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Abstract

Autonomous driving is expected to revolutionize tomorrow’s transportation technologies. Positioning

systems are a key component of self-driving vehicles in order to ensure a safe, smooth and reliable nav-

igation. The precise ego position of a vehicle inside of its environment can be recovered by a wide

range of sensors and algorithms, but ensuring a high accuracy and reliability in very large environments

remains a challenging problem for traditional systems. This thesis aims to solve the map-based relocal-

ization problem with on-board camera sensors and data-driven methods. We build on recent advances on

the deep learning area to develop algorithms which learn to relocalize from a large collection of images

gathered in the area of interest.

First, we propose to include geometrical clues and uncertainty quantification in direct learning-based

visual localization methods and explore their capability to be used as a vehicle localization system in

autonomous driving scenarios.

Then, we investigated in different ways the connection between implicit scene representations and

visual localization algorithms. By their ability to represent continuously a complex scene in a neural

network, these implicit representations can be used to generate photo-realistic synthetic data used to train

better algorithms, but also to represent the map of the environment. We show that relevant information

captured on roads of several kilometers can be encoded in few megabytes in order to achieve real-time

vehicle localization, but also that local features can be learned, stored and rendered by a Neural Field to

achieve centimeter-level camera pose estimation in a dense features matching pipeline.

Overall, this work aims to rehabilitate direct learning-based formulations, which are considered to be

less precise than classical features-based methods. In the end, the effectiveness of data-driven methods

depends on the data and then can be beneficial in some situations, such as autonomous driving.

In addition to that, implicit representations and neural fields, beyond their impressive rendering abil-

ity, are rapidly becoming the most effective solution to represent scenes for computer vision and au-

tonomous driving. We have shown some applications of this idea for the localization task and expect to

see more in the following years.



Résumé en Français

La conduite autonome est appelée à révolutionner les transports de demain. Les systèmes de localisation

sont un élément clé des véhicules autonomes afin d’assurer une navigation sûre, fluide et fiable. La posi-

tion précise d’un véhicule dans son environnement peut être déterminée à l’aide de différents capteurs et

algorithmes, mais la garantie d’une précision et d’une fiabilité élevées sur des cartes à très grande échelle

reste un problème difficile pour les systèmes traditionnels. Cette thèse vise à résoudre le problème de la

relocalisation à l’aide de caméras embarquées et de méthodes d’apprentissage automatique. Nous nous

appuyons sur les avancées récentes dans le domaine de l’apprentissage profond pour développer des al-

gorithmes qui apprennent à relocaliser à partir d’une grande base de données d’images recueillies dans

la zone d’intérêt.

Tout d’abord, nous proposons d’améliorer le raisonnement géometrique et de quantifier l’incertitude

dans les méthodes directes de localisation visuelle et nous explorons leur capacité à être utilisées comme

système de localisation de véhicules dans des scénarios de conduite autonome.

Dans un second temps, nous avons exploré de différentes manières le lien entre les représentations

implicites de scènes et les algorithmes de localisation visuelle. Par leur capacité à représenter de manière

continue une scène complexe dans un réseau de neurones, ces représentations implicites peuvent être

utilisées pour générer des données synthétiques photo-réalistes utilisées pour entraîner de meilleurs al-

gorithmes, mais aussi pour représenter la carte de l’environnement. Nous montrons que les informations

pertinentes capturées sur des routes de plusieurs kilomètres peuvent être encodées en quelques mégabytes

afin de réaliser la localisation de véhicules en temps réel, mais aussi que les features locales peuvent être

apprises, stockées et rendues par un "Neural Field" pour réaliser une estimation de la position de la

caméra au centimètre près dans un algorithme de correspondances locales denses.

Globalement, ce travail vise à réhabiliter les méthodes directes, qui sont considérées comme moins

précises que les méthodes classiques basées sur les features. Au final, l’efficacité des méthodes d’apprentissages

dépend des données et peut donc être bénéfique dans certaines situations, comme la conduite autonome.

En outre, les représentations implicites, au-delà de leur impressionnante capacité de rendu, devien-

nent rapidement la solution la plus efficace pour représenter les scènes pour la vision par ordinateur et

la conduite autonome. Nous avons montré quelques applications de cette idée pour la localisation dans

cette thèse et nous espérons en voir d’autres dans les années à venir.
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CHAPTER 1. INTRODUCTION

The starting point of this PhD thesis is the perspective of autonomous driving systems: the deploy-

ment of such a technology at scale will require advanced computer vision algorithms to solve complex

tasks in real-time without human intervention. This field has made significant progress in the last decade

thanks to machine learning approaches, which paves the way for learning the entire driving task from

data. The research conducted in this thesis aims to develop this direction and explores deep learning solu-

tions for autonomous driving. More specifically, we focus on mapping and localization algorithms from

visual sensors. It consists in analysing video streams from cameras mounted on vehicles to understand

the surrounding environment of the vehicle, build a map of the area and then being able to re-localize

inside of this map during a new navigation scenario. Determining the ego-position of the vehicle is

crucial to ensure the safe and smooth navigation of a car. This thesis proposes several innovative contri-

butions about image-based relocalization algorithms with learning-based approaches. This task involves

several challenges, such as recovering meaningful information about the 3D world while images are a

2D signal, dealing with a dynamic outdoor environment where lightning conditions and moving objects

change over time but also developing systems which are computationally tractable in order to operate in

real-time embedded into a vehicle.

First, we introduce the problem from a practical point of view in section 1.1: We briefly present

the classical pipeline of autonomous driving, we discuss the different options for positioning systems of

vehicles, define the background concepts, and highlight the main challenges induced by this task. Then,

in section 1.2, we define a scenario for autonomous driving based on high definition maps and discuss the

scientific perspectives, the industrial constraints and some technical specifications which would enable

to develop visual localization methods that can be deployed at scale for autonomous vehicles. We define

objectives and formulate hypothesis which have been evaluated through the research work of this thesis.

Finally, section 1.3 presents the publications and communications that emerged from the work of this

thesis.

1.1 Problem statement: the vehicle localization problem

1.1.1 Autonomous driving software pipeline

Driving is a highly complex task that requires to understand correctly the surrounding environment and

to react appropriately to the actions of the other road users. Automating this process is usually tackled

by a combination of different subtasks described below:

• Sensors: Automated vehicles are equipped with a sensors stack which capture raw information

about the surrounding environment in real-time. This can include one or multiple cameras, GNSS,

lidar and radar. Each sensor has its own advantages and drawbacks: cameras provide a dense

photometric signal but the information is projected to a 2D plane, while a lidar captures accurate

3D information but is limited to a sparse signal in a close range. This thesis focuses on algorithms

which use only camera images.

• Perception: The raw data captured by sensors is processed by perception algorithms in order

to provide useful information about the surrounding environment. Perception contains geometric

("where") and semantic ("what") information. The scene understanding tasks involved in vehicle
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perception can include (but are not limited to): detection and tracking of other roads agents such

as vehicles [Betke et al., 2000, Mahmoud et al., 2023] and pedestrians [Dollar et al., 2011, Liu

et al., 2019], detection of lane markings and road geometry [López et al., 2010], traffic sign recog-

nition and classification [Zaklouta and Stanciulescu, 2014, Tabernik and Skočaj, 2019], pixel-wise

semantic segmentation of the scene [Xie et al., 2021a, Chen et al., 2017], pixel-wise depth predic-

tion [Bhat et al., 2021, Godard et al., 2019] or semantic scene completion [Roldao et al., 2022].

Overall, the goal of perception is to obtain an accurate intermediate representation of the environ-

ment which is simplified and interpretable compared to the raw sensors measurements, such that

it can be used in later steps.

• Localization: An other requirement of automated driving is to know the ego position of the vehicle

at any time. This position is defined w.r.t. a map of the environment, which can be pre-computed

before deployment (relocalization approach) or built in real-time during navigation in the Simul-

taneous Localization and Mapping (SLAM) scenario. Vehicle positioning algorithms can leverage

data from various sensors [Kuutti et al., 2018], but the more accurate and robust solution is to use

several of them through sensor fusion [Levinson et al., 2007, Fayyad et al., 2020]. This thesis,

though, will not address sensor fusion but rather try to maximize the accuracy and robustness of

image-based solutions, which can later be fused with other signals. Similar to perception, local-

ization is an intermediate step used in later computation, but its accuracy is crucial to ensure safety

and smoothness of the vehicle trajectory.

• Prediction: Once a representation of the surrounding environment has been built, the autonomous

vehicle needs to reason about the future evolution of the scene. It consists in predicting the future

trajectory and actions of the other road agents. Premise work in this field rely on physical models,

time series extrapolation and causality principles [Lefèvre et al., 2014]. Since then, prediction

of vehicles trajectory [Zhao et al., 2021, Gilles et al., 2021], pedestrians intentions [Gesnouin

et al., 2021] and trajectory [Achaji et al., 2022] rely on machine learning methods that use the

information coming from perception and localization as input.

• Path planning and control: Finally, given the surrounding environment and its probable future,

the vehicle needs to plan its future trajectory to reach the target destination, while being sure

to avoid any possible collision, respect road legislation and ensure a smooth navigation for the

passengers.

A potential failure in the localization step will result in erroneous input data for the prediction and

path planning tasks which can cause collisions with other road agents in the worst case and a jerky and

uncomfortable vehicle trajectory in the best case.

1.1.2 Vehicle positioning systems

The most common way to localize a vehicle is to use GNSS technology, however depending on the

cost, its localization accuracy is limited (≈ 5𝑚) and not sufficient for an autonomous driving system. In

addition to that, areas such as tunnels or underground car park are GPS-denied while localization is still
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needed. Plenty of other sensors can be used to build positioning or improve the accuracy of existing ones

with sensor fusion.

Wheel odometry estimates the motion by integrating the number of turns of the vehicle wheels over

time [Merriaux et al., 2014]. This is a cheap solution because the information is usually available in the

CAN bus of the vehicle, but not very precise when used alone (≈ 5𝑚) and accumulates drift over time.

Inertial Measurement Units (IMU) use accelerometers and gyroscopes to capture the movement of the

vehicle and the position can also be recovered by integrating these signals [Yi et al., 2007]. In urban

areas, WiFi signals can be triangulated to recover the vehicle position [Dinh-Van et al., 2017, Nguyen

et al., 2016, Hernández et al., 2017]. Radar is an alternative solution [Ward and Folkesson, 2016]. Lidar

can be used to estimate the vehicle odometry [Dellenbach et al., 2021] or absolute position [Deschaud,

2018, Bârsan et al., 2018, Phillips et al., 2021] with a high precision but at a high cost. Finally, image-

based localization are an emerging, but yet well-studied, technology which probably offers the best

trade-off between sensor cost and localization accuracy. We present these techniques in section 1.1.3.

1.1.3 Image-based positioning systems

There are two main different strategies to estimate the position of a vehicle from camera images:

• Visual Simultaneous Localization and Mapping (vSLAM): In this scenario, we don’t know the

environment on which we drive beforehand. As a result we need to build a map of the environ-

ment during the navigation and localize new images in this map at the same time. SLAM usually

leverages visual odometry [Yousif et al., 2015, Tang et al., 2018], which consists in estimating

the relative pose between 2 images captured at consecutive timesteps. It can be approached by

features-based methods [Mur-Artal et al., 2015, Sumikura et al., 2019, Li et al., 2020] or direct ap-

proaches [Engel et al., 2014, Tateno et al., 2017, Yang et al., 2020]. It is compatible with different

sensors setup: monocular RGB or RGB-D camera and stereo cameras.

• Mapping and Relocalization: Alternatively, one can first collect data in the area of interest,

build a map of the environment offline before deployment, and then estimate the camera pose

of images captured during navigation w.r.t. the reference map (relocalization). This scenario is

also referred as map-based localization [Chalvatzaras et al., 2022]. While collecting data and

computing a map before deployment is a constraint, it enables to build very precise maps and then

to provide more accurate and reliable localization systems. Alternatively, vSLAM maps can be

used in relocalization mode.

This thesis addresses the mapping and relocalization scenario, and in particular the relocalization

algorithms with a single RGB camera. Section 1.2 gives more insights on the problem that this industrial

PhD wants to address to develop vehicle localization systems, and chapter 2 presents the prior literature

on relocalization algorithms.

1.2 Objectives: a map-based autonomous driving localization scenario

We aim to develop a mapping and localization system able to operate for autonomous driving at scale in

an industrial scenario. We set as objective the following specifications given some assumptions:
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• We assume that lots of data can be collected in target environments, either by the service provider

or gathered from the service users in a crowd-sourced way.

• We can afford extensive offline computation on servers before deployment, such as mapping algo-

rithms and training machine learning models. On the other hand, the relocalization algorithm has

to be compatible with real-time computation at high frequency in the vehicle.

• We need a robust system able to operate on public roads, with kilometers-scale maps, changing

lightning conditions, and interactions with other road users.

• We want a "self-learning" system, in the sense that the localization service can be deployed in an

area and improve over time while more data is collected without relying on human annotation in

the loop.

• Finally, we need an accurate enough localization algorithm (sub-meter accuracy), able to ensure

safety and robustness of the autonomous driving software pipeline.

This scenario is quite different than the public visual localization benchmarks which usually use a

small amount of reference data. State-of-the-art features-based localization algorithms are very accurate

but struggle to scale with larger datasets (see chapter 2). This is the main motivation for developing

direct learning-based methods during this thesis.

1.3 Publications and communications

This PhD has been conducted in the center for robotics of Mines Paris, PSL University in the context of

an industrial collaboration with Huawei Technologies France, in the Internet of Vehicles (IoV) team of

Paris Research Center. The main publications and communications of this thesis can be synthesized as

follows:

• A. Moreau, N. Piasco, D. Tsishkou, B. Stanciulescu, A. de La Fortelle. LENS: Localization

enhanced by NeRF synthesis. 5th Annual Conference on Robot Learning (CoRL 2021).

• Best oral presentation for "Visual-based localization enhanced by NeRF synthesis" at Journée des

Jeunes Chercheurs en Robotique (JJCR 2021).

• A. Moreau, N. Piasco, D. Tsishkou, B. Stanciulescu, A. de La Fortelle. CoordiNet: uncertainty-

aware pose regressor for reliable vehicle localization. Proceedings of the IEEE/CVF Winter Con-

ference on Applications of Computer Vision (WACV 2022).

• A. Moreau, T. Gilles, N. Piasco, D. Tsishkou, B. Stanciulescu, A. de La Fortelle. ImPosing:

Implicit Pose Encoding for Efficient Visual Localization. Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision (WACV 2023).
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• A. Moreau, N. Piasco, M. Bennehar, D. Tsishkou, B. Stanciulescu, A. de La Fortelle. NPFF: Self-

Supervised Neural Positional Features Fields for Visual Localization. Under submission at CVPR

2023.

The research conducted during the thesis also led to the filling of 3 European patents which are

currently under examination at the time of publication:

• Mobile device with reliable localization module trained from crowd sourced rendered views

• Apparatus and methods for visual localization with compact learned map representation

• Visual Positioning System based on descriptors equiped Neural Fields

1.4 Outline

This thesis is laid out in eight chapters:

Chapter 1: Introduction. We briefly introduce the context of the research of this thesis, including

the autonomous vehicle software pipeline, vehicle positioning systems and more specifically the distinc-

tion between SLAM and map-based localization. Then, we define the objective of the research by taking

into account industrial specifications.

Chapter 2: Camera relocalization algorithms: from classical pipelines to learning-based solu-
tions. We present a literature review of visual localization algorithms, focusing on single RGB queries.

We present existing classes of algorithms: visual place recognition with image retrieval, structure-based

methods relying on 3D models and local features and finally direct learning-based methods. We describe

their overall approach, extensions and respective benefits and limitations. We conclude by discussing the

applicability of these solutions for autonomous driving and highlight that direct learning-based methods

are a promising direction in this scenario.

Chapter 3: Vehicle localization with Absolute Pose Regression. This chapter describes research

which has been conducted to develop vehicle localization systems with Absolute Pose Regression algo-

rithms. We propose to include geometry inductive biases and heteroscedatic uncertainty quantification

in a fully-convolutional architecture. During navigation, we filter the predicted positions coupled with

their uncertainties over time with an EKF. We explore the capability of our system CoordiNet [Moreau

et al., 2022a] on public benchmarks and large-scale driving datasets. We observe a satisfying localiza-

tion accuracy when the training data is abundant, but also some limitations which have led to the next

contributions.

Chapter 4: Literature review: Neural networks as implicit scene representations. We review

the recently introduced Implicit Neural Representations, which represent data points, such as a 3D scene,

in coordinate-based neural networks. We discuss more in details Neural Radiance Fields (NeRF) and

related neural rendering techniques. Specifically, we present NeRF improvements which reduce training

and rendering times, use more advanced scene formulations, and deal with dynamic scenes. Finally, we

represent robotics applications of implicit scene representations and introduce the general guideline idea

of following chapters: use such representations as the visual localization map.

Chapter 5: Visual Localization augmented by NeRF synthesis. We present a simple technique to

improve Absolute Pose Regression with NeRF generated data. Given a sparse set of captured reference
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frames, we train a NeRF model, use it to synthesize photorealistic views uniformly distributed around

the scene, and train an Absolute Pose Regressor with a large training dataset composed on both real and

synthetic images. Using our method LENS [Moreau et al., 2022b], we observe a large accuracy improve-

ment on public benchmarks where pose regression usually under performs. Ablation experiments show

that the improvement not only comes from a larger quantity of data, but rather from a better distribution

of the training dataset.

Chapter 6: Large scale localization with an implicit map representation. The well-established

solution to address visual localization in large-scale maps is to use visual place recognition algorithms,

based on image retrieval. This chapter investigates the idea of replacing the image retrieval database by a

MLP that implicitly represents the visual content of kilometers-scale driving maps. In this formulation,

the global descriptor of “any” 𝑆𝐸 (3) pose can be evaluated. As a result, localization is not tackled

by comparing to a discrete and finite database, but rather by iterative dense sampling of camera pose

candidates. We confirm the benefits of our method ImPosing [Moreau et al., 2023a] on very diverse

driving scenarios as well as its ability to scale up to large-data regimes.

Chapter 7: Self-supervised localization features in a radiance field. This chapter extends the idea

of implicit maps representations to structure-based localization algorithms. We use local features match-

ing to address precise camera pose estimation. However, we replace the commonly used sparse 3D model

by a Neural Field able to render scene-specialized local features. This scene representation presents sev-

eral advantages such as compactness, the ability to perform dense features matching and to refine the

pose an arbitrary number of times. We describe our system CROSSFIRE [Moreau et al., 2023b], how to

train it in a self-supervised way and evaluate its properties in indoor and outdoor scenarios.

Chapter 8: Conclusion. Finally, we summarize our contributions and explain how they could be

combined together in a hierarchical visual localization system. We conclude the manuscript by discussing

the perspective of autonomous driving solutions based on implicit representations.
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CHAPTER 2. CAMERA RELOCALIZATION ALGORITHMS: FROM CLASSICAL PIPELINES
TO LEARNING-BASED SOLUTIONS

2.1 Résumé en Français

Nous présentons une revue de la littérature sur les algorithmes de localisation visuelle prenant une unique

image en entrée.

Nous présentons les classes d’algorithmes existantes : image retrieval, méthodes basées "features"

reposant sur des modèles 3D et, enfin, les méthodes d’apprentissage direct. Nous décrivons les différentes

approches, leurs extensions et leurs avantages et limites respectifs.

Nous concluons en discutant de l’applicabilité de ces solutions pour les scénarios de conduite au-

tonome et soulignons que les méthodes basées sur l’apprentissage direct sont une voie prometteuse dans

ce scénario, grâce à leur capacité de passer à l’échelle lorsque de grands jeux de données sont disponibles.
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This chapter presents a literature review of prior work on Camera Relocalization methods, also

known as Image-based Localization. The task is to estimate the 6-DoF camera pose (𝑡, 𝑞) ∈ 𝑆𝐸 (3)
of a query image 𝐼, where 𝑡 is a translation vector and 𝑞 is a unit quaternion. Camera poses are defined

in the absolute coordinate system of a pre-computed map of the environment. We consider as available a

reference dataset of posed images (𝐼𝑘) collected in the target area. Optionally, some methods can make

use of an additional 3D model of the scene. We restrict ourselves to algorithms that operate only with a

single query camera image as input.

First, we review the different existing approaches to solve this geometry problem. Section 2.2

presents Image Retrieval solutions, Section 2.3 introduces Structure-based approaches, including 2D-

3D features matching pipelines, direct alignment methods and hierarchical approaches based on relative

pose regression. Section 2.4 reviews the literature on direct-learning based methods, i.e. end-to-end deep

learning approaches. Finally, Section 2.5 discusses the most relevant solutions for vehicle localization at

large scale and paves the way for the research direction of the thesis. We refer to [Piasco et al., 2018] for

an extensive review of this field.

2.2 Coarse localization with Visual Place Recognition

Visual Place Recognition (VPR) [Lowry et al., 2015, Pronobis et al., 2006] is a well-studied problem

related to Visual Localization. It can be defined as "the ability to recognize one’s location based on

two observations perceived from overlapping field-of-views" [Garg et al., 2021]. Instead of directly

computing a camera pose, the goal is to compare the query image to a large database of geo-referenced

images and retrieve the most similar examples (i.e. the images which observe the same scene).

The VPR task is usually cast as an Image Retrieval (IR) problem, described in Figure 2.1. The

image is encoded in a single global image descriptor which summarize the visual content in a compact

vector. In an offline step, the descriptor of each reference image (𝐼𝑘) is computed and stored. Then

during deployment, the query image 𝐼 is processed and its global image descriptor is matched against

the reference database through nearest neighbour search. The global image descriptor was originally

obtained by first computing sparse local descriptors such as SIFT [Lowe, 1999], followed by aggregation

based on "visual words", which are clusters of the descriptors space. Bag Of Words [Sivic and Zisserman,

2009] counts the occurrences of each visual word, Word Spatial Arrangement [Penatti et al., 2014]

takes into account their relative positions, while VLAD (vector of locally aggregated descriptors) [Jégou

et al., 2010, Arandjelovic and Zisserman, 2013] and DenseVLAD [Torii et al., 2015a] sum the residuals

w.r.t. clusters centroids. Recently, encoding an image into a global descriptor has been tackled by

Convolutional Neural Networks followed by a pooling layer [Chen et al., 2022c]. The CNN is directly

optimized for the task of place recognition with euclidian distance [Arandjelović et al., 2016], triplet

loss [Gordo et al., 2017] or a listwise loss [Revaud et al., 2019]. The resulting representation can be

improved by taking additional modalities into account such as depth information [Piasco et al., 2019b,

Piasco et al., 2021], or semantics [Weng et al., 2021].

A camera pose approximation of a query image can be computed with the reference poses of the most

similar retrieved images, for example with pose averaging [Torii et al., 2011]. These retrieved images

can be re-ranked based on geographic constraints [Sattler et al., 2016]. However, these algorithms do not

provide a precise estimation of the camera location but a coarse localization information. The accuracy
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Figure 2.1: Localization with image retrieval: First, the global image descriptors of reference images
are computed and stored in a database in an offline step. During navigation, the query image is processed
and matched against the database. A localization estimate can be computed by pose averaging on the
retrieved images.

depends on the spatial density of the reference images in the database, but using larger databases involves

higher storage requirements and computation time during the localization process. As a result, when a

sub-meter pose accuracy is required, the classical solution is to use image retrieval as a first step and

to refine the coarse localization with other solutions [Humenberger et al., 2022]. These methods are

presented in section 2.3.

2.3 Visual Localization with Structure-Based methods

Precise camera pose estimation can be computed from local features, a 3D model of the scene and

projective geometry principles. This section reviews these algorithms, referred as "structure-based" in

the literature. These pipelines usually combines several independent steps from the query image to the

camera pose estimate. We assume to have access to a Structure-from-Motion 3D model, for example

computed with COLMAP [Schönberger and Frahm, 2016]. It contains a sparse 3D point cloud of the

scene. Each point has been observed and triangulated in at least 2 references images. These observations

(the 2D locations of triangulated keypoints and their corresponding descriptors) are also stored.

When the target area is large, the first step often consists in an image retrieval step (described in

section 2.2). Then local features are detected, described and then compared to the 3D model by 2D-3D

features matching or direct features alignment. This hierarchical architecture is described in Figure 2.4.

2.3.1 Local features detection and description

Local features are points of interest in an image. They are characterized by a 2D location (𝑥, 𝑦) in the

image coordinate system and a visual descriptor, i.e. a latent vector which represent the visual content
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around the point. Local features are useful when the points they represent can be repeatedly detected and

consistently described in various images captured from different viewpoints and lightning conditions.

This property enables to establish local correspondences (see section 2.3.2) which are inputs of many

geometry-based 3D computer vision algorithms [Hartley and Zisserman, 2003], including camera pose

estimation. Points detection and description can be computed one after the other or jointly. This process

is usually referred to (local) features extraction.

Figure 2.2: Classical and learning-based keypoints detection: We display and compare detected
keypoints from the classical Harris corner detector [Harris and Stephens, 1988] (top) and Super-
Point [DeTone et al., 2018] (bottom).

Detection: Keypoints detection consists in locating "interesting" points in an image. Points of inter-

est do not have a formal definition, but detectors usually aim to select areas with rich visual information,

such as edges, corners or highly textured areas. Keypoints evaluation is a well-studied problem, where

"repeatability" is an important factor [Schmid et al., 2000]. Harris corner detector [Harris and Stephens,

1988] has been a popular keypoint extractor before machine learning. Difference of Gaussian (DoG) has

also been widely used [Lowe, 1999]. Since then, this task has been tackled by supervised learning from

human annotated keypoints [Rosten and Drummond, 2006] or images captured from the same viewpoint

with different appearances [Verdie et al., 2015]. SuperPoint [DeTone et al., 2018] replaces ill-defined

human annotations by pre-training with synthetic data followed by a self-supervised objective based on

homographic adaptation. In order to perform real-time computation, SuperPoint processes the full image

in a CNN which outputs downscaled features maps with 65 channels. These channels correspond to

keypoint probabilities of a 8x8 pixel grid with a "no keypoint" dustbin. The discrete set of detected key-

points on the full-sized image can be extracted from these features maps by non-maximum suppression.

A qualitative comparison between classical and learning-based detected keypoints is shown in Figure 2.2

Description: Descriptors are a vector representation of the visual content of a local image patch.

While hand-crafted descriptors such as SIFT [Lowe, 1999] and SURF [Bay et al., 2006] have shown

great success, the focus has shifted in recent years to learn features description from large amounts of
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visual data. Many learning-based formulations [Choy et al., 2016, Jahrer et al., 2008, Simo-Serra et al.,

2015, Zagoruyko and Komodakis, 2015, Tian et al., 2019, Dusmanu et al., 2019] rely on siamese convo-

lutional networks trained with pairs or triplets of images/patches supervised with local correspondences.

Features extractors can be trained without annotated correspondences by augmenting 2 versions of the

same image or using weak supervision. SuperPoint [DeTone et al., 2018] uses homographies while

Novotny et al. [Novotny et al., 2018] leverage image warps. In a recent work, CAPS [Wang et al.,

2020b] have shown that accurate correspondences between different views can be obtained using weak

supervision through the use of relative camera poses.

2.3.2 Local Features Matching

The core idea of local features matching algorithms is to associate image pixels (2D coordinates in the

image) with points from the 3D model (3D coordinates in the scene). Such a correspondence is called a

2D-3D match, and having several of them enables to compute the camera pose with projective geometry

principles. Given a sparse set of 2D keypoints with descriptors extracted from the query image and a 3D

model, we present the different approaches to obtain 2D-3D matches.

Figure 2.3: Local correspondences between a queries and retrieved images Inliers 2D-3D correspon-
dences between query images (left) and reference images (right) of the HLoc method [Sarlin et al., 2019].
Local 2D-2D correspondences are upgraded to 2D-3D because the 3D position of reference keypoints
are known.

With 𝑛 2D keypoints and 𝑚 3D points, the simplest approach to establish correspondences is to

compute the 𝑛×𝑚 similarity matrix between all pairs. Then, a match can be defined by argmax similarity

on either rows or columns. More robustly, only matches consistent in both directions can be kept (mutual

matching). Lowe’s ratio test [Lowe, 2004] can also be used to reject ambiguous matches. However, the

brute force approach (computing the full similarity matrix) is not tractable for large scenes with many 3D

points. Efficient data structure can be used such as vocabulary trees [Nister and Stewenius, 2006]. Active

Search [Sattler et al., 2012] proposes a prioritized search strategy which enables fast and accurate features

matching still considered as a strong baseline. Hierarchical approaches, such as HLoc [Sarlin et al., 2019]

or MegLoc [Peng et al., 2021], are the current state-of-the-art: query features are not compared to the

full 3D point cloud, but rather matched against the keypoints detected in reference images retrieved by

VPR. Thus, the search space is highly reduced and the problem is brought back to 2D-2D sparse image

matching (see Figure 2.3). Alternatively PnLP [Piasco et al., 2019a] proposes to extend 2D-2D matches

to 2D-3D via relative depth estimation. Matching can be tackled by classical strategies aforementioned,

but the current best approach, named SuperGlue [Sarlin et al., 2020] uses a Graph Neural Network

(GNN) combined with an optimal matching layer. The GNN learns to encode 2 sets of keypoints with
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descriptors coming from 2 different images by attentional aggregation, and the optimal matching layer

finds the optimal partial assignment with the Sinkhorn algorithm. In contrast with simpler strategies, the

matching process does not take only descriptors similarity to define matches, but also uses geometrical

cues.

2.3.3 Camera Pose Estimation with Perspective-N-Points

The Perspective-N-points problem (PnP in short) determines the 6-DoF pose of a calibrated camera,

given 𝑛 observed 3D points and their corresponding 2D projections in an image. It is a projective ge-

ometry problem where each 2D-3D correspondence point is a constraint. This minimal problem is well-

defined starting from 𝑛 = 3 points [Haralick et al., 1991]. Many solvers have been proposed to tackle

related problems [Larsson et al., 2017b, Larsson et al., 2017a, Kukelova et al., 2011, Bujnak et al., 2008]

problem and offer different trade-offs between accuracy and efficiency. Notably, EPnP [Lepetit et al.,

2009] is a popular choice because of its 𝑂 (𝑛) complexity.

The set of points provided by features matching pipelines always contains a portion of false (outliers)

and true (inliers) correspondences. To avoid the negative impact of outliers on the PnP computation, a

RANSAC [Fischler and Bolles, 1981] formulation is used to detect inliers, resulting in a robust camera

pose estimation process.

Figure 2.4: Localization with hierarchical features matching pipelines: After the retrieval step, local
descriptors from the top ranked images are matched against the query images, resulting in 2D/3D corre-
spondences, from which a precise camera pose can be computer with Perspective-N-Points + RANSAC.

2.3.4 Camera Pose Estimation with Direct Features Alignment

Camera pose estimation can also be computed by finding the transformation which aligns the query im-

age and the 3D model. It can be performed by iteratively optimizing a cost function which measure

the reprojection error at the current camera pose estimate. Image alignment was originally performed

directly on image pixels intensities [Lucas and Kanade, 1981, Baker and Matthews, 2004]. Today, re-

lated visual localization methods rely on aligning learned local features. GN-Net [Von Stumberg et al.,
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2020] learns weather-invariant deep features tailored for alignment with Gauss-Newton optimization, us-

ing images correspondences from visual SLAM. Recently, PixLoc [Sarlin et al., 2021] learns multi-scale

features end-to-end for the visual localization task, by unrolling the Levenberg-Marquadt alignment op-

timizer. Replacing pixel intensities by deep features enable to increase robustness to appearance changes

and to extend the convergence basin of these algorithms, which are known to be accurate but highly

sensitive to the camera pose initialization.

2.3.5 Camera Pose Estimation with Relative Pose Regression

Finally, given a query and retrieved images in the reference database, the camera pose estimation problem

can alternatively be solved by learning-based methods. Instead of relying on local features and epipolar

geometry, hierarchical relative pose regression methods [Laskar et al., 2017, Balntas et al., 2018, Ding

et al., 2019] leverage CNN to compute the relative camera pose between the two images. In this scenario,

references RGB images need to be stored in memory instead of the 3D model of the scene, resulting in

very large memory consumption in wide maps or dense datasets. Moreover, features-based methods and

geometric solvers or alignment algorithms perform better than current state-of-the-art for learned relative

pose regression.

2.3.6 Advantages and Drawbacks of Structure-Based methods

The 2D-3D features matching pipelines report the best localization accuracy on visual localization bench-

marks [Sattler et al., 2018]. By determining local correspondences between the query image and the 3D

map, a centimeter-level camera pose can be computed with well-established projective geometry algo-

rithms.

However, structure-based methods present a high computational cost and large storage requirements.

As a result, computing these algorithms in an embedded device is not trivial and requires many engineer-

ing efforts. The storage problem can be reduced with compression methods [Camposeco et al., 2019].

An other approach [Lee et al., 2021] consists in server-side computation by transferring the visual data

from the device to a server which runs the localization algorithm.

2.4 Direct learning-based methods

To circumvent the complexity and drawbacks of structure-based solutions, direct deep learning methods

have been developed. In this paradigm, the reference database collected in the environment is used

to train a scene-specific neural network to provide localization information from images. Two main

formulations exist: Absolute Pose Regression (APR) predicts translation and orientation of the camera

directly from an image and Scene Coordinate Regression (SCR) predicts the world coordinates of the

observed content. Because camera poses and scene coordinates are defined in the coordinate system

of a given scene, these models require a new training before deployment on a new map. On the other

side, this training enables to memorize the visual content of the map in the network weights such that

no reference data such as an Image Retrieval (IR) descriptors database or a 3D model need to be stored

during deployment. We present below the prior literature on these direct learning-based methods. This

thesis contributed in this field in several ways, presented in the following chapters.
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2.4.1 Absolute Pose Regression

Absolute Pose Regression (APR) or Camera Pose Regression is the simplest formulation for direct

learning-based visual localization: a Deep Neural Network takes the query image as input and out-

puts the camera pose. In other words, the problem is tackled with end-to-end supervised regression.

PoseNet [Kendall et al., 2015] is the pioneering work. It uses an encoder-decoder architecture where the

encoder is a CNN pretrained on ImageNet [Deng et al., 2009] and the decoder regresses the pose with

fully connected layers. Camera pose is modelled by a 7-dimensional vector, composed of 3 translation

components and 4 rotations components which describe a quaternion. The neural network is optimized

by minimizing a weighted sum of the translation and orientation errors. The architecture is illustrated in

Figure 2.5.

Figure 2.5: Localization with Absolute Pose Regression: The whole task in handled by a single neural
network which regresses position and orientation of the camera. Before deployment, a scene-specific
training is required.

Since then, many improvements have been proposed. Many works have focused on the neural net-

work architecture. Concerning the encoder, the original GoogLeNet [Szegedy et al., 2015] has been

replaced by more recent backbones such as ResNet [He et al., 2016]. The original decoder architecture

is limited because the encoder features map are processed by a global average pooling which discard the

spatial information about the features. Several solutions have been proposed, such as up-convolutions

in a Hourglass architecture [Melekhov et al., 2017]. Atloc [Wang et al., 2020a] uses an attention-based

module before the fully-connected layers. TransPoseNet [Shavit et al., 2021b] replaces CNN architecture

by transformers.

Another research direction tries to leverage spatio-temporal constraints using consecutive video

frames. This has first been done with a Long-Short Term Memory (LSTM) module [Walch et al., 2016].

VidLoc [Clark et al., 2017] and MapNet [Brahmbhatt et al., 2018] tackle it with siamese networks and

relative pose supervision. GRNet [Xue et al., 2020] formulates the problem with Graph Neural Networks.

Concerning the loss function, the original PoseNet paper [Kendall et al., 2015] rely on a hand-crafted

weighting between translation and orientation losses. However, it has been observed that the optimal
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weighting is scene-specific and depends on the scene scale and the distribution of training poses. Con-

sequently, the only way to obtain optimal localization accuracy with this loss function formulation is by

manual hyperparameters tuning, which is expensive and time consuming. To solve this problem, authors

from PoseNet have proposed a new way to optimize APR networks: instead of manually searching for

a reasonable weighting of the losses, GeoPoseNet [Kendall and Cipolla, 2017] proposes to learn these

weights dynamically during the training using homoscedatic uncertainties [Kendall et al., 2018], which

improves significantly the accuracy.

Finally, BayesianPoseNet [Kendall and Cipolla, 2016] proposes to add uncertainty quantification on

APR models via the Monte Carlo Dropout [Gal and Ghahramani, 2016] technique. RVL [Huang et al.,

2019] uses Prior Guided Dropout on the input image for the same purpose. The posterior distribution

of camera poses can also be quantified by a encoder-decoder probabilistic framework where the encoder

performs variational inference and a MLP decodes poses after sampling in the latent space [Zangeneh

et al., 2023]. Because APR sometimes provide unreliable localization predictions in difficult cases such

as camera occlusion, uncertainty quantification enables to filter out these outliers predictions. This thesis

made contributions on this aspect, presented and discussed in section 3.4.

Despite this amount of work, the localization accuracy of APR on standard visual localization bench-

marks is lower than structure-based methods and on par with image retrieval baselines [Sattler et al.,

2019]. The main reason for this limited accuracy is the lack of geometrical reasoning in the camera pose

estimation process. During our research, we have conducted many experiments to evaluate and improve

APR accuracy and present results which rehabilitate Absolute Pose Regression methods, by showing that

they present a competitive accuracy when the training dataset is large and diverse.

The main advantage of Absolute Pose Regression is its computational efficiency during deployment.

Once trained, a single forward pass on the network is sufficient to obtain a localization estimate. Storage

requirements are also very compact. The original PoseNet paper [Kendall et al., 2015] reports a runtime

of 5ms on a NVidia Titan Black GPU and 50MB for the stored weights. In addition to that, these

metrics do not depend on the number of training images, whereas it grows linearly for image retrieval

and quadratically for structure-based methods [Wu, 2013].

2.4.2 Scene Coordinate Regression

Scene Coordinate Regression (SCR) methods combine a direct learning-based approach with a geometric

camera pose computation. Instead of predicting directly the camera pose, SCR regresses the 3D location

of the local content observed in the image. In other words, Scene Coordinates Regression uses machine

learning techniques to learn local correspondences between 2D image pixels and 3D scenes coordinates

(see Figure 2.6). These 2D-3D correspondences enable to compute the camera pose by solving the

Perspective-N-Points problem (see Section 2.3.3), which exhibits a higher precision than Absolute Pose

Regression.

Seminal work on Scene Coordinate Regression rely on RGB-D images and use random forest to map

RGB-D patches to the 3D coordinates [Shotton et al., 2013]. Since then, the scene coordinate regression

pipeline has been adapted to RGB images processed by fully convolutional networks [Massiceti et al.,

2017].

The natural approach to train these models is to supervise the scene coordinates with a pre-computed
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Figure 2.6: Scene Coordinates Regression. 3D scenes coordinates are extracted from a 3D model (left).
SCR regresses the 3D coordinates of the visual content observable in the query image (right).

3D model of the scene. Because the PnP+RANSAC step is not differentiable, end-to-end learning from

pixels to camera pose is usually not feasible. Replacing RANSAC by a differentiable counterpart based

on probabilistic modelling, DSAC [Brachmann et al., 2017], enables to circumvent the problem and

improve the accuracy. With this formulation, the model is even capable of learning the 3D model by itself

only from camera pose supervision [Brachmann and Rother, 2018], at the cost of a reduced accuracy.

This class of methods exhibit higher accuracy than absolute pose regression and the efficiency enables

real-time computation, however Scene Coordinate Regression approaches are limited to relatively small

environments [Brachmann and Rother, 2021]. This problem can be mitigated by ESAC [Brachmann and

Rother, 2019], which uses mixtures of expert to improve scaling to large environments.

2.5 Discussion: Which solutions for autonomous driving scenarios

In previous sections, we presented the different existing approaches for visual localization, which are

summarized in Figure 2.7. Overall, two main classes of methods can be defined.

From one side, multi-step pipelines which involve (local and global) features extraction and features

matching against a reference database before camera pose estimation. By combining the well-established

features-based geometry techniques of classical computer vision with the latest learning-based modules

(e.g. SuperPoint [DeTone et al., 2018] and SuperGlue [Sarlin et al., 2020]), they present state-of-the-art

accuracy on all existing visual localization benchmarks.

On the other side, direct deep learning approaches rely on deep neural network to solve the entire task

end-to-end. These more recent techniques are currently less popular than structure-based approaches for

different reasons: APR is inaccurate, SCR does not scale and both require scene-specific training while

one of the main advantages of deep learning approaches is their generalization properties.

However, considering the scenario described in Section 1.2, i.e. a growing amount of collected

reference data and real-time deployment in the vehicle, we argue that direct learning-based approaches

are better suited than structure-based methods to solve the vehicle localization problem at scale. We

develop below several arguments to support this claim.

Scaling up with large datasets. Existing visual localization benchmarks [Sattler et al., 2016] 1 have

primarily focused on aspects like long-term localization (Oxford RobotCar [Maddern et al., 2017]) or

appearance change (Aachen Day-Night, 4seasons). The proposed reference datasets are usually limited

to a few thousand images collected in 1-5 independent sequences. This data regime is sufficient to gen-

1visuallocalization.net
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Figure 2.7: Visual localization classes of methods: A query image can be localized through different
type of algorithms that rely either on local features, global features or direct regression. From [Humem-
berger et al., 2021].

erate high quality 3D reconstructions and perform accurate relocalization with structure-based methods.

However, in the perspective of autonomous driving deployment, where a larger amount of data can easily

be gathered, the effectiveness of visual localization methods has not been explored properly. In this sce-

nario where the size of databases stored by structure-based methods increase, the computational cost of

usual features matching pipelines can become intractable in practice. On the other hand, learning-based

methods, which are not competitive on current benchmarks, should naturally benefit from large datasets

and perform better. While additional computation will only occur on the offline training step, the on-

line relocalization step will not be impacted and will remain efficient. One could argue that techniques

could be developed to maintain compressed databases in high data regimes but we believe that pushing

forward learning-based methods offers more perspectives due to the recent success of deep learning over

the whole computer vision field.

No assumption on visual content. Because features-based methods rely on establishing local corre-

spondences between observed keypoints, they make the assumption that a sufficient number of points of

interest with rich visual features exist in the image. This is usually the case in urban areas where build-

ings and urban furniture offer rich and repeatable features. Countrysides, tunnels or parkings sometimes

present uniform and low textured areas where establishing accurate local correspondences can be diffi-

cult, and for which the structure-based methods can totally fail. CNN rather rely on the global context in

the image and then are more robust to this type of environments.

Online efficiency. Deep Neural Networks are expensive to train but inference is lightweight com-

pared to more complex pipelines. Assuming that the provider of the autonomous driving service has

access to a large amount of computation before deployment is reasonable. As a result, the trade-off of-
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fered by direct learning-based methods (scene-specific training offline but efficient computation online)

is well suited for the autonomous driving scenario.

The research conducted during this PhD thesis has first focused on evaluating the accuracy of Abso-

lute Pose Regression on autonomous driving scenarios. Then, several contributions have been proposed

to improve APR accuracy and its applicability to real-world scenarios. Chapter 3 first introduces several

ways to inject geometry reasoning in Absolute Pose Regression models and then proposes a new way

to add uncertainty quantification and develop a simple vehicle localization system based on temporal

filtering of APR predictions.
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CHAPTER 3. VEHICLE LOCALIZATION WITH ABSOLUTE POSE REGRESSION

3.1 Résumé en Français

Ce chapitre décrit les recherches menées pour développer des systèmes de localisation de véhicules à

l’aide d’algorithmes de Pose Regression.

Nous proposons d’inclure des biais inductifs géometriques et la quantification de l’incertitude dans

les réseaux de neurones utilisés. Pendant la navigation, nous filtrons temporellement les positions

prédites et leurs incertitudes avec un EKF.

Nous explorons la capacité de notre système CoordiNet sur des benchmarks publics et de grands jeux

de données. Nous observons une précision de localisation satisfaisante lorsque les données d’entraînement

sont abondantes, mais aussi certaines limitations qui ont conduit aux contributions introduites dans les

chapitres suivants.
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3.2 Motivation

The research conducted in this thesis started with the simplest possible formulation: Absolute Pose Re-

gression. This approach emerged with PoseNet [Kendall et al., 2015] during the rise of Deep Learning

methods. Since then, many improvements have been proposed [Brahmbhatt et al., 2018, Walch et al.,

2016, Melekhov et al., 2017, Huang et al., 2019, Wang et al., 2020a] but the approach remained un-

popular in the visual localization field [Sattler et al., 2019]. This approach is indeed significantly less

accurate than features-based methods (see section 2.3) in standard benchmarks and lacks geometrical

reasoning. However, in the perspective autonomous driving, with real-time computation constraints and

a growing amount of collected data, replacing complex multi-step pipelines by a deep neural network for

the localization task is an appealing solution. Previous literature on this topic is limited to comparison of

methods on limited scale benchmarks.

This chapter explores the capability of Absolute Pose Regression to be used as a vehicle positioning

system. First, we propose several architectural improvements in section 3.3 to enhance the geometrical

reasoning of APR networks. Then, we leverage uncertainty quantification to filter out unreliable pre-

dictions from the network over time in section 3.4. These contributions are combined in a new pose

regression model, named CoordiNet [Moreau et al., 2022a], presented in section 3.5. Finally, we eval-

uate the proposed model in section 3.6. We start by comparing CoordiNet to relevant competitors on

academic benchmarks. Then, we explore further the capability of this model on larger-scale autonomous

driving datasets available publicly or specifically collected for this purpose in Paris and Shanghai. We

conclude in section 3.7 by observing both benefits and limitations of Absolute Pose Regression in the

context of autonomous driving, paving the way for the next contributions of the thesis.

3.3 Geometric inductive biases in Absolute Pose Regression networks

Visual localization is by nature a geometry problem. State-of-the-art solutions usually decompose the

problem into small independent sub tasks combining features extraction with geometric reasoning such

as pose estimation with PnP. In contrast with this idea, Absolute Pose Regressors rather rely on over-

parametrized deep learning models. With this formulation, the Pose Regressor network needs to learn

the entire task end-to-end from available data without prior knowledge of real-world geometry principles

involved in the localization problem. Prior literature [Sattler et al., 2019] has stated that this is one crucial

limitation of APR models and the main reason of their poor accuracy. In addition to that, Absolute Pose

Regression usually assumes that all training and test images are captured by a unique calibrated camera,

but the crowded-source data scenario described in section 1.2 could involve training with heterogeneous

cameras.

In this section, we focus on improving the formulation of Absolute Pose Regression CNNs by em-

bedding geometrical inductive biases in their architecture. The benefits of the proposals of this section

are measured with ablation studies in section 3.6.4.

3.3.1 Breaking translation invariance with CoordConvolutions

The architectural improvements of Convolutional Neural Networks (CNN) are usually measured on im-

age classification benchmarks such as ImageNet [Deng et al., 2009]. One main reason of CNN success
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Conv2D

c+2→d
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Figure 3.1: CoordConvolutions: additional channels with 2D pixels coordinates are concatenated before
the convolution operation.

for image processing tasks is their translation invariance property: instead of learning dense connections

between all pixels at each layers, we restrict to local convolution kernels applied on features maps in a

sliding window fashion. As a result, the same processing is applied to each image local patch without

taking into account their position in the 2D image space.

Because the image classification output does not depend on the object location, translation invariance

is a beneficial property which increases robustness. However, in the visual localization problem, it is clear

that the 2D position of visual content in the image is a very important feature to estimate the camera pose,

because explicit solvers take 2D-3D local correspondences as input.

Interestingly, fully convolutional neural networks have been observed to be unable to solve very

simple toy problems related to pixels 2D location [Liu et al., 2018], such as supervised coordinate clas-

sification which consists in taking a black image with one white pixel as input and asking the network to

predict the coordinate of the white pixel. The authors propose a simple fix to resolve this problem: the

CoordConv layer, which acts as a replacement of the traditional convolutional layer.

CoordConv concatenates 2 additional channels to the input tensor, that contain (x,y) pixel coordi-

nates in the image coordinate system before applying the convolution, as illustrated in Figure 3.1. This

way the convolutional layer can take the spatial position into account in the processing. The additional

computational cost brought by this layer is negligible in deep neural networks.

We observed that including CoordConv in the last layers of an Absolute Pose Regressor was signifi-

cantly improving the accuracy, as shown in section 3.6.4.

3.3.2 Learning local confidences with weighted average pooling

The output of Absolute Pose Regressors is the camera pose, usually represented by a 1-dimensional vec-

tor of 7 components (3 for translation and 4 for orientation). When the output of a CNN is such a vector,

for instance in image classification, a global pooling is used to aggregate the 3-dimensional 𝐻 ×𝑊 ×𝐷
tensor into a vector of size 𝐷. Common solutions use simple heuristics such as Global Average Pool-

ing (GAP) or Global Max Pooling (GMP). With the addition of the previously introduced CoordConv,

we expect the feature maps to contain diverse features distributed across the spatial dimensions. Thus,

we hypothesize that using GAP or GMP layers after CoordConv is counter-productive for the accuracy

because they lack expressiveness to aggregate spatial information distributed across the image.

We take inspiration from a CNN architecture, FC4 [Hu et al., 2017] designed for the Auto White

Balance task. In this paper, a variant of Global Average Pooling, named Confidence-Weighted Average
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Figure 3.2: Confidence-Weighted Average Pooling: One channel of the last feature map is used as
confidence weights to perform aggregation of local estimates in a single vector.

Pooling (CWAP) is introduced. In order to output a d-dimensional output vector, CWAP uses features

map with 𝑑 +1 channels. The last channel is used as a local confidence map used to perform a weighted

average pooling. Softplus activation is applied to the confidence map to ensure that confidence weights

are positive. These weights are predicted according to previous layer activation so we can compare this

computation to a low-cost self-attention mechanism. This layer is illustrated in Figure 3.2

Examples of confidence map activations are shown in figure 3.3. We observe that on small scenes of

Cambridge Landmarks, the pooling always highlights the same object regardless of camera pose (here

front of Kings College). On larger scenes, there is no common object visible in all the scene. In this case,

the pooling masks areas where dynamic objects appear.

3.3.3 Intrinsic coordinates convolutions for crowd-sourced images

Publicly available datasets commonly used for visual localization [Maddern et al., 2017, Kendall et al.,

2015, Shotton et al., 2013] are recorded with a single camera. During our experiments, we noticed that

an APR model was not able to predict an accurate pose from images captured by a different camera, or

even from images from the same camera but resized or cropped.

However, being able to adapt to new cameras would be a great practical advantage, for example for

being able to train from crowded-sourced data, or deploy the algorithm on a new sensor stack. We assume

Figure 3.3: Visualization of pooling activations: bottom images are inputs of the model, top images
are inputs multiplied by the upsampled confidence map of the pooling layer
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a pinhole camera model and that all cameras are calibrated (i.e. we have access to the intrinsics matrix

𝐾). In practice, this is not a constraint because these parameters are estimated by the SfM mapping

process [Schönberger and Frahm, 2016].

One solution is to condition the network on the camera parameters. Inspired by CoordConv (see

sec 3.3.1), we propose to inject local information about camera rays as additional channels in convolution

layers. More specifically, we compute for each pixel (𝑖, 𝑗) 2 coordinates 𝑟𝑖 , 𝑟 𝑗 which correspond to the

tangents of the angles between the camera ray and the ray reaching the optical centre (𝑐𝑥, 𝑐𝑦):

𝑟𝑖 = (𝑖− 𝑐𝑥)/ 𝑓𝑥

𝑟 𝑗 = ( 𝑗 − 𝑐𝑦)/ 𝑓𝑦

where ( 𝑓𝑥 , 𝑓𝑦) are the focal lengths. Similar to the CoordConv, we concatenate these coordinates

to latent feature maps before computing the convolution. Because these coordinates parameterize the

orientation of camera rays (i.e. deviation from the camera orientation), they do not depend anymore

on the specific camera which have been used to capture the image. Using this formulation prevents the

network to overfit on a specific camera, and enables to perform inference on a never observed (calibrated)

camera.

We conduct experiments where we replace all convolutions in a APR network by the proposed

camera-aware layer on section 3.6.5. After a preliminary research phase, we discovered that a highly

similar method has been developed for the monocular depth estimation task and published under the

name CAM-Convs [Facil et al., 2019].

3.4 Uncertainty-aware Pose Regression

During the vehicle navigation, unexpected situations can arise that cause the visual localization algorithm

to fail: strong occlusions of the camera, difficult lightning conditions such as sun flares, modification of

the environment such as roadworks, etc. Such occlusions are shown in Figure 3.4. In order to make a

robust localization system, one needs to know when the predicted pose is not reliable.

Computing uncertainty coupled with pose regression is a common way to handle this problem [Kendall

and Cipolla, 2016]. However, widely used approaches to compute uncertainty for pose regression have

limitations for practical applications. They generate multiple hypothesis for each single image at infer-

ence time, and then compute mean and variance to estimate pose and uncertainty [Kendall and Cipolla,

2016, Huang et al., 2019]. This increases a lot computational complexity because several inferences are

Figure 3.4: Unavoidable failure cases Dynamic objects generate occlusions that results in failure cases
(samples from Oxford RobotCar dataset [Maddern et al., 2017]).
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required. For practical applications, one needs uncertainty to be estimated jointly with the pose regres-

sion and such estimated uncertainty should be highly correlated to a potential level of errors of regressed

poses.

To address this requirement, we propose to predict uncertainty from activations of a hidden layer, so

it can be jointly computed at inference time with pose regression and learn to associate potential failures

with content of input image.

3.4.1 Homoscedatic vs Heteroscedatic uncertainties

In Bayesian Deep Learning, there are 2 types of uncertainty one can model [Kendall and Gal, 2017]:

• Epistemic uncertainty (or model uncertainty) is the uncertainty on the weights of the network. It

measures the degree of knowledge of the network about input data. A simple way to approximate it

is Monte Carlo Dropout [Gal and Ghahramani, 2016] (MCD): train a network with dropout layers

and keep them active at inference time. Several inference on the same data will provide a sample

of results. The mean is used as prediction and the variance is interpreted as epistemic uncertainty.

Bayesian PoseNet [Kendall and Cipolla, 2016] uses this method to estimate uncertainty of pose

regression. RVL [Huang et al., 2019] proposes a prior guided dropout on input image: it removes

areas where dynamic objects appear and allows to generate a Monte Carlo sample too.

• Aleatoric uncertainty (or data uncertainty) is the variance of the network output which can be

caused by noise in input data. We can choose between heteroscedatic aleatoric uncertainty which

can vary with input data and homoscedatic uncertainty which measures the overall variance in the

outputs of a task as it is not dependent on input data. Heteroscedatic can be predicted directly

from the network, as shown in [Lakshminarayanan et al., 2017, Kendall and Gal, 2017], by using a

maximum likelihood loss function. This formulation can be extended to multivariate uncertainty,

as shown by [Russell and Reale, 2021] where correlation between outputs variables is learned.

Finally, HydraNet [Peretroukhin et al., 2019] combines epistemic and aleatoric uncertainties to

provide consistent orientation estimates.

We decide to learn heteroscedatic uncertainty as an auxiliary task during the training of our model. Thus,

we obtain an uncertainty estimate at test time for less computation than with MCD.

3.4.2 Joint learning of pose regression and heteroscedatic uncertainty

Pose regression problem can be modeled by the equation 𝑌 = 𝑓𝑊 (𝐼), where 𝑓 is the neural network

with weights 𝑊 , 𝑌 is the predicted pose and 𝐼 is the input image. In Bayesian Deep Learning [Kendall

and Gal, 2017], 𝑊 , 𝐼 and 𝑌 are considered as random variables and uncertainty is the variance of these

variables.

In our problem, 𝑌 ∈ 𝑆𝐸 (3). We decompose the 6-DoF pose with a 3D translation vector [𝑇𝑥 ,𝑇𝑦 ,𝑇𝑧]
and a unit quaternion [𝑄𝑥 ,𝑄𝑦 ,𝑄𝑧 ,𝑄𝑤] for rotation.

For translation, we model 𝑇𝑥 ,𝑇𝑦 ,𝑇𝑧 as 3 independent Gaussian variables centered on the actual pose

with variances 𝜎2
𝑇𝑥
,𝜎2
𝑇𝑦
,𝜎2
𝑇𝑧

. Our framework predicts these 𝜎2 uncertainties, which represent the ex-

pected noise in the output pose, depending on input image. As we made it data dependent, it is called
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heteroscedatic uncertainty. In practice, each uncertainty is learned relatively to a loss function. In our

case, we want to have one uncertainty estimate for each translation component, so we use 3 separate 𝐿1

translation losses 𝐿𝑇𝑥 , 𝐿𝑇𝑦 , 𝐿𝑇𝑧 .

For rotation, we can not use the same formulation, first because individual components of a unit

quaternion are clearly not independent, but also because the 3D rotation group 𝑆𝑂 (3) is not euclidean.

As a result, we optimize rotation with a single loss function 𝐿𝑅, resulting in a single rotation uncertainty

estimate 𝜎2
𝑅

. An other manner to learn uncertainty for rotation have been proposed in [Peretroukhin

et al., 2019], but we found out that in practice our 1-dimension uncertainty estimation work well and

leave the integration of multivariate rotation uncertainty estimation in pose regression for future work.

Our choice for 𝐿𝑅 is the geodesic distance between rotations, defined as the minimal angular difference

between 2 rotations:

𝐿𝑅 = 𝑐𝑜𝑠−1((𝑡𝑟 (𝑀𝑝𝑟𝑒𝑑𝑀
−1
𝐺𝑇 ) −1)/2) (3.1)

where 𝑀𝑝𝑟𝑒𝑑 and 𝑀𝐺𝑇 are predicted and reference 3D rotations, converted to rotation matrices. [Zhou

et al., 2019] has shown that this optimization objective performs better than 𝐿2 loss.

Finally, we combine these 4 loss functions by minimizing the negative log-likelihood of our model.

We do not learn 𝜎2 directly but use 𝑠 = log𝜎2 for numerical stability, following [Kendall and Cipolla,

2017]. Our final optimization objective becomes:

𝐿𝜎 (𝐼) =
∑︁

𝑖∈[𝑇𝑥 ,𝑇𝑦 ,𝑇𝑧 ,𝑅]
𝐿𝑖 (𝐼)𝑒−𝑠𝑖 (𝐼 ) + 𝑠𝑖 (𝐼) (3.2)

This loss function is actually the same than the learnable weights pose loss [Kendall and Cipolla,

2017], except that uncertainty values are outputs of the network instead of free scalar values (homosce-

datic uncertainty).

To minimize this loss function, the network needs to learn accurate poses in order to decrease 𝐿𝑖
losses. When a challenging image is provided, the network can predict high uncertainties in order to

reduce the weights of regression losses in the objective. The second term acts as a penalization term to

avoid infinite uncertainties. The best way to minimize this cost is to predict uncertainties proportional to

loss values.

This method also has desirable effects for training. When used with homoscedatic uncertainty, each

individual loss will contribute to the final loss with approximately the same weight. As our uncertainties

vary with input data, this property is extended at a data level : each training sample will contribute to the

batch loss with an approximately equal weight, whereas usually large errors contribute more. Contrary to

the object classification problem where samples having larger error should be main target for optimizing

the network, we want every sample to be considered equally important in the optimization process.

3.4.3 Localization under uncertainty

At test time, we fuse together the regressed pose with learned uncertainties in order to filter out fail-

ure cases and obtain a smooth and temporally consistent trajectory. This is a desirable property in au-

tonomous driving and robotics applications, because localization could be directly used by the planning

algorithm to compute control command.
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We propose to use an Extended Kalman Filter (EKF) with an omnidirectional motion model for this

fusion step. Integration is done by providing only the absolute pose measurement given by the network

to the filter. We attach a simplified diagonal covariance matrix Σ to each measurement, defined by:

Σ = 𝐼6 ∗
[
𝜎2
𝑇𝑥
𝜎2
𝑇𝑦
𝜎2
𝑇𝑧
𝜎2
𝑅𝜎

2
𝑅𝜎

2
𝑅

] 𝑡
.

This formulation is limited to represent uncertainty in 𝑆𝐸 (3). First because in practice the covariance

between variables can be non-zero. Another limitation discussed earlier is the use of a one dimensional

rotation uncertainty 𝜎2
𝑅

. We tried to use more sophisticated formulations, where non-diagonal coeffi-

cients are learned, inspired by [Russell and Reale, 2021, Peretroukhin et al., 2019], but observed a lower

pose regression accuracy with this formulation. One reason could be that vectors in equation 3.2 are

replaced by matrices, leading to a lower numerical stability during training. This model of covariance

matrix in 𝑆𝐸 (3) could be improved as a future work. However, we show in 3.6.3 that our proposal is

sufficient in practice to reach our target: a consistent trajectory where outliers are filtered.

Uncertainty calibration: During the evaluation of our method, we observed that learned uncer-

tainties often underestimate the actual error (see 3.9). This is caused by overfitting: at the end of the

training procedure, the model performs very well on training images and the uncertainty layer learns a

distribution of errors which does not represent the actual distribution in test conditions. To mitigate this

effect, we propose a 2 steps training procedure: available training data is split in a training set and a

validation/calibration set. We first train the model with the training set with the procedure described in

3.4.2, and then fine-tune the uncertainty layer on the calibration set while all other layers are freezed.

This enable to calibrate uncertainties on examples representative of test conditions. Since the use of a

validation set is a common machine learning practice, this calibration step does not make our method

more data-intensive than others. We show in figure 3.5 the benefit of uncertainty calibration for proper

uncertainty estimation on a test sequence.

Figure 3.5: Calibrated uncertainties. Comparison between uncalibrated (left) and calibrated (right)
uncertainties, plotted for x (top) and y (bottom) axis.
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3.5 Absolute Pose Regression with CoordiNet

This section introduces our proposed Absolute Pose Regression model, named CoordiNet, which com-

bines the geometric inductive biases presented in section 3.3 and the heteroscedatic uncertainty quantifi-

cation presented in section 3.4. The fully convolutional architecture of the model is detailed in Figure 3.6.
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Figure 3.6: CoordiNet architecture: the input image is sent to a pretrained image encoder, then pose
and uncertainty are predicted from encoder features in two separate decoders. Pose decoder uses Coord
convolutions layers. GAP and CWAP refer to Global Average Pooling and Confidence Weighed Average
Pooling.

The RGB input image is first processed by a backbone encoder, we used ResNet [He et al., 2016]

and EfficientNet [Tan and Le, 2019] in our experiments. Then, unlike PoseNet [Kendall et al., 2015], our

decoder does not use fully-connected layers but CoordConv layers and CWAP pooling (see section 3.3).

We actually train 2 separate decoders, one for the pose estimation and the other for uncertainty quantifi-

cation. This is actually an important design choice because it enables to fine-tune the uncertainty decoder

while keeping the other parameters of the network freezed during the calibration step described in 3.4.3.

3.6 Experiments

3.6.1 Comparison with related methods

We compare CoordiNet to state-of-the-art Absolute Pose Regression networks. We use both median

error and mean error as metrics. Mean error has the drawback of being corrupted by outliers (which can

be very large because we estimate absolute pose in kilometers scale maps), while median error is usually

more relevant to measure the accuracy of an algorithm.

3.6.1.1 Oxford Robotcar:

First, we compare our method to related works on Oxford Robotcar dataset [Maddern et al., 2017]. This

is an autonomous driving dataset collected with a camera mounted on the top of a vehicle. 2 separate

scenes are considered : Loop is a 1km map in residential areas, while Full goes into the entire city in a

9.8 kms long course. The camera pose groundtruth provided by [Maddern et al., 2020] presents a meter-

level accuracy and is sometimes erroneous. While many recordings are available in the original dataset,
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the relocalization benchmarks done in the research community only use minimal train and test datasets.

We reproduced the experiments done by RVL [Huang et al., 2019]. The model is trained on 2 scenes

(Full and Loop) using only 2 training sequences in each case. While Full is tested on one sequence, 2

sequences are used for Loop. This benchmark is particularly challenging because the area is very large

and APR methods can fail to generalize with only 2 different sequences in the training set.

We resize input images to 256× 455. We train our model with ResNet34 encoder for a fair com-

parison with previous methods, and keep a fixed learning rate of 1𝑒−4. We compare CoordiNet to other

monocular methods, but also to sequential methods using several images as input.

Table 3.1: Absolute Pose Regression methods on Oxford RobotCar dataset. CoordiNet is compared
to other APR methods. The pose considered is the raw network output without post processing methods.
Empty cells correspond to results non reported on the related papers.

Mean error comparison Median error comparison
Method Loop Full Average Loop Full Average
CoordiNet 4.15m / 1.44° 14.96m / 5.74° 9.56m / 3.59° 2.27m / 0.86° 3.55m / 1.14° 2.91m / 1.00°
AD-MapNet 6.45m / 2.98° 19.18m / 4.60° 12.82m / 3.79°
AtLoc+ 7.53m / 3.61° 21.0m / 6.15° 14.27m / 4.88° 4.06m / 1.98° 6.40m / 1.50° 5.23m / 1.74°
AtLoc 8.73m / 4.63° 29.6m / 12.4° 19.17m / 8.52° 5.36m / 2.10° 11.1m / 5.28° 8.23m / 3.69°
AD-PoseNet 6.40m / 3.09° 33.82m / 6.77° 20.11m / 4.93°
MapNet 9.29m / 3.34° 44.61m / 10.38° 26.95m / 6.86°
PoseNet 7.9m / 3.53° 46.61m / 10.45° 27.26m / 6.99°

Quantitative results are shown in Table 3.1 and trajectories are displayed in Figure 3.7. We observe

that our proposal CoordiNet presents lower median and mean errors than previous Absolute Pose Re-

gression methods on both Loop and Full scenes and for both translation and orientation. However, the

absolute errors remain very high and not comparable to structure-based methods which present a sub-

meter accuracy. Similar to related APR methods, we observe many pose predictions outside of the roads

on the Full scene, which are due to failure cases when the network hesitates between 2 different areas of

the map.

Figure 3.7: Trajectories on Oxford Robotcar. Left images are Loop results (2014-06-23-15-36-04,
2014-06-26-08-53-56) trained with 2 sequences, right images are Full results (2014-12-09-13-21-02).
Middle right is trained with 2 sequences, right is trained with 15. Color map represents errors at a given
location: blue is ∼ 1𝑚 error and red is > 5𝑚 error.
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3.6.1.2 Cambridge Landmarks:

Then, we also report CoordiNet performances on Cambridge Landmarks. This dataset contains sev-

eral small outdoor scenes with small training datasets. We train our model with both ResNet34 and

EfficientNet-b3, and again compare CoordiNet to monocular and sequential methods. Images are com-

puted at full resolution (640× 350). Results are reported in table 3.2. Compared to other monocular

methods, CoordiNet reports best results on all scenes.

Table 3.2: Absolute Pose Regression methods on Cambridge Landmarks dataset.

Method Backbone Old Hospital Kings College StMarysChurch Shop Facade Average
CoordiNet EffNet b3 0.97m / 2.08° 0.70m / 0.92° 1.32m / 3.56° 0.69m / 3.74° 0.92m / 2.58°
CoordiNet ResNet34 1.43m / 2.86° 0.80m / 1.22° 1.32m / 4.10° 0.73m / 4.69° 1.07m / 3.22°
LSTM-Pose 1.51m / 4.29° 0.99m / 3.65° 1.52m / 6.68° 1.18m / 7.44° 1.30m / 5.51°
PoseNet ResNet34 2.17m / 2.94° 0.99m / 1.06° 1.49m / 3.43° 1.05m / 3.97° 1.43m / 2.85°
AD-PoseNet ResNet34 non reported 1.3m / 1.67° 2.28m / 4.80° 1.22m / 4.64° /
MapNet ResNet34 1.94m / 3.91° 1.07m / 1.89° 2.00m / 4.53° 1.63m / 4.22° 1.66m / 3.64°
Bay. PoseNet 2.57m / 5.14° 1.74m / 4.06° 2.11m / 8.38° 1.25m / 7.54° 1.92m / 6.28°

Still, the accuracy of APR methods is far behind approaches where the camera pose is computed

by PnP [Sarlin et al., 2019, Brachmann and Rother, 2021]. Direct regression seems able to interpolate

between observations but unable to extrapolate to non-observed camera poses with geometric reasoning,

as outlined in [Sattler et al., 2019]. This property limits the accuracy on Cambridge Landmarks, where

test images are captured at different locations compared to training trajectories.

3.6.2 Evaluation on larger scale datasets

Our interest is to use CoordiNet for localization in large environments for practical applications. Publicly

available benchmarks are limited to 2-3 videos used as reference/training images. In scenarios related

to development of localization functions for self-driving cars, one could rely on much larger scope of

data available. In this section, we explore how well CoordiNet scales given amount of data provided for

training is an order of magnitude higher compared to public benchmarks.

To do so, we use Oxford RobotCar dataset with a larger experiment : 15 sequences in training data

resulting in 890k images in training set, 2 sequences used as validation and 7 test sequences, including

the benchmark test sequence.

We also collected videos in Paris and Shanghai areas using dashcam cameras. We recovered ground

truth poses from videos thanks to a large scale 3D reconstruction pipeline based on COLMAP SfM

software [Schönberger and Frahm, 2016]. We provide examples from these datasets in figure 3.8 and we

briefly introduce them:

• Shanghai dataset: a road of 3.3km, that contains highway and smaller roads. Very busy traffic

observed in most of sequences. Training set: 12 sequences with 123k images. Validation set: 6

sequences with 32k images. Test set: 9 sequences with 48k images.

• Paris dataset: A loop of 1.9km in urban area. One part along the Seine is challenging because of

mirror reflection in buildings, the other goes through complex intersections with sometimes busy

traffic. Training set: 6 sequences with 148k images. Validation set: 2 sequences with 30k images.

Test set: 2 sequences with 13k images.
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We train CoordiNet on these 2 datasets in addition to Oxford, but also use available implementation

of RVL [Huang et al., 2019] to compare performances with related methods (AD-PoseNet) and report

results in table 3.3.

Table 3.3: Results on large scale datasets.

CoordiNet (ours) AD - PoseNet

Oxford median 1.53m / 0.46° 7.91m / 1.13°
mean 7.11m / 2.93° 19.89m / 4.51°

Shanghai median 0.69m / 0.69° 9.24m / 0.47°
mean 0.90m / 0.87° 11.78m / 1.49°

Paris median 0.29m / 0.29° 3.75m / 1.03°
mean 0.51m / 0.44° 5.11m / 1.25°

We see that CoordiNet outperforms previous SOTA pose regressor on large areas by an order of

magnitude and observe that larger training sets allow to reach sub-meter accuracy on test data. Enlarged

Oxford training set from 2 to 15 sequences enables to decrease mean error from 9.56m to 1.94m and

median error from 3.55m to 1.25m on the same test sequence, as shown in Figure 3.7. Not surprisingly,

using larger training datasets makes a huge difference in the accuracy of Absolute Pose Regression,

especially for our model CoordiNet. We obtain a sub-meter accuracy on Shangai and Paris dataset which

is a good localization accuracy for self-driving applications.

3.6.3 Evaluation of localization under uncertainty

Rather than the raw CNN results, we are interested in the performance of the method outlined in 3.4.3,

where poses and uncertainties are fused temporally into an EKF. We use the implementation provided by

the ROS robot_localization package with default parameters. We demonstrate superiority of our learned

uncertainty over a fixed baseline using three experiments:

• EKF with fixed covariance values,

• EKF with non-calibrated CoordiNet covariance values,

• EKF with calibrated CoordiNet covariance values.

Figure 3.8: Samples from Paris (top) and Shanghai (bottom) datasets.
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We report the results of these experiments on a full run of the Paris dataset in Figure 3.9. We evaluate

a smoothness score 𝑠 of the trajectory (the lower the better) by computing the norm of the difference

between two consecutive unitary directional vectors:

𝑠 =
1

𝑁 −2

𝑁−2∑︁
𝑡=0

 𝑇𝑡+2 −𝑇𝑡+1
∥𝑇𝑡+2 −𝑇𝑡+1∥

− 𝑇𝑡+1 −𝑇𝑡
∥𝑇𝑡+1 −𝑇𝑡 ∥


As expected, coupled with an EKF the final trajectory gets smoother and the maximum error on the run

is reduced. By rejecting outliers, the EKF reduces most of the time the mean error compared to the raw

poses. We also show that it is crucial to estimate good covariance values in order to obtain the optimal

trade-off between accuracy and smoothness: Coordinet + EKF with calibrated covariance performs the

best in this experiment compared to fixed covariance values and to the baseline version.

CoordiNet EKF (constant covariance)

Median error : 0.99m Mean error : 2.97m

Max error : 510m Smoothness : 0.94

Median error : 0.97m Mean error : 3.27m

Max error : 423m Smoothness : 0.20

EKF (uncalibrated uncertainty)

Median error : 0.95m Mean error : 2.07m

Max error : 72m Smoothness : 0.22

EKF (calibrated uncertainty)

Median error : 1.00m Mean error : 1.95m

Max error : 32m Smoothness : 0.19

Figure 3.9: Localization with uncertainty. Top lane from left to right: CoordiNet predictions, EKF
with CoordiNet poses and fixed covariance. Bottom lane from left to right: EKF with CoordiNet raw
uncertainty, EKF with CoordiNet calibrated uncertainty. Colormap is the same as in figure 3.7.

We also report the result on Oxford Robotcar experiment in figure 3.10. Again, the EKF is smoothing

the trajectory and reduces the mean and maximum error on the overall trajectory. For this experiment,

we use uncertainty without additional data. A careful reader should notice that reported results of Co-

ordiNet in this table are slightly different than in table 3.1. This difference comes from the integration
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of Coordinet in our ROS framework. These results outperform methods with pose graph optimization

reported by MapNet [Brahmbhatt et al., 2018] and RVL [Huang et al., 2019].

We show in figure 3.11 estimated covariance values as well as filtered trajectory in different parts

of the Paris dataset map. Notice the shape of the covariance ellipsoid: for instance with the absence of

lateral road markings, the covariance grows along the lateral direction.
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Median error : 1.42m Mean error : 2.60m

Max error : 163m

Median error : 1.44m Mean error : 2.05m

Max error : 21m

Median error : 3.28m Mean error : 5.64m

Max error : 337m

Median error : 3.25m Mean error : 5.42m

Max error : 257m

Median error : 5.38m Mean error : 12.19m

Max error : 395m Smoothness : 0.26

Smoothness : 1.00

Smoothness : 0.09

Smoothness : 1.08

Smoothness : 0.17

Median error : 4.61m Mean error : 14.70m

Max error : 742m Smoothness : 1.85

Figure 3.10: EKF on Oxford experiment. Top lane: CoordiNet trained with 2 runs. Bottom lane: EKF
using CoordiNet poses and uncertainty. Colormap is the same as in figure 3.7.

3.6.4 Ablation studies

Finally, we evaluate individual components proposed in this chapter: coord convolution, loss function,

pooling, geodesic rotation loss (geo) and the use of 3 translation losses instead of 1 (noted split). The

proposed loss function with learned uncertainty is noted heterosc. for heteroscedatic uncertainty, we

refer to usual "weighted pose loss" as homosc. Shanghai dataset (presented in 3.6.2) is used for this

experiment. EfficientNet b3 is used as image encoder.

Table 3.4: Ablation study on Shanghai dataset (errors in meters/degrees).

Loss Coord CWAP Split Rot Median err. Mean err
heterosc. X X X geo. 0.58 / 0.20 1.26 / 0.36
heterosc. X X geo. 0.69 / 0.69 0.90 / 0.87
homosc. X X geo. 0.93 / 0.76 1.24 / 1.03
Lt + Lr X X geo. 1.23 / 0.71 1.68 / 0.94
heterosc. X geo. 0.95 / 0.6 1.18 / 0.87
heterosc. X geo. 0.85 / 0.67 1.19 / 0.88
heterosc. X X L1 0.74 / 0.75 0.94 / 1.25

On this dataset, training with heteroscedatic uncertainty improve results by 16%, coord convolutions

by 16%, confidence-weighted average pooling by 27%, geodesic rotation loss by 30% on mean rotation
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error and splitting the translation has a positive effect too.

Figure 3.11: CoordiNet and EKF trajectories: CoordiNet sequences of poses (red line) are shown with
the uncertainty estimate of the current pose (purple ellipsoid). EKF trajectory (blue line) and ground truth
(green line) are also displayed. Figure best viewed in color.

3.6.5 Localization with crowd-sourced images

This section evaluates the ability of CoordiNet to use crowd-sourced images for both train and test,

using the solution proposed in section 3.3.3. More formally, we define the problem as Absolute Pose

Regression using a dataset of reference images (𝐼𝑘), each of which has been captured by a camera with

known intrinsics parameters (𝐾𝑘). At test time, localization is also performed on images captured by

calibrated cameras not observed during training.

We use 2 scenes of the Photo Tourism dataset [Snavely et al., 2006]. It is composed of a collection

of internet gathered photographs captured by tourists around famous buildings. We use Brandenburg

Gate, illustrated in Figure 3.12, and Trevi Fountain scenes. Because these images present varying reso-

lutions and camera intrinsics, we expect naive Absolute Pose Regression to present poor results because

it can not take intrinsics information as input. Conversely, the camera-aware convolutions proposed in

section 3.3.3 should be compatible with this heterogeneous dataset.

In this experiment, we compare :

• CoordiNet, presented in section 3.5, with as ResNet34 backbone and no modifications to the ar-

chitecture described in Figure 3.6.

• A modified version of CoordiNet, where all convolutions (including ResNet layers and Coord-

Conv) are replaced by the camera-aware convolutions.

Because camera-aware convolutions just include 2 additional input channels, they can be integrated

in a backbone such as ResNet without breaking the compatibility with the pre-trained weights: a convo-
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Figure 3.12: Samples from the Brandenburg Gate scene in Photo Tourism dataset [Snavely et al.,
2006]. Each image has been captured from varying conditions with a different device.

lutional layer with 𝑁 input and 𝑀 output channels will have 𝑁 + 2 input channels and then introduces

only 2×𝑀 new kernels, independent from the 𝑁 ×𝑀 already trained. In this case, we implement them

with a separate convolution with only the ray coordinates channels as input and sum the results of both

convolution layers, which is mathematically equivalent.

Because all images have different sizes, we crop them to a size of 200×200, and adapt the intrinsics

matrix accordingly. The crops are chosen randomly at each training iteration and we use the top-left

corner at test time. The results of this comparison are shown in Table 3.5.

Table 3.5: Results on Photo Tourism dataset, with and without camera-aware convolutions.

CoordiNet CoordiNet + cam conv

Brandenburg Gate
median translation 6.2cm 5.0cm
mean translation 19.6cm 16.6cm
median rotation 1.3° 0.9°

Trevi Fountain
median translation 23.3cm 14.5cm
mean translation 42.6cm 29.5cm
median rotation 1.6° 0.7°

We observe that the proposed model with camera-aware convolutions successfully uses the calibra-

tion information to localize crowd-sourced images more accurately than the baseline on both scenes.

3.7 Conclusions

In this chapter, we proposed multiple contributions about Absolute Pose Regression.

• With geometrical inductive biases, we improved the accuracy of APR networks.
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• With heteroscedatic uncertainty quantification, we obtain a reliable uncertainty estimate in an effi-

cient way. We have shown that it can be leveraged in a post-processing filtering method to improve

the results.

• With camera-aware convolutions, an APR-based positioning system can operate with crowded-

sourced data coming from heterogeneous cameras.

• We conducted much more experiments on APR than the previous literature, especially at large

scale. We concluded that the accuracy, still limited compared to structure-based methods, highly

depends on the quantity of training data available. We observed that in high-data regime, Co-

ordiNet was able to provide a reliable localization information with a sufficient accuracy (≈ 30cm

median error in Paris). CoordiNet can be integrated in real-time vehicle localization systems for

an accurate pose estimation in large and busy urban environments.

We also observed some limitations on the proposed model. Notably, despite the proposed architec-

ture modifications, pose regression does not seem able to extrapolate to camera positions unseen during

training. We will address this limitation by proposing a solution based on synthetic data in chapter 5.

Absolute Pose Regression is also limited by the fact that features extraction and camera pose estimation

are entangled in a single neural network, such that an expensive scene-specific training is required before

deployment on a new map. In chapter 6, we propose a new direct learning-based approach that separate

features extraction and map memorization to mitigate this problem.
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CHAPTER 4. LITERATURE REVIEW: NEURAL NETWORKS AS IMPLICIT SCENE
REPRESENTATIONS

4.1 Résumé en Français

Nous présentons une revue de littérature des représentations neuronales implicites, récemment intro-

duites, qui représentent des données dans l’espace à travers des réseaux de neurones prenant des coor-

données en entrée. Nous examinons plus en détail les Neural Radiance Fields (NeRF) et leurs nom-

breuses extensions récentes. Nous présentons en particulier les améliorations qui réduisent les temps

d’apprentissage et de rendu des NeRF, qui utilisent des formulations de scène plus avancées et traitent

les scènes dynamiques. Enfin, nous présentons les applications robotiques des représentations implicites

de la scène et introduisons l’idée directrice générale des chapitres suivants : utiliser ces représentations

comme carte de localisation visuelle.
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The common practice to address a machine learning problem is to consider the available data from

one side, and the machine learning model from the other. A machine learning model is a function with

learnable parameters, while data is usually represented as a collection of discretized signals (e.g. 2D

pixel grids for images, 3D point cloud, voxels, etc.). While these signals are most of the time continuous

in the real world, practitioners usually limit the data resolution to keep a tractable computational cost.

Recently, the machine learning community has proposed to represent data points as functions stored in

neural representations [Dupont et al., 2022], enabling better scaling properties.

This chapter presents Implicit Neural Representations, a novel way to represent signals in machine

learning, and review the related literature, in particular neural rendering and robotics applications which

have been closely involved in the next contributions of the thesis.

4.2 Implicit Neural Representations

Implicit Neural Representations, also referred to as Coordinate-Based Representations, are neural net-

works that represent data by mapping coordinates to quantities of interest. For example, an image can be

parameterized by a function which takes 2D spatial coordinates as input (a location in the image), and

outputs the RGB color at the corresponding position. Such intuitive examples are shown in Figure 4.1.

Figure 4.1: Implicit Neural Representations: Data such as images, 3D shapes or sound can be repre-
sented in neural network which takes coordinates as input and provides quantities of interest.

Successful examples of neural representations of data include images [Bemana et al., 2020, Sitzmann

et al., 2020, Chen et al., 2021b], videos [Chen et al., 2022d, Mai and Liu, 2022], sound [Szatkowski

et al., 2022], 3D shapes [Park et al., 2019, Atzmon and Lipman, 2020, Zakharov et al., 2022] and 3D

scenes [Sitzmann et al., 2019, Jiang et al., 2020, Mildenhall et al., 2020].

These models are usually implemented with Multi Layer Perceptrons (MLP). SIREN [Sitzmann

et al., 2020] proposes to use periodic activation functions in the architecture and shows its superiority on

several types of data representation. CoordX [Liang et al., 2022] processes each input component in sep-

arate heads in order to make it more efficient. Vector Neurons [Deng et al., 2021] enables the learning of

a rotation-equivariant shape space. MLPs have been observed to struggle to learn high frequency details

of the signal when the input coordinates are low-dimensional [Tancik et al., 2020]. The proposed solu-

tion uses positional encodings with Fourier features to project input coordinates to a higher dimensional

space, resulting in implicit representation with sharper details.

Implicit representations have several advantages over explicit data representations. First, their are not

coupled to a given spatial resolution because they are continuous functions. As a result, their memory
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footprint does not depend on resolution but only on the complexity of the underlying continuous signal.

The information is embedded in neural networks weights which enable to store complex information

compactly, usually with few megabytes. Finally, this continuous representation can be evaluated at any

coordinate, enabling a potentially "infinite" resolution.

There are relevant applications of such representations in computer vision and graphics tasks such as

data compression [Dupont et al., 2021, Strümpler et al., 2022], image and video super resolution [Chen

et al., 2021b, Chen et al., 2022d], inverse graphics (learning 3D from 2D signals) [Niemeyer et al.,

2020, Lin et al., 2020] and novel view synthesis [Mildenhall et al., 2020] described in section 4.3 or even

robotics applications described in section 4.5.

4.3 Neural rendering with Radiance Fields

4.3.1 Novel view synthesis

Novel View Synthesis (NVS) consists in rendering an image of a scene/object from an arbitrary view-

point, given a sparse set of observed views with known cameras poses. This task is illustrated in fig-

ure 4.2.

Figure 4.2: Novel view synthesis. Given a sparse set of observations of a scene (left) and their corre-
sponding camera poses (middle), novel view synthesis algorithms are asked to render images of the same
scene from unobserved camera poses (right). Figure from [Mildenhall et al., 2020].

Solving the NVS task requires to hallucinate the 2D projection of the scene in a new viewpoint, and

thus require algorithms to have an accurate representation of the 3D scene geometry. However, only 2D

images of the scene are available, such that NVS involves an "inverse graphics" problem, i.e. recovering

the 3D scene geometry using epipolar geometry. Several classical approaches could be used to solve

this problem. It relied either on light fields interpolation techniques [Gortler et al., 1996, Levoy and

Hanrahan, 1996, Davis et al., 2012], or based on a textured mesh [Debevec et al., 1996, Wood et al.,

2000, Waechter et al., 2014]. Multi-View Stereo [Furukawa et al., 2015, Yao et al., 2018, Yao et al.,

2019] can be leveraged in order to obtain dense depth maps on reference images before re-projecting

pixels on the novel view.

We want to highlight that novel view synthesis use the same datasets than visual localization (images

depicting a given scene from different viewpoints, with corresponding camera poses) and solves the

opposite problem: rendering the image from the camera pose instead of inferring the pose from the

image, in a scene-specific model.
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4.3.2 Neural Radiance Fields

Neural Radiance Fields [Mildenhall et al., 2020] (NeRF) address the novel view synthesis task with a

5D implicit neural representation optimized by minimizing the per-pixel rendering error on reference

images. A scene is represented by a continuous function, whose inputs are a point in space (𝑥, 𝑦, 𝑧) and

a viewing direction (𝜃, 𝜙) and outputs are a volume density 𝜎 and the emitted color 𝑐 = (𝑟, 𝑔, 𝑏) at the

point observed from the given direction. This function is modelled by an 8 hidden layers MLP with

ReLU activations and Fourier positional encodings [Tancik et al., 2020].

The rendering of a pixel is performed by the following operations: first, points are sampled along

the corresponding camera ray (assuming a camera pinhole model with known intrinsics). Then, sampled

points with the ray direction are processed by the NeRF implicit representation. Then, the obtained

densities and colors along the ray are aggregated through volumetric rendering resulting in the final pixel

color. This process is described in figure 4.3.

Figure 4.3: Neural Radiance Fields: NeRF are an implicit scene representation which takes a 3D point
and a viewing direction as input, and returns the volume density at this point and a RGB color. Rendering
a pixel is performed by ray marching in the 3D space, evaluation of NeRF on a discrete set of sampled
points, and differentiable aggregation along the ray by volume rendering. Figure from [Mildenhall et al.,
2020].

One crucial component of NeRF algorithm is the volumetric rendering formula, which aggregates

densities 𝜎𝑖 , colors 𝑐𝑖 and distance to camera 𝑡𝑖 of points along a ray to obtain the pixel color 𝐶 :

𝐶 (𝑟) =
𝑛∑︁
𝑖

𝑇𝑖 (1− exp (−𝜎𝑖𝛿𝑖))ci where 𝑇𝑖 = exp (−
𝑖−1∑︁
𝑗=1
𝜎𝑗𝛿 𝑗) and 𝛿𝑖 = 𝑡𝑖+1 − 𝑡𝑖 (4.1)

It computes a simple volume rendering process by leveraging a probabilistic notion of visibility. Its

main advantage is to be differentiable, such that gradients from the loss function computed on 2D pixels

colors can be back-propagated to the densities and colors of each 3D point. More details are provided

in [Max and Chen, 2005, Tagliasacchi and Mildenhall, 2022].

The viewing direction is used as input to take into account the specularities of non Lambertian objets.

However, the volume density (which can be interpreted as occupancy) of a point does not depend on

the viewing direction. This is achieved by feeding the viewing direction in the neural network at an

intermediate layer where density has already been predicted (see Figure 4.8).

Points are sampled along the ray in a coarse-to-fine approach: first "coarse" points are uniformly
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distributed from the camera center to a (arbitrary) maximum distance. The resulting density values

provided at these points are then interpreted as a discrete probability distribution function and "fine"

points are sampled from this distribution and expected to lie on the actual surface. The original NeRF

model trains two separate model entities for "coarse" and "fine" resolutions.

With this formulation, NeRF presents state of the art results for novel view synthesis with photoreal-

istic synthetic views. However, many limitations remain to be addressed:

• We make the assumption that the scene is static: lightning conditions and objects locations should

remain constant between the different captured views. This is true in indoor environments and

controlled settings. However, in the case of outdoor scenes studied in this thesis, this assumption

does not hold: datasets are collected at different seasons and times of the day and many dynamic

objects such as vehicles and pedestrians are observable. Scalability to large scenes is also highly

limited.

• Training and rendering processes are very slow and compute intensive: the rendering of each pixel

is computed independently and requires the evaluation of hundreds of points through the MLP. As

a result, training a NeRF on a single scene can take days to obtain optimal results, and several

seconds are required to render a single image on a powerful GPU.

• The rendering quality remains limited. First, finest high frequency details might not be captured

accurately by the neural network which tends to smooth the signal. Then, when the number of

observed views is limited, Neural Radiance Fields struggle to capture the correct 3D of the scene,

resulting in poor quality of extrapolated novel views.

4.4 Improving Neural Radiance Fields

Since the release of Neural Radiance Fields in 2020, extensive research has been conducted to address the

aforementioned limitations. This section presents these Neural Rendering models which focus on faster

algorithms 4.4.1, rendering of dynamic outdoor scenes 4.4.3, and higher rendering quality models 4.4.2.

An extensive overview of existing Neural Fields models is provided in [Xie et al., 2021b].

4.4.1 Accelerate NeRF training and rendering

The major bottleneck of Neural Radiance Fields for many downstream applications is the time of the

rendering process. This is because 𝐻 ×𝑊 × 𝑁 MLP evaluations are required to render an image of

resolution 𝐻×𝑊 with N points sampled per ray. Many solutions, presented below, have been pursued to

enable real-time rendering with NeRF.

4.4.1.1 Use smaller networks

The simplest idea is to reduce the size of the neural network (originally 8 hidden layers with 256 neurons).

However tiny networks do not have enough capacity to memorize the details of an entire scene and then

degrade image quality significantly.

KiloNeRF [Reiser et al., 2021] proposes a divide-and-conquer approach by training thousands of tiny

MLPs each of which represents a small portion of the scene, enabling a 3 orders of magnitude speed-up
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when combined with parallel computation. Training time is not improved because knowledge distillation

between a regular NeRF and the tiny MLPs need to be performed.

A successful idea is to use hybrids explicit-implicit formulations (see figure 4.4). Because tiny

networks can not model the radiance field depending on the spatial coordinates (𝑥, 𝑦, 𝑧) accurately, the

solutions consists in injecting intermediate features as network input which contain more information

than position. These learned features are spatially distributed in a discretized representation of the scene

and continuity is ensured by linear interpolation. It can be done in a voxel grid [Liu et al., 2020b, Garbin

et al., 2021, Hedman et al., 2021, Sun et al., 2022] or in octrees [Yu et al., 2021]. Notably, Instant-

NGP [Müller et al., 2022] provides very fast training and inference combined with high quality rendering

by interpolating multi-resolution voxel grids, implemented in hash tables. Plenoxels [Fridovich-Keil and

Yu et al., 2022] and TensoRF [Chen et al., 2022a] even learn an explicit radiance field without neural

networks.

Most of these solutions achieve faster rendering by trading compute against higher storage require-

ments. However, pruning methods can be used to mitigate the memory footprint of explicit voxel

grids [Liu et al., 2020b, Deng and Tartaglione, 2023].

Figure 4.4: Instant-NGP architecture. Intermediate features at a given 3D point are extracted via
trilinear interpolation of multi-resolution hash tables of features. Density and color are then decoded in
a tiny MLP, enabling fast rendering. Figure from [Müller et al., 2022].

4.4.1.2 Light Field formulations

An other research direction is to replace the ray marching and volumetric rendering approach (which

involve hundreds MLP evaluations per pixel) by an implicit formulation which computes the color of

a ray in a single evaluation. This camera ray representation is usually referred as light field or Lumi-

graph [Gortler et al., 1996]. The light field can be seen as a radiance field integrated along the ray.

Several concurrent work have been developed in this direction:

One important design choice is the way to parameterize input rays. Neural Light Fields [Attal et al.,

2022] and NeuLF [Li et al., 2022b] use a 4D formulation that considers the intersections of the ray with

two planes. While simple, it is only applicable to forward-facing scenes. Light Field Networks [Sitzmann

et al., 2021] use 6D Plücker coordinates enabling to model 360 degrees light fields. R2L [Wang et al.,
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Figure 4.5: Light Fields Network. Ray marching and volume rendering are replaced by an implicit
representation of the light fielf. Inputs are camera rays, parametrized by Plücker coordinates. Figure
from [Sitzmann et al., 2021]

2022] concatenates the 3D coordinates of (randomly) sampled points along the ray, which the authors

observe to perform better than Plücker coordinates. Neural Point Light Fields [Ost et al., 2022] uses only

the ray direction but leverages cross attention on features learned from a sparse point cloud of the scene.

While radiance fields are relatively smooth functions which can be easily approximated by a neural

network, this is not the case for light fields where rays with similar coordinates can have very different

colors due to occlusions. As a result, implicit light fields are difficult to learn. They struggle to match

the accuracy of NeRF in complex real world scenes [Sitzmann et al., 2021], or need to be supervised by

an existing NeRF model [Wang et al., 2022].

4.4.2 Improving further rendering quality

While Neural Radiance Fields exhibits state-of-the-art image quality in the novel view synthesis task,

they exhibit artefacts when the scene geometry is not learned correctly, when the objects are observed

closer than during training, or when dealing with reflectances. This section presents models that mitigate

these issues.

4.4.2.1 Learning better 3D geometry

NeRf has the capability to recover the 3D geometry of the scene in the form of a volume density field

(from which depth maps can be rendered), only from 2D RGB images supervision (and the camera pose

from which the image has been captured). In this "inverse graphics" problem, each reference image used

for training can be seen as an additional constraint which brings more information to solve the problem.

As a result, when few training views are available, the problem is under-constrained in the sense that

multiple 3D geometries can explain the 2D observations. In this scenario, described by [Zhang et al.,

2020a] as shape-radiance ambiguity, the model is not guaranteed to converge to the actual geometry,

resulting in wrong extrapolated views.

A first solution to this problem, proposed by DS-NeRF [Deng et al., 2022] is to provide direct

depth supervision on the training views. It is feasible because the computation of the depth value is
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differentiable w.r.t. the volume field. In addition to that, camera poses have to be computed before

the training, which is classically done by performing a 3D reconstruction on the scene with structure-

from-motion [Schönberger and Frahm, 2016]. This 3D reconstruction provides sparse correspondences

between pixels and 3D points which can be used as depth labels during the NeRF training. Similarly,

Urban Radiance Fields [Rematas et al., 2022] supervises the density field with lidar signal.

Otherwise, regularization losses have been proposed on the rendered depth maps. RegNerf [Niemeyer

et al., 2022] minimizes the total variation on local patches, assuming that most objects are locally smooth.

It avoids degenerated geometries and enhance the geometry of flat surface such as roads and walls, but

degrades objects with more complex shapes such as trees. DiffNeRF [Ehret et al., 2022] proposes a more

advanced regularization objective based on differential geometry. However, the regularization is done on

the gradients of the depth values and thus requires 2 backward passes per training iteration.

4.4.2.2 Using more advanced formulations

NeRF is a simplistic model of the image formation process from the 3D space to the camera center,

which has the advantage of being differentiable from the radiance field to the resulting RGB image

and computationally tractable. However, some of these simplifications involve poor image qualities in

scenarios such as zooms or reflections.

4.4.2.2.1 Anti-aliasing: By representing the light captured by a camera pixel by a 1-dimensional ray,

the model ignores the fact that an object very far from the camera projects a wider area in a given pixel

than an object very close. In other words, the radiance emitted by a given point depends on the distance

from the camera.

Figure 4.6: MipNeRF. NeRF samples points along the camera ray. In reality a pixel captures the light
emitted from a conical frustum. Mip-NeRF uses integrated position encodings to capture the variations
in resolution and remove aliasing effects. Figure from [Barron et al., 2021].

With the point-wise representation of NeRF model, an object which has always been observed from

the same distance during training and synthesized from a closer view will not be rendered accurately

because of an aliasing effect. This problem was not visible in the NeRF-synthetic dataset, widely used

to evaluate NVS methods, because train and test views are distributed on a sphere around the object, but

appears more frequently on real world datasets.
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MipNeRF [Barron et al., 2021] proposes a new ray marching formulation for NeRF to address this

problem. The MLP does not take coordinates of a single point as input but rather conical frustums (see

Figure 4.6). Such frustums are represented by integrated positional encodings (IPE): the 3D volume

of conical frustums is approximated by multivariate Gaussian and the closed-form integration of the

Gaussian coordinates are used as input to the MLP. This way, the model takes into account the afore-

mentioned aliasing problem when rendering each sample along the ray. MipNeRF performs consistently

better than the original NeRF formulation in terms of image quality on real world benchmarks without

extra computational cost.

4.4.3 Neural rendering of dynamic outdoor scenes

The impressive results presented in the original NeRF publication [Mildenhall et al., 2020] are performed

on an object-centric synthetic dataset (referred as NeRF synthetic) and a real-world dataset with indoor

forward-facing scenes (LFFF [Mildenhall et al., 2019]). However, many real world applications of such

novel view synthesis models would require to be able to operate in dynamic environments, such as

outdoor scenes where the observed background can be very far from the camera, some objects move

over time, and the illumination is not the same between all observed views.

Such “in the wild” scenarios are modelled by NeRF-W [Martin-Brualla et al., 2021]. This framework

learns to separate the static background of a scene from the transient occluders without supervision, as

well as the specific lightning appearance of each training image. It is done by incorporating separate

MLP heads for rendering static and transient scenes and 2 latent codes L (𝑎)
𝑖

(appearance embedding)

and L (𝜏 )
𝑖

(transient embedding) that provide control on the appearance and dynamic content of each

rendered view. As a result, an accurate radiance field of the static scene can be learned and rendered with

controllable lightning appearance (see figure 4.7). While transient objects are effectively removed from

the rest of the scene, they can not be rendered accurately.

Rendering moving scenes can be tackled by making the density of each point dependent on the

time [Li et al., 2021, Li et al., 2022a] or by modelling deformations [Pumarola et al., 2020, Tretschk et al.,

2021, Park et al., 2021]. Another option is to construct a graph with independent instances of implicit

representations for each object [Ost et al., 2021, Niemeyer and Geiger, 2021, Yang et al., 2021, Kundu

et al., 2022]. It enables to animate the scene with control on the movement, instead of just “replaying” a

video from different viewpoints.

Outdoor scenarios involve rendering background pixels which depict landmarks far away from the

camera (or even the sky at an infinite distance), which is not compatible with the ray marching approach

of NeRF, which sample points inside of a pre-defined bounded area. Nerf++ [Zhang et al., 2020a]

proposes to separate foreground and background by a unit sphere. The foreground is rendered with a

classical NeRF, while the background is rendered by an additional neural field model with an inverted

sphere parametrization designed for unbounded scenes. Urban Radiance Fields [Rematas et al., 2022]

leverages lidar sweeps to learn the geometry of outdoor scenes and models the sky with a separate model.
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Figure 4.7: Rendering of dynamic scenes. Nerf-W is able to ren-
der a scene with controllable appearance from various tourists pho-
tographs. More examples shown in Figure 3.12.

Figure 4.8: NeRF-W. The model
renders the static scene in one
branch and images with transient ob-
jects in the other. From [Martin-
Brualla et al., 2021]

The scalability to very large scenes, i.e. city-scale, is addressed by Block-NeRF [Tancik et al., 2022].

The wide area is divided into smaller blocks and a NeRF instance is trained for each specific block, while

maintaining appearance consistency between blocks. Arbitrarily large maps can be rendered by this

technique, which is promising for autonomous driving applications, but requires extensive computational

resources.

4.5 Robotics applications of Implicit Neural Representations

The main application of Neural Radiance Fields is novel view synthesis which is more related to com-

puter graphics than the computer vision problems presented in this thesis. However, by their ability

to represent a scene, Neural Fields and related implicit representations are recently being adopted by

the robotic community for real-world downstream tasks. This section give an overview of the existing

robotics applications.

First, some applications have been developed in robot grasping [Breyer et al., 2021, Ichnowski et al.,

2020, Kerr et al., 2022, Zhou et al., 2023], for which NeRF is particularly useful to represent transparent

objects. It is also used for trajectory planning [Adamkiewicz et al., 2022], object pose estimation [Za-

kharov et al., 2020, Irshad et al., 2022, Huang et al., 2022, Goli et al., 2022], scene reconstruction [Za-

kharov et al., 2021, Cao and de Charette, 2022, Ortiz et al., 2022], sensors extrinsics calibration [Herau

et al., 2023] or training data generation [Wen et al., 2022] and auto-labelling [Zhi et al., 2023].

Closer to visual localization, RGB-D SLAM algorithms can leverage implicit scene representations

to represent the map of the environment. iMAP [Sucar et al., 2021] builds a dense map represented

by a MLP trained during the exploration of the environment. However, the scene geometry provided

by the MLP lacks sharpness, and the method does not scale to large environments. NICE-SLAM [Zhu

et al., 2022] mitigates these problems by introducing a hierarchical scene representation with geometrical

priors. These works are inspiring in the context of visual localization. However, their implicit map repre-

sentation is currently limited to indoor static environments (shown in Figure 4.9), rely on RGB-D sensors

to build the map geometry and are currently less performing than structure-based methods. Camera re-

localization methods inside of these neural maps with RGB-D camera is a promising direction [Bruns
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Figure 4.9: Implicit scene reconstructions with RGB-D SLAM: iMAP [Sucar et al., 2021] (left) and
NICE-SLAM [Zhu et al., 2022] (right)

et al., 2022].

4.6 Idea: Use implicit scene representations as the visual localization map

As we discussed in chapter 2, most of state-of-the-art algorithms for visual localization do not use end-

to-end neural networks but rather classical pipelines where features extracted by learning-based methods

are matched against reference data. For example, Visual Place Recognition (see section 2.2) compares

a global image descriptor to an image retrieval database and Structure-Based methods (see section 2.2)

match keypoints against a 3D model.

Regardless of how this reference information is represented, it can be interpreted as the map the

environment (i.e. a compressed representation of what we observed before with spatial information), and

we notice that explicit representations are used. We wonder if this map information could be represented

implicitly, and hypothesize potential benefits:

• In current map representations (retrieval database and 3D models), collecting more data result in

a higher resolution at the cost of increased storage requirements and matching time. The storage

requirement of implicit scenes representations does not depend on the quantity of collected data,

but on the complexity of the underlying signal. As a result, in a high-data regime, we could learn

very accurate dense map representations with compact storage requirements.

• NeRF and related methods have shown great potential in recovering the 3D information from 2D

signals. Because visual localization use 2D images but needs to reason in the 3D world, using a

NeRF-like approach would enable to build 3D-aware maps only from 2D data in an accurate way.

The next contributions of this thesis have explored this idea for different localization approaches.

• First, in chapter 5 we propose a simplistic approach to transfer the knowledge from a NeRF to an

Absolute Pose Regressor: generate synthetic datasets of photorealistic novel views and use it to
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train a localization network. This procedure shows great benefits because we observe real-world

datasets to be limited and biased.

• In chapter 6, we replace the image retrieval database by an implicit map representation. With this

formulation, we are not limited to one global descriptor per reference image but can compute the

descriptor of any camera viewpoint in the map. We show how to train it, perform inference, and

how it compares to pose regression and image retrieval competitors in kilometers-scale maps.

• Chapter 7 proposes to replace the sparse SfM 3D model commonly used in structure-based meth-

ods by a Neural Field that learn, store and render local features. Again, it enables to render images

of local features from any viewpoint in the scene, and then to solve the localization problem by

iterative refinement against the dense map representation.

• Finally, a visual localization algorithm for vehicle localization which combines these contributions

in a hierarchical formulation is proposed, but not evaluated by lack of time, in chapter 8.
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5.1 Résumé en Français

Nous présentons une technique pour améliorer les méthodes de Pose Regression avec des images synthé-

tiques générées par NeRF. À partir d’un petit ensemble d’images de référence d’une scène donnée, nous

entrainons un NeRF et l’utilisons pour synthétiser des images photoréalistes uniformément réparties dans

la scène.

Ce grand jeu de données synthétiques est combiné aux images de réference pour entrainer un mod-

èle de regression avec une précision améliorée. En utilisant notre méthode LENS, nous observons

une amélioration importante de la précision sur des benchmarks publics pour lesquels les méthodes de

Pose Regression sont généralement peu performantes. Les différentes expériences conduites montrent

que l’amélioration ne provient pas seulement d’une plus grande quantité d’images, mais plutôt d’une

meilleure distribution de l’ensemble de données d’entraînement.
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5.2 Motivation

In chapter 3 we presented a vehicle localization approach based on Absolute Pose Regression. During

our experiments, we noticed failure cases in some specific situations, such as the overtaking of a vehicle

stopped on the road (see Figure 5.1). After investigation, it appeared that all the reference data in this

street was captured on the right lane, and that the neural network was not able to extrapolate to a position

outside of the training data range.

Figure 5.1: Localization failure during an overtaking. Absolute Pose Regression fails to recover the
vehicle position in the left lane because this situation requires to extrapolate outside of the training dataset
positions.

Our hypothesis is that camera pose regression formulated as a machine learning problem is currently

limited because training datasets are highly biased and lead to a poor generalization. In contrast with

many tasks solved with deep learning, camera pose regressors are overfitted to a single scene and we

expect their output space to be the set of possible camera poses in this scene. But in practice, training

datasets for camera pose regression are often built from a limited number of consecutive video frames.

Consequently, they lack diversity compared to the set of well distributed camera positions and orienta-

tions in a given scene (see figure 5.2). [Sattler et al., 2019] have shown that these networks are not able

to extrapolate to unseen camera positions, and then struggle to perform better than an image retrieval

baseline. We suppose that a training dataset which is well distributed on the entire scene should help to

overcome this limitation.

Our proposal is to augment training datasets for pose regression using Neural Radiance Fields

(NeRF) [Mildenhall et al., 2020]. Compared to standard generative models [Zhang et al., 2020b] used

for view synthesis, NeRF rendering is tailored for our localization problem as it produces geometry-

consistent images for any pose query in the scene thanks to the ray tracing approach. To optimize the

pose regressor localization performances and mitigate the cost of images rendering, we propose an al-

gorithm, named LENS, which generates virtual camera locations distributed on a regular grid across

the scene. In order to avoid usage of degenerate views due to occlusions or wrong orientations, LENS

leverages the internal scene geometry learned by the NeRF model. It allows to discard poses close to

occluders like buildings, and provides only meaningful images to the pose regressor without any scene-

specific parameter tuning. We apply our method on both indoor and outdoor datasets to show the benefit

of a spatially balanced dataset for training a pose regressor.

In the next section, we review previous work related to novel view synthesis for visual localization. In
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Figure 5.2: Novel view synthesis with LENS: given a 3D scene defined by a set of images labeled with
corresponding poses (green cameras), we train a NeRF and render novel views (depicted images) on
pose queries distributed across the scene (red cameras). Synthetic and real images are gathered to train
a camera pose regression model, which performs twice better when evaluated on test set images (blue
cameras) compared to the same model trained only on real training samples.

section 5.4 we describe our method, specifically the choice of NeRF and the synthetic poses generation

algorithm. Section 5.5 is dedicated to experiments conducted on Cambridge Landmarks and 7scenes

datasets. Section 5.6 concludes the chapter.

5.3 Related work

Novel view synthesis can be used at several steps of a visual localization method. [Zhang et al., 2020b]

refine reference poses iteratively by comparing rendered view of the pose estimate with the original im-

age. This idea can also be exploited in the relocalization step of a structure-based method: InLoc [Taira

et al., 2018] verifies the predicted pose by comparing local patch descriptors between original and ren-

dered image. iNeRF [Yen-Chen et al., 2021] performs gradient-based optimization to recover a pose

estimate thanks to NeRF differentiability. Direct-PoseNet [Chen et al., 2021a] adapts this idea to camera

pose regression training by using an additional photometric loss between query image and NeRF synthe-

sis on the predicted pose. PoseGan [Liu et al., 2020a] learns jointly pose regression and view synthesis

resulting in an improved localization accuracy.

Another direction is to use synthetic images to enlarge the reference database with more densely

sampled views. Localization algorithms perform better when an image with a similar viewpoint is avail-

able for matching (structure based methods) or training (learning based). This idea can also be applied

to other vision tasks, such as 3D semantic segmentation [Kundu et al., 2020]. These methods yield two

important design choices: how to chose where virtual cameras are located, and how to perform novel

view synthesis.

Virtual camera locations are usually sampled using ad-hoc methods: [Torii et al., 2015b] expand a

place recognition database by sampling on a regular grid, removing locations that lie in buildings thanks

to coarse depth plans representing basic 3D structures or locations that are too far from the original

trajectory. [Aubry et al., 2014] and [Irschara et al., 2009] use a similar approach and discard cameras

that doesn’t view any portion of the 3d model. Some alternatives propose to use a probabilistic sampling

strategy based on detectability of keypoints at a specific pose [Purkait et al., 2018], or try to find an

optimal set of locations with a genetic algorithm [Chen and Li, 2004]. However, ad-hoc methods have
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been observed to be sufficient in practice [Irschara et al., 2009], so our method uses a regular grid

combined with NeRF internal representation of the scene to ensure meaningful views.

One popular approach to render novel view is to use a 3D textured mesh to represent the scene and

to create virtual cameras within this scene [Aubry et al., 2014, Sattler et al., 2019]. However, obtaining

such scene representation is costly and not easy to compute from crowd-sourced images acquired in a

dynamic environment. Meshs built from crowd sourced images usually fail to describe low textured or

crowded part of the scene, such as sky and ground. Synthetic images can also be rendered thanks to

Generative Adversarial Networks [Purkait et al., 2018, Toker et al., 2021]. Finally, recent methods that

learn a continuous volumetric representation of the scene such as Neural Radiance Fields [Mildenhall

et al., 2020] outperform prior work and exhibit photorealistic results. To the best of our knowledge, no

study has been conducted to enlarge camera pose regression training dataset with NeRF rendered views.

5.4 Synthetic dataset rendering with LENS

We provide here a description of our method, named LENS, which can be seen as an offline data augmen-

tation pipeline to train pose regressors. Our goal is to generate a large and uniformly distributed dataset

of synthetic images, using a small set of images depicting the scene labeled with reference camera poses

(usually provided by structure from motion methods such as COLMAP [Schönberger and Frahm, 2016]).

This dataset is then used to train a camera pose regressor, resulting in an improved accuracy without addi-

tional computation during localization inference. Our framework is described in figure 5.3 and is detailed

below.
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Figure 5.3: LENS pipeline: First, NeRF-W is trained with available real images (a.). Then, the trained
model is used to detect high density points in the scene (b.). Poses from real images and high density
locations are used to generate virtual camera locations (c.) on which novel view synthesis is performed
(d.). Combined real and synthetic datasets are used to train a pose regressor (e.).

5.4.1 NeRF-W training

A neural radiance field learns a continuous 3D representation of a scene from a collections of images

depicting this scene from known camera viewpoints. It uses 2 feed-forward neural networks: MLP𝜃1

connects a 3D position to a density value 𝜎 and MLP𝜃2 predicts a RGB color from a viewing direction

d and a latent vector MLP𝜃1 (𝑥, 𝑦, 𝑧). The final RGB value of a pixel is computed by approximating the
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volume rendering integral using 𝑁𝑐 coarse samples and 𝑁 𝑓 fine samples along a light ray with predicted

colors (ci)n and densities (𝜎𝑖)𝑛.

With this formulation, NeRF models are able to render a static scene captured under controlled set-

tings but fail in real world dynamic scenes with variable illuminations and dynamic objects. NeRF in

the Wild [Martin-Brualla et al., 2021] (NeRF-W), overcomes this limitation by modelling these temporal

modifications with 2 learned latent spaces L (𝑎)
𝑖

(appearance embedding) and L (𝜏 )
𝑖

(transient embed-

ding) that provide control on the appearance and dynamic content of each rendered view. An additional

network MLP𝜃3 is introduced to render scenes with transient objects during training thanks to L (𝜏 )
𝑖

,

whereas MLP𝜃2 only render the static part of the scene with L (𝑎)
𝑖

as an additional input, see figure 5.3-a.

We train a NeRF-W model on each scene using a sparse set of registered images.

5.4.2 Density volume generation

In order to chose valid locations for the synthetic images, we first gather the volumetric representation

of the scene learned by the NeRF-W model.

We query MLP𝜃1 on a regular 3D grid that can be displayed as a density volume (see figure 5.3-b

and figure 5.5). Lets consider B the smallest 3D bounding box that contains all the poses of the training

images. The 3D grid extend is defined by another 3D bounding box B+ obtained by extending B with an

extrapolation distance parameter 𝐸𝑚𝑎𝑥 . We sample 𝑚 3D points in B+ separated by a constant distance

𝜆𝑣 that is obtained by dividing the smallest edge of B+ by a fixed resolution parameter 𝑟𝑣 . Using this

method we ensure that 𝑚 will be of the same order of magnitude for all scenes, avoiding the generation

of intractable density volume.

To consider that a given location is unreachable in the scene, we set a threshold 𝑡𝜎 and only take in

account 3D points with density higher than 𝑡𝜎 .

5.4.3 Virtual camera locations

Next, our virtual camera location generation algorithm takes poses of real training images as input, but

also the NeRF density volume and the desired number of virtual cameras 𝑛. Our method is two-step:

defining the virtual camera positions and then determining their orientations. Our focus is to generate a

training dataset for a pose regressor, therefore we want a set of locations to be uniformly distributed all

over the area and viewpoints that could be visited by the agent to localize.

To generate our virtual camera positions candidates, we use a similar strategy as the one described in

the previous section: we sample 𝑛𝑖 3D points in B+ using a constant distance 𝜆𝑠 between the 3D points

obtain by dividing the smallest edge of B+ by a resolution parameter 𝑟𝑖 , 𝑖 ∈ N. Then we proceed to a

multiple criteria pruning step to remove irrelevant candidates: 3D points closer to 𝑑𝜎 to a 3D point from

the density volume are considered too close to a structure and are discarded, 3D points further than 𝑑𝑚𝑎𝑥
to a real camera view position are considered too far from the area of interest and are also discarded. We

implement the nearest neighbour search with KDTrees for efficiency.

After candidate pruning, we obtain a final number of virtual camera positions 𝑛𝑖 . If 𝑛𝑖 is smaller than

desired number of cameras 𝑛, we update the resolution parameter 𝑟𝑖 and repeat the generation procedure:

𝑟𝑖+1 = 𝑟𝑖 +𝜎𝑟 , with 𝜎𝑟 the update step.
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Finally, we need to define a camera orientation (𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧 , 𝑞𝑤) attached to the camera center (𝑥, 𝑦, 𝑧)
for each virtual camera. In order to avoid degenerated views, we copy the orientation of the nearest pose

in training set and add a small random perturbation on each axis drawn uniformly in [− 𝜃
2 ,
𝜃
2 ], where 𝜃 is

the maximum amplitude of the perturbation. As an output, we have a set of 𝑛 poses [𝑥, 𝑦, 𝑧, 𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧 , 𝑞𝑤]
that are used as queries for novel view synthesis, see figure 5.3-c. More examples of generated poses can

be find in figure 5.5.

5.4.4 Novel view synthesis

Novel views are synthesised on each virtual camera location using MLP𝜃1 and MLP𝜃2 (figure 5.3-d). The

appearance embedding L (𝑎)
𝑟 is chosen by random interpolation of training set appearances defined by:

L (𝑎)
𝑟 = 𝛼×L (𝑎)

𝑖
+ (1−𝛼) ×L (𝑎)

𝑗
, (5.1)

where i and j correspond to random indices of training images and 𝛼 ∼U[0,1] .

As a result, rendered images depict a scene from chosen viewpoints where transient occluders ob-

served in training images are removed. Appearance interpolation acts as a data augmentation technique

that increases robustness of the localization model under varying illuminations. Some example of result-

ing appearances are shown in figure 5.4.

5.4.5 Camera pose regressor training

The final step of our pipeline is to train the localization algorithm with our synthetic-augmented dataset.

We simply combine real images with our synthesised images together; Then mini-batches are sampled

randomly in this combined dataset for the training stage (figure 5.3-d). We use CoordiNet [Moreau et al.,

2022a] as a camera pose regressor.

5.5 Experiments

In this section we evaluate LENS combined with CoordiNet on standard localization benchmarks, con-

duct an ablation study to confirm our design choices and investigate on training poses distribution for

pose regressor training.

Figure 5.4: Appearances interpolation with Nerf-W. We display renderings from the same viewpoints
with randomly interpolated appearance embeddings. We observe that resulting appearances look natural
and exhibit a good diversity.
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Figure 5.5: Visualisation of density volumes, virtual camera queries (training poses, test poses,virtual
cameras) and example of rendered images on Cambridge Landmarks.

5.5.1 Datasets and implementation details

5.5.1.0.1 Datasets. We evaluate LENS on two standard visual localization benchmarks:

• Cambridge Landmarks [Kendall et al., 2015] contains 4 outdoor dynamic scenes captured by

a smartphone. In each scene, a common building is visible from each image. Camera poses

are recovered from SfM and training sets contains between 200 and 2000 images extracted from

videos. We downscale input images to 640×360 pixels.

• 7scenes [Shotton et al., 2013] consists of 7 static indoor scenes, captured by a Kinect RGB-D

sensor. This dataset is challenging for camera pose regression algorithms because test sequences

follow different paths than the ones of train sequences. We downscale input images to 320×240

pixels.

5.5.1.0.2 NeRF parameters. We use the code of [Quei-An, 2020] to train one NeRF-W [Martin-

Brualla et al., 2021] by scene, using the default parameters of the Pytorch implementation. We train each

model for 20 epochs using the training images to generate the training rays. We took a maximum of

5 training sequences (5k images) for the 7 scenes dataset and we define one appearance embedding by

image in the training set. Generating images of Cambridge scenes takes approximately 40s/GPU, with
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256 coarse and 256 fine sampling by ray. It takes 7s/GPU for 7 scenes while sampling only 128 coarse

and 128 fine values as the scenes are smaller and less complex than Cambridge scenes.

5.5.1.0.3 Virtual camera locations generation. For outdoor scenes, virtual camera locations are

sampled on a 2D plane and LENS parameters are: 𝑟𝑣 = 128, 𝑡𝜎 = 20, 𝑑𝑚𝑎𝑥 = 8𝑚, 𝑑𝜎 = 1𝑚, 𝐸𝑚𝑎𝑥 = 1𝑚,

𝑟0 = 1, 𝜎𝑟 = 1 and 𝜃 = 15◦. For indoor scenes, the regular grid is defined on 3 dimensions and we adapt

the following LENS parameters: 𝑑𝑚𝑎𝑥 = 50𝑐𝑚, 𝑑𝜎 = 20𝑐𝑚, 𝐸𝑚𝑎𝑥 = 20𝑐𝑚 and 𝜃 = 20◦.

We set the desired number of virtual views 𝑛 to 500% for outdoor scene and 1000% for indoor scene

of the total number of real training images. We found that amount of images a good trade-off between

computational cost and localization accuracy. More details are provided in section 5.5.3.

5.5.1.0.4 Pose regressor. We use CoordiNet [Moreau et al., 2022a] as camera pose regressor with

EfficientNet-b3 [Tan and Le, 2019] as backbone and optimize the network by maximizing heteroscedatic

log-likelihood (see section 3.4.2). We train our models for 250 epochs with a fixed learning rate of

1𝑒−4 for both datasets. During training, we use a batch size of 10 for Cambridge Landmarks and 40 for

7 scenes.

5.5.2 Comparison with related localization methods

5.5.2.0.1 Competitors. We compare our method CoordiNet + LENS with CoordiNet only trained on

real images. SPP-Net [Purkait et al., 2018] is a small CNN pose regressor that has been trained with

and without additional synthetic data, providing a good baseline for LENS. We also report results from

TransPoseNet[Shavit et al., 2021b], which is a state of the art transformer approach for camera pose

regression. DirectPoseNet [Chen et al., 2021a] uses a NeRF model as a photometric supervisor during

the training. Active search [Sattler et al., 2012] is a baseline for structure-based methods, where local

image features are matched against a 3D point cloud obtained by SfM.

5.5.2.0.2 Results. Median translation and orientation errors are reported in table 7.1. CoordiNet +

LENS achieves best reported results for camera pose regression methods on both Cambridge Landmarks

and 7scenes with a large margin. Moreover, our method is more accurate than Active Search [Sattler

et al., 2012] on 5 scenes out of 11, reducing the gap between camera pose regression and structure-based

methods. Then, we observe that LENS provides better relative localization improvement (approximately

+60%) than the synthetic datasets generated by [Purkait et al., 2018] (+45%).

5.5.3 Ablation studies

We evaluate several components of our method independently:

• we investigate the optimal quantity of training sample that should be generated in to improve

accuracy while keeping a reasonable computation time during the novel view synthesis process.

• we study the benefit of using side information provided by the trained NeRF model: the density

volume in the pose queries algorithm and the appearances embedding interpolation in order to

produce visually heterogeneous training sample.
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Table 5.1: 6DOF localization errors of visual localization methods. We report median transla-
tion/orientation error (meters/degrees). TransPN and DirectPN stand for TransPoseNet and Direct-
PoseNet. Superscripts numbers refer to the relative improvement (green) or deterioration (red) in per-
centage brought by synthetic data.

Dataset Camera Pose Regression CPR + view synthesis 3D
Cambridge SPPNet CoordiNet TransPN DirectPN SPPNet

+ synth
CoordiNet
+ LENS

Active
search

K College 1.91/2.4 0.70/0.9 0.60/2.4 - 0.7461/1.058 0.3353/0.544 0.42/0.6
OldHosp 2.51/3.7 0.97/2.1 1.45/3.1 - 2.1813/3.95 0.4455/0.957 0.44/1.0
Shop 1.31/7.8 0.69/3.7 0.55/3.5 - 0.5955/2.568 0.2761/1.657 0.12/0.4
Church 3.21/7.0 1.32/3.6 1.09/5.0 - 1.4455/3.353 0.5360/1.656 0.19/0.5
Average 2.24/5.2 0.92/2.6 0.91/3.5 - 1.2445/2.748 0.3958/1.254 0.29/0.6
7scenes
Chess 0.22/7.6 0.14/6.7 0.08/5.7 0.10/3.5 0.1245/4.442 0.0379/1.380 0.04/2.0
Fire 0.37/14.1 0.27/11.6 0.24/10.6 0.27/11.7 0.2241/8.937 0.1063/3.768 0.03/1.5
Heads 0.22/14.1 0.13/13.6 0.13/12.7 0.17/13.1 0.1150/8.341 0.0763/5.857 0.02/1.5
Office 0.32/10.0 0.21/8.6 0.17/6.3 0.16/6.0 0.1650/5.050 0.0767/1.978 0.09/3.6
Pumpkin 0.47/10.2 0.25/7.2 0.17/5.6 0.19/3.9 0.2155/4.952 0.0868/2.269 0.08/3.1
Kitchen 0.34/11.3 0.26/7.5 0.19/6.8 0.22/5.1 0.2138/4.858 0.0965/2.271 0.07/3.4
Stairs 0.40/13.2 0.28/12.9 0.30/7.0 0.32/10.6 0.2245/7.245 0.1450/3.672 0.03/2.2
Average 0.33/11.6 0.22/9.7 0.18/7.8 0.20/7.3 0.1845/6.247 0.0864/3.069 0.05/2.5

Synthetic dataset size. We change the amount of generated sample from 100% to 1000% (up to

5000% for fire scene) of the total number of images in the real training set on three different scenes and

we compare the relative improvement in term of localization accuracy. Results are shown in table 5.2.

As expected, we observe that using a higher grid resolution containing more samples leads to a better

localization. In addition to that, we can see in figure 5.6 that the relative improvement compared to the

baseline (i.e. no synthetic images) is correlated to the ratio between synthetic and real images rather than

the total number of images itself: a ratio of 10 leads to a 59% translation improvement for ShopFacade,

58% for Church and 63% for Fire. Curves of error translation in figure 5.6 do not seems to reach a

plateau: an higher ratio would potentially bring better localization results. This suggests that optimal

training strategy is to generate a maximum number of synthetic samples for a given computation time

budget.

Synth. im.
Real im.

ShopFacade Church Fire
(231 im.) (1487 im.) (2000 im.)

0% 0.61/4.2 1.06/3.1 0.27/11.6
100% 0.61/2.4 0.75/2.4 0.18/5.7
200% 0.41/2.0 0.58/1.9 0.16/5.7
500% 0.26/1.2 0.51/1.5 0.12/4.2

1000% 0.25/1.2 0.45/1.6 0.10/3.2
5000% - - 0.07/2.4

Table 5.2: median translation (m) and orienta-
tion (°) errors depending on synthetic dataset size
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Figure 5.6: Translation (tr., left) and angular (ang.,
right) error relative decrease vs synthetic dataset
size.

Benefit of using volume and random appearances. In table 5.3, we observe that occluded views

located too close or inside a building disturb the training of the pose regressor, decreasing the localization

accuracy. We can see in figure 5.7 that the use of the density volume provided by the trained NeRF

correctly remove distracting samples. Providing a random appearances embedding during the NeRF
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image generation also decrease slightly translation and rotation errors. Even if the improvement is minor

and not very significant on this scene, we expect this appearance augmentation to be very useful on

experiments with more diversity in illuminations (day and night images for example).

Figure 5.7: Virtual camera locations with
(left) and without (right) NeRF volume
pruning step.

Errors
Volume Appearances emb.

with without random constant

Translation 0.27m 0.36m 0.25m 0.26m

Rotation 1.6° 1.7° 1.2° 1.4°

Table 5.3: Localization errors comparison for density vol-
ume and appearances embedding ablations on Shop Facade
scene.

5.5.4 Exploring camera pose regression on synthetic domain

In order to investigate the impact of training camera poses distribution on the performance of pose regres-

sion without taking in account the domain gap between real and synthetic data, we perform the following

experiment: we replace both training and testing real images by NeRF-rendered images at the exact same

location, then we trained and test a pose regressor on this synthetic dataset. Results are reported for the

indoor scene fire in the two first columns of table 5.4 (seq3-4 real vs seq3-4 synth.). We get similar

localization performances compared to the same model trained on real data, which allow us to perform

deeper analysis on the impact of distribution of camera poses used for the training.

Table 5.4: Median translation (m) and orientation (°) errors in Fire scene from 7scenes. seq3-4 refers to
methods using images from sequences 3 & 4 as training data.

Method seq3-4 seq3-4 LENS LENS LENS Act. Search
Data type real synth. synth. synth. synth. real
Train set size 2k 2k 2k 10k 100k -
Error (m/°) 0.27/11.7 0.27/10.6 0.08/3.5 0.05/2.4 0.03/1.4 0.03/1.5

In a second experiment, we replace the original training camera poses by uniformly distributed poses

generated by LENS. We observe a important decrease in median localization error from 27cm/11.7° to

8cm/3.5° whereas we use the same number of training data (table 5.4 columns 2 vs 3). Increasing the

number of synthetic data, up to 5000% of the number of training data in the original training set, leads

to even better localization results (table 5.4 columns 3 to 5). We also show that pose regression can

reach structure-based method accuracy (evaluated on real data) if the model is trained with the largest

amount of data. A similar experiment had been made by [Sattler et al., 2019] with opposite conclusions:

even with a big synthetic dataset depicting the scene, pose regressors were not able to reach an accuracy

comparable to structure-based methods, suggesting that camera pose regression algorithms are inherently

limited by their approach without geometrical constraints.

From these experiments, we end up with a different conclusion: datasets using only video sequences

create an unbalanced regression problem where training labels does not cover the entire set of possible

poses and then lead to a poor localization accuracy. Deep learning approaches are known to perform

well in high data regimes, but the main finding of this research is that training datasets distributed across

the entire scene are crucial for camera pose regression performances. The different results we observe
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compared to [Sattler et al., 2019] probably come from a higher quality of our synthesized views and a

pose regression architecture that performs better.

5.5.5 Limitations

The first limitation of our pipeline is the offline computation time: Nerf-W needs to be trained several

days with a GPU on a single scene in order to reach optimal rendering results. The slow rendering

of novel views forces us to generate a dataset before training the localization algorithm instead of an

online data generation pipeline. Faster synthesis would enable to learn from an infinite quantity of data

instead of a limited number of images. However, faster NeRF training and rendering are active research

fields (see section 4.4.1) that should enhance speed and performances of LENS in the future. Moreover,

as reported in Table 5.5, our method offsets the costly offline computation by a fast and light online

localization, enabling real-time embedded applications for robotics.

We also observed that training with only synthetic images leads to poor performances on real images.

This is due to the domain gap between real and synthetic images: no dynamic objects, different textures,

more blur and some artifacts are observable in the synthetic domain. Mixing real and synthetic images is

the simpler way to mitigate this issue, however domain adaptation techniques [Cortes and Mohri, 2011]

could be used to reduce domain discrepancy as well as higher quality rendered samples.

Table 5.5: Approximate time and memory requirements comparison between structure-based methods
and ours. ∗ denotes a scaling time and memory consumption according to the scene size. † structure-
based methods need to load the features vocabulary and access to the 3D points cloud during localization.

Offline (1 scene) Online (1 image)

Structure
based

Task SfM Quantization SIFT Loc.
Timing Hours∗ Minutes∗ 50-500ms ∼500ms∗

Memory NR NR NR GBs∗†

LENS +
CoordiNet

Task SfM Train NeRF NVS Train PR Coordinet inference
Timing Hours∗ Hours∗ 30s/im/gpu∗ Hours∗ ∼50ms
Memory NR NR NR NR <50MB

5.6 Conclusion

In this chapter, we address limitations of camera pose regressors at data-level: thanks to high quality

novel view synthesis provided by NeRF-W, we propose to train a relocalization algorithm with synthetic

images uniformly sampled on the entire scene. Our method enhance strongly localization performances,

reducing the gap with structure based methods while keeping the advantages of pose regression: a fast

inference with low memory footprint and the capability to scale to large environments. Our experiments

show that camera pose regression can perform well when trained with large and diverse datasets. LENS

coupled with CoordiNet improves camera pose regression state of the art and can be used for accurate

real-time robot relocalization system.

Applying this idea for autonomous vehicle scenarios is feasible, for example by using Block-NeRF [Tan-

cik et al., 2022] for the rendering part, but would require huge computational budget. We left these ex-

periments as future work. However, the neural renderer proposed in chapter 7 is way more efficient than

Nerf-W and could facilitate these experiments.
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CHAPTER 6. LARGE SCALE LOCALIZATION WITH AN IMPLICIT MAP REPRESENTATION

6.1 Résumé en Français

La solution habituelle pour résoudre le problème de localisation visuelle dans de très grandes cartes

consiste à utiliser des algorithmes de reconnaissance de lieu, basés sur le principe d’Image Retrieval.

Ce chapitre étudie l’idée de remplacer la base de données de ces méthodes par un réseau de neurones

qui représente implicitement les kilomètres de paysages observé par un véhicule. Dans cette formulation,

le descripteur global de "n’importe quelle" position dans la carte peut être calculé. Par conséquent, la

localisation n’est pas effectuée en comparant l’image de requête à une base de données discrète et finie,

mais plutôt en échantillonnant et évaluant des positions dans l’espace continu de la carte.

Nous confirmons les avantages de notre méthode ImPosing sur des scénarios de conduite très divers

ainsi que sa capacité à passer à l’échelle sur de larges jeux de données collectés au fil du temps.
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6.2 Motivation

We aim to develop relocalization algorithms able to operate efficiently in embedded devices of au-

tonomous vehicles in a deployment scenario where the target area is wide and collected datasets are

large. This problem is challenging due to kilometer-scale maps and dynamic outdoor environments.

The well-established solution to address visual localization in large-scale maps is to use Image Re-

trieval (see section 2.2). While effective, this solution has a computational complexity that grows with

the amount of collected data.

We also observed in chapter 3 that Absolute Pose Regression with CoordiNet was able to provide a

sub-meter median accuracy in large maps. Because it requires scene-specific training that can be quite

long, training from scratch independently for each map seems inefficient. We would like to have a

separate entity which represent the map. During the research phase we first implemented discrete grids

of learnable parameters that memorized the global descriptor of images observed at the same location.

Problem: the accuracy is bounded by the resolution. Then we realized that this map information could

be represented implicitly by a coordinate-based neural network.

This chapter proposes an algorithm in between Image Retrieval (IR) and Absolute Pose Regression

(APR). IR uses one neural network for global feature extraction and a discrete set of observed images to

represent the map. APR entangles feature extraction and map memorization in a single neural network.

Our proposal uses 2 neural networks : one for features extraction and one for map memorization. It can

either be seen as "inverting" the decoder of pose regression, or replacing the image retrieval database by

an implicit representation of the map.

Figure 6.1: High level comparison between Absolute Pose Regression (top left), Image Retrieval
(top right) and the proposed algorithm (bottom). APR entangles the entire visual localization task in
a single neural network. IR extracts a global image descriptor from the query image and compares it to
a database of descriptors. Our proposal models the reference database as a neural network.

The core idea is to connect image and camera pose representations, which are learned separately

by two distinct neural networks, in a common latent space. We use an implicit neural representation to

encode a specific viewpoint in the scene (i.e. a 6-DoF camera pose) into a higher dimensional vector.
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With this formulation, the continuous representation of any camera pose in the scene (even a pose not

observed in reference images) can be computed in a single network forward pass. We take advantage of

this property to solve the localization task by searching the pose candidates which are the most similar to

the learned image representation. To do so, we introduce a hierarchical sampling process able to retrieve

the correct camera viewpoint using only a few batched queries on the pose encoder network. Our lo-

calization method, called Implicit Pose Encoding (ImPosing), provides real-time sub-metric localization

performances that can be rapidly deployed on large areas.

We evaluate our system on a wide range of visual localization datasets, including several kilometers-

scale road environments with challenging conditions (seasonal and appearance changes, limited training

data). We observe that our method outperforms its regression-based competitors in terms of accuracy

and training efficiency, especially in large-scale scenarios.

6.3 Visual Localization with ImPosing

Our method, ImPosing, estimates the 6-DoF camera pose (𝑡, 𝑞) ∈ 𝑆𝐸 (3) of a query image 𝐼, where 𝑡 is

a translation vector and 𝑞 is a unit quaternion. We train our solution using a reference dataset of posed

images (𝐼𝑘) collected in the target area and we do not make use of an additional 3D model of the scene.

The proposed algorithm, computes a vector that represents the image through the image encoder.

Then, the camera pose is searched by evaluating initial pose candidates distributed across the map. Poses

are processed by the pose encoder to produce a latent representation that can be matched against the

image vector. Each pose candidate receives a score, based on distance to camera pose. High scores

provide a coarse localization prior which is used to select new candidates. By repeating this process

several times, our pool of candidates converges to the actual camera pose.

6.3.1 ImPosing localization process

This section describes the localization process step by step from the image to the final camera pose

estimate, displayed in figure 6.2,

6.3.1.0.1 1. Image encoder: we compute a global image features vector 𝑓𝐼 (𝐼) ∈ R𝑑 from the input

query 𝐼 using our image encoder. The encoder architecture consists in a pretrained CNN backbone

followed by a Global Average Pooling, and a fully-connected layer with 𝑑 output neurons. The feature

vector is one order of magnitude smaller than global image descriptors commonly used in image retrieval

(we use 𝑑 = 256 whereas AP-GeM [Revaud et al., 2019] use 𝑑 = 2048) in order to efficiently compare it

to a large set of pose candidates at later steps.

6.3.1.0.2 2. Initial pose candidates: Our starting point is a set of 𝑁 camera poses (𝑝𝑛)0, sampled

from the set of reference poses (= training poses). Through this initial selection, we introduce a prior

for the localization process, similar to the anchors poses in [Saha et al., 2018] or regression methods that

compute relative instead of absolute pose [Ding et al., 2019]. We observed that the algorithm is robust to

this choice: a 2D grid on the map yield similar results.
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Figure 6.2: Implicit pose encoding for hierarchical image localization. A set of initial map signatures
is compared to the image signature to determine the most probable localization of the camera. The
similarity scores guides the selection of a new batch of pose candidates that are used to compute the new
map signatures for the second refined localization step. This process is repeated multiple time to predict
the final camera pose.

6.3.1.0.3 3. Pose encoder: Pose candidates are processed by a neural network which outputs latent

vectors. This implicit representation learns the correspondence between camera viewpoints in a given

scene and features vectors provided by the image encoder. First, following Tancik et al. [Tancik et al.,

2020], each component of the camera pose (𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝑞𝑥, 𝑞𝑦, 𝑞𝑧, 𝑞𝑤) is projected to higher dimension

using Fourier features : 𝑥 → (𝑥, 𝑠𝑖𝑛(2𝑘𝑥), 𝑐𝑜𝑠(2𝑘𝑥))0≤𝑘≤10, as it helps networks with low dimensional

input to fit high frequency functions. Then, we use a MLP 𝑓𝑀 with 4 layers of 256 neurons and ReLU

activations on hidden layers. Each set of pose candidates is computed in a single batched forward pass.

6.3.1.0.4 4. Similarity scores: we obtain a similarity score 𝑠 by computing the cosine similarity

between 𝑓𝐼 (𝐼) and 𝑓𝑀 (𝑝) for each image-pose pair (𝐼, 𝑝). We add a ReLU layer after the dot product,

such that 𝑠 ∈ [0,1]. Intuitively, we aim to learn high scores for poses candidates close to the actual

camera pose. With this formulation, we can evaluate hypotheses on the camera pose and search for pose

candidates with high scores. Formally, our score is defined by:

𝑠(𝐼, 𝑝) = ⟨ 𝑓𝐼 (𝐼), 𝑓𝑀 (𝑝)⟩
∥ 𝑓𝐼 (𝐼)∥∥ 𝑓𝑀 (𝑝)∥⊮⟨ 𝑓𝐼 (𝐼 ) , 𝑓𝑀 (𝑝) ⟩>0 (6.1)

6.3.1.0.5 5. Candidates proposer: new poses (𝑝𝑛)𝑘 are selected for the 𝑘 𝑡ℎ iteration based on scores

obtained with poses (𝑝𝑛)𝑘−1 at the previous iteration. First, we select the poses with top 𝐵 = 100 higher

scores (ℎ𝑖)0≤𝑖<𝐵 ⊂ (𝑝𝑛)𝑘−1. Then, new candidates are sampled from (ℎ𝑖) in a Gaussian Mixture Model

with density:

𝑃(𝑥) =
100∑︁
𝑖=1
𝜋𝑖N(𝑥 |ℎ𝑖 , 𝑣/𝑘) where 𝜋𝑖 =

𝑠(𝐼, ℎ𝑖)∑100
𝑙=1 𝑠(𝐼, ℎ𝑙)

. (6.2)

𝑣 = [𝑣𝑡 𝑥 , 𝑣𝑡 𝑦 , 𝑣𝑡 𝑧 , 𝑣𝑟 𝑥 , 𝑣𝑟 𝑦 , 𝑣𝑟 𝑧] is the variance of the sampling process, a hyperparameter composed

of a translation vector and Euler angles.
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6.3.1.0.6 6. Iterative pose refinement: we repeat 𝐾 times the evaluation of pose candidates de-

scribed in steps 3-4-5. After each iteration, the noise vector 𝑣 is divided by 2, such that new candidates

are sampled closer to previous high scores. As a result, we can converge to a precise pose estimate in

kilometers-scale maps while only evaluating a limited sparse set of poses. We evaluate each camera

frame independently at each time step, however one could use localization priors from previous time

steps to reduce the number of iterations in vehicles navigation scenarios. An example of selected poses

at each iteration is shown in Fig. 6.3. By sampling 𝑁 candidates for initial poses, we preserve a constant

memory peak.

6.3.1.0.7 7. Pose averaging: our final camera pose estimate is a weighted average of the 256 pose

candidates with higher scores, which exhibits better interpolation properties than selecting the best

score pose. We use scores as weighting coefficients and 3D rotation averaging is implemented fol-

lowing [Markley et al., 2007].

Figure 6.3: Iterative candidates refinement. At each 𝑘 step of the localization process, top scored poses
are selected to sample the new candidate poses at step 𝑘 +1. From left to right: top scored poses at 𝑘 = 0
to 𝑘 = 5, yellow points are positions of the training example, blue arrows are pose candidates and red
arrows are the selected poses among the candidates.

The entire inference procedure requires 1 forward pass on the image encoder and 𝐾 passes on the

pose encoder.

6.3.2 Training procedure

We do not train the system by minimizing the error on the final camera pose estimate. Instead, we

apply our loss function directly on the predicted scores. As a result, one training iteration provides

supervision on the 𝐾 × 𝑁 image-pose pairs that contains more information than the single localization

error. We observed that this property results in superior training efficiency than regression approaches

(see 6.4.6). We define target scores 𝑠𝑡 based on translation and rotation distances between the camera

pose 𝑝𝐼 = (𝑡𝐼 , 𝑞𝐼 ) and the candidate pose 𝑝 = (𝑡, 𝑞):

𝑠𝑡 (𝐼, 𝑝) = 𝑅𝑒𝐿𝑈 (1−𝜆𝑡 ∥𝑡𝑖 − 𝑡∥2 −𝜆𝑟𝐺 (𝑞𝑖 , 𝑞)) (6.3)

where 𝜆𝑡 and 𝜆𝑟 are weighting parameters set to 5 and 0.1 and 𝐺 is geodesic distance, defined as the

minimal angle between 2 rotations:

𝐺 (𝑞1, 𝑞2) = 𝑐𝑜𝑠−1

(
(𝑡𝑟 (𝑀𝑞1𝑀

−1
𝑞2 ) −1)

2

)
, (6.4)
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𝑀𝑞 being the 3D rotation matrix associated with rotation 𝑞.

We train 𝑓𝐼 and 𝑓𝑀 by computing scores between reference images and pose candidates sampled at

𝐾 different resolutions as described in section 6.3.1. For training purpose, we add to initial poses an

uniform noise sampled in [−𝑣, 𝑣] as we observed that it reduces overfitting. We also use poses associated

with the top target scores in the candidates proposer, in addition with top predicted scores in order to

guide training convergence in early iterations.

Finally, our optimization objective is:

𝐿 =
1
𝑁

𝐾∑︁
𝑘=0

𝑁−1∑︁
𝑛=0

|𝑠(𝐼, 𝑝𝑛,𝑘) − 𝑠𝑡 (𝐼, 𝑝𝑛,𝑘) | (6.5)

An analogy can be made with content-based image retrieval [Arandjelović et al., 2016, Revaud et al.,

2019]: global descriptors are usually trained using image triplets composed of a query image, a positive

and a negative example. Positive samples are data close to the query, in metric or semantic domain

depending on the final application, and negative samples are images with unrelated content to the query.

Global descriptors can be trained by minimizing a triplet margin loss [Arandjelović et al., 2016]. In our

case, positive examples are the poses with a non-zero score whereas negative examples are candidates

farther from the camera pose than an arbitrary threshold. Instead of binary classification (positive or

negative example), we rank the relative importance of the positive samples according to their distance to

the ground truth label.

6.4 Experiments

We compare our approach against recent methods on several datasets covering a wide range of au-

tonomous driving scenarios in large scale outdoor maps. This task is highly challenging due to the

dynamic part of outdoor environments (moving objects, illumination, occlusions, etc.). We verify that

our formulation enables accurate localization in 9 different large outdoor scenes. Then we show that our

method can be naturally extended to multi-map scenarios and we report results using this setup. We also

compare the computational efficiency of our method with competitors and finally present an ablation

study on hyperparameters of ImPosing.

6.4.0.0.1 Implementation details: ImPosing is implemented in PyTorch. Images are computed at

a small resolution 135× 240. The image encoder uses a ResNet34 backbone pretrained on ImageNet.

𝑁 = 4096 pose candidates are evaluated at each of the 𝐾 = 6 refinement steps. For candidates sampling,

the noise vector is set to 𝑣 = [8.0𝑚,0.2𝑚,8.0𝑚,1𝑑𝑒𝑔,5𝑑𝑒𝑔,1𝑑𝑒𝑔] where y is the altitude axis, and we

use 100 GMM components. We train the image encoder and pose encoder for 250 epochs with Adam

optimizer at a constant learning rate of 1𝑒−4. We did not tune these parameters specifically for each

scene, suggesting that they should work for any autonomous driving scene.

6.4.0.0.2 Baselines: Our first aim is to compare ImPosing to its direct learning-based methods com-

petitors. We use CoordiNet [Moreau et al., 2022a] that report state-of-the-art results for absolute pose

regression on Oxford Dataset as a baseline. We report previously published results on this dataset, and

our own implementation for other datasets. We replace the EfficientNet backbone by ResNet34 for a
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fair comparison with ImPosing. We share similarities with image retrieval by matching a global descrip-

tor against the map. To compare ImPosing to retrieval, we use NetVLAD [Arandjelović et al., 2016]

(VGG16 backbone) and AP-GeM. [Revaud et al., 2019] (GeM pooling, Resnet101 backbone) publicly

available implementations1. Full sized images are used to compute global image descriptors followed by

cosine similarity for features comparison, then we perform pose averaging on poses of top 20 database

images as in [Sattler et al., 2019]. Scene coordinate regression [Brachmann and Rother, 2019, Brach-

mann and Rother, 2021] can not scale to large environments thus is not considered for evaluation. We

did not conduct experiments with structure-based methods [Sarlin et al., 2019, Sarlin et al., 2021, Zhou

et al., 2020]. These methods are more accurate than ours thanks to geometric reasoning with a 3D model,

but also operate at a different computation scale than ours (see figure 6.6) making embedded deployment

difficult. In scenarios where it can be afforded, ImPosing can be considered as a coarse localization step,

followed by refinement with a 3D model, similar to HLoc[Sarlin et al., 2019] architecture.

6.4.1 Single scene localization

Table 6.1: Localization error on Oxford RobotCar and Daoxiang Lake datasets.

Pose regression Image retrieval
ImPosing

Dataset CoordiNet AtLoc NetVLAD GeM

Oxford Full
Median 3.55m/1.1° 11.1m/5.3° 1.42m/1.4° 1.36m/1.3° 1.90m/1.3°
Mean 14.96m/5.7° 29.6m/12.4° 4.47m/2.4° 3.49m/2.3° 4.25m/4.3°

Oxford Loop
Median 2.27m/0.9° 5.36m/2.1° 2.16m/1.1° 2.39m/1.0° 1.93m/1.0°
Mean 4.15m/1.4° 8.73m/4.6° 4.16m/1.9° 6.92m/3.1° 3.03m/1.8°

Average
Median 2.91m/1.0° 8.23m/3.7° 1.79m/1.2° 1.88m/1.1° 1.92m/1.1°
Mean 9.56m/3.4° 19.17m/8.5° 4.32m/2.1° 5.20m/2.7° 3.64m/3.0°

Daoxiang Lake
Median 6.82m/0.4° – 8.92m/0.8° 27.13m/1.1° 1.62m/0.3°
Mean 25.18m/1.0° – 152.2m/15.5° 328.8m/19.5° 8.40m/0.5°

6.4.1.0.1 Oxford RobotCar [Maddern et al., 2017] contains images recorded by a vehicle in Oxford

over a year. We reproduce experiments commonly reported for learning-based methods [Moreau et al.,

2022a, Wang et al., 2020a, Xue et al., 2020]: we evaluate on the Loop and Full scenes, using only 2

sequences for training. Results are reported in Table 6.1.

First we observe that image retrieval performs better than pose regression. Previous learning-based

methods struggle due to the low-data regime [Moreau et al., 2022a, Moreau et al., 2022b] and the de-

crease of the regression accuracy in large maps. Oxford city is an environment with rich features sim-

ilar to visual place recognition training datasets, that make NetVLAD [Arandjelović et al., 2016] and

GeM [Revaud et al., 2019] strong baselines in this scenario. ImPosing exhibits state-of-the art accuracy

on Oxford Loop scene, as well as the best mean error in average. These results are obtained by reducing

a lot the number of large failure cases that occur with prior methods.

We also observe that despite newly provided RTK ground truth provided by the authors [Maddern

et al., 2020], the reference poses are largely inaccurate in some areas. As a result, evaluation metrics

1https://github.com/Nanne/pytorch-NetVlad and https://github.com/naver/deep-image-retrieval
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are not significant at a centimeter level and models training might be impacted by this erroneous pose

labels. For this reason, we conduct a benchmark on two recently released datasets with more reliable

ground-truth.

6.4.1.0.2 Daoxiang Lake [Zhou et al., 2020] has been collected in a 12km loop in Beijing during 4

months. 8 recordings are available, we use 7 for training and 1 for testing with images from the front

camera only. This scene contains the largest map and training dataset of our experiments. Median and

mean errors are shown in Table 6.1. Daoxiang Lake is a more challenging dataset than Oxford because of

repetitive areas with few discriminative features and various environments (urban, peri-urban, highways,

nature, etc.). As a result, image retrieval performs worse than pose regression. ImPosing is way more

accurate and exhibits a median error 4 times smaller than competitors.

6.4.1.0.3 4 seasons [Wenzel et al., 2020] contains data recorded in Munich area in various scenes

(city, residential neighborhoods, countrysides) with varying seasonal conditions. We selected 6 scenes

where at least 3 different recordings are provided: we use 1 for testing and others as training images.

This benchmark is highly challenging due to extreme appearance changes between sequences, small

data regime for some scenes, featureless environments (shown in Figure6.4) and kilometers-scale maps.

Results are reported in table 6.2.

Table 6.2: Median localization error on 4Seasons dataset.

Dataset details Image retrieval
CoordiNet

ImPosing

Road length Runs Images NetVLAD GeM Single sc. Multi sc.
Neighborhood 2000 6 16520 0.72m/0.9° 0.69m/0.9° 0.74m/0.6° 0.53m/0.7° 0.82m/1.0°
Office loop 2600 5 20915 6.85m/3.0° 6.39m/2.8° 6.25m/1.5° 0.99m/1.1° 1.58m/1.3°
Countryside 6200 3 19804 32.24m/1.2° 30.87m/1.3° 47.33m/2.9° 2.61m/0.9° 5.46m/1.1°
Bus. campus 1000 2 6132 1.19m/1.3° 1.96m/1.2° 22.57m/6.0° 1.16m/1.3° 1.70m/1.6°
City loop 10000 2 17427 61.60m/3.5° 317.4m/6.9° 584.4m/14.4° 5.32m/2.4° 10.53m/2.5°
Old Town 4500 3 13959 3.45m/1.2° 4.46m/1.6° 50.83m/3.8° 2.59m/1.2° 3.71m/1.3°
Average - - - 17.67m/1,8° 60.30m/2,4° 118.7m/4.9° 2.2m/1.3° 3.97m/1.5°

First, absolute localization accuracy is very heterogeneous between different scenes. We note that

scenes with few training images are the most challenging. In particular, Countryside include navigation

around fields and City Loop is a 10km map where the training dataset is composed of a winter sequence

with snow and a rainy sequence with blur on camera lens. In these extreme cases, both pose regres-

sion and image retrieval fail to estimate reliable poses, whereas ImPosing is able to provide a coarse

localization. With sufficiently large training datasets, our method still exhibits the more precise pose

estimation.

6.4.2 Multi-scene localization

Learning-based methods for relocalization require scene specific training, inducing heavy computation

for potential deployment in several areas at a large scale. Recent work [Blanton et al., 2020, Shavit

et al., 2021a] has extended absolute pose regression to multi-scene scenarios. The core idea is to train

a system with images from several maps while sharing image encoder parameters that could learn to

extract features in a generic way. As our method separate image and map representation, ImPosing
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Figure 6.4: Featureless environments and varying weather conditions. Test is performed on the image
on the right, while the network has been trained with 3 recordings with different lightning conditions.
Our method is able to provide a coarse localization in these scenarios, where as image retrieval and pose
regression competitors fail.

naturally extends to multi scenes scenarios. To adapt ImPosing to a multi-map scenario, we perform the

following modifications: the image encoder backbone is shared between all maps, whereas one specific

pose encoder is learned for each scene. We also learn scene specific parameters for the final linear layer

of the image encoder, to facilitate image features projection to the desired map representation. We train

a multi-scene model on the 6 maps of 4 seasons [Wenzel et al., 2020]. Results are reported in Table 6.2.

The model has been trained for 20 epochs only because of computational constraints, but still outperform

all competitors except single scenes ImPosing models. While the convergence for a single scene is slower

in the multimap formulation (but training a multiscene on 𝑛 maps is faster than performing 𝑛 different

trainings on each map. The multi-scene formulation enables to localize in huge areas with minimal

memory storage requirements (see section 6.4.5).

6.4.3 Continual learning in the real world

In chapter 1, we defined as objective the development of a "self-learning" localization system, i.e. the

idea of collecting more data over time during deployment and, without human in the loop, use it to obtain

a more accurate algorithm which improves with further training on new data. This section evaluates this

property related to continual learning [Wang et al., 2021].

We did not conduct such experiments on public benchmarks but on an internal dataset collected in

Shanghai. It consists in a loop in an urban area of 3.6 kms. After an initial data collection of several

recordings, the area has been reconstructed by COLMAP [Schönberger and Frahm, 2016], providing

reference camera poses for all images. At this point, 3 independent recordings are kept apart as the

validation set. Then, 2 new recordings are captured everyday, registered in the SfM model in order to

have reference poses, and added to the training dataset. Each day, the model is retrained from its current

weights using all training data (newly captured and previously existing). While using only new data

would be more efficient, using all data avoids the catastrophic forgetting problem [Robins, 1995]. After

14 days, 29 independent recordings were used for training, for a total of 511k images.

The evolution of the localization error on the validation dataset over time is shown in Figure 6.5. First,

we observe a precise localization accuracy: 15cm median and 25cm mean errors at the end of the process.

We observe a constant improvement of the positioning system over time. The first explanation is simple:

the training dataset grows and we already observed in section 3.6.2 that larger datasets results in more

accurate localization. The main insight of this experiment is the fact that, by collecting navigation data

from the users we can register the images in the SfM map and use it to improve the system automatically

through further training. This is a crucial property from the industrial point of view.

Another aspect is that this continual learning formulation have the potential to update the algorithm
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Figure 6.5: Localization accuracy in continual learning setup. The model is trained each day with
new recordings automatically annotated and improves over time.

when the environment is modified. Examples such as roadworks or building modifications can cause

important failures of the visual localization algorithm when the reference data is not up-to-date. Even

though we did not evaluate this problem directly, continual learning is an obvious solution for direct

learning-based methods.

6.4.4 Smaller scale benchmarks

For completeness, we evaluate ImPosing on Cambridge Landmarks [Kendall et al., 2015] and 7scenes [Shot-

ton et al., 2013], which are widely used benchmarks for visual localization. These datasets evaluate visual

localization algorithms in smaller environments where camera is carried by a human instead of equipped

on a vehicle. Cambridge Landmarks depicts buildings with rich features observed from different view-

points in outdoor dynamic conditions. 7scenes evaluates localization in small indoor static environments.

In both cases, videos used for testing follow different paths than trajectories observed during training.

Methods that use a 3D model usually perform well on these benchmarks thanks to geometric reasoning,

whereas regression methods overfit on the small amount of training poses and exhibit a limited accuracy

(see chapter 5). Results are reported in table 6.3.

On Cambridge Landmarks, ImPosing is less accurate than state-of-the-art pose regression and im-

age retrieval competitors. However, in the multi scenes scenario, we observe that ImPosing is slightly

better than single scene models, whereas accuracy of competitors decreases from single scene to multi

scenes. On 7scenes, ImPosing outperforms Image Retrieval but present a higher error compared to pose

regression, especially on rotation.

We believe that our candidates sampling method is not well suited for such smaller scenes where

the set of camera orientations is more diverse than in large scale driving scenarios where our method

compares favorably. These experiments confirm that ImPosing is compatible with multi scene scenarios,
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Table 6.3: Small-scale datasets (median localization error in meters/degrees).

Image retrieval Camera Pose Regression
ImPosing

Dataset NetVLAD AP-GeM PoseNet Transformer
Single sc. Multi sc. Single sc. Multi sc. Single sc. Multi sc.

C
am

br
id

ge

K College 2.94/6.23 0.70/0.9 0.99/1.1 1.73/3.6 0.60/2.4 0.83/1.5 1.71/3.6 1.58/3.5
OldHosp 4.87/9.2 0.97/2.1 2.17/2.9 2.55/4.1 1.45/3.1 1.81/2.4 2.45/5.1 2.39/5.0
Shop 1.32/7.8 0.69/3.7 1.05/4.0 2.02/7.5 0.55/3.5 0.86/3.1 0.97/7.0 0.93/6.9
Church 3.71/11.1 1.32/3.6 1.49/3.4 2.67/6.2 1.09/5.0 1.62/4.0 1.51/6.6 1.60/7.0
Average 3.21/8.6 0.92/2.6 1.43/2.9 2.24/5.4 0.92/3.5 1.28/2.8 1.66/5.6 1.63/5.6

7s
ce

ne
s

Chess 0.24/10.4 0.21/11.0 0.14/4.5 0.09/4.8 0.08/5.7 0.11/4.7 0.17/8.5 0.17/9.6
Fire 0.33/14.0 0.33/15.1 0.27/11.8 0.29/10.5 0.24/10.6 0.24/9.6 0.28/11.3 0.29/12.6
Heads 0.18/16.4 0.17/16.7 0.18/12.1 0.16/13.1 0.13/12.7 0.14/12.2 0.13/13.0 0.13/13.8
Office 0.30/11.1 0.29/12.0 0.20/5.8 0.16/6.8 0.17/6.3 0.17/5.7 0.25/9.0 0.25/9.1
Pumpkin 0.38/11.2 0.37/11.0 0.25/4.8 0.19/5.5 0.17/5.6 0.18/4.4 0.27/10.4 0.29/9.6
Kitchen 0.34/12.3 0.36/12.2 0.24/5.5 0.21/6.6 0.19/6.8 0.17/5.9 0.28/8.0 0.26/8.2
Stairs 0.28/13.8 0.31/14.8 0.37/10.6 0.31/11.6 0.30/7.0 0.26/8.4 0.27/11.8 0.26/11.3
Average 0.29/12.7 0.29/13.3 0.24/7.9 0.20/8.4 0.18/7.8 0.18/7.3 0.24/10.3 0.24/10.6

which is an important property for large scale deployment of localization systems.

6.4.5 Efficiency comparison

Storage footprint. Our method only needs to store neural networks weights and initial pose candidates

in device. It represents 23MB for the image encoder, less than 1MB for the pose encoder and 1MB

for the initial poses candidates. We also report in figure 6.6 the scaling law of memory footprint w.r.t.

reference database size for different classes of visual localization methods. This is an important aspect

in autonomous driving scenarios where large amounts of data are available. For a given map, learning-

based methods have a constant memory requirement because the map information is embedded in the

networks weights. To estimate storage requirement of retrieval methods, we consider the size of the

database image descriptor (2048 for GeM and 4096 for NetVLAD) along with the size of the image

encoder. Storage requirement of retrieval methods exceed 1 GB for large scale scene with more than

100k reference images. To estimate the memory requirement of structure-based methods we consider

the numbers given in [Sarlin et al., 2019]: a 3D model built from 4328 images is composed of 685k

3D points. If we consider one local descriptor of size 128 by 3D points, we can derive a linear rule to

Table 6.4: Qualitative comparison between methods. We compare the properties of visual localization
class of methods w.r.t. storage requirement, capability to operate in large maps (scalability), latency and
accuracy. IR stands for Image Retrieval, PR for Pose Regression, SCR for Scene Coordinate Regression,
DB for database and NN for neural networks weights. Storage of IR databases are detailed in [Song et al.,
2022].

Algorithms In device storage Scalability Latency Accuracy
IR+2D-3D matching 3D model + IR DB + NN (5-100GBs) High Low High
IR+Relative PR IR DB with images + NN (5-100GBs) High Low Medium
IR IR DB + NN (2-50GBs) High Medium Low
APR NN (≈ 25MB) Medium High Low
SCR NN (≈ 25MB) Low High High
ImPosing (ours) NN (25MB) High High Medium
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determine the 3D model size according to the number of reference images. This is a rough estimation but

we can estimate that structure based method require at least 3 times more storage capacity than image

retrieval methods. Compressing techniques exist to make these methods more tractable [Sattler et al.,

2015, Camposeco et al., 2019], however compressed maps still represent gigabytes and are less accurate.
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CoordiNet (APR)
GeM (IR)
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Figure 6.6: In-device memory usage. Structure-based methods (black) and image retrieval (blue and
purple) use more memory when the reference dataset grows whereas pose regression methods and Im-
Posing (pink and cyan) storage requirement does not depend on dataset size.

Computational complexity. Our algorithm complexity depends on the image encoder backbone

(3.6 billion FLOPs for ResNet34) and the hierarchical decoding process with the pose encoder. With the

default hyperparameters, it involves 4.8 billion FLOPs. We measured a total inference time of 41ms for a

single image using a NVIDIA RTX 2080 GPU. The complexity is linear w.r.t. the number of refinements

𝐾 , the number of pose candidates 𝑁 and the number of layers in the MLP. It is quadratic w.r.t. the

latent dimension 𝐷. It should be noted that parallel computations reduce the impact of 𝑁 and 𝐷 on the

inference time. Considering these properties and the ablations provided in 6.4.6, one can choose the

corresponding hyperparameters that match its computational requirements.

Summary. ImPosing exhibits very compact storage requirements and fast inference time coupled

with state-of-the-art accuracy. Notably, neither memory footprint and computational complexity depends

on the number of images in the reference database, which is a great advantage over image retrieval

methods [Arandjelović et al., 2016, Revaud et al., 2019]. We also observe empirically that our method

converges approximately 2 times faster than pose regression competitors [Moreau et al., 2022a] w.r.t. the

number of training iterations (see figure 6.7).

6.4.6 Ablation study

We report the influence of several hyperparameters on the localization accuracy of ImPosing in figure 6.7.

We evaluate the number of refinement steps 𝐾 , the number of pose candidates 𝑁 and the number of

best candidates used for pose averaging. We use the model trained on Daoxiang Lake and change the
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Figure 6.7: From left to right: median localization errors depending on number of refinements,
pose candidates, and final number averaged poses. Training time comparison between pose regres-
sion [Moreau et al., 2022a] and ImPosing.

parameters at test time. Increasing the number of refinements and candidates improves localization

accuracy, at the cost of a higher computational cost. We use a reasonable trade-off with 𝐾 = 6 and

𝑁 = 4096 as our default setup. We observe that pose averaging has a positive impact on accuracy, but the

number of selected candidates is not critical.

6.4.7 Qualitative analysis

We propose a video showing various qualitative examples of our localization algorithm in different

scenes. The video is accessible at the following address : https://youtu.be/tHHQYdY1xDM

The input image is displayed on the top left corner. The right part shows the current predicted

trajectory in red, ground truth poses in green and training trajectories in gray. The bottom left corner

displays the 256 best candidates selected for pose averaging in red, the predicted pose in black and the

groundtruth pose in green. Finally, the last plot shows the score of all candidates in the entire map from

transparent (𝑠 = 0) to red (𝑠 = 1).

Scenes are displayed in the following order : Daoxiang Lake (00:00 to 01:03), Neighborhood (01:04

to 02:09), Office Loop (02:10 to 02:40), Business campus (02:41 to 03:38), City Loop (03:39 to 03:59),

Countryside (04:00 to 04:44), Old Town (04:45 to 05:00).

These video samples show clearly advantages and limitations of our method:

• Coarse localization is correct most of the time, even in large maps with repetitive and featureless

environments (see figure 6.4).

• In ambiguous scenarios, our method provides a multimodal distribution of scores in first iterations

and then solves the ambiguity in further steps (see figure 6.8).

• Sequences of predictions are not temporally smooth, because each frame is treated independently

in this experiment. In practice, this can be solved by filtering with a motion model (see sec-

tion 3.6.3).

• Precise pose estimation is sometimes inaccurate but sufficient to provide a lane level localization

for navigation of autonomous vehicles.

It should also be noted that experiments on 4seasons dataset are extreme scenarios where the quantity

of available data is small w.r.t. to the challenges introduced by weather conditions.
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Figure 6.8: Multimodal score distribution in ambiguous cases. Many road areas present similar struc-
ture and appearance, introducing ambiguities in the localization task. In this scenario from the City Loop
scene, the model outputs high scores for areas depicted in left and right images, which are very far one
from each other. By refining the estimate in further steps, the model is able to solve this ambiguity in
most cases.

6.5 Discussion

What does the pose encoder learn? In the pose regression approach, image and camera pose are con-

nected by being the respective input and output of a single feedforward neural network. This formulation

entangles features extraction, map memorization and camera pose prediction in a single model. While

deep neural networks are known to perform well for the first, they have been observed to be inaccu-

rate for pose prediction [Sattler et al., 2019]. Our solution circumvents this problem by "inverting" the

decoder layers with the pose encoder. We don’t try to predict the pose from features but to connect a

given pose to its respective latent features. We let the network learn the optimal latent space to connect

images and camera poses, with a single constraint: pose candidates close to the actual camera pose must

have a vector relatively similar to the image representation. This property enables to search the best pose

candidates in a coarse to fine manner, and interpret the resulting scores has a multimodal distribution of

positions across the map.

Figure 6.9: Latent space visualization. Training poses, colored by the 3 principal components of map
descriptors. Poses with similar colors are close in the latent space. Opposite ways of the same road are
represented by dissimilar representations. Best viewed in color

Benefits, limitations and future work. Our method keeps the main advantages of direct learning-
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based methods: we obtain the pose efficiently with neural networks inference, we do not use a 3D model

of the scene or a retrieval database, resulting in a very compact memory footprint. We observe that the

accuracy our method highly depends on the quantity of training data available. Similar to regression,

our method does not extrapolate to camera positions far from trainings examples. However, recent ap-

proaches has shown that these limitations can be overcome with synthetic datasets [Moreau et al., 2022b].

Moreover, in the driving scenario, a coarse localization estimate can be sufficient because horizontal lo-

calization (road lane) can be recovered thanks to perception [Qin et al., 2021]. The new paradigm we

propose could be improved in many ways. It includes exploring better architectures for the pose encoder,

inspired from recent work on coordinate-based representations [Zhu et al., 2021]. Another interesting

direction is to extend the implicit map representation to local features instead of global image signatures,

by finding a way to represent implicitly a 3D model. We explore this last direction in chapter 7.

6.6 Conclusion

We have proposed a new formulation for visual localization that perform state-of-the art accuracy for

direct learning-based methods in large environments. By using an implicit representation of the map, we

connect camera poses and image features in a latent high dimensional manifold well suited for localiza-

tion. We have shown that with a simple pose candidates sampling procedure, we are able to estimate

the absolute pose of an image. Our proposal can be directly applied in autonomous driving systems, by

providing an efficient and accurate image-based localization algorithm that can operate at large scales in

real-time.

We believe that, beyond our work, implicit scene representations, by their ability to model complex

continuous signals in a fixed size neural network, are a promising research direction for camera pose

estimation. Next chapter will extend this idea to another class of visual localization algorithms.
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CHAPTER 7. SELF-SUPERVISED LOCALIZATION FEATURES IN A RADIANCE FIELD

7.1 Résumé en Français

Ce chapitre étend l’idée d’utiliser des répresentations de cartes implicites aux méthodes basées sur des

correspondances locales, qui permettent une précision plus élevée. Classiquement ces méthodes fonc-

tionnent en associant des pixels de l’image de requête avec des points 3D d’un nuage de points de la

scène, ce qui permet d’estimer la position de la caméra avec des principes de géométrie projective.

Ici, nous remplacons le modèle 3D explicite par un Neural Radiance Field (NeRF), qui fournit des

descripteurs locaux pour n’importe quel point observé dans la scène. Cette représentation de la scène

présente plusieurs avantages tels que la compacité, la capacité d’effectuer d’établir des associations avec

n’importe quel point et de raffiner l’estimation de la position de la caméra un nombre arbitraire de fois.

Nous décrivons notre système CROSSFIRE, comment l’entraîner de manière auto-supervisée et nous

évaluons ses propriétés dans des environnements intérieurs et extérieurs.
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7.2 Motivation

The algorithm presented in chapter 6 operates with global image descriptors. It enables efficient search

in a large map but does not provide a very precise camera pose in smaller environments. To obtain a

centimeter-level localization, the common solution consists in extracting local image features and match

them against a 3D model (see section 2.3).

In this chapter, we extend the idea of implicit map representation to structure-based methods. The

commonly used sparse 3D model is replaced by a neural field, able to render consistent local descriptors

from any camera viewpoint.

We propose to introduce local descriptors in the NeRF implicit formulation and to use the resulting

model as the scene representation of a 2D-3D features matching method. We train simultaneously a

CNN feature extractor and a neural renderer to provide consistent scene-specific descriptors in a self-

supervised way. During training, we leverage the 3D information learned by the radiance field in a metric

learning optimization objective which does not require supervised pixel correspondences on image pairs

or a pre-computed 3D model. The proposed "positional descriptors" represent not only the local 2D

image content but also the 3D position of the observed point, which enables to solve ambiguities in areas

with repetitive patterns. Our method can use any differentiable neural renderer and then can directly

benefit from recent NeRF improvements. For instance, we make the model computationally tractable

thanks to the multi-resolution hash encoding from Instant-NGP [Müller et al., 2022] and adapted to

dynamic outdoor scenes thanks to appearance embeddings from Nerf-W [Martin-Brualla et al., 2021].

Finally, we show that these features can be used to solve the visual relocalization task with an iterative

algorithm composed of a dense features matching step followed by standard Perspective-n-Points (PnP)

camera pose computation. In our novel relocalization paradigm, named CROSSFIRE, the commonly

used sparse 3D model obtained from Structure-from-Motion is replaced by a Neural Field. For a given

camera pose candidate, we use the neural field to render dense descriptors and depth maps. Descriptors

are used to establish 2D-2D matches which are upgraded to 2D-3D matches by the rendered depth. We

can iteratively refine the estimated pose by repeating the aforementioned localization procedure.

We leverage the 3D information learned by the NeRF at multiple stages: we render depth maps used

to obtain 2D-3D matches during localization, we do not need pairs of images with annotated correspon-

dences for training because repeatability is naturally learned in the neural field, and our optimization

objective depends on the 3D distance between pixels in order to learn a smooth descriptor field.

7.3 Method

Our algorithm estimates the 6-DoF camera pose of a query image in an already visited environment.

We first train our modules in an offline step, using a set of reference images with corresponding poses,

captured beforehand in the area of interest. A 3D model of the scene is not a pre-requisite because we

learn the scene geometry during the training process.

7.3.1 Neural rendering of positional descriptors

Our neural renderer combines the original NeRF formulation with the multi-resolution hash encoding

of Instant-NGP [Müller et al., 2022] and the appearance embeddings of Nerf-W [Martin-Brualla et al.,
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Figure 7.1: Neural Positional Feature Fields architecture. We build upon the architecture of Instant-
NGP [Müller et al., 2022] enabling fast training and rendering. We use per-image appearance embed-
dings during training to handle varying illumination across training images. For accurate localization,
we add an MLP that is invariant to viewing direction and appearance vector allowing to learn robust
localization feature vectors.

2021] to efficiently render dynamic scenes. However, our main objective is not photorealistic rendering

but, rather, features matching with new observations. While it is possible to align a query image with a

NeRF model by minimizing the photometric error [Yen-Chen et al., 2021], such approach lacks robust-

ness w.r.t. variations in illumination. Instead, we propose to add positional features, i.e. 𝐷-dimensional

latent vectors which describe the visual content of a region of interest in the scene, as an additional output

of the radiance field function. In contrast with the rendered color, we model these descriptors as invari-

ant to viewing direction 𝑑 and appearance vector L (𝑎)
𝑖

(i.e. we do not provide 𝑑 and L (𝑎)
𝑖

to the MLP

head responsible of generating the positional feature, see Figure 7.1). We verify through ablation study

in section 7.4.3 that this descriptor property makes the matching process more robust. Similar to color,

the 2D descriptor of a camera ray is aggregated by the usual volumetric rendering formula applied on

descriptors of each point along the ray. The architecture of our proposed neural renderer is summarized

in Figure 7.1 and implementations details are provided in section. The training pipeline of CROSSFIRE

is explained in the next section.

7.3.2 Self-supervised training of features in CROSSFIRE

Motivation: In the previous section, we explained how our proposed neural renderer describes the map

for relocalization purposes thanks to the introduced positional descriptors. Additionally, we also need

to extract features from the query image. A simple solution, proposed by FQN [Germain et al., 2022],

is to use an off-the-shelf pre-trained features extractor such as SuperPoint [DeTone et al., 2018] or D2-

Net [Dusmanu et al., 2019], and train the neural renderer to memorize observed descriptors depending

on the viewing direction. Optimizing scene-specific descriptors, however, allows to better differentiate

repetitive patterns in the scene resulting, in a more robust localization and reducing failure cases. To this

end, we propose to train jointly the feature extractor with the neural renderer by defining an optimization

objective which leverages the scene geometry. We obtain descriptors specialized on the target scene

which describe not only the visual content but also the 3D location of the observed point, with better

discriminant property than generic descriptors.
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Figure 7.2: Training pipeline of Neural Positional Features Fields. We jointly optimize the neural
renderer and the features extractor to obtain robust, scene-specific localization descriptors. We use reg-
ularization losses (i.e. TV and SSIM) to increase the consistency of the neural renderer. We propose a
two-terms loss that maximizes the similarity between corresponding feature maps while penalizing pixel
pairs that are geometrically distant from each other.

The training procedure of our system is described in Figure 7.2. One training sample corresponds

to a reference image with its corresponding camera pose. From one side, the image is processed by the

features extractor to obtain the descriptors map 𝐹𝐼 . On the other side, we sample points along rays for

each pixel using camera intrinsics, compute density, color and descriptor of each 3D point, and finally

perform volumetric rendering to obtain a RGB view 𝐶𝑅, a descriptors map 𝐹𝑅 and a depth map 𝐷𝑅.

Features Extraction: Our features extractor is a simple fully convolutional neural network with 8

layers, ReLU activations and max poolings. The input is a RGB image 𝐼 of size 𝐻 ×𝑊 and produces a

dense descriptors map 𝐹𝐼 ∈ R𝐻/4×𝑊/4×𝑑 .

Learning the Radiance Field: Similar to NeRF [Mildenhall et al., 2020], we use the mean squared

error loss L𝑀𝑆𝐸 between𝐶𝑅 and the real image to learn the radiance field. As we render entire, although

downscaled, images in a single training step, we can leverage the local 2D image structure and minimise

the structural dissimilarity (DSSIM) loss L𝑆𝑆𝐼𝑀 [Wang et al., 2004]. We observe that it produces sharper

images and better results. Depth maps are used by the localization process to compute the camera pose,

and then better depth results in more accurate poses. NeRF models trained with limited training views can

yield incorrect depths, due to the shape-radiance ambiguity [Zhang et al., 2020a]. We add a regularization

loss L𝑇𝑉 which minimizes depth total variation of randomly sampled 5x5 image patches to encourage

smoothness and limit artefacts on the rendered depth maps [Niemeyer et al., 2022].
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Figure 7.3: Similarities of positional features. We show the dense matching map between one de-
scriptor from the query image (red dots in left images) and the reference descriptors from the neural
renderer. Thanks to our training objective, descriptors close (in 3D) to the selected points have high
similary whereas others do not match. This behaviour is enforced by our loss function.

Learning the Descriptors Field: Our main goal is to match the descriptors map from the CNN

features extractor and the corresponding one from the neural renderer. The self-supervised optimization

objective encourages both models to produce identical features for a given pixel while preventing high

matching scores between points far from each other in the 3D scene. We define a loss function with two

terms L𝑝𝑜𝑠 and L𝑛𝑒𝑔, applied on a pair of descriptors maps, each containing 𝑛 pixels. We use the cosine

similarity, noted ⊗, to measure similarity between descriptors.

The first loss term L𝑝𝑜𝑠 maximizes the similarity between descriptors maps 𝐹𝐼 and 𝐹𝑅 from both

models:

L𝑝𝑜𝑠 =
1
𝑛

𝑛∑︁
𝑖=1

max(0,1−𝐹𝐼 [𝑖] ⊗ 𝐹𝑅 [𝑖]) (7.1)

The second loss term L𝑛𝑒𝑔 samples random pairs of pixels and ensures that pixel pairs with large 3D

distances have dissimilar descriptors:

L𝑛𝑒𝑔 =
1
𝑚𝑛

𝑚,𝑛∑︁
𝑘,𝑖=1

max(0, 𝐹𝐼 [𝑝𝑘 (𝑖)] ⊗ 𝐹𝑅 [𝑖] − 𝑡𝜆(𝑝𝑘 (𝑖), 𝑖)) (7.2)

where 𝑡𝜆(𝑖, 𝑗) = 𝑚𝑎𝑥(0,1−𝜆∥𝑥𝑦𝑧(𝑖) − 𝑥𝑦𝑧( 𝑗)∥). 𝑥𝑦𝑧(𝑖) is the 3D coordinate of the point represented by

the 𝑖𝑡ℎ pixel in the descriptors map. We compute it from the camera parameters of the rendered view and

predicted depth. It should be noted that we do not backpropagate the gradient of this loss to the depth

map because the gradient of this loss does not provide meaningful signal to learn the scene geometry. 𝜆

is an hyperparameter which controls the maximum similarity between descriptors at a given 3D distance.

(𝑝𝑘)𝑚 are random permutations of pixel indices from 1 to n.

The proposed self-supervised objective is close to a classical triplet loss [Arandjelović et al., 2016],

but we show in fig 7.8 that scaling the loss by the 3D coordinates in the formulation is crucial to learn

smooth and selective descriptors. A visualization of the similarity between descriptors enforced by the

proposed loss is shown in Fig 7.3.

Finally, we optimize the following loss function at each training step:

L = L𝑀𝑆𝐸 +𝜆1L𝑆𝑆𝐼𝑀 +𝜆2L𝑇𝑉 +L𝑝𝑜𝑠 +L𝑛𝑒𝑔 (7.3)

where 𝜆1 = 0.1 and 𝜆2 = 1𝑒−3 are hyper-parameters introduced to balance SSIM and TV losses, respec-

tively.
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Query image Pose prior

Camera pose

Update

Features
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Neural

Renderer PnP RANSAC

Descriptors Descriptors Depth

2D-3D matches
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Figure 7.4: Localization procedure. Descriptors are extracted from the query image and matched
against descriptors rendered from the localization prior. Depth information provides 2D-3D matches that
enable to compute the pose with PnP + RANSAC. This process can be repeated iteratively, by rendering
descriptors from the predicted pose.

7.3.3 Visual Localization by iterative dense features matching

This section describes the localization pipeline used to estimate the camera pose of a given query image

using our learned renderer and features. An overview of this procedure is shown in Figure 7.4. The

proposed solution combines simple and commonly used techniques and we do not claim any algorithmic

novelty on this part. The goal is, rather, to demonstrate that the high quality and robustness of our learned

features enables to reach precise localization while using basic features matching and pose estimation

strategies.

1. Localization prior Similar to related features matching methods [Sattler et al., 2012, Sarlin et al.,

2019, Germain et al., 2022], we assume to have access to a localization prior, i.e. a camera pose relatively

close to the query pose. A view observed from the prior should have an overlapping visual content with

the query image to make the matching process feasible. Such priors can be obtained by matching a global

image descriptor against an image retrieval database [Arandjelović et al., 2016, Sarlin et al., 2019] or an

implicit map [Moreau et al., 2023a].

2. Features extraction First, we extract dense descriptors from the query image through the CNN

and descriptors and depth from the localization prior with the neural renderer.
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3. Dense Features Matching Query and reference descriptors are matched with cosine similarity.

We consider that 2 descriptors are a match if the similarity is higher than a threshold 𝜃 and if it represent

the best candidate in the other map in both direction (mutual matching). We then compute the predicted

3D coordinate of rendered pixels which have been matched (thanks to camera parameters and depth) and

obtain a set of 2D-3D matches.

4. Camera Pose Estimation We use the Perspective-N-Points algorithm combined with RANSAC [Fis-

chler and Bolles, 1981], in order to get a robust estimate by discarding outliers matches.

5. Iterative Pose Refinement While classical 3D models only have access to a finite set of reference

descriptors, our neural renderer can compute them from any camera pose. Similar to FQN [Germain

et al., 2022] and ImPosing [Moreau et al., 2023a], we can then consider the camera pose estimate as

a new localization prior and iterate the previously mentioned steps multiple times to refine the camera

pose.

7.4 Experiments

This section evaluates the proposed model in several ways. In section 7.4.1, we compare CROSSFIRE

to other NeRF-related methods in the literature. In section 7.4.2, we study the impact of the pose prior

on the accuracy. Ablations studies on several components and parameters of the method are conducted

in section 7.4.3. Finally, qualitative examples and analysis are provided in Figure 7.5 and Figure 7.7.

Implementation: Our system is implemented in PyTorch. The hash tables and MLPs of the neural

renderer use tiny-cuda-nn [Müller, 2021]. We use the default PnP pose solver from PoseLib [Larsson,

2020]. In all the proposed experiments, we use descriptors of size 32. We train the models for 100k

iterations. The initial learning rate is set to 1𝑒−3 and reduced to 1𝑒−4 after 2000 iterations. All trainings

are performed on a RTX3090 GPU and take approximately 15 hours.

Datasets: We evaluate our method on 2 standard localization benchmarks. 7scenes [Shotton et al.,

2013] consists in indoor static scenes captured using a hand-held camera. Cambridge Landmarks [Kendall

et al., 2015] contains outdoor scenes representing buildings observed from different viewpoints and light-

ing conditions, with dynamic occluders such as pedestrians and cyclists in both train and test sets.

Metrics: We report commonly used metrics for visual localization, i.e. median translation and

orientation errors. These metrics have the advantage to not be penalized by outliers.

7.4.1 Comparison to related methods

We evaluate our method on both datasets using a maximum of 3 iterations of the localization process.

We use as localization prior the top 1 reference pose retrieved by DenseVLAD [Torii et al., 2015b]. In

order to render reference frames efficiently, the matching step is done at a small resolution: 194x108 for

Cambridge Landmarks and 161x120 for 7scenes.

We compare our algorithm to the most related and best performing recent learning-based visual

relocalization methods, with a focus on methods using neural scenes representations in their pipeline.
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Figure 7.5: Visualization of rendered views, descriptors and matches in StMarysChurch. We show
on the top row the query image (right), the RGB rendered view from the localization prior (left) and from
the 1st estimated pose (middle). The second row represents a PCA visualization of the corresponding
descriptors map from the neural renderer (left and middle) and the features extractor (right). The last row
displays the inlier matches obtained by our pipeline.

• Direct-PoseNet [Chen et al., 2021a] trains an Absolute Pose Regressor with an additional photo-

metric loss by rendering the estimated pose through NeRF.

• DFNet [Chen et al., 2022b] goes in the same direction but defines a features matching loss with

the rendered view.

• LENS [Moreau et al., 2022b] trains an absolute pose regressor with NeRF rendered views uni-

formly distributed across the scene.

• FQN [Germain et al., 2022] regresses descriptors in an implicit representation of a sparse 3D

model. This method is the closest to our work because it uses the same iterative localization process

and store descriptors in a neural scene representation. The main differences are that descriptors are

not trained specifically from the scene but memorized from a pretrained features extractors, and

that the representation is sparse whereas ours is dense. Results are reported for D2-Net [Dusmanu

et al., 2019] and MobileNetv2 [Sandler et al., 2018] descriptors.

• DSAC++ [Brachmann and Rother, 2018] regresses directly 2D-3D matches, learns through a dif-

ferentiable RANSAC. Similar to our method, the CNN is scene-specific, but we replace predicted

3D coordinates by latent vectors matched against the NeRF. We report the results without a 3D

model supervision because our method has the same input.
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Dataset / Methods Absolute Pose Regression + NeRF Implicit descriptors SCR
Cambridge DirectPN DFNet LENS FQN-D2N FQN-MN NPFF (Ours) DSAC++
Kings College - 0.73m / 2.4° 0.33m / 0.5° 0.32m / 0.5° 0.28m / 0.4° 0.47m / 0.7° 0.23m / 0.4°
Old Hospital - 2.00m / 3.0° 0.44m / 0.9° 0.64m / 0.9° 0.54m / 0.8° 0.43m / 0.7° 0.24m / 0.5°
Shop Facade - 0.67m / 2.2° 0.27m / 1.6° 0.14m / 0.6° 0.13m / 0.6° 0.20m / 1.2° 0.09m / 0.4°
StMarys Church - 1.37m / 4.0° 0.53m / 1.6° 0.93m / 3.5° 0.58m / 2.0° 0.39m / 1.4° 0.20m / 0.7°
Average - 1.19m / 2.9° 0.39m / 1.2° 0.51m / 1.4° 0.38m / 1.0° 0.37m / 1.0° 0.19m / 0.5°
7scenes
Chess 0.10m / 3.5° 0.05m / 1.9° 0.03m / 1.3° 0.06m / 1.9° 0.04m / 1.3° 0.01m / 0.4° 0.02m / 0.7°
Fire 0.27m / 11.7° 0.17m / 6.5° 0.10m / 3.7° 0.14m / 4.1° 0.10m / 3.0° 0.05m / 1.9° 0.03m / 1.1°
Heads 0.17m / 13.1° 0.06m / 3.6° 0.07m / 5.8° 0.05m / 3.5° 0.04m / 2.4° 0.03m / 2.3° 0.12m / 6.7°
Office 0.16m / 6.0° 0.08m / 2.5° 0.07m / 1.9° 0.14m / 4.1° 0.10m / 3.0° 0.05m / 1.6° 0.03m / 0.8°
Pumpkin 0.19m / 3.9° 0.10m / 2.8° 0.08m / 2.2° 0.10m / 2.6° 0.09m / 2.4° 0.03m / 0.8° 0.05m / 1.1°
Kitchen 0.22m / 5.1° 0.22m / 5.5° 0.09m / 2.2° 0.18m / 4.8° 0.16m / 4.4° 0.02m / 0.8° 0.05m / 1.3°
Stairs 0.32m / 10.6° 0.16m / 3.3° 0.14m / 3.6° 1.41m / 53.0° 1.40m / 34.7° 0.12m / 1.9° 0.29m / 5.1°
Average 0.20m / 7.3° 0.12m / 3.7° 0.08m / 3.0° 0.30m / 10.6° 0.28m / 7.3° 0.04m / 1.1° 0.08m / 2.4°

Table 7.1: 6-DoF median localization errors of learning-based visual localization methods. NPFF
is the best performing method on indoor scenes and second best in outdoor.

The results of the comparisons for both datasets are shown in Table 7.1. Our methods obtains the

lowest error for indoor localization and the second best for outdoor scenes. In 7scenes dataset, the median

localization error is 2 times better than the best competitor DSAC++. Results on the highly ambiguous

Stairs scene are higher than in other scenes but still better than other methods for which the localization

process sometimes totally fail.

Furthermore, we consistently perform better than NeRF-assisted APR methods and, more impor-

tantly, than pretrained implicit descriptors. Because the camera pose estimation process used in FQN

is similar than in ours, these results indicate that our scene-specific features are beneficial compared to

off-the-self features extractors.

We hypothesize that our method does not outperform scene coordinate regression in outdoor scenes

for 2 main reasons. First, we lack a way to handle dynamic content such as pedestrians during the

test step, which we observe to degrade the quality of our matches. Second, the quality of depth maps

in these scenes is less accurate than in indoor scenarios, especially for background, due to observable

image content very far from the camera. As we use depth to compute the 3D coordinates of matches, this

introduces noise in the localization process.

7.4.2 How good the pose priors need to be ?

Figure 7.6: Iterative visual localization from an imprecise prior. Starting from a coarse localization
prior, our algorithm estimates the pose of a query image iteratively by comparing image features to
descriptors rendered from a neural scene representation.

To measure how bad initialization impacts results, we conducted an experiment on the Chess scene
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Figure 7.7: Success and failure cases: Using dense features field for localization enables to establish
accurate correspondences in texture-less areas (left). Failure cases are observed in the presence of dy-
namic objects (middle), for which the PnP converges on a wrong pool of matches, and ambiguous cases
(right) where the CNN mixes up the symmetrical parts of the church due to lack of long-range reasoning.

with a constant prior for all test images (see Table 7.2). We observe that, thanks to our iterative refine-

ment, imprecise priors do not affect the final localization accuracy but rather require more iterations to

reach the correct camera pose.

Table 7.2: Median error w.r.t. prior strategy and No. of iterations.
cm / ° Prior Iter 1 Iter 2 Iter 3
Retrieval 0.22 / 12.1 0.02 / 0.7 0.01 / 0.5 0.01 / 0.4
Constant 1.82 / 32.2 0.12 / 2.8 0.02 / 0.6 0.01 / 0.5

7.4.3 Ablation studies

7.4.3.1 Descriptor loss

The self-supervised loss used to train descriptors is similar to the triplet loss commonly used for metric

learning, except an additionnal term for negative pairs which depends on the 3D distance between points.

We propose a qualitative comparison between the triplet loss and our proposal in figure 7.8. We observe

that the representation learned by our system is smooth and more expressive than the triplet loss which

only separate the scene into few clusters.

Figure 7.8: Qualitative comparison of descriptors between the proposed loss and a classical triplet
loss. We visualize the PCA of descriptors from our loss (middle) and a triplet (right) for a given query
image (left).

In addition to that, we propose an additional experiment where we investigate the impact of the pa-

rameter 𝜆 on the proposed loss. We train 5 models on the "Chess" scene from the 7scenes dataset [Shotton

et al., 2013] with different values for 𝜆, while keeping other parameters fixed. The results are displayed

in Fig 7.9.

We observe that when using extreme values such as 0.1 or 10 for this parameter, the resulting model

is not able to produce reliable matches and the localization process fails. When 𝜆 is small, the model

learns similar descriptors for the entire scene and then is not able to effectively discriminate between
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CNN query 𝜆 = 0.1 𝜆 = 0.5 𝜆 = 1 𝜆 = 2 𝜆 = 10

Figure 7.9: Similarities scores between a CNN query pixel and rendered descriptors, depending
on 𝜆. The left image shows a query pixel from a test sample while other images show a colormap of
the similarity between rendered descriptors from the same viewpoint and the query pixel. Yellow color
indicates a high similarity.

areas. On the other way, when 𝜆 is too large, we ask the model to produce very different descriptors for

very close points. While it could be seen as a good local property, we observe that this constraint can

not be fully satisfied for a whole scene, given the compact 32-dimensional descriptors we use. A large 𝜆

parameter creates ambiguities because the same descriptor is attributed to points far from each other in

the scene, resulting in wrong matches.

All experiments reported in the main paper used 𝜆 = 1, and we observe that reasonable values (𝜆 = 0.5
and 𝜆 = 2) for this parameter results in a similar localization accuracy, suggesting that a per-scene tuning

of 𝜆 is not necessary for deploying in a new environment.

Concerning localization accuracy on the test set, models trained with 𝜆 = 0.1 and 𝜆 = 10 completely

fail to converge to an accurate pose, while both 3 models trained with 𝜆 = 0.5,1,2 have the same median

error: 1cm and 0.4°.

7.4.3.2 Implicit descriptors

We modeled the descriptors learned by the neural renderer as independent of the direction from which

the point is observed. We verify that this choice is relevant by comparing it to the view-dependent case.

Modeling the descriptors as dependent on the image appearance is not feasible because this parameter is

unknown during the localization step.
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Figure 7.10: Localization accuracy depending on descriptor head inputs. We compare the final
accuracy on the "Chess" scene with and without the viewing direction as descriptor input in the neural
renderer.
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7.4.3.3 Reconstruction losses

We evaluated the benefits of the L𝑆𝑆𝐼𝑀 and L𝑇𝑉 terms of the loss function. On the Heads scene, the

error is 3cm/2.3° with the proposed loss, 4cm/2.1° without L𝑆𝑆𝐼𝑀 and 6cm/4.0° without L𝑇𝑉 . These

terms actually improve the localization accuracy because they help to recover the correct scene geometry.

7.4.4 Efficiency

The storage requirement of our modules is 50MB (48MB for the hash tables and 2MB for the neural

networks). In contrast with explicit maps, this number does not grow with the amount of reference data

(see Figure 6.6).

Inference times are: 9ms for features extraction, 5ms for rendering, 5ms for dense matching and

≈ 60ms for PnP+RANSAC (because we have a lot of matches), resulting in ≈ 200ms for the total time

with 3 iterations reported in the experiments (RTX 3090 GPU). Speedup can be achieved easily by less

refinements, at the cost of minor accuracy drop.

7.5 Limitations and Future Work

7.5.0.0.1 Scalability: Similar to other Neural Scene Representations, our Neural Field struggles to

represent large scale maps, such as the one used in autonomous driving, with a single radiance field

instance. The current best solution, proposed by Block-NeRF [Tancik et al., 2022], is to split the envi-

ronment into several smaller neural fields and enforce consistency at their boundaries. This solution is

successful at a city-scale and could be implemented in our method for large scale localizatoin.

7.5.0.0.2 Localization pipeline: The proposed localization algorithm could be improved in many

ways. Dense features matching could be performed by learning-based approaches [Truong et al., 2020,

Berton et al., 2021] instead of simple heuristics. Resulting 2D-3D matchs could be improved by co-

visibility filtering [Sattler et al., 2012, Panek et al., 2022]. Finally, the estimated camera pose could be

optimized by direct features alignment, similar to GN-Net [Von Stumberg et al., 2020] and PixLoc [Sarlin

et al., 2021]. The contribution of this paper lies in the learning of descriptors in a neural renderer, and

this proposal can be used as a backbone for different and more advanced localization solutions.

7.5.0.0.3 Computational cost: Volumetric-based neural renderers enable to densely represent scenes

in a compact way, at the cost of an expensive computation to render each view (mitigated by hash

encoding and small resolution). Dense features matching between 2 views also generate many 2D-3D

matches which can make the RANSAC process slow. This could be improved, as a future work, by

computing keypoints detection scores in order to reduce the number of potential matches.

7.6 Conclusion

This chapter proposed Neural Positional Features Fields; a new way to learn and represent visual local-

ization maps based on neural radiance fields.
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The proposed formulation has the advantage of densely representing scenes with a small memory

footprint. We demonstrate that the non-supervised learned local features, which are specialized for the

target area, perform better than related visual localization methods, even when using basic localization

techniques. The proposed pipeline can serve as a backbone to more advanced features matching pipelines

and should be compatible with future improvements in the neural rendering field that could enable to

scale these models to larger scenes and yield better localization accuracy by improving further the quality

of the learned scene geometry.
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8.1 Résumé en Français

Nous résumons nos contributions, qui peuvent être distinguées en deux parties. Tout d’abord nous

avons évalué et amélioré les méthodes de machine learning utilisées dans des systèmes de localisation

de véhicules en temps réel. Cela à conduit au développement et à la publication des algorithmes Co-

ordiNet et ImPosing. Ensuite nous avons exploré l’idée de connecter la tâche de localisation visuelle et

les méthodes NeRF. Dans ce cadre, nous avons proposé la méthodes d’augmentation de données LENS

et l’algorithme CROSSFIRE.

Par la suite, nous expliquons comment les représentations implicites de cartes proposées pourraient

être combinées dans un système de localisation visuelle à grande échelle. Nous concluons le manuscrit en

discutant de la perspective de solutions de conduite autonome basées sur des représentations implicites.
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8.2 Summary of contributions and discussions

Overall, the thesis has followed two main research directions:

• Develop and evaluate direct learning-based methods for vehicle localization. We have in-

vestigated the capability and the limits of direct-learning based methods to be used as vehicle

localization systems. We proposed 2 algorithms for this task which improved the state-of-the-art

in this field. We also proposed a method to quantify the uncertainty of the models, and used it in

a Kalman filter to provide a smooth vehicle localization module. We investigated the trainings of

these algorithms, observed how data hungry they are and that pose regression was not convenient

to deploy on multiple maps. We proposed ideas to tackle these challenges with synthetic data

and implicit representations. The technology we have developed has good scaling properties. The

implicit maps we use are easy to transfer and very compact to store in a vehicle. Relocalization

algorithms can be computed at a high frame rate. More interestingly, because the raw collected

data can be automatically annotated by SfM, the system accuracy improves over time by collecting

new data without human intervention.

• Explore the connection with NeRF. We started to study NeRF in 2021. We were excited by the

cute rendering examples on the internet but also because it addressed in a new way a (classical)

problem we were trying to solve: how to reason in 3D using 2D images? The connection with vi-

sual localization was obvious: both deals with images and camera poses as inputs/outputs. If NeRF

is able to learn the correct 3D geometry of the scene with only images and camera poses, my visual

localization algorithm should build on this. We started by the simplest way to transfer knowledge

from a NeRF to a pose regressor: synthesize images uniformly distributed on the scene. Pose re-

gression can not extrapolate ? Let’s synthesize all the scene. It worked really well on the metrics!

These datasets are usually difficult for these methods specifically because they require extrapola-

tion capability on novel views, which is provided by NeRF in our solution. Then, we had this idea

of storing learned features discretely distributed on the map. It looked like NeuMap [Tang et al.,

2022] which has been released since then, but we finally had the idea to replace the discretization

by an implicit formulation. Then we obtained an algorithm with global features and compared it to

image retrieval. Finally, extending the idea to local features was following the same path, but led to

long sleepless nights before conference deadlines. Implicit maps are promising. Our proposals are

the first to use it for visual localization but there is huge room for improvement on this direction.

We conducted real-world experiments with our algorithms and confirmed their localization accuracy.

ImPosing has even been tried as the localization module of an experimental autonomous driving pipeline,

which navigated successfully on open roads for few kilometers in Shanghai, without any human interven-

tion. While this achievement was really satisfying, a lot remain to be done before industrial deployment

of the proposed solutions, such as more experiments on diverse scenarios to ensure the robustness of the

solution or more work on detecting the potential failure modes.

We also advise against the use of our algorithms as the single localization system of an autonomous

vehicle, for obvious safety reasons. One can not rely on a single sensor for such a purpose because system

failures can cause dramatic consequences in autonomous driving. The safe solution consists in relying
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on several sensors and several algorithms, through sensor fusion [Levinson et al., 2007] and redundant

systems [Granados et al., 2020].

8.3 Future work: a hierarchical vehicle localization algorithm in implicit
maps

The algorithms proposed in chapters 6 and 7 can be combined in a hierarchical structure-based method.

Given an autonomous driving map, ImPosing can be used to provide a (sub)meter-level camera pose.

Then we refine the estimate with dense features matching on a Neural Positional Features Field. Instead

of training 2 separate CNNs for global and local features extraction, a single CNN with 2 output branches,

similar to HLoc [Sarlin et al., 2019] can be used.

This coarse-to-fine approach relates to best performing structure-based pipelines for visual localiza-

tion, such as MegLoc [Peng et al., 2021], Kaptur [Humenberger et al., 2020] or HLoc [Sarlin et al.,

2019], which combine image retrieval and sparse features matching in a hierarchical manner (shown in

Figure 2.4). The novelty we have compared to these methods is the map representation. Instead of the

discrete and sparse explicit data structures commonly used, we learn implicit maps from which global

and local features can be densely queried from any coordinates.

We show in Figure 8.1 an illustration of the model we just described. By lack of time, we did not

conduct experiments with this algorithm, and let it as future work. One limitation is the current inability

of neural fields to handle very large scenes, such that decomposing the area in individually trained neural

fields is required [Tancik et al., 2022].

Figure 8.1: Hierarchical visual localization with implicit maps. A first camera pose is estimated by
ImPosing and then refined by dense features matching in a Neural Positional Features Field.

The algorithm LENS, proposed in chapter 5, can naturally be used by this algorithm because the

Neural Positional Features Field can render photorealistic RGB images. The rendering of the small

scales images we use is fast, such that synthetic images from unseen viewpoints could be generated in
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parallel of training. It would be interesting to measure the impact of LENS on ImPosing and NPFF. We

suppose that this impact highly depends on the quality of the geometry learned by the neural field.

8.4 Perspectives: an autonomous driving solution based on neural scenes
representations

Beyond our work on localization, neural scenes representations are a very promising direction for com-

puter vision and autonomous driving. Being able to process a raw video into a sophisticated neural map

with geometry, semantics, localization features and other modalities is very useful.

First, annotated synthetic data can be rendered and used to train better algorithms. We have ex-

perienced it for localization and expect the same for many perception tasks. If dynamic objects are

correctly modelled and controllable, we can use the neural field as a (differentiable) photo-realistic sim-

ulator [Cleac’h et al., 2022] for reinforcement learning.

Then, we can also imagine an autonomous driving or mobile robots navigation based on neural maps,

from perception and localization to planning. Embedding local scene properties in coordinate-based

network and build interaction between these scene representations and other features can be beneficial at

many steps of an autonomous pipeline.
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MOTS CLÉS

Localisation basée image, Apprentissage automatique, Vision par ordinateur

RÉSUMÉ

La conduite autonome est appelée à révolutionner les transports de demain. Les systèmes de localisation sont un
élément clé des véhicules autonomes afin d’assurer une navigation sûre, fluide et fiable. La position d’un véhicule
dans son environnement peut être déterminée à l’aide de différents capteurs, utiliser l’image permet de se localiser plus
précisement qu’un GPS et requiert uniquement une caméra. Cette thèse vise à résoudre le problème de la relocalisation
à l’aide de méthodes d’apprentissage automatique. Nous nous appuyons sur les avancées récentes dans le domaine
de l’apprentissage profond pour développer des algorithmes qui apprennent à localiser la position de la caméra à partir
d’une grande base de données d’images recueillies dans la zone d’intérêt. Tout d’abord, nous étudions la capacité des
réseaux de neurones convolutionnels à être utilisées comme système de localisation de véhicules dans des scénarios
de conduite autonome. Dans un second temps, nous avons exploré le lien entre les représentations implicites de scènes
et les algorithmes de localisation visuelle. Ces représentations implicites génerent des images synthétiques utilisées
pour entraîner de meilleurs algorithmes, mais aussi pour représenter la carte de l’environnement. Nous montrons que les
informations pertinentes capturées sur des routes de plusieurs kilomètres peuvent être encodées en quelques mégabytes
afin de réaliser la localisation de véhicules en temps réel. De plus, nous remplaçons les modèles 3D traditionnels par un
Neural Radiance Field (NeRF) dans les méthodes de "features matching". Globalement, ce travail réhabilite les méthodes
de regression, qui sont considérées comme moins précises que les méthodes classiques basées sur les features. Au final,
l’efficacité des méthodes d’apprentissages dépend des données et peut donc être bénéfique dans certaines situations,
comme la conduite autonome.

ABSTRACT

Autonomous driving is expected to revolutionize tomorrow’s transportation technologies. Positioning systems are a key

component of self-driving vehicles in order to ensure a safe, smooth and reliable navigation. The precise ego position of

a vehicle inside of its environment can be recovered by a wide range of sensors and algorithms, image-based localization

is more acurate than GNSS and only needs camera sensors. This thesis aims to solve the map-based relocalization

problem with machine learning methods. We build on recent advances on the deep learning area to develop algorithms

which learn to relocalize from a large collection of images gathered in the area of interest. First, we study the capability

of convolutional neural networks to be used as a vehicle localization system in autonomous driving scenarios. Then, we

investigated in different ways the connection between implicit scene representations and visual localization algorithms. By

their ability to represent continuously a complex scene in a neural network, these implicit representations can be used to

generate photo-realistic synthetic data used to train better algorithms, but also to represent the map of the environment.

We show that relevant information captured on roads of several kilometers can be encoded in few megabytes in order

to achieve real-time vehicle localization, but also that local features can be learned, stored and rendered by a Neural

Field to achieve centimeter-level camera pose estimation in a dense features matching pipeline. Overall, this work aims

to rehabilitate direct learning-based formulations, which are considered to be less precise than classical features-based

methods. In the end, the effectiveness of data-driven methods depends on the data and then can be beneficial in some

situations, such as autonomous driving.

KEYWORDS

Visual localization, Machine learning, Computer vision
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