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Titre : Les systèmes de coaching: recommandation alimentaire automatique pour un changement de 

comportement à long terme.  

Mots clés : Systèmes de recommandation, Prise de décision répétée, Habitudes alimentaires, Recommandation 

nutritionnelle 

Résumé : De nos jours, la prise de décision se fait de 

de plus en plus en interaction avec une machine 

notamment via les algorithmes de recommandation. 

Ce travail de thèse vise à utiliser les outils développés 

dans le domaine des systèmes de recommandation 

afin d’ accompagner un utilisateur dans un processus 

de modification de ses habitudes de consommation. 

Ainsi nous considérons le changement de 

comportement de l'utilisateur comme l'objectif de la 

recommandation, et appelons cette tâche de 

recommandation "coaching". L'objectif est d'explorer 

la manière de concevoir un tel système. Pour ce faire, 

nous proposons un modèle de l'interaction 

utilisateur-système, sous la forme d’un jeu itéré à 

deux joueurs. Nous explorons ensuite, via une étude 

formelle de ce modèle, les politiques de 

recommandation possibles, et leurs caractéristiques. 

Nous mettons en évidence l’importance de la 

personnalisation, et l’intérêt des stratégies non-

myopes. Dans un second temps, nous étudions ce 

problème dans le contexte particulier de la 

recommandation alimentaire. En effet, les 

habitudes alimentaires jouent un rôle 

prépondérant sur la santé. Nous explorons donc 

l'applicabilité d'un tel système dans le monde réel 

et montrons l’importance pour l’acceptabilité des 

proposition du système, de l’implication de 

l’utilisateur dans l’élaboration des 

recommandations. Enfin, nous nous intéressons à 

l'introduction de données contextuelles dans 

l'évaluation du comportement utilisateur. Nous 

proposons une méthode originale basée sur la 

recommandation de cycles de consommations, 

pour contourner les limitations intrinsèques des 

utilisateurs.  

 

 

Title : Investigating automated food recommendation for long-term behaviour change: Introducing the 

coaching framework. 

Keywords : Recommender systems, Repeated decision-making, Eating habits, Food recommendation 

Abstract : Nowadays, decision-making is 

increasingly computer-driven, because of 

recommendation algorithms. This thesis aims to use 

the tools developed in the field of recommender 

systems to accompany users in the change of their 

consumption habits. Thus we consider the change in 

user behaviour as the aim of recommendation and 

define this task as "coaching". The objective is to 

explore how to design such a recommendation 

system. To do so, we propose a model of the user-

system interaction in the form of a two-player 

iterated game. Then we explore the possible 

recommendation policies and their characteristics  

through a formal study of this model. 

We outline the importance of personnalisation and 

the interest of non-myopic recommendation 

strategies. We study this problem in the particular 

context of food recommendations, as dietary 

habits play a major role in health, and healthier 

eating habits are key for public health policies. We, 

therefore, explore the applicability of such a system 

in the real world. In particular, we show the 

importance of user’s involvement in 

recommendations’ formulation on their 

acceptability. Finally,  we focus on the introduction 

of contextual data in the evaluation of user 

behaviour. We propose an original method based 

on consumption cycles recommendation, to 

circumvent users limitations. 

 





Résumé en Français

Contexte général

Au cours de l’histoire récente, l’émergence et le développement des technologies de

l’information ont à plusieurs reprises bouleversé la façon dont les Hommes pren-

nent des décisions. Notamment, il est devenu courant d’avoir à choisir, sur des

plateformes en ligne notamment, parmi de très nombreuses propositions de biens

ou de services. Pour divers items, tels que des films, des morceaux de musiques,

des vêtements ou des contenus sur les réseaux sociaux, les avancées récentes dans la

collecte et le stockage des données ont rendu possible, pour la plupart d’entre nous,

l’exploration d’un immense champ des possibles. Il est même fréquent que l’examen

de l’ensemble des items soit impossible. Par exemple, la plateforme de partage de

vidéos en ligne YouTube.com comptabilise plus de 500 nouvelles heures de vidéos

ajoutées chaque minute [1], ce qui revent à 80 années de contenu ajouté quotidien-

nement sur la plateforme. Le site de e-commerce Amazon.com, quant à lui, totalise

plus de 350 millions de produits disponibles à la vente [2]. De fait, ces immenses

quantités d’information ne peuvent être appréhendées par un être humain, et faire

un choix parmi de si nombreuses possibilités s’avère souvent particulièrement ardu.

Cette difficulté à choisir de manière éclairée parmi de nombreuses alternatives est

le marqueur d’un phénomène bien connu : le problème de la surcharge information-

nelle.

L’une des solutions ayant émergé pour faire face au problème de la surcharge in-

formationnelle est le développement et l’utilisation d’outils connus sous le nom de

“Systèmes de recommandation” (SR) [3]. Le but des SR est de filtrer l’ensemble

du champ des possibles, afin d’en dégager une liste des items les plus pertinents.

Ces derniers sont appelés les recommandations du système. L’idée est qu’en pro-

posant à l’utilisateur du SR un nombre réduit d’items, leur comparaison est fa-

cilitée, et l’utilisateur devient capable de faire un choix éclairé, contournant donc

le problème de la surcharge informationnelle. Un point essentiel pour l’efficacité de
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telles méthodes est la notion même de pertinence des items. Idéalement, les recom-

mandations proposées devraient être représentatives du champ des possibles, ainsi

qu’adaptées pour chaque utilisateur du SR. Depuis maintenant plusieurs années, les

systèmes de recommandations se sont imposés comme un champ de recherche à part

entière, et les travaux de recherche se sont en partie concentrés sur le fait de trouver

les meilleures recommandations possibles, soit la meilleure sélection d’items pour

un utilisateur donné à un instant donné. De nombreuses mesures de l’intérêt de

l’utilisateur pour un item existent, qui dépendent du type de données considérées

(notations explicites, temps d’écoute ou de visionnage ou encore taux de clics). En

découle une grande variété d’approches possibles du problème de la recommanda-

tion. La mise au point d’algorithmes de recommandation efficaces met ainsi à profit

de nombreuses méthodes issues de disciplines connexes, telles que l’intelligence ar-

tificielle, l’apprentissage automatique ou la fouille de données. La combinaison du

potentiel commercial des SR et de l’intérêt de la recherche académique pour le su-

jet a mené à des avancées rapides en terme de qualité des recommandations. De

plus, étant donné les effets positifs observés des SR, sur les activités commerciales

notamment, ces derniers se sont rapidement diffusés sur de nombreuses plateformes

en ligne, et sont devenus des outils avec lesquels il est commun d’interagir.

Impact des recommandations sur le comportement

La large diffusion des SR et leur omniprésence en ligne, visant à faciliter les choix

des utilisateurs de nombreuses plateformes, pose la question de l’impact des SR sur

le comportement de ces derniers. En effet, en tant que dispositif facilitant la prise de

décision, les SR ont de fait un impact sur les choix de leurs utilisateurs, et donc plus

largement sur leur comportement. Par ailleurs, ils leur permettent de découvrir et

d’expérimenter de nouveaux items, ce qui peut éventuellement impacter leurs goûts

et leurs préférences. De cette observation découlent deux questions:

Premièrement sur la capacité des algorithmes de recommandation à être pertinents

dans un environnement évolutif. En effet, une recommandation qui qui aurait été

intéressante pour un utilisateur donné à un instant donné peut devenir complètement

inappropriée, pour peu, par exemple, que les intérêts de l’utilisateur aient changé.

Dans un second temps, sur l’importance de l’effet des recommandations sur l’évolution

du comportement des utilisateurs. En effet, si de l’interaction avec différents items
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découlent des changements dans les intérêts de l’utilisateur, et que le rôle d’un SR est

de favoriser l’interaction de l’utilisateur avec certains items, la question de l’impact

des SR sur les intérêts de l’utilisateur mérite d’être posée.

De fait, la question de l’impact des SR sur les habitudes de consommation ou la

diversité de l’information est une préoccupation majeure de la littérature. Il existe

deux canaux par lesquels les SR peuvent impacter le comportement utilisateur. Tout

d’abord, en recommandant un item qui finit par être consommé par l’utilisateur, le

SR impacte sur le court terme le comportement de celui-ci. Mais les impacts peu-

vent aussi être considérés à plus long terme. Prenons l’exemple d’un utilisateur

qui écouterait de la musique sur une plateforme de streaming audio. Un morceau

lui est alors recommandé, qu’il ne connaissait pas, et qui lui plâıt particulièrement.

Il est alors possible et même probable qu’il cherche à réécouter ce morceau par la

suite. Il pourrait même par ce biais découvrir un nouvel artiste ou un nouveau

genre qu’il apprécie. Cet exemple simple illustre comment un SR peut impacter le

comportement d’un indvidu sur le long terme. Ou pas, l’utilisateur pouvant tout

aussi bien juste passer le morceau en question. Les impacts des SR sur le com-

portement utilisateur sont de plus en plus étudiés, en particulier dans la recherche

académique. Cependant la majorité des travaux sont plutôt focalisés sur les im-

pacts négatifs de ces systèmes. En effet cette problématique a notamment émergé

suite à la popularisation du concept de bulles de filtres, désignant des cas ou les

utilisateurs font face, potentiellement à cause de recommandations, à des contenus

très similaires entre eux, ne représentant qu’une part très limité des informations

ou items existants. Le manque de diversité dans les recommandations, découlant

de ce phénomène, a été largement étudié [4]. Notamment, le sous-domaine de la

recommandation d’actualités et les enjeux autours des impacts sur la démocratie

ont été particulièrement explorés [5]. Pour les mêmes raisons les impacts des SR ont

majoritairement été considérés à un niveau global, de nombreux travaux tentant de

comprendre comment différents algorithmes induisent différent changements de com-

portement dans de grands groupes d’utilisateurs. Une question largement étudiée

est l’impact des SR sur la diversité des items effectivement consommés par les util-

isateurs. Il a notamment été montré que les algorithmes étaient souvent biaisées, et

qu’en résultaient des recommandations favorisant les items les plus populaires, et ce

pour l’ensemble des utilisateurs [6].

Mais la question de l’impact des recommandations à un niveau plus particulier, et
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notamment de comment un SR interagit avec les habitudes de consommation et les

préférences de chaque utilisateur mérite également d’être posée. Compte tenu des

méthodes et algorithmes de recommandation existants, nombre de recommanda-

tions sont, au moins partiellement, guidées par les préférences des utilisateurs. Or,

comme nous l’avons vu plus tôt avec l’exemple de la recommandation de morceaux

de musique, les recommandations peuvent, en retour, impacter les habitudes des

utilisateurs. Il notamment été montré que les SR peuvent impacter le comporte-

ment individuel des utilisateurs, par exemple en réduisant la diversité des contenus

consommés par un utilisateur particulier [4]. D’autre part, de récents travaux dans

le domaine de la recommandation musicale ont montré que les SR pouvaient avoir

une influence sur les préférences des utilisateurs [7]. Dans cette thèse, nous nous

penchons particulièrement sur ce type d’impact, au niveau individuel. Plus par-

ticulièrement, nous nous intéressons à l’impact des SR sur les habitudes sur le

long terme et à la conception d’algorithmes de recommandation ayant pour ob-

jectif d’accompagner un utilisateur donné dans un processus de modification de ses

habitudes de consommations.

Motivations

L’objectif de ce travail de thèse est de tirer profit de l’impact des systèmes de recom-

mandation sur les comportements de leurs utilisateurs, afin de s’en servir comme

d’un outil pour faciliter le changement d’habitudes de consommation. En effet, dans

de nombreux domaines, notamment celui de la santé, nous pouvons aspirer à changer

nos habitudes afin de nous rapprocher d’un objectif, comme celui de manger plus

sainement, de faire plus d’activité physique, ou de réduire notre empreinte environ-

nementale. Néanmoins, il peut être difficile de mettre effectivement en place, dans

notre vie quotidienne, des changements en accord avec ces aspirations, notamment

car notre motivation est souvent fluctuante. Notre postulat, dans cette thèse, est de

mettre à profit les systèmes de recommandation, et leurs interactions avec les choix

et habitudes de leurs utilisateurs, afin d’aider ces derniers à faire des choix éclairés

et à finalement atteindre leurs objectifs.

Bien que l’approche développée dans le présent manuscrit soit générale et applica-

ble à de nombreux domaines, nous nous focaliseront ici sur le problème du choix

alimentaire. L’influence de l’alimentation et de la nutrition sur le bien-être et la
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santé est en effet connue depuis très longtemps, et de fait aujourd’hui, de nom-

breuses politiques de santé publique se focalisent sur l’alimentation. Notamment,

de nombreuses administrations publiques ont produit, dans divers pays du monde,

des recommandations nutritionnelles ainsi que des programmes visant à promouvoir

une alimentation saine. Les exemples de telles politiques sont nombreux [8, 9]. Bien

que l’efficacité de ce genre de programme ait été démontrée, des efforts sont encore

à faire pour arriver à des systèmes d’alimentation sains et durables. De plus, au

niveau individuel, la volonté d’un consommateur à manger de façon plus saine peut

être entravée, d’une part par ses connaissances limitées en nutrition et, d’autre part,

par des habitudes de consommation fortement ancrées. Comte tenu de ces enjeux,

le domaine de la nutrition semble être particulièrement adapté au développement

d’un SR visant à impacter les habitudes de consommation. En outre, la nature

répétée ainsi que la fréquence du choix alimentaire ouvre potentiellement la porte à

des impacts importants sur le comportement utilisateur.

Définition du problème

Dans ce travail de thèse, nous nous intéressons au problème de l’élaboration de

systèmes de recommandation encourageant efficacement leurs utilisateurs à modi-

fier leur comportement, et plus particulièrement leur comportement alimentaire afin

de promouvoir une alimentation saine. En effet, les systèmes de recommandation

étant de plus en plus omniprésents dans notre vie quotidienne, notre hypothèse est

qu’ils pourraient être utilisés comme levier pour accompagner des consommateurs

dans une dynamique de modification de leurs habitudes. Les systèmes de recom-

mandation peuvent en effet affecter le comportement de deux façon. Tout d’abord

ponctuellement, lorsqu’un utilisateur accepte une recommandation donnée. Mais

également à plus long terme, puisque nous l’avons vu, la recommandation peut

potentiellement affecter les habitudes d’un utilisateur.

L’objectif du présent travail est de tirer parti de ce second levier pour induire chez

un utilisateur des changements de comportement, notamment alimentaire, sur le

long terme, afin de le guider vers des habitudes de consommation plus saines. Aussi

contrairement à la majorité des solutions de l’état de l’art dans le domaine des

systèmes de recommandation, nous nous penchons sur les effets à long terme des

recommandations, plutôt que sur leur acceptation immédiate. Ce prisme soulève
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différentes questions, tant sur la production des recommandations que sur leur com-

munication à l’utilisateur. Tout d’abord, cela nécessite d’être capable de capturer

les effets des recommandations sur le long terme, et donc d’interagir de façon répétée

avec les utilisateurs. Ensuite, amener un réel changement dans le comportement de

l’utilisateur nécessite que ce dernier soit volontaire pour ce changement, et impliqué

dans le processus. Compte tenu de ces spécificités, nous définissons ici le problème

de recommandation correspondant comme un problème de coaching.

Définition du coaching

Une interaction de coaching, d’après [10], nécessite au moins deux participants :

d’un côté le coach, et de l’autre son élève, considéré comme mature, motivé, volon-

taire, et engagé dans une relation d’apprentissage avec un “facilitateur” (le coach)

dont le rôle est d’aider l’élève à atteindre ses objectifs. Cette définition, bien que

générale, décrit bien l’objectif de la présente thèse, avec dans le rôle du “facilitateur”,

le système de recommandation. Notre objectif est en effet de tirer parti des systèmes

de recommandation pour accompagner un utilisateur dans un dynamique de modifi-

cation de son comportement. Ainsi, nous explorons dans cette thèse la question de la

conception de systèmes de coaching, c’est à dire de systèmes automatisés fournissant

à leurs utilisateurs des recommandations promouvant un changement de comporte-

ment. De plus compte tenu de cette définition, nous considérons les utilisateurs

comme conscients de leur objectif final, mais pas nécessairement capables d’évaluer

correctement chacun de leur choix au regard de cet objectif, d’où l’intérêt du coach.

Questions traitées dans cette thèse

Étant donné la définition ci-dessus, et le problème général de la recommandation

pour la modification des habitudes, nous pouvons formuler plusieurs questions de

recherche, auxquelles la présente thèse a pour objectif de répondre. La première de

ces questions est la suivante:

• Q1: Comment concevoir un cadre de recommandation qui promeuve le change-

ment de comportement de ses utilisateurs sur le long terme?

Comme nous l’avons déjà mentionné, bien que traitant un problème de recomman-
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dation général, la présente thèse est motivée par le problème de la recommandation

nutritionnelle, et les enjeux de santé publique associés. Dans ce contexte, il apparâıt

essentiel de considérer l’applicabilité et la faisabilité des solutions proposées dans le

domaine alimentaire. D’où la question suivante:

• Q2: Comment devrait être pensé un système de coaching automatique pour

faire des recommandations acceptables dans le domaine de l’alimentation?

À partir du problème soulevé par la mesure de la qualité nutritionnelle d’un com-

portement, on peut entrevoir la difficulté de trouver des métriques à la fois sim-

ples et pertinentes pour évaluer l’intérêt d’un choix donné au regard d’un objectif

spécifique. En particulier, les notions de contexte et d’historique de consommation

jouent souvent un rôle essentiel. Dans ce cadre, il apparâıt capital pour un système

de recommandation visant une modification du comportement de prendre en compte

ces notions dans l’évaluation du comportement. D’où la question:

• Q3: Comment un système de coaching automatique peut inclure le contexte et

les dynamiques temporelles dans l’évaluation de ses recommandations?

Contributions

Ce travail de thèse à débouché sur trois principales contributions scientifiques :

• Première contribution: Création d’un cadre conceptuel de recom-

mandation pour la modification des habitudes, nommé coaching.

Nous nous sommes intéressés au problème de la recommandation répétée avec

un objectif de modification des habitudes de consommation. Nous avons pro-

posé un modèle d’interaction entre le système de recommandation et son util-

isateur, sous la forme d’un jeu itéré à deux joueurs. Nous avons exploré la ques-

tion de la production de recommandations visant le changement d’habitude, et

formalisé le problème comme un problème d’apprentissage par renforcement.

De cette étude formelle du problème, nous avons dérivé diverses stratégies de

recommandation pour les systèmes de coaching, et les avons testées dans le

cadre de simulations basées sur des données réelles de consommation.

• Deuxième contribution: Étude de l’applicabilité du cadre du coach-

ing au problème de la recommandation alimentaire. Avec pour objectif
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d’appliquer le formalisme des systèmes de coaching à la recommandation nu-

tritionnelle, nous avons mené deux expérimentations. La première visait à

tester une solution possible au problème dit du cold-start pour les systèmes

de coaching, basée sur l’extraction de valeurs de substituabilité entre aliments

à partir de données de consommation. La seconde visait à tester différentes

modalités d’interaction homme-machine et leur pertinence dans le contexte

des systèmes de coaching.

• Troisième contribution: Conception d’une méthode permettant de

produire des recommandations pertinentes dans le cas d’une évaluation

contextuelle du comportement utilisateur. Nous avons étudié la ques-

tion du contexte dans le cadre du coaching, et en particulier dans l’évaluation

du comportement utilisateur. Nous avons mis en évidence le problème de la

représentabilité pour l’utilisateur du comportement cible visé par le système

de coaching. Pour répondre à ce problème, nous avons proposé une méthode

basée sur des cycles de consommation pour contourner les limitations in-

trinsèques des utilisateurs. Compte tenu de la complexité de calcul associée à

la découverte de tels cycles de consommation, nous avons proposé une heuris-

tique, permettant d’approcher la solution optimale. Nous avons également pro-

posé une heuristique pour la production de recommandations visant à amener

un utilisateur vers un comportement donné.
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11



de ce travail, et même si je vous ai épargné la relecture du manuscrit, il vous doit
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et vos encouragements à chaque fois que je venais vous voir. Et plus généralement
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1. Introduction

1.1. General Context

In recent history, the emergence and development of information technologies led to nu-

merous disruptions in how humans make their decisions. In particular, it became common

to have to make choices among vast collections of items or services on online platforms.

For many items as diverse as movies, music tracks, clothes or relatives on social media,

recent advances in data collection and accessibility made it possible for most of us to ex-

plore a tremendous number of possibilities. Frequently it is not even possible to examine

the whole item space. For example, consider that 500 hours of video are uploaded every

minute on YouTube.com [1], i.e. more than 80 years of content are made available daily

on the platform. On the Amazon.com market place more than 350 million products are

available [2]. It appears that this immense quantity of information cannot be handled by

a human being and that making a choice among such a massive variety is particularly

arduous. This difficulty to choose wisely among many possibilities is the indicator of a

well-known problem in human decision-making, referred to as the information overload

problem.

A solution that emerged to overcome the information overload problem is the use of

so-called recommender systems (RS) [3]. The task of RS is to filter the entire item

space to provide their users with the most interesting items. These are known as the

recommendation(s) of the system. The idea is that, by proposing a reduced number

of items to the user, their comparison is facilitated. In other words, the information

overload problem is reduced, and the user should be able to make an informed choice.

The key point for such systems to be efficient is the very notion of “interesting items”.

Ideally, the proposed recommendation(s) should be representative of the item space and

adapted to each particular user. With the emergence of RS as a discipline on its own,

researchers focused on the problem of finding the best recommendations, that is, the best

selection of items for a given user at a given time. A wide variety of measures exist for

the user’s interest in an item depending on the type of data used (ratings, click rate,
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watch time, etc.) and, consequently, a wide variety of approaches to the recommendation

problem. Designing efficient recommendation algorithms involves many techniques from

related fields such as artificial intelligence, machine learning or data mining. Both the

commercial potential and the interest of researchers in the field led to a wide development

of RS and a rapidly increasing performance of algorithms in terms of recommendation

quality. As they showed to have a substantial impact on online business activities, RS

spread over the web and became very common for internet users to interact with.

1.1.1. Impact of recommendation on behaviour

The widespread use of RS and their pervasiveness on online platforms to facilitate users’

choices raise questions about the corresponding impacts on the latter’s behaviour. Indeed,

if RS aim to facilitate decision-making, they inherently impact their users’ choices and,

more generally, their behaviour. Moreover, by discovering and experiencing new items,

users’ beliefs and interests may change, which poses two major questions.

First, it interrogates the capacity of the recommendation algorithms to learn in an evolving

environment. Indeed, a recommendation that would have been interesting for a given user

at a given time may become utterly irrelevant if the latter’s interests have changed.

Second, it highlights the importance of the recommended items in the evolution of user

behaviour. Indeed, if users’ beliefs change as they experience various items, the role

of the RS in such a change merits being questioned. For example, the impact of RS on

consumption habits or information diversity is a major concern in the literature. In fact, a

RS can directly impact users’ behaviour by recommending an item that the user eventually

purchases, for example. Nevertheless, it can also have longer-term impacts. For example,

consider a user listening to music on a streaming platform, and a song is recommended

to him or her that he/she did not know and that he/she particularly appreciates. Then

he/she may listen to the song again in the future or even discover throughout this song

a new artist that he/she likes. This simple example illustrates how a RS may impact a

user’s behaviour in the long term. Or may not, as the user could also just skip the song.

The impact of RS on user behaviour is increasingly studied and investigated, particularly

in academic research. However, the majority of the works are focused on negative im-

pacts. Indeed, the first concern about the impact of RS on user behaviour arose from

the concept of “filter bubbles”, which is the fact that a user can be trapped, possibly

due to recommendation, in a subspace of the item space where all the information he
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or she gathers is similar. Moreover, the observed lack of diversity in recommendations

ensuing from it is questioned in the literature [4]. In particular, the sub-field of news rec-

ommendation, and the corresponding stakes about impacts on democracy, were specially

studied [5]. The same reasons led to considering the impact at a global level, with works

trying to understand how RS design induces changes in large groups of users. A widely

studied point is the impact of RS on the diversity of the items consumed by the users.

In particular, it has been shown that RS are biased towards the most popular items and

tend to recommend them to all the users [6].

But one can also consider the impact of the recommendation on a single user and how a

RS interacts with his consumption habits and preferences. Given the current design of the

majority of RS algorithms, the recommendation is at least partly driven by the preferences

of the user. However, as illustrated with the soundtrack example, the recommendation

may also, in return, impact the habits and preferences of the user. It has been shown that

RS can impact the individual behaviour of users, for example by narrowing the diversity

of the consumed content [4]. Moreover, recent work in the music recommendation domain

have shown that RS can impact users’ preferences [7]. In this thesis work, the focus is

made on this type of impact at the user level. We are particularly interested in the impact

RS can have on habits in the long term. More precisely, the following work investigates

RS design with the objective of accompanying a given user through a behaviour change

process.

1.2. Motivation

This work aims to take advantage of the impacts of RS on users’ behaviour and to use them

as a tool to facilitate the behaviour change of a user. Indeed, in many domains, including

health and self-care, people may aspire to initiate a change in their habits and reach an

objective such as eating healthier, being more active, or reducing their environmental

impact. However, these aspirations may be difficult to realize, as one’s motivation can

fluctuate over time. Our postulate is to use RS and their interactions with users’ choices

and habits to help users in making informed choices and eventually reach their objectives.

Although a general approach that we strongly believe to be relevant in various application

cases, we mainly focus in this work on the problem of promoting healthy eating. Humans

have known from long ago the role of nutrition and food in welfare and healthiness. As

such, many questions about public health involve questions about nutrition. One marker
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of this is the interest of public administrations in elaborating guidelines and programs

designed to impact populations eating behaviours and eating habits. Examples of so-

called public nutritional guidelines are numerous and can be found worldwide [8, 9]. Even

though they have proven to have a positive effect on public health, improvements are still

to be made to ensure healthy and sustainable food systems. Moreover, at the individual

level, a consumer’s will to eat healthier may collide with his/her limited knowledge of

food items’ healthiness or firmly rooted consumption habits. Due to these stakes and

their capital importance, the task of healthy eating appears to be well adapted to develop

RS to impact habits. In addition, the repeated nature of food choice and its frequency

opens the room for a significant impact on users’ behaviour.

1.3. Problem definition

In this thesis, we are mainly interested in the problem of building a recommendation

system encouraging efficiently a user to modify his or her behaviour, and more particularly

his or her eating behaviour, in order to promote healthy eating. Indeed, recommendation

systems are increasingly present in our everyday life, and we assume that they could be

used as a lever to accompany their users in a dynamic of behaviour change. As presented

in 1.1, recommendation systems can affect behaviour in two different ways: the first is ad

hoc. It relies on the immediate change induced by the acceptance of a recommended item.

The second is lasting and is due to the change in user habits that the recommendations

may induce.

The aim of this work is to use this second lever to induce persistent changes in the

user’s behaviour, particularly eating behaviour, guiding him or her towards healthy eating

habits. Thus, conversely to the majority of state-of-the-art solutions in recommendation

systems, we focus more on the long-term effects of the recommendations rather than on

their immediate acceptance.

This focus raises different questions, both on the production and the distribution of the

recommendations. Firstly, it requires being able to capture the long-term effects produced

by the recommendations and so to interact repeatedly with the same user. Secondly, to

bring about a real behaviour change, the user must be willing to change and must be

involved in the recommendation process. Regarding these particularities, we define this

recommendation problem as the coaching problem.
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1.3.1. Definition of coaching

A coaching interaction involves at least two participants. First, the coach, and second

the learner, which is “perceived to be a mature, motivated, voluntary, and equal partic-

ipant in a learning relationship with a facilitator whose role is to aid the learner in the

achievement of his or her primarily self-determined learning objectives” according to [10].

This definition, although general, describes well the objective of this thesis work, with

the recommendation system in the role of the so-called “facilitator”. Indeed, far from

manipulating the user, our objective is to take advantage of recommendation systems and

their effects on consumption habits to accompany a user in a behaviour change process.

Therefore, we explore the design of coaching systems, which are automated systems pro-

viding a user with recommendations promoting behaviour change. Moreover, regarding

this definition, we consider the user as aware of his/her final objective, but not necessarily

able to judge wisely the choices that lead towards this objective. Hence the interest of

the coach.

1.3.2. Questions addressed in this thesis

Thus, regarding this definition, we formulate different questions that emerge from our

main problem and that are addressed in this thesis. Regarding the specificity of the

considered recommendation problem, the first question we address is:

• RQ 1: How to design a recommendation framework that promotes long-term be-

haviour change of its users?

As previously mentioned, although investigating a general problem of recommendation,

this thesis is motivated by the issue of healthy eating promotion and the corresponding

stakes of public health. In this context, it appears essential to consider our proposed

solution’s feasibility and applicability to the food recommendation domain. Thus, the

second question addressed in this thesis is:

• RQ 2: How should be designed an automated coaching system to make acceptable

recommendations in the food domain?

Starting from the problem of healthiness measure in food consumption, we can assess

the difficulty of finding simple yet representative metrics evaluating one’s behaviour re-

garding a specific objective. In particular, considering notions of history and context is
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often critical, although leading to greater complexity. In this context, it appears crucial

for a recommendation system targeting behaviour change to support various elements,

including temporal dynamics, when evaluating the possible recommendations. So the last

question tackled in this work is :

• RQ 3: How could an automated coaching system incorporate context and temporal

dynamics in the evaluation of its recommendations?

1.4. Contributions

This work has led to three main contributions, which are the following:

• First contribution: Creation of a framework to address recommendations

for behaviour change, known as the coaching framework. We considered

the problem of repeated recommendations with the objective of behaviour change.

We proposed a model of the interaction between the RS and the user as an iterated

two-player game. We investigated the task of making recommendations for user

behaviour change and modelled it as a reinforcement learning problem. Moreover,

we derived from the formal study of the problem several possible recommendation

strategies for coaching systems and tested them on a simulated recommendation

task based on real consumption data.

• Second contribution: Investigation of the applicability of the coaching

recommendation framework for healthy food recommendation. With the

objective of using coaching for healthy food recommendations, we conducted two

real-world experiments. The first investigated a possible solution to the cold-start

problem in coaching by testing against real users the likelihood of possible food

substitutions mined from consumption data. The second tested different modalities

of human-computer interaction in the context of automated coaching.

• Third contribution: Conception of a method to discover pertinent coach-

ing recommendations in the case of a contextual evaluation of user be-

haviour. We proposed to study the question of context in the coaching framework

and, in particular, the contextual evaluation of user behaviour. We highlighted

the problem of the representability for the user of the behaviour targeted by the
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coaching system. We proposed a method based on cyclic behaviour recommenda-

tions to circumvent the limitations of the user. Given the complexity of mining for

such cyclic behaviours, we proposed a heuristic algorithm to approach the solution.

We also proposed a heuristic algorithm to produce recommendations leading a user

towards a target behaviour.

1.5. Thesis structure

The remainder of this thesis is organised as follows :

• Chapter 2 presents a review of the literature on related problems. Moreover, we

place the concept of coaching systems within the landscape of the existing literature.

We show that the coaching problem, as defined, encompasses questions from several

domains, thus we propose a synthesis of diverse approaches from different research

communities that are all capturing a part of the problem.

• Chapter 3 presents our first contribution, which is the framework we developed for

the recommendation for behaviour change, namely the coaching framework. We

formalize the problem of automated coaching and model it as a two-player iterated

game. We propose a general theoretical solution to the recommendation problem

and derive from it approximate solutions. We test these solutions on a simulated rec-

ommendation task and deduce from the results some key characteristics of efficient

recommendation strategies for coaching.

• Chapter 4 presents our second contribution. We first discuss the approaches of the

literature on healthy food recommendation and the applicability of the coaching

framework in this context. We then present the methodology and results of the

two real-world experiments we conducted. Finally, we discuss the evaluation of

healthiness in food recommender systems and consider two possible approaches.

• Chapter 5 presents our third contribution. We investigate the introduction of con-

textual data in the coaching framework and in the evaluation of user behaviour. We

formalize the problem of finding the best behaviour for a user in this setting and

propose a general solution. We also propose a heuristic to approach the solution

in an application case. We then discuss the question of making recommendations

towards a given target behaviour and propose a heuristic algorithm.
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• Chapter 6 concludes and discusses perspectives and future research directions for

this work.

1.6. Scientific publications

This work led to three publications.

Peer-reviewed French national conferences:

• Jules Vandeputte, Antoine Cornuéjols, Nicolas Darcel, Fabien Delaere, Christine

Martin. (2021). Le coaching: un nouveau cadre pour la recommandation automa-

tique en vue de modifications durables du comportement. In CNIA 2021: Conférence

Nationale en Intelligence Artificielle (pp. 44-51).

Peer-reviewed international conferences with proceedings:

• Jules Vandeputte, Antoine Cornuéjols, Nicolas Darcel, Fabien Delaere, Chris-

tine Martin. (2022, May). Coaching Agent: Making Recommendations for Behav-

ior Change. A Case Study on Improving Eating Habits. In Proceedings of the

21st International Conference on Autonomous Agents and Multiagent Systems (pp.

1292-1300).

International peer-reviewed journal (accepted for publication):

• Jules Vandeputte, Pierrick Herold, Mykyt Kuslii, Paolo Viappiani, Laurent Muller,

Christine Martin, Olga Davidenko, Fabien Delaere, Cristina Manfredotti, Antoine

Cornuéjols, Nicolas Darcel. Principles and validations of an Artificial Intelligence-

based recommender system suggesting acceptable food changes. The Journal of nu-

trition
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2. State of the art and related

literature

As introduced in Chapter 1, the problem faced in this thesis is to find a way of making

efficient recommendations for lasting behaviour change. Given that this question is both

challenging from the theoretical side and interesting in diverse application domains, many

distinct scientific communities from different disciplines worked on related problems. This

leads to extensive but fragmented literature with many possible approaches. By presenting

a review of the literature on the more meaningful related problems, the following chapter

aims to give an overview of existing research, its links, and differences with the studied

question. Moreover, the objective is to place the concept of automated coaching in the

existing body of literature and to highlight the links that it draws between diverse concepts

from machine learning to human decision theory.

As such, we are interested in the recommender systems literature that focuses on the

problem of how to make recommendations from data. In fact, recommender systems

(RS) appear to potentially have impacts on the habits of their users [11], and this could

be used to promote useful behaviour [12]. These systems were mostly studied from an

industry point of view, willing to maximize the consumption of the user. But we are also

interested in the literature about RS with goals other than pure acceptance maximization.

The fact that coaching is based on an interaction between a user and a coach or facilitator

that gives advice leads to being interested in learning frameworks with two distinct agents.

In particular, the inter-agent transfer learning problem seems to be of interest when

considering a seasoned agent (i.e. the coach) interacting with a naive one (i.e. the user).

Thus, we review the literature on inter-agent transfer learning, focusing on the particular

teacher-student framework.

The scope of this thesis work is to study how recommendations can be made to have a

lasting impact on user habits. That is how an automated system can lead to long-term

user behaviour change. Given this, we explore the literature on two fields: persuasive

technologies and intelligent tutoring systems, grouped under the name of technologies for

behaviour change.
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This chapter is organized as follows: In Section 2.1, we examine the classical recommender

systems approach and the associated algorithms. In Section 2.2, we present the inter-

agent transfer learning problem, the state-of-the-art solutions, and the literature on the

so-called teacher-student framework. Section 2.3 presents an overview of technologies for

behaviour change. Finally, Section 2.4 concludes on the presented literature and replaces

the coaching problem in the outlined landscape.

2.1. Recommender systems

2.1.1. Recommender systems overview

Recommender system (RS) research emerged in the 1990’s [13, 14] due to the rapid in-

crease in data collections sizes. The objective was to help users to select the most mean-

ingful data or items for them from these collections. Thus RS can be considered as filters

that help a user to select the most relevant items. This is why we are interested here in

this approach. Indeed, a coaching system’s aim is to accompany a user towards a new

behaviour. To do so, we can consider that the system has to filter all the possible actions

for the user to recommend the ones that are the more relevant given the pursued objec-

tive. In this sense, the concept of coaching is closely related to RS. Indeed, the objective

is to make meaningful and personalized recommendations to help a user in the task of

changing his behaviour, which according to [14], are essential features of a RS.

2.1.1.1 Formal definition and framework

RS involve two agents that are interacting. First of all, the recommender, which role is

to select an interesting item or short list of items and to recommend it to the second

agent known as the user. Then the user may follow the recommendation and choose a

recommended item. This phase is known as the interaction phase. The recommender faces

three different data sources that can be used to generate a personalized recommendation.

These data sources are the following :

• Items. Items are the purpose of RS, as they are the recommended objects. Items

can be as diverse as movies [15], music tracks [16], lifestyles [17] or touristic activities

[18]. In addition to the name of items, RS can consider meta-data associated with

items, such as the genre of a movie or the price of a trip. These could be determinants
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for the intrinsic utility of a given item for a user. It is important to notice that every

item is associated with a cost, representing the effort made by the user to choose this

item [14]. If a recommended item is accepted, this means that the benefit dominates

the cost for the user. In other words, some recommendations are more acceptable

for the user than others. The space of all possible items is denoted I, and every

single item is denoted i, such as i ∈ I.

• Users. As stated, the users u ∈ U are the second type of agents that interact

with the recommender and receive the recommendation, with U the set of all users.

Given that personalization is a core feature of RS, gathering user data to make

recommendations appears essential. The data gathered on the users form the user

model [14], which is exploited to generate recommendations and is, as such, a key

point of the RS. The data that feed this model can be acquired from the interaction

with the user, such as behavioural data, or from preliminary investigations, such as

user’s attributes (e.g., age, gender, etc.)

• Transactions or Interactions. The objective of RS is to formulate recommen-

dations and to propose them to the user. The user may then choose to follow the

recommendation or not. Thus, in this phase, the RS and the user interact with

each other. By doing so, the user generates feedback about his/her behaviour when

facing a recommendation that will feed the user model of the RS. This feedback can

be explicit, like, for example, the rating of a movie by a user, or implicit, that is to

say, the RS collects it without the user’s intervention. It can include, for example,

the time spent on a web page or the items the user clicked on.

Therefore, a RS computes data from these three sources to make relevant recommenda-

tions. There are various algorithms to do so that rely on different approaches. We will

develop these in the following section.

2.1.1.2 Classical recommendation approaches

As we have seen, there are three data sources for a recommender system: the users, the

items, and the interactions. But, according to [3], we can classify these into two separated

data types: the attributes information about users or items and the collected feedback on

interactions. A recommendation approach is then defined by the data type it focuses on.

Approaches that focus on the feedback are known as collaborative filtering approaches,
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while approaches that focus on the attributes are known as content-based. Approaches

where the system makes recommendations by leveraging task-specific knowledge are re-

ferred to as knowledge-based. Finally, all or some of these three can be combined to

make more efficient recommendations in so-called hybrid recommendation systems. In

the following, we will present these different approaches and their characteristics.

• Content-based methods focus their recommendations on attributes, generally of

the items. In this approach, the system recommends items that are relevant to a user

by considering his/her preferences in terms of content, that is, items that are similar

regarding a set of attributes to the ones preferred by the user (See Figure 2.1). This

can encompass both explicitly expressed preferences and historical data (i.e. the

recorded feedback). The nature of these attributes and how they are obtained by

the recommender system can be multiple. For example, the attributes can range

from the genre of a movie [14] to the mood of a music track [19]. They can be

generated either manually (e.g. content provider labelling of items) or automatically

(e.g. extraction via natural language processing of the item description). In this

approach, the RS builds a user-specific model that may be able to predict if a target

item is likely to be appreciated by this particular user, given his/her registered

preferences. This type of method is very effective when recommending new items for

which no feedback data is available. Indeed, the only needed information to evaluate

an item is extracted from the item itself. However, content-based methods are much

less interesting when making recommendations for new users, as it is generally

necessary to have an extensive user history to make accurate recommendations.

Another drawback of content-based methods is the fact that the recommendations

may seem obvious to the user, as they are made by considering only similar items

to the ones already consumed by the user. Thus in this setting, the RS does not

profit from the collective data generated by the community of all users.

• Collaborative filtering approach, contrastingly, exploits the community’s power

to recommend items. Indeed, this approach also uses the notion of similarity, but

the similarity is computed based on all the feedback observed by the system. In the

first implementation of such systems, each user was able to filter e-mails based on

their interest to a selected group of other users [20], considered relevant by him/her.

This is the principle of making recommendations based on the feedback of users

with similar tastes, which is used and generalized in classic collaborative filtering
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systems (See Figure 2.1). There exist two types of methods to do so, namely mem-

ory based and model based.

In memory based methods, the filtering is made on neighbours that can be either

items or users. The first case is referred to as user-based collaborative filtering, and

is the method used in [20]. In order to predict whether an item will be adapted or

not to a user, the algorithm relies on the feedback of the nearest neighbours (i.e.

the users with the most similar history) of this user on that item. By contrast, in

the second case, known as item-based collaborative filtering, an algorithm computes

the similarity between items based on the feedback they received among users and

then recommends an item if it is near enough from those appreciated by a user. One

important limitation of memory-based methods is that every user generally explores

a tiny zone in the space of items. As a consequence, the algorithm has to deal with

sparse feedback data.

Model based methods are more efficient in dealing with these sparse data. To

predict an item’s interest for a user, they rely on a model (e.g. decision tree, neural

network, matrix factorization, etc.) that generalizes on the stored feedback. Re-

cently, they have gained in popularity as they provide accurate results. Although

they take advantage of the user community and all the generated feedback, collab-

orative filtering approaches may struggle when making recommendations for new

users or newly introduced items.

This limitation is known as the cold-start problem. It is inherent to these methods

as they are based on collected data and, thus, require a critical mass of data to be

efficient. A way to alleviate this is to enrich the algorithm’s representation of users’

decision functions, incorporating knowledge of the considered task.

• Knowledge-based approaches, as their name suggests, use that idea. These sys-

tems can make helpful recommendations even with little or no interaction data by

considering how certain features match the user’s interests. Therefore, they are

mainly used for items with high diversity (and so only a little or no ratings for

each particular item) or not frequently purchased, such as real estate or cars. These

approaches allow the user to specify what they want explicitly. Then the recom-

mendation process consists in retrieving the items that best match the user-specified

requirements. It is where the notion of knowledge comes in: items that match pre-

cisely the user demands may not exist, and so domain knowledge is used to compute
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similarity metrics. The recommended items are then the most similar to the user

specifications. Two main methods exist in knowledge-based recommender systems.

On the one hand, constraint-based recommender systems ask the user to specify one

or more features of interest of the items. For example “I want a single-storey house

with a garage”. On the other hand, case-based methods compute similarity with an

example case proposed by the user to choose items to recommend.

The knowledge-based approach is somehow similar to the content-based one as

both strongly rely on the items’ features or attributes. However, the latter learns

from the user’s history to make recommendations, whereas the former uses domain

knowledge. Generally speaking, the considered knowledge is very user-centric: in

constraint-based systems, the constraints or rules are specified by the user, and in

case-based, the example is chosen by the user. However, it is noticeable that these

frameworks are not limited to user specifications. One can consider systems with

other specifications as, for example, not recommending violent movies to young

users. This is important as, in a certain way, it meets the perspective of coaching,

which considers it profitable for the user to evaluate items not only from his/her

view but also with external expertise.

• Hybrid recommender systems also exist, which combine two or more of the pre-

sented approaches. As we have seen, these approaches are based on diverse inputs

that lead to specific advantages and drawbacks. The idea behind hybrid methods

is to wisely combine multiple approaches to counterbalance their respective draw-

backs and generate better recommendations. The choice of approaches considered

and the way their recommendations are combined are the core question of hybrid

recommender systems.

2.1.1.3 Recommender systems evaluation

As presented in the previous section, diverse approaches and algorithms exist for RS.

Given that, one may compare RS algorithms and settings on a given recommendation

task to select the more appropriate candidate RS for this task. This is the problem of

RS evaluation. In order to adequately address it and compare several RS, it appears

necessary to define appropriate methodologies and criteria. In the following, we present

the classical approaches used in the literature.

The first considered question is which methodology to use. As presented in [22], there
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Figure 2.1: Conceptual overview of collaborative filtering versus content-based recom-
mendation [21].

exist three possible methods in order to evaluate RS that range from easy to expensive

experimentation:

• Offline experiments use a pre-existing data set, gathering interactions between

users and items. Then the behaviour of users is simulated, and the performance of

the RS is measured on the simulated users. One classical way of simulating user

behaviour is to split the data into two sets: one for prediction and the second for

validation. The underlying idea is to use the first fraction of data to train the

RS as with observed data and then to test its recommendations against the actual

following choices of the user. The validation set is considered here as the natural

behaviour of the user. The central assumption is that users behave the same when

the RS is deployed and at the data collection time. In addition, offline experiments

do not consider the possible changes in users’ behaviours induced by the RS itself.

These limitations make it hard to draw solid conclusions on real-world RS from such

experiments. However, offline experiments are very popular in RS literature since

they allow for easy implementation and reproducible experiments.

• User study is an intermediate approach where a small group of users is asked
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to test RS in a controlled environment. Their behaviour is recorded during the

experiment, and supplementary investigations can be made, for example, by using

questionnaires. Such a method is helpful in that it allows one to gather both quan-

titative and qualitative data. Since users interact with the system, it also makes

it possible to assess the impact of the recommendation on user behaviour, unlike

offline experiments. However, user studies also have important limitations. First,

they may suffer from various biases, such as user sampling bias or behavioural bias.

Second, user studies can be costly to conduct as they are time-consuming for the

users.

• Online experiments finally are conducted in a real-world setting, that is, when

the RS is currently deployed on a platform. The idea is to measure the impact of

the RS on users directly. This method is the one that allows one to draw the most

robust conclusions, particularly when testing the user behaviour change induced

by the RS. For this reason, it is employed in many real-world systems [23]. It is

noteworthy that employing such a method may generate a negative user experience

if the tested algorithm performs poorly. Thus, in the testing procedure of an RS

algorithm, online experiments should be used last, after a strong evaluation protocol

has shown shreds of evidence of tested algorithm validity. It is worth noticing that, in

essence, online experiments are only applicable on deployed systems, and so mainly

on established platforms.

Regarding a recommendation task and its specificity, a wide variety of criteria may be

used to evaluate a RS algorithm. Most of the time, several of them are combined and

traded off to calculate the overall RS performance. We present the most generally used

ones and those of particular interest for this thesis. An extensive list can be found in [22]:

• Accuracy is the most commonly used and discussed criterion in the literature,

as many recommendation tasks can be seen as prediction tasks (i.e. predicting

the rating given by a user to an item or the probability of usage). A classical

assumption is that the more accurate the RS, the better the user satisfaction. In

addition, accuracy is easy to compute in an offline evaluation scenario.

• Coverage represents the proportion of the item set and/or user set that is involved

in recommendation. In many applications, especially when considering collabora-

tive filtering algorithms, the RS may focus on a small part of the item set for the
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recommendation. In contrast, recommending a wider item selection is often consid-

ered desirable. User coverage represents the proportion of users for whom the RS is

able to make recommendations.

• Confidence is the trust of the RS, whether in its prediction or in the quality of the

recommendation. As such, it is an inherent system property and can be computed

regardless of the evaluation methodology. It is interesting for the user as it gives

him/her a hint about the quality of the recommendation.

• Novelty accounts for the capacity of the RS to recommend items not seen before

by the user. In many applications, novelty is a key criterion, as known items are

much less desirable than new ones for the user. [24]

• Serendipity is an evaluation of how surprising the recommendation is for a user. In-

deed, in many cases, the recommendation is not expected to be an obvious one for the

user. The RS should recommend different items than the ones user would have cho-

sen by himself/herself. In a sense, serendipity can be seen as “anti-personalization”:

the RS seeks a recommendation that a given user does not expect. Accordingly,

serendipity has to be carefully balanced with accuracy to maximise the recommen-

dation’s quality.

• Diversity, often considered as the opposite of item similarity [25], is hard to define,

as it is perceived differently depending on the user. Nevertheless, it has been proven

to affect user satisfaction positively [26]. Given this, RS should be able to make

recommendations that include items different from each other.

• Utility is a general notion that can measure the global interest of the recommen-

dation for the user, the RS or both. Many of the criteria presented above, or their

combinations, can be seen as utility functions.

However, here, what we refer to more specifically as utility is the value of a recom-

mendation for the user, the RS or both regarding a defined objective. For example,

utility could be the benefit made by the RS owner when recommending items.

This approach is of particular interest for this thesis work, as we are willing to

make recommendations to promote long-term behaviour change. Consequently, the

evaluation criteria of the system should encompass not only user satisfaction but
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also a measure of behaviour change. Utility appears to be an important notion to

evaluate recommendations regarding a combination of these objectives.

More details about the utility evaluation of RS can be found in 2.1.2.3 as utility

evaluation is the most commonly used evaluation criterion in the multi-stakeholder

perspective of recommendation.

2.1.2. Multi stakeholder perspective on recommendation

As shown in 2.1.1, the framework of recommender systems is pretty flexible as it can

deal with a wide variety of items, users and recommendation situations. However, it is

noteworthy that all presented approaches are definitely centred on the user. The focus is

mainly, if not exclusively, on user satisfaction and how the recommended items meet the

user’s will. Yet, it may exist situations where other interests could be considered. For

example, in an e-commerce application, the item provider may want to sell off his stock

or maximize his profit through recommendations made to the customers [27]. In this

case, the RS is facing several constraints from different sources. On one side, the item

provider is willing to see the most profitable items recommended, while on the other,

user satisfaction is still crucial. This is typically the kind of problem addressed by multi-

stakeholder recommendation literature. This framework makes it possible to consider,

alongside the user interest, other interests such as item providers or system owner ones

[28]. This approach to the recommendation problem meets the interests of this PhD work.

Indeed, our objective is to design recommendations that promote long-term behaviour

change of the user. The multi-stakeholder formalism allows the incorporation of different

objectives to the recommendations other than simple user satisfaction. So it appears that

it could be a solution to make recommendations that take into account the notion of

target behaviour for the user, hence our interest in the corresponding framework.

2.1.2.1 Formal definition

By contrast with the classical approach of RS focused on user interest, the multi-stakeholder

perspective considers not only the system and the user as agents but a number of stake-

holders who may have diverse interests in the recommendation process. As defined in

[29], a stakeholder in this perspective is any group or individual that can affect, or is af-

fected by, the delivery of recommendations to users. In the literature, the most commonly
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considered groups are the following :

1. Users: As in the classical RS framework, users are a crucial point in multi-stakeholder

approaches as they are the group that will receive the recommendation. Their in-

terests in the recommendation are the same as in classical RS: they seek valuable

recommendations to avoid information overload.

2. Providers: They represent agents that furnish the items that are recommended.

Their interests in the recommendation can be diverse, but the most common one is

to have the items they provide recommended to as many users as possible.

3. System: The system is the platform emitting the recommendation. It can be

considered at diverse levels, from the company to the algorithm, and the related

interests may differ.

Though these groups are heterogeneous and may have different or competing interests,

they represent the three main points of view of RS stakeholders. The multi-stakeholder

perspective, then, is to consider the (possibly divergent) interests of these groups in the

recommendation process. As multi-stakeholder recommendation is an angle given to the

recommendation problem, it can be integrated at different levels in the recommendation

process. First, one can consider that the performance of a recommendation algorithm

has to take into account the diverse stakeholders involved. Doing so may lead to changes

in the evaluation function or the measured metrics. Second, the algorithm itself may

consider other data sources and objectives to reach the expected satisfaction of the diverse

stakeholders. At a broader level, the global design of the recommender system may involve

different stakeholders. For example, users and providers may participate in the platform’s

design.

2.1.2.2 Methods and algorithms

In their general form, multi-stakeholder recommendation systems (MSRS) rely on a notion

of utility function when making the recommendation. Indeed, the notion of utility is, by

essence, compelling to represent numerous interests that can be opposite. The objective

of the RS, then, is not to predict the rating of a given item by a given user but to select the

recommendations that maximize the considered utility function. This utility is referred to

as an aggregated utility, as it combines the aims and objectives of different stakeholders:

it represents the global interest of a given recommendation when considering the diversity
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of goals. It is essential to notice, though, that the design of the utility function is a key

step, as depending on the considered stakeholders and their aims, it can be difficult, if

not impossible, to aggregate them via a utility function.

Given this, two main approaches exist in multi-stakeholder literature to maximize utility.

The recommendation problem is seen as an optimization problem in the first approach.

Then the objective of the recommendation algorithm is to directly maximize the defined

utility. For example, in [30] the authors propose to consider the recommendation problem

as a maximum k-coverage problem and use a greedy approximation to find the best rec-

ommendation strategy. Similarly, in [31] a method is presented to optimize the revenue

of the item provider at a given time horizon. On the other hand, the second predominant

approach in the literature can be seen as successive filters on the items. The assumption

is to consider the requirements of each stakeholder separately. For example, the first filter

will account for the user requirements (using classical RS algorithms maximizing the con-

sidered criteria). On this set of filtered items, a second filter will be applied, accounting

for the item provider or system requirements. This approach can be found in [28], where

the first generated list of recommended items is filtered to contain at least one item from

each item provider, or in [32] where items are re-ranked given a trade-off between fairness

and personalization.

2.1.2.3 Evaluation of multi stakeholder recommendation systems

As stated in [29], the evaluation of multi-stakeholder RS is still an open problem as there

does not exist a general evaluation framework or benchmark to compare the performance

of multi-stakeholder recommendations efficiently. In most cases, the evaluation is made

on simulated data, as real data on the system or item providers may be either difficult

to obtain or sensitive. As presented above, multi-stakeholder RS use the notion of utility

to compute the interests of the different stakeholders and find the best recommendation

given these. Thus, in a pretty straightforward manner, the criterion used for evaluation

is the evolution of the utility value.
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2.1.3. Coaching as a recommendation task

2.1.3.1 Motivation

Given the presented literature and principles, one can consider the coaching problem

as a recommendation problem. Indeed, when facing a learner, a coach will recommend

him/her actions to take in order to reach his/her goal. As each learner is different,

the coach may need to personalize the recommendations in order to find ones that are

acceptable for him/her. Considering this framework, the coach can be seen as the RS,

the learner as the user, and the recommendable actions as the items. However, one

particularity of coaching is that even if the learner knows his/her final objective, he/she

is not necessarily able to wisely judge the actions taken regarding this objective and still

has his/her own preferences and habits. Thus, the user preferences can conflict with

the final objective, given that the coach here faces a trade-off between the user’s short-

term appreciation of the recommendation and its impact on the user’s long-term goal. In

other terms, the recommendation is expected to balance the user’s perceived utility and

the coaching task utility, and so every possible recommendation can be associated with

a coaching value or aggregated utility, representing the interest of the recommendation

regarding the coaching task. This type of problem is addressed in the multi-stakeholder

recommendation literature by approaches that can be grouped under the name of value-

aware recommender system. Thus, we propose a literature review of the state-of-the-art

solutions for value-aware recommendations in the following.

2.1.3.2 Value-aware recommendation: literature review

Value-aware recommendation is a specific problem of the multi-stakeholder literature that

emerged mainly in the community of RS for e-commerce purposes. Indeed, much aca-

demic research on RS is focused on the user side, trying to maximise the user benefit.

However, even if such designed RS are known to positively affect business [33], retailers

may want to use recommendation to optimise their profit. Starting from this point, many

works were interested in incorporating value (e.g. business value) in the recommendation

process. This is the starting point of value-aware RS, where the objective is to balance

the interest of the recommendation from the user side and the recommended item value

(regarding a given value function). Here, we investigate the main papers found on this

topic from 2005 to 2022 and propose a review focusing on the approach and the considered
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recommendation scenario.

As stated in 2.1.2, there are two main approaches in multi-stakeholder RS: either joint

optimisation of both consumer and business value or successive filters (or re-ranking).

Table 2.1 shows that both approaches are used in value-aware RS. However, the majority

of the investigated papers rely on joint optimisation. One reason for this is the fact that

the used optimisation methods allow easy tuning, making it possible to finely balance the

weight of user value and business value in the recommendation, as in [34], [35], or [36].

Indeed, according to [37], a trade-off between recommendation accuracy and profitability

may exist. Nevertheless, online studies presented in [38], and [34] do not demonstrate

such a trade-off and present their methods as increasing profit without significant loss in

user satisfaction.

It is noticeable that the vast majority of works focus only on users and system, where the

system is also the item provider. In the same way, the considered objectives are almost

exclusively business value and user value. However, other parameters are sometimes

considered, like recommendation time in [31] or [39]. Indeed, for the latter, the problem

is not only finding the optimal recommendation for a given user but also the optimal

moment for the system to make the recommendation. However, if the business value

considered is nearly exclusively the expected profit (except for [40] and [41] that consider

cumulative profit and [35] that considers a general value function), diverse user values are

considered, as presented in table 2.2. Meanwhile, if classical user values are sometimes

considered [34], the most common way to evaluate user value is to estimate a purchase

probability or acceptability of the recommendation. If not the most commonly used

method in traditional RS, it is particularly relevant in value-aware RS as it allows a

straightforward calculation of expected value.

Regarding the horizon of the value maximisation problem, most existing works focus on

the short term. Even if considering a balance between value and recommendation quality

for the user, with the intuition that recommendation solely focused on value may be

of poor quality for the user and result in poor future outcomes, they do not explicitly

handle the problem of long-term effects of recommendation. On the other hand, methods

presented in [42], [43] or [44], by explicitly considering a notion of trust of the user in the

RS, account for the long-term effects of recommendations solely focused on value. The

trust, in these works, represents the user’s adherence to the proposed recommendation,

i.e. to what extent he/she will accept it. In [43] the system considers the user’s trust as an

indicator of whether it should focus on value. If the user is in a state where his/her trust
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in the system is low (and so is its acceptability of recommendations), the latter will focus

its recommendations on the user’s appreciation of the items to restore his/her trust. But if

the user trust is high, the system takes advantage of it by recommending high-value items

that have then a higher probability of being accepted. Another considered long-term effect

is discussed in [40], where the authors consider that awkward recommendations can lead

to a loss of users for the system. Another approach is proposed in [45]: the authors model

the recommendation problem as a sequential decision process, more precisely as a Markov

Decision Process. This allows the authors to compute not only the instantaneous expected

profit but also the interest of a recommendation in terms of profit when integrated into a

sequence of recommendations. So they capture the interest of the recommendation over

the length of the considered sequence. However, they do not consider the evolution of the

user model over time and the impact on users’ habits.

Finally, when considering the evaluation of value-aware RS, one can note that most works

focus on offline studies or studies on synthetic data (67% of reviewed papers). The latter

generally relies on real data sets, where the business value is not specified, thus generated

for the experiment. This can be explained by the fact that business data such as profits and

margins are pretty sensitive data for companies and, as a result, are not easily accessible

for research. However, many offline studies are also available with real business data.

But studies with real users involved in the recommendation process are pretty rare. As

presented in table 2.1, only 5 of the 28 investigated studies present methods that were

tested against real users. The main reason for this is the expected trade-off between

business value and user satisfaction. Indeed, if a terrible recommendation algorithm is not

a big problem in offline studies, it is much more so in a real-world scenario with industry

constraints. As a result of the dominance of offline studies, most of the evaluation is

made on accuracy and observed profit, two metrics that are possible to compute in such

a setting.

2.1.3.3 Conclusion

Given the existing literature in the field of value-aware RS, it appears that the coaching

problem could be considered a problem of value-aware RS. Indeed, if one can assign a

value regarding the coaching goal to recommendable actions, the decision problem of the

coach can be seen as a recommendation problem. Following the most commonly proposed

approaches, we could consider the user value as the acceptability of the recommendation.

Then the value-aware recommendation framework allows for effective consideration of
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Recommendation
approach

Evaluation
method

Horizon References

Re-ranking synthetic data short term [37], [46]
synthetic data short term (tunable) [47]
offline study short term [48], [30], [35], [39], [49]

Optimization offline study short term [50], [51], [52], [36], [34],
[38], [53], [54], [31]

synthetic data short term [55]
synthetic data long term [40]
multi agent sim-
ulation

long term [41]

user study short term [56]
formal study long term [44], [42]
formal study short term [57]
online study short term [34], [58], [38]
online study long term [43] [45]

Table 2.1: Recommendation approach, evaluation method and evaluation horizon of in-
vestigated papers. Synthetic data stand for offline studies with generated value data.

Association
rules utility

Click
trough
rate

Estimated
rating

Trust Content
similarity

Purchase prob-
ability (accept-
ability)

[39], [54], [58],
[51]

[54],
[34],[38]

[49], [35],
[46]

[43],
[44],
[42]

[30] [43], [44], [42],
[48] [56], [41],
[40], [36], [55],
[50], [45]

Table 2.2: User value considered in the investigated papers

42



the existing trade-off between the short-term acceptability of recommendations and their

impact on the long-term objective of behaviour change.

This framework also allows for a high level of personalisation, which appears to be crucial

in coaching. However, there are some key points of the coaching interaction that are

not addressed by the value-aware RS formalism. First, state-of-the-art solutions mainly

consider short-term goals. Some works integrate an evaluation in the long term, but the

only lever considered in the literature is trust. None of the reviewed papers integrates any

notion of behaviour change nor the impact of the recommendation on the user’s habits.

Thus, the considered evaluation criteria do not provide information about the effects after

completing the recommendation process.

Second, the literature mainly focuses on value in terms of instantaneous profit for e-

commerce companies and does not address the problem of repeated interaction between

the user and the system. Most existing work focuses on optimising the recommendation

at each step but does not consider the temporal dynamics governing the evolution of the

recommendation set. Two noticeable exceptions can be found. In [47], where the authors

demonstrated that different recommendations in the early stage of the interaction could

lead to different outcomes, with some being more desirable than others. In [45] the

authors propose a sequential approach to the value-aware recommendation problem, and

so consider the impact of each recommendation on the total profit gain over a limited

recommendation sequence.

To conclude, if it is undeniable that coaching problems are in some way recommendation

problems, some important particularities remain ignored in the RS literature.

2.2. Inter agents transfer learning

Reinforcement learning [59], known as RL, is a paradigm of learning theory where an

agent interacts with an environment and learns from these interactions a so-called policy

that determines how the agent interacts with its environment. This framework allows the

agent to learn efficient behaviours, particularly in executing sequential-decision tasks. RL

is a robust framework as it allows agents to learn how to solve very complex tasks, but it

can turn out to be very long for the agent to learn an interesting policy.

Given this, much work has focused on how to reuse this laboriously acquired knowledge

and leverage pre-learned policies on related problems to speed up learning. All of these

belong to the so-called field of transfer learning. Indeed, as defined in [60], transfer learning
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Inter-Agent TL
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Learning from
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Learning

Policy
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Intra-Agent TL

Policy
Reuse
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Adaptation

Figure 2.2: Transfer Learning domain description. Here we focus on transfer from one
agent to another i.e. Inter-Agent Transfer Learning, and more particularly on teacher-
student learning and policy distillation approaches

approaches allow one to use knowledge from one or more source task(s) to learn one or

more target task(s) faster. Transfer learning is investigated in many machine learning

fields [61]. However, it is of particular interest in reinforcement learning approaches [62],

as reinforcement learning needs a lot of training to converge to the optimal policy. As

shown in figure 2.2, transfer learning can be categorized into several subdomains: intra-

agent transfer learning and inter-agent transfer learning. In the former, the objective is

for an agent to use its own previously acquired knowledge in order to learn more efficiently

about the target task(s). On the other hand, the latter focuses on transferring knowledge

acquired by an agent to another, avoiding tabula rasa learning. Here we are interested

in this type of transfer learning as, in essence, coaching involves a notion of knowledge

transfer from a seasoned agent (the coach) to a less experienced agent (the learner). In

the following, we will first present a quick background on reinforcement learning in 2.2.1,

then a general overview of the field of inter-agent transfer learning in 2.2.2. Thereafter

we will focus on teacher-student learning and present the corresponding framework in

2.2.3. Finally, we will show to what extent the coaching task can be considered a transfer

learning task in 2.2.4.
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2.2.1. Reinforcement learning

Reinforcement learning is a learning framework where an agent is placed in an envi-

ronment, and learns by trial-error a policy that determines how it interacts with that

environment. At each step, the agent observes the state s ∈ S, with S the set of possible

states. Then it chooses to perform an action a ∈ A(s) with A(s) the set of possible ac-

tions when in state s. After performing the action, the agent transitions to its new state

s′ ∈ S according to a so-called transition function T so that T (s, a) = s′ with probability

P (s′|s, a). Moreover, the agent receives a reward r ∈ IR from the environment. The

goal of a reinforcement learning agent is to maximize its cumulative reward all along the

interaction. To do so, it has to learn a policy that at each state s ∈ S associates an action

a ∈ A, which maximizes the expected return: G. Return is a discounted function of the

obtained rewards:

Gt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+k+1

where 0 ≤ γ ≤ 1 is a parameter called discount rate. It controls the importance given by

the agent to future rewards. Lower values of γ favour short-term rewards over long-term

ones, while greater values of γ grants more importance to long-term rewards. Regarding

the expected return, the policy π of an RL agent can be represented through an action-

value function Qπ : S × A → IR, where Qπ(s, a) is the expected return when choosing

action a in state s and then following policy π. A policy which maximizes the value

function for each state s is called an optimal policy and is denoted π⋆. There exist

several algorithms to estimate the action-value function so as to find an estimate of the

optimal policy. They can be categorized as on-policy or off-policy. The former is based on

improving the policy used to generate the training data. The most popular algorithm is

called SARSA [63]. The latter, by contrast, learn to improve an action-policy from data

that can be generated by any policy. The best-known algorithm is Q-learning [64] and

has been proven to converge to the optimal policy under the assumption that the state

space is finite and each state is visited infinitely often.
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2.2.2. General overview

As presented, inter-agent transfer learning is focused on transferring knowledge on a given

task from an experienced agent to a naive one in order to accelerate the learning of the

latter. Thus, inter-agent transfer learning requires at least two different agents that are

able to share information: the experienced agent should share with the learner agent so-

called instructions that aim to accelerate the latter learning on the considered task. As

stated in [65], instructions must be specialized to the considered task, available during

training and not consider a detailed knowledge of the internal learning parameters. In

addition, the user has to be able to interpret and assimilate the instructions.

This framework is relatively general and this allows one to consider many diverse scenarios.

It is noticeable that very little assumption is made about the experienced agent and the

learner agent. They have to be able to work on the same task, but the fact that in the

majority of approaches, the experienced is assumed not to have access to the learner’s

internal representation allows the agents to be significantly different. For example, one

can consider either an artificial agent or a human agent, both as a learner agent and

an experienced agent. Regarding the framework, the experienced and learner agent do

not even require to share the same action space or observation space: as long as the

learner agent can interpret the instruction given by the experienced agent, inter-agent

transfer learning is possible. Considering these particularities, it appears that the idea

of coaching can meet the principles of teacher-student learning: an experienced coach

formulates instruction so that its student learn a valuable policy.

The main question, then, is how the two agents communicate with each other. Classical

methods and the associated instruction types are discussed below.

2.2.2.1 Classical methods

Diverse methods have been experienced in transferring knowledge from one agent to an-

other. Here are presented the main methods found in the literature :

• Learning from demonstration is a method where the teacher agent presents to

the learner agent sequences of states and associated decisions in order to demonstrate

how to behave in the presented states. By observing an efficient policy and the

associated effects (i.e. state transition, reward, etc.), the learner can update his/her

policy and take advantage of the knowledge of the experienced agent to accelerate
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learning. Thus, the learner agent does not need to explore the space of all possible

actions randomly but can focus on actions that are known to be efficient. In general,

each presented sequence is a full episode from the beginning of the task to its

end. This method has proven to be efficient on reinforcement learning agents [66].

However, this approach still suffers from certain limitations. First, it relies on an

expert on a short predefined period of time [65] and, therefore, is not designed

for interactivity with the student and personalization of the advice. Second, the

question of generalization from the student given a demonstration is still to be

explored [67]. It is also noticeable that both agents need to share the same action

space and observation space for learning from demonstration to be efficient.

• Scalar feedback [68] is a method where the experienced agent, at each time, can

express its satisfaction regarding the learner behaviour, resulting in a scalar value

communicated to the student. Doing so makes it possible for the learner agent

to understand if his/her behaviour is correct and possibly how far it is from the

optimal one. In this setting, the experienced agent can interact efficiently with the

learner even if the action space and/or the observation space of the two agents are

different. Indeed, the scalar feedback is independent of both the action space and

the observation space. Although interesting, this method has proven its efficiency

only with human teaching artificial agents. Indeed, the scalar feedback in itself

is particularly well adapted to teach artificial agents as it can easily be directly

assimilated to a reward function. In this sense, scalar feedback can be seen as some

sort of reward shaping [69] [70]. In addition, scalar feedback is not well adapted to

generate personalized instructions. In this setting, the experienced agent evaluates

the learner’s behaviour in light of its own policy. However, depending on the learner

agent’s specificity, the best policy for the learner may not necessarily be the same as

the experienced agent’s. That makes it difficult for the experienced agent to adapt

its feedback to the specificity of the learner agent.

• Teacher student learning is a method relying on action advice from the experi-

enced agent to the learner. In this scenario, the experienced agent acts as a teacher

by providing suggestions of actions to the learner that are interesting in the con-

sidered state. In this setting, the teacher and the learner only need a joint action

set to be applicable [71]. Their decision functions and representation of states may

be completely different. In addition, as the advice is given all along the interaction,
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the teacher can focus on particular subsets of the state-action space that are critical

for learning.

• Policy distillation, although presented here along with the three other methods,

proposes a slightly different conception of the problem. Policy distillation stems from

the idea of knowledge distillation [72], which is a form of model compression [73]. In

this approach, an agent’s policy is assimilated to a prediction model that associates

with each encountered state an action. Indeed, the knowledge distillation principle

originally came from the supervised learning literature. In policy distillation, the

student agent is assumed to be an untrained model taught by a trained model, i.e.

an experienced agent. The core idea of policy distillation is for the student agent

to use supervised regression to train its internal model (defining its policy) so as to

produce the same output distribution as the model of the experienced agent. This

approach has proven to be efficient on diverse tasks, such as transferring knowledge

on how to play Atari games [74]. Moreover, the distilled policy can lead to better

performance than the teacher. According to [74], crucial attention must be paid to

the regression loss function when considering policy distillation approaches.

Although an actual method to manage knowledge transfer from an experienced

agent to a naive agent, the policy distillation framework is definitely centred on the

student. State-of-the-art solutions focus on how for the student to learn efficiently

from the trained model outputs. As such, policy distillation is closer to the imitation

learning problem, where an agent tries to learn a policy from observing an oracle. As

our work focuses on designing recommendations, we are more interested in methods

relying on the experienced agent rather than methods for the student to maximize

his/her learning.

In this thesis work, we investigate the coaching problem, where a personal automated

coach repeatedly advises a user to accompany the latter in a behaviour change process.

Regarding this, work on teacher-student learning is particularly interesting for our prob-

lem. Indeed, teacher-student learning fits the imperatives of coaching, as it allows the

teacher and the student to have different knowledge representations and rely on action

advice which supports personalisation. In addition, one can find in the literature works

with human students [75]. The developed idea of artificial agents teaching humans a

specific task definitely meets the concept of coaching. More generally, the study of how

to teach and how to learn how to teach is of great interest to this thesis work. Thus,
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in the following, we present the framework of teacher-student learning; we examine the

state-of-the-art solutions and discuss their relations to the coaching problem.

2.2.3. Teacher student learning

Works on the teacher-student framework, as defined in [71], are interested in the problem

of finding the most efficient way for an experienced agent (i.e. the teacher) to interact

wisely with a naive one (i.e. the student) in order to accelerate the learning of the student

by transferring him/her knowledge previously acquired by the teacher agent. As we have

seen, teacher-student learning relies on a type of interaction called action advice. In this

setting, the objective of the teacher agent is to suggest to the student actions that will

significantly affect their learning.

2.2.3.1 Definition of the framework

In general, the literature on teacher-student learning considers two different scenarios

guiding the interaction between the teacher agent and the student agent: the learner-

driven and the teacher-driven scenario. In the former, the learner engages in interaction

with the teacher. So the learner first interacts with the environment independently and

thus needs a proper policy. At any time, he/she may ask the teacher for advice. The

teacher can then decide whether or not to give feedback regarding several parameters such

as the possible number of interactions with the learner, the interest for the learner of the

asked advice, or its own confidence in the given advice. When the advice is given, the

learner applies it and updates his/her policy.

Conversely, in the latter scenario, the problem of when to advise the learner is handled

by the teacher agent. Then the teacher agent has to evaluate the need for advice from

its interactions with the learner and its efficiency in the task. These two scenarios seem

similar when considering the high-level task of learning an effective policy. However, this

slight change leads to significant differences in the approach for the teacher agent. Indeed,

being able to decide when to advise the student needs for the teacher to monitor his/her

behaviour efficiently and to identify when given advice will have a real effect on student

learning. In a learner-driven setting, the teacher agent is solely focused on the problem

of which advice to give. Conversely, in the teacher-driven setting, the teacher agent has

to answer both the question of the advice production and the question of the advice

distribution (i.e. when to advise the student agent).
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Thus, one can consider two distinct sub-tasks: advice production and distribution.

The production task covers the question of which piece of advice to give to maximize

student learning. In the literature, the advice production issue is generally handled by

exploiting a learned policy for the task to be taught. In this setting, the teacher has

explored the state action space and so is able to suggest the best action to the user

regarding its policy. However, it is noticeable that the performance of the teacher on the

considered task does not guarantee its performance as a teacher. For example, [76] shows

that the best teacher is not necessarily the one who performs the best at the considered

task.

Besides the advice production task, the distribution task solely focuses on when the

student should be advised. As we have seen, this task can be handled either by the student

or by the teacher. The approaches where the student decides when to be advised often

rely on a more or less complicated notion of confidence in its own policy. For example,

the student in [77] estimates the novelty of pieces of advice, while [78] lets the student

calculate the criticality of its state to determine if it needs advice or not. On the other

hand, when relying on the teacher side, the advice distribution issue is either handled

by human-shaped heuristics [71] [75] or by learning [76] [79]. A particular heuristic that

requires two-step communication between the teacher and the student is the so-called

mistake correcting [71]. In this setting, the student announces to the teacher his/her

planned action, given the state it observes. Then the teacher can determine if the action

is good or not, that is, if the student makes a mistake. If so, it can decide to provide

advice, correcting the student’s mistake.

A related problem to the advice distribution is the advice budget. Indeed, if the teacher

is able to advise the student all throughout the interaction, one can consider that the

teacher should always give advice. However, communication between agents is, in many

real-world problems, a scarce resource. Moreover, it seems unrealistic to consider an

unlimited advice budget when considering human agents with limited attention. Thus a

vast majority of the literature on teacher-student learning considers a limited budget of

advice for the teacher agent. The question of when to advise then becomes the question

of how to make every single piece of advice the more impacting possible for the student’s

learning.
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2.2.3.2 Evaluation

The objective of teacher-student learning is to accelerate the learning of the student agent

on a given task. Therefore the evaluation of a given method should be examined regarding

the time the student takes to master the considered task. However, such an evaluation

is not straightforward, as diverse aspects of time performance may be considered. As a

transfer learning task, teacher-student learning can be evaluated by using transfer learning

evaluation methods. As presented in [62], the evaluation of transfer learning is complex,

as there does not exist a single metric encapsulating all the dimensions of performance.

Instead, the authors propose to evaluate transfer learning in a multi-dimensional fash-

ion, considering diverse metrics. Each of these metrics captures a different aspect of

performance. The metrics proposed by the authors are the following:

• Jumpstart: This metric accounts for the difference in the initial performance on the

considered task of an agent using transferred knowledge when compared with the

performance of the agent’s initial policy. It is particularly relevant when transfer

comes from a pre-training phase, like in learning from demonstration.

• Asymptotic performance: This metric compares the final performance of the student

agent once its learned policy has converged, with and without being taught. This

has two major limitations: first, the convergence may be very long to attain, which

is particularly true on reinforcement learning tasks with infinite state-action spaces.

Second, the asymptotic performance does not take into account the time needed for

the student to converge, which is yet critical in many settings.

• Total reward: Comparing the total reward obtained along an episode of the task

by a taught agent and a naive one is a common metric. It allows one to measure

the total gain induced by the teacher agent, and so is some sort of dual measure,

accounting both for the convergence speed and the convergence level of the student.

However, as such, it is highly dependent on episode duration, the reason why it

should be preferred for tasks performed during a given time.

• Transfer ratio: Transfer ratio is the ratio of the total accumulated reward by the

taught student and a naive student. It is particularly adapted when comparing

different teaching methods, as, in a way, it accounts for the quantity of knowledge

effectively taught to the student. In particular, it allows making a distinction be-

tween teaching methods that leads to the same final performance. However, like the
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total reward metric, the transfer ratio directly depends on the number of learning

steps considered.

• Time to threshold: By measuring the time (i.e. the number of learning steps) to

reach a predefined performance threshold, one can characterise the agent’s learning

speed and so to the acceleration allowed by the teacher’s advice. The major draw-

back of this metric is that it necessitates defining a threshold, which is, in essence,

task-dependent.

The presented metrics capture diverse dimensions of teacher-student learning perfor-

mance. Thus, evaluating different teaching methods and efficiently comparing them needs

to consider a combination of these metrics to be complete.

When considering the evaluation of a teaching task, it is also essential to differentiate the

two aspects of advising: advice production and advice distribution. Yet, the literature

on teacher-student learning does not have elaborated benchmarks to compare these two

sub-tasks separately. However, the vast majority of works solely focus on one of the two

aspects and then compare different approaches through the metrics presented above.

2.2.4. Coaching as a transfer learning task

2.2.4.1 Motivation

Considering the presented framework, our problem of making recommendations for long-

term behaviour change can be modelled as a transfer learning problem and, more specifi-

cally, as a teacher-student learning problem. Indeed, we can view the recommender system

as a teacher agent that provides advice to the user to facilitate his/her behaviour change

towards a goal. Moreover, such a recommender system should be able to repeatedly give

his/her human user personalized instruction and adapt it in regard to user specificity.

In this setting, the recommender can be seen as the teacher agent and the user as the

student agent. Thus, the recommendations of the system play the role of advice from the

teacher. One specificity of our problem lies in the fact that the user is not able to draw a

direct link between his/her actions and his/her final objective. This makes it impossible

for him/her to evaluate whether or not he/she needs advice. Given that, the problem can

be seen as a teacher-driven teacher-student learning problem.

In the following, we present a brief state-of-the-art of teacher-student learning literature

and review the main characteristics of the existing methods. Given the nature of the
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Focus
Scenario

Teacher driven Student driven Jointly driven

Advice production [81], [82], [83],
[84], [76]

[85] [86]

Advice distribution [71], [87], [76],
[79], [88],[75]

[78], [89], [90],
[91], [77], [85],
[92], [93]

[94], [86]

Table 2.3: Characterization of the investigated papers regarding interaction scenario and
focus of the study. A jointly driven scenario refers to a student-driven scenario where the
teacher can decide whether to give the queried advice or not.

question addressed in this thesis, we mainly focus on works about the teacher-driven

scenario. Indeed, we are interested in the question of how to produce and deliver advice,

such as to maximize the learning of the student, rather than in the question of how to

make the best use of the advice for the student.

2.2.4.2 Review of state-of-the-art solutions

The teacher-student framework was first described in [80] with a focus on student-driven

interaction. More recently, [71] considered the problem of teacher-driven teacher-student

learning, integrating the notion of interaction budget. This work has raised the commu-

nity’s interest and led to the development of specialized literature on the teacher-student

framework by defining a precise yet flexible framework and presenting promising results

for reinforcement learning agents. Here we present a review of the significant works in

this field from 2013 to 2022.

As presented in table 2.3, the investigated work can be characterized regarding the consid-

ered interaction scenario and the focus of the study, whether on production or distribution

of the advice.

First, let us evoke works on the student-driven scenario. As one can notice, except [85],

all the investigated works solely focus on the problem of advice distribution. As we

have seen, in the teacher-driven scenario, advice distribution is handled by the student:

it decides when to ask for advice from the teacher. Therefore the corresponding works

mainly investigate the student decision function to maximize learning. Most works rely

on metrics that the student computes to characterize the encountered states. It can be

state criticality [78], state novelty [77, 92] or student confidence in his/her policy on a

given state [93, 85]. Another direction is investigated in [89], [90] or [91]. These works
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propose methods that let the student reuse previously given advice. Then the student

has to decide in each state if it should ask for advice, reuse advice or follow its policy. To

do so, the authors augment the student with additional policies, driving the management

of the previously received advice. In this sense, the authors of these works make extra

assumptions about the student model.

Conversely, in the teacher-driven setting, the problem of advice distribution falls to the

teacher agent. Thus, the solution must rely on something other than a direct quantifi-

cation of student learning, as the teacher is assumed not to have access to the internal

parameters and representation of the student. The corresponding works can inform us on

when to make advice to maximize their effect, which is of interest to our recommendation

problem. Two main approaches were investigated in the literature.

The first one relies on heuristics that guide the distribution of advice. Different methods

were proposed. A widely studied one is the so-called early advising : it is based on the

intuition that the early stages of learning are critical, and the idea is then for the teacher

to use its advice budget in the first interactions with the student. This method is tested

in [71] and [87] on diverse reinforcement learning tasks. An improvement of early advising

proposed in [88] consists in advising on the early learning steps, but alternatively, every

m step. This way, the time the teacher takes to spend its budget can be controlled by the

parameter m, and advice can cover a more significant part of the state space. Another

commonly used heuristic is known as importance advising. In this setting, the teacher

agent computes an “importance” metric for each state regarding its knowledge of the

task and then focuses its advice on the crucial states. As stated in [71], considering a

reinforcement learning agent as the teacher allows to compute the importance metric in

a pretty straightforward manner: the authors used the difference between the maximum

and the minimum of the state-action value function in state s. However, it appears that

considering measures based on variance or absolute deviation of the state-action value

function, as proposed in [88], produces more consistent results. This heuristic is tested in

[87] on a domestic robot scenario and in [75] on human students learning to play a video

game.

When possible, one can also consider mistake correcting. Indeed, this method necessitates

an additional communication step between the student and the teacher. At each step,

the student announces his/her intended action to the teacher. Then if the action is not

considered good by the teacher (i.e. the student makes a mistake), the latter makes advice

if the advice budget is not exceeded. This method has proven its efficiency against other
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heuristic methods [71], [87], [88]. The only investigated study with human students also

points to the superiority of mistake correcting regarding the other tested advising meth-

ods [75]. However, it necessitates extra communication at each step which is often costly.

To overcome this limitation, predictive advising was proposed, where the objective is for

the teacher to predict the probability of student mistakes and decide whether or not to

advise. An implementation using SVMs to predict the student intended action was used

in [71] and showed promising results.

The second investigated approach in the literature for the teacher-driven scenario is to

model the advice distribution task as a reinforcement learning task. This idea was first

introduced in [79]. In this work, the authors propose a reinforcement learning model for

the teacher, with a reward based on the student’s time (i.e. the number of steps) to reach

a given goal state and the reward associated with that goal. They trained their teacher

model to teach a student on a classical reinforcement learning benchmark (i.e. moun-

tain car problem [95]) and showed that their reinforcement learning teacher outperforms

the best heuristic strategy. Indeed depending on the considered budget, their reinforce-

ment learning teacher leads the student to better or equal performance than mistake

correcting. With a different conception of reward, [76] also proposed learning an advice

distribution strategy. They introduce Q-teaching, a learning-to-teach algorithm based on

the Q-learning algorithm, a classical off-policy algorithm for reinforcement learning prob-

lems [59]. According to the authors, the key insight of Q-teaching is rewarding the teacher

in regard to the value gain it allows for the student. Indeed, the algorithm uses the differ-

ence in value between the advised action and the value of the estimated student action as

a reward. The authors propose two versions of the algorithm based on how the student

action is estimated. The off-student policy Q-teaching uses a pessimistic estimation of

the student action. By contrast, the on-student policy Q-teaching uses the actual action

of the student. The authors tested both algorithms on the task of teaching reinforcement

learning agents how to play the Pac-Man game. The results showed that the proposed

algorithms perform similarly but slightly worse than mistake correcting and Zimmer [79]

algorithm on this task. However, the authors noticed that off-student policy Q-teaching

needs significantly less training than Zimmer’s algorithm and does not need to know the

intended action of the user to reach similar performance. According to the authors, the

results of on-student policy Q-teaching are probably due to the variability induced by the

student policy that necessitates a much longer training phase.
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As one can notice, most works on teacher-student learning focus on advice distribution

and consider only the action learned by the teacher as an advice source. However, pro-

ducing relevant advice is a challenge in the field and is discussed in several works. The

first investigated question is that of choosing the best teacher for a task. In [84], the au-

thors show that the variability of the teacher’s behaviour for the task is important when

considering its students’ performance. They trained reinforcement learning agents on a

given task, with two possible paths to the final state, one better than the other in terms

of total reward. They show that three major types of agents emerge after training: agents

specialized in the best path, agents specialized in the longer path and polymath agents

without a clear preference. Then the three types of agents are used as teachers for the

task. The authors show that the best-performing teachers are polymath agents, although

they are neither the best at completing the task (shortest path agents) nor the most ex-

ploratory (longest path agents). They notice that polymath agents are agents for which

the reward standard deviation on the task is the lowest. Moreover, they also find that

the lower the student obedience (i.e. probability of accepting the advice), the stronger

the effect of advice consistency: higher consistencies leading to better performance.

Investigating the advice variability, the work of [76] show similar results by observing bet-

ter teaching performance for teacher with lower reward coefficient of variation (computed

from standard deviation) on the task. In particular, they show that a teacher trained

using the R-learning algorithm [96] is better at the teaching task than other Q-learning

teachers while being significantly worst at performing the task. Another investigated re-

search direction is how the teacher may learn to give advice. In [86], authors show that

using direct student task performance as a reward when learning to give advice can lead

to poor learning. Indeed, following conscientiously advice and accumulating reward for

the student does not guarantee the actual learning of an interesting policy. Thus, the

authors propose to reward the teacher according to the student’s progress instead.

In [83], the authors propose a method where the teacher agent advises for sub-goals on

the taught task in order to ensure step-by-step learning. They show the efficiency of the

method in a cooperative multi-agent reinforcement learning environment against diverse

state-of-the-art methods.

Finally, some studies consider the problem of enriching the advice provided to the stu-

dent. The work of [81] suggests letting the student be capable of building decision trees

from the teacher’s advice to memorize it and use it even in not yet encountered states.

56



Moreover, they present a method to extract advice in the form of recommendation trees

from the teacher’s optimal policy. This method allows the generation of both advice (leaf

of the decision tree) and explanation (path in the decision tree). Doing so makes the ad-

vice more understandable even for a human being student. The framework is then tested

on a multi-agent reinforcement learning environment and shows improvements both in

convergence speed and total reward when compared to classical benchmarks. With the

same idea of advice enrichment, [82] proposes a method that categorizes the states en-

countered by the student. By doing so, the teacher agent can give the student hints on

the long-term profitability of the visited states via qualitative assessment. They show

that their method improves the re-usability of the given advice and outperforms baselines

on teaching students to play the Qbert video game.

2.2.4.3 Conclusion

Regarding the teacher-student learning framework and the related literature, one can

definitely model the problem of long-term behaviour change recommendation as a teacher-

student learning problem. In this sense and contrary to the value-aware RS formalism

presented in 2.1.3, the teacher-student learning framework makes it possible to handle

long-term goals as the notion of behaviour change is inextricably linked to that of student

learning. Moreover, the framework in its definition considers repeated interaction between

the teacher and their student. When considering the distribution of advice, it appears

that mistake correcting is one of the most efficient methods existing in the literature that

is adaptable in the context of recommendation. One of the main results from the literature

on advice production is that the best teacher is not necessarily the best agent on the task.

This has to be taken into account when designing recommendations.

However, the framework still suffers from limitations in modelling our investigated recom-

mendation scenario. First, all presented works assume a reinforcement learning agent as

the student that learns on his/her own. This is not necessarily true for the problem ad-

dressed in this thesis, as the reward function may not be accessible to the user. Consider,

for example, a scenario where a user is coached to drive a car in a more environmentally

friendly manner. The exact impact of each recommendation is probably not accessible to

the user. Yet he/she does not have direct access to a reward function and thus cannot

learn entirely on its own.

Another critical point is the question of advice personalisation. If we have shown that

action advice is the more user-adjustable method for transfer learning, the presented
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works do not consider the student agents’ diversity. In particular, and even more with

human students, all the students may not be able to reach the same final performance

level, as they may not be able to follow every policy. This problem is not addressed in

the investigated literature. The work of [84] considers the notion of obedience, which can

be seen as the acceptability of the advice for the student. However, they do not make a

difference between suggested actions or between users. And yet this is key in the coaching

problem as some actions can be easier than others for a given user.

To conclude, if some of the questions addressed by teacher-student learning are of interest

to the coaching problem, one cannot be included in the other. Insights about how to

teach and how to learn how to teach are of particular interest to our work. However,

the teacher-student framework still suffers from limitations in modelling the coaching

problem.

2.3. Technologies for behaviour change

With the emergence of Artificial intelligence, many works focused on designing technolo-

gies to teach or help humans change their habits. This interest is not new: as early as

1924, Sidney Pressey conceived a mechanical machine aiming at teaching students with-

out the intervention of an external teacher [97]. But AI methods make it possible to

achieve both an enhanced learning interaction and a substantial level of personalization.

Using these levers emerged the field of Intelligent Tutoring Systems (ITS) [98], which are

able to teach human students in diverse disciplines on their own. Besides that, the per-

vasiveness of computers and smart devices in our lives led researchers to consider using

these to induce behavioural changes in their users. This is the perspective of Persuasive

Technologies [99, 100].

With different approaches, these two disciplines use technology and human-computer

interaction to induce behaviour change. Either in an informed and development-driven

way using actual learning or in an influencing, performance-driven way using persuasion.

As such, the approaches and methods developed in these are of interest to this thesis

work. Indeed, in a coaching interaction, the learner is informed of his/her final objective

but not necessarily of the steps to reach it. In addition, some recommended actions

can be counter-intuitive for the learner while leading to gains in the long term. Thus

the coaching problem can be considered at the intersection of development-driven and

performance-driven approaches [101], and as such at the intersection of persuasion and
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learning perspectives. In the following section, we will present the state-of-the-art and

classical methods of these two approaches and situate coaching in this body of literature.

In Section 2.3.1 we will present an overview of persuasive technologies, their methods,

and application cases. In Section 2.3.2 we will present an overview of individual tutoring

systems and state-of-the-art solutions. Finally, in Section 2.3.3, we propose to consider

coaching as a technology for behaviour change and discuss how the presented literature

may inform the design of coaching systems.

2.3.1. Influencing perspective : persuasive technologies

Persuasive technologies, known as PT, can be defined as “any interactive computing sys-

tem designed to change people’s attitude or behaviour”, according to Fogg [100]. The

key point here is that the purpose of changing users’ attitudes and/or behaviour is the

one the system is designed for. Indeed, the majority of information systems may have an

influence one way or the other on user behaviours, while it is not necessarily their objec-

tive as stated in [102]. In this sense, PT is more of a system design philosophy, a general

framework, than a precise algorithmic approach. Thus, it can be applied in numerous

domains with diverse implementation strategies. Consequently, literature on PT is frag-

mented [103] and building a clear overview of the field is challenging. This necessitates,

in particular, a systematic categorization of the applied methods and concepts. Some

literature reviews exist [104, 103, 105, 106, 107, 108] that propose such classification, and

we will here present a summary of the main categories presented in the literature.

2.3.1.1 Overview and categorization of persuasive technologies

Given the diversity of the approaches, PT can be categorized according to many different

characteristics. Here we will focus on the more prominent ones. First, regarding the

actual target of PT, authors of [102] make the difference between three types of changes

that could be pursued, ranked by order of difficulty.

The first and easiest step is change in the act of complying. Here system’s goal is simply

to make the user perform an action. It does not necessitate the user to be motivated for

it, nor seek to change his/her behaviour in the long term. The pursued change is only

an act of instantaneous compliance and, as such, can be defined as ”nudging” the user to

the objective.

The second level the authors present is behaviour change. They define it as a more
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enduring change that should be repeated when in the same context.

Finally, the third considered possible change is attitude change. Attitude is a more high-

level concept, defining how a user will consider his/her environment. An attitude change

often leads to several behaviour changes in diverse contexts.

In addition to target changes, the authors also define three possible outcomes of PT :

• Forming a behaviour refers to the fact of generating a behaviour responding to a

new situation. As such, it encompasses both the identification of the situation and

the formation of the corresponding response.

• Altering a behaviour is defined as the fact, for the target, to change its behaviour

in response to a known situation.

• Reinforcing a behaviour applies to situations where an observed behaviour is re-

inforced to become more persistent and/or frequent.

Although of a high level and not giving direct implementation clues, these two axes

of categorization are of great interest when considering the PT literature. Indeed, the

design methods can significantly vary among the nine possible drawn objectives, and a

clear definition of the latter seems to be a sine qua non to further considerations.

Regarding the actual methods involved in the production of PT intervention, one should

consider two essential questions: the choice of the behaviour model on which the system

is based and the motivational strategy used by the system to persuade the user.

2.3.1.2 Theoretical behaviour models

Let us first consider the question of the behaviour model. In [103], the authors investigated

85 publications in the field of persuasive technologies applied to the human health domain.

They noted that most of the investigated studies do not specify any theoretical framework

for behaviour modelling. The remaining studies used many different models, with 21

considered models for a total of 34 studies, some studies relying on several models. The

same tendency is observed in [106], where 24 of the 44 reviewed studies do not rely on any

theoretical behaviour model and a great diversity of considered models in the remaining

studies. The authors of [104] present this lack of a unifying theoretical framework as

an important pitfall of the literature. In particular, they emphasise the importance of

considering the notion of habits when designing PT for long-term behaviour change. We

will not discuss the existing theoretical behaviour models here but rather present the
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framework they developed. For a more in-depth presentation of the most used models in

PT literature and their limitations, refer to [104].

The framework described in [104], known as the Habit Alteration Model is a synthesis of

three pre-existing models: Dual Process Theory, modern habit theory, and Goal Setting

Theory. It consists of three layers (or phases) of behaviour generation and two types of

processing. Type 1 refers to automatic behaviours (e.g. habits), while type 2 refers to

conscious behaviours (e.g. intentions). Behaviour is considered a function of a context.

The first phase of behaviour generation is the perception of the context, which can be

conscious (Type 2) and/or unconscious (Type 1). The two types of perception lead to

consider the cues that are actually perceived. Then begin phase 2 of behaviour generation:

preparation of the action. The detected cues generate either one or more impulse (Type

1 processing) or one or more intention (Type 2 processing), both known as responses.

These are added to a so-called potential response stack, which ranks potential actions

regarding several factors: match with the particular cue, affect towards the cue and/or

response, and accessibility. Then in the last phase, the acting phase, the higher response

on the list is chosen as a behaviour. If there is a tie between an impulse and an intention,

the impulse is preferred as it is processed faster by essence. According to the authors,

the Habit Alteration Model fills the gap between approaches of behaviour solely based

on environment and approaches solely based on internal cognitive factors and makes it

possible to design PT based on habit formation.

2.3.1.3 Motivational Strategies

One can find a wide variety when considering actual methods used by PT systems to

persuade their users. Here we present the most significant ones :

• System generated feedback consists in informing the user, after he/she per-

formed an action, on the interest of this action regarding the pursued goal. Feedback

can be given in a visual, audio, or textual fashion and is generated by the system

(conversely to social feedback). As an example, works on persuasive chatbots often

use textual feedback [109].

• Tracking and monitoring methods are based on furnishing information about

the user’s past behaviour. The idea is to give the user factual data about his/her

behaviour. Allowing the latter to have an overview of its last actions makes it
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possible for him/her to realise his/her potential mistakes. According to [103], it is

the most used method in persuasive technology for health purposes.

• Social interaction is a vast family of methods based on what is called “social

acceptance” in the Fogg behaviour model [110]. It can go from social feedback to

comparison to others. The critical dimension in this kind of method is the exchange

with other human beings.

• Persuasive messages and reminders are used to help a user not to forget an

objective and/or to persuade him/her to adopt a specific behaviour in a given con-

text. Although pretty popular, these methods necessitate an effective categorisation

of the context, which can be challenging [104]. In addition, these methods induce

cognitive load of the user, which can induce an ineffectiveness of the messages.

• Suggestion and advice is a method that used to be pretty popular according to

[106] and [108]. It consists in making suggestions or recommendations to the user

when acting. As such, it matches the focus of this thesis.

2.3.1.4 Conclusion

The literature on persuasive technologies is notably fragmented. The field is more defined

by the behaviour change objective rather than a methodological unity. As presented,

most PT’s underlying behaviour models are limited and do not ensure a solid theoretical

validation. However, the field is considered by many researchers as very promising, re-

garding both the stakes it addresses (e.g. public health [103], environmental sustainability

[107]) and the increasing use and pervasiveness of technology in everyday life. Moreover,

when investigating the actual effects of PT, one can find encouraging results: the study

of 95 publications in the field performed by [105] showed that 54.7% of the studies re-

ported fully positive results. In contrast, 37.9% reported partially positive results, that

is, according to the authors, situations wherein some but not all of the studied elements

showed positive results. In the specific domain of health and well-being, these results

seem even better, with 75% of the 85 investigated studies showing fully positive results

and 17% reporting partially positive results. To conclude, we can say that the persuasive

design of systems is promising but requires special attention to methodology.
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2.3.2. Learning perspective : individual tutoring systems

Individual tutoring systems (ITS), as defined in [111], refers to “the interdisciplinary field

that investigates how to devise educational systems that provide instruction tailored to

the needs of individual learners, as many good teachers do”. It is a sub-field of artificial

intelligence focused on educational purposes. One major particularity of ITS is that

they are aimed at providing individualized support for learning activities in a one-to-one

interaction. As such, it involves two agents interacting with each other. First is the

student or tutee. He/she is a human being working on a given task and is expected to

train to achieve this task better. The second agent, known as the tutor, is an automated

agent or system aiming to teach the student on the task. As stated in [112] the system

is expected to know what it teaches, whom it teaches and how to teach the considered

task. In order to fulfil these requirements, the classical architecture of ITS is based on

four interacting components [113] :

• A task environment or interface, that is used by the tutor to gather information

about the way the user performs the task. Collected data can then be processed by

the system to deliver instructional actions or feedback through the interface module.

• A domain knowledge module. The system uses it to evaluate the actions taken

by the student. To do so, it models expert knowledge about the task. In particular,

it can generate solutions to the considered task and compare them with student

actions.

• A student model that allows the system to follow the student’s progress and to

model his/her current knowledge on the task. The student model is key in ITS as it

informs the system on the aspects of the task it should focus its interventions. It is

generally composed of an estimation of the student domain expertise based on the

system domain knowledge and a catalogue of student misconceptions on the task.

• A Pedagogical module aims at determining what type of intervention should be

delivered to the student. It may consider two different levels, the direct task level or

a higher level of task sequencing in a particular domain. In [114], five instructional

actions are considered for the intervention of the system: performance demonstra-

tion by the system, Directed step-by-step performance where the student follows

the steps given by the system, monitored performance where the system corrects
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the student mistakes and goal seeking where the system monitors the abstraction

on the task and free exploration of the task by the student.

The strength of the ITS approach mainly lies in the domain knowledge module. Indeed,

cognitive science and psychology are used to model tasks using human-understandable

representations. This makes it possible for the system to reason on the task via human-

achievable actions. By doing so, the system can model student abilities and aptitudes and

provide personalized instructions. Although an interesting approach, individual tutoring

systems are definitely focused on academic tasks and educational purposes.

2.3.3. Coaching: a technology for behaviour change

As stated in the introduction of this section, the automated coaching problem can be

considered at the intersection of the learning and influencing perspectives, and so lies in the

field of technologies for behaviour change. As such, the design of an automated coaching

system has to consider guidelines emerging from the field and, in particular, a valid

user behaviour model, which appears to be a key determinant of persuasive technologies

and intelligent tutoring systems. The student models developed in the ITS field can be

considered. However, they mainly focus on a very scholarly approach to learning, which is

not the best fitted to everyday behaviour change targeted by coaching. On the other hand,

as we have seen, the persuasive technology literature proposes a tremendous number of

behaviour models with numerous pitfalls. However, the habit Alteration Model described

in [104] seems to overcome many of these and is thought to form long-term user habits.

This makes it particularly relevant regarding the problem of coaching. Thus it seems

relevant to model the coaching problem as a persuasive technology problem with a focus

on habit forming.

Even though important in guiding the design of systems and particularly of the user inter-

faces, we did not find in the persuasive technology literature precise lower-level methods

that can be applied to the problem of recommendation production. Therefore, mod-

elling the coaching problem as a persuasive technology problem shows some limitations

in directly guiding conception and implementation.

64



Teacher-student learning Value-aware RS

Persuasive technologies

Literature domains related to the coaching problem

● Provide high-level design guidelines
● Consider behaviour change
● Do not inform on advice generation methods

● Considers knowledge transfer
● Is iterated by essence
● Does not tackle personalisation
● Needs the student to perceive the 

objective

● Allows personalisation
● Considers value of items
● Does not tackle long term goals
● Does not tackle changes in user’s 

habits

Figure 2.3: Presentation of the reviewed literature contributions and pitfalls regarding
the coaching problem

2.4. Chapter Conclusion

In this chapter, we proposed to explore different dimensions of the literature when consid-

ering strategies to induce lasting changes in behaviour at a user level. We first considered

a recommendation systems perspective, showing that the coaching problem can be mod-

elled as a multi-stakeholder recommendation problem. However, we underlined that such

a framework fails to consider both the long-term effects of the recommendations and the

iterated nature of coaching, with an important repetition of interactions.

We then presented the coaching problem as a transfer learning problem, modelling it

through the teacher-student framework. But such a model, if useful to consider both the

knowledge transfer from an experienced agent to a naive one and long-term dynamics, still

suffers from limitations when considering a coaching interaction. In particular, it appears
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to be limited in modelling users pursuing goals that do not lead to a direct reward. In

addition, the reviewed literature shows a general lack of effort in personalization, which

is a key component of coaching.

Finally, we explored the literature related to technologies designed for behaviour change

and showed the coaching problem can be modelled as a persuasive technology problem.

But if such a model draws a general design pattern for persuasiveness, it does not inform

us on the actual technical solutions that can be conceived.

To conclude, we can see that the literature, while investigating related questions, does

not explicitly address the problem of coaching as defined in 1.3. From this statement

emerges the importance of defining a new framework to encompass all the dimensions

of a coaching problem and to study it formally. Nevertheless, it is noticeable that the

presented literature, by capturing diverse dimensions of the coaching problem (see fig 2.3),

should be used to inform the design of such a framework.
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3. The coaching framework:

a recommendation framework for

behaviour change

This chapter presents our proposed approach to the “recommendation system for be-

haviour change” problem and the corresponding developed framework [115, 116]. As

discussed in chapter 2 this problem is at the intersection of diverse approaches in the lit-

erature and necessitates the formalization of a new framework, integrating the constraints

of personalization, repeated interaction, long-term follow-up and persuasiveness. We pro-

pose in this chapter a framework, which we call the coaching framework, to encompass

these constraints. Diverse methods and approaches of the investigated literature on re-

lated problems inform the design of this framework. In Section 3.1, we formally describe

the problem of coaching and propose a model of the task. We discuss in Section 3.2 the

possible evaluations of a coaching recommendation algorithm and propose a method to

measure the behaviour change at the user level. We then present an illustrative example

of coaching in a simplified environment in Section 3.3 to highlight the questions raised by

the coaching framework and study it analytically to draw general conclusions on critical

stakes. We propose in Section 3.4 an optimal criterion for recommendations in the coach-

ing scenario and discuss some heuristics than can be derived from it. In Section 3.5, we

evaluate the proposed framework on a task simulated from real consumption data. We

finally conclude on the proposed approach in Section 3.6.

3.1. Problem formalization

As stated in Chapter 1, the first question to be addressed in this thesis is how to design

a recommendation framework that promotes long-term behaviour change of its users. As

presented in chapter 2, we can formulate our problem as a problem of persuasive design.

In 2.3.1.2, we underlined the importance of considering a valid user behaviour model when
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designing a persuasive system. It then seems fundamental to inform the design of our

recommender system.

In Section 2.3, we particularly focused on the habit alteration model defined by [104].

Indeed this model fits well the objective of long-term and lasting behaviour change. As

defined by the authors, behaviour is driven by both conscious and automatic processes

that result in human action. The authors argue that a way of changing behaviour is

to lead the user to modify his or her habits or to develop new ones. This fits well the

objective of long-term and lasting behaviour change: once habits are modified or created,

they are part of the behaviour. They can even become an automatic response to a given

context.

That is why we focus on habit formation and alteration in this chapter. So we focus

on recommendations that target a repeated behaviour, which matches both the habit

alteration model and the global question of this thesis work.

We then consider a scenario where a user has to face a repeated decision-making problem

among a set of possible choices. It can be, for example, food items when considering

the problem of meal composition, types of shots when considering the problem of playing

tennis or chord sequence when facing the problem of piano improvisation.

3.1.1. The coaching scenario

We propose to model the repeated decision-making task of the user as a sequential choice

of a combination of items in a set of items I. At each step t, the user chooses a combination

of items, according to what we call his or her decision function.

Given this task, the user has the objective of changing his or her behaviour. For example,

he or she wants to become better at improvising when playing the piano or to develop

healthier eating habits when composing meals. To do so, he or she may call on an

automated recommendation system, which role is to accompany this behaviour change.

In the following, we refer to this system as a “coaching system” given that its task is to

help a motivated user to reach a self-determined goal.

We propose to formalize the task of the coaching system as a recommendation task: the

objective of the system is to make recommendations that will help the user to change

his or her behaviour towards a targeted one. In this setting, by contrast to the classical

recommender system approach, the user is not only seen as a potential consumer but as a

motivated agent with an active part in the recommendation. Formally we can define the
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objective of both the coaching system and the user as introducing a change in the user

decision function so as to progress towards a pre-determined targeted behaviour. The role

of the coaching system, then, is to make recommendations to lead the user to modify its

decision function.

In the following, and for simplicity of exposure, we suppose that the user’s task is to

choose a single item in the item set I at each step t, instead of a combination.

3.1.2. An iterated two-player game

Given the presented scenario, how should be modelled the interaction between the coach-

ing system and the user? We point out three key determinants:

• A specificity of the coaching perspective is the user’s involvement in the interaction.

As stated in the general definition of coaching presented in [10] the user is “per-

ceived to be a mature, motivated, voluntary, and equal participant in a learning

relationship with a facilitator whose role is to aid the learner in the achievement of

his or her primarily self-determined learning objectives”. Therefore, we propose to

base the coach’s recommendations on the user’s observed behaviour. As a tennis

coach who reacts to the actions of his/her pupil, either by encouraging him/her or

by suggesting changes in his/her play, we consider mistake correcting (as defined in

[71]) as the action mode of our automated coach. At each step, after the user has

made a choice, the coach either agrees with this choice or makes a recommendation.

This recommendation takes the form of a suggestion of substitution i → j. That

is, when the users choose item i, the coach recommends replacing i with j. The

choice of this mode of action for the coach has several advantages. First, it meets

the very concept of coaching as the recommendation is based on the user’s choices:

the user actively participates in the recommendation process. Second, mistake cor-

recting has been proven, in the teacher-student literature, to be one of the most

efficient advice distribution methods when considering agents advising agents [71],

in particular for automated agents advising humans [75]. Finally, it meets the idea

of habit alteration described in [104]. By making recommendations associated with

a particular context, represented here by the user’s proposed choice, the coach has

greater chances to have them integrated by the user as responses to this context,

and so eventually for the user to form new habits.
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• Second, we emphasise the need for personalisation in the coach’s recommendations.

Indeed it has long been proven that personalisation [14] is a key factor in the ef-

fectiveness of recommendation systems. Since the coaching framework is built to

produce recommendations, it seems fundamental to take into account the particular

preferences and needs of each user in the interaction. Thus we propose to incorpo-

rate in the interaction scenario an updating phase for the coach, allowing the latter

to adapt its recommendations to the particular user it faces.

• Reciprocally to the adaptation of the coach, we assume that accepting a suggestion

results in learning for the user. In other words, when the user accepts to choose

a given item that the coach has suggested, he or she integrates the suggestion and

is more likely to choose it on his/her own in the future. The idea behind this

assumption is that if he or she accepts a suggestion of substitution i→ j, the user

is more ready to choose j instead of i in an equivalent context in the future. This

assumption results from the habit alteration model: after being repeatedly accepted

by the user in a given context, the choice of item j become a new habit of the

user. This learning supposedly depends on the user’s personal characteristics and

the given suggestion.

Given the highlighted particularities of coaching, we propose to model the coaching in-

teraction as an iterated two-player game. We denote the coach C as the first player and

the user U as the second player.

We consider a scenario consisting of three stages, described in the following :

1. U submits a proposal to C. This proposal is the first choice of U regarding his or

her decision function. Given our formalization of coaching, the proposal is an item

i ∈ I.

2. C analyses U’s proposal, and suggests a modification, if judged useful. We assume

that this suggestion is in the form of a substitution i→ j.

3. U accepts or rejects the suggestion made by C. Then two outcomes are possible :

• If U accepts the suggestion, that is replacing item i by item j, it results in a

change in the decision function of U, according to his/her learning capacity, in

order to propose the recommended item more frequently in the future.
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• If U rejects the suggestion of C, he or she does not learn and the decision

function remains unchanged.

Depending on the user feedback (i.e. acceptance or rejection), the coach can adapt

its recommendations for future steps.

We consider this game iterated, as the user and the coach repeatedly follow this interaction

schema during a certain number of steps t ∈ T . At each step, the interaction scenario is

played, and both U and C can learn from their respective exchanges. Formally U and C

are modelled as agents with their own characteristics.

3.1.3. Model of the user

We have presented in section 3.1.2 the model of interaction between the user and the

coaching system. In the following section, we address the specific question of the user

model. The user model is expected to be representative of the behaviour of a user en-

gaged in a coaching interaction. Thus, it should consider the particularities of the coaching

interaction as described and encompass the three main actions of the user: the proposal of

an item, the acceptance or rejection of the system suggestion, and the choice function up-

date. However, our proposed model must remain as simple and interpretable as possible.

Indeed our objective is not to design a hypothetical perfect model of human behaviour

but rather to test the proposed scenario in a simple case. Therefore we propose a model

of the user based on three components :

• A choice vector, or probability distribution over the set of possible items :

Πt :

 I → [0, 1]

i 7→ πt(i)

It represents the preferences of U at each step and determines his or her choices. The

decision function of U is represented at each step as a random draw in I following

the probability distribution Πt. As one can notice, this distribution is parameterized

by t given that it can change over time.

• A matrix Mt : I × I associating to each couple of item (i, j) ∈ I2 and at each step

a substitutability coefficient mt(i, j) ∈ [0, 1]. Mt represents the acceptability, for U,
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of the possible substitutions at each step. Thus the coefficient mt(i, j) represents

the probability, if item i is proposed by U at step t, of the suggested substitution

i → j for being accepted by U. If the suggestion is not accepted, with probability

1−mt(i, j), U stays with his or her choice.

• A propensity to modify Πt when U accepts a substitution i → j suggested by C.

This accounts for the effects of the recommendation on U habits and future choices.

We propose a model for this change propensity in the following form:
πt+1(i) = (1− λ)πt(i)

πt+1(j) = πt(j) + λπt(i)

πt+1(k) = πt(k) , ∀k ∈ I \ {i, j}
If i→ j has been accepted (3.1)

where λ ∈ [0, 1]. If U does not accept the proposed substitution, he or she does not

change the preference vector and Πt+1 = Πt. This formula guarantees that if Πt is

a probability distribution, so is Πt+1. In addition, one can notice that in a situation

where i = j, i.e. a no change, this formula leads to Πt+1 = Πt, i.e. no change in U

habits. The introduced λ is a parameter that controls the strength of U behaviour

change induced by C. It can be seen as the learning rate of U. The closer to 1 the

value of λ, the more significant the effect of adopting a recommendation i → j on

the future choices of U.

When λ = 0 U’s propensity of change is null and his/her probability distribution

remains unchanged all along the interaction, regardless of the proposals made by C.

In this case we have : ∀t ∈ T, Πt = Π0.

On the other hand, when λ = 1, there is a complete transfer of the probability of

choosing i to the probability of choosing j.

In the following, we note fi→j(Π) the preference vector of U after, starting from Π,

he or she has accepted the suggestion i→ j from C.

3.1.4. Model of the coach

The coach and how it interacts with the user are the core of the proposed framework. As

we have stated, the coach should be able to make suggestions that are personalized and

focused on long-term behaviour change.

72



We introduce the notion of strategy for the coach. The strategy ct of a coach is a function

that at each step t and for each proposal i ∈ I of the user, associates a recommendation

in the form of an item ct(i) ∈ I representing the substitution i→ ct(i):

ct :

 I → I

i 7→ ct(i)

The objective of the coach being to introduce changes in the user behaviour to accom-

pany the latter towards a targeted behaviour, its strategy ct should reflect this objective.

Finding the best strategy to do so is the subject of Section 3.4. Moreover, comparing

strategies underlies the ability to measure the impact of the recommendations on user

behaviour. This is the subject of the next Section 3.2.

When introducing the scenario of coaching, we underlined the importance of person-

alization in the recommendations, and so the importance for the coach to update its

recommendations accordingly to the user feedback. Thus, we consider here an updating

function g, that given the strategy ct of the coach at step t, the user initial choice i ∈ I

and the actual choice after recommendation j ∈ {i, ct(i)}, updates the strategy of the

coach. We note ct+1 = g(ct, i, j). The problem of finding an efficient updating function g

is discussed in Section 3.4.

Given the characteristics of both the user U and the coach C, the iterated two-player game

is finally described in Algorithm 1.

In the rest of the chapter, we assume that the matrix Mt that controls the acceptability

of suggestions i→ j by U is constant over time, hence the notation M.

3.2. Coaching evaluation

Once the interaction framework is defined, we are interested in evaluating coaching ap-

proaches. Indeed, as we are investigating the question of what makes an efficient coach and

how to produce recommendations that efficiently promote long-term behaviour change,

we need to compare coaching algorithms between them and so need to define performance

metrics for a coaching interaction.

Evaluating the quality of a coaching system, i.e. a system whose goal is to promote long-

term behaviour change, is a delicate question. This is due to diverse factors, the most

significant of which is the difficulty of defining an appropriate horizon for behaviour quality
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begin
t = 0
while coaching in play do

t← t+ 1
Decision making phase
U chooses item i according to policy Πt.
C suggests substitution i→ ct(i) according to the strategy ct.
U accepts the substitution i→ ct(i) with probability mi,ct(i).

Learning phase for the user

U changes the preference vector: Πt+1 ← f
(
Πt, i, ct(i)

)
(f defined according to Eq. 3.1)

Learning phase for the coach

C changes its strategy: ct+1 ← g
(
ct, i, j

)
(see Section 3.4)

end

end
Algorithm 1: The two-player game between U and C

measurement and the very definition of behaviour quality. Considering the literature on

related problems to this question is of little help.

As stated in [29], evaluation in multi-stakeholder RS is still an open problem. In addition,

as presented in section 2.1.3 value-aware RS are often considering only immediate gain

instead of long-term metrics. It is noticeable that the value of items and the corresponding

notion of utility is, in essence, an indication of recommendation quality. Utility is then

used both for discrimination among possible recommendations and for evaluation of the

whole RS algorithm.

For its part, the teacher-student learning evaluation appears complex as several metrics

are necessary to encompass the diverse dimensions of performance in this framework (See

2.2.3.2). However, all classical metrics are based on the student’s performance on the

considered task. This is easy to determine when assuming the student is a reinforcement

learning agent performing a rewarded task. Thus in the case of coaching, it points out the

need for an evaluation of learner behaviour on the task to evaluate the coach properly.

So when considering approaches of the literature, the existing approaches involve a mea-

sure of the performance induced by the system at the user level (either the utility or the

user reward). Thus we propose a similar approach for coaching with a user-level measure

of performance.
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3.2.1. The concept of score

As presented in section 3.1.1, the user’s task in our proposed coaching framework is to

sequentially choose items among a set I.

Inspired by possible application domains of coaching, we propose to evaluate the user-level

performance through a score function distributed over the items, defined as follows:

S :

 I → R

i 7→ s(i)

It is noticeable that many problems can be modelled by such a score function. For

example, in healthy eating, one can associate a nutritional score with food items, while in

tourism recommendation systems, one can associate a carbon footprint with each possible

choice. In essence, such a score function can be considered as the utility of the possible

items regarding the pursued objective of coaching.

Given this formalization, and the fact that a U is characterized by the probability distri-

bution Πt over I, we can express the mean score value of Πt as:

V(Πt) =
∑
i∈I

πt(i) · s(i) (3.2)

The objective of the coaching strategy in this setting is to improve this mean value as

much as possible in the shortest possible time through recommendations of items by C

to U. That is to make the user U follow a trajectory in the space of preferences, i.e. the

space of the possible probability vectors Πt.

3.2.2. Coaching performance metrics

The introduced notion of score makes it possible to compute a metric of the user behaviour

quality: V . The problem we face now is to measure the performance of a given coaching

algorithm interacting with a given user on a task. As stated below, the metrics in the

multi-stakeholder RS literature are not well adapted to coaching as they do not consider

efficiently the long-term behaviour change of the user. On the other hand, metrics from

teacher-student learning literature are based on a comparison of students’ learning with

and without a teacher. However, in our proposed framework, the user U is not informed

of the score: we assume that he or she cannot judge by himself/herself the “quality” of
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items regarding the pursued objective of behaviour change. Otherwise, he/she would not

need the coach. Therefore he or she is not able to learn on his/her own how to maximize

it, as a reinforcement learning agent would, having no notion of reward. So it does not

make sense to compare a single user that does not modify his/her behaviour to a coached

one. A possible approach to overcome this could be to compare the behaviour of the

coached user to the optimal user behaviour given the score function S.

Consider the space of all possible probability vectors of the form Π, denoted P ⊂ [0, 1]I .

Given that space, we note Π⋆ the set of probability distributions in P that are associated

with the maximal value of V : Π⋆ = ArgMaxΠ∈P V(Π).
Let us note Π0 the starting preference vector of the user U. Given the characteristics of

each peculiar user, that is the acceptability matrix M and the learning rate λ defined in

the user model (3.1.3), he or she is potentially only able to reach a subspace of the total

space of preference vectors P when starting from Π0. For example, it may exist an item k

in I such that ∀ i ∈ I \{k} : mt(k, i) = 0, hence the incapacity for U to reach any vector

Πt where πt(k) > π0(k). We note the resulting subspace PU ⊆ P . As a consequence,

the set of vectors that maximize V(Π) and are reachable from Π0 may be different from

Π⋆. We note it Π⋆
U = ArgMaxΠ∈PU

V(Π). Given that, we propose the following metrics to

evaluate the performance of a coaching strategy:

1. The first considered metric stresses the level of performance that one wants to obtain

ηV(Π⋆
U) with η ∈ (0, 1) and measures the mean number of interactions that the coach

needs to guide the user towards this performance level: T η starting from Π0.

This can be seen as an adaptation of the time to threshold metric presented in

2.2.3.2. The threshold here is defined as a portion η of the optimal user behaviour

value. However, this metric suffers from some limitations. First, it is difficult to

evaluate Π⋆
U, the optimal user behaviour. Second, Π⋆

U depends by essence on Π0, M

and λ. Therefore it can be highly variable between users and may be more adapted

when comparing coaching algorithms on a single user rather than on a population.

2. A second approach is inspired on the notion of budget defined in the teacher-student

learning literature (see 2.2.3.1). Here, as U only learns when interacting with the

coach, we consider the budget T to be the total interaction time. A dual measure of

performance in this setting is the mean gain of performance VT = mean
(
V(ΠT ) −

V(Π0)
)
after T interactions. The mean here is taken from repeated episodes of T

interactions starting from Π0 since an episode stems from stochastic choices from
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the user.

3. Our third proposed approach is to consider a criterion based on the whole trajectory

in the preference vector space. This is typically the case for the metric based on

total reward proposed in the teacher-student learning literature (see 2.2.3.2). In our

setting, as U is not directly rewarded, we can consider, for instance, a cumulative

gain: G(T ) =
∑T

t=1

(
V(Πt)− V(Π0)

)
.

In the following, we will focus on the second criterion VT . It allows easy comparisons,

especially in the case of a real user having a limited number of interactions with the

system: as stated in [71], the notion of budget is of critical importance when interacting

with human agents having limited attention.

3.3. Analytical study of a simple case

In this section, we present a simplified coaching case. We propose an analytical study of

this case to raise the main issues of the recommendation problem faced by the coach. In

particular, we show how the optimal recommendation strategy of the coach depends on

the user characteristics.

3.3.1. Definition of the studied scenario

We consider an item set I composed of three elements:

I = {i1, i2, i3}

We define the associated score function S as:

S :



I → R

i1 7→ s(i1) = 5

i2 7→ s(i2) = 20

i1 7→ s(i1) = 50

We consider for the following user U initial choice vector:

Π0 = (1, 0, 0)⊤
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which means that U always chooses i1

The user acceptability matrix is denoted M and his or her learning rate is denoted λ:

M =

m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

 and λ ∈ [0, 1]

The environment of the studied coaching problem is depicted in figure 3.1.

m1,3  
m1,2 m2,3 

i1score(i1) = 5Π0(i1) = 1

i2score(i2) = 20Π0(i2) = 0
i3score(i3) = 50Π0(i3) = 0

Figure 3.1: Presentation of the studied simplified case at t = 0.

3.3.2. The problem of item recommendation

In this case, we assume that ∀(i, j) ∈ I2 mi,j > 0. Accordingly, one can compute the

optimal choice vector Π⋆
U of U and the associated expected score V(Π⋆

U). We have :

Π⋆
U = (0, 0, 1)⊤ and V(Π⋆

U) = 50

The coach’s problem in this setting is finding the best recommendation for each possible

proposal made by U. This problem can be reformulated as the problem of finding the

optimal recommendation strategy c⋆.

78



The best recommendation strategy in the presented case should lead the user from Π0 to

Π⋆
U. For both user proposals i2 and i3 the solution is trivial given the score function S:

c⋆(i2) = i3 and c⋆(i3) = i3. Conversely, the problem of finding the best recommendation

c⋆(i1) when U proposes i1 is not easy since two paths are possible towards the best item

i3.

Let us consider the performance associated with each possible recommendation:

1. The first possibility is c⋆(i1) = i1, i.e. for the coach not to make any recommenda-

tion. Given the considered learning model of U, this does not lead to any change in

the user preference vector. Thus it does not lead the user towards Π⋆
U.

2. The second possibility is that the coach recommends replacing i1 by i3, that is

c⋆(i1) = i3. This strategy can be qualified as the “direct path strategy” when

considering figure 3.1. The expected score of the preference vector of the user at

step t+ 1 regarding t is given by the following expression:

∀t ∈ T : E[πt+1(i1)] = (1−m1,3) πt(i1) + m1,3(1− λ) πt(i1)

= πt(i1) − m1,3 λπt(i1)

= πt(i1) (1−m1,3 λ)

Given that we can compute the expected score of the user preference vector at each

step:

∀t ∈ T : E(πt(i1)) = π0(i1) (1−m1,3λ)
t

In this case, the only items possibly considered by U are i1 and i3. Therefore we

have:

∀t ∈ {0, . . . , T} :


E[πt(i1)] = (1−m1,3λ)

t

E[πt(i2)] = 0

E[πt(i3)] = 1− (1−m1,3λ)
t

(3.3)

3. The third possibility for the coach is to let the user follow an “indirect path” to i3,

that is to recommend i1 → i2 when the user proposes i1 and i2 → i3 when the user
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proposes i2.

Following the same method we have :

E[πt(i1)] = π0(i1) (1−m1,2λ)
t

In addition :

E[πt+1(i2)] = πt(i2) + m1,2 λΠt(i1) − m2,3 λπt(i2)

= πt(i2) (1−m2,3 λ) + m1,2 λπt(i1)

which is the discrete version of the following differential equation:

d πt(i2)

dt
= − ln(1 − λm1,2)πt(i1) + ln(1 − λm2,3)πt(i2)

For which the solution is known:

πt(i2) = π0(i2) (1− λm2,3)
t +π0(i1)

− ln(1−m1,2 λ)
(
(1−m1,2 λ)

t − (1−m2,3 λ)
t
)

− ln(1−m2,3 λ) + ln(1−m1,2 λ)

As in this case π0(i2) = 0 , we finally have:

∀t ∈ {0, . . . , T} :


E[πt(i1)] = Π0(i1) (1−m1,2λ)

t = (1−m1,2λ)
t

E[πt(i2)] =
− ln(1−m1,2 λ)

(
(1−m1,2 λ)t−(1−m2,3 λ)t

)
− ln(1−m2,3 λ)+ln(1−m1,2 λ)

E[πt(i3)] = 1− E[πt(i1)]− E[πt(i2)]

(3.4)

As we can see, the three possibilities lead to different outcomes. The question for the coach

then is to choose the best possible recommendation strategy regarding its performance

metric VT . Given the computed preference vectors, we can notice that the respective

performance of the investigated recommendation strategies will depend on λ, T , m1,2,

m2,3 and m1,3. Let us consider the given instantiation of the substitutability matrix:
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T λc

10 1
20 ≈ 0.6028
50 ≈ 0.2615
100 ≈ 0.1346
1000 ≈ 0.0138

Table 3.1: λc values regarding T .

M =

1 0.15 0.1

0 1 0.2

0 0 1


We can then easily compute the difference between the performance of the two presented

strategies (Eq. 3.3 and Eq. 3.4). The optimal strategy, in this case, depends on λ, the

user learning rate, and T , the total number of interactions. Here it exits a critical value

λc for λ such that if λ > λc, the “indirect path” strategy is better regarding VT than the

“direct path” strategy.

In this case, we can see (table 3.1) that the higher T , the lower λc. Therefore an efficient

estimation of U parameters by C makes it possible to choose the best recommendation.

3.3.3. Conclusion

The analytical study of this simplified case raises some important questions for the design

of an efficient coaching algorithm.

First, it underlines the fact that the best recommendation strategy for the coach may be

non-myopic. In our case, depending on the characteristics of the user, the best recommen-

dation strategy through the optimum cannot be inferred from the direct expected score

gain. It exists cases (represented here by the “indirect path” strategy) where trying to

maximize the instantaneous expected score gain leads to sub-optimal recommendations.

Second, it emphasizes the importance for the coach to personalize its recommendation

to the user. Essentially, we have seen that the characteristics of a given user affect the

best possible recommendation strategy for this user. In the presented case, inferring

strategies was pretty straightforward, considering the small number of items and so, of

possible recommendation trajectories. In addition, we assumed that the coach is perfectly

informed about the user. Conversely, a coaching interaction in a realistic case involves
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User U

User U

Coach C

i1 iN

i1 ! i2
i1 ! i1 i1 ! iN

acceptsaccepts accepts
not 

accepts
not 

accepts

⇧

⇧0 = ⇧

⇧0 = fi1!i2(⇧) ⇧0 = fi1!iN
(⇧)

⇧0 = ⇧ ⇧0 = ⇧

Figure 3.2: A decision step faced by the coach. Following his/her preference Πt, the user
chooses one item, and then the coach must select a substitution, which, in turn, can be
accepted or rejected by the user. After this turn, the preference vector is updated.

a larger item set, thus a tremendously greater number of possible trajectories. It also

underlies a coach that is not a perfectly informed oracle and needs to learn the best

recommendation strategy from its interactions with the user, for example, by maintaining

an estimate of U’s characteristics.

The question of how to efficiently learn relevant recommendation strategies from the

interaction with the user is addressed in the next section.

3.4. The space of coaching strategies

The task of the coach, as we defined it is to suggest to a user U a substitution i → j

based on the user proposal i at each step, with the objective of leading U towards a better

(regarding the score function) behaviour. This includes the identity substitution i → i,

corresponding to a case where the coach is satisfied with the user’s choice and does not

make any recommendations.

Conversely to the simple case presented in section 3.3, in the general setting, the coach

has no access to the optimal preference vector of the user Π⋆
U. Indeed, computing Π⋆

U

necessitates a perfect knowledge of the user’s characteristics Π0, M and λ (see 3.2.2),

which is not assumed in the case of a realistic coaching interaction. Thus the coach has

to learn from its interactions with the user a recommendation strategy.
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We introduce V (Π), which represents the desirability that the user is in state Π from the

perspective of the coach who looks at long-term expected benefits if the coach follows the

optimal policy defined below by Equation 3.5. Then, for each possible choice of item i ∈ I

by U, the coach should choose the substitution i→ j⋆ such that:

j⋆ = ArgMax
j∈I

{
mi,j

[(
s(j)− s(i)

)
+ V

(
fi→j(Π)

)]
+ (1−mi,j)V (Π)

}
(3.5)

Now, the expected value V (Π) of all preference vectors Π are fixed point of the Bellman

equation that relates the updated evaluation Vt+1(Π) with the current evaluations of the

preference vectors Vt(Π
′) that may ensue a recommendation by the coach (see Figure 3.2).

Vt+1(Π) =
∑
i∈I

π(i) Max
j∈I

{
mi,j

[(
s(j)−s(i)

)
+ Vt

(
fi→j(Π)

)]
+ (1−mi,j)Vt(Π)

}
(3.6)

where fi→j(Π), the preference vector resulting from the acceptation of the suggestion

i→ j, is defined by Equation 3.1.

These equations require that the coach knows the matrix M = [mi,j] (1 ≤ i, j ≤ |I|) and
the current preference vector Π of the user, as well as the learning rate λ to compute

fi→j(Π). Thus the optimal choice criterion presented in Equation 3.5 is not directly

applicable in a scenario where we assume that the coach does not have prior knowledge

of the user at hand.

But from this optimal criterion, we can derive heuristic ones and the subsequent strategies.

To do so, simplifications in the optimal criterion are made, and/or factors are ignored.

Strategy Greedy Score (GS)

The simplest strategy for the coach is to ignore all the characteristics of the user and to

consider only the score function. That is to suggest at each interaction the substitution

i→ j associated with the highest score gain: s(j)− s(i).

j⋆ = ArgMax
j∈I

[
s(j)− s(i)

]
(3.7)

Strategy Greedy Expected Score (GES)

A second strategy takes into account the acceptability matrix M of the user but ignores

the possible changes in the preference vector
(
i.e. fi→j(Πt) = Πt

)
, which gives:
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j⋆ = ArgMax
j∈I

{
mi,j

[
s(j)− s(i)

]}
(3.8)

We call the corresponding strategy greedy-expected-score (GES) because it does not con-

sider rewards beyond the immediate one.

Strategy Greedy Acceptation (GA)

This strategy maximizes the probability of the user accepting i → j as long as the

corresponding change in score is positive or null: s(j)− s(i) ≥ 0. In this way, it is hoped

that the user changes his/her behaviour more easily and that, in the longer term, this will

overcome a lack of high gain in short term.

j⋆ = ArgMax
j∈I

{
mi,j |

(
s(j)− s(i)

)
≥ 0

}
(3.9)

Both the GA and the GES strategies maintain an estimate M̂ of the matrix M based

on the interactions with the user. More specifically, each element mi,j of the matrix is

evaluated using the following equation:

m̂t+1
i,j =


m̂t

i,j+1

ni,j
if the substitution i→ j is accepted

m̂t
i,j

ni,j
otherwise

with m̂t
i,j the current estimate of mi,j and ni,j the number of times the recommendation

i→ j has been proposed to the user.

All of the above strategies are myopic, in that they do not explicitly take into account the

gains that a substitution i → j can bring in the long term. They do not try to estimate

the values Vt(Π), a feat that indeed requires the exploration of the possible consequences

of the choice j to learn Vt(Π) (∀t).
We thus introduce a reinforcement learning (as defined in [59]) algorithm in order to assess

the merit of estimating longer-term gains when choosing a suggestion of substitution. This

type of approach has been popularised in recommender systems to tackle the sequential

nature of recommendation [117, 118].

Q-learning

The equation that evaluates the merit of suggesting j when the user has chosen i and

accepts the proposed substitution is:
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Q(i, j) ← (1− α)Q(i, j) + α
{(

s(j)− s(i)
)
+ γ Max

k∈I
Q(j, k)

}
(3.10)

where α controls the learning rate, and γ is a discount factor used to value short-term

gains more than longer-term ones.

If the user refuses the substitution (i→ j), the equation is reduced to:

Q(i, j) ← (1− α)Q(i, j) (3.11)

The Q values gradually reflect the long-term potential of the choices of substitutions.

When the user selects the item i, the coach suggests the item j⋆ according to:

j⋆ = ArgMax
j∈I

{
Q(i, j)

}
(3.12)

It is important to note that this strategy does not directly use knowledge of the acceptabil-

ity matrix M. On the one hand, this avoids the necessity to estimate it and is, therefore,

a more general approach to the coaching problem. On the other hand, this usually has

to be paid for by a longer learning phase.

Item-Based Collaborative Filtering strategy (IBCF)

A baseline strategy is the one used in a standard recommendation scenario: the item-based

collaborative filtering strategy [119]. In this approach, a similarity sim(·, ·) between the

items is precomputed using the expressed choices of the users (e.g. food item consump-

tion). Then, when the user selects an item i, the recommending system suggests the item

j⋆ according to equation:

j⋆ = ArgMax
j∈I

{ ∑
n∈I

(
sim(j, n) ∗Ru,n

)∑
n∈I sim(j, n)

}
(3.13)

where Ru,n is the rating of item n by user U (here, this rating is estimated by the con-

sumption frequency of n by U) and the similarity is computed as usual in recommender

systems ([119]).

Item-Based Collaborative Filtering strategy with score (IBCFs)

A natural question is whether a classical recommendation strategy, such as IBCF, could

be tweaked in order to make recommendations aimed at changing the behaviour of the

users. One simple way to do so is to modify Equation 3.13 to include the score gain

associated with a recommendation:
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j⋆ = ArgMax
j∈I

{ ∑
n∈I

(
sim(j, n) ∗Ru,n

)∑
n∈I sim(j, n)

∗
(
s(j)− s(i)

)}
(3.14)

In this way, IBCFs will tend to recommend to user U substitutions j in i → j that are

closed to the ones already consumed by U and that bring as much gain as possible.

In the next section, we propose to evaluate the presented strategies on the healthy food

recommendation problem.

3.5. Experimental evaluation

3.5.1. The Experimental Protocol

We propose to evaluate the coaching framework on the healthy food recommendation

task. In this setting, the coach’s objective is to accompany a user toward developing

healthier eating habits.

The experiments simulate interactions between the coach, using a given strategy, and users

characterised by their matrix M, a propensity to learn λ and a starting preference vector

Π0 over the available items. In order to have simulated users with realistic characteristics,

we derived the latter from real data in the nutrition field as explained below.

We considered different user profiles, different strategies for the coach, and different ini-

tialisation settings. In our experiments, the number of interactions was set to N = 2000

to measure each coaching strategy’s long-term trends. The results show that most effects

are already obtained after 500 interactions or less, which appears to be realistic for a

coaching scenario. All results are obtained from 200 simulations for each situation.

The coaching task we focus on in these experiments is based on the choice of one dessert

by users. Indeed, as it will be discussed in Chapter 4, the food recommendation task is

difficult because of the traditional organisation of food consumption in meals composed

of several items. By focusing on the dessert recommendation, we propose a task that

satisfies the simplifying assumption that the user only chooses one item at each step and

is yet applicable in a real-world scenario.
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3.5.2. The Nutritional Score

In this work, we assumed that a score could be assigned to each food item. For this, we

used the nutritional score designed by Rayner and colleagues [120]. This score is calculated

food item by food item, based on its composition, regarding a list of key nutrients. Thus

this score completely ignores the context of consumption and the consumption history

of a particular user. This type of score has been developed to compare the nutritional

quality of food items that fulfil a similar role in a diet. Therefore it fits our approach

to food recommendation, focused on desserts. However, as we will discuss in 4.5 other

nutritional scores may be better adapted when considering a broader coaching task, such

as promoting healthy eating at the diet level as a whole. In our case, we used a mapping

from each food item present in the INCA2 database to the nutrients registered in the

Ciqual food composition database1, to compute a score for each food item.

3.5.3. The Simulated Users

3.5.3.1 The INCA II database

The Individual and National Food Consumption Survey (INCA2) database provides a

snapshot of the food consumption habits of the population of metropolitan France gath-

ered between 2006 and 20072. It contains data about the meals consumed over a week by

4079 individuals.

From this population, we retained only the adults since children are not the primary target

for food coaching. Thus we considered only users that are 20 or older. This resulted in a

database containing the consumption of 2552 users and 365,621 registered meals.

As discussed in 3.5.1, we further focus on the choice of desserts among 267 possibilities.

In order to get a rather homogeneous set of users, we selected women (who represent more

than 80% of the respondents in the survey) over 20 years of age, yielding 1497 users.

3.5.3.2 Computing the initial preference vectors

After having selected the group of users we are interested in, we studied their consumption

habits. To do so, we extracted the reported consumption for each user over a week. Then

1 see https://ciqual.anses.fr
2 See https://www.anses.fr/en/content/anses-food-consumption-data-made-available-open-data
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we used the Rayner nutritional score, presented in 3.5.2, to compute an average nutritional

value for each user. Thus, we could split the 1497 users into two sub-groups: women with

“bad” nutritional habits (i.e. with an average score in the lower third among women),

and one with “good” habits (the top third).

For each of these groups, we considered the observed consumption frequencies as an

estimation of the real habits of the users. We then extracted the frequencies and used the

resulting vectors as the initial preference vectors Π0 of the simulated users.

3.5.3.3 Computing the matrix M of substitutability acceptance rates

For each of the sub-groups considered, a matrix M was estimated, representing the extent

to which the corresponding users were ready to accept to substitute one item with another.

We estimateM directly from the database of food consumptions by a set of users following

the proposition of [121]. Their hypothesis is that two items are highly substitutable if

they are consumed in similar contexts but not together (e.g., butter can be substituted

for margarine since they are consumed in similar contexts but usually not consumed

together).

Let us thus denote for an item i the context set Ci as the set of contexts in which i is a

substitutable item. If |Ci| is high, then i is substitutable in many contexts.

For two items i and j, the intersection of Ci and Cj: |Ci ∩ Cj| provides an estimate of

the number of contexts in which either i or j can be found. If |Ci ∩ Cj| is high, then i

and j are consumed in similar contexts. Denoting by Ai:j the set of contexts of i where j

appears:

Ai:j = {c ∈ Ci|j ∈ c} (3.15)

The cardinality of Ai:j denotes how j is associated with i.

Taking into account these considerations, the authors of [121] propose the following score

inspired by the Jaccard index:

mi,j =
|Ci ∩ Cj|

|Ci ∪ Cj|+ |Ai:j|+ |Aj:i|
(3.16)

The score equals 1 when i and j appear in exactly the same contexts and de facto Ai:j =

Aj:i = ∅. If i and j are never consumed in the same context, the score equals 0. The

higher |Ai:j|+ |Aj:i| is, the higher the association of i and j and the lesser the score mi,j.

Even though the INCA2 database represents a large survey, still uncommon in food con-

sumption studies, it is nonetheless limited in scope. As a result, the matrix M computed
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from it using Equation 3.16 is sparse and does not fully represent the true propensity of

users to accept suggestions of substitutions. In order to remedy this, we took into account

not only the score between items but also the score computed from the higher level cate-

gorization of food items in INCA2 (e.g., chocolate brownie belongs to the cakes category

and the pastries and cakes super-category). We added the score computed for the items

to the score computed for their category and super-category to obtain the substitutability

from one item to another.

3.5.3.4 Learning rates of the simulated users

As the INCA2 database reports consumption from the user on their own, and without the

intervention of any recommendation, we could not infer the learning rate λ of the user

from the data.

Therefore we propose considering three different values for λ, representing three possible

levels of user compliance. The first considered value is λ = 0.2. We found this value to

be reasonably representative of the change of habits under the suggestions of a coach.

In order to investigate the effect of λ on the results of the coaching interaction, we also

simulated interactions with λ = 0.5 and λ = 0.9.

3.5.4. Tested strategies

We propose here to test the strategies presented in Section 3.4. Given the coaching

scenario and the proposed recommendation strategies, several questions arise.

1. What can achieve a coach which does not take into account the characteristics of

the user? Do these types of strategies fare significantly worse than strategies that

adapt to the users? One can distinguish here strategies like IBCF and IBCFs that

do take into account the past consumption of the user but nothing else about U,

and strategies like GA and GES and their variants that maintain an estimate of the

acceptability matrix M of U.

2. Considering strategies that explicitly take into account (an estimate of) the matrix

M and possibly the learning rate λ of the user, what are the best ones? And what

is the sensitivity of the performance attained in regard to the quality of the initial

estimation of these characteristics? Here, we carried out experiments with simulated

users with various profiles and with different initial estimates of M.
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3. Finally, how myopic strategies, like GA and GES, that try to maximize only the

immediate gain, fare against non-myopic strategies like Q-learning, but which do

not explicitly maintain an estimate of the characteristics of the users? We may

expect that the second will prevail but at the price of lots of training. Do the

experiments confirm this?

To answer these questions, we consider, in addition to the strategies proposed in 3.4,

informed versions of GA, GES and trained versions of QL. Indeed, if we are interested in

the efficiency of the proposed methods to learn efficient strategies from user interactions,

we also want to test the relative efficiency of these strategies once the coach as completed

its learning.

In this context, we considered fully informed versions of the GA and GES strategies: iGA

and iGES who have a perfect knowledge of M and do not have to learn it.

We also considered two additional strategies: tQL-5000 and tQL-10000, which have been

respectively pre-trained for N ′ = 5000 and N ′ = 10000 episodes with a prototypical

user as if they had benefited from past interactions with many more users, which would

likely be the case for a realistic coach. They are then used as coaching strategies in our

experiments

The main characteristics of the investigated coaching strategies are summed up in Table

3.2.

In the following, we especially look at (i) the mean gain in performance with respect

to the number of interactions, (ii) the recommendation rate of the coach: it should be

decreasing after a while when the user does not have anything more to learn from the

coach, or he/she does not accept his/her suggestions, and (iii) the acceptance rate of the

suggestions by the user: it should increase as the coach learns the user’s characteristics.

3.5.5. The Results and their Analysis

3.5.5.1 Overall results

(see Table 3.3 and Figure 3.3)

Table 3.3 provides a comparison of the benefits for the user of using the various coaching

strategies when interacting 2000 times. The mean value of V(Πt) for 0 ≤ t ≤ T and the

standard deviation for each situation are reported for 200 simulations. Several conclusions

appear. First, the potential gains for the users are a function of the quality of the starting
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√
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√

IBCFs
√ √

- -
√

GS
√

- - -
√

GA inc.
√ √

-
√

iGA -
√ √ √ √

GES
√ √ √

-
√

iGES
√ √ √ √ √

Q-Learning
√

indirectly - - -

tQ-Learning
√

indirectly - pre-trained -

Table 3.2: Main characteristics of the coach’s strategies.

Figure 3.3: Comparison of V(Πt), (0 ≤ t ≤ T = 2000) for two informed strategies (iGA
and iGES) and five uninformed strategies (GA, GES, IBCFs, GS and QL) for both Bad
tier (left) and Good tier (right) prototype users. The colored area around the curves
represent the 95% confidence interval.
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Figure 3.4: Comparison over 2000 interactions of V(Πt), (0 ≤ t ≤ T = 2000) (left), the
recommendation rate (center) and the acceptance rate (right) for GES, Q-Learning, iGES
and trained Q-Learning on 5,000 and 10,000 steps, for Bad tier users. The colored area
around the curves represent the 95% confidence interval.

habit. As can be expected, the higher the initial quality (e.g. Good tier of the consumers),

the lower the potential gain (see also Figure 3.3). Second, non-guided strategies, like

IBCF, which does not take into account the nutritional score, cannot guide the user

towards better habits. Even IBCFs, which does take into account the nutritional score,

is inefficient because it does not consider the acceptability of substitutions by the user.

GS, which only looks at the potential score’s gain, is also very inefficient. Conversely,

GA, which only looks at acceptability and suggests only positive substitutions, but does

not consider the value of these substitutions, is surprisingly good and even better than

GES on the Bad tier consumers. One reason may be that it tends to favour any positive

move of the user, and this may accelerate changes of behaviour in the right direction as

compared with GES, which tends to select the best suggestions, perhaps at the cost of

their acceptability. On Good tier consumers, the starting preference vector of the users

is better, and GES overcomes GA. Finally, Q-learning is good if it has benefited from

previous training (see tQL-10000) and poor otherwise, which is not surprising given that

Q-Learning starts with no explicit knowledge about the user. Most remarkably, tQL-

10000 outperforms even iGES, which starts with perfect knowledge of the matrix M of

the user. This is due to the non-myopic character of Q-Learning.

3.5.5.2 The behavior of the strategies

(see Figures 3.3 and 3.4)
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Consumer prototype GES GA IBCFs IBCF GS QL iGES tQL-10000
Good tier µ 2.91 2.57 1.56 1.67 0.56 -0.27 4.38 4.49

σ 1.57 1.42 1.63 1.64 1.50 1.40 1.14 1.04
Bad tier µ 3.24 3.32 1.50 1.53 0.36 0.64 7.55 8.25

σ 3.11 2.48 2.80 2.86 2.84 2.41 2.29 2.46

Table 3.3: Table of the mean µ and standard deviation σ of the expected score (Eq. 3.2):
V(ΠT=2000) − V(Π0), for Good tier and Bad tier consumers depending on the coaching
strategy.

(1) Regarding the recommendation rate (see Figure 3.4), one can note that the worst

strategies: QL and GES, which both have to explore possible recommendations in order

to learn from the user, keep a high recommendation rate, whereas the better strategies

iGES, tQL-5000 and tQL-10000 tend to quickly not to have to make recommendations

since the user is rapidly improving his/her behaviour.

(2) Regarding the acceptance rate by the users (see Figure 3.4), it is interesting to see that

iGES, which is fully informed about the matrix M, and tQL-5000 and tQL-10000, which

have been trained, have the highest acceptance rate by far. And they tend to keep it that

way during the 2000 iterations, while the poorly informed strategies GES and QL make

recommendations that are rarely followed by the user. It may appear that iGES, with its

highest acceptance rate than tQL-2000 and tQL-10000, is better. But this is an illusion.

Indeed iGES makes less recommendations, and the fewer remaining recommendations are

well accepted by the users since iGES knows M perfectly. Conversely, the strategies tQL-

5000 and tQL-10000 evolve over time, and they explore a larger space of choices by the

users. Hence the recommendation rate stays high, but because these strategies do not have

a perfect knowledge of M, the acceptance rate of the more adventurous recommendations

falls down more rapidly than iGES.

3.5.5.3 Influence of having prior knowledge of the user

(see Table 3.3 and Figures 3.3 and 3.4)

One important question is whether prior knowledge by the coach about the user brings

a significant gain in the user’s performance. Experimental results show that it is very

beneficial to have a good prior knowledge of the user’s characteristics. While it can be

expected that the adaptive strategies GA and GES tend to the performances of iGA and

iGES for a large number of interactions, for less than 2000 interactions, the difference in

performance is striking. The same effect can be seen for Q-learning algorithms. The pre-
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Consumer prototype GES GA IBCFs IBCF GS QL iGES tQL-10000
Good tier µ 3.50 3.40 1.97 2.08 0.99 -0.67 4.67 5.22

σ 1.56 1.39 1.77 1.86 1.71 1.44 1.12 0.84
Bad tier µ 4.38 4.80 2.24 2.50 0.57 0.56 8.02 9.57

σ 3.37 2.59 3.29 3.06 2.97 2.54 2.33 2.58

Table 3.4: Table of the mean µ and standard deviation σ of the expected score :
V(ΠT=2000) − V(Π0), for Good tier and Bad tier consumers with learning rate λ = 0.5
depending on the coaching strategy.

trained tQ-Learning algorithms show increasing levels of performance when the number

of interactions in pre-training goes from 5,000 steps to 10,000 steps.

It must be noticed that in a realistic setting, a digital coach will benefit from interactions

with thousands of users simultaneously, which will provide knowledge about prototypi-

cal users and will thus result in high-quality prior knowledge. It can thus be expected

that the performances obtained will tend to the higher end of the spectrum of possible

performances.

3.5.5.4 Myopic vs. non myopic strategies

(see Figure 3.4)

It is expected that non-myopic strategies, like Q-Learning, outperform myopic strategies.

The question is by how much. Our results confirm the advantage of these strategies.

In the case of Q-learning, pre-training permits significantly overcoming the performance

obtained with iGES, which has perfect knowledge about the matrix M of the user. This is

a remarkable feat, given the high level of performance exhibited by iGES. In the context

of a digital coach, these results advocate the use of reinforcement learning algorithms.

3.5.5.5 Dependence of the results over λ

Table 3.4 and figure 3.5 present results for λ = 0.5, while table 3.5 figure 3.6 present

results for λ = 0.9. Table 3.4 and Table 3.5 report the mean value of V(ΠT )−V(Π0) and

the standard deviation for 200 simulations and T = 2000, respectively for λ = 0.5 and

λ = 0.9. The results obtained, compared with results for λ = 0.2 (Table 3.3), lead to

some remarks.

First, it is noticeable that for every strategy other than uninformed Q-learning, a higher

user learning rate leads to better performance. This is not surprising, considering that
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Figure 3.5: Comparison over 2000 interactions of V(Πt), (0 ≤ t ≤ T = 2000), the
recommendation rate and the acceptance rate for GES, Q-Learning, iGES and trained
Q-Learning on 5,000 and 10,000 steps, for Bad tier users with learning rate λ = 0.5. The
colored area around the curves represent the 95% confidence interval.

Consumer prototype GES GA IBCFs IBCF GS QL iGES tQL-10000
Good tier µ 4.20 4.39 2.05 2.40 1.41 -1.40 4.82 5.83

σ 1.70 1.38 2.56 2.63 2.12 2.20 1.12 0.80
Bad tier µ 5.94 6.67 2.50 2.83 0.86 0.82 8.19 10.66

σ 4.19 3.20 3.62 3.97 3.29 2.86 2.33 2.79

Table 3.5: Table of the mean µ and standard deviation σ of the expected score :
V(ΠT=2000) − V(Π0), for Good tier and Bad tier consumers with learning rate λ = 0.9
depending on the coaching strategy.

Figure 3.6: Comparison over 2000 interactions of V(Πt), (0 ≤ t ≤ T = 2000), the
recommendation rate and the acceptance rate for GES, Q-Learning, iGES and trained
Q-Learning on 5,000 and 10,000 steps, for Bad tier users with learning rate λ = 0.9. The
colored area around the curves represent the 95% confidence interval.
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a higher λ leads to faster learning from the user, allowing him/her to perform more

important behaviour changes in the same time period T . While most strategies are able

to quickly adapt and make useful recommendations, Q-learning, which needs much more

exploration, leads the user to even worst behaviour when facing good-tier users.

Second, except for GA, which appears to be slightly better than GES on good tier users

with λ = 0.9, the relative performance of strategies is mainly maintained between set-

ups. Therefore, we can conclude that the strategies’ performance is robust to λ. This

is a noticeable result, as we have shown in Section 3.3 that the value of λ can affect the

relative performance of recommendation strategies. In the investigated case of dessert

recommendation, however, it appears that the value of λ has little effect on the relative

performance of the tested strategies.

Third, regarding the standard deviation, one can note that the higher λ, the greater

the uncertainty. It is also noticeable that this effect is observable only for uninformed

strategies (GES, GA, IBCFs, IBCF, GS and QL) but not for pre-informed strategies (iGES

and tQL-10000). This can be explained by the fact that, for users with high values of λ, an

accepted recommendation will have much more impact on V(Πt). In fact, as they modify

more rapidly their habits, an accepted recommendation will lead to greater changes in Πt,

and mechanically on V(Πt) given that the latter is an expected gain calculated from Πt.

While this will lead to low consequences on pre-informed strategies that propose accurate

recommendations, the effect is much more significant on uninformed strategies because, in

these cases, the coach is still learning and exploring and so may propose a wider diversity

of items with different score values.

Regarding V(Πt) on figure 3.4, figure 3.5 and figure 3.6, one can note that the final

performance of iGES is nearly the same for the three investigated values of λ. However,

an higher learning rate leads to faster convergence. On the other hand, results for both tQ-

learning-5000 and tQ-learning-10000 depend on λ and show that the higher λ, the higher

the final performance, which indicates that the maximum performance of tQ-learning is

not reached yet. This is confirmed by the curves of the recommendation rate, which stays

high even for λ = 0.9. These results confirm the advantage of non-myopic strategies in

finding alternative trajectories in the space of probability vectors Πt, preventing the user

from getting stuck in a non-improvable behaviour.
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3.6. Conclusion

In this chapter, we presented our approach to the problem of recommendation for be-

haviour change. We proposed a framework we call the coaching scenario, where we model

the recommendation problem as an iterated two-player game. In this context, the coach

agent proposes a recommendation in reaction to the user’s proposals, and by suggesting

substitutions to the user’s choices, allows the latter to modify his habits and possibly

form new ones.

We introduced the notion of trajectory in the space of user habits and showed the speci-

ficity of the related recommendation problem. In particular, we demonstrated in a simple

case the importance of personalisation in recommendations and the necessity to consider

non-myopic strategies.

From the formal study of the coaching framework, we proposed an optimal recommen-

dation criterion and derived several heuristic recommendation strategies from it. We

proposed to test these strategies to coach users simulated from real-world consumption

data on the problem of making healthier dietary choices. These experiments have shown

the interest of non-myopic coaching strategies in this application case, as well as the

importance of having prior knowledge of the user for the coach to be efficient.

These results prove that the coaching framework is efficient in elaborating recommenda-

tions for behaviour change. Moreover, they show that the framework could theoretically

be applied to the problem of healthy eating promotion. However, as we focused on sim-

ulated users, the question of the real-world feasibility of such recommendations is still to

be explored. We address this question in the next chapter.
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4. Coaching in the healthy food

recommendation context

The problem of healthy eating, and in particular the need for a global shift towards health-

ier diets, has been highlighted as a major issue of our time [122]. Indeed, according to the

authors, unhealthy diets “are the largest global burden of disease, and pose a greater risk

to morbidity and mortality than unsafe sex, alcohol, drug and tobacco use combined”.

This situation calls for the development of effective and reliable solutions to inducing

changes in dietary behaviour. On the one hand, such changes may be difficult, as eating

habits are known to be firmly rooted [123]. On the other hand, over the last decades,

another behaviour has gradually become rooted in our daily lives: the increasingly fre-

quent and ubiquitous use of technology. In particular, the widespread use of the internet

and smartphones has generalised the interactions with so-called information technologies.

Given this, a possible room to tackle the stake of shifting towards healthier diets could

be to use these information technologies in a perspective of behaviour change.

In the following chapter, we investigate how recommender systems, and more particularly

coaching systems, could be used to induce changes in eating behaviours. In 4.1 we present

related works on healthy food recommendation and their approach to the problem. In

4.2 we propose to consider the problem of healthy food recommendation as a coaching

problem. In 4.3, we present the problem of cold-start and its specificity in the case of

the coaching approach. We then propose a method to tackle this problem and evaluate

it on real users. In 4.4, we discuss the design of a coaching system in the real-world

and investigate its effect on the acceptability of recommendations. In 4.5, we look at the

proposed notion of score in the coaching framework against the existing nutritional scores

in the food science literature. Finally, Section 4.6 concludes.

4.1. Healthy food recommendation: an overview

With the development of information technologies and the widespread use of smartphones,

many possibilities appeared for people to monitor their food consumption and find infor-
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Figure 4.1: Number of both journal papers and conference papers published on the two
last decades on food recommender systems and healthy food recommender systems, in
the computer science field. Data comes from the Scopus database [129].

mation on food composition or new recipes. In particular, the growth of online recipe

databases such as Food.com [124], Allrecipes.com [125], or Epicurious.com [126] has made

readily available a wealth of food and recipe knowledge from diverse cultures around the

world. This huge amount of information raises a well-known issue in information retrieval

literature, the so-called information overload problem: it may be difficult for one to find

an adapted recipe or food item corresponding to one’s preferences and needs. A classical

solution to address this problem is the use of Recommender Systems. Thus, the devel-

opment of food recommender systems largely gained in interest over the last decade (see

Figure 4.1).

But as we evoked, there are major stakes to be addressed when considering the eating

behaviour of individuals, given its importance on health and disease prevention. Never-

theless, these issues are not ignored by individual consumers. Indeed, studies have shown

the importance of healthiness (and particularly perceived healthiness) as a determinant of

food choice [127, 128]. This opens the door for potential personal interventions promoting

healthier eating habits.

Food recommender systems appear as an interesting approach when designing such in-

tervention systems. Indeed, their intrinsic use of personalisation makes them particularly

appropriate to assist people when navigating across the vast amount of available data,

99



helping them make satisfying and healthier food choices. In addition, their known capac-

ity to let their users discover new interests [130, 131] made them potentially suitable in

addressing the problem of inducing a shift in the user diets towards healthier ones. Thus,

in recent years, research on how to encompass both user preferences and health consid-

erations has emerged as a sub-field of the food recommender systems field. As presented

in Figure 4.1, a growing body of literature is interested in the design of healthy food rec-

ommender systems. In this section, we provide a general overview of existing approaches

and their results.

4.1.1. Algorithms

The first way to categorise the research work on healthy food recommender systems (RS)

is to compare how the existing approaches compute the recommendations and what they

take into account. That is what algorithm is used to compute the recommendation. The

work in this area is very diverse, so one can find a large set of possible algorithms. Here

we present only the most prominent approaches.

4.1.1.1 Collaborative Filtering

One of the main algorithmic approaches for healthy food recommendation is collaborative

filtering. As presented in Section 2.1, collaborative filtering profits from data on the

interest of numerous users to infer the possible suitability of a given recommendation to

a given user. Collaborative filtering has been used for more than a decade in the healthy

food recommendation problem [132].

For example, in order to account for the specificity of the food domain, the authors

of [133] proposed a method of collaborative filtering where the similarity between users

is computed by considering their health status rather than being based only on their

preferences. By making groups of similar body mass index (BMI), age, weight and other

user features, the problem of ratings-matrix sparsity is addressed, and the authors show

there were able to make personalized healthy menu recommendations. However, the

recommendations were only personalized through the prism of healthiness and did not

consider the users’ personal tastes.
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4.1.1.2 Content based recommendation

Similarly to collaborative filtering, content-based methods are one of the most classical ap-

proaches of the RS literature. They naturally apply to recipe recommendations. Indeed,

one approach frequently encountered in the literature is to consider the food items com-

posing a recipe as its features. Given the organization of data in online recipe databases,

this approach is pretty straightforward. For example, [134] proposes a content-based ap-

proach to estimate the interest of users from rated recipes. However, given the nature

of food choice, expressing interest in terms of ratings may be less natural than for other

goods. Moreover, the repeated nature of food choices provides extra information. Fol-

lowing this idea, authors of [135] propose to evaluate the interest of users in food items

in terms of consumption frequencies. Another approach to content-based recommenda-

tion is referred to in the literature as case-based recommendation. Under this paradigm,

the evaluation of a given choice is made regarding additional data, such as the context

of consumption or personal food restrictions of the user. This approach has proven to

be efficient in specific cases, such as recommending food for diabetic users [136]. This

is particularly adapted to food recommendation, as the determinant of food choice are

numerous and encompass diverse notions of context.

4.1.1.3 Hybrid recommendation

Finally, the most common approaches when considering healthy food recommendations

are hybrid ones, combining collaborative filtering and content-based methods. Indeed,

content-based recommendations are particularly adapted to food recommendation, given

the form of the food data available and the determinants of food choice. However, it suffers

from the sparsity of the observations, given the tremendous diversity of food items and,

therefore, the exponential number of recipes (i.e. combinations). Given that, collaborative

filtering uses the power of the community to infer the interest of users on unknown items

and thus can help to reduce the sparsity of the data. Hybrid recommendations can also

profit from other approaches we will not focus on here, such as demographic or location

filtering. For an in-depth review of recommendation algorithms for food RS, refer to [137].
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4.1.2. User modelling

The problem of data acquisition is core in the food RS domain. Indeed, in contrast to

other recommendation domains, the user’s actual behaviour is not performed online but

in the natural world. This poses major questions about the monitoring of the actual user

activity. If a video RS can easily access information such as watch time, the actual food

consumed by a given user cannot be directly observed by the recommender.

Given that, several approaches were developed to monitor user consumptions and interests

that are specific to food recommendations:

• Explicit user feedback is one of the most represented monitoring approaches and

is not specific to food recommendation. In this setting, the user directly informs the

system of his behaviour regarding the recommendation, either by just confirming

the consumption or by rating it. This is commonly used in recipe recommendation,

which is the closer food recommendation setting to other classical recommendation

setups.

• Another commonly used approach is to rely on questionnaires on users’ tastes.

The idea is to build a user profile by using the answers of a given user to a set of

questions on his or her eating habits. For example, [138] developed a food frequency

questionnaire methodology to infer users’ interests.

• Food journaling consists in asking the users to log their daily food consumption.

By doing so, the system is able to follow the evolution of eating behaviour and infer

users’ preferences and tastes. Different forms of journaling exist, from ingredients

writing [139] to meal photographing [140]. However, food journaling necessitates

important user engagement. Moreover, it requires the system to be able to treat

and interpret the collected data.

• In [141] the authors propose a method based on image recognition. By comput-

ing a similarity measure between meal photos, they are able to infer actual meal

similarity. In [142], the authors use image recognition to deduce the food intake of

users.

• Other methods based on tracking consumption by using sensors exist and have

gained popularity in recent years with the development of the internet of things. For
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example, in [143], the authors propose a framework to make food recommendations

by considering the available food items in the fridge, which are detected by sensors.

To summarize, we can see that even if different approaches exist to monitor user be-

haviour in food RS, they are all engaging for the user. As such, experiments on real users

necessitate motivated subjects, which is a prerequisite to the coaching approach.

4.1.3. Approaches

One of the main differences in existing healthy food RS is their approach to the recommen-

dation task: what they recommend to users and how they communicate the recommen-

dation to them. Given the recommendation objective (following daily intake guidelines,

limiting obesity risk, managing diseases, etc.), diverse approaches exist and are explored

in the literature. We present here the major ones.

4.1.3.1 Full diet recommendation

The first existing approach in the literature is to directly recommend a full diet. One can

also refer to this type of recommendation as menu planning. The aim of this approach

is to provide the user with a given planning over a given number of days to ensure the

quality of the diet. Indeed, some works have shown the theoretical interest of people in

healthy eating, but in practice, it remains a challenge for many people. One highlighted

reason for that inconsistency is the difficulty for people to combine planning for a tasty

and healthy menu and the rush of everyday life. Considering that setting, the goal of

menu planning recommender systems is to lighten the organisation of a satisfactory meal

plan by proposing suggestions that encompass the preferences and needs of their users.

For example, in [144], the author proposes a framework to make recommendations for

a full week of food consumption to fulfil the dietary needs of elderly people and avoid

malnutrition. To do so, the presented method relies on a hybrid recommendation ap-

proach, combining collaborative filtering and content-based filtering. The collaborative

part accounts for the tastes and preferences of the users, while the content-based part

focuses on other aspects of the considered recipes, such as dietary information or prepa-

ration complexity. These two aspects of recommendation are then combined using a

constraint-satisfaction approach.

A more recent work on meal planning RS is the article of Caldeira et al. [145]. The
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authors present a system whose goal is to recommend a set of meals depending on the

available food in the user pantry. In contrast to [144], the system’s focus is not on a

given number of planned meals but on the maximum coverage of the accessible items.

Thus, the size of the menu proposed by the system (i.e. the number of recommended

meals) will depend on the user’s pantry. The proposed approach provides the user with

a list of meals that fulfil the requirements in proteins, carbohydrates and fat, use the

available food items, and maximise a given notion of harmony, representing how well the

food items of the recipe match with each other. To produce such recommendations, the

authors propose a Pareto optimisation approach using a state-of-the-art algorithm. They

show on real-world data that their method generates recommendations that ensure good

pantry coverage and harmony while fulfilling dietary needs in carbohydrates, proteins and

fat.

Although this is an interesting approach, allowing the system to consider the interaction

between recommended items and dietary needs over a given period of time, meal planning

recommendations can be too compelling for the user. Indeed, it necessitates a particular

organisation and may limit the user in his/her choices.

4.1.3.2 Recipe recommendation

Another widely spread approach to the healthy food recommendation problem is recipe

recommendation. The rapid growth of online recipe databases has essentially facilitated

access to huge catalogues of recipes, accompanied by descriptions and a large amount

of metadata. In this context, recipes can be seen as documents in the sense of textual

information, as in news or articles. Thus, the recipe recommendation problem can be

considered analogous to the extensively studied problem of news and articles recommen-

dation. This, combined with the stakes around healthy eating and food recommendation,

led to a great interest in the recommender system field for the task of healthy recipe

recommendation.

Given the proximity between recipe recommendations and news recommendations, a clas-

sical approach is to make recommendations to a user navigating recipe websites. In this

setting, recommendations can take the form of a “recommended for you” list. For ex-

ample, the RS presented in [146] proposes to the user a list of recommended recipes,

regarding both its interests and the healthiness of the considered recipes. The authors

show that their developed system is able to make acceptable recommendations. However,

they underlined the fact that healthy recipe recommendation is much more efficient when
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addressed to users already interested in healthy eating. The same approach is used in

[147]: the user is provided with a list of recommended recipes not evaluated yet.

On another side, the system presented in [148] proposes to substitute recipes with health-

ier ones. By taking advantage of the numerous recipes on Allrecipes.com [125], the system

makes recommendations in the form of healthier alternatives to the recipe currently in-

vestigated by the user. By doing so, the presented work shows that it is possible to nudge

a user towards healthier recipes using RS.

4.1.3.3 Joint food recommendation

When considering full diet or recipe recommendations, the user is expected to follow the

recommendation strictly, and the recommendation is built on the inferred interests of the

user. Another paradigm is for the system to build the recommendation jointly with the

user. Indeed, by using the interaction with their users, this type of system can produce

recommendations that are truly personalised and adapted to the current context of the

user. Regarding whether the user or the system initiates the interaction, several methods

for joint recommendation can be considered:

• Recipe critiquing. In the recipe critiquing setting, recommendations are full

recipes, as in classic recipe recommendations. However, the user contributes to the

final recommendation by proposing modifications of the recommended recipe. For

example, in [149], the user is first provided with a primary recommendation taking

in account healthiness, user preferences and food items indicated as available by

the user. Then he or she may criticise the recommendation, for instance, informing

the system that the recommended recipe is too spicy. The system then reevaluates

the possible recommendations and makes a new recommendation that takes into

account the expressed critics. A similar approach is presented in [150].

• Food substitution recommendation. Reciprocally to recipe critiquing, in the

food substitution recommendation setting, the system recommendation is made in

reaction to a choice of the user. In this approach, the system should be able to

recommend to a user healthier substitutes for a given food item. This idea is in-

vestigated in [151], where the authors propose a system that recommends healthier

substitutes extracted from a food knowledge graph representing the existing rela-

tions between food items. However, their approach is limited in that it does not

take into account any notion of personal tastes. The focus of the study is on finding
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functional substitutes that better fill the daily recommended intake in macro and

micronutrients. Finding substitutes for food items has been of interest in recent

years. For example, [152] or [121] present methods to extract substitutability from

consumption data. Although not directly proposing food RS methods, these works

evoke healthy recommendations as a future research goal.

• Conversational recommenders. Conversational RS, also referred to as chat-

bots, have largely gained in popularity in recent years. In particular, they have

become increasingly used for health recommendation [153]. The idea of conversa-

tional RS is to let the user interact with the system in natural language, specifying

his or her needs and expectations. Given the information furnished by the user, the

system may either ask for clarification or make a recommendation. Answers given

to the system questions are used to filter the recommendation space and to find an

appropriate recommendation for the user. Like in critiquing, the user may react and

ask for another recommendation. This methodology is used to nudge users towards

healthy recipes in [154]. The presented system is able to interact with the user in

natural language to propose healthy recipes and to explain the trade-offs between

the different proposed alternatives. In addition to natural language, the work pre-

sented in [155] proposes to consider images and nutritional labels to further inform

the user on the recommended recipes. The authors demonstrate the interest of such

supplementary information when their system interacts with real users. Even the

nutritional objectives can be chosen in interaction with the user. In [156], the user

can specify his or her objectives, and the system can recommend recipes to fulfil

these objectives.

4.1.4. Conclusion

To conclude, we can notice that the problem of healthy recommendations has increasingly

gained in interest in the recent years. Many methods and algorithms exist, mainly derived

from classical RS methods. The formalism of multi-stakeholder RS presented in Section

2.1.2 is surprisingly absent in the literature. The basic notion of healthiness taken into

account in the literature is diverse, and no clear consensus appears on the best approach.

Although an approach like full diet recommendations can guarantee an actual healthy

diet, the impact of healthy recipe recommendations or joint food recommendations on

the quality of a diet is questionable. Moreover, many works of literature underline the
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importance of taking into account the long terms effects of healthy food RS [154, 147],

but this issue remains largely unaddressed. Finally, suggestions to change eating habits

in the long run are considered an essential yet unaddressed challenge of healthy food

recommendation [157]. This opens room for a system focused on habit change and long-

term, sustainable modification of the user’s eating behaviour.

4.2. The problem of food recommendation as

a coaching problem

We propose to address the problem of healthy food recommendation as a coaching problem

defined in Chapter 3. Indeed, the presented framework appears to be well adapted to the

challenges and specificity of the nutrition field. First, the coaching framework is designed

to accompany users in a behaviour change process and is focused on the long term. In this

sense, it appears to efficiently match one major stake of healthy food recommendation:

inducing a shift in people’s diets and eating habits. Second, the framework allows a

high-level personalisation, which is identified as a key factor in food recommendation.

Moreover, the hypothesis of a coach knowing the actual value of the recommended items

interacting with an uninformed user makes sense in nutrition. On the one hand, it exists

nutritional scores that can be computed by an automated coach, as we discuss in 4.5.

On the other hand, users may have an intuition of food healthiness, but the perceived

healthiness can be misleading [158]. The scenario of repeated interaction is also well

adapted to food choice, as it is a daily task, highly determined by one’s personal habits

[123].

Given that, our proposed model of the healthy food recommendation task is the following:

• Items are individual food items composing a meal. In this sense, we consider the

recommendation task of suggesting intra-meal changes, that is, changes at an inter-

mediate level between full meal recommendation and ingredient recommendation.

Several considerations justify this choice. First, it meets the central idea of coaching,

which is to build the recommendation on the user proposal: a complete meal sub-

stitution is a substantial change, and the user may feel less involved and considered

in the recommendation process. Second, conversely to the ingredient-level recom-

mendation, it can be applied in a broader context and not only in home cooking. In

a refectory or a restaurant, for example, people can change their choice of starter or
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dessert, but they cannot change the proposed recipes. Finally, substitutions at the

ingredients level can be delicate, as some ingredients can be substituted in a given

recipe but not in another one.

• Users are individual consumers willing to change their eating behaviour towards

a healthier one. The coaching system models their habits through a choice vector

over the set of food items and their acceptability of suggested substitutions through

a substitutability matrix. The initialization of this matrix is discussed in Section

4.3.

• The score function is a nutritional score function measuring the healthiness of

users’ eating behaviours. It exists different nutritional scores, some of which are

discussed in Section 4.5. For example, a possible one is the score of Rayner et al.

discussed in Section 3.5.2, measuring individual food items’ healthiness based on

their macronutrient composition.

In the remainder of this chapter, we consider the presented problem of healthy eating

coaching and investigate its real-world applicability. In particular, we explore some prac-

tical issues by conducting real-world experiments.

4.3. The cold-start problem

4.3.1. Introduction

When considering the application of the coaching method for real-world food recommen-

dation, the first question that appears is a classical issue in RS literature, known as

the cold-start problem. Cold-start is a problem due to the sparsity of data available for

the recommendation. The key issue is to ensure a good quality of recommendation (i.e.

recommendations ensuring a good level of performance when regarding the considered

evaluation metrics) even with little data.

There are three types of cold-start problems regarding what type of data is too sparse:

recommendations for new users, recommendations for new items, and recommendations

for new items to new users [159].

In the case of coaching, the system is expected to learn from its interactions with the user a

recommendation strategy to improve eating habits regarding a nutritional score function.
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Moreover, the recommendations take the form of a suggestion of substitution for one

item with another. All of the strategies investigated in Section 3.4 evaluate the possible

substitutions using the given score function, the user characteristics or a combination of

both. Thus, there are two possible sources of cold-start : on the one hand, insufficient

data relative to items, leading to an impossibility of evaluating the score of a given item,

and on the other hand, insufficient user data relative to the possible substitutions.

The choice of an adapted score function is open to discussion, and this question is the

aim of section 4.5. However, when adopting the score developed by Rayner et al. and

presented in 3.5.2, it can be easily computed from data of composition in macro and

micronutrients of food items. Moreover, several databases exist furnishing such data on

many food items. For example, the ciqual database [160] gathers data on the composition

of 3 185 food items. So computing the score is not a limitation for the system and is not

sensitive to the cold-start problem.

When considering the question of user data on possible food substitutions, we can notice

that the problem is much more complex. Indeed, a user’s reaction to a given recom-

mendation depends on each user. Moreover, it is noticeable that the number of possible

substitutions grows quadratically with the number of considered food items. As such, it

appears totally unrealistic to learn from a single user the impact of each possible substi-

tution. In addition, in the food domain, one can easily admit that not all substitutions

are worth considering. For example, the suggestion to replace strawberries with meatballs

seems completely uncanny, and learning the impact of such substitution on the user is of

very little interest compared to plausible ones.

Considering the respective specificity of the two identified sources of cold-start, we propose

in this section to focus on the user data and to investigate how consumption data can

be used to address the user side of cold-start. Therefore, we examine the question of

extracting, from observed consumption, substitutability values between food items.

4.3.2. Material and methods

We propose to use the methodology developed in [121] to extract values of substitutability

between food items from consumption data. We apply the methodology as described in

3.5.3.3. We computed values of substitutability using the consumption data set INCA2.

This data set contains individual 7-day food diaries of 2624 adults and 1455 children. We

focus in this study on data for adults since children are not the target of a persuasive
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food recommender system. A typical day of consumption, as reported in user diaries, is

composed of three actual meals: breakfast, lunch, and dinner. The moments in between

are denoted as snacking. To compute the values of substitutability, we followed the

methodology of [121] and considered three sub-data-sets, corresponding to breakfast data,

lunch and dinner data, and finally, lunch, dinner, and breakfast data altogether. Figure

4.2 presents a visualization of the obtained substitutability relationships for frequently

consumed breakfast food.
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Figure 4.2: Arc diagram presenting the substitutability between the most consumed items
for breakfast. Green edges show the substitutable items for fruit juice, and red edges show
the substitutable items for chocolate cereal. Thickness of the edges indicate the strength
of the substitutability relationship.

Regarding the obtained values of substitutability, a first qualitative analysis seems to

indicate that they are realistic. We propose to test this hypothesis and the likelihood of

the mined substitutability relationships.

To test the plausibility of substitutions proposed following the mined values, we designed

an online task in the form of a Turing test. It consists in presenting substitutions to a

pool of participants and asking them for each substitution if it has been proposed by a

human being or by an artificial intelligence. The experiment was conducted and results

were analysed by an internship student.

Participants. Volunteers were recruited to the online experiment via email. Emails

were sent on a french public mailing list run by the French National Centre for Scientific

Research (Information Relay in Cognitive Sciences, Paris, France, www.risc.cnrs.fr).

Participants were asked to be over 18 years of age and to be able to read and understand

the French language properly to be included in the study. Each participant could not
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participate more than once. Upon completion of the experiment, participants could enter

a draw to win 15 €. A total of 255 participants participated in the study, and none of

them reported having guessed the objective of the study.

Description of the online task. The experimental task consisted of three presentations

of a series of 12 meals for which a suggestion of substitution was made. Proposals were

made either by a professional dietitian or using the mined substitutability values. In

the latter case, to test the relevance of the substitutability scoring system, suggestions

either reflected substitutions with the highest substitutability score (expert algorithm), or

substitutions with a low substitutability score (clumsy algorithm). All these suggestions

concerned the same items of the 12 same meals. For each pair of meal + modified

meal, participants had to answer (‘yes’ or ‘no’) to the following question: “some of these

suggestions are made by an artificial intelligence, others by a dietitian, do you think

this substitution was made by an artificial intelligence?”. The supporting software was

developed using the PC IBEX platform [161]. The chosen substitutability values used for

the task are values computed on the lunch and dinner data set.

Data analysis. The dependent variable is the binary answer to the question on the emit-

ter of the substitution recommendation (human/non-human). Binary logistic regression

and resulting odds ratio were used to evaluate whether the answer was influenced by the

actual type of emitter.

4.3.3. Results

A total of 255 participants participated in the study. None of them reported having

guessed the objective of the study. Probabilities of recommendations for being judged as

“made by non-human” are plotted in figure 4.3.

When comparing recommendations made by an expert dietitian and recommendations

made following the mined substitutability values, we found that the probability that

participants judge recommendations made by a human to be “made by non-humans”

was low. On the contrary, the probability that participants judge as “made by non-

humans” the recommendations made by following the substitutability score is significantly

higher. That is, even if substitutability values seemed qualitatively plausible, participants

were able to make a distinction between recommendations based on it and real dietitian

recommendations.

However, regarding the results obtained by using high substitutability values, and low

111



substitutability values, it is noticeable that recommendations made from high substi-

tutability values are more frequently judged as “made by humans”. The difference is far

from the one existing with human-made recommendations, yet statistically significant. In

other terms, the recommendations made from the high substitutability values appear to

the participants as comparatively closer to recommendations made by a dietitian than

recommendations derived from low substitutability values.

Figure 4.3: Probability to judge recommendation as “made by a non-human” as a function
of type of emitter. Probabilities and p-values are obtained via a binary logistic regression
model.

4.3.4. Discussion

The presented results indicate that the recommendation computed from consumption

data were, in the majority, recognized as emitted by a non-human agent. This indicates

that there still exists a margin of progress in the ability of the developed method to

mimic human-emitted substitutions from the available consumption databases. However,

it appears that the higher the substitutability score, the higher the probability of the

substitution being judged as human-emitted. Thus, the presented method can be seen as

a perfectible proxy of the substitution’s plausibility. A potential extension that could lead

to more plausible recommendations would be to take into account contextual information

influencing food choices, such as time of the day or previously consumed meals. However,

it is necessary to be careful in these results’ interpretation. Indeed, we assumed that the

plausibility of a substitution is associated to higher acceptability. This is not necessarily

the case, and very plausible suggestions could be difficult to actually implement for the

user to whom they are recommended. Thus, in addition to substitutability values, it is
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important to take in account other factors for the acceptability of the recommendations,

such as for example, the presentation mode of the suggestion. (See Section 4.4.)

Nevertheless, the investigated method for substitution mining appears as a primary infor-

mation source when interacting with new users. In the particular case of cold-start, the

gathered information about substitutability relationship between food items can be used

to initialize the recommendation algorithm, avoiding as much as possible “non-sense” rec-

ommendations that can lead to very poor efficiency of the system. Moreover, it is known

that users generally use health apps for a limited period of time [162], and we can sup-

pose that limiting the “non-sense” recommendations is key in improving user retention

and avoiding early dropout of the recommender system.

4.4. Human-computer interaction : investigating the

coaching interface

4.4.1. Introduction

As stated in Section 4.3.4, numerous factors may influence the acceptability of a healthy

food substitution suggestion. In particular, the human-computer interaction design can

lead to great differences in the user response to a given recommendation. Given the ob-

jective of coaching, which is focused on user behaviour change, the acceptability of the

recommendation is a critical question. Moreover, as the healthiness of the recommended

food and user’s tastes may be antagonistic, maximizing the acceptability of recommenda-

tion by every possible means appears fundamental.

The question of recommendation acceptability is key in the recommender system litera-

ture. Beyond the actual computing of the recommendation, the way the system interacts

with the user and presents the recommendation are also research questions investigated

in the field. For example, much research work focused on critiquing [163] as a way to

propose more acceptable recommendations to users. Critiquing is mainly used in recom-

mendation scenarios where items are not frequently consumed, like when recommending

cars or laptops. In these types of scenarios, the task of building a meaningful user pro-

file from consumption data may be complicated, if not impossible. Thus, the critiquing

phase makes it possible to elicit user preferences. However, critiquing can also be used in

combination with classical recommendation methods to improve the accuracy of the rec-
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ommendation and the trust in the system, as in [164]. In healthy food recommendation,

critiquing has also been used to improve the acceptability of the recommendation [149].

The effect of critiquing on the user’s potential trust in the system appears to be very

meaningful in a scenario like coaching, where the announced goal is to provide the user

with healthier eating habits. Therefore, we are interested in investigating the possible

modes of recommendation that could be applied in a coaching interaction. Moreover, we

aim to find a recommendation mode that maximizes the acceptability of recommendation

in a coaching context. Indeed, as denoted in section 4.1.3.3, coaching can be considered as

a form of inverse critiquing, where the system critiques the proposal of the user. As such,

the coaching framework itself already partly defines the interaction scenario. Our ques-

tion then is to what extent different modes of recommendation can be adapted to it, and

what is their effect on the acceptability of recommendations. The experimental protocol

was designed in collaboration with experts and an internship student. The experiment

was conducted, and the results were analyzed by the internship student.

4.4.2. Material and methods

In order to investigate the effect of how the recommendation should be provided to the

user, we proposed to test different recommendation modalities in a real-world coaching

scenario. Thus, a mobile healthy food coaching interface was developed for the purpose

of the experiment. The aim of this interface is to let the user enter a meal and to provide

him or her with a suggestion for substitution. Participants were asked to declare the meal

they intended to eat one day in advance. So they received the recommendation of the

coach one day in advance in order to make it as easy as possible for them to implement

it.

The principle of the interaction follows the scenario of coaching described in Chapter 3 :

1. The participant declares the meal they intend to eat the next day to the coach

2. The virtual coach suggests a substitution into this meal. The modality of the rec-

ommendation is the aim of the study, and three modalities, described below, were

tested

3. The participant accepts or refuses the suggestion
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4. If a suggestion is accepted, the participant commits to implement the recommenda-

tion and to certify it by sending a picture of his or her meal.

Our hypothesis on recommendation modalities is that the more the user of the system feels

involved in the recommendation interaction, the more acceptable the possible suggestions

of substitutions. This hypothesis is based on a known effect in human psychology: the

higher participants are engaged in a task, the higher they value the results of this task

[165]. Here we hypothesise that a higher perceived value may lead to a higher acceptability

of the recommendation.

To test this hypothesis, we designed three recommendation modalities with different levels

of involvement. In the first modality, we propose to test a critiquing scenario. That is,

when the user receives the suggestion, he or she may emit critiques about this suggestion

to indicate that he or she is not satisfied with one or more features of the suggestion. For

example, the user may indicate that the suggestion is “too salty”. The system then takes

into account the user response and makes a new suggestion. This is the basic form of

critiquing recommendation in the RS literature. In a second modality, we propose to test

a scenario where the user is involved in the recommendation and able to specify precisely

his or her preferences lie in the critiquing scenario. But to test the importance of the

interaction between the coach and the user, we consider here a modality where the user

first describes his/her preferences and then is provided with a unique recommendation,

taking into account the expressed preferences. In this modality, the user is involved in the

recommendation, but the recommendation is not constructed gradually via an exchange

between the system and the user as in critiquing. Finally, in a third modality, the user

cannot specify any preferences and is provided directly with the recommendation.

For each declared meal, the system generates four suggestions of substitutions based on

the mined values of substitutability for lunch and dinner, as presented in Section 4.3, and

the Rayner et. al nutritional score. The only considered substitutions were substitutions

that allow a score gain. Then four substitutions with the highest substitutability value

were chosen.

The resulting three tested modalities are the following :

• Modality A: all four options are presented simultaneously, and the user can choose

either one or nothing.

• Modality B: identified suggestions are presented one by one. At each time, the

user can refuse the suggestion. If doing so, he or she is asked to justify the refusal
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by critiquing the suggestion. The next suggestion is the one that better fits the

critique in the not yet presented ones. If the last suggestion is not accepted, no

option is chosen.

• Modality C: the coach asks the user for his or her preferences regarding a given

list of components. Then it makes a single suggestion taken from the four generated

suggestions, which best match the announced criteria. The user can either accept

or refuse.

As the aim of this study is to test to what extent interaction impacts the acceptability

of suggested substitutions, we want to limit as much as possible the effects due to the

intrinsic quality of the substitutions. To do so, we proposed to pre-compute the possible

suggestions, regardless of the chosen modality. Then only the presentation of the results

depends on the modality. In other words, recommendations from modality B or C, which

take into account the preferences of the user, are not better suited or much more person-

alized than recommendations from modality A. The user only has an illusion of control

over the recommended items.

Participants. Based on similar studies, we estimated that 30 participants were needed

for this study. Considering a dropout and non-completion rate of the experiment of

50%, to obtain approximately 30 complete and exploitable responses, 60 candidates were

recruited. The recruitment was done via an online form distributed via a public mailing list

run by the French National Centre for Scientific Research (Information Relay in Cognitive

Sciences, Paris, France, www.risc.cnrs.fr). The inclusion criteria were being over 18 years

old, not being on a diet, and owning a smartphone.

Ethics approval. The study was conducted according to the Helsinki declaration guide-

lines, and all procedures were approved by the Ethics Committee of Université Paris-

Saclay (decision CER-Paris-Saclay-2021-055). Written informed consent was obtained

from all participants. Access to the General Data Protection Regulation (GDPR) is per-

manently available from the application interface. Participation in the experiment was

compensated by a gift voucher worth 50€.

Conduct of the experiment. The study used a within-subject design to test two

meal conditions. The experiment was conducted for three weeks, spanning June and July

2021. Each participant interacts two times a week with the coach. On Monday and

Thursday, participants are asked to declare their intended meals for Tuesday and Friday
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evenings, respectively. Thus each participant interacts with the coach six individual times.

Each week, a different modality of recommendation is used. Therefore, every participant

observes twice the three individual modalities. To avoid possible effects of the order of

presentation, participants received the different modalities in a randomized order.

Measured parameters. At the beginning of the experiment, the volunteers filled out

a questionnaire indicating their age, sex and BMI. For each recommendation session, the

acceptance or refusal data were recorded, as well as the constituents of the meals filled in

by the volunteers and the elements suggested by the coach.

Statistical Analysis. In order to explain the influence of the mode by which the recom-

mendation is given on the probability of acceptance, a binary logistic regression analysis

has been implemented. The statistical model used is therefore described as follows:

P (accept) ∼ Sex+Modality + Sessionnumber + age+BMI

To represent the probabilities of acceptance, odds ratios were computed from the logistic

regression model.

4.4.3. Results

Of the 60 candidates initially enrolled in the experiment, the results of 27 of them were

complete and exploitable for analysis (yielding a total of 162 meals). The final sample was

composed of 20 women and 7 men. The average age was 37.5± 15.2 years. The average

BMI was 22.2±4.1 with two overweight individuals and two others moderately obese. Of

the 162 interaction outcomes between the participants and the coach, we observed that

74 of them resulted in the acceptance of a recommendation, reflecting an overall average

acceptability of 46%.

Analysis of the odds ratios corresponding to the different factors that influence the accept-

ability is presented in Figure 4.4. Only modality B (OR = 3.168, CI95% = 1.688−6.061,

p < 0.0004) was associated with an odds ratio exceeding the significance threshold. A ten-

dency was noted for the effect of age (p=0.08), indicating that younger participants may

have a higher propensity to accept recommendations. Sex (p=0.14) and BMI (p=0.32)

did not have a significant effect on acceptability.
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Figure 4.4: Effect of different coaching modalities on the probability of accepting the
recommendation. Results are presented as odds-ratios and 95% confidence intervals. The
P-value presented here is the result of the binomial logistic regression analysis.

4.4.4. Discussion

We proposed to test the effect of interaction design on the acceptability of suggested food

item substitutions in a meal. The conducted experiment shows the interest of modality B,

that is, an interaction scenario based on recommendation critiquing, over two other tested

modalities (raw recommendation list and pre-recommendation preference elicitation). In

other words, compared to a recommendation where all suggestions are proposed to the

user, the gradual elaboration of the recommendation in interaction with the system seems

to favour the acceptability of the suggestions. Moreover, the control of the user on the

recommendation has not to be real, and the illusion of control already induces effects on

acceptability. Indeed in the presented experiments, modality A and modality B are based

on the same four suggestions. Thus it is not the actual personalization of recommendations

that induces the observed differences but possibly the involvement of the user in the

recommendation elaboration. Indeed studies in psychology or behavioural economics have

established that the more we engage in a task, the more we are attached to the results

and the greater the value of this result is for us.

Contrastingly, when investigating the results of modality C on acceptability, we found no

significant difference with modality A and significantly worse acceptability compared to

modality B. However, the user is asked to inform the system about his or her preferences

to generate the recommendation, as in modality B. Two main reasons can be considered

to explain these results. First, a coach based on modality C proposes a unique recommen-

dation for each interaction. On the contrary, modalities A and B allow the user to explore

at most four different suggestions. Therefore a user has more chances to find an accept-
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able suggestion as the recommendation sample-size increases. Second, the engagement

of the user may be more important in modality B compared to modality C, as the user

can observe the evolution of the suggestion generated by the expressed critiques. This

makes the suggestion both more engaging and more explainable for the user, as he or she

can observe the reasons leading to it. And explainability is known as a determinant of

acceptability of recommendation when interacting with recommender systems [166].

Nevertheless, it is important to notice that the observed results should not be generalized,

as the profile of the participants remains not representative, being constituted mainly by

young women. Among the tested interaction modalities, critiquing seems to perform the

best when considering the acceptability of the suggested food substitutions. However, the

number of participants and the design of the study did not allow us to identify different

profiles. Thus we cannot exclude that the best interaction modality depends on the

considered user group.

4.5. Choice of a nutritional score

As presented in Chapter 3, coaching is based on an evaluation of the task at hand through

a score function. That score function is supposed to be known by the coach but not by

the user. Then the objective of the coach is to train the user so that he or she maximises

the value of the score associated with his or her behaviour.

It exists several score functions in the food domain to evaluate the healthiness of food

items or diets. We have evoked in the previous chapters the score designed by Rayner et

al. to assess the nutritional quality of individual food items, but the scores’ objectives and

domains of application are diverse. Two main paradigms exist, depending on what is to be

evaluated: diet healthiness scores and food items healthiness scores. In the following, we

review the major contributions of the literature on those two types of scores and discuss

their interest in a healthy food recommendation coaching context.

4.5.1. Evaluating healthiness of food items

As their name suggests, food items’ healthiness scores are based on a categorisation of

each individual food item. In this setting, healthiness is a feature relative to the item. One

can find diverse such scores in the literature [167, 120, 168]. They are generally computed

from the composition in specific nutrients of each food item. Such approaches are known
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as nutrient profiling [169]. Several models exist for nutrient profiling, depending on the

considered nutrients. Some are based on nutrients to limit or avoid, others on nutrients

to favour, or a combination of both.

This type of score is mainly used in public policies to regulate marketing or health adver-

tising or to inform the consumer. For example, in France, the five-colour nutrition label of

Nutri-Score [170] has been largely adopted as a standard for nutritional labelling. How-

ever, another possible application of such scores can be to help the consumer to choose

healthier food and to educate them by providing nutritional information [171]. In the

context of coaching, this is of great interest. Indeed, the aim of coaching is to help a user

(or consumer) to change his or her dietary habits towards healthier ones, and food-based

nutritional indices are making it possible for the coaching system to evaluate the healthi-

ness of user choices. Moreover, studies have shown the interest of some nutrient profiling

derived indices to promote healthy diets [167].

When considering the context of automated coaching, this type of nutritional score ap-

pears very well adapted to the developed framework. As the nutritional value of an item

is computed only from its composition, the scores can be pre-computed, and the system

does not have to gather extra contextual information to be able to make a recommenda-

tion. In addition, the framework was proposed with a given value attached to each item,

which is the case with this kind of score. However, when considering the long-term objec-

tive of coaching, limitations in the applicability of food-based nutritional scores appear.

Indeed, consuming items with high values regarding some nutrient-based indices has been

proven to be associated with a healthier diet. Nevertheless, these are not tools designed

to measure the overall quality of diets. Evaluating the healthiness of a diet is a complex

question involving diverse and interdependent factors. A simple mean food item value

does not reflect this complexity, and by trying to maximise it, a system relying only on

individual food items’ nutritional values would not be fully efficient in promoting healthy

eating habits. Diet has to be considered as a whole when evaluating healthiness.

4.5.2. Dietary quality indices

Conversely to food-based nutritional indices, dietary indices focus on evaluating whole

diet quality. A wide variety of such indices exist, depending on the country and the

evaluation methods. Indeed, when investigating the literature, one can categorize diet

quality indices in two main approaches: on one hand, indices based on national food-
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based dietary guidelines and on the other hand, indices based on nutrient intake.

Indices based on dietary guidelines measure the accordance of a given diet with the con-

sidered guidelines. Generally, dietary guidelines consider multiple components and focus

on consumption levels of a given set of food groups, such as vegetables, meat and so on.

They can also integrate some information about nutrients. For example, the index pre-

sented in [172] integrates a measure for salt consumption. As nutritional guidelines vary

across countries, it exists many local indices [172, 173, 174, 175]. Also exists a more gen-

eral index, the healthy diet indicator (HDI) [176], based on the world health organization

guidelines. Besides indices based on proper dietary guidelines, were developed indices to

measure the accordance to the “Mediterranean diet” which is known to be significantly

associated with reduced risks of cardiovascular diseases and several forms of cancer. An

example of such a score is the MedDietScore [177]. The vast majority of these indices

have been significantly associated with positive health outcomes. For example, high HDI

values are associated with significantly lower overall mortality [176]. In France, the value

of the national index has also proven to be highly correlated with obesity and overweight

[178], while the guidelines used to build the score have proven to be associated with better

nutrient intake [179]. However, this type of index suffers from methodological limitations:

the choice of the considered parameters and their relative weight in the final index has to

be discussed [180].

The other approach for computing indices to measure the quality of a diet is to base

the measure on the accordance of the considered diet to recommended upper and lower

intakes of nutrients. The benefits of such an approach are two-fold: on the one hand, this

type of index is more easily adaptable to different geographical areas. On the other hand,

there is a large body of literature validating the importance of nutrient intake in health

outcomes. Some indices have been developed following this idea. For example, the mean

adequacy ratio index has been used in [181] to measure diet quality. More recently, the

authors of [182] have proposed an index based on the probability of adequate nutrient

intake.

In the context of healthy food recommendation by coaching, these two approaches are

of interest: by contrast to food item indices, dietary quality indices are constructed to

measure the quality of a diet. Thus making recommendations that consider this type

of index as the score function is expected to lead the user towards a healthier diet. In

that sense, these indices seem to match the long-term objective of coaching. However,

from an operational point of view, the use of this type of index presents some challenges.

121



Indeed, all of the considered diet quality indices from both approaches are computed over

a certain time period. It can be daily [176], weekly [178, 182] or even monthly [177]. This

raises questions about how a coaching system can consider these indices: to compute the

nutritional interest of a given suggested substitution, the system computes the score gain

permitted by this substitution. In the case of indices computed over a certain period of

time, the system has no access to individual values of substitutions. A way to bypass this

limitation is to compute the given index on a sliding time window. But in that case, a

given substitution may not have the same value depending on the previously consumed

items. For example, recommending to substitute chicken for fish may be highly interesting

if the considered user has not recently eaten fish but is far less valuable if he or she has

recently eaten a lot of fish. This example lets appear a key concept that has to be

considered when using this type of index: the context of the recommendation. In other

words, making coaching recommendations to improve the whole diet of a user necessitates

adapting the coaching framework so as to consider contextual information.

4.6. Conclusion

In this chapter, we proposed to apply the coaching framework presented in Chapter 3 to

the problem of healthy food recommendations and long-term improvement of users eating

habits. We reviewed the state-of-the-art solutions in healthy food recommender systems

and underlined the lack of long-term consideration in the literature.

In order to test the applicability of coaching to healthy food recommendation in a real-

world scenario, we designed two experiments. The first tested the capacity to extract

meaningful substitutability data from consumption data to overcome the cold-start prob-

lem. The second investigated the design of the interaction scenario in a coaching setting

and its impact on the acceptability of recommendations.

We proposed a method based on the work of [121] and showed that it could be used

to identify plausible substitution from consumption data. However, the approach is still

perfectible. Moreover, we highlighted the importance of user involvement in the recom-

mendation process to further enhance the acceptability of the recommendations. Finally,

we discussed the notion of nutritional score and presented the two main paradigms: food

item scores and full diet scores. We emphasize the importance of considering the healthi-

ness of a whole diet in recommendation and elicit the importance of integrating contextual

information in the coaching framework.
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5. Contextual coaching

As evoked in Section 4.5.2, the evaluation of food consumption in a healthy food recom-

mendation scenario may benefit from considering food quality indices, as they are more

appropriate to measure a diet’s quality. This poses the question of the recommendation

context and how it should be taken into account in a coaching interaction. In the follow-

ing chapter, we propose to explore how coaching systems can benefit from context and

how recommendations can take this into account. In Section 5.1, we define the notion of

context and discuss its importance in the case of coaching. Section 5.2 presents a review

of the related literature. In Section 5.3, we study the best possible behaviour for a given

user in the case of contextual coaching, while Section 5.4 investigates the question of the

coach recommendation strategy in such a case. Finally, in Section 5.5, we discuss the

proposed formalism and present future research directions.

5.1. Introduction

5.1.1. The notion of context

Context is a hard-to-define concept, but that can strongly influence decision-making,

particularly human decision-making. In [183], Suchman explores the notion of “situated

action”. For her, every human action is performed in a given situation and depends on

this so-called situation, hence the “situated action” concept. In other words, she considers

an action inextricably linked to the situation in which it occurs. The notion of situation

as defined is broad as it encompasses any particular concrete circumstance, including

material and sociological conditions. The situation underlying the action is called the

context of that action. In that sense, the context in which an action is taken influence

decision-making: Action is considered context-dependent.

Nevertheless, context does not only influence action. It is also known to affect learning.

In [184], the author shows the existence of “contextual association,”, which refers to

connections in memory between what is learned and the context in which the learning
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occurs. That is, it is easier to remember a given information in a context similar to the

one in which the learning occurred.

Hence the importance of taking context into account when dealing with human decision-

making. However, the exact definition of what constitutes context is still debated among

researchers. Indeed, when considering the approach of Suchman, the context is the situa-

tion in which the action is performed, in other words, the external environment in which

it takes place. However, context can also refer to the internal mental state of the decision

maker [185]. Moreover, context is inherently subject to constant changes as actions may

influence the environment and so the context of future actions.

When considering human-computer interaction, a widely adopted definition of context

is the one proposed by Dey in [186]: “Context is any information that can be used

to characterise the situation of an entity. An entity is a person, place, or object that

is considered relevant to the interaction between a user and an application, including

the user and applications themselves”. Although considering a comprehensive range of

possibilities, this definition points out the essential notion of relevance. Indeed, if context

can be constituted of a tremendous number of factors, only some are relevant considering

the situation at hand.

As such, many research fields, including recommender systems, have considered and stud-

ied the notion of context.

5.1.2. Context in the coaching framework

When considering the coaching interaction described in Chapter 3, taking the context

into account appears essential. Indeed the essence of the coaching framework is to impact

the user decision making: the system aims to make recommendations to accompany the

user towards a new behaviour. Nevertheless, as we have seen, the user decisions, thus

behaviour, may be impacted by the context.

Moreover, the actual evaluation of the user behaviour by the coaching system may also

take into account the context. Indeed, in coaching, the system’s objective is to lead the

user towards behaviour that maximizes a given score function. However, this score func-

tion may consider contextual data in the evaluation. For example, as seen in Section 4.5,

evaluation indices exist in the nutrition domain that depends on the items’ consumption

over a certain time period. When considering such an index, the value of a given item

depends on the other consumption over the time period, that is, on its context of con-
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sumption. To illustrate this, let us consider the following situation. When consuming fish,

the nutritional interest of the consumption is not the same if it is the first consumption

of the last seven days or the tenth. Indeed, if eating fish is essential for the intake of

omega-3, eating fish too frequently is not recommended. This is true for nutrition but

can also be observed in other domains. For example, using an underarm serve can surprise

the opponent and lead to a winning point when playing tennis. However, using it too

frequently, the player will lose the surprise effect and may eventually lose the point. In

other words, the “value” of such a shot for a tennis player depends on the sequence of

previous shots. These examples underline that bringing context into coaching is essential,

not only from the user side but also from the coach side. The interest of a given action

under a specific objective may depend on the context that leads to the action. In the rest

of this chapter, we will focus on the questions raised by the context from the coach side

and on the problem of incorporating context in the evaluation of user behaviour.

The question that emerges then is how to make recommendations that consider a con-

textual evaluation function of the user behaviour in a coaching interaction. Actually, a

coaching system’s efficiency in accompanying a user towards a behaviour that maximizes

a contextual score function depends on the user’s capacity to implement this behaviour.

Indeed, coaching systems are, in essence, building their recommendation on the observed

user behaviour and relying on their user learning ability to maximize their long-term

impact. In other words, a contextual coaching system’s efficiency depends on the user’s

capacity to perceive the context and behave adequately regarding it.

5.1.3. The problem of incomplete information

In a setting of contextual coaching, the key question lies in the capacity of the user to

perceive the context and implement adapted responses. Indeed, if, on the one hand, the

observability of the context for the system may be incomplete, here we assume that the

system gathers all the necessary contextual data to compute the score function associated

with the coaching problem. On the other hand, the user representation of the context

may be limited. A given user may not perceive all the contextual features of a situation

that are, however, of interest in evaluating the situation. That is, a user may not be able

to represent all the potential contexts and the best action associated with each of those

according to the score function. As an example, he or she may consider two contexts that

are evaluated differently by the coach identical. We call user representation space the
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set of all the distinct contexts that the user can perceive. At the end of the day, we can

identify two major cases:

• The user representation space is large enough to encompass all the contextual in-

formation needed to compute the score function. In this case, for each situation

the user encounters, he or she can potentially learn the perfect action to perform to

maximize the score function. In other words, the score function is representable in

the user space and, therefore, can theoretically be learned by the user.

• The user representation space is too limited to encompass all the contextual in-

formation needed to compute the score function. In this case, the user faces the

incomplete information problem. Even a user that would try his/her best to max-

imize the score cannot behave in a way that guarantees the actual maximum of

the score function, as he/she cannot represent all of the required information. In

other words, when facing a given situation, the user does not have access to enough

information to determine the best action regarding the score function.

These two cases highlight the relative importance of the user representation capacity

compared to the dimension of the score function considered, that is, the space of distinct

contexts considered by the score function. Moreover, they pose the question of how

to take into account the possible difference between user representation capacity and

score dimension in a coaching scenario. What objective should the coach pursue, and

what should it recommend regarding this objective? We identified three major research

questions arising from the integration of contextual evaluation in coaching, which we

present below. First, given a user representation capacity, a coaching system should be

able to compute a target behaviour for that user, hence:

• Q1: Given a user representation space and a contextual score function, what rep-

resentable behaviours maximize the score function? What should be the target be-

haviour of the user?

Second, when a coaching system has identified the target behaviour for the user, it should

be able to make recommendations that lead the user towards it:

• Q2: What recommendation strategy should a coach apply to accompany a given user

towards a target behaviour?
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Finally, computing a target behaviour necessitates knowing the representation space of

the coached user:

• Q3: How a coaching system can estimate, from its interactions with a given user,

his/her capacity of representation?

In the remainder of this chapter, we will focus on Q1 and Q2. Possible research directions

for Q3 are discussed in Section 5.5.

5.2. Related works

5.2.1. Context in recommender systems

If the context is naturally understood by human beings and has even a role of disam-

biguation in natural language and human-human interactions, it is much more difficult

to consider the context in human-computer interaction. Indeed, the scope of the inter-

action is inherently much more limited, as a computer only gathers a predefined set of

descriptive features. Consequently, computers cannot directly take advantage of the con-

text when interacting with humans, as humans would. Nevertheless, context is known to

be an important determinant of human decision-making. Thus its importance in human-

computer interaction is critical when considering recommender systems that aim to influ-

ence decision-making or even predict decisions. Therefore, the context has been studied

from the early 2000s in the RS literature. In particular, a whole part of the literature

in the domain has been interested in Context aware recommender systems (CARS). The

two main questions addressed by CARS are, on the one hand, the definition and mod-

elling of context and, on the other hand, the integration of contextual information in

recommendation algorithms.

According to [187], there exist two main views of context that are respectively inherited

from positivist and phenomenologist theories:

• Representational view : The representational view of context is based on the ques-

tion of encoding and representing context. In this view, context is considered a

supplementary form of information that has to be gathered by the system. As such,

context is also considered delineable and stable: what is and is not context is defined
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before any human-computer interaction. More important, context and activity are

distinct. An activity takes place in a context but does not form part of it.

• Interactional view : The interactional view of context is based on the activity dy-

namics. Context is not seen as distinct from the activity at hand. It is rather both

influencing it and resulting from it. Context is considered permanently evolving,

and its relevance may change along the interaction.

Even though the vast majority of works in CARS literature focus on the representational

view of context, the interactional view sheds important light on the interdependence and

inter-definition between context and activity. The classical approach of CARS is to con-

sider a set of contextual factors that define the current context in which a recommendation

is made. These factors can encompass different dimensions of context and thus may have

various structures. As depicted in Figure 5.1, the authors of [188] propose to consider

contextual factors along two dimensions. The first one is observability, which describes

to what extent the contextual factors are explicitly known by the recommender systems.

The second is how contextual factors change over time: they can be static and remain sta-

ble over time as in the representational view, whether as dynamic as in the interactional

view, and have both their structure and/or relevance changing over time.

Figure 5.1: Dimensions of contextual information for CARS [188]

Regarding this classification, we can notice that the considered problem of context in

coaching lies in the dynamic observable case: the coach is informed about context, but its

relevance for the recommendation evolves over time. Moreover, in our case, the context

does impact not only the user behaviour but also the intrinsic quality of the recommended

items from the system’s point of view. Thus in our case, context cannot be described under

the representational view, conversely to most works in CARS.

The question of incomplete information has been studied in CARS literature. However,

in contrast to our question, the focus is on the recommender system and its incomplete
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perception of context. As such, the existing works propose methods to infer contextual

information from user feedback efficiently. For example, in [189], the authors propose

a parsing method that extracts from user reviews the relevant contextual factors using

natural language processing methods. Similarly, the authors of [190] use review mining

to infer contextual information via supervised topic modelling.

As our work is interested in contextual recommendation, the CARS literature gives us a

framework and an operational definition of context. Nonetheless, it is of little help when

considering the actual recommendation problem faced by a coaching system based on a

contextual score function.

5.2.2. Sequence-aware recommender systems

A particular form of context-aware recommender systems investigated in the literature are

sequence-aware recommender systems. As described in [191], these consider the sequence

of user interaction logs when computing recommendations. The idea behind sequence-

aware recommender systems is that the ordered sequence of past user choices/decisions

is informative for the recommendation, in the same way as ratings of items. Thus several

methods were developed, that differ from classic recommender systems approaches, in

order to take into account the importance of the sequence.

According to [192], sequence-aware recommendation tasks can be categorized into four

main problems:

• Context adaptation aim is to adapt the recommendation to the context of the

user, by considering the past action sequence as the context. In this setting, the

context is definitely considered through the interactional view. However, the con-

text is seen as an additional data source leveraged to inform the system of the user’s

preferences and expected choices. By contrast, in the problem of contextual coach-

ing, we consider the problem of the contextual evaluation of recommendations from

the system viewpoint.

• Trend detection focuses on the problem of inferring from the sequential data

trends in the evolution of users’ behaviours or preferences.

• Repeated recommendation is defined as the problem of identifying patterns in

the users’ behaviour, so as to make adapted recommendations given these repeated

patterns.
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• Consideration of order constraints and sequential patterns encompasses the

questions about the ordering of the recommended items. Indeed, may exist relations

between items relative to their order of consumption. A simple example is the one

of TV series: the interest in recommending a given episode probably depends on

the previously watched episodes. This is particularly relevant in the field of path

recommendation where some items are prerequisites for others, as discussed in 6.2.2.

Thus, although of interest to our work, the literature on sequence-aware recommender

systems does not directly address the problem investigated in this chapter. On the one

hand, context adaptation is mainly focused on the extraction of users’ information from

sequential data. On the other hand, the hierarchical approach of path recommendation

may be of interest for coaching but does not meet our focus on the contextual evaluation of

user behaviour. Moreover, when considering our first research question, the problem seems

more closely related to the research around knowledge representation and distillation than

to the research on sequential recommendation.

5.2.3. Knowledge distillation

When considering our first research question of finding the best target behaviour for a

given user depending on his/her representation capacity, one can notice that it belongs

more to the domain of knowledge representation than the domain of recommendation.

Indeed, the core question is one of representing complex behaviour in a limited represen-

tation space. This can be seen as a problem of model compression as described in [73]: the

objective is for the coaching system to compress its knowledge into a smaller representa-

tion space (the user representation space) so as to find a policy that associates an action

that maximizes the considered contextual score function to each representable state for

the user. Based on the idea of model compression, Hinton [72] proposes a method known

as “knowledge distillation” whose aim is to transfer the knowledge from large models

(teacher models) with large representation spaces to a smaller model (student model).

However, even if the underlying concept is of interest to our work, most of the existing

research is focused on distilling knowledge from large neural networks to smaller ones

[193]. In practical terms, most of the works take advantage of the learning and general-

ization capacity of a classifier to learn an accurate decision function from the outputs of

the teacher model. Given our model of user knowledge, it is not straightforward to apply

methods from knowledge distillation to our question. Nevertheless, training a user to
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maximize a given contextual score in a limited representation space can be conceptually

seen as a form of knowledge distillation.

5.3. Best representable behaviour

Our first focus is on the question of the representable user behaviours that maximize a

given contextual score function. In this section, we first propose a general formalization

of this problem. We then propose to study this problem in the particular case of historical

context, as this type of context is particularly relevant to the coaching setting.

5.3.1. General problem formalization

Let us model the general problem of finding a behaviour that maximizes a contextual

score function. Consider a score function S, which is associated with an item set I. Here

we focus on the problem of choosing one unique item i ∈ I at each step t ∈ T . We

consider that each item i ∈ I is associated with a value of S that depends on a so-called

context, denoted H. The score function S represents the interest, regarding the objective

of the coaching interaction, of choosing item i in context H. We denote H, the set of all

possible contexts. We do not focus for now on the actual form of H. It can represent

all kinds of information that is relevant to the evaluation of an item choice. So the score

function S associates to each couple (i,H) a value representing the interest of choosing

item i in context H, hence the notation:

S :

 I ×H → R

(i,H) 7→ S(i,H)
(5.1)

Given such a score function, we consider a user U whose task is to choose at each step

t ∈ T an item i ∈ I such as to maximise the mean value of the score function S over T

steps. As stated in section 5.1.3, we propose to consider for the user U a representation

space denoted RU, that model the set of all the contexts U is able to perceive. Formally,

“perceiving” a context for U can be seen as a mappingM from H to RU. We note:

M :

 H → RU

H 7→ M(H) = Ĥ
(5.2)
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with Ĥ the context perceived by U. In the following, we consider both H and RU as finite.

Hence, one can notice that the cardinality |RU| is the number of contexts that U can

represent.

Now consider the behaviour of U. We propose to model it by a decision function denoted

DU. We assume that the behaviour depends on the context perceived by U. Indeed, as

denoted in the recommender system literature, context is known to influence decision-

making. Moreover, we assume that the contextual data that influence U’s choices are the

same as he or she perceived from H, i.e. contextual data that are both perceived by U

and relevant for the score. We leave the question of contextual data influencing U’s choice

but not relevant to the score for future research. Thus, we propose to consider DU as a

function that, given a perceived context, returns the choice of an item i ∈ I, hence:

DU :

 RU → I

Ĥ 7→ DU(Ĥ)
(5.3)

The problem of finding the best possible behaviour D⋆
U for U can then be expressed as

the following:

D⋆
U = ArgMax

DU

{ ∑
Ĥ∈RU

P (Ĥ)
∑
H∈H

P (H|Ĥ)
∑
i∈I

P (DU(Ĥ) = i)S(i,H)

}
with : Ĥ =M(H)

(5.4)

The best behaviour D⋆
U for the user is the one that, for each possible perceived context

Ĥ, maximizes the expected score of the chosen action DU(Ĥ) in the actual context H,

depending on the probability of encountering Ĥ and on the probability for the actual

context to be H when observing Ĥ

As one can notice, finding the best behaviour for U depends on both the score function S

on the one hand and the mapping functionM and the representation space RU of U on

the other hand. Thus in the following, we propose to investigate the question of the best

behaviour for U for a given mapping and representation space.

Particularly, we focus on score functions taking into account the context in the form of

historical data. Indeed, as presented in 4.5, such scores exist and are even widely used

in the nutrition domain. Moreover, this type of score function poses questions that are

complementary to those addressed in the contextual recommender system literature. One

can especially notice that historical context, which can be referred to as past choices
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sequence, is strongly influenced by each item choice. As evoked in 5.1.1, as actions

influence the environment, they influence context. This kind of context is particularly

interesting in the coaching scenario, as recommendations are aimed to influence users’

actions and so may have an impact on future contexts encountered by users.

In other words, we focus on making recommendations for behaviour change in the case

of contextual evaluation of behaviour and where performed behaviour has an impact on

future contexts.

5.3.2. Case of historical context

Here we consider a score function taking into account the history of U’s item choices as

a context to evaluate a given choice. In other words, the value associated with a given

item i ∈ I depends on the past choices sequence of the user. In the following, we consider

the length of the sequence or the number of considered past choices as a parameter of the

score function S. Then the set of all possible contexts is Ĥ = Im hence the notation:

Sm :

 I × Im → R

(i,H) 7→ Sm(i,H)
(5.5)

We propose to model the capacity of the user to represent the context he/she can perceive

as a maximum sequence length that he or she can remember. The underlying idea is that

a user’s memory is limited and that the more recent a choice, the easier it is for a user to

remember it. When considering the case of food choice, one may remember his/her last

two or three meals, but it seems much less likely that he or she remembers all the meals

of the last ten days. This assumption gives us both a user representation space RU and a

mapping from Ĥ to RU.

Thus, we can denote RU = Iµ with µ ∈ N a parameter of U defining the number of past

choices U takes into account when making the choice of an item. Hence the user decision

function DU is defined as:

DU :

 Iµ → I

Ĥ 7→ DU(Ĥ)
(5.6)

Then the problem of “incomplete information” discussed in 5.1.3 can be expressed as

follows:
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• If µ ≥ m then card(RU) ≥ card(H). The user can represent all the contexts needed

to compute Sm.

• If µ < m then card(RU) < card(H). The user representation space does not allow

him/her to represent all the contexts needed to compute Sm. At each step, the user

faces the problem of incomplete information and only has partial information about

the current context.

As denoted above, historical context is a type of context that is particularly impacted if

not defined by the decisions previously taken. In that sense, a particular action impacts

the future contexts and so the future actions. In other words, an action at time step t

does not only impact the score at time step t but also the future score values.

Given the interdependence of context and action, evaluating the interest of a given action

in terms of the score is not straightforward. We propose to model the value Ψ of each

item choice made by U in a given context c as an expected return, as defined in [59],

hence:

∀ (i,H) ∈ I ×H : Ψ(i,H) = Sm(i,H) +
∑
j∈I

P (DU(fi(H)) = j)Ψ(j, fi(H)) (5.7)

with fi(H) the next context, resulting from choosing item i when in context H. This poses

problems in terms of evaluation, as the dependence of Ψ(i,H) over Ψ(DU(fi(H)), fi(H))

may result in an infinite return. However, if we make the assumption of a finite return,

at each time step t ∈ T , a perfectly taught user, observing the context k̂ should choose

item j⋆ such as:

∀ Ĥ ∈ RU : j⋆ = ArgMax
j∈I

{∑
H∈H

Ψ(j,H)× P (H|Ĥ)

}
with P (H|Ĥ) the probability of being actually in context H when observing Ĥ. As one

can notice, one main limitation makes it difficult for the user to actually learn a decision

function that ensures him/her to choose j⋆ at each time step t. It comes from the term

P (H|Ĥ). Indeed, depending on the representation space of U, this term may be difficult

to compute:

• If µ ≥ m then Ĥ contains more information than H and given our formalization

of context as historical data, we can note that for all contexts Ĥ ∈ RU, it exists a

unique context H ∈ H such that P (H|Ĥ) = 1
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• Conversely, if µ < m then Ĥ contains less information than H. In other words,

U cannot know with certitude from his/her observation Ĥ what is the context H

that he or she is currently in. As historic is dependant upon the actions taken

by U, P (H|Ĥ) depends both on previously encountered contexts and user decision

function. Given the interdependence of contexts and decisions, it appears difficult

to compute or estimate P (H|Ĥ).

Moreover, we have no clue that the assumption of finite return is respected here. Thus,

we propose in the following section a solution to this problem that both allows the user to

eventually have access to P (H|Ĥ) and assures that for all couples (i,H) the value Ψ(i,H)

is finite.

5.3.3. Proposed Method

5.3.3.1 Notion of deterministic routine

The solution we propose is based on the idea of making it possible for U to know with

certitude the actual context H he or she is currently facing when observing the perceived

context Ĥ. In other words, we propose a solution that guarantees for a given observed

context Ĥ that there exists a unique context H such as P (H|Ĥ) = 1.

The idea we propose is for U to implement a behaviour that follows a given routine, that

is, a behaviour that repeats over time in a deterministic way. Thus, the idea is for U

to associate with each observed context a unique possible decision. Given a considered

observed context, the user following a routine will always act the same, leading to a unique

new context, in which the action will also be deterministic, hence the notion of routine:

the user follows a path in the space of observed contexts, fully determined by its decision

function. We note:

∀ Ĥ ∈ RU, ∃! i ∈ I such that P (DU(Ĥ) = i) = 1

The power of this approach lies in the fact that when considering historical contexts, the

future observed contexts are defined by the previous choices. Then, by making choices in a

deterministic way, the set of contexts visited by the user and their appearance probability

can be easily computed. Moreover, as the set of perceived contexts RU is finite, following

a deterministic routine implies that U eventually draws a cycle in RU, where every context

Ĥ is visited at most once in a cycle full revolution. See Figure 5.2 for an illustration.

135



Given this, we can notice that the sequence formed by the consecutive choices of a user

following a deterministic routine is eventually a periodic sequence. Let us denote (un)

such a periodic sequence. We have un+p = un with p the period of the sequence, that is,

the number of actions taken by the user before going back to the first action forming the

periodic sequence. Now if we consider a sequence (vn) such as vn = (un, un+1, ..., un+m).

It appears that vn+p = (un+p, un+1+p, ..., un+m+p) = (un, un+1, ..., un+m) = vn. So (vn) is

also a periodic sequence with the same period p. In other words, as it exists a finite size

m for the historical context, the sequence formed by the consecutive contexts of size m is

eventually periodic, with the same period p as the sequence of observed contexts.

So it appears that following a deterministic routine lets U eventually draw a cycle in H,
with the same period as the cycle drawn by U in RU. In other words, such a deterministic

decision function generates a behaviour that eventually loops, hence the notion of cycle

in the context set. This idea of looping in the set of observed contexts has two major

consequences. First, the context perceived by U, namely Ĥ, gives an indirect but perfect

knowledge of the corresponding real context H: once the user is in the cycle, it exists a

unique contextH associated with the observed context Ĥ. Second, one can easily compute

a mean score value associated with a cyclic behaviour when repeated indefinitely, hence

the solution to the problem of the infinite return value. By considering the score gains on

a full cycle revolution and the length of that revolution, one can compute the mean gain

for the user to repeat a given cyclic behaviour indefinitely.

Le

5.3.3.2 Finding the best cyclic behavior

Given the existence in the observed context set of cycles that are each associated with

a deterministic routine, the objective is to find the cyclic behaviour for the user that

maximizes the mean score value of the cycle. Given that such a cycle can be fully defined

by the sequence of observed contexts and the associated action, one way of solving this

problem is to draw a directed graph G in which the vertices set is the set of all possible

observed context RU, namely Iµ, and where an edge goes from vertex , Ĥ1 to vertex Ĥ2

if and only if ∃i ∈ I such that Ĥ2 = fi(H1), that is it exist an item that by being chosen

in context H1 leads to context H2. Then the set of all elementary circuits in G is the set

of all the possible cycles resulting from the routines that can be implemented by a user

U given I, m, and µ.

Figure 5.2 presents an example of such a graph for I = {a, b} and µ = 2. In this case, it
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k̂ = ab

k̂ = aa

k̂ = bb

k̂ = ba

DU(ab) = b

DU(aa) = a

DU(ba) = b

DU(bb) = b

DU(bb) = a

DU(ab) = a

DU(ba) = aDU(aa) = b

Figure 5.2: Example of consumption routine, resulting in a cyclic behaviour. Here I =
{a, b} and µ = 2. Thus the representation space of the user is composed of four possible
perceived contexts, and RU = {aa, ab, ba, bb}.

exists six different cycles c that can result from following a deterministic routine for the

user:

c1 = (Ĥ = {aa}, DU(Ĥ) = a)

c2 = (Ĥ = {bb}, DU(Ĥ) = b)

c3 = (Ĥ = {ab}, DU(Ĥ) = b)→ (Ĥ = {bb}, DU(Ĥ) = a)→ (Ĥ = {ba}, DU(Ĥ) = b)

c4 = (Ĥ = {ab}, DU(Ĥ) = a)→ (Ĥ = {ba}, DU(Ĥ) = a)→ (Ĥ = {aa}, DU(Ĥ) = b)

c5 = (Ĥ = {ab}, DU(Ĥ) = b)→ (Ĥ = {bb}, DU(Ĥ) = a)→
(Ĥ = {ba}, DU(Ĥ) = a)→ (Ĥ = {aa}, DU(Ĥ) = b)

c6 = (Ĥ = {ab}, DU(Ĥ) = a)→ (Ĥ = {ba}, DU(Ĥ) = b)

For each of those, when considering a score function Sm with parameter m, defined from

137



I× Im into R, one can compute the associated cycles in H = I× Im. Then for each cycle,

we can compute a cycle mean value Vc defined as:

Vc =
1

card(c)

∑
(i,H)∈c

Sm(i,H) (5.8)

Then all the decision functions DU that eventually lead to the cycle c⋆ that maximizes Vc

are guaranteed to be the best optimal deterministic decision function. The question that

arises then is how to efficiently find the cycle(s) maximizing Vc.

Brute force method

The first considered method in order to find c⋆ is to enumerate all cycles in G and to

compute their associated value Vc.

There exist in the literature various papers containing algorithms enumerating all cycles in

a directed graph [194] such as Johnson’s [195] or Szwarcfiter and Lauer’s [196]. According

to [194], Johnson’s algorithm is the fastest for this task with a time complexity bounded

by O((n+ e)(c+ 1)) where n is the number of nodes in the graph, e the number of edges

and c the number of cycles.

In our case, we can easily compute the number n and e of edges from RU as, by definition,

the nodes of the historical graph G are the elements of RU.

In the case of historical context, one can note that we have RU = Iµ so n = card(RU) =

card(I)µ. Moreover, as DU is defined from RU into I, each node of the graph is associated

with card(I) edges, pointing towards all the possible contexts resulting from choosing an

itemi ∈ I in context Ĥ ∈ RU. Hence e = n × card(I) = card(I)µ+1. Thus the time

complexity to find all cycles in G is bounded by O(card(I)µ(card(I) + 1)(c + 1)). In

other words, the time complexity growth is at least quadratic in card(I) and exponential

in µ. In addition, if we experimentally investigate c the number of cycles in the graph

depending on µ and card(I), we can observe that it grows extremely fast, as denoted in

table 5.1.

Thus it appears that computing all the possible simple cycles is only possible for a very

limited number of cases. As such brute force method appears to be extremely limited

when considering actual coaching situations, where the number of items may be large, as

well as the user memory.

Proposed practical heuristic
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card(I)
µ

1 2 3 4

2 3 6 19 179
3 8 148 3382522 NC
4 24 120538 NC NC

Table 5.1: Table presenting c the number of elementary circuits existing in graph G
depending on card(I) and µ. NC stands for “Not computed”: the computation time
being too long.

Instead of pre-computing all possible cyclic behaviours, we propose a method to take

advantage of being in an interaction with the user to reduce the number of explored

cycles. The idea is to observe the behaviour of the user and to compute cycles based

on the contexts actually visited by U. Indeed, most of the time, a user will only live

in a limited subspace of the context representation space RU. Moreover, knowing the

contexts visited by the user and the substitutability values of items for this user, a coach

can compute the contexts that are possibly reachable for this user. Thus we propose a

recommendation algorithm based on this idea: the coaching interaction lies in two phases.

In the first phase, the coach observes the behaviour of the user and builds a context graph

with the observed contexts and transitions. At the end of the first phase, C enrich the

graph by considering the substitutability between items: for each vertex Ĥ of the graph,

consider its successor vertex (if it exists) formed by choosing item i in context Ĥ. If there

exist items that can be substituted to i, then the contexts formed by choosing it instead

of i in context Ĥ can be added to the contextual graph. The size of the formed graph,

however, stays limited and thus lets us compute the set of cycles. Notice that these two

phases can be alternated along the interaction so as to discover a greater number of nodes

and, thus, cycles. Once the best cycle in this sub-graph is found, the coach can follow

a recommendation strategy, as we will see in 5.4, that eventually leads the user towards

that cyclic behaviour. Algorithm 2 presents the interaction procedure described above.

5.4. Best recommendation strategy towards target

behaviour

The second question we focus on in this section is the one of making recommendations to

a user that promote a change from his/her behaviour towards a given target when consid-
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begin
H = initial state
C initializes G as an empty graph
while coaching in play do

1st phase: Observation
while 1st phase in play do

U proposes item i = DU(Ĥ)
C does not make any suggestion

C adds Ĥ to G

end
H = fi→i(H)
2nd phase: Graph augmentation
for node in G and i in Items do

if substitutability(last item(node), i) > threshold then
for p in G.predecessors(node) do

C adds edge(p, replace(node,i)) to G
end

end

end
C computes Cycles(G) with Jonhson algorithm [195]
; c⋆ = ArgMaxc∈Cycles(G) mean value(c)

3rd phase: Cycle recommendation
while 3rd phase in play do

U proposes item i = DU(Ĥ)
C suggests substitution i→ j = cycle rec(i,H)
U accepts the substitution i→ j with probability mi,j.
H updates
C updates m̂i,j

end

end

end
Algorithm 2: Cycle identification algorithm based on the contexts actually encoun-
tered by the user, and reachable given the substitutability matrix of U. The cycle
recommendation algorithm cycle rec is the subject of section 5.4
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ering the user choice contextual. We investigate the question of finding a recommendation

strategy in this setting.

5.4.1. User model

As stated in the chapter introduction, contextual factors influence human decision-making.

Thus, it appears essential to consider the context in the coaching framework. Moreover,

the user model proposed in 3 needs to be updated in order to take into account the

impact of context on user decisions. Indeed in Chapter 3, we modelled the habits of the

user by a probability vector, leading to a decision function independent from any notion

of context. Thus we propose an updated version of the user model that takes into account

the context of the user decision function. As the previously presented one, it consists of

three components:

• As in Section 5.3.2, we consider the consumption history as the contextual informa-

tion taken into account by the user. We propose to use the same concept of choice

vector but incorporating the idea of context. Thus we propose a model where for

each possible context the user can encounter, he or she has a corresponding choice

vector, determining the probability of each item choice. Then the decision function

of the user at each time step t is modelled as a random draw in I following the

corresponding choice vector Πt,k̂. We note :

∀t ∈ T, ∀k̂ ∈ RU, we have Πt,k̂ :

I → [0, 1]

i 7→ πt,k(i)

• We make the hypothesis, as previously, that the acceptability for the user of a

substitution from an item i ∈ I to an item j ∈ I does not depend on time. Moreover,

we make the additional hypothesis that acceptability neither depends on context.

Hence the modelization of the user’s acceptability of substitutions through a matrix

M : I × I associating to each couple of items (i, j) ∈ I2 a coefficient m(i, j) ∈ [0, 1]

representing the probability that user U accepts the substitution i→ j from i to j.

• When considering user behaviour change, we make the assumption that, as user

choice, it fully depends on the context. Thus we consider that the acceptance of

a change in a given context only impact the future choices of U in this particular
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context. We note:


πk̂,t+1(i) = (1− λ)πk̂,t(i)

πk̂,t+1(j) = πk̂,t(j) + λπk̂,t(i)

πk̂,t+1(k) = πk̂,t(k) , ∀k ∈ I \ {i, j}
If i→ j has been accepted in context k̂ ∈ RU

with λ ∈ [0, 1]. As in 3.1.3, Πk̂,t+1 is guaranteed to be a probability distribution if

Πk̂,t is so.

Furthermore, we consider the same model for the coach as the one described in 3.1.4. We

still model the interaction as a two-player iterated game.

5.4.2. Step by step context induction

The recommendation problem faced by C is then to make recommendations that will lead

U from his/her current behaviour towards the targeted behaviour. It is worth noting that

this recommendation problem differs from the one addressed in Chapter 3. Indeed, in

Chapter 3, we proposed an optimal choice criterion based on long-term score gain. The

recommendation strategies we tested were derived from this criterion and tried to maxi-

mize an approximation of that criterion rather than focusing on a particular behaviour.

On the contrary, here, the coach knows exactly the target behaviour and should make rec-

ommendations that encourage the user to change his/her behaviour so that it eventually

becomes the targeted behaviour.

In this setting, what should guide the recommendation is no longer a value such as ex-

pected gain or Q-value but a notion of distance between the current user behaviour and

the targeted one. Thus, if we consider a distance metric d, we can note d(Πt,Π
⋆) the

distance between the user behaviour at step t, noted Πt, and the target behaviour Π⋆.

Then a valid recommendation strategy for the coaching system should ensure that, as the

interaction last, this distance converges to zero. Moreover, an optimal recommendation

strategy should achieve this convergence in a minimal time. Solving this problem theo-

retically appears unlikely to be possible, except for the simplest cases. Consequently, we

instead focus on finding a valid strategy applicable to our user model.

We propose a heuristic recommendation strategy based on the least resistance path. The
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underlying idea is to consider two possible cases for the recommendation, depending on the

observed user behaviour. Consider a given cyclic behaviour that is the target behaviour

towards which the user should strive. This behaviour can be represented as a set of

encountered contexts, each associated with the action that must be taken in this context.

Then we consider two distinct cases:

• U is in a context that forms part of the set of encountered contexts associated with

the target behaviour. In this case, the recommendation to make is straightforward:

the coach should recommend substituting the user’s initial choice with the item

associated with that context in the targeted behaviour.

• U is in a context that does not belong to the consumption cycle forming the target

behaviour. In that case, we propose that the coach takes advantage of the impact of

its recommendation (if accepted) on future contexts. Indeed, the coach, by having

its recommendation accepted, can lead the user closer to a context that belongs

to the target behaviour. Let us consider the example presented in 5.3.3.2: we

have shown that in the case where I = {a, b} and µ = 2, there exist six possible

cyclic behaviours that can be implemented by a user U. We consider as the target

behaviour the cycle: (Ĥ = {ab}, DU(Ĥ) = a)→ (Ĥ = {ba}, DU(Ĥ) = b). Then if

U is in observed context Ĥ = {bb} and is willing to choose item b, the coach should

recommend substituting item b by item a: if accepted this change will lead U to the

context Ĥ = {ab}, which forms part of the targeted cyclic behaviour, and so for

which C can recommend the corresponding action in the target behaviour.

Thus we propose an algorithm based on these two cases, whose objective is to build step

by step the contexts of interest, that is, the contexts forming part of the target behaviour.

Once the user is in a context belonging to the target behaviour, the coach recommends

the action corresponding to that context in the target behaviour. In other words, for each

possible context Ĥ ∈ RU, there is a target item j that should be recommended by C to

lead U to the targeted behaviour, regardless of U’s proposal i in that context. However,

U may not be ready to substitute i by j. The question that arises then is: how should

the coach take into account the substitutability of items in its recommendations?
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5.4.3. Taking in account substitutability values

The problem of recommendation faced by the coach is the following: given a proposed item

i by a user U and a target item j that the coach wants U to choose, what substitution

should recommend the coach? We propose to base the recommendation on the least-

resistance path. The idea is to make acceptable recommendations that eventually lead U

from i to j. For example, consider the context of a nutritional coach interacting with a

user to recommend food items. The user proposes to eat french fries, while the coach has

identified carrots as the target food item in that context. However, substituting french

fries with carrots is not acceptable for the user. A solution for the coach is to consider an

indirect substitution, for example recommending substituting french fries with steamed

potatoes, and then once the user proposes steamed potatoes, recommending substituting

with carrots.

Such indirect paths can be obtained by drawing a substitutability graph from the substi-

tutability matrix of the user: consider each item i ∈ I as a vertex of the substitutability

graph. A directed edge from vertex i to vertex j exists if and only if i can be substituted

with j, that is, m(i, j) > 0. Then the set of all possible indirect substitution paths from

an item i to an item j is the set of all paths in the graph from vertex i to vertex j.

Moreover, let us consider a weight w associated with each edge of the graph from a vertex

i to a vertex j, representing the difficulty for the user to substitute i by j. For example

wi,j =
1

m(i,j)
. Then the weighted shortest path from i to j represents the least-resistance

path for the user from item i to item j. So we propose that the coach make recommenda-

tions that follow this least-resistance path when a direct recommendation is impossible.

Hence the algorithm 3.

5.5. Discussion

In this chapter, we proposed to consider the question of coaching recommendations in a

contextual case. In particular, we focused on the case where the score function of the

coach, which allows measuring the quality of a user’s behaviour, is contextual. That is,

depending on the context, the interest in a given item may change, and a highly valuable

item in a given context may be much less interesting in a different context.

Considering this setting, we proposed to study two questions arising from it: first, we

investigated how to maximize such a score from the user side. We proposed a method
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begin
L = µ ;
Possible Recomendation List initialized as an empty list while
recommendation not found do

for (context, action) in target behavior do

if last L elements(context) == last L elements(Ĥ) then
append action to Possible Recomendation List

end

end
if Possible Reco ̸= ∅ then

if Max( ˆm(i, r) for r in Possible Recomendation List) > threshold then
recommendation← ArgMaxm̂(i,r) Possible Recomendation List

else
recommendation← ArgMinr∈R LeastResistancePath(i, r)

end

else
L← L− 1

end

end

end
Algorithm 3: The cycle recommendation algorithm. The principle of the recommen-
dation is to build step by step, by having the recommendation accepted, the contexts
that form part of the targeted behaviour.
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based on repeating routines that allows a user to learn behaviour in his/her representation

space that maximizes the score function regarding his/her capacities, even though he or

she is not able to consider directly the features needed to compute the score.

Second, we propose a heuristic algorithm for a coaching system to make recommendations

that lead a user toward a specific target behaviour. This algorithm is based on step-by-

step context induction to lead the user to a situation where he or she can learn the target

behaviour.

However, we left aside the question for the coach to learn the representation space of

the user. Indeed, if the coach is able to compute the best deterministic routine and to

make recommendations that eventually lead a user towards this routine, this necessitates

knowing the representation space of the user. Hence the following question: How a coach-

ing system could learn from its interaction with a given user the latter’s representation

space? This is a tough problem, as the representation space of the user cannot be directly

observed by the coach. It poses two main questions: first, the question of the user rep-

resentation space modelling, and second the question of the data contained in the user

feedback.

As we proposed to focus on the historical context, we considered the representation space

of the user through a given “memory” parameter µ determining the number of passed

choices the user takes into account when making a choice. Several points are worth

discussing regarding this setting. First, we considered the memory evenly distributed.

That is, a user remembers each passed choice with the same intensity, i.e. for the same

time. However, one can argue that some choices are more “significant” than others and

thus may be remembered for a longer time. As an example, consider the task of choosing

meals. The last weekend’s feast may be more significant, and its impact on future choices

may last longer than the classic sandwich of yesterday’s lunch.

Similarly, when playing tennis, the surprising under-arm serve that led to victory in the

last set may have a longer impact on the decision than the classic forehand shot of the

last point. Even if this assumption makes sense, having access to these different levels of

memory appears to be very difficult. Moreover, computing the relative importance of the

corresponding significance levels appears even more problematic. However, it is noticeable

that conceptually, considering different levels of memory does neither refute the proposed

model nor the idea of consumption cycles. Indeed, we can consider the general memory

of the user as a combination of these different levels. As such, it could be possible to

identify different cycles of consumption for each level of significance and to propose a
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solution combining these different cycles. For example, the authors of [197] proposed a

recommendation framework taking into account two levels of memory: short-term and

long-term memory. Moreover, considering different levels of memory would potentially

make it possible to capture other dynamics, for example, seasonality in food choice.

Second, we assumed that the contextual data that influence the user choice are the same

as he or she perceived from the set of real contexts influencing the score function. This

assumption is key as it allows the user to learn a contextual behaviour that depends on an

observed fraction of the real context. One can argue that the set of contexts influencing

the user choice may be fully disjointed from the set of contexts having an impact on the

score function, hence independence between the context observed by the user at time t

and the contextual features needed to compute the score. However, it is noticeable that

this case can be seen as a classical CARS problem. Indeed, in that case, the set of contexts

can be seen as an additional set of features, as in the majority of CARS approaches. But

if this set is really independent of the set of real contexts, the context observed by the

user has no impact on the score. If these two sets are not really independent, then the

relations that exist between the observed contexts and the real contexts relevant to the

score can be expressed as a user mapping function from the set H to a user representation

space RU. Thus the objective of the coach is still to make recommendations to the user

such as the latter “learns” a representable behaviour that maximizes the score function.

However, this question also highlights the problem for the coach of learning the represen-

tation space of the user from the available feedback. An eventual research direction for

this problem could be found in the literature about “concept drift” detection. Indeed, it

exists an extensive body of literature about methods to detect changes in the underlying

distribution of streaming data [198]. Such methods could potentially be used to detect

changes in the behaviour of a user over time. Studying how the behaviour evolves could

give hints about the representation space the user lives in.

Another direction for representation space learning, which is complementary to a concept

drift detection approach, is to enrich the interaction between the user and the coach and,

in particular, to allow the coach to have access to more data about the user. If the exact

form of such an enriched interaction is not necessarily easy to define, it appears important

for the coach to gather more data than the only proposal of the user and acceptance or

refusal of the recommendation. In particular, if we consider a parallel with a human-

human coaching interaction, it could be helpful for the coach to ask the user information

about how he or she learns and what he or she feels able to remember or not.
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To conclude, we proposed in this chapter a formalization of the problem of coaching

under contextual evaluation. We also proposed heuristics to identify a target behaviour

and make recommendations towards it, given a representation space of the user. In future

works, we are willing to test our proposed methods in a modelled environment with a

real contextual score function, such as, for example, the INCA2 dietary quality index.

Moreover, we are interested in developing methods to infer from the coaching interaction

the representation space of the user and to test the contextual coaching in a real-world

setting.
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6. Conclusion

Recommender systems have gained in popularity over the past decades and have be-

come pervasive in most of our everyday life. They accompany an increasing part of our

choices online. Consequently, they affect how we make choices and, thus, our behaviour

and habits. This impact of recommender systems on our behaviour raises major con-

cerns about democracy and content diversity. This work describes a recommendation

framework we named coaching, the aim of which is to take advantage of the impact of

recommendations on users’ behaviour to accompany the latter in a behaviour change

process.

This chapter first summarizes the work conducted in this PhD thesis and the correspond-

ing main contributions. Second, we present the future research directions and perspectives

that stem from the proposed formalism and the obtained results.

6.1. Summary and contributions

We first presented a thorough review of the literature on problems related to coaching.

Indeed, to the best of our knowledge, specific literature on recommender systems for

behaviour change has yet to exist. Thus the literature is conspicuously fragmented, and

research communities from diverse domains investigated parts of the problem. We focused

on multi-stakeholder recommender systems, teacher-student learning framework and per-

suasive technologies. We showed that each of these three domains informs us on specific

stakes of recommendation for behaviour change. However, we did not find an acceptable

framework to model our problem in the literature, as each specific domain solution ig-

nores some crucial part of our question. Consequently, we concluded on the necessity of

developing a framework dedicated to recommendations for behaviour change.

Second, we investigated the research question RQ1 presented in Chapter 1: How to design

a recommendation framework that promotes long-term behaviour change of its users ? We

proposed to model the recommendation problem as an iterated two-player game, where

a coach agent (the recommender) proposes a recommendation in reaction to the user’s

149



announced choice. By suggesting substitutions the coach aims to have the user modify his

or her consumption habits. This model encompasses three crucial points: user involve-

ment, personalisation of the recommendation and user behaviour evolution. Moreover, we

introduced the notion of trajectory in the space of user habits. We investigated the related

recommendation problem and showed its specificity compared to classic recommendation

approaches. We formally studied the problem and deduced an optimal recommendation

criterion from which we derived approached recommendation strategies. The resulting

strategies were tested experimentally on a simulated healthy-food recommendation task.

The corresponding results highlight the importance of personalisation of the recommen-

dation and the interest in non-myopic strategies. In addition, these results validate the

developed framework’s efficiency in formulating recommendations for behaviour change.

Thirdly we focused on our second research question RQ2: How should be designed an

automated coaching system to make acceptable recommendation in the food domain ? We

identified two key concerns when considering the real-world applicability of coaching for

food recommendation, namely the cold-start problem and the design of the interaction in

a coaching scenario.

The former refers to the problem of finding meaningful recommendations when data on

user preference is unavailable. We designed an experiment to test the capacity of a

previously proposed method to extract meaningful substitutability relations between food

items from consumption data when interacting with real users. Results show that even

if the method performs significantly worse than a domain expert, it can extract some

meaningful relationships from data.

The latter interrogates how an automated coach should interact with a user to maximize

the acceptability of its recommendation and, therefore, to maximize its impact on the

user. We designed a second experiment with real users and tested three modalities of rec-

ommendation. The results indicate that the user’s involvement in the recommendation

process is a key determinant of recommendation acceptance.

Finally, we investigated the research question RQ3: How could an automated coaching sys-

tem incorporate context and temporal dynamics in the evaluation of its recommendations ?

We proposed to divide this research question into three sub-questions, relative to finding

the best user behaviour, making recommendations towards a given target behaviour and

inferring the user learning capacity.

150



Regarding the sub-question of finding the best user behaviour, we formalized the general

problem of finding the best representable contextual behaviour for a user and studied

the particular case of historical context. We proposed a method to compute from the

user characteristics a representable behaviour that maximizes a given contextual score

function. Moreover, we showed that the complexity of finding the exact solution to this

problem makes it impossible to compute in most real-world cases. Thus we proposed a

heuristic algorithm to approach the solution.

We then focused on the second sub-question of making recommendations to lead a user

towards a given target behaviour. We proposed a heuristic recommendation algorithm

based on step-by-step context induction. However, the question of the actual best recom-

mendation strategy, in this case, is still to be explored, and the proposed algorithm can

be seen as a preliminary step in the investigation of this question.

We left aside in this work the third sub-question. Nevertheless, it appears crucial in the

setting of contextual coaching and calls for in-depth investigation.

6.2. Perspectives

The work presented in this PhD thesis investigated the question of making recommen-

dations with an objective of long-term behaviour change and proposed a corresponding

framework we called the coaching framework. We consider this work as a first step in the

investigation of automated coaching systems, which we strongly believe to correspond to

a large spectrum of recommendation problems. Indeed, our contributions do not cover

all the challenges and questions raised by automated coaching. By presenting the follow-

ing perspectives, our objective is to highlight remaining meaningful challenges, propose

potential solutions and point out possible future research directions.

6.2.1. Explainability of the recommendation

As shown in [199], human students learn more efficiently when the teacher provides ex-

planations. Regarding this, we can assume that improving the explainability of recom-

mendations may positively influence the behaviour change of the coached users. Hence

the interest in explainable recommendations in coaching. For example, the authors of

[200] present, in the possible aims for explanations in recommender systems, the stakes

of trustworthiness, effectiveness and persuasiveness. These appear to be particularly rel-
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evant in the case of recommendations for sustainable behaviour change. Explainability of

recommendations is a problem that has been widely studied in the classical recommender

systems literature [201].

It is noticeable that, in coaching, the explanations should encompass both the accept-

ability aspect and the relation with the user behaviour change objective. On the one

hand, the acceptability aspect of explanations can be assimilated into the question of the

explainability of recommendations in traditional recommender systems. Indeed, most of

the state-of-the-art methods are only based on user preferences, and methods have been

developed to provide explanations on why an item should match user preferences. In

particular, content-based approaches allow explaining recommendations based on item

features, which appears to be promising for application cases such as food recommenda-

tions.

On the other hand, the proximity to the user objective is represented, in coaching, by

the score function. So a recommendation should also be explained through the lens

of score gains. This raises the question of the interpretability of the score function.

Indeed, the actual score gain may not be sufficient to explain the recommendation clearly.

Additional commentaries could be beneficial to favour the user’s understanding. This

would necessitate working with domain experts, who might interpret the score variations.

Moreover, we have seen in the work presented in Chapter 3 that non-myopic strategies are

the most valuable in certain cases. Another aspect of the recommendation’s explainability

could be to present to the user the expected steps that have to be reached. This can be

linked with the problem of path recommendation, which has been investigated in the

literature.

6.2.2. Learning path recommendation

A line of work in the literature, particularly in intelligent tutoring systems literature, is

interested in path recommendation and, more precisely, learning path recommendation.

Works on this topic consider learning as a sequential task from a given starting point

to a predefined objective [202]. Then the recommendation consists in recommending

the user to follow a path in the space of items (traditionally courses or exercises) that

eventually leads him or her towards the predefined objective. This approach appears

to be relevant to the idea of coaching, particularly in the case of contextual coaching.

Indeed, as we have seen in Chapter 5, the problem of contextual coaching implicates the
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question of recommendation towards a specific behaviour. Moreover, if we proposed a

method to compute a representable behaviour for the user, we did not explicitly consider

the difficulty of reaching this behaviour regarding the user’s current state.

By building a graph representation of the possible items to be recommended, works

on learning path recommendations allow finding personalized recommendation sequences

adapted to the pursued goal. For example, the work presented in [203] proposes to learn

the best recommendation paths for users based on their initial results to a preliminary

test. This could be applied to contextual coaching, clustering users based on their ini-

tial habits and then finding the best path towards the pre-computed best representable

behaviour. Nevertheless, most existing works consider a clear hierarchy of items, some

being prerequisites for others. This is due to the very nature of considered items, i.e.

learning resources. Such a hierarchy is not necessarily easy to determine in contexts in

which coaching could be applied, such as nutrition. Moreover, designing a learning path

requires being able to observe how a user learns.

6.2.3. Learning how the user learns

As we denoted above, learning for the coach how the user learns, although little explored

in this PhD thesis, is an important stake for long-term behaviour change recommendation.

Indeed, whether in the item-based case presented in chapter 3 or the contextual case pre-

sented in Chapter 5, the learning capacity of the user influences the best recommendation

strategy. The question of estimating both λ, the learning rate of the user, and µ, the user

memory determining his/her representation space, is challenging. Indeed, even the user

has no direct access to this information.

One possible solution for the coach is then to estimate, from its interactions with the user,

the latter’s learning parameters. A possible research direction is to consider the methods

developed in the literature on concept drift detection. As denoted in [198], “Concept

drift describes unforeseeable changes in the underlying distribution of streaming data

over time”. In the particular case of coaching, the evolution of users’ behaviour over time

and changes in their habits can be considered a form of concept drift. By tackling it, a

coaching system may be able to estimate the impact of its recommendations on future

users’ behaviours and so to estimate how users learn from their interaction with the coach.
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6.2.4. Real-world food recommendation

Alongside the theoretical investigations of coaching systems, we also plan to test coaching

in real-world settings. We are particularly interested in applying coaching to the problem

of healthy food recommendation. Nevertheless, real-world recommendation poses many

problems. One of the main questions is food item accessibility. Whether because of im-

mediate inaccessibility or because of the high cost of the recommendation, the user may

not have access to the recommended item and so may be unable to follow the recommen-

dation even though it would have been acceptable for him/her. In particular, the cost

of the recommended items is an important point, as recommended foods in the healthy

recommendation are usually expensive [204, 205].

An experiment design that circumvents these limitations is to propose a coaching system

for food choice in university restaurants. Indeed, in this setting, the set of all possible

choices is easily accessible for the coach. Moreover, in the traditional operation of uni-

versity restaurants, food items for similar roles (starters, main courses or desserts) have

the same price. Bypassing the accessibility question could lead to a long-run experiment,

making it possible to measure long-term behaviour changes of the users.

Overall this thesis work presented a new framework for recommendation focused on long-

term behaviour change. By being at the crossroads of several communities in the lit-

erature, the question of recommendation for behaviour change appears to pose many

questions. This PhD work is a first step in the investigation of the problem. We ad-

dressed some key questions, but many are still to be investigated. We strongly believe

that the domain is promising, but there is still a lot to do, both from the theoretical

point of view and from the experimental validation. Even if we focused in this thesis on

applications in the healthy food recommendation domain, the developed framework is, in

my opinion, general enough to encompass various recommendation problems.

154



Bibliography

[1] S. Wojcicki, “YouTube at 15: My personal journey and the road ahead.” https://

blog.youtube/news-and-events/youtube-at-15-my-personal-journey/. Ac-

cessed: 2023-01-02.

[2] A. Buck, “57 AMAZON STATISTICS TO KNOW IN 2023.” https://

landingcube.com/amazon-statistics/. Accessed: 2023-01-02.

[3] C. C. Aggarwal et al., Recommender systems, vol. 1. Springer, 2016.

[4] T. T. Nguyen, P.-M. Hui, F. M. Harper, L. Terveen, and J. A. Konstan, “Exploring

the filter bubble: the effect of using recommender systems on content diversity,” in

Proceedings of the 23rd international conference on World wide web, pp. 677–686,

2014.

[5] N. Helberger, “On the democratic role of news recommenders,” Digital Journalism,

vol. 7, no. 8, pp. 993–1012, 2019.

[6] H. Abdollahpouri, R. Burke, and B. Mobasher, “Managing popularity bias in recom-

mender systems with personalized re-ranking,” in The thirty-second international

flairs conference, 2019.

[7] Y. Liang and M. C. Willemsen, “Exploring the longitudinal effects of nudging on

users’ music genre exploration behavior and listening preferences,” in Proceedings

of the 16th ACM Conference on Recommender Systems, pp. 3–13, 2022.

[8] S. Hercberg, S. Chat-Yung, and M. Chauliac, “The french national nutrition and

health program: 2001–2006–2010,” International Journal of Public Health, vol. 53,

no. 2, pp. 68–77, 2008.

[9] I. Keller and T. Lang, “Food-based dietary guidelines and implementation: lessons

from four countries–chile, germany, new zealand and south africa,” Public health

nutrition, vol. 11, no. 8, pp. 867–874, 2008.

155

https://blog.youtube/news-and-events/youtube-at-15-my-personal-journey/
https://blog.youtube/news-and-events/youtube-at-15-my-personal-journey/
https://landingcube.com/amazon-statistics/
https://landingcube.com/amazon-statistics/


[10] R. Z. Wilson, Neuroscience for counsellors: Practical applications for counsellors,

therapists and mental health practitioners. Jessica Kingsley Publishers, 2014.

[11] A. Sharma, J. M. Hofman, and D. J. Watts, “Estimating the causal impact of

recommendation systems from observational data,” in Proceedings of the Sixteenth

ACM Conference on Economics and Computation, pp. 453–470, 2015.

[12] Y. Himeur, A. Alsalemi, A. Al-Kababji, F. Bensaali, A. Amira, C. Sardianos,

G. Dimitrakopoulos, and I. Varlamis, “A survey of recommender systems for energy

efficiency in buildings: Principles, challenges and prospects,” Information Fusion,

vol. 72, pp. 1–21, 2021.

[13] P. Resnick and H. R. Varian, “Recommender systems,” Communications of the

ACM, vol. 40, no. 3, pp. 56–58, 1997.

[14] F. Ricci, L. Rokach, and B. Shapira, “Recommender systems: introduction and

challenges,” in Recommender systems handbook, pp. 1–34, Springer, 2015.

[15] J. Bennett, S. Lanning, et al., “The netflix prize,” in Proceedings of KDD cup and

workshop, vol. 2007, p. 35, Citeseer, 2007.

[16] Y. Song, S. Dixon, and M. Pearce, “A survey of music recommendation systems and

future perspectives,” in 9th international symposium on computer music modeling

and retrieval, vol. 4, pp. 395–410, Citeseer, 2012.
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[18] J. Borràs, A. Moreno, and A. Valls, “Intelligent tourism recommender systems: A

survey,” Expert systems with applications, vol. 41, no. 16, pp. 7370–7389, 2014.

[19] I. Andjelkovic, D. Parra, and J. O’Donovan, “Moodplay: interactive music rec-

ommendation based on artists’ mood similarity,” International Journal of Human-

Computer Studies, vol. 121, pp. 142–159, 2019.

[20] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filtering

to weave an information tapestry,” Communications of the ACM, vol. 35, no. 12,

pp. 61–70, 1992.

156



[21] L. N. Tondji, “Web recommender system for job seeking and recruiting,” Partial

Fulfillment of a Masters II at AIMS, 2018.

[22] G. Shani and A. Gunawardana, “Evaluating recommendation systems,” in Recom-

mender systems handbook, pp. 257–297, Springer, 2011.

[23] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne, “Controlled ex-

periments on the web: survey and practical guide,” Data mining and knowledge

discovery, vol. 18, no. 1, pp. 140–181, 2009.

[24] S. Vargas and P. Castells, “Rank and relevance in novelty and diversity metrics for

recommender systems,” in Proceedings of the fifth ACM conference on Recommender

systems, pp. 109–116, 2011.

[25] K. Bradley and B. Smyth, “Improving recommendation diversity,” in Proceedings of

the twelfth Irish conference on artificial intelligence and cognitive science, Maynooth,

Ireland, vol. 85, pp. 141–152, Citeseer, 2001.

[26] S. Castagnos, A. Brun, and A. Boyer, “When diversity is needed... but not ex-

pected!,” in International Conference on Advances in Information Mining and Man-

agement, pp. 44–50, IARIA XPS Press, 2013.

[27] R. Burke, G. Adomavicius, I. Guy, J. Krasnodebski, L. Pizzato, Y. Zhang, and

H. Abdollahpouri, “Vams 2017: Workshop on value-aware and multistakeholder

recommendation,” in Proceedings of the Eleventh ACM Conference on Recommender

Systems, pp. 378–379, 2017.

[28] R. D. Burke, H. Abdollahpouri, B. Mobasher, and T. Gupta, “Towards multi-

stakeholder utility evaluation of recommender systems.,” UMAP (Extended Pro-

ceedings), vol. 750, 2016.

[29] H. Abdollahpouri, G. Adomavicius, R. Burke, I. Guy, D. Jannach, T. Kamishima,

J. Krasnodebski, and L. Pizzato, “Multistakeholder recommendation: Survey and

research directions,” User Modeling and User-Adapted Interaction, vol. 30, no. 1,

pp. 127–158, 2020.

[30] M. Hammar, R. Karlsson, and B. J. Nilsson, “Using maximum coverage to optimize

recommendation systems in e-commerce,” in Proceedings of the 7th ACM conference

on Recommender systems, pp. 265–272, 2013.

157



[31] W. Lu, S. Chen, K. Li, and L. V. Lakshmanan, “Show me the money: Dynamic

recommendations for revenue maximization,” arXiv preprint arXiv:1409.0080, 2014.

[32] W. Liu, J. Guo, N. Sonboli, R. Burke, and S. Zhang, “Personalized fairness-aware

re-ranking for microlending,” in Proceedings of the 13th ACM Conference on Rec-

ommender Systems, pp. 467–471, 2019.

[33] P. Adamopoulos and A. Tuzhilin, “The business value of recommendations: A

privacy-preserving econometric analysis,” in 36th International Conference on In-

formation Systems: ICIS 2015, Association for Information Systems, 2015.

[34] C. Pei, X. Yang, Q. Cui, X. Lin, F. Sun, P. Jiang, W. Ou, and Y. Zhang, “Value-

aware recommendation based on reinforcement profit maximization,” in The World

Wide Web Conference, pp. 3123–3129, 2019.

[35] H. Abdollahpouri, R. Burke, and B. Mobasher, “Value-aware item weighting for

long-tail recommendation,” arXiv preprint arXiv:1802.05382, 2018.

[36] R. Louca, M. Bhattacharya, D. Hu, and L. Hong, “Joint optimization of profit and

relevance for recommendation systems in e-commerce.,” in RMSE@ RecSys, 2019.

[37] D. Jannach and G. Adomavicius, “Price and profit awareness in recommender sys-

tems,” arXiv preprint arXiv:1707.08029, 2017.

[38] Y. Li, Y. Zhang, L. Gan, G. Hong, Z. Zhou, and Q. Li, “Revman: Revenue-aware

multi-task online insurance recommendation,” in Proceedings of the AAAI Confer-

ence on Artificial Intelligence, vol. 35, pp. 303–310, 2021.

[39] R. Yang, M. Xu, P. Jones, and N. Samatova, “Real time utility-based recommen-

dation for revenue optimization via an adaptive online top-k high utility itemsets

mining model,” in 2017 13th international conference on natural computation, fuzzy

systems and knowledge discovery (ICNC-FSKD), pp. 1859–1866, IEEE, 2017.

[40] P. Hosein, I. Rahaman, K. Nichols, and K. Maharaj, “Recommendations for long-

term profit optimization.,” in ImpactRS@ RecSys, 2019.

[41] N. Ghanem, S. Leitner, and D. Jannach, “Balancing consumer and business

value of recommender systems: A simulation-based analysis,” arXiv preprint

arXiv:2203.05952, 2022.

158



[42] K. Hosanagar, R. Krishnan, and L. Ma, “Recomended for you: The impact of profit

incentives on the relevance of online recommendations,” ICIS 2008 Proceedings,

p. 31, 2008.

[43] U. Panniello, S. Hill, and M. Gorgoglione, “The impact of profit incentives on the

relevance of online recommendations,” Electronic Commerce Research and Applica-

tions, vol. 20, pp. 87–104, 2016.

[44] A. Das, C. Mathieu, and D. Ricketts, “Maximizing profit using recommender sys-

tems,” arXiv preprint arXiv:0908.3633, 2009.

[45] G. Shani, D. Heckerman, R. I. Brafman, and C. Boutilier, “An mdp-based recom-

mender system.,” Journal of Machine Learning Research, vol. 6, no. 9, 2005.

[46] Y. Cai and D. Zhu, “Trustworthy and profit: A new value-based neighbor selection

method in recommender systems under shilling attacks,” Decision Support Systems,

vol. 124, p. 113112, 2019.

[47] M. Brand, “A random walks perspective on maximizing satisfaction and profit,” in

Proceedings of the 2005 SIAM international conference on data mining, pp. 12–19,

SIAM, 2005.

[48] L. Akoglu and C. Faloutsos, “Valuepick: Towards a value-oriented dual-goal rec-

ommender system,” in 2010 IEEE International Conference on Data Mining Work-

shops, pp. 1151–1158, IEEE, 2010.

[49] M. Kompan, P. Gaspar, J. Macina, M. Cimerman, and M. Bielikova, “Exploring

customer price preference and product profit role in recommender systems,” IEEE

Intelligent Systems, vol. 37, no. 1, pp. 89–98, 2021.

[50] L.-S. Chen, F.-H. Hsu, M.-C. Chen, and Y.-C. Hsu, “Developing recommender

systems with the consideration of product profitability for sellers,” Information

Sciences, vol. 178, no. 4, pp. 1032–1048, 2008.

[51] I. Benouaret, S. Amer-Yahia, C. Kamdem-Kengne, and J. Chagraoui, “A bi-

objective approach for product recommendations,” in 2019 IEEE International Con-

ference on Big Data (Big Data), pp. 2159–2168, IEEE, 2019.

159



[52] C. Long, R. C.-W. Wong, and V. J. Wei, “Profit maximization with sufficient

customer satisfactions,” ACM Transactions on Knowledge Discovery from Data

(TKDD), vol. 12, no. 2, pp. 1–34, 2018.

[53] V. Kini and A. Manjunatha, “Revenue maximization using multitask learning for

promotion recommendation,” in 2020 International Conference on Data Mining

Workshops (ICDMW), pp. 144–150, IEEE, 2020.

[54] R. Ma, H. Li, J. Cen, and A. Arora, “Placement-and-profit-aware association rules

mining.,” in ICAART (2), pp. 639–646, 2019.

[55] Y. Nemati and H. Khademolhosseini, “Devising a profit-aware recommender system

using multi-objective ga,” Journal of Advances in Computer Research, vol. 11, no. 3,

pp. 109–120, 2020.

[56] A. Azaria, A. Hassidim, S. Kraus, A. Eshkol, O. Weintraub, and I. Netanely, “Movie

recommender system for profit maximization,” in Proceedings of the 7th ACM con-

ference on Recommender systems, pp. 121–128, 2013.

[57] H.-F. Wang and C.-T. Wu, “A mathematical model for product selection strate-

gies in a recommender system,” Expert Systems with Applications, vol. 36, no. 3,

pp. 7299–7308, 2009.

[58] D. Lee, K. Nam, I. Han, and K. Cho, “From free to fee: Monetizing digital con-

tent through expected utility-based recommender systems,” Information & Man-

agement, vol. 59, no. 6, p. 103681, 2022.

[59] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,

2018.

[60] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on machine

learning applications and trends: algorithms, methods, and techniques, pp. 242–264,

IGI global, 2010.

[61] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,”

Journal of Big data, vol. 3, no. 1, pp. 1–40, 2016.

[62] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning domains:

A survey.,” Journal of Machine Learning Research, vol. 10, no. 7, 2009.

160



[63] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist systems,

vol. 37. Citeseer, 1994.

[64] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3, pp. 279–

292, 1992.

[65] F. L. Da Silva, G. Warnell, A. H. R. Costa, and P. Stone, “Agents teaching agents:

a survey on inter-agent transfer learning,” Autonomous Agents and Multi-Agent

Systems, vol. 34, no. 1, pp. 1–17, 2020.

[66] S. Schaal, “Learning from demonstration,” Advances in neural information process-

ing systems, vol. 9, 1996.

[67] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent advances

in robot learning from demonstration,” Annual review of control, robotics, and au-

tonomous systems, vol. 3, pp. 297–330, 2020.

[68] W. B. Knox and P. Stone, “Interactively shaping agents via human reinforce-

ment: The tamer framework,” in Proceedings of the fifth international conference

on Knowledge capture, pp. 9–16, 2009.

[69] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward transforma-

tions: Theory and application to reward shaping,” in Icml, vol. 99, pp. 278–287,

1999.

[70] A. Laud and G. DeJong, “The influence of reward on the speed of reinforcement

learning: An analysis of shaping,” in Proceedings of the 20th International Confer-

ence on Machine Learning (ICML-03), pp. 440–447, 2003.

[71] L. Torrey and M. Taylor, “Teaching on a budget: Agents advising agents in re-

inforcement learning,” in Proceedings of the 2013 international conference on Au-

tonomous agents and multi-agent systems, pp. 1053–1060, 2013.

[72] G. Hinton, O. Vinyals, J. Dean, et al., “Distilling the knowledge in a neural net-

work,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.
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