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Avant-propos

Cette thèse de doctorat s’inscrit dans le cadre du développement de l’aide à la décision
basé sur des réseaux de neurones et ce qui est communément appelé de l’intelligence
artificielle (IA). L’aide à la décision permet l’intervention d’un choix de nature algorith-
mique, choix modéré par la prise de décision finale d’un opérateur. Dans le cadre d’un
système radar et de la présente thèse de doctorat, l’opérateur est l’opérateur radar, et
l’aide à la décision consiste en un score traduisant une proximité avec certains types
de cibles qui est mis à la disposition de l’opérateur pour interprétation. L’opérateur
est ainsi libre de prendre en compte l’information apportée par l’IA. Cette approche se
distingue ainsi de systèmes autonomes d’ores et déjà indésirables pour des applications
militaires [190], et garantit l’identification d’une responsabilité humaine.

Le contexte sociétal de cette thèse est celui de l’explosion de l’intérêt pour les di-
verses méthodes assimilées à une forme d’intelligence artificielle. Cette explosion paraît
naturelle entre autres du fait de l’omniprésence de la collection des données numériques
et du constant développement des capacités de calculs nécessaires à leur valorisation.
L’importance future accordée à l’IA fait de cette dernière une technologie stratégique et
un enjeu de souveraineté [56, 58]. L’intégration d’un réseau de neurones à une chaîne de
traitement radar proposée par cette thèse découle ainsi des axes prioritaires du ministère
des Armées [60, 59] et fait écho à la place réservée à l’IA dans la boussole stratégique [180]
de l’Union Européenne.

De nombreux développements de l’intelligence artificielle sont de nature duale: pro-
poser une méthode innovante de traitement de signal ou de traitement d’image répond
parfois aussi bien à une problématique civile qu’à une problématique militaire. Un ex-
emple concret de développement dual consiste en la segmentation d’images s’appuyant
sur des réseaux de neurones: le traitement d’image innovant peut s’appliquer à une
image visant à l’aide au diagnostic médical, mais aussi à une image satellite porteuse
de renseignement. Le développement mis en avant par ce travail doctoral participe à
cette dualité, la discrimination de signaux à échantillonnage variable, faible résolution
et faible supervision ne se limitant pas aux systèmes militaires. La dualité des avancées
dans l’IA se distingue de celle d’autres technologies en ceci que les avancées proviennent
en premier lieu du monde civil [190].
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Chapters summary

Chapter 1: Pulse Doppler radars, discrimination task and
solution overview
The first chapter introduces the radar discrimination problem addressed by the thesis
and the machine learning tools used in the solution put forward. The specificity of the
discrimination developed in terms of available supervision and targets representation
resolution is described. The data format processed, inherited from the radar systems and
consisting in complex-valued signals registered over brief time segments with a sampling
covering few time steps, is illustrated and enriched with a neighborhood information.
The link between the radar constraints from which the originality of this work stems
and air surveillance radars with rotating antennas is established. A breakdown of the
radar targets discrimination task into a two steps filter is proposed, where a first step
encodes representations in a shared representation space, and a second step implements
a low-supervision discrimination. The latter step is based on a one-class classification
which can be understood as an anomaly detection method.

Chapter contribution:

• Enriched hit format definition to take into account a fixed-size neighborhood in-
formation centered on the range cell responsible for the hit detection.

• Two-steps processing proposition, encoding and one-class classification-based dis-
crimination, adapted to the targets representations diversity and resolution, but
also to the weak supervision of the separation addressed.

Chapter 2: Encoding IQ signals
The second chapter proposes different options for the implementation of the first en-
coding step of the filter proposed in the first chapter. Encoding approaches, including
neural networks architectures adapted to representation learning, at the scale of one or a
neighborhood of range cells are put forward. The combination of representations over a
neighborhood of range cells through a graph is suggested. The encoding methods men-
tioned harness either an autoregressive model, or a neural network that may be trained
with a generative or non-generative objective. The generative nature of a neural network
is associated with the training potential of the encoding in a weak supervision context,
the reconstruction error making it possible to define a training loss without labels. The
preferred option in this work being a neural network and the data being complex-valued
IQ signals, notions specific to complex-valued neural networks and to the optimization
of the latter are introduced. The explainability of the neural networks defined is dis-
cussed thanks to the existing equivalence between finite impulse response filters and the
one-dimensional convolution, the latter constituting the first layer of the non-recurrent
neural networks studied. Preliminary results are presented and suggest the relevance of
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an encoding architecture which trains a complex-valued neural network to encode the
content of a single range cell described heterogeneously in a shared representation space.

Chapter contribution:

• Proposal of a diversity of approaches for the enriched hit format encoding covering
a neighborhood of range cells using neural networks and autoregressive models.

• Integration of a combination of existing tools stemming from the machine learning
community for the encoding of IQ signals with a varying sampling: complex-
valued neural networks, graph neural networks, recurrent models, loss functions
for different levels of training supervision.

• Preliminary results presentation for the encoding of single range cells with simu-
lated pulse Doppler radar data.

Chapter 3: One-class classification for radar targets dis-
crimination

This chapter reviews different one-class classification approaches from the literature and
suitable for the implementation of the second step of the radar targets filter proposed in
the first chapter. Achieving the radar targets separation with a one-class classification
appears relevant due to the low supervision context of the separation conducted: all the
targets classes are not necessarily known, and the identified classes are not necessarily
described by representative data sets. One-class classification enables the definition of
a reference class based on a limited number of labeled data points in order to produce
a score translating into the degree of membership to that reference class. For the radar
operator’s mission, such a score can thus help decide whether a target is close enough
to an arbitrary set of classes possibly gathering diverse targets. The definition of an
arbitrarily complex reference class leads to the consideration of "near" and "far" out-
of-distribution detection concepts which emphasize the difficulty of separating targets
that may appear semantically close. A one-class classification method from the literature
based on a neural network gathering output representations from the reference class next
to a latent centroid is modified. The latent centroid here defines a location estimator
of the reference class. Whereas the method from the literature minimizes the Euclidean
distance between the output representations of the training data and the latent centroid,
the proposed modified version minimizes an outlyingness measure computed with a set of
random projections. A set of normalized distances, each distance being defined through
a predetermined random projection, allows for the definition of a robust outlyingness
measure for multidimensional representations. This measure is directly inspired by a
stochastic approximation of a statistical depth, and makes it possible to work with
ellipsoids without computing covariance matrices and their inverse to yield a distance.
The intuition behind the use of random projections is illustrated and used, as is the
Euclidean distance in the literature, to define unsupervised and semi-supervised one-
class classifications.

Chapter contribution:

• Proposal of a modified version of an existing one-class classification method. The
modified version replaces a Euclidean distance with an outlyingness measure di-
rectly inspired by a stochastic approximation of a statistical depth.
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• Performances comparison and illustration for different one-class classification meth-
ods applied to several data sets, including different kinds of radar data.

Chapter 4: One-class classification for encoded hits
This chapter aims at evaluating the relevance of the two-steps processing proposed in
this thesis. It presents preliminary results of one-class classification methods applied
to enriched hits as defined in the first chapter and encoded following an approach de-
scribed in the second chapter. This chapter is thus dedicated to the integration of the
approaches and intuitions detailed in the preceding chapters to achieve the filter moti-
vating this work. The range cells neighborhoods defining the enriched input format are
artificial. They are built from combinations of individually encoded range cells. Such
neighborhoods still allow for the construction of a relevant data set containing different
classes of local correlations in terms of Doppler content, these correlations classes defin-
ing precisely the radar targets modes whose separation is expected. The few preliminary
results presented are not conclusive enough to allow for a proper evaluation of the graph
neural network-based enriched hit encoding approach. These results thus lead to the
suggestion of follow-up experiments.

Chapter contribution:

• Preliminary results presentation regarding the encoding and the discrimination of
enriched hits, combining the methods and intuitions proposed in the preceding
chapters. Due to the inconclusive nature of the few results gathered, suggestions
are made for follow-up experiments.

Chapter 5: Conclusion and perspectives
This last chapter concludes the thesis with a reminder of the proposals put forward in the
manuscript and with suggestions regarding the further developments to be prioritized.

Chapter contribution:

• Suggestions regarding possible further developments of the proposed approach.
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Résumé des chapitres

Chapitre 1: Radar Doppler pulsé, discrimination recherchée
et aperçu de la solution proposée

Le premier chapitre introduit le problème de discrimination radar traité par la thèse et
les outils issus de l’apprentissage automatique utilisés dans la solution mise en avant.
La spécificité de la discrimination recherchée en termes de supervision disponible et de
résolution de représentation des cibles est explicitée. Le format des données à traiter,
hérité de systèmes radar et consistant en des signaux à valeurs complexes représentés
sur de brefs segments temporels avec un échantillonnage variable sur peu d’instants, est
illustré et enrichi par une information de voisinage. Le lien entre les contraintes radar
faisant l’originalité de ce travail et les radars de surveillance aérienne à antenne tournante
est établi. Un découpage de la tâche de discrimination de cibles radar en un filtrage en
deux étapes est proposé, avec une première étape d’encodage des représentations dans
un espace de représentation commun, et une seconde étape de discrimination à faible
supervision. L’étape d’encodage est définie par un réseau de neurones, comme peut l’être
l’étape de discrimination. Cette dernière est basée sur une classification mono-classe qui
peut-être perçue comme une méthode de détection d’anomalie.

Contribution du chapitre:

• Définition d’un format hit enrichi qui reprend une information de voisinage de
taille fixe centrée sur la case distance qui a déclenché la détection d’un hit.

• Proposition du traitement en deux étapes, encodage puis discrimination par clas-
sification mono-classe, adapté à la diversité ainsi qu’à la résolution des représen-
tations des cibles, mais aussi à la faible supervision de la séparation recherchée.

Chapitre 2: Encodage de signaux IQ

Le deuxième chapitre propose différentes options pour l’implémentation de la première
étape d’encodage du filtre proposé dans le premier chapitre. Des encodages, notamment
des architectures de réseaux de neurones adaptées à l’apprentissage de représentation, à
l’échelle d’une ou d’un voisinage de plusieurs cases distance sont mis en avant. La com-
binaison des représentations d’un voisinage de cases distance par le biais d’un graphe
est avancée. Les méthodes d’encodage évoquées exploitent soit un modèle autorégressif,
soit un réseau de neurones qui peut être décliné en une version générative et une version
non-générative. Le caractère génératif d’un réseau de neurones est associé au potentiel
d’entraînement de l’encodage dans un contexte de faible supervision, l’erreur de recon-
struction pouvant définir une fonction coût sans aucun label. La solution privilégiée par
ce travail doctoral étant un réseau de neurones et les données étant des signaux IQ à
valeurs complexes, des notions propres aux réseaux de neurones à paramètres complexes
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et à l’optimisation de ces derniers sont introduites. L’explicabilité des réseaux de neu-
rones manipulés est discutée grâce à l’équivalence entre un filtre à réponse impulsionnelle
finie et une convolution à une dimension, cette dernière définissant la première couche
des réseaux non-récurrents exploités. Des résultats préliminaires sont proposés et sug-
gèrent la pertinence d’une architecture d’encodage qui entraîne un réseau de neurones
à valeurs complexes à encoder le contenu d’une case distance unique décrite de manière
hétérogène dans un espace de représentation commun.

Contribution du chapitre:

• Proposition d’une diversité d’approches pour l’encodage du format hit enrichi cou-
vrant un voisinage de cases distance avec des réseaux de neurones et des modèles
autorégressifs.

• Intégration d’une combinaison d’outils existants de la communauté de l’apprentissage
automatique pour l’encodage de signaux IQ à l’échantillonnage variable: réseaux
de neurones à valeurs complexes, réseaux de neurones pour graphe, modèles récur-
rents, fonctions coût pour différents niveaux de supervision pendant l’entraînement.

• Présentation de résultats préliminaires pour l’encodage individuel de cases distance
avec des données de radar Doppler pulsé simulées.

Chapitre 3: Classification mono-classe pour la discrimina-
tion de cibles radar
Ce chapitre passe en revue différentes méthodes de classification mono-classe issues de
la littérature et adaptées à l’implémentation de la seconde étape du filtrage proposé
dans le premier chapitre. Aborder la séparation de cibles radar avec une classification
mono-classe apparaît pertinent du fait du contexte de faible supervision de la sépara-
tion réalisée: l’ensemble des classes de cibles n’est pas forcément connu, et les classes
identifiées n’étant pas nécessairement décrites par des jeux d’échantillons représentat-
ifs. La classification mono-classe autorise la définition d’une classe de référence à partir
d’une quantité limitée de points de donnée labellisés, cela de manière à produire un
score traduisant l’appartenance ou non à cette classe de référence. Pour la mission d’un
opérateur radar, ce score peut ainsi fournir une aide à la décision en levant ou non une
alerte pour des cibles trop proches ou trop loin d’une classe de référence arbitraire, celle-
ci pouvant idéalement rassembler différents types de cible. La définition d’une classe de
référence arbitrairement complexe mène à une réflexion quant aux notions de détection
hors-distribution "proche" et "lointaine" qui traduisent la difficulté de séparation relative
à la proximité sémantique des cibles traitées. Une méthode de classification mono-classe
tirée de la littérature et basée sur un réseau de neurones qui concentre les représenta-
tions de sortie appartenant à la classe de référence autour d’un centroide latent de cette
même classe est déclinée. Là où la méthode de la littérature minimise une distance
Euclidienne entre les représentations de sortie des données d’entraînement et le cen-
troide latent, la déclinaison proposée par cette thèse minimise une mesure d’anormalité
tirée d’un jeu de projections aléatoires. Un ensemble de distances normalisées, chaque
distance étant définie par une projection aléatoire fixée, permet de définir une mesure
robuste de l’anormalité pour des représentations à plusieurs dimensions. La mesure en
question est directement inspirée par une approximation stochastique de la notion de
profondeur statistique, et permet de travailler avec des distributions suivant des ellip-
soïdes tout en s’affranchissant du calcul d’une matrice de covariance, puis de son inverse
pour l’obtention d’une distance. L’intuition derrière l’emploi de projections aléatoires
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est illustrée et utilisée, comme le fut la distance Euclidienne dans la littérature, pour
définir une classification mono-classe non supervisée puis semi-supervisée.

Contribution du chapitre:

• Proposition d’une déclinaison d’une méthode de classification mono-classe tirée de
la littérature. La déclinaison proposée remplace une distance Euclidienne par une
mesure d’anormalité directement inspirée d’une approximation stochastique d’une
profondeur statistique.

• Comparaison et illustration des performances de différentes méthodes de classifi-
cation mono-classe sur plusieurs jeux de données, y compris sur des données radar
de différentes natures.

Chapitre 4: Classification mono-classe pour hits encodés
Ce chapitre vise à évaluer la pertinence du traitement en deux étapes proposé par cette
thèse. Il présente des résultats préliminaires d’application de méthodes de classifica-
tion mono-classe à des hits au format enrichi tel que défini dans le premier chapitre et
encodés suivant une méthode proposée dans le deuxième chapitre. Il s’agit donc ici de
l’intégration des méthodes et des intuitions présentées dans les chapitres précédents pour
aboutir au filtre motivant cette thèse. Les voisinages de cases distance qui définissent le
format d’entrée enrichi sont artificiels. Ils sont élaborés à partir de recombinaisons de
cases distance individuelles encodées. Ces voisinages permettent néanmoins l’élaboration
d’un jeu de données pertinent qui contient différentes classes de corrélations locales en
termes de contenu Doppler, ces classes de corrélations définissant précisément les modes
de cibles radar qu’il s’agit de discriminer. Les quelques résultats préliminaires présentés
ne permettent cependant pas de conclure quant à la pertinence de l’encodage du format
hit enrichi basé sur un réseau de neurones pour graphe, et mène à l’énonciation d’une
suite à donner aux expériences menées.

Contribution du chapitre:

• Présentation de résultats préliminaires pour l’encodage et la discrimination de hits
au format enrichi combinant l’ensemble des méthodes et des intuitions proposées
dans les chapitres antérieurs. Face à l’apparence peu concluante des quelques
résultats obtenus, des recommandations sur la suite des expériences à mener sont
énoncées.

Chapitre 5: Conclusion et perspectives
Ce dernier chapitre conclut la thèse en rappelant les propositions avancées dans ce
manuscrit et en proposant des axes de développement à privilégier pour la poursuite des
travaux.

Contribution du chapitre:

• Mise en avant d’axes de développement futurs à privilégier pour l’approche pro-
posée.



Chapter 1

Pulse Doppler radars,
discrimination task and solution
overview

This thesis aims at proposing novel machine learning-powered processing to discrimi-
nate more efficiently between radar targets using Doppler features, with a focus on air
surveillance radars as sensors and small and slow objects as targets. The solution put
forward will emphasize the choice of one-class classification for low-supervision discrimi-
nation and will take into account the resolution constraint associated with pulse Doppler
air surveillance radars. This chapter describes the motivation of the thesis from a radar
perspective and presents an overview of the answer proposed to tackle the problem ad-
dressed. Since this manuscript is written both for radar and machine learning engineers
and researchers, footnotes and reminders are present to make notions specific to one
field understandable to people from the other field (see for example the brief reminder
dedicated to deep learning in 1.3.4, and the one dedicated to signal processing in 1.3.5).

1.1 The radar motivation

Intuitively, radar amounts to sending energy in a certain direction and detecting objects
with the energy reflected back. Whereas sonar uses sound, i.e. a mechanical wave,
radar harnesses electromagnetic waves. Radar mostly relies on two attributes to dis-
criminate between targets: the target apparent size and its velocity with respect to the
sensor, i.e. its radial velocity. When the radar itself sends energy that will reflect on
targets, one considers active radars. On the other hand, when the radar only harnesses
reflections of signals it has no control over, radars are said to be passive. The same dis-
tinction exists between active and passive sonar. One of the key advantages of passive
sensors is their electromagnetic stealth, the reliance on external transmitters remaining
a challenge. This work concerns itself with active radars, whose transmitted signal is
thus deliberately designed to characterize potential targets. The fundamental equation
behind the electromagnetic remote sensor intuition is the radar equation which defines
the power received by the antenna PR as a function of the transmitted power PT and
wavelength λ, the antenna gain G, the distance to the target R, and the effective target
area σ called radar-cross section (RCS) [113]:

PR = PTG
2λ2σ

(4π)3R4 (1.1)

Radars come in all shapes and sizes. Antenna design, transmit power, waveform,

1
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Figure 1.1: Radar processing pipeline. The processing proposed uses the output of
the detection step, the hits, as input. The processing steps can be describe in simple
terms as follows: before detection, there is beamforming to locate the target direction,
pulse compression to increase range resolution and Doppler filtering to generate velocity
descriptions of targets. The background block consists in a filter to discard potential
detections that are too consistent with the weather. The detection step uses a threshold
to define one hit each time a backscatter deserves discriminative processing, the extractor
step refines the hits by agglomerating them when relevant, and the tracking step creates
tracks outlined by successive plots. The steps located between the beamforming and
detection blocks, the two latter being included, constitute the actual signal processing
pipeline within the radar receiver chain.
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and other sensor parameters widely vary depending on the radar mission. This the-
sis concentrates on air surveillance radars with frequent updates and long range con-
straints. Historically, many relevant targets to civilian and military radars dedicated to
air surveillance could count on the fact that the targets they needed to detect were either
relatively big, or relatively fast, or both at the same time. This allowed for the elim-
ination of numerous clutter-related false alarms, where clutter consists of undesirable
reflected signals. Indeed, such targets allow the sensor to immediately discard small and
slow detections, which populate the target domain containing most clutter. However,
with the advent of commercially available drones accessible to the general public, small
and slow detections can not be as easily removed anymore. In addition to a possibly
very discrete radar cross-section, a drone can have a null bulk speed while airborne and
active. Air surveillance radars should now ideally be able to cherry pick relevant small
and slow targets, such as drones, before discarding the latter category altogether.

In order to ensure the detection of relevant small and slow targets, the radars for
which this work is intended use decreased detection thresholds at the Detection stage of
the pipeline depicted on Fig. 1.1, letting through potentially relevant targets as well as
clutter. The fact that supplementary clutter will be part of the detections let through
by the lowered thresholds is unavoidable, the small and slow targets domain usually
containing a lot of unwanted backscatter. Lowering the detection thresholds can thus
lead to a dramatic increase in the number of detections, each of which requires pro-
cessing in the radar processing pipeline. This increase in detections can in turn lead
to an excessive amount of false alarms (false positives), imposing an additional false
alarm filter. This false alarm filter should be implemented as early as possible once the
additional detections are admitted into the processing pipeline, this to avoid spending
scarce computing resources and the operator’s attention on pointless detections.

The proposed targets discrimination aims at alleviating the false alarms excess and
will therefore take the detections called hits as input, and filter the latter before passing
on the filtered detections to the Extraction step, as suggested on Fig. 1.1. This position-
ing choice in the radar processing pipeline makes this work complementary to existing
approaches working on subsequent detection representations such as aggregated hits, i.e.
plots, and tracks [205]. Hybrid approaches also combine several of the aforementioned
representations in setups falling within the domain of sensor fusion [132]. Whereas pro-
cessing plots could seem similar since features are similar to the ones attached to hits,
discriminating between tracks moves the targets separation task away from radio signal
processing and closer to common time-series or spatial trajectories processing.

It is important to realize that processing the excess of false alarms stemming from
lowered thresholds only at these later stages is ill-advised, since it would likely imply
wasting computing resources. Now, what does processing hits actually mean ? As hits
is a detection defined by a variety of features, one needs to choose which features to
process to discriminate targets. The proposed filter will be based on a single feature of
the hit object within the radar processing pipeline. This feature is defined in 1.2.

1.2 Pulse Doppler radars

1.2.1 Pulse Doppler radar targets backscatter

This work focuses on a specific kind of radar called pulse Doppler radar (PDR). Pulse
Doppler radars send bursts of pulses of modulated electromagnetic waves toward targets
to detect and characterize them. After one pulse is sent in the scanned direction, the
received signals are sampled to retrieve the pulse reflections. The sampling frequency
of the radar receiver defines a space discretization in the scanned direction, i.e. leads
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Figure 1.2: The proposed detections filter relies on I/Q samples stemming from an I/Q
detector [114]. This I/Q detector takes the received (RX) signal as input, either at its
carrier frequency or at a lower intermediate frequency. The received signal is passed
through a bandpass filter beforehand to limit the noise [113]. The I/Q signal processed
is complex-valued of the form I + jQ. This corresponds to a usual quadrature sampling
setup, which can also be called complex sampling.

to the description of range bins contents with the pulse reflections. Each range bin is
described by one complex coefficient per pulse, the coefficient being complex because of
the I/Q reception of the radar [15, 113].

This vector of complex coefficients defines the hit object feature used by the proposed
filter to discriminate targets, and is called I/Q sweep response. In this thesis, it will
also be called I/Q signal since no ambiguity is possible. In order to provide as much
information as possible to the targets discrimination, the existing feature is enriched to
take into account a neighborhood of range cells centered around the cell of the detection
instead of only the latter. It is important to understand that this is a neighborhood in
ranges and not in azimuths. This transforms the 1D complex-valued vector input into
a 2D complex-valued matrix input, as illustrated on Fig. 1.3. Using the notation of the
latter where H is the size of the neighborhood of range cells and N the number of pulses
in the burst, the input feature can be described by:

ZI/Q =

 z11 . . . z1H
... . . . ...

zN1 . . . zNH

 (1.2)

In the previous equation, the number of rows in the matrix is the number of pulses
in the burst creating the hit, while the number of columns is the number of neighboring
range cells in the spatial context centered around the hit range cell. The discriminatory
power of the feature chosen to filter detections lies in the Doppler information it contains.
Any object reflecting the radar pulses with a non-zero radial velocity can induce a
Doppler effect frequency modulation in the backscattered pulses. Let us identify this
effect in the naive case of a sinusoidal pulse. At time t, the signal backscattered and
received by the sensor receiver (RX) has a phase delay τ indicating the target range x(t)
and radial velocity ẋ(t) (see Fig. 1.5):

srx(t) = sin (2πftx (t− τ)) (1.3)

srx(t) = sin

(
2πftx

(
t− 2x(t)

c

))
(1.4)
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Figure 1.3: The proposed detections filter modifies the existing I/Q attribut of hits to
integrate a neighborhood of range cells over the whole burst of pulses to provide the
discrimination with additional information. In this figure the vertical axis describes the
slow time of the sampling happening at PRF, i.e. between pulses, while the horizontal
axis describes the fast time of the sampling happening at a much higher frequency and
harbouring the range cells. The PRF is the sampling frequency that varies between
hits, introducing a challenging physical diversity between input data points, the overall
diversity also stemming from the varying number of pulses. The number of pulses here
corresponds to N , the number of rows. Respecting the low-resolution constraint, we
will consider N ∈ J8, 32K, as these are typical values for Pulse-Burst radars (PBR) [167,
p.188][133, p.470], which will be considered as equivalent to air surveillance PDRs in
this thesis. The fast time, much higher, sampling frequency is considered to be constant
across all hits and systems considered. An illustration of this diversity is proposed on
Fig. 1.4. Top: original hit object I/Q feature (1D complex-valued vector) Bottom:
new hit object I/Q feature (2D complex-valued matrix).
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Hit 1 (PRF1, 8 pulses, waveform 1)

∆t1 =
1

PRF1

∆r1 =
c

2B1

Hit 2 (PRF2, 32 pulses, waveform 2)

∆t2 =
1

PRF2

...
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c
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Figure 1.4: Illustration of the diversity of the input representation with two example
inputs to our processing pipeline: the PRF and the number of pulses may vary between
hits, forbidding direct comparison. This suggests a common encoding space is necessary.
On this figure, we set the size of the range cells neighborhood, denoted as H on Fig. 1.3,
to 5. The number of pulses per burst considered in this work, under the resolution
constraint associated with air surveillance PDRs, belong to the integers interval J8, 32K,
in accordance with the typical values put forward in [167, p.188][133, p.470]. This will
be the example case considered all along this document. The neighborhood includes
the central range cell carrying the actual hit detection, i.e. the passing of a detection
threshold. Each range cell is depicted with its own color to translate the possibility
of each range cell carrying a specific target or Doppler information. In the case of air
surveillance PDR the range cells spread widely in range because of the bandwidth as
explained in 1.2.2, so they may very well contain unrelated information. Neighborhood
correlation could also point to a weather phenomenon, the effective detection of the
latter being of paramount importance to extract small and slow targets from the clutter.
Bandwidth, i.e. pulse signal duration, is considered constant, meaning that on the
illustration B1 = B2, thus ∆r1 = ∆r2. Said in other words, the spatial sampling
does not change between hits. This illustration emphasizes how each input I/Q sweep
response can be viewed as a multidimensional complex-valued time-series of varying
length and sampling frequency. In a realistic setup, the waveform also differs between
pulses.
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Figure 1.5: The Doppler effect provides an effective way to discriminate between radar
targets through the modulation of backscattered pulses due to the movement of targets
with respect to the sensor. The phase of the backscattered signal received at time t
carries the Doppler information.

where f is the frequency of the pulse transmitted, c the speed of light. If one considers
a target with constant speed, i.e. x(t) = x0 + ẋt, the received signal becomes:

srx(t) = sin

(
2πftx

(
t− 2(x0 + ẋt)

c

))
(1.5)

srx(t) = sin

(
2πftxt− 2π

(2ẋ
c
ftx

)
t− 4πx0

c
ftx

)
(1.6)

Eq. (1.6) brings forth the constant phase term ϕ0 = 4πx0
c
ftx revealing the initial range

of the target, and the time-dependent phase term ϕd = 2π
(2ẋ
c
ftx

)
t which carries the

Doppler information. The Doppler frequency of the moving target is therefore:

fd = 2ẋ
c
ftx = 2ẋ

λtx
(1.7)

indicating the impact of the emitted wavelength over the Doppler shift. The Doppler
shift is greater for smaller wavelengths, i.e. the radial velocity of a target is more
noticeable with radars transmitting high frequencies.

The Doppler information can be extracted from the I/Q samples using either a
discrete Fourier transform (DFT) or a filters bank. The filters bank is useful to extract
Doppler content in frequency bins while adapting the sensibility of the filters to sidelobes,
the latter being particularly problematic in the presence of clutter. The ability to
characterize targets and distinguish between similar Doppler signatures is related to
radar parameters such as the pulse repetition frequency (PRF) and the number of pulses
available. For instance, if one retrieves the Doppler information of the I/Q coefficient
for one range cell for a burst of N pulses with a DFT, one gets a spectrum of N − 1
Doppler (i.e. frequency) bins describing

[
−PRF2 ; PRF2

]
as a target signature. This

emphasizes how critical the PRF and the number of pulses available are when it comes
to targets discrimination. An illustration of the impact of the number of pulses over the
Doppler spectrum is proposed on Fig. 1.6. As the I/Q samples sampling frequency for
each range cell, the PRF effectively defines the frequencies limiting the unambiguous
measure of a Doppler frequency shift, a high PRF allowing for greater unambiguous
Doppler frequencies. This is due to the Shannon-Nyquist sampling theorem [66]. As
many systems, a pulse Doppler radar is a sum of trade-offs, and adopting a high PRF
lowers the unambiguous range of the sensor. For a target range to be unambiguously
defined, a pulse reflection needs to be received before the next pulse is transmitted. The
maximum unambiguous range rmax of a PDR is thus defined by the pulse repetition
interval (PRI), where PRI = 1

P RF , and is determined by the following equation [15, 113]:

rmax = PRI × c
2 (1.8)
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Figure 1.6: Illustration of the impact of the number of pulses over the Doppler spectrum
of two helicopter-like targets belonging to classes differing only in the number of rotating
blades creating the specificity of the modulation pattern, the remaining radar parameters
remaining constant. Top row: Doppler signature. Bottom row: Covariance matrix
computed over the rows of the Doppler signature. Left: 8 pulses. Center: 16 pulses.
Right: 64 pulses. Provided with enough pulses, i.e. enough samples to compute a
spectrum, one ends up with modulation patterns adapted to drone discrimination even
without strong domain expertise, and easily identified using usual image processing
methods and more general machine learning (see 1.2.2).

This additional middle ground between range and velocity ambiguity adds itself
to the compromise on the transmitted wavelength. The trade-off on wavelength can
be understood with Eq. (1.1) and Eq. (1.7), where the received backscattered power
of Eq. (1.1) favors large wavelengths whereas the Doppler frequency shift analysis of
Eq.(1.7) necessitates relatively shorter ones. The relevance of shorter wavelengths, i.e.
higher frequencies, to make the Doppler features more visible is clearly identified where
it’s not only explicitly mentioned in [143], but also simply due to the micro-Doppler
experiments put forward often relying on higher frequency bands than the L and S
bands usually selected for medium and long range air surveillance [143, 131].

To overcome the range and Doppler ambiguities without completely sacrificing either
the maximum unambiguous range or the maximum unambiguous Doppler frequency,
one can regularly change the PRF of the operating radar. A varying number of pulses
per burst can also be introduced to provide a diversity of Doppler resolutions for a
given PRF, i.e. for a given range of unambiguous Doppler frequency shifts. This PRF
and pulses quantity agility implies producing I/Q sweep responses of varying sizes and
physical attributes. Handling such a variety of inputs is a key specificity of the proposed
approach, this specificity being imposed by the real radar data to be processed. This
variation of the input data points concretely translates into a changing number of rows
in the 2D enriched input feature of Fig. 1.3, and into a possibly inconsistent sampling
period separating rows from one sample to another.

The radars associated with the proposed targets discrimination are the Thales Ground
Master (GM) radars, a line of air surveillance radars depicted on Fig. 1.7. In terms of
resolution constraints, this line of radars has much lower Doppler resolutions than radars
specialized in countering UAVs such as the Aveillant Gamekeeper [2]. The GM radars
all have rotating antennas and operate on the S band between 2 and 4 GHz, i.e. with
wavelength between 7.5 and 15 cm [11]. The GM radars range goes from 80 to 515 Km,
with 1.5 to 6 seconds update period [9, 7, 8]. In comparison with these air surveillance
radar parameters, the Aveillant Gamekeeper radar is in the L band between 1 and 2
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Figure 1.7: The Ground Master air surveillance radars. Notice the rotating antenna,
a key factor in the resolution constraints motivating this work. Top left: GM 200,
medium-range radar Top right: GM 60, short-range radar Bottom: GM 400, long-
range radar. ©Thales

GHz, has less than 10 Km of range and is equipped with a stationary antenna that
allows for large numbers of pulses in bursts. High resolution range profiles (HRRP)
describing generated by a different radar, a Thales Coast Watcher 100 (see Fig. 1.8),
will also be used to conduct some of our one-class classification (OCC) experiments.
This other radar, however, is not of interest regarding our hits encoding and was just
taken advantage of in order to diversify the data employed to evaluate discrimination
methods.

1.2.2 Doppler characterization of small and slow targets

Improving the detection and discrimination of small and slow targets in air surveillance
radars is the goal of this work. Small and slow targets constitute a challenge in radar
signal processing since they belong to the same target domain as most of the clutter,
and have already motivated other dedicated works [17]. Targets having low RCS and
low velocities can thus easily be confused with natural phenomena. Nonetheless, rel-
evant small and slow targets could be distinguished from clutter using high-resolution
Doppler features, or high-resolution range profiles, though obtaining HRRPs discrim-
inative enough for small targets could be prohibitive since this would require a very
large bandwidth. The relationship between the range resolution ∆r and the reception
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Figure 1.8: Thales Coast Watcher 100 radar, which generated the HRRPs used in this
work to evaluate the possibility to discriminate radar targets with one-class classification
approaches. See chapter 3 for the associated experiments. ©Thales

matched filter bandwidth B is described by:

∆r = c

2B (1.9)

where c is the speed of light. The bandwidth is directly determined using the pulse
width in time τ through the expression B = 1

τ , and is constrained by the antenna and
the microwave hardware [15]. Intuitively, stretching out over too many frequencies can
complicate processing since so many critical parameters are functions of λ. One can also
mention that increasing the bandwidth also increases the noise which negatively impacts
the signal-to-noise ratio (SNR) in the receiver, and thus the radar performances. The
bandwidth accepted by the receiver may be chosen to be wider than the transmitted
bandwidth in order to accommodate the bandwidth distortion due to the Doppler ef-
fect [6]. Many drones of interest for radar detection, such as the consumer market
drones equipped with several rotors, would require centimeter-scale spatial resolution
or even better to capture discriminative enough geometric features of the target [131].
As mentioned in the previous section, we do manipulate HRRPs for some of our OCC
experiments, but the HRRPs in question depict large targets such as boats, thus not
contradicting the the incompatibility of small targets discrimination and HRRP char-
acterization, at least for the GM radars which have an inadequate bandwidth anyway
contrary to the Coast Watcher 100. This work rather aims at using Doppler features,
i.e. targets Doppler signatures, to discriminate between small and slow targets. Doppler
features remain relevant even for slow targets since any vibration or movement on the
target can induce a Doppler modulation [49]. Hence, target Doppler characterization
is not limited to the bulk speed of a target, which can be flanked by Doppler spec-
trum modulations on both sides as it appears on Fig. 1.6. When such modulations are
generated by moving parts on the target, one can talk about micro-Doppler effect [50].

Micro-Doppler modulations can reveal a bird wings movements, or the rotating
blades of a drone, making it a suitable air surveillance radar targets discrimination
basis [143, 33, 131]. This radar spectral feature is impressively versatile since it can
be used in many other discrimination tasks, such as human activity identification [100],
wind turbine detection [104], or ground vehicles classification [168]. The fact that it is
not limited to the radar fingerprinting of aerial targets is an argument by itself empha-
sizing its descriptive power, and how relevant the choice of such features for our small
and slow targets filter is. The micro-Doppler modulation patterns are such that they are
adapted to image processing classification approaches. As such, state-of-the-art (SOTA)
image processing methods such as Convolutional Neural Networks (CNN) are naturally
applied to micro-Doppler data [72, 144, 98]. Other machine learning-based discrimina-
tion approaches were commonly used on micro-Doppler information before the advent
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Figure 1.9: Radar targets domain conceptual split. The small and slow targets domain
is especially hard to handle since it contains most of the clutter, i.e. the detections
irrelevant to the operator’s mission. This is the targets domain motivating this work.

of modern deep learning such as Support Vector Machines (SVM) [28, 131], k-nearest
neighbor (k-NN) [168], naive Bayes classifiers (NBC) and regression trees [28]. Direct
replacement of human classification on pre-existing target classification tasks were per-
mitted by the application of machine learning to micro-Doppler data: [168] describes the
case of micro-Doppler modulations brought down to baseband so that ground targets
could be classified by soldiers listening to the signal.

Still, as previously suggested, not all radars are equal when it comes to Doppler
spectrum resolution and range. As Eq. 1.7 pointed out, the carrier frequency of the
pulses should be high enough not to crush the micro-Doppler modulation against the
bulk speed Doppler frequency. This can be said to be a Doppler effect intensity limita-
tion. Additionally, in a pulse Doppler radar, one needs numerous pulses to get numerous
frequency bins to successfully isolate Doppler spectrum components with a sufficient ve-
locity resolution. This can be said to be a Doppler cell resolution limitation. Since
we are working with air surveillance radars equipped with rotating antennas, these two
means of obtaining Doppler modulations noticeable enough to directly harness micro-
Doppler effect signatures components are severely challenged. On the one hand the
carrier frequency can not be too high on air surveillance radars in order to avoid exces-
sive absorption by the atmosphere, where oxygen and water vapor resonance can even
forbid certain frequencies [183, 184]. Atmospheric absorption is even more of a problem
for ground-based air surveillance radars, like the GM radars with which we work, since
absorption is stronger at lower altitudes because of greater molecular density [166]. On
the other hand, the sensor can not afford to pause its rotation to send a large number
of pulses in every direction, and then wait after each pulse to acquire the backscattered
energy, as this would imply insufficiently frequent situation updates.

1.3 Overview of the proposed solution

1.3.1 Two-steps processing: encoding and discrimination

The previous sections of the chapter described where in the radar processing chain our
targets filter should be implemented, what kind of targets the filter should focus on and
under what resolution constraints the proposed filter is to work. We can now provide an
overview of the filter put forward in this thesis with Fig. 1.10: the filter can be divided
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Figure 1.10: High-level description of the proposed targets discrimination. Hits are
processed in two steps: they will first be encoded and projected to a shared represen-
tation space before discrimination using one-class classification. Note that the multi-
dimensional complex-valued input of the "hit2vec" encoder has a varying size (due to
a varying number of pulses per burst) and is defined by a variable sampling frequency
(PRF). Here the output scalar score can either be a continuous real-valued abnormality
score or a binary one-class classification score indicating whether the hit processed is
in-distribution or not.

into two steps, encoding the enriched hit feature of varying size using deep learning and
then filtering encoded hits with a one-class classification approach. The notation used
on Fig. 1.10 and Fig. 1.11 corresponds to the one already used on Fig. 1.3, except for
the introduction of an embedding size Q. Encoding data points before classification or
other forms of discrimination is a common task in the literature. In a way, it amounts
to a more or less thorough preprocessing of the data before classifying it.

Neural networks owing their success to their ability to discover and extract pat-
terns [77, 110], the literature is unsurprisingly rich with examples of deep learning being
used to extract intermediate representations capturing the main components of diver-
sity within a dataset. For instance, an autoencoder (AE) trained to reconstruct input
samples and remove noise at the same time can provide intermediate representations
as encoding after an unsupervised training of the generative neural network [191]. Pro-
ducing compact representations for a downstream discrimination with AEs does not
necessarily require another task than the reconstruction itself [159], although when the
sole reconstruction error is minimized during training a lower dimensionality bottleneck
can help prevent an AE from learning the identity function [191]. One should note that
a lower dimensionality bottleneck, implying an undercomplete AE is used, does not suf-
fice to guarantee the identity function is not learned. An AE with a one-dimensional
latent code could theoretically learn to map each training sample to its own unshared
scalar representation before mapping it back to the input representation, assuming the
encoder is powerful enough [77, p.494]. This reminds the machine learning practitioner
the need to remain suspicious of what was actually learned by the neural network. One
of the key ideas put forward by this thesis is a neural network-based encoding of radar
hits I/Q features. The final processing step is one-class classification due to the lack of
labeled data points, a choice thus stemming from a low supervision constraint. This final
step could however more generally be described as an encoding discrimination process,
if one ignores the lack of supervision, as suggested on Fig. 1.11.

Decomposing the filter into these two stages decouples the hits representation prob-
lem from the hits separation problem. It enables the independent development of each
of the two stages, and makes each stage useful even if taken alone. For instance, what-
ever the level of hits labels availability, i.e. whether one is going for out-of-distribution
detection (OODD) or fully supervised multi-class classification, an effective hit2vec1 en-

1Using a terminology similar to the one already found in the deep learning literature, we call hit2vec a
neural network architecture that translates radar hits features into a real-valued vector, i.e. a common
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Figure 1.11: High-level description of the proposed targets without our problem-specific
supervision constraint: once they have been projected to a shared representation space,
encoded hits can be separated with any discrimination adapted to the availability of
labels. One can think of clustering, one-class classification, or in the ideal case supervised
classification. This makes the proposed pipeline relevant to most targets separation tasks
with PDR, whatever the supervision level. In the case of clustering, the output scalar is
a cluster label. For one-class classification, the output scalar can either be a continuous
real-valued abnormality score or a binary one-class classification score indicating whether
the hit processed is in-distribution or not. If enough labels are available and supervised
classification is used to discriminate between encoded hits (also called hits embeddings),
the output scalar would be a class label, which may include a rejection class to filter out
out-of-distribution embeddings.

coding neural network architecture would be equally relevant. This also emphasizes
how this work is relevant beyond the very specific scope of air surveillance radars and
small and slow targets. If a successful model is found to embed enriched hits I/Q sweep
responses into an ordinary vector representation, such a model could be used for targets
discrimination task in any pulse Doppler radar, for any level of training supervision.

1.3.2 One-class classification for radar targets discrimination

The low supervision constraint is tackled using a data points separation approach
adapted to the low availability of labels, i.e. one-class classification. This OCC can
be understood as an anomaly detection (AD) problem, which relates to the evaluation
of the distance between a test point and a given data distribution. In this manuscript
we allow ourselves to use interchangeably OCC, AD and OODD, although the literature
sometimes introduces distinctions between these three tasks [156]. In consequence, we
will also use the terms in-distribution samples and one-class samples to refer to the same
samples. Anomaly detection can as well be called outlier detection, and be associated
with novelty detection. As [47] pointed out, various kinds of anomalies can be dis-
tinguished: points anomalies, contextual anomalies, and collective anomalies. Whereas
point anomalies can be detected thanks to their features alone, contextual anomalies ad-
mit normal features values but are unusual given their data context. Collective anomalies
are multiple related data points deemed abnormal because of their collective realization.
One can note that given the previous definitions, one can integrate additional contex-
tual information to switch from a point or collective anomaly detection problem to a
contextual anomaly detection.

All of these types of anomalies can be found in radar targets processing, where
one test data point amounts to one target. For instance, a drone-type target having
a very high speed, or an odd Doppler signature or an odd HRRP, could constitute a
point anomaly. On the other hand, a normal-looking drone with a unique trajectory

representation in machine learning pipelines. This is analogous to word2vec which represents words
with vectors [128], or wav2vec which encodes tens of milliseconds of audio in a single vector [163]. The
architecture behind wav2vec will be discussed in chapter 2.
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when compared with the other drones of the targets dataset would define a contextual
anomaly. A collective anomaly could be created by a set of drones that alone have
normal individual features and trajectories, but whose trajectories combined are unusual.
This not only shows how relevant anomaly detection is to radar targets processing, but
also emphasizes deep and non-deep AD can contribute to different stages of the radar
processing pipeline as it was depicted on Fig. 1.1. For example, in addition to the
implementation of our hits filter located before the Extraction step, patterns of suspicious
trajectories over a short period of time could be analyzed after the Tracking step. The
literature offers numerous examples of AD being used to separate radar targets. For
instance, a Gaussian Mixture Model (GMM) is used as a cluster model in [107] to
achieve AD on velocities and positions routinely generated by a surface radar watching
over ships. In [193], an AE intermediate representation is used as a code to enable
the computation of an averaged background code of radar range profiles. A substantial
difference with this reference code can then be used to reveal an out-of-distribution test
sample.

In the specific case of our hits filter, we consider one enriched hit, i.e. a neighborhood
of range cells described by their respective I/Q sweep, as an input data point to be
evaluated. This implies we are working on a point anomaly detection task. Our filter
could be seen as a contextual anomaly detection task if the data point processed was a
single I/Q sweep feature describing one single range cell, since we are computing an AD
score based on the I/Q sweep of the center range cell responsible for the hit detection, and
its relationship with the neighboring I/Q sweeps. In the end the unit of data that needs
to be described as in or out-of-distribution (OOD) with respect to reference targets is the
target behind the central range cell in the enriched I/Q sweep representation, that is we
are considering a single target with a local I/Q context, and not a neighborhood of hits
or targets as it would be the case for a collective anomaly detection task. Considering
a neighborhood of hits would not fit in with the existing processing chain of the GM
radars. Indeed, the latter currently processes hits individually, and creating new data
flows combining hits on a local basis to process them would be computationally too
demanding. This will have an impact on the proposed hits processing, and will be
discussed more deeply in chapter 2.

The one-class classification approaches compared allow for both unsupervised and
semi-supervised anomaly detection (SAD), based on the definitions provided by [152,
153]. We will identify the experiments where the training data is considered to be "nor-
mal", i.e. the data points belong to the "one-class", as unsupervised AD experiments.
On the other hand experiments where in addition to a majority of normal samples, a
non-representative minority of "anomalies", i.e. out-of-distribution samples, is available
during training to refine the one-class classification boundary will be identified as SAD.
As reminded in [152], this is not necessarily aligned with the literature, where rightly so,
what we call unsupervised AD is already semi-supervised learning since the possibility
to count training samples as normal implies some level of supervision. Such a definition
is put forward in [47], where unsupervised AD refers to AD without training data and
under the assumption that the test data is made of a large majority of in-distribution
samples. This can be seen as the common outlier detection conducted as preprocessing
when one works with a dataset outside of a machine learning context. The data types
used for the OCC experiments of this thesis are diverse: encoded hits, standard images
datasets from the deep learning literature, 2D spectrums, covariance matrices but also
1D range profiles. Self-supervised learning (SSL) will also contribute to some of our
experiments through transformations converting in-distribution data into negative sam-
ples to enable SAD based on artificial anomalies. The Toeplitz and covariance matrices
representations are put forward as relevant representations for signals discrimination, as
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recently reminded in [43, 32, 127].

1.3.3 The choice of deep learning for I/Q encoding

As indicated in 1.3.1, deep learning was selected to build the encoding step of our hits
discrimination. We mentioned a basic use case stemming from the literature where
AEs are used to generate compact representations of data points that will be fed to a
discrimination function in 1.3.1. We can first add that such an embeddings generat-
ing mechanism through a generative architecture has been reproduced several times for
various kinds of inputs, for instance in [88] with the evolved version of recurrent neural
networks (RNN) called long short-term memory (LSTM) architectures [87], further sup-
porting the encoding power of deep learning. One can also notice that the handcrafted
features, such as the renowned SIFT [122] in image processing, have disappeared in favor
of both feature extraction and decision taking being handled by backpropagation-guided
neural networks, the switch being motivated by much improved performances. The key
remaining choice for the deep architecture designer being perhaps the information flow
constraints set by the architecture itself. Works actually indicate that a very substantial
part of a deep architecture relevance can stem from its architecture alone, which can
already lead to pleasing performances even when left untrained [69, 74, 160]. This point
could nevertheless be balanced by the fact that neural networks are usually sensible to
initialization, this sensibility bringing about the need to systematically evaluate neural
networks over a series of distinct random initializations.

The choice to favor deep learning is not only due to the pattern identification power
of deep neural networks, but also to their ability to integrate a diversity of input infor-
mation through the filters and operations already available in the deep architectures of
the literature. Deep learning is not limited to the now almost aged dense, simple re-
current and convolutional architectures, it is also the continuously renewed tale of deep
network adapted to non-Euclidean data lying on graphs and Riemannian manifolds [31],
or innovative sequence-to-sequence architectures such as Transformers [185]. As we will
see both in chapter 1 and chapter 2, this neural networks architectural wealth will be
leveraged in our work, where geometric deep learning (GDL) and sequence-to-sequence
(seq2seq) models will be employed. In the case of geometric deep learning, graph neural
networks (GNN) will be put forward in chapter 2 to handle the neighborhood of range
cells describing a hit and integrate the varying radar parameters from one it to another
in the graph edges. Symmetric positive definite (SPD) manifold neural networks are
proposed in chapter 3 to conduct OCC on SPD representations, several of which will be
mentioned in this work in the context of radar targets discrimination.

Since we just mentioned how quickly deep learning evolves and redefines its own
SOTA, one could wonder what the point is of exploring the aged models of tomorrow
for our specific application. Deep learning keeps relying on backpropagation and gradient
descent mechanisms to learn to extract features and produce classes or regression results,
therefore we argue that understanding how such a learning mechanism can complement
the usual radar signal processing will be useful even if the architecture experimented on
does not belong to SOTA. Furthermore, the need to physically understand and interpret
the operations, recalling the rising demand for eXplainable artificial intelligence (XAI),
constrains the relative arbitrary complexity of neural architectures anyway. This need
for interpretable sets of learned transformations is rooted, as in other critical applications
of artificial intelligence, in the required guarantees widespread in the military sensors
industry. In the end, deep learning filter or not, the targets discrimination sold is
required to stay within the limits of the advertised requirements existing for any radar
system.

On the contrary, deep learning was never meant to be a definite choice regarding



16 CHAPTER 1. PDR, DISCRIMINATION TASK AND SOLUTION OVERVIEW

the second step of our filter, i.e. the target embeddings discrimination. This is why
chapter 3 considers a variety of non-deep machine learning OCC among the conducted
experiments. Our pipeline remains completely reliant on machine learning, which, sim-
ply put, aims at letting a neural network extract what is believed to be suitable Doppler
information and use it to produce a useful score for the radar mission. The search for au-
tomatic or semi-automatic Doppler, and more generally, spectral information extraction
and encoding dates back to decades ago, when expert systems were already considered
to help improve spectral information analysis [14].

1.3.4 A brief reminder on deep learning

To make this document friendlier to readers with only a radar background, a short non-
exhaustive reminder on deep learning, the machine learning method put forward in this
work, is now proposed. If confusion remains on deep learning notions readers may refer
to [77] for supplementary explanations, this reference being the inspiration of most of
the elements presented here. Deep learning gathers a wide and diverse ensemble of ma-
chine learning methods based on neural networks architectures. Neural networks can be
described as a succession of parameterized linear and non-linear transformations applied
to numerical input data whose parameters are trainable. These trainable parameters
are organized in successive layers, each layer producing intermediate representations
supposedly yielding higher level features than the previous ones. The non-linear trans-
formations are defined using non-linear functions called activation functions. Specific
architectures include parallel and independent successions of layers, residual connections
bypassing layers to provide the training phase with the opportunity to recombine in-
formation from distinct depths, convolutions to extract multi-scale spatial or temporal
patterns and recurrent computing mechanisms for time-series processing. To determine
the values of the parameters a computationally expensive, data-dependent, training
phase is executed during which a scalar objective quantity often called a cost or a loss
function is minimized thanks to the optimization of the already mentioned parameters.
Assuming a joint distribution D of the samples x and of their associated targets y, the
training phase yields the following minimization problem:

min
W

E(x,y)∼D [L(ΦW (x), y)] (1.10)

where W are the optimized trainable parameters organized within the neural network
defined by the function Φ, and L is the loss function defining the learning task. The
minimization is said to be empirical since the training is actually based on a finite
number of inputs and outputs pairs drawn from D, i.e. only a sampled version of D
is available to optimize W . Various loss functions will be put forward in this work.
The latter will be regression losses, which can be opposed to the equally widespread
classification losses. An intuitive way to distinguish these two types of losses is to see
regression losses as the prediction of a continuous output representation, for instance
based on the minimization of a metric, while the classification losses aim at predicting
a discrete class label. One can note that the prediction of a discrete label can still
translate into the prediction of a continuous quantity such as a float in [0; 1] interpreted
as a class probability. A typical approach to classification involves the minimization of
a cross-entropy.

This optimization is usually implemented using a variation of the gradient descent
called stochastic gradient descent (SGD). The SGD gradient descent is deemed stochastic
because it estimates the gradient over a large dataset using a smaller set of randomly
sampled data points called a minibatch. For instance, if one considers a minibatch of n
vectorized samples xi ∈ Rd and their associated targets yi picked in the training set for
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a given task, the update to the parameters W can happen as follows:

W ←W − ϵĝ (1.11)

where ϵ is the learning rate and ĝ is the gradient estimate over the set of n samples of
the loss with respect to the parameters W :

ĝ = 1
n
∇W

n∑
i

L(ΦW (xi), yi) (1.12)

The obtained sequence of transformations outputs a representation that translates
into a discriminative or generative result and can handle unsupervised and supervised
tasks, the supervision level being the result of the amount and relevance of the labels
available in the training data. Based on the scalar objective computed after each com-
plete forward pass going through all layers in a unique order, one computes the scalar
objective gradient with respect to the neural network parameters and uses this gradi-
ent to update the parameters so that the previous objective is minimized. Since the
trainable parameters are distributed in several transformations layers, the chain rule of
calculus is used to backpropagate the learning signal under the form of derivatives and
produced by the scalar objective gradient back through the layers. For instance, for a
scalar x and two functions f and g, if one defines z = f(g(x)) = f(y), the chain rule
corresponds to:

dz

dx
= dz

dy

dy

dx
= df(y)

dy

dg(x)
dx

(1.13)

The previous equation clearly illustrates the intuition behind the chain rule: it allows
for the appearance of the intermediate function g and representation y in the derivative
of the functions composition with respect to the initial input x. So-called intermediate
derivatives can thus be combined to compute the gradient with respect to the final loss
at any stage within the neural network.

This rule is used because layers are compositions of the ones preceding them and
is easily transposed from scalars to vectors and tensors. In multidimensional cases the
Jacobian matrix of first-order partial derivatives thus naturally appears in the learning
phase. This process constitutes one of the pillars of deep learning and is called back-
propagation. This simple yet intuitive description of backpropagation already suffices
to understand that one of the difficult points in deep neural network training is the
ability to maintain a usable training signal until the first layers when backpropagating
the training loss gradient. This difficulty motivates the choice of operations within neu-
ral networks, and notably led to the exploration of a diversity of non-linear activation
functions.

Assuming relevant data quantity and quality, each deep learning application neces-
sarily leads to a set of choices which make the difficulty of creating a successful deep
learning setup. Along with the neural network architecture itself, finding the right com-
bination of hyperparameters, i.e. all the parameters of the architecture outside of the
parameters optimized during the training phase, can be particularly challenging. The
recent developments in every dimension underlying the task of defining a deep learning
architecture, whether it is optimization, constraints on weights, or data augmentation
methods, contribute to the difficulty of making the right design choice. Constraints on
the weights and the output representations can relate to a major hypothesis of deep
learning called the manifold hypothesis. This hypothesis implies that relevant interme-
diate and output representations only span over a limited part of the representation
space. Assuming this hypothesis is valid suggests finding a way to learn parameters
and representations limited to the relevant subset of points is crucial to effective neu-
ral network training, in addition to easing the understanding of the trained parameters
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and representations. The black-box nature of complex architectures complicate the ac-
ceptance of discrimination and representations generated by neural networks, especially
when it comes to critical systems such as radars. This legitimate defiance calls for a
careful evaluation of the trained neural networks performances using thoughtfully se-
lected metrics, and for an attentive analysis of the learned parameters after training.
Several methods such as Grad-CAM [165] relying on gradient and activation values are
already popular, and sometimes learned parameters can be compared to finite impulse
response (FIR) filters or Fourier atoms [38, 37]. Directly visualizing the learned filters
can be an option, typically in image processing [191].

The necessity of thoroughly explaining and evaluating neural networks was already
emphasized in the literature, the latter putting forward the necessity of constraining
weights in a regularization effort and of tackling the sensibility of neural networks to
slightly noisy inputs that can be called adversarial examples, or their sensibility to pa-
rameters initialization. The fact that a lucky random initialization of weights changes
performances, or that random weights can already yield interesting high level features
highlights how important it is to understand what was gained during the training phase.
Knowing the right amount of parameters optimization that should be extracted from
a given training set is another important part of successful neural network training.
Indeed, one can train a neural network too much with a given training set, leading to
a situation called overfitting, where the neural network is becoming so specialized with
respect to the training data that it loses generalization capabilities on unseen data for
the task at hand. Among other key elements neural networks and backpropagation,
the foundations of deep learning, have existed for decades but became widely popular
only a little more than a decade ago thanks to the combination of the availability of
large datasets for unsupervised and supervised training and of new specialized com-
puting hardware and software [110]. Nowadays large, suitable datasets are even more
widespread and distributed computing capabilities are harnessed to train enormous neu-
ral networks made of hundreds of millions or even billions of parameters [53, 39, 61].
This thesis distances itself from such very large models since it develops small neural
networks with few parameters and little data that are meant to be easily investigated,
explained and implemented on computationally constrained platforms.

1.3.5 A brief reminder on signal processing

As for deep learning above, a few fundamental notions of signal processing are reminded
to provide the reader with some perspective. This thesis implements complex-valued
signals processing pipelines in the context of radar systems. The proposed solution
combines machine learning and traditional signal processing concepts to improve existing
pipelines which are void of machine learning. The complex-valued signals are sampled
signals which are assumed to respect the condition brought by the Shannon-Nyquist
sampling theorem. This implies the frequency content of the signals processed does
not contain frequencies above half of their sampling frequency, the latter being here
defined by the PRF. This condition relates to the concept of aliasing, which translates
into the impossibility of reconstructing a signal based on the sampled points due to
the violation of the Shannon-Nyquist sampling theorem. Said in other words, we need
enough samples per time span to accurately and uniquely capture the frequency content
of a sampled signal. Here, this requirement is critical not to reconstruct the signal but
to ensure the discriminative information our proposed processing needs is not limited
by the sampling. This criteria is assumed to be systematically met in our work, and
basically means the targets Doppler spectrums do not go beyond the Doppler ambiguity
boundaries from a radar engineer point of view. This is made easy by our focus on slow
targets. More generally, an anti-aliasing filter can be used to avoid aliasing. This anti-
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aliasing can translate into a low-pass filter forbidding any information to lie outside of the
bandwidth covered by the sampling frequency. Such a low-pass filter would be equivalent
in our PDR case to the rejection of targets with velocities beyond the ambiguous velocity
allowed by the sampling PRF. The usual bandlimited signal hypothesis applied to PDR
results in the unambiguous velocities range in which we will place ourselves.

Since we face a discrimination between signals with varying sampling frequencies,
usual signal resampling approaches should be kept in mind. A common way of resam-
pling a signal is to combine upsampling and downsampling by integer factors, resulting
in a final rate conversion corresponding to a rational factor. More precisely, the upsam-
pling can be associated with an integer interpolation factor I and the downsampling
can be associated with an integer decimation factor D, yielding the rational factor I

D .
Upsampling by an integer factor can be achieved by adding zeros between existing sam-
ples and then applying a low-pass filter, which acts as interpolation. Downsampling on
the other hand first applies a low-pass filter and then keeps a fraction of the existing
samples. This rate conversion is not necessarily relevant in our case because of the
possibly close and too diverse PRFs at play in a set of input signals to be compared.
Both the proximity and the diversity of the sampling frequencies in our radar pulses
bursts make it likely to require conversion rates where either the factor I or the factor
D, or both, are large. This, in addition to the very few signal samples available, would
likely lead to inefficient conversions. For instance, the larger the upsampling factor I,
the larger the computational and memory loads the processing needs to face due to the
additional samples generated. The specificity of our PDR application case encourages
us to evaluate the possibility of bringing the diversity of input signals to a shared rep-
resentation space with less common and more complex approaches and motivates our
deep learning-based experiments. One should note that more subtle signal interpolation
could allow for the conversion rates necessary in our particular PDR case study, but this
is outside of the scope of our work. Details regarding the resampling notions presented
in this paragraph as well as complementary information can be found in [66].

Assuming an effective rate conversion with a proper rational factor I
D could be found

to bring back all bursts of pulses to a common PRF and a common number of I/Q sam-
ples, one could imagine a resampling-based "hit2vec" encoder. Such an encoder could
output the DFT generated features for each resampled single range cell I/Q signal as
representation in a shared representation space. The combination of the DFT output
for each range cell in a given neighborhood of H range cells (see Fig. 1.3), for instance
through the computation of a mean, would then constitute a fixed size representation of
the enriched input format matrix. This possible machine learning-free encoder baseline
is depicted on Fig. 1.12. The latter respects the hypothesis according to which the dis-
criminative information among the small and slow targets we focus on and the confusing
clutter lies in the Doppler i.e. frequency domain, since it relies on the DFT to extract
the representations fed to the ensuing separation step.

A notion central to both general signal processing and radar signal processing, the
signal-to-noise ratio, will not be discussed in this work, the latter focusing on the pro-
posal of a coherent machine-learning based processing adapted to the discrimination
task and the specific input matrix. A favorable SNR nonetheless remains a sine qua
non condition for the success of the proposed pipeline, despite the lowering of detection
thresholds. The requirement of acceptable SNR is actually closely tied to the few radar
notions highlighted by our processing. For instance, hits stem from a detection step (see
Fig. 1.1) that may rely on a coherent or non-coherent pulses integration to accumulate
the energy of a train of pulses in order to decide whether to detect a target or not.
Here, the pulses integration aims at improving the SNR to ease the decision to detect
or not. This detection translates into the passing of a threshold, while the SNR increase
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then combine the H representations into a single real-valued one

Figure 1.12: Example of "hit2vec" resampling-based baseline for the first of the two
steps processing proposed and already depicted on Fig. 1.10 and Fig. 1.11. Assuming
the succession of an upsampling by the integer factor I, an intermediate filter and a
downsampling by the integer factor D can allow to represent all input signals with a
common sampling frequency and an equal number of samples, the neighborhood of H
range cells (see Fig. 1.3) could be encoded by the mean of the DFT of each individual
range cell signal.

can be seen as making the signal energy spike more visible with respect to the ambi-
ent clutter. The detection threshold is in turn decided by a constant-false-alarm-rate
(CFAR) directly tied to the false alarm filtering this thesis puts forward. In the PDR
processing pipeline, the described pulses integration should not be confused with pulse
compression, the latter aiming at improving the range resolution [15].

The history of signal processing suggests the combination of signal processing and
machine learning is a natural development of the field. Signal processing was originally
very close to the field of physics and less so to the field of mathematics due to its
analog nature. With the advent of microprocessors and modern computing chips, signal
processing took the digital turn, digital signal processing became widespread and moved
the field towards data processing and applied mathematics. This shift can be illustrated
by the impact of the Fast Fourier Transform (FFT) algorithm [68]. The development of
machine and deep learning to process all kinds of data was thus set to equally impact
signal processing. Key deep learning tools can be defined with equivalent concepts
stemming for signal processing. As was already mentioned in 1.3.4, a convolutional
layer is a FIR filter, and the DFT can be learned by the coefficients within a neural
network [38, 37, 189]. On a side note, one could add that the FFT has also been used to
make the computation of convolutions more efficient thanks to the equivalence between
convolutions in the spatial or temporal domain and the Hadamard pointwise product in
the Fourier domain [142].

Deep neural networks have been adapted to process the representations usually han-
dled by signal processing such as complex-valued vectors stemming from a DFT or I/Q
signal. This adaptation did not wait for the recent explosion of deep learning research
and was engaged decades ago [86, 99, 91, 71, 112]. Audio signal [19, 163, 55], EEG [162]
and ECG [88] processing are among the most common and successful applications of
deep learning to real and complex-valued valued signal. Denoising, one of the most fun-
damental tasks of image and signal processing, has been a successful application of deep
learning [57, 111, 192]. Closer to our radar application, beamforming [173] and radio
modulation discrimination [119, 106, 138] define other applications of deep learning to
signal processing. Among the applications of deep learning to signals discrimination,
one can notably distinguish the processing of signal based on 2D spectrums, such as
spectrograms, from the processing based on raw temporal or spatial signal. This sepa-
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ration is relevant since methods used on 2D spectrums can be seen as closer to image
processing than to signal processing, even though such a separation is debatable due to
the proximity between signal and image processing operators.

1.4 Organization of the chapters and contributions
This chapter has now introduced each element of the thesis title: OCC and low super-
vision refer to the need to tackle a lack of labels, the sensors generating the data are
PDRs with a low Doppler resolution constraint, and the task at hand is targets dis-
crimination using I/Q samples carrying supposedly discriminative Doppler information.
The assumption regarding the relevance of the Doppler information for our discrimi-
nation task is supported by the considerable literature using exclusively micro-Doppler
information to detect and classify small and slow targets such as drones and birds. The
second chapter of this thesis will describe the encoding stage of the proposed hits pro-
cessing pipeline, while the third chapter will outline the final OCC discrimination stage.
The encoding stage will put forward the use of RNNs, CNNs, complex-valued neural
networks (CVNN) and also of GNNs to produce a relevant real-valued vector represen-
tation of the hit feature described by Eq. (1.2). The acronym RVNN for real-valued
neural network will be used in opposition to CVNN. The third chapter will on the other
hand present OCC baselines considered in our comparisons, but also original work and
OCC methods developments. A fourth chapter will then analyze experiments conducted
with the complete two-steps pipeline, and is followed by a concluding chapter that ends
with perspectives. Deep learning definitions regarding specific deep architectures put
forward in our experiments and complementary to the reminder proposed in 1.3.4 will
be proposed in the second chapter.

The contributions of this thesis are disseminated in the chapters 2, 3 and 4. As
previously mentioned, an original contribution to OCC is put forward in chapter 3 in
section 3.1.3. This contribution consists in the modification of an existing Deep OCC
method along with the proposal of a latent space regularization scheme in section 3.1.5.
Another modification of the same existing Deep OCC is proposed in section 3.2.3 without
being supported by experimental results. Although the building blocks of the encoding
architectures presented in chapter 2 stem from the literature, their use, combination and
adaptation to the specific nature of PDR data and to the problem of small and slow
targets discrimination constitute another contribution to the literature. In addition
to the previous contributions, we can also note that the choice of the enriched input
features format with subsequent representation learning and machine learning-based
discrimination constitute a novelty in the field of radar signal and data processing. At
the time of writing, the research papers associated with this thesis, either submitted or
published, all stem from the content of chapter 3. The chapters 2 and 4 will remain
mostly exploratory with the presentation and comparison of encoding ideas supported
by a few preliminary results.
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Chapter 2

Let us now consider the first stage of our hits filter, i.e. the hits encoding stage.
Learning robust latent embeddings which concentrate latent representations of similar
targets next to each other is the purpose of this stage. As explained in chapter 1 and
depicted on Fig. 1.3 and Fig. 1.4, targets are represented by a neighborhood of range
cells centered on the range cell actually carrying the potential target that has triggered
the detection of a hit due to the passing of a threshold. This neighborhood spans over
range cells but not over the neighboring azimuths (see Fig. 2.1). Ideally, distinct classes
of targets will be projected in distinct latent clusters by the encoding neural network.
The output representation should be real-valued vectors of fixed size in order to enable
the downstream discrimination to be achieved by common machine learning approaches,
without further adaptation or the need for specific interpretation of the latent compo-
nents. The adjective robust here emphasizes the necessity for comparable radar targets
to be projected similarly, even with small perturbations in the backscattered radar sig-
nal. As we will see, this encoding neural network will associate different types of deep
learning architectures to handle the particularity of the input data.

2.1 The common representation space necessity

As we have seen in Chapter 1, the input I/Q signals we wish to transform are of vary-
ing size and varying physical nature, since the number of pulses and the PRF change
during the radar operation (see Fig. 1.4). This input heterogeneity renders it irrelevant
to directly compare the coefficients of several hits. In order for common data points
classification and discrimination methods to be applicable, the coefficients constituting
each hit representation should have the same mathematical nature and belong to a rep-
resentation space of unique dimensionality. Obtaining such a shared representation is
the aim of the first stage of the filter. In a way, we are here looking for representations

23
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Input variation cause Ideal embedding variation
PRF Invariant
# of pulses in burst Invariant
Target-aspect sensitivity Invariant
Transmitted frequency Invariant
Target type Varying

Table 2.1: The ideal PDR targets I/Q backscatter embeddings invariances. All of the
embeddings invariances need to be learned, implying the availability of dedicated data
samples to enable the learning of the invariances during training. There is no way to
integrate operations within the encoding hit2vec neural network to make the neural
network intrinsically invariant to the cause of input representations variations. In such
a case, learning invariances is similar to the use of geometric transformations for data
augmentation to make the result of classification neural networks invariant to the same
geometric transformations. In our experiments only the target type and the number of
pulses per burst change. Such a setup already appeared as challenging.

of targets insensible to so-called signal sampling perturbations: one target should have
the same output representation for different number of pulses, i.e. different numbers
of samples, and different PRFs. We can talk of target-aspect invariance in the output
space of the encoding architecture, in reference to the usual target-aspect sensitivity
of radar targets [116]. Another target-aspect invariance ideally expected from the pro-
posed encoding that we will not further mention is the invariance to waveform changes,
since in addition to varying PRF and number of pulses, hits of the GM air surveillance
radars are defined by flexible modulation frequencies and other waveforms parameters.
The number of pulses, the PRF, and the waveform are all parameters of the sensor gen-
erating the target raw representation. Additional invariance to external factors should
ideally be ensured for a discrimination relevant to a radar operator to be produced.
Such external factors are for example the weather or the target range. For instance, two
drones sharing a common geometrical and propellers configuration should be encoded
similarly, independently from the range at which they have been detected. Interesting
encoding invariances are summarized in table 2.1.

One can note that we chose to process the backscatter describing a neighborhood of
range cells centered around a single hit, instead of processing a spatio-temporal neigh-
borhood of hits, i.e. several hits at once. This is imposed by the radar processing
pipeline in which our filter should be integrated, where hits are processed alone before
the extraction stage. Adding a search mechanism among local combinations of hits
would be computationally prohibitive for the embedded hardware of the radar system.
This computational barrier is even truer in the context of the lowered detection thresh-
olds motivating this thesis, since lowering filters increases the number of hits requiring
real-time processing as explained in section 1.1. The increase in the number of hits would
in turn increase the number of possible hits combinations to be considered if the hits fil-
ter had been based on spatio-temporal neighborhoods of hits instead of fixed-size range
cells neighborhoods. Opting for spatio-temporal neighborhoods also implies answering
challenging questions: how far can a hit be in time and space in order to be accepted
within a local processing ? How many hits would the local processing require or would
accept at most ? To be fair, the increase of hits due to lower thresholds also impact the
number of fixed-size neighborhoods of range cells to process, but this computational load
is linear since no combinations are considered. This lighter impact on hardware is much
more embedded systems-friendly, while the fixed-size of the range spanned by the input
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complex-valued matrices makes the computational load more predictable. In the spirit
of fair comparison, one can furthermore notice that the fixed-size of the neighborhood of
range cells is a choice similar to the spatio-temporal delimitation of hits combinations.

Another way to understand the input we have is to see the enriched I/Q feature
as a contextualized I/Q feature, where the central I/Q sweep response of the range
cell generating the hit detection is associated with the neighboring I/Q sweeps on the
discretized radial axis. Neighboring range cells could be carrying other hits themselves,
integrating the initially processed hits into their own enriched I/Q format. Detecting
a correlation in the Doppler content among neighboring ranges cells is actually critical
for the effective discrimination of small and slow targets. Since weather phenomena
and irrelevant objects also belong to the small and slow targets domain, a correlation
between range cells close to each other may help discerning weather phenomena and
other large scale motion. This is in particular due to the fact that interesting small and
slow targets are too small to spread their Doppler signature across several range cells.
The necessity of taking into account the relation between range cells within the enriched
input representation depicted on Fig. 1.3 will have an impact on how we extract an
encoding from this representation as explained in 2.4.2. An illustration of the intuition
behind the motivation to identify any local correlation, and of the previously mentioned
alternative defined by a spatio-temporal neighborhood of hits is proposed in Fig. 2.1.

The choice to encode a neighborhood of I/Q features makes our processing analogous
to the processing of data generated by a sensors network. From this perspective, our
neighborhood of range cells described by their respective I/Q signals could be a regularly-
placed sensors network, the regular nature of the network stemming from the consistent
range sampling. We find it particularly relevant to mention this sensors network inter-
pretation of our problem since sensors network data processing seems of interest for a
diversity of radar targets processing approaches. Indeed, in addition to our neighboring
range cells I/Q sweeps, one could choose to process spatially or temporally neighboring
hits, which in turn could be seen as processing data generated by an irregularly-placed
sensors network. In that case, the irregularity comes from the fact that targets and
clutter, and thus hits, are not necessarily regularly distributed in time and space around
the radar. The latter approach, however, goes against the limitations of the radars we
are working on as already mentioned, since it would imply processing hits combined
and not individually. The apparent relevance of the sensors network interpretation of
our input data naturally leads to considering graph neural networks (GNN) as they are
a usual tool to process sensors network data [137]. The use of GNNs will be detailed
in 2.4.2, but first we will go through encoding methods for a single range cell I/Q sweep
in 2.3, and propose a simple baseline for the encoding of a neighborhood of range cells
in 2.4.1. Since the neural networks models defined are built with complex-valued pa-
rameters, a short introduction to the implications of complex-valued neural networks is
made beforehand in 2.2.

2.2 Processing complex-valued data with deep learning

Complex-valued neural networks (CVNN) were chosen to process the complex-valued
I/Q signal input matrices of our discrimination task. As reminded in 1.3.5, such net-
works have existed for decades and were already used to process signals in their begin-
nings [86, 99, 91, 71, 112]. The recent popularity boom of deep learning was accompa-
nied by a visible continued interest in CVNNs [22, 177, 179, 79]. This notably translated
into the adaptation of the most common deep learning frameworks to CVNNs, for in-
stance with PyTorch [4]. The need for CVNNs was actually strong enough among the
application domains that smaller scales initiatives appeared to develop specialized pro-
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HITHIT
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CLUTTER

CLUTTER
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SWARM

AZIMUTH

(ANTENNA SCANNING)
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Figure 2.1: Example neighborhoods of range cells and spatio-temporal neighborhood of
hits mentioned as a forbidden alternative to put our processing choice in perspective.
The dot colors describe the nature of the Doppler content of the range cells, i.e. range
cells filled with the same color contain similar Doppler signatures. Here, the neigh-
borhood size is H = 5, as is the case in our experiments. Right: Generic enriched
input format of our processing as described in chapter 1 (see Fig. 1.4). Each dot has
a different color since by default the range cells Doppler content can be uncorrelated.
We process a spatial neighborhood spanning over a radial axis and centered over the
range cell that detected a potential target, i.e. whose content passed a threshold. The
neighboring cells in azimuths are ignored, i.e. the cells marked with diamonds do not
contribute any information to the neighborhood representation. Left: Neighborhood
of range cells with highly correlated Doppler signatures. This means the neighboring
cells and the central cell carrying the detection triggering the definition of a hit may
contain the same kind of potential target. Top: Forbidden alternative to our enriched
input representation, defined by a flexible neighborhood of hits. In such a neighbor-
hood, each cell taken into account carries an actual hit, which is not necessarily the
case in the fixed-size neighborhoods centered around each individual hit we chose as
input Bottom:Intermediate neighborhood correlation case. The neighborhood embed-
ding produced by the first hit2vec stage of our filter (see Fig. 1.10) should lead to the
effective separation of this neighborhood and the two other valid ones represented here.
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gramming libraries dedicated to CVNNs [21, 126]1, confirming the relevance of these
neural network architectures. A distinct kind of radar, synthetic aperture radar (SAR),
is among the common applications benefiting from CVNNs [20, 81]. Closer to our own
application, CVNNs have been applied to complex-valued micro-Doppler spectral fea-
tures in [37]. The use of trainable complex parameters is key to take advantage of the
modulus and phase information contained within complex-valued data. To avoid the
resort to proper complex analysis, the deep learning literature sometimes opted to take
into account complex-valued data by doubling the number of real-valued channels of
a neural network, treating the real and imaginary parts of a complex representation
as two distinct features. Doing so doubles the number of inputs. This was also done
with one channel for the modulus and a second one for the phase. However, such a
neural network construction discards the simultaneous dependency of a complex rep-
resentation on both values. The potential superiority of complex neural networks over
real-valued equivalents in specific setups was confirmed in diverse experiments by the
literature [20, 37].

2.2.1 Complex neural networks operations

The parameters of the linear operations building the neural networks of the encoding
stage will all be complex-valued. The conversion of common deep learning operators to
complex parameters is made quite simple by the modern deep learning libraries. In the
case of PyTorch for example, it only requires a datatype conversion at the neural network
initialization [5]. In 1.3.5, we mentioned the close relation between signal processing and
deep learning operators with the example of the convolutions defining FIR filters. For
instance for a real-valued FIR filter of order K applied to a real-valued input signal x
we compute the filtered output y:

y(n) =
K−1∑
k=0

h(k)x(n− k) (2.1)

This can rewritten using the convolution operator ∗:

y(n) = (h ∗ x)(n) (2.2)

This is also true in the context of complex-valued neural networks and complex-valued
signals z = zr + jzi, where the subscript r indicates the real part of a complex represen-
tation, while the subscript i indicates the imaginary part. A complex-valued FIR filter
h = hr + jhi applied to the complex signal equally translates into the computation of a
convolution, which can be developed as follows:

y(t) = (z ∗ h)(t) (2.3)
= (zr + jzi)(t) ∗ (hr + jhi)(t) (2.4)
= (zr ∗ hr − zi ∗ hi)(t) + j(zr ∗ hi + zi ∗ hr)(t) (2.5)

One can note that the use of a complex filter allows for a non-symmetrical frequency
response [1]. This contrasts with the application of a unique real-valued FIR filter to
both the real and imaginary parts of an input complex-valued signal, and has a direct
impact on the interpretation of the trained parameters of complex-valued convolutions.
Such an interpretation is one way of explaining the relevance of the neural networks
trained when they involve convolutions.

1Libraries accessible on GitHub: https://github.com/NEGU93/cvnn https://github.com/
wavefrontshaping/complexPyTorch Accessed: 20/11/2022
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In the experiments conducted, we considered two non-linear activation functions
applicable to a complex input z = zr +jzi. The first one is a complex-valued adaptation
of the usual rectified linear unit (ReLU):

CReLU(z) = ReLU(zr) + jReLU(zi) (2.6)

where the usual ReLU is defined as follows:

ReLU(x) = max(0, x) (2.7)

The second activation function we considered for our CVNN architectures was the
same adaptation where instead of the ReLU we used the Gaussian error linear unit
(GELU) [84]:

CGELU(z) = ReLU(zr) + jGELU(zi) (2.8)

where the usual GELU is defined as follows:

GELU(x) = xΦ(x) (2.9)

where Φ(x) is the standard normal distribution cumulative distribution function. This
activation function is actually approximated by the following expression:

GELU(x) = 0.5x(1 + tanh( 2
π

)(x+ 0.044715x3))) (2.10)

The consideration of GELU was motivated by its use in the state-of-the-art wav2vec
2.0 [19] framework which also encodes raw signal, and due to the willingness to ex-
plore a more complex activation scheme which proved effective in other deep learning
applications. Instead of simply gating inputs according to their sign like ReLU, GELU
outputs an activation based on the value of the input. It also benefits from a proba-
bilistic interpretation, and again in opposition to ReLU, is non-convex, non-monotonic
and not linear in the positive domain. The two different element-wise applications of
common RVNN activation functions to the real and imaginary parts of a complex-valued
input corresponds to one of the two usual adaptations of activation functions to CVNNs.
These two types are respectively called the split-complex and the joint-complex activa-
tion adaptations, and can be generically defined as follows [22, 81]:

actSP LIT (z) = act(zr) + jact(zi) (2.11)

actJOINT (z) = act(|z|) exp(j arg(z)) (2.12)

Following this naming convention, we opted for split-complex activation functions in
Eq. (2.6) and Eq. (2.8). The joint-complex type processes the real and imaginary parts
of the input jointly instead of separating them in the application of a non-linearity.
We ended up privileging the CReLU activation since it was a common choice in the
CVNN literature [22, 79] and it has been shown to perform better than alternative
ReLU adaptations for CVNNs [177]. The definition of CReLU enables the function to
choose to preserve the phase and the magnitude, or to project the phase to zero or π

2
to cancel the imaginary or the real part respectively, or alternatively to cancel both
parts [177]. This follows the intuition of the real-valued ReLU which has a component-
wise nullification power.

A similarly naive adaptation of the batch normalization (BN) [92] was also harnessed
in the CVNN architectures put forward. Batch normalization was initially introduced to
reduce the internal covariate shift, i.e. to control the input distribution fed to successive
layers in neural networks. Batch normalization was meant to enable more efficient
learning and reduce the criticality of the learned parameters initialization [177, 92]. It
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was later shown that, although successful in improving the training process stability
and performance, the BN success would actually be due to a smoothing effect on the
optimization landscape [158]. The BN adaptation we used is the independent application
of one real-valued BN to the real and imaginary parts of the inputs:

CBN(z) = BNr(zr) + jBNi(zi) (2.13)

Here, as opposed to the activation functions expressions, the input z is a batched input.
A less naive complex-valued BN was proposed in [177] but was described as a limited
source of performances improvement in the CVNN-focused programming library associ-
ated with [126]2. It is important to keep in mind that this normalization operation, in
addition to having a different behavior in the training and testing phases, also maintains
two trainable parameters γ and β:

BN(x) = γ
x− E[x]√
V ar[x] + ϵ

+ β (2.14)

where x is a batched input features tensor. In the case of the naive adaptation to a
CVNN application described by Eq. (2.13), this implies that the CBN has four trainable
parameters (γr, γi, βr, βi) instead of two.

2.2.2 Complex neural networks backpropagation

The adaptation of deep learning to complex-valued parameters involves redefining the
usual linear and non-linear operations of neural networks as we have seen in 2.2.1. Once
parameters are complex and the transformations of the forward pass are adapted to
the complex format, the gradient also requires some adaptations to ensure a relevant
backpropagation iteratively modifies the trainable parameters. In order to compute
the necessary complex derivatives for training, CVNNs can harness the two Wirtinger
derivatives [197], which for a complex-valued function θ : C→ C are:

∂θ

∂z
= 1

2

(
∂θ

∂x
− j ∂θ

∂y

)
(2.15)

∂θ

∂z̄
= 1

2

(
∂θ

∂x
+ j

∂θ

∂y

)
(2.16)

where z = x + jy ∈ C. Thus, Eq. (2.15) and Eq. (2.16) define complex differentia-
tion as a transposition of the real domain differentiation. These Wirtinger derivatives
unlock the notion of complex derivative by making it applicable to non-holomorphic
functions. Holomorphic functions are the functions usually associated with the defini-
tion of a complex differentiation, but are too restrictive to enable the transposition of
RVNNs concepts and tools to the complex domain [22, 81, 4].

PyTorch [3]3, the library we mostly used, computes the gradient with respect to the
conjugate ∂

∂z̄
to compute the gradient of a real-valued loss function to train a CVNN.

Using a real-valued loss function is intuitive since there is no natural order among
complex numbers, and we mostly want to minimize metrics during training.

In the complex domain and for a complex-valued input z, the chain rule of Eq.(1.13)
critical to the backpropagation introduced in 1.3.4 becomes [81]:

∂u(v(z))
∂z

= ∂u(v(z))
∂v(z)

∂v(z)
z

+ ∂u(v(z))
∂v(z)

∂v(z)
∂z

(2.17)

2Library accessible on GitHub https://github.com/wavefrontshaping/complexPyTorch Accessed:
20/11/2022

3Library accessible on GitHub: https://github.com/pytorch/pytorch Accessed: 20/11/2022
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where u : C→ C and v : C→ C are arbitrary complex functions. This chain rule can be
rewritten to make a real-valued loss function L : C → R and the gradient with respect
to the conjugate computed by some of the common deep learning libraries as mentioned
earlier [22]:

∂L(v(z))
∂z̄

= ∂L(v(z))
∂vr(z)

∂vr(z)
z̄

+ ∂L(v(z))
∂vi(z)

∂vi(z)
∂z̄

(2.18)

2.3 Encoding a single hit range cell

Let us now discuss the encoding of a single I/Q signal, i.e. the generation of an em-
bedding for a single range cell described by a single burst of pulses. This task amounts
to encode a column (z11 . . . zN1)T ∈ CN×1 of the complex-valued matrix ZI/Q defined
in Eq. (1.2). As indicated by Fig.1.11, we aim at producing a single embedding RQ

for the enriched input defined by the complete matrix. A single I/Q signal will first be
mapped to a real-valued vector in RQ, combinations of such vectors to form a neighbor-
hood embedding being proposed in section 2.4. As put forward in section 1.3.5, a naive
way to encode the diversely sampled input signals in comparable representations would
be to resample them and use their subsequent and equally sized representation in the
Fourier domain to compare them. This approach comes with the limitations posed by
the resampling method. The reader may refer to section 1.3.5 for details in that regard.
Here, we will first review an approach recently proposed by [43] precisely developed
for radar backscatter processing which can be interestingly coupled with an upcoming
manifold-aware OCC presented in chapter 3. We will then go on with recurrent and
fully convolutional neural networks (FCNN), with which we conducted preliminary ex-
periments. Both the RNN and the FCNN will be used to define unsupervised range cell
encoding thanks to generative architectures in section 2.3.2, and will then be extended
to take advantage of labels and supervision during training in section 2.3.3. Each of
these methods is adapted to the processing of input signal with different number of
input signal samples. In opposition to the resampling approach, these methods do not
explicitly take into account the varying sampling frequency of the input signals, i.e. the
PRF. This can be rectified later for our neighborhood of range cells as we will see in
section 2.4.

2.3.1 A straightforward approach with AR models

One way of representing the complex-valued I/Q radar signals is to use their autocorre-
lation matrix. This was done in [44] to encode PDR range cells just like what we wish
to do. For a 1D I/Q signal z with N time steps sampled (z1, ..., zN ) in compliance with
the notations of Eq. (1.2), the autocorrelation coefficient rt can be defined as follows for
a time lag of t time steps:

rt = E [z(k + t)z̄(k)] (2.19)
= E [z(k)z̄(k + t)] (2.20)
= E [z(k − t)z(k)] (2.21)
= r−t (2.22)

The signal is assumed to be stationary, turning the computation of a correlation into a
function of the time steps lag. This directly leads to the definition of the Toeplitz auto-
correlation matrix for an arbitrary order of time steps lag, as long as there are enough
signal samples (N large) to estimate the individual correlations. For an autocorrelation
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of up to t time steps lag, the autocorrelation matrix is:

Rt =


r0 r1 r2 . . . rt−1
r1 r0 r1 . . . rt−2
r2 r1 r0 . . . rt−3
...

...
... . . . ...

rt−1 rt−2 rt−3 . . . r0

 (2.23)

The autocorrelation matrix is additionally Hermitian positive definite (HPD), which is
the complex-valued equivalent of a symmetric positive definite matrix. An SPD matrix
would be processed instead of an HPD one had the input signal or time-series been real-
valued. The autocorrelation coefficients can be estimated using the empirical mean, for
each t:

r̂t = 1
N − t

N−1−t∑
k=0

z(k + t)z(k) (2.24)

Estimating the autocorrelation matrix through the empirical mean may however produce
a matrix R that is not hermitian positive definite. The relevance of the autocorrelation
coeffcients estimated with the empirical mean r̂t of Eq. (2.24) depends on the length of
the input signal, which translates into the statistical significance of the mean estimation.

To grasp the representative power of an autocorrelation matrix, one can think of
white noise which yields zero as autocorrelation for any time steps lag. The autocorre-
lation matrix is directly related to the autoregressive (AR) coefficients of an equivalent
AR model. The AR model is said to be equivalent since knowing the autocorrelation co-
efficients suffice to determine the AR coefficients. The relationship between both kinds
of coefficients is defined by the Yule-Walker equation [43]. Assuming a signal z with zero
mean and an AR model of order P , the AR coefficients (a0, . . . , aP ) are the coefficient
minimizing the mean square prediction error E as defined by the following expression:

P∑
p=0

apzN−p = EN (2.25)

The autocorrelation can appear in a development of Eq. (2.25) to produce the following
expression linking the AR coefficients to the autocorrelation ones up to an autocorre-
lation order t, under the hypothesis that the mean square prediction error E is white
noise:

P∑
p=0

aprt−p = 0 (2.26)

With a0 = 1 since the autocorrelation with itself is always 1, we end up with an ex-
pression allowing for the computation of any order of autocorrelation based on the
autocorrelation coefficients of lower order and on the associated AR model coefficients,
which can be called reflection coefficients:

rt = −
P∑

p=1
aprt−p (2.27)

Using Eq. 2.27 to compute each autocorrelation coefficient up to the order P of the AR
model, one finally ends up with the Yule-Walker equation which makes the autocorre-
lation matrix of Eq. (2.23) reappear:

r1
r2
...
rP

 = −


r0 r1 r2 . . . rP −1
r1 r0 r1 . . . rP −2
r2 r1 r0 . . . rP −3
...

...
... . . . ...

rP −1 rP −2 rP −3 . . . r0




a1
a2
...
aP

 = −RPAP (2.28)
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The complete Yule-Walker expression of Eq. (2.28) now makes the bijection between the
two families of coefficients clear: if the matrix RP is invertible the AR model coefficients
can be computed from the autocorrelation coefficients, while the reversed dependency
is directly ensured by Eq. (2.28). Furthermore, the Levinson algorithm can be used to
recursively compute the AR model coefficients, or reflection coefficients, of AR models
of successive orders. Autoregressive models of different orders are thus iteratively linked,
and the knowledge of the AR coefficients of lower order models enable the computation
of the same coefficients for a higher order model. The bijection between the reflection
and autocorrelation coefficients, as well as the recursive relationship among reflection co-
efficients associated with AR models of successive order enable to bypass the drawbacks
of estimating the autocorrelation matrix through the empirical mean (see Eq. (2.24)).
Indeed, algorithms such as the Burg algorithm [42] can be used to directly estimate
reflection coefficients using the minimization of forward and backward prediction errors.
Details regarding these developments, and adaptations of the previous expressions to
multivariate time-series and signals can be found in [43]. One of the challenges of using
AR models is to find a relevant AR model order P . The search of P translates into
finding up to what order the autocorrelation coefficients have a significant value.

The representation of I/Q radar signals with an autocorrelation matrix will not be
experimented with since our focus was set on complementary approaches to the works
of [43] and [32]. Harnessing the autocorrelation coefficients as a single range cell rep-
resentation could have still provided us with a relevant input representation baseline
with respect to our raw I/Q signal input representation. The computation of auto-
correlation matrices can yield representations constrained to the Riemannian manifolds
of real-valued symmetric positive definite matrices, or to the Riemannian manifold of
hermitian positive definite matrices. Processing radar data on such manifolds and on
other manifolds whose points are built thanks to the autocorrelation and AR model
coefficients has been continuously explored in [32, 34, 108, 203] during the last decade.
To retrieve a single range cells embeddings belonging to RQ that can be combined to
form a single RQ embedding as required by the pipeline of Fig. 1.10, one could use
manifold-aware neural networks taking the representation belonging to the manifold as
input and producing the fixed-size vector as output. Manifold-aware and specifically
SPD manifold-aware deep learning are further discussed in chapter 3 in 3.2. We can
additionally note that the Burg algorithm mentioned to determine reflection coefficients
is based on the minimization of prediction errors, a task now commonly achieved with
deep learning approaches.

2.3.2 Sequence-to-sequence models encoding

In the input CN×H matrix gathering H signals of N samples, we can consider each range
cell to be a complex-valued time-series. This leads us to consider the recurrent neural
networks usually applied to time-series in the deep learning community. Let us remind
what such neural networks entail. The most simple recurrent neural network recursively
combines an input x and a hidden state h at time step t:

ht = act (Wxx+ bx +Whht−1 + bh) (2.29)

where Wx controls what information to extract from the current time step input and
Wh controls what to keep from the previous hidden state. In this subsection notations
otherwise usual in the remainder of this manuscript can be set aside due to the specific
nature of recurrent architectures. For instance, samples are indexed by a t for time step
instead of an index i. The previous hidden state ideally keeps the relevant information
from the previous states. This output can then be further transformed by an affine
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transformation and an non-linear activation function, or simply fed to the next time
step to compute ht+1 within the same recurrent cell. In Eq. (2.29), typical activation
choices are the rectified linear unit (see Eq.(2.7)) or the hyperbolic tangent:

tanh(x) = exp(x)− exp(−x)
exp(x) + exp(−x) (2.30)

These activation functions are applied element-wise on vector or tensor representations
within neural networks. An illustration of the recurrent nature of the RNN defined by
Eq. (2.29) is proposed on Fig. 2.2.

RNN
h

x

LSTM
(h, c)

x

Figure 2.2: RNN principle for a simple RNN cell (left) and for a more complex LSTM
cell (right). The RNN cell maintains one hidden state ht that is passed to the next time
step, while the LSTM cell passes two hidden states ht and ct.

Recurrent neural networks based on Eq. (2.29), which we will call vanilla RNN, are
challenging due to the vanishing or exploding gradients appearing in training and the
difficulty of learning long-term dependencies [54]. To tackle the challenges posed by the
training of vanilla RNNs, a more complex recurrent unit called long short-term memory
(LSTM) was proposed in [87]. This recurrent unit combines operations acting as infor-
mation and gradient gates to control the flow of information through successive time
steps. As for the vanilla RNN described by Eq. (2.29), a hidden state ht is updated
through successive time steps, along with an additional cell state ct and other comple-
mentary operations. These operations define the following gates: an input gate i, a
forget gate f , a cell gate g and an output gate o. The output of each gate is computed
according to the following equations4:

it = σ(Wiixt + bii +Whiht−1 + bhi) (2.31)
ft = σ(Wifxt + bif +Whfht−1 + bhf ) (2.32)
gt = tanh(Wigxt + big +Whght−1 + bhg) (2.33)
ot = σ(Wioxt + bio +Whoht−1 + bho (2.34)
ct = ft ⊙ ct−1 + it ⊙ gt (2.35)
ht = ot ⊙ tanh(ct) (2.36)

In these equations, the subscript letters indicate to which gate and input and interme-
diate representation weights are applied. Input and intermediate representations are
associated with a time step subscript. The symbol σ stands for the sigmoid function:

σ(x) = 1
1 + exp(−x) (2.37)

The distinction between the four gates put forward can seem confusing at first due to
their output being systematically based on the same input representations: the current
time step input xt and the previous time step hidden state ht−1. Each of the gates

4Here we pick the notation of PyTorch documentation. The literature sometimes combines the double
bias terms in the affine inputs in a single bias to produce a shorter and equivalent expression.
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however has its own role and its own trainable weights, in addition to a distinct non-
linear activation for the cell gate g. The LSTM cell passes the two hidden states ht

and ct to the next time iteration. An illustration of the recurrent nature of the LSTM
defined by Eq. (2.31) is proposed on Fig. 2.2. A prominent gated recurrent unit variant
is the gated recurrent unit (GRU) [51]. The GRU combines three gates instead of four
like in the LSTM; a reset gate r, an update gate z and a new gate n. Unlike the LSTM,
a single hidden state ht is passed to the next iteration of the gates. The gates output
are determined as follows5:

rt = σ(Wirxt + bir +Whrht−1 + bhr) (2.38)
zt = σ(Wizxt + biz +Whzht−1 + bhz) (2.39)
nt = tanh(Winxt + bin + rt ⊙ (Whnht−1 + bhn)) (2.40)
ht = (1− zt)⊙ nt + zt ⊙ ht−1 (2.41)

Achieving unsupervised representation learning with the recurrent cells described is en-
abled by the definition of sequence-to-sequence (seq2seq) generative architectures where
one RNN encodes the input signal and another RNN decodes the last hidden states of
the encoder to reproduce the input. This is the sequence equivalent of an autoencoder
discussed in chapter 1. The encoder and decoder RNN are separate architectures with
their own trainable weights. Several recurrent cells can be stacked in layers, and the
size of the hidden states provides us with a way to control their expressive power and
learning potential. To generate a real-valued fixed-size representation in RQ for the in-
put signal (z1 . . . zN )T ∈ CN×1 describing a single column of the complex-valued matrix
ZI/Q defined in Eq. (1.2), the last hidden state of a seq2seq encoder is reduced to its real
part. The imaginary part is discarded and only real-valued coefficients are passed on
to the decoder. This seq2seq architecture can be implemented with any of the diverse
recurrent neural networks cells available in the literature, and in particular with the
three recurrent setups described. The generative seq2seq approach with RNNs and its
application to range cell signal encoding is illustrated on Fig. 2.3. Encoding signals with
seq2seq architectures built with RNNs is a well established application of deep learn-
ing in the literature, for example to process electrocardiogram (ECG) data [88]. An
LSTM-based seq2seq architecture is proposed in the appendix of unsuccessful models,
in table C.1.

A different kind of generative sequence-to-sequence neural network can be adapted
to our input data. One of the difficulties of our inputs is its variable size. To tackle
it, one can harness a global pooling [117] in a generative fully convolutional neural net-
work [149, 120]. The generative FCNN uses convolutions, normalization, activation and
pooling layers without the intervention of dense or fully-connected layers to accept in-
puts of varying size and produce a fixed-size representation in RQ in its bottleneck. One
of the key advantages of applying convolutions to signal inputs is the interpretability
potential of the learned weights. If the convolution kernel is large enough the parallel
with FIR filter becomes practical. In such a case, one should also keep in mind that
having numerous independent convolutional kernel, i.e. numerous channels for the con-
volutional layer, can be relevant to tackle the difficulty of handling input signals with
varying sampling frequency. Indeed, a given FIR filter will define a certain frequency
response depending on its weight and the sampling frequency of the signal to which
the weights are applied. Thus, to ensure similar frequency responses can be extracted
from filters applied to input signals with different sampling frequencies, one should stay
generous with the number of channels available in convolutional layers. The generative
FCNN can be thought as closer to the autoencoder architecture than to the recurrent

5Again, we pick the notation of the PyTorch documentation.
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seq2seq one, and will thus be called fully convolutional autoencoder (FCAE). The bot-
tleneck is the intermediate representation of lower dimensionality, assuming one defines
an undercomplete [77, p.494] generative architecture, which separates the encoder from
the decoder.

Global max or average pooling allows an FCAE to reconstruct output of different
sizes while producing a bottleneck representation of fixed-size. In order to do so, the
global pooling operation is applied to the bottleneck features dimension and only hap-
pens to retrieve an RQ embedding. In a forward pass on the other hand, the features
dimension, whose size varies along with the input size, is left unreduced. This implies the
Q dimensions of the latent representation defining the range embedding are equal to the
number of convolutional channels in the bottleneck representation. The FCAE proposed
here combines an encoder and a decoder with complex-valued parameters. However, as
for the previously detailed RNN-based seq2seq architecture, the bottleneck representa-
tion will be constrained to real values in order to learn real-valued latent representations.
One of the advantages of the FCAE with respect to the previously introduced RNNs is
that the processing of all time steps is done in parallel instead of sequentially. As for
RNN-based seq2seq architectures, convolution-based seq2seq architectures define a pop-
ular option to encode signals, for example to process ECG data [206]. In our case as well
as in the case of ECG encoding, one could arguably talk about signal2signal architecture.
An FCAE architecture adapted to our I/Q signals is proposed in table C.2.

Both seq2seq approaches, either recurrent or fully convolutional, train their neural
networks parameters by minimizing the reconstruction error computed over the signal
samples (z1 . . . zN )T ∈ CN×1 describing a single column of the complex-valued matrix
ZI/Q defined in Eq. (1.2):

min
W

[
1
N

N∑
i=1

(Φ(zi;W )− zi)2
]

(2.42)

where Φ is the generative neural network of trainable weights W producing the complex-
valued reconstruction of the input signal samples. In the computation of the previous
error, the real and complex parts of the complex representation are taken into account
like two components of a real-valued representation. This leads to a real-valued loss
despite the complex-valued nature of the generative neural network, as announced in 2.2.

The loss here is defined at the scale of a single range cell I/Q signal, sampled over
N pulses. This loss is computed over batches of multiple such signals during a neural
network training. One can note that the reconstruction task can be coupled with a
denoising or a missing input interpolation task. The latter is made particularly easy by
the availability of dropout [171]6 in deep learning libraries, although such dropout should
not apply any scaling as the common dropout layer does. Now that we have discussed the
possibility to encoder single range cell IQ signal with AR models, RNN and FCNN-based
generative neural networks, what is there to say to differentiate them ? A simple way
to put it could be to say that whereas the AR models reduces the representation of the
signal to an autocorrelation Toeplitz matrix of a carefully chosen order, the RNN-based
seq2seq approach is more about choosing the right recurrent neural network complexity.
Similarly, the FCAE can also be summarized to a neural network architecture choice,
however here the model offers the interpretability potential of the convolutions weights
as FIR filters. All three approaches benefit from the application cases and successes
offered by the literature. As reminded in 2.3.1 and in the current section, processing
radar signal with AR models has been put forward in [43] and ECG signal processing

6Dropout randomly discards elements of representations in a neural network to prevent overfitting
and excessive co-adaptation of trained weights. It defines a form of regularization very popular in deep
learning architectures.
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can be done with recurrent neural networks [88]. The application of successive layers of
convolutions to raw signal has also had its successes on audio [19, 163], ECG [206] and
radio signal [119, 138], making the case for the FCAE method.

2.3.3 Taking advantage of limited supervision to avoid generative en-
coding

A prominent advantage of encoding a range cell signal using either the Toeplitz auto-
correlation matrix of an AR process as described in 2.3.1 is that the range cell encoded
representation is produced without supervision. This advantage also applies to the
sequence-to-sequence recurrent or fully convolutional architectures described in 2.3.2:
since the training task is reconstruction, possibly coupled with a denoising or missing
input completion task, the model training does not require class labels. Since the en-
coding task is difficult, it appears relevant to propose neural network architectures and
training setups able to take advantage of labels when the latter are available. We will
therefore discuss two setups adapted to two distinct level of supervision. The first one
will remain on a generative architecture but will take advantage of a limited amount
of labels to penalize distances relative to class centroids within its latent space. The
second one will assume sufficient supervision is available to eliminate the reconstruction
training task altogether, in order to only harness the encoder part of the generative
networks discussed in 2.3.2.

The first setup corresponds to the following loss:

min
W

[
1
n

n∑
i=1
||Φ(zi;W )− zi||2 + 1

m

m∑
j=1
||ΦE(zj ;WE)− cj ||2

]
(2.43)

Here, unlike in Eq. 2.42, zi is the i − th input range cell signal described by a vector,
and not a single sample of one input signal, and Φ(zi;W ) is a vector containing its
reconstruction by the generative neural network Φ of weights W . In the second term,
ΦE(zj ;WE) is a vector containing the embedding of the labeled sample zj , and cj is the
reference point or centroid associated with its label in the embedding or encoding space.
Since the encoding network is part of the generative architecture, the trainable weights
WE are part of W , hence the sole presence of W under the minimization operator. As
the embeddings of our framework live in RQ (see Fig. 2.4) both ΦE(zj ;WE) and cj

necessarily belong to RQ as well. The sums over n and m correspond to a loss computed
for a set of n unlabeled and m labeled samples. This loss thus indicates a semi-supervised
learning setup, in accordance with the semi-supervised learning appreciation of [152].

The two terms defined thus respectively relate to a reconstruction error and a latent
clustering constraint. The association of a reconstruction term and a latent space clus-
tering term is similar to what the literature of simultaneous clustering and representation
learning already proposed. In [170] for instance, an autoencoder is trained with a less
where one term minimizes the reconstruction error and another term minimizes the dis-
tance to assigned cluster centers. A key difference with respect to our proposal however
remains: [170] additionally suggests an alternate optimization of the mapping neural
network and of the cluster centers. Here, we simply propose cj as targets classes mean
representation or arbitrary coordinates towards which embeddings should be mapped.
On a side note, in deep learning a regularization term is usually added to the training
loss functions. For instance, the L2 norm of the neural network weights is added to the
loss with a dedicated fixed weight [77]. Such a term will not appear in the loss functions
discussed here.

Now that the first setup has been presented, let us turn to the second one. The
concentration of latent representations of specific labels around centroids proposed as a
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Layers in forward order Layer parameters
C-conv 1D kernel size 10, in channels 1, out channels 8
C-BN 1D channels 8
C-ReLU channels 8
C-conv 1D kernel size 2, in channels 8, out channels 16
C-BN 1D channels 16
C-ReLU channels 16
Mean pooling mean over features dimension
C-Linear input dimension 16, output dimension 16
R-Output input dimension 16, output dimension 16

Table 2.2: Overview of the FCN architecture used in our experiments, which begins by
applying a large convolutional kernel to the input signal. Using a convolution with a
large kernel size on the input signal is particularly interesting since it makes the poten-
tial interpretation of the learned weights as FIR filter coefficients more expressive. The
mean pooling layer is applied over the features dimension, so that the remaining repre-
sentation is a vector whose size equals the number of channels of the final convolutional
layer. The final layer discards the imaginary part to produce the real-valued RQ vector
representation of the range cell. Since only the real part is taken into account in the
training loss, the network learns to concentrate the information in the real part only.

complementary loss term in Eq. (2.43) could actually suffice to train an encoder neural
network alone directly, assuming enough labeled data is available. This would lead to a
setup close to supervised classification, although it would not necessary be the case for
our encoding task. For instance, there could be known classes samples with yet unseen
signal sampling parameters in the test set, resulting in a not completely supervised
machine learning setup despite the existence of the right centroid for the test samples
label. In this higher supervision setup, one can harness the following loss:

min
W

[
1
m

m∑
j=1
||ΦE(zj ;WE)− cj ||2

]
(2.44)

where the loss terms and indices correspond to the definitions provided for Eq. (2.43).
The possibility to use such a loss to directly train the encoder would allow to discard
the decoder in the architectures presented in section 2.3.2. This could simplify the
trained architecture but it does not make the right centroid selection heuristic obvious.
In the case of the recurrent seq2seq generative architecture, one ends up with a recurrent
encoder whose last hidden state is reduced to its real part, the latter now defining the
final representation in a forward pass of the neural network trained. In the case of the
FCAE autoencoder, one ends up with a fully convolution network (FCN) that retains
the potentially interpretable convolutional layers. An example architecture for such an
FCN trained with the loss provided by Eq. (2.44) is proposed in table 2.2.

2.4 Encoding a neighborhood of range cells

Now that we have investigated the encoding of single range cells each described by an
I/Q signal, let us go back to the more elaborate problem of encoding our actual input,
i.e. the neighborhood of ranges cells (see Fig. 1.4 and Fig. 2.1). The task at hand
consists in encoding the input matrix defined by Eq. (1.2) belonging to CN×H , where
N is variable among the input data points due to the varying number of pulses in the
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transmitted bursts. In the latter, each column describes a range cell. Since all single
range cells are first encoded into a fixed-size real-valued vector in RQ, the remaining
transformation to produce a single real-valued vector in RQ for the entire neighborhood
should define a function Φ : RQ×H → RQ. The definition of such a function Φ is the
matter of upcoming sections and is illustrated on Fig. 2.4.

We will first mention naive approaches to combine the single range cells respective
embedding and discuss the closely related subject of combining independent range cells
to produce an artificial dataset respecting our input format in 2.4.1. We will then present
the favored approach based on a graph neural network in 2.4.2. One can note that the
inquired function Φ correspond to the mean of the Fourier features after resampling in
the baseline free of machine learning proposed for perspective in Fig. 1.12. Assuming
a resampling scheme could successively provide fixed-size RQ single range cells embed-
dings, any embeddings combination approach presented here could also be integrated
to this resampling baseline for the neighborhood embeddings integration subtask. The
methods presented here could also extend to the combination of embeddings based on
an individual range cell information different then the one carried by the I/Q signal, as
suggested by the well-identified sensors networks data processing application of graph
neural networks [137].
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RNN RNN RNN

z1 z2 zN

. . .
h1 h2 hN

RNN RNN RNN

ẑ1 ẑ2 ẑN

. . .
ĥ1 ĥ2 ĥN

z1 ?(z2, ẑ2) ?(zN , ẑN )

h̃R + h̃I

h̃R +h̃I ∈ RQ

h̃R

encoder

decoder

Figure 2.3: Unsupervised seq2seq learning with recurrent neural networks to retrieve
the fixed-size vector of RQ encoding each range cell signal. The upper part describes
the encoder, the lower part describes the decoder. The blue and red arrows illustrate
the recursive calls of the recursive architectures to their previous hidden states in the
encoder and the decoder respectively. The last hidden state of the encoder h̃R + h̃I is
passed on to the decoder with its imaginary part zeroed out, thus creating the RQ single
cell embedding we are looking for. Indeed, since the only way to provide information to
the decoder is to put it in the real part of the hidden state, the seq2seq trainable weights
are forced to learn the complex to real conversion. This does not forbid the decoder to
adopt complex-valued weights in order to output the reconstructed input signal ẑ. The
question mark among the inputs of the decoder ?(zN , ẑN ) denotes teacher forcing [77,
p.372], the first input of the decoder being the ground truth and no end-of-sequence
(EOS) token being used. We allowed ourselves to work without start-of-sequence (SOS)
and EOS tokens [174] since unlike in a sentence, the positioning towards the beginning
of the end of a signal does not translate into semantic information. This is true due
to the fact that we are interested in the discriminative frequency content spanning over
the whole sequence.
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Figure 2.4: Proposed hit2vec step combining a cell2vec step and a graph2vec step. The cell2vec step, discussed in 2.3, corresponds to encoding a
single range cell and transiting from a variable size complex-valued representation to a fixed-size real-valued one. The graph2vec step, discussed
in 2.4.2, corresponds to encoding the graph of the range cells neighborhood where each range cell defines a node whose features is the RQ embedding
provided by cell2vec. The graph2vec relies on an adjacency matrix defining the range cells neighborhood connectivity pattern and allowing for the
definition of a graph convolution through Eq. (2.48). Example neighborhood graphs are proposed on Fig. 2.6, Fig. 2.8 and Fig. 2.5. The input
matrix is the enriched hit input format defined by Eq. (1.2), and the output graph embedding is passed on to a one-class classification method for
low supervision discrimination.
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2.4.1 Naive approaches and the possibility of data augmentation

A naive way of combining the encoded representations of each range cell to implement
Φ is to use a simple mean computed over each one of the Q components provided by
the single cells:

Φ(Rsingle) = 1
H
RsingleIQ (2.45)

where Rsingle is the RQ×H matrix containing the single cells embeddings of the neigh-
borhood of H range cells, and IQ is a RH×1 vector of ones. This mean can be adjusted
with fixed or trainable weights over the H cells, which leads to the following alternative
for Φ:

Φ(Rsingle) = 1
H
RsingleAQ (2.46)

where AQ is a RH×1 vector:

AQ =


a1
a2
...
aQ

 (2.47)

These weights can be interpreted as a naive form of attention spanning over the neighbor-
hood of range cells, in reference to the deep learning concept of attention [185] already
used in generative [75] and graph neural networks architectures [188]. An important
difference remains with the deep learning attention, since the latter produces a weight
based both on a vector representation key and a vector representation value. Assuming
a large neighborhood is handled, a sparsity constraint could also be enforced to combine
single cell embeddings on as was done on encoded representations in the context of a
generative task in [75]. Such a sparsity constraint over a neighborhood of range cells
could be inspired by or interpreted as an extension of the guard cells radar concept
already regulating the contribution of neighboring cells for radar constant-false-alarm
rate (CFAR) detection [18, 15]. The matrices R and A here have no relation with the
autocorrelation matrix R and the autoregressive coefficients of 2.3.1.

In terms of deep learning experimentation, one can note that producing classes
of neighborhood of range cells with diverse levels of local relative correlations can be
done through the combination of single range cells even when they are not identified as
neighbors. This can substantially ease the generation of a sizeable dataset to train and
evaluate the proposed approaches with the enriched input format on already existing and
not modifiable platforms. Indeed, such a dataset generation possibility allows to avoid a
very inconvenient modification of the hits format produced by the signal processing part
of the radar processing pipeline (see Fig. 1.1) by unlocking the artificial construction
of neighborhoods of range cells of arbitrary size H from the already existing single
range cell format. This range cells recombination is equally applicable when the hit
format deployed on a system already produces a neighborhood of range cells but this
neighborhood is not of the desired size H. Here are a few examples of possible range
cells combinations to produce different local correlation configurations:

• Replicate a single range cell to create a perfectly correlated neighborhood. This
translates into the pattern A . . . A, where one letter is one class or type of pattern
in terms of Doppler content. An example of this pattern for a neighborhood of
size H = 5 is illustrated on Fig. 2.1, on the left part.

• Replicate one range cell in the central part of the neighborhood, then another
one on the border cells. This creates a symmetric neighborhood with two group
of cells perfectly correlated, and translates into the pattern B . . . BA . . . AB . . . B.
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An example of this pattern for a neighborhood of size H = 5 is illustrated on
Fig. 2.1, on the bottom part.

• If the number of types of range cells available exceeds the number of range cells
in the neighborhoods, one can define an uncorrelated, asymmetric neighborhood.
This translates into the pattern ABC . . .. An example of this pattern for a neigh-
borhood of size H = 5 is illustrated on Fig. 2.1, on the right part.

With these example classes, one can ensure the classes of neighborhoods separated
already represent some level of diversity of targets in the hit central range cell respon-
sible for the detection. Evidently, the choice of the types of neighborhood artificially
generated, when they are needed, should depend on the downstream discrimination task
addressed. Furthermore, when building neighborhoods as well as for the development
of neighborhood encoding methods, one should keep in mind that the relative position
with respect to the range cell matters, but not the absolute range. On the other hand,
the absolute position of the range cells with respect to the ranges axis should not matter.
While creating a dataset of labeled neighborhoods of range cells, one should also not lose
track of the actual objective which is the discrimination of the target described by the
central range cell of the neighborhood. This should translate into a systematic greater
relative contribution of the central range cell to the final neighborhood representation.

2.4.2 A deep learning encoding with graph neural networks

The solution proposed by this thesis to encode a neighborhood of encoded range cells
I/Q sweeps relies on a neighborhood graph which will be processed by a graph neural
network [161, 78]. As for the FCNN and the seq2seq architectures, let us first remind
how a graph neural network works. A GNN takes a set of nodes N and a set of edges
E as input and transforms these elements, i.e. their features, with both linear and
non-linear operations constrained by the connectivity pattern of an adjacency matrix.
Classification and regression tasks can thus be conducted on graphs at node scale as
well as on a whole graph. This notably translates into the classification of individual
nodes whose features have been processed by graph neural networks, and into the clas-
sification of graphs whose representation stems from an aggregation of processed nodes
features. Generative architectures adapted to data distributed on graphs have recently
been proposed, mirroring the Euclidean deep learning community findings with graph
autoencoders [154] and graph UNets [70]. Here, GNNs are considered for training with
a form of supervision, but the existence of generative GNNs suggest that unsupervised
neighborhood of range cells encoding is already accessible. Key deep learning operations,
such as convolutions and attention, have been adapted to graphs [188, 101, 83, 65, 41].
Among these adaptations, some directly relate to the graph Laplacian eigendecomposi-
tion and are not spatially localized over the graph. Less common edge-focused processing
is also explored by the recent literature [27, 76]. The association of a convolutional neu-
ral network to produce signals embeddings with a GNN over which embeddings are
placed was explored for modulation recognition in [119]. On another note, the combi-
nation of a spatial graph with a temporal convolutional processing of signal was applied
to electroencephalogram (EEG) signals in [115].

The ability to process information organized according to a graph is critical to enable
deep learning to tackle problems based on non-Euclidean data. Graph neural networks
are part of the modern deep learning tools gathered under the name of geometric deep
learning [31]. Geometric deep learning (GDL) achieves deep learning using represen-
tations and parameters constrained to graphs and differentiable manifolds. Here only
the graphs aspect of GDL will be discussed, but a different application belonging to
GDL involving the SPD matrices manifold is discussed in 3.2. Geometric deep learning
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follows the refinement trend of deep learning approaches to adapt the vanilla frame-
work brought by backpropagation, activation functions, dense and convolutional layers
to data different from standard images and features vectors.

The point of using a graph in our application case is that the latter enables to enforce
a constraint over how the information distributed over the neighborhood of range cells
will be taken into account in a final encoding. The connectivity pattern enshrined in the
adjacency matrix rules the relative flow of already encoded range cell information, while
the importance weights among these information flows are determined in training. The
graph convolutional layer (GCL) used in our experiments is the one proposed by [101]
which transforms H input nodes defined by features vectors in RM and organized in a
graph as follows:

H = D̂− 1
2 ÂD̂− 1

2XW (2.48)

where:

• X ∈ RH×M is the nodes features matrix in which each of the H rows is described
by a vector of M real-valued coefficients;

• Â ∈ RH×H is the graph adjacency matrix with inserted self-loops (see Figs. 2.7,
2.9 and 2.5);

• D̂ ∈ RH×H is the diagonal degree matrix of the graph with inserted self-loops (see
Figs. 2.7, 2.9 and 2.5);

• W ∈ RM×M ′ is the trainable weights matrix enforcing the output nodes features
dimensions M ′;

• H ∈ RH×M ′ is the output nodes features matrix, and the input of the following
graph convolutional layer if several layers are stacked to form the GNN.

This GCL is spatially localized in opposition to, for instance, the convolution of [41]. It
is followed by the application of an activation function like the ReLU defined in Eq. (2.7).
To completely define a neighborhood graph one needs both the nodes features matrix
X and the adjacency matrix A. The degree matrix D and D̂ are inferred from the
adjacency matrix A and Â = A + IH respectively, where IH is the H × H identity
matrix. The self-loops added in the graph thanks to the addition of IH to A allows the
convolution to take into account a node itself when computing its next representation
according to its one step neighbors. The two occurrences D̂− 1

2 act as a normalization
critical for gradient stability, and are part of the renormalization trick proposed by [101].
If several layers are chained one after the other, the input nodes features matrix X is
replaced by the output nodes features representationH of the previous layers. Here, real-
valued GNNs are considered since the transition from complex-valued representations
to real-valued representations is already achieved during the single range cells encoding
described in 2.3 (see Fig. 2.4). To produce the fixed size real-valued vector in RQ with
graph convolutions, one can either process the neighborhood according to a node2vec
or a graph2vec framework7.

Opting for a node2vec approach amounts to taking the central range cell vector rep-
resentation, which belongs to RQ, as the output neighborhood representation. This node
features vector takes into account local information thanks to the graph convolutional
layer. However, since the GCL of Eq. (2.48) operates over a one-step neighborhood,
its receptive field depends on the number of GCLs stacked before it. For instance, the

7"2vec" is a popular suffix in the deep learning community to indicate an architecture that outputs
a vector representation of a form of data. For instance, among the works we have cite there are two
wav2vec [19, 163] architectures encoding raw audio.
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Figure 2.5: Left: Example neighborhood graphs without weights on edges. If all weights
are equal to one as it is the case here, the relative ranges of the neighborhood are lost,
i.e. information is lost using this graph. Since every cell is a single step away from the
one carrying the actual detection, one convolutional layer as defined by Eq. (2.48) is
enough for the whole neighborhood to impact the output representation of the central
node. Center: Adjacency matrix A of the neighborhood graphs, without the inserted
self-loops necessary to compute the graph convolutional layer proposed in [101] and
defined in Eq. (2.48). Right: Degree matrix D̂ of the neighborhood graph with the
inserted self-loops necessary to compute the graph convolutional layer.

neighborhood graph (a) of Fig. 2.6 requires two GCL stacked one after the other in order
for the whole neighborhood information to be taken into account in the Ctest range cell
features vector. On the contrary, the neighborhood graph proposed on Fig. 2.5 would
only require one GCL to achieve the same goal. Now that the stacking of GCLs is
mentioned, it is necessary to mention the over-smoothing problem of GNNs. Stacking
too many layers in GNNs may lead to nodes becoming hardly separable, eventually
rendering an GNN architecture void of discriminatory power [45, 136]. Here, node2vec
amounts to a so-called cell2vec since one node defines one radar range cell.

Opting for a graph2vec approach can be achieved through a similar application of
graph convolutions, although this time stacking a minimal number of GCL is not es-
sential for the final representation vector to capture data stemming from every node.
A GNN can indeed be made into a graph2vec architecture by means of a final global
pooling over the graph nodes, for instance through the computation of a mean. Such
a global pooling discards the semantic information associated with the graph struc-
ture, although the latter could have been extracted by the preceding layers [48]. The
intervention of the graph2vec encoding mechanism is illustrated on Fig. 2.4, where it
is interchangeable with the previously detailed node2vec technique. The problem of
range cells neighborhood graph encoding can seem very similar to the task of encoding
molecules, which also happen to define small graphs where nodes are connected through
bonds of varying nature. The molecules representation learning success [48, 202, 65] in
the literature remarkably emphasizes how small graphs of varying size can be effectively
transformed in to fixed-size vectors, suggesting augmented relevance for radar range cells
neighborhoods. The varying nature of the molecular bonds can provide an interesting
perspective with respect to the sampling diversity separating the graphs of our own ap-
plication case. In [48], the embedding space is populated with graphs prototypes which
reminds of the dictionary learning literature and the latent memory developed for an
AE in [75]. This could inspire future orientations of the proposed hit2vec processing.

The neighborhood of range cells graphs presented on 2.6 are limited by the fact that
all edges share the same weight e. This can seem surprising in the context of radar
range cells since the latter can already span over large areas individually, as a direct
consequence of the constrained bandwidth, as implied by Eq. (1.9). This suggests that
it should be possible to attach relative importance to range cells within a neighborhood.
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Figure 2.6: Neighborhood of H = 5 range cells proposed graphs: a diversity of edges
configurations are considered to generate a relevant embedding for the range cell under
test. Among the configurations illustrated, one can notice (a) that is close to time-
series processing, the directed graphs {(d),(e) } which reveal what cell we are actually
interested in learning a representation for, and the complete graph (e) that lets the
learning phase chooses how to take into account the neighboring cells. The corresponding
adjacency and degree matrices are shown on Fig. 2.7.
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Figure 2.7: Neighborhood of H = 5 range cells proposed adjacency and degree matrices:
these are the adjacency and degree matrices associated with the neighborhood graphs
proposed on Fig. 2.6. As for Fig. 2.5, the degree matrix takes into account the inserted
self-loops necessary to compute the graph convolutional layer. One can notice that only
the undirected graphs translate into symmetric adjacency matrices.
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Figure 2.8: Alternative fully-connected neighborhood of H = 5 range cells proposed
graphs, this time with different possible edge weights: For (a) we propose to associate
each link between two range cells with a weight representing the distance in amount of
range cells, while for (b) we propose a unique edge weight for each edge in the graph. The
corresponding adjacency and degree matrices are shown on Fig. 2.9. The edge weights
could for instance integrate the input signals sampling parameters creating the input
diversity and one of the main difficulties of the representation learning task addressed.
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Figure 2.9: Alternative fully-connected neighborhood of range cells proposed adjacency
and degree matrices: these are the adjacency and degree matrices associated with the
alternative neighborhood graphs proposed on Fig. 2.8. As for Fig. 2.5, the degree matrix
takes into account the inserted self-loops necessary to compute the graph convolutional
layer. For (a) we end up with an adjacency matrix that associates each link between
two range cells with a weight representing the distance in amount of range cells, while
for (b) we get a unique edge weight for each edge in the graph, each weight appearing
twice in the adjacency matrix since the graph is undirected. One can notice that both
undirected graphs translate into symmetric adjacency matrices.

z1 z2 z3 . . . zN

Figure 2.10: Illustration of the close relationship between processing data with a graph
neural network and a recurrent neural network. A signal z sampled over N points can
be seen as a directed graph with N nodes and N − 1 edges.

The GNN neighborhood encoding is interestingly versatile since it could be com-
bined to SPD manifold-aware processing to take advantage of the AR representation
of the input signals put forward in section 2.3.1. For instance, each autocorrelation
matrix computed over one range cell signal could be fed to a manifold-aware neural net-
work to produce a fixed-sized real-valued vector. These vectors could then be similarly
distributed over the neighborhood graphs proposed here. Graph neural networks are
closely related to the recurrent neural networks put forward to encode a single range
cell signal since a recurrent neural network simply follows a directed graph translating
the chronological order of signal samples. For a signal z sampled over N points, the
directed graph is illustrated on Fig. 2.10. The corresponding adjacency matrix is:

ARNN =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
0 0 0 . . . 0 0


(2.49)

However, GNNs are much more generic and versatile than RNNs since they allow
to enforce arbitrary symmetry and weighting schemes over the range cells defining the
neighborhood graph. Such weights can be applied to nodes but also to edges features.
While the upstream encoding methods proposed in 2.3 do not explicitly take into account
the varying input signals sampling frequency (the PRF), this information could be added
to the edge features to intervene in the features flow of the graph during training. Taking
the PRF explicitly into account seems relevant since this information is leveraged in the
resampling baseline previously mentioned. Taking into account so-called features of
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features, or input data hyperparameters, within the architecture was already done in
the literature. For instance, [70] recorded the nodes locations in a graph pooling layer to
subsequently place nodes back to their position in the input graph while unpooling. This
was done in order to define a generative graph UNet architecture. That being said, the
varying input signal length is already available in our input signals as a data dimension,
but not necessarily explicitly valued by the proposed range cell encoding of 2.3. As is,
the example GCL defined by Eq. 2.48 could only take into account scalar edge weights
integrated within the adjacency matrix, as the examples of Fig. 2.5, Fig. 2.7 and Fig. 2.9
show. Other GNNs architectures however address this limitation [76]. Graph neural
networks can be said to be a generalization of RNNs to deal with cyclic, directed and
undirected graphs [188, 161]. Constraints over a range cells neighborhood graph could
for instance contribute to define and enforce a concept similar to the one of guard
cells used for radar CFAR detection [18, 15]. In such a case, a graph could maintain
constrained edge weights in order to take into account guard, test and reference cells in
framework smoother than simply choosing to take into account a cell features or not to
determine a local clutter or targets map.

2.5 Single range cell encoding experiments

Since the experiments evaluate the separability of targets and number of pulses classes
using one-class classification approaches and metrics, the experiments encoding neigh-
borhoods of range cells are presented in chapter 4. Here, we will only report preliminary
results regarding the encoding of single range cells. The experimental results presented
here stem from only one of the single range cell encoding approaches detailed in this
chapter, as it is the only approach that showed encouraging results.

2.5.1 Experiments protocol and data

The dataset used to evaluate the representation learning over range cell IQ signals is a
slightly modified version of the publicly available 8 simulated PDR dataset used in [26].
Whereas in [26] the discrimination task was conducted at the scale of several bursts
of pulses to define a Doppler signature containing the evolution of a spectrum over
time, here we work at the scale of a radar hit, i.e. at the scale of a single burst. This is
equivalent to a single row of the Doppler signatures depict on Fig. 1.6 and Fig. 3.8. Such
a row is defined by the DFT computed over the burst pulses backscatter. Looking at the
previous figures, one can realize that the reduced information available in a single burst
is can translate into an unlucky combo where the burst describes an uncharacteristic
node in the modulation pattern of a target, assuming the target creates one such pattern
in the first place. This should be kept in mind as it could explain a small amount of
encoding or discrimination failures.

The dataset defines four classes of helicopter-like targets, each of the latter defining
a Doppler signature modulation of specific complexity as illustrated on Fig. 3.8. This
varying modulation pattern is due to the different numbers of blades characterizing
each class. The main difference between the targets representation here and the one
used in [26], other than the single burst scale of the data points, is the varying number
of pulses available in the radar bursts. The effect of such a variation on the resolution
of the targets I/Q response has already been illustrated on Fig. 1.6. The robustness of
our single range cell encoding with respect to such an input resolution variation is one
of the pursued invariances as summarized in table 2.1. The four kinds of modulation
patterns define the so-called targets classes in our experiments, in opposition to the

8https://github.com/Blupblupblup/Doppler-Signatures-Generation Accessed: 28/10/2022
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so-called pulses classes whose labels refer to the number of pulses describing the target
in the input representation. Again, this number of pulses translates into the size of the
complex-valued input matrix ZI/Q of Eq. (1.2) and the resolution at which the target
can be described.

The model used to encode the data is the FCN whose architecture is described in
table 2.2. The aim of the learning phase is to separate the targets classes and to verify
how strongly the neural network output representations are distributed according to the
number of pulses defining the input representations. In order to create the dataset, the
MATLAB [125] simulation creates numerous series of bursts of pulses to describe targets
individually. Several targets are generated to populate each class. The diversity among
targets is generated through the variation of the the rotor rotation speed, the initial
position, the blades length, and the target velocity. The bursts themselves are then
individually distributed in the training, validation and test sets for our experiments. The
creation of bursts in series to describe a moving target helps avoid the unlikely generation
of bursts batckscattering only or mostly modulation patterns at their modulation node,
which hides the discriminative modulation pattern we are relying on.

This approach aims at exploring the ability of the considered architectures to learn
the sought after invariances and is flawed in the sense that it suffers from a data leakage
potential. Data leakage here amounts to the presence of bursts backscatter describing
the same target in more than one of the three divisions (training, validation, testing)
of the complete dataset. This deficiency may allow the encoding neural network to
learn based on targets features irrelevant to the actual objective and create misleading
performances. A typical example case of the danger of data leakage was illustrated by the
successive versions of an X-rays discrimination study [145]9 where each patient produced
several input representations, and patient overlap corrupted the (training, validation,
testing) data division. This led to deceptive performances where the neural network
could cheat with the features identifying patients instead of their pathology. The risk of
data leakage is set aside to enable a more accessible preliminary study of the proposed
encoding scheme, and should be reduced by the lack of features identifying individual
targets across bursts anyway. Indeed, there is nothing else than the modulation pattern
identifying the class in the inputs. In a more realistic setup the danger of data leakage
remains, since individual targets could be identified across the three data divisions by a
situational clutter spilling over the single burst signatures.

2.5.2 Preliminary results with supervised representation learning

In our preliminary experiments, the only promising performances were stemming from
the FCN architecture for which supervision was available, i.e. where the training setup
described by Eq. 2.44 was used. The unsuccessful RNN, seq2seq and FCAE architectures
are still briefly described in Appendix C. To evaluate the evolution of the separability of
targets and pulses classes in the single range cell embedding space, we record the AUCs
of the one-class classification (OCC) of each of these classes during training, the minority
monitored class defining the positive class for the AUC computation. The AUCs are
computed over the test data made of separate bursts. An example run yields the metrics
indicated on Fig. 2.11, where the loss per batch during training complements the AUCs
evolutions. On these metrics, one can observe the encouraging rise of the targets classes
AUCs while the pulses classes AUCs remain aroung the randomness performance of 0.5.
The OCC methods selected to produce the successive AUC scores are the widespread,
shallow learning isolation forest (IF) [118] and one-class support vector machine (OC-

9First version with data leakage: https://arxiv.org/abs/1711.05225v1 Third version without data
leakage: https://arxiv.org/abs/1711.05225v3 Accessed: 25/11/2022
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SVM) [164], both being defined in chapter 3. All targets classes seem to benefit similarly
from the encoding network training, and the performances of both OCC methods remain
close during training.

Figure 2.11: Learning metrics of the cell2vec FCN architecture training. The batches
loss rapidly decrease and converge, outlining a common loss trajectory in deep learning
experiments. The targets classes AUCs rise during training, indicating a continuously
improving separability of the targets classes in the embedding space. On the contrary
and as hoped, the pulses classes separability is not favored since the associated AUCs
remain around 0.5, which is the random discrimination performance. The improving
separability of targets classes appears when using specialized machine learning methods
like IF and OC-SVM, and is not visible when replacing the latter with a simple Euclidean
distance to a class reference point, or with a Silhouette clustering score [150] computed
with a Euclidean metric.

To complement the evolution of the losses and test dataset AUCs during training,
one can compare the latent distribution of the classes before and after training. An
example of one such comparison if proposed with Fig. 2.12 and Fig. 2.13, where one
can observe how the targets classes appear partially disentangled after training on the
TSNE visualization (see top left image on both figures). The 2D visualization of such
distribution is made possible by the dimensionality reduction methods TSNE [182] and
PCA. The OCC methods IF and OC-SVM, as well as the dimensionality reduction and
the AUC scores computation are all implemented using Scikit-learn [139].

2.5.3 Necessary follow-up experiments

The previous experimental results can only be taken as a proof-of-concept that aims
at demonstrating the feasibility of encoding a semantic diversity of single range cells in
order to separate them based on their individual Doppler content. On the one hand, in
terms of deep learning experiments the results presented here lack statistical significance
due to the fact that a single experimental run, i.e. a single random seed, is put for-
ward. Ideally, the following improvements should be made to ensure a fair and relevant
evaluation of the proposed encoding methods:
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Figure 2.12: 2D visualization of the individual range cell embeddings distribution pro-
duced by an FCN as cell2vec, before training. Top - each color depicts one target class,
i.e. one Doppler pattern. Bottom - each color depicts one pulse class, i.e. one Doppler
resolution class.
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Figure 2.13: 2D visualization of the individual range cell embeddings distribution pro-
duced by an FCN as cell2vec, after training. Top - each color depicts one target class,
i.e. one Doppler pattern. Bottom - each color depicts one pulse class, i.e. one Doppler
resolution class.
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• Evaluate mean and variance of the AUC metric over a dozen of random seeds to
take into account the benefits and drawbacks of random initialization.

• Compare the proposed approaches with a simple baseline. Here the latter should
be fabricated since the use case is very specific. In a very permissive way, one
could argue that the unsuccessful approaches we proposed but which did not yield
encouraging performances and thus do not appear in the results here constitute a
form of baseline.

• Remove the targets overlap among the three (training, validation, testing) dataset
divisions to suppress the data leakage risk.

• Enrich the targets dataset with single burst targets backscatter of more variable
SNR and including progressively confusing clutter.

• Add targets from an unknown target class in the testing set to see if the encoding
framework remains somewhat discriminative for this unseen class, since this is the
semi-supervised encoding we are actually seeking.

• Add targets of known and unknown targets classes (cf. previous point) represented
by input signals defined by a number of pulses different from the ones seen in
training to see if the encoding remains somewhat discriminative for this unseen
input signal format, since this is the semi-supervised encoding we are actually
seeking.

• Add targets from known and unknown classes (cf. previous point) represented by
input signals with a sampling PRF unseen in the training set to see if the encoding
remains somewhat discriminative for this unseen input signal format, since this is
the semi-supervised encoding we are actually seeking.

As a reference, rigorously conducted comparison of machine learning methods can be
seen in chapter 3. The two last improvement points proposed here are motivated by the
ideal invariances the encoding neural network should manifest. These invariances are
summarized in table 2.1.
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Chapter 3

One-class classification for radar
targets discrimination

CN×H detection

”hit2vec”

RQ embedding
one-class

classification R score

Chapter 3

This chapter contains contributions of this thesis in sections 3.1.3, 3.1.5 and 3.2.3.
These contributions are associated with our three publications [26, 25, 24]. The previ-
ous chapter introduced approaches to encode the enriched I/Q sweep feature of radar
hits, i.e. to go from CN×H to RQ. Once detections are encoded, one can implement a
discrimination method to help the radar operator isolate relevant targets from clutter
and low-priority objects. Since encoding leads to the projection of hits into the shared
representation space RQ, any discrimination method applicable to vector representations
could be used. This opens the door to radar hits discrimination with any of the nu-
merous deep and non-deep, unsupervised, semi-supervised and supervised classification
approaches available in the literature. Ideally, such discrimination would be handled
by a supervised classification or an open-set recognition (OSR) pipeline with specific
enough targets classes with respect to military and civilian activities.

Such a supervised classification approach would require excessive supervision, i.e.
would call for large, diverse and completely labeled datasets to be available for training.
Such dataset is unthinkable in military radar applications, since not many labeled sam-
ples are accessible for friendly targets, while unfriendly targets can remain completely
unknown to the sensor. An OSR pipeline supposedly identifies a closed set of classes
seen during training just like supervised classification, but also whether a test sample
belongs to one of the known classes at all. This entails OSR demands as much super-
vision as supervised classification regarding the closed set of classes encountered during
training, making it equally unsuitable for the radar targets discrimination pursued. This
emphasizes the similarity between OSR and classification with rejection [124, 23, 176].

One can still note that a high-performing open-set recognition, identifying well ref-
erenced classes during training, coupled with a clustering of samples belonging to poten-

55
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tially unindentified but consistent data modes could perfectly answer the challenges of
a radar deployment. Indeed, targets perception varies a lot due to radar target-aspect
sensitivity, and both the geography surrounding the sensor and the weather influence
the values being processed. Thus, setting up a radar amounts to update the clutter
and relevant targets appearances and how to separate the latter, making the adaptive
nature of open-set recognition approaches and clustering notably adapted when they
are combined.

To tackle the challenge of low supervision, we chose to discriminate between encoded
radar hits using OCC. The intuition of the favored OCC method is to use the few
labeled data points available during training to gather the output representations of
a neural network around one or several latent reference points. The distance to the
reference points in the output space can then be used to generate an outlyingness score
O(x) : Rd → R for a test sample x ∈ Rd. If we then consider the latent reference points
as capturing the distribution of a set of radar targets classes, one can conclude that this
score directly translates into a mean to discriminate between targets belonging to the
latter set of targets classes and targets that do not. Details regarding this favored OCC
technique and other OCC methods will be provided in the upcoming sections.

Assuming a performing enough OCC, one could separate a set of radar targets de-
scribed by a limited quantity of labeled samples from other detected objects and phe-
nomena. The advantage of this approach is that it does not require labeled samples
for all the classes being separated, which gives an answer to the lack of supervision
in the task at hand. The concentration of latent outputs belonging to the set of tar-
gets classes offers an intuitive way of including labeled samples outside of the one-class
during training by repelling their output representation from the reference points. In
the proposed one-class classification setup, it is worth noting that the one-class could
potentially contain a certain diversity of targets, i.e. not be limited to a single kind of
radar targets. This last point is critical with respect to the targets discrimination task
considered, since an operator would likely want to set up an alarm 1 for arbitrary sets
of targets, however diverse.

This arbitrary one-class diversity is yet another key challenge of the ideal radar tar-
gets discrimination. Semantically close data modes, i.e. samples so close that their
separation can be difficult, can be found both inside and outside of the one-class. This
question of semantic proximity leads to the definition of near and far OODD. Near
out-of-distribution detection (OODD) aims at distinguishing one or several data classes
from semantically similar data points. For instance, identifying samples from one class
of CIFAR102 among samples of the other classes of the same dataset solves a near
OODD task. On the other hand, separating CIFAR10 samples from MNIST3 samples is
a far OODD task: there is no strong semantic proximity between the data points being
separated [146]. The concept of OCC for radar targets discrimination is illustrated on
Fig. 3.1, which depicts how diverse targets can be gathered within a one-class boundary,
and how labeled out-of-distribution samples can contribute to the boundary. This ad-
ditional supervision translates into semi-supervised AD. In some cases and with expert
knowledge involved, it is possible to generate artificial labeled anomalies to contribute
to the training phase, defining a form of self-supervised learning4. This idea could also
be interpreted as data augmentation5, although it may involve creating a label initially

1A threshold applied to the OCC score.
2CIFAR10 is a popular baseline dataset of tiny images proposed in [105].
3MNIST is a popular baseline dataset of handwritten digits proposed in [109].
4Self-supervised learning (SSL) is any learning enabled by artificially generated supervision. This can

typically be achieved by transforming unlabeled data and associating one label to each transformation,
thus unlocking supervision.

5Data augmentation is the process of enriching a dataset thanks to transformations of existing data
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Figure 3.1: One-class classification intuition diagram, which can also be understood as
anomaly detection: the "normal" one-class distribution has to be captured in order for
the detection of out-of-distribution samples to be possible. The one-class ideally can
be composed of several classes, and the anomalies or out-of-distribution samples are of
infinite diversity. The latter can be other data classes, and noisy samples. In the case of
radar targets discrimination, the one-class may for instance gather a diversity of small
and slow targets for which labeled reference samples are available for training, and for
which an alarm would be raised to warn the radar operator. In such a context, negative
labeled samples available during training to refine the one-class boundaries could stem
from weather phenomena which are known to appear close to relevant small and slow
targets. The use of a minority of unrepresentative labeled anomalies during training for
additional supervision will be addressed by some of the OCC methods presented in this
chapter.

absent from the learning setup. Our application of OCC to radar targets discrimination
can be considered as a near OODD task, since the OCC is meant to separate valid radar
targets stemming from a unique sensor.

In addition to the presentation of OCC methods, this chapter will present OCC
experiments conducted independently from any hit encoding in section 3.3.

3.1 One-class classification methods considered

This section will put forward several anomaly detection methods we have considered
for encoded hits discrimination in this work. One of these methods, deep random pro-
jection outlyingness (RPO), is one of our original contributions in this thesis. This
contribution is detailed in 3.1.3 and is an evolution of the non-deep RPO presented
in 3.1.1 beforehand. Experiments were first conducted on generic datasets, i.e MNIST,
Fashion-MNIST and CIFAR10, and on simulated and real radar data, all different from
encoded hits. These experiments on data types of a different nature than the hits we are
considering remain relevant for our AD experiments, since encoded hits are vectors of
features, and given a comparable level of supervision discriminating encoded hits should
not be different from discriminating the images or 1D range profiles we will consider. In

points. For instance, one can add noise to existing data points to make the model training more robust.
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all cases however, the difficulty of the task relates to the relative proximity of the data
modes separated. This emphasizes the relevance of working on a filter with two indepen-
dent steps: one can improve and plug various discrimination approaches on the output
of the radar targets encoding, and vice versa. An important feature of the methods
presented is that they all produce a continuous scalar decision score that would allow
the radar operator to have a refined appreciation of the anomalous nature of a target,
in contrast with a less expressive binary result.

3.1.1 Shallow and deep one-class classification baselines in the litera-
ture

The widespread use of deep learning for data discrimination, including OCC, being
recent and calling for specific data and computational needs, it seemed necessary to
include a diversity of non-deep learning discrimination methods in our study to end up
with a useful perspective on which discrimination to prefer to sort out encoded hits.
We begin by considering a classic outlier detection measure, the Mahalanobis distance
(MD) [123], which computes a distance between a multivariate distribution sampled
over n samples in d dimensions X ∈ Rd×n and a data point x in the same representation
space. This distance is defined by the following expression:

OMD(x;X) =
√

(x− µX)T Σ−1
X (x− µX) (3.1)

where ΣX denotes the sample covariance matrix ΣX = 1
nXcX

T
c with Xc the centered

data matrix, i.e. the sample mean µX = 1
n

∑n
i=1 xi was subtracted from every data point

in X to compute Xc. We can make two remarks regarding the MD: it is found in the
exponential of the probability density function of a multivariate Gaussian distribution,
and it uses dedicated spread and location estimators for everyone of the d dimensions.
One of the downsides of the MD is the computation of a covariance matrix and its
inverse. The estimation of a covariance matrix is problematic because for a sampled
version to be relevant and well conditioned, it is necessary to estimate it with numerous
samples and while respecting a relatively small d

n ratio. In other words, the number
of samples must be much larger than the number of dimensions in the representation
space where the covariance matrix is estimated. Not respecting this and computing
a Mahalanobis distance based on the ill-conditioned covariance matrix is ill-advised
since the bad conditioning prevents the accurate computation of the covariance inverse
required by Eq. (3.1) [187]. This leads us to another old non-deep outlyingness measure,
called random projection outlyingness (RPO), that does not require a covariance matrix
estimate and which we will be using in our experiments. RPO combines numerous
normalized outlyingness measures over 1D projections with a max estimator in order to
produce a unique and robust multivariate outlyingness measure, which translates into
Eq. (3.2):

ORP O(x; p,X) = max
u∈U

|uTx−MED(uTX)|
MAD(uTX) (3.2)

where x is again the data point we want to compute the outlyingness for, p the number of
random projections (RP) u of unit norm gathered in the set U, and X the training data
matrix. MED stands for median, a location estimator, and MAD for median absolute
deviation, a spread estimator. The max implies retaining only the worst outlyingness
measure available among all the 1D projections, i.e. the worst normalized deviation from
the projected median. In [186], the asymptotic equivalence between Eq. (3.2) for a large
number of RPs and the MD of Eq. (3.1) (up to a constant factor) is established, with
the motivation of obtaining an equivalent of the latter without computing a covariance
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matrix6. This equivalence with the Mahalanobis distance indicates that RPO with
enough RPs, after the max integration over RPs, describes a normality ellipsoid in the
input space, i.e. the representation space of x. The RPO outlyingness actually leads to
the definition of a statistical depth7 approximation [62, 90], another quantity that orders
data points from a given set from most to least normal. This stochastic approximation
of a statistical depth is called random projection depth (RPD) and is defined by:

RPD(x; p,X) = 1
1 +ORP O(x; p,X) (3.3)

The exact statistical depth is computed with a sup replacing the max in Eq. 3.2, the
computation of the sup implying the consideration of all possible random projections,
i.e. an infinity of random projections. Both Eq. (3.2) and Eq. (3.3) can be said to
combine 1D views of a multivariate distribution to produce a multivariate outlyingness
measure based on normalized univariate distances. This intuition behind the use of 1D
RPs to generate a multivariate outlyingness measure is illustrated on Fig. 3.2. A deep
adaptation of RPO is proposed in section 3.1.3, and RPs with multiple output dimen-
sions were also considered in our experiments. Harnessing RPs with multiple output
dimensions however reintroduces a covariance matrix as a spread estimator in order to
produce normalized distances. One can notice that the use of RPs to project data points
is related to the generation of intermediate representations with neural networks layers
whose weights are frozen right after their random initialization, something quite recently
mentioned in the literature [69, 198, 74, 160].

The other common shallow AD methods chosen are one-class Support Vector Ma-
chine (OC-SVM) [164], Isolation Forest (IF) [118] and Local Outlier Factor (LOF) [30].
The first method is an extension to one-class classification of the now classic SVM
classifiers [29]. OC-SVM projects data in a feature space where it will try to find a max-
imum margin hyperplane to separate data points from the feature space origin. This is
achieved thanks to the following objective function:

min
w,ρ,ξ

1
2 ||w||

2
F−ρ+ 1

νn

n∑
i=1

ξi (3.4)

ρ is the distance separating the origin from the hyperplane w, ξi are slack variables
allowing boundary violation with penalization. ||w||F regularizes the definition of the
hyperplane w using the norm of the feature space F in which data points are projected
by a kernel. The integer n is the number of data samples available for training and
ν ∈ (0, 1] is an upper bound on the fraction of outliers during training and a lower
bound on the fraction of support vectors for the hyperplane boundary. IF [118] uses
recursive partitioning on subsets of data points in the feature space, and produces an
anomaly score based on the ease with which each point is isolated from the rest in each
subset. It works based on the assumption that anomalous samples are more susceptible
to isolation in the feature space. One recursive partitioning isolation binary tree is built
for each subset of data points, making IF an ensemble method. In the end, IF computes
an anomaly score OIF for each instance x whose expression is:

OIF (x;n,X) = 2− E(h(x))
c(n) (3.5)

n is, as for OC-SVM, the number of data points available for training and c(n) the
average path length of an isolation tree. The average path length intuitively translates
into the average number of recursive splits needed to isolate a data point in the feature

6The convergence is proved when the number p of projections tends to infinity.
7A statistical depth provides a center-outward ordering of data points with respect to a dataset.
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Figure 3.2: Illustration of the intuition behind the use of 1D random projections to
compute a multivariate outlyingness measure. Once a set of 2D samples is projected,
evaluating the normalized distance to the location estimator of each projection easily
allows to detect the obvious outlier, the latter being positioned at greater distance from
the location estimator on at least one random projection. One random projection is
enough to raise the maximum seen in Eq. (3.2). This depicts that multivariate outly-
ingness can translate into multiple univariate outlyingnesses.
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space. The vector x is the sample whose anomaly score we want to obtain, and h(x)
the associated path length. The previous equation uses E(h(x)), the average path
length across the forest of isolation trees, normalized by c(n), to obtain OIF (x, n). IF
is a particularly interesting shallow AD method since it is advertised as being able to
provide good performances with a small subsample of data and few isolation trees.

The last common shallow AD method considered is LOF [30]. To compute LOF, we
choose a certain number k of nearest neighbors to be considered for each data point.
The local density attached to a point will be determined by how close its k nearest
neighbors are. A point having a higher local density than its neighbors will be more
likely to be an inlier, since this translates into belonging to a higher density part of the
feature space. Thus, LOF assigns to each data point an outlier score based on the ratios
of its own local density and the local densities of its k nearest neighbors.

Now that we proposed shallow baselines, let us describe our deep OCC baseline: the
autoencoder (AE). The autoencoder is a generative neural network architecture which
is commonly trained to reproduce its input and, thanks to constrained intermediate
representations, provide lower dimensionality encodings. In order to do so one typically
defines an undercomplete autoencoder [77, p.494], where the reduced representation
capacity of the neural network compels it to select the most important information to
encode the input before recreating it through some form of upsampling [77]. Assuming an
autoencoder neural network Φ, the training loss is the reconstruction error ∥Φ(x)− x∥.
A simple way to achieve AD with an AE is to use the reconstruction error of test samples
as the AD score [199, 155]. Once the AE is trained to recreate samples belonging to
the one-class of OCC, the reconstruction error of OOD samples can be expected to be
higher. The outlyingness computed thanks to an AE is thus:

OAE(x; Φ, X) = ∥ΦX(x)− x∥ (3.6)

where Φ(x) is the reconstructed input, i.e. the output of the autoencoder. This AE
anomaly detection intuition has already been applied to radar data in [40, 193]. The
reconstruction score intuition also makes it easy to grasp the challenge of separating
semantically similar inputs belonging to different OCC classes in the case of near OODD,
since it is likely that an AE able to reconstruct one sample will also achieve a fair
reconstruction on semantically similar ones.

Not only the AE is an interesting choice due to it being an OCC method based
on a pretense reconstruction task unrelated to AD, but it also led to diverse variants
designed for AD. A memory-augmented deep AE, called MemAE, was for instance pro-
posed in [75], where the latent space is discretized through the definition of reference
elements based on the training data. These latent prototypical representations are then
combined with weights determined by an attention mechanism with a sparsity constraint
to produce the latent representation provided to the decoder. This approach aims at lim-
iting the generalization capacity of the AE, the latter potentially being able to reproduce
some anomalies just as well as some normal samples after training. The sparsity con-
straint limiting the complexity of the latent dictionary entries combination ensures the
reconstructed input can not escape the main patterns observed in the training data. An-
other extension of the initial intuition of using AE for AD worth mentioning is ConAD,
which stands for consistency-based anomaly detection, which was put forward in [134].
This method utilizes a multi-headed decoder network to handle multi-modality in the
input and latent spaces, and particularly to avoid the acceptance of reconstructions
based on an artificial global mean mode in the latent space as belonging to the "normal"
one-class. The shallow methods previously mentioned can also be associated with an
AE to produce a hybrid one-class classification method where the AE embeds the inputs
in the latent representation space of the generative architecture, i.e. the neural network
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bottleneck, the embeddings being then used for AD through a shallow AD [159]. In
such a case, the reconstruction error does not contribute to the outlyingness measure,
and is only harnessed to train the generative neural network whose encoding part pro-
duces embeddings. The reconstruction-oriented parameters optimization amounts to a
pretense task requiring no supervision since the input serves as output, and is thus close
to the fundamental idea of self-supervision setups. This closeness to self-supervision
also suggests transformations could be used to enrich the training set and reinforce the
generality and relevance of the bottleneck representation in the AE.

3.1.2 Deep one-class classification with latent hyperspheres

Most of the OCC experiments and developments proposed by this thesis are inspired
by [153] which proposed a deep AD method called Deep Support Vector Data Descrip-
tion inspired by the now decades old non-deep Support Vector Data Description (SVDD)
method [175]. The SVDD approach estimates a hypersphere boundary around a training
set made of samples xi to allow for one-class classification based on whether the tested
point lies within or outside of the boundary learned. To find this boundary the hyper-
sphere volume is minimized while keeping as many training points within the volume
as possible. This can be understood as the minimization of R2 where R is the radius of
the one-class hypersphere under the constraint:

∥xi − c∥2 ≤ R2,∀i (3.7)

During this boundary optimization the training points are all considered to belong to
the so-called one-class. Slack variables ξi ≥ 0 are introduced to make the boundary soft
and lead to the minimization of the following quantity:

min
R,c,ξ

R2 + C
∑

i

ξi (3.8)

while respecting the soft boundary constraint ∥xi − c∥2 ≤ R2 + ξi, ξi ≥ 0 retaining the
training data points within the one-class boundary, where c is the hypersphere centroid
and C is a weight to balance the volume with the boundary trespassing [175]. The use
of kernels, as for Support Vector Machines, makes the boundary more adaptive through
the usual implicit mapping trick. Since SVDD defines a hypersphere, the ideal mapping
would enclose the data points within a spherical volume. Using SVDD can be equivalent
to using the OC-SVM method described in 3.1.1 if one uses a Gaussian kernel [153, 175].

With a very close intuition, Deep SVDD [153] uses a neural network to learn repre-
sentations of training samples in an output space where their Euclidean distance to a
one-class reference point or centroid c defines the loss to be minimized during training.
The training loss of Deep SVDD for a sample of size n (i.e. n data points) with a neural
network Φ with weights W distributed over L layers is as follows:

min
W

[
1
n

n∑
i=1
||Φ(xi;W )− c||2 + λ

2

L∑
l=1
||W l||2

]
(3.9)

The second term is a weights regularization controlled by λ, and will also appear in
Eq. (3.10), (3.13), (3.14) and (3.17). This l2-norm parameter regularization is called
weight decay, ridge regression or Tikhonov regularization in the scientific literature [77].
In our experiments, the heuristic of defining c as the mean output representation of
the training samples xi before training any parameter in the encoding neural network
sometimes appeared as relevant as the coordinates of one of the training samples in the
output space also taken before training. It also seemed that a reasonable yet arbitrary



3.1. ONE-CLASS CLASSIFICATION METHODS CONSIDERED 63

output coordinates choice could replace the heuristic, reasonable coordinates depending
on the transformations implemented by the neural network in use.

A natural extension of Deep SVDD is the replacement of the single hypersphere
boundary in the output representation space with a multitude of hyperspheres, which
could be understood as one-class atoms8. This approach was proposed in [73]. Such a
composite boundary could be better tailored to the output representations distribution.
For this multisphere alternative the loss, regularization put aside, combines the sum of
the radii rk of the K still active hyperspheres with a penalty term greater than zero
as soon as training samples, with each sample assumed to be part of the one-class, are
further away from the nearest centroid than the radius of the latter:

min
W,r1...rK

[
1
K

K∑
k=1

r2
k + 1

νn

n∑
i=1

max(0, ||Φ(xi;W )− cj ||2 − r2
j ) + λ

2

L∑
l=1
||W l||2

]
(3.10)

The second, penalty term is controlled by ν ∈ [0, 1], and training samples are assigned
to the nearest hypersphere of center cj . Numerous spheres centers are initialized using
the k-means clustering algorithm and progressively merged during training, while each
radius rk is updated with a preset quantile parameter of the distances separating its
centroid from its assigned data points. This quantile parameter is a hyperparameter of
the method. The relevance of latent hyperspheres is determined thanks to the cardinality
of the latent cluster they encompass. This seemed particularly relevant to handle a one-
class actually containing a variety of data modes, since it could potentially capture
disjoint clusters in the representation space without engulfing artificial in-between data
modes within the one-class boundaries.

This work presents anomaly detection or one-class classification methods as a mean
to discriminate between a diversity of points belonging to different classes using machine
learning with limited supervision. While Deep MSVDD and Eq. (3.10) provided a
natural extension to the intuition of SVDD and Deep SVDD by proposing the use of
several hypervolumes instead of one to make the one-class boundaries more flexible and
better tailored, one can wonder how to integrate additional supervision coming from
labeled negative examples9 x̃j when the latter are available for training. This is handled
by SVDD thanks to additional slack variables ξj :

∥x̃j − c∥2 ≥ R2 − ξj , ξj ≥ 0, ∀j (3.11)

in the minimization of Eq. (3.8), which thus becomes:

min
R,c,ξ

R2 + C1
∑

i

ξi + C2
∑

j

ξj (3.12)

The new constraint described in Eq. (3.11) has the opposite effect of the constraint of
Eq. (3.7) on negative j-indexed data points. It repels them out of the minimized hyper-
volume. Here again the optimization minimizes the hypervolume that contains as many
one-class data points as possible while simultaneously pushing the negative samples out.
Like C in Eq.(3.8), C1 and C2 balance the optimization objectives with the hypervolume
minimization. The same repulsion intuition was proposed for Deep SVDD [153] under
the name of Deep Semi-supervised Anomaly Detection (Deep SAD) [152], where in ad-
dition to the minimization of the distance to the reference centroid, the inverse of the
distance to the reference centroid is added with a weight η to the training loss for the
negative training samples x̃j . This translates into a similar mathematical trick where a

8Each of the atoms here would be defined by a hypersphere partially capturing the one-class distri-
bution.

9Negative samples are out-of-distribution samples, i.e. data points not belonging to the one-class.
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similar yet inverted term is added to the minimized quantity in order for the negative
samples to be pushed away from the reference centroid, transforming Eq. (3.9) into:

min
W

[
1

n+m

n∑
i=1
||Φ(xi;W )−c||2+ η

n+m

m∑
j=1

(||Φ(x̃j ;W )−c||2)−1+λ

2

L∑
l=1
||W l||2

]
(3.13)

In Eq. (3.13), in addition to the n in-distribution xi data points, the loss harnesses m
labeled anomalies x̃j during training. Here, SAD can be said to be achieved through
a form of outlier exposure10, although the latter does not necessarily rely on a se-
mantically different auxiliary dataset [85]. The contribution of labeled anomalies to a
refined one-class classification intuitively depends on the actual proximity of the labeled
anomalies with the one-class boundary. Thus, in addition to the specification of a near
OODD task at the beginning of this chapter, near out-of-distribution samples can be
here seen as key to the success of semi-supervised AD. Labeled anomalies in the training
set need to be distinguished from potential unlabeled anomalies that are considered to
be normal samples, which confuse the AD by contaminating the training set instead of
providing supervision. Robustness to such contamination is critical since experts pro-
viding the labels with which neural networks are trained are not exempt from mistakes.
Experiments evaluating such robustness are proposed in sections 3.3.1 and 3.3.3. This
semi-supervision adaptation can be repeated for Deep MSVDD, although in that case
the multiplicity of normality centers calls for an additional consideration on how to
choose from which centroid the labeled anomalies should be repelled as long as several
centroids are kept active. One could also think of weighted inverse distances to the
active centroids, the weights possibly implementing latent data modes attention. The
experiments implementing Deep MSVDD adapted to SAD with an additional loss term
for labeled anomalies were inconclusive, such an adaptation will therefore not be further
discussed. The additional loss term evaluated to train Deep MSVDD in a SAD con-
text either minimized the latent distance between anomalies and dedicated centroids, or
maximized the latent distance between anomalies and normality, one-class, centroids.
The labeled negative samples bringing additional supervision during training for SAD
can be created through the transformation of in-distribution samples. Thus, a form of
self-supervision can be associated to SAD. This possibility is explored in 3.3.3.

Arbitrary sets of outliers could not be completely gathered around a reference point
since they do not necessarily belong to a common mode [152, 172]. However, this does
not forbid the concentration of identified modes among labeled anomalies close to dedi-
cated centroids to provide additional supervision during training, a case which is part of
the experiments presented in section 3.3.3. The possibly arbitrary distribution of nor-
mal and anomalous centroids and the relative distance between the centroids adds a way
to use prior information regarding the proximity between the training samples. Such
a setup can seem close to classification with rejection [85, 23], since the concentration
of data points around dedicated normal and anomalous centroids can be interpreted
as classification while the data points attached to no centroid and thus supposedly re-
pelled from all centroids by the trained network constitutes a rejection. This parallel
with classification with rejection is not necessarily relevant since the availability of la-
beled anomalies to train machine learning-based AD methods is usually very limited if
not nonexistent. In contrast, supervised classification of identified data modes would
imply rich, representative and relatively balanced datasets for each latent mode. The
limited availability of labeled anomalies applies to actual anomalies and not to artifi-
cial anomalies provided by the transformation of existing training samples i.e. through
self-supervision. With proper transformations self-supervision can produce as many

10Outlier exposure consists in taking advantage of labeled anomalies.
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labeled anomalies for training as there are normal samples, or even more if each nor-
mal sample is transformed multiple times. However this does not overcome the lack of
representativeness of labeled anomalies. This is also made difficult since the choice of
transformations requires expert knowledge to control the semantic implications of the
transformations. Such transformations should also be selected according to the proper-
ties of the neural network when doing deep AD, for instance to take into account the
invariances implemented within the architecture.

3.1.3 Deep random projection outlyingness

In addition to Deep MSVDD, a second Deep SVDD variant considered here is Deep
RPO [25], which replaces the latent Euclidean distance to the normality centroid with
a RPs-based outlyingness measure adapted from Eq. (3.2) in the latent space. This
modification leads to the following minimization problem:

min
W

[
1
n

n∑
i=1

(
mean

u∈U

|uT Φ(xi;W )−MED(uT Φ(X;W ))|
MAD(uT Φ(X;W ))

)
+ λ

2

L∑
l=1
||W l||2

]
(3.14)

This training loss uses the outlyingness defined in Eq. 3.2 after the neural network en-
coding, with a max estimator transformed into a mean as suggested in [25] for better
integration with the deep learning setup. The mean estimator computes a mean over
the set of RPs available to compute the latent outlyingness, while the 1

n computes a
mean over the sample of size n. The use of a mean instead of a max removes the con-
vergence to the Mahalanobis distance-inferred ellipsoid (up to a constant factor) already
mentioned in the RPO definition (see 3.1.1) for a large set of RPs. This RPO variant
however remains affine invariant (see Appendix B). The loss nonetheless still combines
1D outlyingness measures individually centered by their median and normalized by their
median absolute deviation, but with no ellipsoid-like score distribution guarantee in the
input space of the RPO once integrated (see Appendix A). Note that the input space
mentioned here is the output space of the encoding neural network in the case of Deep
RPO. No square was applied to the first loss term, in accordance with the quantity put
forward in [62]. An SVDD adaptation where the latent distances are computed using a
Mahalanobis distance has been proposed in [178], but the latter does not encode data
with a neural network. Combining the deep version of SVDD with a Mahalanobis score
would be another way to achieve a trainable latent normality representation based on an
ellipsoid of minimal volume [181]. Since Eq. (3.14) relies on an encoding deep neural net-
work, one way to see the difference between Deep RPO with mean and Deep RPO with
max is to consider that while with max the gradient will be based on a single projection
at a time for each sample, the mean systematically produces a gradient stemming from
all projections simultaneously.

We can also define an evolution of (3.2) and (3.14) with multidimensional random
projections, as we proposed in [25]. In the case of random projections leading to a single
output dimension, we have the following setting: if d is the data samples dimensionality,
and m the random projection output dimensionality, a random projection u with m =
1 will lead to a single projected coordinate uTx for any individual sample x with d
dimensions. This projected coordinate can then be compared to a location estimator
computed with the application of u on all the available samples, for instance uTx −
MED(uTX) where the location estimator chosen is the median. On the other hand,
for multidimensional random projections, i.e. m > 1, a covariance matrix Σm×m can be
harnessed in the reduced space to obtain a more subtle normalized distance to location
estimators. Each sample x can then be associated with a robust Mahalanobis distance,
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transforming Eq. (3.2) into:

ORP Omultidim
(x; p,X) = max

u∈U

√
(uTx−MED)T Σ−1

m×m(uTx−MED) (3.15)

where MED stands for the median projected vector MED(uTX). In this configuration,
each sample has an outlyingness based on m projected coordinates per RP. Each of the
projected coordinates is compared to a location estimator determined on each random
projection dimension. One projected location estimator is thus computed over all data
samples, for each output dimension of the random projections in use. This transforms
the training objective described by Eq. (3.14), the normalized distance to the median in
Eq. (3.2) before the integration by a max operator becoming:√

(uT Φ(x)−MED)T Σ−1
m×m (uT Φ(x)−MED) (3.16)

where MED stands for the median latent projected vector MED(uT Φ(X;W )). Thanks
to Eq. (3.16), the Deep RPO training loss now has the possibility to incorporate multi-
dimensional projected representations for data samples, enabling additional latent rep-
resentation flexibility. As for Deep SVDD, this new RP-based setup can incorporate
labeled anomalies x̃j during training using an inverse distance to repel negative samples
from the in-distribution data centroids:

min
W

[
1

n+m

n∑
i=1

(
mean

u∈U

|uT Φ(xi;W )−MED(uT Φ(X;W ))|
MAD(uT Φ(X;W ))

)

+ η

n+m

m∑
j=1

(
mean

u∈U

|uT Φ(x̃j ;W )−MED(uT Φ(X;W ))|
MAD(uT Φ(X;W ))

)−1

+λ

2

L∑
l=1
||W l||2

]
(3.17)

Experiments evaluating the performances associated with Eq. (3.14) are proposed in 3.3.2
and in 3.3.3. Experiments implementing Eq. (3.15) are presented in 3.3.2. The latter
include the proposal of a dropout [171] over entire random projections, and over random
projection components.

3.1.4 Density and boundary one-class characterization

We have discussed OCC driven by SVDD and its deep learning variants Deep SVDD,
Deep SAD and Deep MSVDD. One of the prominent features of all the aforementioned
methods is that they achieve OCC through the explicit or implicit definition of a one-
class boundary. More importantly, this opposes these approaches to density estimation-
based outlier detection, where an actual density distribution is estimated. This key
difference between boundary estimation and density estimation is illustrated on Fig. 3.3.
The point of opting for boundary one-class characterization is that it can require less
data than a density estimation approach, the latter necessitating a training set very
authentically distributed. This requirement is even more critical in high dimensional
problems [175]. In Deep SVDD, Deep SAD and Deep MSVDD the boundary is made
of one or several hyperspheres in the output space of the encoding neural network.
One of the losses put forward by the original Deep SVDD paper [153] actually has the
hypersphere radius as a term in the sum to be minimized, as in the minimization of
Eq. (3.8) defining the original non-deep SVDD. In Eq. (3.10), the sum of radii similarly
defines a term in the training loss. These radii, in addition to the hypersphere centroids,
completely define a one-class boundary without density description. In Eq. (3.9), no
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radius is taken into account in the training loss which only contains the centroid as
the in-distribution samples location estimate, making the boundary only implicit this
time. One could call Deep SVDD, associated with this objective function, a distance-
based [118] OCC since the distance to the centroid defines both the minimized loss and
the AD score at test time, making this score independent of an actual boundary.

Among the most common density estimation approaches are the normal density
estimation and the Gaussian Mixture Model mentioned in section 1.3.2. The normal
density estimate relies on the computation of a covariance matrix and mean estimate,
leading back to the Mahalanobis distance (cf. section 3.1.1). The challenge of high
dimensional data for density estimation is revealed in such a case since it can make the
covariance matrix estimate singular and may therefore dictate proper regularization.
Such normal density estimation brings Deep RPO nearer to density-based OCC since
RPO and Deep RPO also comparably rely on estimates of the training data location
and spread, respectively provided by the median and the median absolute deviation. In
terms of performances, boundary characterization should be used for OCC when the
data availability is too weak for a density-based approach, and is especially relevant
when labeled outliers are available to refine the one-class boundary. On the other hand,
a density estimation approach should be used when the training data availability allows
it, the latter likely leading to better performances [175]. One should keep in mind
that other kinds of OCC exist besides density, distance and boundary-based OCC, for
instance the isolation method that is IF [118].

3.1.5 Latent space regularization and specialization

It is important to notice that when talking about AD using the representation from
an AE’s bottleneck representation or the output of Deep SVDD’s [153] neural network,
one considers nothing more than using an encoded version of the input data. The
relevance of the information saved in the data representation depends primarily of the
task used to train the encoding neural network, which in the case of the AE is usually
reconstruction, perhaps including denoising [191], and in the case of Deep SVDD is
the normal training data latent isotropic concentration. One of the key challenges in
the design of such an encoding neural architecture is not only to choose wisely the
transformations contained in the successive layers, responsible for information retrieval,
but also to select an appropriate output representation to encode the data. As Deep
SVDD’s latent normality hypersphere collapse risk showed [52, 153], neural network
design choices or the association of limited training supervision and a specific loss can
favor the collapse of the output representations distribution, i.e. to a naive and useless
constant mapping. This raises the question of the evaluation of the quality of the
distribution in the output encoding space, which the literature could call an embedding
space [157], encoded data points actually defining embeddings. This evaluation should
typically be sensible to the partial or complete collapse of the embeddings distribution.
This matter was examined in [95], where the authors observe the complete or partial
collapse in the embedding space using the curve described by the sorted singular values
of a covariance matrix computed over a set of embeddings. On such a curve, a sharp
collapse of these singular values on a logarithmic scale can highlight a partial collapse,
or as they call it, a dimensional collapse. This led us to unsuccessfully experiment
with regularization terms computed using the singular values of the minibatch output
representations covariance matrix for Deep SVDD. We thus defined a singular values
uniformity regularization term Runiformity:

Runiformity = log

(Λmax + ϵ

Λmin + ϵ

)
(3.18)
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Figure 3.3: Illustration of the difference between boundary and density-based OCC.
Here, the one-class boundary discriminating between in and out-of-distribution samples
is defined by the domain [xmin, xmax]. This boundary can evidently benefit from the
near OOD samples to refine its range, and holds no information describing the density
of the one-class within the boundary. Characterizing this density intuitively requires
more data, the density estimation being accurate only if the data distribution leading
to the estimate is correctly distributed. Supposing a successful density estimation, the
AD score proposed by a boundary will necessarily be less relevant than the one provided
by the density estimate. Harnessing a SVDD-based OCC here could translate into the
use of the distance between a test sample and the peak of the density estimate. This
further depicts how SVDD-inspired approaches rely on a simple distance and not on a
density information.
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and a singular values spread regularization term Rspread:

Rspread = log

( 1
Λmin + ϵ

)
(3.19)

In both equations Λmin and Λmax represent respectively the smallest and the largest
eigenvalue of the minibatch output representations covariance matrix. The ϵ is a small
constant parameter added to the denominator of fractions to ensure numerical stability.
The Runiformity regularization term encourages the eigenvalues of the covariance matrix
to remain close to each other, penalizing any partial collapse in the eigenvalues dis-
tribution. The Rspread punishes low eigenvalues, to help discard uniformly distributed
but very small eigenvalues. This term is called spread since discarding small eigenval-
ues for the covariance matrix of the embeddings guarantees some variance among the
embeddings. A very small variance along one or more embedding dimensions would
indeed translate into at least one very small covariance matrix eigenvalue. Note that
whereas [95] used the term singular values, we speak of eigenvalues because these quanti-
ties are equal in the case of real symmetric positive definite matrices, covariance matrices
belonging to this manifold of matrices. We also experimented with another Rspread term
which has the advantage of systematically taking into account all eigenvalues, and not
just the one or two highest or lowest ones:

Rspread = log

(
1∑d

e=1 Λe + ϵ

)
(3.20)

The regularization provided by Eq. (3.20) thus ensures the gradient of the loss encom-
passes all dimensions of the output representations at each optimization step. Two
intuitive comments can be made in such a case: the regularization impact is smoothed
over all dimensions, and one optimization step can not freely focus on one output di-
mension at the expense of the distribution of representations along other dimensions.

Such a regularization setup is related to what [52] proposed, where they encourage
the mean minibatch variance over all dimensions to remain above a threshold thanks
to a dedicated regularization term which is nonzero only below the threshold. This was
implemented along with an adaptive regularization weight defined with a momentum
term and the ratio of the actual Deep SVDD loss with the regularization term. The
proximity of this regularization mechanism with ours relies on the fact that both relate
to the covariance matrix. The mean minibatch variance across dimensions considered in
the regularization proposed by [52] even corresponds to the mean of the diagonal values
of the covariance matrix from which we compute the eigenvalues used in Eq. (3.18) and
Eq. (3.19). This mean minibatch variance even corresponds to the eigenvalues mean
when the components of the output representations are uncorrelated, i.e. when the
embeddings covariance matrix is diagonal. Regularizing in such a way the embeddings
covariance matrix eigenvalues specializes further the output representation space. The
final training loss, when including both of our supplementary regularization terms, would
for instance be defined by the following equation in the case of the vanilla Deep SVDD
setup, that is without taking into account labeled out-of-distribution samples during
training:

min
W

[
1
n

n∑
i=1
||Φ(xi;W )− c||2 + λ

2

L∑
l=1
||W l||2 + λuRuniformity + λsRspread

]
(3.21)

The two eigenvalues-based regularization terms are balanced through the fixed weights
λu and λs. The ratio Λmax

Λmin
is the condition number of the covariance matrix and describes

how well the inverse of the covariance matrix can be computed by classical numerical
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methods. It is related to the ratio between the number of dimensions in the output rep-
resentation space d and the number of samples n used to evaluate the covariance matrix,
i.e. d

n . Here n amounts to the batch size. If this ratio is relatively large, i.e we estimate
the covariance matrix with not that many samples when compared with the number
of dimensions of the output space, the condition number tends to be large indicating
an ill-conditioned estimation [187]. This is important in our regularization proposal
since it makes it irrelevant for all neural network architectures and training batch sizes
where d

n ends up being quite large. One of the advantages of the minibatch variance
regularization proposed in [52] is that it does not rely on a covariance matrix estima-
tion and instead directly estimates the diagonal terms, the variance along each output
dimension, of the latter to compute their mean value to finally define a penalty term.
This does not go without reminding us one of the points of using the random projection
outlyingness (see Eq. (3.2)) instead of the Mahalanobis distance (see Eq. (3.1)), which
was precisely to avoid relying on a covariance matrix estimation to produce a robust
outlyingness measure. Using the regularization terms defined by Eq. (3.18), Eq. (3.19)
and Eq. (3.20) in semi-supervised OCC setups notably implies choosing whether to in-
clude negative labeled samples of the training set in the embeddings covariance matrix
estimation preceding the eigenvalues decomposition.

Constraining a representation space to avoid dimensional collapse11 can recall the
discretization of the AE bottleneck of [75] mentioned in section 3.1.1. The definition of
latent prototypical representations could also be constrained so that a certain metric of
dimensional collapse remains below a predefined threshold. This would involve adapting
the training loss of the proposed memory-augmented autoencoder since in the published
setup the prototypical representations are trained with a backpropagation discarding
the prototypical representations with zero as attention weight. The reunion of normal
latent representations achieved through the Deep SVDD-based losses put forward is
analogous to the alignment principle put forward in [196], which also argued for a latent
uniformity. Whereas the alignment principle compels similar samples to be assigned
similar representations, the uniformity principle demands the preservation of maximal
information. One way to achieve that according to [196] is to push all features away from
each other on the unit hypersphere to intuitively facilitate a uniform distribution. Here
the unit hypersphere is the manifold on which representations lie, and not a minimal
volume holding in-distribution samples. This uniformity principle is rarely mentioned
in the literature even when the building of an embedding space is discussed.

The extension of the Deep SVDD loss to encourage a form of latent uniformity using
the pairwise distance between normal samples during training was investigated without
ever improving the baselines. Such latent uniformity can be interpreted as a latent
space regularization as well. The experiments conducted to evaluate the contribution of
a pairwise distance of normal samples latent representations loss term revolved around
the following training loss format, where the term tasked with enforcing latent uniformity
is weighted using λuniformity and was expected to be judiciously balanced with the overall
latent concentration:

min
W

[
1
n

n∑
i

∥Φ(xi;W )− c∥2 + λuniformity

n

n∑
i ̸=j

(
∥xi − xj∥2

)−1
+ λ

2

L∑
l=1
||W l||2

]
(3.22)

The failure to make a loss term enforce a form of beneficial latent uniformity could
signal the necessity of associating such a constraint with latent representations confined
to a relevant manifold. In our experiments, the representation were free to lie anywhere
in the Euclidean output representation space, without any constraint. Enforcing the

11Dimensional collapse is the collapse of the variance in some of the representation space dimensions.
Intuitively, this amounts to the irrelevance of some of the components in the associated representations.
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uniformity principle is intuitively appealing for Deep SVDD-like training objectives be-
cause it would simultaneously discourage latent hypersphere collapse, i.e. the learning
of a fixed mapping to a constant output representation.

3.2 SPD-manifold specific processing

The processing of spectrums and time-series led us to consider methods stemming from
the active research field devoted to geometric deep learning [31], this time not for the
deep learning architectures adapted to data on graphs (see 2.4.2) but for learning param-
eters and representations constrained to Riemannian manifolds with a special interest
for the SPD matrices manifold. Said in simple words and without being formally ex-
haustive a manifold is a smooth space where each point admits a Euclidean tangent
space. As an intuitive example, one can think of a smooth surface embedded in a Eu-
clidean space: each point admits a tangent space from which points can be mapped back
to the surface. Riemannian manifolds are manifolds with a Riemannian metric which
enables the computation of distances and angles. Paradoxically, the availability of a
Euclidean tangent space at each point on the manifold is actually key to the compu-
tation of manifold-aware metrics and gradients. Indeed, a Riemannian metric can hide
an inner product on the tangent space of a given point lying on the manifold, and the
optimization of parameters can be defined through the repeated projection of a gradient
descent in the tangent space back to the manifold. Regarding the Riemannian gradient,
see 3.2.2.

Recent developments offer approaches specialized in processing data points repre-
sented by symmetric positive definite (SPD) matrices. These approaches typically con-
strain representation learning in the intermediate layers of a neural network to the SPD
matrices Riemannian manifold, which defines a convex half-cone in the vector space of
matrices [141]. Doing so implies redefining linear and non-linear operations commonly
used in deep learning, and to replace the usual backpropagation with a Riemannian
one. The use of manifold-aware operations and statistics for radar targets detection and
discrimination was previously put forward in [35, 38, 18, 204]. A real-valued matrix
M ∈ Rd×d is symmetric positive definite if and only if:

xTMx > 0 ∀x ∈ Rd \ {0} (3.23)

Processing spectrums and time-series naturally lead to work with SPD represen-
tations. In the case of spectrums for example, a series of spectrums, each associated
with a pulse Doppler radar burst, allows for the computation of a covariance matrix
of frequency bins over time. Time-series of one or a handful of dimensions can be
characterized using autoregressive models which in turn are associated with Toeplitz
matrices of autocorrelation coefficients, the latter being a specific case of SPD matrix.
The generation of such Toeplitz matrices is discussed in 2.3.1. In the case of the series
of radar spectrums however, we move away from the radar hits encoding problem we
are interested in since one hit is defined over a single burst, i.e. one hit generates a sin-
gle spectrum. This would not prevent this spectrum from being processed with CNNs
or the complex-valued samples in time to be processed as a time-series. A covariance
matrix could be built over the output channels of a convolutional layer, which could
be understood as a second-order pooling [13, 93]. Such covariance computation layers
can notably be adapted to include first order information in the generated intermedi-
ate representation while maintaining the SPD nature of the output, thanks to the two
following formulations available in the literature [207, 46]:
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(
Σ + β2µµT βµ

βµT 1

)
(3.24)

(
Σ + βµµT βµ
βµT β

)
(3.25)

In Eq. (3.24) and Eq. (3.25), Σ is a covariance matrix, µ a mean vector, and β
a constant parameter. These SPD representations combining first and second order
statistics were implemented for the ICLR 2021 Computational Geometry & Topology
Challenge 12 [129]. They define the following mapping, where S+

∗ is a manifold of SPD
matrices of adequate dimensions:

(µ,Σd×d)→ Σ(d+1)×(d+1) (3.26)
(Rd,S+

∗ )→ S+
∗ (3.27)

As suggested by [34], the complex-valued nature of raw IQ data can benefit from
the definition of a similar processing framework for Hermitian Positive Definite (HPD)
matrices, which are the complex-valued equivalent of Symmetric Positive Definite real-
valued matrices. Furthermore, whereas in the earlier mentioned Mahalanobis distance
(see Eq. (3.1)) one used the covariance matrix to compute the distance between a test
data point and a reference distribution, here the covariance matrix represents a test data
point by capturing the distribution of its features generated by convolutions. Transform-
ing SPD matrices with specialized neural networks open the way to manifold-constrained
learning for one-class classification. As we will see in 3.2.3, SPD neural networks are not
the only way of conducting one-class classification specific to SPD representations. In
the remainder of this section, building blocks of SPD neural networks and SPD-specific
one-class classification will be presented.

3.2.1 SPD neural network operations

Let us first define a linear operation for SPD neural networks. This linear operation
is a bilinear mapping called BiMap [89] and relies on a trainable parameters matrix of
full-rank W ∈ Rdk×dk−1

∗ to transform the input Xk−1 SPD matrix into the output Xk

SPD matrix:
Xk = WkXk−1W

T
k (3.28)

Here, dk is the output square matrix dimension, while dk−1 is the input square matrix
dimension, which indicates the BiMap layer also allows to reduce the intermediate SPD
representations size. This reduction in the SPD representation size in turn implies
that representations are going from one SPD matrices manifold to another of lower
dimensionality. The trainable Wk matrix is kept orthogonal, and thus ends up belonging
to a compact Stiefel manifold in order for the representation produced by Eq. (3.28) to
remain SPD matrices and to enable the optimization of the parameters [89]. Now that
SPD neural networks are equipped with a linear transformation, one needs to define a
nonlinear one. In a similar fashion to the rectified linear unit (ReLU), [89] proposed the
ReEig layer that rectifies the small eigenvalues of an SPD matrix, increasing the ones
above an arbitrary threshold to the threshold value:

Xk = Uk−1max (ϵI,Λk−1)UT
k−1 (3.29)

12Code produced during our participation available at https://github.com/Blupblupblup/
challenge-iclr-2021. Accessed: 06-10-2022.
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In both Eq. (3.29) and Eq. (3.30), the matrices Uk−1 and Λk−1 are respectively the square
and diagonal matrices produced by the eigenvalue decompositionXk−1 = Uk−1Λk−1U

T
k−1.

The matrix I is the identity matrix. After a linear transformation that can reduce the
representation size and a nonlinear activation, [89] proposes another nonlinear layer
called LogEig:

Xk = Uk−1log (Λk−1)UT
k−1 (3.30)

The LogEig layer serves as a mapping from the manifold to a Euclidean representation.
This mapping stems from the logarithmic and exponential mappings that allow to go
respectively from a Riemannian manifold to the Euclidean tangent space and vice versa.
The LogEig layer is actually a specific case of the logarithmic mapping in the SPD
matrices space where the reference of the mapping is the identity matrix [32, p.101]. The
transposition of the now defined BiMap, ReEig and LogEig layers for the real-valued
case of SPD (∈ S+

∗ ) matrices to the equivalent complex-valued case of HPD matrices
(∈ H+

∗ ) has been detailed in [32], which also puts forward a simple way to bring the
HPD case to a real-valued SPD one through the following complex components mean:

∀H ∈ H+
∗ ,

1
2(Hr +Hi) = S ∈ S+

∗ (3.31)

where Hr and Hi are the real and imaginary parts of the input HPD representation
respectively. A manifold-aware Riemannian batch normalization [92] adapted to SPD
representations was proposed in [35] and further discussed along with the proposal of
variants in [103, 102, 121]. The mean used in the batch normalization of [35] is a
Riemannian barycenter corresponding to the Fréchet mean. This geometric mean has
no closed form when more than two SPD matrices are involved and is computed using
an iterative method called the Karcher flow algorithm [97].

3.2.2 SPD neural network gradient and backpropagation

Transforming SPD representations into other SPD representations implies a set of con-
straints over the operations conducted within the SPD neural network. These constraints
can be divided into two categories: the constraints over the parameters used to compute
new intermediate representations, and the constraints over the gradient computation
with respect to these parameters. The first category dictates that the Wk bilinear map-
ping matrix is required to be part of the Stiefel manifold as indicated in 3.2.1. The
second category implies the definition of specific manifold-aware gradients for the back-
propagation during training. For instance, computing the gradient to update parameters
constrained to a Riemannian manifold such as the ones defining the bilinear transfor-
mation of Eq. (3.28) implies three steps: first determine the Euclidean gradient, then
retrieve the normal component with respect to the tangent space of the parameters ma-
trix on the Riemannian manifold, and then finally project the gradient descent-updated
parameters in the tangent space on the manifold [35, 31, 89, 82]. To get back to the
Riemannian manifold from the tangent space one can use a Riemannian exponential
mapping, or a first-order approximation of the latter called a retraction [135, 12].

On the other hand, passing the gradient through the SPD neural networks non-
linearities such as Eq. 3.29 and Eq. 3.30 requires other specific operations adapted to
the eigenvalues decomposition. In such cases backpropagation relies on the matrix gen-
eralization of backpropagation [89, 93] which will not be detailed here since it is quite
elaborate and does not contain any original contribution from this thesis. One can
note that [35] required both kinds of gradient adaptation to implement a Riemannian
batch normalization for SPD neural networks. All experiments using the SPD neural
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network operations and backpropagation were conducted using a third party implemen-
tation13 publicly available [10]. One can note the proximity of using a Riemannian
gradient in the context of an SPD neural network and with the intuition of the nat-
ural gradient put forward in [16] which takes into account the possible non-Euclidean
structure of a parameter space.

3.2.3 One-class classification specific to SPD matrices

Using the previously defined SPD neural network operations and backpropagation, one
can adapt the already presented Deep SVDD and Deep SAD one-class classification
to an SPD setup. In such an approach, input SPD representations, e.g. covariance
matrices, are transformed into other SPD representations of similar or lower dimension-
ality, and the Riemannian distance to the Riemannian mean output representation is
either minimized or maximized during training. The lower dimensionality is controlled
thanks to the BiMap constrained parameters matrix W shown in Eq. (3.28). An exam-
ple architecture of such an SPD-manifold aware Deep SVDD adaptation is detailed in
section C.2. The mean output representation serving as reference point during training
is the mean training data output representation computed before training, in accordance
with the heuristic put forward in [153]. Note that this Riemannian mean is a geometric
mean of the SPD representations in the output space of the SPD neural network and
corresponds to what was done in [35] to define a Riemannian batch normlization as was
previously explained in 3.2.1.

The distance minimization in the output space equally constrained to the SPD ma-
trices manifold implies the use of a Riemannian distance between two arbitrary SPD
matrices S1 and S2. In our experiments, we used either the Log-Euclidean metric (LEM):

dist(S1, S2) = ∥log (S1)− log (S2)∥F (3.32)

or the affine-invariant metric (AIM):

dist(S1, S2) =
∥∥∥∥log (S− 1

2
1 · S2 · S

− 1
2

1

)∥∥∥∥
F

(3.33)

The LEM is actually a specific case of the AIM [32, p.101].
Since we consider input, output and intermediate representations belonging to the

SPD matrices manifold, no LogEig (see Eq. (3.30)) layer is necessary to plug representa-
tions in Euclidean layers. Such a fully Riemannian approach can be opposed to [38, 207]
which suggested to use SPD-specific operations in portions of a processing pipeline oth-
erwise Euclidean, these setups actually requiring logarithmic mappings to get back to
Euclidean representations. Two other non-deep manifold-aware OCC approaches are
put forward in this work, both relying on tangent PCA (tPCA). The tPCA projects
SPD points on the tangent space of the Fréchet mean, a Riemannian mean which allows
to compute an SPD mean, keeping the computed centroid on the Riemannian manifold
naturally occupied by the data. A common principal component analysis [77] is then
performed in the tangent space at the Fréchet mean. Using tPCA offers the advantage
of being sensible to the manifold on which the input samples lie, but implies that input
data is centered around the Riemannian mean and not too scattered. This makes tPCA
a questionable choice when the objective set is AD with multimodal normality [140]. In
other words, although the linear approximation of the SPD inputs around its Rieman-
nian mean provides us with a manifold-aware dimensionality reduction, the distribution
of the inputs in the SPD matrices manifold may lead this approximation to be exces-
sively inaccurate, leading to irrelevant reduced representations. This is due to the linear
approximation not preserving the Riemannian distances between points [169].

13https://gitlab.lip6.fr/schwander/torchspdnet Accessed: 28-10-2022
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The first non-deep manifold-aware OCC consists in replacing the principal compo-
nent analysis-based dimensionality reduction usually part of machine learning pipelines
preprocessing with tPCA dimensionality reduction. To achieve OCC following the di-
mensionality reduction one only need to plug the reduced representations provided by
tPCA in a OCC method afterwards. The second manifold-aware OCC approach consists
in using the norm of the last components of the tPCA as an AD score, an anomalous
sample being considered as out of the one-class for OCC. This would be the Riemannian
equivalent of taking the last components of a vanilla PCA as an AD score, a method
called negated PCA. This negated PCA is motivated by the possibility that, in one-class
classification where model fitting occurs on normal data only, the first principal compo-
nents responsible for most of the variance in normal data are not the most discriminating
ones when it comes to distinguishing normal samples from anomalies [129, 147, 148].
These two last manifold-aware approaches relying on tPCA are not fully Riemannian
either, in reference to the purely Riemannian Deep SVDD SPD adaptation previously
proposed. In the first case the OCC method is not Riemannian in any way, and in
the second case the AD score is not manifold-aware, whereas for the Riemannian Deep
SVDD SPD adaptation the final score is provided by a Riemannian metric in addi-
tion to all transformations being manifold-aware. A non-exhaustive map of the OCC
approaches mentioned in this chapter is proposed on Fig. 3.4.

3.3 One-class classification experiments

As indicated in Chapter 1, we consider unsupervised AD as experiments where no labeled
anomalies are available during training to refine the implemented discrimination, and
SAD experiments as experiments where in addition to the samples belonging to the
one-class, a small minority of unrepresentative labeled anomalies is accessible during
training. The OCC experiments presented in this section are presented in their order
of publication in conference and workshop papers, i.e. each upcoming section refers to
specific datasets while combining experiments with different levels of supervision.

3.3.1 OCC on high-resolution range profiles

The experiments presented in this section stem from our 2020 IEEE Radar Conference
paper [24] which applied OCC to HRRPs. The dataset is composed of real radar 1D
range profiles (RP) generated by a very high performance radar for coastal surveillance,
the Coast Watcher 100 Thales radar (see Fig. 1.8). Each range profile is composed of
200 cells with various intensities. The labelling of the data samples stems from the AIS14

announced ship types. This constitutes a first potential difficulty in the creation of the
dataset since the labels provided by AIS are functional (i.e. they describe the function
of a ship, not its appearance and dimensions). Another possible interpretation of our
training set pollution with unlabeled anomalies for unsupervised AD is the mislabeling
of AIS data, or the intra-class variance of AIS labels, both interpretations affirming
the point of experimenting with such pollution. Note that here pollution has the same
meaning as contamination in 3.3.3. The dataset is balanced and composed of four classes
of range profiles: the latter either belong to cargo ships, fishing ships, passenger ships
or tankers. A characteristic example RP of each class can be seen on Fig. 3.5. A total
of 12000 HRRPs are available for each class.

A possible operational use of anomaly detection with the previous classes could be
the following: considering a busy but regulated waterway in terms of fishing, an operator
could be helped by automatic AD alerts detecting fishing ships in the area. This implies

14Automatic Identification System
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Deep OCC
(with location estimate)

Deep SVDD
Eq.(3.9)

Deep SVDD SPD*
Section 3.2.3

Deep MSVDD
Eq.(3.10)

Spread estimate

Semi-supervision
(labeled anomalies for model fitting)

Shallow OCC
(with location estimate)

SVDD
Eq.(3.7)

Negated PCA
Section 3.2.3

Negated tPCA*
Section 3.2.3

Deep SAD
Eq.(3.13)

Deep SAD SPD*
Section 3.2.3

Deep RPO
Eq.(3.14)

SVDD
Eq.(3.11)

Mahalanobis
Eq.(3.1)

RPO
Eq.(3.2)

Deep RPO
Eq.(3.17)

Deep AE
Eq.(3.6)

Isolation Forest
Eq.(3.5)

* : SPD manifold aware approach

Figure 3.4: Non-exhaustive map of the OCC approaches mentioned in chapter 3. Each
method name is associated with a reference to the equation or paragraph describing
it. Not all methods are positioned on the illustration since the aim of the figure is to
map either the proposed approaches based on Deep SVDD with respect to the latter,
or the manifold-aware methods. Additionally, an isolation-based OCC such as IF (see
Eq. (3.5)) has no place in the categorization proposed here. A deep OCC auto-encoder
using a reconstruction error as training loss and OOD score is mapped outside of the red
circle even though it learns to capture the training data distribution, i.e. the one-class
distribution. This choice stems from the AE learning the distribution only implicitly.
In such a case, no centroid or one-class reference coordinates are available in any rep-
resentation space as in-distribution data location estimate, although one could harness
a clustering algorithm on the representations generated by the trained AE. The part
of the semi-supervision circle without intersection is empty since the circle is drawn to
highlight the shallow and deep methods able the take advantage of a minority of labeled
anomalies during model fitting. One can note that all the deep OCC approaches repre-
sented here should be within the semi-supervision circle had we opted for the alternative
AD supervision categorization put forward in [47] as explained in 1.3.2.
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Figure 3.5: Example range profiles (one per class considered). Horizontal axis denotes
the range cell index, vertical axis denotes the amplitude.

normality is defined by the three other classes (cargo ships, passenger ships, tankers), for
which many samples should be available. Note that our experiments define normality
based on a single class of ships, but the described operational use can still be achieved by
combining the results of AD on each normal class. This scenario can be easily extended
to a variety of realistic surveillance contexts: detection of specific ships despite the
shutdown of AIS, detection of military ships without AIS and IFF15.

In order to obtain range profiles expressive enough for relevant experiments, the data
samples chosen for our experiments were beforehand selected according to their com-
bined range cells energy. This selection aims at avoiding both too small and too high
energies as a crude effort to avoid model bias imputable to the outliers of each class.
This work deliberately avoids elaborate preprocessing to reveal the potential of AD on
raw HRRPs. We will see in our results AD methods applied on data with and without
normalisation. Outside this samples preselection and non systematic normalisation, no
steps are taken in order to counter amplitude-scale, time-shift and target-aspect sensitiv-
ities, which seems uncommon when compared with other HRRP processing approaches
[67, 63, 194]. Regarding time-shift sensitivity, one should note that most of our samples
are nonetheless approximately aligned. About the diversity of targets, no exact count
was made of the ships eventually retained by our preselection, but this diversity is above
the one observed in other studies dedicated to HRRP targets such as [194].

Our unsupervised AD results aim at comparing between shallow and deep AD meth-
ods, but also at individually appreciating the sensitivity to training pollution of each
unsupervised AD method, with fixed hyperparameters through the pollution changes.
We maintain constant hyperparameters when polluting the training set in order to stay
relevant regarding an actual implementation of one of the methods considered with im-
perfect radar data. The results of Deep SAD are here to demonstrate the ability of
labeled anomalies to contribute to Deep AD through recent semi-supervised approaches
adaptable to HRRP data. Each unsupervised and semi-supervised experiment includes
detecting anomalies of at least two classes completely unseen during training at test
stage. As was already mentioned, this is fundamental in order to respect the diversity

15Identification Friend or Foe
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and unpredictability of anomalies. The metric defining all results is the area under the
receiver operating characteristic curve (ROC AUC), as was used in other recent works
on AD such as [153, 63, 194, 195]. For each experiment, over the 48000 HRRPs of our
dataset a random fraction of 10% defines the test set.

Experimental setup

As was done in [153], we use a LeNet-type CNN with leaky ReLU activations for our
Deep SVDD and Deep SAD neural network. The CAE architecture will be similar to
allow the use of the trained weights of its encoder for the initialization of the Deep SVDD
network (such initialization constitutes a pretraining). For these three neural network
based AD, a batch size of 128 and a learning rate of 10−3 were used. The weight decay
hyperparameter was set to 10−6. The CAE used for AD and to provide Deep SVDD with
pretrained parameters has been trained during ten epochs. For unsupervised AD, Deep
SVDD was trained during 20 epochs whether it was initialized with the CAE encoder
parameters or not. For SAD, the Deep SAD network adapted from Deep SVDD with
a new objective was trained during 20 epochs, with a semi-supervised objective term
balanced by η equal to one, as found in [152].

Regarding the hyperparameters of our shallow methods: LOF was set with a num-
ber of nearest neighbors of 48 to be considered in local densities estimations, and a
contamination of 10%. RPD involves 1000 random projections to produce its statistical
projection depth approximation, and OC-SVM had its ν set to 10−1. Our IF was exe-
cuted with 100 estimators, a contamination of 10% and a maximum number of samples
per subsample of 1024, thus respecting the original spirit of IF, designed to work best
with a substantially limited subsample [118]. The methods parameters were directly
inspired by the available implementation of [153].

In the case of dimensionality reduction by PCA, the PCA is systematically preceded
by min-max normalization and the number of components kept is chosen in order to
retain 95% of the variance. This dimensionality reduction setup was inspired by the
methodology proposed in [153]. It is to be noted that the PCA is always fitted using
the training samples of the normal class only, this means that for each normal class
change, there is a different PCA that is being used. The PCA used for dimensionality
reduction of the test samples of a given class will, for instance, not be the same between
an experiment where the same class is defined as normal, and another experiment for
which another class will define normality and be responsible for the AD training. For
Deep AD experiments, only a similar min-max normalization will be applied to the data.

Unsupervised AD with training set pollution
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Figure 3.6: Unsupervised AD results. Each color point describes an AUC averaged over the experiments where a single pollution class is considered
among the anomalous classes at a time. For example, a point associated with the normal cargos will be defined by the mean AUC of the experiments
where pollution anomalies stem from the passenger ships, the fishing ships and the tankers respectively. Also, each single experiment setup is executed
on three different seeds. This implies that each point actually depicts a mean of mean (over varying pollution and seeds respectively). The vertical
bar associated with each point represents the mean standard deviation over all experiments and seeds (one standard deviation is computed over
each set of seeds, then a mean is determined over all experiments). Each method suffers a loss of AUC for a higher pollution ratio of its training
set supposedly pure of anomalous samples.
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The results of unsupervised AD with training pollution are illustrated on Fig. 3.6.
Results are globally good, with an expected impact of progressive pollution of the sup-
posedly purely normal training set. Weaker detection is achieved when the normal class
consists of passenger ships. This class likely makes it harder to guess a normality bound-
ary since it is associated with an important features variance, and ships belonging to
a wider range of lengths. This interpretation is compatible with the smaller drop of
AUC for this normal class when pollution is introduced in the training set: the anomaly
detection was already a little confused by the variety within the normality before any
pollution. This reminds us how essential it is to wisely choose what the one-class can
be made of when discriminating using OCC. The most sensible drops of performances
can be seen for IF associated with normalization and PCA in preprocessing. A slight
improvement can be observed when Deep SVDD benefits from a pretrained network
thanks to an initialization that uses the weights of a CAE encoder trained on similar
data. The most harmful pollution to normal classes cargo, passenger and tanker is the
one made of fishing ships. Indeed, introducing anomalous fishing ships as pollution
makes it harder to detect the most distinguishable class from normality in those cases.

IF and RPD stand out as the most stable AD through pollution (apart from IF with
normalization and PCA), whereas the deep unsupervised AD methods and LOF indicate
high sensibility to training set impurity, with an apparent plateau effect for LOF polluted
experiments AUCs. LOF nonetheless obtains excellent results when the training set is
not polluted. RPD also stands out as a shallow AD for which the normalization and
PCA have no substantial impact on the AUC obtained. This stability illustrates the
affine invariance properties of RPD. AUC is exceptionally high when the normal class is
composed of fishing ships (class one) because of the easy distinction of this class among
our three others: one could easily select most fishing ships in our dataset based on the
active range-profile length only. The active range profile size is perhaps the most reliable
feature of our HRRPs since the latter are subject to high variability within a single class,
the dominant scatterers changing between ships with the same function (i.e the same
AIS label), without even mentioning target-aspect sensitivity. Finally, regarding the
resources needed to train the AD methods considered, this study revealed that outside
the neural networks training that requires the biggest resources, LOF was the slowest,
followed by OC-SVM (even though helped by a PCA-reduced dimensionality) and then
IF. RPD was the quickest method to train in our study. Note that RPD training amounts
to setting the location and spread estimators of RPO using the training data.

Semi-supervised AD

The results of semi-supervised AD with labeled samples during training are illustrated
on Figure 3.7. For normal classes cargo and passenger, the introduction of labeled
anomalies improves the mean AUC. One can further note that where unsupervised
AD encountered difficulties for normal class passenger, SAD seems to tackle the latter.
The mean AUC however drops with labeled anomalies for normal class tanker. Upon
investigation, it emerged that a single SAD experiment (i.e. a single type a labeled
anomaly) is responsible for this drop: once labeled anomalies from class cargo are added
to the training data when the normal class is tankers with a non zero ratio, the AUC
drops. It seems not to stem only from excessive proximity of the two classes in terms of
ship size otherwise the same drop would impact the AUC when the roles are reversed
(normal class defined by cargo and contaminated by tanker). The reason behind this
asymmetrical decrease could be a combination of the untreated HRRPs sensitivities and
the intra-class ships diversity. Going back to the successful SAD experiments, the rise of
AUC due to labeled anomalies for normal class cargo and normal class passenger ships
appears to reach a plateau: 1% and 5% of labeled anomalies help approximately as much
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Figure 3.7: Semi-supervised AD results using Deep SAD, the semi-supervised adaptation
of Deep SVDD. AUC averaged over three experiments, with three seeds per experiment
as for unsupervised AD: in each experiment we change the anomaly class from which
labeled anomalies originate. Vertical bars represent standard deviations computed over
the various experiments and seeds. The colors describe the four different labeled anoma-
lies ratios in the training data considered (blue: 0%, cyan: 1%, green: 5%, red: 10%).

as 10% labeled anomalies. A possible interpretation would be that few samples suffice
to clarify the decision boundary of the AD method towards one specific kind of anomaly,
with no further improvement in that so-called anomaly direction after a certain point.
It is irrelevant to explore higher ratios of labeled anomalies within the training set, since
doing so would switch our AD context with a supervised classification one.

Concluding remarks

This study shows that a variety of anomaly detection methods can be effective for
unusual HRRP targets detection. Our results on semi-supervised detection demonstrate
the possibility to improve such detection using a few labeled anomalies. Besides, since
hyperparameters were not extensively fine-tuned the methods could yield additional
improvements. This potential is also increased by the various advantages and drawbacks
offered by each method considered.

3.3.2 OCC on images

The experiments presented in this section stem from our 2021 ICML UDL workshop pa-
per [25] which applied OCC to the now classic image classification datasets of the deep
learning community: MNIST [109], Fashion-MNIST [200], and CIFAR10 [105]. Addi-
tional experiments were conducted on the Statlog (Landsat Satellite) dataset from the
UCI machine learning repository16 [64]. The satellite data was considered to make our
comparison of OCC methods more diverse for the data part, thus making the comparison
more robust, and to make sure to consider a realistic discrimination task.

All experiments in 3.3.2 were conducted using PyTorch, on either of the following
hardware configurations: AMD Ryzen 7 2700X with Nvidia RTX 2080, or Intel Xeon
E5-2640 with Nvidia GTX Titan X. Table 3.1 reports the main results of this work.
RPO stands for the original RPO, described in Eq. (3.2) with its location estimator
and spread measure, respectively the median and MAD, defined on the training dataset
completely made of normal samples. This means RPO is adapted to a machine learning
data paradigm, whereas the original RPO was meant to directly be applied to a test set
in which there would not be a significant proportion of anomalies. The direct application

16https://archive.ics.uci.edu/ml/datasets/Statlog+\%28Landsat+Satellite\%29 Accessed:
01-09-2022



82 CHAPTER 3. OCC FOR RADAR TARGETS DISCRIMINATION

of RPO to our test sets without determining the medians and MADs on the training
data leads to performances next to randomness. Such unsupervised and untrained RPOs
are therefore not represented in the results tables. This poor performance is due both to
the inadequate balance between samples considered as anomalies and the normal ones,
and the potentially insufficient number of RPs with respect to the input space. Indeed,
the more the input space to which RPs are applied to is of high dimensionality, the more
RPs you need to obtain an informative projected estimator [80]. Most of the failure can
however be attributed to the data balance of the test sets in this case. Apart from the
results dedicated to the study of the influence of the number of RPs used in the latent
RPO for deep RPO in table 3.3 and table 3.4, RPO is implemented using 1000 RPs.

In table 3.1, RPO-max is the closest AD to the original RPO but as previously
stated it is beforehand adapted to take into account training data. RPO-mean is the
shallow equivalent of the proposed method, deep RPO-mean, which adds an encoding
neural network in front of RPO in the AD process. The same goes for RPO-max
and deep RPO-max, which constitutes a more direct descendant of the original RPO.
The random projections tensor is initialized by a random realization of a standard
normal distribution. Random projections leading to a single projected dimension are
normalized, so that they belong to the unit sphere in accordance with (3.2).

The input dimensionality for the shallow methods RPO-max and RPO-mean in table
3.1 is the dimensionality of the flattened input images, i.e. 784 for MNIST and Fashion-
MNIST, and 3072 for CIFAR10. Deep SVDD and deep RPO encode the input images
into latent representations of 32 and 128 dimensions, for MNIST, Fashion-MNIST and
CIFAR10 respectively, before projecting using RPs when RPs are used. Hyperparame-
ters were directly inspired by the ones used by deep SVDD authors since their method
constitutes the baseline to which the proposed method is compared. In particular, the
encoding networks architectures are the ones used for MNIST, Fashion-MNIST and
CIFAR10 for the original deep SVDD [153] and deep SAD [152]. The weight decay hy-
perparameter was kept at 10−6, even though for deep RPO it did not have a great impact
in our experiments when compared with trials where the decay had been removed.

The metric used to evaluate the AD methods is the average AUC over several seeds,
associated with a standard deviation, as can be found in the AD literature. One should
keep in mind that when the number of classes defining normality increases, the datasets
classes balance change. Before training, a validation set, made of 10% of the original
training set, is created using scikit-learn common split function. For all deep experi-
ments, the retained test AUC is the one associated with the best epoch observed for
the validation AUC as was done in [52]. AUCs reach either a convergence plateau or a
maximum before dropping in 50 epochs, this number of epochs was thus chosen for all
the experiments. This represents a substantial difference with the experimental setup
proposed in [153], where models were trained with many more epochs, benefited from
pre-training accomplished using an auto-encoder, and a tailored preprocessing. The
comparison between deep SVDD and deep RPO remains fair in this work since the
network architecture is shared, along with the training hyperparameters. For each ex-
periment, a new seed is set and a random pick of normal classes is performed. This
means that, unlike many other papers in the literature, the nature of normality can
change every time a new seed is adopted. This additional diversity behind the average
AUCs presented explains the high standard deviations observed in the results.
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# modes RPO-max (1) RPO-mean Deep SVDD Deep RPO-max Deep RPO-mean (2) (2)-(1)

MNIST - 1 84.64 ±6.73 84.12 ±6.74 88.60 ±4.62 87.96 ±5.31 90.10 ±4.10 5.46
2 75.27 ±8.68 72.83 ±9.42 84.35 ±6.57 83.79 ±6.97 85.36 ±6.48 10.09
3 69.67 ±9.65 66.92 ±10.25 81.23 ±6.76 80.16 ±7.12 81.60 ±7.00 11.93
4 66.54 ±9.20 63.60 ±10.31 78.89 ±6.56 77.35 ±6.92 78.65 ±7.05 12.11

F-MNIST - 1 89.19 ±5.81 89.73 ±5.79 90.45 ±5.76 90.17 ±6.09 91.13 ±5.20 1.94
2 78.52 ±8.39 76.47 ±8.38 85.24 ±6.45 84.57 ±7.01 85.81 ±6.36 7.29
3 71.06 ±7.38 69.37 ±7.64 80.30 ±6.99 80.64 ±6.69 81.28 ±6.40 10.22
4 67.58 ±5.89 65.79 ±6.55 77.30 ±4.99 77.53 ±5.07 77.82 ±5.34 10.24

CIFAR10 - 1 57.62 ±10.96 58.62 ±9.43 64.15 ±7.38 60.22 ±7.00 63.14 ±7.30 5.52
2 53.85 ±9.49 53.81 ±7.61 56.37 ±9.25 55.66 ±8.54 56.46 ±8.89 2.61
3 52.20 ±6.95 52.53 ±5.08 54.16 ±6.94 53.87 ±6.20 54.30 ±6.80 2.10
4 51.88 ±5.91 52.32 ±4.97 53.64 ±5.97 53.71 ±5.78 53.88 ±5.89 2.00

Table 3.1: The integrator estimator choice: mean versus maximum. RPO, deep RPO and deep SVDD test AUCs on MNIST, Fashion-MNIST and
CIFAR10 for one to four modes considered as normal, for 30 seeds (truncated mean AUC ± std). The best AUC per number of modes and dataset
is indicated in bold.
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# modes 1 3

MAX - 1D RPs 90.17 ±6.09 80.63 ±6.68
MAX - 2D RPs 89.40 ±6.43 79.63 ±7.08
MAX - 4D RPs 89.47 ±6.45 79.60 ±7.06

MEAN - 1D RPs 91.13 ±5.20 81.28 ±6.40
MEAN - 2D RPs 90.36 ±5.79 80.44 ±6.65
MEAN - 4D RPs 90.24 ±5.86 80.44 ±6.60

Table 3.2: Deep RPO test AUCs with varying RP latent dimensionality for the two
estimators studied on Fashion-MNIST for 30 seeds (truncated mean AUC ± std). The
best AUC per number of modes is indicated in bold.

The results of experiments over the three datasets considered, with 30 seeds per
experimental setup, are gathered in table 3.1. The latter demonstrates the superiority
of the mean over the max as an estimator for RPO when working with the deep RPO
setup. The shallow RPO setup, on the other hand, suggests better performances can be
obtained using a max. The neural network thus favors a loss balanced over all the single
projected outlyingnesses. Moreover, the increasing AUC gap between deep RPO and
shallow RPO ADs for MNIST and Fashion-MNIST supports the hypothesis that the
encoding neural network allows RPO to face multimodal normality in AD. The growing
gap in the last column is not observed for CIFAR10, however this failure is likely to
stem from the excessive difficulty of the AD task rather than from an inability of deep
RPO. The better performance of deep RPO-mean compared to deep SVDD placed the
proposed method at the state-of-the-art level at the time of the workshop paper [25]
publication.

The other experiments conducted mostly rely on two Fashion-MNIST setups, where
the normality is defined by either one or three classes, as can be seen in tables 3.2, 3.3, 3.5,
3.6 and 3.7. CIFAR-10 was not selected, except to check whether the poor performances
associated with this dataset stem from an inadequate number of RPs in table 3.4, because
the multimodal AD remains an excessively complex task for the methods considered as
table 3.1 points out, while MNIST does not carry multiscale structure, making it a less
interesting example [151].

Dimensionality and number of random projections

The results of Table 3.2 indicate that no improvement was achieved through the increase
of the RP dimensionality, the best score being associated with RPs projecting output
representations stemming from the neural network on a single dimension. These scores
also support the idea that Deep RPO works better with a mean estimator to integrate
single RP outlyingness scores over all RPs.

Results in Table 3.3 indicate an adequate number of RPs was chosen to implement
the RP outlyingness for the encoded data. A slight AUC increase has been achieved
by decreasing the number of random projections shared by the rest of the experiments,
i.e. 1000, possibly indicating the approximate minimum number of RPs necessary to
handle the dimensionality of the neural network encoded latent space. One can think
that using the minimum number of RPs to handle the RPO score input dimensionality
in a deep setup constitutes a sensible strategy since it avoids superfluous parameters
without hurting the outlyingness measure.

As announced, Table 3.4 suggests that the poor performances observed on CIFAR10
do not stem from an insufficient number of random projections, eventhough the greater
latent dimensionality used for this dataset encoding could be expected to call for ad-
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# modes 1 3

100 RPs 90.25 ±5.18 81.70 ±6.73
500 RPs 90.46 ±5.21 81.96 ±6.67
1000 RPs 90.30 ±5.25 81.67 ±6.87
2000 RPs 90.42 ±5.19 81.83 ±6.83

Table 3.3: Deep RPO-mean test AUCs with varying number of RPs for the latent space
RPO on Fashion-MNIST for 20 seeds (truncated mean AUC ± std).

# modes 1000 RPs 3000 RPs

1 63.14 ±7.30 63.18 ±7.49
2 56.46 ±8.89 56.44 ±8.92
3 54.30 ±6.80 54.32 ±6.74
4 53.88 ±5.89 54.00 ±5.98

Table 3.4: Deep RPO-mean on CIFAR10 for 30 seeds, with either 1000 or 3000 RPs
for RPO (truncated mean AUC ± std). The data being more complex, more RPs were
used to verify whether a simple increase in the number of RPs could lead to better
performances, without success.

ditional model complexity. These results emphasize the difficulty of the learning task
considered when it comes to more realistic multimodal data.

Projections and components dropouts

Picking up the previously introduced notation in sections 3.1.1 and 3.1.3 regarding ran-
dom projections, d is the data samples dimensionality, m the random projections output
dimensionality, and p the number of random projections. Two types of dropouts [171]
can be introduced on the random projections leading to the encoding network train-
ing loss: a dropout on the projections themselves, and a dropout on the components
of the projections. In the first case, the dropout removes entire projections, implying
a selection, in accordance with the dropout rate, over the p-dimensional channel of
the projecting random tensor. Components dropout implies a selection, with its own
dropout rate, along the d-dimensional channel. The indexes selected for this dropout
will then cancel the corresponding dimensions in the random projections, thus ignor-
ing as many components among the inputs. The RPs are normalized again after the
components dropout, when m = 1, in accordance with Eq. (3.2). To respect the no-
tation introduced, applications on images would flatten the input pixels array into a
d-dimensional vector before their projection. For Deep RPO there is no need to flatten
matrices as the output of the neural network has a unique dimension. As an intuitive
example, in the specific case m = 1 which coincides with the original RPO, the random
projections define a matrix d × p: the projections dropout here would remove columns
over the second dimension, whereas the components dropout would discard rows over
the first dimension. No rescaling is operated under the proposed dropout mechanism,
which differs from the original dropout implementation [171].

Table 3.5 indicates there is no actual AUC increase when harnessing either of the
dropouts put forward for the random projections leading to the outlyingness measure.
Since no substantial performances improvement was reached using the dropouts indi-
vidually, their combined effects were not studied.
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# modes 1 3

No dropout 89.00 ±3.71 78.71 ±4.80
C = 0.1 89.19 ±3.57 78.64 ±4.85
C = 0.3 89.18 ±3.58 78.64 ±4.85
C = 0.5 89.19 ±3.57 78.64 ±4.85
P = 0.1 89.05 ±3.68 78.51 ±4.93
P = 0.3 88.88 ±3.80 78.36 ±4.97
P = 0.5 88.67 ±3.97 78.43 ±4.76

Table 3.5: Deep RPO-mean test AUCs with and without components and projections
dropouts on Fashion-MNIST for 10 seeds (truncated mean AUC ± std). C. is compo-
nents dropout rate, P. is projections dropout rate. The best AUC per number of modes
is indicated in bold.

SAD method SAD ratio 1 3

deep SAD 0.00 87.70 ±5.30 78.30 ±5.02
deep SAD 0.01 88.08 ±5.03 83.49 ±4.71
deep SAD 0.10 90.37 ±4.00 84.54 ±4.87

deep RP-SAD 0.00 89.00 ±3.71 78.71 ±4.80
deep RP-SAD 0.01 89.19 ±3.60 78.76 ±4.90
deep RP-SAD 0.10 89.40 ±3.46 79.93 ±5.30

Table 3.6: Semi-supervised anomaly detection with distance inversion as in deep SAD
for deep RPO to take into account rare labeled anomalies during training. The SAD
ratio denotes the percentage of the training set composed of labeled anomalies. Two
anomalous classes are randomly picked for each seed to provide the labeled anomalies.
Experiments conducted with either one or three modes in the normality on Fashion-
MNIST for 10 seeds (truncated mean AUC ± std).

Deep RPO for SAD

As introduced in 3.1.2 and in 3.1.3, both Deep SVDD and Deep RPO can integrate the
additional supervision of labeled out-of-distribution samples during training to refine the
boundaries of the latent normality. In Table 3.6 Deep SVDD, transformed into Deep
SAD, appears to more significantly benefit from the additional information provided by
a small minority of labeled anomalies during the training. Nevertheless Deep RPO also
takes advantage of the latter to improve detection performances, confirming the gener-
ality of the distance inversion method to allow a location estimator based unsupervised
AD to achieve SAD.

Stability against affine transformation

An affine transformation, defined as a constant multiplication of every component of
the input representation of the samples, is applied to challenge the affine stability of the
AD methods performances once the training is over. This affine transformation, defined
by the constant α shown in the upper part of Table 3.7, breaks the normalization of
the inputs features before their presentation to the neural network first layer. The
experiments results suggest that deep RPO and deep SVDD are comparably stable with
respect to the input transformation considered, and that such transformation does not
trigger a drop in AUC. In addition, one can notice that the average test AUC slightly
increases in some cases with the affine data disturbance. The lower part of Table 3.7
reports the results where instead of a constant diagonal matrix applying α to each
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AD method α 1 AUC gap 3 AUC gap

deep SVDD 0.80 87.02 ±5.56 -0.70 ±1.05 76.49 ±5.67 -1.81 ±0.86
deep SVDD 0.90 87.77 ±5.24 +0.03 ±0.29 78.02 ±5.15 -0.29 ±0.29
deep SVDD 0.95 87.83 ±5.22 +0.09 ±0.14 78.31 ±5.02 -0.00 ±0.16
deep SVDD 1.00 87.73 ±5.24 ±0.00 ±0.00 78.31 ±5.02 ±0.00 ±0.00
deep SVDD 1.05 87.48 ±5.30 -0.25 ±0.20 78.05 ±5.18 -0.25 ±0.28
deep SVDD 1.10 87.09 ±5.40 -0.63 ±0.50 77.55 ±5.52 -0.76 ±0.75
deep SVDD 1.20 86.01 ±5.71 -1.71 ±1.32 75.98 ±6.65 -2.32 ±2.13

deep RPO 0.80 88.53 ±4.15 -0.72 ±1.48 76.85 ±5.28 -1.77 ±1.22
deep RPO 0.90 89.25 ±3.65 -0.00 ±0.59 78.33 ±4.85 -0.29 ±0.57
deep RPO 0.95 89.33 ±3.56 +0.07 ±0.31 78.61 ±4.79 -0.01 ±0.29
deep RPO 1.00 89.26 ±3.54 ±0.00 ±0.00 78.63 ±4.85 ±0.00 ±0.00
deep RPO 1.05 89.01 ±3.60 -0.24 ±0.38 78.38 ±5.05 -0.24 ±0.34
deep RPO 1.10 88.62 ±3.76 -0.63 ±0.84 77.91 ±5.36 -0.71 ±0.74
deep RPO 1.20 87.48 ±4.39 -1.77 ±1.95 76.49 ±6.25 -2.13 ±1.74

deep SVDD U[0.9;1.1] 87.47 ±5.10 78.15 ±4.76
deep SVDD U[0.8;1.2] 86.70 ±5.52 77.52 ±5.01
deep SVDD U[0.6;1.4] 83.86 ±7.21 75.67 ±5.94
deep SVDD U[0.5;1.5] 81.28 ±8.74 73.64 ±7.10
deep SVDD N(0, 1) 52.20 ±16.01 50.56 ±12.37

deep RPO U[0.9;1.1] 88.76 ±3.61 78.54 ±4.70
deep RPO U[0.8;1.2] 87.99 ±3.99 77.97 ±5.03
deep RPO U[0.6;1.4] 85.12 ±5.73 76.32 ±6.05
deep RPO U[0.5;1.5] 82.49 ±7.35 74.59 ±7.19
deep RPO N(0, 1) 52.02 ±16.16 50.05 ±10.77

Table 3.7: Deep RPO-mean test AUCs with varying affine transformation coefficient α
on Fashion-MNIST for 10 seeds (truncated mean AUC ± std). The AUC gap is the
mean AUC error, computed over all seeds, with respect to the AUC obtained when
α = 1, i.e. the baseline case. In the first part of the table, α denotes the constant
value along the affine transformation diagonal matrix. In the second part, the diagonal
elements are randomly generated according to either a uniform or a gaussian standard
distribution. No AUC gap is computed since the seed by seed comparison with the
baseline AUC would be unfair, a mean AUC test being computed over 20 random picks
of the diagonal matrix for each seed.

input component, another diagonal matrix is used for which the diagonal coefficients are
generated using either a random uniform or a standard gaussian distribution. Again,
deep RPO and deep SVDD show comparable stability when confronted with the more
distorting affine transformations. Looking at the standard deviations overall, deep RPO
seems slightly more stable.

Additional experiments on tabular data

Since AD on MNIST, Fashion MNIST and CIFAR10 is very common and excellent per-
formances have already been obtained on these datasets using self-supervised learning,
we compare the highlighted shallow and deep methods of our main results in Table 3.1
on less common tabular data. As can be seen in Table 3.8, Deep SVDD remains our
baseline. A satellite dataset is chosen 17. The data stems from the original Statlog

17http://odds.cs.stonybrook.edu/satellite-dataset/ Accessed: 28/10/2022



88 CHAPTER 3. OCC FOR RADAR TARGETS DISCRIMINATION

Method mean test AUC ± std

Deep SVDD 68.23 ±5.53
RPO-Max 64.89 ±2.67
Deep RPO-Mean 73.01 ±5.93

Table 3.8: Deep RPO-Mean, RPO-Max and the baseline deep SVDD on the satellite
dataset for 20 seeds (truncated mean AUC ± std). A more complete max versus mean
comparison for both RPO and Deep RPO can be found in Table 3.1.

(Landsat Satellite) dataset from UCI machine learning repository 18 [64], where the
smallest three classes are combined to form the outlier class, while the other classes de-
fine the inlier class. As for the previous experiments, deep SVDD and deep RPO-Mean
share the same neural network architecture and training hyperparameters, to produce
a fair comparison. The improvement provided by Deep RPO-Mean is confirmed. The
number of RPs used in the latent RPO was set to 500, since the output dimension-
ality of 8 of the neural network is significantly lower. This in turn is due to the low
input data dimensionality for the neural network, the input samples being 1D vectors
defined by 36 values. The neural networks were always trained for 80 epochs, and the
test AUC retained as the model performance for each seed is the one associated with
the best epoch with respect to the validation set AUC. The results also put forward
the contribution of the trainable neural network projecting data samples, deep SVDD
performing better then the shallow method RPO-Max. Finally, the standard deviation
of the performances appears to be higher for deep methods.

Concluding remarks

These experiments emphasize the possibility of adapting simple abnormality measures
to complex and realistic anomaly detection tasks in which normality is multimodal.
The experiments conducted on MNIST, Fashion-MNIST, CIFAR10 and satellite data
show a light improvement in performance with respect to Deep SVDD when using Deep
RPO and suggest that the task of anomaly detection in a fully unsupervised framework,
in the case of multimodal normality, remains a challenge. The relative success of the
proposed approach highlights the relevance of random projections and more generally
of untrained transformations in neural networks, when they are associated with a well
chosen trainable architecture.

3.3.3 OCC on radar spectrums and covariance matrices

The experiments presented in this section stem from our 2022 ECML PKDD paper [26]
which applied OCC to Doppler signatures. The latter details a comparison of deep
and non-deep OODD methods on simulated low-resolution pulse radar micro-Doppler
signatures, considering both a spectral and a covariance matrix input representation.
The covariance representation aims at estimating whether dedicated second-order pro-
cessing is appropriate to discriminate signatures. Pulse Doppler Radar (see Chapter 1)
signatures are generated by a MATLAB [125] simulation 19. The Doppler signatures
are a series of periodograms, i.e. the evolution of spectral density over several bursts,
one periodogram being computed per burst. Both periodograms and the series of peri-
odograms can be called spectrum in the remainder of this paper. The samples on which

18https://archive.ics.uci.edu/ml/datasets/Statlog+\%28Landsat+Satellite\%29 Accessed:
01/04/2021

19https://github.com/Blupblupblup/Doppler-Signatures-Generation Accessed: 28/10/2022
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the discrete Fourier transform is computed are sampled at the PRF frequency, i.e. one
sample is available per pulse return for each range bin.

This work compares deep and non-deep OODD methods, including second-order
methods harnessing the SPD representations provided by the sampled covariance matrix
of the signatures. The extension of the deep learning architectures discussed to SAD and
self-supervised learning (SSL) is part of the comparison. The use of SSL here consists in
the exploitation of a rotated version of every training signature belonging to the normal
class in addition to its non-rotated version, whereas SAD amounts to the use of a small
minority of actual anomalies taken in one of the other classes of the dataset. In the
first case one creates artificial anomalous samples from the already available samples
of a single normal class, whereas in the second case labeled anomalies stemming from
real target classes are made available. To avoid confusion, one should note that this
single normal class can be made of one or several target classes, which end up being
considered as a unique normality. No SSL or SAD experiments were conducted on
the SPD representations, since the SSL and SAD extensions of the deep methods are
achieved through training loss modifications, and the SPD representations were confined
to shallow baselines. In the previously described setup, SSL is nothing more than SAD
with artificial data points provided by SSL transformations.

Doppler signatures generation

The main parameters of the simulation are close to realistic radar and target charac-
teristics. A carrier frequency of 5 GHz was selected, with a PRF of 50 KHz. An input
sample is a Doppler signature extracted from 64 bursts of 64 pulses, i.e. 64 spectrums of
64 points, ensuring the full rank of the covariance matrix computed over non-normalized
Doppler, i.e. Fourier, bins. The only simulation parameter changing across the classes
of helicopter-like targets is the number of rotating blades: Doppler signatures are asso-
ciated with either one, two, four or six rotating blades, as can be found on drones and
radio-controlled helicopters. The quality of the dataset is visually verified: a non-expert
human is easily able to distinguish the four target classes, confirming the discrimination
task is feasible. The classes intrinsic diversity is ensured by receiver noise, blade size and
revolutions-per-minute (RPM) respectively uniformly sampled in [4.5, 7] and [450, 650],
and a bulk speed uniformly sampled so that the signature central frequency changes
while staying approximately centered. The possible bulk speeds and rotor speeds are
chosen in order for the main Doppler shift and the associated modulations to remain in
the unambiguous speeds covered by the Doppler signatures [114]. Example signatures
and their covariance matrix representations are depicted for each class on Fig. 3.8. For
each class, 3000 samples are simulated, thus creating a 12000-samples dataset. While
small for the deep learning community, possessing thousands of relevant and labeled
real radar detections would not be trivial in the radar industry, making larger simulated
datasets less realistic for this use case.

Preprocessing This work is inspired by [153], which experimented on MNIST, a
dataset in which samples are images of objects without background or irrelevant pat-
terns. In order to guarantee a relevant neural architecture choice, this kind of input
format is deliberately reproduced. The idea of creating MNIST-like benchmarks has
been of interest in different scientific communities such as biomedical images [201] and
3D modeling [94]. The series of periodograms, i.e. non-SPD representations are there-
fore preprocessed such that only the columns with top 15% values in them are kept, this
operation being done after a switch to logarithmic scale. This results in periodograms
where only the active Doppler bins, portraying target bulk speed and micro-Doppler
modulations, have non-zero value. Only a grayscale region of interest (ROI) remains in
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Figure 3.8: One sample of each target class: the varying number of rotating blades
defines the classes, the modulation pattern being easily singled out. The first line of
images shows Doppler signatures, i.e. the time-varying periodogram of targets over
64 bursts of 64 pulses. On those images, each row is the periodogram computed over
one burst, and each column a Fourier i.e. a Doppler bin. The second line contains
the covariance SPD representation of the first line samples. The width of the Doppler
modulations around the bulk speed on the periodograms varies within each class, as well
as the bulk speed, the latter being portrayed by the central vertical illumination of the
signature.

the input matrix with various Doppler shifts and modulation widths, examples of which
are shown on Fig. 3.9. This preprocessing leads to the "(SP)" input format as indicated
in the results tables, and is complementary to the covariance representation. Covariance
matrices are computed without such preprocessing, except for the switch to logarithmic
scale which precedes the covariance computation. Comparing covariance-based OODD
to OODD on spectral representations is fair since both representations stem from the
same inputs, the covariance only implying an additional transformation of the input
before training the AD. All input data is min-max normalized except for the covariance
matrices used by tPCA.

Riemannian methods for covariance matrices

Two SPD-specific AD approaches were considered. The first approach consists in re-
placing the principal component analysis dimensionality reduction preceding shallow AD
with an SPD manifold-aware tangent PCA (tPCA). As explained in 3.2.3, tPCA is a
questionable choice when the objective set is AD with multimodal normality, something
that is part of the experiments put forward in this work. Nonetheless, the Euclidean
PCA being a common tool in the shallow AD literature, tPCA remains a relevant can-
didate for this study since it enables us to take a step back with respect to non-deep
dimensionality reduction.

The second SPD-specific approach defines a Riemannian equivalent to Deep SVDD
already mentioned in 3.2.3: inspired by recent work on SPD neural networks [121, 35, 89,
207], which learn intermediate representations while keeping them on the SPD matrices
manifold, a Deep SVDD SPD would transform input covariance matrices and project the
latter into a latent space comprised within the SPD manifold. Taking into account SAD
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Figure 3.9: Random samples of the
fourth class after the preprocessing
erasing the irrelevant background,
which makes the dataset closer to
the MNIST data format. One can
notice the varying modulation width
of the target spectrum and central
Doppler shift. The fourth class
has the highest number of rotat-
ing blades on the helicopter-like tar-
get, hence the higher complexity of
the pattern. These samples illus-
trate the input format of the vari-
ous AD methods compared in this
work, and are min-max normalized
so that their values belong to [0, 1].
Only the inputs of the Riemannian
setup where shallow learning AD is
used on SPD inputs after tPCA uses
a different input format, where the
input covariance is not normalized.

and SSL labeled anomalies during training was expected to be done as for the semi and
self-supervised adaptations of Deep SVDD described earlier, where labeled anomalies
are pushed away from the latent normality centroid thanks to an inverse distance term
in the loss. For Deep SVDD SPD, the distance would be a geometry-aware distance
such as the Log-Euclidean distance. Despite diverse attempts to make such a Deep
SVDD SPD model work, with and without geometry-aware non-linearities in the neural
network architecture, no effective learning was achieved on our dataset. This second
approach will therefore be missing from the reported experimental results. An example
architecture of such an SPD-manifold aware Deep SVDD adaptation is still proposed
in section C.2. Since this approach defined the ReEig [89] non-linearity rectifying small
eigenvalues of SPD representations, the related shallow AD approach using the norm
of the last PCA components as an anomaly score was also considered. This approach
was applied to both spectral and covariance representations, with the PCA and tPCA
last components respectively, but was discarded as well due to poor performances. The
latter indicate that anomalous samples are close enough to the normal ones for their
information to be carried in similar components, emphasizing the near OODD nature
of the discrimination pursued.

Experiments

AD experiments are conducted for two setups: a first setup where normality is made of
one target class, and a second setup where normality is made of two target classes. When
a bimodal normality is experimented on, the normal classes are balanced. Moreover,
the number of normal modes is not given in any way to the AD methods, making
the experiments closer to the arbitrary and, to a certain extent, unspecified one-class
classification useful to a radar operator. Within the simulated dataset, 90% of the
samples are used to create the training set, while the rest is equally divided to create
the validation and test sets. All non-deep AD methods are applied after a preliminary
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dimensionality reduction, which is either PCA or tPCA. The number of RPs used to
compute the outlyingness score with RPO and Deep RPO is the same and set to 1000,
even though the estimator used differs between the shallow and the deep approach. All
deep experiments were run on a single GPU, which was either a NVIDIA Tesla P100
or a NVIDIA RTX 2080. In both cases running one deep AD setup for ten seeds took
approximately one hour. Non-deep experiments were CPU-intensive and also required
around one hour for ten seeds on a high-end multi-core CPU.

Deep learning experiments The test AUC score of the best validation epoch in
terms of AUC is retained, in line with [52]. All experiments were conducted with large
1000 samples batches, which stabilizes the evolution of the train, validation and test
AUCs during training. The training is conducted during 300 epochs, the last 100 epochs
being fine-tuning epochs with a reduced learning rate, a setup close to the one in [153].
As was suggested in [52] a relatively small learning rate of 10−4 is chosen to help avoid
the latent normality hypersphere collapse, i.e. the convergence to a constant projection
point in the latent space in the non-SAD and non-SSL cases, with λ = 10−6. Such a
latent normality collapse is made impossible when SAD or SSL samples are concentrated
around dedicated centroids or scattered away from normality centroids, since the network
is then trained to disperse representations. Loss terms integrating labeled anomalies for
extra training supervision are balanced with η = 1, and for Deep MSVDD ν = 0.1.
Hyperparameters are kept constant across all experiments conducted, in order to ensure
fair comparisons. In the results tables, the second and third columns indicate whether
SAD and SSL samples were used for additional supervision during training, and describe
how such samples affected the training loss if present. When the SAD or SSL loss
term is defined by a centroid, it means that the distance to the mentioned centroid
is minimized during training, whereas "away" implies the projection of the SAD or
SSL samples are repelled from the normality centroid thanks to an inverse distance
as described previously. For example, the first line of the second part of Table 3.10
describes an experiment where SAD samples are concentrated around the SAD samples
latent centroid, and SSL samples concentrated around the SSL samples latent centroid.
Centroids are computed, as for the normal training samples, with the averaging of an
initial forward pass, therefore yielding the average latent representation.

Non-deep learning experiments Shallow AD conducted on the covariance repre-
sentation after a common PCA uses the upper triangular part of the min-max nor-
malized input as a starting point, avoiding redundant values. This contrasts with the
Riemannian approach replacing PCA with the tPCA, the latter requiring the raw SPD
representation. Furthermore, shallow approaches were also tried on the periodograms
individually, where each row of an input signature, i.e. one vector of Doppler bins de-
scribed for one burst, was given a score, the complete signature being then given the
mean score of all its periodograms. This ensemble method did not yield relevant results
and is therefore missing from our comparison. Such an approach ignores the order of
periodograms in signatures.

Neural network architecture While the MNIST-like input format is thus repli-
cated, the 2D features remain specific to radar signal processing and may therefore ben-
efit from a different neural network architecture. Several neural networks architectures
were considered, including architectures beginning with wider square and rectangular
convolutions extended along the (vertical) bursts input axis, with none of the investi-
gated architectures scoring systematically higher than the Fashion-MNIST architecture
from the original Deep SAD work [152], which was only modified in order to handle
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the larger input size. The latter was consequently selected to produce the presented
results. This architecture projects data with two convolutional layers followed by two
dense layers, each layer being separated from the next one by a batch normalization and
a leaky ReLU activation. The outputs of the two convolutional layers are additionally
passed through a 2D max-pooling layer.

Riemannian AD The tPCA was computed thanks to the dedicated Geomstats20 [130]
function, while experiments implementing a Riemannian equivalent of Deep SVDD were
conducted using the SPD neural networks library torchspdnet21 [36]. The AD experi-
ments based on a SPD neural network ending up inconclusive, they are not part of the
results tables.

20https://geomstats.github.io/
21https://gitlab.lip6.fr/schwander/torchspdnet
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Figure 3.10: Left - Training metrics of a successful run where normal samples are concentrated around their average initial projection, and SAD
and SSL samples are pushed away thanks to a loss term using the inverse of the distance with respect to the normality latent centroid. This is one of
the most successful setups in Table 3.10, and one of the easiest AD experiments since the two classes defining normality here are class 3 (four blades
are responsible for the modulation pattern around the central Doppler shift) and class 4 (six blades are responsible for the modulation pattern
around the central Doppler shift), meaning the separation with the other classes deemed anomalous is actually a binary modulation complexity
threshold. One of the contributions of the SAD and SSL supervisions can be observed on the evolution of AUCs during training: no AUC collapse
can be seen during training, discarding the possibility of a latent distribution collapse during training. Experiments showed that large training
batches contributed to stable AUCs growth. Spikes in the training loss match the drops in AUCs. Right - Latent distribution of the training
samples visualized in 2D using t-SNE after projection by the untrained (top) and the trained neural network (bottom). One can notice that normal
training samples from both normal classes are completely mixed up with the minority of SAD labeled anomalies from class 1 in red (one blade),
semantically similar, whereas SSL samples which are rotated normal training samples are already gathered in their own latent subclusters. SAD
labeled anomalies end up well separated after training.
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Unsupervised AD results, for which the training is only supervised by normal train-
ing samples, are presented in Table 3.9. These results indicate the superiority of deep
learning for the OODD task considered, while demonstrating the substantial contribu-
tion of geometry-aware dimensionality reduction through the use of tPCA for non-deep
AD. RPO is kept in Table 3.9 even though it does not achieve useful discrimination be-
cause it is the shallow equivalent of Deep RPO, one of the highlighted deep AD methods,
deprived of the neural network encoder and with a max estimator instead of a mean, as
was previously justified. Deep MSVDD does not lead to the best performances, and is
as effective as Deep SVDD and Deep RPO, which could seem surprising at least when
normality is made of two target classes. Indeed, since Deep MSVDD has the possibility
to use several disjointed hyperspheres to capture the latent normality distribution, one
could expect it to better model more complex, e.g. multimodal, normality.



96
C

H
A

PT
ER

3.
O

C
C

FO
R

R
A

D
A

R
TA

R
G

ET
S

D
ISC

R
IM

IN
AT

IO
N

AD method (input format) SAD loss SSL loss Mean test AUC (1 mode) Mean test AUC (2 modes) Equation
OC-SVM (SP-PCA) / / 49.16 ± 26.69 45.48 ± 27.53 (3.4)
OC-SVM (SPD-PCA) / / 64.68 ± 9.10 58.23 ± 15.12 (3.4)
OC-SVM (SPD-tPCA) / / 57.59 ± 3.91 55.33 ± 9.48 (3.4)
IF (SP-PCA) / / 50.96 ± 17.37 48.50 ± 18.76 (3.5)
IF (SPD-PCA) / / 52.36 ± 22.47 47.50 ± 20.32 (3.5)
IF (SPD-tPCA) / / 66.91 ± 9.65 61.23 ± 12.65 (3.5)
LOF (SP-PCA) / / 56.80 ± 2.38 61.55 ± 10.29 /
LOF (SPD-PCA) / / 66.44 ± 21.37 65.83 ± 19.52 /
LOF (SPD-tPCA) / / 78.38 ± 8.86 73.56 ± 10.09 /
RPO (SP-PCA) / / 49.61 ± 6.89 50.43 ± 7.13 (3.2)
RPO (SPD-PCA) / / 51.08 ± 19.66 54.95 ± 17.58 (3.2)
RPO (SPD-tPCA) / / 33.97 ± 7.36 38.08 ± 14.58 (3.2)
Deep SVDD (SP) no SAD no SSL 83.03 ± 6.83 78.29 ± 6.68 (3.9)
Deep MSVDD (SP) no SAD no SSL 82.27 ± 9.67 78.30 ± 8.28 (3.10)
Deep MSVDD "mean best" (SP) no SAD no SSL 82.29 ± 7.20 78.02 ± 6.80 (3.10)
Deep RPO (SP) no SAD no SSL 83.60 ± 5.35 78.13 ± 6.02 (3.14)

Table 3.9: Unsupervised AD experiments results (average test AUCs in % ± StdDevs over ten seeds). These machine learning methods are trained
on fully normal training sets, without labeled anomalies for SAD or self-supervision transformations. The four last methods are our deep AD
baselines, trained on normalized spectral representations only. Deep MSVDD "mean best" indicates the neural network was trained using a simpler
loss, analogous to the Deep SVDD loss, where only the distance to the best latent normality centroid is minimized, thus discarding the radius loss
term. PCA and tPCA indicate that the AD model is trained after an initial dimensionality reduction, which is either PCA or tangent PCA.
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Potential contribution of SAD and SSL

The contribution of additional supervision during training through the introduction of
SAD samples and SSL samples is examined in Table 3.10. Regarding SAD experiments,
labeled anomalies will be taken from a single anomalous class for simplicity, and because
only four classes are being separated, this avoids unrealistic experiments where labeled
anomalies from every anomalous class are seen during training. When SAD samples are
used during training, labeled anomalies represent one percent of the original training
set size. This respects the spirit of SAD, for which labeled anomalies can only be a
minority of training samples, which is not representative of anomalies. This is especially
realistic in the radar processing setup initially described where labeled detections would
rarely be available. SSL samples are generated thanks to a rotation of the spectral input
format, rendering the latter absurd but encouraging better features extraction since the
network is asked to separate similar patterns with different orientations. SSL samples
are as numerous as normal training samples, implying they do not define a minority of
labeled anomalies for training as SAD samples do, when they are taken into account.

Individually, SAD samples lead to better performances than SSL ones, but the best
results are obtained when combining the two sets of samples for maximal training su-
pervision. Deep SVDD appears to be substantially better at taking advantage of the
additional supervision provided by SAD and SSL samples. Quite surprisingly for a radar
operator, the best test AUC is obtained when SSL samples are concentrated around a
specialized centroid while SAD samples are repelled from the normality centroid. Indeed,
SSL samples being the only absurd samples considered in our experiments radarwise,
it could seem more intuitive to project SAD samples, which remain valid targets, next
to a dedicated centroid while repelling SSL samples. Likewise, on an ideal outlyingness
scale, SSL samples should be further away from normality than SAD samples. This
counter-intuitive performance could stem from the test set which only evaluates the
separation of targets in a near OODD context. No invalid target representation, like
the SSL samples are, is present in the test set, only valid representation from the four
target classes make up the latter. This is consistent with the application put forward in
this study: use OODD to discriminate between various kinds of radar detections.
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AD method (input format) SAD loss SSL loss Mean test AUC (1 mode) Mean test AUC (2 modes)
Deep SVDD (SP) no SAD SSL c. 86.79 ± 6.54 83.91 ± 7.92
Deep RPO (SP) no SAD SSL c. 88.70 ± 5.10 84.59 ± 8.54
Deep SVDD (SP) no SAD away 81.43 ± 8.62 77.01 ± 8.20
Deep RPO (SP) no SAD away 80.21 ± 9.06 78.93 ± 9.39
Deep SVDD (SP) SAD c. no SSL 86.79 ± 8.94 87.65 ± 6.44
Deep RPO (SP) SAD c. no SSL 81.38 ± 6.09 76.45 ± 6.30
Deep SVDD (SP) away no SSL 93.93 ± 4.82 93.50 ± 7.61
Deep RPO (SP) away no SSL 84.19 ± 5.32 80.37 ± 7.22
Deep SVDD (SP) SAD c. SSL c. 91.00 ± 6.45 90.51 ± 7.38
Deep RPO (SP) SAD c. SSL c. 87.79 ± 5.81 82.69 ± 8.51
Deep SVDD (SP) SAD c. away 89.98 ± 7.79 91.03 ± 6.71
Deep RPO (SP) SAD c. away 78.86 ± 9.10 79.11 ± 9.64
Deep SVDD (SP) away SSL c. 95.06 ± 4.20 93.91 ± 7.31
Deep RPO (SP) away SSL c. 89.82 ± 5.21 87.17 ± 8.17
Deep SVDD (SP) away away 94.63 ± 4.31 94.02 ± 7.30
Deep RPO (SP) away away 90.91 ± 5.94 92.69 ± 7.98

Table 3.10: Experiments with additional supervision provided by SAD and/or SSL labeled samples during training (average test AUCs in % ±
StdDevs over ten seeds). When available, SAD samples are the equivalent of one percent of the normal training samples in quantity. The first
half of the Table reports performances where only one of the two kinds of additional supervision is leveraged, while the second half describes the
performances for setups where both SAD and SSL labeled samples contribute to the model training. Each couple of lines compares Deep SVDD
and Deep RPO in a shared AD supervision setup, thus allowing a direct comparison. c. stands for centroid.
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Training with a contaminated training set

Unsupervised AD refers to the experiments of Table 3.9 where only training samples
assumed to be normal supervise the training of the neural network. Real-life datasets,
labeled by algorithms or experts, are unlikely to respect that assumption and will suffer
from contamination of normal samples with unlabeled anomalies. The results in Ta-
ble 3.11 depict how sensible the deep AD methods previously introduced are to training
set contamination. The contamination is carried out using the one percent SAD sam-
ples already used for SAD experiments in Table 3.10. While in the SAD experiments
SAD samples were repelled from the normality centroid or concentrated next to their
dedicated latent reference point, here they will be processed as normal samples. SSL
samples again appear to better contribute to improving AD when concentrated next to
a specialized centroid, while the performance drop due to contamination does not seem
to be particularly stronger for one of the approaches considered.
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AD method (input format) SAD loss SSL loss Mean test AUC (1 mode) Mean test AUC (2 modes)
Deep SVDD (SP) no SAD no SSL 80.76 ± 7.11 76.02 ± 6.66
Deep MSVDD (SP) no SAD no SSL 78.31 ± 11.18 74.49 ± 9.13
Deep MSVDD "mean best" (SP) no SAD no SSL 79.84 ± 7.82 74.89 ± 7.01
Deep RPO (SP) no SAD no SSL 81.29 ± 5.92 74.82 ± 5.89
Deep SVDD (SP) no SAD SSL c. 85.34 ± 6.85 81.36 ± 7.47
Deep RPO (SP) no SAD SSL c. 86.66 ± 6.41 82.78 ± 8.25
Deep SVDD (SP) no SAD away 79.62 ± 9.02 75.38 ± 8.28
Deep RPO (SP) no SAD away 76.16 ± 9.87 76.56 ± 8.69

Table 3.11: Contamination experiments results (average test AUCs in % ± StdDevs over ten seeds): the SAD labeled anomalies are integrated
within the training samples and taken into account as normal samples during training, thus no SAD loss term is used for SAD samples. The
contamination rate is one percent, i.e. the equivalent of one percent of the normal training samples in labeled anomalies is added to confuse the
AD. c. stands for centroid.
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Mean vs max in Deep RPO training loss

In order to ensure the relevance of the replacement of the max estimator with a mean
in Deep RPO for our application, which as previously explained in 3.1.3 removes the
equivalence with a Mahalanobis distance when numerous RPs are used to estimate
RPO, Deep RPO with mean and Deep RPO with max were compared for every deep
experimental setup presented in the paper. The resulting performances confirmed the
superiority of Deep RPO with mean. A few of these performances are presented in
Table 3.12 and Table 3.13.
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AD method (input format) SAD loss SSL loss Mean test AUC (1 mode) Mean test AUC (2 modes)
Deep RPO (SP) - mean no SAD no SSL 83.60 ± 5.35 78.13 ± 6.02
Deep RPO (SP) - max no SAD no SSL 74.85 ± 7.29 71.60 ± 6.57
Deep RPO (SP) - mean away away 90.91 ± 5.94 92.69 ± 7.98
Deep RPO (SP) - max away away 78.85 ± 9.40 75.53 ± 9.10

Table 3.12: Unsupervised and semi-supervised experiments where SAD and SSL samples provide additional supervision, with Deep RPO with max
estimator to integrate over the RPs and Deep RPO with mean (average test AUCs in % ± StdDevs over ten seeds): the integration of 1D projected
anomaly measures with a mean systematically leads to better performances. Note that in these Deep RPO experiments, RPO is applied to encoded
inputs in the latent representation space of the neural network.

AD method (input format) SAD loss SSL loss Mean test AUC (1 mode) Mean test AUC (2 modes)
Deep RPO (SP) - mean no SAD no SSL 81.29 ± 5.92 74.82 ± 5.89
Deep RPO (SP) - max no SAD no SSL 74.21 ± 7.48 68.95 ± 5.09
Deep RPO (SP) - mean no SAD SSL c. 86.66 ± 6.41 82.78 ± 8.25
Deep RPO (SP) - max no SAD SSL c. 82.52 ± 7.43 77.29 ± 8.45
Deep RPO (SP) - mean no SAD away 76.16 ± 9.87 76.56 ± 8.69
Deep RPO (SP) - max no SAD away 76.20 ± 9.37 73.41 ± 9.61

Table 3.13: Contamination experiments with Deep RPO with max estimator to integrate over the RPs and Deep RPO with mean (average
test AUCs in % ± StdDevs over ten seeds): except in one case the integration of 1D projected anomaly measures with a mean leads to better
performances. Note that in these Deep RPO experiments, RPO is applied to encoded inputs in the latent representation space of the neural
network.
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Concluding remarks

The near OODD performances of various deep and non-deep, unsupervised and semi-
supervised AD methods were compared on a radar Doppler signatures simulated dataset.
Deep AD approaches were evaluated in various supervision setups, which revealed the
relevance of combining a minority of labeled anomalies with transformed normal train-
ing samples to improve semi-supervised near OODD performances, and avoid latent
normality distribution collapse. The benefits of deep learning clearly showed, and while
not leading to the best overall performances, geometry-aware processing with tangent
PCA proved to be the source of a substantial improvement for non-deep AD.
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Chapter 4

This chapter will present preliminary results regarding the encoding and discrimi-
nation of radar hits enriched under the form of neighborhoods of range cells, a format
introduced in chapter 1. It thus allies the hit format enrichment proposed in chapter 1,
with the single and neighborhood of range cells encoding architectures of chapter 2 and
the one-class classification methods presented in chapter 3. The combination of these
processing steps create a filter answering the task motivating the works of this thesis
and oriented towards the discrimination of small and slow targets by air surveillance
radars. The pipeline presented here is therefore designed to face a varying input repre-
sentation in terms of signal length and resolution, and a lack of supervision for the final
discrimination.

4.1 Experiments protocol and data

The dataset used to evaluate the proposed representation learning over range cells neigh-
borhoods is built with the single range cells embeddings provided by the FCN-based
cell2vec approach presented in section 2.5. The interaction of the latter approach and
the graph2vec method evaluated here is illustrated on Fig. 2.4. The dataset is created
with the testing set embeddings of the single range cells encoding experiment, thus
completely discarding the initial training set single cell embeddings. The single range
cells embeddings of the target classes defined in section 2.5 are combined into four dif-
ferent classes of varying correlations to define a neighborhood of H = 5 range cells.
The four neighborhood classes follow the following neighborhood correlation patterns
XXXXX, Y XXXY , Y Y XZZ and WYXZW . In the latter, one letter stands for one
kind of Doppler signature, i.e. one target class in the single range cells experiments of
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section 2.5. The different correlation classes will here be named targets classes. The
latter thus have no more direct connection to the four modulation patterns classes of the
simulation generating the input signals. The ability to discriminate diversely correlated
range cells neighborhoods is notably thought as a way to distinguish clutter spanning
several range cells from actual targets surrounded by clutter. The creation of relevant
neighborhoods of range cells with a set of individual range cells was discussed in sec-
tion 2.4.1 and will therefore not be developed here, except for the next remark regarding
the XXXXX pattern.

The creation of a neighborhood class based on the replication of a single range cell
embedding to create a perfectly correlated local neighborhood has the positive side effect
of allowing us to partially keep track of the input signal resolution impact. Indeed,
if a neighborhood stems from the replication of a unique range cell embedding, the
number of pulses of the original range cell IQ signal is the unique signal resolution
associated with the final neighborhood representation. This allows us to verify whether
the clusters potentially appearing in the output representation space of the hit2vec
encoding are essentially related to the burst resolution, and not to the range cells content.
This is much trickier to follow as soon as the neighborhood of range cells is made of
different cells, which often implies the neighborhood is derived from a mix of input signals
resolutions. A refined range cells combination and labeling mechanism to produce the
dataset of range cells neighborhoods could tackle this, but this was not done here in order
to avoid the question of how exactly to label neighborhoods of range cells combining
input resolutions with the objective of understanding the final influence of the latter.
One might add that it is actually relevant and intuitive to build neighborhoods with
ranges cells of variable input signal resolution since the single cell encoding is expected
to be invariant with respect to the input sampling diversity. The difficulty to identify
the exact relation between the final embeddings distribution and the input sampling
parameters makes it even more important to control the distribution of Doppler classes
and burst resolution in evaluation datasets. The reader is reminded that the burst
resolution corresponds to the association of the number of pulses and the PRF. Another
example of useful constant neighborhood in terms of Doppler content could be defined
by a set of range cells filled with the same clutter. Such a neighborhood could help
evaluate the false alarm risk.

The more or less correlated neighborhoods of range cells are distributed over a graph
defined by two possible adjacency matrices: the matrix (a) and the matrix (f) as shown
on Fig. 2.7 and illustrated on Fig. 2.6, where the shared edge weight e is set to one. The
graph neural network used to encode the neighborhood of H = 5 range cells consists
in the stacking of two graph convolutional layers as defined in section 2.4.2 according
to the layer proposed by [101]. These graph convolutional layers are defined with a
single channel, i.e. they maintain one trainable weights matrix W ∈ RQ×Q each. Since
the neighborhood is of size H = 5 and the central range cell is the one whose features
we use as output neighborhood representation when no graph-scale pooling is done,
two layers are enough to cover the entire neighborhood with the output representation
receptive field. The term central has meaning for the non-cyclic graphs such as the
graphs (a) and (e) of Fig. 2.6, in other cases it refers to the range cell under test, i.e.
the one carrying the actual target detection. The latter remains central in the initial
input representation being encoded, since it is the central column of the input matrix
ZI/Q defined in Eq. (1.2). One can note that the trainable weights of the GNN are
real-valued since the complex-to-real representation transition is done during the single
cell encoding (see Fig. 2.4).
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4.2 Preliminary results with supervised representation learn-
ing

The preliminary results presented here evaluate the separability of the fabricated neigh-
borhoods of range cells in the output representation space generated by the two-layers
graph convolutional neural network. A single set of metrics is presented on Fig. 4.1,
Fig. 4.2 and Fig. 4.3 since none of the few setups tested yielded performances substan-
tially superior to the others. Regarding the generation of the figures and the supervision
setup, the readers may refer to the description and the references indicated in section 2.5
as the same tools and training objective were used. Four setups were tested since we
experimented with both of the graph adjacency configurations mentioned in section 4.1,
and with both a global mean pooling and the node2vec encoding approach applied to the
central neighborhood cell to retrieve a neighborhood embedding RQ. Here, the weights
matrices defining the GNN are both of dimensions 16× 16, and thus the GNN produces
a neighborhood embedding of dimension 16.

The graph embeddings 2D distribution visualization using TSNE and PCA on Fig. 4.2
and Fig. 4.3 show a pulses class 0 which contains the mixed-resolution range cells neigh-
borhoods, while the 56 and 64 pulses classes correspond to perfectly correlated neigh-
borhoods stemming from bursts of 56 and 64 pulses respectively. While the two figures
confirm no clear latent clusters exist for specific input signals resolutions before and
after training, they also suggest not much of an improvement can be observed in the
latent distribution of the four signatures correlation classes. The latter observation is
confirmed by the metrics on Fig. 4.1: the AUCs evolutions suggest the training is bene-
ficial for the OCC isolation of two of the targets classes only, the other two being quickly
associated with a stable random classification performance. Among the pulses classes,
the 0 class gathering the mixed-resolution neighborhoods seems easily identifiable, while
the pulses classes associated with single signal resolution neighborhoods also quickly end
up associated with random classification performance. This suggests our graph2vec en-
coding yields a weak discrimination power, and is favoring neither the targets classes
separation, nor the pulses classes separation.

4.3 Necessary follow-up experiments
As said in section 2.5.3 regarding the single range cell encoding experiments, the previous
experimental results can only be taken as a proof-of-concept that aims at demonstrating
the feasibility of encoding neighborhoods of range cells with diverse levels of correlation.
Here, the potential contribution of training a GNN to encode neighborhoods of range
cells for subsequent discrimination remains unclear and calls for more experiments and
comparisons. Besides the discouraging nature of the performances presented in this
chapter, the experiments suffer from the same shortcomings as the ones discussed in
section 2.5.3. The suggested extensions can be reformulated here in the context of
neighborhood encoding. Finally, another observation may be suggested for this more
challenging GNN-based encoding: the possibly greater discriminatory power of deep
OCC in the embeddings space operated at the output of the GNN may complement
the search for a better encoding architecture. Thus, before completely discarding a
neighborhood encoding method, deep OCC discrimination could be harnessed to get a
more thorough evaluation of the difficulty of the targets separation.
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Figure 4.1: Learning metrics of the graph2vec architecture training. The GNN training
impact on the AUCs describing the separability of the targets and pulses classes is
disappointing. Neither the targets classes, nor the pulses classes benefit from an overall
improvement of their AUC scores during training. The AUCs are computed for two
OCC approaches presented in Chapter 3: IF and OC-SVM. These OCC methods are
applied to the final representation produced by graph2vec.
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Figure 4.2: 2D visualization of the range cells neighborhoods embeddings distribution
produced by the two-layers GNN, before training. One can note that this figure is
still influenced by the training of the single range cell encoding neural network, which
generated the single range cells representations necessary to create the dataset of range
cells neighborhoods. Top - each color depicts one target class, i.e. one Doppler pattern.
Bottom - each color depicts one pulse class, i.e. one Doppler resolution class.



110 CHAPTER 4. OCC FOR ENCODED HITS

Figure 4.3: 2D visualization of the range cells neighborhoods embeddings distribution
produced by the two-layers GNN, after training. No improvement can be observed with
respect to the targets classes disentanglement we are seeking. Top - each color depicts
one target class, i.e. one Doppler pattern. Bottom - each color depicts one pulse class,
i.e. one Doppler resolution class.



Chapter 5

Conclusion and perspectives

5.1 Concluding remarks

This thesis is the result of the search for improvements in the discrimination of targets
by air surveillance radars using techniques from the recent advances in machine learn-
ing. It is directly motivated by the constraints over pulse Doppler radars bursts used
for air surveillance, i.e. the constantly changing small number of pulses available in
each burst and the varying pulse repetition frequency. The thesis proposes an approach
divided into two steps, first encoding, then discriminating, to end up with a score useful
to the radar operator for targets discrimination. The discrimination proposed relies on
the Doppler information contained in the I/Q sweep response and introduces an I/Q
sweep feature enrichment to provide the neural networks targets filter with a spatial
I/Q context to broaden the information available to the filter. The motivation behind
this input features enrichment lies in the fact that the filter developed aims, to a cer-
tain extent, at reproducing the small and slow targets discrimination usually done with
micro-Doppler features but without the required Doppler resolution to reveal such fea-
tures. The solutions put forward propose to integrate the physical diversity of inputs in
sampling frequency and number of pulses in the architecture of the graph neural net-
work encoding the neighborhood of range cells processed. This information integration
is inspired by the literature of resampling and array processing, and follows the trend
of letting a neural network choose which information to use and how so. On a histor-
ical note, one could say the proposed Doppler processing is part of a third generation
of pulse Doppler radar targets discrimination along with the geometric deep learning
approaches [31] proposed in [43, 32]. Before that, the first generation could be the early
low PRF radars with moving target indicator (MTI) that did not determine the Doppler
shift but discarded zero and low Doppler shifts [15], and the second generation could
gather the radars operating at higher PRF with refined slicing of the Doppler veloc-
ities to implement automatic targets discrimination with non-geometric deep learning
methods.

Among the neural network architectures put forward by this work, a noticeable point
is the choice of associating different kinds of architectures at an unusual level. The
encoding neural network combining either a recurrent or a convolutional architecture
with a graph neural network which then forwards a representation to a more classic
discriminative network, our filter could be identified as a so-called hybrid architecture.
That being said, since such a hybrid architecture as a whole is not trained at once with
a common training objective, judging it as one single architecture may not be relevant.
This is emphasized by our presentation of the proposed hits filter as two successive but
independent steps in chapter 1, as illustrated on Fig. 1.10. This is further emphasized by
the additional separation of the encoding hit2vec step into a cell2vec step and graph2vec
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step, as depicted on Fig. 2.4.

5.2 Perspectives
While the results of the experiments presented in chapter 3 were quite conclusive, the
performances put forward in chapters 2 and 4 were at best exploratory. As such, the
experiments defined should be continued with better statistical relevance and extended
by following the indications provided in the associated sections. The unsuccessful ex-
periments aiming at developing a latent space eigenvalues-based regularization and an
SPD-manifold aware adaptation of deep SVDD remain useful intuitions and may be
refined. On another note, several leads for distinct possible approaches to improve the
processing of a neighborhood of range cells were mentioned without actual developments:

• the definition of a global one-class classification pipeline applied to our range cells
neighborhood discrimination, trainable as a whole with a unique training objective,
and possibly using a generative GNN architecture;

• the adaptation of the neighborhood graph processing to handle SPD representa-
tions of range cells distributed over graph nodes instead of an RQ embedding;

• the evaluation of the learned coefficients in the complex-valued convolutional layers
as FIR filters while considering the varying sampling frequency of the input signals;

• the definition of an application case where the diverse radar I/Q signals are ac-
cessible to a resampling approach as presented in chapter 1, in order for a fair
comparison with a non-machine learning method to be conducted.

These leads constitute approaches that remain to be explored and can provide perspec-
tive with respect to the proposals already developed in this work.

Since the processing defined and evaluated by this thesis was shown to be close to
ECG or radio signal processing, and also to molecules representation learning, the active
research motivated by these applications should be a continuous source of tools to solve
the problem of neighborhood of range cells encoding. More generally, we did not make
use of all of the tools and innovative neural networks layers available in the literature.
The recent developments of the deep learning literature establish therefore a promising
avenue for improvements. Finding an effective and explainable way to compare short
signals with varying sampling parameters and dispersed over local graphs remains a task
relevant for many applications, especially with the advent of the internet of things.

Lastly, one should note that even with a relevant encoding of similar targets and an
effective targets separation, additional mission-specific data could be taken into account
to detach targets similar physically but with behaviors making them of different levels
of interest for the radar operator. This additional processing could be handled by a
downstream processing step in the radar pipeline, such as the tracking stage where
the targets’ trajectories can be a revealing information with respect to their respective
missions. For instance a small civilian drone is not necessarily an object of interest to
a radar operator but if it keeps flying over a sensible site it should become one. In such
a case, our filter aims at detecting the drone and dissociating it from the surrounding
clutter, but it does not address the target behavior analysis task. The previous point
emphasizes how much automatic processing could be necessary to actually help radar
operators fulfill their missions, and thus how much machine learning could help improve
this kind of sensor, assuming enough labeled data is at hand and the possibility to
modify different parts of the radar processing pipeline.
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Appendix A

About the relation between RPO,
Deep RPO and the Mahalanobis
distance

To elaborate on the relation between RPO and the Mahalanobis distance, the latter
describing an ellipsoid in the data points representation space, let us remind the results
presented in [186]. Let us consider a data point x ∈ Rd belonging to a data matrix
Xd×n following an Elliptically Symmetric Distribution (ESD) containing n samples for
which we want to compute an outlyingness score O(x). The ESD hypothesis guarantees
that the sample covariance matrix Σ is positive definite. Using Σ, one can define an
outlyingness score using the Mahalanobis distance:

OMAHALANOBIS(x) =
√

(x− µX)T Σ−1(x− µX) (A.1)
where µX is the data points mean, i.e. the mean column of X. According to the

extended Cauchy-Schwarz inequality [96], for any nonzero vector u ∈ Rd:

(uT (x− µX))2 ≤ (uT Σu)((x− µX)T Σ−1(x− µX)) (A.2)

=⇒ (uT (x− µX))2

uT Σu ≤ (x− µX)T Σ−1(x− µX) (A.3)

where uT Σu ≥ 0 since Σ is positive definite. As suggested in [96] if one takes
u = αΣ−1(x− µX), with α ∈ R∗, one gets:

=⇒ ((αΣ−1(x− µX))T (x− µX))2

(αΣ−1(x− µX))T Σ(αΣ−1(x− µX)) ≤ (x− µX)T Σ−1(x− µX) (A.4)

=⇒ ((αΣ−1(x− µX))T (x− µX))2

α2(Σ−1(x− µX))T Id(x− µX) ≤ (x− µX)T Σ−1(x− µX) (A.5)

the latter leading to the equality case, showing us the upper bound is attainable.
Since the upper bound is reachable for u = αΣ−1(x− µX), and that such format allows
u to be a RP of unit norm as required by the definition of RPO for Eq. 3.2, one can
intuitively conclude that using a maximum estimator over numerous RPs the bound is
approached or reached in Eq.A.3 by the left term, i.e. for U a large set of unit norm
RPs:

max
u∈U

(uT (x− µX))2

uT Σu = (x− µX)T Σ−1(x− µX) (A.6)
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This result is actually well-known and called the Maximization Lemma in [96], where
instead of u ∈ U, u is an arbitrary nonzero vector, i.e. max

u∈U
is replaced by max

x ̸=0
. The

proof for this lemma is actually the previous example case where u = αΣ−1(x− µX) is
shown to make the equality case happen. Note that using the equality case format for u
implies knowing the covariance matrix Σ−1. This emphasizes the relevance of RPO to
compute a multivariate outlyingness without requiring a covariance matrix computation.
From Eq. A.6, one can deduce:

max
u∈U

(uTx− uTµX)2

σ2(uTx) = (x− µX)T Σ−1(x− µX) (A.7)

this expression makes the projected sample uTx and the projected mean uTµX ap-
pear. Note that for the denominator the transformation is as follows:

σ2(uTx) = E
[
(uT (x− µX))(uT (x− µX))T

]
= E

[
uT (x− µX)(x− µX)Tu

]
= uT Σu

(A.8)
Eq. A.7 now only differs from RPO due to the square and the estimators of first

and second order statistics: RPO replaces the mean and the variance of the projected
inputs x ∈ X with the robust estimators median and median absolute deviation respec-
tively, which in turn adds a constant factor with respect to the Mahalanobis distance.
Regarding the relevance of these robust estimators choice and the additional constant
factor see [186].

We thus get back to the conclusion of [186] indicating the equivalence (up to a
constant factor) between the Mahalanobis distance and RPO computed with an infinite
number of RPs under the multivariate elliptical distribution hypothesis. Whereas RPO
as presented in Table 3.9 used the max estimator to integrate over RPs as defined
in [186], Deep RPO replaces the max with a mean estimator in Eq. 3.2 to measure
outlyingness in the latent representation space provided by a neural network. This
replacement is motivated by empirical results and an interpretation provided in [25].
The drawback of this change is that the Mahalanobis equivalence guarantee is lost, since
the Maximization Lemma leading to Eq. A.6 can not be used with a mean. Working
with an ellipsoid instead of a latent hypersphere as in [153] supposedly made the latent
normality boundary used by the training objective more flexible and tailored to the data,
and was the original motivation of [25]. Recall that this normality boundary is fitted to
training data before training and frozen, the boundary being defined by a single location
estimator in the case of Deep SVDD, and by as many location and spread estimators as
there are RPs in the case of Deep RPO.

Intuitively, the mean will pull the quantity integrated over the large set of RPs away
from the upper bound. Even though the score is based on projected 1D outlyingnesses
each normalized by their respective location and spread estimators, there is no assurance
that once integrated with a mean into one final outlyingness these quantities generate
a normality ellipsoid similar to the Mahalanobis one. Actually, nothing indicates the
integrated outlyingness describes any kind of ellipsoid in the input vector representation
space. However, since the mean integrates over the dimensions created by the set of
RPs, and since along these dimensions each 1D coordinate is centered and normalized
using its own location and spread estimators, the mean still relates to an ellipsoid in
the high-dimensional representation space generated by the RPs.



Appendix B

Affine invariance of RPO with
max and mean estimators

The content of this appendix was originally presented in [26]. We want to prove the
affine invariance of the following quantity, called the random projection outlyingness
(RPO):

ORP O(x,X) = sup
∥u∥=1

|uTx−Med(uTX)|
MAD(uTX) (B.1)

that is, we want to prove the following equality:

ORP O(Ax+ b, AX + b) ?= ORP O(x,X) (B.2)

where:

• x ∈ Rd×1 is the data point for which we want to compute an outlyingness measure;

• X ∈ Rd×n is the data matrix containing n features vectors in Rd (i.e. the data
distribution, including x);

• u ∈ Rd×1 is a random projection vector of unit norm, i.e. u ∈ Sd−1 where
Sd−1 = {x ∈ Rd : ∥x∥2 = 1};

• A ∈ Rd×d is a non-singular matrix (for the affine transformation);

• b ∈ Rd×1 is a constant vector (for the affine transformation);

• Med(uTX) is the median of the scalars generated by the 1D projection of all x in
X by u;

• MAD(uTX) is the median absolute deviation of the same scalars, i.e.
MAD(uTX) = Med(|uTx−Med(uTX)|).

AX + b is a permissive notation defining the affine transformation of every column
features vector with A and b, i.e. the affine transformation of the whole data distribution
on which the location and scatter estimators, respectively the Med and the MAD, are
applied. We also want to prove the affine invariance of that same quantity where the
sup is replaced by a mean estimator:

ORP O−MEAN (x,X) = mean
∥u∥=1

|uTx−Med(uTX)|
MAD(uTX) (B.3)
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This RPO-MEAN is the RPO variant introduced in [25] and used in the encod-
ing neural network output space for our Deep RPO experiments. The Eq. B.1 stems
from [62, 90] and defines the outlyingness used to generate the statistical depth [208]
called random projection depth (RPD), the latter corresponding to the following expres-
sion: RPD(x,X) = 1

1+ORP O(x,X) . Note that this depth, and the associated outlyingness
of Eq. B.1, are defined with an infinite number of random projections u ∈ Rd, thus the
two quantities (RPO and RPD) can only be implemented with a stochastic approxima-
tion, i.e. with a large but finite number of random projections. For instance, in the
experiments described in this paper, the sup and mean over all RPs of unit norm are
approximated with a max and mean over 1000 RPs respectively. For other experiments
on RPO with diverse quantities of RPs, see [25].

Proof: Let us start by noticing that both the upper and lower parts of the RPO ratio
are invariant to the bias term b of the affine transformation:

|uT (Ax+ b)−Med(uT (AX + b))| = |uTAx+ uT b−Med(uTAX)− uT b| (B.4)
= |uTAx−Med(uTAX)| (B.5)

MAD(uT (AX + b)) = Med(|uT (Ax+ b)−Med(uT (AX + b))|) (B.6)
= Med(|uTAx+ uT b−Med(uTAX)− uT b|) (B.7)
= Med(|uTAx−Med(uTAX)|) (B.8)
= MAD(uT (AX)) (B.9)

This indicates both RPO and RPO-MEAN are translation invariant, a partial re-
quirement to achieve affine invariance. Let us factor the upper and lower parts of the

RPO ratio to make a unit norm vector uTA

∥uTA∥
appear:

|uT (Ax)−Med(uT (AX))| =
∣∣∣∣∣∥∥∥uTA

∥∥∥ uTA

∥uTA∥
x−Med

(∥∥∥uTA
∥∥∥ uTA

∥uTA∥
X

)∣∣∣∣∣ (B.10)

=
∥∥∥uTA

∥∥∥ ∣∣∣∣∣ uTA

∥uTA∥
x−Med

(
uTA

∥uTA∥
X

)∣∣∣∣∣ (B.11)

MAD(uT (Ax)) = Med

(∣∣∣∣∣∥∥∥uTA
∥∥∥ uTA

∥uTA∥
x−Med

(∥∥∥uTA
∥∥∥ uTA

∥uTA∥
X

)∣∣∣∣∣
)

(B.12)

=
∥∥∥uTA

∥∥∥Med

(∣∣∣∣∣ uTA

∥uTA∥
x−Med

(
uTA

∥uTA∥
X

)∣∣∣∣∣
)

(B.13)

(B.14)

This enables us to rewrite the RPO ratio as follows:
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|uTAx−Med(uTAX)|
MAD(uTAX) =

∥∥∥uTA
∥∥∥ ∣∣∣∣∣ uTA

∥uTA∥
x−Med

(
uTA

∥uTA∥
X

)∣∣∣∣∣
∥uTA∥Med

(∣∣∣∣∣ uTA

∥uTA∥
x−Med

(
uTA

∥uTA∥
X

)∣∣∣∣∣
) (B.15)

=

∣∣∣∣∣ uTA

∥uTA∥
x−Med

(
uTA

∥uTA∥
X

)∣∣∣∣∣
Med

(∣∣∣∣∣ uTA

∥uTA∥
x−Med

(
uTA

∥uTA∥
X

)∣∣∣∣∣
) (B.16)

Thus for any u, x and X, let f(u) be:

f(u) := |u
Tx−Med(uTX)|
MAD(uTX) (B.17)

if one defines ϕ(u) := uTA

∥uTA∥
and ψ(u) := uTA, we have f ◦ ϕ(u) = f ◦ ψ(u).

Moreover, since ϕ is a bijection from Sd−1 to Sd−1, for g the mean or sup operator
applied to every existing random projection u:

g
u∈Sd−1

[f(u)] = g
u∈Sd−1

[f ◦ ϕ(u)] (B.18)

Combining the two last equalities provides us with the invariance to the linear trans-
formation defined by A:

g
u∈Sd−1

[f(u)] = g
u∈Sd−1

[f ◦ ψ(u)] (B.19)

In other words, since ϕ is a bijection and all existing random projections of unit
norm are considered during the integration over Sd−1, the operator g is not affected
whether the RPs are transformed by ϕ beforehand or not. The intuition behind this
invariance is that we are looking over the same infinite set of random projections, the
transformation matrix A at most reshuffling the RPs in the infinite set the estimator
integrates over. More generally, that is true for any permutation invariant1 operator g.

The previous translation invariance with respect to b and the linear transformation
invariance with respect to A prove the affine invariance of both RPO and RPO-MEAN.

1An operator is permutation invariant if any permutation of the inputs does not change the output:

g(x1, ... , xt) = g(xπ(1), ... , xπ(t))

for any permutation π.
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Appendix C

Unsuccessful architectures

This appendix contains a few of the unsuccessful neural networks architectures which
have been mentioned in the manuscript. It first goes over the unsuccessful single range
cell I/Q encoding architectures proposed in 2.3, and then puts forward the attempted
SPD-manifold processing adaptation of Deep SVDD suggested in 3.2.3.

C.1 Cell2vec architectures
One can notice that these architectures, in addition to transforming a column of the
input matrix ZI/Q (see Eq. (1.2)) of variable size into a fixed-size vector in RQ, convert
the complex-valued representation into a real-valued one. These architectures corre-
spond to the cell2vec step in the hit2vec depiction of Fig. 2.4. In the FCAE described
in table C.2, as was the case for the FCN put forward in table 2.2, using a convolution
with a large kernel size on the input signal is particularly interesting since it makes the
potential interpretation of the learned weights as FIR filter coefficients more expressive.

C.2 Deep Riemannian one-class classification
The table C.4 describes an example architecture we experimented with to define an
SPD-manifold aware equivalent to the deep SVDD [153] one-class classification method.
This architecture was tested on SPD covariance matrices computed either over a fixed
set of input images transformations, or over the rows or columns of the input images.
The resulting covariance matrix was of size 28 × 28, hence the input dimension of the
first BiMap layer in the proposed architecture. The intuition, the loss and the layers
associated with this architecture are discussed in section 3.2.

The architecture presented here can be applied to the covariance matrices computed
over the individual components of Doppler spectrums (see Fig. 3.8) or computed over the
output of convolutional layers, or also to the Toeplitz autocorrelation matrices associated
with AR models (see 2.3.1). It is also possible to extend this SPD-manifold adaptation
of Deep SVDD to the complex-valued equivalent of SPD matrices, i.e. HPD matrices
(see 3.2). These architectures were implemented and trained using the torchspdnet [10]
library1. This versatility of the SPD manifold-aware processing, in addition to its po-
tential for more efficient learning in terms of required iterations and data, motivated
our experiments to develop a deep SVDD SPD equivalent.

1https://gitlab.lip6.fr/schwander/torchspdnet Accessed: 28-10-2022
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Layers in forward order Layer parameters
Dropout /
C-LSTM (encode) 3 layers, hidden dim 16, input dim 1
R-Hidden hidden dim 16 (×2)
C-LSTM (decode) 3 layers, hidden dim 16, input dim 1
C-Linear input dim 16, output dim 1

Table C.1: LSTM-based seq2seq architecture used in our experiments without success.
Only the last encoder layer hidden and cell states (hence the "×2") were kept as the
embedding of the input range cell I/Q signal and passed on to the LSTM decoder. These
hidden and cell states were furthermore reduced to their real part in order to limit the
transit of information to a real-valued representation that will serve as range cell embed-
ding in RQ. This complex to real, and back to complex is illustrated on Fig. 2.3. Input
dimensionality of both LSTM networks are equal to one in order to accept the complex-
valued I/Q signal. For the decoder, this input can be the ground truth stemming from
the teacher forcing. A complementary complex-valued linear layer was added to further
process the output of the LSTM decoder before evaluating the reconstruction error. A
dropout layer without rescaling was added in some of our experiments to complicate the
task of reconstruction (see 2.3.2).
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Layers in forward order Layer parameters
Dropout /
C-conv 1D kernel 6, stride 2, in chan 1, out chan 12
C-BN 1D chan 12
C-ReLU chan 12
C-conv 1D kernel 1, stride 1, in chan 12, out chan 12
C-BN 1D chan 12
C-ReLU chan 12
C-conv 1D kernel 1, stride 1, in chan 12, out chan 16
C-BN 1D chan 16
C-ReLU chan 16
R-Bottleneck chan 16 (global pool here)
C-tconv 1D kernel 6, stride 2, in chan 16, out chan 12
C-BN 1D chan 12
C-ReLU chan 12
C-tconv 1D kernel 1, stride 1, in chan 12, out chan 12
C-BN 1D chan 12
C-ReLU chan 12
C-tconv 1D kernel 1, stride 1, in chan 12, out chan 1

Table C.2: FCAE architecture used in our experiments. This defines a convolution-based
seq2seq architecture, where tconv stands for transposed convolution. Note that in our
case, the global pooling over the features dimension is only applied when retrieving the
bottleneck embedding, and is not necessary in the forward pass to compute the training
loss. Thus, this global pooling does not appear in this table as a layer. To allow for the
generation of a reconstruction of varying size, the bottleneck features dimensionality will
vary along with the input size. The fixed-size embeddings can still be produced since the
number of channels of the convolutional bottleneck remains constant. As for the LSTM-
based seq2seq (see table C.1), only the real part of the output of the encoder is passed
on to the decoder to limit the transit of information to a real-valued representation that
will serve as range cell embeddings in RQ. The complex-to-real encoding is thus learned
by the generative network, even though the decoder has complex-valued weights in order
to output a complex-valued input reconstruction. As for the FCN (see table 2.2), using
a convolution with a large kernel size on the input signal is particularly interesting since
it makes the potential interpretation of the learned weights as FIR filter coefficients
more expressive.

Layers in forward order Layer parameters
C-RNN (encode) 3 layers, hidden dim 16, input dim 1

Table C.3: RNN-based encoding architecture used in our experiments without success.
Only the last encoder layer hidden state was kept as the embedding of the input range
cell I/Q signal. This hidden state was furthermore reduced to its real part in order
to produce a real-valued representation that will serve as range cell embedding in RQ.
Input dimensionality is equal to one in order to accept the complex-valued I/Q signal.
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Layers in forward order Layer parameters
ReEig "SPDNet non-linearity"
BiMap input dim 28, output dim 24
ReEig "SPDNet non-linearity"
BiMap input dim 24, output dim 12
ReEig "SPDNet non-linearity"
BiMap input dim 12, output dim 4

Table C.4: SPD-manifold aware deep SVDD architecture adaptation used in our ex-
periments. A usual continuous dimensionality reduction is operated during the forward
pass. No LogEig operation is applied at the end of this architecture since we want the
output representation to remain on the SPD matrices manifold in order to compute the
distance to a reference latent SPD centroid to define the training loss.
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Publicly available codes

A few of the codes developed during this thesis have been made publicly available at
the time of publication of this document and allow for the reproduction of parts of the
experiments that led to scientific publications:

• Deep MSVDD [73] reimplementation: available on GitHub https://github.com/
Blupblupblup/Deep-MSVDD-PyTorch (Accessed: 25/11/2022)

• "Near out-of-distribution detection for low-resolution radar micro-Doppler signa-
tures" [26] paper experiments: available on GitHub https://github.com/Blupblupblup/
Near-OOD-Doppler-Signatures (Accessed: 25/11/2022)

• Simulated Doppler signatures generation used for [26]: available on GitHub https:
//github.com/Blupblupblup/Doppler-Signatures-Generation (Accessed: 25/11/2022)

• ICLR 2021 challenge submission repository: available on GitHub https://github.
com/Blupblupblup/submission_geomstatsICLR2021challenge_NaiveImageAD_
Euclidean_vs_Riemannian (Accessed: 25/11/2022)
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MOTS CLÉS

Discrimination de cibles radar, encodage de signal, fouillis radar, détection d’anomalie, classification mono-
classe, apprentissage semi-supervisé, micro-Doppler, réseau de neurones à valeurs complexes, réseau de
neurones pour graphes, appprentissage profond géométrique, apprentissage de représentation, apprentis-
sage profond, radar, traitement du signal.

RÉSUMÉ

Les radars Doppler pulsés (RDP) de surveillance aérienne ont pour mission de discriminer des cibles en se basant sur le
signal réfléchi de petites rafales d’impulsions modulées. Les antennes tournantes imposent un faible nombre d’impulsions
pour caractériser le contenu de cases distance, celles-ci résultant d’une discrétisation radiale et azimutale. Cette carac-
térisation est tirée de signaux courts échantillonnés à la période de répétition des impulsions (PRI), un échantillon par
impulsion étant disponible dans la rafale transmise. Le nombre d’impulsions et la PRF, qui changent constamment dans
un radar en opération, définissent donc la résolution et les fréquences extrêmales du spectre Doppler qui définit les cibles
à l’échelle d’une case distance. L’avènement de drones petits et bon marché impose l’amélioration de la détection des
cibles petites et lentes qui pouvaient auparavant se retrouver rejetées en tant que fouillis. Cette thèse propose une chaîne
de traitement branchée après l’étape de détection d’un RDP pour discriminer les hits afin de permettre l’abaissement des
seuils de détection. Cette chaîne de traitement se divise en deux étapes: un encodage hit2vec, et une étape de discrim-
ination. L’encodage traite une matrice à valeurs complexes et de taille variable pour produire un vecteur embedding à
valeurs réelles de taille fixe. Cette représentation d’entrée contient un signal I/Q réfléchi par la case distance porteuse
d’une détection enrichi par le signal réfléchi par les cases distance voisines. L’étape de discrimination met en oeuvre une
classification mono-classe sur les représentations d’entrée encodées dans le but de séparer les cibles dans un contexte
de faible supervision. La chaîne de traitement complète s’appuie donc sur l’hypothèse que le voisinage de spectres
Doppler, même à faible résolution, contient l’information nécessaire à la discrimination. Autrement dit, la solution mise
en avant se base sur l’apprentissage de représentation pour faire face à l’hétérogénéité des signaux I/Q qui doivent être
séparés et pour permettre à une discrimination à faible supervision en aval de produire une distance vis-à-vis de cibles
de référence utile à l’opérateur radar.

ABSTRACT

Air surveillance pulse Doppler radars (PDR) need to discriminate targets using the backscatter generated by small bursts
of modulated pulses. Rotating antennas constrain the number of pulses available to characterize the content of range
cells, the latter resulting from azimuthal and radial discretization. This characterization is based on short signals sam-
pled at the pulse repetition frequency (PRF), one sample being available per pulse in the transmitted burst. The number
of pulses and the PRF, which constantly change in an operating radar, thus define the resolution and the maximal fre-
quencies of the Doppler spectrum that defines targets within a range cell. With the advent of small and cheap drones,
air surveillance radars are required to improve their detection of small and slow targets that previously had chances to
end up discarded as clutter. This thesis proposes a processing pipeline plugged after the detection stage of a PDR to
discriminate between hits in order to allow for the lowering of detection thresholds. This processing pipeline is made of
two steps: an encoding hit2vec step, and a discrimination step. The encoding handles an input complex-valued matrix of
varying size and outputs a real-valued vector embedding of fixed size. This input contains the backscattered I/Q signal
of the range cell carrying a detection enriched by the backscatter from the neighboring range cells. The discrimination
step applies a one-class classification to the encoded inputs to separate targets representations in a low-supervision
context. The complete pipeline is therefore based on the assumption that the neighborhood of Doppler spectrums, even
at low resolutions, contains the required discriminatory information. Said in other words, the solution put forward uses
representation learning to tackle the sampling heterogeneity of the I/Q signals that ought to be separated, and to enable
a subsequent low-supervision discrimination to provide a radar operator with a useful distance to reference radar targets.

KEYWORDS

Radar targets discrimination, signal encoding, radar clutter, anomaly detection, out-of-distribution detection,
one-class classification, semi-supervised learning, micro-Doppler, complex-valued neural network, graph
neural network, geometric deep learning, representation learning, deep learning, radar, signal processing.


