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Abstract

Computer vision has undergone a revolution since 2012 and the application of
deep learning techniques to diverse vision tasks such as image classification,
object detection, image segmentation and instance segmentation. These tech-
niques allow to get impressive results, but existing models require annotated
datasets, which are costly to develop, and may be insufficient to handle rare or
new events.

The goal of this thesis is to study how deep learning techniques, i.e. stochas-
tic gradient descent and neural networks, can be used to get an interpretable
representation of a scene without requiring any annotated dataset. In order
to get such a representation, we consider that a scene is composed of a back-
ground and various foreground objects. We then have to be able to distinguish
the background from the foreground objects present in the scene, and also to
separate these foreground objects, which can touch or occlude each other.

We first study the task of fixed background reconstruction, whose goal is to
build a unique background image of a scene using a short sequence of images
of this scene cluttered by various objects. We address this task as a robust
estimation problem, propose a new technique called background bootstrapping,
which uses stochastic gradient descent, and show that it is more accurate and
significantly faster than state of the art methods.

We then consider the task of dynamic background reconstruction and back-
ground /foreground segmentation. Starting from the assumption that the back-
grounds of the images appearing in a video or a dataset lie on a low dimensional
manifold, we are able to learn this manifold using a convolutional autoencoder.
In order to improve segmentation results, we adapt the autoencoder to predict
the background noise, which can be caused by turbulence, moving trees or water,
and should not be considered as foreground. We then show that the proposed
model is able to improve upon the state of the art for unsupervised methods on
the challenging CDnet and LASIESTA benchmarks.

The segmentation of the background is a first step in order to understand the
structure of a scene, but it does not allow to identify and segment the various
objects appearing in a scene. In order to get a true object-centric representa-
tion of a scene, we introduce a new architecture for unsupervised object-centric
representation learning, which uses attention and soft-argmax to localize each
object and a transformer encoder to manage occlusions and avoid duplicate
detections. We then show that this architecture is significantly more accurate
than the state of the art on existing synthetic benchmarks and provide some
examples of applications to real-world images taken from traffic cameras.



Résumé en francais

La vision par ordinateur a subi une révolution depuis 2012 avec l'application
des techniques d’apprentissage profond a diverses taches de vision telles que
la classification d’images, la détection d’objets, la segmentation d’images et la
segmentation d’instances. Ces techniques permettent d’obtenir des résultats
impressionnants, mais les modéles existants nécessitent des jeux de données
annotés, coliteux a développer, et peuvent difficilement gérer des événements
rares ol NOUVeaux.

L’objectif de cette thése est d’étudier comment les techniques d’apprentissage
profond, c’est-a-dire la descente de gradient stochastique et les réseaux de neu-
rones, peuvent étre utilisées pour obtenir une représentation interprétable d’une
scéne sans nécessiter de jeu de données annotées.

Afin d’obtenir une telle représentation, nous considérons qu’une scéne est
composée d'un arriére plan et de divers objets apparaissant en avant-plan.
Nous devons donc non seulement étre capable de distinguer ’arriére-plan de
ces différents objets, mais aussi de séparer ces objets, qui peuvent se toucher ou
s’occulter entre eux.

Nous étudions d’abord la tache de reconstruction d’arriére-plan fixe, dont
le but est de construire une image unique de I'arriére-plan d’une scéne a 'aide
d’une courte séquence d’images de cette scéne encombrée par divers objets. Nous
considérons cette tdche comme un probléme d’estimation robuste, proposons une
nouvelle technique appelée bootstrap d’arriére-plan, qui utilise la descente de
gradient stochastique, et montrons qu’elle est plus précise et considérablement
plus rapide que les meilleures méthodes existantes.

Nous considérons ensuite la tache de reconstruction d’arriére-plan dynamique
et de segmentation d’arriére-plan/avant-plan. A partir de I’hypothése selon
laquelle les arriére-plans des images apparaissant dans une vidéo ou un jeu
de données sont situés sur une variété de petite dimension, nous sommes en
mesure d’apprendre cette variété a l'aide d’un autoencodeur convolutionnel.
Afin d’améliorer les résultats de segmentation, nous adaptons ’autoencodeur
pour prédire le bruit d’arriére-plan, qui peut étre causé par la turbulence ou les
mouvements des arbres ou de ’eau. Nous montrons ensuite que le modéle pro-
posé donne de meilleurs résultats que les meilleures méthodes non supervisées
existantes sur les exigeants benchmarks CDnet et LASTESTA.

La segmentation de ’arriére-plan est une premiére étape pour comprendre
la structure d’une scéne, mais elle ne permet pas d’identifier et de segmenter
les divers objets apparaissant dans une scéne. Afin d’obtenir une représentation
véritablement centrée sur les objets d’une scéne, nous introduisons une nouvelle
architecture pour ’apprentissage non supervisé de représentations centrées sur
les objets, qui utilise 'attention et le soft-argmax pour localiser chaque objet
et un transformer encodeur pour gérer les occlusions et éviter les doubles dé-
tections. Nous montrons ensuite que cette architecture est considérablement
plus précise que I’état de ’art sur les benchmarks synthétiques existants et
fournissons quelques exemples d’applications & des images réelles prises par des
cameéras de circulation.
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Chapter 1

Introduction

1.1 Résumé en francgais

Nous présentons dans cette introduction le contexte dans lequel s’inscrit cette
thése au centre de robotique de Mines Paris, ’objectif principal de la thése, qui
est d’étudier comment construire une représentation structurée et interprétable
d’une scéne sans avoir accés a des données annotées ainsi que les principaux
résultats obtenus, qui seront développés en détail dans les chapitres suivants.

1.2 Context

This research, is conducted in the center of robotics (CAOR) of Mines Paris,
under the supervision of Prof. Arnaud de La Fortelle.

The center of robotics works in the areas of autonomous vehicles, intelligent
transport systems, mobile and collaborative robotics and virtual reality.

The main research domains of the center are :

e perception and machine learning

e numerization and analysis of 3D point clouds

e virtual reality and man-machine interaction

e non linear control, advanced filtering and motion planning
e urban logistics

One can decompose the tasks performed by a robot or an autonomous ve-
hicle in three domains, following the Sense-Plan-Act paradigm: The perception
domain has to convert the outputs provided by the various sensors (camera,
Lidar, etc..) into an explicit structured representation of the environment. The
planning domain takes as input this structured representation of the environ-
ment and the goal or reward function provided to the system, and provides a
target trajectory in order to reach the projected goal. Finally the control do-
main takes as input the target trajectory and computes the required commands
so that the robot or autonomous vehicle follows the planned trajectory.



Deep learning methods are now widely used in the perception domain, using
supervised methods, and are already implemented by car makers in commercial
products. In this domain, CAOR’s researchs are mainly focused on the analysis
of 3D point clouds [Thomas et al., 2019, Roynard et al., 2018a, Roynard et al.,
2018b]. Some deep learning models [Devineau et al., 2018| are also studied
in CAOR to improve the control of vehicules, learning the inverse dynamics
of a car taking into account both the longitudinal and the lateral dynamics,
and showing that it provides better control commands than classical uncoupled
control models in challenging driving situations.

The center for robotics is also interested in introducing deep learning meth-
ods for planning tasks. These methods could for example be used to predict
the behavior and interactions of vehicles or to model using imitation learning
what is a “normal” behavior on a road in a given country, considering that this
behavior can be quite different from simply applying the available traffic and
safety rules.

However those methods require large datasets of car trajectories. Consid-
ering the wide availability of video feeds on the Internet and produced in real
time by fixed monocular traffic cameras in various cities in the world, a PhD stu-
dent of the lab, A. Clausse, has built a tool allowing to extract car trajectories
from these video feeds [Clausse et al., 2019]. This tool used Mask R-CNN [He
et al., 2020b] for car detection and localization, and a Intersection-over-Union
tracker combined with a Rauch-Tung-Striebel (RTS) smoother. However, the
trajectories extracted using this tool were not robust enough for the the in-
tended purpose and additional work remains necessary. In a similar study, Ren
et al. [Ren et al., 2018], provided a quantitative estimate of the performance of
a pretrained Fast-R CNN network for vehicle detection using fixed monocular
traffic cameras. On a daytime dataset, the precision and recall values for a
single frame were measured to be 0.57 and 0.55, respectively, which is clearly
too low for applications, although smoothing using several frames allows to im-
prove performances. The precision for the alternative SDD-VGGnet model was
measured to be 0.907 and recall was measured to be 0.354.

(a) Varna (Bulgaria) (b) Casa Grande (USA, Arizona)

Figure 1.1: Examples of real-time traffic webcam image available on the Internet

1.3 Research topic

The goal of this thesis is to study how to build a structured and interpretable
representation of a scene without access to human-annotated data.

The efficiency of vision algorithms has improved tremendously with the ad-
vent of deep learning. However existing methods suffer from three key weak-



nesses :

e Supervised learning algorithms require very large annotated datasets to
be efficient. These datasets are costly to develop and to update.

e While they give very good results when the images to analyse follow the
same statistical distribution as the images provided in the training set, this
is not the case any more when this condition is not satisfied, for example
under adversarial attack or exceptional circumstances.

e They can unpredictably make very large mistakes, which no human ob-
server would ever make.

The approach which will be the main focus of this thesis is to consider that
the data to be analyzed have a natural structure which can be exploited for
unsupervised data extraction: A traffic scene image is not a simple matrix of
pixels, but can often be considered as the superposition of a background image
and various foreground object images, and we work under the hypothesis that
this structure can be discovered in a fully unsupervised way.

We then would like to represent the background using a low dimensional
latent vector zp, and the various objects using appearance latent vectors z};”h‘”,
object position coordinates and scales. The main challenges that have to be
addressed in order to build this kind of representations on real-world scenes are:

e The complexity of the background and background changes in real-world
scenes. Being able to accurately distinguish the foreground objects from
the background is obviously an important prerequisite for any unsuper-
vised object detection model, but is not properly addressed in existing
models, which are mainly focused on object discovery.

e The low performances of existing unsupervised object detection models,
which struggle to detect objects of different sizes and to manage occlusions
between objects. It then seems necessary to design a completely new
unsupervised object discovery architecture.

Our goal is then to build an unsupervised object detection model which
is able to handle scenes with complex backgrounds, objects of any sizes, and
significant occlusions between objects.

1.4 Overview of contributions

The three contributions in this thesis are the followings:

e We first consider the problem of fixed background reconstruction:
using as input a video sequence taken from a fixed camera, our goal is
to predict one image, which should the best background estimate for this
video sequence. In order to address this challenge, we introduce the con-
cept of background bootstrapping and the associated robust loss function,
and show that these tools allow to improve upon the state of the art for
this specific simple task.



e We then consider the more complex task of dynamic background re-
construction and foreground/background segmentation: using as
input a video sequence taken from a camera, our goal is now to predict
one background for each input image. We show that using the hypothe-
sis that the backgrounds lie on a low dimensional manifold together with
the robust loss function which has been introduced for fixed background
reconstruction also allows to improve upon the state of the art on this
task. To our best knowledge, this is the first time a background model is
able to perform dynamic background reconstruction on videos taken from
pan-tilt-zoom cameras and also on some non-video image sequences.

e We then introduce a new architecture for unsupervised object detec-
tion and segmentation which uses attention and soft-argmax for object
localization instead of anchor grids. A transformer encoder to manage
occlusions and a pretrained background model for background reconstruc-
tion. We show that this model significantly improves upon the state of
the art on synthetic benchmarks and provide examples of applications to
real-world traffic videos.

1.5 Experimental setup

The first research results of this thesis where obtained using a desktop PC with
two 2080 TT Nvidia RTX GPU.

This research was partially funded by CARNOT contract MAIA3 1901169,
which allowed to purchase in February 2021 a 4-GPU server dedicated to the
project with the following specifications :

AIME A4000 server based on ASUS ESC4000A-E10 barebone

GPU: 4 x 3090 Nvidia RTX 24GB

CPU: EPYC 7402 (24 cores, Rome 2.8 Ghz)

Memory: 128 GB ECC DDR4 3200 Mhz

SSD : 2x 2.5" 4TB U.2 NVMe TLC

The codes of all the models presented in this thesis are available on the
Github platform®.

Ihttps://github.com/BrunoSauvalle
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Chapter 2

Background: representation
learning

2.1 Résumé en francgais

Afin de motiver la notion d’apprentissage de représentations centrées sur les
objets, nous présentons dans ce chapitre les différents types de représentations
développées actuellement grace aux techniques d’apprentissage profond. Nous
examinons dans un premier temps les représentations non structurées, qui peu-
vent prendre la forme de représentations vectorielles (vecteurs de caractéris-
tiques, prenant en compte ou non le contexte) ou de cartes de vecteurs de car-
actéristiques, et abordons la problématique de la représentations des ensembles
et des graphes. Dans un deuxiéme temps, nous examinons les différentes tech-
niques utilisées pour construire des représentations directement interprétables :
méthodes utilisant la reconstruction comme tache d’entrainement, permettant
de construire des représentations de scénes 3D, des représentations centrées sur
les objets ou des représentations hiérarchiques, et méthodes utilisant de critéres
de cohérence tels que la symétrie par renversement du temps ou les contraintes
issues de la géométrie épipolaire afin de développer des modeéles non supervisés
d’estimation de mouvement, de profondeur ou de flux optique. Nous présentons
finalement les différents résultats disponibles actuellement sur les applications
possibles des représentations centrées sur les objets.

2.2 Motivation

In order to better motivate the concept of structured representation learning,
we first provide some background on the importance of representation learning
for deep learning applications.

A wide variety of deep learning algorithms have been developed in the last
ten years, and it would not be feasible to review all. However representation
learning has shown to be a unifying factor in both vision models and natural
langage processing (NLP) models in recent years:

e For vision tasks, it has been noted since 2014 that the intermediate rep-
resentations learned by networks trained for image classification could be

11



reused for lots of other tasks like object detection, object segmentation,
panoptic segmentation, etc. with only minimal adaptation or fine-tuning.
It was also noted that these pretrained network could also produce ef-
ficient representations of objects which were never part of the training
set [Donahue et al., 2014, Yosinski et al., 2014, Razavian et al., 2014].

e In the NLP domain, the impressive improvements obtained in the last
few years are associated to progress in representation learning, which has
evolved from learning word representation vectors [Mikolov et al., 2013a]
to more complex contextual representations. For example, the BERT lan-
guage model [Devlin et al., 2019], whose main purpose is to learn contex-
tual word and sentence representations, was able in 2019 to beat existing
state of the art NLP algorithms on eleven different NLP tasks with a large
margin, using only minimal adaptations and fine-tuning. The continuous
development of large language models (LLM) since 2018 has shown that
the representations generated by these models were highly efficient and
could be used for a wide variety of tasks.

e Multimodal representations linking images and texts [Radford et al., 2021]
have also lead to spectacular applications such as or zero-shot image clas-
sification or text to image generation [Ramesh et al., 2022].

It is then widely recognized that learning a “good” representation of complex
data inputs is one of the main target of interest for deep learning research. For
example, one of the leading conferences in machine learning and artificial intel-
ligence is called International Conference on Learning Representations (ICLR).

2.3 Unstructured vectorial representations

2.3.1 Basic vectorial representations : the concept of fea-
ture vector

The most basic form of representation in deep learning is the feature vector,
which can be formally described as and ordered finite list of scalar values, called
features, which can be learned features or human-engineered features. The
dimension of the representation is the number of scalar values and assumed to
be independent of the object or data considered.

An important open question about feature vectors is to define what kind of
feature vector should be considered as a “good” representation. Various lines of
research have been developed :

e the simplest definition is that a good representation is a representation
which can be used efficiently for downstream tasks, i.e. for prediction.
For example, to evaluate if feature vectors produced by a neural network
from image inputs are useful, a linear classifier is added on top of the
network and trained on some image dataset. If the results are good, the
representations will be considered as efficient.

e Another line of research is to consider representation learning as a form
of compression or dimensionality reduction. The target should then be to
get the best trade-off between compression and reconstruction loss.

12



e In the vision community, representation learning has also been traditionaly
associated to enforcing invariance with respect to various transformations.
The classical SIFT descriptors [Lowe, 2004] are optimized to provide in-
variance against image noise, scale changes and illumination changes. In
the same way, a simple method to create representations is to optimize a
deep network so that the learnt representations be invariant with respect
to these transformations.

e Another approach to representation learning is that a good representation
should provide a disentangled description of all the factors of variation of
the dataset.

e Finaly, the development of generative models has added the requirement
that the space of representations should be equipped with a probabilistic
structure, allowing meaningful sampling.

We review in the following paragraphs these various lines of research:

Learning to predict and self-supervised learning. The process of getting
feature vectors by training a network using labels to provide predictions can be
extended to the case where no external label is provided. Various prediction
tasks, sometimes called “pretext tasks” have been defined which do not need
manualy annotated data, and experiments show that they lead to very efficient
representations.

Let’s consider for example the pretext task of predicting the orientation of an
image which has been rotated by 0°, 90°, 180° or 270°. It has been shown [Gidaris
et al., 2018, Kolesnikov et al., 2019, Hendrycks et al., 2019], that training a
network using this pretext task in parallel with classical supervised training
leads to representations with better robustness against adversarial attacks and
better out of distribution detection. One can also train a network to complete
an image [Pathak et al., 2016, He et al., 2022](cf Fig. 2.1), to predict the colors
of an image using a black and white transform of this image [Zhang et al., 2016],
or to predict the relative position of a patch in an image [Doersch et al., 2015].

Other successful methods, like deepinfomax [Devon Hjelm et al., 2019] and
contrastive predictive coding (CPC) [van den Oord et al., 2018], try to pre-
dict representations of some part of an image using global representations or
representations produced from other parts of an image. In order to avoid the
degenerate trivial solution where the representation is a constant, these methods
use constrastive losses or mutual information maximization objectives.

The pretext tasks used in the BERT model are (1) masking 15 % of the words
in a sentence and asking the model to predict the masked words (2) asking the
model whether two sentences are naturally consecutive sentences. A very simple
pretext task which appears to be extremely efficient in the NLP domain is next
word or next token prediction, leading to the development autoregressive large
language models such as GPT-3.

In order to explain the success of self-supervised learning, a great emphasis
has then been put on the concept of mutual information and finding mutual
information estimators for self-supervised learning. It is however now under-
stood that computing mutual information is inherently intractable for complex
datasets, since it requires a number of samples exponential as a function of the
mutual information, and various approaches [Ozair et al., 2019, Xu et al., 2020]
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Figure 2.1: Example of state of the art unsupervised unstructured representation
learning model using image completion as pretext task: MAE [He et al., 2022] is a
transformer-based model which tries to reconstruct a complete image using as input
an image where a large portion (e.g. 75%) of the image patches have been occluded.
Source: [He et al., 2022]

have been investigated to replace the mutual information target with a more
tractable target.

Unsupervised clustering seems to be an efficient pretext task to get useful
representations. The difficulty with this approach is to define a meaningful
loss function. In [Zhuang et al., 2019], efficient representations are obtained
by asking that datapoints which belongs to the same cluster after k-means
clustering of their representations should also have representations which are
also close to each other.

Feature learning as a form of dimensionality reduction. It has been
demonstrated [Ansuini et al., 2019] that the various layers of an image clas-
sification neural network progressively reduce the dimensionality of the data
manifold. As a consequence, one could view feature learning as a form of di-
mensionality reduction, and autoencoders then seem to be a natural tool to get
useful representations. It seems however that autoencoders using a pixel-wise
Ly loss for image reconstruction cannot lead to efficient feature learning, since
they have no incentive to capture any semantic content. A successful approach
using a bidirectional GAN has been implemented in [Donahue and Simonyan,
2019]: the Ly loss is replaced with a learnt discriminator which asserts whether
a pair (z,z) where z is a latent code and x an image, has been produced from a
real image using an encoder (i.e. with z = E(x) where E is an encoder) or has
been produced from a latent code (i.e. with x = G(z), where G is a generator).
It is interesting to observe that this very special kind of autoencoder preserves
the semantic content of the images it has to handle, although the Lo reconstruc-
tion loss can be quite high. This method leads to performances similar to CPC
without using any pretext task or any reference to mutual information targets.
The representations learnt by an autoencoder can also be improved by adding
to the loss function a regularization term requiring that these representations be
stable with respect to various semantic-preserving transformations [Englesson
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Figure 2.2: Overview of the SiImCLR model [Chen et al., 2020a] "Two separate data
augmentation operators are sampled from the same family of augmentations (t ~ T
and t' ~ T) and applied to each data example to obtain two correlated views. A base
encoder network f(-) and a projection head g(-) are trained to maximize agreement
using a contrastive loss. After training is completed, the projection head g(-) is thrown
away and the encoder f(-) and representation h are used for downstream tasks".
Source: [Chen et al., 2020a]

and Azizpour, 2021].

Implementing symmetries and invariance. Another approach to repre-
sentation learning, which has the advantage of being theorically well-motivated,
is to view representation learning as a form of projection from the original
dataset to the set of equivalence classes associated to symmetries or transfor-
mations which are assumed to preserve the semantic content of the data. These
symmetries are usually implemented during supervised learning using data aug-
mentation strategies or architectural choices. For example, it is well known
that convolutional layers followed by max-pooling layers implement invariance
with respect to translation. Getting representations which are invariant with
respect to complex data transformations like small random color distortion and
random Gaussian blurr is however not trivial. In order to avoid degenerate
solutions, where the output of the model is a constant representation, one has
to use contrastive losses, mutual information targets or specific teacher-student
distillation architectures.

The SimCLR model [Chen et al., 2020a], (cf Fig. 2.2) uses a contrastive loss
asking two representations to be close to each other when they are related by
an elementary transformation, and to be far from each other when they were
picked at random. This method allows to get better results than CPC. Ji et
al. [Ji et al., 2019] use a mutual information objective to perform unsupervised
clustering and self-labelling. More precisely, The model is asked to maximize
the mutual information between the cluster labels associated to two input data
if they are related by an elementary transformation like small Gaussian noise or
random cropping.

The MoCo model [He et al., 2020a, Chen et al., 2020b, Chen et al., 2021]
extends the contrastive loss computation to dictionaries larger than the mini-
batch size using momentum updates. The BYOL model showed it is possible to
get representations invariant to transformations without using negative samples.
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Asano et al. [Asano et al., 2020| showed that combining data augmentation
with self-supervised learning allowed with only one image as input to learn
efficiently the first three layers of a convolutional network. Scattering net-
works [Bruna and Mallat, 2013, Oyallon et al., 2018], are efficient substitutes
for the first layers of a convolutional neural network which do not require any
learning. These two results show that the filters associated to the early layers
of a convolutional neural network do not really need to be dependent from the
dataset, which is consistent with the understanding that their role is to provide
features which are equivariant with respect to various transformation groups.
Such an approach can be generalized to pretraining full models: Baradad et
al. [Baradad et al., 2021] showed that using synthetic random images with sim-
ple structures, it was possible to get pretraining performances close to the results
obtained using real datasets such as Imagenet.

The idea of enforcing invariance with regards to transformation groups has
been extended to more general transformations, which go beyond what one
would call the natural symmetries of a problem. Misra and Van der Maaten
[Misra and Van Der Maaten, 2020] showed that one could learn better represen-
tations by enforcing invariance with regard to the transformations which were
used to define pretext tasks. For example, instead of asking a network to pre-
dict whether an image has been rotated or not, they ask the network to produce
representations which are invariant with respect to image rotation.

Unsupervised pretraining by implementing representation invariance has been
mainly successful in the vision domain, where the possible transformation groups
are far larger than in the NLP domain. Some promising results [Gao et al., 2021]
have however also been obtained in the NLP domain by asking the representa-
tion of a text stay invariant under the action of dropout noise.

Learning disentangled representations. It has been observed that some
vectorial representations allow to perform meaningful vector calculus. For ex-
ample, in the NLP domain, Mikolov noted [Mikolov et al., 2013b| that mean-
ingful analogies could be obtained in this way with word vector representations:
Adding the vector representations of “king” and “woman” and substracting the
representation of “man” gives a vector which is very close to the word represen-
tation of “queen”. For image representations, it has also been noted [Radford
et al., 2016] that the latent space generated by deep convolutional generative
adversarial networks allows to perform some latent space vector artithmetic.
For example, adding the representation of a smiling woman and a neutral man
and substracting the representation of a neutral woman naturally leads to the
representation of a smiling man. It is also possible to get meaningful morphing
of one image to another by latent space interpolation. The same kind of prop-
erties where obtained in Generative Query Networks [Ali Eslami et al., 2018§],
where representations of a complex 3D scene are built using partial views of this
scene.

The concept of disentangled representation adds another requirement which
is that a “good” representation should not only allow to perform meaningful
vector calculus and latent space interpolation, but also identify and separate
the various generative factors of a dataset, so that changing one latent variable
should lead to a simple and meaningful transformation of the data.

It has been observed that variational autoencoders [Kingma and Welling,
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2014] naturally produce disentangled representation. Modifying variational au-
toencoders by increasing the penalty associated to the KL divergence term seems
to lead to better performance in disentangled representation learning [Higgins
et al., 2017]. Another way to get generative factors is the InfoGAN model [Chen
et al., 2016], which is an adaptation of the GAN [Goodfellow et al., 2020] model
where the GAN image is produced from random noise vectors and random la-
tent codes and the model is optimized so that the output image has a high
mutual information with the latent codes. However a study [Locatello et al.,
2019] showed that disentangled representation learning is an ill-posed problem
and that the good results shown by these different models where questionable,
because the authors of the models usually fine-tune the hyperparameters of
their models using their prior knowledge of those generative factors. As a con-
sequence, these models cannot really be used to discover generative factors in a
completely unknown dataset.

A more principled approach to disentangled representation learning is pro-
vided by non linear independent component analysis (ICA), where the problem
of identifiability has been studied for more than ten years. Khemakhem et
al. [Khemakhem et al., 2020] have shown that identifying the independent gen-
erative factors of a dataset was theorically possible if the generative factors
follow a factorized prior that is conditioned over an additional observed variable
such as a class label or any other observation. An application [Sorrenson et al.,
2020| of this approach is the discovery of 22 broadly interpretable latent vari-
ables as generative factors in the EMNIST dataset, using the labels associated
to each digit. Horan et al. [Horan et al., 2021] have recently shown that this
identification is also possible under the assumption that the true generative la-
tents have a non-Gaussian distribution and that the mapping from the latents
to the data is a local isometry.

Representation learning and generative models. The development of
generative models has added new understanding to what should be considered
a good representation: A representation model should not only be approxi-
mately injective, i.e. allow to reconstruct the data using its representation,
but also surjective: Any representation vector lying in the representation space
should correspond to some likely data sample. This condition is not satisfied
by deterministic image autoencoders, since they allow to encode any image
as a low dimensional vector, but offer no guarantee that using the generator
of the autoencoder will transform any low dimensional code into a realistic
looking image. This issue led to the development of variational autoencoders,
which allow to generate samples using any low dimensional code sampled from
a multivariate Gaussian distribution. More recently, Saseendran et al. have
shown [Saseendran et al., 2021] that adding a regularizer to a deterministic au-
toencoder enforcing that the distribution of the latent codes follows a Gaussian
(or mixture of Gaussians) distribution using an adaptation of the Kolmogorov-
Smirnov test also allows to perform efficient sampling. GANs [Sohl-Dickstein
et al., 2015], suffer however from the fact that, although they provide a way to
generate data samples from random inputs, they are not usually able to directly
recover latent codes from an input image, and cannot be considered as repre-
sentation models, although it has been shown that the latent space of GAN
models such as styleGAN is highly disentangled and useful for image editing. A
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similar issue arises with diffusion models [Ho et al., 2020], although a specific
class [Song et al., 2021] of diffusion model is deterministic and invertible and
diffusion autoencoders [Preechakul et al., 2022] allow to define a meaningful
latent space.

2.3.2 Contextual vectorial representations

One of the major advances in representation learning over the last few years
has been the introduction of contextual representations. Intuitively, the contex-
tual representation of an object is a representation of this object which takes
also into account the context where the object lives. The concept has proved
its value in the natural language processing domain, where replacing individual
word representations like GloVe and WordtoVec with contextual word repre-
sentations produced by BERT or XLuet [Yang et al., 2019] has lead to very
significant efficiency gains. It is indeed clear that the same word can have very
different meanings, depending on the context where it appears. It should how-
ever be noted that the concept of contextual representation is not really clear
from a formal point of view. A single contextual representation is not a local
representation and should be considered as a global representation of a sentence
or a scene since it takes into account all the elements lying in the sentence or in
the scene. A sequence of contextual representations could then be considered
as a form of global representation. The only formal specificity of this kind of
representation compared to an unstructured global representation seems that it
is translation equivariant, i.e. that a shift in the input sequence or image leads
to the same shift in the associated contextual representations.

The main tools used for contextual representation learning in the NLP do-
main are now the self-attention mechanism and the transformer model [Vaswani
et al., 2017] (Fig. 2.3). Self-attention has shown spectacular results in the NLP
domain [Alec et al., 2019, Brown et al., 2020], but its application in the vision
domain [Ramachandran et al., 2019] is less straighforward, considering that its
computational load is proportional to the square of the number of input to-
kens, which is clearly a problem for high definition images, which cannot be
directly processed pixelwise by a transformer and have to be cut in patches
which are later projected and processed by a transformer encoder [Dosovitskiy
et al., 2021]. Convolutional networks can be understood as already performing a
form of context aggregation between neighboring pixels, but tackling long-range
dependencies with CNN remains a challenge, leading to variants like dilated con-
volution layers [Yu and Koltun, 2016].

However it has quickly become a standard practice in vision applications
before the development of full transformer-based models to “enrich” the repre-
sentation of an object using representations of related objects using an attention
mechanism. For example, Yuan et al. [Yuan et al., 2020] improve the efficiency
of their segmentation model by supplementing a pixel representation with a new
representation computed using an attention mechanism taking into account the
similarity of the considered pixel representation with the average representations
of each object region. In Wang et al. [Wang et al., 2019b], the representation of
one point belonging to a 3D point cloud is fused with the representation of its
k nearest neighbors to get a contextual representation to perform semantic seg-
mentation. A similar approach has been proposed [Lu et al., 2020] to enrich the
representation of a frame in a video sequence: correlation weights between this
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Figure 2.3: Transformer architecture: A transformer is composed of an encoder (left)
containing self-attention and fully connected layers, and a decoder (right) containing
masked self-attention, cross-attention and fully connected layers. A transformer en-
coder will be used in the model described in Chapter 5. Source: [Vaswani et al., 2017|
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Figure 2.4: Example of class activation maps extracted from a convolutional network.
Source: [Zhou et al., 2016]

frame and frames located in other parts of the video are computed and used
to build a contextual representation which is the concatenation of the frame
representation and the weighted sum of the representation of the other frames
using the correlation weights.

2.4 Basic containers for vectorial representations:
feature maps, sets and graphs

2.4.1 Feature maps

In vision applications, the various intermediate representations produced by a
convolutional network are usually called feature maps, because each point of this
map can be considered as the contextual feature vector associated to a particular
location in the image. This interpretation leads to very interesting applications
for example in object detection: in order to detect or track an object in some
area of an image, one will simply look at the feature vectors lying in this area.
In order to build a representation of an object covering some area of an image,
one will take the average of all the feature vectors lying in this area. Class
activation maps [Zhou et al., 2016] can be built using the last feature maps of
a convolutional network trained for image classification and allow to localize
class-specific regions which associated to an image (Fig. 2.4).

Feature maps can give rise to feature pyramids [Li et al., 2019] when several
feature maps of varying scale granularity are considered, which allows to detect
both small and large objects using the same detection heads.

Efficient feature maps can be produced by convolutional networks, but also
by vision transformers with small patch sizes [Dosovitskiy et al., 2021, Touvron
et al., 2020, Touvron et al., 2021, Touvron et al., 2022, Caron et al., 2021] (Fig.
2.5). The concept of feature map can naturally be extended to 3D maps for
video data, or to 1D maps for sequential data.

A productive line of research developed in the last few years was to study
how the distribution of the local values of a feature map associated to one image
can be interpreted and used. It has been recognized since 2016 [Gatys et al.,
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Figure 2.5: Example of multi-heads attention maps extracted from the last layer of
a self-supervised VIT-S model [Caron et al., 2021]

2016] that the second moments of a feature map, i.e. the matrix of correlations
between different local channel activations associated to one image, could be
interpreted as a representation of the “style” of this image, so that optimiz-
ing another image to follow the same correlations between channels allows to
perform style tranfer from one image to another image. Straighforward renor-
malization of the mean and variance of each channel map of an image even
allows to get real time style transfer [Huang and Belongie, 2017].

This approach has been expanded and developped and is now so efficient that
style-based methods are the current state of the art in image generation: Style-
GAN [Karras et al., 2019, Karras et al., 2020, Sauer et al., 2022| first generates
the style statistics associated to various layers of a convolutional networks, then
generates an image following these style statistics using instance normalization.

In the same spirit, the squeeze and excitation layer [Hu et al., 2020] extracts
the first order moments of a feature map, one for each channel, and use these
data to modulate the channel values of the feature map, allowing some global
context information to be inserted between CNN local aggregation layers.

2.4.2 Sets

The requirement to handle unordered sets is quite obvious in applications re-
lated to object detection. Objects appearing in a scene usually do not show any
natural ordering, and in the same way that convolutional layers are translation-
equivariant operators acting on feature maps, it is natural to require that trans-
formations between representations of sets be equivariant with respect to the
full permutation group.

Qi et al. [Qi et al., 2017] showed that a function invariant with respect to
the permutation group could be approximated by the composition of a per-
item transformation, applied to each elements of the set, then a fully symmetric
aggregation function such as sum or max-pooling, and finally any function, and
applied this model to the analysis of point clouds. The theorical analysis of
maps which are equivariant with respect to the permutation group has been
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performed by Zaheer et al. [Zaheer et al., 2017, which leads to a description
of possible multilayer neural architectures as stacks of equivariant maps. As an
example, linear maps equivariant with respect to permutations can be described
as linear combinations of the identity matrix and the matrix whose coefficients
are all equal to 1.

This approach was further generalized to sets composed of features maps
(to anayse for example sets of images). In this case, one has to handle both
the translation symmetry of the feature maps and the permutation symmetry
of the set structure. The associated equivariant maps have been studied and
described by Maron et al. [Maron et al., 2020].

Transformer encoders are also naturally permutation equivariant models if
no positional encoding is introduced and can be used to efficiently transform set
representations if the size of the set is not too high, considering that they have
a quadratic complexity as a function of the number of elements in the set.

Despite these advances, machine learning with sets remain a challenge, con-
sidering that deep learning libraries naturally manage vectors and tensors, and
not unordered sets. As an example, in order to check whether two sets of vec-
tors {21, ..,z,} and {y1, ..., yn } are close or not, one usually computes a bipartite
matching beween the x; and y; which requires a computation time of O(n?) [Ed-
monds and Karp, 1972] with the Hungarian algorithm. Set prediction is also
tricky when the output has to be written as a tensor if no natural ordering or
indexing of the elements of the set is available. Some authors [Locatello et al.,
2020] consider that this issue can be handled by introducing some randomness,
i.e. that the ordering of the predicted elements should be randomly distributed.
The most common approach in object detection is however to define this or-
dering according to the location of the objects, either using a two dimensional
grid [Girshick, 2015, Redmon et al., 2016] or some learnt positional encoding
codes [Carion et al., 2020]. Another possible solution is to assign to a RNN the
task of discovering such an ordering [Vinyals et al., 2016, Ali Eslami et al., 2016].
An original approach [Zhang et al., 2019] to the problem of set prediction is to
consider this task as the inverse of set aggregation and approximate this inverse
iteratively using the gradient of a permutation invariant function.

2.4.3 Graphs

Representing a scene as a graph showing all the objects of the scene and de-
scribing all the relations between those objects is a natural goal in computer
vision (Fig. 2.6).

The development of neural network layers able to handle graph data effi-
ciently has first been inspired by the idea of defining graph convolutions [Kipf
and Welling, 2017], but is now mainly associated to the study of the maps which
are compatible with the associated natural symmetries of a graph, i.e. we re-
quire that the neural transformation layers should be equivariant with respect
to a relabeling of the edges or nodes, and that the aggregation layers should
be invariant with respect to those relabelings [Herzig et al., 2018]. For exam-
ple Xu et al. [Xu et al., 2019a] show that the most expressive form of a graph
neural network can be described as a sequence of node representation updates,
where the hidden representation of a node at each step is updated with the
current representation of the node and the sum of the current hidden repre-
sentations of the neighbouring nodes, and proposes to use a two-layers MLP
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Figure 2.6: Example of scene graph. Source: [Teng and Wang, 2022]

to perform this update. The iterative updates of a graph neural network are
formally very similar to the message passing updates used in graphical mod-
els and are then naturally used to perform the same kind of tasks. In order
to modulate the weights of the node neighbors without breaking the equivari-
ance property, various approachs based on attention or self-attention have been
proposed [Velickovi¢ et al., 2018, Nguyen et al., 2022].

Applications of graphs to vision tasks are not limited to scene graph genera-
tion. Inference on graphs can also be used to provide a model of the interactions
between moving objects and help to forecast trajectories taking into account
those interactions [Kosaraju et al., 2019], or to reasoning about relations be-
tween these objects for visual question answering (VQA) applications [Hudson
and Manning, 2019].

It should be also noted that the structure of graphs can be very diverse : For
some graphs, both nodes and edges are equipped with vectors representations,
which induces a natural bipartite structure to the graph representations updates
[Xu et al., 2017]. Other graphs can have naturally weighted edges to model the
strenght of the relationships. Graph nodes are not necessarily associated to the
presence of an object. For example, in differentiable scene graphs [Raboh et al.,
2020], nodes are associated to the possible presence of objects for each region
of interest, whitout having to perform any non-differentiable decision on the
presence or class of an object in this regions.

2.5 Interpretable representations

2.5.1 Reconstruction-based structured representation learn-
ing

We have seen that it is possible using self-training methods to get useful repre-
sentations for downstream tasks, i.e. representations which are more compact,
requires less labelled data for supervised training, or are more robust to out-
of-distribution events or adversarial attacks. These representations are however
not directly interpretable without any labeled data. For example, a classical
deterministic or variational autoencoder trained on a large dataset will be able
to represent a large image as a low dimensional vector, but the only way to
guess what the values of those vectors mean is to perform some experiments or
additional supervised training.

It is however possible to get interpretable representations without using la-
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Figure 2.7: Example of application of a NeRF model. Source: [Mildenhall et al.,
2020]

beled data if we put some interpretable constraints on the reconstruction pro-
cess.

3D scene representation learning

As an example Chen et al. [Chen et al., 2019¢| propose to use a fully differen-
tiable renderer as a decoder. This renderer can be inverted with deep learning
techniques thanks to the process of amortized inference: instead of iteratively
trying to find the latent codes associated to one given image by gradient de-
scent using this image alone, a process which is known to be highly unstable and
difficult, amortized inference tries to optimize a neural network mapping any
image to its generating codes using batches of synthetic images and stochastic
gradient descent. Using this approach the authors are able to train a network
which takes as input the synthetic image of an object and produces as output
the 3D mesh associated with this object and the associated colors of the nodes.
The latent representation of a scene does not need, however to be represented by
a sequence of mesh points and associated color or texture values, which are the
classical inputs of graphical renderers. For example, Sitzmann et al. [Sitzmann
et al., 2019] propose to represent a scene by a function ® : R* — R” which maps
any point in the ambient space of the scene to a feature vector, for example the
color and surface reflectance at this point. This function is represented by a
neural network.

Multiple views of a scene can also be used to build an explicit 3D model
of the scene. Neural radiance fields networks (NeRF) [Mildenhall et al., 2020]
(Fig. 2.7), are neural networks which predict for all points and ray direction of a
scene the associated color and density. An elementary differentiable ray-tracing
rendering engine encapsulates this network, and the whole model is trained on
a few number of photos of a scene. After training, the model allows to produce
an accurate rendering of the same scene from any point of view.

Object-centric representation learning

In order to get an interpretable structured representation, the decoder does not
need to be fully explicit. It can be a neural network with a specific architecture
implementing some a priori knowledge. For example, in Detlefsen et al. [Detlef-
sen and Hauberg, 2019], the decoding phase is decomposed in two steps: Some
latent variables coding for the shape of the considered object are first used to
generate this shape. Then other latent variables defining the location, orienta-
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Figure 2.8: Example of image warping using a spatial transformer network. Source:
[Jaderberg et al., 2015]

tion and scale of the object are used to put the shape into the correct position
using a spatial transformer network [Jaderberg et al., 2015](Fig. 2.8). The archi-
tecture of the encoder is also consistent with this latent variable structure: The
latent variables defining the location, orientation and scale are first computed,
then used by another spatial transformer network to put the objet back at a ref-
erence position, orientation and scale so that its general shape can be coded by
the encoder without being dependent on its position. In this way, it is possible
to get an explicit decomposition of the latent codes in shapes-related codes and
pose-related codes, and the pose-related codes are fully interpretable because
the spatial transformer network is explicitly defined and does not depend on
any unknown parameter.

Other latent codes decomposition can be investigated. For example, an
interesting way to segment a salient object in a scene is to consider that the
pixels associated to the background can be generated independently, from the
pixels associated to the foreground objects [Chen et al., 2019b, Katircioglu et al.,
2021]. More generally, a natural way to implement the fact that various objects
in a scene are independent from each other is to build a generative model where
each object has its own latent codes independent from the latent codes of the
other objects.

Combining those two approaches allows to perform object detection and lo-
calization in a purely unsupervised way and leads to unsupervised learning of
object-centric representations. In Eslami et al. [Ali Eslami et al., 2016], the
authors propose to perform unsupervised object detection on synthetic images
without background by inserting a RNN in the encoder and asking it to gen-
erate a sequence of codes of the form (zynere, Zwhat, Zpres), one for each object
detected. zynqt codes for the appearance of the object, zypere for the pose of
the object, and z,..s indicates whether the object is present or not, so that
the RNN sequence generation stops as soon as a zpres = 0 is produced. The
reconstruction is done by generating the shape of the object using z,nq¢, then
putting it at the right pose using a spatial transformer network with the z,pere
code, and finally by adding the generated images of all the objects together.
This approach has been further developed in the models SPAIR [Crawford and
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Figure 2.9: Overview of the SPACE model. Source: [Lin et al., 2020]

Pineau, 2019] and SPACE [Lin et al., 2020] (Fig. 2.9) by replacing the RNN
with a grid-based object detector inspired by supervised object detectors (Fast
R-CNN or YOLO).

Reconstructing an image using the sum of the images of the objects appear-
ing in this image is clearly not satisfying considering that the occlusions cannot
be handled in this way. Crawford et Pineau [Crawford and Pineau, 2019] and
Lin et al. [Lin et al., 2020| manage this problem by requiring the model to pre-
dict also the mask of the object using zy,nq: and to encode the depth of the
objects with a new latent variable zjeptn. The unsupervised object detection
model which will be presented in chapter 5 implements a similar approach.

Hierarchical representations

Another approach which can be used to obtain more interpretable representa-
tions is to assume that the distribution of a dataset can be represented by a
probabilistic model which is organized as a Bayesian network. To be consistent
with this probabilistic model, the associated encoders and generators have to
follow a sequential or hierarchical generation or encoding process. Although
autoregressive models used in the NLP domain do not lead to interpretable
representations, hierarchical models used for image applications often produce
structured representations which can be considered as interpretable. For exam-
ple it has been observed in the StyleGAN model, which uses an intermediate
latent space coding for the styles of the image, that the first style latent variables
are responsible for the high-level abstract content of the data such as shape and
pose whereas the last style latents code for appearance details such as hair color
(Fig. 2.10).

The latent variables learnt in hierarchical variational autoencoders [Child,
2020] have also been shown to have a structure: The top level latents code
for low frequency features, while the low level latents code for small details
(high frequency) appearing in the image. A possible application of this kind of
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representation is image super-resolution [Prost et al., 2022] .

2.5.2 Using consistency targets to build structured repre-
sentations

Extracting interpretable representations from data can also be done without
using a reconstruction target: Implementing consistency targets using some a
priori or expert knowledge about the data or the tasks which have to be handled
in a learning-based model can also lead to useful structured representations.

This a priori knowledge can appear to be trivial, but is sometimes sufficient
to allow for efficient self-supervised training. Let’s for example consider the
task of tracking a moving object on a video using the feature vector associated
to this object and a Siamese network [Bertinetto et al., 2016]. It is natural to
require that if such a model tracks an object A from some point x at time ¢ to
some other point z’ at time ¢, then the same model applied to the reverse video
should track the object A from the point 2’ at time ¢’ back to the point x at time
t [Wang et al., 2019a]. This kind of requirement can be implemented by defining
a consistency loss and performing the usual stochastic gradient descent on this
consistency loss, and is surprisingly sufficient to get a reasonable tracking model
and useful feature vectors for the detected objects.

For vision tasks on 3D scene using multiple views, the required a priori
knowledge can be provided by epipolar geometry. For example, Bian et al. [Bian
et al., 2019] build a model which can predict ego-motion and a depth map using
sequential pairs of monocular consecutive frames. The consistency loss is built
using the fact that using predicted ego-motion and depth map of the first frame,
it is possible to predict what the next frame will look like with geometric compu-
tations, and optimizing the associated consistency loss is enough to self-train the
model without any human supervision. Epipolar geometry constraints are also
used in [Zhong et al., 2019] to improve unsupervised optical flow computations
when the objects appearing in the scene are all rigid bodies.

2.6 Motivation for studying object-centric repre-
sentations

The goal of this thesis is to study how deep learning techniques, i.e. stochastic
gradient descent and neural networks, can be used to get an interpretable rep-
resentation of a scene without requiring any annotated dataset. We will build
in this thesis two kind of representations of a scene:

e unsupervised object segmentations
e unsupervised object-centric representations.

Unsupervised object segmentations are fully interpretable, and can be used
without further treatment for applications such as tracking or video surveillance.
Object-centric representations are structured representations, but further treat-
ments are necessary to use them. We observe that object-centric representations
align well with the way humans analyse a scene and reason about it. As a con-
sequence, it can be considered as a first step towards building neurosymbolic
representations, bridging the gap between deep learning methods and symbolic
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methods, and it seems reasonable to expect that object-centric representations
can be useful for all tasks involving some form of reasoning about the content
of a scene.

This point cannot however be considered today as a proven fact, and remains
the subject of scientific debate. Due to the limitation of existing unsupervised
object-centric representation models, experiments on this subject have up to
now been limited to very simple scenes showing geometric shapes and uniform
textures. We provide below a short overview of these experiments.

2.6.1 Scene or video understanding

The use of object-centric representations has lead to significant improvements on
visual question answering (VQA) tasks involving multi-object images or videos.
The ALOE model [Ding et al., 2021] (Cf Fig. 2.11) handles video and first uses a
MONet model [Burgess et al., 2019] to generate an object-centric representation
from each frame. These object-centric representations are first fine-tuned using
self-supervised learning on the video sequence using masked token prediction,
and the model is fine-tuned again on the VQA downstream task using supervised
learning. This model allows to get substantial gains on various VQA datasets
compared to models which do not use an object-centric approach, including
models using a symbolic engine. Examples of ALOE model predictions on a
video are provided in Fig. 2.12.

2.6.2 Scene dynamics understanding and prediction

Switching from pixel space representations to object-centric representations lead
to a significant dimensionality reduction, and object centric representations also
allow to introduce a powerful inductive bias which is that all objects should be
handled in the same way, so that models managing object representations, ob-
ject interactions or object manipulations should be equivariant or invariant with
respect to any permutation of the object representations. As a consequence, sev-
eral papers have shown that object-centric representations are particularly well
suited to learn structured world models and perform future frame predictions on
videos showing interacting objects [Hsieh et al., 2018, Creswell et al., 2021, Goyal
et al., 2021, Min et al., 2021, Assouel et al., 2022]. For example, Fig. 2.13 pro-
vides a sample of future frame prediction from the ODDN model [Tang et al.,
2022].

2.6.3 Reinforcement learning and robotics

It is widely believed that using object-centric models should allow to learn better
policies on downstream tasks involving object manipulation or localization. Sev-
eral object-centric reinforcement learning models have been proposed on simple
multi-object scenes and have been shown to obtain better results than models
handling pixel-space representations when a significant number of objects are
present in the scene [Janner et al., 2019, Veerapaneni et al., 2020, Zadaianchuk
et al., 2021]. Heravi et al. [Heravi et al., 2022] compare the efficiency of MoCo
representations [He et al., 2020a] and object-centric representations obtained
from the Slot attention model [Locatello et al., 2020] for robotic manipulations
tasks involving several objects and conclude that object-centric representations
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offer significant improvement and are more sample efficient compared to MoCo
representations.
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Coarse styles from source B

Fine from B Middle styles from source B

Figure 2.10: Two sets of images (Source A: first column and Source B: first row)
are generated using StyleGAN. Their style latent codes are then mixed and used to
generate the other images which are shown in this figure. When the top level latent
codes from source B are used (row 2-4), high-level content of the source B images
is transferred. However when middle (row 5-6) or low level (row 7) codes are used,

only low level appearance features of source B images are transferred. Source: [Karras
et al., 2019]
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[ Linear ] [ Linear + softmax ]

[ Transformer + Position Encoding ]
[ MONet J [ Embedding lookup J
A A A = « : : ‘

- | [ will the red triangle hit the green square ? <<-->>
A

Figure 2.11: Overview of the ALOE model [Ding et al., 2021] which performs visual
question answering using object representations. A transformer encoder takes as inputs
(1) the object feature vectors produced by an unsupervised object detection model
(MONet), (2) the embeddings of question words, (3) a CLS token. The transformed
value of the CLS token is passed through an MLP to generate the final answer. Source:
[Ding et al., 2021]
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Q: Are there any
moving brown
objects when the
red object enters
the scene?
Model: no
Label: no

Q: What will hap-
pen next?

1. The gray
cube and the
brown object
collide

2. The red ob-
ject  collides
with the
rubber cube

Model: 2
Label: 2

Q: If the cylinder
is removed, which
of the following will

not happen?

1. The gray
cube and the
brown cube
collide

2. The red ob-
ject and the
cyan object
collide

3. The red
sphere  and
the  rubber

cube collide

4. The cyan
object  and
the brown
cube collide

Model: 1, 4
Label: 1, 4

Q: How many
rubber objects are
moving?

Model: 3

Label: 3

Figure 2.12: Example of input video and associated ALOE VQA predictions on

CLEVRER dataset. Source: [Ding et al., 2021]

t=1

Ground
truth

t=2 t=3 t=4

t=5 t=6 t=7

t=8

PROVIDE

ODDN
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]] l ‘

Figure 2.13: Example of future frame prediction of the ODDN model. Source: [Tang

et al., 2022]
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Chapter 3

Fixed background
reconstruction

3.1 Résumé en francgais

Le but de la reconstruction d’arriére-plan, aussi appelée génération d’arriére-
plan, et de reconstruire I’arriére-plan d’une scéne a partir d’'une séquence d’images
de cette scéne encombrées par divers objets en mouvement. Cette tache est fon-
damentale en analyse d’image et constitue généralement une premiére étape
préalable & des traitements plus avancés. Elle est cependant difficile car il n’y
a pas de définition formelle de ce qui doit étre considéré comme appartenant &
I'arriére-plan ou & I'avant-plan, et les résultats peuvent étre sévérement affectés
par une variété de difficultés telles que les changements de luminosité de I'image,
les mouvement intermittents des objets, ou un encombrement élevé de la scéne
par de nombreux objets, etc. Nous proposons dans ce chapitre un nouvel al-
gorithme itératif pour la reconstruction d’arriére-plan, o ’estimation en cours
de l'arriére plan est utilisée pour évaluer quels pixels de 'image appartiennent
a l’'arriére-plan, et une nouvelle estimation de ’arriére plan est calculée en util-
isant uniquement ces pixels. Nous montrons alors que I'algorithme proposé, qui
utilise la descente de gradient stochastique pour ses propriétés de régularisation,
est plus précis que 'état de l'art sur 'exigeant benchmark SBMnet, en partic-
ulier pour les courtes séquences vidéo avec un faible fréquence d’images, et est
aussi rapide, atteignant une moyenne de 52 images par seconde sur ce jeu de
données lorsqu’il est paramétré pour une précision maximale et en utilisant une
carte graphique et une implémentation en Python.

3.2 Abstract

The goal of background reconstruction, also called background generation, is to
recover the background image of a scene from a sequence of frames showing this
scene cluttered by various moving objects. This task is fundamental in image
analysis, and is generally the first step before more advanced processing, but
difficult because there is no formal definition of what should be considered as
background or foreground and the results may be severely impacted by vari-
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ous challenges such as illumination changes, intermittent object motions, highly
cluttered scenes, etc. We propose in this chapter a new iterative algorithm for
background reconstruction, where the current estimate of the background is
used to guess which image pixels are background pixels and a new background
estimation is performed using those pixels only. We then show that the proposed
algorithm, which uses stochastic gradient descent for improved regularization,
is more accurate than the state of the art on the challenging SBMnet dataset,
especially for short videos with low frame rates, and is also fast, reaching an av-
erage of 52 fps on this dataset when parameterized for maximal accuracy using
acceleration with a graphics processing unit (GPU) and a Python implementa-
tion.

3.3 Introduction

We consider in this chapter the task of static background reconstruction: start-
ing from a sequence of images X = X1,..., Xy of a scene showing moving ob-
jects, for example cars, bikes or pedestrians, the goal is to recover the image of
the background of this scene, without any of the moving objects. This task is
fundamental in image analysis: The moving objects appearing in the scene may
be considered as a nuisance, and background reconstruction allows to remove
them completely and focus on the analysis of the background, for example to
localize or map the scene. More frequently, for example for video surveillance
or traffic monitoring, the moving objects are the main object of interest and the
background itself is considered as a nuisance, so that background reconstruction
is a first step which can be used to extract and analyze the moving objects of
the scene. The task of background reconstruction should not be confused with
the task of background modeling, which involves building a statistical model of
the background images whereas the task of background reconstruction requires
to predict a unique background image.

It is often assumed that all the images Xi,..., Xy share the same back-
ground, which is then called a static background. In this case, the output of
the algorithm is composed of only one background image X. It is however also
possible that the backgrounds are slightly different in each image, for example
if the illumination conditions change or if the camera is moving. In this situa-
tion, which will be handled in chapter 4 we expect a background reconstruction
algorithm to output a sequence of backgrounds X1,.., Xn and we say that the
background reconstruction is dynamic. In this chapter, we consider the problem
of static background reconstruction.

This problem is a difficult because there is no formal definition of what should
be considered as background or foreground. Moving trees, fountains and moving
shadows are examples of instances that are usually considered as belonging to
the background although they show moving features. Other challenges such as
illumination changes or the presence of objects staying still for a short time
(a problem called intermittent motion) may severely impact the quality of a
background reconstruction model.

One should distinguish between online methods, where the length of the
dataset is unknown and the background reconstruction algorithm has to update
the background model in real-time and batch methods, where the algorithm is
provided with a fixed dataset. The method proposed in this chapter is a batch
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method.
The main contribution of this chapter are the followings:

e We implement a new consistency criterion for background estimation: The
background estimate produced by a background estimation method should
not change if we perform the background estimation using only pixels
that are considered as background pixels with regards to this background
estimate.

e We then show that this consistency criterion can be described as an op-
timization criterion and that the associated optimization problem can be
efficiently solved using stochastic gradient descent.

The chapter is organized as follows: In Section 3.4, we review related work
in static background reconstruction. In Section 3.5, we describe the proposed
algorithm. Experimental results are then provided in Section 3.6.

3.4 Related Work

Temporal median filtering (TMF) [Piccardi, 2004] simply computes the back-
ground color for a pixel p as the median of the colors of this pixel on all the
images X1, .., Xn. Despite its simplicity, this algorithm and its variant tempo-
ral median filter with Gaussian filtering (TMFQG) [Liu et al., 2016] perform very
well on several scene categories.

The current state-of-the-art models for unsupervised fixed background re-
construction are the Superpixel motion detection algorithm (SPMD) [Xu et al.,
2019b] and LaBGen-OF [Laugraud and Van Droogenbroeck, 2017]. Both of
these models, as well as the frame selection method and efficient background
estimation procedure (FSBE) [Djerida et al., 2019], implement the idea that the
regions of the input frames showing foreground objects should not be considered
to compute the background.

SPMD first selects the longest sequence with stable illumination, then uses
superpixel segmentation [Achanta et al., 2012], and removes all superpixels with
contain at least one moving pixel using a frame difference method to detect
moving pixels. The various pixel values associated with one pixel position are
then clustered, and the median value of the best cluster is selected to produce
the background value. Removing superpixels associated with moving pixels for
background initialization is also developed in [Zhou et al., 2020].

LaBGen and LaBGen-P [Laugraud et al., 2017, Laugraud et al., 2016] as-
sume that a background/foreground segmentation algorithm is available. For a
given pixel or spatial patch, these models select the frames showing the lowest
number of foreground pixels, and then perform a pixel-wise median filtering.
LaBGen-OF is a variant which uses an optical flow algorithm [Laugraud and
Van Droogenbroeck, 2017]. LaBGen-semantic is another variant with uses a
supervised semantic segmentation model [Laugraud et al., 2018]. This model
has also been adapted [Yu and Guo, 2019] to detect illumination changes and
use only a subsequence with stable illumination conditions.

The FSBE algorithm (frame selection and background estimation) [Djerida
et al., 2019] assumes that an optical flow algorithm is available. It first selects a
sequence of frames where the illumination conditions do not change too much.
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Using the optical flow algorithm, it classifies as background all pixels which have
an optical flow magnitude below some threshold and corrects this classification
if it detects high dynamic motion or foreground intermittent motion in the
sequence. It then takes the pixel-wise average of the selected background pixels.

Instead of only removing pixels or patches which show moving objects before
performing temporal median filtering, some models [Cohen, 2005, Xu and Huang,
2008] try to select for each pixel only one patch from the various frames, which
is considered to be the best candidate to represent the background, so that
temporal median filtering is not needed. Photomontage [Agarwala et al., 2004]
builds the background as a seamless montage composed of patches extracted
from the images Xi,.., Xy so that the likelihood of the color at each pixel is
maximum with respect to the probability distribution function formed from the
color histogram of all pixels in the span.

Some models try to benefit from the fact that if the content of the back-
ground is known in some part of the image, it is easier to distinguish between
background and foreground objects in adjacent parts of the image, using a spa-
tial or temporal consistency criterion. The neighborhood exploration based
background initialization (NExBI) algorithm [Mseddi et al., 2019] divides the
frame in blocks, and perform a temporal clustering for each block location. A
preliminary partial background model is then created for the blocks that remain
stable during all the sequence, i.e., where all the image patches associated with
this block form only one cluster, and then iteratively extended to the whole
image as a puzzle game by enforcing consistency between candidate background
blocks and the partial background model. Other iterative block completion
models have been proposed in [Baltieri et al., 2010, Colombari and Fusiello,
2010,Hsiao and Leou, 2013, Lin et al., 2009, Ortego et al., 2016, Sanderson et al.,
2011].

Another approach which has been investigated for background reconstruc-
tion is to consider the sequence X = X1, ..., X, as a 3D tensor or a spatiotempo-
ral matrix and to decompose it as the sum of a low-rank part, which is assumed
to be representative of the background, and a sparse part, which should be
representative of the foreground objects. For example, the Motion-assisted spa-
tiotemporal clustering of low-rank algorithm (MSCL) [Javed et al., 2017|, which
is a dynamic background reconstruction model using robust principal compo-
nent analysis (RPCA) [Candés et al., 2011], is able to obtain better results than
state of the art fixed background reconstruction models on the scene background
modeling (SBMnet) dataset using this method, although it is not directly com-
parable to those models because it requires some human supervision to select the
final frame X from the various predicted backgrounds X7, ..., X, associated with
the frames X1, ..., X,,. Another linear method proposed to extract a low rank
background is to apply singular value decomposition (SVD) to spatiotemporal
slices of the tensor X, consider that the first principal subspace is associated
with the background, and use the other components to detect foreground ob-
jects, which can then be excluded from the background computation [Kajo et al.,
2018,Kajo et al., 2020].

The background estimation by weightless neural network (BEWIS) [De Gre-
gorio and Giordano, 2015] and self-organizing background subtraction (SOBS)
algorithms [Maddalena and Petrosino, 2008a, Maddalena and Petrosino, 2016,
Maddalena and Petrosino, 2012] involve weightless neural networks, which are
used as containers to build a statistical model of the background.
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The current top performing algorithms for background reconstruction do not
use deep learning techniques, but several papers have proposed to use them for
fixed background reconstruction:

Fully-concatenated Flownet (FC-Flownet) [Halfaoui et al., 2016] is a convo-
lutional network with an architecture similar to a U-net which is used to predict
a background from a set of 20 color images in a single inference step. Due to
memory restrictions, the images are cut in superposed 64x64 patches, and the
20 patches associated with one location are given as input to the convolutional
network. The output patches are then aggregated to build the background. The
network is trained end-to-end using samples and ground truths coming from 54
different sequences.

Background modeling Unet (BM-Unet) [Tao et al., 2017] is a background
reconstruction model which also uses a U-net network but is trained without
any supervision or ground-truth data and can perform both fixed and dynamic
background reconstruction. For fixed background reconstruction, it is trained
with pairs of random images sampled from one frame sequence. Using the first
image, the U-net network predicts a probability distribution over the possible
256 values of each pixel of the output image, and the second image is used as a
target.

Deep context prediction (DCP) [Sultana et al., 2019] considers the back-
ground reconstruction problem as an inpainting problem: Using an optical flow
algorithm, it first computes the motion mask associated with the current frame
and removes from this frame the pixels associated with this motion mask. It
then uses a multi-scale neural path synthesis network [Yang et al., 2017] to fill
the holes in the image and obtain a clean background. Other data reconstruc-
tion methods using classical matrix completion or exemplar-based approaches
are also possible [Colombari et al., 2005, Sobral et al., 2015, Sobral and hadi
Zahzah, 2017].

We refer to available surveys [Bouwmans et al., 2017, Bouwmans et al., 2019|
for a more detailed description of related work.

3.5 Proposed Algorithm for Background Recon-
struction

3.5.1 Motivation

We have noted in the previous section the good results of temporal median
filtering, despite its simplicity, and observe that the two best unsupervised al-
gorithms for background reconstruction, SPMD and LabGen-OF, also use some
form of temporal median filtering. One can intuitively understand that back-
ground reconstruction involves performing some form of averaging of the input
frames, and that computing the median will give better results than computing
the average of the frames because the median is more robust to outliers.

We note however that using median filtering on color images may lead to
inconsistencies. Let us for example consider RGB images showing a red back-
ground with large green and blue foreground objects. Assume that in the se-
quence considered, each red background pixel is masked by a green object during
26% of sequence duration and by a blue object during another 26% of the se-
quence duration. The red color channel of any pixel will then be equal to zero

37



during 52% of the sequence, and the blue and green channels are also equal to
zero during 74% of the sequence. As a consequence, the result of median filtering
on such a sequence is a uniform black image, which is clearly not satisfactory.
One can think that a better method to select the background color of an
image from a frame sequence would be first to guess in each frame which pixels
are background pixels and then to consider only those pixels for temporal median
filtering. However, to be able to guess which pixels are background pixels, we
need to have some estimate of the background. The main idea introduced in
this chapter is that we can successfully build an iterative optimization process
for background reconstruction, using the current estimate of the background to
guess which pixels are background pixels and then refining the estimate of the
background by performing temporal median filtering on those pixels only.

3.5.2 Bootstrap weights

We observe [Huber, 1964] that temporal median filtering can be described as
a minimization problem associated with a Ly error loss. More precisely, for
a sequence of color images Xi,.., Xy of size h X w, noting x, .,  the value
(normalized in the range [0,1]) of the pixel associated with the image X,, and
the color channel ¢ at position (7,j) with 1 <4 < h and 1 < j < w, the L; error
loss associated with some background reconstruction X can be described as

N
~ 1 ~

L1(X, (Xn)1<n<n) = N Z Li(X, X,) (3.1)

n=1

with
. 1 h,w 3
Ll(Xan) = % Z Z|i'c,i,j - xn,c,i,j|7 (32)
i=1,j=1 c=1

and it is immediate that if we take each Z.;; to be a median of the sequence
(®n,e,i,j)1<n<n, then we obtain a minimum of this loss function, considering
that the derivative of |&c;; — @n,c ;| With respect to Z.;; is equal to 1 if
i'c,i,j — Tn,c,i,j > 0 and —1 if i'c,i,j — Tnyc,ij < 0.

We now consider the foreground pixels as outliers and propose to bootstrap
the current estimate of the background to smoothly restrict this loss function
to background pixels and reduce the influence of the foreground pixels. We
then give a low weight, called a bootstrap weight, to the pixel-wise error terms
S |Zeij — Tncij| associated with foreground pixels in the loss function.
These bootstrap weights are computed in the following way (Figure 3.1):

Let us note [, ; ; the sum of the Ly errors for each color at the pixel (i, )
between the predicted image X and the input image X, for all the color chan-
nels:

3
Ingj= ZL@C,W‘ — Tp,e,i,j (3.3)
c=1
If at least one of the color channels give a high error, then [, ; ; is large and
we will consider that the pixel (¢, ) of the image X,, is a foreground pixel. We
then build a soft foreground mask m,, € [0,1]"** for the image X, using the
formula

lni j
My, ;,; = tanh (J) (3.4)

T1
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Figure 3.1: Schematic of loss function and gradient computation (Images are nor-
malized in the range [0,1]).

where 7, is some positive hyperparameter, which can be considered as a soft
threshold. As a consequence, m,, ; ; is close to zero for values of [, ; ; close to
zero (background pixels), and close to 1 for values of I,, ; ; which are significantly
larger than 7 (foreground pixels).

This mask will however be noisy. We then compute a spatially smoothed
version m,, ; ; of this mask by averaging using a square kernel of size (2k+1) x
(2k + 1), with k = |w/r] (where w is the image width and r is some integer
hyperparameter):

A 1 I=k,p=k
M i (X Xn) = 75— M i1+ (3.5)
j Ry DR

bootstrap
n,%,j

We then finally define the associated pixel-wise bootstrap weights w

as

bootstrap __ _—Bmn.i.;
bootstrap _ o=, (3.6)

where (3 is some positive hyperparameter, which we call the bootstrap coefficient.
For pixels which are considered to be background pixels (m, ;; ~ 0), this

weight will be close to 1 and will not change the pixel-wise loss terms > " |Zc,i j—

Tn,c,i,j| associated with these pixels. However for pixels which are considered
as foreground pixels (M, ; ; ~ 1), this weight will have a very low value close to
e~ P, which means that the associated pixel-wise loss terms will get a very low
importance in the loss function.

3.5.3 Optical Flow Weights

We have seen that background reconstruction algorithms could be improved by
using informations provided by optical flow models to remove parts of an image
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showing moving objects. We use the same approach to improve the loss function
L1. We then define optical flow weights associated with each pixel z,, ; ; which
will be close to zero if this pixel appears to be a moving pixel and has to be
removed from the loss function computation. These weights are computed in
the following way (cf. Figure 3.1):

We use an external algorithm (OpenCV implementation of Dense Inverse
Search algorithm [Kroeger et al., 2016]) to obtain an estimate of the magnitude
¢n,i,; of the optical flow associated with each pixel (,j) of an image X,,. We
chose this algorithm because it is very fast compared to other available optical
flow implementations. We first normalize ¢,, ;, ; with respect to the image width
w and then define an optical flow mask u,, ; ; using the formula

: Dnig
where the hyperparameter 75 can also be considered as a threshold. This mask
is then equal to 1 for high values of the optical flow ¢,, ; j, which suggests that
the associated pixels show a moving object, and it is close to zero if no motion
is detected by the optical flow algorithm at the associated pixel.
The weight associated with this optical flow mask is then defined as

wq?};j — 6*¢Mn,i,j, (38)
where ¢ is another positive hyperparameter. This weight will then be equal to 1
if no motion is detected at the associated pixel, and close to e~? if a significant
motion is detected, which suggests that the associated pixel is not a background
pixel. w,?’lzj is, however, set to 1 for all pixels on short videos (less than ten
images), considering that optical flows computed from sequences with very low
frame rates are not reliable.

3.5.4 Abnormal Image Weights

If the number of images in the dataset is large, we can afford to give a low weight
to images which appear to be abnormal and can be considered as outliers, for
example if the illumination conditions are different on these images compared
to the predicted background, or if there are too many pixel errors on the image.
We then first compute the average L, error I, of the image X,, as

~ 1
I, = — z;z,” (3.9)

and define a global weight associated with each image X, as
w;gllobal _ e—wfﬂ,’ (310)

where ~ is another positive hyperparameter. As a consequence, this weight
wslebal will be close to zero if the image X, is globally very different from the
current estimate X of the background. We use this global weight if the size
of the dataset is greater than 10. It should be noted that this weight is not
pixel-specific, as opposed to the bootstrap weights and optical flow weights, but
is assigned to a complete frame.
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3.5.5 Management of Intermittent Motion

Existing benchmarks for background reconstruction require that objects which
remain still for a long time in the sequence be considered as foreground objects
if they are moving during some part of the sequence. This challenge is very
difficult and is not addressed by the previous weights. In order to handle it, we
follow Javed et al. [Javed et al., 2016, Javed et al., 2017] and remove from the
frames sequence all frames which are not showing any motion. More precisely,
we first compute the maximum u;, of the optical flow mask values pi, ; ; of the
image X,, as defined in previous section, and remove this image if u} < 73,
where 73 is another threshold hyperparameter. The motivation of this suppres-
sion is that it appears that images containing still foreground objects are often
motionless images, so that removing them improves the robustness of the pro-
posed model against the intermittent motion issue. We apply this motionless
frame suppression when the number of frames in the sequence is higher than
10, considering as in previous section, that removing frames when the number
of frames is very low will impact negatively the quality of the results. We note
N’ < N the number of frames after motionless frame suppression.

3.5.6 Statement of the Optimization Problem

Finally, the loss function is adapted using these weights and becomes the fol-
lowing:

N’ h,w

3
5 1
— lobal, bootstrap OF ~
Lw (X, (Xn)ignsnt) = 157 ) wEOPH PSR Ol N G i =T

n=1,i=1,j=1 =1

(3.11)
We are then interested to solve the following optimization problem: Considering

the dataset (X,,)1<n<n’, find an image X so that, when the weights w3 and
bootstrap o
n,,)

minimal with respect to X.

We can find a solution to this problem by performing an iterative computa-
tion of the weighted median of the images using the various weights defined in
the previous paragraph followed by an update of the weights, a process similar
to the classical iterated reweighted least square algorithm [Lawson, 1961]. We
observe, however, that the images produced using this method are not smooth
and that additional regularization is necessary. We then propose to use stochas-
tic gradient descent on the loss function EW(X, (Xn)i<n<n’) using standard
deep learning tools. The pixel values Z.; ; are then considered as parameters
and optimized using stochastic gradient descent (Figure 3.2).

It should be noted that performing a stochastic gradient descent on this
loss function is not equivalent to minimizing it: During the optimization pro-
cess, the weights wsz;“ap and w&'°P® depend on the current estimation of the
background and change; we then call these weights dynamic weights. At each
iteration they are, however, considered as fixed so that we do not compute and
use the gradient of the loss function with respect to the value of these weights.

are considered as constants, the loss function EW(X, (Xn)1<n<nr) is
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Figure 3.2: Overview of the stochastic gradient descent optimization process

3.6 Evaluation of the Proposed Model

Two public benchmarks are available for the evaluation of fixed background
reconstruction models: the SBMnet dataset [Jodoin et al., 2017] and the SBI
dataset [Maddalena and Petrosino, 2015]. We first provide a quantitative evalu-
ation of the proposed model on those two datasets. We then perform an ablation
study and some computation speed measurements.

3.6.1 Implementation Details

A desktop computer with an Intel Core i7 7700K@Q4,2GHz CPU and a Nvidia
RTX 2080 TTI GPU is used for this experiment.The model is implemented in
Python using the Pytorch framework and is publicly available on the Github
platform. We use the Adam optimizer [Kingma and Ba, 2015|, with learning
rate 0.03 and batch size 64, reduced by a factor of 10 when 3/4 of the epochs
have been computed. The number of epochs depends on the size of the dataset
and is adjusted so that the total number of optimization iterations is close to
3000, with a minimum of two epochs. In order to accelerate computations, each
frame sequence is fully loaded in the GPU video RAM during the optimization
process. A manual hyperparameter search has been performed using the video
sequences of the SBI and SBM datasets for which a ground truth is available.
The hyperparameters have then been set to the following values: 8 = 6,¢ =
2,y =3,r = 75,71 = 0.25, 75 = 255/40000, 73 = 240/255. Before starting the
optimization, background image pixel color values are initialized with random
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numbers sampled from a uniform distribution between 0 and 1. The DIS optical
flow OpenCV implementation is used with the FAST preset mode. In order
to obtain a low gradient when [,, ; ; is close to zero, we replace the expression
|£¢,i.j —Tn,c,i,;| with a smooth L; loss using a threshold equal to 3 (assuming the
pixel values are scaled in the range 0-255). When |&.; ; — Zp ¢, ;| is lower than
3, we replace it with the quadratic expression 0.5(Zc; j — n,c,i.;)°/3, otherwise
we replace it with |Z¢;; — Zpn ] — 0.5 % 3.

3.6.2 Evaluation on SBMnet dataset

The SBMnet dataset [Jodoin et al., 2017] (http://scenebackgroundmodeling.net)
is composed of 79 sequences, which have been selected to cover a wide range of
challenges and are representative of typical indoor and outdoor visual data cap-
tured today in surveillance, smart environment, and video database scenarios.
The dataset includes the following eight categories with associated challenges:
basic, intermittent motion, clutter, jitter, illumination changes, background
motion, very long and very short. Although this dataset is freely available
on the SBMnet website, ground truth images are publicly available for only
18 frame sequences, either on the SBMnet website or on the SBI dataset web-
site. In order to benchmark a new algorithm, one has to submit the predicted
fixed background images associated with each frame sequence to the website,
which performs the evaluation of the submitted results.

Six criteria are computed to evaluate the accuracy of background reconstruc-
tion:

o Average Gray-level Error (AGE);

e Percentage of Error Pixels (pEPs);

e Percentage of Clustered Error Pixels (pCEPs);

e Multi-Scale Structural Similarity Index (MS-SSIM);
e Peak-Signal-to-Noise-Ratio (PSNR);

e Color image Quality Measure (CQM).

We refer to [Jodoin et al., 2017] for the full definition of these criteria. A
good background reconstruction should minimize the criteria AGE, pEPs and
pCEPs, but maximize the criteria MS-SSIM, PSNR and CQM. We have com-
puted the 79 background images using the proposed algorithm and uploaded the
reconstructed backgrounds to the SBMnet website, which provided the evalua-
tion results described in Tables 3.1 and 3.2.

We provide a comparison of the proposed model with models that are fully
unsupervised, i.e., which do not use a supervised segmentation model (such as
LabGen-semantic) and do not require any human supervision. The proposed
model, named BB-SGD (background bootstrapping using stochastic gradient
descent) obtains a better average score than all referenced unsupervised models
on all criteria as shown in Table 3.1. Table 3.2 lists AGE results per category
of the SBMnet dataset. It shows that the proposed models shows better AGE
results than all referenced unsupervised models on 4 categories: basic, clutter,
background motion and very short video, with a 15% accuracy improvement
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Table 3.1: Evaluation results per criteria on the SBMnet 2016 dataset. | indi-
cates lower score is better, 1 indicates higher score is better. Source: SBMnet
website http://pione.dinf.usherbrooke.ca/results/294/ accessed on 20 Novem-
ber 2021. Available in 2022 on the following link: https://web.archive.org/web/
20220618062451/http://pione.dinf.usherbrooke.ca/results/294/

Method Average Average Average Average Average Average
AGE | pEPsl| pCPEPs| MS-SSIMtT PSNRT CQMtT

BB-SGD (ours) 5.6266 0.0447 0.0147 0.9478 30.4016 31.2420
SPMD [Xu et al., 2019b] 6.0985 0.0487 0.0154 0.9412 29.8439 30.6499
LabGen-OF |Laugraud and Van Droogen- 6.1897 0.0566 0.0232 0.9412 29.8957 30.7006
broeck, 2017]
FSBE |Djerida et al., 2019 6.6204 0.0605 0.0217 0.9373 29.3378 30.1777
BEWIS [De Gregorio and Giordano, 2015| 6.7094 0.0592 0.0266 0.9282 28.7728 29.6342
NExBI [Mseddi et al., 2019] 6.7778 0.0671 0.0227 0.9196 27.9944 28.8810
Photomontage [Agarwala et al., 2004] 7.1950 0.0686 0.0257 0.9189 28.0113 28.8719
SOBS [Maddalena and Petrosino, 2016] 7.5183 0.0711 0.0242 0.9160 27.6533 28.5601
Temporal Median Filter |Piccardi, 2004] 8.2761 0.0984 0.0546 0.9130 27.5364 28.4434

Table 3.2: Evaluation results for the AGE criterion per category on the SBM-

net 2016 dataset. Source: SBMnet website http://pione.dinf.usherbrooke.ca/

results/294/ accessed on 20 November 2021.
Method Basic Interm. Clutter Jitter Tllumin. Backgr. Very Very

Motion Changes Motion Long Short

BB-SGD (ours) 3.7881 4.8898 3.8776 9.5374 4.5227 8.5607 5.6494 4.1872
SPMD [Xu et al., 2019b| 3.8141 4.1840 4.5998 9.8095 4.4750 9.9115 6.0926 5.9017
LabGen-OF [Laugraud and Van Droogenbroeck, 2017) 3.8421 4.6433 4.1821 9.2410 8.2200 10.0698 4.2856 5.0338
FSBE |Djerida et al., 2019] 3.8960 5.3438 4.7660 10.3878 5.5089 10.5862 6.9832 5.4912
BEWIS [De Gregorio and Giordano, 2015] 4.0673 4.7798 10.6714 9.4156 5.9048 9.6776 3.9652 5.1937
Photomontage [Agarwala et al., 2004] 4.4856 7.1460 6.8195 10.1272 5.2668 12.0930 6.6446 4.9770
SOBS |[Maddalena and Petrosino, 2016| 4.3598 6.2583 7.0590 10.0232 10.3591 10.7280 6.0638 5.2953
Temporal Median Filter [Piccardi, 2004] 3.8269 6.8003 12.5316 9.0892 12.2205 9.6479 6.9588 5.1336

on the very short video category compared to the best unsupervised model in
this category, which illustrates the efficiency of the bootstrapping mechanism
introduced in the proposed model considering that for these sequences, the
optical flow weights and global weights are not used and no frame is suppressed.

3.6.3 Evaluation on SBI Dataset

The SBI dataset [Maddalena and Petrosino, 2015] (https://sbmi2015.na.
icar.cnr.it/SBIdataset.html accessed on 20 November 2021) is composed of
14 image sequences. Ground truth backgrounds are available for all sequences.
We use the Matlab tool available on the SBI website for fair comparison with
other models, but do not report the CQM results considering that other se-
quences were evaluated with a Matlab tool which included a bug for the CQM
computation, as indicated in the SBI website. We run the proposed model on
the SBI dataset using the same hyperparameters as those used for the SBMnet
dataset. The results of this evaluation are listed in Table 3.3 and show that the
proposed model obtains better results than all other compared unsupervised
models for the evaluation criteria AGE, MS-SSIM and PSNR, and is ranked
second for the criteria pEPs and pCEPs.
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Table 3.3: Evaluation results per criteria on the SBI dataset. | indicates lower score
is better, 1 indicates higher score is better.

Average

37.6227
35.9758
31.8116
35.2028
35.3078
32.0143
31.8573
35.2723

Method Average Average Average Average
AGE | pEPs] pCEPs| MS-SSIM 1t PSNR 1
BB-SGD (ours) 2.4644 0.0083 0.0058 0.9896
LabGen-OF [Laugraud and Van Droogenbroeck, 2017] 2.7191 0.0145 0.0106 0.9824
SS-SVD [Kajo et al., 2018] 2.7479 0.0345 0.0907 0.9464
LabGen [Laugraud et al., 2017] 2.9945 0.0139 0.0092 0.9764
NExBI [Mseddi et al., 2019] 3.0547 0.0077 0.0027 0.9835
BEWIS [De Gregorio and Giordano, 2015] 3.8665 0.0242 0.0142 0.9675
Photomontage [Agarwala et al., 2004] 5.8238 0.0469 0.0372 0.9334
SOBS |[Maddalena and Petrosino, 2016| 3.5023 0.0415 0.0222 0.9765
Temporal Median Filter [Piccardi, 2004] 10.3744 0.1340 0.1055 0.8533

28.0044

3.6.4 Ablation Study

In order to check the contribution of the various weights described in this chap-
ter, we provide results obtained using truncated versions of the proposed model
while keeping the hyperparameters fixed: Version 0 does not use any weight
and does not remove motionless frames, and is then equivalent to temporal me-
dian filtering. Version 1 uses only the optical flow weights and does not remove
motionless frames. Version 2 uses both optical flow weights and global weights
and does not remove motionless frames. Version 3 uses bootsrap weights, global
weights and optical flow weights, but does not remove motionless frames.

The AGE scores obtained by these truncated models on the 18 videos of the
SBMnet dataset for which a ground truth is available and using the evaluation
tool available on the SBMnet website are provided in Table 4.7. They show that
temporal median filtering (v0) gives the best results for five scenes, confirming
that this is a good baseline. Introducing optical flow weights (v1) improves
average AGE scores on scenes of the “clutter” category, but has no beneficial
impact on other categories. Adding global weights (v2) has a positive impact
on the “llumination change” category, which was expected, but also on the
“clutter” category”. Adding bootstrap weights has an impact on the “clutter”
category, but also on the “short video” category. Finally, removing motionless
frames, which leads to the full model, has a positive impact on the “intermittent
motion” category, which was expected, but also on the scene “boulevardJam” of
the “clutter” category, which also shows some intermittent motions.

3.6.5 Computation Time

We have performed computation times measurements and tested the impact of
reducing the number of optimization iterations, while keeping all other param-
eters frozen, excluding the learning rate. The results of these experiments are
provided in Table 3.5. The total computation times necessary to reconstruct the
79 backgrounds from the associated video sequences of the SBMnet dataset are
estimated by performing a sequential computation for all the videos, so that the
computation times indicated in this table are the sum of the computation times
of each of the 79 videos. If we divide the number of frames of the full dataset
(73,355) with the total computation time of the proposed model, which is 1409
s, we obtain an average of 52 frames per second (fps). Table 3.5 shows, however,
that the number of optimization iterations can be reduced from 3000 to 250,
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Table 3.4: AGE scores obtained using various truncated versions of the algorithm on
18 SBMnet sequences where a ground truth background is available.

Category Video Truncated Model Full
Version Model
v0 vl v2 v3

background motion

advertisementBoard 1.61 1.62 1.60 1.34 1.71
basic

511 342 344 343 344 3.43

Blurred 1.80 169 1.68 1.68 1.61
clutter

Foliage 32.87 586 3.62 341 3.37

Board 21.37  6.78 7.84 737 7.39

People and Foliage 3136 9.66 3.75 254 2.60

boulevardJam 21.37 15.89 19.5 11.0 2.03
illumination change

CameraParameter 11.49 22.19 2.16 2.81 2.95
intermittent motion

busStation 531 540 547  5.67 5.32

Candela_m1.10 493 509 518 5.21 2.81

CaVignal 12,57 12.61 13.58 14.04 2.05

AVSS2007 10.98 10.32 10.25 10.01 8.73
jitter

badminton 262 200 193 174 1.84

boulevard 9.61 10.09 10.29 10.51 9.71
very long

BusStopMorning 3.68 3.66 3.64 3.62 3.61
very short

Toscana 879 880 879 3.30 3.30

DynamicBackground 6.96 6.96 6.96 8.20 8.18

CUHK _Square 277 277 277 299 2.98
Average AGE by category 8.06 7.53 494 451 3.75

increasing the average speed to 187 fps, without major impact on the overall
accuracy of the algorithm. The computation times with such a low number
of iterations are mainly associated with optical flow computations and JPEG
images decoding.

Although the proposed model requires a GPU, these computation time mea-
surements compare very favorably with the processing speeds reported by the
authors of other models. The average computation speed of LabGen-OF is es-
timated to 5fps in [Laugraud and Van Droogenbroeck, 2017]. The computation
speed of SPMD is estimated in [Xu et al., 2019b] to 1.6 fps for 640 x 480 images
and 22.8 fps for 200 x 144 images using a Intel Core i7 2600@3.4Ghz CPU.

The asymptotic time complexity of the proposed algorithm is O(p?) where
p = hw is the number of pixels of an image. It does not depend on the number
of frames of the input frame sequence since a maximum of 64 x 3000 images
are sampled from the input sequence (3000 minibatches of 64 images) and op-
tical flow computations can be restricted to those images only. The quadratic
expression O(p?) is a consequence of Equation (3.5), which involves a kernel
which has a size proportional to the size of the images for r fixed.
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Table 3.5: Impact of reducing the number of iterations on average AGE score and
computation time.

Number of Iterations 100 250 500 1000 3000
Learning Rate 0.06 0.03 0.03 0.03 0.03
Computation time for 79 videos of the 337 391 482 666 1409
SBMnet dataset (seconds)

Average AGE by category on 18 videos 4.07 3.83 3.80 3.76 3.75

of the SBMnet dataset listed in Ta-

ble 4.7

Average AGE on SBI dataset 2.78 2.56 2.53 2.49 2.46

3.6.6 Image Samples

Figures 3.3 and 3.4 show for qualitative evaluation some examples of back-
ground reconstruction for sequences of the SBMnet dataset, with the associated
ground-truth when it is available and a comparison with the results obtained
with LabGen-OF and SPMD. The bottom five rows of Figure 3.4 show some
examples of poor quality reconstructions suffering from challenging issues such
as intermittent motion, headlights and moving trees.

3.6.7 Hyperparameter Tuning

The proposed model involves a significant number of hyperparameters. Al-
though the default hyperparameters proposed in Section 3.6 allow us to obtain
state-of-the-art performances on existing benchmarks, these hyperparameters
may be fine-tuned to improve results on specific situations or use cases. We
provide below some indications on the influence of the main hyperparameters:

e 71: the soft threshold used for computing soft foreground mask should be
decreased for frame sequences with very low average illumination.

e 75: the soft threshold used for computing optical flow masks should be
decreased for video sequences with high frame rates and increased for
sequences with low frame rates, considering that optical flow values are
lower for a high frame rate sequences and higher for a low frame rate
sequences.

e Optical flow weight ¢: as shown in the ablation study, the use of optical
flow weights is only necessary for highly occluded scenes. More precise
results may be obtained by setting this parameter to lower value if a high
level of occlusion is not expected.

e r: the value of r is associated with the expected sizes of the foreground
objects: If it is forecast that the scenes will contain only small foreground
objects, this value may be increased on high definition images for faster
training.

e Bootstrap coefficient 3: a lower value of £ leads to faster training, but
decreases the ability to handle occlusions. A higher value of 8 may lead
to slower or unstable training and artifacts in the final image.
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e Global weight : increasing the value of v may be useful to handle low
intensity illumination changes.

3.7 Conclusion of chapter 3

We have presented in this chapter a new algorithm for fixed background recon-
struction using stochastic gradient descent which is simple, fast using a GPU
and is more accurate than the current state of the art.

The background reconstruction algorithm which has been developed in this
chapter is however not sufficient for our purpose. It is quite rare that videos or
image datasets show a fixed background. The backgrounds of any outdoor scene
will for example be heavily affected by the illumination changes caused by sun
movements and weather variations. In order to build an accurate background
reconstruction from a video, we will then study in the next chapter the task
of dynamic background reconstruction, which requires the reconstruction of a
different background for each input image.
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input example LabGen-OF

Figure 3.3: Examples of background reconstruction using the proposed model and
comparison with SPMD and LabGen-OF.
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input example ground truth BB-SGD SPMD LabGen-OF
(if available) (ours)

Figure 3.4: Examples of background reconstruction. The bottom five rows show
examples of low quality reconstructions.
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Chapter 4

Dynamic background
reconstruction

4.1 Résumé en francais

Malgré plusieurs décennies de recherche, la reconstruction d’arriére-plan dy-
namique et la segmentation des objets constituant ’avant-plan sont toujours
considérées comme des problémes ouverts a cause de difficultés variées telles
que les variations de luminosité des images, les mouvements de caméra, ou le
bruit d’arriére-plan causé par la turbulence de ’air ou les mouvements des ar-
bres. Nous proposons dans ce chapitre de modéliser I’arriére-plan d’une séquence
d’images comme une variété de petite dimension en utilisant un auto-encodeur,
et comparons l'arriére-plan généré par ’auto-encodeur avec I'image originale
afin de calculer le masque de segmentation arriére-plan/avant-plan. La princi-
pale nouveauté du modéle proposé est que l'auto-encodeur est aussi entrainé a
prédire le bruit de l'arriére-plan, ce qui permet de calculer pour chaque image
un seuil spécifique pour chaque pixel afin d’effectuer la segmentation d’avant-
plan. Bien que le modéle proposé n’utilise aucune information temporelle ou
relative aux mouvements des objets, elle dépasse 1’état de ’art en matiére de
segmentation d’arriére-plan sur les benchmarks CDnet 2014 et LASTESTA, avec
une avance significative sur les vidéos ou la caméra est en mouvement. Elle est
aussi en mesure de réaliser de la reconstruction d’arriére-plan sur des jeux de
données d’images qui ne constituent pas des séquences vidéos.

4.2 Abstract

Even after decades of research, dynamic scene background reconstruction and
foreground object segmentation are still considered as open problems due vari-
ous challenges such as illumination changes, camera movements, or background
noise caused by air turbulence or moving trees. We propose in this chapter to
model the background of a frame sequence as a low dimensional manifold using
an autoencoder and compare the reconstructed background provided by this
autoencoder with the original image to compute the foreground/background
segmentation masks. The main novelty of the proposed model is that the
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Figure 4.1: The proposed model takes as input a frame from the associated video
(left column) and provides a reconstruction of the background (middle column) and a
foreground mask (right column).

autoencoder is also trained to predict the background noise, which allows to
compute for each frame a pixel-dependent threshold to perform the foreground
segmentation. Although the proposed model does not use any temporal or mo-
tion information, it exceeds the state of the art for unsupervised background
subtraction on the CDnet 2014 and LASIESTA datasets, with a significant im-
provement on videos where the camera is moving. It is also able to perform
background reconstruction on some non-video image datasets.

4.3 Introduction

We consider in this chapter the tasks of dynamic background reconstruction and
foreground /background segmentation, which can be described in the following
way: The input is a sequence X of consecutive frames Xi,.., Xy showing a
scene cluttered by various moving objects, such as cars or pedestrians, and the
expected output is a sequence X=X [ X of frames showing the backgrounds
of each scene without those objects.

The foreground /background segmentation task similarly takes as input the
same kind of frames sequence X1, .., X, but the expected output is a sequence
M of foreground masks M, .., M whose values at the pixel p are equal to zero
if this pixel shows the background in the considered frame, and equal to 1 if
the background is masked by a foreground moving object at this pixel (Fig.
4.1). This task is often called background subtraction because the pointwise
multiplication of the mask M} and the input image X}, gives an image showing
only the foreground moving objects present in Xy, the input image background
being replaced by a black background.

Background substraction is a fundamental tool in image analysis and has
been studied for more than 30 years [Wren et al., 1997|, but is still consid-
ered an open problem due to the various challenges appearing in real applica-
tions: illumination changes, high level of occlusion of the background, back-
ground motions caused by moving trees or water, challenging weather condi-
tions, presence of shadows, etc. The applications of background subtraction
are very diverse |Garcia-Garcia et al., 2020]: road, airport, store, maritime
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or military surveillance, observation of animals and insects, motion capture,
human-computer interface, video matting, fire detection, etc.

The main application of background reconstruction is background subtrac-
tion, but other applications such as hole-filling in videos [Luo et al., 2016] have
also been implemented. Efficient background reconstruction models are also
necessary for unsupervised object detection and tracking [Jiang et al., 2020,Hen-
derson and Lampert, 2020, Wu et al., 2021].

The model presented in this chapter starts from the classical assumption that
the dynamic background of a scene can be modeled as a low dimensional mani-
fold and uses an autoencoder to learn this manifold and perform dynamic back-
ground reconstruction. It then compares the input frame with the associated
background predicted by the autoencoder to build the foreground segmentation
mask. The main contributions of this chapter are the following :

e We implement a more robust loss function to train the autoencoder, which
gives a high weight to reconstruction errors associated to background pix-
els and a low weight to reconstruction errors associated to foreground
pixels, and shows better performance than the L, loss usually considered
for this task.

e We train the autoencoder to provide a background reconstruction, but also
a background noise estimation, which gives a pixelwise estimate of the un-
certainty of the background prediction. This noise estimation map is used
to adjust the threshold necessary to compute the background /foreground
segmentation mask.

e We reduce the risk of overfitting by developping a method for detecting
significant background changes and implementing an early stopping crite-
rion using this method if the video shows a fixed background.

The chapter is structured as follows: We first review related work in section
2, then describe the proposed model in section 3. Experimental results are then
provided in section 4.

4.4 Related work

Background subtraction methods can be split between supervised methods,
which require labeled data, and unsupervised methods.

Supervised methods require labeled data as input, which are sets of
pairs (X, M), where the image X} is an image extracted from the sequence
X1,.., Xy and the foreground mask M} has to be provided by a human in-
tervention. Supervised algorithms using linear methods such as as maximum
margin criterion [Li et al., 2004, Diana and Bouwmans, 2010] or graph signal
reconstruction methods [Giraldo and Bouwmans, 2020] have been proposed,
but the current best performing supervised models use deep learning techniques
with convolutional encoder-decoder structures [Lim and Yalim Keles, 2018, Lim
and Keles, 2020,Mandal and Vipparthi, 2020], U-net structures [Rahmon et al.,
2020, Mondéjar-Guerra et al., 2020] or GANs [Sultana et al., 2019, Zheng et al.,
2020].

A spatio-temporal data augmentation strategy has been proposed |Tezcan
et al., 2021] to improve generalization. One can also use as additional input to
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the deep learning model the output of an unsupervised background subtraction
model [Rahmon et al., 2020, Pardas and Canet, 2021]. Although supervised
models can reach very high accuracy results on a given video after labeling a
significant number of frames of this video and training the model with these
labeled data, their ability to generalize to new videos remain a major issue,
and evaluations on unseen scenes lead to unfavorable results compared to unsu-
pervised algorithms [Mandal and Vipparthi, 2020]. As a consequence, existing
supervised models are not suited for real world applications where it is not
possible to provide annotated data for each new input video.

One can classify unsupervised methods as statistical methods or recon-
struction methods.

Statistical methods rely on a statistical modeling of the distribution of
background pixel color values or other local features to predict whether a partic-
ular pixel is foreground or background. These statistical models can be paramet-
ric (univariate Gaussian [Wren et al., 1997], mixture of Gaussians [Stauffer and
Grimson, 1999|, clusters [Butler et al., 2005], Student’s t-distributions [Mukher-
jee and Wu, 2012], Dirichlet process mixture models [Haines and Xiang, 2014],
Poisson mixture models [Faro et al., 2011]|, asymmetric generalized Gaussian
mixture models [Elguebaly and Bouguila, 2013], etc.) or non parametric (pixel
value histograms [Zhang et al., 2009], kernel density estimation [Elgammal et al.,
2000], codebooks [Kim et al., 2004], history of recently observed pixels [Barnich
and Van Droogenbroeck, 2009, Hofmann et al., 2012], etc.). The efficiency of
these methods can be increased by using as input not only the pixel color values,
but also features attached to superpixels [Chen et al., 2019a] or local descriptors
which are robust to illumination changes, such as SIFT [Pham and Smeulders,
2006], LBP or LBSP descriptors [St-Charles et al., 2015, St-Charles et al., 2016].
If the camera is static, the segmentation of moving objects on a scene can also
be performed by evaluating the motion associated to each pixel, using optical
flow or flux tensor models. The blobs produced by these models are generally
very fuzzy, but can be used as input to more complex models [Bunyak et al.,
2007, Wang et al., 2014a].

Reconstruction methods use a background reconstruction model to pre-
dict the color (or other features) of the background at a particular pixel. The
difference between the current image and the predicted background is then com-
puted and followed by a thresholding to decide whether a pixel is background
or foreground. Pixelwise reconstruction models try to predict the value of a
background pixel at a particular frame from the sequence of values of the pixel
of the last frames using a filter, which can be a Wiener filter [Toyama et al.,
1999], a Kalman filter [Ridder et al., 1995] or a Chebychev filter [Chang et al.,
2004]. A global prediction of the background can also be performed using the
assumption that the background frames form a low dimensional manifold, which
motivates the use of dimensionality reduction techniques such as principal com-
ponent analysis (PCA) [N.M. et al., 2000]. One can add to this approach a
prior on the sparcity of the foreground objects by using a L; loss term applied
to the foreground residuals, which leads to the development of models based
on robust principal component analysis (RPCA) [Wright et al., 2009, Candeés
et al., 2011]. More complex norms and additional regularizers have been pro-
posed to improve the performance of this approach [Mairal et al., 2010, Liu
et al., 2015, Xin et al., 2015, Javed et al., 2017, Javed et al., 2019]. Non-linear
dimensionality reduction using an autoencoder for background reconstruction
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has been proposed in [Behnaz et al., 2021, Rezaei et al., 2020] and is further
developed in the proposed model.

Several unsupervised models can be also combined to form a more accurate
model, such as the ITUTIS-5 models, which is an ensemble model combining 5
different unsupervised models [Bianco et al., 2017]. A background subtraction
model can also be substantially improved by combining its results with the
output of a supervised semantic segmentation model [Braham et al., 2018, Zeng
et al., 2019].

It should be noted that the distinction between unsupervised models and
supervised models is quite blurry considering that unsupervised models often use
hyperparameters which are optimized using available annotated datasets, which
can be considered as a form of supervision and may involve some overfitting. As
a consequence, the evaluation of the robustness of an unsupervised model should
take into account the number of hyperparameters involved, and be performed
on a wide variety of videos.

Background noise estimation. Explicit background noise estimation for
foreground segmentation has been introduced in [Hofmann et al., 2012]. Es-
timating the prediction uncertainty of a deep learning model is usually imple-
mented using a negative log-likelihood loss function associated to a probabilistic
model which includes a variance or concentration parameter [Nix and Weigend,
1994, Kendall and Gal, 2017, Bae et al., 2021, Moreau et al., 2022, Seitzer et al.,
2022].

Several surveys [Bouwmans, 2014, Mondéjar-Guerra et al., 2020, Kalsotra and
Arora, 2022, Mandal and Vipparthi, 2022, Zhao et al., 2022] discuss background
reconstruction and background subtraction models.

4.5 Model description

The proposed model is a reconstruction model and has a general structure sim-
ilar to the DeepPBM model [Behnaz et al., 2021]: We assume that the back-
ground frames form a low dimensional manifold and train an autoencoder to
learn this manifold from the complete video. We however observe that the
DeepPBM model described in [Behnaz et al., 2021] is not really unsupervised
since it requires a significant engineering and optimization work for each new
video, which is incompatible with any real-world application: The structure
of the autoencoder and the number of latent variables have to be defined and
fine-tuned on a scene by scene basis, which can be considered as a form of super-
vision. One also remarks that if the number of latent variables is too high, the
autoencoder quiclky learns to reproduce the foreground objects, a phenomenon
we call ovefitting, and fails to generate a proper background.

The model proposed in this chapter is fully unsupervised: It uses a constant
set of hyperparameter, and the structure of the autoencoder, which depends
on the size of the image and on the complexity of the background, is defined
automatically without human supervision.

4.5.1 Reconstruction loss using background bootstrapping

We implement a reconstruction loss using background bootstrapping, adapted
from the one described in Chapter 3. In the case of dynamic background re-
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construction, this loss function allows to reduce the risk of overfitting to the
foreground objects by giving a higher weight to background pixels than to fore-
ground pixels during the optimization process. This loss is more robust to
outliers than the L; loss which gives the same weight to small and large errors.
The proposed reconstruction loss can be described by the following formulae:
We note x,, s ; the pixel color value of the image X,, for the channel c at the
position (4,7) with 1 < ¢ <31 <i<hand 1< j < w, and Zn,c,i,; the pixel
value of the reconstructed background X, for the same channel and position.
The local L; error associated to the pixel (3, j) is

3
Ini = |&ncij — Tneijl- (4.1)
c=1

The soft foreground masks and spatially smoothed soft foreground masks are
defined by the equations

lni j
My,;,; = tanh ( ’]> , (4.2)

1
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where 71 and r are positive hyperparameters and k = |w/r|. The associated

. . . bootstrap
pixel-wise weight w,%”""*" is then defined as
s

bootstrap __
n,4,] -

e PMnig, (4.4)

where § is another positive hyperparameter. The reconstruction loss of the
auto-encoder is then computed by weighting the pixelwise L losses [, ; ; using
these bootstrap weights:

N,h,w
$ 1 — ootstra
Lree(®,X) = 57— D w) Pl (4.5)
n=1,i=1,j=1

The main differences between this loss function and the loss function defined
in chapter 3 is that it is a one-to-one loss, whereas the loss defined in chapter
3 is one-to-many. It also does not use optical flow weights or abnormal image
weights. Using optical flow weights would not allow to handle images taken
from a moving camera, since it would give a low weight to all pixels associated
to the moving background. We do not use abnormal image weights because we
want the model to accurately reconstruct the background for each input image,
which was not the case in chapter 3, which is dedicated to fixed background
reconstruction.

4.5.2 Optimized thresholding using background noise es-
timation

We remark that the bootstrap pixel weights wztﬁmap can be used to get an

estimate of the level of background noise of a frame sequence, considering that
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Figure 4.2: Schematic of the proposed model during inference (Error and noise
images are normalized in the range [0,1].)

these weights are close to one when the associated pixel is a background pixel,
and close to zero when this is not the case.

We therefore add a fourth output channel to the auto-encoder, which is
dedicated to give an estimate [, ; ; of the value of the L; error [, ; ; for each
pixel (i, 7) for the frame X,, (Fig. 4.2).

The associated loss function is weighted using the bootstrap weights in order
to limit its scope to background regions:

1 N,h,w
bootstrap |7
ﬁnoise: E Wy, lnz *lnl 1R 4.6
3N hw . . n,i,J | 2y s 7]| ( )
n=1:i=1,5=1

When the background is very noisy, the autoencoder is not able to predict accu-
rately the value of a background pixel color. As a consequence, the expectation
of I ;; is large, which leads to a high value of lAm,j. One could consider that
a more principled method would be to model the background noise as a Gaus-
sian distribution and estimate the variance of this distribution by learning the
weighted average Lo error instead of the L error, but we have empirically found
that such an approach is not robust to the presence of foreground objects.
The autoencoder is trained using the sum of the reconstruction loss and the
loss associated to the background noise estimation. The complete loss function
is then
L= Erec + ‘Cnoise~ (47)

The gradients of the weights wzf)f;map are not computed during the optimiza-

tion process. We also do not use the gradient of [,, ; ; in equation 4.6 because
we do not want the quality of the background reconstruction be impacted by
the background noise estimation optimization process.

In order to set the pixelwise threshold 7, ; ; associated to the pixel (7, j) of the
frame X, and necessary to compute the background/foreground segmentation
mask, we also take into account the average illumination I,, of the reconstructed
background Xn, as defined by the formula

1 3,h,w
Iy = o Z | |Znesi g (4.8)
c=1,i1=1,5=1

The threshold 7, ; ; is then set according to the formula

Tn,ij = 0¢1fn + a2in,i,j7 (4.9)
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where a; and as are two positive hyperparameters. The «; hyperparameter can
then be interpreted as the threshold applicable to a scene showing a noiseless
white background. The motivation of the second term is that if the background
noise is high at some pixel, we have to increase the associated threshold for
background /foreground segmentation in order to prevent the misclassification
of background pixels as foreground caused by background noise.

For a given frame sequence X1, ..., X,, and a reconstructed background se-
quence Xl,...,Xm we then compute the foreground mask M, before post-
processing using the thresholding rule M, ; ; =1 if and only if 1, ; ; > T4 ;-

A post-processing is then applied in order to remove rain drops, snow flakes,
and other spurious detections. It is composed of two morphological operations:
a morphological closing using a 5 x 5 square structural element, followed by a
morphological opening with a 7 x 7 square structural element.

4.5.3 Detecting significant background changes

The improved reconstruction loss function introduced in 4.5.1 reduces the risk
of overfitting, but is not able to prevent it completely. We observe that the
risk of overfitting increases when the number of optimization iterations and the
number of parameters of the network increase. This is a significant issue be-
cause sequences showing background changes require a high number of training
iterations and a model with a large number of parameters. In order to prevent
overfitting, the number of training iterations and the complexity of the model
are therefore adjusted to the complexity of the backgrounds sequence.

The main challenge here is to estimate without any human supervision
whether the video shows substantial background changes or not. Such a task,
which is very easy for a human, is far from trivial for a computer. For example,
simply taking the variance of the various frames does not allow to estimate the
complexity of the background changes because this variance will generally be
dominated by foreground objects appearing in the video. More generally, it
appears that in order to estimate the importance of the background changes, it
is necessary to remove the foreground objects from the estimation process. We
observe however that the proposed model can be used to perform this task. We
then first train the model for a fixed small number Ngya1 of iterations, which
is however sufficient to get a rough evaluation of the background changes. Us-
ing this trained model, we compute Beya reconstructed backgrounds X, using
frames X,, sampled randomly from the sequence X'. Although these backgrounds
estimates X,, are not accurate, we are confident that they do not show any fore-
ground objects since a low number of iterations have been performed, so that
the risk of overfitting is very low. We then compute the temporal median X of
these backgrounds and compare this median background with the reconstructed
backgrounds X, computing soft masks m,, ; ; following the same process as in
formula 4.1 and 4.2. We then consider the average soft mask value over the
Beval reconstructed backgrounds

1 Beval,h,w
M= Y mgy. (4.10)
Bevalhw 7
eval nyig

If m is higher than a threshold 7y, we consider that the background is a complex
background. The partially trained model is discarded, a new autoencoder is
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Figure 4.3: Examples of background reconstruction and foreground segmentation
produced using the proposed model and comparison with PAWCS and SuBSENSE.

created with more parameters and the number of training iterations is set to
Necomplex With a minimum of Ecomplex €pochs for very long sequences. If this
ratio is lower than 7, we consider that the background is a simple background,
keep the partially trained model, and finish the training, with a total number
of training iterations set to Ngmple. The autoencoder structures for simple and
complex backgrounds are described in the supplementary material.

4.6 Experimental results

4.6.1 Evaluation method

We consider the CDnet 2014, LASIESTA and BMC 2012 benchmark datasets for
background subtraction. We use the public implementations of the algorithms
PAWCS [St-Charles et al., 2016] and SuBSENSE [St-Charles et al., 2015] pro-
vided with the BGS library [Sobral, 2013] to get baseline performance estimates
for these methods when they are not available. We rely on published results for
the other state of the art methods which do not provide public implementations.

We use the F-measure as main evaluation criteria. To compute the F-
measure associated to a sequence of foreground masks predictions My, .., M,
we first compute the sums TP, TN, FP,FN of the true positives, true nega-
tives, false positives and false negatives associated to the sequence of masks
My, .., M,, and then compute the F-measure associated to this sequence as the
harmonic mean of precision and recall.

We provide in Figure 4.3 some samples of background reconstruction, with
the associated predicted foreground mask, and a comparison with foreground
masks obtained using PAWCS and SuBSENSE. Other samples are provided in
the supplementary material.

4.6.2 CDnet 2014 dataset

The CDnet 2014 dataset [Wang et al., 2014b] is composed of 53 videos, for
a total of 153 278 frames, selected to cover the various challenges which have
to be addressed for background subtraction: dynamic background (scenes with
water or trees), camera jitter, intermittent object motion, presence of shadows,
images captured by infrared cameras, challenging weather (snow, fog), images
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Table 4.1: Comparison of top BGS algorithms according to the per-category F-
measures on CDnet-2014

Method Bad l?asc— .(.,amcra Dynamic _ Int. .Ob‘]' Low Night PTZ Shadow Thermal Turbu- Overall
weather line jitter backgr. motion  framerate lence

models using frame annotations (full supervision):

FgSegNet v2 [Lim and Keles, 2020] 0.9904  0.9978 0.9971  0.9951 0.9961 0.9336 0.9739  0.9862 0.9955 0.9938  0.9727 | 0.9847

BSUV-Net 2.0 [Tezcan et al., 2021] 0.8844 0.9620  0.9004 0.9057 0.8263 0.7902 0.5857 0.7037 0.9562  0.8932 0.8174 | 0.8387

model using pretrained semantic segmentation model:

SemanticBGS [Braham et al., 2018| 0.8260 0.9604 0.8388 0.9489 0.7878 0.7888 0.5014  0.5673 0.9478  0.8219 0.6921 | 0.7892

models using no frame annotation or pretrained model:

AE-NE (ours) 0.8337  0.8959 0.9230  0.6225 0.8231 0.6771 0.5172 0.8000 0.8947 0.7999  0.8382 | 0.7841

TUTIS-5 [Bianco et al., 2017] 0.8248 0.9567 0.8332 0.8902 0.7296 0.7743 0.5290 0.4282 0.9084  0.8303 0.7836 | 0.7717

WisenetMD [Lee et al., 2019] 0.8616  0.9487 0.8228  0.8376 0.7264 0.6404 0.5701  0.3367 0.8984 0.8152  0.8304 | 0.7535

SuBSENSE [St-Charles et al., 2015] 0.8619  0.9503 0.8152  0.8177 0.6569 0.6445 0.5599 0.3476  0.8986  0.8171  0.7792 | 0.7408

PAWCS [St-Charles et al., 2016] 0.8152 0.9397 0.8137  0.8938 0.7764 0.6588 0.4152  0.4615 0.8913  0.8324 0.6450 | 0.7403

C-EFIC [Allebosch et al., 2016] 0.7867  0.9309 0.8248  0.5627 0.6229 0.6806 0.6677 0.6207 0.8778  0.8349  0.6275 | 0.7307

MSCL [Javed et al., 2017] 0.83 0.87 0.83 0.85 0.80 n/a n/a n/a 0.82 0.80 0.80 n/a

B-SSSR [Javed et al., 2019] 0.92 0.97 0.93 0.95 0.74 n/a n/a n/a 0.93 0.86 0.87 n/a

captured with a low frame rate, night images, images filmed by a pan-tilt-
zoom camera, air turbulence. Ground truth foreground segmentation masks
are provided for all frames of the dataset, with specific labels for shadow pixels
which are not considered in the F-measure computation. We provide in Table
4.1 the F-measure results per category of the proposed model for each category
of the CDnet 2014 dataset, with a comparison with the results obtained by other
unsupervised models.

The proposed model gets a higher average F-measure on the CDnet 2014
dataset than all published unsupervised models, including ensemble models such
as IUTIS-5, with an average F-measure of 0.784. One can observe a significant
improvement in accuracy with the proposed model in the "pan-tilt-zoom" (PTZ)
category with an average F-measure of 0.800 on this category. To our best
knowledge, the proposed model is the first able to correctly handle videos taken
from a moving camera.

4.6.3 LASIESTA dataset

The LASIESTA dataset [Cuevas et al., 2016] is composed of 48 videos grouped
in 14 categories, for a total of 18 425 video frames. All frames are provided with
ground truth pixel labels, with a specific label for pixels associated to stopped
moving objects which are excluded from the F-measure computation. These
videos are very short (The average number of frames per video is 383), which is
challenging for the proposed deep-learning based model. We provide in Table
4.2 the average F-measure results of the proposed model for all 14 categories.
Out of the 48 videos of the dataset, 4 videos are taken with a moving camera
(categories IMC and OMC), and 24 videos include simulated camera motion
(categories ISM and OSM). These 28 videos which include real or simulated
camera motion are very difficult for existing background subtraction models
and to our best knowledge, no paper has ever published category-wise evaluation
results for these videos. In order to allow a comparison with these published
results, we therefore also provide the average F-measure over the 10 categories
showing only videos taken from a fixed camera. We observe that the proposed
model performs better than available unsupervised algorithms on static scenes,
and with a significant improvement on scenes where the camera is moving.
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Table 4.2: Average per category of video F-measures on LASIESTA
(sources : [Cuevas et al., 2016], [Berjon et al., 2018], authors experiments for PAWCS

and SuBSENSE)

static camera moving camera
or simulated motion

Method ISI ICA 10C TL IMB IBS OCL ORA OSN OSU | IMC ISM OMC OgM | Averase.  Average.

10 categ. 14 categ.
AE-NE (ours) 091 0.88 091 081 092 079 094 080 082 091 |08 079 0.8 0.89 | 0.87 0.86
PAWCS [St-Charles et al., 2016] 090 0.88 090 0.79 0.81 0.79 096 093 069 082 |048 077 043 0.75 | 0.85 0.78
SuBSENSE |[St-Charles et al., 2015] 090 089 095 065 077 073 092 090 081 0.79 |033 070 0.31 0.65 | 0.83 0.73
Cuevas [Berjon et al., 2018] 0.88 084 0.78 0.65 0.93 066 093 087 078 0.72 |n/a n/a n/a n/a 0.81 n/a
Haines [Haines and Xiang, 2014] 0.89 0.89 092 085 084 068 083 089 017 086 |n/a n/a n/a n/a 0.78 n/a
Maddalena [Maddalena and Petrosino, 2012| 095 0.86 095 021 091 040 097 090 081 088 |n/a n/a n/a n/a 0.78 n/a
Maddalena [Maddalena and Petrosino, 2008b] | 0.87 0.85 0.91 0.61 0.76 042 0.88 0.84 058 0.80 |n/a n/a n/a n/a 0.75 n/a

Table 4.3: Comparison of top unsupervised BGS algorithms according to the video

F-measure on BMC 2012

Method Video Video Video Video Video Video Video Video Video | Average
’ 001 002 003 004 005 006 007 008 009 9 videos
F-measure (standard definition)
AE-NE (ours) 0.81 0.72 0.78  0.78 0.60  0.73 0.32 0.84  0.77 0.71
PAWCS [St-Charles et al., 2016] 0.70  0.58 0.85 0.72 027 0.79 0.58 0.74  0.80 0.67
SuBSENSE [St-Charles et al., 2015] 0.70 0.62 0.83 0.69 0.21 0.76 0.53 0.68 0.83 0.65
F-measure (using BMC evaluation tool)
AE-NE (ours) 0.90 0.86 0.89 0.89 0.80 0.87 0.51 0.92 0.89 0.84
PAWCS |[St-Charles et al., 2016] 0.86 0.77 093  0.86 0.66  0.89 0.79 0.87  0.90 0.84
SubSENSE |[St-Charles et al., 2015] 0.85 0.80 0.92 0.85 0.68 087  0.75 0.84 091 0.83
DeepPBM [Behnaz et al., 2021] 0.73 0.86 0.94 0.90 0.71 0.81 0.70 0.76 0.69 0.78
G-LBM [Rezaei et al., 2020] 0.73 0.85 0.93 091 0.71 0.85 0.70 0.76 0.63 0.79
MSCL-FL [Javed et al., 2017] 0.84 084 0.88  0.90 0.83  0.80 0.78 0.85 0.94 0.86
B-SSSR [Javed et al., 2019] n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.88

4.6.4 BMC 2012 dataset

The BMC dataset [Vacavant et al., 2013] contains 9 videos showing real scenes
taken from static cameras and including the following challenges: shadows,
snow, rain, presence of trees or big objects. Three of these sequences are very
long (32 965, 117 149 and 107 815 frames). For fair comparison with other
published results for this dataset, we provide the F-measure results for our
model obtained using the usual F-measure definition described in 4.6.1, but
also the results obtained using the executable evaluation tool provided with the
dataset which does not use the same definition of the F-measure [Vacavant et al.,
2013]. We compute SUBSENSE and PAWCS results on this dataset and provide
published evaluation results for other models in Table 4.3.

We observe that the proposed model gets again a better average F-measure
than PAWCS and SuBSENSE on this dataset using the standard definition of
the F-measure.

4.6.5 Non-video image datasets : Clevrtex, ObjectsRoom,
ShapeStacks

The proposed model, which does not use any temporal information, can be
adapted to perform background reconstruction and foreground segmentation
on some image datasets which are not extracted from video sequences. We
have tested this approach on three synthetic image datasets: Clevrtex [Karazija
et al., 2021|, ShapeStacks, [Groth et al., 2018] and ObjectsRoom [Kabra et al.,
2019]. We use on ShapeStacks and ObjectsRoom the same preprocessing as in
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Table 4.4: F-Measure on the Clevrtex, ShapeStacks and ObjectsRoom datasets

number of number of average

dataset image size frames frames F-measure
training set test set  on test set

Clevrtex 128 x 128 40000 5000 0.78
ObjectsRoom 64 x 64 980000 20000 0.84
ShapeStacks 64 x 64 217888 46656 0.83

[Engelcke et al., 2021]. Although each image of these datasets shows a different
background, the model is able to recognize that all the backgrounds appearing
in a given dataset lie in a low dimensional manifold, which is the case because
they have been generated using the same method. These datasets are provided
with segmentation annotations for each object appearing in the scenes, which
we converted to binary foreground segmentation masks in order to compute the
F-measure of the predicted foreground masks.

Considering that on these datasets the risk of overfitting is very low and the
background complexity is very high, we substantially increased the number of it-
erations, which is set to 500 000. We do not use morphological post-processing
on the ShapeStacks and ObjectsRoom datasets, because these images have a
very low resolution (64 x 64). We provide in Table 4.4 the average F-measure
obtained on the test sets of these datasets after training on the associated train-
ing sets, and in Figure 4.4 some image samples. To our best knowledge, no
other model is able to perform background reconstruction on these datasets.
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Figure 4.4: Examples of background reconstruction and foreground segmentations
on the datasets Clevrtex (columns 1-4), ObjectsRoom (columns 5-6) and ShapeStacks
(columns 7-8)

4.6.6 Robustness to domain shift and fine-tuning

The proposed model is a batch model. In order to see whether it could be
adapted for real-time applications, we studied whether a trained model could
perform background reconstruction on new unseen images of the scene which do
not belong exactly to the same distribution as the images used for training due
to various possible domain shifts such as unseen illumination changes. We then
have performed the following experiment: We have split each of the 53 videos
provided in the CDnet dataset in two videos of equal lengths. The first half of
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Table 4.5: F-measure results obtained on the CDnet dataset with a model pretrained
using the first half of each video as training set, and fine-tuned on the last half using
various numbers of fine-tuning iterations. Test results are for the last half of each

video.

Bad

Base-

Camera

Dynamic Int. obj.

Low

Turbu-

weather line jitter backgr.  motion  framerate Night  PTZ Shadow  Thermal lence Overall | no pretraining
no fine-tuning | 0.8114  0.8660 0.8768  0.3845 0.4199 0.5732 0.3998 0.2426 0.7371  0.5872 0.6447 | 0.5948
100 iterations | 0.8137  0.9063 0.9520  0.5846 0.5956 0.5891 0.4789 0.4723 0.9276  0.7639  0.6639 | 0.7044 | 0.4918
200 iterations | 0.8078  0.9105 0.9543  0.6111 0.6536 0.5859 0.4977 04969 0.9316  0.7849  0.7523 | 0.7261 | 0.5658
400 iterations | 0.8080  0.9125 0.9560  0.6309 0.7298 0.5842 0.5137 0.5465 0.9326  0.7880  0.8560 | 0.7507 | 0.6218
800 iterations | 0.8104  0.8965 0.9577  0.6348 0.8212 0.5946 0.5420 0.6403 0.9293 0.7828  0.8763 | 0.7714 | 0.6934

each video is used to train the autoencoder, and the second half is used as a
test dataset. The results of this experiment are provided in Table 4.5 and show
stable results on three categories (baseline, bad weather, camera jitter) which
do not show noticeable domain shifts, but a significant worsening on the other
categories.

We then adopt the pretrain/fine-tune paradigm, consider the models trained
on the first half of the videos as pretrained models, and study how many fine-
tuning iterations using images randomly sampled from the second half of the
videos are necessary to get competitive test results. We observe that the number
of required iterations is very low compared to the number of iterations necessary
for a full training, and conclude that a trained model is not robust to domain
shifts, but can be quickly updated with a small number of fine-tuning iterations.

4.6.7 Implementation details

The proposed model is implemented using Python and the Pytorch framework.
The associated code is available on the Github platform. Optimization is per-
formed using the Adam optimizer with a learning rate of 5.10™* and batch size
equal to 32. The learning rate is divided by 10 when the number of optimiza-
tion or fine-tuning iterations reaches 80% of the total number of iterations. The
most important hyperparameters 3, r and 71, which are associated to the loss
function, are set to the values recommended in chapter 3 i.e. 8 = 6, r = 75,
71 = 0.25. The other hyperparameter values, which are related to the segmen-
tation threshold and the detection and management of complex background
changes, were found empirically using manual hyperparameter tuning. We then
set a; = 96/255, ag = 7, Neval = 2000, Bevar = 480, 79 = 0.24, Ngimple = 2500,
Ncomplex = 24000, Ecomplex = 20.

For non-video dataset experiments, which take small images (64 x 64 and
128 x 128) as inputs, the batch size and learning rate are increased to 128 and
2.1073 and the number of iterations Ncomplex is set to 500 000. The other
hyperparameters remain the same. The autoencoder architecture is described
in the supplementary material.

4.6.8 Computation time

We provide in Table 4.6 some computation time measurements, obtained using
an AMD EPYC 7402 2,8 GHz CPU and a Nvidia RTX 3090 GPU. The inference
and training times of the proposed model depend on the size of the image and
the complexity of the background. The inference speed is between 50 frames per
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Table 4.6: Computation time of the proposed model, PAWCS and SubSENSE for
some sequences of the CDnet and BMC datasets

sequence name highway Video  blizzard zoomin continuous

009 70oomout pan
image size 240x320 288x352  480x720 240x320 480x704
number of frames 1700 107817 7000 1130 1700
background complexity simple simple simple complex complex

computation times (seconds)
AE-NE (proposed model)

- training 92 114 394 1443 7175

- backgrounds

and masks generation 7 560 139 5 33
SuBSENSE 92 7161 1586 65 471
PAWCS 158 11290 2311 164 980

=ik

di b &

g "
I
-

/|

t
input ground predicted  foreground
frame truth background mask

Figure 4.5: Failure cases due to overfitting on the datasets CDnet 2014 and BMC

2012: sequences "library", "office", "canoe" and "video007"

second and 240 frames per second. The time necessary to perform 100 training
iterations is between 3,5 and 27 seconds.

4.6.9 Limitations

This model is not suited for night videos, considering the low score obtained on
this category on the CDnet dataset. One also notes that although the model
is able to handle correctly small objects staying still for a long time, as shown
by the good results obtained the intermittent object category of the CDnet
dataset, it suffers from overfitting when large foreground objects stay still (or
appear to stay still) for a long time in a frame sequence. Out of the 110 tested
videos contained in the datasets CDnet, LASTESTA and BMC, we observed this
problem on 4 videos: "office", "library" and "canoe" in the CDnet dataset, and
"video007" in the BMC dataset (Fig. 4.5). The proposed model should then
not be used when the video is expected to show large objects staying still for a
long time. This model is a batch model and adapting it to real-time applications
requires further work in order to reduce the latency caused by the fine-tuning
iterations described in section 4.6.6.

4.6.10 Ablation study

In order to assess the impact of the various model features described in this pa-
per, we have implemented several modifications of the proposed model and mea-
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Table 4.7: Evaluation of various ablations of the proposed model

model description average evolution vs
F-measure on the reference
CDnet dataset model

proposed model (reference) 0.7841

modified models :

- no bootstrap weights (wﬁi‘,’]ts“ap set to 1) 0.2771 -64,6 %

- inference without using the background noise

estimation (as set to 0) 0.6220 -20.7 %

- w:i‘?]‘s“'ap set to 1 and as set to 0 0.4557 -41,9%

- training with Lo reconstruction loss, as set to 0 0,3384 -56,8 %

- inference without morphological post-processing 0.7170 -8.5%

- all backgrounds are considered as simple (79 set to 1)  0,7397 -5,6 %

- using optical flow weights as in chapter 3 0,7701 -1,8%

- using abnormal image weights as in chapter 3 0,7690 -1,9%

sured the average F-measure (FM) of these models on the CDnet2014 dataset.
The results of these experiments are provided in Table 4.7. They show that
the design of the loss function and the use of the background noise estimation
layer have a substantial positive impact on the accuracy of the model. The im-
provement associated to post-processing is also significant, as already observed
for other unsupervised background subtraction methods [Shahbaz et al., 2015].
The model remains competitive on CDnet if the background complexity of all
frames sequence is set to simple, an option which may be considered if training
computation time is an issue.

4.7 Conclusion of chapter 4

We have proposed in this chapter a new fully unsupervised dynamic background
reconstruction and foreground segmentation model which does not use any tem-
poral or motion information and is on average more accurate than available un-
supervised models for background subtraction. The main strength of the pro-
posed model is that it is able to perform background reconstruction on videos
taken from a moving camera.

If the various objects appearing in a scene do not touch each other, a back-
ground /foreground segmentation model can be used to get a segmentation of
these objects using connected component labeling algorithms such as the clas-
sical Rosenfeld and Pfalz labeling algorithm [Rosenfeld and Pfaltz, 1966]. How-
ever, if a scene shows objects which touch or occlude each other, which is often
the case in traffic videos, a connected component labeling algorithm will fail to
distinguish these objects, and the development of a model dedicated to multi-
object detection and segmentation appears necessary. This topic is the subject
of chapter 5.

4.8 Appendix to chapter 4

4.8.1 Autoencoder architecture

The autoencoder is deterministic and takes as input a RGB image of size h x w,
and produces a RGB image (3 channels) and an error estimation map of the
same size (1 channel).
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The encoder and decoder structures in the proposed model are computed
dynamically using as input the size (height h and width w) of the input frames
of the dataset. The number of latent variables produced by the encoder is fixed
to 16.

We use a fully convolutional autoencoder architecture, which appears to be
more robust to overfitting than architectures including fully connected layers
or locally connected layers. We add two fixed positional encoding channels as
inputs to all layers of the encoder and the decoder, one channel coding for the
horizontal coordinates, the other one for the vertical coordinates .

The encoder is a sequence of blocks composed of a convolution layer with
kernel size 5, stride 3 and padding equal to 2, followed by a group normalization
layer and a CELU nonlinearity layer. The generator is a symmetric sequence of
blocks composed of transpose convolution layers with kernel size 5 and stride 3
and padding equal to 2 followed by group normalization and a CELU nonlinear-
ity, except for the last layer where the transpose convolution layer is followed by
a sigmoid to generate the final image. The number of layers of the encoder and
the decoder is then equal to 5 or 6 depending on the image size (assuming that
the maximum of the image height and image width is in the range 200 — 1000).
The number of channels per convolutional layer is fixed according to Table 4.8,
depending on the image size and the background complexity.

Table 4.8: Number of channels for each layer of the encoder and decoder (excluding
positional encoding input channels)

. image
Eg;iizﬁ;}d size Encoder Decoder
max(h,w)
simple 200-405 (3,64,160,160,32,16) (16,32,256,256,144,4)
simple 406-1000 | (3,64,160,160,160,32,16) (16,32,256,512,256,144,4)
complex 200-405 (3,64,160,160,16,16) (16,16,640,640,144,4)
complex 406-1000 | (3,64,160,160,160,16,16) (16,16,640,1280,640,144,4)

These channel distributions are motivated by the fact that a larger number of
parameters is required in the generator in order to handle complex backgrounds,
but that we have experimentally observed that a large number of channels in the
last layer of the encoder and the first layer of the decoder increases the risk of
overfitting on foreground objects, so that reducing this number for long training
schedule is necessary to improve the robustness of the auto-encoder with respect
to the risk of overfitting. For example, we have measured that increasing the
numbers of channels in the last hidden layer of the encoder and first hidden
layer of the decoder to 160 and 256 leads to de 2,3 % degradation of the average
F-Measure on the CDnet dataset.

For non-video dataset experiments, which handle small images, we use a
smaller stride, set to 2 instead of 3. The autoencoder architectures for 64 x 64
images (ShapeStacks and ObjectRooms datasets) and 128 x 128 images (Clevr-
tex dataset) are described in Table 4.9 and 4.10.

4.8.2 Additional implementation details

The datasets and preprocessing codes for CLEVRTEX, Shapestacks and Ob-
jectsRoom were downloaded from the following public repositories:
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Table 4.9: autoencoder architecture for 64 x 64 images

Encoder Decoder
Layer Size Ch Stride Norm./Act. Layer Size Ch  Stride Norm. /Act.
Toput o1 3 Input 1 16
Comv 5x5 32 64 9 GroupNorm/CELU Conv Transp 2 x 2 2 16 1 GroupNorm /CELU
Conv Transp 4 x 4 4 640 2 GroupNorm/CELU
Conv5x5 16 160 2 GroupNorm/CELU ,
, Conv Transp 5 X 5 8 1280 2 GroupNorm/CELU
Convbx5 8 320 2 GroupNorm/CELU ,
Conv Transp 5 x5 16 640 2 GroupNorm/CELU
Convb x5 4 160 2 GroupNorm/CELU
, Conv Transp 5 x5 32 144 2 GroupNorm/CELU
Conv4d x4 2 16 2 GroupNorm/CELU Conv Transp 5 x 5 64 4 9
Conv2x2 1 16 1 GroupNorm/CELU Sigmoid 64 4
Table 4.10: autoencoder architecture for 128 x 128 images
Encoder Decoder
Layer Size Ch  Stride Norm./Act. Layer Size Ch  Stride Norm./Act.
Input 128 3 Input ! 16
Conv 5 x5 64 64 9 GroupNorm /CELU Conv Transp 2 x 2 2 16 1 GroupNorm//CELU
k Conv Transp 4 x 4 4 320 2 GroupNorm/CELU
Conv5x5 32 320 2 GroupNorm/CELU .
, Conv Transp 5 X 5 8 640 2 GroupNorm/CELU
Conv 5 x5 16 640 2 GroupNorm/CELU ,
’ Conv Transp 5 x5 16 1280 2 GroupNorm/CELU
Convbx5 8 640 2 GroupNorm/CELU
Conv Transp 5 x5 32 640 2 GroupNorm/CELU
Convbx5 4 320 2 GroupNorm/CELU ,
, Conv Transp 5 x5 64 144 2 GroupNorm/CELU
Conv4 x4 2 16 2 GroupNorm/CELU Conv Transp 5 x 5 128 4 9 !
Conv2x2 1 16 1 GroupNorm/CELU Sigmoid 128 4
e https://www.robots.ox.ac.uk/ vgg/data/clevrtex/
e https://ogroth.github.io/shapestacks/
e https://github.com/deepmind/multi_object_datasets

4.8.3 Additional image samples

We provide in Figs. 4.6 to 4.12 additional samples of background reconstruction
and foreground segmentation obtained using the proposed model.
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input foreground predicted predicted predicted predicted

frame mask background foreground mask foreground mask foreground mask
ground truth AE-NE (ours) AE-NE (ours) PAWCS SuBSENSE

Figure 4.6: Examples of background reconstruction and foreground segmentation
on the CDnet 2014 dataset produced using the proposed model and comparison with
PAWCS and SuBSENSE.
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ground truth AE-NE (ours) AE-NE (ours) PAWCS SuBSENSE

Figure 4.7: Examples of background reconstruction and foreground segmentation
on the CDnet 2014 dataset produced using the proposed model and comparison with
PAWCS and SuBSENSE.
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input foreground predicted predicted predicted predicted
frame mask background foreground mask foreground mask foreground mask
ground truth AE-NE (ours) AE-NE (ours) PAWCS SuBSENSE

Figure 4.8: Examples of background reconstruction and foreground segmentation
on the LASIESTA dataset produced using the proposed model and comparison with
PAWCS and SuBSENSE.
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input foreground predicted predicted predicted predicted
frame mask background foreground mask foreground mask foreground mask
ground truth AE-NE (ours) AE-NE (ours) PAWCS SuBSENSE

Figure 4.9: Examples of background reconstruction and foreground segmentation
on the BMC 2012 dataset produced using the proposed model and comparison with
PAWCS and SuBSENSE.
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Figure 4.10: Examples of background reconstruction and foreground segmentation
on Clevrtex dataset.
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Figure 4.11: Examples of background reconstruction and foreground segmentation
on ObjectsRoom dataset.
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Figure 4.12: Examples of background reconstruction and foreground segmentation
on ShapeStacks dataset.
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Chapter 5

Unsupervised object-centric
representation learning and
multi-object segmentation

5.1 Reésumé en francais

Nous présentons dans ce chapitre une nouvelle architecture pour I’apprentissage
de représentations centrées sur les objets et la détection et la segmentation
multi-objets, qui utilise un mécanisme d’attention équivariant aux translations
pour prédire les coordonnées des objets présents dans la scéne et pour associer
un vecteur de caractéristiques a chaque objet. Un encodeur de type transformer
gére les occultations et les détections redondantes, et un auto-encodeur convo-
lutionnel est en charge de la reconstruction de ’arriére-plan. Nous montrons
que cette architecture dépasse significativement 1’état de l’art sur les bench-
marks synthétiques complexes et donnons quelques exemples d’application sur
des vidéos non synthétiques issues de caméras de circulation.

5.2 Abstract

We introduce a new architecture for unsupervised object-centric representation
learning and multi-object detection and segmentation, which uses a translation-
equivariant attention mechanism to predict the coordinates of the objects present
in the scene and to associate a feature vector to each object. A transformer en-
coder handles occlusions and redundant detections, and a convolutional autoen-
coder is in charge of background reconstruction. We show that this architecture
significantly outperforms the state of the art on complex synthetic benchmarks
and provide examples of applications to real-world traffic videos.

5.3 Introduction

We consider in this chapter the tasks of object-centric representation learning
and unsupervised object detection and segmentation: Starting from a dataset
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of images showing various scenes cluttered with objects, our goal is to build a
structured object-centric representation of these scenes, i.e. to map each object
present in a scene to a vector representing this object and allowing to recover its
appearance and segmentation mask. This task is very challenging because the
objects appearing in the images may have different shapes, locations, colors or
textures, can occlude each other, and we do not assume that the images share
the same background. However the rewards of object-centric representations
could be significant since they allow to perform complex reasoning on images
or videos [Ding et al., 2021, Tang et al., 2022] and to learn better policies on
downstream tasks involving object manipulation or localization [Veerapaneni
et al., 2020,Zadaianchuk et al., 2021]. The main issue with object-representation
learning today is however that existing models are able to process synthetic toy
scenes with simple textures and backgrounds but fail to handle more complex
or real-world scenes [Karazija et al., 2021].

We propose to improve upon this situation by introducing a translation-
equivariant and attention-based approach for unsupervised object detection,
so that a translation of the input image leads to a similar translation of the
coordinates of the detected objects, thanks to an attention map which is used
not only to associate a feature vector to each object present in the scene, but
also to predict the coordinates of these objects.

The main contributions of this chapter are the following:

e We propose a theoretical justification for the use of attention maps and
soft-argmax for object localization.

e We introduce a new translation-equivariant and attention-based object
detection and segmentation architecture which does not rely on any spatial
prior.

e We show that the proposed model substantially improves upon the state of
the art on unsupervised object segmentation on complex synthetic bench-
marks.

The chapter is organized as follows: In section 5.4, we provide some theoret-
ical motivation for using attention maps and soft-argmax for object localization.
In section 5.5, we review related work on unsupervised object instance segmen-
tation. In section 5.6 we describe the proposed model. Experimental results are
then provided in section 5.7.

5.4 Motivation for using attention maps and soft-
argmax for object localization

It is widely recognized that the success of convolutional neural networks is as-
sociated with the fact that convolution layers are equivariant with respect to
the action of the group of translations, which makes these layers efficient for de-
tecting features which naturally have this property. It is also easy to show that
linear convolution operators are the only linear operators which are equivariant
with respect to the natural action of the translation group on feature maps.
We introduce the following notations to describe the action of the translation
group: We consider a grayscale image as a scalar-valued function (7, j) defined
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on Z? and an element of the group of translations as a vector (u,v) in Z2. The
natural action T of the group of translations on an image can be described by
the formula

Tu,v(@)(ia.j) = @(i —u,j— U)' (51)
A model layer L is called equivariant with respect to translations if it satisfies
L(Tu,vw) = Tu,v(L(QO))' (52)

Let’s now consider a localization model M which takes as input an image ¢(i, )
showing one object and produces as output the coordinates of the object present
in this image. Such a model does not produce a feature map, so that the
previous definition of translation equivariance cannot be used for this model.
We remark however that the group of translations acts naturally on Z? by the
action Ty, (4, j) = i+u, j+v, and that the model M should have the equivariance
property

M(Tup) = T, ,(M($). (5.3)

Indeed, if the complete image is translated by a vector (u,v), then the object
present in this image is also translated, so that the associated coordinates have
to be shifted according to the vector (u,v).

It is not difficult to see that in the same way that convolutional operators
are the only linear operators equivariant with respect to translations, it is also
possible to fully describe which elementary operators follow this specific equiv-
ariance property. We first remark however that we have to restrict the space of
possible input maps : if ¢ is a constant function, it does not change under the
action of the translation group, so that the equivariance property 5.3 cannot be
satisfied with such a function. We then suppose that ¢ satisfies > o(p) =1
and consider that the domain of the operator M is the corresponding affine
space A. We also replace the linearity condition by an the following affinity
condition:

Forall a; € R,p; € Asothat ), o; = 1, we have M (Y, cipi) = >, a M (p5).

We then have the following proposition:

Proposition 5.4.1. An affine operator M which satisfies the equivariance prop-
erty 5.3 has to be of the form

M(p)=C+ > o) (5.4)
pEZ?

for some constant C in R2.

Proof: We write the input map ¢ as a sum of spatially shifted versions of
the function § € A satisfying §(p) = 1 for p = (0,0) and 6(p) = 0 for p # (0,0):

o)=Y w(@)sp—q). (5.5)

qEeZ?

5

We then use the the affine property of M and equivariance property 5.3

M(p) =MD ¢(q)d(p — q)) (5.6)
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=> 0@M@Bp—0q)=>_ ¢@)(M@©)+q) (5.7)
= e@)M©B) +> ¢la)g (5.8)

= M)+ > ¢lg)a, (5.9)

which proves the proposition since M (¢) is a constant.

The proposition 5.4.1 can be interpreted as stating that in order to get an
equivariant localization operator, the most straightforward method is to build a
normalized attention map ¢ from the input image and compute the coordinates
of the detected object using an attention mechanism with ¢ as attention map
and pixel coordinates as target values. One remark that it is precisely what the
soft-argmax operator is doing: It takes an unnormalized scalar map ¢ as input,
normalizes it using a softmax operator, and then perform localization using the
same formula as in 5.4.1:

soft-argmax(¢) = Z softmax(¢)(p)p
€22
b e (5.10)

EqGZz €¢(Q) p

pEZ?

This operation is called soft-argmax because it allows to compute in a dif-
ferentiable way an estimate of the coordinates of the maximum of the input
map ¢. Using soft-argmax then appears to be the most natural way to get an
equivariant localization operator.

5.5 Related work

Unsupervised object detection and segmentation. Unsupervised object
detection and segmentation models are generally reconstruction models: They
try to reconstruct the input image using a specific image rendering process which
induces the required object-centric structure. In order to ensure that objects are
properly detected, various objectness priors have been defined and implemented:

e pixel similarity priors. Some models consider the task of object segmen-
tation as a clustering problem, which can be addressed using determin-
istic [Hwang et al., 2019, Locatello et al., 2020] or probabilistic [Engelcke
et al., 2021, Greff et al., 2016, Van Steenkiste et al., 2018] methods: If
the feature vectors associated to two different pixels of an image are very
similar, then it is considered that these pixels should both belong to the
same object or to the background.

e independence priors. Some models assume that the images are sampled
from a distribution which follows a probabilistic model featuring some
independence priors between objects and the background, and use varia-
tional [Greff et al., 2019, Engelcke et al., 2020] or adversarial [Chen et al.,
2019b, Bielski and Favaro, 2019] methods to learn these distributions.
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Figure 5.1: Overview of the KNEEL model [Tiulpin et al., 2019] , which uses a U-net
and Soft argmax for anatomical landmark localization Source: [Tiulpin et al., 2019]

e disentanglement of appearance and location. Foreground objects appear-
ing in the scenes of a given dataset can have similar shapes and appear-
ances but very different scales and locations. Object discovery is per-
formed by disentangling the object appearance generation process, which
is performed by a convolutional glimpse generator [Ali Eslami et al.,
2016, Kosiorek et al., 2018, Crawford and Pineau, 2019, Stelzner et al.,
2019, Jiang et al., 2020,Jiang and Ahn, 2020] or a learned dictionary [Mon-
nier et al., 2021, Smirnov et al., 2021], from the translation and scaling of
the objects appearing in a scene, which is usually done by including a
spatial transformer network [Jaderberg et al., 2015] in the model. The
model described in this chapter belongs to this category and uses an con-
volutional glimpse generator.

Object detection and segmentation without spatial prior. State-of-
the-art supervised detection and segmentation models usually rely on predefined
reference anchors or center points which are spatially organized according to a
periodic grid structure. The use of periodic grids has also been proposed for
unsupervised object detection [Lin et al., 2020, Jiang et al., 2020, Jiang and Ahn,
2020, Smirnov et al., 2021]. Alternative detection methods relying on heatmaps
produced by a U-net [Ronneberger et al., 2015] or stacked U-nets [Newell et al.,
2016] networks, which predict for each pixel the probability of presence of one
object on this pixel have been implemented in the supervised setting [Law and
Deng, 2020,Duan et al., 2019].

For some specific applications such as human pose estimation or anatomical
landmark localization [Tiulpin et al., 2019|, some supervised models predict
one heatmap per object. The use of soft-argmax for converting heatmaps to
object coordinates has been implemented in the supervised [Sun et al., 2018,
Luvizon et al., 2019, Chandran et al., 2020], semi-supervised [Honari et al.,
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Figure 5.2: Overview of proposed model. A high resolution feature map gener-
ator (Segformer model) is trained to produce a high resolution feature map ® and K
scalar attention maps (one per object query). These maps are used to predict the co-
ordinates and scales of the detected objects and the associated feature vectors, which
are refined by a transformer encoder and then used as inputs to a glimpse generator
and a spatial transformer network to produce K object image layers and masks. A
convolutional autoencoder is in charge of background reconstruction.

2018| and unsupervised settings [Goroshin et al., 2015, Finn et al., 2016] to
localize important features, but has never been proposed for unsupervised object
detection or segmentation.

More recently, transformer-based [Vaswani et al., 2017] models using object
[Carion et al., 2020, Zhu et al., 2021, Dong et al., 2021] or mask [Cheng et al.,
2021,Cheng et al., 2022] queries have been proposed which not not rely explicitly
on a spatial grid. These models show that transformers are efficient in the
supervised setting to avoid multiple detections of the same object.

5.6 Description of proposed model

5.6.1 Model architecture

The overall architecture of the model is described in Fig 5.2.

The proposed model is composed of a a foreground model and a background
model.

The background model is a deterministic convolutional autoencoder: We
rely again on the classical assumption [Wright et al., 2009] that background
images lie on a low-dimensional manifold, and use the autoencoder to learn this
manifold.

The foreground model is also deterministic and associates to each object in
the scene an appearance vector z*"* which is used to produce a glimpse of the
object, which is then scaled and translated at the right position on the image
using a spatial transformer network.
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The foreground encoding and reconstruction process can be described as
follows: First, a high resolution feature map generator takes a color image of
size h X w as input and produces a high resolution feature map ® of dimension
dg and several scalar attention logit maps A, ..., Ax. We will use in this chapter
the transformer-based Segformer model [Xie et al., 2021], which produces feature
maps of size h* xw* = h/4xw/4. The hyperparameter K is set to the maximum
number of objects on a scene in the dataset. The scalar attention logit maps
Ay, ..., Ak are transformed into a normalized attention maps A, ..., Ax using
a softmax operator:

Ak (6,7)
R

We normalize the pixel indices (i, j) from the range [1,..,w*] and [1, .., h*]
to the range [—1, 1] required by spatial transformer networks using the formulas

Ag(i,j) = (5.11)

‘ i—1

x(i) = 2w* — 1 (5.12)
Ci-1

yi) =25 — L, (5.13)

and predict initial estimates mg, yg of the coordinates of the detected objects as
the center of mass of the attention maps Ay:

w*,h*
) = A (i, )z (3) (5.14)
i=1,j=1
w* ,h*
w= > Ai5)y0)- (5.15)
i=1,j=1

We also build K object query feature vectors ¢, ...,¢% of dimension dg
using the same attention maps A, .., Ax as weights and the feature map ® as
target values:

w*,h*

i=1,j=1

A transformer encoder then takes the K triplets (¢, 20, y))1<x<k as inputs
and produces a refined version (¢, Tk, yx)1<k<k taking into account possible
detection redundancies and object occlusions. More precisely, we use a learned
linear embedding to increase the dimension of the triplets (¢2, x%, yg) from dg+2
to the input dimension dr of the transformer encoder, and a learned linear pro-
jection to reduce the dimension of the outputs of the transformer encoder from
dr back to de + 2. The transformer encoder does not take any positional en-
coding as input, considering that the transformation which has to be performed
should not depend on the ordering of the detections.

We force the final values of z; and yi to stay in the range [—1,1] using
clamping. Each transformed feature vector ¢ is then split in three terms:

Qbk = (Skv g, Zz)hat)'
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e The first term s, is an inverse scaling factor. It is a scalar if objects in
the dataset have widths and heights which are similar (isotropic scaling),
or a pair of scalars si,x} if this is not the case (anisotropic scaling). We
force the values of sj, to stay within a fixed range using a sigmoid function.
The maximum value of this range ensures that a non-zero gradient will be
available. The minimum value is set higher than 1 to make sure that the
glimpse generator will not try to generate a full image layer.

e The second term is a scalar which is assumed to predict the activation
level aj of the object, which will be used to predict whether it is visible
or not. We force this activation value to be positive using an exponential
map.

e The remaining coordinates form a vector 21! which codes for the ap-

pearance of the object.

We then use a convolutional glimpse generator to build a color image oy,
of the associated object together with the associated scalar mask my, using
z}ff’h“t as input. These images and masks are translated to the positions (2, yx)
and scaled according to the inverse scaling factor s; using a spatial transformer
network. We note Ly, and My, for k € {1,.., K} the corresponding object image
layers and masks, and L the background image produced by the background
model, so that we have a total of K + 1 image layers.

We now have to decide for each pixel whether this pixel should show the
background layer or one of the K object layers. In order to do this in a differ-
entiable way, we multiply the predicted object masks M with the associated
object activation levels ay, and normalize the results to get one normalized
weights distribution (wg)o<k<x per pixel:

OékMk(Z,])
Zk/eo_K oy My (17]) )

considering that the mask M, associated to the background is set to 1 every-
where and that it has a fixed learned activation factor ayp.

The final reconstructed image X is then equal to the weighted sum of the
various image layers using the weights wy:

wy(i,7) = (5.17)

K
X(i,5) =Y wili, j)Lii, 5) (5.18)
k=0

During inference the segmentation map is built by assigning to each pixel the
layer index k € {0,.., K} for which wg(4,7) is the maximum. The background
model is not needed to get the segmentation maps during inference.

5.6.2 Model training
Loss function

In order to train the proposed model, we use a main reconstruction loss function
and an auxiliary loss:
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Reconstruction loss. The local L; Reconstruction error associated to the
pixel (i,7) is

3
lij =Y |deij— Teijls (5.19)
c=1

where z.; ; and Z.; ; are the values of the color channel ¢ at the position (i, j)
in the input image and reconstructed image.
The reconstruction loss is defined as the mean square of this reconstruction

€rror.
w,h

1 2
ﬁrec: % Z li,j (520)

i=1,j=1

Pixel entropy loss. For a given pixel (i, j), we expect the distribution of the
weights wo (%, 5), .., wk (i, 7) to be one-hot, because we assume that the objects
are opaque. We observe that a discrete distribution is one-hot if and only if it
has a zero entropy, so that minimizing the entropy of this distribution would be
a reasonable way to enforce a stick-breaking process. Considering however that
the entropy function has a singular gradient near one-hot distributions, we use
the square of the entropy function to build the loss function. We then define
the pixel entropy loss as

w,h K
1 . AU
Lpizel = o i:;:1(k;)wk(la])IOg(wk(Z,]) + €))%, (5.21)

where € = 1072% is introduced to avoid any numerical issue with the logarithm
function.

This auxiliary loss is weighted using the weight Apize; before being added to
the reconstruction loss.

During our experiments, we observed that the pixel entropy loss could pre-
vent a successful initialization of the localization process during the beginning of
the training. As a consequence, we smoothly activate this auxiliary loss during
initialization using a quadratic warmup of the weight.

The full loss function is then equal to

ste
7p)2)‘pizelﬁpim8la (522)

pizel

L= Lyec+ min(1,

where step is the current training iteration index and Npz; is a fixed hyperpa-
rameter.

Curriculum training

The interaction between the background reconstruction model and the fore-
ground model during training is a very challenging issue, because of the com-
petition between them to reconstruct the image. We handle this problem as
in [Jiang and Ahn, 2020] by implementing curriculum training. We will then
evaluate two methods to train the proposed model:

e baseline training (BT) : The background and foreground models are ini-
tialized randomly and trained simultaneously.
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e curriculum training (CT): The training of the model is split in three
phases:

1. The background model is pretrained alone, using the methodology
and robust loss function described in chapter 4.

2. The weights of the background model are then frozen and the fore-
ground model is trained using the frozen background model.

3. The background and foreground models are then fine-tuned simulta-
neously.

5.7 Experimental results

5.7.1 Evaluation on public benchmarks

We perform a quantitative evaluation of the proposed model on the following
datasets: CLEVRTEX [Karazija et al., 2021], CLEVR [Johnson et al., 2017],
ShapeStacks [Groth et al., 2018] and ObjectsRoom [Kabra et al., 2019].

We implement on ShapeStacks, ObjectsRoom and CLEVR the same prepro-
cessing as in [Engelcke et al., 2021].

We use the same hyperparameter values on these datasets, except for the
hyperparameter K related to the number of object queries, which is set to the
maximum number of objects in each dataset (i.e. 3 on ObjectsRoom, 6 on
ShapeStacks and 10 on CLEVRTEX and CLEVR). We use isotropic scaling on
CLEVR and ShapeStacks and anisotropic scaling on the other datasets.

We use the versions B3 of the Segformer model, and rely on the Hugging
Face implementation of this model, with pretrained weights on ImageNet-1k
for the hierarchical transformer backbone, but random initialization for the
MLP decoder which is used as a feature map generator. We use the standard
Pytorch implementation of the transformer encoder. The architecture of the
backgroud model autoencoder is the same as in chapter 4. The glimpse generator
is a sequence of transpose convolution layers, group normalization [Wu and He,
2020| layers and CELU [Barron, 2017] non-linearities, and is described in the
appendix.

We use Adam as optimizer. The training process includes a quadratic
warmup of the learning rate since the model contains a transformer encoder.
We also decrease the learning rate by a factor of 10 when the number of train-
ing steps reaches 90% of the total number of training steps. The total number
of training steps of the baseline training (BT) scenario is 125,000. In the cur-
riculum training (CT) scenario, the number of training steps for background
model pretraining (phase 1) is 500,000 on CLEVRTEX, ShapeStacks and Ob-
jectsRoom, but 2500 on CLEVR, which shows a fixed background, as recom-
mended in chapter 4. The number of training steps of phase 2 (training with
frozen pretrained background model) is 30,000, and the number of training steps
of the final fine-tuning phase (phase 3) is 95,000.

Full implementation details and hyperparameter values are provided in the
supplementary material, and the model code is available on the Github platform.

In order to compare our results with published models, we compute the
following evaluation metrics: mean intersection over union (mlIoU) and adjusted
rand index restricted to foreground objects (ARI-FG). We also provide the mean
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Table 5.1: Benchmark results on CLEVR and CLEVRTEX.
calculated over 3 runs. Source: [Karazija et al., 2021]

Results are shown (+0)

Model CLEVR CLEVRTEX
tmloU (%) TARI-FG (%) |[MSE tmloU (%) TARLI-FG (%) | MSE

SPAIR [Crawford and Pineau, 2019] 65.95 + 4.02 77.13+ 1.92 554+ 10  0.00 £ 0.00 0.00+ 0.00 1101+ 2
SPACE [Lin et al., 2020] 26.31 + 12.93 22.75+14.04 63+ 3 914 + 346 1753+ 4.13 298+ 80
GNM [Jiang and Ahn, 2020] 59.92 + 3.72 65.06+ 4.19 43+ 3 4225 + 0.18 53.37+ 0.67 383+ 2
MN [Smirnov et al., 2021] 56.81 &+ 0.40 7212+ 0.64 75+ 1 10.46 £ 0.10 3831+ 0.70 335+ 1
DTT [Monnier et al., 2021] 48.74 + 217 89.54+ 1.44 77+ 12 3379 £ 1.30 79.90+ 1.37 438+ 22
Gen-V2 [Engelcke et al., 2021] 948 + 0.55 57.90+20.38 158+ 2 7.93 + 1.53 31.19+12.41 3154106
eMORL [Emami et al., 2021] 50.19 + 22.56 93.25+ 3.24 33+ 8 12,58 + 239 45.00+ 7.77 318+ 43
MONet [Burgess et al., 2019| 30.66 + 14.87 54.47+11.41 58+ 12 19.78 + 1.02 36.66 + 0.87 146+ 7
SA |Locatello et al., 2020] 36.61 + 24.83 95.89+ 2.37 23+ 3 2258 + 2.07 6240+ 223 254+ 8
IODINE [Greff et al., 2019] 45.14 + 17.85 93.81+ 0.76 44+ 29.17 + 0.75 59.52+ 220 340+ 3
AST-Seg-B3-BT 71.92 + 32.94 76.05+36.13 51+ 63 57.30 + 15.72 TL79+£22.88 1524 39
AST-Seg-B3-CT 90.27 + 0.2098.26+ 0.07 16+ 1 79.58 + 0.5494.77+ 0.51 139+ 7

square error (MSE) between the reconstructed image and the input image, which

provides an estimate of the accuracy of the learnt representation. We use the

same definitions and methodology as [Karazija et al., 2021] for these metrics.

We provide the mean segmentation covering (defined in [Engelcke et al., 2020])

restricted to foreground objects (MSC-FG) on ObjectsRoom and ShapeStacks

where mloU baseline values are not available.

We call AST-Seg (Attention and Soft-argmax with Transformer using Seg-

former) the proposed model, and AST-Seg-B3-BT, AST-Seg-B3-CT respectively

the models using a Segformer B3 feature map generator trained under the base-

line training or curriculum training scenarios. Tables 5.1 and 5.2 provide the

results obtained on these datasets with a comparison with published results.

The proposed model trained under the baseline training scenario gets better

average results than existing models on the CLEVR and CLEVRTEX dataset,

but shows a very high variance. For example, on the CLEVR dataset, the model

may fall during training in a bad minimum where the background model tries

to predict the foreground objects. Using curriculum training allows to avoid

this issue, get stable results on all datasets, and obtain a very significant mIoU

improvement on the most complex datasets CLEVR and CLEVRTEX.

Table 5.2: Benchmark results on ObjectsRoom and ShapeStacks. Source: [Engelcke

et al., 2021].
Model ObjectsRoom ShapeStacks
: TARI-FG (%) 1MSC-FG (%)  tmloU (%) IMSE TARLI-FG (%) 1MSC-FG (%)  tmloU (%) IMSE
MONet-g [Burgess et al., 2019] 5 + 0 33 £ 1 n/a n/a 70 + 4 57 + 12 n/a n/a
Gen-v2 [Engelcke et al., 2021] 84 + 1 58 + 3 n/a n/a 81 + 0 68 + 1 n/a n/a
SA [Locatello et al., 2020] 9+ 2 64 + 13 n/a n/a 76 + 1 0 + 5 n/a n/a
AST-Seg-B3-BT 74.96 +10.02 69.86 + 10.13 74.50 + 8.61 11.7 + 2.1 7377+ 7.56 74.12 + 8.63 70.18 +12.68 11.8 £ 7.0
AST-Seg-B3-CT 87.23+ 0.88  82.22+ 0.96 85.02+ 0.79 6.7 + 0.9 79.34+ 0.73  77.65+ 1.3 78.84+ 0.21 4.5 + 0.2

Following the methodology proposed in [Karazija et al., 2021], we also eval-
uated the generalization capability of a model trained on CLEVRTEX when
applied to datasets containing out of distribution images showing unseen tex-
tures and shapes or camouflaged objects (OOD and CAMO datasets [Karazija
et al., 2021]). The results of this evaluation are provided in Table 5.3 and show

84



that the proposed model generalizes well, although it is deterministic and does
not use any specific regularization scheme.

The OOD generalization results are significant because we have seen that
the background/foreground segmentation model described in chapter 4 is not
robust to domain shift. More generally, performing foreground segmentation in
the presence of unseen significant background changes has always been consid-
ered a very significant challenge. We however observe that the proposed model
is robust to domain shift and able to get reasonable background/foreground
segmentation results on images containing unseen backgrounds.

Table 5.3: Benchmark generalization results on CAMO, and OOD for a model
trained on CLEVRTEX. Results are shown (o) calculated over 3 runs. Source:
[Karazija et al., 2021]

OOD CAMO

Model tmloU (%) $ARLFG (%) IMSE  fmloU (%) TARLFG (%) |MSE

SPAIR [Crawford and Pineau, 2019] 0.00 = 0.00 0.00+ 0.00 1166+ 5 0.00 £ 0.00 0.00+ 0.00 668+ 3
SPACE [Lin et al., 2020| 6.87 + 332 1271+ 344 387+ 66 8.67 £ 350 1055+ 2.09 251+ 61
GNM [Jiang and Ahn, 2020] 40.84 + 0.30 4843+ 0.86 626+ 5 17.56 + 0.74 15.73+ 0.89 353+ 1
MN [Smirnov et al., 2021] 1213 + 0.19 37.29+ 1.04 409+ 3 879 + 0.15 31.52+ 0.87 265+ 1
DTI [Monnier et al., 2021] 32.55 £ 1.08 73.67+ 0.98 590+ 4 27.54 + 1.55 7290+ 1.89 377+ 17
Gen-V2 [Engelcke et al., 2021] 874 + 1.64 29.04+£11.23 539+147 749 £ 1.67 29.60+12.84 278+ 75
eMORL [Emami et al., 2021] 13.17 = 258 43.13+ 9.28 471+ 51 11.56 = 2.09 4234+ 7.19 269+ 31
MONet [Burgess et al., 2019 19.30 + 037 32.97+ 1.00 231+ 7 1052 + 038 1244+ 073 112+ 7
SA |Locatello et al., 2020] 2098 + 1.59 5845+ 1.87 487+ 16 19.83 + 1.41 57.54+ 1.01 215+ 7
IODINE [Greff et al., 2019] 26.28 + 0.85 53.20+ 255 504+ 3 17.562 + 0.75 36.31+ 257 315+ 3
AST-Seg-B3-CT 67.50 + 0.7583.14+ 0.75 832+ 24 73.07 + 0.6587.27+ 3.78 145+ 6

Some segmentation prediction samples are provided in Fig 5.3. Other image
samples are available in the appendix to this chapter.

The main limitation of the proposed model is the management of shadows,
which may be considered by the model as separate objects or integrated to
object segmentations.

5.7.2 Quality of learned object representations

Fig 5.5 shows examples of object glimpses produced by the glimpse generator
on the CLEVRTEX dataset.

In order to check whether the object feature vectors z,nq¢ learned by the
model can be useful for downstream tasks, we also provide in Fig. 5.6 t-SNE
plots of the distribution of the vectors z,nq: associated to positive detections
(non-zero segmentation masks) on the ObjectsRoom and CLEVRTEX datasets,
which show that the learned object representations are smooth. The object rep-
resentations obtained on the ObjectsRoom also appear to be meaningful, allow-
ing to distinguish the various shapes of the objects appearing in this dataset.

5.7.3 Qualitative evaluation on real-world traffic videos

We have also tested the proposed model on real-world videos downloaded from
free webcam sites available on the Internet. We selected three traffic webcams!

Ihttps://www.youtube.com/watch?v=YByJ2h0T5JY, https://www.youtube.com/watch?v=
BGCytWLOmyA, https://www.youtube.com/watch?v=DQe_EvBae_I
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Figure 5.3: Examples of segmentation predictions on CLEVRTEX, CLEVR, ShapeS-
tacks, ObjectsRoom, OOD and CAMO test datasets (Results on OOD and CAMO
datasets are obtained using a model trained on CLEVRTEX only)

image
reconstruction

showing significant challenges such as high level of occlusion, object size diversity
or presence of pedestrians. For each website, we downloaded 5 hours of videos
at 5 frames per second, then extracted selected regions of interest which were
resized to 200x320 images, and checked that these patches did not allow to
identify any person, license plate or other personally identifiable information.
Since some of these videos show fixed background objects such as traffic lights
or posts which may occlude foreground objets, we adapted the model to take
into account this issue by replacing the uniform learnt background activation
ag by a pixel-wise learnt background activation g (%, j).

Examples of predicted segmentations are provided in Fig 5.7. Other samples
are available in the appendix. Examples of generated glimpses are provided in
Fig 5.8. The distribution of the associated z,nq¢ vectors is illustrated in Fig 5.9
and 5.10, and shows that the latent space is smooth and meaningful, allowing
to separate cars from pedestrians and to distinguish cars according to their
orientations.

5.7.4 Ablation study and additional experiments

We provide in Table 5.4 results obtained using various ablations or modifications
on the model architecture or loss function, which show that:

e The model remains competitive if the transformer encoder is removed by
setting (g, Tk, Yk )1<k<k = (gbg, x%, yg)lngK. The results on the ShapeS-
tacks and ObjectsRoom datasets are even improved with this simplified
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Figure 5.4: Examples of segmentation predictions on CLEVRTEX, CLEVR, OOD
and CAMO test datasets obtained using other models (best viewed digitally). Source:
[Karazija et al., 2021]
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Figure 5.5: Examples of glimpses (RGB images and masks) generated by the glimpse
generator on an image from the CLEVRTEX dataset

Table 5.4: Results of ablation study and additional experiments (results over 1 run,

except for starred values, which are averages over 3 runs)

Dataset CLEVRTEX CLEVR ShapeStacks ObjectsRoom
mloU  ARI-FG mloU  ARI-FG mloU  ARI-FG mloU ARI-FG
full model AST-Seg-B3-CT (reference) 79.58%* 94.77* 90.27* 98.26* 78.84* 79.34% 85.02* 87.23*
model without transformer encoder 75.69 94.41 77.16 93.09 82.99% 82.29% 85.51% 88.49%
K =1 + maximum number of objects 79.11% 94.78* 91.03* 98.17* 78.87 80.05 82.90 86.45
K = 2 x maximum number of objects 62.10 89.96 90.56 98.29 54.88 65.16 66.78 78.58
using a Unet instead of Segformer feature generator 66.82 88.25 90.70 98.17 75.51 77.78 85.59 87.93
random initialization of Segformer backbone 61.74 80.22 88.94 97.77 62.73 68.40 77.71 79.23
training without pixel entropy loss 70.18 91.81 85.54 96.09 52.17 60.08 84.21 86.19
training using frozen pretrained background model — 75.30 95.31 81.46 98.29 55.06 66.24 85.82 87.78
isotropic scaling 78.68 94.78 84.91 87.20
87.21 98.53 45.47 36.43

anisotropic scaling

architecture, with a surprisingly strong improvement on the Shapestacks
dataset, which shows the efficiency of the attention and soft-argmax mech-
anism. The transformer encoder is however necessary on the more complex

CLEVR and CLEVRTEX datasets.

e Training with a number of slots slightly higher than the maximum number
A more
substantial increase of the number of slots however leads to poor results
on scenes with complex textures due to an increasing fragmentation of the
objects. This is very different from the situation observed on query-based

of objects does not lead to significant changes in the results.
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Figure 5.6: t-SNE plots of the distribution of the zy,hat vectors on the ObjectsRoom
and CLEVRTEX datasets. Each z,nqt vector is represented by the associated RGB

glimpse ]9



input image

image

predicted
segmentation

input image

image
reconstruction

predicted
segmentation

input image

image
reconstruction

predicted
segmentation

Figure 5.7: Examples of segmentation predictions on real-world traffic videos
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Figure 5.8: Examples of object glimpses generated from real-world traffic videos and
associated input images, reconstructed images and predicted segmentation maps
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Figure 5.9: t-SNE plots of the distribution of the z,nqt vectors associated to positive
detections on two real-world traffic videos
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Figure 5.10: t-SNE plot of the distribution of the z,naqt vectors associated to positive
detections on one real-world traffic video
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supervised detection models like DETR, where the number of queries has
to be very high compared to the number of objects.

e It is possible to replace the Segformer high resolution feature map genera-
tor with any other generator. The proposed model was originally designed
with a custom Unet feature map generator, which gets similar results as
the Segformer model on CLEVR, ShapeStacks and ObjectsRoom, but un-
derperforms on the more complex CLEVRTEX dataset. The architecture
of this Unet is described in the supplementary material.

e Using a pretrained backbone is necessary to get good performances with
a Segformer feature map generator.

o We tested an alternative training scenario where the background model
remains frozen during the complete training of the foreground model (125
000 iterations). The main advantage of this scenario is that it is sig-
nificantly faster and requires less memory, since the backgrounds of the
training images can be pre-computed and memorized. The accuracy of the
results is however lower than the curriculum training scenario proposed in
this chapter, except for the ObjectsRoom dataset.

e Switching between isotropic scaling and anisotropic scaling does not make
much difference, except for the ShapeStacks dataset, where the proposed
model can consider that each block tower is a single object if anisotropic
scaling is enabled.

Table 5.5: Training computation time with one Nvidia RTX 3090 GPU (curriculum
training)

Dataset image size background model pretraining (phase 1) full model training (phase 2 & 3)
number of iterations training time number of iterations training time
CLEVRTEX 128 x 128 500000 57 h 47 mn 125000 16 h 00 mn
CLEVR 128 x 128 2500 20 mn 125000 12 h 03 mn
ObjectsRoom 64 x 64 500000 14 h 57 mn 125000 6 h 31 mn
ShapeStacks 64 x 64 500000 14 h 20 mn 125000 6 h 22 mn

5.7.5 Computation time

All experiments have been performed using a Nvidia RTX 3090 GPU and a
AMD 7402 EPYC CPU. Some training durations are provided in Table 5.5.

5.8 Conclusion of chapter 5

We have described in this chapter a new architecture for unsupervised object-
centric representation learning and object detection and segmentation, which
relies on attention and soft-argmax, and shown that this new architecture sub-
stantially improves upon the state of the art on existing benchmarks showing
synthetic scenes with complex shapes and textures. We hope this work may
help to extend the scope of structured object-centric representation learning
from research to practical applications.
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Table 5.6: Hyperparameter values

hyperparameter description notation value
Background model pretraining:

batch size 128
learning rate 2.1073
number of background model training iterations:

- datasets with fixed backgrounds (CLEVR) 2500
- datasets with complex backgrounds (CLEVRTEX, ShapeStacks,ObjectsRoom) 500000
Foreground model training:

batch size 64
learning rate 4.107°
Adam B 0.90
Adam fs 0.98
Adam € 1079
number of foreground model training iterations 125000
number of steps of phase 2 (CT scenario) 30000
number of steps of learning rate warmup phase 5000
number of steps of pixel entropy loss weight warmup phase Npizel 10000
initial value of background activation before training Qo ell
dimension of zypqt what 32
pixel entropy loss weight Apizer 11072
minimum value of inverse scaling factor Sin 1.3
maximum value of inverse scaling factor Smaz 24
dimension of inputs and outputs of transformer encoder dr 256
number of heads of transformer encoder layer 8
dimension of feedforward transformer layer 512
number of layers of transformer encoder 6

5.9 Appendix to chapter 5

5.9.1 Hyperparameter values

The hyperparameter values used for the proposed model are listed in Table 5.6.

5.9.2 Pseudo-code for objects encoder and decoder

The full encoding and rendering process is described in Algorithms 1 and 2.

5.9.3 Additional implementation details

The glimpse convolutional generator is described in Table 5.7.

Synthetic datasets and preprocessing codes were downloaded from the fol-

lowing public repositories:

e https://www.robots.ox.ac.uk/ vgg/data/clevrtex/

e https://ogroth.github.io/shapestacks/

e https://github.com/deepmind/multi_object_datasets

e https://github.com/applied-ai-lab/genesis.
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Algorithm 1: Encoding

Input: input image X

Output: object latents {2V, x, yg, Sk, Ok }1> k> K
// feature and attention maps generation
(®, Ay, .., Ax) = Segformer(X)

for k< 1to K,i+ 1tow", j« 1toh*do

\ Ai(i, §) = Softmax(Ay) (i, j) = =<
1,7

end

// computation of positions and feature vectors before
transformer refinement

for i < 1 to w*, j < 1 to h* do

‘ z(i) =241 —15y() =245 -1

w*—1

end
for k< 1to K,i< 1tow*, j< 1toh*do
ay =305 2 () AR, 5) s yp = 32, y()An(i, §)
2 = Zi,j q)(laj)Ak(laj)
end
// transformer refinement of positions and feature vectors
(Tk, Yrs P ) 150> K =
LinearProjection(TransformerEncoder(LinearEmbedding((z?, 42, ¢2)1> k> )))
// latent computations
for k<1 to K do
x = clamp(xg, min = —1,max = 1) ; y,, =
clamp(yg, min = —1, max = 1)
(Sk, oug, 20het) = @y,
Sk = Smin + (smaz - smin)a(sk)
ap = ek
end

) hat
Output: {z"", xk, Yk, Sk, W f1>k>K
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Algorithm 2: Rendering

Input: object latents {z}c“hat,xk,yk, Sk, g }, background image Ly,

background mask My = 1, learned background activation g or
Oé()(i7j)

Output: Image reconstruction X

// Obtain the object appearance o; and segmentation mask my

for k + 1 to K do

| ok, m; = GlimpseGenerator(z} ")
end
// translation and scaling using a spatial transformer
network (STN)

for k< 1 to K do

Ly, = STN(oy, z, Yk, Sk)

My, = STN(my, zx, yr, sk)

end

// occlusion computations

for k <+ 0 to K do
| o= SR

end

// combination of image layers
S K

X =2 ko WLl

Output: X

Table 5.7: glimpse generator architecture

64x64 images 128x128 images

Norm./Act.

Layer Size Ch Stride Padding Norm./Act. Layer Size Ch Stride Padding
Input 1 d Input L e
Zwhat sv Conv D
Transp Conv 2 x2 2 64 2 0 GroupNorm(4,64) /CELU }‘r.:a‘nfp ggm, i i i i 16248 g (l)
Transp Conv 4 x4 4 32 2 1 GroupNorm(2,32)/CELU ansp Lonv
o X ; - X Transp Conv4 x 4 8 32 2 1
Transp Conv4 x 4 8 16 2 1 GroupNorm(1,16) /CELU N .
E p - Transp Conv 4 x4 16 16 2 1
Transp Conv 4 x4 16 8 2 1 GroupNorm(1,8) /CELU . p
3 ° : Transp Conv 4 x4 32 8 2 1
Transp Conv 4 x4 32 4 2 1 S
Siemoid 39 4 Transp Conv 4 x4 64 4 2 1
o Sigmoid 64 4

GroupNorm(8,128) /CELU
GroupNorm(4,64)/CELU
GroupNorm(2,32)/CELU
GroupNorm(1,16)/CELU
GroupNorm(1,8)/CELU
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Table 5.8: U-net architecture (ablation study)

Layer Ch Stride Padding Norm./Act.
Input 3
Conv 3 x 3 80 1 1 BatchNorm /CELU
Downsample block 128
Downsample block 192
Downsample block 256
Downsample block 256
Downsample block 256
Center block 256
Upsample block 256
Upsample block 256
Upsample block 192
Upsample block 128
Upsample block 80
Conv 3 x 3 with skip connection dg 1 1 BatchNorm /CELU
Residual Conv 3 x 3 do 1 1
Conv 1x1 do 1 1

The Segformer pretrained weights were downloaded from the following link:

https://huggingface.co/nvidia/mit-b3

The architecture of the U-net implemented for the ablation study is described
in Table 5.8. It contains a sequence of downsample blocks which output feature
maps of decreasing sizes, a center block which takes as input the feature map
produced by the last downsample block, and upsample blocks, which take as
input both the output of the previous upsample or center block and the feature
map of the same size produced by corresponding downsample block.

e A downsample block is composed of a convolutional layer with stride 2 and
kernel size 4, with batch normalization and CELU, followed by a residual
convolutional layer with stride 1 and kernel size 3 with batch normalization
and CELU.

e The center block is composed of a convolutional layer with stride 1 and
kernel size 3 with batch normalization and CELU.

e An upsample block is composed of a residual convolutional layer with
stride 1 and kernel size 3 with batch normalization and CELU, followed
by a transpose convolutional layer with stride 2 and kernel size 4, with
batch normalization and CELU.

5.9.4 Additional image samples
Additional image samples are provided in Figs. 5.11 to 5.16 on pages 99-104
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Figure 5.11: Examples of segmentation predictions on CLEVR test dataset
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Figure 5.12: Examples of segmentation predictions on CLEVRTEX test dataset
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Figure 5.13: Examples of segmentation predictions on ObjectsRoom test dataset
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Figure 5.14: Examples of segmentation predictions on ShapeStacks test dataset
(using a model without transformer)
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Figure 5.15: Examples of segmentation predictions on CAMO test dataset using a
model trained on CLEVRTEX only
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Figure 5.16: Examples of segmentation predictions on OOD test dataset using a
model trained on CLEVRTEX only
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Figure 5.17: Examples of segmentation predictions on a real-world video extracted
from a traffic webcam
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Figure 5.18: Examples of segmentation predictions on a real-world video extracted
from a traffic webcam

106



input image
image
reconstruction

predicted
segmentation

input image
image
reconstruction

predicted
segmentation

input image
image
reconstruction

predicted
segmentation

input image

N

image »
reconstruction S
predicted

segmentation -

Figure 5.19: Examples of segmentation predictions on a real-world video extracted
from a traffic webcam
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Chapter 6

Discussion and conclusion

6.1 Reésumé en francais

Nous résumons dans cette conclusion les principales idées mises en oeuvre dans
cette thése : considérer la reconstruction d’arriére-plan comme une probléme
d’estimation robuste, modéliser I'arriére-plan comme une variété de petite di-
mension, utiliser un auto-encodeur pour non seulement reconstruire une image
donnée en entrée, mais aussi pour prédire I'incertitude associée & cette recon-
struction, et enfin prendre en compte les propriétés de symétrie et d’équivariance
pour la conception de modéles d’apprentissage profond. Nous listons ensuite
les principales limitations des modéles présentés ainsi que quelques pistes de
recherches ultérieures.

6.2 Main ideas developed in this thesis

In this thesis, we have studied the tasks of fixed background reconstruction,
dynamic background reconstruction, background/foreground segmentation, un-
supervised multi-object segmentation and object-centric representation. The
main ideas which have been developed to address these tasks can be summa-
rized as follows:

e Considering background reconstruction as a robust estimation
problem: Using a background estimate, it is possible to build a back-
ground /foreground segmentation. Inversely, one can benefit from a back-
ground /foreground segmentation to improve the accuracy of a background
estimate by considering foreground pixels as outliers and excluding them
from the estimation process. The associated iterative updates are the basis
of the proposed fixed background reconstruction model.

e Modeling the background as a low dimensional manifold. It was
already known that modeling the background as a low dimensional man-
ifold is a powerful method to reconstruct dynamic backgrounds in video
sequences. We have shown that this inductive bias is so efficient that it
also allows to perform background reconstruction on videos taken from a
moving camera and some non-video datasets.
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e Using an autoencoder to measure the accuracy loss associated
to dimensionality reduction. Deterministic autoencoders are usually
trained to perform dimensionality reduction using a reconstruction loss.
They are also able to directly provide an estimate of the level of accu-
racy loss caused by the dimensionality reduction, which can be useful for
downstream applications.

e The importance of symmetries and equivariance in the design of
deep learning models. Nearly all existing object detection models are
not fully translation equivariant since they use a grid-based approach. The
development of transformer-based models for vision applications which do
not use any equivariance inductive bias could lead to the conclusion that
these inductive biases are not really necessary. We have however designed
an unsupervised model which is both simple and significantly more accu-
rate than the state of the art by starting from the simple requirement that
it should be translation equivariant and that the transformations applied
to object feature vectors should be permutation equivariant.

6.3 Limitations and future works

e The management of shadows remains a significant issue for the proposed
model.

e The creation of a benchmark on real-world scenes is a prerequisite to get
a quantitative evaluation and optimization of the proposed model on real-
world scenes.

e The proposed model is not a generative model, which may be an issue for
applications such as future frames prediction.

e The proposed multi-object segmentation model does not use any temporal
information such as optical flow. This design choice was justified during
this thesis by the observation that available optical flow models were too
slow or not able to properly handle small objects. Considering the progress
of optical flow models, this choice may need to be reevaluated in the future.

e All the models which have been developed in this thesis are batch models:
They assume that the full image dataset is available before starting the
training phase, and no update is performed after the training is complete.
Such a scheme may be acceptable for research purpose and offline image
analysis, but not for real-world applications. We have seen that the back-
ground model alone is not robust to domain shift, but that the full model
is robust to domain shift, so that an adaptation of the full model to real-
time online simultaneous inference and training seems feasible, although it
requires a significant computing power to handle high resolution images.

e Possible future works also include adapting this model to perform unsu-
pervised object tracking on videos, which is currently an active field of
study [Jiang et al., 2020, Crawford and Pineau, 2020, Kipf et al., 2022, Wu
et al., 2021, Elsayed et al., 2022], as well as integrating it to reinforcement
learning or VQA models, as discussed in section 2.6.
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Figure 6.1: Overview of the uORF model, which uses conditional NeRFs as object
and background generators. Source: [Yu et al., 2022]
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Figure 6.2: Overview of the model proposed in [Ye et al., 2022], which uses de-
formable sprites as object and background generators. Source: [Ye et al., 2022]

e The object generator of the proposed model is very simple, and the spatial
transformer network considers only elementary 2D transformations. This
may be insufficient to handle objects with complex shapes such as humans
and animals or manage 3D object movements. Recently published models
[Yu et al., 2022, Smith et al., 2022] show that it is possible to learn 3D
object generators using conditional neural radiance fields (NeRF) in an
unsupervised multi-object setting (Fig. 6.1). Another model [Ye et al.,
2022| uses deformable sprites to generate objects with changing shapes
such as animals (Fig. 6.2)

The ideas developed in this thesis could also be applicable to unsupervised
object discovery from point clouds data [Wang et al., 2022, You et al.,
2022].

6.4 Publications

The results described in this report have led to the following publications:
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— Bruno Sauvalle, Arnaud de La Fortelle. Fast and Accurate Back-
ground Reconstruction Using Background Bootstrapping, Journal of
Imaging 8(1):9, January 2022

— Bruno Sauvalle, Arnaud de La Fortelle. Autoencoder-based back-
ground reconstruction and foreground segmentation with background
noise estimation, IEEE/CVF Winter Conference on Applications of
Computer Vision, (WACV) 2023, Waikoloa, HI, USA, January 2-7,
2023

— Bruno Sauvalle, Arnaud de La Fortelle. Unsupervised Multi-object
Segmentation Using Attention and Soft-argmax, IEEE/CVF Win-
ter Conference on Applications of Computer Vision, (WACV) 2023,
Waikoloa, HI, USA, January 2-7, 2023
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RESUME

Lobjectif de cette thése est d’étudier comment les techniques d’apprentissage profond, c’est-a-dire la descente de gradi-
ent stochastique et les réseaux de neurones, peuvent étre utilisées pour obtenir une représentation interprétable d’'une
scene sans nécessiter de jeu de données annotées. Afin d’obtenir une telle représentation, nous considérons qu’'une
scene est composée d'un arriére plan et de divers objets apparaissant en avant-plan. Nous devons donc non seulement
étre capable de distinguer 'arriere-plan de ces différents objets, mais aussi de séparer ces objets, qui peuvent se toucher
ou s’occulter entre eux.

Nous étudions d’abord la tdche de reconstruction d’arriére-plan fixe, dont le but est de construire une image unique de
I'arriere-plan d’'une scéne a I'aide d’'une courte séquence d’images de cette scéne encombrée par divers objets. Nous
considérons cette tache comme un probléme d’estimation robuste, proposons une nouvelle technique appelée bootstrap
d’arriere-plan, qui utilise la descente de gradient stochastique, et montrons qu’elle est plus précise et considérablement
plus rapide que les meilleures méthodes existantes.

Nous considérons ensuite la tache de reconstruction d’arriere-plan dynamique et de segmentation d’arriére-plan/avant-
plan. A partir de 'hypothése selon laquelle les arriére-plans des images apparaissant dans une vidéo ou un jeu de
données sont situés sur une variété de petite dimension, nous sommes en mesure d’apprendre cette variété a l'aide d’un
autoencodeur convolutionnel. Afin d’améliorer les résultats de segmentation, nous adaptons I'autoencodeur pour prédire
le bruit d’arriere-plan, qui peut étre causé par la turbulence ou les mouvements des arbres ou de I'eau. Nous montrons
ensuite que le modeéle proposé donne de meilleurs résultats que les meilleures méthodes non supervisées existantes sur
les exigeants benchmarks CDnet et LASIESTA.

La segmentation de I'arriére-plan est une premiére étape pour comprendre la structure d’'une scéne, mais elle ne per-
met pas d’identifier et de segmenter les divers objets apparaissant dans une scéne. Afin d’obtenir une représentation
véritablement centrée sur les objets d’'une scéne, nous introduisons une nouvelle architecture pour I'apprentissage non
supervisé de représentations centrées sur les objets, qui utilise I'attention et le soft-argmax pour localiser chaque objet
et un transformer encodeur pour gérer les occlusions et éviter les doubles détections. Nous montrons ensuite que cette
architecture est considérablement plus précise que I'état de I'art sur les benchmarks synthétiques existants et fournissons
quelques exemples d’applications a des images réelles prises par des caméras de circulation.

MOTS CLES

représentation structurée, représentation centrée sur les objets, segmentation d’objets, detection d’objets,
arriére-plan, avant-plan, apprentissage non supervisé

ABSTRACT

The goal of this thesis is to study how deep learning techniques, i.e. stochastic gradient descent and neural networks,
can be used to get an interpretable representation of a scene without requiring any annotated dataset. In order to get
such a representation, we consider that a scene is composed of a background and various foreground objects. We then
have to be able to distinguish the background from the foreground objects present in the scene, and also to separate
these foreground objects, which can touch or occlude each other.

We first study the task of fixed background reconstruction, whose goal is to build a unique background image of a scene
using a short sequence of images of this scene cluttered by various objects. We address this task as a robust estimation
problem, propose a new technique called background bootstrapping, which uses stochastic gradient descent, and show
that it is more accurate and significantly faster than state of the art methods.

We then consider the task of dynamic background reconstruction and background/foreground segmentation. Starting
from the assumption that the backgrounds of the images appearing in a video or a dataset lie on a low dimensional
manifold, we are able to learn this manifold using a convolutional autoencoder. In order to improve segmentation results,
we adapt the autoencoder to predict the background noise, which can be caused by turbulence, moving trees or water,
and should not be considered as foreground. We then show that the proposed model is able to improve upon the state of
the art for unsupervised methods on the challenging CDnet and LASIESTA benchmarks.

The segmentation of the background is a first step in order to understand the structure of a scene, but it does not allow
to identify and segment the various objects appearing in a scene. In order to get a true object-centric representation of a
scene, we introduce a new architecture for unsupervised object-centric representation learning, which uses attention and
soft-argmax to localize each object and a transformer encoder to manage occlusions and avoid duplicate detections. We
then show that this architecture is significantly more accurate than the state of the art on existing synthetic benchmarks
and provide some examples of applications to real-world images taken from traffic cameras.

KEYWORDS

structured representation, object-centric representation, object detection, object segmentation, background,
foreground, unsupervised learning
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