
HAL Id: tel-04097551
https://pastel.hal.science/tel-04097551

Submitted on 15 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical Emergency Guidance Optimization for
reusable Tossback vehicle landing

Hubert Ménou

To cite this version:
Hubert Ménou. Hierarchical Emergency Guidance Optimization for reusable Tossback vehicle land-
ing. Automatic Control Engineering. Université Paris sciences et lettres, 2023. English. �NNT :
2023UPSLM004�. �tel-04097551�

https://pastel.hal.science/tel-04097551
https://hal.archives-ouvertes.fr

Préparée à Mines Paris

Hierarchical Emergency Guidance Optimization
for Reusable Tossback Vehicle Landing

Optimisation Hiérarchique pour le Guidage de Secours

pour un Véhicule Réutilisable "Tossback"

Soutenue par

Hubert Ménou
Le 31 janvier 2023

École doctorale no621

Ingénierie des Systèmes,
Matériaux, Mécanique,
Energétique

Spécialité

Mathématiques et Automa-
tique

Préparée au

Centre Automatique et Systèmes

Composition du jury :

Frédéric JEAN Président du jury
ENSTA

Hélène PIET-LAHANIER Rapporteur
ONERA

Emmanuel TRÉLAT Rapporteur
Sorbonne Université

Anouck GIRARD Examinateur
University of Michigan

Gérald PIGNIÉ Examinateur
ArianeGroup

Laurent PFEIFFER Examinateur
INRIA

Eric BOURGEOIS Examinateur
CNES

Nicolas PETIT Directeur de thèse
Mines Paris

“In the land of the blind, the autopilot is king.”

K. S. Robinson, Red Mars

Remerciements

“Un stage ? Mais vous ne voulez pas un sujet de thèse plutôt ? J’ai un sujet sur
l’atterrissage de fusées réutilisables qui pourrait vous plaire.” C’est sur cette phrase
de Nicolas Petit qu’est née l’idée de cette thèse, en 2016, lors d’une discussion à
propos d’un sujet qui n’avait pas grand chose à voir. A l’époque, j’étais un jeune
étudiant travaillant sur l’atténuation des vibrations pour les machines à laver, sous
la supervision de Florent Di Meglio.

Je tiens à remercier Nicolas de m’avoir proposé ce sujet et encadré depuis tout ce
temps. Merci d’avoir toujours répondu présent, même pendant cette longue période
de crise sanitaire. Ce n’est pas seulement avec un chercheur que j’ai pu travailler,
mais avec un passionné d’aérospatial. Je tiens aussi à remercier Eric Bourgeois de
m’avoir encadré avec Nicolas.

Je tiens à remercier toute l’équipe du Centre Automatique et Systèmes pour ces
nombreuses années de collaboration. Tous les permanents m’ont aidé à un moment
ou à un autre de ma thèse. Merci à Delphine pour m’avoir fait confiance pour les
cours d’optimisation, me laissant une grande liberté dans le choix de mes sujets, et
d’avoir été toujours disponible quelle que soit la question. Merci à Florent, pour
son soutien sans faille depuis toujours. Merci à Philippe, pour toutes ces discussions
autour de la machine à café, et les nombreux coups de main techniques. Merci à
Laurent, pour ses relectures précises, et ses conseils techniques avancés.

Merci infiniment à Dilshad, d’avoir été un co-doctorant et ami pendant 3 ans,
de m’avoir initié au puit sans fond qu’est tikz, de m’avoir fait découvrir des sujets
techniques comme littéraires, et d’avoir refait le monde autour d’un nombre peu
raisonnable de cafés. Merci à tous les autres doctorants et anciens doctorants du
laboratoire, Aurélien, Sijia, Maxime, Loris, Nils, Aradana, et tant d’autres.

Je tiens à remercier mes parents. Merci pour votre soutien depuis toujours. Avec
les confinements à répétition, j’ai tout simplement passé plus de temps à la maison
qu’au CNES. Merci à mes sœurs et à mon frère de m’avoir supporté pendant toutes
ces années à parler de mathématiques, d’avion et de fusées à la maison.

Merci à tous mes amis, qu’ils soient là depuis 3 ans ou depuis 14 ans : Rémy,
Xavier, Paul, Julie, Grégoire, Juliette et toute la clique de Fondue.

Et surtout, je tiens à remercier Mona, ma conjointe. Merci pour ta patience,
toutes tes relectures, et pour toutes nos sessions de brainstorming confinées. Merci !

v

Abstract

This thesis studies emergency Powered Descent Guidance (PDG) for reusable launch-
ers. PDG is a trajectory planning problem starting at some initial condition and
ending at a given landing site. It is formulated as an Optimal Control Problem in free
final-time with multiple constraints conveying operational goals, along the path or
at the end-point. The launcher is under strong aerodynamic effects and has limited
maneuverability. For off-nominal flight conditions, we wish to perform “emergency”
trajectory planning by relaxing some negotiable parameters, such as the incidence
safety bound, the normal acceleration load, or the landing site location. The relative
importance of these parameters must however be taken into account. We differ from
the classic penalty-based approaches whose heuristic tuning is tedious. A hierar-
chy between the parameters is introduced and a numerical method is developed to
enforce it.

The contribution of the thesis is a methodology and an algorithm handling these
parameters according to a user-specified hierarchy. The algorithm, denoted Hierar-
chical Emergency Guidance Optimization (H.E.G.O.), consists of a finite sequence
of Linear Programs (LPs), called the Negotiation Problems, used to compute the
necessary relaxations, followed by a Quadratic Program (QP), called the Refine
Problem, which adjusts the landing trajectory optimally. The rocket is modeled by
eight states, and three controls. The flight parameters are the initial conditions of
the rocket states and several dimensioning parameters, such as the Engine Specific
Impulse (ISP) and the wind profile. After discretization of the PDG problem, a sen-
sitivity analysis of a parametric Non-Linear Program yields a QP, whose right-hand
side depends linearly on both the flight and the negotiable parameters, and whose
solution describes the optimal trajectory. The user-defined hierarchy is conveyed
via a co-lexicographic order. The smallest negotiable parameter in the sense of this
order is obtained by solving the sequence of LPs. The methodology is theoretically
studied. Among others, the Lipschitz-continuity of the guidance trajectory with re-
spect to the input flight parameters is established. Extensive numerical results serve
to quantify the performance and relevance of the methodology.

vii

Résumé

Cette thèse étudie le problème de Guidage d’urgence en Descente Propulsée (GDP)
d’un lanceur réutilisable. Le GDP est un problème de planification de trajectoire
depuis une condition initiale vers un site d’atterrissage. Il est formulé comme un
problème de commande optimale en temps final libre sous plusieurs contraintes
traduisant des souhaits opérationnels, le long du chemin ou au point final. Le lanceur
est soumis à de forts effets aérodynamiques et dispose d’une manœuvrabilité limitée.
Dans le cas de conditions de vol anormales, on souhaite calculer en temps réel une
trajectoire de ‘secours’, en relâchant certains paramètres négociables, tels que la
limite d’incidence, la limite d’accélération normale, ou encore le lieu d’atterrissage.
L’importance relative de ces paramètres doit néanmoins être prise en compte. Nous
nous distinguons des approches classiques de pénalisation dont le réglage heuristique
est délicat. Nous introduisons une hiérarchie entre les paramètres et développons
une méthode numérique pour la respecter strictement.

La contribution principale de la thèse est une méthode algorithmique détermi-
nant les valeurs optimales de ces paramètres d’après une hiérarchie pré-définie par
l’utilisateur. L’algorithme, Optimisation Hiérarchique pour le Guidage d’Urgence
(H.E.G.O.), consiste en une suite finie de Problèmes Linéaires (LPs) de Négociation,
utilisée pour calculer les relaxations nécessaires, suivie d’un Problème Quadratique
(QP) de Raffinement, qui optimise la trajectoire. Le lanceur est modélisé par huit
états et par trois commandes. Les paramètres de vol sont les conditions initiales de
la fusée, et plusieurs paramètres caractéristiques, tels que l’Impulsion Spécifique du
moteur (ISP) et le profil de vent. Après une étape de discrétisation, une analyse
de sensibilité d’un Problème Non-Linéaire paramétrique amène à formuler un QP,
dont le second membre dépend linéairement des paramètres de vol et des paramètres
négociables, et dont la solution décrit la trajectoire optimale. La hiérarchie définie
par l’utilisateur est exprimée via un ordre co-lexicographique. Résoudre la suite
de LPs permet de calculer le plus petit paramètre négociable au sens de cet ordre.
Cette méthode est analysée d’un point de vue théorique. Entre autres, la Lipschitz-
continuité de la trajectoire re-planifiée vue comme une fonction des paramètres de
vol est établie. Des résultats numériques permettent de quantifier la performance et
la qualité de la méthode.

ix

Contents

Remerciements iv

Abstract v

Résumé vii

Nomenclature xv

1 Introduction 1
1.1 Powered Descent Guidance (PDG) for reusable launchers 1
1.2 Mathematical programming for online PDG 5

1.2.1 Current state-of-the-art . 5
1.2.2 Hierarchy and the emergency problem 8

1.3 Proposed contribution: Hierarchical Emergency Guidance Optimization 9
1.3.1 Fast PDG for fixed value of constraint parameters 9
1.3.2 Computing the best constraint alteration achieving feasibility 11
1.3.3 The HEGO algorithm . 11

1.4 Manuscript outline . 12

2 Dynamic models and the PDG problem 15
2.1 Atmospheric flight dynamics . 16

2.1.1 Earth and atmosphere model 16
2.1.2 Aerodynamic model . 16
2.1.3 Noteworthy particularities . 17

2.2 Planar rocket model . 20
2.3 Three-dimensional rocket model . 22

2.3.1 Orientation frames . 23
2.3.2 Dynamics . 25
2.3.3 Normal acceleration, downrange and attitude 29

2.4 PDG as an Optimal Control Problem 30
2.4.1 Mission goals and constraints 30
2.4.2 Formulation as an optimal correction problem 32

3 Mathematical properties of the optimal vertical descent 35
3.1 Vertical descent . 36

3.1.1 Single dimensional rocket model 37
3.1.2 Assumptions specific to the vertical descent 38

xi

xii Contents

3.1.3 Optimal Control Problems . 38
3.2 Premilinaries on the dynamics . 39
3.3 Optimal thrust programs . 42

3.3.1 Fuel Optimal Landing . 42
3.3.2 Optimality of Min-Max Programs 47
3.3.3 Main result . 49

3.4 Numerical illustrations . 50
3.5 Comments . 51

4 Nominal guidance via Quadratic Programming 53
4.1 Non-Linear Programming (NLP) formulation for PDG 54

4.1.1 Discretization of the decision variable 55
4.1.2 Formulation of the finite dimensional guidance problem . . . 58

4.2 Sensitivity analysis for degenerate parametric NLP 60
4.2.1 An introductory toy example 61
4.2.2 Known results in parametric NLP sensitivity 62

4.3 Fast nominal guidance method . 68
4.3.1 An offline/online approach for nominal guidance 68
4.3.2 Guidance law . 69
4.3.3 Directional first-order estimate of waypoints 69

4.4 Numerical examples . 70
4.4.1 Effectiveness of calculated guidance 71
4.4.2 Changes in the active set . 71
4.4.3 Non-local constraint satisfaction 71

5 Emergency guidance via Linear and Quadratic Programming 77
5.1 Negotiable parameter choices . 79

5.1.1 Negotiated constraints . 79
5.1.2 On the relative importance of the parameters 80

5.2 A hierarchical negotiation . 81
5.2.1 Algorithmic principle of HEGO 82
5.2.2 An illustrative toy example 85
5.2.3 Noteworthy remarks . 87

5.3 Smoothness of the HEGO algorithm 90
5.3.1 Problem re-writing . 91
5.3.2 Uniqueness of the optimal trajectory 93
5.3.3 Regularity w.r.t. the right-hand side of the constraints 95
5.3.4 Conclusion on the Lipschitz-continuity of HEGO 98

5.4 Monotonicity of the optimal negotiations 99
5.5 Non-monotonicity of the optimal trajectories 101
5.6 Emergency guidance method generalization 102

5.6.1 Generalized notations . 102
5.6.2 Generalized emergency order 102
5.6.3 Generalized sequence of optimization problems 104
5.6.4 High-level description of safety margins 106

5.7 Illustrations . 107
5.7.1 With the 2D model . 107

Contents xiii

5.7.2 With the 3D model . 110

6 Performance evaluation 115
6.1 General comments . 115
6.2 Input dispersion on 3D rocket model 117

6.2.1 Selection of figures . 117
6.2.2 Observations and comments 118
6.2.3 Conclusion on the example 121

6.3 Comparison with vertical flight envelopes 121

Conclusion 145

A Technical tools 147
A.1 Optimization results . 147

A.1.1 Duality gap . 147
A.1.2 Right-hand side sensitivity of Linear Programs 148

A.2 Differential Equations . 150
A.2.1 Comparison theorem . 150
A.2.2 Flow of Ordinary Differential Equations 150

B Additional data 155

Bibliography 179

Nomenclature

Mathematical nomenclature

∥.∥1 = 1-norm
∥.∥2 = Euclidean norm Denoted ∥.∥ if there is no ambiguity.
∥.∥∞ = ∞-norm
≥ 0 = Positive In Rn, must be understood element-wise.
≻ 0 = Positive definite
⪰ 0 = Positive semidefinite
⪰e = Emergency order Extended co-lexicographic order (1.1).
× = Vector product

Φf = Flow of f See Appendix A.2.2.
dim x = Dimension of x

1 = Vector of ones Dimensions: 1n ∈ Rn.
I = Identity matrix Dimensions: In ∈ Rn×n.

O = Null matrix Dimensions: On×m ∈ Rn×m.
Satb

a(x) = Saturation Saturates x between a and b.

Sgn (.) = Sign function For a ∈ R, Sgn (a) :=





+1 if a > 0,
0 if a = 0,
−1 if a < 0.

IVP = Initial Value Problem
OCP = Optimal Control Problem
STM = State Transition Matrix See Appendix A.2.2.

LP = Linear Programming
QP = Quadratic Programming

NLP = Non Linear Programming
RHS = Right-hand side
OoP = Out of Plane

Mathematical nomenclature specific to Chapter 2

e⋆ = Unit vector In direction of ⋆.
X, X = Vector, Norm For X a vector of R3, then X = ∥X∥2.

R (a, γ) = Rotation 3× 3 rotation matrix of axis a and angle γ.

Nomenclature for the 2D model

α = Incidence (In 2D) α is signed: −90◦ < α < 90◦.
(ez, eh) = Earth frame

xv

xvi Nomenclature

(CA, CN) = Rocket body frame
θ = Attitude (In 2D) θ is signed: −90◦ < θ < 90◦.
h = Altitude

vh = Vertical speed
z = Horizontal position

vz = Horizontal speed
qr = Engine flow
m = Total mass

anor = Normal acceleration anor is signed.
x = Rocket states x = (h, vh, z, vz, m)⊤ ∈ R5.
u = Guidance controls u = (qr, α)⊤ ∈ R2.

Nomenclature for the 3D model

α = Incidence (In 3D) α is unsigned: 0◦ ≤ α < 90◦.
Ψ = Yaw
ξ = Pitch

(ez, ey, eh) = Earth frame
(CN , CA, CP) = Rocket body frame

θ = Attitude (In 3D) θ is unsigned: 0◦ ≤ θ < 90◦.
ζz, ζy = Projected attitudes Defined in Figures 2.4 and 2.5.

αz, αy = Projected incidences Defined in Figure 2.5.
z = Horizontal position (With respect to ez.)
y = Horizontal position (With respect to ey.)
h = Altitude

vz = Horizontal speed (With respect to ez.)
vy = Horizontal speed (With respect to ey.)
vh = Vertical speed
m = Total mass
qr = Engine flow (Real)
qc = Engine flow (Controlled)

anor = Normal acceleration anor is signed.
x = Rocket states x = (z, y, h, vz, vy, vh, m, qr)⊤ ∈ R8.
u = Guidance controls u = (q, αz, αy)⊤ ∈ R3.

Nomenclature for the optimization methods

ξ = Input variable Size Nξ, s.t. ξ = (∆x0⊤
, ∆η⊤, ∆uinit⊤)⊤.

x̄ = Reference state State of size n.
ū = Reference control Control of size m.
η̄ = Reference parameter Parameter of size nη.

t̄f = Reference time-of-flight
µ = Discretized control Size Nµ. For Cubic Splines, Nµ = m(N + 3).
τi = Control time instance N elements s.t. 0 = τ0 < τ1 < . . . < τN = 1.
τ ′

i = Constraint time instance Nc elements s.t. 0 = τ ′
0 < τ ′

1 < . . . < τ ′
Nc

= 1.
∆tf = Final time change

z = Decision variable Size Nz = Nµ + 1, s.t. z = (µ⊤, ∆tf)⊤.

Nomenclature xvii

p = Negotiation parameter Size nneg, split in R sub-vectors.

Aerospace-specific acronyms

• AGS: Abort Guidance System, as used for the Apollo lunar module.

• DLR: Deutsches Zentrum für Luft und Raumfahrt.

• GNC / GN&C / G&C : Guidance Navigation and Control.

• RCS: Reaction Control Systems.

• RLV: Reusable Launch Vehicle [44].

• SSTO: Single-Stage-To-Orbit.

• TSTO: Two-Stage-To-Orbit.

• Pinpoint landing: for Mars, it is "sub-100 m" accuracy according to [93], and
for the Earth 30 m inland and 10 m offshore according to [15].

• Downrange: horizontal distance between a vehicle and its landing site.

• Slenderness ratio: in the context of this thesis, denotes the aspect ratio of a
rocket body (i.e. quotient between the height and the width) [89], or the aspect
ratio of a trajectory (i.e. quotient between the altitude and the downrange).

Chapter 1

Introduction

Résumé

Ce chapitre introduit les différents enjeux liés au calcul embarqué de trajectoires
d’atterrissage d’urgence pour des lanceurs réutilisables. Après avoir présenté le
contexte dans lequel se déroule le développement de ces lanceurs, les différentes
familles de méthodes de guidage disponibles dans la littérature sont rappelées.
Ceci permet de présenter le problème au coeur de cette thèse, et les outils
nécessaires pour le résoudre : l’ordre co-lexicographique (ordre d’urgence), les
problèmes (linéaires) de négotiation et le problème (quadratique) de rafinement.
Enfin, le plan du manuscrit est annoncé, et un résumé schématique est proposé.

1.1 Powered Descent Guidance for reusable launchers
Reusable launchers are autonomous vehicles tailored for complex missions consisting
in a succession of distinct phases. Their development is driven by the need for a
fast and cost-efficient solutions to put payloads into orbit. Reusability imposes
that return to Earth of the launcher’s first stage must be accomplished safely and
reliably. Powered Descent Guidance (PDG) refers here to the action of making such
a flying vehicle land autonomously on a horizontal surface using rocket-like engines
for maneuvers and deceleration. PDG has emerged as a paramount topic during the
1960’s space race, the prime example of PDG being the lunar module (LM) landing
of the Apollo missions, which was successfully performed six times in a row on the
moon. LM landing used surprisingly straightforward path planning methods [50,93],
relying on non-optimized analytic calculations in an atmosphere-free environment.
Though the space race slowed down drastically in the 1970’s, the need for PDG
on other planets re-emerged with automated exploration missions towards Mars,
the Moon and even some large asteroids. These missions require a high level of
autonomy, for they are conducted extremely far from Earth, and thus cannot rely
on near-instantaneous communications used in teleoperation control. Accuracy is
also a key factor, especially for Mars missions, which aims at landing in the vicinity
of rich geological features where landing areas are scarce and narrow [15]. Several
missions performed a series of increasingly accurate autonomous powered landings,
peaking with the impressive performance of the Perseverance Rover which landed

1

2 Chapter 1. Introduction

Figure 1.1: (Left) DC-X take-off and landing in 1993. (© New Mexico Museum
of Space History) (Right) Perseverance landing site, 2021. (© ESA/DLR/FU-
Berlin/NASA/JPL-Caltech)

onto a 7.7 km × 6.6 km ellipse in 2021 (see Figure 1.1-(Right)). Interestingly, all of
these missions operated in the absence of atmosphere or under negligible atmospheric
density.

For PDG on Earth’s surface, where aerodynamic forces are not negligible,
progress is more recent. At the end of the 1990’s, the DC-X project conducted
collaboratively between McDonnell Douglas and NASA started to explore the possi-
bilities for a reusable rocket that could land back on its “feet”, using the same engines
for take-off and landing. As shown in Figure 1.1-(Left), this atypical tetrahedron
shaped vehicle achieved several short flights, but never reached a significant altitude.
It was necessary to wait until the early 2010’s to witness the first successful powered
landings, achieved by Space X rocket Grasshopper. In parallel, some smaller proto-
types were developed and successfully tested, such as the Xombie by Masten Space
Systems and JPL1. Today, several projects are under developments and have reached
various Technology Readiness Levels, such as New Shepard and New Glenn (Blue
Origins), FROG (CNES, [78]), Callisto (CNES/DLR/JAXA) and Themis (Ariane-
Group/CNES/ONERA) or even Shenlan Nebula (Deep Blue Aerospace).

In this thesis, we are interested in tossback vehicles and, more precisely, in
reusable Two-Stage-To-Orbit (TSTO) rockets, equipped with a single gimbaled en-
gine, whose trajectory slenderness ratio2 is medium to high. As shown in Figure 1.2,
this type of launcher typically goes through six different flight phases: take-off,
boost-back, ballistic, re-entry-burn, re-entry glide and final-burn. Our work focuses
on the last flight phase, the final burn, which starts at a few kilometers of altitude,
lasts for 10 seconds to a couple of minutes during which the engine is always turned
on and (at least partially) controllable.

To land properly at a desired site, the typical Guidance and Control (G&C)
strategy considers two objectives: i) the guidance problem i.e. determination of a
high-level guidance trajectory , ii) the control problem i.e. tracking of this trajectory

1See [3] and the associated video: youtube.com/watch?v=BqXFzVVCSCU.
2For trajectories, it is the ratio between maximum flight altitude and maximum downrange.

https://mars.nasa.gov/resources/25491/perseverance-rover-landing-ellipse-in-jezero-crater/
https://www.youtube.com/watch?v=BqXFzVVCSCU

1.1. Powered Descent Guidance (PDG) for reusable launchers 3

Upper stages
flying into orbit

••

Take off

Boost-back

Ballistic

Re-entry
glide

Re-entry
burn

Final
burn

Figure 1.2: Typical flight phases of a tossback vehicle, from take-off to landing (tra-
jectory not to scale). The higher the slenderness ratio, the more vertical the flight
trajectories. (© Google Earth V 9.168.0.0, (July 28, 2022), France, Landsat/Coper-
nicus)

4 Chapter 1. Introduction

using a low-level controller. This thesis addresses the guidance problem only under
the assumption of full knowledge of the state of the system, making low-level control
and other estimation topics out of scope.

Providing guidance for the final burn is a challenging and necessary task. Indeed,
solving the PDG in-flight must be achieved using limited time and computational
power. Only single-CPU methods are studied in the thesis, as opposed to methods
requiring the use of GPUs. Further, PDG has to deal with the accumulation of the
tracking errors - i.e. the distance between the actual rocket states and the expected
reference trajectory - during the flight phases prior to the final burn, which have
to be shrunk to zero during this last phase [15]. This must be done under strong
disturbances (e.g. wind speed or changes of atmosphere density profile among others)
and under multiple constraints: the incidence - or angle-of-attack - must be limited
to avoid hazardous regions of the aerodynamic flight domain, the engine flow is
mechanically bounded and its internal dynamics is not instantaneous, the low-level
controllers actuating the rocket have limited capabilities which requires to bound
the normal acceleration, the landing site is small, the available mass is limited, etc.
Gathering all these detrimental effects, it is likely that the rocket starts its final burn
too far from its reference trajectory to get a landing trajectory strictly meeting all
these requirements. However, at the expense of sacrificing some requirements and/or
loosening well-chosen constraints, it is possible to successfully land and maintain the
reusability of the vehicle.

A key concept to preserve the launcher’s reusability is to “maximize the
launcher’s integrity during landing”. To illustrate it, consider the following example,
pictured in Figure 1.3. The reference trajectory A is shown in plain black. In a
typical nominal scenario, the final burn would start reasonably close to the reference
trajectory such that a proper guidance algorithm would provide the rocket B with a
trajectory that reaches the desired landing at null speed while satisfying all the con-
straints listed earlier. However, if the rocket starts its descent farther away from the
reference trajectory - e.g. with a large lateral displacement - then, at some point, it
is impossible to land properly and to satisfy the whole system of constraints, which
are in fact incompatible. Allowing sharper turns, which can be achieved by relaxing
the incidence bound (or the normal acceleration bound) may make the system of
constraints compatible again, at the cost of a trajectory alteration. Indeed, this
relaxation enables the rocket C to land on the desired landing site. If we push this
reasoning further, the rocket could start its final burn far enough from the reference
trajectory so that even relaxing the incidence bound would not be enough. If the
area neighboring the desired landing site is uninhabited and flat enough, one can
allow the landing location to be relaxed too. This is what happens in the case of
rocket D.

This first point highlighted by this example is that there is a list of quantifiable
elements that can help to relax the constraints (to some extent). These will be
referred to as negotiable parameters in this thesis. Maximizing the launcher’s in-
tegrity is choosing the values of these parameters in an optimal way. The negotiable
parameters can refer to many different factors, such as the incidence bound, the
normal acceleration bound, the landing site location or even the final vertical speed.
The set of negotiable parameters can differ depending on the mission requirements,

1.2. Mathematical programming for online PDG 5

the rocket structural capabilities or the landing site surroundings for instance. In
the thesis we develop a generic methodology able to handle different sets of landing
parameters, and not only a single particular set.

Further, the above-mentioned example illustrates why these parameters are not
equally critical. Indeed, relaxing the incidence bound of a couple degrees will have a
much lower impact on the rocket structure than relaxing the maximum final vertical
speed by a few meters per second. A classic way to handle this relative importance
while solving the PDG problem is to penalize the constraint incompatibility [28].
Computationally, it means that: i) the negotiable parameters are added to the deci-
sion variables of the optimization problem describing the descent trajectory, and that
ii) the use of these parameter is penalized in the cost of the optimization problem.
In this case, the relative importance of the parameters is partially ensured by the
difference in the weights associated to each parameter. However, this is a heuristic,
and it does not guarantee the relative importance of the parameter to be exactly
satisfied. Instead, we propose to mathematically define the relative importance of
the negotiable parameters via the introduction of a strict hierarchy between these
parameters. In the thesis, this hierarchy is represented by a specific order relation
over the set of negotiable parameters, which we call the emergency order below. A
challenge for the guidance methodology to be developed is to compute the smallest
constraint alteration that recovers feasibility in the sense of the latter order.

Following the discussion above, our main objective in this thesis is formulated
as follows: design a method to update the guidance trajectory at the beginning of the
final-burn, while maximizing the launcher’s integrity, in a computationally efficient
way. To address this objective, the thesis proposes a guidance method that performs
online trajectory optimization for the final burn, while minimizing the use of nego-
tiable parameters according to a certain hierarchy making sure that their relative
importance is strictly respected.

1.2 Mathematical programming for online PDG

1.2.1 Current state-of-the-art

The Powered Descent Guidance (PDG) problem is a worked applied mathematics
problem, most often tackled from the Optimal Control perspective.

The decision variables belong to infinite-dimensional function spaces (the control
law u and the state x), and the scalar time-of-flight (tf) over which these functions
are defined. The goal in such Optimal Control Problems (OCPs) is to find the triplet
(x, u, tf) that minimizes a certain criterion, under multiple constraints.

Several performance indexes (or cost functions) have been considered in the
literature: minimum-fuel [3,27,55,64,97,107], minimum-acceleration [93], minimum
time-of-flight [64,93], minimum error-to-reference [89], minimum-landing-error [17],
or any weighted combinations of these [33,82].

The constraints depend on the rocket design and the mission requirements. They
can take the form of inequalities (e.g. engine flow upper and lower bounds) as well
as equalities (e.g. final horizontal and vertical speeds). As discussed earlier, these
constraints can be quantified by several parameters. Among these, the ones that
can eventually be modified are called the negotiable parameters. For instance, the

6 Chapter 1. Introduction

Forest
(inaccessible)

Crops
(hard landing)

Landing site
(perfect landing)

Beach
(worse than crops)

Ocean
(inaccessible)

ABCD

Reference
trajectory

Nominal
trajectory

Trajectory
with

loosened
incidence

bound
(sharp turn)

Trajectory
with loosened

incidence
bound and
modified

landing site

Figure 1.3: Trying to maximize launcher’s integrity by relaxing well-chosen con-
straints.

incidence bound is a safety requirement regarding mechanical and flight quality
aspects, whose value may be negotiated if necessary. On the contrary, the engine
flow bound is a typical example of non-negotiable parameters, since it is a physical
limitation. Mathematically, these cases are treated as follows: the constraints can
be tuned using a vector parameter denoted p, which is defined such that p = 0 when
the nominal requirements are met.

The PDG problem has several inputs: the initial state of the rocket - i.e. its
initial position, speed, orientation and mass - and other external parameters, such
as the wind speed for example. These cover all the above-mentioned sources of
disturbances. Mathematically, the inputs are conveyed by a parameter ξ.

From a general perspective, the PDG problem, seeking a guidance trajectory for
the final burn, is written as an OCP such that

OCP (ξ, p) :=





min
x,u,tf

J (x, u, tf , ξ) (Cost),

s.t. ẋ = f(x, u) on [0, tf] (Rocket dynamics),

x(0) = x0 + ξ (Initial conditions),

Ψ(x(tf), p) = 0 on [0, tf] (Final state),

C(x, u, p) ≤ 0 on [0, tf] (Other constraints).

where J is the performance index (cost), f is the right-hand side of the ordinary
differential equations, Ψ represents the terminal condition and C conveys the var-

1.2. Mathematical programming for online PDG 7

ious constraints. The special case OCP (ξ, 0) is the nominal PDG problem, and
OCP (0, 0) corresponds to the reference trajectory. This problem having an infinite
dimensional decision variable and an infinite number of constraints, it is discretized
for numerical resolution (for some given value of ξ and p). Two well-known and dual
discretization approaches exist (see e.g. [14, 47, 76, 99]). On one hand, for indirect
methods, stationary conditions are derived from OCP (ξ, p) in the form of Ordinary
Differential Equations (ODEs) which are then discretized and solved. The celebrated
Pontryagin Maximum Principle [46] is the fundamental tool to form the stationary
conditions. On the other hand, for direct methods, OCP (ξ, p) is first discretized
into the sub-problem DSC (ξ, p), using a finite dimensional variable z representing
the unknowns (x, u, tf) of the initial problem, where DSC (ξ, p) is an optimization
problem of the form

DSC (ξ, p) :=





min
z

J(z, ξ)

s.t. h(z, ξ, p) ≤ 0,

g(z, ξ, p) = 0,

which is then solved using Non-Linear Programming (NLP).
Though the indirect methods are known to be more accurate, they are also very

sensitive3 and usually are not used in real-time. Currently, for online applications,
PDG problems are solved almost exclusively using direct methods. We follow this
trend and will focus of the parametric problem DSC (ξ, p).

Still, the main challenges for direct methods are the choice of the decision vari-
able z, the design of the associated functions J , h and g, and the selection of the
proper numerical method used to solve DSC (ξ, p). These decisions directly deter-
mine whether DSC (ξ, p) can be used for online applications with sufficient accuracy.

A broad spectrum of direct methods have been used to solve OCP (ξ, p) for
aerospace applications [14]. Direct trajectory optimization methods relying on NLP
have been explored since the 1980’s [45]. Since then, many methods have emerged.
Pseudospectral methods - consisting in discretizing the states and the controls
of OCP (ξ, p) at well-chosen time points using polynomial approximations [36] to
transform OCP (ξ, p) into a NLP - have been investigated from various perspec-
tives [79,81,91,92,106]. Sensitivity-based parametric optimization has been used for
Mars atmospheric entry problems [85]. Recent work also focused on applying learn-
ing based methods to PDG [39]. A noteworthy state-of-the-art direct method aiming
at solving OCP (ξ, p) for rocket landing problems is Successive Convexification [4].
This method solves OCP (ξ, p) by successively solving linearized and discretized ver-
sions of it [60,77,98]. In other words, this method is a variant of Successive Convex
Programming (SCP) methods, tailored and optimized for the requirements of PDG.
This method is presented in great details in [58]. Theoretical guarantees were es-
tablished by B. Açikmeşe and his fellow researchers. Informally speaking, the main
statement can be rephrased as follows: “if the method converges and if some inter-
mediate slack variables are sufficiently penalized and tend to zero, then the solution
is the optimal landing method in the sense of the Karush-Kuhn-Tucker conditions

3An initial guess is needed for the adjoint state or the input u, tf and numerical methods are
sensitive to these guesses.

8 Chapter 1. Introduction

and the constraints are satisfied” [58, Thm. 8]. Superlinear convergence rates have
been established under mild assumptions [61]. Specifically designed interior point
solvers have also been implemented [34]. These results are rather powerful and the
method proved to work correctly even on real vehicles [3]. It is often used along
with Lossless Convexification, which aims at performing an exact convex relaxation
of the thrust magnitude constraints [16, 27, 58]. The above-mentioned list of direct
methods for PDG is not exhaustive. For further details on the available methods,
see the recent survey by Song et al. [89].

All the above-mentioned methods tackle different versions of the PDG problem,
but face the same bottleneck when it comes to landing on Earth’s surface: the
presence of the aerodynamic forces. Without atmosphere, i.e. for Moon and Mars
landing4, the problem is called planetary landing, and one can safely say that the
above-mentioned literature is mature enough to provide efficient and proven PDG
methods for real-time usage. A noteworthy example is the full characterization
of the reachable set for Mars landing [35], obtained by combining convex analysis
and Successive Convexification. Though a few papers have tackled PDG in the past
decade, there are still many open questions regarding the best way to perform online
PDG in the presence of non-negligible aerodynamic effects. In this thesis, this is the
case we consider.

1.2.2 Hierarchy and the emergency problem

In this thesis we address cases when ξ is such that there exist no trajectories (x, u, tf)
that satisfy all the constraints of OCP (ξ, p). This situation, referred to as the
emergency problem, is also sometimes called the abort planning problem in the air
and space field [26, 44, 52, 57, 87, 101]. To the best of our knowledge, a single paper
has tackled this topic for planetary PDG, for Mars landings [17]. Using Lossless and
Successive Convexification, the latter paper exposes a method that first minimizes
the landing error - i.e. the minimum distance between the feasible landing sites and
the targeted one - and then computes the fuel-optimal trajectory among the ones
having a minimum landing-error. Our goal is to design a more general methodology
to perform emergency guidance by dealing with more than a single parameter to
relax.

From a modeling perspective, in this thesis, the above-mentioned vector of ne-
gotiable parameters p is decomposed into R vector parameters of possibly different
dimensions, ranked with respect to their relative importance, such that

p =
(
p(1), . . . , p(R)

)
=
(
Least critical, . . . , Most critical

)
.

For instance, one can consider that p(1) = ∆αmax (the incidence bound) is less
critical than p(2) = ∆vf

h (the final vertical speed). The elements p(j) can be vectors.
For instance, p(j) = (∆zf , ∆yf) is the vector denoting the landing site location on
a map.

The hierarchy among the parameters is defined using a variant of the lexico-
graphic order: the negotiable parameters are compared using the 1-norm of their

4Mars atmosphere is often treated as a small disturbance, for it is more than 100 times thinner
than Earth’s.

1.3. Proposed contribution: Hierarchical Emergency Guidance Optimization 9

sub-parameters, by comparing their most critical sub-parameters first. In practice,
a vector pa is said to be larger - or more negotiated - than another vector pb, which
is denoted

pa⪰e pb

if and only if

∥p(R)
a ∥1 > ∥p(R)

b ∥1 or ∥p(R)
a ∥1 = ∥p(R)

b ∥1 and ∥p(R−1)
a ∥1 > ∥p(R−1)

b ∥1,

or . . .

or ∥p(R)
a ∥1 = ∥p(R)

b ∥1 and . . . and ∥p(1)
a ∥1 > ∥p(1)

b ∥1,

or ∥p(R)
a ∥1 = ∥p(R)

b ∥1 and . . . and ∥p(1)
a ∥1 = ∥p(1)

b ∥1.

(1.1)

In the context of this thesis, the order ⪰e is called the extended colexicographic
order or simply the emergency order.

Maximizing the launcher’s integrity by sacrificing the parameter p according
to the hierarchy of importance between the sub-parameters translates into finding
the smallest p in the sense of ⪰e such that there is a feasible trajectory (x, u, tf)
satisfying the constraints of OCP (ξ, p). There are no generic methods yet available
that recovers feasibility in OCP (ξ, p) while enforcing such a hierarchy. This is the
subject and main contribution of this thesis.

1.3 Proposed contribution: Hierarchical Emergency
Guidance Optimization

The main contribution of this thesis is an online method that computes the opti-
mal trajectory and the optimal values of the negotiable parameters, in the sense of
the extended colexicographic order, using only Linear and Quadratic programming
techniques. In the manuscript, this method is demonstrated on two rocket models
of increasing complexity: from a planar model with non-trivial aerodynamic effects,
to a richer three-dimensional model with non-negligible engine transients.

This contribution is obtained in two steps: first a nominal guidance method
computing the landing trajectory z for a given p is presented, then an emergency
guidance method aiming at computing the best value for p is studied.

1.3.1 Fast PDG for fixed value of constraint parameters : a
sensitivity-based approach

To perform nominal guidance, i.e. to compute z for given values of ξ and p, we use
a sensitivity-based approach.

In this approach, OCP (ξ, p) is described as an optimal correction problem
PDG (ξ, p), defined w.r.t. a reference trajectory (x̄, ū, t̄f) (e.g. rocket A in Fig-
ure 1.3). The latter trajectory is mission-specific, and its design is out-of-scope for
this manuscript. Using handy notations5, PDG (ξ, p) is sketched below as an infinite

5The exact definition of problem PDG (ξ, p), presented here in a simplified shape, is in Chapter 2.

10 Chapter 1. Introduction

dimensional optimization problem of the form

PDG (ξ, p) :=





min
δu,∆tf

J (δu, ∆tf)

s.t. ẋ(t) = f(x(t), ū(t) + δu(t)),

x(0) = x̄0 + ξ,

Ψ(x(t̄f + ∆tf), p) = 0,

C(x(t), ū(t) + δu(t), p) ≤ 0.

The decision variable δu, the ODE of the dynamics and the constraints are dis-
cretized using a finite-dimensional variable z, which conveys a parametric description
µ of the control change w.r.t. the reference control ū and the implicit time-of-flight
change ∆tf . Through this discretization procedure, the state x is expressed as a
function of ξ and z using the flow of the ODE defined by f . The problem PDG (ξ, p)
is approximated by its discrete non-linear version NLP (ξ, p), which writes

NLP (ξ, p) :=





min
z

J(z, ξ)

h(z, ξ) ≤ Hpp,

g(z, ξ) = Bpp.

where it is stressed that the negotiable parameter p has a linear influence on the
constraint right-hand side of the guidance problem tackled in this thesis.

Then, sensitivity analysis is used to approximate the solution of NLP (ξ, p). Re-
visiting results from the literature, we introduce a Quadratic Program (QP) which
writes

QP (ξ, p) :=





min
z

1
2z⊤Pz + q⊤z

s.t. Gz ≤ h0 + Hξξ + Hpp

Az = b0 + Bξξ + Bpp

and whose solution is shown to be a local approximation to the solution of NLP (ξ, p),
under mild assumptions. Interestingly, Strict Complementary Slackness, often as-
sumed in the literature, is not needed here. Approximating NLP (ξ, p) by QP (ξ, p)
is shown to be relevant and usable even for large - non-local - values of ξ, when used
with the two above-mentioned rocket models. The problem QP (ξ, p) contains a con-
venient linear description of the constraints which makes the emergency guidance
method described thereafter tractable.

Problems such as QP (ξ, p) can be solved in an online/offline fashion, where the
defining constant matrices are computed before the flight for the prescribed reference
trajectory, and where the QP itself is solved for given ξ and p on-board using off-
the-shelf QP solvers. Numerical resolution can be achieved with confidence as QP
solvers are now considered mature and reliable technology [21,63,94].

1.3. Proposed contribution: Hierarchical Emergency Guidance Optimization 11

1.3.2 Computing the best constraint alteration achieving feasibility

When ξ is such that the nominal guidance problem QP (ξ, 0) has no solutions, we
propose a method computing a value of p such that QP (ξ, p) is feasible.

Finding the smallest p in the sense of ⪰e guaranteeing the existence of a trajec-
tory is achieved by solving the following R different negotiation problems. The idea is
to iteratively minimize each sub-parameter p(j) under the 1-norm (consistently with
the mathematical definition of ⪰e), and memorize the associated optimal value P∗

j .
For each negotiation problem, the constraints are those of NLP (ξ, p), plus new con-
straints that ensure that the optimal values P∗

j+1, . . ., P∗
R of the previous negotiation

problems are reached. In details, the jth negotiation problem writes

P∗
j ←− min

z, p
∥p(j)∥1 (1.2a)

s.t. Gz ≤ h0 + Hξξ + Hpp (1.2b)
Az = b0 + Bξξ + Bpp (1.2c)
∥p(i)∥1 = P∗

i , i = j + 1, . . . , R. (1.2d)

1.3.3 The HEGO algorithm: main contribution of the thesis

Once this problem has been solved for each j, starting from R down to 1, we minimize
z under the original performance index J , such that

z∗ ←− arg min
z, p

1
2z⊤Pz + q⊤z (1.3a)

s.t. Gz ≤ h0 + Hξξ + Hpp (1.3b)
Az = b0 + Bξξ + Bpp (1.3c)
∥p(i)∥1 = P∗

i , i = 1, . . . , R. (1.3d)

This latter problem is the refine problem. It only returns the value of z. The value
of p is not necessarily unique. The “negotiation and refine” problems are gathered
into the HEGO algorithm, which is a nominal and emergency guidance algorithm,
described using pseudo-code below.

Algorithm 1 Hierarchical Emergency Guidance Optimization (HEGO)
Require: Inputs ξ.

for j = R, .., 1 (decreasing indices) do
Solve the negotiation problem (1.2) for j, and store P∗

j .
end for
Solve the refine problem (1.3), using P∗

1 , . . . ,P∗
R in (1.3d), which gives z∗.

return Optimal trajectory (x∗, u∗, t∗
f), described by z∗.

Overall, HEGO is a numerical method that provides nominal and emergency
guidance, relying on Linear and Quadratic programming solvers only.

12 Chapter 1. Introduction

1.4 Manuscript outline
A high-level summary of the approach with references to the associated chapters is
presented in Figure 1.4.

Chapter 2 introduces the dynamic model of the class of reusable launchers under
study, with two levels of complexity (2D and 3D rocket models). Among others, the
non-trivial aerodynamic model is detailed, and special care is taken to define the 3D
model. Then, after discussing the various mission constraints, the PDG problem is
formulated as an OCP with respect to a reference trajectory.

Chapter 3 takes a side turn and tackles the problem of optimal thrust pro-
gramming for the special case of a purely vertical atmospheric flight. By apply-
ing Pontryagin Maximum Principle, necessary and sufficient conditions are derived,
showing that the optimal thrust program is min-max for the class of launchers that
we study. The by-product of this result is a full characterization the reachable set
of the rocket for the vertical landing problem. For a first reading, this chapter can
be skipped without loss of continuity.

Chapter 4 details the method that performs nominal trajectory planning,
sketched in Section 1.3.1. Using a finite-dimension decision variable to describe
the trajectory of the PDG, a NLP is derived. Its optimal solution is then approx-
imated using parametric sensitivity analysis, and solved using a single QP. The
mathematical formulation of this QP is instrumental in the rest of the thesis.

Chapter 5 presents the core topic of this thesis. After discussing the available ne-
gotiation parameters, the Algorithm HEGO is introduced in the LP/QP framework.
Its behavior is explained on a detailed toy example. Then, theoretical guarantees
are proposed and proved. Among others, the Lipschitz-continuity of the optimal
solution z∗ is established, guaranteeing the absence of “jumps” in the solutions, a
desirable property in practice. Also, high-level comments on the emergency guidance
method are proposed, to distinguish what is generalizable from what comes from the
underlying nominal guidance problem. Finally, several examples are presented to
illustrate the various modeling possibilities offered by HEGO, and to visualize the
quality of the results.

Chapter 6 offers a quantitative assessment of the performances of HEGO. The
inputs of the algorithm are dispersed over wide uncertainty intervals, and the results
are analyzed pair-wise. Also, a comparison with the vertical landing problem from
Chapter 3 is presented.

A concluding chapter discusses a few topics that have not been detailed in the
previous chapters, it also presents possible future research directions, and conclu-
sions.

1.4. Manuscript outline 13

Hierarchical Emergency
Guidance Optimization
(Chapter 5)

P∗
j ←− min

z, p
∥p(j)∥1

s.t.: Gz ≤ h0 + Hξξ + Hpp,
Az = b0 + Bξξ + Bpp,
∥p(i)∥1 = P∗

i , i = j + 1, . . . , R.

Negotiation problem (loop for j = R, . . . , 1)

z∗ ←− arg min
z, p

1
2 z⊤Pz + ξ⊤Qz

s.t.: Gz ≤ h0 + Hξξ + Hpp,
Az = b0 + Bξξ + Bpp,
∥p(i)∥1 = P∗

i , i = 1, . . . , R.

Refine problem

ξ and P∗
1 , . . . ,P∗

R

Input: ξ = (∆x0, Wind, . . .)

Output: z∗

Plotted for
many values of ξ
in Chapter 6

•
Downrange

Altitude

• •

Reference
trajectory

Guidance
trajectory

(relaxed)

Landing site Negotiated
landing site

The reference
trajectory is

assumed given
for this thesis.
The vertical
fuel-optimal

trajectories from
Chapter 3 can

be used here.

Initial condition gap: ∆x0

⇐ Wind

The constant matrices
G, h0, Hξ, Hp,

A, b0, Bξ, and Bp

are computed offline,
using the method
from Chapter 4

and the rocket models
from Chapter 2.

Discrete approximation
of PDG (ξ, p)

(from Chapter 2).

Negotiable parameters
(e.g. incidence bound, landing site, etc.)

p =
(
p(1), . . . , p(R))

least −→ most critical

Figure 1.4: High-level summary. Nominal and emergency guidance methods pre-
sented in this thesis, with references to the associated chapters.

Chapter 2

Dynamic models and the PDG
problem

Résumé

Ce chapitre contient une description mathématique du problème de guidage
pour l’atterrissage (PDG). Il introduit les modèles dynamiques dérivant la fusée
et les contraintes.

Tout d’abord, les choix généraux de modélisation sont discutés, ce qui per-
met de souligner le rôle de l’atmosphère, une question rarement abordée dans
le cadre du guidage pour l’atterrissage. Deux modèles de fusée, avec différents
niveaux de complexité, sont présentés. Un modèle de fusée dans le plan (2D)
et un modèle de fusée tridimensionnel (3D) sont construits. Le modèle de fusée
2D suppose que la fusée reste toujours dans un seul plan. Il servira à illustrer
les principes de guidage des chapitres suivants d’une manière beaucoup plus
accessible que le modèle 3D. En revanche, le modèle 3D est utilisé dans les ex-
emples avancés des Chapitres 4 et 5 et pour l’ensemble du Chapitre 6, ce dernier
contenant une évaluation des performances numériques et vérifie l’applicabilité
de la méthodologie proposée.

Un problème général de calcul de trajectoire est présenté à la fin de ce
chapitre, sous la forme d’un OCP en temps final libre, défini par rapport à une
trajectoire de référence. La résolution de ce problème sera l’objet principal du
Chapitre 4. L’importance relative des contraintes du PDG sera examinée plus
loin dans le Chapitre 5.

This chapter contains a mathematical description of the PDG problem. It intro-
duces the dynamic models governing the rocket and the constraints.

First, general modeling choices are discussed, which serve to stress the role of the
atmosphere, a seldomly looked at issue in PDG. Two rocket models, with different
levels of complexity are presented. A planar (2D) and a three-dimensional (3D)
rocket model are constructed. The 2D rocket model assumes that the rocket always
remains in a single plane. It will serve to illustrate the guidance principles of the
next chapters in a much more accessible way than the 3D model. On the other hand,
the 3D model is used in the advanced examples of Chapter 4 and 5 and for the whole

15

16 Chapter 2. Dynamic models and the PDG problem

Chapter 6 containing the numerical results assessing the numerical performance and
the applicability of the proposed methodology.

A general trajectory design problem is presented at the end of this chapter, as
a free-final time OCP defined w.r.t. a reference trajectory. The resolution of this
problem will be the main concern of Chapter 4. The relative importance of the PDG
constraints will be discussed later in Chapter 5.

2.1 Atmospheric flight dynamics
Here are presented the features shared by both 2D and 3D models. Some notions,
such as those regarding the environment and the aerodynamic model are also used
in Chapter 3.

The typical flight phases of a tossback vehicle are illustrated in Figure 1.2. In this
thesis, we are interested in the last part of the flight: the final burn until landing.
It starts a few kilometers above the ground [22].

In both 2D and 3D rocket models, which will be used in guidance algorithms,
the rocket is assumed to be a punctual mass having an orientation (and thus having
an aerodynamic incidence). This conceptual approach is presented in details below.

2.1.1 Earth and atmosphere model

Since we are only interested in the last flight phase, the Earth is considered locally
flat, non-rotating, with a constant gravity field of magnitude g. The atmosphere is
described via the pressure Pa, the density ρ, the temperature and the speed of sound
SSP are functions of the altitude. They are computed using linear interpolation of
data samples.

Denoting by Vr the norm of the relative speed of the rocket, we define Ma :=
Vr/SSP (h) the Mach number at a given altitude h.

The wind is assumed to be horizontal with a speed depending on the altitude
only. It is assumed null at null altitude. In practice, the wind map is described by
its value at three reference altitudes1, for each direction:

• wz,0, wz,1 and wz,2 for the first horizontal direction (2D and 3D models),

• wy,0, wy,1 and wy,2 for the second horizontal direction (3D model only).

For these wind parameters, index 0 (resp. 1, 2) corresponds to an altitude of h =
2 km (resp. 5 km, 10 km).

2.1.2 Aerodynamic model

The aerodynamic model of a rocket moving in the direction of its thrust flame
is notoriously hard to determine. Early works from 1966 started to describe the
aerodynamic effect of an air jet pushing in front of a body in a supersonic flow.

1Picking three values to describe the wind profile is an arbitrary design choice. If it is needed
to consider a finer description of the wind profile in practice, significantly increasing the number of
variables describing the wind profile does not change the approach presented in the next chapters,
as discussed in Chapter 6.

2.1. Atmospheric flight dynamics 17

Later works from the early 2000’s from JAXA have completed these observations
[71]. They were followed and corroborated by recent experiments of the DLR [62].
The common findings of [71] and [62] are that for a sufficiently strong jet flow,
its wrapping around the rocket body lowers drastically the drag along the body
axis, though orthogonal effects remain strong for non-zero incidences. This can be
partially explained by the fact that the air jet creates an air cushion in front of the
rocket that helps the boundary layer to stick to the fuselage from its lower end. A
qualitative explanation of this observation is presented in Figure 2.1.

For the sake of this thesis, the aerodynamic effects of the air flow around the
rocket is taken into account via:

1. A non-trivial lift coefficient CLift, to account for the aerodynamic effect or-
thogonal to the drag and in the opposite direction to the relative speed,

2. A small-magnitude drag coefficient CDrag, to account for the aerodynamic
effect in the direction of the rocket body,

3. Drag and lift coefficients CDrag and CLift depending on two parameters: the
rocket incidence α and the Mach number Ma,

4. An altitude-corrected expression of the thrust. Denoting by T the thrust
magnitude along the rocket body, we will consider that

T = g Isp q − SEP (h) (2.1)

where g is the gravity acceleration, Isp the engine specific impulse, q is the
engine flow, SE the nozzle section surface and h the altitude.

5. A lift vector s.t. the effective aerodynamic forces on the rocket are contained in
the plane defined by the relative speed vector and the rocket body longitudinal
axis.

The functions Ma, α 7→ CDrag(Ma, α) and Ma, α 7→ CLift(Ma, α) considered below
for the 2D and 3D models convey the same aerodynamic model.

Remark 1. Few articles have tackled PDG where drag is not negligible. See for
instance [97], [55] or [22].

2.1.3 Noteworthy particularities

2.1.3.1 Engine dynamics

The engine is assumed to generate the only control forces available on the rocket
(i.e. aerodynamic grid fins or Reaction Control Systems (RCS) are not considered
in this thesis). The output flow and the angular position of the engine are actuated.
As far as the flow is concerned, its dynamic is not instantaneous and should not be
neglected. It is assumed that its real flow is qr, that the controlled flow - or input
signal - is qc, and that they are related via a first-order low-pass dynamics with time
constant τq s.t.

q̇r = qc − qr

τq
. (2.2)

18 Chapter 2. Dynamic models and the PDG problem

ROCKET
BODY

ENGINE

Boundary layer
detaches from

the body

∧

∧

∧

∧

∧

∧

∧

∧

∧ ROCKET
BODY

ENGINE

Boundary layer
stays attached

to the body

Figure 2.1: Air jet influence. Qualitative change of the wind flow with (left) and
without (right) an air jet pushing in front of a moving rocket. See [71] and [62] for
experimental results.

2.1. Atmospheric flight dynamics 19

The dynamics of the angular position of the engine2 is not rigorously instantaneous.
However, the time constant of its transient is sufficiently small compared to the
other time constants of the guidance problem to be neglected. In the following, it
will only be required that the attitude of the rocket (that the rocket control system
will track) be a continuous function of time.

Remark 2. Consider some lower and upper bounds q− and q+ on the engine flow.
If qr(0) ∈ [q−, q+] and qc(t) ∈ [q−, q+], then from Equation (2.2) we get that qr(t)
remains within these bounds for all t ≥ 0. However, if qc(t) is not guaranteed to be
between q− and q+, the proper version of Equation (2.2) becomes

q̇r =
Satq+

q− (qc)− qr

τq
.

2.1.3.2 Thrust direction

The thrust is assumed colinear to the rocket longitudinal axis. This assumption
is an approximation, and corresponds to the equilibrium of the low-level controllers
(out-of-the-scope of this thesis). More precisely, non-zero nozzle gimbal angles would
slightly deviate the thrust vector, creating a momentum and in the end a rotation
of the rocket. However, the rotation time constant is assumed significantly smaller
than the translation time constant involved in the guidance problem.

2.1.3.3 Thrust dominance

The rocket engine is powerful compared to its weight, and the rocket incidence
remains always sufficiently low s.t. the vertical speed is always negative and slowing
down. Among others, this assumption prevents hovering maneuvers.

2.1.3.4 Dynamic equation and parameters choice

The dynamic equation of each model will be described by an ODE of the form

ẋ = f(x, u, η)

where x denotes the rocket states, u its controls, and η its dynamics parameters.
As will be detailed next, the rocket states are the position, the speed and the

total mass, plus the real engine flow for the 3D rocket model only. The controls are
the controlled engine flow, and one or two variables that convey the rocket incidence,
depending on which model is considered (2D or 3D).

The states and controls chosen to describe each model will be made explicit. The
choice of dynamics parameters presented in this Chapter is taken arbitrarily wide,
to illustrate the various modeling possibilities. However, for the numerical examples
of Chapters 4, 5 and 6, only relevant sub-sets of these parameters will be analyzed.

2One gimbal angle for the 2D model, two on the 3D model

20 Chapter 2. Dynamic models and the PDG problem

CN

CA

•

α < 0
Vr

eOr

eVr

V

T

D + L

L

D •

θ > 0

mg

w

ez

eh

V =
(

vh

vz

)

Vr =
(

vh

vz − w(h)

)

Figure 2.2: Planar rocket model. Axis, angles and forces. eVr (respectively eOr)
denotes the unit vector parallel (resp. orthogonal) to Vr.

2.2 Planar rocket model
The planar rocket model - a.k.a. 2D model - is described by its altitude h, its vertical
speed vh, its horizontal position z, its horizontal speed vz and its total mass m. As
mentioned above, vh ≤ 0.

The rocket is equipped with its own orthonormal frame (CA, CN), where CA is
parallel to the rocket body and oriented towards the engine, as pictured in Figure 2.2.
To alleviate the writing, the vector pointing in the direction opposite to CA is noted
eA := −CA.

The rocket orientation - or attitude - is defined by a single signed angle θ,
formed by the angle between the vertical axis eh and the rocket main axis. Thus,
when the rocket flies purely vertically, one has θ = 0◦. The incidence is defined as
the signed angle α between the relative speed and the vector CA. The unit vector
associated to the relative speed is denoted eVr . The unit vector orthogonal to eVr is
denoted eOr , and is s.t. (eVr , eOr) is positively oriented, as shown in Figure 2.2. A
geometric relation gives

tan(θ + α) = vz − w(h)
|vh|

.

As introduced in Section 2.1.1, the wind map is denoted w(h) and parametrized by
the three values wz,0, wz,1 and wz,2. The equations of motion (EoM) are

2.2. Planar rocket model 21

ḣ = vh (2.3a)

v̇h = −g + L sin θ + (T + D) cos θ

m
(2.3b)

ż = vz (2.3c)

v̇z = L cos θ − (T + D) sin θ

m
(2.3d)

where

T := gIspqr − Pa(h)SE , (2.4a)

Vr :=
√

v2
h + (vz − w(h))2, (2.4b)

D := 1
2ρ(h)V 2

r SrefCDrag(Ma, α), (2.4c)

L := 1
2ρ(h)V 2

r SrefCLift(Ma, α). (2.4d)

Adding the mass dynamics and using the fact that the vertical speed is assumed to
be always negative (see Section 2.1.3.3), we can write the EoM

ḣ = vh

v̇h = −g + ((T + D)|vh|+ Lvz) cos α + ((T + D)vz − L|vh|) sin α

Vrm

ż = vz

v̇z = (−(T + D)vz + FL|vh|) cos α + ((T + D)|vh|+ Lvz) sin α

Vrm

ṁ = −qr

The 2D rocket variables are

(States) x := (h, vh, z, vz, m)⊤ ∈ R5,

(Controls) u := (qr, α)⊤ ∈ R2,

(Parameters) η := (∆Isp, wz,0, wz,1, wz,2)⊤ ∈ R4,

where the parameter ∆Isp is incorporated into Equation (2.4a) s.t. it becomes

T = g(Isp + ∆Isp)qr − SEP (h).

This yields the dynamic function f2d of the 2D rocket model:

ẋ = f2d(x, u, η).

Remark 3. Since the 2D rocket model serves illustrative purposes, it relies on the
simplifying assumption that the engine flow dynamics (2.2) is instantaneous, and
that qc is its control variable. However, this engine dynamic will not be neglected in
the 3D model.

22 Chapter 2. Dynamic models and the PDG problem

ez ey

eh

Ψ

Ψ

Ψ

CP

eh′

ξ

ξ

ξ

CN

eA = −CA

CA

Vr

Yaw: Ψ
Pitch: ξ
Here, Ψ > 0, ξ > 0.

•

Figure 2.3: Rocket orientation, based on yaw (Ψ) and pitch (ξ) angles. First,
(ez, ey, eh) is rotated by Ψ around ez, giving (ez, CP , eh′). Then, the later is rotated
by ξ around CP to give (CN , CP , eA). Finally CA = −eA, leading to the orthonor-
mal basis (CN , CA, CP).

Normal acceleration

The normal acceleration anor is defined as the non-gravitational acceleration orthog-
onal to the relative speed. Thus, it equals

anor = eOr ·




v̇h + g

v̇z


 (2.6)

where · is the inner product. For the 2D model, anor is signed.

2.3 Three-dimensional rocket model
The 3D rocket model has been designed to match the 2D model as closely as possible
when the rocket trajectory remains in a plane. Thus, some concepts easily translate
from one model to the other. Transposing the notions of incidence and attitude in
3D is, however, a delicate part.

First, we introduce a series of frames that are necessary to define the rocket orien-
tation in 3D. Then, we express the aerodynamic model, and formulate the associated
EoM. Finally, some comments on the specifics of the 3D model are provided.

2.3. Three-dimensional rocket model 23

2.3.1 Orientation frames

The rocket is axially symmetric, making the notion of roll irrelevant. Two angles
are used to describe its orientation.

First, we introduce the rocket yaw and pitch using Euler angles, which enables
us to define a frame attached to the rocket body. Then, this frame is re-written
using projected angles, which are more convenient for our applications.

2.3.1.1 Rocket orientation frame

As shown in Figure 2.3, the Earth’s frame is (ez, ey, eh). The rocket, initially3

positively colinear to eh, is oriented using the yaw Ψ first, and then using the pitch
ξ, as explained in Figure 2.3. Mathematically, this translates into

CP := R (ez, Ψ) ey

CN := R (CP , ξ) ez

eA := R (CP , ξ)R (ez, Ψ) eh

CA := −eA

where the vectors (CN , CA, CP) define a new direct orthonormal frame, attached
to the rocket body. Expressed in the frame (ez, ey, eh), the latter gives

CN =




cos ξ

sin ξ sin Ψ

− sin ξ cos Ψ




, CA =




− sin ξ

cos ξ sin Ψ

− cos ξ cos Ψ




, CP =




0

cos Ψ

sin Ψ




. (2.7)

2.3.1.2 Projected angles

The above-defined angles Ψ and ξ define the orientation of eA. When projected
onto the plane (eh, ez) (respectively (ey, eh)), the vector eA has an angle ζy (resp.
ζz) with the vector eh. Note that, in terms of vector labeling, the angle on the
plane (eh, ez) corresponds to a rotation on the axis ey. The angles are illustrated in
Figure 2.4. The expression of eA writes

eA = 1√
1 + tan2 ζz + tan2 ζy




tan ζy

− tan ζz

1




(2.8)

and is valid for |ζz| < 90◦ and |ζy| < 90◦.
The steps used to derive formula (2.8) are as follows. Consider the square pyra-

mid defined by a square on plane (ez, ey) with its summit being at the top of eA.
As shown in Figure 2.4, denote by v its height, and hz (resp. hy) its base length

3In the sense of the successive rotations defining the rocket body frame.

24 Chapter 2. Dynamic models and the PDG problem

ez

ey

eh

Ψ

Ψ

Ψ

CP

eh′

ξ

ξ

ξ

CN

eA = −CA

CA

Rocket
rear

•

v

hy

hz

ζy

ζz

Here, Ψ > 0
and ξ > 0. eh

ez

eA (Oop)

ζy

ζy

ey

eheA (OoP)

ζz

ζz

Figure 2.4: Angles ζz and ζy in the frame (ez, ey, eh), for the proof of Equation (2.8).

orthogonal to ez (resp. ey). Here, v, hz and hy are taken unsigned. Then, using
basic geometry, one has

1 = v2 + h2
z + h2

y, tan ζz = hz

v
, tan ζy = hy

v

which gives

v = 1√
1 + tan2 ζz + tan2 ζy

, hz = v tan ζz, hy = v tan ζy.

Using the proper signs for eA, as shown in Figure 2.4, one has eA = (hy,−hz, v)⊤,
hence (2.8).

Remark 4. Equation (2.7) is well defined whatever the values of Ψ and ξ. However,
Equation (2.8) has a singular definition when ζz = 90◦ or ζy = 90◦. This raises
multiple comments:

1. In all the scenarios studied in the thesis, only close-to-vertical trajectories are
considered, where the rocket remains far from these singularities.

2. The singularity in Equation (2.8) is only a problem of definition. Indeed, eA

can be extended by continuity everywhere, except when ζz and ζy equal ±90◦

simultaneously. For example, for a given |ζy| < 90◦, then eA(ζz) −→
ζz↑90◦

ez.

3. One could legitimately wonder whether a numerical method could fall into one
of these singularities during intermediate computations. As far as this thesis
is concerned, the guidance methods exposed below only require the evaluation
of the dynamic function f and its derivatives along a prescribed reference tra-
jectory before the flight (more details on this topic in Section 4.3). Since the
evaluation of f is not required on-board, this singular definition at ±90◦ does
not present any risk for our applications.

2.3. Three-dimensional rocket model 25

Equation (2.7) and (2.8) and eA = −CA convey enough information to establish
the change of variables between (Ψ, ξ) and (ζz, ζy). By taking the ratio of the first
two components of eA, the following relations are obtained

Ψ = ζz and tan ξ = cos Ψ tan ζy. (2.9)

Then, using the shortcuts tz := tan ζz, ty := tan ζy and tz,y :=
√

1 + t2
z + t2

y, we get

CN = 1
tz,y




1
cos ζz

ty sin ζz

−ty cos ζz




, CA = 1
tz,y




−ty

tz

−1




and CP =




0

cos ζz

sin ζz




. (2.10)

2.3.2 Dynamics

To express the aerodynamic forces, the orientation of the relative speed vector has
to be defined. Then, lift and drag vectors are formulated. Finally, the dynamic
equations are expressed.

2.3.2.1 Relative speed definition

To describe the orientation of the relative speed vector w.r.t. the rocket body, we
introduce the incidence variables for the 3D model.

The speed vector is V := (ż, ẏ, ḣ)⊤ = (vz, vy, vh)⊤. The horizontal wind vector
is w := (wz(h), wy(h), 0)⊤. Thus, the relative speed is

Vr := V−w =




vz − wz(h)

vy − wy(h)

vh




.

The unit vector of the relative speed vector Vr is denoted eVr . We can define the
orientation of eVr using projected angles. The angles αy and αz are introduced s.t.
the angles defining the position of eVr w.r.t. the base frame using projected angles
are ζy + αy and ζz + αz. They are represented in Figure 2.5. Since eVr is defined
equivalently as eA in Equation (2.8), its expression is

eVr = 1√
1 + tan2(αz + ζz) + tan2(αy + ζy)




− tan(αy + ζy)

tan(αz + ζz)

−1




. (2.11)

Then, knowing the expressions of CA and eVr , we can define the incidence as the
unsigned angle between these vectors, leading to the expression

α = arcsin




√
(Tz − tz)2 + (Ty − ty)2 + (Tzty − Tytz)2

√(
1 + t2

z + t2
y

) (
1 + T 2

z + T 2
y

)


 . (2.12)

26 Chapter 2. Dynamic models and the PDG problem

eh

ez

eA

CA

eVr

Vr

ζy

ζy

αy + ζy

αy |vh|

−(vz − wz(h))

•
ey ey

eh

eA

CA

Vr

ζz

ζz

αz + ζz

αz

eVr

vy − wy(h)

|vh|

•ez

Here, ζz > 0 and ζy > 0.

Figure 2.5: Representation of the projected angles: ζz, ζy, αz, αy. Note that CA, eVr

and Vr are not coplanar to (ez, eh) nor (ey, eh).

where tz = tan ζz, ty = tan ζy, Tz = tan(αz + ζz) and Ty = tan(αy + ζy), to alleviate
the writing. This expression stems from Equations (2.10) and (2.11) and

∥CA × eVr∥ = ∥CA∥ ∥eVr∥ sin ĈA, eVr = sin α

where

CA × eVr = 1√
(1 + t2

z + t2
y)(1 + T 2

z + T 2
y)




Tz − tz

ty − Ty

Tytz − Tzty




.

where × is the cross product. Then, from the definition of Vr and the definition of
the projected angles, we have

tan(αz + ζz) = vy − wy(h)
|vh|

and tan(αy + ζy) = −vz − wz(h)
|vh|

. (2.13)

Note that, in Equation (2.14), the “z” indices in the angles correspond to the “y”
indices in the speed (and vice-versa). Also, beware of the fact that the signs are
different. Inverting the previous relations w.r.t. ζz and ζy yields

ζz = −αz + arctan vy − wy(h)
|vh|

and ζy = −αy − arctan vz − wz(h)
|vh|

. (2.14)

2.3. Three-dimensional rocket model 27

2.3.2.2 Aerodynamic effects

Lift and drag can be defined using (CN , CA, CP). Indeed, the drag D is colinear to
CA, in the opposite direction to Vr. Only low-incidence flight is considered, and D
is positively colinear with −CA.

Moreover, in consistency with the aerodynamic model described in Section 2.1.2,
the axial symmetry of the 3D rocket model implies that L, CA and Vr are linearly
dependent, and that L must belong to the plane (CP , CN). Therefore, as illustrated
in Figure 2.6, one can define the lift and drag vectors as

L = L.eL and D = −D.CA,

where the magnitudes L and D equal

L = 1
2ρ(h) V 2

r Sref CLift(Ma, α) and D = 1
2ρ(h) V 2

r Sref CDrag(Ma, α).

The direction eL of the lift requires further attention, since the lift orientation is
defined only when the incidence is not zero. When it is well defined, the vector
eL is a unit vector, positively colinear to the projection of −eVr lying in the plane
(CP , CN). Thus, it can be expressed as

eL := − (eVr ·CN)CN + (eVr ·CP)CP

∥(eVr ·CN)CN + (eVr ·CP)CP ∥
= − eVr − (eVr ·CA)CA

∥eVr − (eVr ·CA)CA∥
(2.15)

when eVr is not colinear to CA and eL = 0 otherwise. This apparent discontinuity
is actually not troublesome. Indeed, for α > 0, the vector eL can be equivalently
defined as

eL = CA ×
CA × eVr

∥CA × eVr∥
= CA × (CA × eVr)

sin α

which yields the following expression for the lift

L = L.eL = 1
2ρ(h)V 2

r Sref
CLift(Ma, α)

sin α
CA × (CA × eVr).

For any fixed Mach number Ma, the map α 7→ CLift(Ma, α) is assumed continu-
ously differentiable and it equals zero at α = 0. Thus, the ratio CLift(Ma,α)

sin α remains
bounded when α tends to zero. Also, CA×eVr tends to zero when eVr tends to CA.
Consequently, the expression of eL does not matter when α = 0, which is a false
singularity.

Remark 5. Here, the coefficient CLift is positive and only evaluated for positive
values of α. However, note that in the 2D model, α 7→ CLift(Ma, α) is taken odd for
any fixed Mach number Ma and is evaluated on signed values of α.

2.3.2.3 Rocket dynamics in 3D

With g = (0, 0,−g)⊤ denoting the gravity vector, the acceleration vector a equals

a := d

dt
V = g + T + L + D

m

28 Chapter 2. Dynamic models and the PDG problem

CN

CA

CP

D

VreVr

ν

ν

ν

eL

L

eTr

α

α

α

eOr
:= eVr

× eTr

•

CN

CP

eVr
(OoP)

ν

eL

ν

eTr := CA×eVr

∥CA×eVr ∥

ν

(Representation valid for α ̸= 0)

•
CA

Figure 2.6: Relations between the lift, the drag and the relative speed vectors. Here,
the angle ν denotes the oriented angle between CN and L, defined only for α ̸= 0.

where the thrust vector is T = −TCA and its magnitude T is defined in Equa-
tion (2.1).

The dynamics parameters conveyed by the variable η are the Isp via ∆Isp,
multiplicative factors for the aerodynamic coefficients (mL, mD) and the wind pa-
rameters (wz,0, wz,1, wz,2) and (wy,0, wy,1, wy,2) defined in Section 2.1.1. The first
three parameters must be incorporated in the equations s.t.

T = gIspqr − SEP (h) becomes g(Isp + ∆Isp)qr − SEP (h)

L = 1
2ρ(h)V 2

r SrefCLift(Ma, α) becomes 1
2ρ(h)V 2

r Sref(1 + mL)CLift(Ma, α)

D = 1
2ρ(h)V 2

r SrefCDrag(Ma, α) becomes 1
2ρ(h)V 2

r Sref(1 + mD)CDrag(Ma, α)

It allows us to define the 3D rocket variables as

(States) x := (z, y, h, vz, vy, vh, m, qr)⊤ ∈ R8,

(Controls) u := (qr, αz, αy)⊤ ∈ R3,

(Parameters) η := (∆Isp, mL, mD, wz,0, wz,1, wz,2, wy,0, wy,1, wy,2)⊤ ∈ R9

Then, written using blocks, the dynamic equation equals

ẋ = f3d(x, u, η) =




V

g + T+L+D
m

−qr

qc − qr

τq




. (2.16)

2.3. Three-dimensional rocket model 29

States: x
Controls: u

Parameters: η

ζz, ζy

using (2.14)

Tz, Ty

α using (2.12)

CA, CN , CP

using (2.10)

T, L, D f3d(x, u, η)

Figure 2.7: Summary of the workflow computing f3d(x, u, η).

The sequential method used to compute all the expressions involved in f3d is sum-
marized in Figure 2.7. Its implementation has served to produce all the numerical
results of the thesis.

Remark 6. The derivatives of f3d are computed using various methods depending
on the variables considered, to fasten their evaluation. First, note that the expression
of f3d does not depend on z and y. Moreover, its derivative w.r.t. m is simple and
is computed analytically. Finally, finite difference is used to compute the derivatives
w.r.t. the other variables.

2.3.3 Normal acceleration, downrange and attitude

As it will be needed later in our work, we now focus on the acceleration component
normal to the relative speed vector. The unsigned normal acceleration au.s.

nor is defined
as the norm of the part of the non-gravitational acceleration vector normal to the
relative speed. Denoting F = T + L + D yields

au.s.
nor = ∥F− (F · eVr)eVr∥

m
.

Compared to the 2D model, this expression is naturally unsigned. However, the
norm in this expression may bring differentiation issues. Indeed, it will be needed to
differentiate this term later when considering optimization problems (see e.g. (4.6g)
in Chapter 4). Instead of au.s.

nor , we consider an alternate expression that remains
signed (and thus differentiable), see below Equation (2.17).

First remark that, according to the aerodynamic model and as shown in Fig-
ure 2.6, T, D, L, eVr and eL all belong to the plane (eVr , eL), or equivalently to
the plane (eOr , eVr), where eOr and eVr are orthogonal. Consequently, the term
F− (F · eVr)eVr only has a component along eOr , which yields

∥F− (F · eVr)eVr∥ = |F · eOr |

Using the latter expression with the definitions of T, D, L, eVr , eL and CA yields

anor := L cos α− (T + D) sin α

m
. (2.17)

s.t. au.s.
nor = |anor|. Thanks to Equation (2.17), the 3D model also has a term anor

describing the normal acceleration that is signed.

30 Chapter 2. Dynamic models and the PDG problem

2.3.3.1 Downrange

The downrange, or distance of the vertical projection of the rocket to the landing
site, equals d :=

√
z2 + y2.

2.3.3.2 Attitude

The attitude θ is defined as the angle between eh and eA. It is unsigned (contrary
to the planar rocket model). Its expression equals

θ := arcsin
√

sin2 ξ + cos2 ξ sin2 Ψ. (2.18)

2.4 PDG as an Optimal Control Problem
First, we present the general PDG objectives and then write the main OCPs.

2.4.1 Mission goals and constraints

In this sub-section, we present all the constraints of our PDG problem.

2.4.1.1 Landing site target

It is desired to find a trajectory - i.e. states x(t) and controls u(t) - that steers the
rocket from a given initial condition x0 to the landing site in a time tf . Assuming
that the landing site is located at the origin of our coordinate system, the following
end-point constraints are introduced

z(tf) = 0
y(tf) = 0 (For the 3D model only)
h(tf) = 0

vz(tf) = 0
vy(tf) = 0 (For the 3D model only)
vh(tf) = −εf

v

Note that a small non-zero vertical speed at landing (εf
v > 0) is desired. Among

others, this serves to avoid singularity of incidence at tf and gives a margin regarding
the thrust dominance assumption4. These conditions can be written as a linear
equality constraint

Af x(tf) = bf

where Af is filled with zeros and ones only, and bf contains zeros and −εf
v only.

4If the rocket reaches vh = 0 before h = 0, the engine must be stopped, since hovering is
prevented by the thrust dominance assumption. Thus, seeking vh(tf) = −εf

v leaves a small safety
margin.

2.4. PDG as an Optimal Control Problem 31

2.4.1.2 Mechanical bounds

As noted in Section 2.1.3, the rocket has several mechanical limitations. Its engine
flow magnitude and rate of change are bounded. These impose that the real and
controlled flows satisfy

q− ≤ qr ≤ q+ and q− ≤ qc ≤ q+, (2.19)

where q+ > q− > 0.

Remark 7. It should be noted that in the literature, the decision variables often con-
sidered (especially for non-atmospheric missions) are the components of the thrust
vector T itself. The bounded flow constraints are then taken into account through
the constraint Tmin ≤ ∥T∥ ≤ Tmax. In the latter, the lower bound defines an ar-
tificially non-convex constraint. Lossless convexification [2, 27], a method using an
intermediate slack variable, is often used to overcome this problem. However, with
our modeling choices, picking the engine flow as one of the decision variables makes
the constraints described in Equation (2.19) convex, since the constraints of the shape
“q− ≤ q ≤ q+” are used for scalar values of q.

2.4.1.3 Bounded mass

The fuel tank being finite, there are upper and more importantly lower bounds on
the mass

mdry ≤ m ≤ mwet. (2.20)

2.4.1.4 Safety bounds

For safety reasons, it is also desirable to remain within limited incidences. This con-
straint is one of the most important difference between planetary and atmospheric
landing. It writes

|α| ≤ αmax.

This constraint has a straightforward interpretation for the 2D model, since it only
implies a single control variable, α itself. However, it is more intricate for the 3D
model, since α is defined through Equation (2.12) and depends non-linearly on state
and control variables. We choose to impose the following constraints for the 3D
model

|αz| ≤ αmax and |αy| ≤ αmax,

which is not equivalent but conservative.
Moreover, since the guidance trajectory must be tracked by the underlying rocket

control system, it is necessary that this trajectory does not exceed prescribed thresh-
olds of normal accelerations. Thus, we impose

|anor| ≤ amax
nor

where anor is defined in Equation (2.6) for the 2D rocket model, and in Equa-
tion (2.17) for the 3D one.

32 Chapter 2. Dynamic models and the PDG problem

2.4.1.5 Constraints not considered

Other types of constraints can be found in the literature, such as5:

• Landing cone (a.k.a. glideslope) constraints [1, 35,98],

• Pointing (a.k.a. attitude) constraints [35],

• Thermal flux (a.k.a. heating rate) constraints [22,106,107],

• Dynamic pressure constraints [22,107].

However, as detailed below, these constraints are not considered here, though this
would be possible as natural extensions.

Landing cone constraints are not considered due to the thrust dominance as-
sumption. Indeed, the class of rockets studied in this thesis naturally performs
landing trajectories with a high slenderness ratio. The same motivation rules out
the pointing constraints.

Thermal flux constraints are critical mechanical requirements for re-entry prob-
lems at hypersonic speeds, when the vehicle directly relies on the atmosphere to
brake [20]. Since the speeds involved for our landing scenarios are high (approxi-
mately between 0 and Mach 2) but not hypersonic6 and considering the unusual air
flow around the rocket, as depicted in Figure 2.1, the thermal flux constraints are
not needed. The same arguments apply for the dynamic pressure constraint.

2.4.2 Formulation as an optimal correction problem

The PDG problem is formulated as an OCP in free-final time, w.r.t. a reference
trajectory.

Regarding the notations, whatever the chosen model is (2D or 3D), the dynamic
function is noted f . The lower and upper control bounds are respectively denoted u−

and u+. The mixed state-control constraints are conveyed by a function c.
As mentioned in the Introduction, we consider that all of the above-mentioned

constraints can be tuned by a parameter p that allows one to adjust their nominal
value. For example, let us say that we parametrize the incidence and the normal ac-
celeration bounds in the planar rocket model, i.e. p = (p1, p2)⊤ = (∆αmax, ∆amax

nor)⊤.
Then, the parameterized constraints become

|α| ≤ αmax + p1 and |anor| ≤ amax
nor + p2.

From a general point of view, we say that all the constraints are parameterized
by p. Therefore, the dependency on p of the right-hand side vector bf , the control
bounds u− and u+, and the mixed state-control constraint c will be highlighted
whenever necessary. It is assumed that p = 0 for a nominal landing. The exact
choice of p varies depending on the mission needs, and will be discussed extensively
in Chapter 5.

5Both pointing and landing cone constraints are well discussed in [58, Fig.19] for instance.
6Note that subsonic, supersonic and hypersonic speeds are usually defined as below Mach 1,

between Mach 1 and Mach 5, and above Mach 5.

2.4. PDG as an Optimal Control Problem 33

Let us consider a reference trajectory, which is described as a quadruplet
(x̄, ū, η̄, t̄f). Such a trajectory can be computed offline, for any given mission, using
well-known and possibly time-consuming numerical methods [24]. It is assumed that
this trajectory satisfies the constraints, i.e. that it satisfies the control constraints
and c(x̄(t), ū(t), η̄, p) ≤ 0 for all times, and that it is dynamically feasible, i.e. that
it satisfies the Initial Value Problem (IVP)





x̄(0) = x̄0,

˙̄x(t) = f(x̄(t), ū(t), η̄), ∀t ∈ [0, t̄f].
(2.21)

At the beginning of the final burn, the gap between the current state and the current
dynamics parameters and their reference values is denoted ∆x0 and ∆η. They are
conveyed by the input variable7 ξ.

Knowing ξ, and the value of p, the mathematical goal of PDG, when formulated
w.r.t. this reference trajectory, is to find a control correction δu and a time-of-
flight correction ∆tf making the rocket land while satisfying all the constraints and
minimizing a certain performance index8 J . For completeness, note that δu belongs
to a functional space defined over [0, t̄f + ∆tf]. We will consider that this space9

equals U(∆tf) := L∞([0, t̄f + ∆tf], Rm) for the definition below, although we will
restrict the problem to a much more specific class of control corrections in Chapter 4.

Definition 1 (Infinite dimensional problem, PDG (ξ, p)). Given a reference de-
scribed by its quadruplet (x̄, ū, η̄, t̄f), where ū is defined over [0, t̄f], find the optimal
time-of-flight change ∆tf and the optimal control correction δu ∈ U(∆tf) for the
optimization problem PDG (ξ, p) defined by

min
δu,∆tf

J (δu, ∆tf) (2.22a)

s.t. ẋ(t) = f(x(t), ū(t . t̄f /(t̄f + ∆tf)) + δu(t), η̄ + ∆η), (2.22b)
x(0) = x̄0 + ∆x0 (2.22c)
Af x(t̄f + ∆tf) = bf (p) (2.22d)
u−(p) ≤ ū(t . t̄f /(t̄f + ∆tf)) + δu(t) ≤ u+(p), (2.22e)
c(x(t), ū(t . t̄f /(t̄f + ∆tf)) + δu(t), η + ∆η, p) ≤ 0, (2.22f)

where conditions (2.22b), (2.22e) and (2.22f) are meant for all t ∈ [0, t̄f + ∆tf].

Remark 8. J is assumed strictly convex. Moreover, for null inputs (i.e. ∆x0 = 0
and ∆η = 0) it has a null minimum (i.e. δu∗ = 0 and ∆t∗

f = 0).

Remark 9. Written this way, the formulation of PDG (ξ, p) suggests that the
bounded mass constraint is enforced over the whole interval [0, tf]. However, since
the engine flow is positive, the mass is decreasing, and thus it is only necessary to
enforce the simpler condition m(t̄f + ∆tf) ≥ mdry in practice.

7The exact definition of ξ will be detailed later, in Equation (4.4).
8The exact performance index used in this thesis is detailed in the examples of Chapter 4.
9L∞ denotes the set of essentially bounded measurable functions.

34 Chapter 2. Dynamic models and the PDG problem

Written in this format, PDG (ξ, p) falls into the field of perturbation methods
for OCPs [11, 32], which is the ground base of Chapter 4. However, this problem is
studied for any values of ∆x0 and ∆η, because we are interested in the solutions of
this problem even for non small values of these inputs.

Summary

In this chapter, we have defined dynamic models of the rocket, for 2D and 3D
motions. The aerodynamic model is the main difference between the planetary
landing problems studied in the literature and atmospheric landing problems. The
general, infinite-dimensional version, of the PDG problem has been defined as finding
the optimal correction (δu, ∆tf) w.r.t. a reference trajectory, while satisfying all the
problem constraints, for given values of ξ and p.

A simpler version of PDG (ξ, p), considering only vertical motion, is considered in
Chapter 3 (which can be skipped without loss of continuity), and Chapter 4 presents
a method to compute an approximation of the solution of the general problem.

Chapter 3

Mathematical properties of the
optimal vertical descent

Résumé

Ce chapitre se concentre sur un cas particulier du problème PDG présenté
précédemment : l’optimisation de la consommation de carburant pour
l’atterrissage vertical. Comme nous l’avons déjà vu, le rapport entre la trans-
lation latérale et la translation verticale est faible. En tant que cas limite, il
est tentant d’étudier d’abord le problème purement vertical. Se concentrer sur
le problème purement vertical permet plusieurs simplifications : il n’y a plus
qu’une seule variable de décision (le débit du moteur) et le modèle aérody-
namique est grandement simplifié. Cela rend l’analyse analytique du problème
envisageable.

Le problème de l’atterrissage atmosphérique vertical optimal en termes de
carburant est ici étudié en tant que problème de Commande Optimale en temps
final libre. La principale contribution établit la nature de la loi de poussée opti-
male en consommation de carburant, en étendant les résultats de la littérature
sur les problèmes sans atmosphère. Des conditions suffisantes et nécessaires
sont fournies qui garantissent la nature Min-Max des extremums normaux. Il
est également démontré que les extremales anormales - au sens du principe du
maximum de Pontryagin (PMP) - sont soit Min, soit Max. Un sous-produit
utile de cette étude est une caractérisation de l’ensemble atteignable pour les
atterrissages verticaux. Cette notion sera réutilisée plus tard dans le chapitre 6
à des fins d’évaluation des performances.

This chapter focuses on a special case of the PDG problem presented previously:
the fuel-optimal vertical landing. As already discussed, the ratio of lateral vs vertical
translation is small. As a limit case, it is tempting to study the limit case of the
purely vertical problem first. Focusing on the purely vertical problem enables several
simplifications: there is only one decision variable left (the engine flow) and the
aerodynamic model is greatly simplified. This makes the analytic analysis of the
problem tractable.

The vertical fuel-optimal vertical atmospheric landing problem is here studied

35

36 Chapter 3. Mathematical properties of the optimal vertical descent

as a free-final time OCP. The main contribution establishes the nature of the fuel-
optimal thrust program, extending results from the literature on atmosphere-free
problems. Sufficient and necessary conditions are provided that guarantee the Min-
Max nature of the normal extremals. Abnormal extremals - in the sense of the
Pontryagin Maximum Principle (PMP) - are also shown to be either Min or Max. A
useful by-product of this study is a characterization of the reachable set for vertical
landings. This notion will be re-used latter in Chapter 6 for performance assessment
purposes.

If necessary, the reader can skip directly to page 49 for a summary of the impor-
tant results. Also, note that this chapter is a detailed version of [65].

3.1 Vertical descent
Historically, Meditch [64] and then Shi & Eckstein [88] have offered analytic solutions
for the (atmosphere-free) vertical Moon landing problem. Since then, due to the
spectacular development of reusable launcher technologies, powered landing strate-
gies have been successfully addressed using numerical methods [16,22,54,79,98,100].
Due to the non-negligible effects of the atmosphere, the analytic results derived for
the Moon landing problem can not be directly adapted to the problem of Earth
landing. Yet, analytical results on this problem would still represent valuable as-
sets. On the one hand, analytic solutions are very useful to assess the quality of the
numerical methods, by providing well-described reference solutions to standardized
problems, see e.g. [20, 33, 42, 43, 77]. Further, when analytical investigations estab-
lish the switching structure of the solution, very efficient numerical methods can be
employed, using a reduced number of unknown variables [33, 77, 99]. For complex
dynamics and high-dimensional systems, obtaining such analytical results is usually
considered as out-of-reach [84]. It is thus of importance to select only dominant
factors while leaving out unnecessary details in the modeling. Following this modus
operandi, we consider a simplified (but not simplistic) representation of the general
powered landing problem and establish a non-trivial result.

The analysis presented in this chapter considers one key element: the effects of
atmosphere. The model under study builds upon the variable-mass model of a rocket
considered in [64] and incorporates atmospheric effects in the form of an altitude-
dependent bias of the thrust only, as introduced in Equation (2.1) in Chapter 2.
In this model of the final phase of the powered landing, the thrust generator is
always turned on1 and the thrust is upper and lower-bounded in a way that prevents
hovering flight (according to the Thrust dominance assumption already presented).

Intuitively, one could expect that it is more efficient to wait until the last feasible
moment to use maximal thrust, as early efforts trying to slow down the rocket are
likely to be less effective due to the varying mass scaling of the dynamics. The con-
tribution of this chapter is to establish conditions under which fuel-optimal vertical
powered landing through the atmosphere is indeed of this expected Min-Max nature.

The arguments of proof are as follows. Under simple assumptions on the at-
mosphere pressure model (decreasingness, convexity), the optimal thrust program is
first shown to have a Max-Min-Max structure, based on the PMP. Compared to [64],

1Note that the ignition time optimization is a different topic.

3.1. Vertical descent 37

some sharper differential inequalities on the adjoint states are necessary to obtain a
conclusion. Also, both normal and abnormal extremals need to be tackled. Then,
using additional inequality constraints derived from the Implicit Function Theorem
(IFT), Min-Max structures are proven to be more fuel-optimal than Max-Min-Max
structures. These conditions can be checked numerically, over a finite domain. It is
also shown that these conditions hold for zero atmosphere (and scarce atmosphere,
using a continuity argument), which makes a connection with [64].

The chapter is organized as follows. In Section 3.1, the dynamics and the powered
landing problem are summarized, in harmony with Chapter 2. In Section 3.2, the
flight envelope is described based on flow analysis and differential inequalities. In
Section 3.3, the optimal thrust program is shown to be Min-Max using the PMP,
the IFT and mild assumptions. Finally, we provide numerical details in Section 3.4,
and concluding remarks in Section 3.5.

3.1.1 Single dimensional rocket model

Following Chapter 2, we describe the rocket having a purely vertical motion by its
altitude h, speed v and total mass m. The dynamics write

ḣ = v, v̇ = −g + T (h, q)
m

, ṁ = −q

where q is the engine flow, and the thrust T defined in Equation (2.1). Because the
engine is firing, the sole effect of the atmosphere is through the atmospheric pressure
in the expression of T . Recall that negative speed conveys descending movement.
During the powered landing, the rocket engine is always firing and q is bounded.

In the problem setup under consideration, the engine flow bounds are s.t. the
net thrust is always positive, i.e. q− is s.t.

acc := g Isp q− − SE max
h≥0

Pa(h) > 0. (3.1)

3.1.1.1 Normalized dynamics

The following normalized variables are introduced

u := 2 q − q−

q+ − q− − 1, y1 := h

g Isp , y2 := v

g Isp , y3 := 2m

q+ − q−

where y := (y1, y2, y3)⊤ denotes the normalized2 states and where

κ := 1
Isp , r := q+ + q−

q+ − q− , π(y1) := Pa(g Isp y1) 2SE

g Isp (q+ − q−) .

This yields the control-affine dynamics in R3

ẏ = f(y) + ug(y), (3.2)
2In the numerical examples of Chapter 4, 5 and 6, the model is normalized for numerical stability,

whereas, in this chapter, it aims at simplifying the writing of the dynamics.

38 Chapter 3. Mathematical properties of the optimal vertical descent

where |u| ≤ 1 and

(Altitude) ẏ1 = y2 (3.3a)

(Speed) ẏ2 = r + u− π(y1)
y3

− κ (3.3b)

(Mass) ẏ3 = − (r + u). (3.3c)

Also, recall that the mass is bounded s.t. m− ≤ y3 ≤ m+.

3.1.2 Assumptions specific to the vertical descent

The problem under study is also described by the two following assumptions.

Assumption 1 (Pressure model properties). The normalized pressure function π,
is of class C2, and π > 0, π′ < 0, π′′ > 0.

This assumption is very general and holds for all reference Earth atmosphere
models, such as [56]. Then, the thrust dominance assumption from Chapter 2 is
re-written as follows.

Assumption 2 (Thrust dominance). ẏ2 ≥ acc > 0.

Assumption 2 implies condition (3.1), shows that the ratio r is greater than 1
and it also prevents hovering. Reaching null speed at a positive altitude is thus an
undesired behavior and is not a steady state.

3.1.3 Optimal Control Problems

A natural goal for rocket landing is to maximize the final mass [64], or equivalently
to minimize the fuel consumption. Landing is defined as final null altitude and (ver-
tical) velocity. A constrained optimal control problem in free final time depending
on an initial state y0 can then be formulated.

Problem 1 (Fuel optimal landing with state inequality path constraints).

min
u(.),tf

∫ tf

0
r + u(s)ds (3.4a)

s.t. ẏ = f(y) + ug(y), (3.4b)
|u| ≤ 1 (3.4c)
y(0) = y0, y1(tf) = y2(tf) = 0 (3.4d)
y1(t) ≥ 0, y2(t) ≤ 0, y3(t) ∈ [m−, m+] (3.4e)

State constraints (3.4e) are meant for any t in [0, tf]. Additionally, we will
consider another formulation where the state constraints (3.4e) have been removed,
as they will be shown to be automatically satisfied.

3.2. Premilinaries on the dynamics 39

Problem 2 (Fuel optimal landing).

min
u(.),tf

∫ tf

0
r + u(s)ds

s.t. ẏ = f(y) + ug(y),
|u| ≤ 1
y(0) = y0, y1(tf) = y2(tf) = 0

Studying Problem (2) will help us describe the solutions of Problem 1.

Remark 10 (Terminology). In the following proofs, maximal solutions of an ordi-
nary differential equation are the solutions that cannot be extended in time.

3.2 Premilinaries on the dynamics
This section aims at describing conditions under which state path inequalities (3.4e)
can be ignored. A detailed study of the dynamics is conducted. First, the altitude
and speed dynamics are studied using surfaces of R3 s.t. any trajectory that lands
must start between these surfaces. This region is called the flight envelope. Then,
the mass constraint is discussed.

Let us denote the domain D := R+ × R− × (0, m+]. Below, we say that a
trajectory starting at some y0 ∈ D lands applying the thrust u(.) if it reaches
y1(tf) = y2(tf) = 0 for some tf > 0. Note that the minimum mass constraint is not
included in the first part of this discussion.

Beforehand, remark that there is a unique time Tu associated to a control u(.) s.t.

y0
3 −

∫ Tu

0
r + u(s)ds = 0. (3.5)

Since r + u ≥ r − 1 > 0, the map t → 1/y3(t) is not integrable near Tu because
of (3.3c). Thus, the maximal solution of (3.2) starting at y0 ∈ D is defined on the
interval [0, Tu). If u ≡ σ is constant, then Tσ = y0

3/(r + σ).

Lemma 1. Let σ ∈ [−1, 1] a constant parameter. For any y0
2 and y0

3, there is
a unique y0

1(σ, y0
2, y0

3) s.t. a trajectory starting at (y0
1(σ, y0

2, y0
3), y0

2, y0
3)⊤ ∈ D lands

when applying the constant thrust u ≡ σ.

Proof. The maximal solution y of (3.2) with u ≡ σ, starting at y0 ∈ D, is defined on
[0, Tσ). y2(.) is continuous, increasing and diverges to +∞ as t tends to Tσ. Thus,
there is a unique time, denoted t∗(y0

1) ∈ [0, Tσ) s.t. y2(t∗(y0
1)) = 0. The IFT applied

with Assumption 2, on equation3

Φf+σg

(
t∗(y0

1), (y0
1, y0

2, y0
3)⊤

)∣∣∣
2

= 0 (3.6)

shows that the application that maps y0
1 into t∗ is actually continuous, and differen-

tiable, for all y0
1 ≥ 0. Then, define

η : z ∈ R+ 7→ Φf+σg(t∗(z), (z, y0
2, y0

3)⊤)
∣∣∣
1
∈ R. (3.7)

3Here ⋆|i denotes the ith component of ⋆.

40 Chapter 3. Mathematical properties of the optimal vertical descent

From the regularity of f +σg, the flow Φf+σg is continuous and thus η is continuous.
Necessarily, η(0) < 0. Moreover, since the acceleration is lower-bounded by acc, it
is possible to find an altitude ycrit

1 > 0 large enough s.t. η(ycrit
1) > 0. Therefore,

there is a y∗
1 ≥ 0 s.t. η (y∗

1) = 0. Using tf = t∗ (y∗
1), one has y1(tf) = y2(tf) = 0 by

construction of η. A comparison argument, as in the proof of Proposition 1, shows
that η is actually increasing, proving the uniqueness of y∗

1. It yields y∗
1 = y0

1(σ, y0
2, y0

3)
using the above-mentioned variables.

Let us denote Σmax (respectively Σmin) the set of initial conditions s.t. landing
is successful, at mass yf

3 ∈ (0, m+], when applying a constant maximum (resp.
minimum) thrust. Denoting

ymax
1 (y2, y3) := y0

1(1, y2, y3),
ymin

1 (y2, y3) := y0
1(−1, y2, y3),

yields

Σmax := {(ymax
1 (y2, y3), y2, y3) : y2 ≤ 0, y3 ∈ (0, m+]},

Σmin := {(ymin
1 (y2, y3), y2, y3) : y2 ≤ 0, y3 ∈ (0, m+]}.

Moreover, using flows of the backward-time dynamics, for σ ∈ [−1, 1], define

Σσ :=
{

Φ−(f+σg)
(
t, (0, 0, yf

3)⊤
)

: 0 ≤ t ≤ m+ − yf
3

r + σ
, 0 < yf

3 ≤ m+
}

which provides the relations Σmax = Σ1 and Σmin = Σ−1. It is noteworthy that
ymax

1 (y2, y3) ≤ ymin
1 (y2, y3), implying that Σmax is always “below” Σmin, as pictured

in Figure 3.2.
Note that the applications ymin

1 and ymax
1 are continuous: this property stresses

the continuity of the flows and the formal definition of Σσ. Continuity can also be
proven using the IFT on function η from Equation (3.7), considering y0

2 and y0
3 as

variables.

Proposition 1. For any y0 ∈ D, if ymin
1 (y0

2, y0
3) < y0

1 then for any control u(.) in
[−1, 1] the dynamics reaches null speed at a positive altitude.

Proof. Consider y0 ∈ D s.t. ymin
1 (y0

2, y0
3) < y0

1 and denote

ỹ0 := (ymin
1 (y0

2, y0
3), y0

2, y0
3)⊤.

Let ỹ be the maximal solution of (3.2) with u ≡ 1 and y be the maximal solution
of (3.2) for some measurable function u satisfying |u| ≤ 1 at all times. y starts at
y0 and ỹ at ỹ0. They are respectively defined on [0, T1) and [0, Tu), where Tu ≤ T1.
Using mass as a time-varying scaling, we get




ẏ1(t)

ẏ2(t)


 ≥ K


t,




y1(t)

y2(t)





 :=




y2(t)

−κ + r−1−π(y1(t))
y0

3−t(r−1)




3.2. Premilinaries on the dynamics 41

for any t ∈ [0, Tu). By construction, ỹ satisfies the equality version of this equation.
Thus, comparison Lemma 13 (in Appendix) yields

ỹ1(t) ≤ y1(t), ỹ2(t) ≤ y2(t), ∀t ∈ [0, Tu).

Since y2 is continuous, increasing and diverges as t → Tu, there is a unique t∗ ∈
[0, Tu) s.t. y2(t∗) = 0. Therefore, y1(t∗) ≥ ỹ1(t∗) ≥ 0. Using a Taylor expansion
on (3.3a) with the initial conditions shows that the last inequality is strict, whence
the proposition.

Using a very similar proof, one shows the following result.

Proposition 2. For any y0 ∈ D, if ymax
1 (y0

2, y0
3) > y0

1 then for any control u(.) in
[−1, 1] the dynamics reaches null altitude at a negative speed.

Proposition 1 defines the notion of being too high, meaning that if the rocket
starts its powered descent above Σmin (in terms of altitude), then it will either lack
fuel before reaching null speed, or go back up before touching the ground and then
lack fuel at a non-zero altitude. In both cases, landing fails. Proposition 2 is the
exact equivalent for the notion of being too low, meaning that the rocket will hit the
ground at a non-zero speed if it starts below Σmax.

Further, note that if a trajectory lands s.t. the mass remains in [m−, m+], then
the acceleration is upper-bounded by ācc := −κ + r+1

m− for any positive time. Since
the fuel flow is lower-bounded, the mass can remain in [m−, m+] for at most Tmax :=
m+−m−

r−1 Therefore, for any positive time, the speeds are lower-bounded by y2 and
the altitudes are upper-bounded by ȳ1 s.t.

y2 := −āccTmax and ȳ1 := ācc
T 2

max
2 . (3.8)

Let us define F ⊂ D the flight envelope, as the set of states y lying between Σmax
and Σmin (in terms of altitude), and satisfying

y1 ≤ ȳ1, y2 ≥ y2, and m− ≤ y3 ≤ m+. (3.9)

Consequently, if y0 ∈ F and Problem (2) has a solution, then altitude and speed
constraints are enforced. If y0 ∈ D\F , then Problems 1 and 2 cannot have solutions.

Leaving out the limit cases of Σmax and Σmin, for which landing can be achieved
by applying, respectively, the maximum and the minimum thrust, for the whole
duration of the flight, we introduce

F∗ := F\(Σmax ∪ Σmin). (3.10)

The following result discusses feasibility of the landing. Optimality will be studied
later on in Section 3.3.

Proposition 3. If y0 belongs to F∗, then there is always a control u of structure
Min-Max that lands.

42 Chapter 3. Mathematical properties of the optimal vertical descent

Proof. The Min-Max structure denotes a 2 step sequence starting with minimum
value of the control and ending with maximum value. For such y0, denote ỹ0 :=
(ymin

1 (y0
2, y0

3), y0
2, y0

3) ∈ Σmin. Since y0 ∈ F∗, then

ymax
1 (y0

2, y0
3) < y0

1 < ymin
1 (y0

2, y0
3).

Let us denote y and ỹ the maximal solutions of Equation (3.2) with u ≡ −1,
starting respectively at y0 and ỹ0. Then, using similar comparisons as in the previous
proof, one obtains y1(t) < ỹ1(t) and y2(t) < ỹ2(t) for all positive times. Thus, one
deduces that y1 reaches zero at some time t′ > 0, before y2 does. Moreover, the map

ξ : t ∈ [0, t′]→ y1(t)− ymax
1 (y2(t), y3(t)) ∈ R (3.11)

is continuous, and satisfies ξ(0) > 0 since the trajectory starts strictly above Σmax,
and ξ(t′) < 0 since (0, y2(t′), y3(t′)) is necessarily below Σmax in terms of altitude
(recall that y2(t′) < 0). Thus, there exists a time t′′ ≤ t′ s.t. y(t′′) ∈ Σmax. The
desired Min-Max control law equals −1 on [0, t′′) and +1 for times t ≥ t′′.

As far as the mass is concerned, since it is a continuous decreasing function of
time, enforcing the terminal constraint y3(tf) ≥ m− is sufficient to guarantee the
mass constraint (3.4e).

Therefore, only the simplified Problem (2) needs to be solved. If there is a solution
that satisfies y3(tf) ≥ m−, then Problem (1) shares the same solution. Otherwise,
if y3(tf) < m−, then Problem (1) has no solutions. Indeed, since the solution is
fuel-optimal, there is no other way to land with a greater final mass.

3.3 Optimal thrust programs
This section focuses on Problem (2) exclusively, which, according to the previous
discussion gives an answer to Problem (1) or proves its infeasibility. We aim at
proving that optimal controls are of Min-Max nature, where one of the min or max
arcs may be absent. To establish this result (Theorem 1), we proceed as follows.
First, stationary conditions are derived from the PMP. Then, using properties of
the second adjoint state variable, the optimal thrust program is shown to be Max-
Min-Max. Finally, the first maximum arc is shown to be absent under one (mild)
additional assumption on the atmosphere model (Assumption 4).

3.3.1 Fuel Optimal Landing

Consider y0 ∈ F . Let u be an optimal thrust program for Problem (2) and y
be the corresponding trajectory. Let tf be the time-of-flight. It is assumed that
y3(tf) ≥ m−. Thus, from the previous section, y lies in F .

The Hamiltonian of Problem (2) is defined as

H := λ0(r + u) + λ⊤(f(y) + ug(y)) (3.12)

where λ0 ∈ R and λ : [0, tf] → R3 denote the adjoint states. To study the control-
affine Hamiltonian, consider the switching function

Γ(t) := λ0 + λ(t)⊤g(y(t)) = λ0 + λ2(t)
y3(t) − λ3(t). (3.13)

3.3. Optimal thrust programs 43

The PMP, as stated in [84, Thm. 2.2.1], yields

(λ0, λ(t)) ̸= 0R4 , ∀t ∈ [0, tf] (3.14a)

λ̇1 = λ2
π′(y1)

y3
(3.14b)

λ̇2 = − λ1 (3.14c)

λ̇3 = λ2
y2

3
(r + u− π(y1)) (3.14d)

u = − Sgn (Γ(t)) , when Γ(t) ̸= 0 (3.14e)

λ(tf) =
(

ν1 ν2 0
)⊤

, (ν1, ν2) ∈ R2 (3.14f)

Equation (3.14a) states the non-triviality of the adjoint states. Following [24]
and [102, Thm. 7.8.1], since the integral cost, the dynamics and the end-point
constraints are time-invariant, the Hamiltonian is constant along the extremals and
for such a free time, fixed endpoint problem, this constant is zero:

H(t) ≡ 0, ∀t ∈ [0, tf]. (3.15)

The optimal pairs (y, u) are called abnormal extremals [6,68] if λ0 = 0, and normal
extremals if λ0 ̸= 0. We now proceed to establish some intermediate results on the
adjoint states.

Proposition 4. (λ1(t), λ2(t)) ̸= (0, 0) for all t ∈ [0, tf].

Proof. The linear time-varying dynamics of (λ1, λ2) is Lipschitz in (λ1, λ2) and con-
tinuous in time. Therefore, from the Cauchy-Lipschitz theorem, any maximal solu-
tion is unique. Thus, if there is a t0 s.t. (λ1, λ2)(t0) = 0, then λ2 ≡ 0 over [0, tf],
implying λ3 ≡ 0 from (3.14d) and (3.14f) and then λ0 = 0 from (3.15), violating
(3.14a).

Now, remark that the sign of λ2 and λ̇2 can be extrapolated from the following
second-order equation

λ̈2 = a(t)λ2, where a(t) := −π′(y1(t))
y3(t) > 0. (3.16)

Indeed, the cones R+ × R+ and R− × R− are both invariant through the dynamics
(3.16). This shows that if λ2 or λ̇2 is null at some tλ ∈ (0, tf), then they will both
remain in one of these cones after tλ. Further, from Proposition 4 and (3.16), they
will actually remain in interior subsets of these cones for times t > tλ. Hence, by an
exhaustive enumeration of possible cases we can state the following result.

Proposition 5. (λ2, λ̇2) necessarily match one of these conditions, as illustrated in
Figure 3.1:

1. λ2 and λ̇2 are never zero on (0, tf):

(a) λ2 > 0 and λ̇2 > 0 on (0, tf),

44 Chapter 3. Mathematical properties of the optimal vertical descent

𝜆2

ሶ𝜆2

(0, 0)

1a

1b1d

1c
2b

2a

3b

3a

Figure 3.1: Possible scenarios for (λ2, λ̇2). The origin is prohibited due to Proposi-
tion 4.

(b) λ2 > 0 and λ̇2 < 0 on (0, tf),
(c) λ2 < 0 and λ̇2 > 0 on (0, tf),
(d) λ2 < 0 and λ̇2 < 0 on (0, tf),

2. There is a unique tλ ∈ (0, tf) s.t. λ2(tλ) = 0 and λ̇2 ̸= 0 on [0, tf]:

(a) Sgn (λ2(t)) = −Sgn (t− tλ) and λ̇2 < 0,
(b) Sgn (λ2(t)) = Sgn (t− tλ) and λ̇2 > 0,

3. There is a unique tλ ∈ (0, tf) s.t. λ̇2(tλ) = 0 and λ2 ̸= 0 on [0, tf]:

(a) Sgn
(
λ̇2(t)

)
= −Sgn (t− tλ) and λ2 < 0,

(b) Sgn
(
λ̇2(t)

)
= Sgn (t− tλ) and λ2 > 0.

Note that for scenarios 1a and 1d (resp. scenarios 1b and 1c), either λ2 or
λ̇2 can be zero at t = 0 (resp. at t = tf). Also, note that for scenario 2, λ2 is
necessarily non-zero at t = 0 and t = tf since λ̇2 is of constant sign. The same kind
of remark applies to scenario 3 as well. The goal is to state whether these scenarios
are consistent with conditions (3.14a)-(3.14f), and if so to what control structure
they refer to.

Proposition 6. Abnormal extremals are optimal programs of constant thrust.

Proof. For abnormal extremals, λ0 = 0. Using Equation (3.15) at t = tf yields ν2 =
0 = λ2(tf). Thus, from Proposition 5, λ2 has a constant non-zero sign over [0, tf).
Moreover, from (3.14d) and (3.14f), one has

Sgn (λ3(t)) = −Sgn (λ2(t)) , ∀t ∈ [0, tf). (3.17)

Therefore, for any t ∈ [0, tf): Sgn(Γ(t)) = Sgn(λ2). Hence, u has a constant value
in {−1, +1} over [0, tf).

This latest proposition shows that abnormal extremals require the initial state y0

to be on constant thrust trajectories achieving landing, i.e y0 ∈ Σmax or y0 ∈ Σmin
must hold for these extremals.

3.3. Optimal thrust programs 45

From now on, we consider normal extremals only, and, without loss of generality4,
we consider λ0 = 1. Let us define

b(t) := π(y1(t))
y3(t)

Note that from Assumption 1 and the sign of y2, one can show that a(.) and b(.)
are increasing from a study of their derivatives. Also, for all times in [0, tf], a and
b are respectively lower and upper-bounded by

a := −π′(ȳ1)
m+ and b̄ := π(0)

m− . (3.18)

Let us define γ(t) := λ̇2(t) + λ2(t)b(t), which satisfies

dΓ
dt

(t) = Γ′(t) = γ(t)
y3(t) (3.19)

Since y3 is positive, γ carries the sign of Γ′. From this point, Γ is the subject of our
investigations.

Lemma 2. If γ < 0 over (0, tf), then Γ is null at most on a single t ∈ [0, tf].

Lemma 3. Γ < 0 in the left-neighborhood of tf .

Proof. Equation (3.15) at tf yields ν2 = −(r + u(tf))/ẏ2(tf). Thus, one gets

Γ(tf) = −κy3(tf) + π(0)
y3(tf)ẏ2(tf) < 0.

The conclusion follows from the continuity of Γ(.).

λ2 must be non-positive in a neighborhood of tf . Indeed, let us assume that there
is a time t′ s.t. λ2 is positive on [t′, tf). Note that λ2(tf) may be null. Then, using
(3.14d) and (3.14f), λ3 would necessarily be negative on [t′, tf), leading to Γ(t) > 0
for t in [t′, tf], which contradicts Lemma 3. This eliminates scenarios 1a, 1b, 2b
and 3b.

Moreover, note that scenario 1d necessarily corresponds to Min-Max programs,
where one arc may be absent, for it satisfies Lemma 2.

Then, the three remaining scenarios, namely 1c, 2a and 3a, require a refined
sign study of λ2 and λ̇2. Using differential equations bounding λ2, we can establish
bounds on γ tight enough to derive valuable sign information.

Definition 2. For a constant c > 0 and t0 ∈ (0, tf), the C2 scalar function xc is
defined over [0, tf] as the unique solution of the initial value problem

ẍc = cxc with xc(t0) = λ2(t0) and ẋc(t0) = λ̇2(t0)

which yields

xc(t) = λ2(t0) cosh
(√

c(t− t0)
)

+ λ̇2(t0)√
c

sinh
(√

c(t− t0)
)

.

4Equations being linear in λ, one can consider λ/λ0 instead of λ.

46 Chapter 3. Mathematical properties of the optimal vertical descent

Inspired from the definition of γ (from (3.19) and before), let us denote

γc(t) := ẋc(t) + xc(t)b(t) (3.20)

and introduce zλ := (λ2, λ̇2)⊤ and z := (xa, ẋa)⊤ s.t.

żλ = F (t, zλ) :=




0 1

a(t) 0


 zλ. (3.21)

The next proofs require the following assumption.

Assumption 3. The constants in (3.18) are s.t. b̄ <
√

a.

Remark 11. Assumption 3 depends on b̄ and a, which depend on the bounds on y2
and y1. Though the estimates of y2 and ȳ1 provided in Equation (3.8) are coarse,
they are sufficient for the numerical application discussed below. If needed, analytic
bounds sharper than (3.8) could be computed.

Proposition 7. For scenario 2a, γ(t) < 0,∀t ∈ [0, tf].

Proof. Here, λ̇2 < 0 and Sgn (λ2(.)) = −Sgn (.− tλ), where tλ ∈ (0, tf). In this
proof only, we consider the functions from Definition 2 with t0 = tλ. It leads to

γa(t) = λ̇2(tλ)
(

cosh (√a(t− tλ)) + b(t)√
a

sinh (√a(t− tλ))
)

.

For any t > tλ, γa(t) < 0. Since a increases, scenario 2a yields zλ(tλ) = za(tλ) and
for any t ∈ [tλ, tf]

żλ(t) = F (t, zλ(t)) and ża(t) ≤ F (t, za(t)). (3.22)

Comparison Lemma 13 yields zλ(t) ≤ za(t) on [tλ, tf]. As a consequence

γ(t) ≤ γa(t) < 0, ∀t ∈ [tλ, tf]. (3.23)

For any t < tλ, γa(t) < 0 when Assumption 3 is satisfied. The same reasoning
applies, except that λ2(t) > 0 this time, and that the comparison Lemma 13 has
to be applied in backward-time. It shows that γ(t) ≤ γa(t) < 0 for any t ∈ [0, tλ],
whence the desired property.

Lemma 3 and Proposition 7 imply that the sign of Γ changes at most once over
[0, tf] for scenario 2a.

Lemma 4. If λ2 < 0 over [0, tf], if γ(tγ) = 0 for some tγ ∈ (0, tf) and if Assump-
tion 3 holds, then: γ(t) < 0, ∀t > tγ.

Proof. By construction λ2(tγ) = −λ̇2(tγ)/b(tγ). Necessarily, λ̇2(tγ) > 0. In this
proof only, we consider the functions from Definition 2 with t0 = tγ . It yields

γa(t) = λ̇2(tγ)
[(

1− b(t)
b(tγ)

)
cosh (√a(t− tγ)) + b(t)b(tγ)− a

b(tγ)√a
sinh

(√
c(t− tγ)

)]

3.3. Optimal thrust programs 47

Since b increases, the factor associated to the cosh term is negative. Also, Assump-
tion 3 yields

b(t)b(tγ)− a ≤ (b(t) +√a)(b(t)−√a) < 0 (3.24)

Thus, γa(t) < 0 for t > tγ . Moreover, zλ(tγ) = za(tγ) holds and since λ2 < 0, for
any t ∈ [tγ , tf]

żλ(t) = F (t, zλ(t)) and ża(t) ≤ F (t, za(t)). (3.25)

The conclusion stems from comparison Lemma 13.

Proposition 8. Under the assumptions of Lemma 4, the sign of Γ changes at most
twice on [0, tf].

Proof. γ can be zero at most on an isolated point. Indeed, γ is continuous and if
there is t0 s.t. γ(t0) = 0, then, from Lemma 4, it cannot be zero for greater times.
Therefore, from (3.19), Γ can be zero at most on two isolated points.

Proposition 8 shows that the two remaining scenarios (1c and 3a) correspond to
Max-Min-Max structures. It enables us to state the main result below.

Proposition 9. Under Assumptions 1, 2 and 3, and for y0 in F , any solution of
Problem (2) is necessarily a Max-Min-Max thrust program, where one or two arcs
may be absent.

3.3.2 Optimality of Min-Max Programs

We shall now discuss under which conditions Min-Max trajectories are always more
fuel-optimal than Max-Min-Max trajectories, for some y0 ∈ F∗.

Let us consider a trajectory y starting at y0, with thrust structure Max-Min-
Max. Denote t1 its first time of switch (from max to min). The last max arc may
be of null duration. Then, for every time t′

1 ∈ [0, t1], there is a trajectory with
thrust structure Max-Min-Max, with first time of switch t′

1, that lands, which is
guaranteed by applying Proposition 3 at t′

1. Below, we derive conditions under
which the trajectory having the smallest first time of switch has the highest final
mass, showing that the Min-Max trajectory starting from y0 is fuel-optimal.

The second time of switch, denoted t2, and the final time tf are implicitly im-
posed by t1 so that the rocket lands. This relation will be given later. For the time
being, note that the final mass, denoted yf

3 , satisfies

y0
3 − yf

3 (t1) = (r + 1)t1 + (r − 1)(t2(t1)− t1) + (r + 1)(tf (t1)− t2(t1)). (3.26)

The first two components of y are collected in µ(y), i.e. µ(y) := (y1, y2)⊤. The
landing condition is simply µ(y(tf)) = 0. Define

L(τ1, τ2, τf) := µ
(
Φf+g(τf − τ2, Φf−g(τ2 − τ1, Φf+g(τ1, y0)))

)
.

Then, the landing condition boils down to

L(t1, t2, tf) = 0. (3.27)

48 Chapter 3. Mathematical properties of the optimal vertical descent

It describes the above-mentioned implicit dependence of (t2, tf) on t1. When appli-
cable, the IFT used on (3.27) provides us with the differentiability and the value of
the derivatives of t2 and tf w.r.t. t1, as

(
dt2
dt1

,
dtf

dt1

)⊤
= −

[
∂L

∂[t2, tf]

]−1

· ∂L

∂t1
. (3.28)

To express these derivatives w.r.t. t1, intermediate quantities are introduced. The
transition matrices M(tf) and N(t2) are respectively defined as the unique solutions
to the matrix initial value problems

Ṁ(t) = ∂(f + g)
∂y

(y(t)) ·M(t) and M(t2) = I3, (3.29)

Ṅ(t) = ∂(f − g)
∂y

(y(t)) ·N(t) and N(t1) = I3. (3.30)

Let us define R1, R2, S1 and S2 by
(

R1 R2

)⊤
:= µ (M(tf) · (f − g)(y(t2))) , (3.31)

(
S1 S2

)⊤
:= µ (M(tf) ·N(t2) · (f + g)(y(t1))) . (3.32)

Since Assumption 2 holds, the invertibility condition of ∂L
∂[t2,tf] needed to apply the

IFT boils down to R1 ̸= 0. Then, one can provide a detailed version of (3.28)

dt2
dt1

= 1− S1
R1

, (3.33)

dtf

dt1
= 1− R1S2 −R2S1 + S1ẏ2(tf)

ẏ2(tf)R1
. (3.34)

Using the previous terms with Equation (3.26) yields

dyf
3

dt1
(t1) = r + 1

ẏ2(tf)R1

[
R1(S2 − ẏ2(tf)) + S1

(
ẏ2(tf)r − 1

r + 1 −R2

)]
. (3.35)

The conditions that enable us to state that Min-Max thrust programs are always
more fuel-optimal than the Max-Min-Max ones, by allowing us to apply the IFT on
L, are thus conveyed by the assumption below

Assumption 4. The parameter defined in (3.31) is s.t. R1 ̸= 0, and one has
dyf

3
dt1

(0) < 0 for any y0 ∈ F∗ s.t. the rocket lands at y3(tf) ≥ m−.

Note that, since it is formulated for any y0 ∈ F∗, it is sufficient to check these
conditions for t1 = 0 only. Moreover, these conditions can be either checked
through (3.35), analytically - if the pressure model is known well enough and
tractable - or numerically.

3.4. Numerical illustrations 49

Remark 12. For illustration purposes only, let us check the validity of Assumption 4
when there is no atmosphere. When π ≡ 0, every term from (3.33) and (3.34) can be
explicitly written using the fact that r+u

y3
= − ẏ3

y3
for intermediate integrations, which

yields

R1 = 2
r + 1

(
1− y3(tf)

y3(t2) + log y3(tf)
y3(t2)

)
, R2 = −κ + r − 1

y3(tf) ,

S1 = − 2
r − 1 log y3(t2)

y3(t1) , S2 = −κ + r + 1
y3(tf) .

R1 is negative since y3(t2) > y3(tf). Thus, (3.35) becomes

dyf
3

dt1
(t1) = − 4κ

ẏ2(tf)(r − 1)
1

R1
log y3(t2)

y3(t1) < 0. (3.36)

The negativity of this quantity gives the desired conclusion. By continuity, the as-
sumption also holds for scarce atmospheres. Further, an example based on a non-
scarce tabulated pressure model is treated in Section 3.4.

3.3.3 Main result

Under Assumptions 1, 2, 3, and 4, if the final mass yf
3 of the landing Min-Max

trajectory, starting from a y0 in F , satisfies yf
3 ≥ m−, then the optimal thrust

program of Problem (1) is Min-Max, where one arc may be absent. Conversely, if
yf

3 < m− or if y0 /∈ F , then Problem (1) has no solution.
Henceforth, it is possible to describe the whole set of feasible initial conditions.

Define

Ω
(
yf

3
)

:=
{
Φ−(f−g)

(
τ1,Φ−(f+g)

(
τ2, (0, 0, yf

3)⊤)) :
τ1 ≥ 0, τ2 ≥ 0, (r − 1)τ1 + (r + 1)τ2 ≤ m+ − yf

3
}

which denotes the set of states landing at final mass yf
3 ≤ m+ applying a Min-Max

control. Minimum (resp. maximum) arcs last for τ1 (resp. τ2). Thus, the solution
set Fsol of the initial conditions y0 s.t. Problem (1) has a solution is

Fsol :=
⋃

m−≤yf
3 ≤m+

Ω
(
yf

3
)

(3.37)

The following theorem summarizes this discussion.

Theorem 1 (Optimal thrust program of atmospheric vertical landing). Under As-
sumptions 1, 2, 3 and 4, Problem (1) has a solution if and only if y0 ∈ Fsol. When
y0 ∈ Fsol, the optimal thrust program is Min-Max, where one arc may be absent.

Remark 13. Without Assumption 4, Max-Min-Max programs (where one or two
arcs may be absent) are optimal.

50 Chapter 3. Mathematical properties of the optimal vertical descent

Speed (y2)
y2 < 0

0
Mass (

y3)

y −
3

y +
3

Al
tit

ud
e

(y
1)

0

y1 > 0

Σmax
Σmin
Ω(y −

3)

Figure 3.2: Flight envelope. Fsol is delimited by Σmax, Σmin, Ω
(
y−

3
)

and closed by
the constraint y3 ≤ y+

3 on the last side. For Σmax and Σmin, only the trajectories
that land with a mass y3(tf) ≥ m− are represented. The vertical axis conveys the
altitude to ease the visualization.

3.4 Numerical illustrations
Let us consider the following (normalized) parameters

κ = 0.00285 s−1, r = 4.0, m− = 458.3 s, m+ = 520.3 s.

In this example, the engine can be used at 60-100% of its maximum flowrate. Also,
κ is taken close to the values of actual reusable launcher engines [72], such as the
Merlin (Falcon 9) or the BE-4 (New Glenn). We consider a pressure model describing
Earth’s atmosphere from tabulated values, satisfying Assumption 1, s.t. π(0) =
6.2× 10−1. Assumption 2 and 3 are satisfied since

acc = 2.90× 10−3 > 0 and b̄/
√

a = 3.37× 10−1 < 1.

Fsol is pictured in Figure 3.2 for these values. Assumption 4 is then checked nu-
merically, by computing R1 and dyf

3
dt1

(0) on a high density mesh covering Fsol. The
evaluation of (3.35) only requires to integrate ODEs, namely (3.2), (3.29) and (3.30),
over fixed time intervals. Thus, it is vastly beneficial to use (3.35) instead of finite
differences to check Assumption 4 in reasonable time.

To illustrate the optimality of the Min-Max structure, let us consider an example
where three trajectories start from y0

1 = 1.25 s, y0
2 = -6.96 × 10−2 and y0

3 = 441.2 s,
as presented in Figure 3.3. The trajectory with the Min-Max structure has the
greatest final mass. The other two trajectories have respectively a 2.2% and 5.7%
lower final mass. Note that the associated time-of-flights tf are respectively 25.6 s,
31.7 s and 41.1 s.

3.5. Comments 51

Speed (y2)

y2 < 0

0
Mass (

y3)

y −
3

y +
3

Al
tit

ud
e

(y
1)

0

y1 > 0

y0

Σmax
y when t 01 = 0.0s
y when t 01 = 3.5s
y when t 01 = 5.0s

Figure 3.3: Three Max-Min-Max trajectories, with varying first time of switch t′
1.

Maximum final mass is obtained for t′
1 = 0, i.e. for a Min-Max thrust program.

3.5 Comments
The results presented above call for a few comments.

Vertical flight envelope applications A useful by-product of the proofs from
above is the full characterization of the reachable set for the vertical motion (3.37),
as shown in Figure 3.2. Using the notations from Figure 3.2, for any map v(y) :
R3 → [−1, 1], every feedback control law u : R3 → R s.t.

u(y) =





1 if y ∈ Σmax,

−1 if y ∈ Σmin ∪ Ω(y−
3),

v(y) otherwise,

guarantees that a rocket starting inside the vertical flight envelope will land at
null vertical speed. This could be used to design safe-set control laws [40, 105].
Also, in terms of software design, using the structure where a control “u” supervises
another control “v” would help increase the Run-Time Assurance of the rocket G&C
system [29,86], but it brings us out-of-the-scope of this thesis.

Non robustness of the Min-Max trajectory The optimal thrust program
being of a bang-bang nature, it is non-robust to some sources of uncertainty, due to
the proximity of the ground. For instance, if the switch from the Min to the Max
arc is delayed, the rocket necessarily comes out of the vertical flight envelope, which
guarantees that there are no thrust programs that allow a proper landing. Given the
uncertain and complex environment in which the actual rocket final burn occurs, it
can be of high interest to consider more robust thrust programs, that are not too

52 Chapter 3. Mathematical properties of the optimal vertical descent

close to the actuators limits, or, in other words, not too close to the vertical flight
envelope boundary.

Conjecture regarding assumption 4 Theorem 1 relies on Assumption 4 to rule
out the Max-Min-Max programs, and keep the Min-Max programs only. A greater
number of numerical simulations, aiming at computing dyf

3
dt1

(0) while dispersing most
of the involved parameters, make us conjecture that Assumption 4 could be made
much weaker: it is sufficient but not necessary.

Recent results on the topic The results presented in this chapter correspond
to the paper [65] published in 2021. Since then, Leparoux et al. published an
article on a really close topic [55]. They explored the structure of optimal thrust
programs of 3D rocket models for planetary landing. Among others, they showed
that the optimal thrust programs were generally of the Max-Min-Max nature, and
that it was not sensitive to several model changes. Among the model changes that
they considered, they used an atmospheric model that resembles the thrust bias law
T = gIspq − SEP (h) that we use in this manuscript, but with a constant pressure
term instead.

Other approach for optimal thrust programs The optimal control problem
studied in this chapter has a state of dimension 3, which makes the theoretical
results from H. J. Sussmann and H. Schättler applicable as well [83,84,95,96]. They
provided a variety of results based on the Lie brackets of the functions f and g
involved in Equation (3.2), which can help characterize the optimal solution nature
of Problem (2), but for a minimum-time criterion only.

Chapter 4

Nominal guidance via Quadratic
Programming

Résumé

Le problème général de guidage par descente motorisée PDG (ξ, p), défini dans
l’équation (2.22), est un OCP, c’est-à-dire un problème d’optimisation de di-
mension infinie, en temps libre. Dans ce chapitre, ce problème est réécrit sous
la forme d’un problème de dimension finie, aussi simple que possible, afin qu’il
puisse être résolu rapidement et de manière fiable en vol. Cette approche est
la méthode de guidage par descente motorisée que nous proposons.

Tout d’abord, PDG (ξ, p) est réécrit sous la forme d’un problème
d’optimisation non-linéaire (NLP) paramétrique de faible dimension. Cette
réécriture nécessite, entre autres, une description des variables d’état basée
sur le flot d’équations différentielles ordinaires (ODE), une représentation à di-
mension finie de la variable de contrôle, et une remise à l’échelle de la variable
temporelle pour tenir compte des variations du temps final.

Deuxièmement, la solution de ce dernier NLP est approximée par une ex-
pansion directionnelle du premier ordre, en utilisant les résultats classiques de
l’analyse de sensibilité des NLP. Étant donné que des variations générales et
non infiniment petites des paramètres ξ et p doivent être prises en compte dans
l’application, il est nécessaire de traiter les changements dans l’ensemble des
contraintes actives. Il s’agit là d’une caractéristique essentielle de l’analyse de
sensibilité. Une méthode de calcul basée sur la programmation quadratique
(QP) est décrite pour traiter cette question.

Enfin, des commentaires importants concernant l’utilisation offline/online
de ce QP sont discutés et illustrés par trois exemples numériques. La méthode
de guidage nominal décrite ici est générale et peut être appliquée aux problèmes
2D et 3D.

53

54 Chapter 4. Nominal guidance via Quadratic Programming

The general Powered Descent Guidance problem PDG (ξ, p), defined in Equa-
tion (2.22), is an OCP, i.e. an infinite dimensional optimization problem, in free-final
time. In this chapter, this problem is re-written as a finite dimensional problem,
as simple as possible, so that it can be solved quickly and reliably in-flight. This
approach is our proposed nominal Powered Descent Guidance method.

First, PDG (ξ, p) is re-written as a low dimensional parametric Non-Linear
Program (NLP). Among others, this rewriting requires a description of the state
variables based on the flow of Ordinary Differential Equations (ODEs), a finite-
dimensional representation of the control variable, and a re-scaling of the time vari-
able to account for the variations of the free-final time.

Second, the solution of the latter NLP is approximated by a directional first-order
expansion, using classic sensitivity analysis results of NLPs. Because general and
non-infinitely small variations of the parameters ξ and p must be considered in the
application, it is necessary to deal with changes in the set of active constraints. This
appears as a critical feature of the sensitivity analysis. A computational method
based on Quadratic Programming (QP) is described to handle this.

Finally, important comments regarding the offline/online use of this QP are dis-
cussed, and illustrated on three numerical examples. The nominal guidance method
described here is general, and can be applied to both the 2D and 3D problems.

This chapter is an updated version of [67], with enhanced examples and a new
application to the 3D rocket model.

4.1 Non-Linear Programming formulation for PDG
The goal of this section is to explain how PDG (ξ, p) can be approximated using a
NLP with few variables.

As recalled in Chapter 1, OCPs are commonly solved using either direct or indi-
rect methods. On one hand, direct methods first discretize the optimization problem
and then solve it using NLP techniques. On the other hand, indirect methods consist
in formulating infinite dimensional stationary conditions first, and then discretizing
them. The former is often more robust but less accurate than the latter. For both
approaches, it is highly difficult to guarantee convergence times for complex non-
linear problems.

We propose to approximate PDG (ξ, p) using a method in-between these two
classic approaches. As used in certain direct methods [45,51,103], we discretize the
control variable using an interpolation method. However, we do not use a coarse 1

discretization scheme to convey the dynamic equation. The latter is here expressed
exactly, as the flow of a certain ODE. A point worth special care is that the ODE
is defined over a time domain whose endpoint is an unknown of the problem. This
representation will help us form a finite dimensional problem denoted NLP (ξ) there-
after. The sensitivity analysis based method used to solve this latter problem will
be the matter of the next section.

1Here, coarse refers to discretization schemes such as Euler methods with few collocation points.

4.1. Non-Linear Programming (NLP) formulation for PDG 55

τ

Parametric control uµ(τ)

• • • •

| | | | | | | | | | | ||
τ ′0 τ ′1 τ ′Nc

τ0 = 0 τ1 τ2 τ3 = 1

µ0
µ1 µ2

µ3

µ4
µ5

•

•

Figure 4.1: Control discretization and time instances of the constraints for N = 3.
The correction is described by a parametric function τ 7→ uµ(τ). Here is represented
a scalar Cubic Spline, described by its values µ0, . . . , µ3 at several time instances, and
by its slopes µ4 and µ5 at the starting and end-points. The inequality constraints
are enforced on the subdivision τ ′

0, . . . , τ ′
Nc

.

4.1.1 Discretization of the decision variable

4.1.1.1 Free-final time

First, recall that in PDG (ξ, p), the time-of-flight is an optimization variable implic-
itly defined by the constraints and the cost. Its change w.r.t. the reference time of
flight t̄f is denoted ∆tf . We scale the time variable t by considering

τ := t

t̄f + ∆tf

The final time is considered as an extra state of null dynamics: ṫf = 0. The
augmented state equals x̃ := (x⊤, tf)⊤, and satisfies the dynamics

˙̃x = f̃(x̃, u, η) :=




tf f(x, u, η)

0




where the variables are here defined for times τ ∈ [0, 1]. The unknown ∆tf is now
taken into account as an initial condition, s.t.

x̃(0) =




x̄0 + ∆x0

t̄f + ∆tf




To alleviate the writing, the constraint Af x(1) = bf (p) will be written Af x̃(1) =
bf (p) as well, where the latter matrix Af is simply the former matrix Af with an extra
column of zeros on the right-hand side. Here, bf (p) remains unchanged. Likewise,
the notation c(x̃, u, η, p) will be used to refer to the former constraint c(x, u, η, p) ≤ 0.

4.1.1.2 Parametric description of the control

We choose to describe the infinite dimensional variable δu using a smooth parametric
description. Let us describe δu via a function

(µ, τ) ∈ RNµ × [0, 1]→ uµ(τ) ∈ Rm

56 Chapter 4. Nominal guidance via Quadratic Programming

where µ 7→ uµ(τ) is linear for any fixed τ . There is a matrix valued function M(.)
s.t. uµ(τ) = M(τ)µ. This framework encompasses the use of many interpolation
methods, from piecewise constant interpolation to Cubic Splines and Hermite poly-
nomials. Our choice is detailed below.

For N ≥ 2, consider a subdivision of the normalized time interval [0, 1] denoted
by the N + 1 time instances τ0 = 0 < τ1 < . . . < τN = 1. We chose to describe uµ

as a Cubic Spline defined on the subdivision (τi)0≤i≤N , as represented in Figure 4.1.
These Splines are constructed using the classic method from [51, Sec. 3.3]. Thus,
the vector µ embeds the values uk of the corrections at τk and the slopes u̇0 and u̇N

s.t.

µ :=
(
(u0)⊤, (u1)⊤, . . . , (uN)⊤, (u̇0)⊤, (u̇N)⊤

)⊤
∈ RNµ . (4.1)

where Nµ = m(N + 3).
The bounds on the engine flow must be discussed differently depending on the

engine model considered. On the one hand, for the 2D rocket model, it was decided
that the engine flow was directly controlled via qr. Even though this simplify-
ing choice was made for illustration purposes only, choosing a smooth parametric
description for uµ has a convenient by-product. Since the controlled flow can be
expressed from the real flow s.t. qc = τq q̇r + qr, then it will be possible to express
exactly the controlled flow, as long as

• qr remains differentiable,

• τq q̇r + qr remains within [q−, q+],

• the estimated value q̂r(0) of the initial real flow is imposed, i.e.: q̄r(0) +
(qr)µ(0) = q̂r(0).

On the other hand, the 3D model already takes into account the first-order
dynamics on the engine flow. If q− ≤ q0

r ≤ q+ and that q− ≤ q0
c ≤ q+, then the

real flow will remain within [q−, q+]. Therefore, imposing the flow bounds via the
constraint u−(p) ≤ ū(τ) + uµ(τ) ≤ u+(p) is sufficient to guarantee that qc and qr lie
in the proper interval.

Moreover, it was previously mentioned that the engine flow dynamics was taken
into account but not the orientation dynamics, since the time constant of the latter
was significantly much smaller than the former. However, to remain as feasible as
possible by the real system, it is of high interest to have a continuous and smooth
control law description. Picking a parametric description such as the Cubic Splines
ensures the smoothness. Moreover, imposing the initial value of the incidence - or the
projected incidences for the 3D model - to be the same as the current estimate ensures
the continuity. Therefore, we consider a constraint of the shape ū(0)+uµ(0) = û(0),
which also writes

uµ(0) = ∆uinit (4.2)

where ∆uinit is the gap between the reference control at time 0 and the current
control.

4.1. Non-Linear Programming (NLP) formulation for PDG 57

Remark 14. When converting OCPs to NLPs, Cubic Splines and other similar
discretization methods are often used to approximate the control variable and the
state itself [14, 36, 51, 103]. However, here, only the variable δu is described by
finitely many values, and the state will be described exactly, using Equation (4.7)
below. The state is not a Cubic Spline. This choice is motivated by the need to
evaluate with a very high accuracy the states, especially at touchdown.

4.1.1.3 Parametric problem

The control variable of the parametric description of our problem is

z := (µ⊤, ∆tf)⊤. (4.3)

It is of dimension Nz = Nµ + 1. From the previous discussion, let us denote the
whole input vector by

ξ := (∆x0⊤
, ∆η⊤, ∆uinit

⊤)⊤ ∈ RNξ . (4.4)

Describing the control correction by uµ(.) and imposing the control constraints

u− ≤ ū + uµ ≤ u+ (4.5)

does not necessarily imply that µ is bounded. Indeed, the slopes of uµ at τ = 0 and
τ = 1 are not directly bounded by these constraints, especially if these constraints
are enforced on a badly chosen subset of time instances. Likewise, neither the
bounds from Equation (4.5) nor the other above-mentioned constraints necessarily
imply that ∆tf is bounded. To guarantee that both µ and ∆tf remain bounded,
additional constraints are imposed on the decision variable z s.t.

zlow ≤ z ≤ zup.

By extending the mixed state-control constraints conveyed by the function c in
Equation (2.22f), an approximation of PDG (ξ, p) is

min
z∈RNz

J(z, ξ) (4.6a)

s.t. ˙̃x(τ) = f̃(x̃(τ), ū(τ) + uµ(τ), η + ∆η), ∀τ ∈ [0, 1] (4.6b)

x̃(0) =




x0 + ∆x0

t̄f + ∆tf


 (4.6c)

Af x(1) = bf (p) (4.6d)
uµ(0) = ∆uinit (4.6e)
u−(p) ≤ ū(τ) + uµ(τ) ≤ u+(p), ∀τ ∈ [0, 1] (4.6f)
c(x̃(τ)), ū(τ) + uµ(τ), η + ∆η, p) ≤ 0, ∀τ ∈ [0, 1] (4.6g)
zlow ≤ z ≤ zup (4.6h)

Problem (4.6) has a finite-dimensional decision variable, but an infinite number of
constraints.

58 Chapter 4. Nominal guidance via Quadratic Programming

4.1.2 Formulation of the finite dimensional guidance problem

4.1.2.1 Description of the state as the flow of an ODE

Our goal is to remove x from the description of (4.6). To this purpose, let us
introduce a classic notation used for the flow of the ODE following e.g. [18, 90].

Definition 3 (Flow of f). Consider the subsets X ⊂ Rn (assumed open), U ⊂ Rm

(assumed compact) and Ω ⊂ Rnη . Given a differentiable function f : X×U×Ω→ Rn,
vectors (x0, η) ∈ X × Ω and a control function2 u ∈ L∞([0, 1],U), the flow of the
ODE defined by f is defined using the following Initial Value Problem (IVP)

∀t ∈ [0, 1], x(t) = Φf

(
t, x0, η; u

)
⇔





x(0) = x0

ẋ(s) = f(x(s), u(s), η), ∀s ∈ [0, t].

Using this notation, let us describe the extended state x̃[τ, z, ξ] ∈ Rn+1 as

x̃[τ, z, ξ] := Φf̃


τ,




x0 + ∆x0

tf + ∆tf


 , η + ∆η; ū + uµ


 , ∀τ ∈ [0, 1]. (4.7)

The latter notation x̃[τ, z, ξ] will prove to be handy when writing the inequality
and equality constraints (4.8) and (4.9) below. Note also that the hypothesis of
Definition 3 guarantee that x̃[τ, z, ξ] is uniquely defined. For formal results on the
existence and uniqueness of Φf (t, x0, η; u), see e.g. [90, Appendix C.3].

Provided that f̃ is continuously differentiable w.r.t. all of its inputs, since µ 7→
uµ(t) is also assumed continuously differentiable for all times t, then x̃[τ, z, ξ] is
continuously differentiable w.r.t. all of its inputs. For detailed properties of Φ, see
Appendix A.2.2 recalling some useful classic results.

4.1.2.2 PDG as a NLP

To alleviate the writing, let us first consider that the constraint parameter p equals
zero (the case with p ̸= 0 will be handled afterwards).

The last ingredients that must be discretized in (4.6) are the inequality con-
straints. Indeed, constraints (4.6f) and (4.6g) are defined on an infinite number of
points. We decide to enforce these constraints on a number of Nc + 1 times instance
τ ′

0 = 0 < τ ′
1 < . . . < τ ′

Nc
= 1 s.t. the subdivision (τ ′

i)0≤i≤Nc is an uniform over-
sampled version of (τi)0≤i≤N , as shown in Figure 4.1. In other words, every interval
[τi, τi+1] is split into several sub-intervals, and the constraints (4.6f) and (4.6g) are
enforced at their borders.

Thus, the discretized version of the inequality constraints can be re-written as

h(z, ξ) ≤ 0
2L∞([0, 1], U) denotes the set of essentially bounded measurable functions.

4.1. Non-Linear Programming (NLP) formulation for PDG 59

where

h(z, ξ) :=




ū(τ ′
0) + uµ(τ ′

0)− u+(0)

u−(0)− (ū(τ ′
0) + uµ(τ ′

0))

c (x̃[τ ′
0, z, ξ], ū(τ ′

0) + uµ(τ ′
0), η + ∆η, 0)

...

ū(τ ′
Nc

) + uµ(τ ′
Nc

)− u+(0)

u−(0)− (ū(τ ′
Nc

) + uµ(τ ′
Nc

))

c
(
x̃[τ ′

Nc
, z, ξ], ū(τ ′

Nc
) + uµ(τ ′

Nc
), η + ∆η, 0

)

z − zup

zlow − z




. (4.8)

Moreover, using the same notations, the equality constraints (4.6d) and (4.6e) are
conveyed by the condition g(z, ξ) = 0 where

g(z, ξ) :=




Af x̃[1, z, ξ]− bf (0)

uµ(0)−∆uinit


 . (4.9)

Thus, we get an expression of the finite-dimensional constraints approximating
PDG (ξ, 0), i.e. for the special case where p = 0. The general case where p ̸= 0
is then straightforward.

Indeed, there is no loss of generality in assuming that the constraint parameter p
has a linear influence on the constraints of the original optimization problem, as
explained below. For instance, for the 2D rocket model, the final horizontal position
in the terminal constraint (4.6d) can be parametrized by a variable ∆zf , s.t.

Af x(1) = bf +
(

0 0 ∆zf 0
)⊤

.

Likewise, to negotiate the incidence limit, the control bounds are changed by a
variable ∆αmax s.t.

u− − (0, ∆αmax)⊤ ≤ ū(t) + uµ(t) ≤ u+ + (0, ∆αmax)⊤.

Therefore, using this assumption of linear influence of p, we assume that there are
matrices Hp and Bp s.t. the original constraints h(z, ξ) ≤ 0 and g(z, ξ) = 0 actually
write

h(z, ξ) ≤ Hpp and g(z, ξ) = Bpp

when p ̸= 0. The matrices Hp and Bp are basically filled by zeros and a few ones.
To sum up all the preceding steps, PDG (ξ, p) is converted into a NLP as follows

• change the time variable from t ∈ [0, tf] to τ ∈ [0, 1],

60 Chapter 4. Nominal guidance via Quadratic Programming

• consider a parametric description uµ(.) of the infinite dimensional variable δu,

• describe the dynamic equation and the initial condition constraints through
Equation (4.7),

• enforce the inequality constraints on the time instances τ ′
i for i = 0, . . . , Nc,

instead of enforcing them for all τ ∈ [0, 1],

• enforce bounds on the decision variable z.

Definition 4. The finite-dimensional approximation of the problem PDG (ξ, p) is
defined by NLP (ξ, p), which is the following non-linear optimization problem

min
z

J(z, ξ) (4.10a)

s.t. h(z, ξ) ≤ Hpp, (4.10b)
g(z, ξ) = Bpp. (4.10c)

Remark 15 (State modeling choices). Describing the state using Equation (4.7) is
not usually recommended from a numerical point of view (e.g. [14]). Any iterative
method aiming at solving NLP (ξ, p) (e.g. Successive Quadratic Programming [14])
requires the evaluation of x̃[τ, z, ξ] and its derivatives at each iteration, which means
solving multiple ODEs at each iteration. However, as it will be detailed below, our
goal is to provide an approximation of the solutions of NLP (ξ, p) using a (directional)
first-order expansion. Therefore, it is only needed to evaluate these computationally
expensive terms once and offline, making the use of x̃[τ, z, ξ] appropriate in this
context.

4.2 Sensitivity analysis for degenerate parametric NLP
Without loss of generality, to simplify the exposition, we consider in this section the
special case where p = 0. The direct extension to the case p ̸= 0 will be discussed
in Section 4.3.

Let us study the standard problem (4.10), but where the constraint right-hand
sides have been simplified s.t.

NLP (ξ) :=





min
z

J(z, ξ)

s.t. h(z, ξ) ≤ 0,

g(z, ξ) = 0.

In fact, NLP (ξ) is a parametric NLP formulated in a standard form [25, Eq. (1)].
When it is too hard to compute its exact solution, an alternative approach is to
provide a reasonable approximation of it w.r.t. the parameter ξ, near a known
solution. This section aims at answering the three following questions. First, if z∗

denotes the optimal solution of NLP (ξ), to what extent can one give a meaning to
the expansion

“ z∗(ξ) = z∗(0) + dz∗

dξ
(0)ξ + o(∥ξ∥) ” ?

4.2. Sensitivity analysis for degenerate parametric NLP 61

0.6 0.4 0.2 0.0 0.2 0.4 0.6
First component: x1

0.2

0.0

0.2

0.4

0.6

Se
co

nd
 c

om
po

ne
nt

: x
2

A

x * (1)

x * (1)

Exact value: x * ()

Figure 4.2: Representation of the optimal points of Basic Example 1 for −1 ≤ ξ ≤ 1,
in the plane (x1, x2). Point A is sometimes called a cusp in the literature [23].

Then, how can we compute this (local) expansion? Finally, how can this be applied
to solve NLP (ξ) non-locally (at least approximately)?

4.2.1 An introductory toy example

Let us consider a low-dimensional example that will help us illustrate the challenges
of NLP sensitivity. This toy problem has only two variables and one parameter ξ
which appears non-linearly.

Basic Example 1. For a scalar parameter ξ > 0, consider the parametric NLP

min
x∈R2

1
2(x2

1 + x2
2) (4.11)

s.t. c1(x, ξ) = −x1 − x2 + ξ√
1 + ξ2 ≤ 0 (4.12)

c2(x, ξ) = x1 − x2

√
1 + ξ2 − ξ ≤ 0 (4.13)

This problem posseses a unique solution and can be solved analytically. The
solution is illustrated in Figure 4.2. For ξ > 0, the constraint c1 is active (with
associated multiplier λ1) and the optimum is

x∗
1(ξ) = ξ

2
√

1 + ξ2 , x∗
2(ξ) = ξ

2
√

1 + ξ2 , λ1(ξ) = ξ

2
√

1 + ξ2 .

For ξ < 0, the constraint c2 is active (with associated multiplier λ2) and the optimum
is

x∗
1(ξ) = ξ

2 + ξ2 , x∗
2(ξ) = −ξ

√
1 + ξ2

2 + ξ2 , λ2(ξ) = − ξ

2 + ξ2 .

Finally, for ξ = 0, since the point (x1, x2) = (0, 0) globally minimizes the cost and
satisfies the constraints, it is the optimum. Both constraints are active, and the
associated multipliers equal 0.

62 Chapter 4. Nominal guidance via Quadratic Programming

A first remark is that for all values ξ ̸= 0, the function ξ 7→ x∗(ξ) is continuously
differentiable. This is pictured in Figure 4.2, and corresponds to the smooth parts of
the black curve. Also, note that the multipliers of the active constraints are positive
for ξ ̸= 0. When ξ = 0, then λ1 = λ2 = 0 even though both constraints are active,
which is what we will call a degenerate scenario following [48].

Then, the main point of interest is when ξ = 0, i.e. point A in Figure 4.2. The
set of active constraints changes when the sign of ξ changes. The optimal solution
x∗ is not differentiable, but has a left-hand side and right-hand side derivatives.
Therefore, the value of x∗ can be inferred in the neighborhood of ξ = 0 using the
following (directional) expansions, for ε ≥ 0:

x∗(ε) = x∗(0) + dx∗

dξ
(0+)ε + o(ε) and x∗(−ε) = x∗(0)− dx∗

dξ
(0−)ε + o(ε).

The goal of the next sub-section is to highlight the conditions under which x∗(.) is at
least directionally differentiable. The need to be able to handle degenerate scenarios
for PDG - i.e. when some multipliers are zero when the input parameter is zero -
will be demonstrated in Section 4.3, and is directly related to local changes in the
active set of constraints.

4.2.2 Known results in parametric NLP sensitivity

In this section, we consider the problem NLP (ξ) from a general perspective, i.e. not
necessarily expressed by the above-mentioned expressions for h and g. The goal is to
present sufficient conditions that enable us to compute an expansion of the solutions
of NLP (ξ). Without loss of generality, we seek an expansion in the neighborhood
of ξ = 0.

First, after recalling necessary conditions for the existence of a minimizer, a clas-
sic theorem that gives conditions for the differentiability of the solution is recalled.
A discussion on the key aspects of its proof stresses the need of a more general
theorem, as its main assumption needs to be relaxed in view of application to PDG.
With this view in mind, an alternative result from the literature, based on direc-
tional derivatives - a.k.a. Dini derivatives - is presented. Finally, computational
aspects are discussed for the evaluation of the solution expansions.

4.2.2.1 Sensitivity analysis with Strict Complementary Slackness

Introduce the multipliers ν ∈ Rnin and λ ∈ Rneq and the Lagrangian

L(z, ν, λ, ξ) := J(z, ξ) + ν⊤h(z, ξ) + λ⊤g(z, ξ). (4.14)

Classically, a tuple (z, ν, λ, ξ) is said to satisfy the Karush-Kuhn-Tucker (KKT)
conditions3 if

Lz(z, ν, λ, ξ) = 0, (4.15a)
g(z, ξ) = 0, (4.15b)

ν⊤h(z, ξ) = 0 and ν ≥ 0. (4.15c)
3Recall that the derivatives are denoted by putting the variable of differentiation as an index,

e.g. Lz = ∂L/∂z.

4.2. Sensitivity analysis for degenerate parametric NLP 63

At ξ = 0, the multipliers are denoted ν0 and λ0 and are assumed to satisfy the KKT
conditions.

The compact notation L[0] = L(z0, ν0, λ0, 0) is used if necessary to alleviate the
writing. Likewise, h[0] = h(z0, 0), hz[0] = hz(z0, 0), etc.

Lemma 5 (Second-Order Sufficient Conditions (SOSC), [37, Lemma 3.2.1]). If the
functions defining Problem NLP (0) are twice continuously differentiable in a neigh-
borhood of z0, if there exist multipliers ν0 ∈ Rnin and λ0 ∈ Rneq s.t. the KKT
conditions (4.15) hold and, further, if

κ⊤Lzz(z0, ν0, λ0, 0)κ > 0 (4.16)

for any non-zero vector κ ∈ RNz that satisfies

[hi]z(z0, 0)κ ≤ 0, ∀i : hi(z0, 0) = 0, (4.17a)
[hi]z(z0, 0)κ = 0, ∀i : (ν0)i > 0, (4.17b)
gz(z0, 0)κ = 0. (4.17c)

then, z0 is a strict local minimizing point of P(0).

Definition 5 (SCS). For a pair (z, ν), Strict Complementary Slackness (SCS) holds
when

νi > 0, ∀i : hi(z, 0) = 0.

The conditions from Lemma 5 and the Strict Complementary Slackness condition
allow one to present the following theorem, adapted from [37, Thm. 3.2.2], which
states a well-known NLP sensitivity result.

Theorem 2 (Continuous differentiability, with SCS from [37]). Assume that J , h
and g are twice continuously differentiable in z and that their gradients w.r.t. z and
the constraints are continuously differentiable in ξ in a neighborhood of (z0, 0). If

(i) [hi]z(z0, 0) (for i s.t. hi(z0, 0) = 0) and [gj]z(z0, 0) (all j) are linearly indepen-
dent,

(ii) the conditions of Lemma 5 are satisfied at z0 for the multipliers ν0 and λ0,

(iii) SCS holds for (z0, ν0),

then

(a) z0 is a local isolated minimizing point of problem NLP (0) and the associated
Lagrange multipliers ν0 and λ0 are unique,

(b) for ξ in a neighborhood of 0, there exists a unique, once continuously differ-
entiable vector function y(ξ) = [z∗(ξ), ν∗(ξ), λ∗(ξ)]⊤ satisfying the second-order
sufficient conditions for a local minimum of NLP (ξ) s.t. y(0) = (z0, ν0, λ0), and
hence z∗(ξ) is a locally unique local minimum of NLP (ξ) with associated unique
Lagrange multipliers ν∗(ξ) and λ∗(ξ),

64 Chapter 4. Nominal guidance via Quadratic Programming

(c) for ξ near 0, the set of binding inequalities is unchanged, SCS holds, and the
binding constraint gradients are linearly independent at z∗(ξ).

The proof of this theorem conveys several keys features helping to understand
what makes the solution z∗ continuously differentiable. Precisely, Equation (4.19)
below is an highly useful by-product of the proof, providing an explicit formula for
the derivative of z∗ and the associated multipliers.

Remark 16. The SCS assumption, combined with the conditions of Lemma 5,
implies that Lzz[0] is positive definite on the kernels of both matrices hz

a[0] and
gz[0]. Denoting by NK the dimension of the intersection of these kernels, and
by Q ∈ RNz×NK the matrix that generates this vector space, the conditions (4.16)
and (4.17) can be re-written equivalently as Q⊤Lzz[0]Q ≻ 0.

Sketch of proof of Theorem 2, adapted from [37] and [25]. The idea of the proof is
to use the Implicit Function Theorem (IFT) on a subset of the KKT conditions,
which defines functions z∗(ξ), ν∗(ξ), λ∗(ξ) that are then shown to be locally unique
minimizers of Problem NLP (ξ) using the conditions of Lemma 5.

At z0, the active inequality constraints are denoted with an exponent “a”. Their
cardinal is denoted na. For instance, ha denotes the rows of h that are active at z0,
and ν0a are the corresponding multipliers. Without loss of generality, we assume
that the active inequality constraints are the first na components of h and ν.

The main function of interest in this proof is4

K(z, νa, λ, ξ) :=




Lz(z, νa, λ, ξ)

νa • ha(z, ξ)

g(z, ξ)




=




Jz(z, ξ) + (νa)⊤hz
a(z, ξ) + λ⊤gz(z, ξ)

ν1h1(z, ξ)
...

νnahna(z, ξ)

g(z, ξ)




and is often referred to as the Kuhn-Tucker matrix [25]. The conditions of Lemma 5
imply that the matrix

∂K

∂[z, νa, λ] (z0, ν0
a, λ0, 0) =




Lzz [h1]z⊤ . . . [hna]z⊤ gz
⊤

(ν0)1[h1]z h1 0 0
...

(ν0)na [hna]z 0 hna

gz 0 . . . 0




(4.18)

is invertible. Note that all the elements on the right-hand side of the latter matrix
are evaluated on (z0, ν0a, λ0, 0), but this has been omitted to alleviate the writing.

4x • y denotes the component-wise product of vectors x and y, a.k.a. the Hadamard product.

4.2. Sensitivity analysis for degenerate parametric NLP 65

Thus, the IFT applies on the condition K(z, νa, λ, ξ) = 0 at (z0, ν0a, λ0, 0), which
guarantees the existence of a differentiable function

y : ξ 7→ (z∗(ξ), ν∗(ξ), λ∗(ξ))

s.t. z∗(0) = z0, ν∗(0) = ν0, λ∗(0) = λ0 and K(z∗(ξ), (ν∗)a(ξ), λ∗(ξ), ξ) = 0 in the
neighborhood of ξ = 0.

Finally, the strict inequalities of SCS enables us to show that the set of active
constraints does not change in the neighborhood of ξ = 0, which implies that y(ξ)
locally satisfies the sufficient conditions of Lemma 5, hence the theorem.

This proof has a useful by-product. Indeed, the construction of the triplet
(z∗(ξ), ν∗(ξ), λ∗(ξ)) via the use of the IFT directly provides the derivatives of these
variables at ξ = 0




dz∗

dξ
(0)

d(ν∗)a

dξ
(0)

dλ∗

dξ
(0)




= −
(

∂K

∂[z, νa, λ] (z0, ν0
a, λ0, 0)

)−1 (∂K

∂ξ
(z0, ν0

a, λ0, 0)
)

. (4.19)

However, as we have seen with Toy Example 1, SCS does not necessarily hold ev-
erywhere, which becomes a problem in the above-mentioned arguments. Indeed, if
one of the multipliers of the active constraints becomes zero, then the corresponding
line in Equation (4.18) becomes zero, leading to a singular Kuhn-tucker matrix. In
this scenario, the IFT does not apply anymore.

4.2.2.2 Sensitivity analysis without Strict Complementary Slackness

To overcome the above-mentioned difficulty, another set of assumptions is needed.

Definition 6 (Strong SOSC). There exists a scalar a > 0 s.t.

κ⊤Lzz(z0, ν0, λ0, 0)κ ≥ a∥κ∥2 (4.20)

for any κ ∈ RNz s.t.

gz(z0, 0)κ = 0,

[hj]z(z0, 0)κ = 0, ∀j s.t. hj(z0, 0) = 0 and (ν0)j > 0.

The SOSC property is weaker than the SCS property. As shown by Jittorn-
trum [48], relaxing the SCS using Strong SOSC instead eventually leads to direc-
tional differentiability properties. To formulate this, let us introduce the following.
For a function γ : Rp → Rq, when it exists, the upper Dini derivative of γ at x in
the direction d is a vector of Rq and is denoted by

D+
d γ(x) := lim

ε↓0

γ(x + εd)− γ(x)
ε

∈ Rq.

For any given direction ξ, consider the directional problem NLP (εξ), where ε ≥ 0
is a scalar.

66 Chapter 4. Nominal guidance via Quadratic Programming

Theorem 3 (Directional differentiability, without SCS). Let us assume that J , h
and g are twice continuously differentiable in a neighborhood of z0. If

(i) [hi]z(z0, 0) (for i s.t. hi(z0, 0) = 0) and [gj]z(z0, 0) (all j) are linearly indepen-
dent,

(ii) Strong SOSC holds at z0,

then there exists a unique continuous function ε → (z∗(εξ), ν∗(εξ), λ∗(εξ)) that lo-
cally minimizes NLP (εξ), for ε ≥ 0, s.t. z∗(0) = z0, ν∗(0) = ν0 and λ∗(0) = λ0.
Furthermore, its right-hand derivative at ε = 0 exists, i.e. the upper Dini derivatives
Dξ

+z∗(0), Dξ
+ν∗(0) and Dξ

+λ∗(0) exist.

For a proof of this theorem, see the discussions after the Theorems 3 and 4
in [48]. A direct consequence of Theorem 3 is that for any ξ, for ε ≥ 0, the following
expansion holds:

z∗(εξ) = z0 + D+
ξ z∗(0)ε + o(ε). (4.21)

The same way Theorem 2 provided an expression for the derivatives of the solution
tuple, the proof of Theorem 3 by Jittorntrum provides a way to compute the latter
expansion, which will be used later in Equation (4.25). While Theorem 2 requires
to inverse a linear system as shown in Equation (4.19), Theorem (3) needs to solve
a QP, as indicated in the Proposition below.

Proposition 10 (Adapted from [48, Eq. 24]). The vector D+
ξ z∗(0) in Equa-

tion (4.21) is the optimal solution of

min
∆z∈RNz

1
2∆z⊤Lzz[0]∆z + ξ⊤Lξz[0]∆z

s.t. ha
z [0]∆z + ha

ξ [0]ξ ≤ 0,

gz[0]∆z + gξ[0]ξ = 0,

whose uniqueness is guaranteed by Assumption (ii) in Theorem 3.

Proposition 10 provides a way to compute a local, directional, expansion of the
optimal solution z∗(ξ) using QP. Qualitatively, it boils down to linearizing the active
inequality constraints, forgetting the inactive inequality constraints, linearizing the
equality constraints, and taking into account the second-order approximation of
the cost. Therefore, aside from the non-linear aspect of NLP (ξ), the only missing
features of Problem NLP (ξ) in Proposition 10 are the inactive inequality constraints.
This result can be improved and made more useful for practical applications.

To alleviate the writing, and without loss of generality, we assume for the rest
of this section that z0 = 0. If instead of considering only the active inequality
constraints we consider all inequality constraints, i.e. that we solve

QP (ξ) := min
z∈RNz

1
2z⊤Lzz[0]z + ξ⊤Lξz[0]z (4.22a)

s.t. h[0] + hz[0]z + hξ[0]ξ ≤ 0 (4.22b)
gz[0]z + gξ[0]ξ = 0 (4.22c)

4.2. Sensitivity analysis for degenerate parametric NLP 67

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Parameter:

0.4

0.2

0.0

0.2

0.4
Fi

rs
t c

om
po

ne
nt

: x
1

(a)
Exact value: x * ()
Solution of QP()

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Parameter:

0.0

0.1

0.2

0.3

0.4

0.5

Se
co

nd
 c

om
po

ne
nt

: x
2

(b)
Exact value: x * ()
Solution of QP()

Figure 4.3: Comparison between the exact solution of Example 1 and the solution
returned by QP (ξ), for −1 ≤ ξ ≤ 1.

then we have a more useful tool. On one hand, the result of Proposition 10 is
preserved. Indeed, denote by i any (strictly) inactive inequality constraint at ξ = 0.
Consider any arbitrary value of ξ. Since ε 7→ z∗(εξ) is continuous on a certain
right-neighborhood of ε = 0 by Theorem 3, then hi(z∗(εξ), εξ) < 0 holds in this
neighborhood. By reducing this neighborhood if necessary, the condition

hi[0] + [hi]z[0]z∗(εξ) + [hi]ξ[0]εξ < 0

holds as well in the vicinity of ε = 0 and will not affect the local property of
Proposition 10. On the other hand, the linearized conditions (4.22b) provide a
linear approximation of the inequality constraints, giving a non-local estimation of
changes in the active set5.

As an intermediate summary, if a parametric NLP described by NLP (ξ) satisfies
Strong SOSC and some other mild conditions described in Theorem 3, its solution
point is locally uniquely defined, and admits a directional first-order expansion,
that can be computed by solving QP (ξ) detailed in (4.22). This latter Quadratic
Program consists simply in modifying NLP (ξ) by linearizing the constraints in both
the parameter and the decision variable, and by taking a second-order expansion of
the cost. Locally, the approximations provided by QP (ξ) are very accurate (in the
sense of (4.21)), and can handle active set changes that depend on the direction ξ.
Globally, QP (ξ) can keep providing an approximation of the solution, that will be
as good as the approximations made in (4.22b) and (4.22c) are.

Remark 17. A direct application of QP (ξ) to the Basic Example 1 is shown in
Figure 4.3.

Remark 18. Similar methods aiming at computing an expansion of z∗(ξ) can be
found in more recent work. See for example the work of Bonnans & Shapiro [19, Sec.
5.2].

Remark 19. From a high-level point of view, this Chapter describes how to con-
vert an infinite dimensional problem into a finite one, which in turns is solved using

5See [25, Sec. 4.3] for a complete discussion on that aspect.

68 Chapter 4. Nominal guidance via Quadratic Programming

parametric sensitivity analysis. However, the converse approach which consists in
performing parametric sensitivity analysis on the infinite dimensional problem di-
rectly is an alternative that has been explored in the literature. See e.g. [32], that
describes how directional differentiability can be used on the stationary conditions of
OCPs with multiple types of constraints.

4.3 Fast nominal guidance method
Up to here, we have presented a method to re-formulate the original problem
PDG (ξ, p) into the finite-dimensional problem NLP (ξ, p). For p = 0, the solutions
of NLP (ξ, 0) are approximated by solving QP (ξ).

Let us extend this sensitivity-based method to the case where p ̸= 0, and sum-
marize how the newly formed problem QP (ξ, p) is intended to be used in practice
to provide nominal guidance.

4.3.1 An offline/online approach for nominal guidance

First, note that the role of p in the definition of NLP (ξ, p) is equivalent to the one
of ξ, in the sense that both are given parameters. Thus, by introducing convenient
intermediate matrices and vectors, we can extend the QP from Equation (4.22) to
the general case under the form

QP (ξ, p) :=





min
z∈RNz

1
2z⊤Pz + ξ⊤Qz

s.t. Gz ≤ h0 + Hξξ + Hpp

Az = b0 + Bξξ + Bpp

(4.23)

where Hp and Bp are the same as the ones used in the definition of the constraints
of NLP (ξ, p) and where

P := Jzz(0, 0) Q := Jξz(0, 0)
G := hz(0, 0) A := gz(0, 0)
h0 := −h(0, 0) Hξ := −hξ(0, 0)
b0 := −g(0, 0) Bξ := −gξ(0, 0)

It is this expression of QP (ξ, p) that will be used from now on.

Remark 20. Note that the reason why p does not appear in the cost of QP (ξ, p) is
that the cost J in Equation (4.10a) does not depend on p, but only on z and ξ.

Remark 21 (Shortcuts). In the remainder of this thesis, the dependency of the
linear part of the cost and the constraint right-hand side on ξ in QP (ξ) may be
omitted to alleviate the writing, by using the vectors q, h and b s.t.

q := Jξz(0, 0)⊤ξ, h := h0 + Hξξ, and b := b0 + Bξξ.

To maximize computational efficiency, the constant matrices of QP (ξ, p) are
computed offline, for a reference trajectory, using the transition matrices formu-
las from the Appendix. As described in Section 4.1, such a reference trajectory

4.3. Fast nominal guidance method 69

(x̄, ū, η̄, t̄f) must satisfy the constraints of NLP (ξ, p), and its design depends criti-
cally on the mission goals. The reference may be defined as the solution of a more
complex optimization problem, out-of-the-scope of the thesis, solved using indirect
methods [24]. Its computation can take anything from several seconds to hours,
depending on the desire accuracy, the optimization solver or the computer used for
it. On the other hand, computing the transition matrices, even to a good accuracy,
only needs a few seconds, even with a non efficiency-optimized code.

4.3.2 Guidance law

As introduced in (4.3), the optimal values µ∗ and ∆t∗
f returned by QP (ξ, p) via z∗

enable us to describe the guidance control law as a continuous time function. Indeed,
interpreting ū and uµ as functions defined on [0, 1], the guidance law becomes

u∗(t) = ū

(
t

t̄f + ∆t∗
f

)
+ uµ∗

(
t

t̄f + ∆t∗
f

)
, ∀t ∈ [0, t̄f + ∆t∗

f]. (4.24)

4.3.3 Directional first-order estimate of waypoints

Let us denote by znlp(ξ, p) the hypothetical solution of NLP (ξ, p) and by zqp(ξ, p)
the solution of QP (ξ, p). Then, from Section 4.2, the following directional expansion
holds

znlp(εξ, εp) = zqp(εξ, εp) + o(ε).

Moreover, using the definition of the augmented state x̃[τ, z, ξ] from Equation (4.7),
for any τ ∈ [0, 1] we have

x̃[τ, z, ξ] =




x̄[τ]

t̄f


+ ∂x̃

∂z
[τ, 0, 0]z + ∂x̃

∂ξ
[τ, 0, 0]ξ + o(∥(z, ξ)∥).

Let us introduce x̃lin as

x̃lin(τ, ξ, p) :=




x̄[τ]

t̄f


+ ∂x̃

∂z
[τ, 0, 0]zqp(ξ, p) + ∂x̃

∂ξ
[τ, 0, 0]ξ ∈ Rn+1. (4.25)

Composing the previous expressions yields the directional first-order expansion of
the state

x̃[τ, znlp(εξ, εp), εξ] = x̃lin(τ, εξ, εp) + o(ε).

Since x̃lin is an approximation of the augmented state, it can be split in half: the
first n components form the state approximation xlin, and the last component form
the time-of-flight approximation tlin

f

x̃lin(τ, ξ, p) =




xlin(τ, ξ, p)

tlin
f (τ, ξ, p)


 .

70 Chapter 4. Nominal guidance via Quadratic Programming

Horizontal
position z

x0 = x̄(τ0)•

•

•

•

•

•

Reference trajectory,
x̄ using ū during t̄f

with η̄

x̄(τ1)

x̄(τ2)

x̄(τ3)

x̄(τ4)

h(0)− •
Altitude h

Solving
QP (ξ, p)

at x0 +∆x0

gives µ∗ and ∆t∗f
(Here, p = 0)

∆x0

•

•

•

•

•

x1

x2

x3

x4Way points,
expressed using

∆x0, ∆η, µ∗ and ∆t∗f .

Figure 4.4: Summary of the nominal guidance method, as presented in Chapter 4.

Note that tlin
f does not actually depend on τ by construction of the augmented state,

and Equation (4.25) applied to tlin
f simply yields tlin

f (ξ, p) = t̄f + ∆t∗
f (ξ, p).

In practice, the solution z∗ of QP (ξ, p) can be used either to form the guidance
law from Equation (4.24), or by computing waypoints xk using the state approxi-
mation provided by xlin s.t.

xk := xlin(τk, ξ, p) (4.26)

where (τk)k is a prescribed subdivision of [0, 1] of normalized time instance. The
values τk are equivalent to the non-normalized time instances tk s.t.

tk = τk .
(
t̄f + ∆t∗

f (ξ, p)
)

.

4.4 Numerical examples
Let us discuss the three following examples, each highlighting a distinct feature of
the solutions of QP (ξ, p). Since the case where p ̸= 0 is the matter of Chapter 5,
these examples focus exclusively on nominal descents, i.e. where p = 0.

For all the examples, the cost J that we consider is defined directly by giving its
matrices P and Q. We consider that Q = 0, and that the matrix P is a diagonal
matrix of positive weights, which favors early corrections (i.e. the weight associated
to u(τ0) is smaller than the one of u(τN)).

The reference trajectory chosen for each example is represented by a black line.
Moreover, for the examples using the 3D model, the reference trajectory is assumed
to lie in the plane (ez, eh) (though corrections implying out of plane trajectories are
discussed in the last example).

The data have been normalized for all the examples.

4.4. Numerical examples 71

4.4.1 Effectiveness of calculated guidance

The first example aims at showing that in some neighborhood of the reference pa-
rameters, the expansion (4.25) provides accurate corrections enforcing the terminal
constraints, even when using the corrections in open-loop only. It is directly illus-
trated on the 3D rocket model.

Figures 4.5 illustrate a dispersion of the input variable ξ along a single compo-
nent, namely ∆v0

h, for both positive and negative values. The inputs are voluntarily
dispersed over a small range of values.

Due to the terminal constraints, the six states corresponding to the positions
and speeds are expected to be null at the final time (except vh(tf) = −εf

vh
). If the

reference guidance law (ū, t̄f) is applied directly to a scenario where ξ ̸= 0 - i.e. no
corrections are applied - then strong constraint violation errors will appear. However,
if the change in parameter is corrected using u∗ from (4.24) (i.e. using QP (ξ, p)), the
terminal constraints are supposed to be approximately satisfied up to the first-order.
These two behaviors are well observed in the sub-figure (a) of Figure 4.5, which
represents the terminal horizontal position z(tf). The other terminal constraints (on
y, h, vz, vy and vh) have voluntarily been omitted, as their correction curve is much
flatter than for z. In other words, it means that even though this terminal constraint
component has the worst open-loop correction curve, it still demonstrates that the
first-order corrections brought by QP (ξ, p) work well in a non-trivial neighborhood
of ξ = 0 in practice.

4.4.2 Changes in the active set

The second example aims at showing that the optimal solutions of QP (ξ, p) are
indeed only Dini-differentiable and not smooth, even in a standard landing scenario.
Let us use the 2D rocket model, and consider that ξ only varies in horizontal posi-
tion ∆z0 = z0 − z̄0.

The directional-derivatives of α at the middle point t2 in the two directions ∆z0 =
1 and ∆z0 = −1 differ, as shown in Figure 4.6-(d). This behavior has a real-world
interpretation. When ∆z0 > 0, using more incidence on α(t2) is not a possible
option as the constraint is already active and becomes strictly active (the associated
multiplier becomes positive when ∆z0 > 0). However, when ∆z0 < 0, lowering α(t2)
is possible, allowing the presented corrections.

4.4.3 Non-local constraint satisfaction

This third example aims at showing the behavior of QP (ξ, p) for large values of ξ.
Let us consider the 3D model, with a reference trajectory contained in the plane
(ez, eh).

As illustrated in Figure 4.7, we are here interested in the behavior of QP (ξ, p) for
values of ξ covering a grid in (∆z0, ∆y0), the change in initial horizontal positions.
Considering a such choice of inputs allows us to stress that QP (ξ, p) is able to
compute out-of-plane trajectories.

As pointed out in the sub-Figures 4.7-(c) and (d), non-local constraints are ac-
tivated for sufficiently large values of the input, as demonstrated by the trajectories
that reach the incidence bounds.

72 Chapter 4. Nominal guidance via Quadratic Programming

0.010 0.005 0.000 0.005 0.010
Selected input, i.e. v0

h.

0.04

0.02

0.00

0.02

0.04

Fi
na

l h
or

iz
on

ta
l p

os
iti

on
: z

(t f
)

(a)
Target
Open-loop with corrections
Open-loop without corrections
Reference

Horizontal position: z

1.0
0.8

0.6
0.4

0.2
0.0

0.2 Hor
izo

nt
al

po
sit

ion
: y

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

Al
tit

ud
e:

 h

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time = t/tf

qmin

qmax
(c)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time = t/tf

max

0

max
(d)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time = t/tf

max

0

max
(e)

C
on

tr
ol

le
d

en
gi

ne
 fl

ow
: q

c
Pr

oj
ec

te
d

in
ci

de
nc

e
z

Pr
oj

ec
te

d
in

ci
de

nc
e

y

Figure 4.5: First-order correction, for ∆v0
h varying in the vicinity of 0. The sub-

Figure (a) is the main purpose of this example, showing that the green curve is a
second order residual w.r.t. to the input ∆v0

h. Note that sub-Figure (c) shows very
late corrections in the engine flow. The weighting matrix P has been chosen to favor
early corrections. Since QP (ξ, p) returned late corrections anyway, it means that
earlier flow corrections would have required even higher incidence corrections (which
is partially explained by the high dynamic pressure at the beginning of the descent).

4.4. Numerical examples 73

0.00 0.25 0.50 0.75 1.00
Normalized time t/tf

max
2

0

max
2

max

In
ci

de
nc

e:

(c) (a)

0.00 0.25 0.50 0.75 1.00
Normalized time t/tf

0

+

In
ci

de
nc

e
co

rr
ec

tio
n

on
ly

(, t2)

(b)

0.48 0.49 0.50 0.51 0.52
Normalized time t/tf

max

In
ci

de
nc

e
(z

oo
m

ed
 fr

om
 (a

))

(c)

z0
max 0 z0

max
Parameter values: z0

0
+

In
ci

de
nc

e
co

rr
ec

tio
n:

(t 2

)

(d)

z0 z0
max z0 z0 + z0

max z(tf)
Horizontal position: z

0

h0
2

h0

Al
tit

ud
e:

 h

(e)

Figure 4.6: Changes in the input variable leading to local changes in the active set.
The input variable used in this example is ∆z0.

74 Chapter 4. Nominal guidance via Quadratic Programming

Horizontal position: z

1.0
0.8

0.6
0.4

0.2
0.0

0.2

Hor
izo

nt
al

po
sit

ion
: y

1.00

0.75

0.50

0.25

0.00
0.25

0.50
0.75

1.00

Al
tit

ud
e:

 h

0.0

0.2

0.4

0.6

0.8

1.0
x0

x(tf)

(a)
z0 Smallest. y0 Smallest.
z0 Smallest. y0 Largest.
z0 Largest. y0 Smallest.
z0 Largest. y0 Largest.

Reference

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time = t/tf

qmin

qmax
Controlled engine flow: qc

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time = t/tf

max

0

max
Projected incidence z

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time = t/tf

max

0

max
Projected incidence y

(d)

Figure 4.7: Non-local behavior of QP (ξ, p), when ∆z0 and ∆y0 change. For large
values of ∆z0 and ∆y0, several constraints start to be triggered, such as the incidence
bounds (upper and/or lower bounds).

4.4. Numerical examples 75

If one considers even larger values of ξ in this example, it comes a point where the
constraints of QP (ξ, p) are infeasible, at least as long as we keep p = 0. Hence the
need for an algorithm that computes the proper value for p according to a hierarchy
of objectives, which will be the matter of the next chapter.

Chapter 5

Emergency guidance via Linear
and Quadratic Programming

Résumé

Le problème QP (ξ, 0) a été le sujet principal jusqu’à présent. À un moment
donné, si ξ est trop grand, alors QP (ξ, 0) peut être infaisable. Par exemple, si
la position horizontale initiale est trop éloignée du site d’atterrissage, il n’est
pas possible de concevoir une trajectoire qui satisfasse toutes les contraintes en
même temps : ces dernières sont incompatibles. La question centrale de cette
thèse est donc la suivante : que faire dans cette situation ?

Lorsque QP (ξ, p) est infaisable à p = 0 et pour une valeur donnée de ξ, le
problème de l’atterrissage doit être modifié pour retrouver la faisabilité, dans
une certaine mesure. Cela peut se faire en relâchant les contraintes, c’est-à-dire
en modifiant p. Une stratégie de relaxation doit être définie.

Tout d’abord, nous identifions les principaux paramètres négociables qui
peuvent être relâcher, dans la Section 5.1, et nous soulignons leur importance
relative. Cette liste ordonnée découle des connaissances préalables et de la
compréhension commune des ingénieurs chargés de la réussite de la mission.

Ensuite, à partir de cette liste ordonnée, une suite de problèmes
d’optimisation visant à minimiser l’amplitude des paramètres négociables est
présentée dans la Section 5.2 et nommée HEGO pour Optimisation Hiérarchique
pour le Guidage d’Urgence. L’utilisation de cette suite produit une trajectoire
de guidage, tout en imposant une hiérarchie prescrite entre les paramètres négo-
ciables sélectionnés, au sens de l’ordre extended colexicographic order présenté
au Chapitre 1. La formulation des problèmes sous-jacents repose uniquement
sur la programmation linéaire et quadratique. De plus, des garanties théoriques
sur le caractère bien posé et la régularité de la fonction qui à ξ associe la
trajectoire optimale sont fournies. Comme il est d’un grand intérêt pour les
applications pratiques, où la régularité des méthodes numériques est toujours
souhaitable, il est démontré que cette dernière fonction est Lipschitz-continue,
évitant ainsi les sauts dans la trajectoire de guidage pour des entrées arbi-
trairement proches. D’autres propriétés peuvent être établies, et la monotonie

77

78 Chapter 5. Emergency guidance via Linear and Quadratic Programming

directionnelle de l’amplitude du paramètre de négociation est examinée dans
un cas particulier.

L’Algorithme HEGO est généralisé dans la Section 5.6. Cette généralisation
permet de distinguer ce qui est lié à la méthode de guidage nominal sous-
jacente de ce qui est propre aux problèmes de négociation eux-mêmes. On
montre notamment comment HEGO pourrait être utilisé avec un autre choix
de méthode de guidage nominal (i.e. au lieu de QP (ξ, p)), parmi les méthodes
directes pour les OCP.

Enfin, des résultats numériques sont présentés dans la Section 5.7. Ils met-
tent en avant divers aspects de la méthode de guidage d’urgence, à la fois sur
les modèles de fusée 2D et 3D. Plusieurs ensembles de paramètres négociables
sont utilisés pour illustrer les différentes stratégies d’urgence accessibles par la
méthodologie HEGO ainsi proposée.

The problem QP (ξ, 0) has been the main topic so far. At some point, if ξ is
too large, then QP (ξ, 0) may be infeasible. For instance, if the initial horizontal
position is too far from the landing site, then it is not possible to design a trajectory
that satisfies all the constraints at the same time: they are inconsistent. Hence, the
central question of this thesis is: what should one do in this case?

When QP (ξ, p) is infeasible at p = 0 for a given value of ξ, the landing problem
has to be modified to recover feasibility to some extent. This can be done by revising
the constraints, i.e. by modifying p. Some revision strategy has to be defined.

First, we identify the main negotiable parameters that can be relaxed, in Sec-
tion 5.1, and emphasize their relative importance. This ordered list stems from prior
knowledge and common understanding between engineers in charge of the mission
success.

Then, from this ordered list, a sequence of optimization problems aiming at
minimizing the magnitude of the negotiable parameters is introduced in Section 5.2
and denoted HEGO for Hierarchical Emergency Guidance Optimization. Using the
sequence produces a guidance trajectory, while enforcing a prescribed hierarchy be-
tween the selected negotiable parameters, in the sense of the extended colexico-
graphic order introduced in Chapter 1. Formulating the underlying problems relies
only on Linear and Quadratic Programming. Moreover, theoretical guarantees on
the well-posedness and the smoothness of the mapping from ξ to the optimal tra-
jectory are provided. As it is of high interest for a practical application where
smoothness of numerical calculation procedures is always desirable, the latter map
is shown to be Lipschitz-continuous, preventing jumps in the guidance trajectory
for arbitrarily similar inputs. Some further properties can be established, e.g. the
directional monotonicity of the negotiation parameter magnitude is discussed for a
special case.

The HEGO algorithm is generalized in Section 5.6. It distinguishes what is
linked to the underlying nominal guidance method, from what is fundamental to
the negotiation problems themselves. In details, it is shown how HEGO could be
used with another choice of nominal guidance method (i.e. instead of QP (ξ, p)),
among direct methods for OCPs.

Finally, numerical results are presented in Section 5.7. They highlight various
aspects of the emergency guidance method, on both the 2D and the 3D rocket

5.1. Negotiable parameter choices 79

models. Several sets of negotiable parameters are employed, to illustrate the various
emergency policies achievable by the proposed HEGO methodology.

The first sections of this chapter are a detailed version of [66]. However, the
last sections, including the theoretical proofs and the numerical simulations, are new
(unpublished) elements.

5.1 Negotiable parameter choices
For a given input ξ, when landing has been declared infeasible by QP (ξ, p), it is
necessary to loosen some of the constraints. First, the parameters that can be
negotiated are listed and it is shown how they modify the constraints of QP (ξ, p).
Then, a model describing their relative importance is proposed.

5.1.1 Negotiated constraints

The parameters that can be negotiated are the ones describing the goals of the
landing. The physics-based equations of motion are not negotiable. However, the
location of the landing site is, at least partially, negotiable. Indeed, if the landing
site is located in a wide and flat area, it is of interest to allow touchdowns in a
neighborhood of the ideal landing site1. Some of the other parameters defining the
constraints can be partially loosened. For example, the incidence limit should be
seen more as a safety constraint - and a way to limit long-term fatigue of the rocket
- and could be slightly widened if necessary, whereas the engine flow limitations are
non-negotiable mechanical constraints.

The negotiable parameters are already conveniently conveyed by p, the variable
introduced in Chapter 2. The purpose of this chapter is to discuss extensively
how these negotiable parameters are mathematically modeled, what are the possible
choices for its components, and how its value is chosen.

Let us recall that p has a linear influence on the Right-Hand Side (RHS) of the
constraints of QP (ξ, p), s.t. the nominal constraints





Gz ≤ h0 + Hξξ

Az = b0 + Bξξ

are transformed into the negotiated constraints by the action of p





Gz ≤ h0 + Hξξ + Hpp

Az = b0 + Bξξ + Bpp
(5.1)

For any such p, the matrices Hp and Bp are basically filled with zeros and a few
ones, which makes them sparse.

These negotiated constraints come with an extra condition: it is assumed that all
negotiable parameters are negotiable within prescribed limits, i.e. that p is bounded

1Note that this would not apply to landings on offshore platforms, for obvious reasons.

80 Chapter 5. Emergency guidance via Linear and Quadratic Programming

Parameter name Variables Negotiable? Comment
Final horizontal
positions ∆zf , ∆yf ✓

If landing area is
solid and flat

Final horizontal speeds ∆vf
z , ∆vf

y × Otherwise the rocket
would tilt at landing.

Final altitude ∆hf × See Example 2 for
a discussion.

Final vertical speed ∆vf
h ≈ Tiny margin, imposed

by landing gear design
Incidence bound (2D)
Projected incidence
bound (3D)

∆αmax ✓
Safety and flight
quality bound.

Engine flow bounds ∆qmin, ∆qmax × Physical constraint.

Normal acceleration ∆amax
nor ✓

Safety and flight
quality bound.

Table 5.1: List of negotiable parameters in PDG (ξ, p).

under the form

plow ≤ p ≤ pup. (5.2)

If necessary, this cube-like constraint could be modeled as a bounded polytope,
described by an inequality Dp ≤ d for some pair (D, d), without changing any of
the reasoning below.

For example, as it will be discussed in more details in Example 1 at the end of
this chapter, a possible choice for the variable p is the pair (∆αmax, ∆zf)⊤ for the
2D rocket model. From a more exhaustive point of view, the list of all parameters
that can or cannot be loosened in practice is presented in Table 5.1.

5.1.2 On the relative importance of the parameters

Adapting Orwell’s Animal Farm quote, all parameters are important but some are
more important than others (in (5.1)). It is necessary to enforce a hierarchy of im-
portance between the negotiation parameters. Thus, let us separate the negotiation
parameters in R different sub-parameters p(j) of ranked (increasing) importance, as

p =
(

(p(1))⊤ . . . (p(R))⊤
)⊤
∈ Rnneg .

The higher the index j, the more critical p(j) is. The dimension of p(j) is noted nj .
Mathematically speaking, the negotiable parameters are compared using the 1-

norm of their sub-parameters, by comparing their most critical sub-parameters first.
As first introduced in (1.1) in Chapter 1, a vector pa is said to be more negotiated

5.2. A hierarchical negotiation 81

than another vector pb, which is denoted pa⪰e pb, if and only if

∥p(R)
a ∥1 > ∥p(R)

b ∥1 or ∥p(R)
a ∥1 = ∥p(R)

b ∥1 and ∥p(R−1)
a ∥1 > ∥p(R−1)

b ∥1,

or . . .

or ∥p(R)
a ∥1 = ∥p(R)

b ∥1 and . . . and ∥p(1)
a ∥1 > ∥p(1)

b ∥1,

or ∥p(R)
a ∥1 = ∥p(R)

b ∥1 and . . . and ∥p(1)
a ∥1 = ∥p(1)

b ∥1.

(5.3)

The relation ⪰e is an extended colexicographic order, that we will eventually
refer to as the emergency order in this thesis2.

Basic Example 2. Let us consider negotiable parameters s.t. nneg = 2 and R = 2,
making both sub-parameters are thus scalars. Then

(Least critical) (1, 1)⪯e (3, 2)⪯e (4, 2)⪯e (1, 3)⪯e (−2, 3) (Most critical).

Basic Example 3. Let us consider negotiable parameters s.t. nneg = 3 and R = 2
s.t. p = (p(1), p(2))⊤, where p(1) ∈ R and p(2) ∈ R2. Then

(Least critical) (1, 2, 1)⪯e (1, 3, 1︸︷︷︸)⪯e (2,−4, 0︸ ︷︷ ︸)⪯e (−3, 0, 5) (Most critical).

∥p(2)∥1 = 4 ∥p(2)∥1 = 4

For illustration purposes, let us consider again p = (∆αmax, ∆zf) for the 2D
rocket model. Considering that it is less critical to sacrifice a few degrees of incidence
limit than to land outside the desired landing site yields

p(1) = ∆αmax and p(2) = ∆zf .

Remark 22. To some extent, recovering feasibility has been tackled from different
perspectives. In a seminal paper by Blackmore et al. [17], the problem of finding
the actual landing site that minimizes the distance to the desired landing site is
described in details, for Mars landing (i.e. without atmosphere), using Successive
Convexification. Translated into the above-mentioned taxonomy, one can write that
they have two different negotiable parameters that were negotiated at the same time,
which were the two final horizontal positions of their 3D lander model. Their tax-
onomy also implies that R = 1 with ours, meaning that they do not use any notion
of hierarchy.

5.2 A hierarchical negotiation
Now that it has been discussed what the levers available to modify the constraints
of QP (ξ, p) are - using Equation (5.1) - there comes the follow-up question: how
does one negotiate these parameters?

When the input ξ makes the nominal constraints infeasible - i.e. when nominal
landing is not feasible anymore - the goal is to find the smallest change in the

2Naturally, pb ⪯e pa is equivalent to pa ⪰e pb.

82 Chapter 5. Emergency guidance via Linear and Quadratic Programming

negotiable parameters that recovers feasibility. There are two salient expectations
regarding the method that computes these negotiable parameters and the associated
trajectory that will be called emergency trajectory.

On the one hand, this method must pick the smallest negotiable parameter as
possible, in the sense of the emergency order. This aims at using as little negotiable
parameters as possible while enforcing the relative importance of the parameters.

On the other hand, the map ξ 7→ z∗ giving the optimal emergency trajectory
should be as smooth as possible (continuity is a minimum), in order to prevent jumps
in the trajectory between arbitrarily close values of ξ. Such jumps could be very
detrimental and cause serious issues to the control algorithms (out-of-the-scope of
the thesis).

With these objectives in mind, we introduce the method HEGO (i.e. Algorithm 2
below), composed of a finite sequence of negotiation problems labeled LPj and a
refinement problem labeled Refine, which aims at fulfilling the two latter goals.
HEGO is then tested on a low-dimensional example, helping to understand some
of the methodology design choices. Finally, several aspects of this algorithm are
put into perspective. The theoretical proofs showing that this algorithm behaves as
expected will be discussed in Section 5.3.

5.2.1 Algorithmic principle of HEGO

From a high-level perspective, finding the smallest negotiation parameters that sat-
isfy the constraints could take the form of a single optimization problem s.t.

z∗, p∗ ←− min
z,p

Penalty(p)

s.t. Negotiated constraints for (z, p), from Eq. (5.1).

However, there are several limitations to this strategy. First, nothing guarantees that
neither z∗ nor p∗ are unique when coming out of such a procedure. Moreover, since
the cost of the latter problem differs from the cost of the nominal guidance problem
QP (ξ), it is highly likely that the map ξ 7→ z∗ encounters a discontinuity when the
emergency is triggered, i.e. when going from the most inner set to the intermediate
set of Figure 5.1. Finally, and most importantly, the hierarchy is ignored with this
kind of problem description. At best, the parameters can be non-homogeneously
weighted to reflect their importance, but not their strict ranking.

Instead, we propose to successively minimize the magnitude of the negotiable
parameters while enforcing the existence of at least one feasible trajectory at each
step. This is a penalty-free approach. As required by the emergency order, this
minimization procedure will focus sequentially on the sub-parameters, starting by
the last one (i.e. p(R)), down to the first one (i.e. p(1)). This means that the most
critical negotiable parameters are minimized first. At each step, only the proper
sub-parameter p(j) is minimized, s.t. the result be p(j) = 0 if it is not necessary
to use this parameter to recover feasibility. Also, to enforce the desired hierarchy,
a kind of memory effect is needed so that each step takes into account the results
of the previous steps, by preserving the negotiation levels. This will be the role of
condition (5.4e) below. As will appear, Linear Programming (LP) will play a key
role to implement these negotiation steps.

5.2. A hierarchical negotiation 83

Values of ξ
that do not require

any negotiation
(A)

Values of ξ that
require a non-zero

negotiable parameter p
(B)

Values of ξ for which
no negotiable parameters can

recover feasibility
(C)

Figure 5.1: Pictorial representation of the possible values for the input ξ.

Quantitatively, let us first introduce the negotiation problems LPj as

LPj := min
z,p

∥p(j)∥1 (5.4a)

s.t. Gz ≤ h0 + Hξξ + Hpp (5.4b)
Az = b0 + Bξξ + Bpp (5.4c)
plow ≤ p ≤ pup (5.4d)
∥p(i)∥1 = P∗

i , i = j + 1, . . . , R (5.4e)

where P∗
i denotes the optimal value of LPi. To make this problem definition well-

posed, note that the constraint (5.4e) does not exist when j = R. Moreover, note
that the inputs of each LPj are ξ and P∗

i for i = j + 1, . . . , R. To alleviate the
writing, these inputs are omitted wherever the context is clear enough. Finally, it is
important to highlight the fact that z and p are both optimization variables in LPj ,
even though only a few coefficients of p are involved in the cost (5.4a).

The role of LPj is to minimize a cost on the j−th negotiable sub-parameters,
while making sure that there are still feasible trajectories z, and that the already
determined levels of relaxation of the previous negotiation problems are unchanged
in the process. The reason why constraint (5.4e) must be satisfied instead of a
constraint of the type “p(j) = p(j)∗” is that LPj does not necessarily have a unique
solution. Imposing ∥p(j)∥1 = P∗

i encompasses all the solutions of LPj and makes
sure that the level of negotiation reached at step i remains satisfied in the follow-up
negotiations. Descending from j = R to j = 1 and imposing this latter constraint
guarantees that the emergency order is enforced.

Thus, solving successively LPj for j = R, . . . , 1 (decreasing indices) provides a
way to recover feasibility, while hierarchically minimizing what needs to be sacrificed

84 Chapter 5. Emergency guidance via Linear and Quadratic Programming

from the original guidance problem, by building the sequence P∗
1 , . . . ,P∗

R starting
from the end. Among others, a noteworthy property of this process is that if landing
is feasible without any negotiation, then solving LPj will return ∥p(j)∥1 = 0 at each
step, implying that the overall vector p equals zero. Once this negotiation sequence
has been computed, there may be many possible values for p, and for z as well. It
is thus necessary to pick the best trajectory among these ones, by solving

Refine := min
z,p

1
2z⊤Pz + ξ⊤Qz (5.5a)

s.t. Gz ≤ h0 + Hξξ + Hpp (5.5b)
Az = b0 + Bξξ + Bpp (5.5c)
plow ≤ p ≤ pup (5.5d)
∥p(i)∥1 = P∗

i , i = 1, . . . , R (5.5e)

Like LPj , the problem Refine takes as inputs ξ and P∗
i for i = 1, . . . , R. These two

optimization problems are the basic bricks of the central algorithm of this thesis,
defined below.

Algorithm 2 Hierarchical Emergency Guidance Optimization (HEGO)
Require: Difference w.r.t. reference values: ξ = (∆x0, ∆η, ∆uinit).

for j = R, . . . , 1 (decreasing indices) do
P∗

j ← min LPj

(
ξ,P∗

j+1, . . . ,P∗
R

)
// From definition (5.4).

end for
z∗ ← argmin Refine (ξ,P∗

1 , . . . ,P∗
R) // From definition (5.5).

return z∗

For the argmin operation, the value of p is voluntarily ignored, since it is not needed nor unique.

It is important to observe that this guidance procedure provides, depending on
the situation, either a nominal guidance or an emergency guidance, as stated in the
following proposition.

Proposition 11. If ξ is s.t. the constraints of the nominal guidance problem
QP (ξ, 0) are feasible, then HEGO and QP (ξ, 0) return the same value z∗.

Proof. If the constraints of QP (ξ, 0) are feasible, then there exists at least one
pair (z, p) with p = 0 that satisfies the negotiated constraints (5.1). Thus, all the
problems LPj will necessarily return P∗

j = 0, and constraint (5.5e) will subsequently
impose p = 0, making Refine and QP (ξ, 0) coincide. Uniqueness of the solutions
yield the conclusion.

Qualitatively, the nominal guidance method based solely on QP (ξ, 0) can provide
landing trajectories on the set A from Figure 5.1 whereas HEGO is able to do it on
the sets A and B. HEGO therefore provides landing guidance for a wider range of
input values ξ. It also meets the requirements regarding the negotiable parameter
minimization and the hierarchy enforcement. These features make it an “universal”
guidance algorithm.

The analysis of the map ξ 7→ z∗ defined by this algorithm is presented later
in Section 5.3. Among others, Proposition 12 will show the well posedness of the

5.2. A hierarchical negotiation 85

algorithm, and Theorem 7 proves the Lipschitz-continuity of ξ 7→ z∗(ξ) for HEGO.
Before getting into these technical details, let us discuss the following example.

5.2.2 An illustrative toy example

Consider a low-dimensional example that resembles the landing problem, illustrating
how HEGO works and why the negotiation problem hierarchy matters. Although
this example could seem greatly over-simplified at first glance, its similarities with
the actual landing problem are noteworthy, especially when comparing the curves
from Figure 5.3 (left) and Figure 5.5 (d) reporting the negociation of parameters.

The problem takes as input a scalar ξ ≥ 0, and aims at minimizing the norm of
z = (z1, z2)⊤ ∈ R2, under some constraints

min
z, p

z2
1 + z2

2

s.t. (Ineq1) z1 ≥ 0
(Ineq2) z2 ≥ 0
(Eq) z2 = 1− ξ − z1

This problem is represented in Figure 5.2 (0). By analogy, let us imagine that z1
conveys the incidence, z2 the engine flow and ξ the initial horizontal position error.
Therefore,

• (Ineq1) conveys the incidence bound, that may be negotiated by a variable p1,
s.t. z1 ≥ −p1.

• (Ineq2) conveys the mechanical limits of the engine flow, which are non-
negotiable.

• (Eq) represents the terminal condition on the horizontal position and is directly
influenced by ξ. It may be negotiated by a parameter p2 if necessary, s.t.
z2 = 1− ξ − z1 + 2p2.

Moreover, note that the negotiable parameters p = (p1, p2)⊤ ∈ R2 can be negotiated
up to some extent, so we decide to bound them between 0 and 1. More precisely,
imposing 0 ≤ p2 ≤ 1 means that we allow the rocket to eventually land farther of
the landing site, but on one side only and up to a certain limit.

Finally, as in the actual landing problem, we consider that negotiating p2 is more
critical than p1 (i.e. R = 2). Let us now review the possible scenarios depending on
the input value.

5.2.2.1 Nominal scenario

When ξ remains low, i.e. 0 ≤ ξ ≤ 1, then there is no need for parameter negotiation,
because the problem is feasible when p1 = p2 = 0. Running Algorithm 2 will
give null values for the negotiation penalties. In this case, the optimal solution is
z∗

1(ξ) = z∗
2(ξ) = (1− ξ)/2. This scenario is represented in Figure 5.2 (A).

86 Chapter 5. Emergency guidance via Linear and Quadratic Programming

5.2.2.2 First negotiation scenario

When 1 < ξ ≤ 2, the initial constraints are not compatible anymore and must be
negotiated, whence the need for Algorithm 2. The first step of the latter is

min
z, p

|p2|

s.t. z1 ≥ −p1

z2 ≥ 0
z2 = 1− ξ − z1 + 2p2

0 ≤ p1 ≤ 1
0 ≤ p2 ≤ 1

and will result in a null optimal negotiation, i.e. P∗
2 (ξ) = 0, since it is possible to

recover feasibility without using p2. The second step will be the problem

min
z, p

|p1|

s.t. z1 ≥ −p1

z2 ≥ 0
z2 = 1− ξ − z1 + 2p2

0 ≤ p1 ≤ 1
0 ≤ p2 ≤ 1
0 = |p2|

where “0 = |p2|” is here to enforce the result from the former negotiation problem.
The latter will return the optimal negotiation P∗

1 (ξ) = ξ−1. Thus, the optimization
variable z can be re-optimized over the newly negotiated set - which is actually a
singleton. In the end, it yields

z∗
1(ξ) = 1− ξ and z∗

2(ξ) = 0.

This scenario is represented in Figure 5.2 (B).

5.2.2.3 Mild negotiation scenario

Then, let us consider a scenario that requires even more negotiations, i.e. when
2 < ξ ≤ 4. In this case, the first step of Algorithm 2 gives a non-zero optimal
negotiation s.t. P∗

2 (ξ) = ξ−2
2 , and the second step gives the result P∗

1 (ξ) = 1.
Qualitatively, this must be interpreted as: “the parameter p2 must be modified

just enough so that there is a value of p1 that provides a non-empty feasible set for z”.
In this scenario, z∗

1(ξ) = −1 and z∗
2(ξ) = 0, which are plotted in Figure 5.2 (C).

5.2.2.4 Infeasible scenario

Finally, for ξ > 4, there are no possible solutions for the first negotiation problem.
Therefore, Algorithm 2 does not return anything, because there are no solutions to
this over-constrained problem. Note that the limit p2 ≤ 1 is the ultimate constraint
that makes the negotiation problem infeasible.

5.2. A hierarchical negotiation 87

5.2.2.5 The importance of the parameters hierarchy

The values of the variables z and p are represented in Figure 5.3 (left), w.r.t. the
input ξ.

The chosen parameters hierarchy is crucial. Indeed, if instead of considering that
“p2 is more critical than p1” it was considered that the whole vector (p1, p2) could
be negotiated at once, the results would have been completely different, as shown in
Figure 5.3 (right). In the latter case, there would be only one negotiation problem

min
z, p

|p1|+ |p2|

s.t. z1 ≥ −p1,

z2 ≥ 0,

z2 = 1− ξ − z1 + 2p2,

0 ≤ p1 ≤ 1,

0 ≤ p2 ≤ 1.

Doing this would imply that the variable p2 would be used to recover feasibility
before p1.

5.2.3 Noteworthy remarks

Remark 23 (Linear Programs). Using standard material from the literature, such
as [14, Example 1.13], decomposing p = ρ+−ρ− with ρ+, ρ− ≥ 0 makes it possible to
solve LPj using Linear Programming, whence the name LPj. Indeed, this decompo-
sition yields the convenient re-writing ∥p∥1 = 1⊤(ρ+ + ρ−). See also the re-writing
method in the Lipschitz-continuity proofs below.

Remark 24 (In the literature). From a very general mathematical programming
point of view, recovering feasibility in Linear Programming has been discussed ex-
tensively by Chinneck [28] for instance. Problem (5.4) builds upon right-hand side
constraint “alteration” methods, by exploiting the available levers conveyed through
the parameter p, the matrices Hp and Bp, and the need to enforce the parameter
hierarchy.

Remark 25 (Hierarchy does not impact feasibility). Though the hierarchy notion is
important, it does not change the set of inputs s.t. there exists at least one value of
the negotiable parameters that make the constraints (5.1) feasible. Mathematically,
it means that the set of ξ ∈ RNξ s.t.

∃(z, p) ∈ RNz × Rnneg :





Gz ≤ h0 + Hξξ + Hpp

Az = b0 + Bξξ + Bpp

plow ≤ p ≤ pup

does not depend on ⪰e by construction. The latter order will only determine which
values of p will be used for a given ξ. This fact can be observed in Figure 5.3, by
remarking that the regions (D) and (C ′) correspond to the same sets for ξ.

88 Chapter 5. Emergency guidance via Linear and Quadratic Programming

0
z1

z2

| 1

| 1

(Ineq1)

(Ineq2)

(Eq)

•

•

Feasible set
for z when
p1 = p2 = 0
and ξ = 0.

0
z1

z2

|−1
| 1

ξ

•
•

0
z1

z2

|−1
| 1

ξ

p1

•
0

z1

z2

|−1
| 1

ξ

p2

p1

•

0 A

B C

Figure 5.2: Illustration of the constraint for the problem of Section 5.2.2 w.r.t. the
input values, using HEGO.

5.2. A hierarchical negotiation 89

ξ

Optimal values of z

| | | |
1 2 3 4

|
|

0

1

|- 1

z1

z2

ξ

Optimal penalties

| | | |
1 2 3 4

|
|

0

1

|- 1

P∗
1 P∗

2

A B C D

With the hierarchy.

ξ

Optimal values of z

| | | |
1 2 3 4

|
|

0

1

|- 1

z1

z2

ξ

Optimal penalties

| | | |
1 2 3 4

|
|

0

1

|- 1

P∗
1P∗

2

A’ B’ C’

Without the hierarchy.

Figure 5.3: Curves associated to the example of Section 5.2.2. (Left) The first
remark is that all the quantities displayed are indeed continuous w.r.t. the input
ξ. On the bottom chart, there are four distinguishable areas. (A) corresponds to
the nominal scenario, when no negotiation is needed. (B) and (C) corresponds to
scenarios that require respectively 1 and 2 non-zero negotiation parameter values
to recover feasibility. Finally, scenario (D) is when there are no options left., and
no allowed values of p1 or p2 can help recover feasibility for z. (Right) Without
enforcing any hierarchy, the previous zones (B), (C) merge into a single zone (B′),
where both variables p1 and p2 are negotiated at the same time. The penalties differ
from the previous case, and so do the optimal values z1 and z2.

90 Chapter 5. Emergency guidance via Linear and Quadratic Programming

Remark 26 (Limits of the hierarchy). HEGO guarantees that the most critical
parameters are minimized first. However, since the negotiable parameters can have
a very different influence on the constraints, it is still possible to have scenarios
where a critical parameter is non-zero, but a less critical parameter is zero.

For instance, let us consider the following trivial example where the negotiated
constraints take the form

z1 = ξ1 + p1,

z2 = ξ2 + p2,

− 1 ≤ z1 ≤ 1,

− 1 ≤ z2 ≤ 1.

Since there are no links between the variables indexed by 1 and the ones indexed by 2,
even imposing that p2 be more critical than p1 does not guarantee that p1 will ever
be used when the magnitude of ξ2 increases.

To summarize, the least critical negotiable parameters will be used in lieu of the
most critical ones only if the fundamental nature of the problem makes it possible.

Remark 27. (Post-defense note) As noted by one of the jury members 3 after
the thesis defense, trying to minimize the value of a parameter with respect to a
lexicographic or co-lexicographic order is similar to some methods used in multi-
objective optimization. For instance, see [30] for more details on the topic.

5.3 Smoothness of the HEGO algorithm
For the reasons mentioned previously, the fact that the outputs of Algorithm 2 - i.e.
HEGO- do not change too fast when its inputs vary is of high interest.

The goal of this section is to prove that the map ξ 7→ z∗ defined by Algorithm 2
is globally Lipschitz on its definition domain. Proving this property relates to QP
sensitivity analysis w.r.t. the constraints RHS and the linear part of the cost. When
the cost is defined with a positive definite matrix, this property holds and is a well-
known result [59]. However, this has to be adapted to our framework, where only a
part of the optimization variable is unique (i.e. z is unique, but p is not necessarily
unique).

To alleviate the writing, and without loss of generality, we make the assump-
tion that the cost of Refine only has a quadratic term in z, i.e. that Q = 0 in
Equation (5.5a). Indeed, extending the constraints RHS sensitivity results to per-
turbations in the linear part of the cost is obtained using well-known dualization
methods of QPs [21,41,59].

First, a re-writing of the problems LPj and Refine is introduced, to show that
the result z∗ from Algorithm 2 is well-defined and unique. Then, we show that
the optimal negotiation maps giving P∗

i and the optimal solution maps giving z∗

are Lipschitz continuous functions of the RHS of their constraints. This is proved
using a series of well-known results and by adapting a theorem by Mangasarian &
Shiau [59] to our framework. Finally, we conclude on the properties of Algorithm 2.

3I would like to thank Laurent Pfeiffer for its attention to detail and its rich feedback.

5.3. Smoothness of the HEGO algorithm 91

5.3.1 Problem re-writing

The constraints of LPj and Refine can be rewritten into a unified, standard and
linear framework. Denote by Cj these constraints

Cj :=





Gz ≤ h0 + Hξξ + Hpp,

Az = b0 + Bξξ + Bpp,

plow ≤ p ≤ pup,

∥p(i)∥1 = P∗
i , i = j + 1, . . . , R.

For j = 1, . . . , R, the constraints Cj convey those of LPj , and C0 convey those of
Refine. Slack variables, denoted sG, sup, slow, can be used to transform the inequal-
ities of Cj into the constraints

Gz + sG = h0 + Hξξ + Hpp,

p + sup = pup,

p− slow = plow,

sG, sup, slow ≥ 0

Let us define the variable x = (z+, z−, ρ+, ρ−, sG, sup, slow) where

z = z+ − z−, (5.6a)
p = ρ+ − ρ−, (5.6b)
x ≥ 0. (5.6c)

and introduce the matrices Āj and r̄j as

Āj :=




G −G −Hp Hp Idim sG
O O

A −A −Bp Bp O O O

O O Inneg −Inneg O Inneg O

O O Inneg −Inneg O O −Inneg

O O Ij+1 Ij+1 O O O




, r̄j :=




h0 + Hξξ

b0 + Bξξ

pup

plow

PR
j+1




where Ij+1 and PR
j+1 denote PR

j+1 :=
(
P∗

R . . . P∗
j+1

)⊤
∈ RR−j and

Ij+1 =




O . . . O 1⊤
nR

1⊤
nR−1 O

...

O 1⊤
nj+1 . . . O



∈ R(R−j)×nneg .

Note that for j = R, the last line of ĀR and r̄R is absent. Also, for j = 0, the first
column of zeros is absent for I1. Recall for the rest of the proofs that r̄j is the vector

92 Chapter 5. Emergency guidance via Linear and Quadratic Programming

bearing all the dependency of the problems LPj and Refine on ξ. Finally, note Aj

and rj the following matrices

Aj :=



Āj

−Āj


 and rj :=




r̄j

−r̄j


 .

Using the new non-negative variable x, and the notations above, the constraints Cj

can be re-written under the two equivalent forms



Ājx = r̄j

x ≥ 0
or




Ajx ≥ rj

x ≥ 0
(5.7)

Further, for j = 1, . . . , R − 1, by construction of the constraints Cj , the following
property holds

{x | Ājx = r̄j , x ≥ 0} = {x | Āj+1x = r̄j+1, x ≥ 0, c⊤
j+1x = P∗

j+1} (5.8)

and will be used later to prove Proposition 12. Regarding the cost, define the vector
cj of the same dimension as x s.t.

cj :=





(. . . , 0, 1⊤
nj

, O1×(nneg−nj), 1⊤
nj

, 0, . . .)⊤ if j = 1, . . . , R

O if j = 0

where the terms 1⊤
nj

correspond to the position of the jth negotiable variable p(j),
here conveyed by the corresponding parts of ρ+ and ρ− from Equation (5.6). More-
over, let us define

D :=




P −P

−P P
O

O O



∈ Rdim x×dim x.

It is straightforward to verify that, for all P positive definite, the matrix D is positive
semidefinite.

Thus, the optimization problems LPj and Refine can be re-written in a more
standard form than their original definition, respectively (5.4) and (5.5). For any
j = 1, . . . , R, LPj can be described as a Linear Program of the form

(Primal LP)j





min
x

c⊤
j x

s.t. Ājx = r̄j

x ≥ 0

(5.9)

and Refine as a Quadratic Program which is

(Primal QP)





min
x

1
2x⊤Dx + c⊤

0 x

s.t. Ā0x = r̄0,

x ≥ 0.

(5.10)

5.3. Smoothness of the HEGO algorithm 93

It is also possible to re-write Problem (5.10) into the following canonical QP

(Canonical QP)





min
x

1
2x⊤Dx + c⊤

0 x

s.t. A0x ≥ r0,

x ≥ 0.

(5.11)

Certainly, in view of numerical implementation, there are more memory-efficient
ways to translate Refine into these formats, but the formulations above are handy
in the theoretical proof below. Also, note that we keep the same definition for P∗

j

as in Problem (5.4), i.e. P∗
j denotes the optimal value of the cost of Problem (5.9)

(its well-posedness will be established in Proposition 12).

5.3.2 Uniqueness of the optimal trajectory

Recalling that c0 = 0, let us introduce the dual4 of Problem (5.10) s.t.

(Dual QP)





max
x,µ,λ

−1
2x⊤Dx− λ⊤r̄0

s.t. Dx− µ + Ā0⊤
λ = 0,

µ ≥ 0.

(5.12)

Using the Strong Duality Theorem5 we get the following property.

Lemma 6. If {x | Ā0x = r̄0, x ≥ 0} is not empty, then Problem (5.10) has no
duality gap, i.e. Problem (5.10) and Problem (5.12) have optimal values and they
are equal.

Lemma 7. Under the assumption of Lemma 6, let (x∗, µ∗, λ∗) and (x̃, µ̃, λ̃) be op-
timal solutions of both Problems 5.10 and 5.12. Then, Dx∗ = Dx̃.

Proof, adapted from Lemma 2.1 in [12]. Since the tuples from the statement are op-
timal and since there is no duality gap, then the primal and dual cost are equal s.t.

1
2(x∗)⊤Dx∗ = −1

2(x̃)⊤Dx̃− λ⊤r̄0

Since the tuples are optimal solutions, complementary slackness holds, i.e. µ⊤x̃ = 0
and µ⊤x∗ = 0 (see e.g. Proposition 5.1.5 in [13]). Applying the equality constraints
from (5.12) at x̃, and multiplying it by (x∗)⊤ to the left gives

(x∗)⊤Dx̃ = (x∗)⊤µ− (x∗)⊤Ā0⊤
λ.

Thus
1
2(x∗ − x̃)⊤D(x∗ − x̃) = − λ⊤r̄0 + (x∗)⊤Ā0⊤

λ = λ⊤(Ā0x∗ − r̄0) = 0

which gives D(x∗ − x̃) = 0 since D ⪰ 0, hence the desired result.
4See e.g. [21, Section 5.2].
5Theorem 11, recalled in the Appendix.

94 Chapter 5. Emergency guidance via Linear and Quadratic Programming

Let us now introduce the set

χ(ξ) :=
{

x | ĀRx = r̄R, x ≥ 0
}

.

Proposition 12. If χ(ξ) is non-empty, then the value of z∗ = z+ − z− computed
by Algorithm 2, obtained by successively solving Problems 5.9 and 5.10, exists and
is unique.

Proof. Let us prove by induction for j = R, . . . , 1 (with decreasing indices), that
“Problem (5.9) has a finite optimal value at index j, and constraints (5.7) are feasible
at index j− 1”. Beforehand, note that the cost function of all Problems 5.9 is lower-
bounded by 0.

For j = R, since χ(ξ) is assumed non-empty, and since the cost is lower-bounded
by 0, then it has a finite optimal value, denoted P∗

R. Moreover, this minimum is at-
tained, as guaranteed by Lemma 12 in the Appendix, at a point denoted xR. Thanks
to the Equation (5.8), we get that xR is a feasible point for the constraints (5.7) at
index R− 1.

To prove the induction, let us assume that Problem (5.9) has a finite op-
timal value at index j, and constraints (5.7) are feasible at index j − 1, for
some j ≥ 2. Using the relation from Equation (5.8), and by induction, the set{

x | Āj−1x = r̄j−1, x ≥ 0
}

is non-empty. Thus, since its cost is lower-bounded by
0, Problem (5.9) at index j−1 has a finite optimal value P∗

j−1, also attained at some
point denoted xj−1. The latter being a feasible point for constraints (5.7) at index
j − 2, one concludes the induction proof.

This shows that the optimal penalties P∗
1 , . . . ,P∗

R are well defined, and that the
constraints (5.7) are feasible at index 0. Consequently, Problem (5.10) also has a
minimum. By Lemma 7, and using the expression of D, we get that any solution of
Problem (5.10) has a unique value for z+ and z−, showing that z∗ = z+ − z− exists
and is unique. This concludes the proof.

Among others, this last proposition points out that as long as the first-to-be-
computed negotiation problem is feasible - i.e. LPR - then Algorithm 2 will neces-
sarily terminate. This is summarized as follows, using the set Λ := {ξ′ | χ(ξ′) ̸= ∅}.
Corollary 1. Algorithm 2 returns a solution for the input ξ if and only if ξ ∈ Λ.

Proof. If χ(ξ) ̸= ∅, Proposition 12 shows that Algorithm 2 has a solution. Otherwise,
χ(ξ) = ∅, implies that LPR is infeasible, and then Algorithm 2 fails.

The set Λ is not empty, since 0 belongs to Λ by definition of QP (ξ, p).

Proposition 13. Λ is convex.

Proof. Using the definition of r̄R, there is a constant vector b̄ and a constant matrix
B̄ s.t. r̄R = b̄ + B̄ξ, where b̄ and B̄ directly depend on h0, Hξ, b0 and Bξ appearing
in the formulation of QP (ξ, p) defined in (4.23). Let us assume that ξ1 and ξ2 are
s.t. χ(ξ1) ̸= ∅ and χ(ξ2) ̸= ∅. For x1 ∈ χ(ξ1) and x2 ∈ χ(ξ2), the condition

(1− t)x1 + tx2 ∈ χ
(
(1− t)ξ1 + tξ2

)
, ∀t ∈ [0, 1],

holds due to the linearity of (5.7) w.r.t. x and ξ, which shows the desired result.

5.3. Smoothness of the HEGO algorithm 95

It is noteworthy that Λ is not necessarily bounded. Indeed, if the intersection
of the kernels of matrices Bξ and Hξ (defined in Problem (4.23)) is wider than the
singleton {0}, then the set Λ is even guaranteed to be unbounded.

5.3.3 Regularity w.r.t. the right-hand side of the constraints

The proof that z∗ is a Lipschitz-continuous map of its inputs can be split in two
steps. First, we need to show that the optimal penalties P∗

j are Lipschitz-continuous
maps of their inputs, and then that z∗ is also a Lipschitz-continuous map of ξ and
P∗

i for i = 1, . . . , R. The former result is rather straightforward and will be dealt
with in Lemma 8. However, the latter result requires a bit more attention, and will
be detailed in Theorem 6.

Remark 28. The results used below are expressed with both the Euclidean and the
maximum norms, respecting their original formulation, whereas the main result is
given in an homogeneous form - i.e. using only the Euclidean norm - in Theorem 7.

5.3.3.1 RHS regularity of the negotiation maps

The following theorem is adapted from [59], and applies to the standard LP

min
x

p⊤x (5.13a)

s.t. Ax ≤ b, (5.13b)
Cx = d. (5.13c)

A feasible point for Problem (5.13) is a point x that satisfies (5.13b) and (5.13c).
A solution point for Problem (5.13) is a feasible point that is minimal for (5.13a).

Theorem 4 (Adapted from [59, Thm. 2.4]). Let the Linear Program (5.13) have
non-empty solution sets S1 and S2 for right-hand sides (b1, d1) and (b2, d2), respec-
tively. There exists a constant L > 0 s.t. for each x1

∗ ∈ S1, there exists an x2
∗ ∈ S2

s.t.

∥x1
∗ − x2

∗∥∞ ≤ L

∥∥∥∥∥∥∥




b1 − b2

d1 − d2




∥∥∥∥∥∥∥
2

(5.14)

A direct corollary is the following.

Corollary 2 (Lipschitz continuity of the optimal value function of LPs w.r.t. RHS
perturbations). Let the Linear Program (5.13) have non-empty solution sets S1 and
S2 for right-hand sides (b1, d1) and (b2, d2), respectively, with associated optimal
values p∗

1 and p∗
2. Then, there exists a constant K > 0 s.t.

|p∗
1 − p∗

2| ≤ K

∥∥∥∥∥∥∥




b1 − b2

d1 − d2




∥∥∥∥∥∥∥
2

Lemma 8. For any j = 1, . . . , R, the maps ξ ∈ Λ 7→ P∗
j are Lipschitz continuous.

96 Chapter 5. Emergency guidance via Linear and Quadratic Programming

Proof. In order for these maps to be well-defined, recall that each value P∗
j depends

on ξ and the preceding values P∗
j+1, . . . ,P∗

R, (except for P∗
R that only depends on ξ).

Thus, for all j = 1, . . . , R, we are precisely interested in the maps Γj :

Γj :
Λ → R+

ξ 7→ P∗
j (ξ, Γj+1(ξ, . . .), . . . , ΓR(ξ)).

where ΓR(ξ) = P∗
R(ξ). Consider j = R. By composition, since the RHS of Prob-

lem (5.9) is affine dependent on ξ, and since the optimal value of Problem (5.9)
is Lipschitz-continuous w.r.t. its RHS (due to Corollary 2), then ΓR is Lipschitz
continuous. Then, by induction, let us assume that at each step j = 1, . . . , R, the
previous functions Γj+1, . . . , ΓR are Lispchitz continuous. Using the same composi-
tion argument, we obtain the desired result.

5.3.3.2 RHS regularity of the Linear Complementary Problem

To show that the map (ξ,P∗
1 , . . . ,P∗

R) 7→ z∗ is Lipschitz continuous, we proceed
in three steps. First, we recall that polytopes satisfy a Lipschitz continuity-like
property (Theorem 5) w.r.t. their RHS. Then, we show how the former map is
related to a certain Linear Complementary Problem (LCP, in Lemma 9). Finally,
the Lipschitz-continuity of the uniquely defined components of the LCP is established
(Theorem 6).

Theorem 5 (Adapted from [59, Thm. 2.2], Lipschitz-continuity of feasible points
of linear inequalities and equalities). Let the conditions Ax = b and Cx ≤ d have
non-empty feasible sets F 1 and F 2 for the right-hand sides (b1, d1) and (b2, d2),
respectively. There exists a constant µ, that depends only on A and C, s.t. for each
x1 ∈ F 1, there exists an x2 ∈ F 2 closest to x1 in the ∞-norm s.t.

∥x1 − x2∥∞ ≤ µ

∥∥∥∥∥∥∥




b1 − b2

d1 − d2




∥∥∥∥∥∥∥
2

Proof of the following lemma can be found in [69, Sec. 16.4.4].

Lemma 9 (Linear Complementary Problem, [59, 69]). Assume that D is positive
semidefinite. Then, x is a solution of Problem (5.11) if and only if there exists a
vector η s.t.

x̂ :=




x

η


 (5.15)

is a solution to the following LCP

Mx̂ + q ≥ 0, x̂ ≥ 0, (Mx̂ + q)⊤x̂ = 0 (5.16)

where M :=



D −A0⊤

A0 O


 and q :=




c0

−r0


.

5.3. Smoothness of the HEGO algorithm 97

Given a subset J ⊂ {1, . . . , dim x̂}, any solution of the following linear system6

Mj x̂ + qj ≥ 0, x̂j = 0, j ∈ J, (5.17a)
Mj x̂ + qj = 0, x̂j ≥ 0, j /∈ J, (5.17b)

is a solution to the LCP (5.16) for (M, q). For such sets J , denote Q(J) the set of
all q vectors for which (5.17) has a solution7.

Lemma 10 (Active set partitions [59, Lemma 3.1]). Let q1 and q2 be two distinct
vectors and let q(t) := (1−t)q1 +tq2 for every t ∈ [0, 1]. Assume that the LCP (5.16)
for (M, q(t)) is solvable for t ∈ [0, 1]. Then, there exists a partition 0 = t0 < . . . <
tN = 1 s.t. for i = 1, . . . , N

q(ti−1) ∈ Q(Ji), q(ti) ∈ Q(Ji), for some Ji ⊂ {1, . . . , n}.

The constructive proof of this result can be found in [59, p.592]. Its main purpose
is to provide a characterization of the active set changes along [0, 1].

When D is positive definite, then Lemma 10 is instrumental to show that the
solutions of the LCP (5.16) are Lipschitz w.r.t. q [59]. Among others, the latter
reasoning relies on the fact that the positive definiteness of D uniquely defines the
solution. However, in our framework, D is only positive semidefinite, and the result
can not be applied directly. Instead of using much more abstract results of the
literature (see e.g. [9, 53]), we decided to adapt the proofs of Mangasarian & Shiau
[59] and to focus only on the part of the optimization variable that is uniquely
defined.

More precisely, the variable x̂ defined in (5.15) equals

x̂ = (z+, z−, ρ+, ρ−, sG, sup, slow, η),

where the first part “z+, z−” is uniquely defined, as pointed out in Proposition 12.
Therefore, we consider that x̂ can be decomposed in two parts xu and xm, s.t. xu is
uniquely defined and x̂ = (xu, xm).

Let us introduce the following theorem, which is a generalized version of [59,
Thm. 3.2].

Theorem 6 (Lipschitz continuity of the uniquely defined components of the LCP).
Let q1 and q2 be points s.t. the LCP (5.16) for (M, q(t)) with q(t) = (1− t)q1 + tq2

has a solution x̂(t) = (xu(t), xm(t)) s.t. xu(t) is unique, for every t ∈ [0, 1]. Then,
there exists a constant σ > 0, depending only on M , s.t. any solutions x̂1 = (x1

u, x1
m)

and x̂2 = (x2
u, x2

m) of (5.16) with respective vectors q1 and q2 satisfy

∥x1
u − x2

u∥∞ ≤ σ∥q1 − q2∥2 (5.18)

Proof. There exists a subdivision 0 = t0 < t1 < . . . < tN = 1 satisfying the proper-
ties of Lemma 10. For i = 0, ..., N , let x̂(ti) = (xu(ti), xm(ti)) be a solution of (5.16)
for (M, q(ti)). Note that the xu(ti) are unique, but the xm(ti) are not necessarily
unique.

6Mj denotes the jth row of M .
7If necessary, more details on the role of Q(J) are provided in [59, Sec. 3].

98 Chapter 5. Emergency guidance via Linear and Quadratic Programming

For any set of indices J ⊂ {1, . . . , dim x̂} and any matrix A, denote by AJ

(resp. AJ̄) the matrix composed of the rows of A whose indices are in J (resp. in
{1, . . . , dim x̂}\J). With this notation, for any 1 ≤ i ≤ N and for any t ∈ [ti−1, ti],
the LCP (5.16) reduces to the linear problem




MJi

IJ̄i


 x̂(t) +




q(t)Ji

OJ̄i


 ≥ 0 and




MJ̄i

IJi


 x̂(t) +




q(t)J̄i

OJi


 = 0 (5.19)

by construction of Ji and Q(Ji). Then, according to Theorem 5, stating the
Lipschitz-continuity of feasible points of linear constraints, there exists a solution
ŷ(ti−1) := (yu(ti−1), ym(ti−1)) of (5.16) for (M, q(ti−1)), i.e. a feasible point of (5.19)
at t = ti−1, s.t.

∥x̂(ti)− ŷ(ti−1)∥∞ ≤ µi∥q(ti)− q(ti−1)∥2

for some µi > 0. Let us define σ := max{µi | 1 ≤ i ≤ N}. Since the first part of
x̂(ti−1) and ŷ(ti−1) is uniquely defined, i.e. xu(ti) = yu(ti), the following inequality
holds

∥x1
u − x2

u∥∞ ≤
N∑

i=1
∥xu(ti)− xu(ti−1)∥∞

=
N∑

i=1
∥xu(ti)− yu(ti−1)∥∞

≤
N∑

i=1
∥x̂(ti)− ŷ(ti−1)∥∞

≤
N∑

i=1
µi∥q(ti)− q(ti−1)∥2

≤ σ
N∑

i=1
∥(ti − ti−1)(q1 − q2)∥2

= σ∥q1 − q2∥2.

Hence the desired result.

Remark 29. The constants of Theorem 4 and Theorem 6 are actually defined via
a constructive approach, which is detailed in [59].

5.3.4 Conclusion on the Lipschitz-continuity of HEGO

Theorem 7 (Lipschitz-continuity of Algorithm 2). There exists a constant L > 0
s.t. for any inputs ξ1 and ξ2 in Λ, the unique solutions (z∗)1 and (z∗)2 returned by
Algorithm 2 satisfy

∥(z∗)1 − (z∗)2∥2 ≤ L∥ξ1 − ξ2∥2.

5.4. Monotonicity of the optimal negotiations 99

Proof. This theorem links all the previously stated results. The optimal function
z∗ is well defined on Λ due to Proposition 12. Its value is the minimum of Prob-
lem (5.11), whose RHS is affinely dependent on the optimal penalties P∗

1 , . . . ,P∗
R.

The latter are Lipchitz-continuous maps of ξ, as shown in Lemma 8. Moreover, the
solutions of Problem (5.11) are solutions of the LCP (5.16), as recalled in Lemma 9.
The uniquely defined components of the solutions of the LCP - i.e. the variables
z+ and z− in x̂ - are Lipschitz-continuous functions of the vector q from (5.16),
in the sense of Theorem 6. Also, the latter vector q is affinely dependent on the
vector r0 (see Lemma 9), which is affinely dependent on ξ and the optimal penalties
P∗

1 , . . . ,P∗
R. Thus, by composition, z+ and z− are Lipschitz-continuous maps of ξ,

in the sense of Equation (5.18). The desired result, i.e. with the 2-norm on both
sides of the Lipschitz inequality, stems from the equivalence of the norms in finite
dimension.

A direct corollary of Theorem 7 is the following.

Corollary 3. Let z∗(ξ) denote the value returned by Algorithm 2 with input ξ. Then,
the optimal value function ξ 7→ J(z∗(ξ)) is Lipschitz-continuous on Λ.

5.4 Monotonicity of the optimal negotiations
This section aims at giving a mathematical meaning to the sentence “the farther from
the reference trajectory, the higher the negotiation”, for the special case R = 1, i.e.
when there is no hierarchy involved. Getting farther from the reference is modeled
directionally by considering the map

t 7→ tξ

where t ≥ 0 and ξ is an arbitrary input direction. Among others, we aim at showing
that the map t 7→ P∗

1 (tξ) is non-decreasing, for non-negative values of t, which is
what we call the negotiation monotonicity.

Formally, when R = 1, there is only a single negotiation problem, that writes

P∗ ←− min
z,p

∥p∥1 (5.20a)

Gz ≤ h0 + Hξξ + Hpp (5.20b)
Az = b0 + Bξξ + Bpp (5.20c)
plow ≤ p ≤ pup (5.20d)

where P∗ is the optimal value. Using the same kind of re-writing technique as in
Section 5.3.1, one can show that there are matrices M and Q, and a vector r, s.t.
Problem (5.20) is equivalent to the following LP in its standard primal form

V ∗
P (r) ←− min

x,y
1⊤x (5.21a)

s.t. Mx + Qy = r, (5.21b)
x, y ≥ 0. (5.21c)

100 Chapter 5. Emergency guidance via Linear and Quadratic Programming

where V ∗
P (r) denotes its optimal value function, and r = r0 + Kξ ∈ Rnr for some

matrix K and some vector r0. The problems are equivalent in the sense that

P∗(ξ) = V ∗
P (r0 + Kξ). (5.22)

Following Proposition 15 in the Appendix, the dual associated to Problem (5.21) is

V ∗
D(r) ←− max

µ
µ⊤r (5.23a)

s.t. M⊤µ ≤ 1, (5.23b)
Q⊤µ ≤ 0. (5.23c)

Also, we will consider a RHS change in an arbitrary direction d. Let us define

W := { t ∈ R : V ∗
P (r + td) is feasible and finite} = {t ∈ R : V ∗

D(r + td) is finite}.
Lemma 11. For any r, V ∗

P (r + td) is feasible and finite if and only if V ∗
D(r + td) is

finite.

Proof. If V ∗
P (r + td) is feasible and finite, then V ∗

D(r + td) is finite by the Strong
Duality Theorem8. For the converse case, note that V ∗

D(r + td) is always feasible
since µ = 0 satisfies (5.23b) and 5.23c. Also recall that the Dual of V ∗

D(r + td) is
V ∗

P (r + td). Therefore, using once more the Strong Duality Theorem, if V ∗
D(r + td)

is finite then V ∗
P (r + td) is feasible and finite. This gives the conclusion.

For t ∈ W, let us define the function v s.t.

v(t) := V ∗
P (r + td) = V ∗

D(r + td) (5.24)

which highlights the absence of duality gap.
Now that the directional RHS sensitivity function is well-defined, thanks to Theo-

rem 11, we can use standard results from the literature (as recalled by Proposition 16
in Appendix) to formulate the following theorem.
Theorem 8 (Direct application of [5, 70]). W is a closed interval (possibly un-
bounded). v is a continuous convex function, which is piecewise affine on a finite
number of sub-intervals of W.

Theorem 9. Consider any ξ and define d := Kξ. Assume that

(i) V ∗
P (r0) = 0,

(ii) ξ is s.t. V ∗
P (r0 + td) is defined for t > 0, on a (small) non-trivial interval.

Then, the negotiation map t 7→ P∗(tξ) := V ∗
P (r0 + td) is non-decreasing on W ∩R+.

Proof. We proceed by combining the local affine description of t 7→ V ∗
P (r0 + td) with

the above mentioned results. Let us introduce the quantity Dd(r) s.t.

Dd(r) ←− max
λ

λ⊤d

s.t. M⊤λ ≤ 1,

Q⊤λ ≤ 0,

λ⊤r = V ∗
P (r).

8Recalled as Theorem 11 in Appendix.

5.5. Non-monotonicity of the optimal trajectories 101

Thanks to the absence of duality gap over W, as shown in Equation (5.24),
Theorem 12 used with assumption (ii) states that there exists a t′ > 0 s.t. for any
scalar t ∈ [0, t′] we have

V ∗
P (r0 + td) = V ∗

P (r0) + tDd(r0)

where Dd(r0) is finite. This formula is what we call Gauvin’s formula in the Ap-
pendix.

Since V ∗
P (r0) = 0 by assumption (i), then 0 is a feasible vector for Dd(r0), and

consequently Dd(r0) ≥ 0. Finally, since t 7→ P∗(tξ) is convex (from Theorem 8) and
has a non-negative slope at t = 0, it is necessarily non-decreasing on W ∩ R+.

Remark 30. Assumption (i) in Theorem 9 is guaranteed by the assumption stating
that the reference trajectory must satisfy the constraints of NLP (ξ, p): for null in-
puts - i.e. RHS equals r0 in Problem (5.21) - there is no need for negotiation (i.e.
V ∗

P (r0) = 0).

Remark 31. Assumption (ii) in Theorem 9 is not over restrictive. It means that we
consider only inputs ξ s.t. the negotiation problem remains feasible when exploring
the inputs in this direction.

Remark 32. For the general emergency problem - i.e. when there are R ≥ 2 nego-
tiable sub-parameters - the negotiation maps t 7→ P∗

j (tξ) behave differently. Showing
that they are all continuous and piecewise affine can be achieved with little effort, but
they are generally not convex, as the introductory example of Section 5.2.2 shows.
This latter example also shows that even t 7→∑R

j=1 P∗
j (tξ) is not necessarily convex.

However, it has been conjectured that the negotiation maps t 7→ P∗
j (tξ) remain

non-decreasing functions of t. This conjecture is currently under investigation, at
the time of writing this manuscript.

5.5 Non-monotonicity of the optimal trajectories
Contrary to the negotiation maps, the directional optimal solution maps t 7→ z∗(tξ)
defined by the outputs of HEGO are not necessarily component-wise monotonous. In
the same fashion as in Section 5.2.2, consider the following example which illustrates
this property. It is one of the reason why the heatmaps of the optimal time-of-flight
variation, i.e. Figures B.9 and B.20, and the curve of ∆t∗

f , in Figure B.23, exhibit
such complex patterns.

Basic Example 4. Consider an optimization problem with z = (z1, z2)⊤ ∈ R2, with
a scalar input ξ ≥ 0, and with a scalar negotiable parameter p ≥ 0. Consider four
constraints s.t.

(Const. 1) z2 ≥ ξ

(Const. 2) z2 ≥ z1

(Const. 3) z2 ≤ 2 + p− z1

(Const. 4) z2 ≤ 2 + z1

102 Chapter 5. Emergency guidance via Linear and Quadratic Programming

To alleviate the writing, we denote by a function “c” the latter constraints s.t. these
are satisfied if and only if c(ξ, z, p) ≤ 0. In this case, the (single) negotiation problem
associated to these constraints is simply

P∗ ←− min
z1,z2,p

p

s.t. c(ξ, z, p) ≤ 0,

p ≥ 0.

Moreover, given the arbitrary cost J(z) := 1
2(z1−2)2 + 1

2(z2 +2)2, the refine problem
writes

min
z1,z2,p

J(z)

s.t. c(ξ, z, p) ≤ 0,

p ≥ 0,

p ≤ P∗.

Using HEGO with the two latter problems, we observe that the first component of
the optimal solution, i.e. z∗

1, has a non-monotonous behavior w.r.t. ξ, as illustrated
in Figure 5.4.

5.6 Emergency guidance method generalization
HEGO, as presented in Algorithm 2, is an emergency guidance method built upon a
nominal guidance method that relies on Quadratic Programming. This convenient
framework, with its linear constraints, allows the use of mature LP and QP solvers for
the implementation of the problems LPj and Refine. However, it is possible to take
some distance from this presentation, as other kinds of mathematical programming
are often used to provide an approximation of PDG (ξ, p), as discussed in Chapter 1.
Thus, let us describe the link between nominal and emergency guidance methods
from a high-level perspective.

This section can be skipped with no loss of continuity.

5.6.1 Generalized notations

Let us denote by J(z, ξ) the cost that must be minimized, and by Feas (ξ, p) ⊂
RNz the feasible set, which conveys the various control constraints, the dynamic
model, etc. We insist that this set can convey much more general constraints than
Equation (5.1). For example, it could stem from any direct collocation method, as
presented in well-known references [14,45,104], or other state-of-the-art methods [58].
Also, it it desired that p ∈ Ω for some set Ω ⊂ Rnneg .

5.6.2 Generalized emergency order

The goal is still to provide a trajectory, even when Feas (ξ, 0) is empty. To that
purpose, instead of the 1-norm, let us introduce more general negotiation functions

5.6. Emergency guidance method generalization 103

3 2 1 0 1 2 3
First component: z1

1

0

1

2

3

4

Se
co

nd
 c

om
po

ne
nt

: z
2

Const. 1
(for = 0)

Con
st.

 2

Const. 3

(for p=0)

Con
st.

 4

= 1

Const. 1
(for = 1)

p = 2
(for = 3)

Const. 3

(for p=2)

z * (0)

z * (1)

z * (2)

z * (3)

z * (4)(a) Constraints and solutions
Optimal solutions: z * (), for [0, 4]

0 1 2 3 4
Input: [0, 4]

0

1

2

3

4

D
at

a
(n

o
un

it)

(b) Data verus
First component: z *

1 ()
Negotiation map: p * ()

Figure 5.4: Illutration of Basic Example 4. This example shows that there can be
components z∗

i among the outputs of HEGO that are non-monotonous.

104 Chapter 5. Emergency guidance via Linear and Quadratic Programming

γj : Rnj → R+, for j = R, . . . , 1, assumed convex. It helps us define a generalized
emergency order denoted ⪰γ . The latter is also co-lexical, as ⪰e , but in the sense of
the negotiation functions γj . Like in (5.3), a vector pa is said to be more negotiated
than another vector pb s.t. pa⪰γ pb, if and only if

γR

(
p(R)

a

)
> γR

(
p

(R)
b

)

or γR

(
p(R)

a

)
= γR

(
p

(R)
b

)
and γR−1

(
p(R−1)

a

)
> γR−1

(
p

(R−1)
b

)
,

or . . .

or γR

(
p(R)

a

)
= γR

(
p

(R)
b

)
and . . . and γ1

(
p(1)

a

)
> γ1

(
p

(1)
b

)
,

or γR

(
p(R)

a

)
= γR

(
p

(R)
b

)
and . . . and γ1

(
p(1)

a

)
= γ1

(
p

(1)
b

)
.

Therefore, the general meaning of maximizing the launcher’s integrity is to find
the smallest p in the sense of ⪰γ .

5.6.3 Generalized sequence of optimization problems

Let us here define a more general version of LPj and Refine. With the above-defined
notations, the generalized nominal guidance problem is the following optimization
problem

(Nominal) min
z

J(z, ξ),

s.t. z ∈ Feas (ξ, 0) .

As before, what is of interest here is what happens when ξ is s.t. Feas (ξ, 0) is
empty. Thus, we will seek to minimize a cost γi for each parameter p(i).

Let us introduce the first negotiation problem, dealing with the most critical
negotiation parameter p(R), s.t.

Γ∗
R ←− min

z, p
γR(p(R)),

s.t. z ∈ Feas (ξ, p) ,

p ∈ Ω,

where Γ∗
R denotes the optimal value of this problem. Let SR be the set of points p

s.t. there is a z ∈ Feas (ξ, p) and s.t. (z, p) minimizes γR. In other words, SR is the
set of minimizers of the latter problem, but projected on the negotiable parameters
set. By successively negotiating the other parameters, in a similar fashion as LPj ,
we define the follow-up negotiation problems as

Γ∗
j ←− min

z, p
γj(p(j)),

s.t. z ∈ Feas (ξ, p) ,

p ∈ Ω,

p(j+1) ∈ Sj+1,

where j = 1, . . . , R−1, and where Si denotes the set of minimizers of the ith problem,
projected onto the negotiable parameters set (which is, by its recursive definition, a

5.6. Emergency guidance method generalization 105

subset of the previous sets Si for i = j + 1, . . . , R). Consequently, the generalized
version of the Refine problem becomes

z∗, ⋆ ←− argmin
z, p

J(z, ξ),

s.t. z ∈ Feas (ξ, p) ,

p ∈ Ω,

p(1) ∈ S1

where the notation z∗, ⋆ means that the value of p is ignored, since it is not necessarily
unique. The two latter problems can be re-written in a more convenient form.

Since the conditions z ∈ Feas (ξ, p) and p ∈ Ω do not change between these
problems, it is possible to simplify the above-mentioned notations by switching the
abstract condition p(j+1) ∈ Sj+1 into

γi(p(i)) = Γ∗
i , ∀i = j + 1, . . . , R. (5.25)

However, even for a convex function γi, the equality constraint γi(p(i)) = Γ∗
i is

numerically ill-posed, since it defines a non-convex level-set in general (e.g. when
γi(.) = ∥.∥2). Thankfully, it can be relaxed without loosing generality, by using only
the inequality

γi(p(i)) ≤ Γ∗
i . (5.26)

Indeed, for any j = 1, . . . , R− 1, if there is a pair (z, p) s.t.

z ∈ Feas (ξ, p) ,

p ∈ Ω,

γi(p(i)) ≤ Γ∗
i , ∀i = j + 1, . . . , R

then by construction of Γ∗
i as the minimum feasible point p(i), we necessarily have

γi(p(i)) ≥ Γ∗
i , showing that γi(p(i)) = Γ∗

i still holds for each i = j + 1, . . . , R.
Therefore, the generalized negotiation and refine operations boil down to the

following problems

Γ∗
j ←− min

z, p
γj(p(j)), (5.27a)

s.t. z ∈ Feas (ξ, p) , (5.27b)
p ∈ Ω, (5.27c)
γi(p(i)) ≤ Γ∗

i , ∀i = j + 1, . . . , R (5.27d)

and

z∗, ⋆ ←− argmin
z, p

J(z, ξ), (5.28a)

s.t. z ∈ Feas (ξ, p) , (5.28b)
p ∈ Ω, (5.28c)
γi(p(i)) ≤ Γ∗

i , ∀i = 1, . . . , R (5.28d)

106 Chapter 5. Emergency guidance via Linear and Quadratic Programming

5.6.4 High-level description of safety margins

Enforcing the condition z ∈ Feas (ξ, p) for some value ξ may sometimes bring the
variables of the problem to the frontier of what is feasible for a given p. Therefore,
given a setM that contains 0, we would like to impose that if z is feasible for a value
of p, then for every ∆p ∈ M there is another z′ feasible for p + ∆p. Consequently,
the condition z ∈ Feas (ξ, p) from the previous problems (5.27) and (5.28) must be
modified into

z ∈ Feas (ξ, p) , (5.29a)
Feas (ξ, p + ∆p) ̸= ∅, ∀∆p ∈M (5.29b)

The latter modeling falls into the context of robust optimization (see e.g. [10, Ch.1]).
It cannot be used as-is, since it conveys an infinite number of constraints. Let us
make two further assumptions in order to simplify (5.29)

1. The set Feas is convex in z, and linearly influenced by p. For example, we
assume the existence of a (possibly non-linear) convex function gξ and (possibly
non-linear) matrix-valued maps H(.), A(.), b(.) and B(.) s.t.

Feas (ξ, p) = {z ∈ RNz : gξ(z) ≤ H(ξ).p and A(ξ).z = b(ξ) + B(ξ).p}

2. The set M is convex, and assumed to have a finite number of extreme point.
In other words, there are K vectors ∆pi ∈ Rnneg s.t.

M = ConvexHull(∆p1, . . . , ∆pK).

Proposition 14. Under the two latter assumptions, there are elements zk s.t.

zk ∈ Feas

(
ξ, p + ∆pk

)
, ∀k = 1, . . . , K

if and only if conditions (5.29a) and (5.29b) are satisfied.

Proof. The return implication of the equivalence is guaranteed by construction. To
prove the direct implication, let us consider any arbitrary vector ∆p̄ ∈ M. By
construction of M, there are K non-negative scalars σk s.t. ∑σk = 1 and

∆p̄ =
K∑

k=1
σk∆pk.

Let us denote by zk an element of Feas

(
ξ, p + ∆pk

)
and consider the vector z̄ :=

∑K
k=1 σk∆pk. Using the convexity of gξ, one gets

gξ(z̄) ≤
K∑

k=1
σkgξ(zk) ≤

K∑

k=1
σkH(ξ).(p + ∆pk) = H(ξ).(p + ∆p̄)

and likewise: A(ξ)z̄ = b(ξ)+B(ξ).(p+∆p̄). Therefore, z̄ belongs to Feas (ξ, p + ∆p̄),
whence (5.29b). Constraint (5.29a) also holds, since it corresponds to the sub-case
∆p̄ = 0, hence the conclusion.

Therefore, incorporating Proposition 14 into Problems 5.27 and 5.28 is a way to
enforce safety margins while performing nominal an emergency guidance, using only
a finite number of constraints.

5.7. Illustrations 107

5.7 Illustrations
In this section, four numerical examples are proposed along with qualitative dis-
cussions. Example 1 illustrates the basic principles of HEGO. Example 2 shows
that a wide selection of negotiable parameters can be used together. Example 3
demonstrates the modeling capabilities offered by HEGO. Finally, Example 4 shows
how emergency guidance scales to the 3D model. A quantitative analysis of this last
example is proposed in Section 6.2 of Chapter 6.

Note that all of these examples have the same number of discretization points,
i.e. N = 4, where N is defined in p. 56 right before Equation (4.1). For the 2D
model (resp. the 3D model), it means that the size of z is Nz = 15 (resp. Nz = 22).

All the data presented in the examples below is normalized.

5.7.1 With the 2D model

Example 1 (Basic 2D scenario). Let us consider a simple choice of negotiable pa-
rameters, consisting in the incidence limit ∆αmax and the final horizontal position
∆zf s.t.

p =
(

∆αmax, ∆zf

)⊤
.

In terms of hierarchy, we impose

• p(1) = ∆αmax (least critical),

• p(2) = ∆zf (most critical).

This example is illustrated in Figures 5.5 and 5.6, where the input ξ is dispersed for
positive values of the change in initial horizontal position ∆z0.

Example 2 (Advanced 2D scenario). Let us consider a more advanced version of
Example 1, where the negotiable parameter is now

p =
(

∆αmax, ∆amax
nor , ∆zf , ∆hf

)⊤

In terms of hierarchy, we impose

• p(1) = ∆αmax (least critical),

• p(2) = ∆amax
nor ,

• p(3) = ∆zf ,

• p(4) = ∆hf (most critical).

This example is illustrated in Figure 5.7.
Recall that ∆hf denotes the final altitude, which can seem surprising at first site.

Why do not we use the final vertical speed ∆vf
h instead? The reason is linked to the

linearization used when we define QP (ξ). Indeed, ∆vf
h appears, in practice, to be a

108 Chapter 5. Emergency guidance via Linear and Quadratic Programming

1.0 0.5 0.0 0.5
Horizontal position: z

0.0

0.2

0.4

0.6

0.8

1.0

Al
tit

ud
e:

 h

Landing site

x(0)

(a)
Nominal

max 0
(max, zf) 0
Reference

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

qmin

qmax

E
ng

in
e

flo
w

: q

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

max

0

max

In
ci

de
nc

e:

up
max

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Input, i.e. value of initial horizontal error = z0

0.0

0.1

0.2

0.3

0.4

N
eg

ot
ia

tio
n

m
ap

s:

* 1
 a

nd

* 2

(d)
| max| = *

1

| zf| = *
2

Figure 5.5: Dispersion of ∆z0 over [0, 1], for the 2D rocket model from Example 1.
The curves of sub-Figures (a), (b) and (c) are plotted for 30 values of ∆z0. The
similarity between the introductory example of Section 5.2.2 and this actual example
is clear in the sub-Figure (d).

5.7. Illustrations 109

0.0 0.2 0.4 0.6 0.8 1.0

0.25

0.20

0.15

0.10

0.05

0.00
C

oe
ff

ic
ie

nt
: q

r(
1)

(a)

0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325
0.28

0.26

0.24

0.22

0.20

C
oe

ff
ic

ie
nt

: q
r(

1)
 (z

oo
m

)

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
oe

ff
ic

ie
nt

:
(

1)

(b)

0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34
0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

C
oe

ff
ic

ie
nt

:
(

1)
 (z

oo
m

)

(d)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fi
na

l s
lo

pe
: q

r(t
f)

(e)

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

0.2

0.4
Fi

na
l s

lo
pe

:
(t f

)
(f)

0.0 0.2 0.4 0.6 0.8 1.0
Input, i.e. value of initial horizontal error = z0

0

100

200

300

400

500

C
os

t f
un

ct
io

n:
 1 2z

Pz

(g)

0.0 0.2 0.4 0.6 0.8 1.0
Input, i.e. value of initial horizontal error = z0

2.0

1.5

1.0

0.5

0.0

Fi
na

l t
im

e
va

ri
at

io
n:

t* f

(h)

Figure 5.6: Dispersion of ∆z0 over [0, 1], for the 2D rocket model from Example 1.
All these charts have very different y-scales. The charts (c) and (d) are zoomed views
of (a) and (b). Except for the charts (c) and (d), where the blue dots represent the
computed values, all the curves have been plotted for 301 values of ∆z0. The charts
(a) to (f) shows a subset of µ, of size 2(N + 3). Precisely, using the nomenclature
from Equation (4.1), qr(τ1) = µ3, α(τ1) = µ4, q̇r(tf) = µ2(N+3)−1 and α̇(tf) =
µ2(N+3). The Lispschitz-continuity stated in Theorem 7 can be observed on all the
charts, except (g) whose Lipschitz-continuity is related to Corollary 3. Note that
nominal guidance is performed up to ∆z0 ≈ 0.3 (see Figure 5.5-(d)), highlighting
the fact that significant active set changes can occur even with nominal guidance.
Also, as one can observe in (h) between ∆z0 = 0.0 and 0.2, ∆t∗

f has a non-zero
though very small slope. This is mostly due to the fact that changing ∆t∗

f has a
strong influence on simultaneously the vertical and the horizontal components of the
trajectory, meanwhile ∆z0 influences (almost only) the horizontal one.

110 Chapter 5. Emergency guidance via Linear and Quadratic Programming

less useful lever than ∆hf . Mathematically speaking, it means that the image of the
matrix9 B∆vf

h
does not describe the same vector space as the one of B∆hf , and thus

will not have the same ability to recover the changes in ξ. This remark also applies
to the matrices B∆vf

h
and B∆hf .

In practice, negotiating ∆hf is blindly allowed in the optimization problems of
HEGO. However, when HEGO says that ∆hf < 0 is necessary, the optimal trajec-
tory z∗ will reach the ground before reaching the new final altitude ∆hf . The state
x at which the altitude of this trajectory reaches null altitude may be defined as the
actual negotiated landing state.

Note that in Figure 5.7, dispersing the inputs w.r.t. ∆z0 does not trigger the use
of ∆hf , whose negotiation curve P∗

4 remain flat in the sub-Figure (d). However,
this example is the ground base of the numerical assessment provided in Chapter 6,
where sufficiently rich scenarios are considered, and show how ∆hf is used.

Example 3 (2D scenario with repeated negotiable parameters). To demonstrate
the modeling capabilities that Algorithm 2 offers, let us consider an example where
several negotiable parameter are “repeated”:

p =
(

∆α1
max, ∆zf

1 , ∆α2
max, ∆zf

2

)⊤

In terms of hierarchy, we impose

• p(1) = ∆α1
max (least critical),

• p(2) = ∆zf
1 ,

• p(3) = ∆α2
max,

• p(4) = ∆zf
2 (most critical).

This example is illustrated in Figure 5.8.
This choice of negotiation parameters allows to negotiate the incidence and the

final horizontal position alternatively. This may be helpful when the nature of the
area neighboring the landing site becomes increasingly worse when moving away. To
some extent, it can be applied to the terrain presented in Figure 1.3 from Chapter 1:
the order of priority is to first negotiate the incidence, then the horizontal position
(as long as it remains within the crops or the beach), then the incidence again, and
finally trying to land in the forest or in the ocean.

5.7.2 With the 3D model

Example 4 (3D scenario). Consider the direct transcription of Example 2 to the
3D rocket model, s.t.

p =
(

∆αmax, ∆amax
nor , ∆zf , ∆yf , ∆hf

)⊤

In terms of hierarchy, we impose
9For instance, B∆hf means the column of Bp corresponding to ∆hf .

5.7. Illustrations 111

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0
Horizontal position: z

0.0

0.2

0.4

0.6

0.8

1.0

Al
tit

ud
e:

 h

x(0)

(c)
Reference
Nominal

max 0
(max, amax

nor) 0
(max, amax

nor , zf) 0

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

max

0

max

In
ci

de
nc

e:

up
max

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

0

N
or

m
al

 a
cc

el
er

at
io

n:
 a

no
r

(b)

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Input, i.e. value of initial horizontal error = z0

0.0

0.2

0.4

0.6

0.8

1.0

N
eg

ot
ia

tio
n

m
ap

s

(d)
| max| = *

1

| amax
nor | = *

2

| zf| = *
3

| h f| = *
4

Figure 5.7: Dispersion of ∆z0 over [−2, 1], for the 2D rocket model from Example 2.
In sub-Figure (c), a thinner mesh (not required for the purpose of this example)
would reveal the presence of blue-dot trajectories between the orange and the red
ones, on the left of the reference trajectory. The asymmetry in the negotiation maps
(sub-Figure (d)) comes from the reference trajectory itself, which is a non-trivial
curve in the plane (z, h).

112 Chapter 5. Emergency guidance via Linear and Quadratic Programming

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0
Horizontal position: z

0.0

0.2

0.4

0.6

0.8

1.0

Al
tit

ud
e:

 h

x(0)

(a)
Reference
Nominal

1
max 0

(1
max, zf

1) 0
(1

max, zf
1, 2

max) 0
(1

max, zf
1, 2

max, zf
2) 0

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

max

0

max

In
ci

de
nc

e:

up
max

up
max (b)

3 2 1 0 1 2
Input, i.e. value of initial horizontal error = z0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
eg

ot
ia

tio
n

m
ap

s
an

d
co

st

(d)
| 1

max| = *
1

| zf
1| = *

2

| 2
max| = *

3

| zf
2| = *

4

Cost function: 12z Pz

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

0
N

or
m

al
 a

cc
el

er
at

io
n:

 a
no

r

(c)

Figure 5.8: Dispersion of ∆z0 over [−4, 2], for the 2D rocket model from Exam-
ple 3. Note that the negotiation maps from sub-Figure (d) are exactly the kind
of negotiation structure that support the conjecture presented in Remark 32. The
Lipschitz-continuity of the optimal cost function, stated in Corollary 3, can be ob-
served on the same sub-Figure. Also, remark that the cost function variations convey
several active set changes within the nominal guidance mode, that can be visualized
through the slope changes. The reason why the cost function remains constant when
the horizontal final positions are being negotiated is that the optimal trajectory is
shifted purely horizontally in these cases.

5.7. Illustrations 113

• p(1) = ∆αmax (least critical),

• p(2) = ∆amax
nor ,

• p(3) = (∆zf , ∆yf)⊤,

• p(4) = ∆hf (most critical).

This example is illustrated in Figure 5.9. To illustrate behaviors that are not shared
with the 2D rocket model, the input are dispersed w.r.t. ∆y0, the initial horizontal
position component that is out-of-plane compared to the reference trajectory.

These negotiation parameters are used for the quantitative analysis in Chapter 6.

Summary

In this chapter, we exposed a method to provide emergency guidance. It boils down
to a sequential minimization of the amplitude of negotiable parameters, enforcing
a prescribed hierarchy between these parameters, and is implemented using a fi-
nite number of LPs and a single QP. The method HEGO is capable of producing
both nominal (when possible) and emergency guidance solutions thanks to a unified
formulation.

Theoretical guarantees prove that the outputs of HEGO are Lipschitz-continuous
w.r.t. its inputs, preventing the solutions from varying too fast for small changes in
the inputs.

Numerical simulations have demonstrated how HEGO behaves on 2D and 3D
examples, and that its outputs are consistent with the above-mentioned theoretical
guarantees.

114 Chapter 5. Emergency guidance via Linear and Quadratic Programming

Horizontal position: z

1.0

0.5

0.0

0.5
Horizo

ntal positi
on: y

1.0

0.5

0.0

0.5

1.0

Al
tit

ud
e:

 h

0.0

0.2

0.4

0.6

0.8

1.0

x(tf)

x(0)

(d)
(max, amax

nor , zf, yf) 0
max

Nominal
Reference

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

qmin

qmax

C
on

tr
ol

le
d

E
ng

in
e

flo
w

: q
c

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

max

0

max

Pr
oj

ec
te

d
In

ci
de

nc
e:

z

up
max

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

max

0

max

Pr
oj

ec
te

d
In

ci
de

nc
e:

y

up
max

(c)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Input, i.e.: y0

0.0

0.1

0.2

0.3

0.4

N
eg

ot
ia

tio
n

m
ap

s

(e)
| max| = *

1

| amax
nor | = *

2

|(zf, yf)| = *
3

| h f| = *
4

Figure 5.9: Dispersion of ∆y0 over [−1, 1], for the 3D rocket model. Dispersing
the inputs along ∆y0 leads to the computation of out-of-plane trajectories. The
dispersion of the inputs of HEGO will be analyzed quantitatively on this exact same
scenario in Chapter 6.

Chapter 6

Performance evaluation

Résumé

L’objectif du Chapitre 5 était de présenter l’Algorithme 2 (aussi appelé HEGO),
qui assure la fonction de guidage même lorsque l’entrée ξ rend les contraintes
nominales infaisables. Son comportement a été illustré qualitativement dans
plusieurs exemples à la fin du Chapitre 5.

Nous proposons ici des évaluations quantitatives pour HEGO. Tout
d’abord, des commentaires de haut niveau concernant l’implémentation
d’HEGO sont proposés. Ensuite, nous présentons une analyse quantitative
de l’Exemple 4 du Chapitre 5, en calculant les dispersions bivariées des entrées
sur le modèle de fusée 3D. En outre, comme HEGO vise à traiter des scénarios
d’atterrissage infaisables, ces résultats sont comparés aux enveloppes de vol
vertical introduites dans le Chapitre 3.

The purpose of Chapter 5 was to introduce Algorithm 2 (also denoted HEGO),
which provides guidance even when the input ξ makes the nominal constraints in-
feasible. Its qualitative behavior has been illustrated in several examples at the end
of Chapter 5.

Here, we propose quantitative assessments for HEGO. First, we provide high-
level comments regarding the implementation of HEGO. Then, we present a quan-
titative analysis of Example 4 from Chapter 5, by computing bivariate dispersions
of the inputs on the 3D rocket model. Also, since HEGO aims at dealing with infea-
sible landing scenarios, its outcomes are compared with the vertical flight envelopes
introduced in Chapter 3.

To improve readability, the figures of this chapter have been moved at its end.

6.1 General comments
The time required to run HEGO depends directly on the design choices presented
in Chapters 4 and 5.

HEGO has been implemented in python and tested with cvxopt [8], mosek [7],
glpk [38] and qpSWIFT [74] as underlying solvers for the LP and QP solvers. The
benchmarks have been forced to run on a single CPU (in practice, tested on an

115

116 Chapter 6. Performance evaluation

Intel® Core™ i9-9900K, at 3.60GHz, and on an Intel® Core™ i7-8550U CPU at
1.80GHz). Its run time typically ranges between

• a few milliseconds for the 2D rocket model with 2 negotiable parameters,

• and ≈ 60 ms for the 3D rocket model with 5 negotiable parameters.1

Major influence on run time

The parameters that naturally affect the computation time are the dimensions Nz

(i.e. main decision variable z) and nneg (i.e. negotiation parameter p). Let us
denote by Nopt := Nz + nneg the dimension of the optimization variable involved in
the sub-problems of HEGO. Recall that m is the dimension of the control variable,
and that N is the number of discretization points (as shown in Figure 4.1). Since
Cubic Splines are used for the description of the control corrections in Chapter 4,
we get

Nopt = (m + 3)N + 1 + nneg

showing the relative importance of the above-mentioned sizes. Also, the computation
time may be influenced by the number of constraints, which is directly proportional
to Nc, as defined in Equation (4.8), and by the number of partitions of the negotiable
parameter (i.e. R defined in Chapter 5).

Minor or no influence on run time

It is noteworthy that some parameters do not influence, or in a negligible way, the
computation time. Among others, the dimension of ξ has a negligible impact on
the run time of HEGO. Indeed, it only matters when computing the constraints
right-hand side

Gz ≤ h0+ Hξξ + Hpp,

Az = b0+ Bξξ + Bpp.

A useful application would be to handle thinner descriptions of the atmosphere
parameters, such as the wind for instance. Let us assume that one is able to measure
the horizontal wind component at a high resolution for the low atmosphere layers
(let us say 1 point of measure per 10 m, up to 10 km, for illustration purposes).
Then, ξ would resemble:

ξ =
(
(∆x0)⊤, w0 m, w10 m, w20 m, , . . . , w10 000 m

)⊤

The dimension of ξ now equals 1009 in this case (when ∆x0 is of of dimension 8
for the 3D rocket model of Chapter 2), though this has a non-significant impact on
HEGO run-time.

1These performances have been demonstrated live during the thesis defense, with on-demand
initial condition changes.

6.2. Input dispersion on 3D rocket model 117

6.2 Input dispersion on 3D rocket model
Let us consider the same reference trajectory as in Example 4, for the 3D rocket
model. We pick the same choices of negotiable parameters as in Example 4, i.e.

p =
(

∆αmax, ∆amax
nor , ∆zf , ∆yf , ∆hf

)⊤

with R = 4 s.t.

• p(1) = ∆αmax (least critical),

• p(2) = ∆amax
nor ,

• p(3) =
(
∆zf , ∆yf

)⊤
,

• p(4) = ∆hf (most critical).

The purpose of this section is to quantify and assess the quality of the outputs of
HEGO, over bivariate dispersions of the inputs. We consider the 15 inputs presented
in Table 6.2. From the 105 pairs of inputs that can be formed from this list, we
report results obtained with a selection of 20 pairs, enumerated in Table 6.3. These
pairs have been selected for their representativeness, and because they demonstrate
a wide variety of behaviors.

To categorize the outputs of HEGO, we use the notion of emergency mode. It is
defined as the index of the most critical negotiable sub-parameter that has a non-
zero 1-norm, thus taking its values within {0, . . . , R + 1}. Mathematically, using
handy notations, it is defined s.t.

EmergencyMode(ξ) :=





0 if P∗
1 (ξ) = . . . = P∗

R(ξ) = 0,

R + 1 if LPR(ξ) is not feasible,

arg max
i=1,...,R

{ i | P∗
i (ξ) ̸= 0} otherwise.

(6.1)

where the values P∗
i (ξ) come from negotiation problems of HEGO. The color coding

associated with the emergency modes is presented in Table 6.1.

6.2.1 Selection of figures

First, two pairs are detailed in Figures 6.1 and 6.2. They present the outputs of
HEGO for two pairs, respectively (∆z0, ∆y0) and (∆q0

r , ∆q0
c). The first pair yields

a typical collection of inputs that require the negotiation capabilities of HEGO,
whereas the second pair shows that in some cases no negotiation is needed.

To ease the visualization, the pairs from Table 6.3 have been split in two batches,
labeled A and B. For each batch, the following charts are provided:

• Emergency mode map (Figures 6.3 and 6.4),

• Projected incidence αy (Figures 6.5 and 6.6),

118 Chapter 6. Performance evaluation

Color Value Label Comment

■ 0 Nominal Negotiation not needed.

■ 1 ∆αmax is the most critical negotiated sub-parameter.

■ 2 ∆amax
nor . . .

■ 3 (∆zf , ∆yf)⊤ . . .

■ 4 ∆hf . . .

■ 5 × HEGO has no solutions.

Table 6.1: Color coding for the emergency modes.

• Projected incidence αz (Figures 6.7 and 6.8),

• Controlled engine flow qc (Figures 6.9 and 6.10),

• Heatmap of the first negotiation map: P∗
1 (Figures 6.11 and 6.12),

• Heatmap of the third negotiation map: P∗
3 (Figures 6.13 and 6.14).

For the figures having the input pairs as their x and y-axis, the black dot •
conveys the origin (0, 0) (for example the emergency mode maps). Also, the reference
trajectory x̄ and the reference control ū are represented in plain black.

Additional data is provided in Appendix, regarding the various states for these
dispersions, the heatmap of the optimal time-of-flight change ∆tf

∗, and the other
negotiation maps.

6.2.2 Observations and comments

Variable combinations. Some variables combinations have a natural construc-
tive or destructive behavior. The pair (∆z0, ∆v0

z) is the clearest one. Starting farther
away from the landing site but with a greater horizontal speed (or closer but with
a lower horizontal speed) is a typical constructive behavior that explains the green
strip in Figure 6.3-(a).

Continuity. The negotiation maps ξ 7→ P∗
i (ξ) discussed in Chapter 5 are

Lispchitz-continuous. The reader might think that some of the maps below would
suggest the contrary, due to abrupt changes. It is only a matter of zoom and Lips-
chitz constants. The detailed example pictured in Figure 6.15 provides various zoom
levels to see how the negotiation maps can vary.

Normal acceleration negotiation. As indicated by the black line in Figure 6.16,
the ratio between the maximum normal acceleration of the reference trajectory and
the normal acceleration bound is close to 1, leaving little room for negotiations.
However, it is not always necessary to negotiate ∆amax

nor , as pictured in Figure 6.1. For
a large number of values of the pair (∆z0, ∆y0), the guidance trajectories provided

6.2. Input dispersion on 3D rocket model 119

Part of ξ Variable Points Dispersion interval Comment

∆x0

∆z0 81 [−1, 1] ±100% of z0

∆y0 81 [−1, 1]

∆h0 81 [−0.2, 0.2] ±20% of h0

∆v0
z 61 [−2, 2] ±100% of v0

z

∆v0
y 61 [−2, 2]

∆v0
h 81 [−0.2, 0.2] ±20% of v0

h

∆m0 41 [−0.2, 0.2] ±20% of remaining fuel

∆q0
r 41 [0, 2] Largest possible interval

∆uinit

∆q0
c 41 [−0.8, 0.22] Largest possible interval

∆α0
y 41 [−1, 1] Largest possible interval

∆α0
z 41 [−0.83, 0.15] Largest possible interval

∆η

∆Isp 41 [−2, 2]

∆τq 41 [−0.8, 1]

wz,0 61 [−1, 1]

wy,0 61 [−1, 1]

Table 6.2: List of dispersed input variables (subset of the components of ξ). The
dispersion intervals are given in normalized units. Beware, one normalized unit of z
differs from one normalized unit of y.

120 Chapter 6. Performance evaluation

Label Component 1 Component 2 Batch

a ∆z0 ∆v0
z

A

b ∆z0 ∆v0
y

c ∆z0 ∆y0

d ∆z0 ∆h0

e ∆z0 ∆v0
h

f ∆z0 wz,0

g ∆z0 wy,0

h ∆v0
z ∆v0

y

i ∆y0 ∆v0
h

B

j ∆y0 ∆h0

k ∆y0 ∆v0
z

l ∆y0 ∆v0
y

m ∆m0 ∆h0

n ∆m0 ∆v0
h

o ∆α0
z ∆α0

y

p ∆Isp ∆τq

q ∆q0
c ∆q0

r

r ∆Isp ∆h0

s ∆Isp ∆v0
h

t ∆τq ∆h0

Table 6.3: List of pairs of input components dispersed in the charts below. For
example, using the data from Table 6.2, there are 81× 81 = 6561 pairs of values of
(∆z0, ∆v0

z) that have been considered.

6.3. Comparison with vertical flight envelopes 121

UsefulnessNegotiable
parameter Overall Horizontal Vertical

∆αmax +++ +++ 0

∆amax
nor ++ ++ 0

(∆zf , ∆yf) +++ +++ 0

∆hf + 0 +

Table 6.4: Performance summary. The qualitative scale goes from 0 (useless) to
+ + + (extremely useful).

by HEGO correspond to sharper turns, but does not require to negotiate ∆amax
nor by

a lot. The corresponding heatmaps (i.e. the heatmaps representing P∗
2) are in the

Appendix.

Several complementary comments are provided along with the Figures below.

6.2.3 Conclusion on the example

This example demonstrated that the negotiable parameters have very different im-
pacts on how they help solve the emergency problem.

• ∆αmax and (∆zf , ∆yf) appear to be extremely relevant to recover feasible
trajectories when inputs influencing the horizontal behavior of the landing
change. ∆amax

nor has a non-negligible though small influence on these changes.

• ∆hf has an influence on the vertical part of the landing, but the trajectories
relaxed using ∆hf are not doable in practice, for the margin it offers is too
thin.

These remarks are summarized in Table 6.4.

6.3 Comparison with vertical flight envelopes
As detailed in Chapter 5, Algorithm HEGO provide landing guidance for nominal
and emergency problems. Thus, the set of inputs that do not require emergency
guidance define the “nominal reachable set”, in the sense of HEGO. Due to the
approximations made in Chapter 4 (such as the discretization and the linearization),
the set of inputs that are considered feasible without negotiation differ from the
actual reachable set.

The full characterization of the reachable set of the “complete” rocket model
(i.e. the 2D or 3D rocket model) is not computationally tractable, due to the non-
linearities and the number of states involved. However, as detailed at the end of
Chapter 3, it is possible to fully describe the reachable set of the rocket for purely

122 Chapter 6. Performance evaluation

Label Figure Trajectory
type

Engine flow
structure Comment

A 6.18 Vertical Near Min-Max

B 6.19 Vertical Max-Min-Middle

C 6.20 Planar Max-Min-Middle Reference trajectory
of Section 6.2.

D 6.21 Fully 3D Max-Min-Max Out-of-plane reference.

Table 6.5: Reference trajectories considered for the benchmark w.r.t. the vertical
flight envelope. All four trajectories share the same reference time-of-flight t̄f . Note
that all of these trajectories have been computed using the 3D rocket model, even
if it has been used with a purely vertical motion. These trajectories are represented
in Figure 6.17.

vertical motion. Due to the high slenderness ratio of the rocket final-burn, this latter
set is a coarse approximation of the actual reachable set of the complete model.

Thus, we propose a comparison between the classification offered by HEGO in
terms of emergency modes, and the vertical flight envelope defined in Chapter 3.
We consider four different reference trajectories, which are listed in Table 6.5 and
displayed in Figure 6.17.

For all four trajectories, a slice of the reachable set is considered, and HEGO
is computed over a grid of inputs on each of these slices. In the chart (a) of their
respective, the Max, Min and Min-Max surfaces defining the vertical flight envelope
are defined at the end of Chapter 3.

The main observation is that HEGO is conservative. Indeed, on one hand, it
declares some inputs “non-nominal” when they would be expected to be feasible
without negotiating the constraints, as shown analytically in Chapter 3. On the
other hand, their are no “false-positive”, i.e. all the inputs declared “nominal” by
HEGO are indeed inside the vertical flight envelope. Also, it is noteworthy that the
reference trajectory significantly influences the outcomes of HEGO, though it does
not change the latter conservative property.

6.3. Comparison with vertical flight envelopes 123

Figure 6.1: Dispersion of (∆z0, ∆y0). Dispersing this pair leads to in-plane and
out-of-plane trajectories. The negotiation maps (charts (f) to (i)) have a structure
deeply linked to the partition described in the emergency mode map from chart (b).

124 Chapter 6. Performance evaluation

Figure 6.2: Dispersion of (∆q0
c , ∆q0

r). The inputs correspond to purely nominal
scenarios. The negotiation maps are not displayed, since they are all constant and
equal to zero.

6.3. Comparison with vertical flight envelopes 125

Figure 6.3: Emergency modes. Batch A. Each chart represents the emergency modes
obtained by dispersing a given pair of inputs. For instance, in (a), ∆v0

z w.r.t ∆z0

means that ∆z0 is in the x-axis, and ∆v0
z is in the y-axis. Since the role of the out-

of-plane variables (such as ∆y0, ∆v0
y or wy,0) is symmetric in this problem having a

planar reference trajectory, their associated charts have an axis of symmetry.

126 Chapter 6. Performance evaluation

Figure 6.4: Emergency modes. Batch B. Finding purely horizontal or purely vertical
lines separating different emergency modes for some specific pairs reveals that the
associated input variables are uncorrelated. Among others, the variables conveying
the vertical motion (h, vh, m, Isp) are mostly uncorrelated with the ones conveying
the horizontal motion (z, vz, y, vy), especially when considering the emergency mode
of ∆hf . The pairs (i) and (m) are typical supporting examples. Moreover, contrary
to what appears to be, charts (p) and (q) are not feature-less. The specific case of
the pair (q) is detailed above in Figure 6.2.

6.3. Comparison with vertical flight envelopes 127

Figure 6.5: Projected incidence αy (in-plane) w.r.t. normalized time. Batch A.
In most charts, the curves describe a sort of pivot around a the normalized time
τ = 0.5. This behavior is directly linked to the Cubic Spline description of the
correction, detailed in Chapter 4. Note that for some pairs - e.g. pair (e) - the
incidence is negotiated but not always up to its maximum value, even when more
critical parameters are negotiated first. The main reason is due to the way the active
set changes w.r.t. to the input, which is illustrated in detail in Figure B.23.

128 Chapter 6. Performance evaluation

Figure 6.6: Projected incidence αy (in-plane) w.r.t. normalized time. Batch B. It is
normal that the pair (l), with purely out-of-plane variables, has nearly zero impact
on αy, since the latter conveys the in-plane projected incidence.

6.3. Comparison with vertical flight envelopes 129

Figure 6.7: Projected incidence αz (out-of-plane) w.r.t. normalized time. Batch A.
Contrary to what the chart (e) suggests, there is no discontinuity between the various
scenarios. The fact that one can see a “gap” in the curves is only a matter of mesh
refinement: a thinner mesh would show that this gap is continuously filled with
curves. However, this gap shows that on some input subsets, the algorithm may
have stiff output variations, as discussed in Figure 6.15.

130 Chapter 6. Performance evaluation

Figure 6.8: Projected incidence αz (out-of-plane) w.r.t. normalized time. Batch B.

6.3. Comparison with vertical flight envelopes 131

Figure 6.9: Controlled engine flow qc w.r.t. normalized time. Batch A. The highly
different influence of the horizontal variables and the vertical ones on the engine
flow is clearly pictured by these charts. A change on the input pair (c) only implies
little changes in the controlled engine flow. However, the pair (e) has a high impact
on the engine flow, especially due to the presence of ∆v0

h.

132 Chapter 6. Performance evaluation

Figure 6.10: Controlled engine flow qc w.r.t. normalized time. Batch B.

6.3. Comparison with vertical flight envelopes 133

Figure 6.11: Heatmap of the first negotiation, i.e. P∗
1 = |∆αmax|. Batch A.

134 Chapter 6. Performance evaluation

Figure 6.12: Heatmap of the first negotiation, i.e. P∗
1 = |∆αmax|. Batch B.

6.3. Comparison with vertical flight envelopes 135

Figure 6.13: Heatmap of the third negotiation, i.e. P∗
3 = ∥(∆zf , ∆yf)⊤∥1. Batch A.

These negotiation maps have a structure deeply linked to the partition described in
the emergency mode maps, as shown in Figure 6.3.

136 Chapter 6. Performance evaluation

Figure 6.14: Heatmap of the third negotiation, i.e. P∗
3 = ∥(∆zf , ∆yf)⊤∥1. Batch B.

6.3. Comparison with vertical flight envelopes 137

Figure 6.15: Several zooms on stiff parts of the pair (∆z0, ∆h0), illustrating that the
negotiation maps are indeed Lipschitz-continuous in practice. All the x-axis convey
∆z0, and all the y-axis convey ∆h0.

138 Chapter 6. Performance evaluation

(Top) Dispersion of the pair (∆z0, ∆y0), labeled (c).

(Bottom) Dispersion of the pair (∆α0
z, ∆α0

y), labeled (o).

Figure 6.16: Normal load anor on two different input pairs.

6.3. Comparison with vertical flight envelopes 139

Horizontal position z

-1
-0.5

0
0.5

1 Horizo
ntal positi

on y

-1
-0.5

0
0.5

1

Al
tit

ud
e

h

0

0.25

0.5

0.75

1

(b) Positions (z, y, h)
Reference A
Reference B
Reference C
Reference D

-0.2 0 0.2 0.4
Horizontal position y

-1

-0.5

0

0.5

1

H
or

iz
on

ta
l p

os
iti

on
 z

(a) Horizontal traces

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

max

0

max
(c) Projected incidence z

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

max

0

max
(d) Projected incidence y

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

qmin

qmax
(e) Controlled Engine Flow qc

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time: = t/tf

mdry

(f) Total mass m

Figure 6.17: Reference trajectories selected for the benchmark against the vertical
flight envelope, as listed in Table 6.5.

140 Chapter 6. Performance evaluation

Figure 6.18: Vertical envelope and associated slices (Reference A). As shown in the
chart (b), the red slice shows what happens when dispersing the total mass m w.r.t.
the vertical speed vh. The light yellow area conveys the area which is out of the
flight envelope. On the contrary, the blue area is the area inside it. The dashed line
conveys the separation between these areas.

6.3. Comparison with vertical flight envelopes 141

Figure 6.19: Vertical envelope and associated slices (Reference B).

142 Chapter 6. Performance evaluation

Figure 6.20: Vertical envelope and associated slices (Reference C).

6.3. Comparison with vertical flight envelopes 143

Figure 6.21: Vertical envelope and associated slices (Reference D).

Conclusion

Résumé

Ce chapitre propose un résumé succinct de ce manuscrit, quelques commentaires
sur les sujets qui ont été volontairement omis, et des pistes de recherche pour
d’éventuels travaux futurs.

The main focus of this thesis is on computing a landing trajectory for a reusable
tossback vehicle in response to changes in the flight parameters. When this guidance
problem is infeasible, one faces an emergency situation. In such cases it is accept-
able to sacrifice some of the constraints originally formulated in the nominal (non
emergency) situation.

A methodology (Algorithm HEGO) has been developed in the manuscript to
solve this emergency guidance problem. It is applicable in the -relative vast- vicinity
of a reference trajectory having a reasonably high slenderness ratio. It is capable of
handling the sacrifice of constraints according to predefined extended colexicographic
order. As illustration, results have been presented and have served to compute
performance charts in Chapter 6. For actual missions, aerospace engineers would be
interested in the quantitative version of Table 6.4.

A significant advantage of the proposed method, i.e. Algorithm HEGO, is that it
is deterministic, and its implementation relies on mature technologies (LP and QP)
for which off-the-shelf solvers are available. There are nearly no heuristic used to
make the method work, apart from the tuning of the termination condition tolerances
of the numerical solvers.

As announced in the introduction, several topics have been voluntarily consid-
ered out-of-scope in this thesis. Some of them represent possible future research
directions, and are sketched here. The modeling choices of Chapter 4 could be
tailored to other frameworks, to be able to handle singular arcs in the parametric
control description for instance.

As far as the overall G&C system is concerned, the control part has been con-
sidered out-of-scope for this manuscript. The interplay between the control and the
guidance algorithms has been swiftly discussed in [66]. Simulations gathering both
parts of the G&C system would provide a more complete performance assessment.

Negotiating vertical components (∆vf
h or ∆hf) has proved to be ill-posed, as

shown in Chapter 6. To obtain robustness regarding the vertical motion, it is needed
to go back to the mission design itself, and eventually consider other landing strate-
gies than the classic tossback trajectory structure, pictured in Figure 1.2. More

145

146 Conclusion

generally, the choice of the reference trajectory has a strong impact on the final
performances.

The sensitivity-based PDG method presented in Chapter 4 has a sufficient ac-
curacy for our application (i.e. final burn guidance of a tossback vehicle with high
slenderness ratio) but depends significantly on the chosen reference trajectory and
its generalization to more complex maneuvers is limited. Its application to large
diverts of high agility vehicles would require a dedicated study with extensive nu-
merical benchmarks. However, it may be of interest to apply this sensitivity-based
guidance method to multi-phase problems. Indeed, combining the re-entry glide and
the final burn phases in a single guidance problem would be a relevant problem, for
which the sensitivity based approach would have a great potential.

Our implementation of HEGO conveniently builds upon the linear description
of the constraints. However, following the generalization discussed in Section 5.6, it
would be interesting to develop a version of HEGO with other underlying guidance
methods, such as successive convexification or pseudo-spectral methods, which could
be applied to large-divert problems.

Finally, the emergency problem that we formulated is only one way to describe
the problem of landing guidance relaxation. Our modeling is not sufficient to handle
disjunctive scenarios, where one would need to choose between two separate landing
sites for instance. This represents an important research direction, that could be
worth exploring.

Appendix A

Technical tools

Résumé

Cette annexe présente des outils mathématiques nécessaires à la compréhension
du manuscrit. La première partie se concentre sur des résultats classiques
d’optimisation convexe, et la deuxième rapelle des résultats fort utiles sur le
comportement des équations différentielles ordinaires.

A.1 Optimization results

A.1.1 Duality gap

The results presented here are taken from D. P. Bertsekas’ book [13], which contains
all the proofs of the theorems and lemmas presented below.

Let f , g and h be functions defined over Rn, where f has scalar values, g has
m components, and h has r components. Let us define the primal optimization
problem

f∗ ← min
x∈Rn

f(x) (A.1a)

s.t. g(x) ≤ 0, (A.1b)
h(x) = 0 (A.1c)

where f∗ denotes its optimal value.
An optimization problem is said to be feasible if there exists at least one element

satisfying its constraints. An optimization problem is said to be finite if its optimal
value exists and does not equal ±∞.

The Lagrangian of Problem (A.1) is defined by

L(x, µ, λ) := f(x) + µ⊤g(x) + λ⊤h(x)

where µ ∈ Rm and λ ∈ Rr.

Definition 7. Vectors µ∗ and λ∗ are said to be Lagrange multipliers for the
primal Problem (A.1) if µ∗ ≥ 0 and f∗ = inf

x∈Rn
L(x, µ∗, λ∗).

147

148 Appendix A. Technical tools

The dual of Problem (A.1) is the following problem

sup
µ∈(R+)m, λ∈Rr

inf
x∈Rn

L(x, µ, λ). (A.2)

Let us denote by q∗ the optimal value of Problem (A.2). Here, q∗ ∈ R ∪ {±∞}.

Theorem 10 (Weak Duality Theorem [13, Prop. 5.1.3]). Assume that the primal
Problem (A.1) is feasible, but not necessarily finite. Then: q∗ ≤ f∗.

The duality gap is defined as the following non-negative quantity

∆gap := f∗ − q∗. (A.3)

We say that there is no duality gap if ∆gap = 0, and that there is a duality gap if
∆gap > 0.

Let us introduce the matrices and vectors E, d, A, b of proper dimensions, assume
that f is convex, and define the problem

min
x∈Rn

f(x) (A.4a)

s.t. Ex = d, (A.4b)
Ax ≤ b. (A.4c)

Theorem 11 (Strong Duality Theorem - Linear constraints [13, Prop. 5.2.1]).
Assume that the primal Problem (A.4) is feasible and its optimal value f∗ is finite.
Let also f be convex over Rn. Then, there is no duality gap and there exists at least
one Lagrange multiplier.

Lemma 12 (Existence of Primal Optimal Solutions of LPs [13, Lemma 5.2.1]).
Assume that Problem (A.4) is feasible and its optimal value f∗ is finite. Let also f
be linear. Then, Problem (A.4) has at least one optimal solution.

A.1.2 Right-hand side sensitivity of Linear Programs

Consider the following primal LP in its standard form and its optimal value function
v (viewed as a function of its right-hand side b) s.t.

v(b) := min
x

c⊤x (A.5a)

s.t. Ax = b, (A.5b)
x ≥ 0. (A.5c)

Proposition 15. If v(b) has a finite value, then the dual of (A.5) is

max
µ

µ⊤b (A.6a)

s.t. A⊤µ ≤ c (A.6b)

By convention, if A⊤µ ≤ c is infeasible, then the optimal value of the latter problem
is −∞.

A.1. Optimization results 149

The proof of this property is standard material that can be found in most opti-
mization text-books (see e.g. [21, Ch. 5]). It is provided here for completeness and
for its tutorial aspect. Also, beware of the fact that the role of µ and λ is inverted
in the previous proposition and its proof compared to Equation (A.2).

Proof. Introduce the Lagrangian

L(x, µ, λ) := c⊤x + µ⊤(b−Ax)− λ⊤x.

Let us form the function g s.t.

g(µ, λ) := inf
x

L(x, µ, λ)

Since g(µ, λ) = µ⊤b + inf
x

(c−A⊤µ− λ)⊤x, then

g(µ, λ) =





µ⊤b if c−A⊤µ− λ = 0

−∞ otherwise.

Therefore, the dual of (A.5) is

sup
µ,λ

g(µ, λ),

s.t. λ ≥ 0.

Using the Strong Duality Theorem (Theorem 11 above) with the fact that v(b) is
finite and x 7→ c⊤x is convex, makes the sup of the latter problem a max. Finally,
after simplification of λ = c−A⊤µ ≥ 0, ones gets (A.6).

Note that if the condition c−A⊤µ− λ = 0 is not feasible - or equivalently that
A⊤µ ≤ c is not feasible - then g equals −∞ for any value of µ and λ, and therefore
the optimal value of the dual is −∞.

A direct consequence of Proposition 15 and the Strong Duality Theorem pre-
sented above is that

v(b) = min{c⊤x | Ax = b, x ≥ 0} = max{µ⊤b | A⊤µ ≤ c}.

whenever the primal problem is feasible and finite. By convention, when the primal
problem is infeasible, v takes the optimal value of the dual problem (possibly ±∞).

Theorem 12 (From [41, Thm. 1]). Under the assumption of Proposition 15, for
any direction d and for any scalar t > 0 sufficiently small, we always have

v(b + td) = v(b) + t sup{λ⊤d | A⊤λ ≤ c, λ⊤b = v(b)}. (A.7)

Remark 33. Theorem 12 must be understood as follows:

• If it is known that t 7→ v(b + td) exists on some interval [0, t′] for t′ > 0, then
the “sup” term in Equation (A.7) is a “max”, and Equation (A.7) holds (at
least) on a non-trivial sub-interval of [0, t′].

150 Appendix A. Technical tools

• On the contrary, if the “sup” term equals +∞ , then the primal problem with
right-hand side b + td is infeasible for any t > 0.

Equation (A.7), that we also refer to as Gauvin’s formula in this manuscript, is
a powerful tool to analyze the RHS sensitivity of LPs. It is important to remark
that the maximization problem in (A.7) is deeply linked to the dual LP from (A.6),
s.t.

sup
λ

λ⊤d = sup
λ

λ⊤d

s.t. A⊤λ ≤ c s.t. λ ∈ Maximizers of (A.6).
λ⊤b = v(b)

Proposition 16 (Adapted from [5, Prop. 2.3]). There exists a closed interval [α, β]
(possibly empty) s.t.

(i) v(b + td) =∞ for all t ∈ [α, β],

(ii) Either v(b + td) = −∞ for all t ∈ [α, β] or v(b + td) ∈ R for any t ∈ [α, β] and
in this case t 7→ v(b + td) is a continuous convex piecewise affine function.

The latter proposition is stated in [5, Prop. 2.3], and its detailed proof can be
found in [70, Sec. 8.11]. It is important to clarify that the number of sub-intervals
on which t 7→ v(b + td) is affine is finite, as stated in [70, Sec. 8.9, Item 4].

A.2 Differential Equations

A.2.1 Comparison theorem

For n ≥ 1, a function F : I × X ⊂ R × Rn → Rn is said to be quasi-monotone
increasing if, for every pair (t, x) and (t, v) in I ×X and every i = 1, . . . , n, one gets
Fi(t, x) ≥ Fi(t, v) whenever xi = vi and x ≥ v.

Lemma 13 (Adapted from [80, IX.2.6]). Let F be a continuously-differentiable,
quasi-monotone increasing function and x : [t0, τ) → Rn the maximal solution of
ẋ(t) = F (t, x(t)) through some point (t0, x0) ∈ I × X . Assume v : [t0, τ ′) → Rn,
τ ′ ≤ τ is a differentiable function s.t. (t, v(t)) ∈ I ×X and

(i) v(t0) ≤ x0,

(ii) v̇(t) ≤ F (t, v(t)), ∀t ∈ (t0, τ ′).

Then, v(t) ≤ x(t) for any t in [t0, τ ′). If ≤ is replaced by ≥ in (i) and (ii), then
v(t) ≥ x(t) for any t in [t0, τ ′).

A.2.2 Flow of Ordinary Differential Equations

The sensitivity computations described below are standard material in the literature.
The results recalled below focus mainly on the computational aspects of the different
derivatives of the flow. For further references, complementary approaches can be
found in [18, Sec 3.2] and [75, Ch. 2] for abstract presentations, and in [49, Sec.

A.2. Differential Equations 151

2.4], [90, Eq. 4.13], [31, XI.1.3, XI.1.4], [24, Eq. 2.3.18] and [73] for more applied
methods. Useful material about the flow properties can also be found in [84, Sec.
4.5] (properties of the flow linked to Lie brackets).

Let us consider a dynamic function f : Rn×Rm×Rnη → Rn with state x, control
u and parameter η, which defines the ODE

ẋ = f(x, u, η).

Definition 8. Let us consider x0 ∈ Rn, u : [0, 1]→ Rm and η ∈ Rnη . For t ≥ 0, the
flow Φf of f is defined s.t. Φf (t, x0, η; u) = x(t) where x is defined over [0, 1] by the
following IVP

ẋ(t) = f(x(t), u(t), η), ∀t ∈ [0, 1],
x(0) = x0.

The non-relevant inputs of Φf may be omitted to alleviate the writing. For
instance, if f depends only on its state, its flow will be denoted Φf (t, x0).

The propositions below present how to compute the derivatives of Φf w.r.t. each
of its variables. Basically, these derivatives are the results of Initial Value Problems
(IVPs) involving the derivatives of f . Note, first, that the time derivative of Φf is a
direct consequence of its definition and, for any t ∈ [0, 1], it equals

∂Φf

∂t
(t, x0, η; u) = f(Φf (t, x0, η; u), u(t), η).

A.2.2.1 Sensitivity w.r.t. the initial condition

The derivative of Φf w.r.t. the initial condition is referred to as the state transition
matrix (STM), or simply the transition matrix [24].

Proposition 17. The derivative of Φf w.r.t. the initial condition x0 is ∂Φf

∂x0 (T, x0) =
M(T) where the transition matrix M satisfies the matrix-IVP

Ṁ(t) = ∂f

∂x
(Φf (t, x0)) M(t), ∀t ∈ [0, T], (A.8)

M(0) = In. (A.9)

When the context is clear enough, the following notation is sometimes used (e.g.
in Chapter 3, or in [24]):

∂x(T)
∂x(0) = ∂Φf

∂x0 (T, x(0)).

Proposition 18 (Adapted from [90, Lemma 4.2.2]). Pick any k = 1, 2, . . . ,∞. If f
is of class Ck, then (t, x0) 7→ Φf (t, x0) is of class Ck.

152 Appendix A. Technical tools

A.2.2.2 Sensitivity w.r.t. to a parameter

Proposition 19. Let x0 ∈ Rn be an initial condition. Define Y(η, t) := Φf (t, x0, η).
For any t ∈ [0, 1], the derivative of Y w.r.t. η is

∂Y
∂η

(η, t) = y(t)

where y satisfies the following matrix-IVP

ẏ(t) = ∂f

∂x
(x(t), η) y(t) + ∂f

∂η
(x(t), η),

y(0) = On×nη .

where x(t) = Φf (t, x0, η).

The IVP of Proposition 19 can be derived from Proposition 17, by considering an
extended state composde of the original state, and one state having null dynamics
for each component of the parameter η. For further details on this, see e.g. [31].
Using this remark, the smoothness of the flow w.r.t. its parameters can be derived
from Proposition 18, as stated in the corollary below.

Corollary 4. Pick any k = 1, 2, . . . ,∞ and x0 ∈ Rn. If f is of class Ck, then
(t, η) 7→ Φf (t, x0, η) is of class Ck.

A.2.2.3 Sensitivity w.r.t. the control

Proposition 20 (Adapted from [18, Sec 3.2]). Consider v : [0, 1] → Rm. For any
t ∈ [0, 1], the differential of Φf w.r.t. u, denoted duΦf , equals

duΦf (t, x0; u) · v = zu,v(t)

where zu,v : [0, 1]→ Rn is defined by the IVP




żu,v(t) = ∂f
∂x (x(t), u(t)) zu,v(t) + ∂f

∂u(x(t), u(t)) v(t), ∀t ∈ [0, 1],

zu,v(0) = On×1,
(A.10)

where x(t) = Φf (t, x0; u).

When the control depends on a vector parameter, the following corollary holds.

Corollary 5. Consider u : (θ, t) ∈ Rd × [0, 1] → u(θ, t) ∈ Rm and Z(θ, t) :=
Φf (t, x0; u(θ, .)). For any t ∈ [0, 1], the derivative of Z w.r.t. θ is

∂Z
∂θ

(θ, t) = z(t)

where z is defined by the matrix-IVP

ż(t) = ∂f

∂x
(x(t), u(θ, t)) z(t) + ∂f

∂u
(x(t), u(θ, t)) ∂u

∂θ
(θ, t),

z(0) = On×d.

where x(t) = Φf (t, x0; u(θ, .)).

A.2. Differential Equations 153

Since the variable u belongs to a functional space, it is more technical to state how
smooth is the flow w.r.t. to the control. Hence the need for the following proposition,
which formally describes to what extent the function zu,v from Equation (A.10)
defines the first-order expansion of Φf w.r.t. u.

Proposition 21 (Adapted from [75, Prop. 1.3]). Consider a bounded set Ω ⊂ Rm

and a vector x0 ∈ Rn. Let us assume that f : Rn × Rm → Rn is differentiable, that
f , ∂f

∂x and ∂f
∂u are continuous and that there exists K <∞ s.t.

∥∥∥∥
∂f

∂x
(x, u)

∥∥∥∥ ≤ K, ∀(x, u) ∈ Rn × Ω.

Then there exists a function ε : R∗
+ → R∗

+ s.t. ε(s)/s −→
s↓0

0 and

∥∥∥Φf (., x0; u + v)−
(
Φf (., x0; u) + zu,v(.)

)∥∥∥
L∞
≤ ε (∥v∥L∞)

where1

• u ∈ {w ∈ L1([0, 1], Rm) : w(t) ∈ Ω a.e. on [0, 1]
}
,

• v ∈ L∞([0, 1], Rm),

• zu,v is defined in Equation (A.10).

A.2.2.4 Technical summary

Consider a parametric control t 7→ uµ(t), continuously differentiable in t and µ. The
following expansion holds

Φf

(
t, x0 + ∆x0, η + ∆η; uµ

)
= Φf

(
t, x0, η; u0

)
+ A(t)∆x0 + B(t)∆η + C(t)µ

+ ε(∆x0, ∆η, µ)

where ε is a function s.t. ε(⋆)/∥ ⋆ ∥2 tends to zero when ⋆ = (∆x0, ∆η, µ) tends to
zero, and where A, B and C are matrix valued functions defined by the following
IVPs

Ȧ(t) = ∂f

∂x
(x(t), u0(t), η) A(t), A(0) = In,

Ḃ(t) = ∂f

∂x
(x(t), u0(t), η) B(t) + ∂f

∂η
(x(t), u0(t), η), B(0) = On×nη ,

Ċ(t) = ∂f

∂x
(x(t), u0(t), η) C(t) + ∂f

∂u
(x(t), u0(t), η) ∂uµ

∂µ

∣∣∣∣
µ=0
(t), C(0) = On×nµ ,

where x(t) = Φf (t, x0, η; u0).

1Here, L∞([0, 1], Rm) denotes the vector space of essentially bounded measurable functions, for
the essential supremum norm: ∥u∥L∞ := inf{C ≥ 0 : ∥u(t)∥2 ≤ C a.e. on [0, 1]}. Similarly,
L∞([0, 1], Rm) denotes the vector space of essentially bounded measurable functions, for the 1-
norm: ∥v∥L1 :=

∫ 1
0 ∥v(t)∥2dt.

Appendix B

Additional data

Résumé

Ce chapitre contient des données complémentaires concernant l’exemple détaillé
dans la Section 6.2 du Chapitre 6.

This chapter contains complementary data regarding the example detailed in
Section 6.2 of Chapter 6. Are displayed in these extra charts:

• the height states with respect to the normalized time,

• the heatmap of the optimal time-of-flight change ∆t∗
f ,

• and the heatmap of the second and fourth negotiations (P∗
2 and P∗

4).

These charts are presented for each pairs of Table 6.3.

Additionally, Figure B.23 displays a cross-section view of a specific pair, to help
visualize the variations of the optimal time-of-flight change w.r.t. to a specific input
direction.

155

156 Appendix B. Additional data

Figure B.1: Horizontal position z (in-plane) w.r.t normalized time. Batch A.

157

Figure B.2: Horizontal position y (out-of-plane) w.r.t normalized time. Batch A.

158 Appendix B. Additional data

Figure B.3: Altitude h w.r.t normalized time. Batch A.

159

Figure B.4: Horizontal speed vz (in-plane) w.r.t normalized time. Batch A.

160 Appendix B. Additional data

Figure B.5: Horizontal speed vy (out-of-plane) w.r.t normalized time. Batch A. For
the pair (g), the final values of the horizontal speed vy seem erratic. On the one hand,
the amplitude of the horizontal speed vy is not critical, as the vertical scale suggests
(see e.g. Figure (c), with a scale 20 times larger), and as the corresponding value of
y in Figure B.2-(e) shows. On the other hand, this response to non-zero values of
wy,0 is not ideal, since it means that the rocket keeps a non-zero horizontal speed
until the very last moment. This is partly due to the different ways of describing the
wind profile (piecewise-affine) and the control corrections (Cubic Splines). A thinner
parametric control correction would bring different results. Another way to reduce
this oscillating behavior would be to impose the slope of the control correction to
be exactly zero at τ = 1, instead of penalizing it in the cost.

161

Figure B.6: Vertical speed vh w.r.t normalized time. Batch A.

162 Appendix B. Additional data

Figure B.7: Mass m w.r.t normalized time. Batch A.

163

Figure B.8: Real engine flow qr w.r.t normalized time. Batch A.

164 Appendix B. Additional data

Figure B.9: Optimal time-of-flight change ∆tf
∗. Batch A.

165

Figure B.10: Heatmap of second negotiation P∗
2 = |∆amax

nor |. Batch A.

166 Appendix B. Additional data

Figure B.11: Heatmap of fourth negotiation P∗
4 = |∆hf |. Batch A.

167

Figure B.12: Horizontal position z (in-plane) w.r.t normalized time. Batch B.

168 Appendix B. Additional data

Figure B.13: Horizontal position y (out-of-plane) w.r.t normalized time. Batch B.

169

Figure B.14: Altitude h w.r.t normalized time. Batch B.

170 Appendix B. Additional data

Figure B.15: Horizontal speed vz (in-plane) w.r.t normalized time. Batch B.

171

Figure B.16: Horizontal speed vy (out-of-plane) w.r.t normalized time. Batch B.

172 Appendix B. Additional data

Figure B.17: Vertical speed vh w.r.t normalized time. Batch B.

173

Figure B.18: Mass m w.r.t normalized time. Batch B.

174 Appendix B. Additional data

Figure B.19: Real engine flow qr w.r.t normalized time. Batch B.

175

Figure B.20: Optimal time-of-flight change ∆tf
∗. Batch B.

176 Appendix B. Additional data

Figure B.21: Heatmap of second negotiation P∗
2 = |∆amax

nor |. Batch B.

177

Figure B.22: Heatmap of fourth negotiation P∗
4 = |∆hf |. Batch B.

178 Appendix B. Additional data

Figure B.23: Cross-section view through the pair (∆z0, ∆v0
h). The latter pair has

a non-trivial heatmap regarding the optimal time-of-flight. To better understand
how ∆t∗

f changes depending on the emergency modes, the figures above show a cut
in the direction ξd, which has only a single non-zero component along ∆v0

h. The
coordinate ε used in the sub-Figures (c) and (d) denotes the position along the thick
black line from the sub-Figures (a) and (b).

Bibliography

[1] B. Açikmeşe, M. Aung, J. Casoliva, S. Mohan, A. Johnson, D. Scharf, D. Mas-
ten, J. Scotkin, A. Wolf, and M. W. Regehr. Flight Testing Of Trajectories
Computed By G-FOLD: Fuel Optimal Large Divert Guidance Algorithm For
Planetary Landing. page 15, 2012.

[2] B. Açıkmeşe and L. Blackmore. Lossless convexification of a class of optimal
control problems with non-convex control constraints. Automatica, pages 341–
347, 2011.

[3] B. Açikmeşe, J. Casoliva, J. M. Carson, and L. Blackmore. G-FOLD: A
Real-Time Implementable Fuel Optimal Large Divert Guidance Algorithm for
Planetary Pinpoint Landing. 2012.

[4] B. Açikmeşe and S. R. Ploen. Convex Programming Approach to Powered
Descent Guidance for Mars Landing. Journal of Guidance, Control, and Dy-
namics, 30(5):1353–1366, Sept. 2007.

[5] I. Adler and R. D. C. Monteiro. A geometric view of parametric linear pro-
gramming. Algorithmica, 8(1-6):161–176, Dec. 1992.

[6] A. A. Agrachev and A. V. Sarychev. On Abnormal Extremals for Lagrange
Variational Problems. Journal of Mathematical Systems Estimation and Con-
trol, 8(1):87–118, 1995.

[7] E. D. Andersen and K. D. Andersen. The MOSEK interior point optimizer
for linear programming: an implementation of the homogeneous algorithm. In
High performance optimization, pages 197–232. Springer, 2000.

[8] M. Andersen, J. Dahl, and L. Vandenberghe. CVXOPT: Convex Optimization,
2020.

[9] J.-P. Aubin. Lipschitz Behavior of Solutions to Convex Minimization Prob-
lems. Mathematics of Operations Research, 9(1):87–111, Feb. 1984.

[10] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Applied
Mathematics. Princeton University Press, 2009.

[11] A. Bensoussan. Perturbation methods in optimal control, volume 5. Wiley,
1988.

179

180 Bibliography

[12] A. B. Berkelaar, B. Jansen, C. Roos, and T. Terlaky. Sensitivity analysis in
(degenerate) quadratic programming. Technical Report No. EI 9611-/A, Delft
University of Technology, Delft, Netherlands, 1996.

[13] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition
edition, 1995.

[14] J. T. Betts. Practical methods for optimal control and estimation using non-
linear programming. Advances in Design and Control. SIAM, 2001.

[15] L. Blackmore. Autonomous Precision Landing of Space Rockets. The Bridge,
2016.

[16] L. Blackmore, B. Açıkmeşe, and J. M. Carson. Lossless convexification of
control constraints for a class of nonlinear optimal control problems. Systems
& Control Letters, 61(8):863–870, Aug. 2012.

[17] L. Blackmore, B. Açikmeşe, and D. P. Scharf. Minimum-Landing-Error
Powered-Descent Guidance for Mars Landing Using Convex Optimization.
Journal of Guidance, Control, and Dynamics, pages 1161–1171, 2010.

[18] J. F. Bonnans. Course on Optimal Control, Part I: the Pontryagin approach.
SOD311 Ensta Paris Tech. Aug. 2019.

[19] J. F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Prob-
lems. Springer New York, New York, NY, 2000.

[20] B. Bonnard, L. Faubourg, and E. Trelat. Optimal control of the atmo-
spheric arc of a space shuttle and numerical simulations with multiple-shooting
method. Mathematical Models and Methods in Applied Sciences, 15(01):109–
140, Jan. 2005.

[21] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge. Cambridge
University Press, 2004.

[22] E. Brendel, B. Hérissé, and E. Bourgeois. Optimal guidance for toss back
concepts of Reusable Launch Vehicles. In EUCASS 2019, July 2019.

[23] J. W. Bruce and Giblin. Curves and Singularities. Cambridge university press
edition, 1984.

[24] A. E. Bryson and Y.-C. Ho. Applied optimal control: optimization, estimation
and control. CRC Press, 1975.

[25] C. Büskens and H. Maurer. Sensitivity Analysis and Real-Time Optimization
of Parametric Nonlinear Programming Problems. In Online Optimization of
Large Scale Systems, pages 3–16. 2001.

[26] A. J. Calise and N. Brandt. Generation of Launch Vehicle Abort Trajectories
Using a Hybrid Optimization Method. Journal of Guidance, Control, and
Dynamics, 27(6):929–929, Nov. 2004.

Bibliography 181

[27] J. M. Carson, B. Açikmeşe, and L. Blackmore. Lossless convexification of
Powered-Descent Guidance with non-convex thrust bound and pointing con-
straints. In Proceedings of the 2011 American Control Conference, pages 2651–
2656, June 2011. ISSN: 0743-1619.

[28] J. W. Chinneck. Feasibility and Infeasibility in Optimization: Algorithms and
Computational Methods. Springer Science & Business Media, 2007.

[29] M. Clark, X. Koutsoukos, J. Porter, R. Kumar, G. Pappas, O. Sokolsky, I. Lee,
and L. Pike. A Study on Run Time Assurance for Complex Cyber Physical Sys-
tems:. Technical report, Defense Technical Information Center, Fort Belvoir,
VA, Apr. 2013.

[30] M. Cococcioni, M. Pappalardo, and Y. D. Sergeyev. Lexicographic multi-
objective linear programming using grossone methodology: Theory and algo-
rithm. Applied Mathematics and Computation, 318:298–311, 2018.

[31] J.-P. Demailly. Analyse numérique et équations différentielles. Grenoble Sci-
ences. Presses Universitaires de Grenoble, 1996.

[32] S. A. Deshpande, D. Bonvin, and B. Chachuat. Directional Input Adapta-
tion in Parametric Optimal Control Problems. SIAM Journal on Control and
Optimization, 50(4):1995–2024, Jan. 2012.

[33] C. D’Souza. An optimal guidance law for planetary landing. In Guidance,
Navigation, and Control Conference, page 3709, 1997.

[34] D. Dueri, B. Açıkmeşe, D. P. Scharf, and M. W. Harris. Customized Real-Time
Interior-Point Methods for Onboard Powered-Descent Guidance. Journal of
Guidance, Control, and Dynamics, 40(2):197–212, 2017.

[35] U. Eren, D. Dueri, and B. Açıkmeşe. Constrained Reachability and Controlla-
bility Sets for Planetary Precision Landing via Convex Optimization. Journal
of Guidance, Control, and Dynamics, 38(11):2067–2083, Nov. 2015.

[36] F. Fahroo and I. M. Ross. Direct Trajectory Optimization by a Chebyshev
Pseudospectral Method. page 6, Chicago, Illinois, June 2000.

[37] A. V. Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlinear
Programming, volume 165 of Mathematics in Science and Engineering. Else-
vier, 1983.

[38] FSF. glpk, GNU Linear Programming Kit, 2012. gnu.org/software/glpk/.

[39] R. Furfaro and R. Linares. Waypoint-Based Generalized Zem/Zev Feedback
Guidance For Planetary Landing Via A Reinforcement Learning Approach.
3rd IAA Conf on Dynamics and Control of Space Systems, page 16, 2017.

[40] J. Garcia and F. Fernandez. A Comprehensive Survey on Safe Reinforcement
Learning. Journal of Machine Learning Research, 16:1437–1480, 2015.

182 Bibliography

[41] J. Gauvin. Formulae for the Sensitivity Analysis of Linear Programming Prob-
lems. In M. Lassonde, editor, Approximation, Optimization and Mathematical
Economics, pages 117–120, Heidelberg, 2001. Physica-Verlag HD.

[42] R. H. Goddard. A Method Of Reaching Extreme Altitudes. Smithsonian Insti-
tution, Baltimore, MD. U.S.A., 1920. Publication 2540.

[43] K. Graichen and N. Petit. Solving the Goddard problem with thrust and
dynamic pressure constraints using saturation functions. IFAC Proceedings
Volumes, 41(2):14301–14306, 2008.

[44] J. Hanson, D. Coughlin, G. Dukeman, J. Mulqueen, and J. McCarter. As-
cent, transition, entry, and abort guidance algorithm design for the X-
33 vehicle. In Guidance, Navigation, and Control Conference and Exhibit,
Boston,MA,U.S.A., Aug. 1998. American Institute of Aeronautics and Astro-
nautics.

[45] C. Hargraves and S. Paris. Direct trajectory optimization using nonlinear
programming and collocation. Journal of Guidance, Control, and Dynamics,
10(4):338–342, 1987. American Institute of Aeronautics and Astronautics.

[46] R. F. Hartl, S. P. Sethi, and R. G. Vickson. A Survey of the Maximum Prin-
ciples for Optimal Control Problems with State Constraints. SIAM Review,
37(2):181–218, June 1995.

[47] D. G. Hull. Optimal control theory for applications. Springer, New York;
London, 2011. OCLC: 1063549889.

[48] K. Jittorntrum. Solution point differentiability without strict complementar-
ity in nonlinear programming. Sensitivity, Stability and Parametric Analysis,
21:127–138, 1984.

[49] H. K. Khalil. Nonlinear Systems. Prentice Hall, 2 sub edition, 1995.

[50] A. R. Klumpp. Apollo Lunar Descent Guidance. Automatica, pages 133–146,
1974.

[51] D. Kraft. On Converting Optimal Control Problems into Nonlinear Program-
ming Problems. In Schittkowski K. (eds) Computational Mathematical Pro-
gramming, volume 15 of NATO ASI Series (Series F: Computer and Systems
Sciences), 1985.

[52] H. Lampazzi. Intact Ascent Aborts Workbook 21002. Technical report
USA007151 Rev A, United Space Alliance, Oct. 2006. Contract NNJ06VA01C.

[53] G. M. Lee, N. N. Tam, and N. D. Yen. Continuity of the Solution Map in
Quadratic Programs under Linear Perturbations. Journal of Optimization
Theory and Applications, 129(3):415–423, Dec. 2006.

[54] U. Lee and M. Mesbahi. Constrained Autonomous Precision Landing via Dual
Quaternions and Model Predictive Control. Journal of Guidance, Control, and
Dynamics, 40(2):292–308, 2017.

Bibliography 183

[55] C. Leparoux, B. Hérissé, and F. Jean. Structure of optimal control for plane-
tary landing with control and state constraints. arXiv:2204.06794, Apr. 2022.

[56] F. W. Leslie and C. G. Justus. The NASA Marshall Space Flight Center Earth
Global Reference Atmospheric Model, 2010 Version. National Aeronautics and
Space Administration, Marshall Space Flight Center, June 2011.

[57] P. Lu and S. A. Sandoval. Abort Guidance during Powered Descent for Crewed
Lunar Missions. In AIAA Scitech 2021 Forum, Virtual Event, Jan. 2021.
American Institute of Aeronautics and Astronautics.

[58] D. Malyuta, T. P. Reynolds, M. Szmuk, T. Lew, R. Bonalli, M. Pavone,
and B. Açikmeşe. Convex Optimization for Trajectory Generation. arXiv:
2106.09125, June 2021.

[59] O. L. Mangasarian and T.-H. Shiau. Lipschitz Continuity of Solutions of
Linear Inequalities, Programs and Complementarity Problems. SIAM Journal
on Control and Optimization, 25(3):583–595, May 1987.

[60] Y. Mao, M. Szmuk, and B. Açıkmeşe. Successive convexification of non-convex
optimal control problems and its convergence properties. In 2016 IEEE 55th
Conference on Decision and Control (CDC), pages 3636–3641, Dec. 2016.

[61] Y. Mao, M. Szmuk, X. Xu, and B. Açikmeşe. Successive Convexification: A
Superlinearly Convergent Algorithm for Non-convex Optimal Control Prob-
lems. arXiv:1804.06539, Feb. 2019.

[62] A. Marwege, J. Riehmer, J. Klevanski, A. Gülhan, T. Ecker, B. Reimann, and
E. Dumont. First Wind Tunnel Data of CALLISTO Reusable VTVL Launcher
First Stage Demonstrator. page 15, 2019.

[63] J. Mattingley and S. Boyd. CVXGEN: a code generator for embedded convex
optimization. Optimization and Engineering, 13(1):1–27, Mar. 2012.

[64] J. Meditch. On the problem of optimal thrust programming for a lunar soft
landing. IEEE Transactions on Automatic Control, 9(4):477–484, Oct. 1964.

[65] H. Ménou, E. Bourgeois, and N. Petit. Fuel-optimal program for atmospheric
vertical powered landing. In 60th Conference on Decision and Control, 2021.

[66] H. Ménou, E. Bourgeois, and N. Petit. Nominal And Emergency Rocket Land-
ing Guidance Using Quadratic Programming. In AAS/AIAA Astrodynamics
Specialist Conference, Charlotte, NC, 2022. Univelt Inc. Awaiting proceedings.

[67] H. Ménou, E. Bourgeois, and N. Petit. Sensitivity Analysis for Powered De-
scent Guidance: Overcoming degeneracy. In 2022 European Control Confer-
ence (ECC), pages 1218–1223, 2022.

[68] R. Montgomery. Abnormal minimizers. Siam Journal on control and opti-
mization, 32(6):1605–1620, 1994.

184 Bibliography

[69] K. G. Murty. Linear and Combinatorial Programming. John Wiley, New York,
1976.

[70] K. G. Murty. Linear Programming. John wiley & sons edition, 1983.

[71] S. Nonaka, H. Nishida, H. Kato, H. Ogawa, and Y. Inatani. Vertical Landing
Aerodynamics of Reusable Rocket Vehicle. Transactions Of The Japan Society
For Aeronautical And Space Sciences, ATJ, 10(0):1–4, 2012.

[72] A.-I. Onel, O.-I. Popescu, A.-M. Neculaescu, T.-P. Afilipoae, and T.-V.
Chelaru. Liquid rocket engine performance assessment in the context of small
launcher optimisation. INCAS BULLETIN, 11(3):135–145, Sept. 2019.

[73] H. Oniki. Comparative Dynamics (Sensitivity Analysis) in Optimal Control
Theory. Journal of Economic Theory, 6:265–283, 1973.

[74] A. G. Pandala, Y. Ding, and H.-W. Park. qpSWIFT: A real-time sparse
quadratic program solver for robotic applications. IEEE Robotics and Au-
tomation Letters, pages 3355–3362, 2019.

[75] R. Pytlak. Numerical methods for optimal control problems with state con-
straints. Number 1707 in Lecture Notes in Mathematics. Springer Verlag,
1999.

[76] A. V. Rao. Trajectory Optimization: A Survey. In H. Waschl, I. Kolmanovsky,
M. Steinbuch, and L. del Re, editors, Optimization and Optimal Control in
Automotive Systems, Lecture Notes in Control and Information Sciences, pages
3–21. Springer International Publishing, Cham, 2014.

[77] T. P. Reynolds and M. Mesbahi. Optimal Planar Powered Descent with In-
dependent Thrust and Torque. Journal of Guidance, Control, and Dynamics,
43(7):1225–1231, July 2020.

[78] B. Rmili, D. Monchaux, O. Boisneau, J. Hassin, S. Querry, S. Besson,
G. Poirey, R. Bore, I. Hamada, H. Amrouchi, J. Franc, M. Barreau, N. Mer-
cadie, T. Labois, and D. Grinco. FROG, a Rocket for GNC demonstrations:
Firsts flights attempts of the FROG turbojet version and preparation of the
future mono-propellant rocket engine. In 8th European Conference for Aero-
nautics and Space Sciences, 2019.

[79] I. M. Ross and M. Karpenko. A review of pseudospectral optimal control:
From theory to flight. Annual Reviews in Control, 36(2):182–197, Dec. 2012.

[80] N. Rouche, P. Habets, and M. Laloy. Stability Theory by Liapunov’s Direct
Method, volume 4 of Applied Mathematical Sciences. Springer, 1977.

[81] M. Sagliano, A. Heidecker, J. M. Hernández, S. Farì, M. Schlotterer, S. Woicke,
D. Seelbinder, and E. Dumont. Onboard Guidance for Reusable Rockets:
Aerodynamic Descent and Powered Landing. page 35, Jan. 2021.

Bibliography 185

[82] M. Sagliano, T. Tsukamoto, J. A. Macés-Hernández, D. Seelbinder, S. Ishi-
moto, and E. Dumont. Guidance and Control Strategy for the CALLISTO
Flight Experiment. page 13, 2019.

[83] H. Schättler. The Local Structure of Time-Optimal Trajectories in Dimension
Three under Generic Conditions. SIAM Journal on Control and Optimization,
26(4):899–918, July 1988.

[84] H. Schättler and U. Ledzewicz. Geometric Optimal Control: Theory, Methods
and Examples, volume 38. Springer Science & Business Media, New York,
2012.

[85] D. Seelbinder. On-board Trajectory Computation for Mars Atmospheric Entry
Based on Parametric Sensitivity Analysis of Optimal Control Problems. PhD
Dissertation, University Bremen, 2017.

[86] L. Sha. Using simplicity to control complexity. IEEE Software, 18(4):20–28,
July 2001.

[87] E. Shapiro and D. Akin. Survivability of Emergency Escape from a Simu-
lated Shuttle Entry Trajectory. In 43rd AIAA Aerospace Sciences Meeting
and Exhibit, Reno, Nevada, Jan. 2005. American Institute of Aeronautics and
Astronautics.

[88] Y.-Y. Shi and M. Eckstein. An exact solution for optimum controlled soft
lunar landing. Astronautica Acta, 16:9–18, 1971.

[89] Z.-y. Song, C. Wang, S. Theil, D. Seelbinder, M. Sagliano, X.-f. Liu, and Z.-j.
Shao. Survey of autonomous guidance methods for powered planetary landing.
Frontiers of Information Technology & Electronic Engineering, 21(5):652–674,
May 2020.

[90] E. D. Sontag. Mathematical Control Theory, volume 6 of Texts in Applied
Mathematics. Springer New York, New York, NY, 1998.

[91] R. Sostaric and J. Rea. Powered Descent Guidance Methods For The Moon and
Mars. In AIAA Guidance, Navigation, and Control Conference and Exhibit,
San Francisco, California, Aug. 2005. American Institute of Aeronautics and
Astronautics.

[92] R. R. Sostaric. Powered Descent Trajectory Guidance and Some Considera-
tions for Human Lunar Landing. page 17, Breckenridge, Colorado, 2007. AAS
07-051.

[93] B. A. Steinfeldt, M. J. Grant, D. A. Matz, R. D. Braun, and G. H. Barton.
Guidance, Navigation, and Control System Performance Trades for Mars Pin-
point Landing. Journal of Spacecraft and Rockets, 47(1):188–198, Jan. 2010.

[94] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an
operator splitting solver for quadratic programs. Mathematical Programming
Computation, 12(4):637–672, 2020.

186 Bibliography

[95] H. J. Sussmann. Time-optimal control in the plane. In Feedback Control of
Linear and Nonlinear Systems, volume 39, pages 244–260. Springer-Verlag,
Berlin/Heidelberg, 1982.

[96] H. J. Sussmann. Lie Brackets and real analiticity in control theory. volume 14,
pages 515–542, Warsaw, 1985.

[97] M. Szmuk, B. Açikmeşe, and A. W. Berning. Successive Convexification for
Fuel-Optimal Powered Landing with Aerodynamic Drag and Non-Convex Con-
straints. In AIAA Guidance, Navigation, and Control Conference, San Diego,
California, USA, Jan. 2016. American Institute of Aeronautics and Astronau-
tics.

[98] M. Szmuk, T. P. Reynolds, and B. Açikmeşe. Successive Convexification
for Real-Time 6-DoF Powered Descent Guidance with State-Triggered Con-
straints. arXiv:1811.10803 [math], Nov. 2018. arXiv: 1811.10803.

[99] E. Trélat. Optimal control and applications to aerospace: some results and
challenges. Journal of Optimization Theory and Applications, 154(3):713–758,
2012.

[100] Y. Ulybyshev. Optimization of Three-Dimensional Lunar Landing Trajectories
and Accessible Area Computation. In AIAA SciTech Forum, page 11, 2019.

[101] P. Vana, J. Slama, J. Faigl, and P. Paces. Any-Time Trajectory Planning for
Safe Emergency Landing. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5691–5696, Madrid, Oct. 2018.
IEEE.

[102] R. Vinter. Optimal Control. Birkhäuser Boston, Boston, 2010.

[103] J. Vlassenbroeck. A chebyshev polynomial method for optimal control with
state constraints. Automatica, 24(4):499–506, July 1988.

[104] O. von Stryk. Numerical Solution of Optimal Control Problems by Direct
Collocation. In R. Bulirsch, A. Miele, J. Stoer, and K. Well, editors, Opti-
mal Control: Calculus of Variations, Optimal Control Theory and Numerical
Methods, ISNM International Series of Numerical Mathematics, pages 129–
143. Birkhäuser, Basel, 1993.

[105] K. Wabersich and M. Zeilinger. Safe exploration of nonlinear dynamical sys-
tems: A predictive safety filter for reinforcement learning, Dec. 2018.

[106] J. Wang and N. Cui. A Pseudospectral-Convex Optimization Algorithm for
Rocket Landing Guidance. In 2018 AIAA Guidance, Navigation, and Control
Conference, Kissimmee, Florida, Jan. 2018. American Institute of Aeronautics
and Astronautics.

[107] J. Wang, N. Cui, and C. Wei. Optimal Rocket Landing Guidance Using Convex
Optimization and Model Predictive Control. Journal of Guidance, Control,
and Dynamics, 42(5):1078–1092, May 2019.

MOTS CLÉS

guidage en descente propulsée, commande optimale, sensibilité de NLP, guidage d’urgence

RÉSUMÉ

Cette thèse étudie le Guidage d’urgence en Descente Propulsée d’un lanceur réutilisable, sous la forme

d’un problème de commande optimale en temps final libre sous contraintes. Pour ce lanceur, soumis à de

forts effets aérodynamiques et disposant d’une manœuvrabilité limitée, on souhaite calculer en temps réel

une trajectoire de « secours », en relâchant certains paramètres négociables, tels que la limite d’incidence,

la limite d’accélération normale, ou encore le lieu d’atterrissage. A cet effet, nous introduisons une hiérarchie

entre les paramètres et développons un algorithme, Optimisation Hiérarchique pour le Guidage d’Urgence

(H.E.G.O.), pour la respecter strictement. L’algorithme consiste en une suite finie de Problèmes Linéaires de

négociation, utilisée pour calculer les relaxations nécessaires, suivie d’un Problème Quadratique de raffine-

ment.

Le lanceur est modélisé par huit états et trois commandes. Les paramètres de vol sont les conditions

initiales de la fusée, et d’autres paramètres tels que l’Impulsion Spécifique du moteur et le profil de vent.

La hiérarchie définie par l’utilisateur est exprimée via un ordre co-lexicographique. La méthode proposée est

analysée d’un point de vue théorique. Entre autres, la Lipschitz-continuité de la trajectoire re-planifiée vue

comme une fonction des paramètres de vol est établie. Des résultats numériques permettent de quantifier la

performance et la qualité de la méthode.

ABSTRACT

This thesis studies emergency Powered Descent Guidance (PDG) for reusable launchers, as an Optimal

Control Problem in free final-time with constraints. For such a launcher, subject to strong aerodynamic effects

and having limited maneuverability, we wish to perform « emergency » trajectory planning by relaxing some

negotiable parameters, such as the incidence safety bound, the normal acceleration load, or the landing

site location. To this end, a hierarchy between the parameters is introduced and an algorithm, Hierarchical

Emergency Guidance Optimization (H.E.G.O.), is developed to enforce it. The algorithm consists of a finite

sequence of negotiation Linear Programs, followed by a refinement Quadratic Program.

The rocket is modeled by eight states, and three controls. The flight parameters are the initial conditions

of the rocket states and other parameters, such as the Engine Specific Impulse and the wind profile. The

user-defined hierarchy is conveyed via a co-lexicographic order. The methodology is theoretically studied.

Among others, the Lipschitz-continuity of the guidance trajectory with respect to the input flight parameters is

established. Extensive numerical results serve to quantify the performance and relevance of the methodology.

KEYWORDS

powered descent guidance, optimal control, NLP sensitivity, emergency guidance

	Remerciements
	Abstract
	Résumé
	Nomenclature
	Introduction
	Powered Descent Guidance (PDG) for reusable launchers
	Mathematical programming for online PDG
	Current state-of-the-art
	Hierarchy and the emergency problem

	Proposed contribution: Hierarchical Emergency Guidance Optimization
	Fast PDG for fixed value of constraint parameters
	Computing the best constraint alteration achieving feasibility
	The HEGO algorithm

	Manuscript outline

	Dynamic models and the PDG problem
	Atmospheric flight dynamics
	Earth and atmosphere model
	Aerodynamic model
	Noteworthy particularities

	Planar rocket model
	Three-dimensional rocket model
	Orientation frames
	Dynamics
	Normal acceleration, downrange and attitude

	PDG as an Optimal Control Problem
	Mission goals and constraints
	Formulation as an optimal correction problem

	Mathematical properties of the optimal vertical descent
	Vertical descent
	Single dimensional rocket model
	Assumptions specific to the vertical descent
	Optimal Control Problems

	Premilinaries on the dynamics
	Optimal thrust programs
	Fuel Optimal Landing
	Optimality of Min-Max Programs
	Main result

	Numerical illustrations
	Comments

	Nominal guidance via Quadratic Programming
	Non-Linear Programming (NLP) formulation for PDG
	Discretization of the decision variable
	Formulation of the finite dimensional guidance problem

	Sensitivity analysis for degenerate parametric NLP
	An introductory toy example
	Known results in parametric NLP sensitivity

	Fast nominal guidance method
	An offline/online approach for nominal guidance
	Guidance law
	Directional first-order estimate of waypoints

	Numerical examples
	Effectiveness of calculated guidance
	Changes in the active set
	Non-local constraint satisfaction

	Emergency guidance via Linear and Quadratic Programming
	Negotiable parameter choices
	Negotiated constraints
	On the relative importance of the parameters

	A hierarchical negotiation
	Algorithmic principle of HEGO
	An illustrative toy example
	Noteworthy remarks

	Smoothness of the HEGO algorithm
	Problem re-writing
	Uniqueness of the optimal trajectory
	Regularity w.r.t. the right-hand side of the constraints
	Conclusion on the Lipschitz-continuity of HEGO

	Monotonicity of the optimal negotiations
	Non-monotonicity of the optimal trajectories
	Emergency guidance method generalization
	Generalized notations
	Generalized emergency order
	Generalized sequence of optimization problems
	High-level description of safety margins

	Illustrations
	With the 2D model
	With the 3D model

	Performance evaluation
	General comments
	Input dispersion on 3D rocket model
	Selection of figures
	Observations and comments
	Conclusion on the example

	Comparison with vertical flight envelopes

	Conclusion
	Technical tools
	Optimization results
	Duality gap
	Right-hand side sensitivity of Linear Programs

	Differential Equations
	Comparison theorem
	Flow of Ordinary Differential Equations

	Additional data
	Bibliography

