/dilate skeletons to generate designs with arbitrary thicknesses.

In order to alleviate this setback, we re-train our model without the thmin variable. The generator’s

loss becomes LG = 1
5(Lr + λadversarialLadv + LNbrbars

+ Llenmax + LΘmin).

As expected, SSIM was improved by 44% as illustrated by the orange distribution in Fig.5.4.

Figure 5.5 shows a sample of real versus generated designs alongside their skeletons and the geometri-

cal metrics: ∆Nbrbars, ∆Θmin and elenmax%. As a matter of fact, designers are more interested in the

design’s geometry, which is best defined by the skeletons, which explains their use here for comparison.

As we can clearly see, DL-AM-TO captures the geometrical information; ∆Nbrbars = 0, ∆Θmin rarely

exceeds 5°, similarly, elenmax% does not exceed 10%. Aesthetically, the generated designs’ skeletons

are similar to the real ones; SSIM is ≈ 0.7.

106



5.3. FIRST VARIANT OF DL-AM-TO’S TRAINING

Figure 5.4: DL-AM-TO’s performance when trained with and without thmin.

The overall geometrical performance was evaluated manually over a sample of 100 designs of the test

set; in other terms, we counted the Nbrbars and measured the lenmax, and Θmin manually. We de-

fine a design complying with (i) the Nbrbars constraint if ∆Nbrbars ≤ 1, (ii) the lenmax constraint if

elenmax% ≤ 10%, and (iii) the Θmin constraint if ∆Θmin ≤ 5°. We find that 83% of the designs respect

the Nbrbars constraint, 76% comply with the lenmax constraint, and 90% with the Θmin constraint

(Fig.5.6).

In order to further investigate the geometrical understanding of DL-AM-TO, we realized an experiment

as shown in Fig.5.7. First, we fixed the mechanical constraints and altered one geometrical variable

at a time (lenmax and Θmin). Then, to calibrate the design’s geometry, we modify the input value of

the desired geometrical condition. As we can see, every time we increase lenmax/Θmin, the design’s

shape is modified in order to comply with this variation while always conforming with mechanical

constraints (the F and BC). However, we can notice that some geometrical constraints are correlated;

increasing the Θmin alters the lenmax, and at a certain value, an additional bar appears (the 4th design

in Fig.5.7b).

To sum up, DL-AM-TO captures the geometrical and mechanical constraints concurrently and re-

sponds to geometrical changes creatively; the obtained results encourage further model improvement.

5.3.6 Discussion

DL-AM-TO’s performance is tied to several criteria.

The first impact comes from the input data samples. In this work, the traditional SIMP was chosen to
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Figure 5.5: Comparison between the real and generated designs in their full and skeleton formats on
the test set.

Figure 5.6: The distribution of the geometrical metrics (elenmax%, ∆Θmin, ∆Nbrbars) manually mea-
sured over 100 designs of the test set.
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Figure 5.7: DL-AM-TO’s response versus increasing lenmax & Θmin. In (a), to comply with lenmax,
the skeleton’s layout changes drastically with the increase of lenmax. The same behavior is noticed
with the variation of Θmin, at a point where additional bars start appearing (circled in red, 4th design
in (b)). The pink arrow is the build orientation, the red arrow is the normal of the beam.

forward the GMCAD dataset creation as detailed in chapter 4. SIMP may not be the most performant,

but it is the simplest and easily implemented TO algorithm (found in ≈ 70% of the industrial and

commercial software). Thus, the designs driving the training might not be the most optimal ones

but are sufficient to validate the methodology proposed. Indeed, any new data from other, more

optimal, TO algorithms can be used to train our model and improve its performance. Additionally,

the mechanical conditions of GMCAD’s designs are predictions of DL models, which adds a layer of

uncertainty over the input training data samples.

Moreover, It is important to highlight that the main objective here is not to create a new TO algorithm

but to compensate for the difficulties faced in TO when it comes to integrating the mechanical and the

geometrical conditions simultaneously at the same level via DL architectures, particularly generative

networks.

In the second position comes the geometrical discriminators’ performance. The better the discriminator

predicts the geometrical condition, the more informative the generator’s loss function is; hence, DL-

AM-TO is more reliable. We note that it is trained within GAN frameworks known for their unstable

oscillating losses, which explains its sensitivity to the losses delivered by its discriminators. This

phenomenon is observed with the thmin variable; integrating the latter into the model deteriorated its

performance. The thmin discriminator should have been more precise. As a matter of fact, the image-

like designs in GMCAD are CADS converted to images with computer vision filtering techniques,

which can easily alter the thicknesses of the design.
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Consequently, to improve on the previous results, several actions need to be taken:

1. Improve the performance of the geometric discriminators, for their performance dramatically

impacts the generator’s performance.

2. Isolate the new geometric discriminators with the mechanical conditions as done in chapter 3 with

the Nbrbars to improve our understanding of the correlations between the different geometrical

variables (Fig. 5.7 in section 5.3.5).

3. Retrain DL-AM-TO with the new geometrical discriminators (section 5.6).

4. Put DL-AM-TO in action by printing several geometries of the same design to validate our

hypothesis, which states that DL-AM-TO accelerates the whole DfAM, not simply the design

phase.

5.4 Improving the geometrical discriminator’s performance

The geometrical constraints are scalar values; thus, previously, we have chosen a regression-like

architecture. Unfortunately, this architecture only convenes some constraints; thmin discriminator

needed to be more precise. Hence, we decided to convert the regression problem into an ordinal

regression one; it is a special case of classification problems. Instead of predicting the scalar value

of a constraint, we will predict an interval in which it falls. The geometrical constraints that were

concerned are lenmax, thmin, and Θmin.

The lenmax constraint was divided into twenty-one classes: (0.349, 0.4]; (0.4, 0.45]; (0.45, 0.5]; (0.5, 0.55];

(0.55, 0.6]; (0.6, 0.65]; (0.65, 0.7]; (0.7, 0.75]; (0.75, 0.8]; (0.8, 0.85]; (0.85, 0.9]; (0.9, 0.95]; (0.95, 1.0];

(1.0, 1.05]; (1.05, 1.1]; (1.1, 1.15]; (1.15, 1.2]; (1.2, 1.25]; (1.25, 1.3]; (1.3, 1.35]; (1.35,
√

2] with 0.349 and
√

2 being the minimum and maximum values of the lenmax constraint, respectively. As we have de-

scribed in chapter 4, the lenmax and thmin are measured with respect to the unit measure, with it

being the width of the design space, which is equal its height in our work.

The thmin constraint was divided into nine classes: (0.0005, 0.01]; (0.01, 0.02]; (0.02, 0.03]; (0.03, 0.04];

(0.04, 0.05]; (0.05, 0.06]; (0.06, 0.07]; (0.07, 0.08]; (0.08, 0.14] with 0.0005 and 0.14 being the minimum

and maximum values of the thmin constraint, respectively.

The Θmin constraint was divided into fourteen classes: (0, 5]; (5, 10]; (10, 15]; (15, 20]; (20, 25]; (25, 30];
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(30, 35]; (35, 40]; (45, 50]; (50, 55]; (55, 60]; (60, 65]; (65, 70] with 0° and 70° being the minimum and

maximum values of the Θmin constraint, respectively. It is important to highlight here that we exclude

the rotational data augmentation for two reasons. First, the Θmin is the only geometrical value af-

fected by the rotation of the design space. Also, we realized that the distribution of Θmin values after

rotational data augmentation became not uniform and did not include all the value intervals for the

designs present in GMCAD; thus, this data augmentation will affect the representativeness of some

classes in the dataset and deteriorate the model’s performance. Second, we train DL-AM-TO with no

data augmentation; hence, the Θmin discriminator is only needed to predict on non-rotated designs

with Θmin ranging from 0 to 70°.

To comply with the problem’s formulation as a classification instead of a regression, the discriminators’

architectures will only differ on the last fully connected layer; the output is a binary vector of K nodes

with K being the number of classes of the variable described above; i.e., K = 21 for the lenmax model,

K = 9 for the thmin model, K = 14 for the Θmin model.

5.4.1 Training

The geometric discriminators are trained via the state-of-the-art conditional ordinal regression for

neural networks (CORN) framework [8]. The advantage of this approach over all previous versions of

ordinal regression DL-based models [120, 121] is the rank consistency (Fig. 5.8).

The widely used training loss function in conventional classification is the cross entropy loss [122].

Unfortunately, this loss function is sub-optimal in our case, for it does not consider the order of the

classes, and hence, it does not quantify the distance between the classes. In other terms, a prediction

Θmin of class 1 instead of class 2 is less problematic than a prediction Θmin of class 5 instead of class

2. That is because the ∆Θmin of the former is 5° versus 15° for the latter. Thus, ordinal regression is

used as an intermediate between regression and classification.

With ordinal regression, classes or labels range from 0 to K with K = the total number of labels. We

define yik ∈ 0, 1 such that yik = 0 if yik < rk and yik = 1 if yik > rk with rk representing the kth class

and the rank rk ∈ 1, 2, .., K.

CORN’s objective is to estimate conditional probabilities fik = P̂ (yi > rk|yi > rk−1) with yi > rk ⊆

yi > rk−1; in other terms, if a data point xi has a yi = Θmin ∈ (10°, 15°] i.e. yi > r2, hence, definitely

yi > r1 or yi > (5°, 10°].
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The conditional probability P̂ (yi > rk) is the product of all conditional probabilities over all subsets;

P̂ (yi > rk) =
∏︁K

j=1 fj(xi) with fj(xi) ∈ [0, 1].

It is important to note here that estimating the conditional probabilities does not require all the

training data points; only a subset is needed; to estimate P̂ (yi > r5|yi > r4), we need the subset of

data points with yi > r4. Afterward, we minimize the binary cross entropy (loss function used for

classification) on the data points of this subset.

Consequently, we decompose the training dataset into subsets with:

S1 = all (xi, yi) withi = 1, ..., N andN = Total number of training data points
S2 : (xi, yi)|yi > r1
...
SK−1 : (xi, yi)|yi > rK−2

(5.1)

S1 is the biggest subset (the whole training dataset), while SK−1 is the smallest subset. In other

words, |S1| ≥ |S2| . . . ≥ |Sk| ≥ . . . ≥ |SK−1| with |Sk| the size of the kth subset.

The loss function as formulated by Shi et al. [8] is the following:

L(Z, y) = −1∑︁K−1
j=1 |Sj |

K−1∑︂
j=1

|Sj |∑︂
i=1

[log(σ(zi)).1yi > rj + (log(σ(zi)) − zi).1yi ≤ rj ] (5.2)

Figure 5.9 shows how CORN predicts the class yi of an input xi. Additionally, figure 5.10, reprinted

from [8], illustrates the loss computation based on the conditional training subsets.

5.4.2 training dataset

To further improve the geometric discriminator’s accuracy, we have increased the number of train-

ing data samples per geometric variable to ensure that every class (i.e., every interval of values) is well

represented. The distribution of the intervals of lenmax, Θmin and thmin values in the training set for

every geometric discriminator is shown in figure 5.11.

5.4.3 Results

Tab 5.1 shows the global macro accuracy per geometrical discriminator. On the test set, the global

accuracy score of the thmin is 93.7%, of lenmax is 86.1%, and of Θmin is 91.2%.

However, when it comes to multi-class classification, the global macro accuracy score can be deceiving,

and a better approach is to use the micro scores, i.e., scores per class. Thus, figure 5.12 plots the

classification results for each geometrical variable on the train, validation, and test sets. The red line
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(a) Rank Inconsistency.

(b) rank Consistency.

Figure 5.8: Ordinal regression models’ rank consistency.

Figure 5.9: A Visual explanation of how CORN model predicts the ordinal class yi of an input xi.
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Figure 5.10: A Visual explanation of how the CORN loss is computed using the conditional training
subsets. Reprinted from [8]. Assuming three training examples x[1], x[2], x[3] with three rank labels
y = [y[1], y[2], y[3]] = [1, 3, 4], the overall loss L(X, y) = 1∑︁

i
|yi|

∑︁
i Li = 1

3+2+2+1(L1 + L2 + L3 + L4).
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(a) Train set of lenmax CORN discriminator.

(b) Train set of thmin CORN discriminator.

(c) Train set of Θmin CORN discriminator.

Figure 5.11: Distribution of the geometric intervals of lenmax, thmin, & Θmin, from left to right
respectively, in the training sets of the lenmax, thmin, & Θmin CORN discriminators, from top to
down respectively.

115



5.4. IMPROVING THE GEOMETRICAL DISCRIMINATOR’S PERFORMANCE

corresponds to the predictions equal to the ground truth. The green lines correspond to the admissible

misclassified predictions; an admissible misclassification is when the model classifies a point belonging

to the class k into the class k + 1 or class k − 1.

As we can see, some classes are confused with classes outside the admissible misclassification margins.

To estimate the percentage of confusions between the true class k and the admissible k − 1 and k + 1

classes and the percentage of misclassification outside these areas, we plot the confusion matrices of

all three models (figures 5.13, 5.14, and 5.15).

For the thmin discriminator, the highest percentage of admissible confusion is 16.77%, for the class

(0.07, 0.08]; it is confused with the class (0.08, 0.14], which is admissible. Moreover, the class (0.07, 0.08]

is the least represented class in the training set (figure 5.11(b) shows the distribution of the classes of

thmin). As for the remaining classes, this percentage never exceeds the 8%. The highest percentage

of inadmissible confusion is of 1.8%, for the class (0.06, 0.07]; with this class being confused by 0.53%

with the class (0.03, 0.04], 0.11% with the class (0.03, 0.04], and 1.16% with the class (0.08, 0.14].

For the lenmax discriminator, the least accurate CORN discriminator, the highest percentage of ad-

missible confusion is 30%, for the class (0.45, 0.5]. Similarly, the highest percentage of inadmissible

confusion is 5.17% for the class (0.45, 0.05].

For the Θmin discriminator, the highest percentage of admissible confusion is 28.6%, for the class

(55°, 60°]; it seems that angles belonging to (55°, 60°] are highly confused with the class (60°, 65°]. As a

matter of fact, this confusion is understandable, for these two classes are less represented with respect

to the others (figure 5.11(c) shows the distribution of the classes of Θmin). The highest percentage of

inadmissible confusion is 1.68%, for the class (5°, 10°].

Finally, the percentage of inadmissible predictions are 1.23% for lenmax discriminator, 0.92% for the

Θmin discriminator, and 0.4% for the thmin discriminator. Thus, all three geometrical discriminators

are precise enough to forward the training of DL-AM-TO.

In addition to the approach detailed in chapter 2 (figure 2.1), we have decided to quantify the confi-

dence of these DL models for each class predicted in order to validate the geometrical discriminators

further. Uncertainty quantification is booming in the research and industrial worlds, for it is a way to

quantify the reliability of a DL model within its deployment environment, an essential step for fully

adopting DL models in industrial engineering systems.
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(a) Train set.

(b) Validation set.

(c) Test set.

Figure 5.12: Performance of the geometric discriminators showing the predicted vs the true classes of
thmin, lenmax, & Θmin, from left to right, respectively, for the train, validation, and test sets. The
red line corresponds to the predictions being equal the true class. The green lines correspond to the
previous and the following class; they represent the admissible misclassified predictions.
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Table 5.1: Macro average accuracy score of thmin, lenmax, and Θmin.

Geometrical Discriminator Train Validation Test

thmin 99.3% 93.1% 93.7%

lenmax 98.3% 86.8% 86.1%

Θmin 98.1% 91.8% 91.2%

Figure 5.13: The confusion matrix of the thmin CORN discriminator computed on the test set.
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Figure 5.14: The confusion matrix of the lenmax CORN discriminator computed on the test set.
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Figure 5.15: The confusion matrix of the Θmin CORN discriminators computed on the test set.

5.4.4 Uncertainty quantification of the DL geometrical discriminators

Uncertainty in NN originates essentially from two sources: the network’s architecture and train-

ing (loss function, learning rate, number of epochs, batch size, Etc.) and the data forwarding the

learning [123]. The literature on uncertainty quantification identifies two main types of uncertainty:

data uncertainty, known as aleatoric uncertainty; wrong labeling, low image resolution, inaccurate

measurements, and data not covering sufficiently the real-world’s variability; and model uncertainty,

known as epistemic uncertainty; the number of parameters in a NN’s architecture, the learning rate,

and the number of iterations leading to an under or over-fitted model, Etc. [124, 125]. Aleatoric

uncertainty is irreducible due to the measurements’ precision and information loss; the training data

scarcely represents the entire sample space. On the other hand, model uncertainty represents the

uncertainty caused by defects in the model, either by errors in the learning procedure, an insufficient

architecture, or a lack of knowledge due to unknown samples or poor coverage of the training data set

[123].

The diversity of the uncertainty sources in deep NN makes it impossible to eradicate it. Despite the

impossibility of its eradication, the literature proposes several approaches to estimate it. Gawlikowski

et al. (2021)[123] propose a classification into four groups of uncertainty quantification: determinis-
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tic approaches[126, 127], Bayesian approaches[128, 129, 130], ensemble methods[131], augmentation

methods during test time[132]. Augmentation methods are inappropriate in our case because a ro-

tation or translation of a design could change the geometrical variable’s value; the Θmin constraint

is rotation-variant. The deterministic and Bayesian approaches were implemented and tested by our

intern Steve Baggio Sedjro NOUATIN.

In brief, Bayesian inference in NN is based on the fundamental idea that the NN’s weights are rep-

resented by probability distributions over possible values. Thus, rather than learning a single fixed

value as in deterministic NN, Bayesian networks try to learn distributions over the weights of the NN.

The Bayesian methods that were explored are the Monte Carlo Dropout (MCD) [129], the Bayes By

Backprop (BBB)[128] and the preconditioned Stochastic Gradient Langevin Dynamics (pSGLD).

Monte Carlo Dropout is considered an approximation of Bayesian inference in NN. It consists in in-

serting a dropout layer before each model layer.

Gal and Ghahramani showed that dropout before each weight layer of DNN is mathematically equiva-

lent to an approximation by variational inference of a Gaussian process. The dropout layers are active

not only during training but also during prediction to ensure that the model outputs are stochastic.

The Bayes By Backprop method proposes to use variational inference to approximate the a posteriori

distribution of the model parameters.

An alternative to variational inference in Bayesian NN is using Stochastic Gradient Markov Chain

Monte Carlo methods, particularly pSGLD for scalability reasons, to generate an a posteriori sample

of the model parameters [130].

Evidential NNs are complementary approaches to Bayesian networks for uncertainty quantification.

This technique is based on the belief functions of the Dempster-Shafer theory [133], and on the theory

of subjective logic [134]. An evidential NN assigns a Dirichlet distribution to the class probabilities

for classification use cases. They treat the NN’s predictions as subjective opinions and thus learn the

function that gathers the evidence leading to these opinions by a deterministic NN from the data.

Subjective logic assigns a positive belief value and an uncertainty value to each class so that the sum

of the belief values and uncertainty equals one [126]. Evidential NN in classification are, therefore,

classical NN whose softmax layer is replaced by a positive output activation layer (e.g., ReLU) to

guarantee a non-negative output, which is taken as an evidence vector for the predicted Dirichlet

distribution.
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(a) True versus predicted classes. (b) Uncertainty per ∆lenmax =
|lenmaxpredicted − lenmaxtrue| set,
with lenmax being the interval class i.e.
= 0, 1, ..., 20.

Figure 5.16: Uncertainty quantification computed over the predictions of the lenmax geometrical
discriminator on the test set.

A detailed explanation of these methods and their results can be found in the supplementary mate-

rial, Steve’s final year project report. These methods converged to the same result. However, their

implementation, training, and usage costs widely varied. In the following, the uncertainties computed

using the Evidential NN method are reported for the three geometrical CORN discriminators (lenmax,

Θmin, and thmin) for evidential NN shows the adequate method when it comes to accuracy, DL model’s

number of parameters, training to convergence time, storage, and prediction time.

The results of the uncertainty quantification are illustrated in two ways: the true versus predicted

classes plot and the uncertainty versus the prediction error plot; the prediction error in the three cases

is the difference between the true and predicted class. In all three figures 5.16, 5.17, and 5.18, the true

versus predicted class plot is almost a straight line demonstrating that the discriminators’ prediction

precision. It should be noted that figure 5.16(a) shows that the class [1.251, 1.3] is confused by its

preceding class [1.201, 1.25], which is admissible. Similarly, figure 5.17(a) shows that the class [60°, 65°]

is confused with its preceding class [55°, 60°]. On the other hand, figures 5.16(b), 5.17(b), and 5.18(b)

show the evolution of the uncertainty value outputted by the networks versus the prediction error.

For all three discriminators, the uncertainty value predicted increased with the prediction error.

To sum up, the geometrical discriminators are now quantitatively reliable with evidential NN; they

can now forward DL-AM-TO’s training.
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(a) True versus predicted classes. (b) Uncertainty per ∆Θmin =
|Θminpredicted − Θmintrue| set, with Θmin

being the interval class i.e. = 0, 1, 2, ..., 13.

Figure 5.17: Uncertainty quantification computed over the predictions of the Θmin geometrical dis-
criminator on the test set.

(a) True versus predicted classes. (b) Uncertainty per ∆thmin =
|thminpredicted − thmintrue| set, with
thmin being the interval class i.e.
∈ 0, 1, 2, ..., 8.

Figure 5.18: Uncertainty quantification computed over the predictions of the thmin geometrical dis-
criminator on the test set.
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5.5 Training a model per geometrical variable

In order to understand the relationship between the geometrical constraints, we will need to isolate

every geometrical condition and train the model, and then we will study the influence of changing one

geometrical variable on the other geometrical variables.

The geometrical variables that will be considered are lenmax, Θmin, and Nbrbars. The thmin is omitted

for thickening, or thinning bars do not have any other influence on the lengths of these bars, their

number, or their angles.

The training consists of the generator (DL-AM-TO), which takes as input the mechanical conditions

(BCx, BCy, Fx, Fy, V ) and the geometrical condition in hand and outputs a 2D design validating the

input conditions. The generated design is compared to the ground truth design, passes through the

geometrical discriminator to predict its geometrical condition, and is penalized if it does not conform

to the input condition.

When the training is completed, the experiment consists of generating several designs conforming with

the same mechanical constraints but different values of this geometrical condition. In other words,

the engineer will have several geometries for a fixed set of mechanical constraints and will be able to

choose the geometry that fits the manufacturing-geometrical constraint the printer needs.

5.5.1 Training with Θmin

The training consists of replicating the same procedure detailed in section 5.2.1 but with one geo-

metrical constraint and thus one geometrical discriminator, here the Θmin’s.

The idea here is to understand the correlation between Θmin versus the other geometrical variables;

lenmax and Nbrbars.

For this study, we have used the training dataset built to train the Θmin discriminator (Fig.5.11(c)).

As mentioned previously, we will test the ability of the generator to propose several geometries for the

same mechanical constraints. Figure 5.19 shows the generated designs after having scanned several

lenmax values for three fixed sets of mechanical conditions (Fig.5.19(a), Fig.5.19(b), and Fig.5.19(c)).

For every sub-figure, there are three design representations. Each sub-figure corresponds to a design

space subject to a fixed set of mechanical constraints with increasing lenmax constraint. The first rep-

resentation, in every subfigure’s first line, corresponds to the image-like geometries generated by the
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DL model after applying threshold, denoising, and smoothing computer vision algorithms. The second

representation, in the second line, corresponds to the skeletons. Finally, the third line corresponds

to the geometries drawn manually; the beams colored in purple are the beams with the minimum

overhang (Θmin).

As we can clearly see, the geometries change to adapt to the increasing Θmin constraint. However, we

observe some irregularities sometimes.

For example, in Fig.5.19(a), the DL model struggles to generate a geometry with more than 45° no

matter how much we increase the input Θmin. The mechanical constraints seem to have a higher

dominance in this case.

In Fig.5.19(b), we can see that the model changed the geometry radically to comply with the increasing

Θmin; to comply with the increasing Θmin, the geometry passes through several modifications where

at a certain point the Θmin is no longer compliant with the increasing input value (the seventh and

eighth designs in Fig.5.19(b)).

As for Fig.5.19(c), the fifth and sixth designs do not comply with the input Θmin. However, this is

compensated from the seventh to the ninth design proposed.

A simple procedure would be to eliminate the designs not complying with the Θmin constraint and

only present to the user the valid propositions, as shown in Fig.5.20.

This model aspires to understand the impact of controlling one geometrical variable over the others

that are not controlled.

Fig.5.20(a) shows that the lenmax variable is kept constant and the Nbrbars variable fluctuates with

no clear relationship witn the Θmin’s change. In Fig.5.20(b), the average lenmax is 0.62, the generated

designs have lenmax ±0.1 from 0.62. However, we can clearly remark that the Nbrbars decreases in the

design when we increase Θmin. This same behavior is identified in Fig.5.20(c). Thus, we can conclude

that Θmin is inversely proportional to Nbrbars. Indeed, a higher value of Θmin means highly tilted

bars; thus, horizontal internal transmission bars need to be eliminated, which explains this relationship

between the two variables. For the lenmax, we see no obvious relationship with Θmin; hence, for the

moment being, we assume they are independent.

In conclusion, our model proposes to engineer several geometries creatively with different Θmin con-

straints in a fraction of a second. This alleviates him/her the need to come up with these shapes

him/herself and helps him/her choose the right design complying with the Θmin constraint directly
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without the need to get stuck in a loop of modifying the geometry and testing until convergence.

5.5.2 Training with lenmax

Figure 5.21 shows the generated designs after having scanned several lenmax values for three fixed

sets of mechanical conditions. for every sub-figure, there are three design representations. The first

representation, in every subfigure’s first line, corresponds to the image-like geometries generated by the

DL model after applying threshold, denoising, and smoothing computer vision algorithms. The second

representation, in the second line, corresponds to the skeletons. Finally, the third line corresponds

to the geometries drawn manually; the beams colored in purple are the beams with the minimum

overhang (Θmin).

In all three figures, we can see an evolution in the geometry of the design to comply with the increasing

value of the lenmax condition. However, the sensitivity of the DL model to the geometrical input value

varies from one structure to another. Designs in Fig.5.21(a) show the best sensitivity; the geometries

evolve in a way to ensure increasing lenmax constraint. More complex structures can be harder to

adjust; the structure of designs of Fig.5.21(b) is an example. In order to comply with the increasing

value of len, the model needed to wider the design; thus, starting from the fifth design, we can see the

shape becoming wider, nevertheless losing the conformity with the constraint (0.57 ≤ 0.6). However,

this inconvenience comes with the benefit of complying with the constraint in the sixth and seventh

designs. In figure 5.21(c), we can see that the DL model was creative and abstracted the notion of the

lenmax constraint; the first two shapes do not exist in the training database.

As for the relationship between lenmax and the other geometrical constraints, we can validate that

the lenmax condition is inversely proportional to the Nbrbars constraint; if we would like to eliminate

bridges (long bars hanging), it is better to add a bar to support them. For the Θmin, there is no

clear rule. It depends heavily on the outer shape, which is defined by mechanical constraints. When

this shape happens to be flexible while always complying with mechanical constraints, Θmin decreases

with increasing lenmax (figures 5.21(b) and 5.21(c)). It is important to highlight that in section 5.5.1

where the controllable variable was lenmax, there were no obvious relation between lenmax and Θmin.

However, when Θmin is the controllable variable, we have identified that it is inversely proportional

to lenmax but not in all cases, only in cases where the outer structure defined by the mechanical

constraints allows it. In other terms, lenmax and Θmin are conditionally dependent with respect to
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(a) First set of designs.

(b) Second set of designs.

(c) Third set of designs.

Figure 5.19: Geometries proposed by the DL model trained to tailor Θmin. Every figure shows a list of
geometries corresponding to a fixed set of mechanical conditions and different lenmax condition. The
first line corresponds to the geometries generated by DL after the application of threshold, denoising
and smoothing’s computer vision algorithms. The second line corresponds to the skeletons. Finally,
the third line corresponds to the geometries drawn manually; the beams colored in purple are the
beams with the minimum overhang (Θmin).
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(a) First set of designs.

(b) Second set of designs.

(c) Third set of designs.

Figure 5.20: Geometries proposed by the DL model trained to tailor Θmin. Every figure shows a list of
geometries corresponding to a fixed set of mechanical conditions and different lenmax condition. The
first line corresponds to the geometries generated by DL after the application of threshold, denoising
and smoothing’s computer vision algorithms. The second line corresponds to the skeletons. Finally,
the third line corresponds to the geometries drawn manually; the beams colored in purple are the
beams with the minimum overhang (Θmin).128
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the mechanical constraints.

5.5.3 Training with Nbrbars

Figure 5.22 shows the generated designs after having scanned several Nbrbars values for three fixed

sets of mechanical conditions. For every sub-figure, there are three design representations. The first

representation, in every subfigure’s first line, corresponds to the image-like geometries generated by the

DL model after applying threshold, denoising, and smoothing computer vision algorithms. The second

representation, in the second line, corresponds to the skeletons. Finally, the third line corresponds

to the geometries drawn manually; the beams colored in purple are the beams with the minimum

overhang (Θmin).

This last experiment is important since it will decide whether the conclusion about the relationships

between Nbrbars and Θmin and lenmax deduced in sections 5.5.1 and 5.5.2 still hold when the control-

ling variable is Nbrbars.

All three figures 5.22(a), 5.22(b), and 5.22(c) validate the inverse proportionality between lenmax and

Nbrbars deduced in section 5.5.2. Similarly, figures 5.22(a) and 5.22(b) validate the inverse proportion-

ality between Θmin and Nbrbars. However, in figure 5.22(c), we can notice that the Θmin is constant

with increasing Nbrbars. In other terms, the Nbrbars and Θmin ’s inverse proportionality relationship

is conditioned on the general structure of the design, which is defined by the mechanical constraints.

This behavior encourages us to revisit this type of structure with the DL model trained to control

the Θmin to check how the model modifies the geometry of this type of design. This is done is figure

5.23. As we can clearly see, the model has trouble changing the geometry to comply with the Θmin

constraint; however, to finally comply, we can see the geometry migrating to a geometry that it does,

knowing that it might not be the best fit with respect to the mechanical constraints. Hence, we con-

clude that the Nbrbars and Θmin ’s inverse proportionality relationship is conditioned on the general

structure of the design, which is defined by the mechanical constraints, and more importantly, that

the mechanical constraints are still predominant when it comes to the general geometry of the design.

As a matter of fact, in some cases, the optimal geometry does not exist. Nonetheless, this particular

structure is better optimized by adding bars to support hanging features.
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(a) First set of designs.

(b) Second set of designs.

(c) Third set of designs.

Figure 5.21: Geometries proposed by the DL model trained to tailor lenmax. Every figure shows a list
of geometries corresponding to a fixed set of mechanical conditions and different lenmax condition. The
first line corresponds to the geometries generated by DL after the application of threshold, denoising
and smoothing computer vision algorithms. The second line corresponds to the skeletons. Finally, the
third line corresponds to the geometries drawn manually; the beams colored in purple are the beams
with the minimum overhang (Θmin). 130
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In conclusion, while training several DL models, each controlling a different geometrical variable,

We still have seen a consistency in their learning of the geometrical information. We have deduced that

the lenmax and Nbrbars are inversely proportional, the Nbrbars and Θmin are inversely proportional

when the general geometry defined by the mechanical constraints allows it, and finally, lenmax and

Θmin are conditionally dependent with respect to the mechanical constraints. the In the next section,

we will examine their behavior when controlled simultaneously along the mechanical constraints.

5.6 Second variant of DL-AM-TO

With the findings in sections 5.4 and 5.5, we retrained DL-AM-TO with CORN geometrical discrim-

inators. We added a new element to the training loss function, the structural similarity loss (LSSIM )

implemented in the pytorch library piq 2. LSSIM ’s formula and implementation details are described

in the following reference https://piq.readthedocs.io/en/latest/modules.html#piq.SSIMLoss.

5.6.1 Results

This section will be divided into two parts. The first part describes the overall performance of

DL-AM-TO over 12340 designs, and the second part will examine its capacity to tailor a design’s

geometry corresponding to a variation in the geometrical input value.

5.6.2 DL-AM-TO’s overall performance

Figure 5.24 shows the distribution of the aesthetics metrics, the Structural Similarity (SSIM),

Peak Signal to Noise ratio (PSNR = 10log10 × R2

MSE in decibel dB, with R the maximum fluctuation

in the input image data type, here 1; the generated designs are images with values ranging from 0

to 1.0), and the reconstruction error (the Mean Squared Error, MSE) between the generated designs

and the ground truth designs for three variants. We compute the metrics with the raw outputs, i.e.,

we compare DL-AM-TO ’s output to the ground truth before the application of any transformation,

then, we recompute the metrics with the designs thresholded, and finally, we compare the ground truth

designs’ skeletons to the generated designs’ ones. The average SSIM computed on the raw generated

designs is 0.72 and 0.75 on the skeletons. The average PSNR is 14dB versus 15dB on the skeletons.

The average MSE is 0.051 versus 0.033 on the skeletons. It is important to note that the gap between

2https://piq.readthedocs.io/en/latest/usage_examples.html
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(a) First set of designs.

(b) Second set of designs.

(c) Third set of designs.

Figure 5.22: Geometries proposed by the DL model trained to tailor Nbrbars. Every figure shows a list
of geometries corresponding to a fixed set of mechanical conditions and different Nbrbars condition. The
first line corresponds to the geometries generated by DL after the application of threshold, denoising
and smoothing computer vision algorithms. The second line corresponds to the skeletons. Finally, the
third line corresponds to the geometries drawn manually; the beams colored in purple are the beams
with the minimum overhang (Θmin).
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Figure 5.23: Particular geometries generated by a DL model trained to control the Θmin along the
mechanical constraints.

Figure 5.24: Distribution of the Structural Similarity (SSIM), Peak Signal to Noise ratio (PSNR),
and the reconstruction error (the Mean Squared Error, MSE), from left to right respectively, computed
on the test set, for three variants of the designs: raw, threshold, and skeletons. the raw designs are
DL-AM-TO’s outputs without any transformation.
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Figure 5.25: Distribution of the geometrical conformity metrics, ∆lenmax , ∆thmin
, ∆Θmin , and ∆Nbrbars

,
from left to right respectively, with ∆X = Xgenerated − Xinput; X ∈ lenmax, thmin, Θmin, and Nbrbars.
The green line corresponds to ∆lenmax = ±0.05units, ∆thmin

= ±0.01units, ∆Θmin = ±5°, and
∆Nbrbars

± 2bars in the ∆lenmax , ∆thmin
, ∆Θmin , and ∆Nbrbars

plots, respectively.

Figure 5.26: Distribution of the mechanical metrics, the relative error of compliance (eC%) and the
relative error of volume fraction (eV %). The green line corresponds to eC% = 20% and eV % = 10% in
the eC% and eV % plots, respectively.
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the aesthetic metrics of the generated designs and the skeletons’ is minimal. The gap in the SSIM is

reduced to 0.03 versus 0.2 with the first variant of DL-AM-TO, which validates our assumption that

the geometrical discriminators’ performance highly influences the model’s performance. Moreover, as

we have mentioned earlier, the global geometry of the design tells a lot about the placement of the

loads and boundary conditions; thus, having a high SSIM implies the conformity of the designs with

these two mechanical constraints (F and BC).

Figure 5.26 plots the distribution of the mechanical metrics, the relative errors of compliance3 and

volume fraction, as defined in chapter 3 section 3.3.2; these values are computed over the generated

designs without any transformation (raw) and after the application of the threshold. 44.4% of the

generated designs show a compliance that is less or equal to 1.2 times the ground truth designs’ com-

pliance (i.e. Cgenerated ≤ 1.2 × Cground−truth). This percentage is improved by 42% to achieve 63%

after applying the threshold. This result is similar to what we obtained in chapter 3; we resolved the

high compliance issue by adding a compliance discriminator. 89.5% of the generated designs show a

Vgenerated ≤ 1.1 × Vinput. However, after applying the threshold, the percentage decreases to 66.2%.

To circumvent to this setback, a better approach would be to use a local customized threshold per

design.

Lastly, we examine the geometrical conformity of DL-AM-TO to the geometrical input values. Figure

5.25 shows the distribution of ∆X = Xgenerated − Xinput; X ∈ lenmax, thmin, Θmin, and Nbrbars.

For the Nbrbars constraint, the same metric used in section 5.3.5 and chapter 3 section 3.3.2 is used

here to check the generated designs’ conformity. If the absolute difference between the Nbrbars of the

generated design and the input Nbrbars is less than 2, the generated design is considered compliant

with the Nbrbars constraint, such that the Nbrbars is predicted via the regression-based Nbrbars dis-

criminator. For the remaining geometrical constraints, a generated design is geometrically compliant

if its geometrical value is, at most, distant by ± one class from the input value, such that the class

value is predicted by the corresponding CORN geometrical discriminator. The distance between two

consecutive classes of the lenmax equals 0.05 units. The distance between two consecutive classes of

the thmin equals 0.01 units. The distance between two consecutive classes of the Θmin equals 5°.

Thus, 96.3% of the generated designs are compliant with the lenmax constraint, 89.3% with the thmin

constraint, 87.9% with the Θmin constraint, and 88.7% with the Nbrbars constraint.

3The compliance was computed using the FE method.
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To sum up, DL-AM-TO’s overall performance is promising. It integrates mechanical and geometrical

manufacturing-related constraints at the same level and generates aesthetically plausible and mechan-

ically and geometrically valid designs in a fraction of a second. However, to improve the design’s

compliance, we could retrain DL-AM-TO with an additional compliance discriminator or run a few

iterations of SIMP on the shape outputted by DL-AM-TO. The latter hybrid approach is the most

efficient for two reasons. (1) Retraining DL-AM-TO is costly in time and computational power. (2)

SIMP method’s setback makes it unable to modify a shape after it was identified; it can only optimize

on it; this is beneficial in our case for a shape compliant with the geometrical-manufacturing con-

straints is already identified by DL-AM-TO. Nevertheless, this shape sometimes shows disconnected

or blurry bars or intermediate density values, causing poor mechanical performance. Thus, applying

a few iterations of SIMP could improve this mechanical performance. This conclusion is so essential

for us to re-validate our assumption that DL will help compensate for the difficulties faced by ro-

bust mathematical FE-TO when it comes to integrating different natures of constraints but could not

replace it, especially since, until now, we are not able to validate its outcome fully.

5.6.3 Tailoring a design’s geometry with DL-AM-TO

In this section, we conduct four experiments to test DL-AM-TO’s ability to tailor a design’s

geometry while still compliant with the mechanical constraints. In each experiment, we fix all input

constraints except one geometrical constraint. We will scan a range of values for this constraint and

examine how the design’s geometry changes to adapt to these changes.

The key takeaways from section 5.5 is that the Nbrbars constraint is the only constraint with an obvious

correlation with the other geometrical constraints. We will check how DL-AM-TO generates designs

to comply as much as possible with this constraint while being able to adjust the design’s geometry

to comply with the other geometrical constraint. Adding more constraints should affect the outcome

of the DL model; in section 5.5, the models were trained to control one variable while the others were

free to change, here they are not anymore. We wait for one of the two phenomena to happen: one

geometrical constraint will be predominant over the others, or we will see a lower number of designs

proposed, i.e., a lower potential design space but conformity to all the constraints.

Figure 5.28 shows three sets of designs with increasing lenmax. In figure 5.28(a), the Nbrbars and the

Θmin are relatively constant, 7 ± 1bar except for the fourth geometry and 31 ± 6° except for the sixth
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geometry.

In figure 5.28(b), the Nbrbars is higher for small lenmax value, which is expected, to minimize the

lenmax, longer bars need to be intercepted by other bars, whereas Θmin fluctuates between 0 and

24°. In figure 5.28(c), the Nbrbars and the Θmin are relatively constant, ±1bar except for the second

geometry.

Thus, changing lenmax is still inversely proportional to the Nbrbars, however, since DL-AM-TO controls

both variables simultaneously, the change in the Nbrbars is modest when the geometry allows it unlike

what we observed in section 5.5.2. Similarly, Θmin is more or less constant versus the changing

lenmax. It is important to point out that the Nbrbars and Θmin radically change together (i.e., violate

the general rule) and not separately. This validates partially the conclusion deduced in section 5.5.1;

there is a relationship between Nbrbars and Θmin, however, it is not here an inverse proportionality

relationship.

Figure 5.29 shows three sets of designs with increasing Θmin. In figures 5.29(a) and 5.29(b), the

Nbrbars and the lenmax are relatively constant, Nbrbarsinput
± 2bar except for the first geometry and

lenmaxinput ± 0.05 units. Nonetheless, the third set (Fig.5.29(b)) shows a lower conformity for the

Nbrbars and the lenmax; the difference between the input and the generated design’s Nbrbars varies

between -3 and +8 bars and the lenmax varies between -0.2 and +0.4.

Figure 5.30 shows DL-AM-TO’s response to changing only the Nbrbars variable. As mentioned in

section 3.4.5, chapter 3, changing the Nbrbars requires a changing in the volume fraction in order

to ensure conformity; hence the V was adjusted with the increasing Nbrbars. As we can clearly

see increasing the Nbrbars induces the decrease of the Θmin and the lenmax, with the lenmax being

the least impacted. In other terms, the Nbrbars is the dominant geometrical variable. Changing it

induces higher chances of non-conformity to the other geometrical variables. Nonetheless, it is the

least relevant to AM. Thus, the engineer could sacrifice it on the advantage of being compliant with

Θmin, and lenmax, which are core AM constraints.

Figure 5.27 shows the DL-AM-TO’s response to changing the thmin. The same rule found in section

3.4.5, chapter 3 for Nbrbars applies for the thmin; thicker designs need more material i.e. a higher V

and reciprocally; hence the V was adapted accordingly here too. As we can see, the bars thicken with

the increasing value of thmin with a conformity with all the other constraints (Fig.5.27(a)), and for

more complex geometries (i.e. Fig.5.27(b)) additional bars start appearing at a point so that after they
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(a) Three set of designs, each subject to the same mechanical constraints, input Nbrbars, input Θmin, &
input lenmax with an increasing value of thmin.

(b) The generated designs are subject to the same mechanical constraints, input Nbrbars = 13, input
Θmin = 33°, & input lenmax = 0.6u and an increasing value of thmin.

Figure 5.27: Tailoring thmin.

end up merging for high values of thmin, thus inducing a variation in the other geometrical variables.

5.7 Printing designs generated by DL-AM-TO

Now that we have shown the capabilities of DL-AM-TO when tailoring a design’s geometry to

comply with input geometric manufacturing-related constraints, it is time to go to the printing phase.

We will proceed by drawing the CAD of the design outputted by SIMP (i.e., the output geometry does

not control any geometrical manufacturing constraints). Then, we generate several variations of this

design with DL-AM-TO by changing one geometrical variable, and we draw them; FreeCAD[9], an

open-source 3D modeling software, is used for drawing the CADs. These designs are then exported as
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(a) First set of designs. Input Nbrbars = 7 & input Θmin = 31°.

(b) Second set of designs. Input Nbrbars = 9 & input Θmin = 21°.

(c) Third set of designs. Input Nbrbars = 8 & input Θmin = 0°.

Figure 5.28: In this figure, we show the same mechanical constraints and changed the lenmax.
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(a) First set of designs. Input Nbrbars = 8 & input lenmax = 0.51u.

(b) Second set of designs. Input Nbrbars = 7 & input lenmax = 0.7u.

(c) Third set of designs. Input Nbrbars = 13 & input lenmax = 0.6u.

Figure 5.29: In this figure, we show the same mechanical constraints and changed the Θmin.
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(a) First set of designs. Input Θmin = 31° & input lenmax = 1.02u.

(b) Second set of designs. Input Θmin = 36° & input lenmax = 0.7u.

(c) Third set of designs. Input Θmin = 24° & input lenmax = 0.67u.

Figure 5.30: In this figure, we show the same mechanical constraints and changed the Nbrbars.
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(a) Changing lenmax.

(b) Changing Θmin.

(c) Changing Nbrbars.

Figure 5.31: In this figure, we show the same mechanical constraints and changed three different
geometrical constraints each at a time. Input Nbrbars = 5, input lenmax = 1u, & input Θmin = 18°.
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.stl files and analyzed by Ultimaker Cura software [10]; an open-source slicing application for 3D print-

ers. The latter takes the .stl design and the 3D printer parameters (the printer’s type, its Θminprinter,

which is π/2 − Θmin defined in our work, the percentage of infill, the build plate adhesion, Etc.), adds

supports to the structure if needed, and outputs an estimation of the material needed’s build time

(BT ), mass M (in grams g), and length L (in meters m). Finally, it generates a .gcode file containing

the building steps to be accomplished by the 3D printer, a Creality Ender 34, to build the design. The

mechanical performance, represented by the maximum displacement (umax) in mm is computed with

Patran[135] Nastran[136].

We will study the geometrical variables via their increasing order of importance in the manufactur-

ing phase; thus, start with the first geometrical variable we have handled, the Nbrbars, then, by the

lenmax, and finally to end with the most influential geometrical-manufacturing constraint, the Θmin.

The objective is to validate DL-AM-TO’s contribution. Acceleration forwarded by DL-AM-TO. DL-

AM-TO allows the generation of several geometries for the same mechanical constraints to comply

with the manufacturing criteria. With DL-AM-TO, the engineer’s search for the best candidate design

that complies with all the required specifications (mechanical and manufacturing) is accelerated; (s)he

will not need to get stuck in a loop of updating the geometry and analyzing it. Furthermore, with an

adequate geometry, the material usage, the supports, the post-processing, and hence the build cost

and time are reduced.

5.7.1 Printing geometries of different Nbrbars constraint

For this experiment, we have chosen the second, the fifth, and the eighth geometries in figure

5.30(a). The input Θmin is 31°. Thus, the Θminprinter is set to 59°. The geometries’ Nbrbars are 7, 17,

and 29 respectively.

Looking at the the DL-based designs (where the Nbrbars can be changed) without supports (figure

5.32(b)), we notice that adding 10 bars increases the material needed by 60% (5g to 8g), the printing

time by 25% (72 minutes to 90 minutes); the second and third design in figure 5.32(b)). However,

adding 22 bars costs an increase of the material needed by 80% and the build time of 46%; the second

and fourth designs in figure 5.32(b)). It is important to note that the designs in the figure are not

4https://www.creality3dofficial.eu/products/ender-3s1-pro-3d-printer-eu?gclid=

Cj0KCQjw1bqZBhDXARIsANTjCPL-wLdAh-KYxcGhegr5spO-_YWukzzqWy9Qfv5HPRVk_f9Y0E7AdCEaAs54EALw_wcB
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printable without supports; the printer’s nozzle did not succeed in sticking the material filament to the

build plate; the filaments got tangled, and the printing failed. This brings us to figure 5.32(c) where

supports were added. As we can see, the support structures for the geometry with 7 bars constitutes

about 50% of the material printed (the support material between the second design in Fig.5.32(b) and

the second design in Fig.5.32(c) = 10−5 = 5g) and increases the build time by 54%. For the geometry

with 17 bars, the supports consist of 50% of the total material printed, and the build time increase

totals to 48%. For the geometry with 29 bars, the supports structure is the least (22% of the material

printed), and the build time increases by 21%.

It is interesting to compare the DL-based geometries of Fig 5.32(c) after the addition of support struc-

tures. As a matter of fact, adding 22 bars has increased the material by only 9% (10g to 11g) and

the printing time by 15.3% (111 minutes to 128 minutes). In other terms, if the end part can tolerate

more material (for the additional bars) and its surface must be preserved from the post-processing

that supports needed, increasing the Nbrbars is the easiest solution.

Mechanically, designs with additional bars are more resilient; the maximum displacement of the DL-

based design with 29 bars (umax = 0.565mm) is ten times less than the DL-based one with 7 bars

(umax = 5.68mm). More importantly, the DL-based designs where additional bars were added (the

third and fourth design) exhibit a better mechanical performance than the one proposed by SIMP.

In conclusion, increasing the Nbrbars decrease the need for support; the added bars play the role of

support and enhance the mechanical resilience, with a slight increase in the build time. For parts

where the support structure can damage the surface and the functionality, increasing the Nbrbars is a

good choice for the increase in build time, and material is admissible (around 10%).

DL-AM-TO allows changing the Nbrbars in geometry, a task hardly feasible with SIMP, and pro-

poses geometries that are mechanically resilient; their maximum displacement is of the same order of

magnitude as those outputted by SIMP.

5.7.2 Printing geometries of different lenmax constraint

For this experiment, we have chosen the first, third, and seventh geometries in figure 5.28(c). The

input Θmin is 0°. However, the Θminprinter is set to 45°, for if set to 90°, no supports are added by

Cura; hence, we could not see the influence of long bars on the acceleration of printing phase. The

DL-based geometries’ lenmax are 0.54u, 0.75u, and 1.08u respectively.
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(a) 2D sketches.

(b) gcode format designs without support structures.

(c) gcode format designs with support structures.

(d) Mechanical performance o the designs.

Figure 5.32: In this figure, we show the 2D sketches drawn in FreeCAD[9], the gcode format design
(without and with the supports) and the estimated design’s mass and material filament’s length needed,
outputted by Cura[10], and finally the printed end-design. The designs’ Nbrbars are 7, 17, and 29,
from left to right, respectively. The Θminprinter is set to 59°for which support structures are added.
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Figures 5.33(b) and 5.33(c) show that increasing the lenmax does not impact the the material needed

nor the build time (4% increase in build time). For this type of structure, DL-based designs and the

SIMP design are similar geometrically; the manufacturing time is almost similar, and mechanically;

the maximum displacement of DL-AM-TO’s designs are of the same order of magnitude as the SIMP

design.

5.7.3 Printing geometries of different Θmin constraint

Θmin is the most influential constraint in manufacturing. As mentioned in section 2.1 in chapter

2, a design violating this constraint has hanging features and hence needs support structures. The

latter yields additional material, slows the build time, damages the part’s accuracy and finishing, and

induces the need for post-processing, further delaying the fabrication [40]. Consequently, we dedicated

two experiments to this constraint.

For the first experiment, we have chosen the first, third, seventh, and eleventh geometries in figure

5.29(a). The Θminprinter is set to 45°. The geometries’ Θmin are 0°, 30°, 45°, and 54°.

Comparing DL-based designs in figure 5.34(b) to the ones in figure 5.34(c) shows the decrease in the

need for support structures when the geometry’s Θmin constraint better complies with the printer’s

minimum overhang; the support structure’s mass decreases from 50% ( 9g−6g
6g ×100 = 50%, the second

design in figures 5.34(b) and 5.34(c)) to 8% (5g−4g
4g × 100 = 25%, the last design in figures 5.34(b) and

5.34(c)), which induces the decrease in the build time by 45.6% (1h39min−1h8min
1h8min × 100 = 45.6%, the

second and last design in figure 5.34(c)).

From a mechanical point of view, DL-AM-TO generates designs with the same order of magnitude

when it comes to umax (figure 5.34(d)) and allows the geometry’s modification to comply with the

manufacturing constraint. As a matter of fact, the best design, geometrically and mechanically, is

the fourth design in figure 5.34(d) that was generated by DL-AM-TO; it shows the same umax as the

SIMP one, however, it is 1.57× lighter (7g versus 11g), and hence 1.57× cheaper, and is printed 1.3×

faster (1h18min versus 1h54min).

For the second Θmin experiment, we have chosen the first, fifth, and tenth geometries in figure 5.31(b).

As we can clearly see, DL-AM-TO proposes a different shape from SIMP but that is mechanically

similar to the one suggested by SIMP (figure 5.35(d)). More importantly, in addition of being compliant
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(a) 2D sketches.

(b) gcode format designs without support structures.

(c) gcode format designs with support structures.

(d) Mechanical performance of the designs.

Figure 5.33: In this figure, we show the 2D sketches drawn in FreeCAD[9], the gcode format design
(without and with the supports) and the estimated design’s mass and material filament’s length
needed, outputted by Cura[10], the displacements computed by Patran-Nastran in mm, and finally
the printed end-design. The designs’ lenmax are 0.54u, 0.75u, and 1.08u, from left to right, respectively.
The Θminprinter is set to 45°.
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with the Θmin constraint, DL-AM-TO’s designs are cheaper; less material due to the need of less

support material (13g for the SIMP design versus 9g for the fourth DL-based design, figure 5.35(c));

and can be printed faster; (1h59ming for the SIMP design versus 1h30min for the fourth DL-based

design, figure 5.35(c)).

In conclusion, DL-AM-TO tailors the design’s geometry to comply with the Θmin constraint while

keeping a decent mechanical performance. On average, it accelerates the printing phase by 1.4× and

saves about 40% in material and costs. It is essential to highlight that with SIMP, modifying the

geometry is hardly feasible; SIMP does not allow the proposition of several geometries by a simple

change of the input Θmin constraint.

5.7.4 DL-AM-TO accelerates the DfAM process and is a lighter module in industrial design
software

In this section, we compare the traditional DfAM process via the one forwarded by DL-AM-TO.

For this comparison, we will consider the DfAM process as the following: the design phase, the

CAD drawing phase, the FEA phase, and the printing phase; in other terms, a DfAM process needs

tdesign + tCAD + tF EA + tprint time.

The DfAM process with our approach, DL-AM-TO, differs from the traditional process in the design

phase, which impacts the printing phase. Consequently, the comparison can be reduced to these two

phases, i.e., tDfAM can be reduced to tdesign + tprint for the sake of the comparison. As computed

in chapter 3, DL-AM-TO is 3500× faster than SIMP (Tab.3.2) and is independent of the input’s

complexity; Tab.3.3 shows that DL-AM-TO becomes 32800× (656s/0.02s = 32800) faster than SIMP

and decreases the computational costs by 27225% (620.28−2.27
2.27 × 100) when the the number of loads

increases to 10.

Furthermore, as demonstrated in section 5.7.3, DL-AM-TO’s accelerates the printing phase up to

1.4×, for the geometry proposed by DL-AM-TO can account for the Θmin manufacturing constraint

while this is hardly feasible by SIMP.

Finally, the DfAM process with DL-AM-TO needs
tdesign

3500 to 32800 + tprint

1 to 1.4 with tdesign and tprint

being the time needed in the design (SIMP here) and printing phase of a traditional DfAM process.

In our case simplistic mechanical conditions were considered thus tdesign varied between 140s i.e. 2min

to 620s i.e. 10min and the size of the parts was chosen for a faster printing phase; from figures 5.34(c)

and 5.35(c) tprint, including the supports, is about 1h56min on average. Thus, tDfAM can be further
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(a) 2D sketches.

(b) gcode format designs without support structures.

(c) gcode format designs with support structures.

(d) Mechanical performance of the designs.

Figure 5.34: In this figure, we show the 2D sketches drawn in FreeCAD[9], the gcode format design
(without and with the supports) and the estimated design’s build time BT , mass M , and material
filament’s length neededL, outputted by Cura[10]; BTreal

and Lreal are the build time and filament
length measured in the printing phase (figure 5.36), the mechanical performance illustrated with the
displacements in mm outputted by Patran-Nastran, and finally the printed end-design. The designs’
Θmin are 0°, 30°, 45°, and 54°, from left to right, respectively. The Θminprinter is set to 45°.
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(a) 2D sketches.

(b) gcode format designs without support structures.

(c) gcode format designs with support structures.

(d) Mechanical performance of the designs.

Figure 5.35: In this figure, we show the 2D sketches drawn in FreeCAD[9], the gcode format design
(with the supports) and the estimated design’s build time BT , mass M , and material filament’s length
neededL, outputted by Cura[10] with Θminprinter = 60°; BTreal

and Lreal are the build time and
filament length measured in the printing phase (figure 5.36), and finally the mechanical performance
illustrated with the displacements in mm outputted by Patran-Nasteran.
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(a) Designs of figure 5.34 printed.

(b) Designs of figure 5.35 printed.

Figure 5.36: Designs of figures 5.34 and 5.35 printed by the 3D printer Creality Ender 3.

reduced to the printing phase. Furthermore, since DL-AM-TO provides a draft design that already

complies with manufacturing criteria, it reduces the number of trials the designer has to test and

avoids him/her from getting stuck in a loop of n iterations. Hence, DL-AM-TO accelerates the DfAM

process by up to 1.4n times with n ≥ 1.

Furthermore, DL-AM-TO is computationally cheaper than SIMP. DL-AM-TO costs for any input’s

complexity 1.97GFLOPs (Giga floating point operations, figure 5.37), while SIMP’s GFLOPs vary

from 68 to 656 (Tab. 3.3).

These results come to validate the hypotheses 2 and 3. Indeed, DL-AM-TO accelerates the DfAM

process by integrating both mechanical and geometrical manufacturing-related constraints at the same

level. Furthermore, its constant computational cost, in terms of storage and floating operations, makes

it advantageous over FE-based design methods; it could be implemented into industrial design software

as a lighter generative design module.

5.8 Discussion

To summarize, in this chapter, we demonstrate the effectiveness of our approach, DL-AM-TO, and

validate the hypotheses listed in chapter 1. DL-AM-TO is a data-driven TO method that integrates

the mechanical and geometrical manufacturing-related constraints concurrently at the same level.
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Figure 5.37: DL-AM-TO’s architecture and computational cost detailed. This figure shows the number
of DL-AM-TO’s trainable parameters, their memory usage in Mega bytes (Mb), their number of
floating point operations (GFLOPs, giga FLOPs), their Multiply-Accumulate operations (MMAC,
mega MACs), and Direct Memory Access operations (GDMAs, giga DMAs) on the model’s forward
pass. This information is outputted by https://pypi.org/project/torchscan/, a python torch library
to summarize a torch model’s computational cost.
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DL-AM-TO was trained via a five-discriminator GAN framework, one traditional discriminator, and

four geometrical discriminators. The latter were validated via uncertainty quantification methods to

ensure that DL-AM-TO is trained and penalized correctly.

DL-AM-TO creatively tailors the design’s geometry to comply with the manufacturing criteria with-

out deteriorating its mechanical performance. It accelerates the DfAM process by suggesting to the

engineer a design compliant with the input constraints, particularly the manufacturing ones, which

prevents the designer from getting stuck in later phases of the DfAM process, the CAD drawing, and

mechanical testing of the design. It accelerates the printing phase, for the part needs fewer support

structures. Four experiments were carried out to validate DL-AM-TO’s designs; the designs were

drawn by FreeCAD, mechanically tested with Patran-Nastran, and printed with Cura and the 3D

printer Creality Ender 3.

DL-AM-TO validates the three hypotheses proposed in chapter 1.

AM constraints that can hardly be analytically formulated like Nbrbars, lenmax, and more importantly,

Θmin were integrated into DL-AM-TO at the same level as the mechanical constraints (hypothesis 1).

DL-AM-TO accelerates the whole DfAM process and not only the design phase by generating a

first design draft complying with geometrical-manufacturing and mechanical constraints and avoiding

repetitive iterations of design updating and evaluating (hypothesis 2).

Finally, DL-AM-TO’s computational advantages make a lighter generative design module to be im-

plemented in industrial design software in the future (hypothesis 3).

In conclusion, our approach benefits from the best of the AM-FE-TO and the DL-TO approaches.

It compensates for the difficulties faced in AM-FE-TO when integrating informal manufacturing con-

straints into the design phase with DL techniques, particularly CNN. Also, convergence is better

served for DL-AM-TO was trained on converged designs. It is mesh-independent, scalable, and fast,

which qualifies it as a light, generative design module to be implemented in industrial design software.

Finally, it accelerates the whole DfAM process and not only the design phase (Tab.5.2).
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Advantages
Approaches to accelerate the DfAM process

Formulating
AM design
rules

Integration
of AM con-
straints to
FE-TO

ML and DL-
assisted FE-
TO

Full DL-TO Our approach

Speed + + ++ +++ +++

Scalability + ++ ++

Convergence - + ++ ++

Mesh-
Independency

- - + ++ ++

Geometrical
control at the
conceptual
level

+ ++

Light gener-
ative design
module in
industrial soft-
ware

- + ++ ++

DfAM process
acceleration

+ ++ + ++ +++

Table 5.2: Our approach versus the state of the art. A blank cell means that the concerned character-
istic does not apply for the method. A “‘+”” sign defines the presence of the characteristic; the higher
the number of the “‘+”” sign, the better the method is when it comes to this characteristic. A “‘−””
sign defines the absence of the characteristic.
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5.9 French summary

Avec la création de GMCAD, nous avons pu explorer l’approche DL-AM-TO détaillée dans la

section 2.1. Son objectif est de compenser les difficultés rencontrées par les méthodes de TO basées

sur les éléments finis quand à l’intégration des contraintes géométriques (la minimum épaisseur de

barre (thmin), la maximum longueur (lenmax), le minimum surplomb (Θmin), le nombre de barres

(Nbrbars)) liées à la fabrication et celles mécaniques (les conditions aux bords BC, les forces F , et

la fraction volumique V ) au même niveau conceptuel. Suivant l’approche DL-TO développée dans le

chapitre 3, DL-AM-TO est entrainée dans le cadre d’un GAN composé d’un générateur (DL-AM-TO)

et de cinq discriminateurs : le discriminateur contradictoire traditionnel et quatre discriminateurs

géométriques, un compteur de barres, des prédicteurs thmin, lenmax et Θmin (Fig.5.1). L’architecture

de DL-AM-TO est basée sur les Resnet [104] pour des raisons de performance, à la différence de DL-

TO dont l’architecture était basée sur les ResUnet [6]. Les trois nouveaux discriminateurs sont des

DL modèles de régression dont l’architecture est basée sur Inception v4 [85]; ils prennent un design

2D en entrée et prédisent une valeur scalaire en sortie correspondant à la contrainte géométrique. La

première variante de DL-AM-TO n’a pas montré la meilleure performance. Nous avons identifié les

raisons de cette performance. La raison primaire est la performance des discriminateurs géométriques

qui pénalisent le générateur ; un discriminateur fournissant une valeur erronée pénalise le générateur

via la fonction de perte par une valeur non informative et erronée.

Par conséquent, les trois nouveaux discriminateurs géométriques ont été analysés et améliorés. Nous

avons transformé le problème de régression vers un problème de classification ou ce qu’on appelle

une classification ordinaire. En effet, nous avons découpé l’intervalle des valeurs de chaque variable

géométrique en K mini-intervalles ; au lieu de prédire la valeur scalaire de la variable géométrique,

nous prédisons la classe qui représente le mini-intervalle. Mais, cette nouvelle formulation du prob-

lème n’est pas une classification traditionnelle. Dans cette dernière, la fonction de perte ne considère

pas la notion de distance entre les classes, sauf que cette notion est très importante dans notre cas ;

prédire que le surplomb d’un design appartient à la classe 0 (qui représente l’intervalle [0ř, 5ř]) quand

il appartient à classe 10 ([55ř, 60ř]) doit être pénalisée plus sévèrement que lorsque la classe prédite

est 1 ([5ř, 10ř]). Par suite, la méthode de régression ordinale conditionnelle pour les réseaux de neu-

rones, CORN [8], est adoptée. De plus, nous avons augmenté la base d’entrainement pour chaque

discriminateur afin d’uniformiser la distribution des classes et garantir une meilleure précision pour
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la prédiction. Les trois discriminateurs sont ensuite entrainés et validés à deux étapes. La première

étape consistait à prédire sur une base de test et remonter les métriques de précision et accuracy.

La deuxième étape était d’utiliser les réseaux bayésiens de neurones pour quantifier les incertitudes

sur les prédictions des discriminateurs. Plusieurs méthodes ont été implémentées et testées par notre

stagiaire Steve Nouatin. Toutes ont convergées sur le même résultat. Pour des raisons de couts com-

putationnels pendant l’entrainement et l’inférence, nous avons gardé la méthode évidentielle [126]. Le

résultat de cette méthode est que les trois discriminateurs étaient précis globalement et leur confusion

était limitée aux classes limitrophes (la classe k était confuse par la classe k ±1), ce qui est acceptable.

Avant de passer à l’entrainement de DL-AM-TO, nous avons effectué une étude d’ablation afin de

comprendre l’effet de chaque variable géométrique sur les autres quand elle est seule contrôlée par le

générateur DL. L’objectif était de, en premier plan, s’assurer que le modèle DL est capable de com-

prendre l’effet de chaque variable sur la géométrie, et en second plan, d’explorer les corrélations entre

les variables géométriques, quand elles sont contrôlées chacune à part ; avec plus de degrés de liberté,

avant de passer vers DL-AM-TO où elles seront contrôlées en parallèle.

En d’autres termes, nous avons entrainés trois modèles DL avec les contraintes mécaniques et à chaque

fois une et une seule variable géométrique en entrée. La seule contrainte qui a été exclue de cette ab-

lation est l’épaisseur minimale des barres parce qu’elle n’a pas un effet à modifier radicalement la

géométrie du design et par suite influencer les autres variables géométriques. Les aboutissements de

cette étude étaient les suivants.

Pour le modèle qui contrôlait le surplomb en entrée : Θmin est inversement proportionnel à Nbrbars.

En effet, une valeur plus élevée de Θmin signifie que les barres sont fortement inclinées, il faut donc

éliminer les barres de transmission interne qui sont souvent des barres horizontales, ce qui explique

cette relation entre les deux variables. Pour le lenmax, nous ne voyons pas de relation évidente avec

le Θmin, donc, pour le moment, nous supposons qu’ils sont indépendants.

Pour le modèle qui contrôlait la longueur maximale des barres : la condition lenmax est inversement

proportionnelle à la contrainte Nbrbars ; si l’on veut éliminer les ponts (longues barres pendantes), il

vaut mieux ajouter une barre pour les soutenir. lenmax et Θmin sont inversement proportionnels mais

à condition que les contraintes mécaniques appliquées le permettent.

Pour le modèle qui contrôlait le nombre de barres : la condition lenmax est inversement proportionnelle

à la contrainte Nbrbars. La relation de proportionnalité inverse de Nbrbars et de Θmin est conditionnée
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par la structure générale du design, qui est définie par les contraintes mécaniques, et surtout par le fait

que les contraintes mécaniques sont toujours prédominantes en ce qui concerne la géométrie générale

du design.

Après cette étape, nous avons ré-entrainé DL-AM-TO, en utilisant la même architecture de Resnet et

en ajoutant la fonction de perte de similarité structurelle à sa fonction de perte initiale. Les designs

générés par DL-AM-TO ont montré une meilleure qualité que la première variante, justifiant notre

hypothèse quant à l’effet des discriminateurs sur la convergence et par suite la performance du généra-

teur.

De plus, nous avons testé la capacité de DL-AM-TO d’adapter la géométrie d’un design vis-à-vis des

modifications des contraintes géométriques en entrée. Nous avons figé les contraintes mécaniques et

trois contraintes géométriques et avons varié la quatrième contrainte géométrique. Vu qu’on dispose

de quatre contraintes géométriques, cette expérience a été réalisée quatre fois. Les issues de chacune

de ces expériences sont les suivantes. Il est essentiel de noter que pour les contraintes de Nbrbars et

thmin, la contrainte de fraction volumique V a été ajustée en parallèle ; augmenter le nombre de barres

ou leur épaisseur demandent plus de matières, cet aspect est contrôlé par V .

Quand la longueur maximale de barre est balayée, nous constatons que les contraintes de lenmax et

Nbrbars sont toujours inversement proportionnels. Cependant, comme DL-AM-TO contrôle les deux

variables simultanément, le changement dans les Nbrbars est modeste lorsque la géométrie le permet

contrairement à ce que nous avons observé quand la lenmax était la seule variable contrôlée. Le Θmin

est plus ou moins constant en fonction de la variation de lenmax.

Quand le minimum surplomb est balayé, DL-AM-TO réussit plus ou moins à conserver les autres

contraintes géométriques intactes. Quand la minimum épaisseur est balayée, DL-AM-TO génèrent

des designs toujours respectant les autres variables géométriques. Toutefois, nous avons remarqué que

l’augmentation de l’épaisseur de géométries complexes provoquait l’apparition de nouvelles barres et

par suite des modifications des autres contraintes géométriques.

Quand le nombre de barres est balayé, nous remarquons toujours l’inverse proportionnalité entre

Nbrbars et les deux variables Θmin et lenmax, avec la variable lenmax la moins impactée. Nous dé-

duisons que la contrainte de barres est la plus dominante dans DL-AM-TO. Mais, pourvu qu’elle soit

la moins importante quant à la fabrication additive (FA), le concepteur pourrait toujours sacrifier

cette contrainte afin de se conformer aux autres plus pertinentes pour la FA.
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De plus, nous avons mis DL-AM-TO à l’épreuve en reproduisant le process de design pour la FA

avec quatre expériences. Une expérience où nous avons montré l’effet du Nbrbars, une autre pour la

contrainte de lenmax et deux expériences pour la contrainte de Θmin qui est la contrainte la plus im-

pactante quant à la FA. Dans les quatre expériences, nous avons dessiné les CAO des designs proposés

par DL-AM-TO et de celui issu de SIMP. Ces CAOs sont ensuite exportées en stl et passé vers le

logiciel de découpe d’impression 3D, Cura ; ce logiciel ajoute les structures de support nécessaires et

génère les étapes d’impression à passer à l’imprimante 3D, Creality Ender 3. L’analyse mécanique, le

maillage et le calcul de déplacement maximal, a été produite par Patran-Nastran. Les résultats de ces

expériences sont les suivantes.

1. L’augmentation des Nbrbars diminue le besoin de support ; les barres ajoutées jouent le rôle de

support, améliorent la résilience mécanique, avec une légère augmentation du temps de construc-

tion. Pour les pièces dont la structure de support peut endommager la surface et la fonction-

nalité, choisir d’augmenter le nombre de barres est un bon choix car l’augmentation du temps

de construction et du matériau est admissible (environ 10 %). DL-AM-TO permet de changer

le Nbrbars d’une géométrie, tâche difficilement réalisable avec SIMP, et propose des géométries

mécaniquement résilientes, leur déplacement maximal est du même ordre de grandeur que ceux

sortis par SIMP.

2. avec l’exemple considéré, nous n’avons pas pu conclure sur l’effet de la modification de la con-

trainte de lenmax sur l’accélération de la phase d’impression.

3. DL-AM-TO adapte la géométrie du design pour respecter la contrainte Θmin tout en gardant une

performance mécanique similaire à celle de SIMP. En moyenne, elle accélère la phase d’impression

de 1.4 fois et permet d’économiser environ 40 % de matériaux et de coûts. Il est essentiel de

souligner qu’avec SIMP la modification de la géométrie est difficilement réalisable ; SIMP ne

permet pas de proposer plusieurs géométries par un simple changement de la contrainte Θmin

en entrée.

Finalement, nous capitalisons sur la performance computationnelle de DL-AM-TO. DL-AM-TO four-

nit une ébauche de design qui est déjà conforme aux critères de fabrication, elle réduit le nombre

d’essais que le/la concepteur(e) doit effectuer et lui évite de rester coincé dans une boucle de n itéra-

tions. Par conséquent, DL-AM-TO accélère le processus de DfAM jusqu’à 1, 4n fois avec n ≥ 1. En
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outre, DL-AM-TO est moins coûteux en termes de calcul que SIMP. Pour toute complexité d’entrée,

DL-AM-TO coûte 1,97 GFLOPs (giga floating point operations, figure 5.37), alors que les GFLOPs

de SIMP varient de 68 à 656 (Tab. 3.3). Ces avantages computationnels la rendent un bon candidat

comme module génératif dans des logiciels industriels de conception. En résumé, DL-AM-TO adapte

de manière créative la géométrie de la conception afin de respecter les critères de fabrication sans

détériorer ses performances mécaniques. Il accélère le processus de DfAM en suggérant à l’ingénieur

une conception conforme aux contraintes d’entrée, en particulier celles de fabrication, ce qui évite

au concepteur d’être bloqué dans les phases ultérieures du processus de DfAM, le dessin CAO et les

tests mécaniques de la conception. Il accélère la phase d’impression, car la pièce nécessite moins de

structures de support. Quatre expériences ont été réalisées pour valider les designs de DL-AM-TO.

DL-AM-TO valide les trois hypothèses proposées dans le chapitre 1.

Les contraintes AM qui peuvent difficilement être formulées analytiquement comme Nbrbars, lenmax,

et plus important encore, Θmin ont été intégrées dans DL-AM-TO au même niveau que les contraintes

mécaniques (hypothèse 1).

DL-AM-TO accélère l’ensemble du processus de DfAM, et pas seulement la phase de conception, en

générant une première ébauche de conception conforme aux contraintes géométriques-fabrication et

mécaniques et en évitant les itérations répétitives de mise à jour et d’évaluation de la conception

(hypothèse 2). Enfin, les avantages computationnels de DL-AM-TO en font un module de conception

générative plus léger à mettre en œuvre dans les logiciels de conception industrielle à l’avenir (hy-

pothèse 3).

En conclusion, notre approche bénéficie du meilleur des approches AM-FE-TO et DL-TO. Elle com-

pense les difficultés rencontrées dans AM-FE-TO lors de l’intégration des contraintes informelles de

fabrication dans la phase de conception avec les techniques DL, notamment CNN. De plus, la conver-

gence est mieux servie car DL-AM-TO a été entrâınée sur des designs convergés. Elle est indépendante

du maillage, et est évolutive et rapide, ce qui le qualifie comme un module de conception générative

léger à mettre en œuvre dans un logiciel de conception industrielle. Enfin, elle accélère l’ensemble du

processus de DfAM et pas seulement la phase de conception (Tab.5.2).
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5.10 Conclusion

This thesis explores DL techniques in the DfAM’s design phase to compensate for the difficulties

faced by traditional FE design approaches when integrating manufacturing constraints into the early

design phase.

We started with a proof of concept approach, DL-TO. Then, it was trained on a dataset of designs and

their mechanical constraints from an FE-based TO method, SIMP, and a first geometrical constraint,

the number of bars. DL-TO validated the concept that DL can learn geometrical features at the same

level as the mechanics. Furthermore, it showed a generalization power and accounted for additional

spatial constraints, passive and active elements, without being trained on this task and when SIMP

failed to do so. This approach encouraged us to improve DL-TO to integrate more concrete and

DfAM-impactful manufacturing constraints and build our objective approach, Deep Learning Addi-

tive Manufacturing Topology Optimization, DL-AM-TO. Ergo, a dataset comprising 2D designs in an

image and CAD format alongside their mechanical and geometrical constraints, was built, GMCAD.

GMCAD has been published for the public for research purposes only. With GMCAD, DL-AM-TO

was trained. DL-AM-TO demonstrated its capacity to generate 2D designs complying with input me-

chanical and geometric manufacturing constraints, particularly the minimum overhang, the maximum

bar length, the minimum bar thickness, and the number of bars. DL-AM-TO tailors the design’s ge-

ometry creatively while always maintaining a similar mechanical performance to FE-based TO, SIMP.

It validated all three hypotheses proposed in chapter 1. It integrated four geometric-manufacturing

constraints that are hardly analytically formulated (hypothesis 1). It alleviates the designer from get-

ting stuck in a loop of updating and testing the CAD and hence accelerates the whole DfAM process

up to 1.4n times, with n being the number of trials in the loop (hypothesis 2). Its computational and

operational costs are constant and cheaper than traditional FE-based design approaches. Therefore,

DL-AM-TO is a good candidate as a lighter and faster generative module in industrial design software

(hypothesis 3).

5.11 Perspectives

To recall SIMP’s principal setback: the general shape is usually identified by SIMP at the very

early iterations, which makes it difficult to modify it to account for other changes imposed by other
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constraints. Hence, the output shape ends up a local minimum [64] (section 1.2.1). Arguably, the level-

set approach resolves the principal setback of density-TO. Nevertheless, density-TO, SIMP mainly,

is the most implemented in industrial-commercial software, which justifies developing a DL approach

trained on SIMP designs. SIMP is the simplest and most easily implemented TO algorithm. Thus,

the designs driving GMCAD’s consolidation and DL-AM-TO’s training are created based on SIMP.

Certainly, any new data coming from other TO algorithms can be rather used to train DL-AM-TO.

In the future, GMCAD could be augmented with 3D CAD data, allowing us to improve DL-AM-TO

to generate 3D designs. However, this upgrade comes with challenges. Indeed, DL-AM-TO requires

three challenging and time-consuming steps: data preparation, model architecture, and training. As

we have seen, creating the training dataset GMCAD was not straightforward; it needed two DL mod-

els to be trained and tested and thousands of designs to be drawn and stored. Thus, going to 3D

will require more sophisticated DL models and larger storage space. Moreover, choosing the suitable

model’s architecture is critical; the hyperparameters of a DL model are numerous (the number of

layers, the number of features map, the activation functions, Etc.), the set of possible values for each

hyperparameter is vast, and trying all these combinations is nearly impossible. As a matter of fact,

every entry to DL-AM-TO, in its 2D version, is a matrix of 9 × 101 × 101, and the complexity of DL-

AM-TO’s architecture; 29.82e6 trainable parameters (figure 5.37), training took about twelve hours

to converge and required a significant number of computational powers, precisely eight Graphical Pro-

cessing Units (GPUs), accordingly going to 3D would require a more complex model’s architecture

and more extensive computational powers.

Indeed, the asset of DL-AM-TO is that, unlike FE-TO, the initial guess can be easily tailored to

account for geometric manufacturing-related constraints. Moreover, it increases the domain space of

potential designs, which can be leveraged by a shape/size optimization afterward and provides cre-

ativity and rapidity to the DfAM. While its training involves expensive computational powers, its

usage afterward necessitates constant computational and operational powers no matter the input’s

complexity, unlike FE-based approaches. Consequently, the acceleration advantage of DL-AM-TO

over FE-SIMP can seem moderate in the short term but will definitely pay off in the long run. Be-

sides, these computational advantages favor DL-AM-TO to be industrialized in the future as a lighter,

faster, and computationally efficient generative module in industrial design software.

Nevertheless, DL-AM-TO should never fully replace robust mathematical FE approaches. The optimal
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approach is to proceed via a hybrid one, i.e., we start with DL-AM-TO to obtain a first draft, which is

geometrically compliant with manufacturing criteria, and then we optimize this shape via traditional

FE TO methods to enhance its mechanical specs. With this approach, we overcome the TO’s principal

setback and supply TO with a manufacturing-friendly geometry to be optimized mechanically. This

approach is to be considered in future work.

Furthermore, additional manufacturing constraints could be integrated into DL-AM-TO, like buckling

and thermal distortion, and more importantly, custom industry-related rules due to the chosen flexible

training framework based on the GANs. Nonetheless, this would require labeling GMCAD’s designs

to account for these new rules either by modeling buckling/thermal distortion via a mathematical

simulation or training a DL model to learn these rules, which will be used to predict these rules on

GMCAD’s designs.
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Appendix A

Appendices

A.1 Geometrical discriminators’ performance

This section includes the confusion matrices computed over the train, validation and test sets for

the three CORN geometrical discriminators.
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A.1. GEOMETRICAL DISCRIMINATORS’ PERFORMANCE

(a) Train set. (b) Validation set. (c) Test set.

Figure A.1: The confusion matrices of the thmin geometric discriminator.
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A.1. GEOMETRICAL DISCRIMINATORS’ PERFORMANCE

(a) Train set. (b) Validation set.

(c) Test set.

Figure A.2: The confusion matrices of the lenmax geometric discriminator.
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A.1. GEOMETRICAL DISCRIMINATORS’ PERFORMANCE

(a) Train set. (b) Validation set.

(c) Test set.

Figure A.3: The confusion matrices of the Θmin geometric discriminator.
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A.1. GEOMETRICAL DISCRIMINATORS’ PERFORMANCEAbstract : The growing need for fast, organic, cost and material efficient products in the
industrial world is driving research to develop new design methods. Topological optimization
(TO) is one of them. TO takes mechanical constraints as input and generates optimal complex
shapes in terms of material and mechanical performance. Additive manufacturing (AM)
completes it; it allows the fabrication of any shape. However, this synergy between TO and
AM is not ideal. Indeed, AM requires the conformity of the design to geometrical criteria like
overhangs, thicknesses, Etc., which are difficult to integrate into TO. Moreover, TO is iterative
and computationally expensive; it is based on finite elements (FE). Therefore, designing
printable parts requires the interpretation of the shapes proposed by TO by experts, knowing
that this can deteriorate the initial optimality. With TO software, generating a design takes
seconds to days depending on the complexity of the mechanical conditions. This is acceptable
if the Design for Additive Manufacturing (DfAM) process is limited to this step. However,
TO, in its commercial form, does not consider AM constraints. The engineer must test several
configurations to find the optimal, printable design and risks getting stuck in a design and
performance test loop. With the flourishing role of AM in the industry, it is imperative to find
a method that considers mechanical and geometric constraints at the same conceptual level to
speed up the DfAM process. We find in the state of the art four approaches:
1. Formalizing AM design rules and guidelines for novice users. However, modifying the
geometry of the design proposed by TO in the drawing phase often deteriorates its initial
mechanical performance.
2. Integrating AM constraints into FE-TO. This helps to speed up the DfAM process. However,
not all AM constraints can be defined analytically and are often contradictory. Moreover,
this approach inherits the shortcomings of FE-TO: the general shape is identified in the first
iterations, which prevents the method from modifying it to comply with the geometrical
constraints, also, convergence is not guaranteed when the number of constraints increases.
3. Assisting FE-TO methods with Machine and Deep Learning (DL). This accelerates the TO
phase of DfAM only and still inherits the defects of TO.
4. Replacing FE-TO with DL. This approach does not incorporate any FA criteria and does
not avoid the loop in later phases of the DfAM process.
Our goal is to accelerate the whole DfAM process. Indeed, the design phase has the minimum
cost and the maximum impact on the overall cost and quality of a part. But, provided that
the acceleration of this phase is not sufficient, we propose DL-AM-TO which joins the best of
the two approaches 2 and 4. The main contributions of the thesis are:
- The creation of a dataset of 2D designs with their mechanical and geometrical constraints of
AM, GMCAD.
- The creation of DL-AM-TO which takes as input the mechanical and geometrical conditions
of AM simultaneously and generates a 2D design, a difficult task to accomplish with FE-TO.
It is based on convolutional neural networks, so it is fast and computationally inexpensive,
independent of the design’s dimensions and the complexity of the constraints. It tailors the
design’s geometry to meet the mechanical and geometrical requirements of AM, thus avoiding
the design and test loop and accelerating the whole DfAM process up to 1.4 times.
- Any AM constraint or other business rule can be integrated into DL-AM-TO, not only those
formulated analytically, thanks to the flexibility of DL models.
- DL-AM-TO can be industrialized as a lightweight generative design module in design software
in the future.

Keywords : Topology Optimization, Additive Manufacturing, Design for Additive Manu-
facturing, Deep Learning, Generative Adversarial Networks, Convolutional Neural Networks.
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A.1. GEOMETRICAL DISCRIMINATORS’ PERFORMANCERésumé : Le besoin croissant de produits organiques et efficaces en coûts, matériaux et temps
en industrie, incite la recherche à développer des nouvelles méthodes de design. L’optimisation
topologique (TO) en fait partie. TO prend des contraintes mécaniques en entrée et génèrent des
formes complexes optimales en termes de matériau et de performance mécanique. La fabrication
additive (FA) vient la compléter; elle permet la fabrication de n’importe quelle forme. Cependant,
cette synergie entre TO et FA n’est pas idéale. En effet, la FA requiert la conformité du design
à des critères géométriques de surplomb, d’épaisseurs, etc. difficilement intégrables à TO. De
plus, TO, basée sur les éléments finis (FE), est itérative et coûteuse en calcul. Alors, concevoir
des pièces imprimables nécessite l’interprétation par des experts des formes proposées par TO,
sachant que cela peut détériorer l’optimalité initiale. Avec les logiciels de TO, générer un design
prend des secondes à des jours selon la complexité des conditions mécaniques. Cela est acceptable
si le process de conception pour FA (Design for Additive Manufacturing, DfAM) se limite à
cette étape. Cependant, TO, dans sa forme commerciale, ne considère pas les contraintes FA.
L’ingénieur(e) doit tester plusieurs configurations pour trouver le design optimal et imprimable
et risque de se coincer dans une boucle de dessin et test de performance. Avec le rôle florissant
de FA dans l’industrie, il est impératif de trouver une méthode considérant les contraintes
mécaniques et géométriques au même niveau conceptuel pour accélérer le process DfAM. Nous
trouvons dans l’état de l’art quatre approches:
1. La formalisation de règles de dessin de design de FA pour les utilisateurs novices. Cependant,
modifier la forme du design proposé par TO dans la phase de dessin détériore souvent sa
performance mécanique initiale;
2. l’intégration de contraintes FA dans FE-TO. Cela permet d’accélérer le process DfAM.
Toutefois, les contraintes FA ne peuvent pas être toutes définies analytiquement et sont souvent
contradictoires. De plus, elle hérite des défauts de FE-TO: la forme générale est identifiée dès
les premières itérations, ce qui empêche la méthode de la modifier pour respecter les contraintes
géométriques et la convergence n’est plus garantie lorsqu’il y en a plusieurs;
3. l’assistance des méthodes FE-TO avec du Machine et Deep Learning (DL). Cela accélère la
phase TO du DfAM uniquement et hérite toujours des défauts de TO;
4. le remplacement de FE-TO par du DL. Cette approche n’intègre aucun critère FA et ne permet
pas d’éviter la boucle dans les phases ultérieures du process DfAM. Notre objectif est d’accélérer
l’ensemble du process DfAM. Certes, la phase de design a le coût minimal et l’impact maximal
sur le coût global et la qualité d’une pièce. Mais, pourvu que l’accélération de cette phase ne soit
pas suffisante, nous proposons DL-AM-TO qui rejoint le meilleur des deux approches 2 et 4.
Les principales contributions de la thèse sont:
- la création d’un dataset de designs 2D avec leurs contraintes mécaniques et géométriques de
FA, GMCAD;
- la création de DL-AM-TO qui prend en entrée les conditions mécaniques et géométriques de FA
simultanément et génère un design 2D, une tâche difficile à accomplir avec FE-TO. Elle est basée
sur les réseaux convolutifs de neurones, ainsi, elle est dotée de rapidité, et de couts de calcul
avantageux et indépendants de l’échelle du design et de la complexité des contraintes. Elle taille
la géométrie du design afin de respecter les conditions mécaniques et géométriques de FA et ainsi
nous éviter la boucle de dessin et test et accélérer l’ensemble du process DfAM jusqu’à 1.4 fois;
- toute contrainte FA ou autre règle métiers peut être intégrée à DL-AM-TO, et pas seulement
celles formulées analytiquement, grâce à la flexibilité des modèles DL;
- DL-AM-TO pourra être industrialisée comme un module de design génératif léger dans un
logiciel de design à l’avenir.

Mots clés : Optimisation Topologique, Fabrication Additive, Design pour la Fabrication
Additive, Apprentissage Profond, Réseaux génératifs antagonistes, Réseaux Convolutionels de
neurones.
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