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CHAPTER 1. MODELING OF CONTINUOUS FORMING PROCESSES

1.1 Brief introduction to continuous metal forming processes

(a) Discontinuous process (Forging) [11] (b) Quasi-continuous/Continuous process (Rolling)

Figure 1.1.1: Representation of discontinuous and continuous processes

Material processing is a quintessential need of the human for creating products that cater to our
diverse needs in every stratum of life. A material processing method can be categorized into dif-
ferent types depending on whether it is used: to reshape (for ex. forming), to cut (for ex. sawing,
planing, broaching, drilling, grinding, turning and milling), to join (welding, soldering) or to add
material (casting, additive manufacturing). The principal interest of the present thesis is in the
forming processes that enable the transformation of a product by changing the shape of an input
workpiece. The forming processes can be further categorized into discontinuous and continuous
processes: the former has a discrete operation cycle, for example forging (see Figure 1.1.1a), and
the latter has a quasi-continuous operation cycle like rolling, extrusion etc. (see Figure 1.1.1b). An
important difference between the two categories is that the continuous processes have a consid-
erably large steady-state regime in comparison to the transient phases of material engagement &
release.

The continuous forming of metal changes the shape of an input workpiece by virtue of its
plastic deformation. Depending on the direction of loading, the process could be uniaxial (like
flat product rolling) or multi-axial (like long-product rolling, extrusion, etc.). In other classifi-
cation, the temperature of the product distinguishes if it is a hot or a cold-forming process. In
hot-forming, elastic retraction becomes insignificant, hence only plastic behavior needs to be ac-
counted for, whereas, in cold-forming, the elastoplastic constitutive behavior assumptions allow
us to model the residual stresses. The rate-dependent effects in elastic or plastic components
can be modeled with viscoelastic or viscoplastic/ elastoviscoplastic material models respectively.
Among the vast range of continuous metal forming processes, the present thesis is mainly focused
on the rolling process that corresponds to traction and compression of the material between a
pair(s) of counter-rotating rolls or rolling mills. The material can be rolled as soon as the metal
solidifies (see Figure 1.1.2), and becomes sufficiently strong to withhold the compression forces.
Even though the examples presented for the current context are inspired from the steel industry,
its application is general.

Classification of rolling processes

As seen in the Figure 1.1.2, the continuous casting step makes it possible to obtain very long prod-
ucts right after the iron is smelted from its ore, and yields semi-finished products in shapes of
blooms, billets, and slabs [7]. Further, the metal is subjected to plastic deformation in successive
rolling passes commonly in roughing and finishing mills to achieve the desired shape and dimen-
sions. The rolls are generally sets of cylinders arranged in pairs and housed in a stand. They either
reduce the thickness and/or change the shape of workpiece material by exerting force, measured
in hundreds or even thousands of tonnes. During the forming process, the temperature, the strain,
and the strain-rate distributions in the rolled material play a significant role in the metallurgical
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CHAPTER 1. MODELING OF CONTINUOUS FORMING PROCESSES

kinetics.

Figure 1.1.2: Flow chart of a steel production industry [7]

The rolling process/products can be categorized as follows:

Hot Rolling vs Cold Rolling The resistance of steel to the change of shape reduces at high tem-
peratures, so it is generally (hot) rolled from semi-finished products by controlling the tempera-
ture above the re-crystallization starting temperature, generally 0.5Tm , in a reheat furnace. Here
Tm is the melting temperature in Kelvin(K). This increases material workability and reduces the
flow stress of the deforming metal. On cooling the workpiece to the room temperature (by normal-
izing), the hot rolled steel shrinks without any residual stresses, but this shrinkage is non-uniform
and gives insufficient control on the size and shape of the finished product and a scaled finish due
to the oxidation. These properties make hot-rolled steel most suitable for structural components
and other applications such as Railroad tracks, I-beams, agricultural equipment, sheet metal, au-
tomotive frames, etc., where precise shapes and tolerances are of less importance.

Below certain sections or thickness, the metal cools down due to the contact with the rolls, and
it becomes impossible to continue with the hot rolling. Further reduction of size, if needed, must
be performed in cold by different mills which are necessarily designed for cold conditions. The
word cold means that the rolling of the material is carried out below 0.5Tm or at room tempera-
ture. The cold-rolled products have higher strength because of strain-hardening; it is not the case
with hot rolling as re-crystallization results in softening and jointly to the relaxation of residual
stresses. We can achieve very precise shapes with cold rolling since the process is performed at
room temperature and thus the steel does not shrink as it cools. Hence it is possible to go down to
thinner gauges or smaller sections, especially with tighter tolerances, which are impossible with
hot rolling. In addition, the cold rolling results in products with improved surface finish as there
is no oxidation. The tandem cold rolling process consists of passing a metal strip through a se-
quence of pairs of independently driven work rolls, with each work roll supported by a backup roll
of a larger diameter. Figure 1.1.3 shows a typical five-stand cold rolling process. As the strip moves
through the individual pairs of work rolls, its thickness is successively reduced by very high com-
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CHAPTER 1. MODELING OF CONTINUOUS FORMING PROCESSES

pression stress in a small region (i.e. the roll bite) between the rolls. In terms of production cost,
the hot rolled steel is generally more economical than cold rolled steel as no reheating is required.
In addition, there are fewer operations involved in hot rolling, which reduces the cost.

Figure 1.1.3: Typical five-stand tandem cold rolling mill [9]

Types of Rolling products There are two main classes of the rolled products: flat products that
are sheets (see Figure 1.1.4a) or strips (see Figure 1.1.4b) of uniform thickness , and long products
(see Figure 1.1.4c) that have a particular cross-section, ranging from rectangular bars to double
flange H sections. The flat products are rolled between two horizontal rolls placed one above the
other in an open housing, whereas, the long products use a series of specially shaped and angled
rolls or stands and are used to transform the section to the required shape.

(a) Flat plate rolling (b) Strip rolling (c) Long product

Figure 1.1.4: Different types of rolling products

1.2 Numerical simulation of continuous forming processes

Numerical simulation is an excellent tool for the detailed understanding of the forming process
physics. It allows one to analyze the influence of various design & process parameters and access
information that is generally difficult or impossible to obtain during the course of deformation, for
example, temperature/strain in the core. Numerical simulation is also an important tool used for
the optimization of the process aiming at reduction of expended resources, and improvement of
the product quality. In addition, the numerical simulation is relatively inexpensive in comparison
to the experimental testing. The history of numerical modeling of continuous metal forming is a
long journey in itself; it entailed looking into the problems from different interdisciplinary view-
points for deep understanding. The numerical tools has nevertheless been evolving with time
and has enabled modeling larger geometric and material complexities. The numerical methods
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can model the process in the dependence of time (steady or unsteady state), space (2D or 3D),
and complexity of physics (coupled-physics, multi-scale) for simulating the process as close as
possible to the reality. The usage of the high fidelity tools has enabled many industries to pro-
duce products with complex shapes and excellent precision and also optimizing the process by
reducing material wastage. As a consequence, the numerical simulation tools occupy an impor-
tant place in the manufacturing industry as they are essential for the realization of high-quality
products and for increasing profit margins in the present competitive international market.

1.3 Types of numerical models

The numerical models for simulating a forming process can be classified as online or offline. The
former aims in determining, almost in real-time, solutions to readjust certain parameters such as
the position of the tools or their rotation speed. These methods use either simple closed-form so-
lution models or are based on interpolation solutions [12] and can help to set up the rolling mills
in the real-time. The latter is based on much more complex and enriched models [1–3] to simulate
the behavior of the material in all its details and complexity. The augmented computational power
and the refinement of the formulations make possible the detailed analyses of the mechanical and
thermal fields of the material. They can as well predict any defect or find corrective measures [6]
to forming defects (shape, width, strip profile, flatness, with tighter tolerances), residual stresses,
metallurgical defects, and surface quality. A full time-dependent 3D Finite element simulation in-
volving roll stand as well as workpiece deformation (see Figure 1.3.1), production line modeling
[5], complete thermal coupling, with microstructure and surface evolution models with precise
physical parameters makes possible to predict all the aforementioned forming problems. In fact,
to obtain the desired geometry, the section is progressively reduced by rolling through several suc-
cessive passes. These simulations cannot be run in parallel since each successive pass depends on
the solution from the preceding one. Hence the cost of computation with this detailed modeling
is enormous and occasionally becomes impractical without a judicious simplification. The scope
of the current thesis is focused on the offline methods but with alternative approaches to reduce
the computation time.

(a) Schematic of Roll stand (b) Roll Deformation model

Figure 1.3.1: Rolling process modeling with coupling with roll deformation [5]

1.4 Steady-state modeling and context of the project

The continuous metal forming processes can be described with distinctive: (a) material engage-
ment, (b) steady-state, and (c) release, phases as seen in Figure 1.4.1. The engagement and the
release phases of the process are of transient nature, whereas in the steady-state phase, the ma-
terial flow remains in a quasi-stationary state. The steady-state phase is often the longest of the
three phases and often (depending on the industrial context) the most important one. The rolling
process results in a product that has uniform properties in the steady-state part and the extreme
ends of the product are sheared off after the material processing.
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(a) Engagement Phase (b) Steady-state Phase (c) Release Phase

Figure 1.4.1: The different phases of a metal forming process (rolling)[10]

(a) Incremental Resolution (b) Steady-state Resolution

Figure 1.4.2: Comparison of steady-state resolution with incremental and steady-state methods

The computation of steady-state phase of a continuous forming process from numerical mod-
eling necessitates that a sufficient length of the geometry is modeled. The deformation of the
material occurs principally under the tools and this region is relatively small compared to the total
length of the work-piece modeled. Therefore, the accuracy of the calculation is mainly dependent
on the refinement under the tool contact as well as the downstream which is necessary to maintain
the solution (of geometry and gradient variables). In general, these processes are modeled with
incremental methods (see Figure 1.4.2a), and the kinematics is described with a time-dependent
partial differential equation. They are adapted to large deformations and can be used to solve a
large number of (even discontinuous) forming problems (forging, hammering, drawing). How-
ever, the calculation times involved are quite substantial and can become excessive; from a few
hours to several days, or several weeks according to the desired accuracy and the method consid-
ered. In recent years, CEMEF has been striving to develop new numerical methods dedicated to
the simulation of continuous or semi-continuous processes with a small contact and deformation
zone, such as rolling, spinning, or drawing, with the objective of reducing the computation time.
A pseudo-incremental ALE approach by [8] was one of these lines of research. It offers acceler-
ations between 2 to 7 times depending on the configuration studied, but this approach has not
proven to be the most efficient for simulating steady-state processes in comparison to the direct
resolution with the steady-state formulation. The latter is undoubtedly the fastest but is difficult
to formulate as the forming problem generally results in a strongly coupled multi-field form with
each unknown solved using a separate equation. Generally, with these formulations, the steady-
state could be found directly using iterative search (see Figure 1.4.2b). Ugo Ripert’s thesis [10] was
thus dedicated to seeking a new stationary formulation which was adapted in the ForgeNxt®2016,
and was compatible with the existing velocity and pressure formulation, unstructured tetrahedral
meshes and parallel computation following a domain partitioning approach. Although the pro-
posed formulation was quite satisfactory in terms of accuracy for some of the test cases studied,
yet, it was limited to hot forming problems with simple contact surfaces between the tool and the
workpiece. With complex geometries, the resolution with an existing algorithm often results in an
unstable solution. The present thesis is a continuation work in this direction with the principal
objective of the improvement of robustness and enrichment of the formulation to model elasto-
plasticity based history-dependent materials for simulating cold forming processes.
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(a) Shape Rolling problem (b) Exit shape computation

Figure 1.4.3: Simulation of a shape rolling of a long product with ForgeNxt®2016 [10]

Thus, a new project Forge Stationnaire Bis was envisaged by a consortium of seven industrial
partners which are principally concerned with rolling of metal products, namely Arcelor Mittal,
Ugitech, Vallourec, Lisi-Aerospace, Framatome and Aubert-Duval. Transvalor S.A. was involved as
the official producer and seller of the Transvalor S.A. ForgeNxt® software. The principal objectives
of this project are listed below:

1. Firstly, an improvement of the algorithm robustness is envisaged for improving its perfor-
mance with more complex cases. In consequence, the objective is to first identify the reason
for the instability in the solution with the existing formulation. Further, a remedy to this
problem must be proposed and the claim must be tested with more complex hot rolling
problems. The validation of the simulation results with the new formulation is to be done
with the results obtained from the time-dependent incremental resolution of the same prob-
lem

2. Secondly, the existing steady-state formulation is to be extended to cold forming problems
with considerable elastic effects at material unloading. Hence the formulation must be able
to treat elastoplasticity and elastoviscoplasticity based history-dependent constitutive laws.
There are several challenges involved in this problem, mainly being able to trace the history
variables inside an unstructured mesh domain. In addition, special attention must also be
made to minimize the state-variables diffusion in order to find a reasonably accurate solu-
tion, yet faster than the incremental method.

1.5 Overview of the Thesis

Chapter 2 is focused on the bibliographic study of the numerical steady-state modeling of the con-
tinuous forming processes. The chapter presents an introduction to the kinematic description of
material flow in forming applications,the basic equations, their resolution with incremental and
steady-state formulations highlight the basic equations involved, and different numerical strate-
gies possible to resolve these equations. More specifically it highlights a brief introduction to the
contact formulation and treatment of history dependency while resolving these equations. The
former is also listed as the reason for the solution instability with the existing ForgeNxt®2016 solver
developed by Ugo Ripert in his PhD thesis [10]. Even though there is not much literature available
in the two subjects with the unstructured meshes, we would invoke the ideas based on structured
meshes and understand their possibilities and limitations for their adaption to ForgeNxt®2016.

Chapter 3 presents the details of the existing ForgeNxt®2016 algorithm and the related for-
mulation. This chapter is a preliminary read to understand the existing steady-state formulation
developments in Forge in order to understand the improvements proposed in chapters 4 and 5.
This chapter also presents the resolution of model hot rolling test cases and the instability prob-
lem observed in the steady-state solution with the existing solver. This problem is the motivation
for the first objective of this thesis which is covered in Chapter 4.
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Chapter 4 proposes a modification of the existing ForgeNxt®2016 algorithm for the improve-
ment of its robustness. The main change proposed is consistent contact coupling. A new nodal
form of the contact constraint is derived for velocity computation using a nodal condensation
technique. This constraint is firstly developed in explicit form and the updated steady-state solver
is termed as Steady-State Explicit. In the consequence, a further improved version is envisaged
with an implicit velocity constraint in the Steady-State Implicit steady-state solver. The modified
solvers are tested on multiple industrial flat and shape rolling test cases proposed in the project
and the impact of the contact coupling consistency on the solution accuracy and stability is stud-
ied. It means that the updated solver is compared for accuracy with the solution obtained from
the time-dependent or incremental resolution in ForgeNxt®inc and is compared for stability with
the solution from the ForgeNxt®2016 solver.

Chapter 5 extends the iterative steady-state algorithm to elastoplasticity and elastoviscoplas-
ticity materials, which are history-dependent. An initial algorithm based on streamline integration
is adopted from the work of [4] and the required framework for building streamlines in the un-
structured mesh is developed. After an initial assessment of the algorithm, a further improved ver-
sion is proposed to speed up the resolution. Both the algorithms are implemented in ForgeNxt®2016
tested on fictitious flat and shape cold rolling test cases with unstructured mesh. The obtained
solution is validated with the results from the incremental resolution of the same problem in
ForgeNxt®inc.

Chapter 6 presents the summary of the developments and conclusions on the important im-
provements brought to the existing steady-state formulation. Further, the open questions unan-
swered in this thesis are presented in the perspectives.
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The numerical modeling of metal forming processes entails the resolution of a thermo- me-
chanical problem arising from the equilibrium equations. The said problem is solved to compute
the unknown displacement/velocity and temperature fields. With the finite element method, the
infinite basis problem is reduced to a finite basis and solved on a time-space grid. In the incre-
mental formulation, at each time-increment, the equilibrium equations are solved to find the un-
known displacement/velocity field, followed by the shape update from the displacement field in a
displacement-based formulation, or the time integration of velocity in a velocity-based formula-
tion. In principle, incremental methods can be used to resolve both continuous and discontinuous
forming problems (see Figure 1.1.1). In the former, both the transient and stationary phases of the
process can be modeled. When the steady-state is reached, both the deformed shape and state
variables at the exit of an imaginary control volume (as represented in Figure 1.4.1b) around the
tool, do not change with time. The incremental formulation is particularly well adapted to the
description of transient phenomena. It is thus possible to analyze the defects at the ends of the
workpiece [37]. In addition, monitoring of the free-surfaces and the transport of state variables is
natural. Indeed, the mesh is attached to the material and is deformed with it. The state variables
are stored at nodes or elements and they are therefore naturally updated at each time increment.
However, the incremental resolution approach to find the steady-state is computationally costly.
It requires resolution of the time-dependent problem on a large domain which may involve large
mesh distortion and hence re-meshing becomes necessary. The objective of this chapter is to
study in detail the possible methodologies that have been used in literature to model the steady-
state of continuous forming processes using alternative formulations. The principal focus is on the
background of contact description and modeling history-dependent materials Elasto-viscoplastic
(EVP) and Elastoplastic (EP) in the context of steady-state formulations.

2.1 Kinematic Description of material flow

The kinematic description is the mathematical description of the motion of the material particles.
This description can be different depending on the frame of reference from which the particles are
observed. Either each material point can be individually followed in the material frame RX or the
flow of material particles can be observed from a stationary point in the spatial frame Rx . For mod-
eling steady-state of the continuous forming processes, other reference frame based approaches,
like ALE method, can also be used. Each of these kinematic descriptions has its advantages and
disadvantages. A short summary of these ideas are presented below:

2.1.1 Lagrangian description

Lagrangian description is the most common method for the material motion in Solid mechanics.
A material/ Lagrangian frame RX is used such that each material particle is tracked. The mesh is
attached to the material points and moves with them. The map φ (in Figure 2.1.1) represents the
motion of particles with material coordinates X in the reference configuration ΩX to the spatial
ones x in the current configuration Ωx . The material motion is represented with the equation
(2.1.1). The mesh deformation corresponds to the material deformation, as shown in Figure 2.1.2.
The velocity ~v of a particle is defined with equation (2.1.2), with |X representing that the material
coordinate X is kept fixed.

x =φ (X, t ) (2.1.1)

~v = ∂x

∂t
|X (2.1.2)
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φ

Reference Configuration (ΩX) Current Configuration (Ωx )

Figure 2.1.1: Lagrangian kinematic description

Material point

Mesh nodet

Figure 2.1.2: Lagrangian Description

Since the material points coincide with the mesh during the material motion, there are no
relative motion. Hence, there are no convective effects in Lagrangian calculations, meaning, the
material derivative of a variable reduces to a simple time derivative. The fact that the computa-
tional grid is always attached to the same material point, gives a significant advantage from the
computational viewpoint. The evolution of the history-dependent variable f can be described
with the material derivative of the variable. It is understandable that the history-dependency of
the material is treated naturally [7] and the free-surface is automatically calculated.

D f

Dt
= ∂ f

∂t
|X (2.1.3)

The Lagrangian formulations can be classified into: (i) Total Lagrangian formulation (TL), in which
the initial configuration (at t0) is used as the reference, and (ii) Updated Lagrangian formulation
(UL), in which the configuration at time t is used as the reference. The TL formulation is not
quite robust while dealing with large deformations (as in metal forming), so the UL formulation is
generally used in such scenarios.

2.1.2 Eulerian description

In the Eulerian description, the material flow is observed from a fixed point in space, and hence
the frame of reference is spatial Rx . In the said description, the nodes and elements remain fixed
and the material flows through the mesh (as seen in Figure 2.1.3). The computation domainΩx is a
control volume and the spatial coordinates are referred with x . This description is commonly used
to simulate fluid mechanics problems where the flow gradient is large and the problem is easier
to pose on spatial coordinates. The mesh grid is constructed in the control volume whose shape
does not evolve (fixed). The boundary conditions are applied at the fixed mesh nodes. There is a
relative motion between the mesh and the material particles, thus the material derivative of the
history-dependent variable f results in a temporal as well as a convective part as represented in
the equation (2.1.4).

∂ f

∂t
|X = ∂ f

∂t
|x +~v ·∇x f (2.1.4)

The left hand term with |X is the material derivative and the temporal part with |x describes the
spatial time derivative. When the steady-state is reached, the temporal term ceases to exist and
the history-dependent variable changes only due to the convection effects.
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Material point

Mesh nodet

Figure 2.1.3: Eulerian Description

2.1.3 ALE Description

Another manner to describe the motion particles is with the ALE method that combines the inter-
esting aspects of the classical kinematic description methods while minimizing their drawbacks as
far as possible. In ALE method, neither the material configurationΩX nor the spatial configuration
Ωx is used as the reference. A third domain called the ALE referential configuration Ωχ with coor-
dinates χ is introduced to identify as grid points. The referential domain is mapped to the material
and spatial domains as shown in Figure 2.1.4. The mapφ describes (see equation (2.1.5a)) the par-
ticle motion. This map is dissociated into the map ζ−1 representing the particle motion (equation
(2.1.5b)) with respect to the referential grid and ψ represents the grid motion (equation (2.1.5c))
in the spatial domain. The velocities of the material and the mesh with reference to grid are given
with equation (2.1.5d). The relative velocity ~c between the mesh and the material is thus found
with equation (2.1.5e) and is the convective velocity used for the transport of state-variables.

x =φ (X, t ) (2.1.5a)

χ= ζ−1 (X, t ) (2.1.5b)

x =ψ(
χ, t

)=ψ(
ζ−1 (X, t ) , t

)
(2.1.5c)

ŵ = ∂χ

∂t
|X; v̂ = ∂x

∂t
|χ (2.1.5d)

~c =~v − v̂ = ∂x

∂χ
· ŵ (2.1.5e)

Material Configuration
ΩX

Spatial Configuration
Ωx

ALE Reference
Configuration Ωχ

φ

ψ

ζ

Figure 2.1.4: Kinematic Description of material flow with ALE

Material point

Mesh nodet

Figure 2.1.5: ALE Description
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The ALE formulation is quite interesting from the fact that both material and mesh movement
can be modeled. The evolution of the history-dependent variable f can be found with its material
derivative. This derivative can be expressed in terms of the local derivative in terms of referential
coordinates χ held fixed and a convective term taking into account the relative velocity~c between
the material ad the reference system.

∂ f

∂t
|X = ∂ f

∂t
|χ+~c ·∇x f (2.1.6)

The ALE formulation is well suited for problems where the region of interest moves in a fixed do-
main, such as crack propagation [31] or fluid-structure interaction [12]. In metal forming pro-
cesses, it has been applied to processes like ring rolling [51], cutting operations [15], friction weld-
ing and mixing [17]. It has also been applied to the simulation of continuous processes such as
three-dimensional profiling [8, 57], thermo-mechanical coupling with rolling mill [41] and poly-
mer extrusion [16]. The idea can also be used to find directly the steady-state of the metal form-
ing process [8, 36]. However, the ALE method still needs resolution of time-dependent equations
which limits the speedup that can be achieved in comparison to the incremental resolution [44].

2.1.4 Reference frame kinematic description

A Reference Frame method was proposed by [5, 6] for the simulation of steady-state forming pro-
cesses. This method aims to use a mapping technique based on a reference configuration Ωr to
eliminate the time-dependency in the equations. The basic principle behind the Reference frame
method is that in the steady-state, the deformed configuration x is an image of the undeformed
configuration X0 at time t . In other words, the configuration X0 evolves to x . Thus, a control
volume based on the undeformed configuration. Next a reference configuration Ωr identifies the
material particles with coordinates r and is mapped onto the undeformed configuration X0 at a
given time instant t with the map ϕ as represented in the equation (2.1.7c).

Ωx =φ (ΩX0, t ) (2.1.7a)

ΩX0 =φ−1 (Ωx , t ) (2.1.7b)

ΩX0 =ϕ (Ωr , t ) (2.1.7c)

The length of the reference configuration is same as the control volume describing the unde-
formed configuration, and the undeformed configuration at any time instant t can be found with
the following relation:

ϕ (r , t ) =ϕ (r )+~v t (2.1.8)

At the steady-state, the material points referenced by r at different times would be the same.
Hence all the fields in the reference configuration do not vary with time. The evolution of the
history-dependent variables are thus computed in the reference configuration, which involves res-
olution of the following convection equation.

∂ f

∂t
(r , t ) = ∂ f

∂r
(r , t ) = 0 (2.1.9)
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Figure 2.1.6: Mapping among undeformed, deformed and reference frames in the reference frame method
by [5]

2.2 Classification of resolution methods for continuous forming pro-
cesses

This section discusses the different strategies used for the numerical resolution of the continuous
metal forming problem. The forming problem entails solving a multi-field problem to compute
a set of unknowns like displacement ~u/velocity ~v , temperature T. A set of secondary unknowns
like stress σ, strain ε,damage, etc. can describe the state of the material being formed. The said
problem can be solved either with generalized incremental methods, if the user is interested in the
both (transient and steady-state) the phases of the continuous forming problem. Otherwise, if the
user is interested only in the steady-state phase, the non-incremental strategies can find a high
fidelity solution with huge computation advantage. This section is focused on highlighting these
strategies.

2.2.1 Incremental Resolution

The Incremental Resolution entails the resolution of the time-dependent thermo-mechanical multi-
field problem in the Lagrangian frame with time integration. The said equations can be solved
either with Explicit or Implicit time-integration. Even though the former is quite robust in terms
of solving high frequency, transient problems, a very small time-step size is necessary for the sta-
bility of the numerical solution. On the other hand, an implicit solver, like ForgeNxt®inc, makes
possible to use large computation time-step. However, an iterative resolution of the equilibrium
state is necessary. In addition, the time step size cannot be very large to keep the solution sta-
ble. The incremental formulation can be used to simulate the complete forming process includ-
ing the transient engagement and release phases. The free surface computation and history-
dependency are treated naturally [7] with these formulations. The UL method is used as large
deformations involved. The deformation of the material is computed from the displacement field
in a displacement-based formulation or the time integration of velocity in a velocity-based for-
mulation. The history-dependent behavior can be accounted simply with the time integration
of the state-variables. If the main interest of the problem is the steady-state of the process, the
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simulation progresses until the time instant t when the shape and the state-variables within an
imaginary control volume around the tool (loading region) become stationary. The incremental
formulation caters to a wide spectrum of metal forming problems, and is quite robust. However,
it is disadvantageous as a large number of time increments are required. If a multistand/multi-
pass rolling process is to be simulated, the entire length of the workpiece must be modelled. Thus
the computation may last for days/ weeks and requires an augmented storage due to the sizable
model.

2.2.2 Non-incremental Resolution

Alternatively, if the objective of the simulation is just to find the steady-state behavior of the pro-
cess or the product, the non-incremental methods give a significant computation advantage. These
methods aim to compute directly the steady-state of the continuous forming problem. In com-
parison to the incremental methods, the formulation of these methods is rather difficult. One of
the important aspects of the non-incremental formulation is that the computation domain is de-
scribed only by an imaginary control volume (in Figure 1.4.1b) in which the steady-state is defined.
However, finding the free surface boundary with non-incremental methods is by invoking an ad-
ditional equation. Based on the chosen strategy/equation used for resolution of the free surface
boundary, two different approaches are possible: (i) non-steady-state and (ii) steady-state.

2.2.2.1 Non steady-state approach

The non-steady-state approach solve the steady-state with the ALE approach. While solving the
continuous forming problem, the thermo-mechanical equations are solved in the Lagrangian frame
and the mesh is updated in the Eulerian frame with the time integration. It thus combines the
advantages of Lagrangian (free-surface monitoring) and Eulerian (regular and fixed mesh) formu-
lations while minimizing their defects [13]. Its decoupled formulation is the most used, mainly
because it is very easy to implement in a Lagrangian code [57]. Two steps are added to update
the geometry in the subsequent increment and transfer the fields to it. Generally, the global mesh
is fixed during this step, and only the boundary surface is updated and hence the corresponding
nodes are re-positioned. After the new surface has been computed, the volume mesh is regular-
ized. This method brings strong stability and robustness [8, 36] in addition to reducing the com-
putation times in comparison to the updated Lagrangian formulation. The shape computation
with this method is quite similar to the incremental method (see Figure 2.2.1), so the speed-up
achieved is not huge [44] in comparison to the steady-state approach.

Figure 2.2.1: Computation of steady-state shape with ALE approach [41]
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2.2.2.2 Steady-state approach

The steady-state approach aims at completely eliminating the time-dependency from the equa-
tions. This is done by introducing either a new reference mapping that moves along the con-
trol volume as used by [6] or by introducing an additional global equation that corrects the mesh
coordinates to follow the flow streamlines. In the former, the movement of the reference frame
along with the control volume eliminates the time-dependency from the equations. The latter em-
ploys a Eulerian formulation and the additional equation results in two principle unknowns of the
strongly coupled mechanical problem: the velocity and the shape. Both these methods eliminate
the time-dependency from the equations and are much faster than the traditional incremental or
non-steady-state approaches. The system of equations can be solved either with direct or iterative
methods.

Direct Resolution

The Direct resolution of the system of equations entails the resolution of all unknowns of the
thermo-mechanical-shape problem simultaneously. This method has been applied both to the
Balagangadhar Reference frame approach [5, 46] and the Eulerian elasto-visco-plastic formulation
[42]. The coupled version was also developed to simultaneously determine the velocity field, pres-
sure, and surface position and applied to the polymer extrusion process in the works of [14, 34].
The advantage of direct methods is that the complete multi-field problem is resolved at the same
time. Hence, the equilibrium is automatically satisfied on the computed shape. The main bot-
tleneck of the direct methods is that the stiffness matrix size is generally huge as the DoF are five
times higher. This leads to several problems: a large number of iterations are required to reach a
certain convergence threshold; the convection must be taken into account at each iteration, which
is time-consuming; and a much larger system of equations needs to be solved, which requires huge
storage.

Iterative Resolution

A decoupled, iterative approach is more practical for solving the strongly coupled problems. It
has been studied for the Reference frame approach by [61] and the Eulerian approach by [44].
The iterative resolution method is more efficient since the geometry update and the convective
increment are calculated only once per global iteration. The Eulerian formulation approach with
iterative resolution has been widely used in the 1980s and 1990s [19, 27, 35, 53, 60]. The solution is
obtained in a few iterations (order of magnitude of the ten). It should be noted that the refinement
of the domain does not significantly increase the number of iterations of the algorithm contrary
to an incremental approach (of ForgeNxt®inc) where the time-step (and thus the number of in-
crements) must be adapted to the mesh size to keep the contact surface and the state-variables
stabilized. This approach, therefore, brings an enormous reduction in the computation time. This
iterative method of calculating the stationary state has been used for the simulation of 2D [39] and
3D [25, 38, 59] polymer extrusion. In these works, the contact zone chosen was intuitive, hence, the
correction of the domain was focused only on the free-surface downstream to predict the swelling
at the exit of the control volume. On the metal forming side, this approach was applied to two-
dimensional sheet rolling [37] and three-dimensional [19, 32, 35], to shape rolling [24, 26, 27], with
mandrel tube rolling [48, 53, 60] and coupled with the consideration of the deformation of the
rolling stand [19]. [26] used this method to reduce the computation time of their Lagrangian for-
mulation [28] by a factor of 10. A decoupled approach using a staggered iterative algorithm has
also been adopted in ForgeNxt®2016. Each of the variables ~v ,σ, ε̄, x are solved separately until
equilibrium is satisfied, usually with fixed-point iteration method [44, 45].
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2.3 Mathematical modeling of continuous forming

Once the kinematic description and the resolution method is chosen, the the process is described
with the equilibrium conditions, the material behavior and the boundary conditions. This section
is focused on the generalized description of these equations.

2.3.1 Conservation laws

The conservation laws are the linear momentum equilibrium and the mass conservation of the
material. The mechanical equilibrium equation is derived from the Newton’s second law of motion
(material derivative of the total force) and described as following:

~∇·σ+ρ~b = 0 in Ωx (2.3.1a)

~∇0 ·P+ρ0
~b0 = 0 in ΩX (2.3.1b)

In continuous forming, the body force term~b and the acceleration term d~v
d t in the equilibrium are

considered to be negligible. The equation in the deformed configuration is represented with the
equation (2.3.1a). In the current configuration Ωx it is represented with the equation (2.3.1b)). It
is recommended to refer to the definitions of each of the variables in the Glossary. In the equation
(2.3.1b), P is the First Piola-Kirchhoff stress tensor measure and is related to Cauchy’s stress with
the relation (2.3.2a). Here, F is the deformation gradient tensor and J represents the Jacobian de-
fined by the determinant of the deformation gradient tensor. P is non-symmetric as it expresses
the force in the current configuration in terms of area in the reference configuration. It is bet-
ter replaced with the Second Piola-Kirchhoff stress tensor (defined in equation (2.3.2b)) which is
symmetric.

P = Jσ ·F−T, where J = det F (2.3.2a)

S = JF−1 ·σF−T (2.3.2b)

The mass equilibrium or the continuity equation (2.3.3a) is represented with the material deriva-
tive of the density ρ (in the current configuration). The partial time-derivative of the density be-
comes zero at steady-state, and the gradient of the density is negligible for viscoplastic materials,
but not with elastoplastic materials. In the reference configuration, the density ρ0 (2.3.3b) is used.

dρ

d t
= ∂ρ

∂t
+~∇· (ρ~v)= ∂ρ

∂t
+ρ~∇· (~v) = 0 (2.3.3a)

ρJ = ρ0 (2.3.3b)

At the onset of the steady-state, the classical rate independent equilibrium equation (2.3.1) is ap-
plicable and extensively used in literature [11, 19, 33, 46]. However, at the steady-state, the material
derivative of the force is also nullified, which leads to a rate equilibrium equation and is also used
by [42, 50, 55].

2.3.2 Material constitutive behavior

The material constitutive model in the mechanical description (in macro scale) commonly relates
the stress tensor σ with the strain tensor ε. This relation is generally obtained by fitting the exper-
imental testing data of material samples in a mathematical model. The mathematical model may
have dependency on the deformation history, material hardening, creep, etc. With rate-dependent
plasticity, the relation is rather established with the strain-rate ε̇ tensor. A generalized constitutive
relations can be described as following:

σ= ψ̄ (ε̇ (~v) ,T) (2.3.4a)

σ̇= ψ̄ (σ, ε̇ (~v) ,T, ι) (2.3.4b)
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The first equation (2.3.4a) relates the stress σ with the strain-rate ε̇ with the functional ψ̄. Such
a relation is used with viscoplastic behavior laws. The material behavior dependency on the rate
of loading or the strain-rate is such that at higher rates, larger material strength is observed (as
shown in Figure 2.3.1a). With higher temperature, the material becomes less rigid. The equation
(2.3.4b), relates the stress-rate σ̇ with the stress σ and strain-rate ε̇. This is what is termed as the
time history-dependency, which defines the state of material at a time instant t +∆t w.r.t. the state
at a previously known time instant t . This model is representative of elasto-viscoplastic materials
(as shown in Figure 2.3.1b).

(a) Effect of strain rate (b) Effect of Elasticity

Figure 2.3.1: Modeling material behavior [2]

The elasticity depicts the recovery behavior of the material to go back to unloaded state after
the load is removed. At the micro scale, elasticity is caused by the reversible elongation of the inter-
atomic bonds under the applied stress of the material particles whereas the plasticity is caused by
the slip between grains. This slip between grains becomes dominant at high temperature and
low strain-rate (above 0.5 Tm , expressed in Kelvin). It is ultra-dominant in superplasticity. More
generally, be it for hot or cold deformation, the main mechanism of plasticity is the dislocation
slip on slip systems (= crystallographic plane + easy sliding direction). In short, the elasticity does
not account for any damage in material whereas plasticity leads to permanent damage.

2.3.3 Elasto-viscoplasticity in the context of steady-state formulations

Since one of the primary objectives of this thesis is to propose a resolution strategy for the steady-
state resolution of cold forming processes with unstructured meshes, it is quintessential to inves-
tigate the history of elasto-viscoplasticity in the context of steady-state formulations.

Frame indifference of stress-rate (Objectivity)

Objectivity or frame indifference is an important concept in continuum mechanics as the material
constitutive relation should be independent of reference frame and rigid body motion. If the stress
and strain are material quantities, the objectivity is automatically satisfied, however, for spatial
quantities, the objectivity of the stress rate must be ensured. The time derivative of the Cauchy’s
stress σ̇ is non-objective. In rate-dependent constitutive equations, the objective rates are con-
structed with pull-back and push-forward procedures. The most commonly used objective stress
rates are shown in equation (2.3.5). The Truesdell stress rate is found from the time derivative of
the second Piola-Kirchhoff’s stress tensor in equation (2.3.5a). If the pull-back and push-forward
operations are performed with the spin tensor w , the resulting objective stress rate is called the
Jaumann stress-rate as shown in equation (2.3.5b).

◦
σ= σ̇−L ·σ−σ ·LT w + tr (L)σ (2.3.5a)
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∇
σ= σ̇+σw −wσ (2.3.5b)

Classification of elastoplastic modeling

In elastoplasticity modeling, the primary aim is the decomposition of the two phenomena and
model them separately with respective behavior models. There are two main approaches in the
literature that use either additive or multiplicative decomposition of the elastic and plastic parts
of strain-rate described in the equations (2.3.6a) and (2.3.6b) respectively.

ε̇= ε̇e + ε̇p (2.3.6a)

F = Fe ·Fp (2.3.6b)

The usage is dependent on the degree of elastic or plastic behavior in deformation behavior. For
example, in the small deformation plasticity with Lagrangian description, the additive decompo-
sition is used. The elastic part is modeled with Hooke’s equation [23], and the plastic part with the
plasticity flow rule [21]. But the Hooke’s model is not valid for large (finite) deformation problems
as in metal forming. Among the multiple approaches in the literature, the most famous approach
used for solving such problems is the extension of small deformation elastoplasticity to large de-
formations. This approach by Prandtl-Reuss [21] proposed to decompose deformation-rate tensor
ε̇ to elastic ε̇e and plastic ε̇p parts similar to the strain in small deformation problems. The elastic
behavior is modeled with Truesdell’s hypoelasticity theory with equation (2.3.7a) that relates the
Jaumann stress-rate

∇
σ with the elastic strain-rate ε̇e . The plastic part is described with the plastic

flow potential (2.3.7b) and the evolution of plastic strain (2.3.7c) respectively.

∇
σ=Ce : ε̇e =Ce :

(
ε̇− ε̇p)

(2.3.7a)

f̄ (σ, ι) = 0 (2.3.7b)

ε̇p = λpl ∂ḡ

∂σ
(2.3.7c)

The hypoelasticity definition has shortcomings as the constitutive law can lead to the creation or
dissipation of energy in closed-loop deformation cycle [56]. Hence, it is recommended to use this
description only for problems where large elastic strains are not envisaged. The multiplicative
decomposition [30] is useful with large deformation flow theories of plasticity.

L = Ḟ ·F−1 (2.3.8a)

L = Le +Lp = Ḟe · (Fe)−1 +Fe · Ḟp · (Fp)−1 · (Fe)−1 (2.3.8b)

The deformation gradient tensor F is decomposed into elastic and plastic deformation gradients
as represented in equation (2.3.8b). This method entails two successive mappings for the plas-
tic and elastic deformations and introduces stress relaxed intermediate configurations around all
material points that are geometrically incompatible. This deformation gradient is used to describe
the respective elastic and plastic components of the velocity gradient L. The elastic part is mod-
eled with a hyperelastic description that can be used in general for hypoelasticity. The symmetric
part of plastic velocity gradient tensor is called the plastic strain-rate. Even though the multiplica-
tive decomposition of strain-rate tensor is more wholesome, the Prandtl-Reuss equations are a
good compromise between precision and simplicity for modeling the constitutive behavior in the
metal forming problems, in particular in small time-steps solutions of the Updated Lagrangian
formulation.
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Computation of state variables from evolution equations

One of the important aspects of the steady-state formulation is the resolution of history-dependent
state-variables f whose evolution is described with its material derivative. The evolution of time-
history variable f in the Eulerian frame can be described with the equation (2.1.4). In the said
equation, the temporal part of the derivative is nullified when the steady-state is reached, so the
evolution equation of the history variable is given as below.

ḟ =~v ·~∇x f (2.3.9)

For viscoplastic materials, the material consistency K may depend on the equivalent strain ε̄, and
hence brings in the history dependency in these models. For elastoplastic/ elasto-viscoplastic
materials, the history dependency comes from the fact that the stress-rate σ̇ is dependent on the
stress (as seen in equation (2.3.4b)). However, in comparison, the elastoplastic models results in a
strongly coupled problem in velocity and stress and that the material stiffness is not continuous.
For treating such equations, special measures are required to be taken. In general, the evolution
equation can either be solved with (i) the global resolution [42, 45, 46] or (ii) the streamline in-
tegration [19]. The global resolution method is a generalized method applicable on any kind of
mesh and is resolved with the Finite Element method. The problem domain is discretized and the
weak form (2.3.10) is resolved to compute the unknown state-variable.∫

Ωx

NSUPG
k

(
ḟ −~v ·~∇x f

)
dω= 0 (2.3.10)

The said equation is convection dominant, and hence it is recommended to use Streamline Up-
wind Petrov Galerkin (SUPG) finite elements [6] for the stabilization of the numerical solution. In
elasto-viscoplasticity, the onset of plastic flow (2.3.7c) leads to a sudden change from a highly stiff
elastic state to a much less stiff plastic state. While implementing with Finite element method,
the tangent matrix must be defined to compute the stress. With elasto-viscoplasticity, the tangent
becomes discontinuous. For keeping the tangent continuous, an internal variable ι continuous
in both elastic and plastic state can be used to track the extent of material damage [43]. Another
problem associated with the usage of global resolution is that the state-variable f is P0 continu-
ous, and its gradient ~∇x f in equation becomes non differentiable. Hence, for its resolution dis-
continuous Galerkin methods [4] can be applied. Otherwise, smoothed P1 state-variable can be
computed by averaging the solution on the nodes. In general, the global resolution methods tend
to have significant cross-wind diffusion and must also be considered while making the choice of
the test function and are also susceptible to oscillations.

Alternatively, the history-variables can be integrated along the flow streamlines. The stream-
line integration methods eliminate the need of computation of tangent, and can compute the
state-variable f +∆ f by solving simple algebraic equation (2.3.11) for the time increment ∆t sim-
ilar to incremental methods. However, the streamline methods, are generally applied only with
structured meshes in which the mesh coordinates can be moved to align with the global stream-
lines of the material flow.

∆ f =
∫ t+∆t

t
ḟ d t (2.3.11)

The advantage of this formulation is that in incremental formulation, this time-step ∆t is chosen
such that it ensures stability of the contact surface. The time-step ∆t is however inconsequential
in steady-state formulations and must rather be modeled. One such manner to model the time is
with a pseudo-time-step ∆t̃ as proposed by [18] in his Heterogeneous pseudo-time-step (HPTS)
approach:

∆t̃ = xint −xint-1

|~v int|
(2.3.12)

In the equation (2.3.12), the pseudo-time-step is computed from the Backward Eulerian method
with the ratio of distance between consecutive integration points and velocities at the integration
point int. For using this, the consecutive integration points, int and int-1, must however be aligned
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on the same streamline. This is true only if the consecutive elements can be aligned, and hence
limit the application of this idea with structured meshes. It can also be noted that the consecutive
integration points on the same streamline may be at non-homogeneous distances, so the pseudo-
time-step computed is heterogeneous. This approach was implemented in Lam3®software. The
streamlines are first traced, mostly during the shape update/ mesh relocation step and then the
state-variables are integrated on these streamlines using the equation (2.3.11). For the complete
stability of the field, the number of iterations required is as many as the number of integration
points on the streamline. For the structured mesh, the number of integration points is equivalent
to the number of element sections in the principal material flow direction. [1] compared the global
resolution method with the streamline integration method for integrating strains and concluded
that the global resolution (with Galerkin function) method is faster than the streamline integra-
tion. In ForgeNxt®2016, the resolution of equivalent strain ε̄ for viscoplastic materials is done with
the global resolution method because of the unstructured mesh.

(a) Heterogeneous mesh for Rolling (b) Sub-iterative loop

Figure 2.3.2: Resolution of history-dependent (elastoviscoplasticity) problems with [18] approach

For the resolution of elasto-viscoplasticity, an initialization of the material behavior is neces-
sary, either by assuming a completely elastic or completely plastic behavior. With initial elastic
assumption, the radial-return mapping algorithm [47] can be used to compute the elastoplastic
stresses. [18] used Prandtl-Reuss equations for the description of elasto-viscoplasticity, due to
the flexibility of usage with both time dependent incremental and time-independent steady-state
formulations. [18] introduced a sub-iterative loop (see Figure 2.3.2b) for the stabilization of the
stress field in the complete computation domain in the global fixed-point iteration. A comparison
of results for the rolling problem with different material properties (viscoplastic, elastoviscoplas-
tic, and elastoplastic) from [19] are presented in Table 2.3.1. The increase of resolution time from
viscoplasticity to elastoplasticity models is clearly visible.

Material Global Iterations N-R iterations CPU Time
VP 20 106 53 min

EVP (No yield limit) 10 527 180 min
EVP (with yield limit) 11 832 260 min

EP (with no viscous effect) 20 2135 570 min

Table 2.3.1: Comparison of resolution with VP, EVP and EP models [19]

2.3.4 Boundary conditions: Contact

Another important aspect of the mathematical modeling of the continuous forming problem is
the computation of contact surface. The impenetrability condition is applied on the free surface
boundary of the workpiece, such that it prohibits the material particle and spatial coordinates to

23



CHAPTER 2. BIBLIOGRAPHY ON NUMERICAL RESOLUTION OF STEADY-STATE PROCESSES

penetrate inside the tool. Hence, this boundary is an unknown of the problem and evolves con-
tinuously over time in the Lagrangian resolution. However, at steady-state conditions, the contact
surface is stable, and unique. Neither the forces nor the displacements are prescribed at this sur-
face. Rather a mix of two (Robin conditions) are applied with the Karush–Kuhn–Tucker (KKT)
conditions [58]. The contact conditions introduce nonlinearity in the boundary value problem. In
this section, a short summary of the most important notions and concepts of contact mechanics
is presented.

(a) Gap function (b) Contact kinematics

Figure 2.3.3: Contact Kinematics for Eulerian formulation

2.3.4.1 Contact Kinematics

A problem setup consisting of one single deformable body and a rigid obstacle is commonly re-
ferred to as Signorini contact, generally described with a Lagrangian formulation with the dis-
placement field~u. Even with velocity-based formulations, like in Transvalor S.A. ForgeNxt® (Fg3®),
the displacement field can be computed from the time integration of the velocity. The contact sur-
face Γc is a subset of the free-surface boundary Γ of the workpiece. The distance between the free
surface nodes of the workpiece and the surface segments of the tool are defined with the signed
gap function δ. It is the normal distance measured from a material point M on the surface of the
workpiece to the nearest point P on the surface of the tool.

δ=−−→
MP ·~ntool (2.3.13)

This description is based on the most intuitive choice in Contact Mechanics called the closest
point projection (CPP). In the equation (2.3.13), ~ntool is called the unit tool normal, and defined
on the workpiece surface towards the tool surface. The gap function δ is governed by the impene-
trability condition (see equation (2.3.14a)). The material point Mt+∆t describes the position of Mt

moving with velocity ~v , and the point Pt+∆t on the tool represents the position of Pt moving with
~v tool as represented in equations (2.3.14b) and (2.3.14c).

δt+∆t ≥ 0 (2.3.14a)

Mt+∆t = Mt +~v∆t (2.3.14b)

Pt+∆t = Pt +~v tool∆t (2.3.14c)

The gap function δt+∆t can be expanded as in (2.3.15a). The second order expansion terms are
neglected, and the time derivative of the gap function in the first order term is given with equations
(2.3.15b).

δt+∆t = δt + dδt

d t
∆t + d 2δt

d t 2

∆t 2

2︸ ︷︷ ︸
O(∆t 2)

(2.3.15a)
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dδ

d t
= d

d t

(
~MP ·~ntool

)
=

(
d ~OP

d t
− d ~OM

d t

)
·~ntool + ~MP · d

d t

(
~ntool

)
=

(
~v tool −~v

)
·~ntool + ~MP · d~ntool

d t
(2.3.15b)

The terms described with the time derivative of position vectors of points Mt and Pt are re-
placed by the respective material ~v and tool velocities ~v tool found from equations (2.3.14b) and
(2.3.14c). In the discretized form, the time-derivative of the tool normal d~ntool /d t = 0 for a very
small time-step ∆t , as the ~ntool is assumed to remain unchanged, and is recomputed on the up-
dated geometry at the beginning of each time increment. Hence, for simplification, this term is
eliminated in the subsequent development. Using the impenetrability condition (2.3.14a), its ex-
pansion and the derived terms in (2.3.15), the contact constraint h (~u) is determined as a function
of displacement in the following equation. The displacement is computed as the time integration
of the velocity ~u =~v∆t .

⇒ δt+∆t = δt +
(
~v tool −~v

)
·~ntool∆t or h (~u) =

(
~u −~utool

)
·~ntool −δ≤ 0 (2.3.16)

The Hertz–Signorini–Moreau (HSM) conditions or the Signorini conditions in the normal direction
as shown below (2.3.17). They not only define a non-smooth and nonlinear contact law, but also
suggest that the displacement is multi-valued at δ= 0.

h (~u) = (
~u −~utool

) ·~ntool −δt ≤ 0

σn ≤ 0

h (~u)σn = 0

(2.3.17)

The second condition implies that no adhesive stresses are allowed in the contact zone. The con-
tact normal stress (σn) is related to the local stress tensor σ with the following relation:

σn = (σ ·~n) ·~n (2.3.18)

Finally, the third Signorini condition, better known as the complementarity condition, forces the
gap to be closed when non-zero contact pressure occurs (material in contact) and the contact
pressure to be zero when the gap is open (no contact). Note, that the Signorini conditions are
equivalent to the classical KKT conditions that also arise in many other classes of problems such
as constrained optimization, and thus standard solution techniques (e.g. based on Lagrange mul-
tiplier methods and active set strategies) from optimization theory can readily be adapted for con-
tact mechanics.

Methods of enforcement

Different methods are possible to enforce the contact constraint (2.3.17) in the mechanical reso-
lution. It requires to first invoke the virtual work principle on a domain Ωx subjected under a load
at the contact in the direction of the normal. We describe the functional Φe in equation (2.3.19)
such that left side part comes from the internal potential energy (Φ) due to the deformation of the
workpiece, and the right side part from the work done at the contact surface. For simplicity, the
contact is considered to be bilateral and frictionless.

∀,u∗
〈
∂Φe

∂u
,~u∗

〉
=

∫
Ωx

~∇·σ ·~u∗dω=−
∫
Ωx

σ : ε∗dω︸ ︷︷ ︸
Φ

+
∫
Γc

(
σn~u

∗ ·~n)
d s = 0 (2.3.19)

The minimizing ofΦwith respect to the displacements ~u leads to a solution that satisfies the equi-
librium equation satisfying the contact boundary condition. The contact stress σn that ensures
the impenetrability of contact nodes is determined. There are different manners the contact con-
straint can be applied.
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Lagrange multiplier method

In the Lagrange multiplier method, the contact constraint is enforced by introducing an additional
vector of unknown Lagrange multipliers λ into the mechanical system. The global size of this
vector is equal to the number of constraints applied. Adding the Lagrange multiplier contributions
to the underlying energy potentialΦ results in the following extended overall potential, keeping in
mind the behavior of h (~u) ≤ 0 and also that the Lagrangian multiplier λ ≤ 0. This means that at
the contact surface the Lagrangian potential (right hand term) is positive.

L(~u,λ) =Φ−
∫
Γc

h (~u)λd s (2.3.20)

Here, the contact force λ is equivalent to the contact stress σn described in the equation (2.3.19).
The solution of the problem with the Lagrange multiplier is defined with the saddle point solution
of the Lagrangian functional.

L(~u,λ) = MAXλ′ MIN~u′ L
(
~u

′
,λ

′)
(2.3.21)

Total variation of equation (2.3.21) leads to a mixed variational formulation with the stationary
point to be determined by:

∀,~u∗
〈
∂L(~u,λ)

∂u
,~u∗

〉
=

∫
Ωx

σ : ε∗dω−
∫
Γc

λ~un
∗d s = 0 (2.3.22a)

∀,λ∗
〈
∂L(~u,λ)

∂λ
,λ∗

〉
= −

∫
Γc

h (~u)λ∗d s = 0 (2.3.22b)

The resultant mixed formulation of (~u,λ) is discretized with Finite Elements to retrieve the follow-
ing system of equations.

A
−→
U −BTΛ=−→

F (2.3.23a)

−B
−→
U =−→

C (2.3.23b)

While the Lagrange multiplier method allows for an exact satisfaction of the given constraints, on
the other hand, it entails an undesirable increase in global system size. Even more severe is the
fact that the saddle point structure of the system matrix usually poses difficulties in state-of-the-
art iterative linear solvers as the positive definiteness of the stiffness matrix is not ensured.

Penalty method

The penalty method is another very widely used approach for constraint enforcement. The basic
idea behind this method is to remove the constraints explicitly from the system and introduce a
penalization of any constraint violation instead. This is typically reflected in an additional penalty
potential contribution, which together with the underlying elastic potential Φ forms the following
extended overall potential:

Φp =Φ+ 1

2
ρc (h (~u))2 (2.3.24)

where ρc is the user-defined and problem-specific penalty parameter. The functionalΦp does not
have additional unknowns, as the case with the Lagrange multiplier method, but rather represents
a problem of constrained optimization. The variation of equation (2.3.24) leads to a purely ~u-
based formulation here. Simply speaking, the penalization term works such as it associates large
energies to ~u solution violating the constraint h (~u) = 0. If the underlying potential Φ is convex,
the new potentialΦp retains its convexity. Thus, the penalty system to be solved is usually positive
definite and bears large similarities with the original non-penalized system. This is a very desirable
property with regard to the unmodified reuse of certain numerical techniques. The new potential
is differentiable and the derivative is continuous.

dΦp

du
= dΦ (~u)

du
+ρc h (~u)h′ (~u) (2.3.25)
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However, penalty methods suffer from one serious drawback, viz. their dependency on the penalty
parameter ρc . It can easily be found that the exact solution obtained with a Lagrange multiplier
method is only recovered for the limit case ρc → ∞. The Lagrangian multiplier at this state can
be determined as λ = −ρc h (~u). This situation inevitably generates a dilemma: it is not possible
to choose very large penalty parameters because the resulting systems become more and more
ill-conditioned. On the other hand, the finite values of the penalty parameter always allow for a
certain violation of the given constraints, which might become unacceptably large. In addition,
with ρc being problem-specific, no universally valid rule can be established for its determination.
Nevertheless, penalty methods are widely used in practice, mostly due to their easy and efficient
implementation.

Augmented-Lagrangian method

Simply speaking, the idea of the Augmented Lagrange approach is to find an optimal compro-
mise between Lagrange multiplier and penalty methods. This allows an exact enforcement of con-
straints in combination with a penalty-like regularization for easier numerical treatment. Similar
to Lagrange multiplier methods, the Augmented-Lagrangian method introduces a vector of La-
grangian multipliers λ. The Augmented-Lagrangian functional is written as:

Lρ
(
~U,Λ

)=Φ−
∫
Γc

h (~u)λd s + 1

2
ρc [h (~u)]+2 (2.3.26)

This equation can be examined in more detail, revealing that the penalty term vanishes in the case
of an exact satisfaction of the constraints h (~u) = 0. Thus, the Augmented Lagrange formulation
reduces to its Lagrange multiplier counterpart in the limit case, meaning that it has exactly the
same solution as the Lagrange multiplier method. Nevertheless, this method comes with the im-
portant advantage that it allows for an easier numerical treatment than a pure Lagrange multiplier
method. Constraint violation is penalized like for penalty methods, but this is achieved without
changing the solution, even for finite values of the penalty parameter ρc . The well-known Uzawa
algorithm is commonly used as an alternative for solving equation (2.3.26). The Lagrange multipli-
ers are assumed to be given quantities and thus they can be removed as additional unknowns and
the system is solved for ~u only. This naturally defines an iterative procedure, i.e. an augmentation
loop with iteration index i , for approaching the exact Lagrange multiplier solution. Therein, the
penalty approach is used as kernel and the Lagrange multipliers λ(i) are fixed within each iteration
step. Usually, the procedure starts with an initial guess λ(i=0) = 0, making the first augmentation
step identical to the ordinary penalty method. An update of the Lagrange multipliers is then ob-
tained from the following equation:

λ(i+1) = λ(i ) −ρc h(i+1) (~u) (2.3.27)

The outer iteration on the Lagrange multiplier λ is repeated until a user-defined convergence cri-
terion, usually monitoring the constraint h(i ) (~u) = 0 in a suitable norm, is met.

2.3.4.2 Frictional Contact

The real contact behavior in an ideal contact surface is determined by the frictional response to
tangential loading. For modeling the friction in contact, the relation of tangential stress (~τ f ) with
the tangential slip (∆~ut ) must be described. This relation computes the tangential stress at which
slip occurs between the two surfaces. The Tresca model defines a linear relation with a scalar
quantity g f such that:

~τ f =−g f
∆~ut

‖∆~ut‖
∆~ut =∆~u − (∆~u ·~n)~n (2.3.28)

The Coulomb model permits to define the limit tangential stress~τ f dependent on the normal con-
tact pressure σn .

~τ f =−µ f σn
∆~ut

‖∆~ut‖
(2.3.29)
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Another way to model the friction is with a viscoplastic model which is common with the problems
of hot forming.

~τ f =−α f K f (T, ε̄)‖∆~ut‖q−1∆~ut (2.3.30)

2.3.5 Free-surface computation

The free-surface computation problems are frequently encountered in fluid mechanics, especially
to describe the interface between two different phases (e.g. water and air). A framework for con-
tinuously tracking the free-surface is important to determine the interphase boundary. There are
two main categories for modeling interfaces in Eulerian grids: (i) Interface/ Front tracking (ii) In-
terface capturing. The front tracking methods treat the free-surface as a sharp interface that is
continuously tracked [52]. In this method, boundary fitted grids are used which are continuously
updated. These methods advect a known interface from an initial configuration and are used in
the applications where the interface is not expected to break or merge. The interface capturing
methods are more diverse and do not treat the free-surface as a sharp interface. Some examples
of this method are Marker-and-cell methods [20] which associate a mass-less particle to the free-
surface which is followed with time. The volume of fluid method [22] is also very common, which
as the name suggests tracks the volume of each phase in the grid/ element. Other possibilities
generally used for interface capturing are the Level-Set methods [40] which use a signed distance
function to track the interface. The steady-state processes, the shape of the product is determined
with the free surface boundary. The free surface exhibits a physical phenomena [10], described as
the lateral spread in flat rolling, groove filling in shape rolling, chip size in metal cutting and die
swell in case of polymer extrusion (see Figure 2.3.4). A precise determination of the free surface is
imperative to understand if the product would conform to the designed shape.

Figure 2.3.4: Free surface phenomenon in different processes [10]

The need for free-surface computation with the Eulerian description is to describe a sharp
definition of the free surface boundary. Following methods have been used in literature for the
adjustment of free-surface of the control volume:
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2.3.5.1 Streamline method

d x

vx
= d y

vy
= d z

vz
⇒ for vx = 1, vy = d y

d x
; vz = d z

d x
(2.3.31a)

yi+1 = yi +
∫ xi+1

xi

(
vy d x

)
zi+1 = zi +

∫ xi+1

xi

(vz d x) (2.3.31b)

As the definition of streamline suggests, the displacements of particles are in the direction of the
flow, and in the steady-state, the pathline of the particles define the streamline. The coordinates
of the free-surface thus must be aligned with the streamline to apply the free surface conditions.
One manner to apply is with the streamline condition (2.3.31a). With the implementation of the
streamline method, one can compute the new coordinates of a node in the directions normal to
the rolling direction (x) by integrating equation (2.3.31b) as seen in Figure 2.3.5a. In the figure, the
velocity vector is assumed to be constant on the element

(a) Streamline method (b) Global Resolution method

Figure 2.3.5: Resolution methods for free surface computation [44] with the assumption of constant velocity
vector per element

The resolution with this method is extremely fast because there are no finite element equa-
tions to be solved. However, to describe the streamlines it becomes imperative to have a struc-
tured mesh as the consecutive nodes and the integration points are aligned along the streamlines.
These streamlines connect the section at the input plane of the control volume to its output plane.
The number of streamlines is therefore equal to the number of surface nodes on the input plane.
The ease of usage of this method makes it interesting to the applications of polymer extrusion
[25, 59], sheet rolling [19, 37], tube rolling [48, 60] or shape rolling [26, 27]. The geometry of the
free-surface of the domain of the workpiece, in particular the zone of pre-deformation and the
elastic retraction, is an unknown a priori. It is determined iteratively, as a function of the velocity
field computed from the virtual power principle and the contact surface with the tool. In the case
of unstructured meshes, this alignment of consecutive nodes/integration points is not possible.
Hence, streamline methods are seldom used with unstructured meshes. The main drawbacks of
the streamline method are its requirement for the structured mesh and that it is not adaptable
with parallelization and mesh partitioning, which is common with Finite element solvers.

2.3.5.2 Global Resolution method

A more general method, compatible with Finite element solvers, is the global resolution methods.
It is adoptable both with structured or unstructured meshes. [3] proposed the global resolution
method that imposes a free-surface condition (2.3.32) on the boundary of the material. This con-
dition imposes a zero material flux across the free-surface boundary (see Figure 2.3.5b). The right
hand term ~n (x) is the unit normal defined on the surface material mesh surface.

~v ·~n (x) = 0 on Γ (2.3.32)

In the said equation x represents the spatial coordinates of the free surface boundary of the work-
piece being formed. The equation (2.3.32) represents the strong form of the free surface condition,
which can be solved with Finite element method by invoking the weighted residual form or the
weak form of the equation. In this form, the equation computes the corrected coordinates which
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are described with the linear trial functions. However, for the test functions there are a multitude
of possibilities as the free surface condition is a convection dominant equation.

Galerkin formulation

[32] used standard Galerkin test function Nk for the weighted residual form of the free-surface
equation.

Sk =
∫
Γ

Nk (~v ·~n (x))dΓ (2.3.33)

This test function can be used as long as the slope of the free surface boundary is not very large.
Hence the method works for simple quadratic shapes but with complex shapes with large curva-
tures, the Galerkin method leads to numerical oscillations [45].

Least Square formulation

For convection dominant problems (odd ordered partial differential equations), the Petrov-Galerkin
(PG) functions are recommended as test functions. These functions provide stability to the nu-
merical solution and deters oscillations observed with the Galerkin shape functions. In practice,
these functions give larger weightage to the upwind side contributions to the finite element resid-
ual . In the large class of such elements, the most commonly used is the Least-Square function,
which is also called the optimal control method, was used by [24] for the resolution of free-surface
problem. The Least-square functional ΦLS suppresses the numerical oscillations seen with the
Galerkin method. In addition, the resultant function is a symmetric and constant about node k.
The optimal control method aims to minimize the following free-surface functional ΦLS :

Min (ΦLS) , ΦLS = 1

2

∫
Γ

(~v .~n (x))2 dΓ (2.3.34)

The advantage of the optimal control method is that it is easily adaptable to the multi-DoF free
surface problems like free surface boundary with edges. This needs to minimize the free surface
residual in two linearly independent directions, which is natural with the Least-Square function.
This method has been successfully applied to compute the free surface in the processes like poly-
mer extrusion [10], shape rolling [24], and tube rolling [54], but is found to take a much longer
time for resolution in comparison to the streamline method. Although the free-surface compu-
tation time is much less in comparison to the total resolution time for each fixed point iteration,
because the mechanical resolution takes the larger part of the computation time.

SUPG formulation

Alternatively, the SUPG shape function NSUPG
k [9] is another PG function frequently used for Finite

element resolution of convection dominant problems:

NSUPG
k = Nk +αCk , Ck = he

~ve

−→∇Nk ·~v , α= 1

2
(2.3.35)

The right hand side of SUPG function in equation (2.3.35) provides a shift in the weights derived
from Galerkin hat function Nk . in 1D, there is only one upwind and one downwind side element,
hence, the shift is constant. On the other hand in 2D, this shift is proportional to the angular
location of the element about node k. In the formulation of the SUPG function, Ck is the cosine of
angle between the gradient of shape function

−→∇Nk at node k and the averaged velocity ~v on the
element. The cosine Ck is between [−1,1] and differentiates the elements that lie on the upwind
[−1,0) or downwind (0,1] of the node k. The he ,~ve are the characteristic length and velocity of the
facet element e.An important factor that contributes to the magnitude of shift is the stabilization
constant α. The non-dimensional parameter α generally takes positive values between ∈ (0,1] .
The standard value for α used in [29, 45] is 1

2 .
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Figure 2.3.6: Petrov Galerkin test functions

Even though the SUPG formulation results in much better accuracy and speed for free surface
problems, it is difficult to adapt for multi-DoF problems. A scalar can be used with mesh regu-
larization to find free surface with the same scalar equation, but lacks robustness and takes really
long time for convergence. On the other hand, a linear independence of free surface directions
can be assumed to compute residual in each of these directions. This idea proves to be very robust
and reduces the free surface computation time significantly with much better accuracy.

New PG formulations

Both Least-Square and SUPG functions are types of broader Petrov Galerkin functions. The for-
mer is advantageous as it can be easily adapted to multidimensional free-surface correction prob-
lems, whereas the latter is preferable for its much better accuracy in predicting the free-surface
boundary and ability to modify the magnitude of shift is the stabilization constant α. [45] pro-
posed a modified Least-square Streamline Upwind Petrov-Galerkin (LS-SUPG) (Figure 2.3.6) for
convection dominant problems which adopts the properties from both Least Square and SUPG
functions.

NLS−SUPG
k = (1+αCk )

(
~v · ∂~n

∂t k

)
(2.3.36)

2.3.5.3 Transport method

[53] proposed to decompose the velocity into its tangential and normal components to solve the
steady-state shape. The resultant equation (2.3.37) is solved to compute the unknown shape x
using Galerkin finite element method. However, this equation is convection dominant, so [49]
proposed to use stabilized Finite elements with SUPG test function [9].

~vt~∇x =~vn (2.3.37)

2.3.6 Contact treatment with free surface computation

As it can be understood that the surface flow is tangential both on the contact boundary and the
free surface boundary. The free surface boundary either conforms to a streamline [53] or a free
surface condition [44] as seen in the previous section. The contact boundary serves an impenetra-
bility condition, which pushes and projects any node penetrating inside the contact with the tool
onto the contact surface. Following are the main challenges and observations with the treatment
of contact with steady-state formulations:

1. No matter the method chosen for finding the free surface boundary, it results in oscillations
at the interface between the free surface boundary and the contact [44] as seen in Figure
2.3.7a. The reason being that the nature of the two treatments is completely different, as
a Dirichlet kind of constraint is applied on a free surface flow as shown in Figure 2.3.7b.
[29] suggested suppressing these oscillations with the removal of contribution of elements
containing contact nodes from the free-surface computation residual.

31



CHAPTER 2. BIBLIOGRAPHY ON NUMERICAL RESOLUTION OF STEADY-STATE PROCESSES

(a) Oscillations before the first contact nodes (b) Free-surface problem with constraint

Figure 2.3.7: Problem with contact with global resolution [44]

2. The free surface and the contact surface may be computed either in the same step or in
different steps. [60] proposed not to project the contact nodes during the free-surface com-
putation and to add another stage for the nodes projection (see 2.3.8). In the following step,
the nodes which are in compression and the ones that penetrate the tools are projected on
the surface of the tools.However, the two boundaries are or may not be computed at the
same time as both lead to several problems and thus make the contact treatment as one
of the most recognized challenges of the steady-state formulations. The oscillations at the
interface are suppressed using smoothing methods.

Figure 2.3.8: Correction of free-surface [60]

(a) Streamline method (b) Optimal control method (c) Transport method

Figure 2.3.9: Different free-surface computation methods tested by [53]

3. [53] studied the resolution of the two surfaces with the streamline method, but found that
the contact conditions are not respected as the iterations progress and a loss of contact is
observed. If forced to remain in contact, "steps" appear (see Figure 2.3.9a) in the upstream
of the contact zone and can hinder the further calculation. Smoothing is applied to suppress
these discontinuities. [48] introduced a new expression for the smoothing of free-surfaces
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after the projection step. It is applied as a function of the position x of a node on the stream-
line:

d y =
[

(x −x0)

(xe −x0)

]a

∆ye d z =
[

(x −x0)

(xe −x0)

]a

∆ze (2.3.38)

In the equation above, x0 is the coordinate at the entry plane, xe is the coordinate of the
first node in contact with the tools, x is the current node coordinate, and ∆ye ,∆ze are the
lateral displacements of the first node in contact and a is a parameter that influences the
smoothing correction. With a = 1, we get strong correction on the complete free-surface.
From [48], the value of 1 ≤ a ≤ 4. In addition, [53] also studied the free-surface problem with
the optimal control method (see Figure 2.3.9b) and the transport method (see Figure 2.3.9b)
and found that they all converge towards the same solution. The transport method also
results in steps formation before the first contact point similar to the streamline method.
Indeed, the two methods propagate the surface nodes in a similar manner following the
flow. The optimal control method does not reveal this problem, however, oscillations were
observed at the lateral free-surface.

4. For describing the contact surface, it is important to determine the first and the last contact
coordinates with the tool. The algorithms developed by [18, 27] were focussed on the deter-
mination of these points (with the tool) on the free surface boundary streamlines. The last
point is generally obtained from the inversion of normal stress sign (see Figure 2.3.10) and
the first point is found with certain geometric criteria.

Figure 2.3.10: Correction of free-surface [18]

5. Using a unilateral contact constraint leads to a significant overestimation of the lateral spread.
It is therefore advisable to fix the nodes in contact during the calculation of free-surface [53].
[24] also used the global resolution with the optimal control method using a bilateral contact
(fixed nodes). This method was tested with complex geometries [10] and it was observed
the lateral spread that allows the material to flow into the grooves of the tools is suppressed
(see Figure 2.3.11). If allowed, it causes the degeneration of mesh. Hence, it was proposed
to compute the free surface initially with the mesh normal and then project it on the tool
surface in another step using the tool normal.
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Figure 2.3.11: Contact treatment with Optimal control method [24]

6. In the ForgeNxt®2016 solver, the free-surface problem is computed with the global resolu-
tion method. The contact constraint is treated in the same step as the free surface calcu-
lation. If applied as a unilateral constraint, the contact condition in free-surface resolution
results in either overestimated (see Figure 2.3.12a) or complete loss (see Figure 2.3.12b) of
the contact and the computation stops without finding the solution.

(a) Overestimated contact with complete uni-
lateral condition

(b) Complete loss of contact with complete uni-
lateral condition

Figure 2.3.12: Problem with contact with global resolution [44]

So a unilateral condition is applied on all the nodes which are not in contact and a bilateral
condition is applied on the nodes in contact. This means that a previous knowledge of the con-
tact surface is necessary to apply this differential treatment of free surface boundary nodes. This
contact surface is predicted in the mechanical step with a constraint on the velocity field. The con-
tact conditions are applied with the penalty method and an associated Lagrangian is computed at
the end of each step and is used to update the contact surface. It is on this contact surface, the
bilateral condition is applied in the free surface resolution. This treatment improves the contact
retention until the end of the simulation. The contact surface is again updated after the free sur-
face computation from the geometric criterion which looks for the penetration nodes. However,
certain adhesion parameters become necessary to ensure the adherence of the nodes to the tool
in the normal direction, and without suppressing the lateral spread. More details on the contact
coupling used in ForgeNxt®2016 are presented in detail in the following chapter 3.
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Résumé

La modélisation de procédés continus dans une hypothèse stationnaire implique la résolution d’un
problème thermo-mécanique. La première étape de la résolution est la description cinématique de
l’écoulement du matériau qui peut être effectuée soit dans un cadre Lagrangien, soit en Eulérien, soit
en ALE ou soit avec la technique de "Reference Frame". Le problème thermo-mécanique en Lagrang-
ien est généralement dependant du temps et résolu avec une formulation incrémentale. La formula-
tion non-incrémentale peut résoudre directement l’état stationnaire est beaucoup moins coûteuse en
terme de temps de calcul en comparaison avec la formulation incrémentale. Parmi les differentes fo-
mulations non-incrémentales, la formulation stationnaire est la meilleure en terme d’accélération et
c’est ce qui est utilisé dans l’algorithme de ForgeNxt®2016. Cette approche implique un fort couplage
entre les champs de vitesse et la forme du domaine et donc ici l’utilisation d’un algorithme itératif
de point-fixe. Cet algorithme a deux étapes principales: (i) résolution thermomécanique pour cal-
culer les champs de vitesse et de température, et (ii) résolution de surface libre pour calculer la forme
stationnaire du domaine. La recherche bibliographique est donc concentrée sur la formulation sta-
tionnaire, pour la modélisation mathématique de la mise en forme avec les équations d’équilibre,
le comportement des matériaux, la résolution du contact, et le calcul de surface libre. L’étude bibli-
ographique est focalisée sur la modélisation de l’élastoplasticité et ainsi sur le traitement de la sur-
face libre et du contact dans la formulation stationnaire. Pour l’élastoplasticité, parmi les méthodes
additives (Prandtl-Reuss) et multiplicatives pour sa modélisation, les premières décrivent mieux les
problèmes de mise en forme de plasticité hypoélastique dominante et sont donc recommandées pour
les lois de comportement élastoplastiques. Les variables d’état dépendant de l’historique peuvent
être résolues avec: (i) l’intégration sur les lignes de courant et (ii) la résolution par éléments finis
(globale) des équations. La première est simple à implémenter (pour les maillages structurés) et ne
nécessite aucune résolution par éléments finis. En revanche, l’adaptation de la seconde est générale
et ne nécessite pas de maillage structuré. Toutefois, elle impose une description du gradient résiduel
qui peut devenir indéfini lorsque la variable interne change brusquement au début de la plasticité.
Cependant, le défi le plus important est la description des lignes de courant dans les maillages non
structurés, défi qui n’a pas été tenté dans la bibliographie. Le traitement du contact dans la formu-
lation stationnaire est un problème notoire. Pour le contact, les équations de Signorini décrivent la
condition d’impénétrabilité. Cette condition est appliquée dans la direction normale, et elle empêche
la matière de pénétrer dans l’outil. On peut l’imposer avec, soit les multiplicateurs de Lagrange ou
soit la méthode de pénalisation. Dans les formulations stationnaires, le plus grand problème est
associé avec le couplage du contact dans les deux étapes (mécanique et surface libre). Dans la ré-
solution de la surface libre, la condition d’impénétrabilité est imposée avec pénalisation en même
temps que la condition de surface libre pour éviter la pénétration de noeuds de la surface libre dans
l’outil. Par conséquent, une condition unilatérale du contact est imposée sur une ligne de courant, ce
qui pose plusieurs problèmes: on observe des oscillations ou des marches avant le contact de l’outil.
Cependant, le traitement du contact pour la formulation stationnaire est un problème difficile et
reste une piste peu explorée . Néanmoins, c’est l’un des paramètres critiques pour stabiliser la solu-
tion et augmenter la robustesse de l’algorithme. Dans la bibliographie, ce couplage n’est pas étudié,
et les auteurs traitent généralement ces problèmes de manière indépendante. Dans sa thèse, Ripert
a essayé de traiter le couplage du contact mais sans étudier la consistence des deux systèmes déqua-
tions.
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CHAPTER 3. EXISTING STEADY-STATE FORMULATION AND LIMITATIONS

The different possibilities for solving continuous forming problems with non- incremental
methods, specifically with the steady-state formulation, have been discussed in the literature in-
vestigation in the previous Chapter 2. The present work is an extension of the steady-state al-
gorithm developed by [7], which has been implemented in the ForgeNxt®2016. The algorithm is
based on the mixed velocity-pressure formulation of Fg3®, and also conforms to the inherent con-
straints of the Fg3® solver, such as the data structure, as well as the contact formulation. The pro-
posed formulation promised an excellent computation speedup in comparison to the incremental
resolution methods. However, the formulation is found to be not robust with complex industrial
cases. Before providing a detailed solution to this problem, it is important to understand the dif-
ferent aspects of the existing ForgeNxt®2016 formulation for the resolution of continuous forming
problems. Subsequently, the existing algorithm is tested with simple and complex industrial hot
rolling test-cases to examine the problems experienced.

3.1 Generalized ForgeNxt®2016 steady-state algorithm

Start

Thermo-Mechanical Resolution (Step-1)

Free-surface Resolution (Step-2)

Convergence

i=i+1

Stop

~x(i ),i = 0

~v (i+1),T(i+1)

~x(i+1)

Yes

No

Figure 3.1.1: ForgeNxt®2016 fixed-point iterative steady-state algorithm for hot-rolling problems

The generalized iterative resolution algorithm adopted in ForgeNxt®2016 is shown in the Figure
3.1.1. There are two mains steps involved. In the Step-1, the thermo-mechanical problem is re-
solved which involves the resolution of momentum and energy equilibrium equations. The kine-
matic description is done in the Eulerian frame. Hence, a control volume (fixed domain geome-
try) describing the computation domain (Figure 3.2.1) is modeled (Ωx ) on which the steady-state
formulation is described. The Step-2 represents the computation of steady-state shape that con-
forms to the computed velocity field from the mechanical resolution. The computation domain
Ωx is corrected, and the fixed-point iterative loop continues until the convergence of the thermo-
mechanical fields, the state-variables, and the steady-state shape in the computation domain.

3.2 Thermo-mechanical problem formulation

The velocity is the primary unknown of the Stokes problem and computed with the Finite Element
Method. The thermo-mechanical problem is weakly coupled and is thus solved iteratively. In
the incremental formulation, the state-variable equivalent strain ε̄ and the temperature field T
are time-integrated, whereas in the steady-state formulation, time-independent formulations are
described in the Eulerian domain. These equations are convection dominant problems and hence
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CHAPTER 3. EXISTING STEADY-STATE FORMULATION AND LIMITATIONS

solved with the FE based convection solver in the Cimlib library. More details on the thermo-
mechanical equations of the steady-state algorithm are presented in the following sections.

3.2.1 Description of the domain

Before describing the equations, it is important to understand the complete computational do-
main including the subdomains on which the boundary conditions are applied. The Eulerian
problem is described in the control volume domain Ωx as shown in Figure 3.2.1. The control
volume has the respective input Γi n and output planes Γout through which the material flows into
(~v ·~n < 0) and out (~v ·~n > 0) of the domain, similar to a fluid problem. For a rolling problem with
symmetric rolls, the choice of symmetry plane(s) Γs ym enables the reduction of the computational
domain. The rest of the surface boundary Γ is considered to be free-surface. The surface Γc ⊂ Γ

is where the workpiece surface boundary is in contact with the tool. The vector ~ntool defines the
unit normal defined at the surface of the workpiece in the direction of the tool. In addition, the free
surface edge Γed g e must as well be separately defined for problems with geometric singularities,
especially for the free surface correction problems.

Figure 3.2.1: Schematic representation of a rolling problem

3.2.2 Initialization of the thermo-mechanical problem

An initial assumption of the geometry must be made. [7] presented three different methods (see
Figure 3.2.1) for the initial geometry computation (i) Extrusion of the input plane in the direction of
rolling, (ii) Material trimming (iii) Forging. In the extrusion method, the input planeΓi n is extruded
in the rolling direction. The nodes of the domain that intersect into the tool are projected back to
the tool surface. So the initialization geometry is not far from the steady-state and thus only a few
iterations are required for the convergence of the algorithm. The material trimming is a standard
operation in Fg3® in which the workpiece material intersecting the tool is removed. In the forging
method, the workpiece material is forged with the same tool (in the vertical direction) to get a
smooth initial geometry.

(a) Extrusion (b) Trimming (c) Forging

Figure 3.2.2: Initialization of geometry in [7]
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3.2.3 Mechanical Problem

The material forming problem is described with the theory of continuum mechanics, and the ma-
terial is considered to be homogeneous. The Boundary Value problem associated with the me-
chanical resolution of the forming problem is discussed in this section. The conservation laws,
material model, and the respective boundary conditions of the rolling process provide a well-
posed problem.

3.2.3.1 Conservation laws

The conservation of linear momentum (or the force equilibrium) is described on the computation
domain Ωx with equation (3.2.1a) on the current configuration with the Cauchy’s stress tensor σ
(see Figure 3.2.1). As in the incremental form, the gravitational and the inertial effects are negligi-
ble in comparison to the deformation stresses and hence neglected. We recall the conservation of
the mass seen in equation (2.3.3a) and for viscoplastic materials the homogeneous density results
in the incompressibility condition in equation (3.2.1b). It is to be impressed on the reader that
the existing ForgeNxt®2016 formulation, only Viscoplastic (VP) constitutive models (for hot metal
forming) are treated, hence, the elastic deformations are considered to be negligible. However,
for the elastoplasticity constitutive models, this assumption is not true and the same would be
updated in Chapter 5.

~∇·σ+ ρ~b︸︷︷︸
=0

= 0 in Ωx ∈R3 (3.2.1a)

~∇·~v = 0 in Ωx ∈R3 (3.2.1b)

3.2.3.2 Constitutive models

For the hot forming problems, the rate of deformation ε̇ dependent viscoplastic constitutive mod-
els are used for modeling the material behavior. The viscoplastic models can be defined with the
equation (3.2.2) as a relation between the deviatoric stress s and deviatoric rate of deformation ė.
The same are found from the respective stress σ and rate of deformation ε̇ tensors.

s =σ+p1 =σ− 1

3
tr (σ)1 (3.2.2a)

ė = ε̇− 1

3
tr (ε̇)1 (3.2.2b)

The rate of deformation tensor is defined from the velocity field. To be clear, here T represents
the transpose which is not to be confused with its general definition of Temperature:

ε̇= 1

2

(
~∇~v +~∇T~v

)
(3.2.3)

The one-dimensional representation of stress and strain are respectively defined with the equiva-
lent (von Mises) stress σ̄ and equivalent rate of deformation ˙̄ε defined as following:

σ̄=
√

3

2
s : s (3.2.4a)

˙̄ε=
√

2

3
ε̇ : ε̇ (3.2.4b)

The equivalent strain ε̄ is defined with the time integration of the equivalent rate of deformation ˙̄ε
following a material point movement:

˙̄ε= ∂ε̄

∂t
+~v ·~∇ε̄ (3.2.5)
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CHAPTER 3. EXISTING STEADY-STATE FORMULATION AND LIMITATIONS

While modeling material flows at hot temperatures, we invoke the viscoplastic potential Φv p to
find the relation between the deviatoric stress s with the rate of deformation ε̇ (3.2.6a) with the
Norton-Hoff constitutive law (3.2.6b).

s = ∂Φv p

∂ε̇
(3.2.6a)

Φv p = K

m +1

(p
3˙̄ε

)m+1
(3.2.6b)

s =µ (~v) ε̇= 2K
(p

3˙̄ε
)m−1

ε̇ (3.2.6c)

In the equation (3.2.6b), K is the material consistency, and m is the material sensibility to the
rate of deformation. µ is the generalized nonlinear viscosity of the material, and the material
behavior is dependent on the equivalent rate of deformation ˙̄ε. Generally for metals, the material
sensitivity index is m < 0.3, whereas m = 0 leads to a rigid plastic constitutive law and m = 1 leads
to linear Newtonian behavior. Using the equation (3.2.4a), we can find the equivalent stress as
following:

σ̄= K
p

3
(p

3˙̄ε
)m

(3.2.7)

The dependence of material consistency K on strain and temperature T gives the expression
for power law for a thermal-strain-hardening material in the equation (3.2.8), e.g.:

K (ε̄,T) = K0 (ε̄+ε0)n exp

(
β

T

)
(3.2.8)

Hence, the viscoplastic rate of deformation tensor ε̇v p can be computed with the following rela-
tion, identical to the von Mises associated flow rule.

ε̇v p = 3

2
˙̄ε

s

σ̄
(3.2.9)

3.2.3.3 Boundary conditions

For the unicity of the solution to the velocity (and the state variables) from the mechanical prob-
lem resolution, mixed boundary conditions on velocity and stress fields are applied at different
boundary sub-domains shown in Figure 3.2.1. The input boundary Γi n is always fixed during the
steady-state resolution. The other sub-boundary domains remain fixed only in mechanical reso-
lution and are updated after the Step-2.

Input and Output plane boundary conditions

At the Γi n and Γout planes of the computational domainΩx , a stress-free condition is applied with
equation (3.2.10a) as the inter-stand tension~TIS

(
êy , êz

)
is considered to be negligible for simpli-

fying the equations. The êy , êz directions are orthogonal to the rolling direction. In addition, at
the input and output plane nodes, a velocity boundary condition (3.2.10b) is applied in the tan-
gential direction. We could also apply a constant normal velocity at these planes, but the equation
(3.2.10b) is relatively simpler and logical to impose. The respective input and output planes are
chosen far enough so that the plastic rate of deformation and the velocity gradient are nullified
[8].

on Γi n ∪Γout

σ ·~n =~TIS
(
êy , êz

)
(3.2.10a)

~vt = [~v − (~v ·~n)~n] =~0 (3.2.10b)
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Symmetry boundary condition

At the symmetry planes Γs ym , the material flow in the normal direction ~ns ym and the stress in the
tangential direction are nullified.

on Γs ym

~v ·~ns ym = 0 (3.2.11a)

σ ·~ns ym − (
~ns ym ·σ ·~ns ym)

~ns ym = 0 (3.2.11b)

Free-surface conditions

On the boundary Γ, the free-surface conditions correspond to (i) stress-free state in the normal
direction ~n (3.2.12a), (ii) no material flow across the boundary (3.2.12b). However, only the free-
surface condition on stress is applied in the mechanical step and the condition on velocity is ap-
plied in the free-surface correction step, which permits us to update the boundary of the domain.

on Γs ym

σ ·~n =~0 (3.2.12a)

~v ·~n = 0 (3.2.12b)

Contact condition

At the contact surface Γc , separate conditions are applicable in the tangential and normal direc-
tions.

1. In the normal direction KKT (Signorini) conditions found for incremental formulation in the
equation (2.3.17) for a contact with a rigid tool are presumed. However, when the steady-
state conditions are reached after a finite time, these equations are described as:

on Γc


h (~v) = (

~v −~v tool
) ·~ntool ≤ 0

σn = (σ ·~n) ·~n ≤ 0

h (~v)σn = 0

(3.2.13)

In the steady-state ~v tool ·~ntool = 0 and thus the constraint h (~vk ) reduces to:

h (~v) =~v ·~ntool ≤ 0 on Γc (3.2.14)

2. In the tangential direction, the friction with the forming tools is modeled with the Norton
law as introduced in the equation (2.3.30). The same is reproduced in (3.2.15) with the ve-
locity formulation and relates the tangential stress~τ f , with the tangential sliding velocity
∆~vt (3.2.15b). In the model, q is the slipping sensitivity coefficient.

~τ f =σ ·~n − ((σ ·~n) ·~n)~n =−α f K f ‖∆~vt‖q−1∆~vt on Γc (3.2.15a)

∆~v =~v −~v tool =∆~vt + (∆~v ·~n)~n (3.2.15b)

It is to be noted that Γ and the contact surface Γc are the unknowns of the fixed-point iterative
steady-state algorithm. Starting from an initial assumption, the former is updated in the second
step of the algorithm (see Section 3.3), whereas the latter is updated in both the steps (see Section
3.4.1).
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3.2.3.4 Weak form of the Mechanical problem

Mixed
(
~v , p

)
form

The equations in the Section 3.2.3.1 to Section 3.2.3.3 represent the strong form of the Mechanical
problem. There are 9 unknowns in the problem including the 3 components of velocity field~v and
6 components of stress tensor σ. The problem can rather be written in mixed

(
~v , p

)
form, which

is done by splitting the stress tensor σ into its deviatoric s and hydrostatic parts as represented in
equation (3.2.2a).

p =−1

3
trσ in Ωx (3.2.16)

In the mixed velocity-pressure formulation, the force equilibrium (3.2.1a) is written in the follow-
ing form:

~∇· s −~∇p = 0 in Ωx (3.2.17)

Application of variational formulation

The Virtual Power Principle is applied to find the weak or the weighted-residual form of the mixed
velocity-pressure formulation of the problem. The adequate functional spaces for admissible
kinematic velocities V~v , V~v

0 and for pressure Vp are defined:

V~v =

~v ∈ [
H1,0 (Ωx )

]3
,


(
~v −~v tool

) ·~ntool ≤ 0 on Γc

~v ·~ns ym = 0 on Γs ym

~v − (~v ·~n)~n = 0 on Γi n ∪Γout

 (3.2.18a)

V~v
0 =

~v ∈ [
H1,0 (Ωx )

]3
,


~v ·~ntool ≤ 0 on Γc

~v ·~ns ym = 0 on Γs ym

~v − (~v ·~n)~n = 0 on Γi n ∪Γout

 (3.2.18b)

Vp =
{

w ∈ L2 ((Ωx ) , ~∇w ∈ [
L2 (Ω)

]3
}

(3.2.18c)

Hence, the weak form of the mechanical problem (force equilibrium and incompressibility) is
written as we look to solve for unknown

(
~v , p

) ∈V~v ×Vp such that, ∀(
~v∗, p∗) ∈V~v

0 ×Vp

∫
Ωx

~v∗ (
~∇· s −~∇p

)
dω= 0 (3.2.19a)∫

Ωx

p∗ (
~∇·~v)

dω= 0 (3.2.19b)

Using Green’s formula, we find the weighted-residual form with (3.2.20). The surface integral term
is applicable on the contact surfaceΓc , which can be divided into respective normal and tangential
terms. The former is a mixed Robin boundary condition representing the Signorini conditions in
equation (3.2.13) and the latter is a Neumann condition representing the friction force in equation
(3.2.15). Find

(
~v , p

) ∈V~v ×Vp such that, ∀(
~v∗, p∗) ∈V~v

0 ×Vp

∫
Ωx

s (~v) : ε̇
(
~v∗)

dω−
∫
Γc

~τ f (~v) ·~v∗d s −
∫
Ωx

p~∇· (~v∗)
dω−

∫
Γc

σn~n ·~v∗d s = 0 (3.2.20a)

−
∫
Ωx

p∗~∇· (~v)dω= 0 (3.2.20b)

Discretization of variational formulation

The weak form of the problem is described in a space with infinite degrees of freedom, and we
can bring it to finite dimension with the invocation of the finite element spaces. This calls for the
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discretization of the spaces and use of a mesh representing the computation domain Ωx h which
is now a union of disjointed subdomains Ωx

e
h

Ωx h =∪eΩx
e
h (3.2.21)

Thus, the discretized mixed
(
~v , p

)
form of the problem can be written as: Find

(
~vh , ph

) ∈V~v
h×Vp

h

such that, ∀(
~v∗

h , p∗
h

) ∈V~v
0 h ×Vp

h∫
Ωx h

s (~vh) : ε̇
(
~v∗

h

)
dωh −

∫
Γc ,h

~τ f (~vh) ·~v∗
hd sh −

∫
Ωx h

ph~∇· (~v∗
h

)
dωh −

∫
Γc ,h

σn~n ·~v∗
hd sh = 0 (3.2.22a)

−
∫
Ωx h

p∗
h
~∇· (~vh)dωh = 0

(3.2.22b)

Figure 3.2.3: Quasi-linear P1+/P1 “mini-element” for ~v ,p interpolation

Since we are using hybrid finite elements with mixed
(
~v , p

)
formulation, the interpolation

spaces for the elements chosen must comply to the Brezzi-Babuska compatibility condition [3].
In Fg3®, the weighted-residual form is discretized using tetrahedral finite element with the quasi-
linear P1+/P1 mini element interpolation [2] satisfying the inf-sup compatibility condition. In this
element, the pressure is interpolated with P1 linear functions, and their values are computed at the
nodes. The velocity field is interpolated with P1+ function which is enriched with an additional de-
gree of freedom at the center of the element. The enriched space uses the linear functions at the
nodes and a bubble function for the center node. The latter is piece-wise continuous inside the

tetrahedron element. The
(
Ωx

e
h,i

)
i=1,4

define the four sub-elements of the tetrahedron element

Ωx
e
h (see Figure 3.2.3-left) and define the approximation spaces as:

V~v
h =V~v,l

h ⊕V~v,b
h (3.2.23a)

Vp
h = {ph ∈ C0 (Ωx h) s.t. e ∈ τh , ph|Ωx

e
h
∈ P1

(
Ωx

e
h

)
} (3.2.23b)

V~v,l
h = {~v l

h ∈ (C0 (Ωx h))3 s.t. e ∈ τh ,~v l
h|Ωe

h
∈ (

P1
(
Ωx

e
h

))3 ,


∀k ∈ Γc ~vk ·~ntool

k ≤ 0

∀k ∈ Γs ym ~vk ·~ns ym
k = 0

∀k ∈ Γi n ∪Γout ~vk − (~vk ·~nk )~nk = 0

}

(3.2.23c)

V~v,b
h = {~vb

h ∈ (C0 (Ωx h))3 s.t. e ∈ τh ,∀i = 1,4~vb
h|Ωx

e
h
∈

(
P1

(
Ωx

e
h,i

))3
, and ~vb

h = 0 on ∂Ωx
e
i }

(3.2.23d)

In the description above, the superscript l ,b corresponds to the spaces corresponding to the lin-
ear and bubble interpolation functions of the velocity. The ~v , p fields can be interpolated using
the Finite Element form with equation (3.2.24), with nbn and nbe being the number of nodes and
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elements in the mesh. Nk is the linear interpolation function associated with the nodes. At a refer-
ence node k, it is equal to 1 and 0 on the other nodes. Ne is the linear bubble interpolation function
corresponding to the element e which is 1 at the centroid of the element and 0 at the boundary.
The function Ne varies linearly on the sub-elements in the tetrahedron element e formed by the
nodes and the centroid. The derivation of Ne inside the element is explained in Appendix A.1

~vh =~v l
h +~vb

h =
nbn∑

k
Nk~v

l
k +

nbe∑
e

Ne~v
b

e (3.2.24a)

ph =
nbn∑

k
Nk pk (3.2.24b)

Treatment of contact in FE formulation

At the contact surface Γc , the Signorini conditions (3.2.14) are applied with a node-to-facet penalty
formulation [9]. The unilateral condition ensures a free surface condition on the surface of the tool
and also permits the possibility of a contact node to leave the contact surface. It is to be noted that
this condition is applied only on the nodes which are already in contact. This zone must thus be
predetermined, which is discussed in detail in Section 3.4.1. The contact condition is imposed
with a penalty method, as done in ForgeNxt®inc. Hence, the resultant penalty functional together
with the mechanical functional Φ is written as follows.

Φp (~v) =Φ (~v)+ 1

2
ρ(1)

c

∑
k∈Γh,c

sk [h (~vk )]+2 (3.2.25a)

sk =
∫
Γc ,h

Nk d sh (3.2.25b)

The operator [a]+ = (a +|a|)/2 denotes strictly positive values. sk is the surface area associated
to node k described with equation (3.2.25b), and ρ(1)

c is the penalty coefficient and the index (1)
denotes the Step-1 of the algorithm. In principle, we can use gradient methods to find the un-
known velocity field by minimizing this functional. The minimization of the functional corre-
sponds to nullification of the derivative Φ

′
p (~v) = 0. Hence, the discretized residual from equa-

tion (3.2.22) is written as: Find
(
~v l

h ,~vb
h , ph

) ∈ V~v,l
h ×V~v,b

h ×Vp
h such that, ∀

(
~v l ,∗

h ,~vb ,∗
h , p∗

h

)
∈

V~v,l
h,0 ×V~v,b

h,0 ×Vp
h∫

Ωx h

s
(
~v l

h +~vb
h

)
: ε̇

(
~v l ,∗

h

)
dωh −

∫
Ωx h

ph~∇·
(
~v l ,∗

h

)
dωh −

∫
Γc ,h

~τ f ,h

(
~v l

h

)
·~v l ,∗

h d sh

− ∑
k∈Γc ,h

sk [h (~vk )]+
(
~ntool

k ·~v l ,∗
k

)
= 0 (3.2.26a)

∫
Ωx h

s
(
~v l

h +~vb
h

)
: ε̇

(
~vb ,∗

h

)
dωh −

∫
Ωx h

ph~∇·
(
~vb ,∗

h

)
dωh = 0 (3.2.26b)

−
∫
Ωx h

p∗
h
~∇·

(
~v l

h +~vb
h

)
dωh = 0 (3.2.26c)

From the orthogonality of the linear and bubble shape functions in the P1+ interpolation, we find
that the following terms are nullified.∫

Ωx h

sh

(
~vb

h

)
: ε̇h

(
~v l ,∗

h

)
dωh =

∫
Ωx h

sh

(
~v l

h

)
: ε̇h

(
~vb ,∗

h

)
dωh = 0 (3.2.27)

The system of equations (3.2.26) can be described with the residuals Rl
k ,Rb ,Rp

k as following: Find(
~v l

h ,~vb
h , ph

)
∈Vv,l

h ×Vv,b
h ×Vp

h , with k ∈ [1,4] such that:

Rl
k

(
~v l

h ,~vb
h , ph

)
=

∫
Ωh

s
(
~v l

h

)
:~Bl

k dωh −
∫
Ωh

ph~∇·
(
~Bl

k

)
dωh −·· · = 0 (3.2.28a)
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Rb
(
~v l

h ,~vb
h , ph

)
=

∫
Ωh

s
(
~vb

h

)
:~Bbdωh −

∫
Ωh

ph~∇·
(
~Bb

)
dωh = 0 (3.2.28b)

Rp
k

(
~v l

h ,~vb
h , ph

)
=−

∫
Ωh

Nk~∇·
(
~v l

h +~vb
h

)
dωh = 0 (3.2.28c)

The nonlinear system of equations is solved with Newton-Raphson iterative algorithm to compute
the incremental velocity δ~v l ,(i+1),δ~vb,(i+1) and pressure field δp(i+1) as following:

~v l ,(i+1) =~v l ,(i) +δ~v l ,(i) (3.2.29a)

~vb,(i+1) =~vb,(i) +δ~vb,(i) (3.2.29b)

p(i+1) = p(i) +δp(i) (3.2.29c)

The system of equations is solved until ~v (i+1) ≈ ~v (i ). As we look to solve the equations with the
Newton-Raphson method, we must also describe the corresponding Hessian term with respect
to each unknown variable (to be computed). In (3.2.28), the Residual vector was presented. This
Hessian matrix Hx y is described with the derivative of the Residual Rx with respect to the variable
y from the set of unknowns. ∀k,κ ∈ [1,4]

Rl (i+1)
k = Rl (i )

k +
∂Rl (i )

k

∂~v l
κ︸ ︷︷ ︸

Hl l ,(i )
kκ

δ~v l (i+1)
κ +

∂Rl (i )
k

∂~vb︸ ︷︷ ︸
Hlb,(i )

k

δ~vb(i+1) +
∂Rl (i )

k

∂pκ︸ ︷︷ ︸
Hl p,(i )

kκ

δp(i+1)
κ = 0 (3.2.30a)

Rb(i+1) = Rb(i ) + ∂Rb(i )

∂~v l
κ︸ ︷︷ ︸

Hbl ,(i )
κ

δ~v l (i+1)
κ + ∂Rb(i )

∂~vb︸ ︷︷ ︸
Hbb,(i )

δ~vb(i+1) + ∂Rb(i )

∂pκ︸ ︷︷ ︸
Hbp,(i )
κ

δp(i+1)
κ = 0 (3.2.30b)

Rp,(i+1)
k = Rp,(i )

k +
∂Rp,(i )

k

∂~v l
κ︸ ︷︷ ︸

Hpl ,(i )
kκ

δ~v l (i+1)
κ +

∂Rp,(i )
k

∂~vb︸ ︷︷ ︸
Hpb,(i )

k

δ~vb(i+1) +
∂Rp,(i )

k

∂pκ︸ ︷︷ ︸
Hpp,(i )

kκ

δp(i+1)
κ = 0 (3.2.30c)

At each Newton-Raphson iteration (i ), the residual and the Hessian matrices and Residual vector
are updated from the newly computed velocities ~v l ,~vb and pressure p l . In the matrix below, even

though the term Hpp,(i )
kκ = 0 for the viscoplastic materials, it is retained for a generalistic represen-

tation, as this term is non-zero for elastoplasticity and referred to in Section 5.2.5.Hl l ,(i )
kκ 0 Hl p,(i )

kκ

0 Hbb,(i ) Hbp,(i )
κ

Hpl ,(i )
kκ Hpb,(i )

k Hpp,(i )
kκ


δ~v

l ,(i+1)
κ

δ~vb,(i+1)

δp(i+1)
κ

=−

 Rl (i )
k

Rb(i )

Rp,(i )
k

 (3.2.31)

It is to be reminded here to the reader that the constitutive law for the viscoplastic material re-
lates the deviatoric stress s with the rate of deformation tensor ε̇ with the equation (3.2.6c). With
the stabilization approach, the viscoplastic viscosity µ does not have dependency on the bubble
function, meaning:

µ (~v) ≈µ
(
~v l

)
⇒ s (~v) =µ

(
~v l

)(
ε̇l + ε̇b

)
(3.2.32)

Hence, we can write the Hessian functions as following:

Hl l
kκ =

∫
Ωh

∂µ
(
~v l

)
∂~v l

κ

:~Bl
k dωh (3.2.33a)

Hl p
kκ =−

∫
Ωh

Nκ
~∇·

(
~Bl

k

)
dωh (3.2.33b)

Hbb =
∫
Ωh

µ
(
~v l

)
~Bb :~Bbdωh (3.2.33c)
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Hbp
κ =−

∫
Ωh

Nκ
~∇·

(
~Bb

)
dωh (3.2.33d)

Hpl
kκ =−

∫
Ωh

Nκtr
(
~Bl

k

)
dωh (3.2.33e)

Hpb
k =−

∫
Ωh

Nk tr
(
~Bb

)
dωh (3.2.33f)

Hpp
kκ = 0 (3.2.33g)

It is to be noted that the bubble function for velocity interpolation was introduced in order to stabi-
lize the mixed ~v ,p formulation. However, the system of equations in (3.2.33) can be condensed in
order not to increase the degrees of freedom of the system. This is done by removing the following
unknown incremental velocity at bubble node δ~vb(i ) from the system of equations:

δ~vb =−
(
Hbb

)−1 (
Rb −Hbp

κ δpκ
)

(3.2.34a)

[
Hl l ,(i )

kκ Hl p,(i )
kκ

Hpl ,(i )
kκ −Hpb,(i )

k

(
Hbb,(i )

)−1
Hbp,(i )
κ

][
δ~v l ,(i )

κ

δp(i )
κ

]
=−

[
Rl (i )

k

Rp,(i )
k −Hpb,(i )

k

(
Hbb,(i )

)−1
Rb(i )

]
(3.2.34b)

3.2.4 Thermal Problem

3.2.4.1 Energy conservation

In the steady-state, the time-independent thermal equilibrium problem is described (3.2.35) with
cp is the specific heat capacity, Kcond is the thermal conductivity and Ppl is the fraction of plastic
power dissipated into heat.

ρcp
dT

d t
= ρcp

 ∂T

∂t︸︷︷︸
=0

+~v ·~∇T

=~∇·Kcond~∇T+Ppl (σ : ε̇) (3.2.35)

3.2.4.2 Initial conditions

In the steady-state formulation, the initial condition is represented by the steady-state temper-
ature of the workpiece before metal forming. This known temperature field Ti mp (constant or
mapped from former history) is applied at the input plane Γi n as a Dirichlet boundary condition
for the resolution of the steady-state thermal equation.

T = Ti mp on Γi n (3.2.36)

3.2.4.3 Boundary conditions

There are various ways heat is exchanged from the boundary of the domain. These heat exchanges
are applied with the Fourier conduction model:

~q ·~n =−Kcond~∇T ·~n =φi mp (3.2.37)

Symmetry and output planes

The symmetry and output planes are assumed to be adiabatic and flux φi mp = 0 is imposed on
these surfaces.
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At the contact surface

There are two main elements of energy exchange at the contact surface Γc : (i) Conduction of heat
at the contact with tool, and (ii) partition of the heat generation due to friction between the work-
piece and the tool. In the equation (3.2.38), hcond is the thermal exchange coefficient between
the workpiece and the tool, and b, bm and btool are the respective averaged, workpiece and tool
thermal effusivity.

~q ·~n =−Kcond~∇T ·~n = hcond (T−Ttool ) (3.2.38a)

φ f =− bm

bm +btool

(
~τ f ·∆~vt

)
with bm =

√
ρcp Kcond (3.2.38b)

At the free-surface

The heat exchange at free-surface Γ takes place in two ways: (i) Convection and (ii) Radiation.
In the equation, hconv is the thermal exchange coefficient between workpiece and air, Text is the
ambient temperature, σr is the Stefan’s constant and εr is the emissivity.

~q ·~n =−Kcond~∇T ·~n = hconv (T−Text )+εrσr
(
T4 −Text

4) (3.2.39)

The convection and radiation terms can be combined to describe a unique thermal exchange co-
efficient hcr which is computed from the Temperature known at the preceding iteration. With the
fixed-point iterative solver, when the temperature field is converged, the hcr is computed from the
converged Temperature field.

~q ·~n = hcr (T−Text ) (3.2.40a)

hcr = hconv +εrσr (T+Text )
(
T2 +Text

2) (3.2.40b)

3.2.4.4 Weak form of the Thermal problem

The steady-state energy equilibrium equation is convection dominated, and hence the tempera-
ture field test function is discretized with SUPG finite elements. The strong form of the steady-state
thermal equation (3.2.37) is written in weighted residual form (3.2.41d) and solved to compute the
unknown temperature field Th .

Th =
nbn∑

k
Nk Tk T∗

h =
nbn∑

k
NSUPG

k T∗
k (3.2.41a)

VT
h =

{
Th ∈ C0 (Ωx h) such that ∀e ∈ τh ,Th|Ωx

e
h
∈ P1

(
Ωx

e
h

)
and T = Ti mp on Γi n

}
(3.2.41b)

VT
h,0 =

{
Th ∈VT

h such that T = 0 on Γi n
}

(3.2.41c)

∫
Ωx h

T∗
h

(
ρcp~vh ·~∇Th

)
dω+

∫
Ωx h

Kcond
(
~∇T∗

h ·~∇Th
)

dω+
∫
Γh

hcr (T−Text )T∗d s

+
∫
Γc ,h

hcond
(
T−Ttool +φ f

)
T∗d s =

∫
Ωx h

T∗
hPpl (σ : ε̇)dω (3.2.41d)

3.2.5 Equivalent strain

3.2.5.1 Strong form

In the incremental formulation, the equivalent strain is computed with the integration of equation
(3.2.5). The said equation is time-dependent, and at steady-state the time t =∞. So the steady-
state equation is given as (3.2.42a). At the input plane, the equivalent strain field is imposed as the
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initial condition (3.2.42b) similar to the thermal problem.

˙̄ε= d ε̄

d t
= ∂ε̄

∂t︸︷︷︸
=0

+~v ·~∇ε̄ in Ωx (3.2.42a)

ε̄= ε̄i mp in Γi n (3.2.42b)

The equation (3.2.42a) can be solved either with streamline integration or global resolution meth-
ods explained in the Section 2.3.5.2. With unstructured meshes, the latter seems a more practical
choice.

3.2.5.2 Weak form

For the global resolution, the weighted residual form of the steady-state equivalent strain equation
is written as following: ∫

Ωx

(
~v ·~∇ε̄) ε̄∗dω=

∫
Ωx

˙̄εε̄∗dω (3.2.43)

It can be remarked here that the state-variable is a P0 field which is constant in an element. Thus,
for keeping the gradient definition meaningful in equation (3.2.43), a smoothed equivalent-strain
field ˜̄εk is used. The smoothing is done by averaging the P0 field at the mesh nodes.

˜̄εh (~x) =
nbn∑
k=1

Nk (x) ˜̄εk (3.2.44)

The equations (3.2.43) denote convection dominant problem (large Peclet number), thus a SUPG
test function (see equation (2.3.35)) is used for the stabilization of the finite element solution.

nbe∑
e=1

∫
Ωx e

NSUPG
k

(
~v ·~∇˜̄εh

)
dωe =

nbe∑
e=1

∫
Ωx e

Nk ˙̄εhdωh (3.2.45)

3.2.6 Resolution of the thermo-mechanical problem in the iterative algorithm

Step 1: Thermo-Mechanical Resolution

Stokes Problem ~v ,p

Thermal Problem T

Equivalent strain ε̄

Figure 3.2.4: Details of the thermo-mechanical resolution in the iterative algorithm

The thermo-mechanical problem is weakly coupled as solved in the sequence shown in Figure
3.2.4. Firstly, the mechanical problem is solved from the system explained in equation (3.2.34b) to
compute the unknown velocity and pressure field increments with the Newton-Raphson method.
The convergence of the velocity field is sought before the resolution of the thermal problem from
equation (3.2.41d). The third sub-step corresponds to the computation of equivalent strain from
equation (3.2.45). It is to be impressed here that the thermo-mechanical problem is weakly cou-
pled, hence the velocity field is not updated using the new material consistency K found from
equation (3.2.8) using the new equivalent-strain and temperature field. This update is done in the
following fixed-point iteration.
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3.3 Free-surface resolution formulation

Among the different possibilities for the free-surface resolution discussed in Section 2.3.5, ForgeNxt®2016
uses the global resolution method for finding the steady-state shape. The free-surface resolution
aims to calculate the steady-state boundary shape by solving a velocity shape compatibility con-
dition. The surface mesh nodes are corrected to conform to the new boundary surface, which also
necessitates the regularization of the volume mesh elements to avoid their stretching. The present
section is focused on the detailed description of the global resolution method for free surface com-
putation.

3.3.1 Basic equations

The free-surface boundary Γ us updated from the velocity field computed in the Mechanical res-
olution Step-1 by solving a velocity-shape compatibility condition. This condition is applied with
the global form of the free-surface equation (2.3.32), and the unknown shape is computed us-
ing Finite element method. The global-form of free-surface equation (3.3.1a) finds the unknown
shape ~x(i+1) by enforcing the material flux across the boundary to be nullified. In the said equa-
tion, ~x(i+1) represents the unknown shape in current configuration which is computed from the
previous configuration~x(i ) and the unknown correction vector~t as presented in equation (3.3.1b).
The correction vector can be described with the scalar t in the direction ~d in equation (3.3.1c). An
important assumption in this step is that the velocity field is assumed to be constant as given in
equation (3.3.1d). This assumption holds true due to the fixed-point choice for the algorithm and
hence updated only in the Step-1. Thus, the free-surface of the steady-state domain is computed
from the resolution of a scalar equation, which is trivial in terms of computation cost.

~v (i+1) ·~n
(
~x(i+1)

)
= 0 on Γ (3.3.1a)

~x(i+1) =~x(i ) +~t (i+1) on Γ (3.3.1b)

~t = t ~d (3.3.1c)

~v
(
~x(i+1)

)
=~v

(
~x(i )

)
(3.3.1d)

(a) Impenetrability constraint on the correction field~t at the
contact surface

(b) Definition of Ck : weightage of elements with
respect to position of elements with reference to
node k

Figure 3.3.1: free-surface correction: Contact condition and Ck in SUPG test function

The free-surface correction is applied to the entire free-surface boundary Γ, however, in the
contact region, the correction could result in the penetration of the workpiece material inside
the contact surface. To avoid this, an impenetrability condition, represented with the unilateral
constraint on the contact distance or the gap-function δ (on the current configuration), is applied
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with equation (3.3.2). Here, δ represents the shortest normal distance between the node on the
free-surface of the workpiece and the tool surface (see Figure 3.3.1a). In practice, this condition is
applied with the constraint ~ (t ) described on the previous configuration~x(i ) and correction vector
~t as shown in equation (3.3.2b).

δ
(
~x(i+1)

)
=−−→

M′P ·~ntool ≥ 0 (3.3.2a)

~ (t ) = t ~d ·~ntool −δ
(
~x(i )

)
≤ 0 (3.3.2b)

3.3.2 Weak formulation of free-surface equation

The strong form of free-surface equation (3.3.1) is written in the weighted residual form with resid-
ual Sk . Numerical experiments have shown that the free-surface equation is of convection nature,
and destabilizes with standard Galerkin functions. So, a PG type test function is necessary for
the free-surface computation. We can choose from a variety of PG test functions presented in
the Section 2.3.5.2, but ForgeNxt®2016 uses SUPG test function as it results in accurate geometry
prediction in comparison to the other functions presented. The SUPG function NSUPG

k proposed
by [1] provides an accurate multidimensional generalization of optimal one-dimensional upwind
schemes. The SUPG method introduces an artificial diffusion only in the streamline flow direc-
tion, by virtue of which its stability is stronger than that of the Galerkin finite element method.
The SUPG element can be described as a modification of the Galerkin element with a stabilization
term in the rhs of (3.3.3b). This stabilization term permits a bias to the elements in the upwind
direction from the reference of node k in comparison to the Galerkin hat function Nk . Here Ck is
a cosine determining the angular location of a facet element from the point of reference of node
k (see Figure 3.3.1b) such that −1 ≤ Ck ≤ 1 and α is a non-dimensional factor such that 0 < α≤ 1.
Note that α = 0 means that the stabilization term is zero. The standard value of α used for 1D
element in literature [5, 8] is 1

2 . The material impenetrability condition (3.3.2b) is applied with

the penalty method in node-to-facet form on the free-surface boundary. ρ(2)
c is the penalty coeffi-

cient for the impenetrability constraint. Here, sk uses the same definition as described in equation
(3.2.25b).

∀k ∈ Γh , Sk

(
~v (i+1), t (i+1)

)
=

∫
Γh

NSUPG
k

(
~v ·~n

(
~x(i+1)

))
d s +ρ(2)

c sk [~ (t k )]+ ~d k ·~ntool
k = 0 (3.3.3a)

NSUPG
k = Nk +αCk ; ;Ck =

~∇Nk ·~v
|~∇Nk | |~v |

(3.3.3b)

3.3.3 Finite Element resolution of free-surface equation

The weak form of the free-surface correction equation (3.3.3a) is discretized with triangular shaped
SUPG finite elements. The discretized residual is written in matrix form (3.3.4a). Here, m is the
index of the node on any facet element f ∈ ¶k , where ¶k represents the element patch about node
k. ~n

(
~x(i+1)

)
is the unit surface normal defined on the facets f in the current configuration. Here,

~Ukm in equation (3.3.4b) represents a mass-like matrix used for computing the normal velocity at
node k.

∀k ∈ Γh ,
∫
Γh

NSUPG
k

(
~v ·~n

(
~x(i+1)

))
d s = ∑

m∈¶k

~vm ·~Ukm (3.3.4a)

~Ukm =
∫
Γh

NSUPG
k Nm

(
~n

(
~x(i+1)

))
d s (3.3.4b)

The discretized system is solved with the Newton’s iterative resolution method to compute the
unknown correction field t at the free-surface boundary to find the updated shape ~x(i+1) from
equations (3.3.1b) and (3.3.1c).
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3.3.4 Extension of the free-surface correction to multi-DoF (with edges)

The description of scalar form of free-surface correction equation (3.3.1) is efficient as long as the
geometry of the workpiece does not have any topological singularities like edges or corners. In the
case with singularities, two different approaches are used: (i) Free-surface correction with surface
regularization (SUPG-reg), in which the surface mesh is regularized to follow the singularity (ii)
SUPG-dif, in which a vectorial form of the free-surface equation is envisaged.

3.3.4.1 SUPG-reg

In the SUPG-reg technique, the free-surface boundary mesh is regularized with the Laplacian of
the correction field t computed from equation (3.3.5a). Hence, the technique takes into account
several degrees of freedom or the singularities of the mesh without any particular treatment.

∆t = 0 on Γ (3.3.5a)

H(i ) +wr Hr (i )δ~t (i) =−r (i) (3.3.5b)

The index r represents the regularization term with Hr is the updated Hessian for the resolution
of correction t with the iterative method. The surface mesh is regularized simultaneously with the
iterative resolution of the correction field, but this regularization proves to be antagonistic to the
free-surface correction. In order not to constrain the displacements too much, only the matrix
of the system coming from the Newton-Raphson resolution is regularized (3.3.5b). However, the
weighting coefficient wr of the regularization is difficult to calibrate and the speed of convergence
of the free-surface calculation is extremely sensitive. Among the various methods tested by [7],
the original least squares method converges slowly such that the solution obtained after a fixed
number of iterations is not always correct. The LS-SUPG method on the other hand is more robust,
and yields good results.

3.3.4.2 SUPG-dif

In the SUPG-dif formulation, differential processing is done for the edge nodes and those of the
plane surfaces. For edges, two degrees of freedom are needed, hence, a vectorial (2-DoF) form
of the free-surface equation for cases is proposed. It aims at finding the corrections t [ j] in the
respective linearly independent directions ~d [ j] defined at an edge of the free-surface Γed g e (see
Figure 3.3.2a).

~x(i+1) =~x(i ) + ∑
j=1,2

t [ j]~d [ j] (3.3.6)

The Least Square method is easily extensible to multiple-DoF [7] as the derivative of the normal
results in an independent residual in each direction that computes the scalar corrections in the re-
spective direction ~d . On the other hand, the SUPG shape function results in only a scalar equation
to be resolved. In order to find a multi-DoF formulation, we assume linear independence of the
directions ~d [ j], with j = 1,2 for the edge singularities. Then, the residual is independently written
in each direction. From this assumption, we obtain the vectorial form of the free-surface equation
residual which is applied on the free-surface edge boundary Γed g e .

∀k ∈ Γed g e , Sk
[ j]

(
~v , t [ j]

)
=

∫
Γed g e [ j]

NSUPG
k

(
~v ·~n[ j]

(
~x(i+1)

))
d s +ρ(2)

c sk [~ (t k )]+ ~d [ j] ·~ntool
k = 0

(3.3.7)
The proposed method works perfectly well and is much more robust that SUPG-reg, but the free-
surface correction at the edges results in the stretching of the corresponding elements in its sup-
port. So a regularization (see Figure 3.3.2a) of the surface mesh is adopted in the tangential direc-
tion perpendicular to the correction and the rolling direction. A Laplacian operator is introduced
in the correction residual (weak form) for the correction t in the lateral direction~e2 , which restricts
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the stretching of element shape.

∀k ∈ Γh , Sk
b (t ) =

∫
Γh

~∇Nk ·~∇
(
~t ·~e2

)
d s = 0 (3.3.8)

SUPG-dif is envisaged only on the edge geometry, whereas on the rest of the domain, only one de-
gree of freedom is enough and is optimal. However, to keep a homogeneous number of unknowns
per node, the 2-DoF formulation is used for the entire free-surface boundary Γ and not just the
edge Γed g e . The second dof of the free-surface mesh is used for the mesh regularization in the~e2

direction.

(a) Choice of directions ~d1 and ~d2 in the bound-
ary of domain Ω

(b) Detection of topological singularities (edges/ corners) on the surface
mesh using normal "voting" method

Figure 3.3.2: Vectorial form of free-surface computation with SUPG-dif formulation

3.3.5 Edge Detection

For the detection of geometric singularities, like edge or corners, the normal voting method [6] for
piece-wise smooth surfaces is used. The proposed method uses information from the group of
surface elements in the geodesic neighborhood of a node k to find out mainly two characteristics
of a node (i) the orientation (ii) the curvature of the surface. These characteristics could be used
to find out if the said node lies on a smooth surface or a discontinuity. In an element patch ¶k ,
each surface element f with normal ~n f

0 yields a voted normal ~n f
v at node k from the translation

about a surface curve. This surface curve is approached by the geodesic distance, defined by the
angle θ f is expressed as:

∀ f ∈ ¶k , ~n f
v =~n f

0 +2cos
(
θ f

) S f

Smax

−−−→
Xk c f∥∥∥−−−→Xk c f

∥∥∥ , with cos
(
θ f

)= ~n f 0 ·−−−→Xk c f∥∥∥−−−→Xk c f

∥∥∥ (3.3.9)

In this expression, c f is the centroid of facet f ,~Xk is the coordinates of node k, S f is surface area
of f , and Smax is the maximum surface area of facet on patch ¶k . Using this voted normal, a
covariance matrix is constructed which is used to find the principal directions (eigen vectors) at
the node k from the eigen values of this matrix. The magnitude of each of the principal eigen
values (1, 2, or 3) are tested on a geometric criteria to classify whether the given free-surface node k
belongs to a pure surface, an edge or a corner. The geometric criteria chosen for this classification
are taken from [4].

3.3.6 Volume Mesh Regularization and Mesh Update

In the previous sections 3.3.1-3.3.5, we developed the methodology to compute the steady-state
shape position vectors~x(i+1) numerically, but only on the boundaryΓ of the workpiece domainΩx .
This boundary correction results in the stretching of the volume tetrahedral elements due to the
boundary update (see Figure 3.3.3). In order to avoid this stretching, a volume mesh regularization
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is required (not to be confused with surface mesh regularization in the equation (3.3.8)). This is
achieved by solving the Laplacian of the correction t on the discretized domain with equation
(3.3.10a). The free-surface correction field~tcomp known on the boundary Γ is used as the Dirichlet
condition to the Laplacian problem. Hence, the mesh coordinates ~x(i+1) are updated with the
global correction field using equation (3.3.6).

∆t (i+1)
k = 0 in Ω(i)

h (3.3.10a)

t k = tcomp in Γh (3.3.10b)

Figure 3.3.3: Regularisation of the volume mesh [7]

3.3.7 Free-surface Resolution in the Iterative Algorithm

The free-surface resolution entails finding the steady-state domain at the boundary and then reg-
ularizing the internal volume nodes. Thus it corresponds to the three steps as shown in the Figure
3.3.4.

Step 2: Free-surface Resolution

Free-surface correction (t )

Volume Mesh Regularization

Mesh Update

Figure 3.3.4: Details of the free-surface resolution step in the iterative algorithm

3.4 Contact treatment in a steady-state frame

3.4.1 Contact coupling

A decoupled, fixed-point iterative algorithm is chosen to solve the strong coupling in velocity and
shape of the steady-state forming problem. The chosen algorithm ensures flexibility from the
point of view of numerical implementation. The unilateral contact constraints need to be sat-
isfied with both the velocity (3.2.14) and the free-surface shape (3.3.2b). However, the contact
surface Γc on which these constraints must be applied is unknown. Taking advantage of the fixed-
point algorithm, even the contact surface is chosen as a fixed-point variable which is assumed at
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initialization from (3.4.1) and gradually improved until the algorithm converges. Given the strong
coupling of the formulation, the contact surface is critical to the convergence of the steady-state
algorithm.

Γc
(1) =

{
∀k ∈ Γ, δk

(
~x(i=0)

)
< 0

}
(3.4.1)

The indices (1) and (2) correspond to the Step-1 and the Step-2 of the fixed-point iterative algo-
rithm respectively. The velocity is computed from equation (3.2.26a) with the contact constraint
(3.2.14) applied on the contact surface Γc

(1). However, after the mechanical resolution, the con-
tact surface Γc

(2) is updated using the Lagrange multiplier λk from equation (3.4.2b), which is an
approximation of the normal contact stress from the velocity field.

λk =−ρ(1)
c sk [~vk ·~nk ]+ (3.4.2a)

Γc
(2) = {∀k ∈ Γ,λk < 0} (3.4.2b)

[8] remarked that if a unilateral contact condition (3.3.2b) is applied at the entire free-surface,
it results in complete loss of contact surface. Therefore, it is proposed to apply only a bilateral
condition (in normal direction) on contact surface Γc

(2) from (3.4.2b) and unilateral condition
only on the free-surface Γ\Γc

(2) which is not in contact as represented in equation (3.4.3).

∀k ∈ Γh , Sk

(
~v (i+1), t (i+1)

)
=

∫
Γh

NSUPG
k

(
~v ·~n

(
~x(i+1)

))
d s +ρ(2)

c sk1(k∈Γc
(2)) (~ (t k )) ~d k ·~ntool

k

+ρ(2)
c sk1(k∈Γ\Γc

(2)) [~ (t k )]+ ~d k ·~ntool
k = 0

(3.4.3)

After the free-surface computation, the contact surface Γc
(1) is again updated with another La-

grange multiplier µk from (3.4.4b) using the condition (3.4.4a). Here, ε is a small positive co-
efficient, introduced for numerical pseudo-adhesion for the definition of contact surface and is
empirically computed as 2% of the mesh size.

µk =−ρ(2)
c ~ (t k ) (3.4.4a)

Γc
(1) = {∀k ∈ Γ,µk < ε} (3.4.4b)

The contact surface Γc
(1) is where the conditions (3.2.14) and (3.2.15) are applied in the Step-1 for

velocity computation. At the convergence of fixed-point iterative loop, the final contact surface is
found as:

Γc = Γc
(1) ∩Γc

(2) (3.4.5)

3.4.2 Summary of the ForgeNxt®2016 Fixed-point resolution algorithm

A general form of the iterative resolution algorithm for the steady-state computation of the rolling
problem was presented in Figure 3.1.1. The detailed substeps in the respective thermo-mechanical
and free-surface resolution steps were presented in Figure 3.2.4 and Figure 3.3.4. The detailed
complete algorithm, with the contact coupling described in Section 3.4.1, is presented in Figure
3.4.1. The convergence of the velocity field, tool force, temperature, equivalent strain, and geome-
try need to be assured for the convergence of the fixed-point algorithm. Using this algorithm, the
contact area is reported to be correctly simulated. It is important to mention that a relaxation of
the free-surface correction is used during the first iterations of the simulation. It consists of keep-
ing only half of the values of the correction calculated to correct the domain. Thus, the nodes are
gradually detached without showing strong discontinuities upstream of the contact zone. For the
steady-state resolution, the convergence criteria for (i) Geometry tconv (ii) Temperature Tconv (iii)
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Equivalent strain ε̄conv (iv) Tool Force Fconv are defined as following:

tconv =∀k ∈ Γout , maxk
tk

hc
k

≤ εg eom ≈ 0.05 (3.4.6a)

Tconv =∀e ∈Ωh ,
maxe |T(i+1)

e −T(i )
e |

maxe

(
T(i+1)

e

)
−mine

(
T(i+1)

e

) ≤ εT ≈ 0.1 (3.4.6b)

ε̄conv =∀e ∈Ωh ,
maxe |ε̄(i+1)

e − ε̄(i )
e |

maxe

(
ε̄(i+1)

e

)
−mine

(
ε̄(i+1)

e

) ≤ εε ≈ 0.1 (3.4.6c)

Fconv = 2×
|F(i+1)

tool −F(i )
tool |

F(i+1)
tool +F(i )

tool

≤ εF ≈ 0.01 (3.4.6d)

Start

Geometry Initialization Ωx
(i),~x(i )

Initialize Γc
(1,i) from (3.4.1)

Step 1: Thermo-Mechanical Resolution

Stokes Problem
(
~v , p

)
(3.2.26)

Thermal Problem (T)) (3.2.41d)

Equivalent strain (ε̄) (3.2.45)

Contact Update Γc
(2,i+1) (3.4.2)Step 2: Free-surface Resolution

Convergence

i=i+1
Γc

(1,i+1)

free-surface correction (t ) (3.4.3)

Volume Mesh Regularization (3.3.10)

Mesh Update (3.3.6)

Contact Update Γc
(1,i+1) (3.4.4)

Stop

~x(i),Γc
(1,i), i = 0

~v i+1,Γc
(2,i+1)

Yes

No

Figure 3.4.1: Complete ForgeNxt®2016 fixed-point algorithm with contact coupling

It can be noticed that the convergence of the unknown fields of the steady-state formulation
is ensured with the strict infinite norm, which aims to keep the maximum difference between two
iterations below the defined criterion for each variable.

3.5 Application to hot-rolling test-cases

A large number of relatively different test-cases were envisaged for the Forge Stationnaire Bis
project. They correspond to the simulation of steady-state forming processes (mainly rolling)
proposed by a consortium of industries interested in reducing the computation time for simu-
lation. To understand better the underlying problems with the existing steady-state formulation
presented in Section 3.4.2, the same is tested on some of these test-cases. We focus on two of the
most representative cases: thick sheet and shape rolling with a high reduction rate. The first test-
case is a flat sheet subjected to hot rolling under a pair of symmetric rigid, flat rolls. The principle
attributes of this test are a uniform contact surface with the tool in the transverse direction and no
large changes in shape after rolling. The second test-case is a shape rolling problem with an oval
section workpiece transformed into a square section after hot rolling. In both the test-cases, the
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respective workpiece has two symmetry planes, so, only one-fourth of the domain is modeled. The
steady-state solution from the ForgeNxt®2016 is validated with the steady-state solution obtained
from the time dependent solution with ForgeNxt®inc using similar mesh size. The geometry for
the steady-state resolution is initialized using the extrusion method as shown in 3.2.2a. Following
rheology and tribology properties are used for both the test cases:

S.No. Rheological Parameter Value
1 K 30
2 m 0.15
3 α f 0.3
4 p 0.15

Table 3.5.1: Rheological and tribological properties of the test-cases

A constant initial temperature of 250 ◦C is imposed for the workpiece and 150 ◦C is imposed
for the rolls. It is to be noted here that the primary objective of this study is to understand a prob-
lem related to the contact in the mechanical resolution, which perturbs the thermal as well as the
mechanical solution. Hence, it is important to remove the thermal computation from the prob-
lem to isolate the problem due to the thermal coupling. Hence, adiabatic interface conditions are
applied in order to prevent the heat exchange with the die (heat transfer coefficient hcond = 0.0,
thermal effusivity b = 0.0), with the surroundings (heat transfer coefficient hconv = 0.0) and within
the workpiece (Thermal conductivity Kcond = 0.0). For the free-surface computation, the two test
functions, namely (i) LS-SUPG (equation (2.3.34)) and (ii) SUPG (equation (3.3.3b)), as used by [7],
have been tested. The SUPG-dif formulation along with mesh regularization in the~e2 direction is
used, which was concluded (by [7]) to be the best in terms of resolution time and robustness. Each
of the simulations is run on 12 cores of Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.5GHz processor. For
the validation of the steady-state results, two main comparisons are made for each of the test-case
with the two free surface formulations. Firstly, the global results like tool force, torque, compu-
tation time, the number of iterations for the resolution and the deformed shape of the workpiece
are compared. Next, the solution contours like equivalent stress, equivalent strain along with ve-
locity/contact are compared. In addition, the convergence of the three of the four convergence
parameters, viz. (i) Geometry tconv (ii) Equivalent strain ε̄conv (iii) Tool Force Fconv , are also pre-
sented. These results help to explain the stability of the solution and hence compare different
steady-state formulations. Another criteria chosen to compare the steady-state formulations is
the loss of flux or the loss of material volume. This loss must ideally be zero because of the iso-
choric conditions applicable with the plastic deformation in the formulation, however may differ
due to the assumptions in the free surface shape computation. The flux loss is measured as the
difference between the flow of material into and out of the control volume Ωx and given with the
following relation (3.5.1).

flux loss function =

∑
f ∈Γi n

∫
f
~v f ·~n f d s f +

∑
f ′∈Γout

∫
f ′
~v f ′ ·~n f ′d s f ′

∑
f ∈Γi n

∫
f
~v f ·~n f d s f

×100 (3.5.1)

3.5.1 Flat rolling problem: VP-Test-Case-01

3.5.1.1 Model Details

The VP-Test-Case-01 consists of a rectangular section (80 mm x 25 mm) workpiece and is de-
formed under a pair of flat rolls (see Figure 3.5.1) without any constraint of material flow on the
lateral side. This test case is proposed by Constellium. The rolls are rigid, with diameter 600 mm,
and rotate at 27.5 rpm. After the rolling operation, the thickness of the plate is reduced to 18 mm,
and the section does not remain rectangular due to the lateral spread phenomenon.
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Figure 3.5.1: Simulation model for VP-Test-Case-01 from Constellium
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Figure 3.5.2: Comparison of deformed section (steady-state) shape of the VP-Test-Case-01 with the steady-
state and incremental formulations

3.5.1.2 Comparison of solution

The global results for the VP-Test-Case-01 are presented in Table 3.5.2. The respective deformed
(steady-state) sections measured at the output plane Γout (for the steady-state solution) are com-
pared in Figure 3.5.2. The deformed section for the incremental solution is taken far enough from
the tool, such that the velocity field, the state-variables, and the deformations are constant in the
rolling direction. Even for the existing steady-state formulation ForgeNxt®2016, certain end effects
are present and need improvement of the boundary condition at the output plane Γout . So, the sec-
tion results are from an axial location (rolling direction) few elements before the output plane. It
can be seen that the ForgeNxt®2016 algorithm finds the steady-state solution in 5 iterations with
both the free surface formulations. The steady state solver predicts both the tool force and the
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torque from the incremental solution under a margin of 2%. The deformed section computed with
the steady-state algorithm also has a very good agreement with that found from the incremental
resolution. There is a minor over-prediction of the lateral spread at the edge with both steady-
state simulations, whereas, at the symmetry plane, the spread has a very good agreement with the
ForgeNxt®inc solution. Since this observation is idem with both the free surface formulations,
it is less likely that the SUPG-dif formulation by [7] is the reason for this difference in the lateral
spread. This phenomenon could be linked to the contact formulation which may result in larger
lateral velocities and hence result in larger spread calculation with both free surface formulations.

Shape Conv. Comp. Tool Tool
Correction inc/iters Time Force Torque

method (min) (T) (kN-m)
ForgeNxt®2016 (LS-SUPG) 5 3.9 17.14 4.12
ForgeNxt®2016 (SUPG-dif) 5 5.1 17.2 4.13

ForgeNxt®inc 541 300 17.6 4.26

Table 3.5.2: Global performance of the VP-Test-Case-01 with the ForgeNxt®2016 algorithm in comparison
to the ForgeNxt®inc solution (on 12 cores)
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Figure 3.5.3: Comparison of equivalent strain for VP-Test-Case-01

The most attractive part of the obtained results is the number of iterations for the resolution
of the test-case with the steady-state solver, which are 108 times lesser than the incremental for-
mulation. Also, the computation time is reduced by 60-75 times with the steady-state resolution.
The solution contours for equivalent strain ε̄ and the von Mises (equivalent) stress σ̄ with the in-
cremental and steady-state formulations are presented in Figure 3.5.3 & Figure 3.5.4 respectively.
Globally the result contours seem to be predicted well with the steady-state formulations. How-
ever, if observed carefully, large undulations of deformation below the tool contact is observed
with the steady-state formulations. This is an indication of an unstable contact behavior. These
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instabilities are also seen to be convected downstream and seen as bubbles of large strains on
the free surface boundary. These oscillations are also observed in the equivalent stress but only
under the tool as the material reaches stress-free state as soon as it exits the tool. These oscilla-
tions are observed with both the free surface formulations tested, thus indicating an alternative
phenomenon than the free surface computation method resulting in unstable solution. The con-
vergence parameters for Force, equivalent strain and correction are presented in the Figure 3.5.5a,
Figure 3.5.5b and Figure 3.5.6a respectively. In this exercise, we look to observe the stability of the
solution if it is continued to be iterated until the maximum number of iterations are reached by
choosing a very small geometry convergence criterion (for example εg eom = 10−5). The stability
test would only be met if all these parameters do not diverge as the computation progresses.
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Figure 3.5.4: Comparison of von Mises stress (in MPa) for VP-Test-Case-01

It can be seen that all the tested parameters meet their respected convergence criteria in the
same number of iterations with both the steady-state formulations. However, if we look closely at
each of the parameters, generally we observe better convergence with the SUPG-dif formulation as
the magnitude of the difference between consecutive iterations is much smaller. In other words,
for all the convergence parameters, the LS-SUPG formulation results in larger changes in force,
max. equivalent strain and max correction at the exit plane, between two iterations. The flux loss
with the two formulations is compared in Figure 3.5.6b. This loss is nearly zero with the SUPG-
dif formulation, but around 0.05% with the LS-SUPG formulation, which is insignificant from an
industrial viewpoint.
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Figure 3.5.5: Comparison of Tool Force and Equivalent strain convergence for VP-Test-Case-01 with the
ForgeNxt®2016 formulation
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Figure 3.5.6: Comparison of free-surface correction convergence and flux loss for VP-Test-Case-01 with the
ForgeNxt®2016 formulation

3.5.2 Shape rolling problem: VP-Test-Case-02

3.5.2.1 Model Details

In this test-case VP-Test-Case-02, an oval section workpiece is rolled under concave dies to a
square shape (see Figure 3.5.7). The principal axes of the oval cross-section of the workpiece mea-
sure 108 mm x 36 mm. The rolling reduction and the lateral constraint (due to a not flat roll)
brings the maximum height and the width to 56 mm with filleted corners. These rolls have a 600
mm diameter, are separated by 3.5 mm and have a rotational velocity of 48 rpm. Compared to the
previously presented, this test-case observes a large shape change. The workpiece is engaged be-
tween two non flat tools that results in an oval shaped curved contact, and hence only a few nodes
of the workpiece come in contact with the tool in the roll-bite.
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Figure 3.5.7: VP-Test-Case-02 from Aubert & Duval tested with the steady-state algorithm

3.5.3 Comparison of solution

It is observed that the steady-state algorithm, the problem solution is approached but fails to reach
to a stable solution. This is observed with both the free surface formulations LS-SUPG and SUPG-
dif formulations. The steady-state iterative algorithm looks to find a solution with parameters
converged, but is not successful. However, it is to be impressed that the unstable solution found
with the steady-state resolution is not far from the incremental solution. The prediction of tool
force and torque (see Table 3.5.3) is accurate in comparison to the ForgeNxt®inc solution. How-
ever, minor oscillations are observed, which is common with fixed-point iterative solvers. For
instance, the difference of Force between two successive iterations is ±0.12%, which is much less
than the convergence criteria of 1%. Oscillations of such magnitude were observed as well with
the LS-SUPG formulation in the VP-Test-Case-01 test-case.

Shape Conv. Comp. Tool Tool
Correction inc/iters Time Force Torque

method (min) (T) (kN-m)
ForgeNxt®2016 (LS-SUPG) 40 not converged 15.81±0.02 9.36±0.03
ForgeNxt®2016 (SUPG-dif) 40 not converged 15.94±0.02 9.42±0.04

ForgeNxt®inc 512 132 15.49 9.20

Table 3.5.3: Global performance of the VP-Test-Case-02 with the ForgeNxt®2016 algorithm in comparison
to the ForgeNxt®inc solution (on 12 cores)

Like the previous test-case, the convergence parameters for VP-Test-Case-02 are analyzed for
understanding the reason behind the non-convergence of the ForgeNxt®2016 algorithm. The Fig-
ure 3.5.8a, Figure 3.5.8b, Figure 3.5.9a and Figure 3.5.9b present the respective convergence of
force, equivalent strain, correction and flux loss. We can observe that the force and geometric con-
vergence criteria are met within 7 iterations and remain converged until the maximum number of
iterations are reached. The stability of the SUPG formulation is again seen to be better in compar-
ison to the LS-SUPG formulation due to over all lower magnitude of change in these parameters
with consecutive iterations. Minor flux loss <0.5% is also observed with both the free surface for-
mulations, even though this is not problematic from the convergence point of view. The source of
the non-convergence is however the equivalent strain which fails to converge and observes large
fluctuations throughout the resolution. The reason behind this fluctuation is not obvious from the
presented results and is attempted to be understood in the following section. However, its conver-
gence is critical as the equivalent strain is a history variable in the viscoplastic materials and used
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for computing the local material consistency K. This consistency effects the velocity which is used
for the computation of free surface. Hence large changes in equivalent strain correspond to large
fluctuations in velocity and the free surface shape, which is also seen as an large fluctuations in
force and correction after 20 iterations.
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Figure 3.5.8: Comparison of tool force and equivalent strain convergence and flux loss for VP-Test-Case-01
with the ForgeNxt®2016 formulation
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Figure 3.5.9: Comparison of free-surface correction convergence and flux loss for VP-Test-Case-02 with the
ForgeNxt®2016 formulation

3.6 Reasoning for instabilities observed with VP-Test-Case-02

The VP-Test-Case-01 is a simple rolling test case with a uniform contact surface with flat dies,
which results in a contact surface with a nearly straight first contact line. However, the unstable
contours under the contact surface signaled an unstable contact. However, the simplicity of the
geometry and the low magnitude of oscillations ensured that the steady-state algorithm converged
to a solution which didn’t vary more than the used convergence criteria. In simple words, the al-
gorithm presented in Section 3.4.2 is robust enough to handle such a problem. However, as soon
as we are in the domain of complex geometries, the algorithm is unable to converge to a unique
solution. We observed that this instability in the solution is due to the non-convergence of the
equivalent strain. If we compare the equivalent strain field at the penultimate and last iteration
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(see Figure 3.6.1), we can see that there is a change of the field under the tool contact, which was
as well indicated by VP-Test-Case-01 solution. The equivalent strain is directly linked to the equiv-
alent rate of deformation, which observed a similar change, it does not take a lot of investigation
to observe this change phenomenon in the contact status (a contact binary test with 0: nodes not
in contact, 1: nodes in contact) for certain nodes under the tool. This highlights that the observed
problem is linked to a non-converged contact surface Γc , which is known to be the most chal-
lenging problem with the steady-state resolution. Thus, the first objective of this work is targeted
to improve the robustness of the steady-state algorithm in order to provide a stable steady-state
solution.

Figure 3.6.1: Comparison of equivalent strain, equivalent rate of deformation and contact-status near the
tool contact area for VP-Test-Case-02 at two consecutive iterations

3.7 Conclusions from the chapter

The present chapter focuses on the discussion of the previously developed ForgeNxt®2016 algo-
rithm [7] and testing it for hot rolling problems. A fixed-point iterative algorithm is chosen for
resolution since the problem of velocity-shape is strongly coupled. In the Step-1, the thermo-
mechanical problem of the metal forming process is solved. It entails the computation of velocity
field ~v on an approximated steady-state domain Ωx using the mixed

(
~v , p

)
formulation. From

the computed velocities, we solve the steady-state energy equilibrium and equivalent strain equa-
tions to compute the respective unknown Temperature T and equivalent strain ε̄ fields. Given
the convection dominance of these problems, SUPG stabilized finite elements are used. In the
Step-2, the steady-state geometry~x(i+1) is updated from a free-surface scalar equation. The shape
computation problem is also convection dominant, hence, two PG functions are proposed LS-
SUPG and SUPG. For problems with geometric singularities, two formulations are proposed: (i)
SUPG-reg (ii)SUPG-dif. The former does not change the formulation but requires regularization
of the surface mesh after each Newton-Raphson iteration. The latter proposes a vector form of the
free-surface equation for free-surfaces with edges and aims to compute the correction field in two
linearly independent directions (for the edge). The vector form of free-surface equation is straight-
forward to develop with LS-SUPG test function in comparison to the SUPG-dif test function. The
latter is however much better in terms of robustness as a solution is ensured within a few itera-
tions for most of the tested rolling cases. For the SUPG-dif test function, the free-surface equation
is independently resolved in the linearly independent directions and thus makes it possible to find
a robust and accurate formulation.

An important aspect of the steady-state formulation with regard to the robustness is the con-
tact formulation and its coupling in the iterative algorithm. Both the velocity field as well as the
free-surface shape correction invoke constraints at the contact with the tool surface. The two con-
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ditions defining the contact constraints are applied with the penalty form in the weak formulation
of mechanical and free-surface problems. Consequently, the contact is updated at the end of each
step. The convergence of the fixed-point iterative algorithm is tested with four convergence pa-
rameters for force, equivalent strain, temperature, and shape correction. In doing so the algorithm
also aims to ensure the convergence of the contact surface under the aegis of the coupled equa-
tions.

Two hot rolling problems are tested with the ForgeNxt®2016 algorithm. The VP-Test-Case-01
is a simple hot rolling problem without large shape changes and has a uniform contact surface
with the tool. The free-surface is computed with the LS-SUPG and SUPG-dif formulations. The
ForgeNxt®2016 is found to be 60-75 times faster in comparison to the incremental resolution of
the same problem. Even though the solution converges with both methods, the solution contours
hint oscillations under the tool contact. The VP-Test-Case-02 is a shape rolling problem with a
product that observes a shape change from an oval section to a square section. This steady-state
algorithm fails to converge for this test-case and the solution is found to be unstable with both the
test functions. It is found that the equivalent strain fails to converge for the problem, and careful
analysis of the results hints a link with the contact surface (with the tool). This observation is the
primary motivation to look into detail the contact formulation and provide other possibilities to
improve the robustness of the algorithm.
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Résumé

Ce chapitre se concentre sur la présentation de l’algorithme ForgeNxt®2016 et son évaluation pour
des problèmes de laminage à chaud. Un algorithme itératif de point-fixe est choisi pour la résolution
car le problème vitesse/forme est fortement couplé. Dans une première étape, le problème thermo-
mécanique de mise en forme des métaux est résolu. Il implique le calcul du champ de vitesse ~v sur
un domaine approximatif à l’état stationnaire. Ensuite, on calcule la température et la déformation
équivalente avec la vitesse calculée à partir de l’équilibre énergétique et les équations de déformation
équivalentes. Étant donné la dominance de convection de ces problèmes, des éléments finis stabilisés
SUPG sont utilisés. Dans la deuxième étape, la géométrie de l’état stationnaire est calculée à partir
d’une équation scalaire de surface libre. Le problème de calcul de surface libre est également dom-
inante en convection, et donc deux fonctions de Petrov-Galerkin sont proposées LS-SUPG et SUPG.
Pour traiter les geométries avec singularités comme les arêtes, deux formulations sont proposées: (i)
SUPG-reg (ii) SUPG-dif. La première ne change pas la formulation, mais nécessite une régularisa-
tion du maillage de surface après chaque itération de Newton-Raphson. La seconde propose une
forme vectorielle pour les surfaces libres avec arêtes, et vise à calculer le champ de correction dans
deux directions linéairement indépendantes (pour l’arête). La forme vectorielle de l’équation de sur-
face libre est simple à développer avec la fonction de test LS-SUPG en comparaison avec la fonction
de test SUPG-dif. La seconde est cependant meilleure en terme de précision et robustesse car une so-
lution est assurée en quelques itérations pour la plupart des cas de laminage testés. Pour la méthode
SUPG-dif, l’équation de surface libre est résolue indépendamment dans les directions linéairement
indépendantes. Un aspect important de la formulation en état stationnaire, ce qui concerne la ro-
bustesse de l’algorithme itératif, est la formulation de contact et son couplage. Le champ de vitesse
ainsi que la correction de la forme de la surface libre doivent invoquer des conditions de contact à la
surface de l’outil. Les deux conditions définissant les contraintes de contact sont appliquées avec la
forme de pénalisation dans la formulation faible des problèmes mécaniques et de surface libre. Par
conséquent, le contact est actualisé à la fin de chaque étape à partir des multiplicateurs de Lagrange
respectifs de chaque problème. La convergence de l’algorithme itératif de point-fixe est testée avec
quatre paramètres de convergence pour l’effort d’outil, la déformation équivalente, la température et
la forme de la piéce à la sortie. Ce faisant, l’algorithme vise également à assurer la convergence de la
surface de contact avec des équations couplées. Deux problèmes de laminage à chaud sont presentés
avec l’algorithme ForgeNxt®2016. Le VP-Test-Case-01 est un problème de laminage à chaud d’une
tôle épaisse avec une surface de contact uniforme avec l’outil. L’algorithme ForgeNxt®2016 s’avère
une solution convergente et 60 à 75 fois plus rapide par rapport à la résolution incrémentale du
même problème. Le VP-Test-Case-02 est un problème de laminage à chaud de forme et présente un
grand changement de forme: section d’entrée ovale transformée en une section carrée. Cet algorithme
stationnaire trouve une solution non-unique et on observe de légères oscillations dans l’historique
d’effort d’outil. On constate que la déformation équivalente ne parvient pas à converger pour le
problème, et des résultats suggèrent un lien avec la surface de contact avec l’outil. Cette observation
est la principale motivation pour la proposition d’amélioration de la formulation du contact et de la
robustesse de l’algorithme.
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The existing steady-state algorithm is proven to be fast for a simple hot rolling test-case. How-
ever, the formulation lacks robustness as instabilities/oscillations are observed in the fields (Force,
Torque, strain, etc.). A careful analysis of the solution demonstrates a link between observed
oscillations and the contact surface with the tool (see Section 3.6). It is thus hypothesized that
the reason behind the unstable solution is the contact coupling explained in Section 3.4.1. The
present chapter is mainly focused on the investigation and development of contact formulation
in a velocity-based steady-state algorithm, which is not well studied in the limited literature with
simple configurations [3]. Even though the contact is not the primary convergence variable of the
algorithm, a non-stable contact is seen to have a large impact on the stability of other variables
that are critical to convergence. This motivates the present investigation for finding a better con-
tact formulation for the steady-state algorithm and hence improve its robustness.

4.1 Problem with contact coupling

The first step is to identify the problem with the existing formulation: we learned that the impen-
etrability conditions are applied during the computation of the velocity field with the equation
(3.2.14) and the computation of the shape correction with the equation (3.3.2b). The contact is
updated at the end of each step and it is hoped that the fixed-point iterative algorithm converges
to a unique contact surface at the convergence of the algorithm. It means that in the hindsight, the
contact conditions applied in the two steps complement and are consistent with each other and
result in a unique contact surface. This is however not truly seen in the test-cases studied in the
Section 3.5. From the general overview of the conditions applicable on contact, it is understood
that the material impenetrability condition applied on the coordinate correction during the free-
surface correction (3.3.2b) is a more comprehensible contact condition. The contact condition
on the velocity field is necessary but needs to be investigated. The contact impenetrability condi-
tion, applied in the penalty form, along with the free-surface equation in the weak form (3.3.3) are
invoked again:

∀k ∈ Γh , Sk

(
~v (i+1), t (i+1)

)
=

∫
Γh

NSUPG
k (~v ·~n (x))d sh +ρ(2)

c sk [~ (t k )]+ ~d k ·~ntool
k = 0 (4.1.1)

In the free surface residual, the term in [ ]+ ≥ 0 defines the unilateral contact condition on a node
k. This implies that there are following possibilities for the free-surface residual:

if ~ (t k ) < 0
∫
Γh

NSUPG
k (~v ·~n (x))d sh = 0 (4.1.2a)

otherwise ~ (t k ) ≥ 0
∫
Γc ,h

NSUPG
k (~v ·~n (x))d sh ≤ 0 (4.1.2b)

The (4.1.2a) represents that for a free surface node k, far away from the contact, only the free-
surface condition is applicable and the penalty part is nullified as the gap function δk > 0. On
the other hand, the condition (4.1.2b) results when the node k is in contact. This means that the
gap function δk ≤ 0 or the constraint is active ~ (t k ) ≥ 0. In such scenarios, the large value of the
penalty coefficient ρ(2)

c dominates the free surface residual, and forces the projection of the node
k onto the contact surface. This means that the free-surface condition may not be verified. As a
consequence, the node k ∈ Γc in contact must respect the following condition:

∀k ∈ Γc ,h ,
∫
Γc ,h

NSUPG
k (~v ·~n (x))d sh ≤ 0 (4.1.3)

This condition may be understood such that the node k may have a zero normal velocity, which
lets the node slide on the contact surface, or negative normal velocity that pushes the node away
from the contact surface in the next iteration of the free surface computation. In other words, the
said condition is an impenetrability condition. A positive normal velocity would mean that the
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velocity vector at the said contact node must be reoriented such that it conforms to the impene-
trability condition. In short, we see that the constraint (4.1.3) has the same effect as the Signorini
conditions (3.2.14) applicable at the contact surface during the mechanical resolution. For the
convenience of following-up, we rewrite the existing velocity contact constraint below:

∀k ∈ Γc h , ~vk ·~ntool
k ≤ 0 (4.1.4)

It is seen that the two constraints are different in the following manner:

1. The Signorini condition is described with the tool normal ~ntool , whereas the free-surface
contact condition is described with the mesh normal ~n

2. The second difference between the two is the type of weak form used. In the former, the
constraint is applied in a nodal form whereas in the latter a weighted residual form or the
integral form is applied.

The contact conditions for both the mechanical resolution and free-surface computation must
complement each other in order to obtain a robust fixed-point algorithm. However, this is not the
case with the existing formulation as it is observed that the intuitively found Signorini constraint
is not consistent with the contact condition from the free-surface correction.

4.2 Consistent contact coupling

It is hypothesized that the problem observed with instabilities in the solution with the existing
steady-state algorithm is because of the inconsistent description of the constraints on the contact
surface in the two steps of the algorithm. Thus, the objective of this section is to find a way to im-
prove the consistency of the contact formulation for the steady-state algorithm. Following options
are envisaged for improving the formulation:

Option A

The easiest choice to improve the contact consistency is to use equation (4.1.3) as the contact
constraint for mechanical resolution. Hence, the corresponding penalty functional in equation
(3.2.25a) is updated with the new constraint, and we compute the unknown velocity field from the
corresponding residual.

min~v
(
Φp

′
(~v)

)
, Φp (~v) =Φ (~v)+ 1

2
ρ(1)

c

∑
k∈Γc ,h

[∫
Γc ,h

NSUPG
k (~v ·~n (x))d sh

]+2

(4.2.1)

The residual is found with the minimization of the functional Φp and discretized to resolve the
mechanical problem with the FE method to find the unknown velocity field. Here we assume that
the derivative of the normal with the velocity d~n/d~v = 0 due to the fixed-point assumption.

Φp
′
(~v) =Φ′

(~v)+ρ(1)
c

∑
k∈Γc ,h

[∫
Γc ,h

NSUPG
k (~v ·~n (x))d sh

]+ (∫
Γc ,h

NSUPG
k

(
d~v

d~v l
·~n (x)

)
d sh

)
(4.2.2)

The integral term is written with Finite element discretization as equation (4.2.3a). However, this
residual consists of the product of two mass matrices ~Ukm ×~Ukm each containing the term ~Ukm ,
each term defined with equation (4.2.3b). This product results in doubling of the mass matrix
bandwidth, which poses a problem with its resolution in ForgeNxt®solver as such a term cannot
be accepted in the discretized system. Thus, this option remains impracticable from the imple-
mentation point of view.

∀k ∈ Γh ,
∫
Γh

NSUPG
k (~v ·~n (x))d s = ∑

m∈¶k

~vm ·~Ukm (4.2.3a)

~Ukm (~x) =
∫
Γh

NSUPG
k Nm~n (x)d sh (4.2.3b)
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Option B

In another possibility, we derive a nodal form of the contact constraint from the free-surface equa-
tion by invoking an operation called the nodal condensation. This option is of primary interest for
improving the contact coupling while keeping its implementation practicable. The derivation of
the constraint is discussed in the following section 4.3.

4.3 Description of the nodal form of free-surface equation

The first step for finding a consistent contact formulation is to derive the nodal form of the free-
surface equation.

4.3.1 Nodal condensation SUPG-NC

The Finite Element discretization of the integral form of the free-surface equation (4.2.3a) is in-
voked. We apply the nodal condensation to the matrix ~Ukm that entails the summation of the
extra-diagonal terms to its diagonal as shown in equation (4.3.1a). The resultant vector ~Ukk (~x) is
described with equation (4.3.1b). Here, ~̃uk is a surface normal average computed at the node k
shared by a patch of elements ¶k . However, this average is done using an upwind-biased SUPG
function, so we term this normal as the upwind normal.

~̃Ukm (~x) =

~Ukk (~x) =

∑
m

~Ukm if k = m

0 if k 6= m
(4.3.1a)

~Ukk (~x) = ~̃uk =
∫
Γh

NSUPG
k

∑
m

Nm︸ ︷︷ ︸
=1

~n (x)d sh =
∫
Γh

NSUPG
k ~n (x)d sh (4.3.1b)

∀k ∈ Γh ,
∫
Γh

NSUPG
k (~v ·~n (x))d s ≈~vk ·

∫
Γh

NSUPG
k ~n (x)d sh (4.3.1c)

Hence, after the nodal condensation, the integral form of the free surface residual can be re-
placed with the nodal form represented in equation (4.3.1c). The objective of this approximation
is to replace the integral form in equation (3.3.3a) with the nodal form. This leads to a free surface
residual in nodal form which becomes consistent with the nodal form used as the velocity contact
constraint (4.1.4). Hence, the updated nodal free-surface residual S̃k becomes:

∀k ∈ Γh , S̃k (~v , t ) =~vk · ~̃uk (~x)+ρ(2)
c sk [~ (t k )]+ ~d k ·~ntool

k = 0 (4.3.2)

4.3.2 2-DoF form of nodal free-surface equation (SUPG-NC-dif)

For the geometries with singularities like edges, we describe the 2-dof form of the nodal free-
surface equation as following:

∀k ∈ Γed g e , j = 1,2 S̃k
[ j]

(
~v , t [ j]

)
=~vk · ~̃uk

[ j] (~x)+ρ(2)
c sk [~ (t k )]+ ~d [ j] ·~ntool

k = 0 (4.3.3)

Here ~̃uk
[ j] is the upwind normal defined at node k on the edge in the direction ~d [ j]. For an

edge, only two directions j = 1,2 are envisaged. This formulation is referred to as SUPG-NC-dif.

4.3.3 Optimization of SUPG stabilization term α

As described previously in the Section 2.3.5, the SUPG stabilization coefficient α must be chosen
between [0,1]. For 1D SUPG elements, the coefficient is generally chosen as α= 1/2. However, in
general practice, even with higher dimension elements, the coefficient α is chosen to be 1/2. This
choice is however arbitrary and can prove to be nonsensical while used with 2D elements. In this
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section, we highlight the problems related to the choice of α= 1/2 for 2D elements, which become
significant with the nodal condensation. A technique to find the optimum value for α for a given
dimension is hence presented. [1] remarks that the SUPG elements must conform to two main
conditions: 

∑
k

NSUPG
k = 1

w f
k =

∫
f

NSUPG
k dξ≥ 0

(4.3.4)

The first condition represents that the total sum of shape functions in an element must be 1 and
the second condition states that the weights computed for interpolation must always be non-
negative. It can be easily verified that the 1D-SUPG elements with α= 1/2 comply with the above-
mentioned conditions in equation (4.3.4), as the SUPG stabilization coefficient must be 0 < α≤ 1/2
as found in equation (4.3.5).

in 1D: w f
k =

∫
f

Nk dξ︸ ︷︷ ︸
1/2

+α
∫

f
Ck dξ︸ ︷︷ ︸

[−1,1]

≥ 0; ⇒ α≤ 1

2
(4.3.5)

Thus, for 1D elements (see Figure 4.3.1), α = 1/2 results in weight w f
k = 0 for the downwind ele-

ments, and w f
k = 1 for the upwind elements. A value α > 1/2 would result in negative weightage

to the downwind elements, which would contradict the second condition. With α= 0, we retrieve
only the Galerkin part in the NSUPG

k function (see equation (3.3.3b)), hence the numerical stabi-
lization is lost.

(a) Pictorial representation of
weightage distribution for 1D-
SUPG element in the upwind and
downwind direction (b) Inverted upwind normal with α= 1/2 with 2D mesh

Figure 4.3.1: Finding an optimized value for the SUPG stabilization coefficient

On the application of the same conditions to the 2D-SUPG surface elements, as used with the
free surface computation, the conditions in equation (4.3.5) suggest that the SUPG stabilization
coefficient must be 0 < α≤ 1

3 .

in 2D: w f
k =

∫
f

Nk dξdη︸ ︷︷ ︸
1/6

+α
∫

f
Ck dξdη︸ ︷︷ ︸
[−1,1]

≥ 0; ⇒ α≤ 1

3
(4.3.6)

With the value α = 1
2 used in ForgeNxt®2016, the second condition is violated and if the same

value is used for computing the upwind normal, may result in the inversion of the ~̃uk as shown in
Figure 4.3.1b. It is thus recommended to use α = 1

3 for 2D-SUPG elements, especially with nodal
condensation.

4.3.4 Free-surface boundary condition for the symmetry plane nodes

The correction t must always be computed in the direction normal to the surface at the symmetry
plane, and hence the component in the direction normal to the symmetry plane ~ns ym is nullified.
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Thus the upwind normal at the symmetry plane is found as following:

∀k ∈ Γs ym , ~̃uk
′ = ~̃uk −

(
~̃uk ·~ns ym

k

)
~ns ym (4.3.7)

With the projection, the nodal form of the free-surface correction residual (see
equation (4.3.8)) remains the same due to the condition (3.2.11).

∀k ∈ Γs ym , ~vk · ~̃uk
′ =~vk · ~̃uk −

(
~̃uk ·~ns ym

k

)
~vk ·~ns ym

k︸ ︷︷ ︸
=0

=~vk · ~̃uk (4.3.8)

4.4 Test of new free-surface formulation with analytical test-cases

In this section, the proposed nodal form of the free surface equation (4.3.3) is compared with the
integral form of the free-surface equation in (3.3.3a). For doing so, various analytical functions are
imposed on a sheet, a cylinder and a square tube to deform their shape and predicted using the
free surface condition imposed by the weak form. These cases are adopted from the work of [2].
The shape prediction from the nodal form of the free-surface equation is compared using both
scalar (for sheet and cylinder) and vector forms (for square tube). It is to be noted that with the
analytical tests, only free surface conditions are applied and there is no contact, hence, the penalty
term is zero. The impact of SUPG stabilization coefficient α on the solution accuracy is also tested.

4.4.1 Principle of the analytical test-case

(a) y = f (x) is an analytical function, with~x(i+1) represent-
ing the position vectors of nodes on the surface of the curve

(b) Find velocity field from the derivative of analytical func-
tion

(c) Impose the velocity field from 4.4.1b on another geome-
try having identical nodes with position vectors~x(i )

(d) Compute numerical correction field~t from free-surface
correction and compute~x(i+1) =~x(i ) +~t

Figure 4.4.1: Principle of analytical test for free-surface correction

In order to compare the proposed formulations, we test them to predict analytical surface flows.
The principle of the analytical test is to deform a 2D sheet or a 3D tube by a predefined analytical
function y = f (x, z) as shown in Figure 4.4.1a. The tangent at each point on the deformed sheet
defines the velocity field (see Figure 4.4.1b) as the surface verifies the streamline conditions. If
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this velocity field is imposed on an undeformed geometry (see Figure 4.4.1c) and then resolved
using the weak form of the free-surface equation, the undeformed shape must comply to the free-
surface conditions which are equivalent to the streamline conditions. Hence it finds the original
shape from the velocities from the numerical resolution. The numerical solution of the function
yk is computed from the correction field ~d as shown in Figure 4.4.1d.

4.4.2 Description of the analytical tests

Three different geometries have been tested, as shown in the Table 4.4.1. On these geometries,
analytical Gaussian, Sinusoidal and Quadratic functions are applied as deformations.

S.No. Geometry Analytical function

1. 2D Flat sheet
Gauss

Sinusoidal

2. 3D Cylinder tube
Quadratic
Sinusoidal

3. 3D Square tube
Quadratic
Sinusoidal

Table 4.4.1: Different analytical test functions tested with free-surface formulation

The nodal form of the free-surface equation uses SUPG function as developed in (4.3.3) and its
solution is represented with the acronym SUPG-NC. The integral form uses LS-SUPG and SUPG
test functions. For the SUPG shape functions,the coefficient α= 1/2, 1/3 are tested.

The numerical solution computed with each of these methods are compared with the ana-
lytical solution for (i) the relative L∞ and L2 error norms from equation (4.4.1) (ii) the relative L2

error convergence with mesh refinement. In the said equation, t h
k and t a

k represent the respective
numerical and analytical correction computed with a chosen mesh size.

L∞ =
maxk

∣∣∣t h
k − t a

k

∣∣∣
maxk

∣∣∣t a
k

∣∣∣ L2 =

√∑
k

(
t h

k − t a
k

)2

√∑
k

(
t a

k

)2
(4.4.1)

4.4.3 Test problems with flat sheet

The first test is done with two analytical functions (i) Gauss (ii) Sinusoidal. Both these functions
are applied as a deformation on a 2D rectangular sheet of dimension 100mm x 10mm. For this
test, only a scalar correction is required in the direction normal to the surface.

4.4.3.1 Gauss deformation

A Gaussian deformation (equation (4.4.2)) is applied on the rectangular sheet as shown in Figure
4.4.2. The numerical solution to the corrections are computed with four different mesh sizes for
mesh convergence study. The L∞ and L2 relative errors with each of the mesh sizes are tabulated
in Table 4.4.2. The error convergences are also plotted in Figure 4.4.3.

z = 5exp

(
−

(
x −40

10

)2)
(4.4.2)

From the convergence plots in the Figure 4.4.3, we observe that all the tested formulations, in-
cluding the new nodal formulation (SUPG-NC), are convergent. In general the L2 error is lower for
SUPG and LS-SUPG formulations than the L∞ error except for the SUPG-NC formulation. This is
because, with the integral form, the error is only concentrated in few elements, but with the nodal
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form, the error is large at large slopes, which is a sizable part of the sheet. The solution accuracy is
the best with the SUPG function with the integral formulation and the worst with SUPG-NC. The
SUPG stabilization coefficient α= 1/3 results is better accuracy in comparison to α= 1/2, and this
difference is much more significant for SUPG-NC method. It is also noticed that error convergence
rate is lower with the SUPG-NC formulation in comparison to the SUPG integral formulation.

Figure 4.4.2: Gauss analytical functions tested on 2D sheet

Nodes → 1900 6000 16000 26000
Method α L∞ L2 L∞ L2 L∞ L2 L∞ L2

SUPG
1/2 0.28 0.12 0.08 0.03 0.05 0.01 0.02 0.01
1/3 0.25 0.11 0.07 0.03 0.04 0.01 0.02 0.01

SUPG-NC
1/2 3.34 3.46 1.80 1.96 1.08 1.18 0.70 0.77
1/3 2.21 2.34 1.29 1.32 0.73 0.79 0.47 0.52

LS-SUPG 1.0 0.36 0.23 0.25 0.09 0.1 0.03 0.04 0.01

Table 4.4.2: Comparison of L2 and L∞ % errors for the Gauss function deformation on a 2D flat sheet shown
in Figure 4.4.2

(a) L∞ error convergence (b) L2 error convergence

Figure 4.4.3: h convergence for 2D Gauss function with different formulations for free-surface resolution

4.4.3.2 Sinusoidal deformation

Next, we apply a sinusoidal function (equation (4.4.3)) of varying amplitude in the flow x and
transverse z directions on the same 2D rectangular sheet. The analytical function is represented
in Figure 4.4.4a and is tested as well with the four different mesh sizes for mesh convergence study.
The L∞ and L2 relative errors are tabulated in Table 4.4.3 and the error convergences are plotted
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in Figure 4.4.5.

z = 0.05 x sin
(πx

5

)
sin

(πz

5

)
(4.4.3)

(a) Sinusoidal analytical functions tested on 2D sheet

(b) Problem with non-conformance of boundary with the SUPG-NC method

Figure 4.4.4: Sinusoidal analytical function and problems with SUPG-NC method

Nodes → 1900 6000 16000 26000
Method α L∞ L2 L∞ L2 L∞ L2 L∞ L2

SUPG
1/2 13.85 7.98 3.52 1.94 1.09 0.63 0.86 0.30
1/3 14.18 7.81 2.99 1.82 0.93 0.60 0.72 0.27

SUPG-NC
1/2 46.45 31.16 18.39 14.51 9.52 7.97 5.8 5.14
1/3 51.59 26.6 16.8 11.13 7.65 5.7 5.48 3.6

LS-SUPG 1.0 18.65 14.53 10.24 4.94 6.69 1.99 3.43 0.89

Table 4.4.3: Comparison of L2 and L∞ % errors for the sinusoidal function deformation on a 2D flat sheet
shown in Figure 4.4.4

(a) L∞ error convergence (b) L2 error convergence

Figure 4.4.5: h convergence for 2D Sinusoidal function with different formulations for free-surface resolu-
tion
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From the results, we observe that both errors are much larger in magnitude in comparison
to the Gauss function, especially with the nodal condensation SUPG-NC formulation. However,
the errors are seen to converge with mesh refinement. The SUPG method reassuringly proves to
be the best in terms of accuracy and α = 1/3 results in the improvement of accuracy, similar to
what was observed with the case of Gauss analytical function. It is observed that the SUPG-NC
method results in a larger error (i) at the locations with large slopes (ii) at edge boundaries where
the boundary conditions are not very well imposed for the free-surface computation condition
(see Figure 4.4.4b). The latter is not a big problem in the ForgeNxt®2016 algorithm as the boundary
conditions are well imposed in the mechanical problem, which do not permit this phenomenon.

4.4.4 Test problems with 3D tubes

In this test, we deform two tubes of cylindrical and square shapes with two 3D analytical quadratic
and sinusoidal functions on each. In comparison to the previous test-case, the cylindrical tube
problem also requires only scalar free-surface correction (in 1D) but applied on a 3D geometry.
Thus it does not have the problem related to the non-conformance of the boundary condition at
the edge boundaries as seen with the 2D sheet. The 3D square tube is the test for the peformance
of 2-DoF or vector form of the free surface equation. The cylindrical tube has 1mm diameter
and the square tube has an edge length of 1mm. Both measure 3mm in length (in the direction
perpendicular to the cross-section of the tube). Three different meshes are tested for studying the
error convergence.

4.4.4.1 Quadratic function deformation

First we apply a quadratic deformation separately on the 3D cylinderical and square tubes (see
Figure 4.4.6) with the function represented in equation (4.4.4). The quadratic deformation results
in a trumpet formation.

r = r0 +0.1x2 ⇒
y = y0 +0.1x2 y0p

y2
0+z2

0

z = z0 +0.1x2 z0p
y2

0+z2
0

(4.4.4)

(a) Test on 3D cylindrical tube (b) Test on 3D square tube

Figure 4.4.6: Quadratic analytical function tested on 3D cylindrical and square tubes

Cylindrical Tube (1-DoF correction)

The results for the cylindrical tube requires only scalar correction like the 2D rectangular sheet
cases. The relative errors are tabulated in Table 4.4.4 and the error convergences with the dif-
ferent formulations are plotted in Figure 4.4.7. It is observed that the relative errors with all the
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free-surface formulations are within 3%, even with the coarse mesh. The L∞ error converges con-
sistently with SUPG-NC as the mesh is refined, whereas the same is not true with the integral
formulation as a larger error is seen with 4000 nodes in comparison to the error with 2000 nodes.
However, the magnitude of the error with the fine mesh (4000 nodes) is still 10 times lesser than
the SUPG-NC form. α= 1/3 results in the improvement of accuracy as observed with the previous
cases.

Nodes → 2000 4000 10000
Method α L∞ L2 L∞ L2 L∞ L2

SUPG
1/2 0.38 0.25 0.4 0.15 0.17 0.08
1/3 0.37 0.24 0.37 0.14 0.17 0.08

SUPG-NC
1/2 2.42 2.68 1.86 2.01 1.11 1.18
1/3 1.74 1.77 1.29 1.34 0.82 0.78

LS-SUPG 1.0 0.41 0.25 0.62 0.26 0.23 0.1

Table 4.4.4: Comparison of L2 and L∞ % errors for the quadratic function deformation on a 3D cylindrical
tube shown in Figure 4.4.6a

(a) L∞ error convergence (b) L2 error convergence

Figure 4.4.7: h convergence for quadratic deformation on 3D Cylindrical tube tested with different free-
surface resolution formulations

Square Tube (2-DoF correction)

The square sectioned 3D tube consists of a an edge (geometric singularity) and thus requires the
vectorial formulation of the free-surface equation (both in the integral and the nodal form) to
be resolved to compute the free surface boundary at the edge. The SUPG-dif formulation, as con-
cluded by [2], results in an assured and faster convergence of the free surface solution. The relative
errors and their convergence with the different mesh sizes are presented in Table 4.4.5 and Figure
4.4.8.

Nodes → 458 1814 10866
Method α L∞ L2 L∞ L2 L∞ L2

SUPG
1/2 3.56 1.45 3.3 1.37 3.11 1.35
1/3 3.51 1.44 3.27 1.37 3.11 1.35

SUPG-NC
1/2 8.77 7.77 5.52 4.31 3.98 2.43
1/3 7.33 5.85 4.77 3.33 3.71 2.06

LS-SUPG 1.0 8.86 2.82 4.27 1.83 3.42 1.5

Table 4.4.5: Comparison of L2 and L∞ % errors for the quadratic function deformation on a 3D square tube
shown in Figure 4.4.6b
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(a) L∞ error convergence (b) L2 error convergence

Figure 4.4.8: h convergence for quadratic deformation on 3D square tube tested with different free-surface
resolution formulations

In general, the errors are much larger in magnitude with the singular geometry in comparison
to the previous cases with scalar corrections, but the difference of error between the best SUPG
and the worst SUPG-NC formulations reduces significantly, as the latter results in only 1.33 times
the error in comparison to the former with the finer mesh. The SUPG stabilization coefficient
α = 1/3 improves the accuracy, especially with SUPG-NC formulation as seen for the previous
cases and contrary to the previous cases, the L2 error is lesser in comparison to the L∞. We observe
a steep convergence of error with nodal formulation (SUPG-NC) in comparison to the integral
formulations (LS-SUPG and SUPG).

4.4.4.2 Sinusoidal function

Next a sinusoidal deformation described with the function in equation (4.4.5) is applied on the
cylindrical and square 3D tubes as shown in Figure 4.4.9a and Figure 4.4.9b respectively.

(a) Test on 3D cylindrical tube (b) Test on 3D square tube

Figure 4.4.9: Sinusoidal analytical function tested on 3D cylindrical and square tubes

r = r0 +0.1x2 ⇒
{

y = y0 + si n
(2π

L x
)

z = z0 + si n
(2π

L x
) (4.4.5)

Cylindrical tube (1-DoF correction)

Firstly, the results from the cylindrical tube are presented in Figure 4.4.10 and Table 4.4.6.
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Nodes → 2000 4000 10000
Method α L∞ L2 L∞ L2 L∞ L2

SUPG
1/2 3.27 1.29 3.77 1.47 3.34 1.33
1/3 3.21 1.31 3.84 1.46 3.39 1.34

SUPG-NC
1/2 14.64 11.37 11.4 8.68 6.62 5.34
1/3 10.07 7.7 7.7 5.88 4.66 3.72

LS-SUPG 1.0 4.13 1.54 3.86 1.53 3.78 1.37

Table 4.4.6: Comparison of L2 and L∞ % errors for the sinusoidal function deformation on a 3D cylindrical
tube shown in Figure 4.4.9a

(a) L∞ error convergence (b) L2 error convergence

Figure 4.4.10: h convergence for sinusoidal deformation on 3D cylindrical tube tested with different free-
surface resolution formulations

The error convergence rate with the integral formulation is almost zero. The SUPG-NC formu-
lation, on the other hand, shows steeper convergence rate, but the magnitude of error with this
method is still higher in comparison to the integral formulations. The magnitude of error reduces
with α= 1/3.

Square tube (2-DoF correction)

Lastly, the sinusoidal function is applied on the square tube as shown in Figure 4.4.9b. The error
results are presented in Table 4.4.7 and the error convergences are plotted in Figure 4.4.11.

Nodes → 458 1814 10866
Method α L∞ L2 L∞ L2 L∞ L2

SUPG
1/2 15.37 4.66 14.69 2.01 9.28 0.59
1/3 14.3 4.2 14 1.89 8.99 0.55

SUPG-NC
1/2 37.64 29.61 17.72 14.48 9.32 5.67
1/3 24.63 20.19 14.12 9.86 8.98 3.82

LS-SUPG 1.0 26.74 7.26 17.23 3.82 8.3 1.11

Table 4.4.7: Comparison of L2 and L∞ % errors for the sinusoidal function deformation on a 3D square tube
shown in Figure 4.4.10b
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(a) L∞ error convergence (b) L2 error convergence

Figure 4.4.11: h convergence for sinusoidal deformation on 3D square tube tested with different free-
surface resolution formulations

Most of the observations in the previous tests are re-established except for the fact that the L2

error with the SUPG-NC is lesser in comparison to the L∞ error. The rate of convergence of L2

error is similar with all the formulations.

4.4.5 Conclusions from analytical test-cases

The conclusions from the results from the analytical test problems discussed in Section 4.4.3 and
Section 4.4.4 are highlighted below.

1. Error convergence: For all the presented free-surface formulations in the integral form
(with LS-SUPG, SUPG test functions) and nodal form (SUPG-NC) the relative errors are con-
vergent for most of the cases. The error convergence rate for the method is found to be prob-
lem dependent, for example SUPG and LS-SUPG methods converge better than SUPG-NC
formulations for the 1-DoF correction case, whereas for the 2-DoF case the convergence-
rate for SUPG-NC is similar or better than the SUPG and/or LS-SUPG functions.

2. Accuracy: For the 2D or 3D test-cases, the integral formulation with SUPG test function
is undoubtedly the most accurate method for computing the free-surface flows. The nodal
form of the free-surface equation (SUPG-NC) is the worst in terms of the accuracy of the
solution.

3. SUPG Stabilization coefficient (α): The SUPG stabilization factor α = 1/3 results in better
accuracy in comparison to the α = 1/2 especially with SUPG-NC formulation. For the in-
tegral formulation with SUPG test function, there is no or minor improvement of accuracy
with this change. Nonetheless, it has no effect on the rate of the convergence.

4. From the results, we conclude that the integral formulation with SUPG function is both
convergent and more accurate in comparison to the other formulations tested. It is thus
very important to conserve this method for free surfaced computation. On the other
hand, SUPG-NC form of the free surface equation, even though less accurate results in
error reduction with mesh refinement. This form of the equation is absolutely necessary
for finding a consistent contact condition for the mechanical problem, which is discussed
in the next Section 4.5. It is also to be pointed out that the errors are reduced signifi-
cantly with dense meshes, which is generally the case for the contact region. The choice
of α= 1/3 further improves the accuracy of the solution.
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4.5 Updated contact coupling

In continuation to the presentation of nodal condensation technique in the Section 4.2, we look
to find a consistent nodal contact constraint for the mechanical problem, similar to the existing
one in the equation (4.1.4). The new nodal constraint is derived from the nodal form of the free-
surface equation (4.3.2). To do so, we use the same analysis for the contact surface nodes k, as
explained in Section 4.1. For the contact node, the penalty term is non-negative, hence results in
the condition (4.5.1a).

∀k ∈ Γc h ~vk · ˆ̃uk (~x) ≤ 0 with ˆ̃uk = ~̃uk /|~̃uk | (4.5.1a)

Φp
′
(~v) =Φ′

(~v)+ρ(1)
c sk

[
~vk · ˆ̃uk (~x)

]+ ˆ̃uk (~x) (4.5.1b)

The equation (4.5.1a) represents the constraint on the normal velocity which must be verified on
the contact nodes in the mechanical resolution. Hence, for a node which remains on the contact
surface must have zero normal velocity, and the one leaving the contact would find a negative nor-
mal velocity. For the latter, the free surface must be corrected to verify the free surface condition
(zero normal velocity) in the Step-2 of the algorithm. In conclusion, it is not wrong to say that
ideally we apply free surface conditions on the complete boundary whether or not in contact. The
derived contact condition is a unilateral constraint on the normal velocity at the contact surface
Γc

(1) computed in the Step-2 of the previous fixed-point iteration (non-initialization case). It is to
be noted here that we apply the constraint on the normal velocity computed using the unit upwind
normal ˆ̃uk instead of the tool normal ~ntool in the existing formulation (4.1.4). The unilateral con-
dition is applied with the penalty method, and the associated penalty functional is used to enrich
the mechanical functional Φ. The resolution of the velocity aims to minimize the functional Φp in
the equation (4.5.1b). The velocity field computed in the mechanical resolution is used to update
the Lagrangian multiplier λ̃k from the normal velocity as represented in the equation (4.5.2a).

λ̃k =−ρ(1)
c sk

[
~vk · ˆ̃uk (~x)

]+
(4.5.2a)

Γc
(2) = {

k ∈ Γ, λ̃k < 0
}

(4.5.2b)

The updated Lagrangian multiplier is used to update the contact surfaceΓc
(2) with equation (4.5.2b).

A node k is added to the contact surface Γc
(2) if the λ̃k < 0 and allowed to leave the contact if λ̃k = 0.

The new contact surface, like in the existing algorithm, is used in free surface computation where
bilateral contact conditions are applied during the surface correction.

4.5.1 Explicit form of contact constraint

As mentioned, the new contact constraint in equation (4.5.1a) is described on the normal velocity,
and the surface normal used in the formulation is computed on the ~x(i ) configuration computed
after the free-surface computation step of the previous fixed-point iteration i. Hence, the contact
constraint is explicit:

∀k ∈ Γc
(1) h (~vk ) =~vk · ˆ̃uk

(
~x(i )

)
≤ 0 (4.5.3)

For the implementation of this contact condition, we must only replace the tool normal~ntool used
in the existing formulation with the unit upwind normal ˆ̃uk . The upwind normal is computed as
following.

∀k ∈ Γc ,h ~̃uk

(
~x(i )

)
=

∫
Γc ,h

NSUPG
k ~n

(
~x(i )

)
d s = ∑

f ∈¶k

∫
f

NSUPG
k ~n f

(
~x(i )

)
d s f (4.5.4a)

~n f
(
~x(i )

)
= ~u f

(
~x(i )

)
|~u f

(
~x(i )

) | (4.5.4b)

In the above formulation, ~n f is the unit surface normal of the facet element f found from the
normalization of the surface normal ~u f (see equation (4.5.4b)). The surface normal is computed
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from the reference coordinates
(
ξ,η

)
of the element using equation (4.5.5), with d s f being the

surface area of the element.

~u f
(
~x(i )

)
= ∂~x(i )

∂ξ
× ∂~x(i )

∂η
; ~x(i ) =∑

m
Nm~x

(i )
m (4.5.5a)

d s f = |~u f (x) |dξdη (4.5.5b)

Explicit contact constraint with geometric singularities

In the case of geometries with singularities (like edges), the new contact formulation must as well
be derived conforming to the 2-DoF free-surface formulation. In order to do so, we use the SUPG-
NC-dif nodal form in equation (4.3.3). For the treatment of contact, we assume that the system(
~d [1]

k , ~d [2]
k

)
is orthogonal, saying that:

~d [1]
k · ~d [2]

k = 0 (4.5.6)

We now assume a change of reference to (n̂,m̂) where n̂ is a vector in the direction of the tool
normal ~ntool and m̂ is the complementary vector of the basis in the plane perpendicular to the
principal flow direction. The position vectors of a node k ∈ Γed g e can be written in the new basis
as: (

~x[n̂]
k

~x[m̂]
k

)
=

(
cos θk sin θk

−sin θk cos θk

)(
~x[1]

k
~x[2]

k

)
(4.5.7)

In the equation above θk is the angle between ~ntool
k and ~d [1]

k . Hence, from the relation (4.5.6), we
can state that: {

~d [1]
k ·~ntool

k = ~d [2]
k ·m̂k = cos θ

~d [2]
k ·~ntool

k = ~d [1]
k ·m̂k = sin θ

(4.5.8)

Subsequently, we describe the residuals S̃k
[1], S̃k

[2] from (4.3.5) in the new reference frame (n̂,m̂)
with the following operation:(

S̃k
[n̂]

S̃k
[m̂]

)
=

(
~d [1]

k ·~ntool
k

~d [2]
k ·~ntool

k
−~d [2]

k ·~ntool
k

~d [1]
k ·~ntool

k

)(
S̃k

[1]

S̃k
[2]

)
(4.5.9)

From equations (4.3.3) and (4.5.9), we find the residuals in the new frame of reference given as
S̃k

[n̂] and S̃k
[m̂] and represented with the relation (4.5.10a). When a node k ∈ Γed g e is in contact,

the penalty constraint in the equation (4.5.10a) is active, meaning ρ(2)
c sk [~ (tk )]+ ≥ 0 and hence we

find the inequality (4.5.10b). Thus, for such a node k ∈ Γed g e ∩Γc , we impose this inequality as the
contact constraint for the velocity computation.

∀k ∈ Γed g e

S̃k
[n̂] =~vk · ~̃uk

[1]
(
~x(i )

)(
~d [1]

k ·~ntool
k

)
+~vk · ~̃uk

[2]
(
~x(i )

)(
~d [2]

k ·~ntool
k

)
· · ·

· · ·+ρ(2)
c sk [~ (t k )]+

(
~d [1]

k ·~ntool
k

)2 +
(
~d [2]

k ·~ntool
k

)2

︸ ︷︷ ︸
=1

= 0 (4.5.10a)

∀k ∈ Γed g e ∩Γc ~vk · ~̃uk
[1]

(
~x(i )

)(
~d [1]

k ·~ntool
k

)
+~vk · ~̃uk

[2]
(
~x(i )

)(
~d [2]

k ·~ntool
k

)
≤ 0 (4.5.10b)

The residual in direction m̂ is given with the relation (4.5.11a), which can be simplified with the
equation (4.5.11b).

S̃k
[m̂] =~vk · ~̃uk

[1]
(
~x(i )

)(
−~d [2]

k ·~ntool
k

)
+~vk · ~̃uk

[2]
(
~x(i )

)(
~d [1]

k ·~ntool
k

)
· · ·

· · ·+ρ(2)
c sk [~ (t k )]+

−(
~d [2]

k ·~ntool
k

)(
~d [1]

k ·~ntool
k

)
+

(
~d [1]

k ·~ntool
k

)(
~d [2]

k ·~ntool
k

)
︸ ︷︷ ︸

=0

= 0 (4.5.11a)
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~vk · ~̃uk
[1]

(
~x(i )

)(
~d [2]

k ·~ntool
k

)
=~vk · ~̃uk

[2]
(
~x(i )

)(
~d [1]

k ·~ntool
k

)
(4.5.11b)

In the case if ~d [1]
k · ~d [2]

k 6= 0, the residual in n̂ is written as (4.5.12). When in contact, as the sum
of squares is a positive number, the term on the right is non-negative. Thus, we again retrieve the
inequality (4.5.10b).

S̃[n̂] =~vk · ~̃uk
[1]

(
~x(i )

)(
~d [1]

k ·~ntool
k

)
+~vk · ~̃uk

[2]
(
~x(i )

)(
~d [2]

k ·~ntool
k

)
· · ·

· · ·+ρ(2)
c sk [~ (t k )]+

(
~d [1]

k ·~ntool
k

)2 +
(
~d [2]

k ·~ntool
k

)2

︸ ︷︷ ︸
∈[0,1]


︸ ︷︷ ︸

≥0

= 0 (4.5.12)

It can also be noted that the constraint (4.5.10b) in the explicit form can be written as the scalar
product of ~vk and ~̃uk

(
~x(i )

)
, with the latter being the weighted average of the respective upwind

normal components in the directions ~d [1]
k and ~d [2]

k . Hence, we can represent the explicit contact
constrain in a generalized manner as in equation (4.5.2a).

h (~vk ) =~vk · ˆ̃uk

(
~x(i )

)
≤ 0 (4.5.13a)

ˆ̃uk

(
~x(i )

)
=

~̃uk
[1]

(
~x(i )

)
|~̃uk

[1]
(
~x(i )

) |
(
~d [1]

k ·~ntool
k

)
+

~̃uk
[2]

(
~x(i )

)
|~̃uk

[2]
(
~x(i )

) |
(
~d [2]

k ·~ntool
k

)
(4.5.13b)

Updated contact hessian in mechanical description

The updated contact hessian matrix can be derived with the derivative of the functional in (4.5.1b)
w.r.t. velocity.

∀k ∈ Γ(2)
c , î , ĵ ∈ [1,3] Hk,î ,k, ĵ (~v) = ρ(1)

c sk

{
ũk,î ⊗ ũk, ĵ if h (~vk ) > 0

0 otherwise
(4.5.14)

The parallel order implementation of the explicit constraint is easy. The upwind normal and
the facet surface area are firstly computed at each node of the triangular facet of the parti-
tioned mesh by individual processor and summed. Each processor then sends its individual
contributions of the summed upwind normal computed in each mesh partition to the root pro-
cessor for summation of the contributions at the interface nodes. The updated sum is then
communicated back to the non root processors. After communicating, the upwind normals are
normalized.

4.5.2 Implicit form of contact constraint

An implicit form of the consistent contact constraint is possible with the prediction of the current
configuration ~x(i+1) before it is actually computed in the free surface computation. In the incre-
mental formulation, an implicit contact constraint is imposed (2.3.17) which ensures the velocity
field complies with the impenetrability condition on the current configuration. Similarly, the aim
of the present section is to derive an implicit contact condition for the steady-state formulation.
Hence, the computed velocity field is found on the current configuration. In the existing formula-
tion, the impenetrability condition in the free surface computation (3.3.2b) represents an implicit
contact constraint defined on the current configuration. To obtain an implicit constraint in veloc-
ity, this condition must be used as the starting point, and we must be able to describe the velocity
in terms of correction. However, these two are strongly coupled in the free surface equation. So
we must first decouple the velocity ~v and correction~t fields. For doing so, we invoke the nodal
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form of free-surface equation (4.3.2) without the penalty constraint. The free-surface condition is
an implicit equation as the upwind normal ~̃uk is described on the current configuration~x(i+1).

∀k ∈ Γh , ~vk · ~̃uk

(
~x(i+1)

)
= 0 (4.5.15)

Using Taylor’s expansion, we can write the upwind normal ~̃uk
(
~x(i+1)

)
as following:

∀k ∈ Γh , ~̃uk

(
~x(i+1)

)
= ~̃uk

(
~x(i )

)
+ d~̃uk

d t
t + d 2~̃uk

d 2t

t 2

2
· · ·︸ ︷︷ ︸

δ~̃uk

(4.5.16)

Here we simplify by assuming only a linear dependence of the upwind normal on the correction
field t and neglecting the higher order terms. Hence, we find the change in upwind normal δ~̃uk as
following:

δ~̃uk = ∑
l̂∈Pk

D~̃ukl̂ t (i+1)
l̂

= 0 where D~̃ukl̂ =
∂~̃uk

∂tl̂

(4.5.17)

In the above description l̂ is the index of nodes in the patch ¶k of surface elements around node
k as shown in Figure 4.5.1. Next we replace the implicitly defined upwind normal ~̃uk

(
~x(i+1)

)
in

the equation (4.5.15) with the linearized form obtained from (4.5.16) and (4.5.17) and find the
following relation:

∀k ∈ Γh , ~vk · ~̃uk

(
~x(i )

)
+~vk ·

∑
l̂∈Pk

D~̃ukl̂ t (i+1)
l̂

= 0 (4.5.18)

Figure 4.5.1: Location of node l for implicit formulation on 3D (surface) mesh

The equation (4.5.18) is still strongly coupled in shape (correction field) and velocity even after
nodal condensation. It is quintessential to decouple velocity and shape to find an explicit relation
between the two for finding the implicit contact constraint. We can decouple the fields using either
of the following ideas:

1. Apply a second order nodal condensation of the matrix D~̃ukl̂ to find the vector D~̃ukk defined
for each node of the mesh

2. Assume a single node dependency for the normal gradient matrix D~̃ukl̂ on the node l in
order to reduce the matrix to a unitary rank D~̃ukl .

It is to be impressed to the reader that the nodal condensation of the matrix D~̃ukl̂ leads to the loss
of implicitness (see further in this section), so, we choose the latter. The single dependency node
with index l is chosen such that it is found upwind to, and preferably on the same streamline as,
node k (see Figure 4.5.1). On the element patch ¶k , we can algebraically find l as:

∀k ∈ Γc , l =
{

l̂ ∈ ¶k such that minl̂

(
~vk ·~xkl̂

|~vk ||~xkl̂ |
)

(4.5.19)
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This choice for l results in the nodal free-surface equation (4.5.18) which is similar to backward
integration with the streamline approach. This is also consistent with the choice of SUPG func-
tion used for the free-surface resolution, which gives higher weightage to the upwind element.
With this choice, we can describe the nodal form of free-surface correction equation with single
dependency as following.

∀k ∈ Γ and l from (4.5.19), ~vk · ~̃uk

(
~x(i )

)
+~vk ·D~̃ukl t (i+1)

l = 0 (4.5.20a)

⇒∀k ∈ Γ and l from (4.5.19), t (i+1)
l = ~vk · ~̃uk

(
~x(i )

)
−~vk ·D~̃ukl

(4.5.20b)

The new assumption (single dependency) enables us to separate the velocity and shape correction
fields and hence describe the correction field t l as an explicit relation in velocity as represented in
the equation (4.5.20b). It can be verified here that the denominator term ~vk ·D~̃ukl < 0.

Implicit contact condition

From the material impenetrability condition in equation (3.3.2b),the correction t l respect the im-
penetrability condition (4.5.21a). Next we replace the correction t l defined explicitly in velocity
in the equation (4.5.20b) into the impenetrability condition (4.5.21a). This results in the implicit
constraint on velocity that we are looking for.

l from (4.5.19), δl ≥ 0 ⇒ ~ (tl ) = tl
~d l ·~ntool

l −δl

(
~x(i )

)
≥ 0 (4.5.21a)

∀k ∈ Γc and l from (4.5.19), ~vk · ~̃uk

(
~x(i )

)
− δl

(
~x(i )

)
~d l ·~ntool

l

(−~vk ·D~̃ukl
)≤ 0 (4.5.21b)

It can be clearly seen that in the implicit contact constraint in (4.5.21b), the term on the right gives
the implicit character to the constraint. Since l is ideally on the same streamline as k due to the
upwind definition, and that we are in the context of steady-state, l represents the state of node k
before coming in contact with the tool. This is why the impenetrability condition (4.5.21a) at the
node l leads to an implicit contact constraint. Had we chosen lumping/nodal condensation of the
matrix D~̃ukl̂ → D~̃ukk , instead of dependency on l while arriving at the transformation in (4.5.20a)
from (4.5.18), there would be no implicitness in the contact constraint, as the term on the right in
equation (4.5.21b) would become zero (δk = 0 for k ∈ Γc ). From (4.5.21b) we can also infer that for
each contact node k, whose dependency node l is also in contact (δl = 0), the implicit character
of the constraint is lost (see Figure 4.5.2a). This is true for the nodes of the workpiece inside the
tool surface including the contact exit edge. The implicit constraint is hence active only on the
nodes whose dependency nodes l are not in contact with the tool (see Figure 4.5.2b) and targets
principally the first contact line on the workpiece free-surface, which is generally the region that
contributes to the contact instability and the observed problem in the existing formulation.

(a) Explicit contact constraint for δl = 0 (b) Implicit contact constraint for δl > 0

Figure 4.5.2: Implementation of Implicit contact constraint
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One can also identify the similarity between the steady-state implicit contact constraint (4.5.21b)
and the contact constraint for incremental formulation in (2.3.17). We rewrite the contact condi-
tion in incremental form for ease of referring.

∀k ∈ Γc ,
(
~v t

k −~v tool
k

)
·~ntool

k −
δt

k

∆t
≤ 0 (4.5.22)

In the steady-state formulation, since there is no time, we have the representation of time with the

pseudo time-increment ∆t̃ ≈ (−~vk ·D~̃ukl
)−1

. Thus, the inequality (4.5.21b) holds true as long as
~vk ·D~̃ukl < 0.

Implicit contact constraint with geometric singularities

The implicit contact constraint must as well be found for singular geometries. We can do so in
a manner similar to the explicit form of the contact constraint (4.5.13a), and we use the same
process as done for finding the scalar form of the implicit contact constraint. The starting point of
finding the constraint is the 2-DoF nodal form of the free-surface equation (4.3.3), but we do not
take into account the penalty term:

∀k ∈ Γed g e

{
~vk · ~̃uk

[1] (~x) = 0

~vk · ~̃uk
[2] (~x) = 0

(4.5.23)

The respective upwind normals ~̃uk
[1] and ~̃uk

[2] can be linearized, similar to the scalar equation
(4.5.18) as following:

∀k ∈ Γed g e

{
~̃uk

[1]
(
~x(i+1)

) = ~̃uk
(
~x(i )

)+∑
l̂∈Pk

D~̃u[1]
kl̂

t [1](i+1)
l̂

where D~̃u[1]
kl̂

= ∂~̃uk
[1]/∂t [1]

l̂
~̃uk

[2]
(
~x(i+1)

) = ~̃uk
[2]

(
~x(i )

)+∑
l̂∈Pk

D~̃u[2]
kl̂

t [2](i+1)
l̂

where D~̃u[2]
kl̂

= ∂~̃uk
[2]/∂t [2]

l̂
(4.5.24)

As done for the scalar form, we invoke the single dependency to the upwind node l , which is likely

an edge node with two correction components
(
t [1]

l , t [2]
l

)
:

∀k ∈ Γed g e

{
~̃uk

[1]
(
~x(i+1)

) ≈ ~̃uk
(
~x(i )

)+D~̃u[1]
kl t [1](i+1)

l
~̃uk

[2]
(
~x(i+1)

) ≈ ~̃uk
(
~x(i )

)+D~̃u[2]
kl t [2](i+1)

l

(4.5.25)

It is also impressed here that only a unique upwind node l is possible for the edge node k in both

the directions. So, we can compute
(
t [1]

l , t [2]
l

)
from the free-surface equation (4.5.25) and linearized

definition of upwind normals in (4.5.27):

∀k ∈ Γed g e t [1](i+1)
l = ~vk · ~̃uk

[1]
(
~x(i )

)
−~vk ·D~̃u[1]

kl

(4.5.26a)

∀k ∈ Γed g e t [2](i+1)
l = ~vk · ~̃uk

[2]
(
~x(i )

)
−~vk ·D~̃u[2]

kl

(4.5.26b)

Thus the impenetrability constraint at the node l ∈ Γed g e is written using equations (3.3.1) and
(3.3.2b) as following: (

t [1]
l
~d [1]

l + t [2]
l
~d [2]

l

)
·~ntool

l −δl ≤ 0 (4.5.27)

Using the definition of
(
t [1]

l , t [2]
l

)
from (4.5.26) and the impenetrability constraint at node l in equa-

tion (4.5.27), we find the implicit contact constraint in the 2-DoF form as following:

~vk ·
(
~̃uk

[1]
(
~x(i )

) ~d [1]
l ·~ntool

l

−~vk ·D~̃u[1]
kl

+ ~̃uk
[2]

(
~x(i )

) ~d [2]
l ·~ntool

l

−~vk ·D~̃u[2]
kl

)
≤ δl (4.5.28)
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Implementation of implicit contact condition

For the implementation of the implicit contact constraint, we must ensure that its form is simi-
lar to the one described in equation (4.5.1a). Thus the normalized upwind normal must be used
such that the constraint is purely in velocity dimension. The condition (4.5.21) consists of two
principal terms: the explicit term ~̃uk → ˆ̃uk and the implicit term D ˆ̃ukl . We normalize the explicit
upwind normal as described in the equation (4.5.1a) and for the implicit part, we normalize it
with the equation (4.5.29a). The resultant normalized implicit constraint is given with the equa-
tion (4.5.21b).

D ˆ̃ukl =
∂ ˆ̃uk (~x)

∂tl
= D~̃ukl −

~̃uk (~x)

|~̃uk (~x) |

( ~̃uk (~x)

|~̃uk (~x) | ·D~̃ukl

)
(4.5.29a)

∀k ∈ Γc and l from (4.5.21), h (~vk ) =~vk · ˆ̃uk

(
~x(i )

)(
~d l ·~ntool

l

)
−δl

(
~x(i )

)(
−~v (i )

k ·D ˆ̃ukl

)
≤ 0

(4.5.29b)

The implementation of the gradient term D~̃ukl is done as follows:

D~̃ukl =
∂~̃uk (~x)

∂tl
= ∂

∂tl

∫
Γ

NSUPG
k ~n (~x)d s =

∫
Γ

NSUPG
k

∂~u (~x)

∂tl
dξdη= ∑

f ∈Pk∩Pl

∫
f

NSUPG
k

∂~u f (~x)

∂tl
dξdη

(4.5.30)
In the above formulation, the local facet contribution of the gradient term ∂~u f (~x)/∂tl is described
as following:

∂~u f (~x)

∂tl
= ~d l × (~xl1 −~xl 2) (4.5.31)

In the equation above, l1 and l2 represent the cyclic indices of the two other nodes of the
element with respect to the node l . The contact constraint (4.5.29b) is applied with the penalty
method, and used to update the mechanical functional as explained in the equation (4.5.1b). The
2-DoF implicit contact constraint presented in equation (4.5.28) is implemented in the following
manner:

h (~vk ) =~vk ·
(

ˆ̃uk
[1]

(
~x(i )

)(
~d [1]

l ·~ntool
l

)
+ ˆ̃uk

[2]
(
~x(i )

)(
~d [2]

l ·~ntool
l

) −~v (i )
k ·D~̃u[1]

kl

−~v (i )
k ·D ˆ̃u[2]

kl

)
−δl

(
−~v (i )

k ·D ˆ̃u[1]
kl

)
≤ 0

(4.5.32)
The advantage of this form is that it automatically becomes the 1-DoF form for the surface nodes.
It is to be remarked here that the implicit (RHS) term is dependent on the velocity which is con-
sidered to be the value converged from the mechanical solution of the last fixed-point iteration.
For the parallel order implementation of the implicit contact constraint, the individual explicit and
implicit parts of the upwind normal are computed at the individual processor and each processor
sends its contribution to the root. The explicit part is computed exactly in the same manner as ex-
plained in the Section 4.5.1. The computation of implicit part is tricky as the node l , which is an
upwind node to node k may be located in a different mesh partition. This is the scenario when for
the node k on the interface of two mesh partitions. A global loop on all element facets is made in
each mesh partition, with a buffer that stores the directions ~d, the tool normal ~ntool and the gap
function δ at node l to each node k. In addition, a table also stores the cosine of the angular po-
sition of node l wrt to node k. During the communication call, the minimization of cosine (at the
root) locates the rightful node l for each node k and the corresponding directions, tool normal and
gap function are communicated back to the originating processor. Once these values are known at
each node, it becomes fairly simple to compute the implicit upwind normal at each node k with the
equation (4.5.32).
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Updated hessian in mechanical description

The hessian matrix for the implicit contact constraint is described in the same manner as with the
explicit constraint, but with the changed description of the constraint h (~vk ).

∀k ∈ Γ(2)
c Hk,i ,k, j (~v) = ρ(1)

c sk

{
ũk,i ⊗ ũk, j if h (~vk ) > 0

0 otherwise
(4.5.33)

4.5.3 Updated steady-state algorithm

The main objective of the current section is to improve the robustness of the existing ForgeNxt®2016
algorithm. A new contact formulation, in explicit and implicit form, has been discussed in the pre-
vious sections. This formulation is consistent and would hopefully help eradicate the problem of
solution instability in the existing algorithm. The implicit formulation aims to improve the behav-
ior of the nodes of the workpiece on the first line of contact with the tool. A fully consistent nodal
formulation with the same normal and same weak form for the free-surface computation and the
contact constraint is ideal for improving the consistency. But as concluded in Section 4.4.5, the
nodal form of the free-surface equation is not the best for free surface computation as it is less
accurate. Hence the chosen algorithm adopts the new contact formulation while retaining the
original integral formulation of the free-surface computation, hence not affecting the loss of accu-
racy in shape prediction. Hence, the updated algorithm continues to use the integral form of the
free-surface equation (4.1.1) but the new contact constraint in the equation (4.5.1a) for velocity
computation. From here the two algorithms with explicit and implicit contact formulations are
identified as Steady-State Explicit and Steady-State Implicit respectively.

4.6 Performance with hot-rolling test-cases

The updated algorithms Steady-State Explicit and Steady-State Implicit are tested with a num-
ber of hot rolling test-cases, including the ones presented in Chapter 3. It is of the primary con-
cern to improve the problem related to instability observed with the ForgeNxt®2016 formulation,
especially with the test-case VP-Test-Case-02 presented in Section 3.5. The exact same models
are used with the same mesh and fictitious material properties presented in Table 3.5.1. We use
the adiabatic conditions for the test-cases VP-Test-Case-01 and VP-Test-Case-02, as done in the
previous chapter, and hence try to focus only on the improvement in the contact problem in the
Mechanical step without any thermal computation and coupling. It is to be highlighted here that
the temperature itself is a convective field and has associated problems of instability because of
the unstable velocity field and contact. It is thus important to isolate the contact problems from
this coupling with the adiabatic conditions. However, as an assessment of the new stable formula-
tion, we add another test-case to closely simulate a process with industrial hot rolling conditions.
Hence, more realistic material properties with temperature and strain dependency (viscoplastic
hardening) are considered with the coupling of the mechanical problem with the thermal one.
The convergence of geometry, temperature, equivalent strain, and force for the steady-state algo-
rithm, presented in equation (3.4.6), are studied to compare the results from different steady-state
formulations tested. The flux loss in the equation (3.5.1) is also compared with each formulation.
The results are validated with the ones from the ForgeNxt®inc.

4.6.1 Flat rolling problem: VP-Test-Case-01

The VP-Test-Case-01 presented in the Section 3.5.1 is tested again with the consistent contact for-
mulation. Since the geometry includes an edge, the 2-DoF contact explicit and implicit formu-
lations presented are used. Even though the ForgeNxt®2016 was able to find a stable solution
for this simple test-case, the same is tested with the new formulation, to establish that the stabil-
ity and the quality of the solution are retained with the updated formulation. The global results
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for the VP-Test-Case-01 are presented in Table 4.6.1. We see that both the Steady-State Explicit
and Steady-State Implicit formulations result in converged solution which is very good agreement
with the ForgeNxt®inc and the existing ForgeNxt®2016 algorithm results. In general, we see a mi-
nor under-prediction of force and torque with the steady-state formulations in comparison to the
ForgeNxt®inc. This difference might come due to the difference in the equivalent strain calcula-
tion with the incremental formulations. There is no change observed in the number of fixed-point
iterations for convergence with the new contact formulations. However, a minor increase in com-
putation time is observed with Steady-State Explicit, yet it is 50 times faster than the incremental
solution. We see a small gain in computation time with the Steady-State Implicit. It is to be brought
to the notice of the reader that the computation of the upwind normal ˆ̃uk for the new contact for-
mulation is computationally inexpensive (in terms of time) in comparison to the two resolution
steps.

Contact Shape Correction Convergence Comp. Time Tool Force Tool Torque
formulation method incs/iters (min) (Tonnes) (kN-m)

ForgeNxt®2016 SUPG-dif (α= 1/2) 5 5.1 17.2 4.13
Steady-State Explicit SUPG-dif (α= 1/3) 5 6.4 17.3 4.12
Steady-State Implicit SUPG-dif (α= 1/3) 5 4 17.2 4.13

ForgeNxt®inc (ref) 541 300 17.6 4.26

Table 4.6.1: Global performance of the VP-Test-Case-01 with the updated steady-state algorithm in com-
parison to the ForgeNxt®inc solution (on 12 cores)
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Figure 4.6.1: Comparison of deformed section (steady-state) shape of the VP-Test-Case-01 with the steady-
state and incremental formulations

The steady-state shapes computed with the different formulations are compared in Figure
4.6.1. The location of the measurement of shape/section is the same as explained in Section 3.5.1.
In the previous chapter, we found out that the ForgeNxt®2016 over-predicts the lateral spread with
lower prediction of tool force which was assumed to be due to the computed lateral velocity field.
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Here, we can observe that the steady-state algorithm with the consistent contact condition (both
explicit and implicit formulations), is able to improve the prediction for the lateral spread at the
top face in comparison to the ForgeNxt®2016 solution. This means that the new contact formu-
lation is really able to improve the velocity computation at the contact interface in comparison to
the existing formulation.
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Figure 4.6.2: Comparison of equivalent strain for VP-Test-Case-01

Next, we present the solution contour for the equivalent strain in Figure 4.6.3. We see that
the equivalent strain from both the consistent contact formulations is in good agreement with the
incremental results, and improves the prediction in comparison to the ForgeNxt®2016 results, as
the wider spread-out of the peak strains and oscillations below the tool are no more visible with the
new formulations. The ε̄ field looks much more stable in comparison to the existing formulation.
This could well be due to a more stable contact surface in comparison to the previous algorithm.
The von Mises stress solution from the different algorithms are compared in Figure 4.6.4. The first
observation is that unlike equivalent strain, the von Mises stress computed with the steady-state
formulation is more stable as it is not a convective field. At the input plane Γi n we see non-zero
stress in all the steady-state solutions. This can be avoided by choosing a larger length of the
workpiece before the contact. However, this is neither critical to the convergence of the algorithm
nor the solution is sensitive to this with a hot rolling case (with VP material). This must be surely
be concerning with EVP material where the stress is also a convective field and residual stresses
need to be transported from the input plane.
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Figure 4.6.3: Comparison of von Mises stress for VP-Test-Case-01
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Figure 4.6.4: Comparison of Tool force convergence for VP-Test-Case-01 with different steady-state formu-
lations

The solution stability is studied with the four different criteria presented in the equation (3.4.6)
with a reduced geometric convergence criterion εg eom = 10−5 to compare the different steady-
state formulations. The Force convergence and geometry convergence results are presented in
Figure 4.6.4 and Figure 4.6.5 respectively. It can be observed that the force and geometry solutions
converge with all the steady-state formulations and remain stable below their respective conver-
gence criterion. The Force residual, signifying the difference of tool force between two consecutive
iterations, is almost the same order with the three formulations, however, ForgeNxt®2016 formula-
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tion results in a slightly better solution because of the low magnitude of oscillation. The geometry
convergence signifies the maximum difference of correction between two consecutive iterations,
measured at the output plane Γout . It is found to be below the (regular and not the reduced one
chosen for stability test) defined criterion.

The convergence of equivalent strain plotted in Figure 4.6.6 signifies the maximum difference
of the equivalent strain in an element between two iterations. It can be observed that all the three
methods result in convergence of the equivalent strain criterion, with ForgeNxt®2016 resulting in
the least residual for this case. The flux loss with the three formulations is compared in Figure
4.6.7. It represents the difference of material flow entering and leaving the control volume. We
observed that with all the formulations we have near-zero flux loss, but ForgeNxt®2016 results in
the minimum loss. Nevertheless, the loss with the updated formulations results in a minor loss
(< 0.25%) of the material.
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Figure 4.6.5: Comparison of geometry convergence for VP-Test-Case-01 with different steady-state formu-
lations
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Figure 4.6.6: Comparison of equivalent strain convergence for VP-Test-Case-01 with different steady-state
formulations
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Conclusions from solution

From the observed results, we can conclude that the new proposed contact formulations do not
degrade the solution obtained with the ForgeNxt®2016. The tool force and torque predicted have
a good agreement and the shape prediction is improved with the updated steady-state algorithm.
The stress and strain obtained with the new formulation have an excellent agreement with the
ForgeNxt®inc and the instabilities in the solution observed with the ForgeNxt®2016 solution are
suppressed to a good extent. It was also observed that the convergence parameters for all the
presented steady-state formulations are stable and well under the convergence criteria chosen for
the algorithm. However, with the observed results of the VP-Test-Case-01, it cannot be concluded
on which of the two new contact formulations is better.
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Figure 4.6.7: Comparison of flux loss for VP-Test-Case-01 with different steady-state formulations

4.6.2 Shape rolling problem: VP-Test-Case-02

Next the shape rolling of VP-Test-Case-02 is discussed. As seen in the previous Chapter 3.5.2, this
test-case did not converge to a unique solution but meandered around a solution which was quite
close to the one predicted with the incremental formulation. For this case, the (equivalent strain)
convergence criteria of the ForgeNxt®2016 algorithm was found not to converge. The problem
is tested with the updated steady-state formulation with both Explicit and Implicit contact con-
ditions and is validated with the ForgeNxt®inc solution. Same fictitious material properties and
mesh model are chosen as presented in Table 3.5.1 and Figure 3.5.7 respectively.

Contact Shape Correction Conv. Comp. Time Tool Force Tool Torque
formulation method Incs/Iters (min) (Tonnes) (kN-m)

ForgeNxt®2016 SUPG-dif (α= 1/2) × × 15.94 9.42
± 0.02 ± 0.04

Steady-State Explicit SUPG-dif (α= 1/3) 12 8.25 16.06 9.36
Steady-State Implicit SUPG-dif (α= 1/3) 9 8.32 15.98 9.37

ForgeNxt®inc (ref) 132 15.49 9.20

Table 4.6.2: Global performance of the VP-Test-Case-02 with the updated steady-state algorithm in com-
parison to the incremental solution (on 12 cores)
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Figure 4.6.8: Comparison of deformed section (steady-state) shape of the VP-Test-Case-02 with the steady-
state and incremental formulations
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Figure 4.6.9: Comparison of VP-Test-Case-02 steady-state solution from different formulations with the
incremental solution

The VP-Test-Case-02 global results and shape comparison are presented in Table 4.6.2 and
Figure 4.6.8 respectively. The shape computed with ForgeNxt®2016 is not represented as the al-
gorithm computes an oscillatory solution. It is seen that the algorithms Steady-State Explicit and
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Steady-State Implicit result in converged solution in 12 and 9 iterations respectively. The time
taken for both the steady-state methods is similar and a speedup of ≈ 16 times achieved in com-
parison with the ForgeNxt®inc resolution. The tool force is over-predicted by 3% and the torque
by 2%, in comparison to their under-prediction in VP-Test-Case-01. It is seen that the steady-
state shape computed from the Steady-State Explicit and Steady-State Implicit formulations have
a good agreement with the incremental solution but the lateral spread is over-predicted. This cor-
responds to 3.9 mm with steady-state resolution in comparison to 3.56 mm with ForgeNxt®inc,
which is nearly 10% more. This observation is in-line with the over-prediction of the tool force
with the steady-state algorithm which leads to larger material side flow, and hence more lateral
spread. It is to be pointed out that the steady-state resolution involves surface mesh regulariza-
tion, hence, we may not have the exact correspondence of nodes on the lateral surface between
the steady-state and incremental meshes. In addition, the incremental solution is the reference
here, but not is not an absolute solution as it involves e.g. time-stepping which may cumulate
numerical errors.
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Figure 4.6.10: Comparison of Tool force convergence for VP-Test-Case-02 with different steady-state formu-
lations
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Figure 4.6.11: Comparison of geometry convergence for VP-Test-Case-02 with different steady-state formu-
lations
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The equivalent strain and von Mises stresses with the incremental and the steady-state formu-
lations are compared in Figure 4.6.9a and Figure 4.6.9b respectively. We observe a stable equiv-
alent strain with the steady-state formulations in comparison to the peaks observed with the in-
cremental solution. In general, we see a very good agreement of both these fields computed with
the consistent steady-state formulation in comparison to the incremental solution. Between the
explicit and implicit contact formulations, there are very minor differences in the results. The von
Mises stress from the steady-state formulation also has a very good agreement with the incremen-
tal solution. There are some oscillations seen in the middle of the contact with the tool, but this
appears to come from the discretization.
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Figure 4.6.12: Comparison of equivalent strain convergence for VP-Test-Case-02 with different steady-state
formulations
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Figure 4.6.13: Comparison of flux loss for VP-Test-Case-02 with different steady-state formulations

It would be interesting to see the stability of the converged results obtained from Steady-State
Explicit and Steady-State Implicit by reducing the geometric convergence criterion. This is im-
portant to ensure the claim that the modified formulation is better in terms of the stability of the
solution. The Force convergence with the three steady-state formulations presented is plotted in
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Figure 4.6.10. We see that the Force residual converges with all the three formulations after 7 it-
erations. The minimum tool force residual is seen with the implicit formulation. The geometry
convergence criterion (in Figure 4.6.11) is seen to converge in 4 iterations with all the formula-
tions. The residual with the new consistent contact formulations is much lower in comparison
to the ForgeNxt®2016 formulation. The evolution of the critical equivalent strain convergence
is presented in Figure 4.6.12. We see that in comparison to the ForgeNxt®2016, the equivalent
strain converges with both the consistent formulations. The behavior with explicit contact for-
mulation is however not seen to be as stable as the implicit formulation. The flux loss function
with the different steady-state formulations is presented in Figure 4.6.13. We observe that the flux
loss with the ForgeNxt®2016 formulation is seen to undulate, which suggests larger oscillations in
the velocity and shape fields. The consistent formulations have constant positive flux loss, but the
magnitude is larger in comparison to ForgeNxt®2016, but from the industrial viewpoint, this value
is negligible.

Conclusion from solution

It is found that as the complexity of the test-case is increased, the ForgeNxt®2016 formulation fails
to find a stabilized solution for the rolling problem. In such a scenario, the modified steady-state
algorithm with consistent contact formulation proves to be a better choice as we find a unique
and stable solution to the problem. It is also to be mentioned that the implicit contact formula-
tion presented in this chapter results in a better solution in terms of the number of increments for
convergence and the solution stability. However, the results obtained for VP-Test-Case-02 behave
in a different manner than the previous test-case. This may be attributed to the inherent differ-
ences in the two test-cases. Firstly, VP-Test-Case-01 had singular geometry and hence the 2-DoF
formulation is active. Secondly, the tool contact in VP-Test-Case-01 was flat and the initial con-
tact is almost a straight line whereas in VP-Test-Case-02, the initial contact load is concentrated
on a few nodes due to the elliptical contact. So, the elements at the initial contact have large cur-
vatures and most of the tool force is transferred through these nodes. So, in comparison to the
VP-Test-Case-01, this test-case has a larger discrepancy.

4.6.3 Shape rolling problem: VP-Test-Case-03

Figure 4.6.14: Test-Case 03: Square to Rectangle Shape rolling
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In this section, we would like to present another test-case for further testing the capabilities of the
updated steady-state algorithm in comparison to the existing ForgeNxt®2016. In this test-case,
a square section long bar of dimension 205mm x 205mm with filleted corners is rolled between
two rigid rolls of diameter 290mm rotating at 15.3 rpm. Similar to VP-Test-Case-02, the workpiece
in this case has a non-uniform contact with the roll. The rolls impose a side constraint on the
workpiece and this restricts the free flow of the material in the lateral direction. In addition, to
further complicate the problem for testing the robustness of the algorithm, the following changes
are made to the model in comparison to the previous test-cases: The end product is a rectangular
section of dimension 147.56mm x 232.22mm with curved free-surfaces in the steady-state (see
Figure 4.6.14). This test-case is proposed by the Transvalor S.A. team.

S.No. Parameter Value
1 Norton Hoff (strain rate dependence) ˙̄ε 0.01-20 (10 values) s−1

2 Norton Hoff (Temperature dependence) 900K-1400K (11 values)
3 Density ρ 7360 kg /m3

4 Specific heat 677.2 JK−1

5 Coulomb friction m̄ 0.8
6 Coulomb friction µ 0.4

Heat transfer coefficients
S.No. Parameter Adiabatic Fully Coupled

7 Thermal Conductivity Kcond 0.0 29.26
8 Emissivity εr ad 0.0 0.85
9 Die heat transfer coefficient 0.0 2000

10 Die Effusivity 0.0 11763.62
11 Ambient heat transfer coefficient 0.0 10

Table 4.6.3: Properties used for the VP-Test-Case-03

Coarse mesh

Fine mesh

Figure 4.6.15: Coarse and fine mesh models tested for VP-Test-Case-03

There are some more differences in comparison to the previous two test-cases, listed as fol-
lowing:

1. Initialization with forging method, as shown in Figure 3.2.2c
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2. Friction with Coulomb model, instead of viscoplastic model, for the contact between the
tool and the workpiece

3. Material behavior rate of deformation/Temperature dependent material is used as shown
in Figure 4.6.16

4. Mesh convergence study of steady-state solution with two different mesh sizes: (i) coarse
contact surface element size : 6 mm, free-surface element size 8 mm and bulk element size =
10 mm- 87139 elements (19142 nodes) and (ii) fine contact surface element size : 4 mm, free-
surface element size 6 mm and bulk element size = 8 mm- 125015 elements (27249 nodes)
as shown in Figure 4.6.15.
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Figure 4.6.16: Rate-temperature dependent stress-strain curve used for resolution of VP-Test-Case-03

The material, friction, and thermal properties used for the simulation are tabulated in Table
4.6.3. The temperature and rate of deformation dependent properties between 900◦C-1400◦C and
0.01-20 s−1 respectively, are plotted in Figure 4.6.16. The material strength is seen to increase at
higher rate of deformations and lower temperatures. The work-piece is initially heated to 1250◦C
and cooled in ambient air (50◦C) to get the temperature profile shown in Figure 4.6.17. Two differ-
ent sub-tests are carried out:

• Firstly, an adiabatic condition is simulated to test only the mechanical solver isolated from
thermal coupling by nullifying the coefficients that permit the various forms of heat transfer

• Next, the fully coupled thermal-structural problem is resolved with appropriate heat trans-
fer coefficients (as shown in Table 4.6.3).

Because of the filleted corners in the initial geometry, there is no presence of singularity and hence
the 1-DoF formulation is used for both contact and free-surface computation.
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Figure 4.6.17: VP-Test-Case-03: Temperature field (in ◦C) profile at the input plane Γi n of the VP-Test-Case-
03 model

4.6.3.1 VP-Test-Case-03 with Adiabatic conditions

Contact Shape Corr.
Mesh

Conv. Comp. Time Tool Force Tool Torque
formulation method Incs/Iters (min) (T) (kN-m)

ForgeNxt®2016
Coarse × × 116.1 92.53

SUPG-dif ±0.3 ±1.1
(α= 1/2)

Fine × × 115.38 92.14
±0.33 ±1.0

Steady-State Explicit
Coarse × × 116.25 92.17

SUPG-dif ±0.15 ±0.26
(α= 1/3)

Fine 14 7.55 116.15 92.42

Steady-State Implicit
Coarse 14 6.13 116.54 92.22

SUPG-dif
(α= 1/3)

Fine 13 8.87 115.72 91.77

ForgeNxt®inc Coarse 452 179.5 115.1 91.9

Table 4.6.4: Global performance of the VP-Test-Case-03-adiabatic with the updated steady-state algorithm
in comparison to the incremental solution (on 12 cores)

The main objective of the adiabatic test is to compute the structural fields in a workpiece with a
temperature gradient but without any changes in the thermal field due to the heat transfer from
conduction, convection and radiation effects similar to VP-Test-Case-01 and VP-Test-Case-02. The
steady-state results from this test-case are presented in Table 4.6.4. On comparing the steady-state
algorithms, we observe that the solution from ForgeNxt®2016 formulation is unstable and does
not converge, even with the mesh refinement. The same is observed with the Steady-State Explicit
formulation with the coarse mesh but it converges with the fine mesh. However, the formulation
with implicit contact condition converges with both coarse and fine meshes and the number of
iterations for resolution are similar to both. The number of elements in the finer mesh is 1.5 times
in comparison to the coarse mesh, and explains a similar increase in computation time with the
fine mesh. In comparison to the incremental solution, which is done with coarse mesh, a speedup
of 30 times with coarse mesh and 20 times with fine mesh is observed with the steady-state algo-
rithms.
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Figure 4.6.18: Comparison of deformed section (steady-state) shape of the VP-Test-Case-03-adiabatic with
the steady-state and incremental formulations
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Figure 4.6.19: Comparison of equivalent strain (on left) and von Mises stress (in MPa, on right) for VP-
Test-Case-03-adiabatic with different steady-state contact formulations in comparison to the ForgeNxt®inc
solution
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It can also be seen that the tool force and torque computed with the steady-state formulation
are slightly over-predicted (maximum 1.2% and 0.5% respectively) in comparison to the incremen-
tal solution. The tool force and torque obtained from the two mesh sizes are quite similar with
<1% difference, thus we can conclude that the obtained solution is converged. Given the large
complexities introduced into the problem with the thermal-strain hardening, Coulomb’s friction
model, and nonuniform temperature profile, this difference is quite nominal. The steady-state
shapes computed with the different formulations are compared in Figure 4.6.18. We can see an
overall very good prediction of the steady-state shape with the steady-state algorithm in compari-
son to the ForgeNxt®inc solution. Looking carefully, the coarse mesh with implicit formulation has
an exact prediction of the lateral spread wrt the ForgeNxt®inc solution. However, a little far away
from the symmetry plane, there is a minor non-conformance of the shape, which could be due
to the absence of a corresponding node in the incremental resolution mesh. With the fine mesh,
both explicit and implicit formulations predict almost the same steady-state shape. The equiv-
alent strain with the steady-state formulations are compared in Figure 4.6.19 (left) respectively.
A very little difference was observed between the results from coarse and fine meshes with the
steady-state algorithm, hence, we present the results obtained with only fine mesh. The predic-
tion with both explicit and implicit formulations is in very good agreement with the incremental
solution. The ForgeNxt®inc solution is seen to have higher strain peaks on the top free-surface,
which disappears with the updated steady-state algorithm. With implicit contact formulation, the
peaks obtained with explicit formulation (in yellow) are also suppressed. The von Mises stress
has an excellent prediction with both the steady-state formulations and is seen to be more stable
in comparison to the ForgeNxt®inc. The higher stress concentrations on the side face are well
predicted with Steady-State Implicit which is not the case with Steady-State Explicit.

Conclusions from solution

From these results, we can affirm that the robustness of the steady-state algorithm is improved
with the proposed modification of the contact formulation. The results obtained with the implicit
formulation are seen to be much better in comparison, as it ensures a stabilized solution with
different mesh sizes.

4.6.3.2 VP-Test-Case-03 with fully coupled thermo-structural resolution

This test is carried out to assess the performance of the steady-state mechanical solver when cou-
pled with the thermal solver. Hence, the heat transfer coefficients tabulated in Table 4.6.3 for the
fully coupled resolution are used. So, during the course of resolution of the fully coupled problem,
the heat is transferred between the surroundings & the workpiece by convection and radiation
and between the die & the workpiece by conduction. In addition, the internal heat generated due
to the deformation is transmitted by conduction. The same mesh, initialized geometry, contact,
and mechanical boundary conditions are used as with the adiabatic simulations. The validation is
done with the incremental resolution of the same test-case.

The ForgeNxt®2016 results in an unstable solution as seen with the adiabatic case. The sim-
ulation with the consistent contact formulations (both explicit and implicit) converges towards
a unique solution with both coarse and fine meshes. The global solution is seen to have <1%
change with the mesh refinement and hence considered converged. However, contrary to the
over-prediction for the adiabatic resolution, we observe an under-prediction of ≈ 4% of force and
torque with explicit (fine mesh) and ≈ 5% with implicit (fine mesh) formulation for the fully cou-
pled case in comparison to the incremental results. This difference could come from the difference
in the formulation for thermal problem in the two solvers. A speed-up of 13-15 times is achieved
with the different steady-state formulations tested.
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Contact Shape Corr.
Mesh

Conv. Comp. Time Tool Force Tool Torque
formulation method Incs/Iters (min) (T) (kN-m)

ForgeNxt®2016
Coarse × × 108.18 86.81

SUPG-dif ±0.06 ±0.8
(α= 1/2)

Fine × × 107.16 85.96
±0.12 ±0.75

Steady-State Explicit
Coarse 17 7.1 108.71 86.63

SUPG-dif
(α= 1/3)

Fine 17 11.87 107.97 86.53

Steady-State Implicit
Coarse 17 7.33 108.1 86.37

SUPG-dif
(α= 1/3)

Fine 16 11.05 107.24 85.82

ForgeNxt®inc Coarse 391 104 113.5 91.3
Fine 448 146 112.9 91.1

Table 4.6.5: Global performance of the VP-Test-Case-03-fully coupled with the updated steady-state algo-
rithm in comparison to the incremental solution (on 12 cores)
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Figure 4.6.20: Comparison of deformed section (steady-state) shape of the VP-Test-Case-03-fully coupled
with the steady-state and incremental formulations

The steady-state shape resulting from different steady-state formulations in comparison to
the incremental formulation are shown in Figure 4.6.20. We can see that the steady-state algo-
rithm with consistent contact formulation is able to predict very well the global shape after rolling
in steady-state. However, the lateral spread is under-predicted with steady-state formulations in
comparison to the incremental resolution. This is consistent with the fact that the tool force with
the incremental resolution is higher in comparison to the steady-state resolution. A more detailed
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comparison of solution fields is done for this test-case with the fully coupled thermal-structural
resolution. Firstly, the axial velocity and the contact surface predicted with the incremental and
steady-state solutions are presented in Figure 4.6.21. A gradually increasing velocity can be seen as
the material is rolled between the tools. The binary contact can be interpreted as the nodes of the
workpiece in contact with the tool surface. It can be clearly seen that both the top and the side face
of the workpiece get in contact with the tool during the rolling. It can also be observed that the
steady-state algorithm with consistent implicit contact formulation is able to predict accurately
both the velocity and contact fields computed with the incremental formulation.
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Figure 4.6.21: Comparison of axial velocity (on left) and binary contact (on right) for VP-Test-Case-03-fully
coupled with Steady-State Implicit in comparison to the incremental solution
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Figure 4.6.22: Comparison of stress in XX (transverse, in MPa, on left) and YY (vertical, in MPa, on right)
directions (in MPa) respectively for VP-Test-Case-03-fully coupled with Steady-State Implicit in comparison
to the incremental solution

In Figure 4.6.22, the stresses in XX and YY directions, which correspond to the transverse and
vertical directions respectively, are compared. During rolling, the tool exerts a compressive force
in the vertical direction and thus forces the material to flow in the other directions. However, this
flow is constrained in the transverse direction as well. Hence, a compressive XX stress develops
below the tool contact. The sign of the stress in the rolling direction ZZ (shown in Figure 4.6.23
on the left) is compressive below the tool contact and tensile right after. The von Mises stresses
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for the test-case is presented on the right. The prediction of both these fields with the steady-state
algorithm is in very good agreement in comparison to the incremental resolution.
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Figure 4.6.23: Comparison of ZZ (rolling direction, in MPa, on left) direction stress and von Mises stress (in
MPa, on right) for VP-Test-Case-03 with Steady-State Implicit in comparison to the incremental solution
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Figure 4.6.24: Comparison of Temperature (left) and Equivalent strain (right) for VP-Test-Case-03-fully cou-
pled with Steady-State Implicit in comparison to the incremental solution

The comparison of the temperature fields at steady-state from the incremental and steady-
state formulation are presented in Figure 4.6.24 on the left. We observe a good agreement of the
temperature field away from the contact surface with the two formulations. However, the work-
piece surface below the tool contact with the steady-state formulation is found to be at a lower
temperature in comparison to the incremental formulation. This difference could come due to
the difference in thermal formulation inside ForgeNxt®2016 that could result in the difference in
the tool force and torque (between incremental and steady-state formulation results) observed in
Table 4.6.5. The equivalent strain field with the two formulations is presented in Figure 4.6.24 on
the right. We see a reasonable agreement of the fields away and below the tool contact. However,
we can see an under-prediction of strain with the steady-state formulation at the workpiece edge
in contact with the tool.
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Figure 4.6.25: Comparison of Tool force convergence for VP-Test-Case-03-fully coupled with different
steady-state formulations

The solution obtained with the steady-state formulations is analyzed for the stability of the
convergence parameters for the fully coupled VP-Test-Case-03. The comparison of tool force con-
vergence ((3.4.6d)) with the different tests studied are presented in Figure 4.6.25. Globally, we
observe that the force converges with all the formulations within 16-17 iterations, and the residual
remains stable (≈ 10−3to10−4) and converged afterward. The minimum residual is achieved with
the ForgeNxt®2016 resolution of the coarse mesh model. For the fine mesh model, the implicit
formulation results in the least residual.
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Figure 4.6.26: Comparison of Geometry convergence for VP-Test-Case-03-fully coupled with different
steady-state formulations

Next, the geometry convergence ((3.4.6a)) is presented in Figure 4.6.26. The stability of this
parameter provides a good comparison of the different steady-state formulations tested. With the
coarse mesh, the ForgeNxt®2016 formulation is undoubtedly the best as it yields the lowest and
stable residual. With the fine mesh, the best solution in terms of the minimum residual is achieved
with implicit contact formulation (0.2%) but the solution becomes unstable as the resolution pro-
gresses further. In comparison, the explicit method results in a stable converged solution, even
though with a larger variation (3%). The equivalent strain convergence (3.4.6c) with the different
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steady-state formulations is compared in Figure 4.6.27. The ForgeNxt®2016 algorithm, like the
VP-Test-Case-02 does not converge because of this criterion. On the other hand, the equivalent
strain field converges and remains stable with both explicit and implicit contact formulations pre-
sented with all the different meshes tested. With the coarse mesh, the explicit contact formulation
results in the minimum residual. With the fine mesh, the implicit contact formulation results in
the minimum residual.
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Figure 4.6.27: Comparison of Equivalent strain convergence for VP-Test-Case-03-fully coupled with differ-
ent steady-state formulations
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Figure 4.6.28: Comparison of Temperature convergence for VP-Test-Case-03-fully coupled with different
steady-state formulations

The comparison of the Temperature convergence (3.4.6b) is presented in Figure 4.6.28. We
can observe that the convergence criterion is met with all the presented formulations with both
coarse and fine meshes. With the coarse mesh, ForgeNxt®2016 formulation and consistent explicit
contact formulation results in the minimum (and similar) residual. However, with the fine mesh,
the implicit formulation results in the minimum residual.
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Figure 4.6.29: Comparison of flux loss for VP-Test-Case-03-fully coupled with different steady-state formu-
lations

It is to be reminded to the notice of the reader that the convergence of the parameter does not
assure a good agreement with the incremental solution but only a non-oscillating (or oscillation
with small magnitude) solution, which has low variation in the staggered fixed-point algorithm.
The difference in the Temperature field with respect to the incremental solution is merely due to
different formulations, where the ForgeNxt®inc uses several tricks in the thermal solver to avoid
large temperature shocks (for example). The flux loss function in equation (3.5.1) with different
formulations are compared in Figure 4.6.29. We see that for the coarse mesh the minimum flux
loss is seen with the explicit formulations to be below 0.25%. With fine mesh, the flux loss in
minimum ≈ 0.3% with the implicit contact formulation.

Conclusions from solution

From the fully coupled thermal-mechanical solution of the VP-Test-Case-03, we conclude that the
modified steady-state formulation is robust in comparison to the ForgeNxt®2016 formulation. We
see a good agreement between the mechanical results from steady-state formulation and the in-
cremental formulation. However, while comparing with the results from the adiabatic resolution
of the same problem, we can also conclude that the observed difference in results is originated
from the thermal solver which has inherent differences in comparison to the ForgeNxt®inc ther-
mal solver. In terms of the solution accuracy, both explicit and implicit contact formulation re-
sults in a similar solution, however, the implicit contact formulation attains better stability and
the residual converges faster with the mesh refinement.

4.7 Conclusions from the chapter

The main focus of this chapter was to improve the robustness of the steady-state algorithm pre-
sented in Chapter 3. A hypothesis is made at first behind the non-convergence of the steady-state
algorithm. The contact coupling is analyzed and the inconsistency in the contact equations in the
two steps of the ForgeNxt®2016 algorithm is highlighted. An idea to find consistent contact cou-
pling is propounded by invoking a nodal condensation technique on the weighted residual form of
the free-surface equation. Thus the consistent contact coupling aims to replace the integral form
of the free-surface equation with the nodal form and then use the nodal form to find the consistent
contact condition (in the explicit form) for the velocity computation in the mechanical solver. This
entails the replacement of the existing scalar product of the velocity~v with the tool normal~ntool by

116



CHAPTER 4. A STABILIZED CONTACT CONSTRAINT FOR FIXED-POINT, MULTI-FIELD,
STEADY-STATE FORMULATIONS

the scalar product of velocity ~v with an upwind normal ˆ̃uk . From the analytical shape test-cases,
it is concluded that the nodal form of the free-surface equation SUPG-NC is convergent, yet not
as accurate as the integral form of the free-surface equation for predicting the free-surface shape.
Hence, it was proposed to use the nodal condensation technique only to find a consistent contact
condition, and to retain the integral form of free-surface equation SUPG for the shape computa-
tion with the semi-consistent coupling. The derived explicit contact condition is described on the
previous configuration ~x(i ) or on the shape computed from the free-surface computation in the
Step-2 of the previous iteration. The contact condition is also attempted to be expressed in an
implicit form with its expression in the current configuration ~x(i+1). Respective consistent con-
tact conditions are also derived for the singular geometries with edges, with 2-DoF formulations.
The modified steady-state algorithm with the explicit and implicit contact condition is tested with
three hot rolling test-cases with increasing complexity in terms of geometry, material property,
and the coupling with the thermo-mechanical behavior. The modified formulation improved the
results for an already-converging-with-existing-ForgeNxt®2016-formulation, especially in terms
of the equivalent strain and shape prediction. The new consistent contact formulation also im-
proves the robustness of the algorithm as mostly all the test-cases tested with the new formulation
have all the steady-state convergence parameters converged. The modified formulation is tested
with the deformation coupling, and thermal dependency, and the mechanical solver proves to be
robust enough to handle the complexities of a rolling problem. It is also to be highlighted that the
implicit formulation further improves the stability of the solution in comparison to the explicit
formulation.
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Résumé

L’objectif principal de ce chapitre était d’améliorer la robustesse de l’algorithme stationnaire présenté
dans le chapitre 3. Tout d’abord, une hypothèse est faite sur la non-convergence de l’algorithme:
l’instabilité observeé est liée avec l’inconsistence des équations de contact dans les deux étapes de l’
algorithme ForgeNxt®2016. Une idée pour trouver les équations de contact cohérentes est proposée
en invoquant une technique de condensation nodale sur la forme faible de l’équation de surface libre.
La nouvelle equation du contact vise à remplacer la forme intégrale de l’équation de surface libre par
la forme nodale, puis à utiliser la forme nodale pour trouver la condition de contact (sous la forme
explicite) pour le calcul de la vitesse dans le solveur mécanique. Cela implique le remplacement du
produit scalaire existant de la vitesse ~v par la normale à la surface de l’outil ~ntool par le produit
scalaire de la vitesse ~v par une normale amont ˆ̃uk . D’après les cas tests de forme analytique, nous
concluons que la forme nodale de l’équation de surface libre SUPG-NC est convergente, mais moins
précise que la forme intégrale de l’équation de surface libre pour prédire la forme de cette surface.
Par conséquent, il a été proposé d’utiliser la technique de condensation nodale uniquement pour
trouver une condition de contact cohérente et de conserver la forme intégrale de l’équation de sur-
face libre SUPG pour le calcul de la forme avec un couplage semi-cohérent. La condition de contact
doit également être exprimée sous une forme implicite, comme dans la formulation incrémentale,
avec son expression dans la configuration actuelle. Des conditions de contact cohérentes respectives
sont également dérivées pour les géométries singulières comme des arêtes, avec des formulations 2-
DoF. L’algorithme stationnaire modifié, avec les nouvelles conditions de contact en explicite et en
implicite, est testé pour trois cas tests de laminage à chaud avec une complexité croissante en ter-
mes de géométrie, de propriétés des matériaux et de couplage de comportement thermo-mécanique.
La formulation modifiée a amélioré les résultats pour une formulation ForgeNxt®2016 déjà conver-
gente, en particulier en termes de prédiction de déformation équivalente et de forme. La nouvelle
formulation de contact cohérente améliore les résultats pour le cas de laminage à chaud simple et
aussi s’avère plus robuste avec les cas de laminage de forme avec une meilleure convergence. La for-
mulation modifiée est testée avec le couplage de la déformation et la dépendance thermique, et le
solveur mécanique s’avère suffisamment robuste pour gérer les complexités d’un problème de lami-
nage. Il convient également de souligner que la formulation implicite améliore encore la stabilité de
la solution par rapport à la formulation explicite.
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CHAPTER 5. STEADY-STATE RESOLUTION WITH HISTORY DEPENDENT EVP BEHAVIOR

One of the biggest challenges in the steady-state formulation of metal forming processes is
the modeling of history-dependent material behavior. In the previous chapters, a certain kind
of history-dependence was encountered in the viscoplastic framework with work hardening and
thermal coupling. The present chapter is focused on a specific type of history-dependency with
elastic recovery, in which the dependence comes from the stress at a previously known state (or
time-step). As mentioned in the Chapters 1 and 2, such scenarios are envisaged when the rolling
is done in cold conditions. In such conditions, the elastic strain cannot be neglected, therefore,
elastoplastic or elasto-viscoplastic material models need to be considered.

It is of foremost importance to understand the mathematical framework for modeling an elasto-
plastic problem. In the Section 2.3.3, we saw different manners to model this material behavior.
Our interest is in metal forming problems which are of hypoelastic, plasticity dominant nature
and solved using Prandtl-Reuss equation (2.3.6a). The aim of the elastoplasticity resolution is to
compute the elastoplastic stresses from an initial assumption of purely elastic/plastic material.
The rate form of the equation cannot be solved with numerical methods; hence, an incremental
form of the same is used. The latter can easily be coupled with an iterative solver to compute
the unknown state-variables as a correction to an initial assumption. This method is generally
used for solving elastoplastic problems with incremental methods, in which the state-variables are
computed at an integration point at a time instant t +∆t from their knowledge at t , and hence
the history of state-variable is transported. The main objective of this resolution is to compute
the incremental state-variables for ∆t . This approach can also be adopted to compute the elasto-
plastic stresses in steady-state formulations as proposed by [3]. However, in the time-independent
steady-state formulation, it is unavoidable to keep Prandtl-Reuss equations independent of time.
Hence, the time-step in the incremental formulation is rather modeled with a pseudo-time-step
∆t̃ in the steady-state formulation. In the former it is the time taken for a material point to move
from one point to the other (pathline). In the steady-state formulations, the streamlines are co-
incident with the pathlines, hence, for any two points in the material, the point in the upwind
describes the previous state of the one in the downwind. Hence, the pseudo-time-step makes
possible to compute the updated state-variables from the incremental Prandtl-Reuss equations
with backward integration.

The Heterogeneous pseudo-time-step (HPTS) approach, as introduced in Section 2.3.3, mod-
els the pseudo-time-step as the time taken to traverse the distance between two consecutive in-
tegration points (int-1,int) on a streamline. This method must ensure that the consecutive inte-
gration points lie on the same streamline, which is only possible with the chosen structured mesh.
The streamline integration along the Gaussian points also ensures that the information of state-
variables is naturally available. The streamline integration requires the continuous update of the
stress field and the velocity until a converged stable field is obtained. For unstructured meshes, do-
ing this is rather difficult, as the integration points are not necessarily aligned with the streamlines.
A streamline-framework independent of the mesh is possible but tracing them becomes a tedious
process of regular follow-up with mapping of variables, which is diffusive in nature. Hence, non-
diffusive strategies become imperative to counter this problem. Succinctly, this chapter is divided
into three main sections. The first section introduces the elastoplasticity Prandtl-Reuss equations
in the respective rate and incremental forms followed by the strategy for adopting the latter to the
steady-state formulations. The second section is focused on proposing a streamline-framework in
the unstructured meshes and the adaptation of pseudo-time-step approach in ForgeNxt®2016. In
the pursuit, some non-diffusive strategies are proposed and tested on simple cases. Subsequently,
an algorithm for the resolution of the elastoplastic steady-state forming problem is proposed.
The final section is focused on the testing of the algorithm with different cold rolling test-cases
in ForgeNxt®2016 and the validation of results with the time-dependent incremental solution of
the same problem in ForgeNxt®inc. At last, some speed-up strategies are also proposed and tested
with the same problems.
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5.1 Introduction to elastoplasticity

For the hypoelastic, plasticity dominant application of metal forming, the additive decomposition
is enough to model the material behavior with the Prandtl-Reuss equations.

5.1.1 Prandtl Reuss rate description

The basis of elastoplastic modeling is the additive decomposition of the strain-rate tensor to the
respective elastic ε̇e and plastic ε̇p parts, and the description of their relationship with the stress
tensor.

ε̇= ε̇e + ε̇p (5.1.1)

Elasticity is characterized by the recovery behavior of the material to go back to unloaded state
after the load is removed. Elasticity could be linear or nonlinear, but for the metal forming, we
assume linear elasticity, as given below:

∇
σ=C : ε̇e = 2µe ε̇e +λe tr

(
ε̇e) (5.1.2a)

µe = E

2(1+ν)
and λe = Eν

(1+ν) (1−2ν)
(5.1.2b)

∇
σ= σ̇+σw −wσ (5.1.2c)

In the equation above, λe and µe are the Lamé’s coefficients, which are generally constant for
homogeneous materials. E is the Young modulus, ν is the Poisson coefficient, ε̇e is the elastic
strain-rate, and σ̇ is the material time derivative of stress and w is the antisymmetric part of the
velocity gradient. In practice, we use Truesdell’s equation for elasticity introduced in Section 2.3.3,
for keeping this relation free of the reference frame. For example, in Lam3®, the Jaumann objective
stress (5.1.2c) is used (ie the Hill-Sidoroff formulation of Prandtl-Reuss decomposition), but to
avoid making the elastoplastic resolution more complex, the computation of the objective stress
is delayed (from the rotation term w ) to the end of the time-step. Elastoplasticity models are used
when the elastic recovery of the metal is sufficiently large for not to be neglected. Elastoplastic
models are characterized by change of material behavior from elastic state to a plastic state after a
yield limit σy is reached. The scalar function f̄ defines the yielding criteria:

{
f̄
(
σ,σy

)< 0 purely elastic

f̄
(
σ,σy

)= 0 plasticity
(5.1.3)

The yield function is generally a mathematical representation of a failure theory (by plastic
deformation), which could either be based on maximum principal stress (Tresca criterion) or on
maximum distortion energy (von Mises criterion) principle. We chose here maximum distortion
energy principle to define the material yield criterion:

f̄ =p
s : s −

√
2

3
σy

(
ε̄, ˙̄ε,T

)
(5.1.4)

The plastic flow occurs when f̄ = 0, as described in equation (5.1.3). The kinematic hardening
(see Figure 5.1.1a) can be modeled with the backstress X

′
. In this type of hardening, the yield sur-

face retains its size and shape but is repositioned in the stress space. Hence, for the yield criteria,
the origin of the stress space is shifted, and the deviatoric stress in the equation (5.1.4) is replaced
with s−X

′
. Alternatively, in isotropic hardening, the yield surface dilates as the yield limit becomes

larger once a plastic state is reached as shown in Figure 5.1.1b.
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(a) Kinematic hardening (b) Isotropic hardening

Figure 5.1.1: Graphical representation of hardening rules [1]

The plastic strain is perpendicular to the Yield surface with the Maximum Work principle. For
dense metals, the plastic flow rule is associated to the yield criterion (normality rule), which can
be mathematically related with the physical mechanism of dislocation glide on planar systems at
definite thresholds.The yield surface is itself associated with the plastic deformation as the disloca-
tion glides on planar systems at definite thresholds. Hence, the material flow condition is defined
with the yield surface f̄ as follows:

ε̇p = λpl ∂ f̄

∂σ
= λpl s; λpl = 3˙̄ε

2σy
(5.1.5)

In the above equation (5.1.5), λpl is the plasticity multiplier variable. For the resolution of the
Prandtl-Reuss equations, the hydrostatic and deviatoric decomposition of the stress-rate is done
and treated individually. The resolution of hydrostatic part is possible with the following relation:

ṗ =−1

3
tr σ̇=−

(
2µe +3λe

)
3

tr ε̇e (5.1.6)

Since the von Mises plasticity is isochoric (constant volume), we find that:

tr ε̇p = 0 (5.1.7a)

tr ε̇= tr ε̇e (5.1.7b)

This implies that the computation of pressure rate in equation (5.1.6) is trivial as it can be com-
puted from the strain-rate from the equation (5.1.8a). The strain-rate is found directly from the
computed velocities with the relation (5.1.8b).

ṗ =−
(
2µe +3λe

)
3

tr ε̇ (5.1.8a)

ε̇= 1

2

(∇~v +∇T~v
)

(5.1.8b)

Similarly for finding the rate of the deviatoric part of the stress tensor, we invoke the decom-
position of the deviatoric strain-rate to its elastic and plastic components, as done for the total
strain-rate in equation (5.1.1).

ė = ėe + ėp (5.1.9)

The elastic and plastic parts of the deviatoric strain-rate are related to the deviatoric stress and its
rate as follows:

ṡ = σ̇− 1

3
tr σ̇= 2µe ε̇e − 2µe

3
tr

(
ε̇e)= 2µe ėe (5.1.10a)

ėp = ε̇p = λpl s (5.1.10b)
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Next, we can replace these relations in the additive decomposition of the deviatoric strain-rate in
equation (5.1.9) and thus find the following ordinary differential equation which can be resolved
to compute the evolution of the deviatoric stress.

ṡ +2µe 3˙̄ε

2σy
s = 2µe ė (5.1.11)

The equation above validates the claim about the history-dependence of the problem due to the
added elastic contribution. This means that the stress at a given state is obtained from a previously
known state by the integration of this equation. It is also to be noted that the above-mentioned
equation needs the resolution of six different nonlinear equations to compute the deviatoric stress
tensor. In another possibility, we can also find a unique scalar (nonlinear) equation to find the
complete stress-state. This method is discussed in the following section describing the incremen-
tal form of elastoplasticity.

Prandtl-Reuss equations with elasto-viscoplasticity

In general, the cold forming problem can be modeled with the rate-dependent plasticity or elasto-
viscoplasticity. In this form, the stress-strain plastic flow behavior changes with the loading rate.
The elasto-viscoplastic strain-rate can be decomposed (Prandtl-Reuss or additive) to the respec-
tive elastic and viscoplastic parts.

ε̇= ε̇e + ε̇v p (5.1.12)

The elastic part of the strain-rate tensor is related to the stress tensorσwith the relation (5.1.2) and
the viscoplastic part is related to the deviatoric stress tensor s with the relation (5.1.13) found from
the derivative of the viscoplastic potential Φv p with respected to the stress. The relation obtained
is similar to the one with plastic strain-rate in equation (5.1.10b). So, in principle, the problem
formulation is the same for both elastoplastic and elasto-viscoplastic material models. In the end,
the same time-dependent equations (5.1.8) and (5.1.11) must be resolved to compute the elasto-
plastic/elasto-viscoplastic stress state.

ε̇v p = ∂Φv p

∂σ
= 3

2

˙̄ε

σ̄
s = λpl s (5.1.13)

5.1.2 Incremental Prandtl-Reuss equations

With the Finite Element method, it is more convenient to describe the Prandtl-Reuss equations in
the incremental form to find the incremental elastoplastic stress for the time-step ∆t . The shape,
elastoplastic stress field and the deformation field at time t +∆t as follows:

~xt+∆t =~xt +∆~xt+∆t (5.1.14a)

σt+∆t =σt +∆σt+∆t (5.1.14b)

ε̄t+∆t = ε̄t +∆ε̄t+∆t (5.1.14c)

In the Lagrangian (incremental) formulations, the stress at the time t+∆t at the integration points
is computed from stress at time t with equation (5.1.14b). However, the material point evolves and
as the shape is updated, the integration point moves in the flow direction with its new position
defined with the equation (5.1.14a). When the steady-state is achieved, the pathlines coincide
with the streamlines, hence, all the material points have the same trajectory between the time t
and t +∆t (see Figure 5.1.2).
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Figure 5.1.2: Incremental computation of elastoplastic stress

In the equation (5.1.14b), the stress increment ∆σ is computed with the Prandtl-Reuss equa-
tions, but in the incremental form. In this form, the increment ∆ f of each state-variable f is
computed with equation (2.3.11) for the time-increment ∆t . To do so, firstly, we can describe the
stress update∆σwith the decomposition of the stress into deviatoric and hydrostatic parts as seen
in equation (3.2.2a).

∆σ=∆s −∆p1 (5.1.15)

We can model the incremental hydrostatic pressure ∆p and deviatoric stress ∆s terms to model
the incremental elastoplastic stress.

Hydrostatic pressure

The computation of the hydrostatic pressure increment is trivial following the relation obtained in
equation (5.1.10).

∆p =−
(
2µe +3λe

)
3

tr∆ε (5.1.16)

Deviatoric stress

The incremental deviatoric stress can be computed following the steps for the temporal (rate) form
between equations (5.1.7) to equation (5.1.11). The isochoric nature of the plastic strain increment
leads to the following relation

tr∆εp = 0 (5.1.17a)

tr∆ε= tr∆εe (5.1.17b)

Next, we decompose the incremental deviatoric strain tensor into the respective elastic and plastic
parts (5.1.18). The deviatoric elastic strain increment is related to the deviatoric stress with the
equation (5.1.19a) and the deviatoric plastic strain is found from the updated deviatoric stress
s +∆s with (5.1.19b), which comes as a result of the choice of backward Euler integration. The
plasticity multiplier λpl is computed from the equivalent strain increment with equation (5.1.19c).

∆e =∆ee +∆ep (5.1.18)

∆s =∆σ+∆p1= 2µe∆εe − 2µe

3
tr

(
∆εe)= 2µe∆ee (5.1.19a)

∆ep =∆εp = λpl (s +∆s) (5.1.19b)

λpl = 3∆ε̄

2σy (ε̄+∆ε̄)
(5.1.19c)

Once the components of the deviatoric strain increment are known, we can describe the deviatoric
stress increment with the total deviatoric strain increment and the plasticity multiplier λpl .

∆s = 2µe
(
∆e −λpl (s +∆s)

)
= 2µe ∆e −λpl s

1+2µeλpl
(5.1.20)
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Using the above derived relations, we can find the updated deviatoric stress s +∆s and deviatoric
plastic strain increment ∆ep in terms of the plasticity multiplier λpl .

s +∆s = s +2µe∆e

1+2µeλpl
(5.1.21)

∆ep = λpl s +2µe∆e

1+2µeλpl
(5.1.22)

The deviatoric plastic strain increment must comply to the consistency condition as following:

∆ε̄=
√

2

3
∆ep :∆ep (5.1.23)

Using the equations (5.1.21) and (5.1.22) and replacing into equation (5.1.23), we can describe
the consistency condition with the following nonlinear scalar equation which can be solved to
compute the unknown equivalent deformation ∆ε̄ increment:

σy (ε̄+∆ε̄)+3µe∆ε̄=
√

3

2

(
s +2µe∆e

)
:
(
s +2µe∆e

)
(5.1.24)

In the equation (5.1.24), the term s + 2µe∆e is the elastic trial stress at initialization. The scalar
equation computes the equivalent deformation ∆ε̄ increment on the dilated yield surface. On the
computation of equivalent deformation ∆ε̄ increment, the plasticity multiplier λpl can be com-
puted from the equation (5.1.19c). As we have already the description of plastic strain increment
and the updated deviatoric stress in terms of the plasticity multiplier, they can be easily computed
with the equations (5.1.22) and (5.1.21) respectively.

5.1.3 Resolution of elastoplasticity in steady-state formulations

For the resolution of the elastoplasticity problem in a steady-state, two approaches are commonly
used in the literature. The first approach aims at describing a multi-field formulation in~v , p,σ, ε̄,T, ι
which can be solved with direct methods. This approach entails multiple convection equations to
be resolved iteratively until the convergence of the state variables of the problem. However, given
the iterative nature of the ForgeNxt®2016 algorithm, we adopt the iterative HPTS method from [3]
for the present work.

5.1.3.1 HPTS Approach [3]

The basis of this strategy is to use the incremental form of Prandtl-Reuss equations described
in Section 5.1.2. This makes it possible to reuse the developments for the incremental (time-
dependent) resolution of the same problem for the steady-state (time-independent) solver. This
method proposes a two-step iterative strategy for the resolution of the elastoplastic constitutive
model in the steady-state iterative algorithm, given as follows:

• Build streamlines from the velocities computed from the resolution of the mechanical prob-
lem

• Integrate the incremental Prandtl-Reuss constitutive model along the streamline

For the first step, the nodes and integration points the streamlines are built with a known velocity
field. The nodes and the integration points are aligned with the streamlines as a result of the shape
update (in the previous fixed-point iteration) . It is to be reminded that [3] took advantage of the
structured mesh for the alignment of the nodes/integration points along the streamline with the
streamline equation (2.3.31b). In this method, the number of streamlines are equivalent to the
number of surface elements on the input plane Γi n . These streamlines connect consecutive inte-
gration points until they meet the output plane Γout of the control volume. This method assures
that all the integration points have an associated streamline.
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Figure 5.1.3: Steady-state computation of elastoplastic stress with structured mesh

(a) Iteration-1

(b) Iteration-2

(c) Iteration-3

(d) Iteration-4

(e) Iteration-5

Figure 5.1.4: Iterative resolution of elastoplastic constitutive law for integration on a streamline

The integration point int-1 in each streamline is the representative of the previous state of the
integration point int as shown in the Figure 5.1.3. Thus, the position of the integration point int in
the steady-state formulation is given as following:

~xint =~xint-1 +~v int∆t̃ =~xint-1 +∆~xint (5.1.25)

In the equation (5.1.25), ∆t̃ is the pseudo-time-step and is described with the relation (2.3.12).
This is a notional representation of time in time-independent equations. In addition, the time-
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step is locally computed for each integration point, and is dependent on the distance between the
two integration points. The time-step is thus heterogeneous in size and motivates the name of
the method. The second step of the algorithm concerns the integration of field-variables on the
streamlines. Firstly, the increment of state-variables (∆ε̄,∆s) are computed by solving the Prandtl-
Reuss equations (5.1.24) and (5.1.20) respectively. The respective pressure, deviatoric stress and
strain increments find the state-variables at the integration point int with the following relations:

p int = p int-1 +∆p int (5.1.26a)

sint = sint-1 +∆sint (5.1.26b)

ε̄int = ε̄int-1 +∆ε̄int (5.1.26c)

In elastoplasticity, the equations in the Mechanical problem are strongly coupled in the stress
and the velocity fields. The updated stress field must as well verify the equilibrium conditions,
which yields a new velocity field. Thus a Sub-iter loop within the mechanical solver is necessary
(as shown in Figure 2.3.2) for a converged solution. It is to be reminded here that the stress solution
at an integration point is dependent on the stress solution at the integration point in its upwind.
Hence, the stress field must converge/stabilize along the complete length of each streamline as
shown in Figure 5.1.4. This requires multiple iterations equivalent to the number of integration
points on each streamline.

5.2 New ForgeNxt®2016 EVP resolution algorithm

The Pseudo-time-step-approach is interesting and easy to adapt for the ForgeNxt®2016 solver
with its iterative algorithm. In addition, the incremental Prandtl-Reuss equations in the ForgeNxt®inc
solver can directly be reused for the resolution of the elastoplasticity problem with the steady-state
solver. This strategy is proven to provide an excellent prediction and speed-up in comparison to
the incremental solution. This approach is thus the first direction in which the ForgeNxt®2016 EVP
solver is being studied. The direct adoption of HPTS approach is not possible due to the require-
ments of structured mesh. In the unstructured mesh, the integration points int-1 and int are not
necessarily aligned on the same streamline (see Figure 5.2.1). Hence, the advantage of structured
mesh, with naturally aligned integration points along streamlines, is lost.

Figure 5.2.1: Problem with adoption of Lam3 algorithm with unstructured mesh

For the moment, the modification of the existing ForgeNxt®2016 algorithm is envisaged to
adopt the HPTS approach. This modification requires to build a streamline-framework for elasto-
plasticity computation in the unstructured mesh.

5.2.1 Building streamline in ForgeNxt®2016 steady-state solver

For building the streamlines in the unstructured mesh, we could use different methods. The first
option is the long streamline method (see Figure 5.2.2) in which all the integration points in the
domain are projected backwards until they meet the input plane Γi n . In this method, similar to
[3] approach, every integration point has an associated streamline. The streamlines are built in
an iterative loop, with consecutive projection and interpolation (of velocity) steps using a very
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small pseudo-time-step ∆t̃ . After building the streamlines, the state-variables must be interpo-
lated continuously on each streamline point from the elements and vice-versa after each Sub-iter
loop iteration. Apart from the large computation requirements, this method also has a huge stor-
age requirement for tracing the location and state-variables at every streamline.

~xint,I−1 =~xint,I −~vint,I ×∆t̃ (5.2.1)

Figure 5.2.2: Comparison of different strategies for building streamlines in unstructured meshes

The second option, with comparatively lesser computation requirements is the Lagrangian
particle or sensor method. It has been successfully used in the ALE formulation of the ring rolling
process in ForgeNxt®inc. In this method, the nodal and element state-variables are transferred
from one mesh to the particles before the meshing process. After the Lagrangian step and the ALE
mesh update are performed, the state-variables are transferred from the particles to the new mesh.
In this method, the Lagrangian points are defined at the input plane of the control volume before
the problem resolution. A forward projection of these particles p is done in the downwind direc-
tion with the equation (5.2.2) until the built streamlines encounter the output plane. This method
reduces the enormous storage required with the long streamline method and hence reduces the
computation time enormously. However, with this method, we cannot ensure that every integra-
tion point is associated with a streamline. Thus it is quite possible that these streamlines may miss
high-stress gradient locations which could be critical for the elastoplasticity resolution.

~xp ,I+1 =~xp ,I +~vp ,I ×∆t̃ (5.2.2)

A third method is proposed which is practical, ensures association of every integration point to a
streamline, and has lesser storage requirements and not computationally intensive. This method
defined as the short streamline method requires projection of each integration point int in the
upwind direction (to the material flow). This projection is done only until a point pre with the
equation (5.2.3) such that both the integration point and its projection are on the same streamline
(as shown in Figure 5.2.3). However, it is to be noted that the streamline built is local in nature
and thus, the cost and storage requirement of building streamlines is much lesser. In addition, the
projection can be done without an iterative loop with a large pseudo-time-step ∆t̃ , thus reduces
the streamline building time further.
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Figure 5.2.3: Methodology of adaption of Lam3 algorithm in ForgeNxt

~xpre =~xint −~v int∆t̃ (5.2.3)

5.2.2 Constant pseudo-time-step for unstructured mesh

In the equation (5.2.3), ∆t̃ denotes the pseudo-time-step for finding the projection point pre. A
smaller ∆t̃ may result in a projection point pre in the same element as int. This must be avoided
as the interpolation of state-variables (P0 fields) on the pre is required for streamline integration.
In HPTS approach, ∆t̃ referred to a local, heterogeneous, definition of the time-step. This ensured
that the integration points int-1 and int are located in two consecutive adjoining elements and
hence resulted in a streamline connecting input plane with the output plane. For the unstructured
mesh, it is not necessary to use a constant pseudo-time-step as pre can be located anywhere in the
upwind, except for in the same element. The constant pseudo-time-step could be defined with
either of the following criteria (5.2.4). However, the choice between the two proposed criteria is
trivial as both of them assure that the pre is not in the same element as int.

∆t min = maxe he

mine |~v |
or maxe

he

|~v | (5.2.4)

It must be noted that as a consequence of a constant minimum pseudo-time step, the element
containing pre may not be contiguous with the element containing int as shown in the Figure
5.2.4a in the flow downwind to the roll-die. Even with homogeneous (similar size) meshes, the
streamlines are never of the same length but depend on the local velocity, with longer streamlines
post rolling and shorter streamlines in the upwind of the tool. The differential length is not a
problem as the gradients are generally higher only under the tool. Using equations (5.2.3) and
(5.2.4), we can thus build the local streamlines in the unstructured mesh.

(a) Streamlines with unstructured mesh (b) Projection at entry plane

Figure 5.2.4: Building streamlines in a domain with unstructured mesh

We must also consider some special scenarios while building the local streamlines. Such sce-
narios occur when the pre are located outside the domain boundary. For such cases, the point
pre is projected on the domain boundary, for example on the entry plane (see Figure 5.2.4b). The
initial (residual) stress/strain is applied at the entry plane nodes and hence is applied to the pro-
jection points projected on this plane.
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5.2.3 Basic ForgeNxt®2016 EVP algorithm

The basic iterative algorithm for the resolution of elastoplasticity is shown in the Figure 5.2.5 and is
similar to the existing ForgeNxt®2016 algorithm for viscoplastic materials with additional compu-
tations in the Step-1 to solve the EVP problem. First, the streamlines are built in the domain with
the known/assumed velocity field followed by the subsequent streamline integration that involves
the following steps. These steps constitute the part of the Sub-iter loop.

1. Interpolate state-variables at pre to model the previous known state (see Section 5.2.4)

2. Newton-Raphson resolution of the Stokes problem for ~v-p fields (see Section 5.2.5)

3. Prandtl-Reuss resolution for elastoplastic state-variables (see Section 5.1.2) and update on
the streamlines

4. Test convergence of stress field, exit if yes, go to 1 if no

Start

Initialization Ω(i ),~x(i )

Thermo-Mechanical
Resolution

Build Streamline

Streamline
Integration

Interpolate
state-variables

Stokes problem

Prandtl-Reuss
resolution

Convergence stress

Sub-iter loop

Free-surface Resolution

Convergence FP

Stop

~x(i ), i = 0

~v i+1
j = 0

Ye
s

j
=

j
+1

N
o

Yes

No

i
=

i+
1

Figure 5.2.5: Proposed basic algorithm for ForgeNxt®2016 EVP adapted from [3]

5.2.4 Detailed Sub-iter loop for the elasto-viscoplastic resolution in ForgeNxt®2016
EVP

As mentioned in Section 5.3.3, the choice of pseudo-time-step ensures that the point pre is in a
different element than int. For the streamline integration of the constitutive model, the state-
variables must first be precisely known at pre. The state variables, such as stress and equivalent
strain, are P0 fields (constant and discontinuous per element), computed and stored at the inte-
gration points (one for each element for the present formulation). The easiest method to remap
these variables is a direct P0 transfer. The value of the P0 variable at pre is approximated as the
value of the nearest integration point in local element (to which pre belongs). With this approach,
the mapped stress tensor automatically satisfies the balance equations. This technique is fast and
works well with refined mesh, however, the error becomes large with large mesh sizes with its
magnitude proportional to the gradient of remapped values for the mesh size. Such operations
(transfer of P0 variables from one mesh to other) are common with multimesh [5] or ALE meth-
ods, and often inaccuracies are reported. In the present problem, th transfer of P0 variables is done
from mesh with int to the mesh with pre. It is to be noted that depending on whether the point pre
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lies inside the element or on the shared boundary between two elements, the state-variable could
have unique or multiple values respectively. Moreover, in general practice, in the steady-state res-
olution, finer meshes are necessary only to capture large gradients, which are generally under the
tool contact. Hence, a coarser mesh is enough away from the contact. In such scenarios, it is log-
ical to interpolate the P0 state-variable field at pre from a smoother nodal solution. However, the
smoothing process is highly diffusive and special care must be taken to minimize the diffusion.
This idea of mapping solutions from smoother solution are also necessary while mapping results
from one mesh to other, generally with bimesh and ALE methods in Fg3®. Hence, there exist some
tools in ForgeNxt to keep this transfer with minimum diffusion.

(a) P0 to P1 mapping with nodal averaging (b) P0 to P1 mapping with SPR

Figure 5.2.6: P0 to P1 mapping of the state-variables

Smoothening of state-variables: mapping from P0 to P1 Two possibilities are envisaged for the
smoothening of the P0 state-variables to P1. The first method is nodal averaging, in which the
P0 solution σint is known at the integration points of the elements, thus a weighted average of
the element solution is done at the nodes to find the P1 field σ̃ (see Figure 5.2.6a). However, this
method tends to be quite diffusive, and it must be limited so that the equilibrium equation must
not be strongly violated.

On the other hand, it is also possible to use a SPR method, which was first proposed by [6]
for error estimation in adaptive meshing, and can be used for mapping P0 field at the nodes. This
method was used for remapping the state-variables in the new mesh (from adaptive remeshing) in
ALE by [2] and proven to be less diffusive. In this technique, we aim to find the recovered solution
(see Figure 5.2.6b) at the nodes σ̃ with the following equation:

σ̃k (~x) = Pk (~x) ak = a0
k +a1

k (x −xk )+a2
k

(
y − yk

)+a3
k (z − zk ) (5.2.5)

In the above equation ak is the vector of coefficients (constant for linear elements), Pk is the poly-
nomial basis. The expression (5.2.5) is written with the first-order expansion. The four unknown
coefficients ak can be computed by minimizing the following least-square expression.

Π (ak ) = 1

2

ni nt∑
i nt=1

(σ̃k (~xi nt )−σi nt )2; ∀n = 0,3
∂Π (ak )

∂an
k

= 0 (5.2.6)

Here ni nt refers to the total number of integration points in the patch. In the event of an insuf-
ficient number of neighbors for node k to find the coefficient vector ak , the patch is extended to
the second-order neighbors and additional stabilization terms are added to the expression.
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Comparison of P0-P1 mapping strategies For the assessment of the two methods presented for
the P0-P1 mapping in terms of the best technique, we propose the following strategy:

1. Initialize a discretized geometry model with a known P1 field ˜̄q

2. Interpolate field ˜̄q at the integration points to find the P0 field q̄

3. Use Nodal Averaging method to find the P1 solution ˜̄qNA from the P0 field q̄

4. Use Superconvergent Patch Recovery method to find the P1 solution ˜̄qSPR from the P0 field q̄

5. Find and compare the respective P1 field errors with the two methods εNA = | ˜̄qNA − ˜̄q| and
εSPR = | ˜̄qSPR − ˜̄q |

We test the above-mentioned strategy with the equivalent strain, hence q = ε. The starting smooth
equivalent strain (˜̄ε) which is a P1 field and found from the resolution of convection equation
(3.2.42). The model and the converged strain field from VP-Test-Case-01 in Section 3.5.1 is used
for the current test. The respective ˜̄ε, ε̄, ˜̄εNA and ˜̄εSPR fields are shown in the Figure 5.2.7. The P1
field obtained from SPR looks much similar to the field obtained with the nodal averaging method.
It is only with the error between the starting and mapped P1 solutions in Figure 5.2.8 that we see
the difference clearly.

The error is much less with the solution obtained with SPR method in comparison to the nodal
averaging both outside and inside the domain. Hence, it can be concluded that the SPR method
is much less diffusive in comparison to the nodal averaging method and hence would be used for
the interpolation of the state-variables at projection points pre.
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Figure 5.2.7: Comparison of P0-P1 field mapping methods- P1 solutions
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Figure 5.2.8: Comparison of P0-P1 field mapping methods- P1 error field

P1+ Interpolation of state-variables at pre The next step is to interpolate the state-variable fields
at the projection points pre from the smooth solution of the state-variables. It is to be high-
lighted here that an enriched state-variable field is built using the solution known at the nodes
(smoothened solution) and the integration points of the mesh as shown in the Figure 5.2.9. To
restrict the interpolation diffusion to a minimum, it is proposed to use this enriched solution for
the interpolation.

Figure 5.2.9: Building P1+ field from P0 field known at integration point (centroid of element) and P1 field
known at the nodes and interpolation at pre

With the prescribed definition of the P1+ field ˜̄q⊕q̄ , we can interpolate the state-variable at any
coordinate ~x in the discretized domain Ωx h with the following relation. In this equation, k is the
nodal index, Nk is the piecewise linear Galerkin shape function, and Ne is the bubble function. The
bubble function is also used for the velocity interpolation in Section 3.2.3.4. For our application, a
piecewise linear function with value 1 at the centroid of the element and 0 at the boundary in the
subspace of the tetrahedral element is chosen. The derivation, of Ne and the distance function to
locate the sub-tetrahedron (subspace) the coordinate~x belongs to, is presented in Appendix A.1.

˜̄q (~x) =
∑

k=1,4
Nk (~x) ˜̄qk (~x)+Ne (~x)

(
q̄ − ∑

k=1,4
Nk (int) ˜̄qk

)
(5.2.7)

The equation can be used to interpolate the state-variables at the projection point pre. Hence, the
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state-variables including the deviatoric stress spre, and equivalent strain ε̄pre are interpolated from
the following relations using the respective P1+ fields.

spre = s̃
(
~xpre

)
(5.2.8a)

ε̄pre = ˜̄ε
(
~xpre

)
(5.2.8b)

It can be noted that if pre coincides with the local integration point int-1 of the element in which
it is located, the above description yields the field value at the integration point as follows:

˜̄q (int-1) =
∑

k=1,4
Nk (int) ˜̄qk (int-1)+Ne (int-1)︸ ︷︷ ︸

=1

(
q̄ − ∑

k=1,4
Ne (int-1) ˜̄qk

)
= q̄ (5.2.9)

5.2.5 Newton-Raphson resolution of Stokes Problem

Once the streamlines have been built with the state variables interpolated at the projection points
pre, the Stokes problem is resolved to compute the unknown velocity~v and pressure p fields. In the
said problem, the linear momentum conservation (3.2.1a) still continues to be valid, however, the
incompressibility condition (3.2.1b) is no more applicable. Instead, we use the following condition
for the elastic compressibility:

~∇· (~v) = −ṗ

Kb
on Ωx with Kb = λe + 2µe

3
(5.2.10)

In the above equation, the material is incompressible when the Bulk modulus Kb →∞, and in any
practical application, the formulation results in finite compressibility. So, the weak form of the
mechanical problem in equation (3.2.20) is replaced by the following: Find

(
~v , p

) ∈Vv ×Vp such
that, ∀(

~v∗, p∗) ∈Vv
0 ×Vp

∫
Ωx

s (~v) : ε̇
(
~v∗)

dω−
∫
Ωx

pdiv
(
~v∗)

dω−
∫
Γc

~τ f (~v) ·~v∗d s −
∫
Γc

σn~n ·~v∗d s = 0 (5.2.11a)

−
∫
Ωx

p∗
(
~∇· (~v)+ ṗ

Kb

)
dω= 0 (5.2.11b)

In the incremental (time-dependent) formulation, the pressure-rate ṗ is defined with equation
(5.2.12). Here pt is the pressure field in the previous time step and ∆t being the time step.

ṗh = p t+∆t −p t

∆t
(5.2.12)

In the steady-state context, the pressure field (P1) at the previous pseudo-time-step cannot be
computed with the existing streamline framework for modeling the P0 variables at previous pseudo-
time-step. Hence, a new framework is devised to model the pressure field at the previous time step.

1. Build P1 streamlines for each node k ∈Ωh and its projection ˜pre computed from equation
(5.2.13). In this equation, the pseudo-time-step ∆t̃ min is the same as used for building the
streamlines for the integration points in equation (5.2.2)

∀k ∈Ωh , ~x ˜pre =~xk −~vk∆t̃ min (5.2.13)

2. The pressure is computed at the node projection ˜pre from the following interpolation

p ˜pre =
∑

k=1,4
Nk

(
~x ˜pre

)
pk (5.2.14)
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After the FE discretization with the P1+/P1 mini elements (see equation (3.2.28)), we can describe

the discretized weak form of the mechanical problem in the following manner. Find
(
~v l

h ,~vb
h , ph

)
∈

V
v,l
h ×Vv,b

h ×Vp
h , with m ∈ [1,4] ,µe ∈ [1,3] such that:

Rl
µm

(
~v l

h ,~vb
h , ph

)
=

∫
Ωh

sh

(
~v l

h

)
: Bl

µmdωh −
∫
Ωh

phdiv
(
Bl
µm

)
dωh −·· · = 0 (5.2.15a)

Rb
µ

(
~v l

h ,~vb
h , ph

)
=

∫
Ωh

sh

(
~vb

h

)
: Bb

µdωh −
∫
Ωh

phdiv
(
Bb
µ

)
dωh = 0 (5.2.15b)

Rp
m

(
~v l

h ,~vb
h , ph

)
=−

∫
Ωh

Nm

(
div

(
~v l

h +~vb
h

)
+

ph −p
˜pre

h

Kb∆t̃

)
dωh = 0 (5.2.15c)

For the stiffness matrix computation, the derivative of the deviatoric stress ∆s with the ve-
locity ~v must be described. The chain rule necessitates the computation of the derivative of the
deviatoric stress with the deviatoric strain ∆e given the relation (5.2.16a). The deviatoric strain
increment is the deviatoric part of the incremental strain ∆ε, which is computed from the velocity
field with the equation (5.1.8b).

∂∆s

∂~v
= ∂∆s

∂∆e

∂∆e

∂∆ε

∂∆ε

∂~v
(5.2.16a)

∂∆s

∂∆e
= 2µe

1+ 3µe∆ε̄
σy (ε̄+∆ε̄)

Id4 −
1− ∆ε̄

σy (ε̄+∆ε̄)
dσy

d ε̄

1+ 1
3µe

dσy

d ε̄

(
s +2µe∆e

)× (
s +2µe∆e

)(
s +2µe∆e

)
:
(
s +2µe∆e

)
 (5.2.16b)

In addition, the Hpp in the system (3.2.31) is non-zero for elasto-viscoplasticity and given as
following:

Hpp
mk =−

∫
Ωx h

Nm
Nk

Kb∆t̃
dωh (5.2.17)

The orthogonality of the linear and bubble shape functions in the P1+ interpolation, is still valid.
So, the terms Hlb,(i )

k and Hbl ,(i )
k are still zero.

The new velocity field computed from the Newton-Raphson resolution is used to update the
state-variables from the Prandtl-Reuss equations described in Section 5.1.2. As the new state-
variables s, ε̄ are computed at the integration points int, the same must be used to compute the
updated velocity field, thanks to the strong coupling between the velocity and the stress field.
As mentioned before, these steps are repeated in the Sub-iter loop until the stabilization of the
stress field. In this present algorithm, the streamlines are not updated as soon as the velocity field
is updated in order to remain consistent with A. Hacquin’s approach in which the streamlines are
updated during geometry computation with the nodal repositioning.
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5.2.6 Detailed ForgeNxt®2016 EVP Algorithm-1
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Figure 5.2.10: Detailed ForgeNxt®2016 EVP Algorithm-1 with Sub-iter loop

Figure 5.2.5 briefly listed the steps involved in the resolution algorithm for the steady-state elasto-
plasticity. The present section is dedicated to organize the steps presented in the previous sections
necessary for elastoplasticity resolution in the proposed algorithm. For initialization, the stream-
line building is not possible as the velocity field is unknown. Hence, the first iteration is computed
with the steady-state algorithm with a viscoplastic material model, in which no streamline build-
ing required. Once initialized, the pseudo-time-step∆t̃ is computed followed by the computation
of projection points pre in the mesh as explained in Section 5.2.1. This initial viscoplastic solu-
tion for velocity ~v , pressure p, deviatoric stress s and equivalent strain ε̄ fields is necessary for the
initialization of the elasto-viscoplastic resolution with the proposed algorithm. Next the steps of
the Sub-iter loop are recalled for streamline integration of the state-variables. Inside this loop, the
iteration is represented with the index j . Firstly, the state-variables are initialized followed by the
smoothening of the deviatoric stress with the SPR method. The smoothened equivalent strain is
computed with the resolution of the convection equation (3.2.42). Using the P1+ state-variables
fields, and P1 pressure field, they are interpolated at the pre. The initialized fields (at pre) are used
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to compute the elasto-viscoplastic state-variables from Prandtl-Reuss equations. The steps in the
Sub-iter loop are repeated until the convergence of the stress field with the criterion explained
below in Section 5.2.7. On convergence of the mechanical problem with the Sub-iter loop, the up-
dated velocity field is used for the free-surface resolution. It is also to be pointed out that the new
velocity field computed inside the Sub-iter loop is not used to update the streamlines as a choice
adopted from the original [3] approach. The convergence of the streamlines is rather assured from
the converged velocity and shape fields in consecutive fixed-point iterations.

5.2.7 Convergence criterion/a for the Sub-iter loop

The convergence of the Sub-iter loop is realized when the deviatoric stress is stable in the complete
domain. This is ensured with the infinite error norm of the deviatoric stress, which tends to bring
the maximum difference between the deviatoric stress (all 6 components) in an element between
two Sub-iter loop iterations below a defined criterion.

d ∈ {1,6}
maxint|s j+1

d (int)− s j
d (int) |

maxint|s j+1
d (int) |−minint|s j+1

d (int) |
≤ εsi (5.2.18)

The criterion chosen here is εsi = 5% which ensures the convergence of the stress field in the com-
plete domain. [3, 4] highlighted that the stress update with such a criterion is communicated
one section per iteration in the structured mesh. Hence the number of iterations required for the
complete stability is equivalent to the number of sections. With the unstructured mesh, where
we do not have well-prescribed sections, the number of iterations for the convergence could be
estimated with the ratio of the total length of the workpiece with the minimum communication
distance.

5.3 Validation of ForgeNxt®2016 EVP Algorithm-1 with a simple cold
rolling problem

The proposed ForgeNxt®2016 EVP Algorithm-1 in Section 5.2.6 is evaluated for its performance
with some test-cases using elasto-viscoplastic constitutive material model. The algorithm is tested
in an order of increasing complexity. The convergence of the Sub-iter loop has also been studied
with the chosen criterion to see if a stable stress field is obtained. The results from these test-
cases are validated with the incremental resolution of the same problem (and same mesh size) in
ForgeNxt®inc until the steady-state is reached.

5.3.1 EVP-Test-Case-01 model details

Firstly, a simple rolling test case is tested with the proposed ForgeNxt®2016 EVP algorithm. The
model geometry is shown in Figure 5.3.1. At the input planeΓi n , the sheet measures 10 mm x 1 mm
and at the output plane it measures 9 mm x 1 mm. 2

(
x, y

)
symmetric planes are applied to con-

straint the lateral flow of the material. This problem is tested with different models (structured/
unstructured mesh, with homogeneous/heterogeneous mesh-size). The viscoplastic initialization
(Figure 5.2.10) is performed either with Hensel-Spittel or Norton-Hoff constitutive models.

Mesh models

Three different mesh models have been tested for the problem (see Figure 5.3.1). First, a structured
mesh of 0.5mm size throughout the domain. The second model consists of unstructured mesh
with size 0.5 mm. The third model consists of non-homogeneous mesh in the workpiece domain
with 0.5 mm below the tool and 1.0 mm away from the tool.
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Figure 5.3.1: Mesh models tested for the pseudo-2D cold rolling (EVP) test-case

Material constitutive model

The Hensel-Spittel material model is used to describe the elasto-viscoplastic behavior. This model
is described generally in the following form. For modeling elasticity, the Young’s modulus E and
Poisson’s ratio as ν are also specified.

σ̄= Aem1T ε̄m2 ˙̄εm3 em4/ε̄ (5.3.1)

On comparison with the Norton-Hoff flow equation (3.2.7), we can see the similarities between
the two models; with Hensel-Spittel it is possible to model much complex material behavior. For
the present case we assume an elasto-viscoplastic fictitious material with specifications of the co-
efficient A, m2 and m3 respectively shown in Table 5.3.1. The other coefficients are assumed to be
null. However, we do not assume any strain hardening for simplicity.

Type Parameters

Hensel-Spittel EVP
E = 200GPa, ν= 0.3,

A = 1000MPa, m2 = 0.2, m3 = 0.05, m4 = 0.05

Table 5.3.1: Hensel-Spittel properties used for the EVP resolution of EVP-Test-Case-01

5.3.2 Initialization with viscoplastic solution

An initialized solution is necessary for the resolution of the problem with the steady-state EVP al-
gorithm. So, first we solve the problem with the viscoplastic material model using the ForgeNxt®steady-
state solver with implicit contact constraint (Steady-State Implicit) to initialize the velocity, pres-
sure, stress, and equivalent strain fields. The starting geometry for elasto-viscoplastic resolution
is the converged geometry from viscoplastic resolution. Thus only a few iterations are required
for the convergence of the geometry with the elasto-viscoplastic material model. The Norton-Hoff
model and Hensel-Spittel models with following properties are chosen for the initialization of the
solution.
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Type Parameters
Hensel-Spittel VP A = 1000, m2 = 0.2, m3 = 0.05, other coeffs=0

Norton Hoff VP K = 220, m = 0.5

Table 5.3.2: Different models and properties used for the VP initialization

5.3.3 Different EVP-Test-Case-01 model variants tested

The details of the models tested for the present test-case are shown in Table 5.3.3. For example,
the EVP-Test-Case-01-a model uses the structured Mesh-1 (see Figure 5.3.1) and is initialized with
the Hensel-Spittel viscoplastic model and so on.

Model Name Mesh Viscoplastic model
EVP-Test-Case-01-a Mesh-1 (structured, 0.5mm everywhere) Hensel-Spittel
EVP-Test-Case-01-b Mesh-2 (unstructured, 0.5mm everywhere) Hensel-Spittel
EVP-Test-Case-01-c Mesh-3 (unstructured, 0.5mm near tool, 1mm away) Hensel-Spittel
EVP-Test-Case-01-d Mesh-3 (unstructured, 0.5mm near tool, 1mm away) Norton-Hoff

Incremental Mesh-2 (unstructured, 0.5mm everywhere) -

Table 5.3.3: Different EVP-Test-Case-01 variants tested

5.3.4 Comparison of EVP-Test-Case-01 results

Firstly, we compare the convergence of the deviatoric stress inside the Sub-iter loop. The resid-
ual of the different components of the deviatoric stress, as presented in the equation (5.2.18), is
plotted for the present test-case in Figure 5.3.2. For each component, the residual convergence
is compared for the four test-models (in Table 5.3.2). The maximum number of iterations chosen
for the Sub-iter loop are 30 (within each fixed point iteration). Since multiple projections and re-
projections of the state-variables is involved, the diffusive effect must be curtailed by limiting the
maximum number of iterations. In each plot, the abscissa is the global step number which corre-
sponds to the total number of the Sub-iter loop iterations since the beginning of the simulation.
From the results as seen in Figure 5.3.2, we observe that:

1. EVP-Test-Case-01-a takes the maximum number of steps for the convergence due to more
element sections (fine mesh size) and thus needs more iterations for stress field stability.
Convergence for sxx component is not observed in the first fixed-point iteration.

2. EVP-Test-Case-01-c and EVP-Test-Case-01-d take the least (and same) number of steps for
convergence, with almost same residual at the convergence

3. a new fixed-point iteration follows if the maximum number of iterations is reached or the
deviatoric stress converges

4. The last iteration of the state-variables from the Sub-iter loop in the iteration i is used for
the initialization of state-variables in the iteration i+1. In this iteration, the streamline is
updated, hence the stress-field observes a large change and hence is seen as a peak in the
convergence residual. This peak gradually decreases as we move closer to convergence

5. The first convergence of the deviatoric stress field takes the longest. Once a stable elasto-
plastic field is computed, it converges much faster.
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Figure 5.3.2: Convergence of different deviatoric stress components for EVP-Test-Case-01

(a) Convergence of sxx field (b) Convergence of szz field

Figure 5.3.3: Convergence of deviatoric stress components

Subsequently, we can also visualize the convergence of the deviatoric stress field components
sxx and szz for viscoplastic initialization, step-10, step-20, step-30, step-50 and convergence in the
Figure 5.3.3. A relaxation of the stress field is clearly seen in the viscoplastic solution in the down-
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wind due to viscous effects. However, when the material behavior is of elasto-viscoplastic nature,
no such relaxation is visible. We see the largest stress norm below the tool and gradually reduc-
ing in the upwind and downwind region of the tool until a stabilized stress field is obtained. This
"St.Venants" like zone is roughly 1-2 times the thickness of the workpiece. The stress field must
stabilize after a distance (2-3 times the thickness of the workpiece) after the tool-bite region. How-
ever, at the output planeΓout , we have a free-surface condition (as seen in equation (3.2.10)) which
results in the perturbation of the residual stress. This perturbation effect is also observed for a
distance equivalent to 2-3 times the workpiece thickness (from the output plane Γout ). The free
surface condition was reasonable for the viscoplastic material models, where we observed stress
relaxation, but for the elasto-viscoplastic materials, suitable boundary conditions must be used
for the output plane Γout as highlighted by [3].

The global results from the simulations carried out with the different models presented are
compared in Table 5.3.4. The validation of the steady-state solution is done with the incremental
resolution of the same problem with the Mesh-2 in ForgeNxt®inc. In addition, the results from the
initialized viscoplastic solution with Hensel-Spittel (HS) and Norton-Hoff (NH) models are also
presented with each of the test-case. We have the following main observations from the results:

1. There is good agreement between the results found from the Hensel-Spittel viscoplastic
model, hence, assuring the same start for each of the EVP test case simulations

2. The Tool Force and Torque computed with all four simulations with the steady-state algo-
rithm have a very good agreement with the incremental solution

3. The speedup achieved with the steady-state formulation is between 15-23 times depending
on the mesh used for the simulation

4. The solution with the Norton-Hoff viscoplastic initialization (EVP-Test-Case-01-d) has a very
good agreement with the other steady-state as well as the incremental solutions, hence prov-
ing that the algorithm is robust enough to find the same solution with different initializa-
tions

5. The non-homogeneous mesh reduces the solution time by 1.35 times, without affecting
much the solution accuracy

Resolution Material No. of Time for Tool Force Tool Torque
Method Model steps resolution (min) (Tonnes) (N-m)

EVP-Test-Case-01-a
VP-HS - - 2.05 251

EVP 68 4.78 2.18 243.6

EVP-Test-Case-01-b
VP-HS - - 2.01 247.5

EVP 47 4.4 2.17 243.9

EVP-Test-Case-01-c
VP-HS - - 2.00 246

EVP 49 3.46 2.18 247.2

EVP-Test-Case-01-d
VP-NH - - 1.54 209.3

EVP 49 3.25 2.18 247.2
Incremental EVP 599 75 2.19 242.2

Table 5.3.4: Comparison of global results for EVP-Test-Case-01 from ForgeNxt®2016 EVP Algorithm-1 in
comparison to the ForgeNxt®inc resolution (on 1 core)

The rolling direction velocity and pressure fields with the incremental and steady-state results are
presented in Figure 5.3.4a and 5.3.4b respectively. The part near the engagement phase in the in-
cremental model is trimmed to remove the transient effects. The velocity computed from both the
formulations have an excellent agreement. The pressure is accurately computed under and the
upwind of the tool, but we observe a difference on the free surface in the downwind direction to
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the tool because of the end effect. We also see an excellent prediction of rolling direction stress
σxx below the tool and vertical direction stress σzz in Figures 5.3.5a and 5.3.5b respectively. How-
ever, the residual state of the rolling direction stress in the downwind of the tool is slightly under-
predicted (with steady-state) near the free surface and agreement is excellent if we trim the zone
impacted by the artificial boundary condition downstream, as done for the incremental solution.

(a) Rolling direction velocity field (b) Pressure field

Figure 5.3.4: Comparison of solution for EVP-Test-Case-01 with steady-state and incremental simulations

(a) Rolling direction σxx field (b) Vertical direction stress σzz field

Figure 5.3.5: Comparison of solution for EVP-Test-Case-01 with steady-state and incremental simulations

(a) von Mises stress field (b) equivalent strain field

Figure 5.3.6: Comparison of equivalent stress and strain fields with different simulations

The equivalent stress and strain fields computed with the different EVP-Test-Case-01 model
variants (in Table 5.3.2) are presented in the Figure 5.3.6. It can be seen that the steady-state algo-
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rithm is able to predict the von Mises stress under and upwind to the tool accurately. The residual
stress is lower with all steady-state simulations on the top free-surface in the downwind of the
tool-bite which could partly come from the Saint Venant’s effect. However, the gradient is also
high in the Z-direction, which is unlikely due to the free surface condition. Hence, some other
effects are present as well near the output plane that need to be studied and corrected. The equiv-
alent strain below the tool is also in good agreement except with the non-homogeneous meshes
(EVP-Test-Case-01 c & d), where we see an under-prediction of the strain at the free surface, and
the maximum equivalent strain is seen below the free surface.

5.3.5 Conclusions from the EVP-Test-Case-01 results

Four tests have been conducted on a simple pseudo-2D simple rolling case with the proposed
framework for the resolution of elasto-viscoplastic problems using steady-state formulation. The
results from the proposed algorithm are validated with the incremental solution of the same prob-
lem in ForgeNxt®inc. The presented results highlighted mainly the comparison of global results in
terms of tool forces and torque, which demonstrated an excellent agreement with the respective
validation test-case. The various solution contours have also been compared to test the ability of
the algorithm to predict the steady-state solution. Except for the end effects observed in stress
field contours, we observe a very good agreement with the incremental solution.

5.4 Improvement of speedup with ForgeNxt®2016 EVP Algorithm-2
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Figure 5.4.1: Algorithm-2 for EVP steady-state resolution with streamline loop in ForgeNxt®2016

In the Sub-iter loop of the present algorithm (Figure 5.2.10), multiple interpolations of the state-
variables are required from the mesh to the streamlines and vice-versa. This is a diffusive process
and can accumulate error after numerous iterations, especially if a strict convergence criterion is
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chosen for the Sub-iter loop. In addition, the new velocity field computed inside the Sub-iter loop
must also entail the recomputation of streamlines. In the presented algorithm, both the steady-
state shape and velocity are changed simultaneously, and the stress solution does not conform
to the new streamlines (seen as peaks in Figure 5.3.2) and thus retards the convergence. Hence,
a change is proposed in the steady-state algorithm (see Figure 5.4.1) by adding another step to
update the streamlines in the mechanical computation.

5.4.1 Detailed ForgeNxt®2016 EVP Algorithm-2

A new loop called the Stream-loop is introduced into the algorithm. This step aims to update
the streamlines after a certain level of stress convergence is achieved. The updated velocity field
is used to update the streamlines or the location of projection points pre after few iterations of
the Sub-iter loop. Thus, the Stream-loop encompasses the Sub-iter loop and aims to improve the
convergence speed-up.

5.4.2 Updated Stream-loop and Sub-iter loop convergence criteria

As seen in the Figure 5.4.1, two convergence criteria must be described for the Stream-loop and
Sub-iter loop respectively. The Sub-iter loop, unlike the ForgeNxt®2016 EVP Algorithm-1 (Figure
5.2.10), does not require a global convergence of the deviatoric stress, but only in the vicinity of
the tool where the deformation takes place. Hence, the new convergence criterion of Sub-iter loop
looks for the stability of the deviatoric stress field only in the vicinity of the tool with the following
criterion. This is ensured if the infinite norm of the deviatoric stress error between two Sub-iter
loop iterations is stagnant.

d ∈ {1,6}
max j+1

int |s j+1
d (int)− s j

d (int) |−max j
int|s

j
d (int)− s j−1

d (int) |
max j+1

int |s j+1
d (int)− s j

d (int) |
≤ εsi (5.4.1)

The streamlines are updated after the stresses below the tool converge. For ensuring the global
convergence of the deviatoric stress field, we apply the following criterion for the convergence of
the Stream-loop. This is the same criterion for the convergence of deviatoric stress in ForgeNxt®2016
EVP Algorithm-1 as presented in Section 5.2.7.

d ∈ {1,6}
maxint|s j+1

d (int)− s j
d (int) |

maxints j+1
d (int)−minints j+1

d (int)
≤ εstr eam (5.4.2)

The Sub-iter loop convergence criterion was found empirically and is chosen as εsi = 0.2. The
Stream-loop convergence criterion is chosen as εstr eam = 0.05 in line with the convergence crite-
rion for global stress stability in the ForgeNxt®2016 EVP Algorithm-1. The maximum number of
iterations in the Sub-iter loop are 10 and Stream-loop are 3 in order to limit the total number of
iterations to 30 consistent with Algorithm-1. With this limit, the streamlines are updated either
if the Sub-iter loop is converged or maximum number of iterations are reached. In addition, if
the convergence criterion for Stream-loop is reached, it is also treated as the convergence of inner
Sub-iter loop loop.
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5.4.3 EVP-Test-Case-01 resolution with ForgeNxt®2016 EVP Algorithm-2

Resolution Material No. of Time for Tool Force Tool Torque
Method Model steps resolution (min) (Tonnes) (N-m)

Steady-state
EVP-Algo1 49 3.25 2.18 247.2
EVP-Algo2 37 3.87 2.18 247.2

Incremental EVP 599 75 2.19 242.2

Table 5.4.1: Comparison of global results for EVP-Test-Case-01-d with the ForgeNxt®2016 EVP Algorithm-1
and Algorithm-2 in comparison to the ForgeNxt®inc resolution (on 1 core)
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Figure 5.4.2: Convergence of different deviatoric stress components for EVP-Test-Case-01-d with
ForgeNxt®2016EVP Algorithm-1 & Algorithm-2

The ForgeNxt®2016 EVP Algorithm-2 is tested with EVP-Test-Case-01-d and it is found that the
results for the updated algorithm are the same as the ones obtained from Algorithm-1, hence only
the global results are compared in the Table 5.3.2. We see a reduction of the number of iterations
for convergence from 49 with Algorithm-1 to 37 with Algorithm-2, but there is hardly any differ-
ence in the resolution time. The convergence of the Stream-loop residual for deviatoric stress is
seen in Figure 5.4.2. An offset is seen in the peaks representing shape update (at new fixed-point
iteration) with the new Algorithm-2. Nonetheless, the convergence curve with Algorithm-2 is seen
to have no signature of the streamline update. It could be because there might be a very small
change or no change in the position of the pre at the maximum s error location.

5.5 Validation of ForgeNxt®2016 EVP algorithm with complex test cases

Next, we test the Algorithm-1 and Algorithm-2 with two more complex test cases: (i) EVP-Test-
Case-02 (ii) EVP-Test-Case-03.
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5.5.1 EVP-Test-Case-02 resolution with ForgeNxt®2016 EVP algorithm

Figure 5.5.1: Mesh model for the EVP-Test-Case-02

EVP-Test-Case-02 is a thick plate rolling test-case which was also tested for contact formulation in
the Section 4.5, except that here it is tested with cold conditions using Hensel-Spittel EVP material
model (Table 5.3.1). With only two symmetry planes (one horizontal and one vertical), the ma-
terial flow is allowed in the lateral direction. A constant mesh size of length 1 mm is used for the
discretization of the domain (see Figure 5.5.1). The global results (in Table 5.5.1) with steady-state
resolution (with Algorithm-1 & 2) are seen to have a very good agreement with the incremental res-
olution results. An important observation is that there is no change observed in the results when
changing from Algorithm-1 to Algorithm-2, similar to what was observed with EVP-Test-Case-01-
d. The only difference seen is a small reduction in the number of steps and the time for resolution
with the Algorithm-2.

Resolution Material No. of Resol. Time Force Torque
Method Model steps (min) (T) (kN-m)

Steady-state
EVP-Algo1 37 11.1 212.6 44.93
EVP-Algo2 33 9.92 212.6 44.93

Incremental EVP 524 94 214.6 43.66

Table 5.5.1: Comparison of global results for EVP-Test-Case-02 from the ForgeNxt®2016 EVP Algorithm-1
and Algorithm-2 in comparison to the ForgeNxt®inc resolution (on 1 core)

The converged solutions for the von Mises stress and the equivalent strain with the steady-
state and incremental methods are compared in Figure 5.5.2. In general, the stress field is pre-
dicted quite well with the steady-state algorithm. Nonetheless, there are differences in the post-
bite region after the contact with steady-state algorithm over-predicting the stress. Near the edges,
we observe an under-prediction of the stress field. The prediction of equivalent strain is much bet-
ter.
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(a) von Mises stress (b) Equivalent strain

Figure 5.5.2: Comparison of solution for EVP-Test-Case-02 with steady-state and incremental simulations
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Figure 5.5.3: Comparison of output plane shape (Initial half-width: 40 mm) for EVP-Test-Case-02 with in-
cremental and steady-state formulations

The comparison of steady-state shape computed with steady-state (Algorithm-2) and incre-
mental algorithms is shown in Figure 5.5.3. It can be observed that both solutions have a good
agreement, except that the lateral spread is underpredicted with the steady-state algorithm near
the top edge. This could be due to a relatively coarser element at the same location or difference
in friction modeling in the incremental resolution. The convergence of the deviatoric stress com-
ponents can be seen in Figure 5.5.4. We see slight improvement in convergence iterations but the
residual is more or less the same with or without streamline update except for components sxx , szz .
The peaks of residual are most superimposed, except that with the Algorithm-2, we observe an ex-
tra peak at 10th step. This additional peak corresponds to the streamline update, which happens
only one time during the i = 1 whereas later the global convergence criterion (for Stream-loop) is
met, so no streamline update takes place.
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Algo-1 Algo-2 Criterion
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Figure 5.5.4: Convergence of deviatoric stress components for EVP-Test-Case-02 with steady-state algo-
rithms

5.5.2 EVP-Test-Case-03 resolution with ForgeNxt®2016 EVP algorithm

Figure 5.5.5: Mesh models used for the Test-case 03

The third test-case is a shape rolling problem in which a circular section workpiece is rolled to an
oval shape. The rolls rotate at 29.1 rpm. The model used for this test is shown in Figure 5.5.5. The
Hensel-Spittel material model is used with the same properties as used in the previous two cases
(see Table 5.3.1). The global results (in Table 5.5.2), like in the previous test-cases, are predicted
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well with the steady-state solver. However, it can be noticed that the steady-state Algorithm-1 takes
a much longer time and almost double the number of iterations in comparison to the Algorithm-2.

Resolution Material No. of Time for Tool Force Z Tool Torque
Method Model steps resolution (min) (T) (kN-m)

Steady-state
EVP (Algo-1) 120 45.5 291.6 100
EVP (Algo-2) 65 25.12 291.9 100.1

Incremental EVP 443 212 294.53 100.7

Table 5.5.2: Comparison of global results for EVP-Test-Case-03 from the ForgeNxt®2016 EVP in comparison
to the ForgeNxt®inc resolution (on 1 core)

(a) von Mises stress (b) Equivalent strain

Figure 5.5.6: Comparison of solution for EVP-Test-Case-03 with steady-state and incremental simulations
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Figure 5.5.7: Comparison of output plane shape for EVP-Test-Case-03 with incremental and steady-state
formulations

The converged solution for the von Mises stress and the equivalent strain fields with the in-
cremental and steady-state formulations are compared in Figure 5.5.6. Firstly, we see smoother
contours without any oscillations with steady-state formulation. We see an overall excellent pre-
diction of the solution contours for the gain achieved in resolution time. The steady-state shape
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computed with the two formulations compared in the Figure 5.5.7 demonstrate an excellent agree-
ment between the two solutions. The convergence of the deviatoric stress components for the
EVP-Test-Case-03 is presented in Figure 5.5.8. This test is a perfect example showcasing how the
streamline update can help accelerate the convergence. In the first fixed-point iteration, we see
how a slowly converging residual which takes almost 50 steps to see first convergence, is acceler-
ated with Algorithm-2 which takes only 26 iterations for the same. Even further into the computa-
tion, the stress convergence with the Algorithm-2 is consistent and rapid.

Algo1 Algo2 Criterion
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Figure 5.5.8: Convergence of deviatoric stress components for EVP-Test-Case-03 with steady-state algo-
rithms

5.5.3 Conclusions from the EVP-Test-Case-02 and EVP-Test-Case-03 results

Three different test-cases have been tested with the proposed two algorithms for the resolution
of elasto-viscoplastic problems using steady-state formulation. The results from the proposed al-
gorithm are validated with the incremental solution of the same problem in ForgeNxt®inc. The
results found with both the algorithms are in excellent agreement with the incremental solution.
The steady-state shape is also accurately predicted with the steady-state method. While compar-
ing the results between the two steady-state algorithms proposed, we found that the global results
as well as the field contours are nearly identical. However, the Algorithm-2 results in faster conver-
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gence of the stress field with a lower number of steps and lesser computation time for resolution
of the problem.

5.6 Conclusions from the Chapter

The present chapter focused on finding a methodology to resolve continuous forming problems
with EVP materials with the steady-state formulations. From the point of view of the existing iter-
ative solver of the ForgeNxt®2016, the HPTS approach inspired the extension of the existing algo-
rithm to solve such problems. The method requires to trace the streamlines in the discretized do-
main and integrate the elasto-viscoplastic constitutive model on these streamlines. The HPTS ap-
proach is advantageous as it uses the incremental Prandtl-Reuss equations to compute the elasto-
plastic stress field which can be used both for incremental and steady-state formulations. Though
originally, this method had the advantage of the structured mesh for carrying out this task, such
a framework is not natural with the unstructured mesh in Fg3®. Thus a framework has been pro-
posed to build discrete streamlines in the unstructured mesh. Compared to the heterogeneous
time-step in HPTS approach, we use a constant pseudo-time-step in order to compute the pro-
jection point. In steady-state formulation, the projection point of an integration point describes
its state at the previous time-step. Hence, the state-variables need to be interpolated at the pro-
jection point. To make this interpolation non-diffusive, we use the P1+ field solution built from a
smoothed (P1) deviatoric stress field found from SPR recovery and the P0 field known at the inte-
gration points. A sub-iteration loop is introduced inside the mechanical step for finding a stable
stress field which respects the equilibrium conditions in the strongly coupled problem. The pro-
posed algorithm is tested on a simple cold rolling test case with Hensel-Spittel elasto-viscoplastic
material model and the predicted results are seen to have a good agreement with the incremen-
tal solution of the same problem. A modification of the algorithm is proposed with an additional
streamline loop that aims to recompute the streamlines with the updated velocity field after the
stress converges below the tool. Both these algorithms are tested with the same simple cold rolling
test-case and the one with streamline update is found to reduce the number of iterations for con-
vergence.

Further, two more test-cases: a flat rolling and a shape rolling, are tested with both the pre-
sented algorithms, and the results are validated with the incremental one of the same problem.
The results are found to have an excellent agreement and promise to bring down the resolution
time enormously. The algorithm with a streamline update is observed to be more robust and faster
than the other.
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Résumé

Ce chapitre se concentre sur la recherche d’une méthodologie pour résoudre les problèmes de lami-
nage à froid pour des matériaux EVP avec la formulation stationnaire. Du point de vue du solveur
itératif existant de ForgeNxt®2016, l’approche HPTS a inspiré l’extension de l’algorithme existant
pour résoudre de tels problèmes. La méthode nécessite de tracer les lignes de courant dans le domaine
discrétisé et d’intégrer le modèle constitutif élasto-viscoplastique sur ces lignes de courant. L’approche
HPTS est avantageuse car elle utilise les équations incrémentales de Prandtl-Reuss pour calculer le
champ de contraintes élastoplastiques qui peut être utilisé pour les formulations incrémentale et sta-
tionnaire. Bien qu’à l’origine, cette méthode avait l’avantage du maillage structuré, ce qui simplifie
l’intégration des équations sur les lignes de courant formées par l’alignement des noeuds consécutifs,
ce n’est pas naturel avec le maillage non structuré comme dans Fg3®. Ainsi, un cadre a été proposé
pour construire des lignes de courant discrètes dans un maillage non structuré. Comparé au pseudo-
pas de temps hétérogène dans l’approche HPTS, nous utilisons un pseudo-pas de temps constant afin
de calculer le point de projection. Dans la formulation stationnaire, le point de projection d’un point
d’intégration décrit son état au "pas de temps" précédent. Par conséquent, les variables d’état doivent
être interpolées au point de projection. Pour rendre cette interpolation non diffusive, nous utilisons
un champ P1+ construit à partir d’un champ de contrainte déviatorique lissé (P1) trouvé à partir
de la méthode SPR et du champ P0 connu aux points d’intégration. Une boucle de sous-itération
est introduite à l’intérieur de l’étape mécanique pour trouver un champ de contrainte stable qui re-
specte les conditions d’équilibre dans le problème fortement couplé. L’algorithme proposé est testé
sur un cas test de laminage à froid simple et les résultats semblent être en bon accord avec la solution
incrémentale du même problème. Une modification de l’algorithme est proposée avec une boucle
supplémentaire pour l’actualisation de lignes de courant avec le champ de vitesse actualisé après la
convergence de la contrainte sous l’outil. Ces deux algorithmes sont testés avec le même cas test de
laminage à froid simple et celui avec l’actualisation de lignes de courant réduit le nombre d’itérations
de convergence. De plus, deux autres cas tests, avec un laminage à plat et un laminage de forme, sont
testés avec les deux algorithmes présentés, et les résultats sont validés avec la solution incrémentale
du même problème. Les résultats montrent un excellent accord (avec les résultats de la méthode in-
crémentale) et un temps de résolution considerablement réduit. On observe que l’algorithme avec
l’actualisation de lignes de courant est plus robuste et plus rapide que le premier.
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CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

This chapter is focused on the summary of important developments made in this thesis and
the future perspectives of the steady-state formulation for solving metal forming problems of in-
dustrial scale and complexity.

6.1 Conclusions

Starting from the pre-existing version ForgeStat, there were two clear distinct objectives of the
present thesis and the conclusions on each subject are detailed below:

6.1.1 Conclusions-1: Contact formulation

Firstly, the unstable solution with the ForgeNxt®2016 is found to be linked with the contact. In
the strongly coupled multi-field formulation, the contact surface is also an unknown and an ini-
tial assumption is corrected in the two steps of the iterative algorithm. The contact conditions are
hence applied both on velocity and shape correction fields, but it is found that these two condi-
tions are not consistent. Both the contact conditions are described with the normal velocity: in
the Step-1, it is computed with the scalar product of velocity and tool normal in a nodal form and
in the Step-2, it is described with the scalar product of velocity and mesh normal in a weighted-
residual form. We seek to improve the stability of the solution by using contact conditions which
are consistent. To do so, a nodal form of free-surface equation is derived at first using a nodal
condensation approach which is applied on the free-surface residual in the Step-2. This nodal free
surface residual is defined with the scalar product of velocity and an upwind biased normal or
upwind normal. The upwind bias comes from the choice of SUPG test function for the averaging
of the normal vector. In addition, the SUPG stabilization coefficient used for the test function is
found to be α=1/3 for the 2D problems whereas it is generally used as α=1/2. Before finding the
contact condition from the nodal free-surface equation, it is tested for its ability to predict 2D and
3D analytical shape functions. It is found that the method is convergent, but less accurate in com-
parison to the original weighted residual form. However, the largest error is located at locations
with high-velocity gradients which is not a common scenario with metal forming problems. In
addition, it is also found that the SUPG stabilization coefficient α=1/3 results in better accuracy.
We choose to use the nodal form of the free-surface equation only to find a consistent contact
condition for the velocity computation in Step-1. An initial explicit contact condition is derived
considering the mathematical behavior of the residual for a contact node. Initial tests proved that
only this change improves the robustness of the algorithm. The new contact condition is extended
to problems with shape singularity, such as edges. However, an implicit form of the contact con-
dition is ideal for further improving the robustness, as a special consideration for the first contact
nodes is needed which are the most sensitive and generally the reason behind the unstable solu-
tion. This condition on velocity field is applied on the current configuration, which is unknown
in the mechanical step. Derived from the material impenetrability constraint on the shape cor-
rection, a complete decoupling of velocity and shape fields in the free surface equation with some
assumptions leads to the required implicit contact condition. The proposed explicit and implicit
contact conditions are implemented in the ForgeNxt®2016 and tested with industrial hot rolling
problems of flat and long products. The results were compared with their resolution with incre-
mental method until a steady-state is achieved. The comparison of results demonstrates accurate
prediction with improved robustness of the algorithm. It was also demonstrated that the implicit
condition provides stable solution with all the problems tested (in comparison to the explicit con-
dition), and also reduction of number of iterations. It is also demonstrated that the computation
time is typically reduced by 20 times with the steady-state formulation in comparison to the incre-
mental resolution. Hence, the first objective of the improvement of the robustness of the algorithm
was well achieved.
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6.1.2 Conclusions-2: Steady-state algorithm for history-dependent materials

The treatment of elastoviscoplastic materials in steady-state algorithms brings in a variety of chal-
lenges to be addressed. From the point of view of the existing iterative solver of the ForgeNxt®2016,
the HPTS approach [2, 3] inspired the extension of the existing algorithm to solve such prob-
lems. In this approach, a streamline framework is the prerequisite for the resolution of incremen-
tal Prandtl-Reuss elastoplasticity equations. In the original approach, this method was applied
for structured meshes in which it is easier to trace and store the streamlines. The incremental
Prandtl-Reuss equations also make it possible to reuse a major part of the incremental resolu-
tion algorithm. The state of a precedent time-step is determined with the state at a precedent
integration point, which is true for the steady-state conditions. A pseudo-time-step is used for
modeling time in the time-dependent elastoplasticity equations. For the unstructured meshes
like in Fg3®, a framework must be developed to trace the streamlines and the associated state-
variables which carry the history-dependent information. Short streamlines are defined between
each integration point int and its upwind projection pre. The state-variables at projected point are
interpolated from the smoothed P1 fields. To minimize the diffusion, the Superconvergent Patch
Recovery (SPR) approach is used for P0 to P1 transfer, and the interpolation is done from the en-
riched P1+ (P1+P0) field. Once these tools are implemented, the state-variables at pre (previous
pseudo-time instant) are used to compute the state variables at int with the Prandtl-Reuss equa-
tions. The problem is strongly-coupled in stress and velocity, hence a Sub-iterative loop for EVP
resolution (Sub-iter loop) is introduced for the integration of state-variables until a stable stress-
field is reached. As soon as a new stress is computed, the equilibrium is satisfied and the velocity
field is updated. For the convergence of the Sub-iter loop, we seek the complete stability of the
stress solution. The existing ForgeNxt®2016 algorithm is modified to include the new steps in-
volving elastoplasticity resolution. The updated algorithm is tested with a simple 2D rolling prob-
lem with different meshes using Hansel-Spittel elastoviscoplasticity model. The initialization of
the fields is required, which is done with viscoplastic assumption of the material. Two different
viscoplastic models are used for initialization. The results obtained from the steady-state algo-
rithm are compared with the incremental resolution of the same problem until the steady-state
is reached. The proposed steady-state algorithm provides excellent prediction with all the tested
meshes & different initializations. A speedup of 16 times is achieved with the algorithm.

It is observed that if a large number of sub-increment loop iterations are prescribed to ensure
that the state variables are globally stable before proceeding to the shape correction step, one may
observe large diffusive error induced into the solution. This is due to the fact that as the state-
variables are updated, the velocity field also changes, thus the streamlines which are built with
the velocity do not correspond to the new state of the solution. Hence, we must also ensure a
regular update of the streamlines to make sure that the streamlines, state-variables and velocity
field correspond to each other. This update is effectuated by introducing another loop, Streamline
loop for EVP resolution (Stream-loop), into the algorithm.

The updated algorithm results in the reduction of the number of resolution steps for the pseudo-
2D rolling problem without any change in the results. The two algorithms are further tested with
two 3D plate rolling and shape rolling test-cases. The steady-state solutions from these test cases
are compared with the same from the incremental formulation in ForgeNxt®inc. The algorithm
with streamline update is seen to provide an accurate prediction for both the test cases and also
more robust in comparison to the algorithm without streamline update. The resolution time
achieved with the former is nearly half of the time taken with the latter for the shape rolling prob-
lem. Overall, a speed-up of approximately 10 times is seen with the different problems tested with
the proposed algorithm.
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6.2 Perspectives

6.2.1 Unsymmetric rolling cases

Even though the present steady-state algorithm has become much robust and diverse in compar-
ison to the existing version of the ForgeNxt®2016, there are still some problems which need to be
addressed. Firstly, the forming model to be studied must have at least 2 planes of symmetry, other-
wise the solution fails to converge with the steady-state algorithm. If the mesh on the two opposite
sides of the symmetry plane is different (see Figure 6.2.1a), it results in an oscillatory contact and
an unstable solution. Such scenarios are also possible when the workpiece is in contact with dif-
ferent (non symmetric) tools like tubes. In such examples, like the one presented in Figure 6.2.1b
from Vallourec, a five pass tube rolling is attempted to be simulated with the steady-state algo-
rithm. Three rolls form a stand in each pass where the external diameter of the tube is reduced
from outside and internally the tube is held on a mandrel.

(a) Unsymmetric mesh about symmetry
plane (b) Tube Rolling test case from Vallourec

Figure 6.2.1: Unsymmetric rolling cases

Figure 6.2.2: Tube Rolling test case forces Fx (red) Fz (blue) on roll stand 1 (left) and 2 (right) computed with
incremental and steady-state algorithms
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Figure 6.2.3: Tube Rolling test case forces Fx (red) Fz (blue) on roll stand 3 (left) and 4 (right) computed with
incremental and steady-state algorithms

Figure 6.2.4: Tube Rolling test case forces Fx (red) Fz (blue) on roll stand 5 computed with incremental and
steady-state algorithms

The steady-state algorithm fails to converge on this problem because the contact is asymmet-
ric. Large oscillations were observed in the tool force in the incremental solution itself, which
indicate that the process may not have an inherent steady-state associated with it. In fact, we can
attain steady-state conditions in a stand N only if sufficient length of the workpiece has been rolled
under stand N+1 (in the downwind). In other words, the force in the stand N is stabilized when
the stand N+1 is full. An additional factor important for stability is the inter-stand tensions, which
must be stable for reaching a steady-state. These necessary conditions to achieve steady-state
may not be true in reality, which is also indicated in the incremental solution results. Hence, the
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steady-state algorithm which principally works on the stabilized forces, geometry and state vari-
ables for convergence may not find a stable solution for such problems even playing around with
fixed point relaxation. Nonetheless, the problem with asymmetric contact is still an important
factor inducing instability and must be specifically treated.

6.2.2 Resolution approach for long interstand distances

Another bottleneck with the existing steady-state formulation is the resolution of the problem with
long interstands. In such scenarios, it is really not possible to reduce the size of the model. The
interstand length with the associated mesh must be modeled to simulate the different interstand
phenomena like creep, thermal transfer, recrystallization. In such scenarios, the user loses the ad-
vantage of steady-state formulation. Hence, special consideration is necessary for these scenarios
such that the interstand effects are modeled without actually modelling the complete interstand
length of the workpiece.

Figure 6.2.5: Steady-state model necessary for modeling the interstand phenomena

6.2.3 Boundary condition at output plane for steady-state elastoplasticity resolution

A special consideration is also needed for the boundary condition at the output plane, which is not
treated in the present work. The free surface condition at Γout is not realistic for the elastoplastic
problems. The traction force at this surface is unknown which comes as an effect of internal stress
acting on the boundary from the adjacent particles. However, these elements are not modeled and
hence the effect is taken into account by adding internal force contributions from the fictitious
neighboring elements in ω∗ to the elements in ω [1] as shown in Figure 6.2.6.

Figure 6.2.6: Accounting for the boundary condition at output plane Γout [1]

6.2.4 Speed-up of the steady-state elastoplasticity resolution

The main objective of the present PhD thesis was to construct and implement a functional al-
gorithm for steady-state elastoplasticity resolution which is accurate. The presented algorithm
meets both these objectives and also demonstrates a typical speedup of 10 times with the prob-
lems tested. However, the speed-up can further be improved with the following strategies:
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Parallel implementation of streamline building and integration

The parallel implementation of the steady-state algorithm with viscoplasticity was possible as a
finite element based framework was chosen for the resolution of the state variables and free sur-
face. On the other hand, for elastoplasticity, the streamline based framework makes the parallel
implementation challenging especially in the distributed memory parallel setting when the prede-
cessor point is located in another partition. At present, the parallel implementation for streamline
building, which is out of the scope of the PhD project, has not been completed. This restricts the
simulations to be launched on a single processor, and upon completion, the computation time
can be further reduced.

Start

Initialization Ω(i ),~x(i )

Thermo-Mechanical
Resolution

Build Streamline

Streamline
Integration

Converge s Sub-iter loop

Convection stress rate σ̇

Converge s stream
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Figure 6.2.7: Algorithm-3 for EVP steady-state resolution with streamline loop in ForgeNxt®2016

Speed-up with convection step

As seen in the algorithm proposed in Section 5.4.1, the streamline method provides the computa-
tion of the stress field and naturally takes care of the convection of the history-dependent variables
in the downwind direction. This natural convection is however slow as the stability of the solution
requires as many iterations as the number of integration points on the streamline. We had seen
in the Section 2.3.5 that the global resolution (convection) method strategy is much faster in com-
parison to the streamline method for the integration of state-variables. However, in the case of
elastoviscoplasticity, the global resolution requires the stress-rate (source) term, which is strongly
coupled with velocity. Hence, the strongly coupled equation in stress and velocity must be com-
puted until convergence in a fixed point iterative loop. This strategy is however not quite robust
as the initial viscoplastic solution results in strong perturbation in the stress field which leads to
perturbations in velocity. A converged solution is not always ensured. An alternative approach
is to predict the stress-rate from the presented pseudo time-step approach with streamlines and
use this estimate to speed up the convection with global resolution. In other words, as soon as a
good estimation of the stress rate σ̇ is available, the stress field σ̃ can be computed from the reso-
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lution of the following convection equation. This step figures in the resolution algorithm after the
convergence of the sub-increment loop as shown in the Figure 6.2.7.

Find σ̃ ∈Vd such that ∀ε̄∗ ∈Vd
0∫
Ω

(
~v ·~∇σ̃)

σ̃∗dω=
∫
Ω
σ̇σ̃∗dω (6.2.1a)

{
Vd = {

σ̃ ∈ H1 (Ω) ,σ̃= σ̃i mp on Γe
}

Vd
0 = {

σ̃ ∈ H1 (Ω) ,σ̃= 0 on Γe
} (6.2.1b)

It can be seen that the converged deviatoric stress and pressure from the is used to compute
the stress-rate σ̇ after the Sub-iter loop which ensures the stability of stresses below the tool. The
convection step ensures faster transport of state-variables and can further reduce the computation
time.

From the industrial viewpoint, the present algorithm is robust enough and provides accurate
solution. Among the presented perspectives the most important ones are the description of an ac-
curate boundary condition at the output plane and the parallel implementation of the streamline
building and integration of the state-variables.
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Appendix A

Appendix

A.1 Finding the bubble shape function Nb

In the above-mentioned description, the shape function Nb is unknown. In order to find the shape
function, we divide the reference 3D tetrahedral element with reference coordinates (ξ,η,ζ) into
four sub-elements with reference coordinates (ξ

′
,η

′
,ζ

′
). The sub-elements are constructed from

the three of the four corner nodes (1-2-3-4) of the parent element and its centroid (5) as shown in
the Figure A.1.1. It can be seen that we can easily move from the coordinates of the centroid in
the reference element to that of the sub-element in consideration. For doing so, we consider the
reference element (1-2-3-4) below. For describing the piecewise centroid shape function, we find
the coordinates of the centroid (5) in this element (1-2-3-4) in the sub-element (5-1-2-3), (5-1-2-4),
(5-1-3-4), (5-2-3-4) (see Figure A.1.1).

Figure A.1.1: Sub-elements inside the tetrahedral element
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map (1-2-3-4) → (5-1-2-3) . Knowing that the vectors û = ~X5X1 =
−1/4
−1/4
−1/4

 v̂ = ~X5X2 =
−1/4

3/4
−1/4


and ŵ = ~X5X3 =

 3/4
−1/4
−1/4

 are the coordinates of the new reference frame (ξ
′
,η

′
,ζ

′
) in the reference

element (ξ,η,ζ), the rotation from reference frame
(
~X1X2, ~X1X3, ~X1X4

) = (
î , ĵ , k̂

) =
1

0
0

 ,

0
1
0

 ,

0
0
1


of reference element to the sub element

(
~X5X1, ~X5X2, ~X5X3

)
is given as following. The system (of

vectors) describe the matrix M−1 to define the map from
(
î , ĵ , k̂

)→ (û, v̂, ŵ).

M−1 = (û, v̂, ŵ) =
−1/4

−1/4
−1/4

 ,

−1/4
3/4
−1/4

 ,

 3/4
−1/4
−1/4

 (A.1.1)

However, we are interested in the inverse map matrix M from (û, v̂, ŵ) → (
î , ĵ , k̂

)
M =

−1 −1 −2
0 1 −1
1 0 −1

 (A.1.2)

So the transformation from (ξ,η,ζ) to (ξ
′
,η

′
,ζ

′
) is written as:ξ

′

η
′

ζ
′

= M

ξ−1/4
η−1/4
ζ−1/4

=
−1 −1 −2

0 1 −1
1 0 −1

ξη
ζ

+
1

0
0

 (A.1.3)

From this map, we can verify that ς (X5) = ς

1/4
1/4
1/4

 =
0

0
0

,ς (X1) = ς

0
0
0

 =
1

0
0

,ς (X2) = ς

1
0
0

 =
0

0
1


and ς (X3) = ς

0
1
0

 =
0

1
0

. In a similar manner, we can find the map for the other sub elements as

following:

map (1-2-3-4) → (5-1-2-4)ξ
′

η
′

ζ
′

= M

ξ−1/4
η−1/4
ζ−1/4

=
−1 −2 −1

1 −1 0
0 −1 1

ξη
ζ

+
1

0
0

 (A.1.4)

map (1-2-3-4) → (5-1-3-4)ξ
′

η
′

ζ
′

= M

ξ−1/4
η−1/4
ζ−1/4

=
−2 −1 −1
−1 1 0
−1 0 1

ξη
ζ

+
1

0
0

 (A.1.5)

map (1-2-3-4) → (5-2-3-4) ξ
′

η
′

ζ
′

= M

ξ−1/4
η−1/4
ζ−1/4

=
2 1 1

1 2 1
1 1 2

ξη
ζ

−
1

1
1

 (A.1.6)

For knowing if a point P
(
ξ,η,ζ

)
(or else P

(
ξ
′
,η

′
,ζ

′)
) belongs to the sub-tetra element we use the

distance function δ̄ in 3D:
δ̄= |ξ′ |+ |η′ |+ |ζ′ |+ |1−ξ′ −η′ −ζ′ |−1 (A.1.7)
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MOTS CLÉS

modelisation stationnaire, formulation de contact, formulation multi-champs, laminage à froid

RÉSUMÉ

La formulation ForgeNxt®2016 existante a été proposée pour la résolution des procédés de mise en forme à chaud en
régime permanent avec des matériaux viscoplastiques. La formulation comprend un problème multi-champs fortement
couplé et résolu avec une méthode itérative à point-fixé. L’algorithme itératif comporte deux étapes principales: (i)
un solveur thermomécanique calcule d’abord les champs inconnus vitesse / pression / température sur un volume de
contrôle (ii) un solveur à surface libre calcule ensuite l’inconnu forme stationnaire. Le ForgeNxt®2016, avec des maillages
non structurés basés sur des éléments tétraédriques et une parallélisation avec partitionnement de domaine, s’avère au
moins 50 fois plus rapide que l’approche incrémentale pour résoudre ces procédés. Cependant, la formulation n’est pas
suffisamment robuste pour trouver une solution stable, en particulier avec des géométries complexes. Le travail présenté
dans ce manuscrit est axé sur l’amélioration de la formulation en régime permanent avec deux objectifs principaux.
Premièrement, un couplage de contact cohérent est prévu pour une solution stable, et est obtenu avec une approche
condensation nodale. Les conditions de contact cohérentes Explicit et Implicit sont dérivées et le nouvel couplage de
contact est testé avec des cas tests de laminage à chaud industriels complexes. Deuxièmement, la formulation originale
ForgeNxt®2016 était principalement axée uniquement sur les problèmes de mise en forme à chaud avec des modèles
de matériaux viscoplastiques qui ne prennent pas en compte les effets d’élasticité. Ces effets deviennent importants
en froid et ne peuvent être ignorés. Une approche pseudo-time-step permet de modéliser le temps dans la formulation
indépendante du temps et est facilement adaptable à l’algorithme itératif ForgeNxt®2016 existant. Bien qu’à l’origine,
cette approche utilisait des maillages structurés pour suivre les lignes de courant, un nouveau cadre est développé
pour tracer les lignes de courant dans les maillages non structurées et pour intégrer les variables d’état pour résoudre
le problème dépendant de l’historique. À chaque itération, les variables d’état doivent être transportées des lignes de
courant vers le maillage et vice-versa, qui est généralement diffusif. Pour limiter la diffusion, des outils comme la méthode
SPR pour le lissage de champ et l’interpolation P1+ sont invoqués. L’algorithme ForgeNxt®2016 mis à jour est testé avec
différents problèmes de laminage à froid. Les résultats des simulations de laminage à chaud et à froid avec l’algorithme
proposé sont validés avec la solution incrémentale (dépendante du temps) du même problème dans ForgeNxt®inc.

ABSTRACT

The existing ForgeNxt®2016 formulation was proposed for the resolution of the steady-state hot forming processes with
viscoplastic materials. The formulation comprises of a strongly-coupled multi-field problem and solved with a fixed-point
iterative method. There are two main steps in the iterative algorithm: (i) a thermo-mechanical solver firstly computes the
unknown velocity/pressure/Temperature field on a control volume (ii) a free-surface solver then computes the unknown
steady-state shape. The ForgeNxt®2016, with unstructured meshes based on tetrahedral elements and parallelization
with domain partitioning, is found to be at least 50 times faster than the traditional incremental approach for solving these
processes. However, the formulation is not robust enough to find a stable solution especially with complex geometries.
The work presented in this manuscript is focused on the improvement of the steady-state formulation with two main objec-
tives. Firstly, a consistent contact-coupling is anticipated for a stable solution, and is achieved with a nodal condensation
approach. The Explicit and Implicit consistent contact conditions are derived and the updated contact-coupling is tested
with complex industrial hot-rolling test cases. Secondly, the original ForgeNxt®2016 formulation was mainly focused only
on hot forming problems with viscoplastic material models which do not consider elasticity effects. These effects become
prominent in cold conditions and cannot be ignored. A pseudo-time-step approach makes possible to model the time
in the time-independent formulation and is easily adaptable to the existing ForgeNxt®2016 iterative algorithm. Though
originally this approach used structured meshes for tracking streamlines, a new framework is developed to trace the
streamlines in the unstructured meshes and to integrate the state-variables for solving the history-dependent problem. In
each iteration, the state-variables must be transported from the streamlines to the mesh and vice-versa, which is gen-
erally diffusive. To restrict the diffusion, tools like SPR method for field smoothening and P1+ interpolation are invoked.
The updated ForgeNxt®2016 algorithm is tested with different cold rolling problems. The results from the hot and cold
rolling simulations with the proposed algorithm are validated with the incremental (time-dependent) solution of the same
problem in ForgeNxt®inc.
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