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In the context of sustainable construction in a circular economy, demountable wooden buildings represent
an interesting research perspective. The question of reuse, i.e. the best possible reuse of the finished prod-
ucts resulting from the dismantling of buildings, requires that the building not be demolished, which makes
it difficult to use nails or any other assembly devices of the same type. On the other hand, the elimination of
modern metal assemblies common in wooden structures greatly reduces the carbon footprint of the build-
ing. Concerning their environmental impact, wooden assemblies offer much better prospects than their
metal counterparts. However, few modern buildings are built without metal; for example, the Louis Vuitton
Foundation is extremely consumer of metal products even though it clearly states the ambition to make it
out of wood. Designing demountable structures and buildings is an ancient problem: some Austrian chalets
are 500 years old, and the oldest inn in the world, the Nishiyama Onsen Keiunkan in Japan, was built in 705!
their longevity is due to their demountability: when a part of the structure ages and begins to show signs of
weakness, it is partially dismantled and replaced by a new one. Thus, element after element, these struc-
tures have withstood the test of time and are still functional today. What could be more sustainable than a
1300-year-old old building still in operation? The question also arises on the other hand: what to do with a
30- or 50-year-old building which, as the city and society change, has reached its expiration date and is no
longer used? Here again, the question of dismantling and reusing its structural elements as much as possi-
ble for new projects (which potentially greatly reduces their environmental footprint) is part of a sustainable
construction approach. Finally, with recent and future advances in robotic construction, the cost and time
of manufacturing such assemblies will likely become increasingly competitive with their modern counter-
parts, both in economical and ecological terms. This PhD project ambitions to participate in the reflection
on interlocking assemblies by exploring the feasible space of such assemblies and building generative tools
to design them.
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CHAPTER 1

Social, economical and ecological contexts

The 19t and 20t centuries saw two concomitant phenomena in the construction
sector. Labour legislation modifications and major improvements in health and
safety on the construction site led to an increase in the cost of labour. Simulta-
neously, the rapid decrease of the prices of construction materials was made pos-
sible both by the explosive economic growth, seen especially in western countries,
throughout the 20" century (which was enabled by cheap energy coming from the
burning of fossil fuels) and by the omission the environmental and life destruc-
tion brought by the over-consumption of natural resources in the calculation of the
price. In this context, it was, and still is, in the interest of construction companies
to standardize their products: they simplify the design of structures and eased the
assembling process as much as possible to shorten working hours and increase pro-
ductivity, even if it implies consuming more resources than necessary.

Yet this evolution may soon reverse as the parenthesis of abundant energy seems
to be closing. Helle Kristoffersen, the president of Strategy and Innovation at Total-
Energies (the major French company in oil and gas) stated that by 2025 the world
will lack 10 million barrels of petrol per day [73], more than 10% of the current oil
production. By comparison, the second oil crisis in 1979 saw a reduction of 7% of
the oil production of the time. Yet contrary to the recovery that happened in the
eighties, forecasts on the future of oil production show that the peak is likely to be
reached in the 2020 decade, see FIGURE 1.1, mainly because of a depletion of the
stock, the low rate of discovery of profitable deposit, and because shale oil in the
US as yet to be proven cost-effective ([8]).

Coal production is also entering a period of high uncertainty. While acknowledging
thatthe data to which they have accessis limited, poorly detailed, and hard to check
[8], academic researchers agree that the peak of coal production in China will likely
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Figure 1.1] Left: forecast of the oil production of
countries supplying France, from [7].
Right: forecast of the coal production in
China, from [104].

be reached this decade, or at the latest in the 2030s, as shown in FIGURE 1.1. This
could have major various impacts, as was seen recently when coal prices rose up in
2021 (before the war in Ukraine): gas prices surged in Europe, power outages hap-
pened in India [81], and the price of silicon, vital to make solar panels, has tripled
[82].

Natural gas (mostly methane) productioninthe European Union (EU) has been steadily
declining for the past two decades, while its consumption increased [65] resulting
in varying degrees of dependence of the EU members on gas exporting countries.
This provoked social unrest in the aftermath of the Ukraine war due to a soaring
life price (which was already quite high with the disruptions of the supply chains
caused by the coronavirus pandemic). Even if the war had not happened, the in-
exorable decline of domestic production due to stock depletion on the one hand
and on the other “an increase in demand due to the exit from coal and the inter-
mittence of renewable energies will surely further aggravate the collapse of Europe’s
most energy-intensive industrial activities”, [8]. At the time of this writing, inflation
in Europe led to a drastic reduction of production in some industries [19, 80].

Setting aside these economical and geopolitical considerations, climate imper-
atives put even more pressure on fossil fuels. As the International Energy Agency
(IEA) urges to stop investments in new fossil fuel supply projects [76], a recent article
[110] estimates that for the world to have a one-out-of-two chance of limiting global
warming to 1.5°C , 58% of oil, 59% of fossil methane gas and 89% of coal should
stay in the ground by 2050 (taking as reference the reserves found in 2018). While
the description of the effects of climate change is not the focus of this manuscript
the reader is referred to, e.g., [60, 63] for a chilling description of the world we are

10



Introduction

on track to living in.

What must be done

The main challenges facing all industries in the coming decades are two-fold: en-
ergetic sobriety on the one hand as fossil fuels are coming to an end, possibly faster
than expected, and with them so is the era of abundant energy and cheap mate-
rials. On the other hand, there must be a massive decrease in the environmental
footprints of the products manufactured to avoid the worst of suffering due to cli-
mate change, but also to preserve critical resources (sand, minerals, arable lands,
water, etc.) for the generations yet to come — or even ourselves in a few years.
While some governments loudly advertise green growth made possible by an en-
ergy shift towards renewable sources it remains to be seen whether the Earth has
enough mineral resources to carry out this task [102]. So far it seems, to me at least,
that we are just shifting from dependence on fossil fuels to dependence on fos-
sil minerals, with high uncertainties on the stocks available (those that are known
are in the hands of even fewer countries than oil deposits, diminishing further the
sovereignty one could hope to have), and whose extraction exerts a heavy toll on
ecosystems. According to Dr Fatih Birol, the IEA executive director, “today, the data
shows a looming mismatch between the world’s strengthened climate ambitions and
the availability of critical minerals that are essential to realising those ambitions”.

Thus, like all industries, the construction sector must reduce the embodied en-
ergy of the built environment, where the “embodied energy can be viewed as the
quantity of energy required to process, and supply to the construction site, the ma-
terial under consideration” [49], but also reduce the various impacts on the geo-
chemical and bio-spheres it currently has (toxicity on humans, marine and terres-
trial ecosystems, mineral resources used, water scarcity, climate change, land use
change, etc.). While one may rightly be dubious about high-tech solutions in gen-
eral as they are more energy intensive than low-tech ones, and high-tech construc-
tion will certainly not solve all these problems, it may help in some cases, and the
numerical exploration of various alternatives of a given design may also put in ev-
idence structures necessitating relatively few resources and with lower impacts on
the world*. DiXite project [25], which finances this work, was created to study the
role played by digital technologies in the construction industry. One of the main
issues the project tackles is how the future built environment can be made sustain-
able.

1That being said, the most ecological edifice is the non-built one. A balance must be found between
planetary limits and human needs, desires and hubris.

11
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What did the Ancients do?

To answer this question we do not need to start from a blank page: instead, we
may leverage the 12 000 years of sustainable civilisations preceding us. Coarsely
speaking, our ancestors dealt with sustainable construction in two manners:

m  Build-to-last:
Whether we look at the Egyptian or Maya civilisations, with their impressive
pyramids, or the ancient Greeks and Romans with some of their edifices still in
aremarkable state of conservation - The Pont du Gard in France, the Pantheon
in Rome or the Parthenon in Athens - several civilisations massively oversized
their buildings, for reasons ranging from religious zeal to beautiful aesthetics
to demonstration of political power, with the side effect of making them last
millennia. Even more day-to-day buildings can last centuries: itis not that un-
common in Europe to live in a house built 500 years ago. These long-lasting
buildings dilute their potential negative environmental impacts over their life-
time.

m  Build-to-maintain:
Other civilisations took a complementary approach: they based their built en-
vironment on demountable wooden structures so that damaged or weak parts
can easily be replaced without taking down the entire building. By regular
maintenance, some Alpine chalets are still in use centuries after being built,
and in Japan, the inns Nishiyama Onsen Keiunkan and Hoshi Ryokan were re-
spectively foundedin 705 and 718 and have seen continuous service ever since?.
Alow-tech buildingin use for 1300 years surely qualifies as sustainable. Japanese
mastered the art of demountable buildings, with in particular the Ise shrine,
see FIGURE 1.2: founded around 690, this temple is to be rebuilt every 20 years.
The next rebuilding is scheduled for 2033. One can also think of Scandinavian
stave churches, some built in the 12t century and maintained to this day, or
Chinese structures erected a thousand years ago.

This work explores the alliance between modern numerical tools and the histor-
ically proven approach of demountable structures. What explains the durability of
demountable structures? Aside from the ease of maintenance, many interrelated
factors play a role in this: according to Glahn who focused on Chinese architecture
in [37], the quality of the wood, the flexibility of the joints which dampens the os-
cillations of the structure, and the fact that the columns merely rests on stone feet
instead of being anchored, which prevents excessive strain during an earthquake,
as well as the weight of the roof which counterbalance wind loads during typhoons,
all explain the surviving of these structures for centuries. Aside from the strict dura-
bility of these edifices, in our ever-changing modern cities, demountable designs

20perated by the same families for 52 and 46 generations!
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Figure 1.2| Top left: a view of the Héshi Ryokan,
Japan, source: Wikipedia. Right: a pic-
ture of the Ise shrine, Japan, source: the
Internet. Bottom left: a view of the inte-
rior of the Torpo stave church in Halling-
dal, Norway, source: the Internet. Bot-
tom right: an exploded and assembled
view of a bracket-arm set, typical of me-
dieval Chinese architecture, from [37].

are of interest as they enable to reuse of structural members. Indeed, today, at the
end of the lifetime of a building, assemblies are often destroyed which prevents the
reuse of structural components and has a significant impact on the planet: accord-
ing to the French agency for the environment and energy management, ADEME [23]
the construction sector generated almost 70% of the waste in France in 2017. Con-
versely, new construction materials have a severe environmental impact, up to 7%
of the emission of greenhouse gas in France in 2016 [67].

Yet, when we look at the wooden edifices built today, we see a profusion of irre-
versible joints making the structure permanent, whether because of metal fasten-
ers such as nails, screws, bolts and nuts, or because of the use of glue. In the United
States of America, 92% of the new residential buildings were made of wood in 2021

13
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[100], mainly through a technique called platform framing which has extensive use
of nails. Itis thus no wonder that the technical know-how presiding the designs of
these demountable joints virtually disappeared in the last two centuries in wood
buildings despite their proven relevance. It turns out that historians precisely pin-
point the shift from the design of demountable structures to the irreversible ones
that are common today, in the village of Chicago in the fall of 1832, with the inven-
tion of the so-called balloon frame.

The westwards expansion of the American people in the first half of the 19t century
resulted in the rapid growth of the villages inhabited by pioneers. In Chicago, the
population was multiplied by almost 12 in five years, from 30 inhabitants in 1829
to 350 in 1833 [91]. This sudden surge, or rather the associated demand for build-
ings, provoked a shortage of the large timbers that were traditionally used in log
construction, which in any case could not have been worked with because there
were no skilled carpenters in Chicago at the time. Simultaneously the industriali-
sation and mechanisation of nail factories drove their price down, from a historical
25 cents a pound to 5 cents a pound in 1833 [13]. Taking advantage of these cheap
machine-cut nails, as well as of the abundance of small trees in the vicinity of the
village, a man named George Snow [35] in the need of a warehouse [91] invented
the balloon frame consisting of lumber of small dimensions permanently nailed to
each other, see FIGURE 1.3, which differs greatly from the larger sections needed to
carve traditional reversible assemblies. The term balloon frame was originally used
to ridicule a structure that was deemed too thin and light (compared to traditional
designs) to withstand loads. According to the New York engineer Francis W. Wood-
wards, the balloon frame could “be put up for 40% less money than the mortice and
tenon frame” [114]. The further development of the nail and timber industries and
the fabrication of standardised pieces, as well as the absence of skills required to
build a balloon frame resulted in the adoption of this technique to build houses in
the treeless regions of the West: “the western prairies are dotted over with houses
which have been shipped there all made, and the various pieces numbered, so that
they could be put up complete, by any one” [40]. The invention of the balloon frame
“converted building in wood from a complicated craft, practiced by skilled labor, into
an industry” [35], and led to the disappearance of master carpenters which were
replaced by unskilled labourers. In the course of the 20t century, balloon framing
progressively made way to platform framing, easier and safer to erect and more fire-
proof.

Since balloon frames are thinner and use less material than their traditional
counterparts and given the availability of iron in the planet’s crust to make struc-
tural steel with, the reader might rightly wonder why we should bother in finding
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Figure 1.3| Isometric view of a balloon frame.
From [114].

novel and complex assemblies when we could keep using balloon-frame-like ones.
As said above a decrease in the availability of energy is to be expected. According
to [95] the energy needed to process a cube meter of steel is 42.9 MWh. By compar-
ison, T. Gobin estimates the embodied energy of machined wood to be around 0.5
MWh/m? [29]. If relatively little steel is needed to make nails, its high embodied en-
ergy may make a steel-based assembly less attractive than a wood-wood joint, also
called integral joints; thus, this embodied energy ratio of about 80 shows that care-
ful calculations should be carried out when designing assemblies as to choose one
with the least embodied energy. The environmental footprints of assemblies were
recently investigated in depth in the doctoral thesis of K. Mam [58]. He states that
“the production of steel in assemblies can account for up to 61% of the total climate
change impact of a timber structure, almost all (97%) of the carcinogenic toxicity im-
pact and 32% of the fine particle formation impact”. He concludes that “the idea
appears that the optimisation of the structure would not necessarily involve reduc-
ing the volume of wood, but rather thinking about the manufacturing processes and
the types of assembly of the elements”. It seems therefore to be a good idea to try
and reduce the quantity of steel used in an assembly, which implies shifting back to
tradition-inspired wood-wood assemblies, precisely the focus of this manuscript.

The above remarks should be qualified: indeed a recent study [62] finds that, by
2100, if only half of the new urban dwellers live in timber buildings, forest plan-
tations area should expand by 160%. If we consider instead 90% of new urban
dwellers in timber buildings, said area should triple! The authors specify that this
estimate is conservative as it does not take into account adverse effects of climate
change (e.g. mega-fires and tree dieback) and the renovation or replacement of
already-existing edifices. The ADEME estimates that by 2050 about 85% of the con-
sumption of construction materials for housing and tertiary buildings will be con-

15



Introduction

16

crete constituents (sand, gravels, cement) [79]. If timber buildings certainly has a
huge potential for carbon emission mitigation [62], it does not seem to become the
main construction material of tomorrow and will not suffice to answer the industry
demand. That is why in this dissertation we adopt a material-agnostic stance: we
will not consider a specific material for our assemblies.

Intent of the dissertation

This dissertation investigates the automatic design of integral joints between parts
of an assembly. We aim at numerically finding novel assemblies, with surprising
geometrical features, that are relevant to the construction industry. The work pre-
sented in this dissertation is still in its infancy: we focus almost exclusively on the
geometrical aspect of an assembly. While some work has been done to assess the
mechanical relevance of the generated assemblies, the fabricability aspect has not
been investigated at all. Thus, there is still a long way to go before having a stream-
lined workflow from the numerical finding of an assembly (studied here) to the dig-
ital fabrication of mechanically relevant designs.

Organisation

This manuscript is organised as follows: CHAPTER 2 defines what we mean by as-
semblies and presents some past assemblies revealing the skills of master carpen-
ters. It is followed by a review of the work done in puzzle generation, assembly
planning and robotic fabrication, fields that are related to ours. The short cHAP-
TER 3 is an in-depth presentation of the knowledge the scientific community has on
assessing the interlocking of an assembly. While no new concepts are introduced
there, it is necessary to read it to understand this manuscript, as our whole ap-
proach is to reverse-engineer key principles presented there. CHAPTER 4 is the bulk
of this dissertation: we derive the mathematical equations that must be obeyed
by a 2D assembly whose kinematics are prescribed, adapt an optimisation algo-
rithm to generate such an assembly and study in depth the mechanical properties
of its constitutive parts, as well as the influence played by fabrication imperfections
on the kinematics of the assembly. Finally, in this chapter, we introduce what we
deem to be our most significant contribution, namely the robust optimisation of
assemblies with regard to imperfections. The last CHAPTER 5 simply extends the
concepts presented in the previous chapter to 3D assemblies. The main interest of
this chapter, in our opinion, lies in the thorough and detailed introduction of unit
dual quaternions, little-known mathematical objects that perfectly describe a 3D
assembly kinematics.



CHAPTER 2

INTRODUCTION

This chapteraims tointroduce and define what assemblies are, as well as to give examples of research works
and built structures.

OVERVIEW

This chapter naturally begins by defining the concept of assembly. We briefly present several kinds of as-
semblies necessitating an intermediary body, typically a nail, to hold together before looking at the specific
kind of assembly that will be the focus of this manuscript, namely reversible interlocking assemblies held
together through the geometrical features of its constitutive parts.

CONTRIBUTION OF THIS CHAPTER

m A (non-exhaustive) catalogue of existing timber assemblies, spanning continents and ages, is pre-
sented to reveal the richness and technical know-how of past carpenters and to ponder on human
ingenuity when it comes to designing such non-intuitive mechanical puzzles.

m  Anup-to-datereview of the scientific literature on the computational design of interlocking assemblies
is established.

DEFINITION

A mechanical assembly is the connection of different parts of an assembly or product. Assemblies are ubig-
uitous: whether it is the supporting structure of a house, the container and cap of a toothpaste tube, or a
robotic arm transferring motion or applying force, everything from everyday objects to highly sophisticated
scientific machines is, ultimately, parts and pieces holding together.

Despite this huge variety, assemblies can be broadly classified into two categories: an assembly is either
direct orindirect. Each kind of assembly is also either reversible or non-reversible, meaning that once in the
assembled state, it is possible, or not, to disassemble the assembly.

INDIRECT ASSEMBLIES

Indirect assemblies refer to assemblies where two parts are connected together through a third, intermedi-
ary body. This body may be:
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m  Glue is used to bind parts together by adhesion. Several examples could be given: a windshield is
glued onto a car, parts of some home furniture are glued as well, and the mortar between two bricks
is a glue... More often than not such assemblies are non-reversible.

m  Astaple is a fastener, often metallic, used for joining material to-
gether. Stapled elements are often quite thin, even though, in an-
cient times it was not uncommon in masonry works to tighten two
stones using a metallic staple, see for instance the dovetail sta-
ples from Pasargadae, Persia, on the inset on the right (source:

Wikipedia). This kind of assembly may be reversible, at the cost of
the destruction of the staple.

m  Akey, sometimes called a wedge, is a small component that connects two parts in rotation. The as-
sembly is reversible.

m  Anailis afastener, often metallic, used in construction and woodworking to pin two parts together, by
friction in the axial direction and shear strength laterally. This kind of assembly may be reversible, at
the cost of the destruction of the nail.

m  Apinisametal cylinderintended to be loaded in shear at relatively low forces. The connection is due
to the adhesion between the pin and the connected parts. When the connection of a shaft to a hub is
subject to high loads, a key is used instead. The assembly is reversible.

m  Arivet, usually a cylindrical metallic rod with a “head” at one end, is a permanent fastener. Itis typically
used to join metallic pieces, be it on a plane, a ship or a bridge structure. The assembly is reversible.

m  Afishplateisintended to immobilise several moving parts of a mechanical assembly (rails, members,
chords, etc.) or to stiffen and support a soft or flexible body (cheese, member, etc.). The assembly is
reversible.

m  Ascrew is a mechanical part, made of a threaded shaft and a head; intended to fix one or more parts
by pressure, several mechanical fasteners work in the same way: nut, bolt, stud, thread, tap etc. The
assembly is reversible.

DIRECT ASSEMBLIES

An assembly is said direct when it does not require any intermediate bodies, the shape of the partsin contact

is sufficient for its realization.
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Welding, one of the most common techniques, is a non-reversible joining process that ensures the
continuity of the material between the parts joined. It is done by heating the parts. The continuity
happens at the atomic level in the case of metal or molecular level in the case of plastics. Note that it
is also possible to weld wood: two pieces of wood are rubbed against each other; the high temperature
resulting from the friction as well as the pressure applied on the wood softens the lignin and hemicel-
lulose at the interface, [34]. Once softened, these polymers get entangled, and the pieces of wood are
welded together.

What seems to be the most intuitive direct assembly is the friction fit: parts with complementary
shapes are tightly held together by friction once they are pushed together. Following [107], as the
shapes are complementary, we define as integral joints the portion of each part in contact with adja-
cent parts. Assemblies with integral joints that may optionally hold through friction will be the focus
of this manuscript. In a friction fit assembly, parts may be forced together by hand or using a hammer
or a press. Lego bricks are a typical example of such a fit. When the structural integrity of the parts
is required and it is therefore desirable not to hammer them against each other, they may be joined
using a shrink fit. Depending on the friction force, this kind of assembly may not always be reversible.



Sequential Assemblies

m A shrink fit aims at joining metallic parts by changing
their relative size after assembling using thermal expan-
sion. One part is heated and thus expands, making it
possible to fit the other part, at room temperature, with-
out using too much force. Once the first part cools down
it shrinks (hence the name of the fit) and tightly holds
the second part. It is a non-reversible assembly. As a

side, yet quite interesting, note, the metal structure of ~Figure 2.1|A rivet is heated, and inserted in
the parts before its end is ham-

mered. Renovations of the Grand
bled by shrink fit, using rivets (hence it qualifies as an in- Palais, Paris, France. Source: [1].

direct assembly): three workers would work together around one rivet; the first heated the rivet to

the Grand Palais in Paris, France, (1897-1899) was assem-

a blank, while the other two hammered each end (which had become soft due to the heat) to round
them and thus wedge the rivet between the parts to be joined [54]. Once cooled, the rivet shrinks and
presses the two parts together.

m  Clinching is a method to join thin sheets of metal in a non-reversible manner: a tool presses several
sheets together until they are plastically deformed and tightly interlocked.

m  Snap-fit aims at attaching flexible parts. One of the two parts, the male part, is elastically deformed
during the introduction into the more rigid female part. Once assembled, the male part has room
to return to its original shape and is blocked by the female part. Such process may be reversible, for
instance the snap-fit buttons of some coats and jackets or the cap of some pens, or non-reversible such
as what can be seen on some mobile phones where unscrupulous manufacturers make sure that once
assembled, the product cannot be disassembled and thus, when a component is defective it cannot
be replaced and the whole phone must be thrown away and bought anew.

REVIEW

As hinted in the previous section, this manuscript studies exclusively the automatic design of reversible in-
tegral joint assemblies. Historically, several civilisations used such shape-fitting assemblies in their timber
constructions, be it in the Alps, Scandinavia or Japan. Centuries of human ingenuity and trial and error
gave joints that take into account the shrinkage of the wood as well as naturally balance shear, compres-
sion, bending and torsion. Also, as they are reversible, the design of such assemblies is an active research
topic in the construction sector as they enable the reuse of structural members and as such help reduce the
amount of new material that must be extracted and stir the industry towards a more circular economy. As
remarkable examples of durability, consider the Japanese inns Nishiyama Onsen Keiunkan built in 705 or
Héshi Ryokan founded in 718: they have been in used for more than 1300 years and are fully dismountable.
As such, whenever a part has decayed it can simply be replaced by a new one. As for the reusing, the Ise
shrine, in Japan, has continuously been rebuilt every 20 years for more than 1300 years, while reusing as
much as possible the parts from one instance to the other ([118]).

BUILT TIMBER ASSEMBLIES

It would be impossible to give an exhaustive list of past and existing timber assemblies. Indeed, as any car-
penter would know, [118], wood is a capricious material that has a life of its own. Whether it is the overall
shape of the piece of wood, the orientation of the grain, its density or the presence of bulks, no two pieces
are alike. As such, the skilled carpenter adapts the geometry of the joint he/she aims to build to the nature
of the wood at hand and the geometry of the structure surrounding the joint. That being said, a classifica-
tion of wood joints is not totally out of reach, and some authors did try to list the most common ones [

3
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, 101, 118]. While Klaus Zwerger in [118] compares wood joints in Europe and Asia in a rather literary style
and provides numerous pictures of built assemblies in these continents, Torashichi and Matsui in[101] have
a more engineering approach as they provide a short description and pictures of toy assemblies, detailed
diagrams if one wants to try to fabricate some, as well as, quite interestingly, mechanical test results to com-
pare the geometrical resistance and failure modes of similar joints. They also provide, for some joints, the
algorithm and geometrical formulae one should follow to carve them. In a similar spirit, Sato and Nakahara,
[43] describe at length (and it resonates with some paragraphs of [118]) the tools needed to build traditional
Japanese joinery, as well as the posture one should adopt on its workbench for each tool, before giving de-
tailed and illustrated instructions on how to build such assemblies. They also provide a thorough chapter
on where in a building should a given joint be used. Hereafter the enumeration of traditional timber joints
is mainly inspired from [118] and [101], as well as the online dictionary [74].

Let us first begin with splice joints, aimed at joining structural members end-to-end. Numerous joints
can be categorised as such, and are presented FIGURE 2.2. On the right of each joint, the cone of transla-
tional freedom of the blue part is depicted in blue: it means that the blue part may be disassembled from
the black part by translating along any vector whose tip is on the blue cap. The simplest joint of all is the
butt-joint, FIGURE 2.2a. It consists of two pieces of wood laid together without any real interlocking. The
edge-halved scarf FIGURE 2.2b is also quite basic. It admits two variations obtained by rotating negatively,
FIGURE 2.2¢, and positively, FIGURE 2.2d, the cut line parallel to the grain of the wood. Note that contrary to
FIGURE 2.2¢, FIGURE 2.2d may withstand a limited amount of tension. A first kind of tenon joint is presented
ON FIGURE 2.2e: the mortise is open and the assembly may be (dis) assembled along planar translation only.
This joint may withstand a small amount of tension if the tenon is inserted by force in the mortise, thus
creating friction at the two interfaces parallel to the grain of the wood. Otherwise, the assembly may eas-
ily be pulled apart. FIGURE 2.2f presents a very common type of tenon joint, the stepped dovetailed splice
(koshikake aritsugi in Japanese), to be used when the pieces of wood have to withstand both tension and
compression. [101] specifies that the timber sections typically range between 105 and 120 mm. Special
attention must be taken by the carpenter regarding the angle of the cheek of the dovetail: too small and
the assembly could be still disassembled by tension. Too large and the shearing capacity of the joint would
decrease. Torashichi and Matsui conducted a tensile test in [101]: the female part developed a crack along
the grain of the wood, thus failing. Note that such dovetail joint and the edge-halved scarf (FIGURE 2.2b)
were frequently combined to make the joint suitable for unsupported compressive loads ([118]). Used on
larger timber pieces than the dovetail joint (150 to 200m), the stepped gooseneck splice (koshikake kamat-
sugi) was quite common in Japan, much less in Europe. A tensile test conducted on similar pieces of wood
by [101] shows that the gooseneck joint has a stiffness about 7 times greater' than the dovetail joint and
fails for a load 5 times greater. Two failure modes were observed at the head of the gooseneck: crushing
of the wood on one side on the male part, and shearing on the other side on the female part. To prevent
out-of-plane buckling and the male part slipping out of the female part, abutments could be added on both
sides of the gooseneck, FIGURE 2.2h. For sections greater than 200mm that had to withstand tension forces,
the rabbeted oblique scarf splice (okkake daisen tsugi), FIGURE 2.2i, is the most indicated. The two parts are
identical. Additionally, to prevent lateral motions, two pins, depicted in red, could be inserted in mortises
carved in the adhesion planes. While the pins are inserted, the blue part cannot be disassembled. The same
tensile test shows a stiffness about 10 times greater and a maximal load 8.3 times greater than what was ob-
served on the dovetail joint. Afailure occurred through shearing through one of the adhesion planes. Aclose
cousin is the mortised rabbeted oblique splice (kanawa tsugi) on FIGURE 2.2j. Parts must be assembled first
vertically, then they must slide longitudinally onto each other to create room to insert a single draw pin, in
red. Lateral motions are blocked by the abutments. According to [101], for the same tensile test, the ulti-

1stiffness ratios were eyeballed from graphs in the book.
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mate load is the same as for the previous joint. However, the nonlinear behaviour of this joint is much less
stiff than the previous one. Two other joints, suitable to carry tension forces are depicted FIGURE 2.2k,l: the
halved and tabled joint and its abutted version respectively.

Tenon joints are also a very large group. The oldest example known so far of a tenon and mortise joint
dates back to 6000-4000 BC and was found in ancient water well in Germany [98]. Examples of such joints
were already given FIGURE 2.2¢e,f,g,h, but the list goes on. They are used to assemble wood pieces end-to-end
as well as orthogonally, FIGURE 2.3a. Among the significant joints, one may cite the most common one, be it
in Japan or Europe FIGURE 2.3b. In the case of two orthogonal pieces of wood, the mortise may be open so
that the tenon goes completely through it. In such a case, a pin may be inserted in the tenon to prevent dis-
assembly. Otherwise, such joints are not suitable to carry tensile forces and, consequently, are sometimes
combined with other joints (or fasteners) to prevent accidental disassembly. FIGURE 2.3c presents the cross-
shaped tenon and mortise splice (juji mechiire), effective against torsion, [101], but having the inconvenient
of showing a jagged line across all faces. A more aesthetic option is given FIGURE 2.3d (kaneori mechiire),
where two faces out of four reveal a straight line. On FIGURE 2.3e (kakushi mechiire), only one face shows a
jagged line. Note that this is the only joint in this figure where the disassembling motions are not restricted
to the longitudinal axis. Finally, a technically difficult but aesthetically pleasing 2.3f (hako mechiire) shows
only a straight line on all four faces of the assembly.

T &
AN

J

Figure 2.3| Several common tenon and mortise joints. Depending on the ge-
ometry of the joint, the seam between the two parts may be visible
on a varying number of faces. After [101, 118].

If a mortise and tenon joint is employed to join pieces of wood edge-to-edge, i.e. is the direction of
the grain, it would be referred to as tongue-and-groove, to assemble floor planks or mural panels, FIGURE
2.4b (honzanehagi). Hardwood should be used. According to [118], such assembly is not very stable and
should be nailed to a supporting frame. To qualify this statement, such boards were used as mural panels
in some stave churches in Scandinavia and stood the test of time. The simplest of such an edge-to-edge
joint is the butted boards (imohagi), see FIGURE 2.4a, which does not constitute a proper assembly. A very
stable edge-to-edge assembly is presented FIGURE 2.4c: a dovetailed plank is inserted in a corresponding
groove orthogonal to the direction of the butted planks. It joins them into one unified surface, particularly
fitted for flooring. The V-groove joint of 2.4d (hibukurahagi) is not strong enough for flooring but works
well for panelling. Similarly the rabbeted joint 2.4e (chigaihagi) was good for paneling and exterior siding.
It could also replace the abutted boards of the dovetail joint 2.4c ([118]). Finally, the spline joint of 2.4f
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Figure 2.4| Some floor and panel joints, after [74, , 118].

(vatoizanehagi) should be made of hardwood and inserted into a groove cut in the sides of planks made of
softwood.

A particularly interesting category of splices that were quite common in Japan but virtually unknown in
Europe [118] were the family of the edge-and-faces-halved scarf, also called rabbeted oblique scarf splice
in [L01]. They were decorative splices with no particular structural application. Contrary to the joints pre-
sented FIGURE 2.2 which could be used both horizontally and vertically, the oblique scarf splices could only
be used horizontally. The length of the inclined plane of the halved rabbeted oblique scarf splice, shown on
FIGURE 2.5a (isuka tsugi), should lie between once and twice the side of the cross-section. The shorter the
more structurally able ([101]). To this design could be added abutments and/or a key to prevent disassem-
bly, as depicted 2.5b. Note that if the key is added, as depicted in red in the figure, it does not reach through
the lower surface. It was used where the outer appearance of the joint was of no concern, typically the
dormitories of temples’ monks, [74]. The elegant quadruple-faced halved rabbet oblique scarf splice, 2.5c,
requires sophisticated craftsmanship to complete it. A variant, also technically difficult to manufacture, is
the triple-faced halved rabbeted oblique scarf splice (here with a key) on FIGURE 2.5d.
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Figure 2.5| Decorative oblique splices, after [101, 118].

Several other joints destined to finishing material are listed by [101] and [43] and are presented on FiG-
URE 2.6. The housed rabbeted oblique scarf splice 2.6a (kakushi kanawa) produces a clean straight line on
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Figure 2.6| Decorative oblique splices. The geometry of the joint leads to vari-
ous seams on the visible faces of the parts. After [101]. The saotsugi
illustration (e) is adapted from [43].

what should be the two visible faces (these two faces are not shown in the figure). Its close cousin is the
blind tenon and mortise 2.6b (hako daimochi). The blind pin 2.6¢ (hako sen) has the particularity of having
two keys. It is said to be cumbersome to carve [101]. The pole tenon 2.6d (saotsugi) is used on exposed
ceiling elements. Compared to a dovetail or a gooseneck joint (FIGURE 2.2f,g,h) the assembling motion of
the two pieces is longitudinal and only the keys are to be slid down vertically. Such a joint is necessary to
assemble elements crossing a post, (which blocks any vertical motion and thus forbids the use of the dove-
tail or gooseneck joints), as illustrated 2.6e.

Crossed right-angle joints were used to connect two horizontal orthogonal members of a roof or floor
structure, see FIGURE 2.7. These joints are simple enough so that they can easily be adapted to non-orthogonal
beams. The simplest of such joints, the stop dadoed crossed lap joint of 2.7a (watari kaki) consists simply
of a notched beam inserted on top of another. A slightly more complex version consists in hollowing partly
the other beam so it also has a notch, 2.7b, (watari ago). An elegant way to connect two beams so that the
whole assembly is of constant height is to use a cross-lap joint 2.7¢c (ai kaki) where each beam is hollowed at
half its depth. FIGURE 2.7d depicts an original joint (tasuki kake watari ago) where two opposing quadrants
of a cross are hollowed out.

To assemble a column with ties, groundsills, girders etc. so-called connecting joints are used, FIGURE
2.8. The suitsuki sashi shikuchi of 2.8a consists of a tenon and a dovetail groove in which the horizontal part
slides during (dis)assembly. The housed dovetail joint 2.8b (okuri ari) was frequently used on hanging posts
([101]). The dovetail is inserted in the largest opening before being slid to the narrower complementary
hole. A plug (not represented in the figure) can be pounded in the larger hole to prevent easy disassem-
bly. FIGURE 2.8c depicts the sumiyoshi double tenon, named after one of the coauthor of [101]. Despite the
easiness of assembly, as the tenon simply slides diagonally until reaching its final position, this joint seems
to be cumbersome to fabricate. FIGURE 2.8d shows a wedging joint (wari kusabi), an original joint aimed
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Figure 2.7| Crossed right angle joints. By tuning the depth of the hollowing the
assembly reaches various heights. After [43].

at creating a non-reversible” assembly. Two small notches (blue) are cut on an otherwise standard tenon.
Once inserted in the mortise and in the final position, two wedges (red) are pounded inside the notches,
which has the effect of splitting the tenon open and locking it, by friction, on the side of the mortise. A blind
version jigoku hozo, i.e. a version where the tenon does not reach through the full depth of the other beam,
is shown 2.8e. There the tenon beam is pounded on its back side until the tenon is split. The half dovetail
joint 2.8f (katasage ari) connects a tie to a column. The dovetail is inserted by sliding its upper face (the non-
inclined plane) on the top of the mortise hole. Once fully in, it is slid downwards until the small abutment at
the start of the dovetail, lower face, fits in the corresponding hole in the column. This opens a rectangular
hole on top of the joint. Finally, a plug is driven in this hole to prevent accidental disassembly. The same
process happens for the nimai kama tsugi 2.8g: the mortise hole is made taller than the extent of the two
horizontal beams to leave enough room to slide one over the other. Once the end sides of the beams are
touching each other, the upper beam is slid downwards and two wedges are symmetrically pounded in the
hole to lock the assembly. FIGURE 2.8h shows how several joints are used together to create a sophisticated
assembly connecting three beams to a column. The shorter male piece, a simple tenon with a hole for a pin,
is inserted in the column and locked in place thanks to a transversal draw pint. The two other parts, long
male and female pieces, are simply a pole tenon (saotsugi) whose working is presented FIGURE 2.6d,e with
the addition of a transversal pin to further prevent any disassembling motion. When seen from below, this
assembly seems seamless.

Let us finish this overview of built timber assemblies by the column splices FIGURE 2.9 (for illustrative
convenience, the assembled columns are shown lying on their sides). Suitable for large sections of wood,
these joints were used at the base of gates, shrines or belfry posts, [74]. Hardwood should be used, [101].
The first of such joints are the four faces dovetail splices (shiouhari) where two dovetail joints (see FIGURE
2.2f) are carved on two adjacent faces of the post and then extruded diagonally to the other two faces. As
such, the joint has the particularity of showing a dovetail on each of its four faces. Its close cousin, the four
faces gooseneck joint 2.9b, is better able to withstand tensile forces, but much harder to manufacture. Both
of the joints should be assembled diagonally, in the direction of the extrusion. FIGURE 2.9¢ shows a splice
that has only been found at the Otemon gate of Osaka castle. Contrary to the previous two joints, it should
be assembled in a diagonal-downwards direction. While the blind splice, shown on 2.9d (hako tsugi), is
said to be inferior in strength to the rabbeted oblique scarf splice (see FIGURE 2.2i, [101]), this joint has the
advantage of being seamless, as the jointing lines are on the edge of the section, thus making it attractive
when aesthetics is required. The last joint of this series is the clam-shaped splice (kai no guchi) which is to
be assembled vertically (which isinconvenient for underpinning) and is, in a sense, similar to the tasuki kake
watari ago shown on FIGURE 2.7d. Two opposite quadrants of a cross are hollowed, and the extremities of

2That cannot be disassembled.
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each quadrant exhibit a tenon-and-mortise pattern. This joint was used for prominent elements, [101].
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Figure 2.8| Connecting joints. When notches are shown (in blue, d) and e)) the
wedges (in red) make the assembly permanent. After [101].
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Figure 2.9] Some column splices. Of large section these assemblies were used
on prominent columns. After [101].
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Figure 2.10| Three kinds of integral joints. a) - planar contact joints; b) - curved
contact joints; c) - traditional (here tenon and mortise) joints. The
blue cones on the bottom row depict the cone of translational
freedom of the corresponding blue part. Blue arrows represent
several valid directions of translation to disassemble the parts.
Adapted from [107].

This brief overview shows us the extent, in form and function, a skilled carpenter might reach when
building complex joints. As we have just seen, this set is very rich but is ultimately limited by the manu-
facturing tools: saws and chisels can only cut straight edges. Thus, traditional joinery leaves unexplored a
large range of design options. With modern digital fabrication technologies, such as CNC milling, robotic
manipulation, laser cutting and additive manufacturing, the space of manufacturable assemblies get much
broader. The will to explore this space has pushed numerous researchers to investigate various computa-
tional approaches to design interlocking puzzles as well as robotic assemblies. SECTION 2.3.2 presents a
review of the scientific literature on this subject.

COMPUTATIONAL DESIGN OF INTERLOCKING ASSEMBLY

Designing interlocking assemblies

Interlocking assemblies are defined by Song et al. in [39] as an assembly of rigid parts such that only one of
them, the key, is movable while any other part or subset of parts are immobilised relative to one another.
The literature on the subject is rich with, for instance, [117] who designed furniture joinery and study the
stability of the structure, [53] who introduces a remarkable software to design wood joints with a special
focus on fabricability, or [105] who builds a framework aimed at generating novel assemblies and presents
examples of voxelised puzzles. These approaches can be categorised into two families: they are catalogue-
based, meaning that possible joints are predefined in some catalogue (or similarly that the user is supposed
to already have some knowledge of the geometry of the joint) or voxel-based which limits the space of ac-
cessible shapes for a given voxel resolution.

Catalogue-based designs:

As recalled by [107], there mainly are three kinds of integral joints®, shown on FIGURE 2.10, and numer-
ous the authors who derived assemblies whose joints are of one of these types. The simplest of all, planar
contact joint 2.10a, is typically used in masonry modelling, be it to procedurally model historically-inspired
buildings [111] stable under self-weight (see FIGURE 2.11a), puzzles [29] 2.11b or, a rather rich field of re-
search, to design topological interlocking assemblies. In [28] Estrin and coauthors define “a topological

3 Joints created by the complementary shapes of parts in contact.
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Figure 2.11| Assemblies joined through planar contact. a)- masonry mod-
elling, from [111]. b) - stable puzzle, from [29]. c) - a drawing of
an Abeille’s vault, from [32]. d) and e) - topologically interlocked
structures, respectively from [56] and [108].

interlocking is a design principle by which elements (blocks) of special shape are arranged in such a way that
the whole structure can be held together by a global peripheral constraint, while locally the elements are kept
in place by kinematic constraints imposed through the shape and mutual arrangement of the elements”. To
the best of our knowledge, the first recorded example of such assembly is Abeille’s flat vault, [32] 2.11c,
patented in 1699, which consists in the geometric arrangement of a single repeated truncated tetrahedron.
Two faces of the block are supported by two adjacent blocks while two others faces carry two neighbouring
blocks. The structure assumes a fixed surrounding frame. This geometrical finding was further extended
in numerous works, with for instance [56] (2.11d) or [108] (2.11e) who, by slightly modifying the geometry
of each convex part, find a stable (under gravity) topologically interlocked design approaching a free-form
goal surface. In [109], Weizmann and coauthors study the mechanical behaviour of floors made of vari-
ous types of topological interlocked blocks. They found that it led to an increase in material consumption
compared to more traditional flooring techniques and finish their article by applying topology optimisa-
tion on a block already possessing the interlocking qualities in order to reduce its mass. Wang et al. [108]
also developed an optimisation scheme, but this time to make a topological interlocking structure stable
under a given amount of lateral loading. The mechanical behaviour of such Abeille’s type bound has also
been studied extensively in for instance [17] and, in a nutshell, the results are that in addition to the ease
of (dis)assembling such structures, they exhibit large energy absorption capacity, high resistance to crack
propagation and tolerance to local failures [28].

The second class of integral joint is the curved contact, shown on FIGURE 2.10b. Quite interestingly, ac-
cording to J. Gallon in [33], father S. Truchet was dissatisfied with the inverted-pyramidal hole left in the
extrados of Abeille’s surface (see FIGURE 2.11c). As a consequence, he developed right after Abeille a non-
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(a) A Delaunay Loft. (b) Two tiles. l( ) Three tiles.

Figure 2.12| Assemblies joined through curved contact. a) - Non-convex
Abeille’s vault, from [33]. b) - osteomorphic blocks from [27]. ¢)
and d) 3D tile components, respectively from [94] and [5].

(d) Ten tiles. (e) Ten tiles.

convex element so that both the intrados and extrados of the surface would be filled, see FIGURE 2.12a. The
principle stays the same: a repeated element carries two neighbours and is supported by two others. Exten-
sion to this work were made in [27] with the so-called osteomorphic block (2.12b), in [28] or recently in [4].
The mechanics of curved topological interlocking assemblies are studied in [26]. In a different spirit, curved
assemblies are also used to tile 3D-space with Delaunay lofts [94], 2.12c, or bi-axial generalised Abeille’s
tiles [5], 2.12d. Wang et al. built a tool in [106] aimed at creating curved cone joints between user-given
parts. Their work is hybrid: while a joint is always modelled by a cubic spline (or a discretised counterpart)
and thus their method qualifies as catalogue-based, the specific shape of each joint is optimised, taking
into account the geometrical features of the other parts and some stability measure, thus making each joint
different from the others.

The third and last kind of integral joints listed in the survey [107] are conventional, or traditional, joints.
Significant work has been made to automatically generate assemblies made of parts chosen in a catalogue
of such conventional joints: several authors [20, 44, 87], investigated the creation of 3d assemblies made
of planar pieces that are laser cut. The joint is always a notch in at least one of the two parts in contact.
Testuz and coauthors [99] build hollow 3D shapes using a finite set of Lego bricks, which are mortise and
tenon. Lo et al. [55] create 3D puzzles by meshing a given surface using quads, extruding them to give the
puzzle some depth and merging adjacent quads to create polynomios (Tetris-like shapes). Careful consid-
eration of the motion space for each polynomio gives an assembly direction and thus the orientation of the
tenons and mortises assembling two parts. Xin et al., [115], explore the partitioning of 3D shapes into a set
of 6-parts burr puzzles, consisting of notched sticks, much like what is shown on FIGURE 2.7a and c; Fu and
coauthors [30] developed a method aimed at creating global interlocking furniture assembly from a model
of orthogonally intersecting 3D shapes and generated the joints from a lookup table containing, among oth-
ers, different kind of dovetails and mortise and tenon joints. In a different spirit, Luo et al., [57], partition a
3D shape into printable parts and assembles them through mortise and tenon kind of joints and Yang et al.
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[116] present a material-aware algorithm to modify the overall shape of a structure but connects parts with
mortise and tenon joints.

The interested reader is referred to the survey [107], which thoroughly reviews the literature on sev-
eral aspects, unexplored in this manuscript, regarding assemblies with rigid parts: structural stability of an
assembly, packing efficiency, fabrication aware assembly (3d printing, CNC machining), or reconfigurable
assemblies.

Voxel-based designs:

Most of the other methods available in the literature to generate interlocking puzzles are voxel-based which
restrict the assembling motions to the three canonical orthogonal directions of R3: [29] focuses on recursive
interlocking puzzles where at each step of the assembly sliding sequences of 3 parts are tightly interlocked.
Thus only one assembling sequence is possible. This work was later refined in [90] who carefully subdivides
an input mesh into a set of voxelised parts such that every K' > 3 parts are tightly interlocked, FIGURE 2.13a.

Yao et al. [117] implemented a tool that asks the user for the exterior appearance of the joints between
structural components and automatically computes the internal solid geometry needed to connect and as-
semble the parts. Remarkably they were able to rediscover many traditional Japanese joints with intricate
geometry. The main drawback of their approach is that the assembling motions are restricted to a set of 26
directions of translation in 3D (8 in 2D).

A compelling study has recently been made by the authors of [53]: their work about the design of wood
jointsis both voxel-based and catalogue-based (but supports adaptation to non-orthogonal and non-square
joints by linearly deforming the grid of voxels) and primarily focuses on interaction with the human user, fab-
rication and mechanical relevance. An example of a built joint obtained through their method is presented
on FIGURE 2.13b.

Aharoni et al. wrote an elegant paper [3] that does not fit in any of the above categories. They generate
multi-part interlocking assemblies through a density-based topology optimisation scheme taking into ac-
count both the assembling (which must be as easy as possible) and the interlock level (as high as possible). A
prominent feature of their work is the fact that the structural behaviour of the parts is considered and guides
the optimisation. The main drawback is that the user must specify in advance which parts are in contact,
and what motion should each part block with respect to its neighbours. As such it is a tool for optimisation
rather than exploration, more suitable in later design phases. We shall focus on an earlier stage, where the
user inputs less information and thus enjoy a greater design freedom, but where no structural optimisation
is performed.

Disassembly planning

Assembly planning (orits pendant disassembly planning) refers to the problem of finding a sequence to fully
(dis)assemble the parts constituting an assemblage, [48]. Several methods were developed and are thor-
oughly reviewed by [52], [107]. An interesting approach, on which we put an emphasis, was first proposed
in [113]: given an assembly made of various parts, the authors introduced the concept of Non Directional
Blocking Graph (NDBG) to encode blocking relations between the parts in directed graphs. By analysing
these graphs the authors are able to find, for each step of the (dis)assembly process, which set of parts to
move and what motion to follow to perform the task. While the method works theoretically both for transla-
tion and rotation, in practice they implemented an algorithm that “considers all pure translations plus some
suggested generalised motions” without adding more details. Their method, for translation only, was later
improved in [85] which makes further use of local contact information between parts.

Wang and coauthors in [105] were the first to leverage the kind of graph analysis introduced in [113] to
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Figure 2.13| Voxel-based assemblies. a)- 3D printed pieces forming an inter-
locked vase-like puzzle, from [90]. b) - Complex joint obtained by
[53]. c) - 3D puzzles automatically generated by [105].

automatically generate voxel-based interlocking assemblies. They designed an efficient puzzle generator
that can be assembled along orthogonal translations. Even though they restrict themselves to voxelised
structures, the authors fully explore the accessible design space and successfully manage to generate glob-
ally interlocking pieces without much computational effort, see FIGURE 2.13c. Their work serves as the basis
of ours.

ROBOTIC ASSEMBLY

Among many possible solutions, a route worth exploring to assemble in practice the assemblies involves
robots helping skilled human workers to assemble reversible structures. Several national and international
initiatives are already undertaken in this direction, DFab at ETH Zurich, the Cluster of Excellence in Stuttgart,
and the DiXite project in France, of which this thesis is a part.

In an environmental stance akin to ours Kunic and colleagues [51] developed a set of 13 timber elements
that can be assembled pairwise in numerous ways; the discrete design space has a size combinatorial in
the number of base elements, similar to a Lego kit. In a seamless workflow, a stress-optimised structure
is assembled by a robotic arm working collaboratively with a human through reversible bolts and nuts as-
semblies. The human is made necessary by the build-up of errors and tolerances along the construction of
the structure. Individual elements can therefore be extracted at the end of the lifetime of the structure, and
their versatility makes them suitable for being assembled in a different geometry. Apolinarska et al. further
automatised the assembly process in [6]. They used reinforcement learning to have a robot learn to assem-
ble beams through integral lap joints subjected to tolerance, by leveraging contact information between
the parts, see FIGURE 2.15a. In their book [12] (chapter 6) Bock and Linner argue that tolerances and accu-
racy are of major importance in robotic fabrication give guidelines to improve the construction design: the

31



Sequential Assemblies

overall number of joints should be low, the joining mechanism should be simple (riveting instead of screw-
ing for instance), and the joining system should be standardized. They also introduce the idea of compliant
design to help for the self-adjustment and self-fixation of the parts of the assembly, see FIGURE 2.14, where
the edges of the separating surfaces between the parts are bevelled so that when assembling, any error on
the locations of the parts can be corrected by sliding. In this context of toleranced assembly, the geometri-
cal features of the parts guide the assembling agent. In the course of this work (SECTION 4.3.4) special care
is taken to robustly optimise the assemblies generated through our method to ease the (dis)assembling

process.
Difficult to Easier to Easier to Easiest to
assemble assemble assemble assemble

Figure 2.14| Compliant design: mechanisms for self-adjustment and self-
fixation can be built into components. Source (caption and im-
age): [17]

On the subject of robot-based timber assembly, Helm et al. [42] carefully designed a workflow to lever-
age the flexibility and capacity for precise manipulation of a robotic arm to create an intricate truss structure
where beams are glued onto each other. On integral joints, Robeller and Weinand [83] designed a pavilion
with folded geometry by assembling timber plates edge-to-edge through CNC-milled dovetail joints. Mesnil
etal. in [61] present a computation and fabrication workflow of a shell-nexorade hybrid. The high manufac-
turing complexities of the joints made it necessary to use synchronously two robots forming a 6-axis milling
machine.

The use of cooperative robots has also been extended to build non-planar structures. In [70] Parascho
and coauthors used two robotic arms to sequentially built a structure made of triangulated discrete steel
tubes. The robots switch their roles iteratively, alternating between a placing and supporting role: the first
robot manipulates a steel tube to its position in the structure, maintains it while a human welds it to other
tubes, and then acts as temporary support to hold the unstable structure. The second robot then becomes
the manipulator of another tube before becoming in turn the support, which frees the first robot to go back
to being a manipulator. This alternate process goes on until the completion of the structure. A prominent
challenge with this approach lies in the fact that the robots must be carefully coordinated to avoid collisions.
Yet, aside from making scaffolding obsolete, this method has the great advantage of increasing the space
of topologically and geometrically feasible structures, compared to using only one robot. This process was
later refined in [71, 72] where a masonry vault is built in tandem by two brick-laying robots: first, a central
archis built by both robots, and then each completes half of the structure. On top of the cooperation needed
to address such a challenge, this research also used the full payload capacity of the robots, for them to
support the self-weight of the bricks, see FIGURE 2.15c and d. Yet there are two problems with this method:
when supporting a brick of the central arch out-of-plane motions arise due to an offset support point, which
forbids the scalability of this method to larger structures. To circumvent this issue, the authors had the idea
to use a mortar (epoxy) between the bricks, so that a few consecutive bricks could support their self-weight
in tension, letting the supporting robot only grip the bricks in the line of thrust of the arch, which prevents
bending moments. Yet again, this method is not scalable for larger structures due to the time needed for the
mortar to take, so the researchers envisioned adding a third robot to the process. An optimisation program
is executed at each step to select the brick that should be gripped by the third robot to optimise various
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Figure 2.15| a) - Through reinforcement learning, a robot learned to join
beams, from [6]. b) - Creative robots dynamically build a discrete-
sphere structure, from [18]. c) and d) - Cooperative robots build a
masonry vault, from [72].

construction-related metrics. Again, the three robots alternatively switch roles. Finally, on the subject of
human-robot cooperation, an exciting paper [18] was recently written by Bruun and coauthors. From the
observation that in the aforementioned papers (and others) robots are always used as performers following
a predefined execution plan but never as designers, the authors proposed an original design process where
a duo of robots and a human operator communicate on the design while it is being constructed, allowing
it to change dynamically during the erection process; neither the robots nor the human know in advance
the structure. In concrete terms, a discrete sphere structure is incrementally built by two robots in tandem
along the aforementioned process support-then-place, see FIGURE 2.15b. At each step, the location of a new
sphere is randomly decided. If the placing robot evaluates it to be reachable, the location is then proposed
to the human who validates it based on arbitrary criteria (aesthetics for instance). The central place the
authors give to randomness ensures that the geometrical and topological spaces are thoroughly searched,
which is also something we put an emphasis on in our work. The evaluation made by the robot reduces this
broad space to the smaller feasible one, while the evaluation made by the human further bias this space to
the desirable one.

PROBLEM STATEMENT

Generating interlocking assemblies is a difficult geometric challenge ([39]) and the methods reviewed in
the literature attempt to simplify the problem by making strong assumptions on the shape of the assembly
and the (dis)assembling motions which negatively impact the freedom needed to design novel assemblies.
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Figure 2.16| Digital technology makes it possible to envisage completely dif-
ferent methods of application, beyond traditional carpentry.
Source: [63].

We argue that these assumptions ultimately stem from the fact that
P designing interlocking assemblies is essentially a wicked problem:
0,

:\0‘6\ e each problem is unique, can be approached by many different

bending methods, infinitely many designs are solutions to it, and because

voxel grid TES

of competing goals (ease of fabrication, of assembly, mechanical
relevance, etc.) no solution is best, one can only say that some

A
“(’% 3-axis CNC
5

. assembl
machine Y

[

§ designs are better than others. More formally, as for any structural
§ object, the quality of an interlocking assembly strongly depends on
1)

)
2 d
2 woo the interaction of the five axes of design proposed by [2], namely

material form, force, structure, material, and technology. This conceptual
approach is exemplified on the work of Larsson et al., [53], on the

inset.

On thisexample, while delivering stunning results, the authors had to assume an assembly (structure) made
of wood (material), carrying most probably bending moments (force), milled with a 3-axis CNC machine
(technology), with a grid of voxel as a design space (form), as well as additional assumptions such as a cube
as a design domain and a single axis of assembly. Any change in those premises, for instance switching to a
5-axis CNC machine, greatly impacts the space of solutions and requires another algorithm to search it. More
generally a good approach to designing assemblies, shown in FIGURE 2.17, would be through a multi-criteria
optimisation where several designs are proposed to the designer who makes the final choice as to orient her
work. These criteria (choice of material, technology, etc) are problem-dependent and could therefore be im-
plemented a posteriori to curate the space of solutions, once the user knows how to navigate and explore
the space of possible assemblies. As an example, for timber assemblies, the milling technology (3 to 5 axes,
size of milling tools) and mechanical performance (governed by the strong anisotropy of wood) are obvious
practical constraints that will dictate the performance of the assembly and, thus, the subset of suitable as-
sembly shapes. Other technologies and material, like 3d-printed steel nodes [68] FIGURE 2.16, would come
with different sets of feasibility constraints which would be met by different geometries of assembly.

PROBLEM STATEMENT

Our aim is to build design tools that fit in with the design for (dis)assembly movement. We want to explore
the feasible design space rather than to optimise a single solution (FIGURE 2.17), and generate novel assem-
blies with the minimum of user inputs, and avoid a local optimum. To that end randomness plays a central
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a wicked problem, all geometrical interlocking the design space is
with fuzzy and designs can be generated explored through optimisation
competing goals or user-feedback

Figure 2.17| This dissertation mainly focuses on the design knowledge step of
the process to design interlocking assemblies: we shall generate
all possible geometrical interlocking design.

role in our approach.

Given a design domain and an ordered list of N motions for disassembling (translations and/or rotations
in 2D, generalised motions in 3D), the aim of this work is to partition the domain into V + 1 parts forming a
sequential assembly A = {Py, P, ..., Py }. Two parts play a special role: part P is the reference part: it is
held in place throughout the (dis)assembly sequence to prevent any ambiguity where the whole assembly
may obey a rigid body motion; part P; is the key - as long as P; has not been removed from the assembly,
no other part can move - and as such the assembly is interlocked. While the reference part P, is fixed, each
P;,i > 1, can only move along its prescribed motion in an infinitesimal sense, meaning that a motion of
arbitrarily small magnitude does not lead a part to collide with any other. The puzzle created should not be
recursively interlocking: P; shall be a key such as when not moved the entire assembly is blocked, but as
soon as P; isremoved, Ps, Ps, ..., Py can be removed as well. The only criterion that will be imposed is that
the disassembling sequence “remove Py, then P, ..., then Py” always exists (as illustrated on FIGURE 2.18),
possibly among others.

A word of caution: the fact that the assemblies created and studied in this manuscript have parts that
can only obey an infinitesimal motion may lead to degenerate cases where a part does obey an infinitesimal
motion but will collide with another part for a motion of finite magnitude, and as such making the assembly
deadlocked” for any practical purpose, see FIGURE 2.19.

4Impossible to (dis)assemble
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>~ 2

Figure 2.18| A 3D assembly is disassembled sequentially. The whitest part in
the middle is the reference part, Py, and the part in the lightest
shade of blue, at the top of each frame, is the key P;.

P ﬂ

P1 /ﬁ/ \

Py

Figure 2.19| Even though P, obeys an infinitesimal downwards translation, a
finite motion will lead to a collision with Py.

A clarification is needed concerning the definition of “interlocking”. Some authors, [108], say that a
structure made of multiple parts is interlocked when, assuming that one part is fixed in place (to prevent
global rigid body motion of the whole structure), it is in equilibrium under any arbitrary set of external forces
(i.e. the interaction forces between the parts match the external forces applied on the assembly). In other
words, by applying any (possibly different) motion(s) to any subassembly, nothing moves. This is typically
the case for an Abeille’s flat vault, FIGURE 2.11c.

On the contrary, an assembly is not interlocked when by applying a motion along one or many directions
of translation to a subassembly some parts move, with an example given on FIGURE 2.20.

Figure 2.20| An example of a non interlocked assembly: by applying simulta-
neously a motion along the directions depicted by red arrows, the
puzzle can be disassembled. Inspired by Julien Glath’s work, [32].

That being said, in this manuscript an assembly is said to be interlocked when, given a fixed key, every
part or set of parts isimmobilised for all possible motions applied on each part, once a a time. Once the key
is removed, the other parts may be taken off one at a time, such asillustrated on FIGURE 2.18. More details
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are given SECTION 3.1.3.

CONTRIBUTIONS

Theaim of this dissertation isto contribute to the research effort on the field of generating assemblies mainly

along the following points:

With the notable, recent, exception of [3] which has the drawback of specifying which parts are in con-
tact, the literature so far only considers either catalogue-based joints, which do not explore at all the
space of possible joins, or voxel-based, which explores only a very limited subset of this space. The
first aim of this document is to fully explore the space of interlocking assemblies.

To the best of our knowledge, no research has ever been conducted on the generation of assemblies
whose parts are to be (dis)assembled along rotational motions in 2D, or generalised 3D motions. The
second aim of this document is therefore to unveil this blind spot.

While actual robotic manipulation was not a part of this PhD, extensive statistical studies of the role
played by imperfections (on the geometry of the assembly and/or on the location of the actuator ma-
nipulating it) were conducted as to give guidelines and heuristics to better optimise assemblies and
to control the amount of freedom given to the operator (human or robot) tasked with (dis)assembling
them. To our knowledge, it is the first time that this type of robust geometrical optimisation has been
conducted on assemblies.

DEFINITIONS

Using the terminology presented in [107], we restrict our study to interlocking sequential assemblies made

of rigid polygonal parts in two dimensions (2D), and polyhedral parts in three dimensions (3D), obeying

infinitesimal motions. Several terms need to be explained and clarified using [41]:

Workspace: In this study, the workspace refers to the physical space in which the assembly is. It is
modelled either by R? or R3,

Design domain: The design domain is a rigid body, modelled by a finite compact manifold, which is
partitioned into parts forming an assembly. Throughout this manuscript, unless specified otherwise,
the design domain will be a square or a cube.

Part: A part is a rigid body modelled by a finite compact manifold in the workspace.

Polygonal part: In R?, the boundary separating a part from the rest of the assembly

is a polyline, i.e. a closed curve made of end-to-end concatenated line segments

such as illustrated on the inset on the right, top.

Polyhedral part: In R3, the boundary separating a part from the rest of the

workspace is a closed triangular mesh, i.e. a mesh, with no boundary edge, made R
of triangular faces such as illustrated on the inset on the right, bottom.
Separating curve/surface of a part: The separating curve (in 2D) or surface (in 3D)
is the portion of the boundary of the part that separates it from the rest of the
assembly. By construction, it is always in the interior of the design domain.
Motion: In this work, a motion refers to any translation, rotation or combination of both used to move
a point in the workspace.

A part obeys an infinitesimal motion: Given two parts P; and P; in contact (i.e. a subset of each of
their boundary overlaps), P; obeys an infinitesimal motion if, at the end of a trajectory of arbitrarily
small length along that motion, no point in P; belongs to the interior of P;. Otherwise, P; does not
obey that motion and the two parts collide. By extension, we will also say that an assembly obeys a
set of motions if and only if each of its constitutive parts obeys an infinitesimal motion from that set.
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Assembly: An assembly refers to the set of parts in contact with each other whose
union is the design domain, and the intersection of two distinct parts only yields a
subset of the boundary of these parts, see the inset on the right.

Interlocking: An assembly is interlocked if no single part can obey any motion

while holding in place a specific part called the key.

Sequential: An assembly is sequential if one needs a (non-necessarily unique) or-

dering of the parts such that each successive part can be disassembled by obeying

a motion.

ANV~



Sequential Assemblies

REFERENCES

1

12

17

18

20

26

27

28

29

30

32

33

34

C’est pas sorcier - France 3. C’est pas sorcier - Le Grand Palais épate la galerie. Youtube. 2013. URL:
https://youtu.be/9huxiit6bME?t=1189.

Lior Aharoni, Ido Bachelet, and Josephine Carstensen. “Topology optimization of rigid interlocking
assemblies”. In: Computers & Structures 250 (July 2021), p. 106521.

Ergun Akleman et al. “Generalized Abeille Tiles: Topologically Interlocked Space-Filling Shapes Gen-
erated Based on Fabric Symmetries”. In: Computers and Graphics 89 (May 2020).

Ergun Akleman et al. “Generalized Abeille tiles: Topologically interlocked space-filling shapes gener-
ated based on fabric symmetries”. In: Computers & Graphics 89 (2020), pp. 156-166. ISSN: 0097-8493.
URL: https://www.sciencedirect.com/science/article/pii/S0097849320300674.

Aleksandra Apolinarska et al. “Robotic assembly of timber joints using reinforcement learning”. In:
Automation in Construction 125 (May 2021), p. 103569.

Marine Bagneris et al. “Structural Morphology Issues in Conceptual Design of Double Curved Sys-
tems”. In: International Journal of Space Structures 23 (June 2008), pp. 79-87.

Thomas Bock and Thomas Linner. Robot-Oriented Design: Design and Management Tools for the De-
ployment of Automation and Robotics in Construction. Cambridge University Press, 2015.

M. Brocato and L. Mondardini. “A new type of stone dome based on Abeille’s bond”. In: International
Journal of Solids and Structures 49.13 (2012), pp. 1786-1801.

Edvard P. G. Bruun et al. “Human-robot collaboration: a fabrication framework for the sequential de-
sign and construction of unplanned spatial structures”. In: Digital Creativity 31 (2020), pp. 320-336.

Paolo Cignoni et al. “Field-Aligned Mesh Joinery”. In: ACM Trans. Graph. 33.1 (Feb. 2014). 1SsN: 0730-
0301. URL: https://doi.org/10.1145/2537852.

Lee Djumas et al. “Deformation mechanics of non-planar topologically interlocked assemblies with
structural hierarchy and varying geometry”. In: Scientific Reports 7 (Sept. 2017).

Arcady Dyskin et al. “Fracture Resistant Structures Based on Topological Interlocking with Non-planar
Contacts”. In: Advanced Engineering Materials 5 (Mar. 2003), pp. 116-119.

Yuri Estrin, Arcady Dyskin, and E. Pasternak. “Topological Interlocking as a Material Design Concept”.
In: Materials Science and Engineering: C 31 (Aug. 2011), pp. 1189-1194.

Ursula Frick, Tom Van Mele, and Philippe Block. “Decomposing Three-Dimensional Shapes into Self-
supporting, Discrete-Element Assemblies”. In: (2015). Ed. by Mette Ramsgaard Thomsen et al., pp. 187-
201. URL: http://link.springer.com/10.1007/978-3-319-24208-8_16 (visited on 10/17/2019).

Chi-Wing Fu et al. “Computational Interlocking Furniture Assembly”. In: ACM Transactions on Graphics
34.4 (July 2015). 1SSN: 0730-0301.

J. Gallon. Machines et inventions approuvées par I’Académie royale des Sciences. Vol. 1. Mémoire con-
cernant la volte plate inventée par M. Abeille. Académie royale des Sciences, 1735, pp. 159-162.

J. Gallon. Machines et inventions approuvées par l’Académie royale des Sciences. Vol. 1. Volite plate
inventée par le pére Sébastien de ’Académie Royale des Sciences. Académie royale des Sciences, 1735,
pp. 163-165.

B. Gfelleretal. “Wood bonding by vibrational welding”. In: Journal of Adhesion Science and Technology
17.11 (2003), pp. 1573-1589. eprint: https://doi.org/10.1163/156856103769207419. URL: https:
//doi.org/10.1163/156856103769207419.

39


https://youtu.be/9huxiit6bME?t=1189
http://dx.doi.org/10.1016/j.compstruc.2021.106521
http://dx.doi.org/10.1016/j.compstruc.2021.106521
http://dx.doi.org/10.1016/j.cag.2020.05.016
http://dx.doi.org/10.1016/j.cag.2020.05.016
http://dx.doi.org/https://doi.org/10.1016/j.cag.2020.05.016
http://dx.doi.org/https://doi.org/10.1016/j.cag.2020.05.016
https://www.sciencedirect.com/science/article/pii/S0097849320300674
http://dx.doi.org/10.1016/j.autcon.2021.103569
http://dx.doi.org/10.1260/026635108785260560
http://dx.doi.org/10.1260/026635108785260560
http://dx.doi.org/10.1017/CBO9781139924146
http://dx.doi.org/10.1017/CBO9781139924146
http://dx.doi.org/10.1145/2537852
https://doi.org/10.1145/2537852
http://dx.doi.org/10.1038/s41598-017-12147-3
http://dx.doi.org/10.1038/s41598-017-12147-3
http://dx.doi.org/10.1002/adem.200390016
http://dx.doi.org/10.1002/adem.200390016
http://dx.doi.org/10.1016/j.msec.2010.11.011
http://dx.doi.org/10.1007/978-3-319-24208-8_16
http://dx.doi.org/10.1007/978-3-319-24208-8_16
http://link.springer.com/10.1007/978-3-319-24208-8_16
http://dx.doi.org/10.1145/2766892
http://dx.doi.org/10.1163/156856103769207419
https://doi.org/10.1163/156856103769207419
https://doi.org/10.1163/156856103769207419
https://doi.org/10.1163/156856103769207419

Sequential Assemblies

38

41

42

43
44

48

51

52

53

54

55

56

57

61

68

70

71

72

74

77

40

Julien Glath et al. “Thinking and Designing Reversible Structures with Non-sequential Assemblies”.
In: Sept. 2022, pp. 249-259. 1ISBN: 978-3-031-13248-3.

D. Halperin, J.-C. Latombe, and R. H. Wilson.
. In: Algorithmica 26.3 (Mar. 1, 2000), pp. 577-601. 1SSN: 0178-4617, 1432-0541. URL:
(visited on 11/08/2019).

Volker Helm et al. “Additive robotic fabrication of complex timber structures”. In: 2015.
Yasua Nakahara Hideo Sato. The Complete Japanese Joinery. Hartley and Marks Publishers, 2000.

Kristian Hildebrand, Bernd Bickel,and Marc Alexa.
In: Computer Graphics Forum 31 (May 2012), pp. 583-592.

Pablo Jimenez. .In:
Journal of Intelligent Manufacturing 24 (Apr. 2011), pp. 1-16.

Anja Kunic et al. “Design and assembly automation of the Robotic Reversible Timber Beam”. In: Au-
tomation in Construction 123 (2021), p. 103531.

A.J.D. Lambert. .In: International Journal of Production Research
41 (Nov. 2003), pp. 3721-3759.

Maria Larsson et al. . In: UIST 20 (2020).
pp. 317-327.

Le chantier du grand palais - dossier pédagogique du grand palais n°2. Accessed: 2022-08-03. 2013.
URL:

Kui-Yip Lo, Chi-Wing Fu, and Hongwei Li. . In: ACM Trans. Graph. 28.5 (Dec.
2009), pp. 1-8. 1SSN: 0730-0301. URL:

Vianney Loing et al. .In: Automation
in Construction 113 (2020), p. 103117. 1SSN: 0926-5805. URL:

LinjieLuo et al. .In:ACM Transactions on Graph-
ics 31.6 (Nov. 2012). 1SSN: 0730-0301.

Romain Mesnil et al. “Form finding of nexorades using the translations method”. In: Automation in
Construction (2018).

Optimizing structural building elements in metal by using additive manufacturing. Accessed: 2021-12-
07.2015. URL:

Stefana Parascho et al. “Cooperative Fabrication of Spatial Metal Structures”. In: 2017.

Stefana Parascho et al. “Robotic vault: a cooperative robotic assembly method for brick vault con-
struction”. In: 2020.

Stefana Parascho et al. “LightVault: A Design and Robotic Fabrication Method for Complex Masonry
Structures”. In: 2021.

Dr. Mary Neighbour Parent. JAANUS - Japanese Architecture and Art Net Users System. Internet. 2003.

URL:

Erciiment Erman Ph.D.
. In: Architectural Science Review 42.3 (1999), pp. 169-180. eprint:
. URL:


http://dx.doi.org/10.1007/s004539910025
http://dx.doi.org/10.1007/s004539910025
http://link.springer.com/10.1007/s004539910025
http://dx.doi.org/10.1111/j.1467-8659.2012.03037.x
http://dx.doi.org/10.1007/s10845-011-0578-5
http://dx.doi.org/10.1080/0020754031000120078
http://dx.doi.org/10.1145/3379337.3415899
https://www.grandpalais.fr/sites/default/files/user_images/30/dossier_pedago_chantier_grand_palais.pdf
https://www.grandpalais.fr/sites/default/files/user_images/30/dossier_pedago_chantier_grand_palais.pdf
http://dx.doi.org/10.1145/1618452.1618503
https://doi.org/10.1145/1618452.1618503
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2020.103117
https://www.sciencedirect.com/science/article/pii/S0926580519310957
https://www.sciencedirect.com/science/article/pii/S0926580519310957
http://dx.doi.org/10.1145/2366145.2366148
https://www.ingentaconnect.com/content/iass/piass/2015/00002015/00000002/art00016
https://www.ingentaconnect.com/content/iass/piass/2015/00002015/00000002/art00016
https://www.aisf.or.jp/~jaanus/
http://dx.doi.org/10.1080/00038628.1999.9696874
http://dx.doi.org/10.1080/00038628.1999.9696874
https://doi.org/10.1080/00038628.1999.9696874
https://doi.org/10.1080/00038628.1999.9696874
https://doi.org/10.1080/00038628.1999.9696874

Sequential Assemblies

83

85

87

89

90

94

98

99

101

105

106

107

108

109

111

113

115

116

117

Christopher Robeller and Yves Weinand. “Interlocking Folded Plate - Integral Mechanical Attachment
for Structural Wood Panels”. In: International Journal of Space Structures 30 (2015), pp. 111-122.

Bruce Romney et al. “An Efficient System for Geometric Assembly Sequence Generation and Evalua-
tion” In: Sept. 1995, pp. 699-712.

Yuliy Schwartzburg and Mark Pauly. . In:
Computer Graphics Forum 32 (May 2013).

Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. .In: ACM Transactions
on Graphics 31.6 (Nov. 2012). IssN: 0730-0301.

Peng Song et al. . In: Computer Aided Geometric Design

35-36 (Mar. 2015), pp. 137-148.

Sai Ganesh Subramanian et al.
.In: Computers & Graphics 82 (2019), pp. 73-83. ISSN: 0097-8493. URL:

Willy Tegel et al. .In: PLoS
ONE 7 (Dec. 2012), e51374.

Romain Testuz, Yuliy Schwartzburg, and Mark Pauly. “Automatic Generation of Constructable Brick
Sculptures”. In: Eurographics 2013 - Short Papers. Ed. by M.- A. Otaduy and O. Sorkine. The Eurograph-
ics Association, 2013.

Gengo Matsui Torashichi Sumiyoshi. Wood Joints in Classical Japanese Architecture. Kajima Institute
Publishing, 1991.

Ziqi Wang, Peng Song, and Mark Pauly.
. In: ACM Transactions on Graphics 37.6 (Dec. 2018). ISSN: 0730-0301.

Ziqi Wang, Peng Song, and Mark Pauly.
. In: ACM Trans. Graph. 40.4 (July 2021). 1sSN: 0730-0301. URL:

Zigi Wang, Peng Song, and Mark Pauly.
. In: Computer Graphics Forum 40 (May 2021), pp. 633-657.

Ziqi Wang et al. “Design and Structural Optimization of Topological Interlocking Assemblies”. In: ACM
Transactions on Graphics 38.6 (2019), p. 13.

Michael Weizmann, Oded Amir, and Jacob Grobman.
. In: Automation in Construction 72 (June 2016), pp. 18-25.

Emily Whiting, John Ochsendorf, and Frédo Durand.
. In: ACM Trans. Graph. 28.5 (Dec. 2009), pp. 1-9. ISsN: 0730-0301. URL:

Randall H. Wilson and Jean-Claude Latombe. .In:
Artificial Intelligence 71.2 (Dec. 1994), pp. 371-396.

Shiging Xin et al. . In: ACM Transactions on Graphics 30.4 (July
2011). 1sSN: 0730-0301.

Yong-Liang Yang, Jun Wang, and Niloy J. Mitra. “Reforming Shapes for Material-Aware Fabrication”. In:
Proceedings of the Eurographics Symposium on Geometry Processing. SGP ’15. pp. 53-64. Graz, Austria:
Eurographics Association, 2015.

Jiaxian Yao et al. .In:
ACM Transactions on Graphics 36.4 (Mar. 2017). ISSN: 0730-0301.

41


http://dx.doi.org/10.1111/cgf.12051
http://dx.doi.org/10.1145/2366145.2366147
http://dx.doi.org/10.1016/j.cagd.2015.03.020
http://dx.doi.org/https://doi.org/10.1016/j.cag.2019.05.021
http://dx.doi.org/https://doi.org/10.1016/j.cag.2019.05.021
https://www.sciencedirect.com/science/article/pii/S0097849319300822
https://www.sciencedirect.com/science/article/pii/S0097849319300822
http://dx.doi.org/10.1371/journal.pone.0051374
http://dx.doi.org/10.1145/3272127.3275034
http://dx.doi.org/10.1145/3272127.3275034
http://dx.doi.org/10.1145/3450626.3459680
http://dx.doi.org/10.1145/3450626.3459680
https://doi.org/10.1145/3450626.3459680
https://doi.org/10.1145/3450626.3459680
http://dx.doi.org/10.1111/cgf.142660
http://dx.doi.org/10.1111/cgf.142660
http://dx.doi.org/10.1016/j.autcon.2016.05.014
http://dx.doi.org/10.1016/j.autcon.2016.05.014
http://dx.doi.org/10.1145/1618452.1618458
http://dx.doi.org/10.1145/1618452.1618458
https://doi.org/10.1145/1618452.1618458
https://doi.org/10.1145/1618452.1618458
http://dx.doi.org/10.1016/0004-3702(94)90048-5
http://dx.doi.org/10.1145/2010324.1964992
http://dx.doi.org/10.1145/3072959.3054740

Sequential Assemblies

118 Klaus Zwerger. Wood and Wood Joints - Building Traditions of Europe, Japan and China. Basel: Birkhdauser
Verlag GmbH, 2011.

42



CHAPTER 3

BLOCKING RELATIONSHIP IN ASSEMBLIES

For this exposition to be self-contained we recall some elementary facts about blocking relationships in as-
semblies. Additional details and proofs can be found in [113].

The aim of this chapter is, given a 2D assembly A = { Py, Py, ..., Py }, to explain how to check whether it is
interlocked and which set of motions each part may obey. To that end, secTION 3.1.1 explores the relation-
ship between a given 2D assembly A = { Py, P; } and the set of motions P; can obey, SECTION 3.1.2 explains
how, given an assembly and a motion (translation or rotation), one can assess the blocking relationships
between the parts for that motion, and secTion 3.1.3 investigates how, given an assembly, its interlocking
for all directions of motion is determined only by the interlocking of a small discrete set of motions.

CONE OF INFINITESIMAL FREEDOM OF MOTION IN 2D

Translation

For the sake of simplicity and illustrative purposes, we begin this study by only considering 2D assemblies
obeying translations.

A formal way to represent a direction of translation in 2D is by the mean of a vector z; € R? (subscript ;
for translation). As we consider infinitesimal motions only, what matters to us is the direction and not the
magnitude of x;. As such we can, without loss of generality, scale x; to be a unit vector: ||z;|| = 1. Vector
x; can be reinterpreted as being a point in R2. Because this point is at a distance 1 from the origin, it lies
on the unit circle. This being true for any unit z; € R? we denote the locus of all directions of translation in
R? by the unit circle S*. In other words, any point on the 2D unit circle S! is a direction of translation. This
section aims to understand the relationship between a given 2-parts assembly A = { P, P, } and the set of
translational motions P; can obey.

Figure 3.1| The 2D unit circle S* is seen as the locus of the directions of trans-
lation in R?.



Non Directional Blocking Graph

The simplest polygonal assembly A = { P, P, } we can think of is such that the separating curve be-
tween Py and P is simply a line segment. On FIGURE 3.2, the design domain is the square on the left,
the separating curve between the two parts is the line segment highlighted in blue and the green arrows
represent several valid directions of translation such that P; can obey them. The red ones depict invalid
directions of translation as moving P; along them will lead the two parts to intersect. The set of all valid
translations constitutes a so-called half-space of motion. On FIGURE 3.2, let n be the unit normal vector of
the separating curve oriented from P, to P; (the black arrow). Then we can state that P, may obey a direc-
tionx; € R?ifandonlyifn-x; > 0, thatis to say if z; belongs to the blue semi-circle oriented by n, on the
right of the figure.

>\L

n

Py

Figure 3.2| On the left an assembly A = {Fy, P1 }. On the right, the semi unit
disc in blue represents the half-space of motion of P;.

A somewhat more complex result can be obtained by analysing a separating curve made of two line
segments. On FIGURE 3.3 each line segment of the separating curve defines a half-space of motion. P; can
obey any x; that is in both half-spaces of motion i.e. any x; suchthatn 4 - «; > 0andng - x; > 0. We call
cone of translational freedom the cone resulting from the intersection of the half-spaces of motion defined
by the normal of each line segment of the separating curve.

Py
npg
—
na
\ l | —_— —_
na B @
n ) —
Py

Figure 3.3| On the left an assembly A = {Py, Pi}. On the right, the cone
of translational freedom results from the intersection of the half-
spaces of motion associated with each line segment of the sepa-
rating curve.

/

More generally, for a polyline made of k line segments, any vector x; in the cone of translational freedom
is a solution to the linear system
ny-x; >0

3.1
ng-x; >0

Note that when two half-spaces of motion are antipodal (meaning there exists two normals n,, and n, neg-
ative of each other,n, = —n,,and n, - x; = 0), the resulting cone of freedom reduces to a single direction,
as depicted on FIGURE 3.4. Observe that given two parts in contact P; and P}, the cone of freedom of P;
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n,,t
In,

Py

Figure 3.4| By intersecting half-spaces of motion, the cone of translational
freedom of P; can be defined. Note that this cone may be reduced
to a single direction as highlighted in the example on the right.

relative to P; is exactly the antipodal cone of P, relative to P;: indeed if P is able to translate along a given
xz; € R? while P;j is held in place, then P; can translate along —x; while P; is fixtured, [113]. In that sense,
we can focus on only one half of the total set of directions of translation (so only one semicircle of the locus
of all directions of translation in 2D) as the other half conveys the same information. That is why only the
cone of freedom of one part relative to the other will be represented as the antipodal cone does not add to
the sum of information available.

SYSTEM (3.1) can be rewritten in a matrix form:
Atwt Z 0 3.2

Where the subscript ; stands for translation, and:

_ kx2
A= |yi—yit1 Tiq1—z; | €ER

Using this formalism, the cone of translational freedom is the set

Ci={xes', A >0} 33

Rotation

The mathematical formula that finds, given a 2-parts assembly, the cone of translational freedom of P,
is quite straightforward to derive. When considering rotational motions, things are almost as forthright,
especially thanks to the infinitesimal motion hypothesis.

In a general setting, the point p = (%, ) obtained by rotating a point p = (x,y)” by an angle v around a
centre point ¢, = (x,,y,) (subscript . for rotation) is given by:

=2

cosy —siny T — T, T,

sing)  costp Y= Yr Yr

<>

Because we restrict this study to infinitesimal motions, we assume |¢)| < 1 and a first-order Taylor expan-
sion yields

1S3
8

_ (¥ 34

T — x,

<<
<

EQUATION (3.4) states that an infinitesimal rotation of p around .. is the same as an infinitesimal translation

of p along the vector (y, — y, 2 — x,.)7.
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Let the vector-valued function

m R2 x R2 — R2
) [ Yr — Y 35
b= y Ly = =
Yy Yr T — Tp

We call m(p, z,.) the instantaneous direction of motion of point p relative to x,, abbreviated m,, when the
location of x,- has been specified and is not ambiguous. Note that this vector is orthogonal to the line going
through x,. and p. These quantities are illustrated on FIGURE 3.5.

mpB

Figure 3.5| The instantaneous direction of motion of point p (resp. ps, p) is
the vector, m,, , (resp. myp,, my).

A necessary and sufficient condition for the part P; to obey a (counterclockwise) rotation around a given
centre .. is to have the instantaneous directions of motion of all points p on the boundary of P; not pointing
towards the interior of Py. Indeed if there is one point p on the boundary of P, such that m,, points towards
theinterior of Py then aninfinitesimal rotation around x,. will send that point to collide with P, which exactly
means that P; does not obey ... Moreover, since we focus on infinitesimal motions, we only need to study
the points on the boundary of both Py and P;. In other words the fact that P, obeys x,. depends only on
the geometry of the separating curve between P and P;.

On the assembly depicted on FIGURE 3.5, the separating curve between the two parts is the line segment
[pa, pr] of normaln. Having the instantaneous direction of motion, m,,, of each point p of the line segment
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Py 2

Py

pPB

Figure 3.6 P1 may obey counterclockwise (on the left in blue), (resp. clock-
wise on therightin red) rotations around centres in the intersection
of both half-planes, depicted as the darkest shade of blue (resp.
red) in the top right (resp. bottom left).

to be pointing inside P; means thatVp € [pa,pg| m, - n > 0. Thus, one has the equivalences:

P, obeys a rotation around &, <= Vp € [pa,pp|m, -1 >0 36

p=(1—1t)pa+tpp
< Vpe[papp|Ite(0,1]3 [y, — (1 —t)ya +tys)
(1—t)xs+tep —
37

= Vte[0,1] (1 —-t)my,, +tmy,) -1 >0 3.8

With Az = x4 — zp and Ay = y4 — yp, EQUATION (3.9) can be rewritten as a matrix inequality:

Az Ay By TAAT +yalAy
EQUATION (3.9) <—= > 3.10
Az Ay Y rpAx + ypAy

EQUATION (3.10) reveals the geometrical meaning of the equations: it states that for P; to obey a rotation
around x,. then x,. must lie in the intersection of two half-planes whose respective boundaries are lines or-
thogonal to the segment [p4, pg] and going through p4 and pg, such as illustrated on the left of FIGURE 3.6.
Note that one can readily find the half-plane containing points around which P; obeys a clockwise rotation
by inverting the inequality in EQUATION (3.10), as illustrated on the right part of FIGURE 3.6.

Tosum up, given the simplest 2D polygonal assembly where the separating curveis the segment [p4, pgs],
the plane R? can be partitioned in 3 semi-infinite regions:

2 m(pA7w) n >0 . . 2 q
u z € R7, and P; obeys a counterclockwise rotation around any point in
m(pg,x)-n >0

that set. On FIGURE 3.7, this set is the half-plane “above” the blue line.

) m(pa,xz)-n <0 . L
[ x € R?, and P, cannot obey a rotation around any point in that set. On

m(pp,x) -n >0
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FIGURE 3.7, this set lies “between” the blue and red lines.

) m(pa,x) -n <0 . . L
[ x € R?, and P, obeys a clockwise rotation around any point in that set.

m(pg,x) -n <0
On FIGURE 3.7, this set is the half-plane “below” the red line.

Obeys a counterclockwise rotation Obeys no rotation Obeys a clockwise rotation

P, Pa my,, ~m,, |

PB m my, /

Figure 3.7| Depending on the location of the centre of rotation x,., part P, may
obey a counterclockwise rotation (left), no rotation (middle), or a
clockwise rotation (right).

Stereographic projection

For illustrative purposes, it may be easier not to manipulate these semi-infinite planes but rather their pro-
jection on 82, the unit sphere embedded in R3. Indeed, as the whole plane is mapped to the sphere, such
half planes are mapped to spherical caps, making the illustration much more compact and often more read-
able. The interested reader is referred to APPENDIX A for a rigorous definition of the stereographic projection
used in this manuscript. On FIGURE 3.8, the (inverse) stereographic projection maps the half-planes cor-

Py Pa

¥ PB

X

Figure 3.8| The half-planes of possible centres of rotation are projected onto
the unit sphere S? as spherical caps, the so-called caps of rotational
freedom, that are tangent at the north pole (0,0, 1)7.

responding to the set of counterclockwise and clockwise centres of rotation to two spherical caps. These
caps are termed caps of counterclockwise (or clockwise) rotational freedom. The infinite stripe separating
the half-planes (in white on the left of FIGURE 3.8) is mapped to the grey area on the sphere. These three
regions are tangent at the north pole (the projection point, (0,0, 1) in the usual cartesian frame): indeed
as the north pole on S is mapped to infinity on R2, and a rotation with a centre at infinity is the same as a
translation, the fact that the north pole belongs simultaneously to the three regions (to both caps, as well as
to the remaining, grey, region), simply means that, for this assembly, one can find directions of translation
that could be obeyed (for instance a translation to the right, on FIGURE 3.8), or not (translation upwards), by
Py.
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In the remainder of this manuscript, when dealing with 2D rotations, «,. will refer indistinctively to a
centre of rotation ,. € R? orits projection x,, € S2. Any ambiguity can be removed by simply moving back
and forth between these two representations.

Let’s further our understanding of the set of valid centres of rotation. If the separating curve is made of
two line segments between points p;, p2 and ps, of normal vectors n5 and no3 oriented from Py to Py, the
set of possible centres of rotation is given as the solution to the system of unknown z,. € R:

m(p1, ;) - nizx0
m(ps, x,) - N2 * 0
311
m(ps2, &) - 1a3 * 0
m(ps, x,) - naz x 0

where operator x stands for > to find the set of centres of counterclockwise rotation or < to find the set of
clockwise centres. Geometrically, this set is found by intersecting the relevant half-planes in R?, or, equiv-
alently, the relevant caps on S2, as depicted on FIGURE 3.9. Once projected on the sphere S2, such a set can
be seen as a cone, hence the name cone of rotational freedom.

Figure 3.9| Given an assembly of two parts, whose separating curve is made of
two line segments, the cones of rotational freedom are obtained by
intersecting the caps built with each line segment.

More generally, for a polyline made of & line segments, linking points p1, ..., px+1, with normal vectors
N4, ..., N, the cone of rotational freedom is the set of points solution to the system of unknown x € R2:

m(p1, @) -ng *0
m(ps, ) -nyx0
m(p2, ;) 12 %0 m(p;, x,;) n;x0
— Vi e [1,k], (s, @) 3.12
m(pit1, @) N *x0

m(py, Tr) - Mg * 0

m(pk_H, :I)T) Ny * 0

Forinstance, on FIGURE 3.10, given the assembly on the left, there only exists the cone of clockwise rotation:
no counterclockwise rotation (and no translation since the north pole does not belong to the set) can be
obeyed by P;. The cone of rotation may also be reduced to a single point, as depicted on FIGURE 3.10, right.
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Py

]>] PO

Figure 3.10| P, may obey only clockwise rotations around centres belonging
to a closed surface on the left; it may only obey a counterclockwise
rotation around a unique centre on the right.

SYSTEM (3.12) can be written in matrix form:

A,x,.*b 3.13
Where subscript ,. stands for rotation, and:

To — T Y2 — Y1 (w2 — 1)@ + (Y2 — Y1)

To — T Y2 — Y1 (w2 — 1)@ + (Y2 — Y1)Y2

T3 — T2 Ys — Y2 (3 — 22)z2 + (Y3 — Y2)Y2

A= | z3—22 ys—yo | ERP*F? b= (3 — z2)23 + (Y3 — Y2)U3 € R?

Thil — Th  Yrtl — Yk (Thy1 — 2r)Tr + (Yrt1 — Yr) Uk
Tkl — Tk Yhtl — Uk (Tht1 — Tk)Tht1 + (Yk+1 — Yk)Ykt1

With this formalism, the cones of rotational freedom (be it counterclockwise or clockwise) are the sets:

cev = {x € R?, A,x > b} 3.14a

C¥ ={x cR? A,z <b} 3.14b

Where superscript ““* (resp. “*) stands for counterclockwise (resp. clockwise).

Translation and rotation

As hinted on FIGURE 3.9, when a cone of freedom extends to the north pole of S? (the projection point), then
the part obeys a translation (as a rotation around a centre at infinity is the same as a translation). Given a
polyline, one only needs to build the matrices A, A, and vector b and compute the sets C;, C$* and CS¥
given by SYSTEMS (3.3) and (3.14), see FIGURE 3.11.

Note that, quite surprisingly, it is possible to find assemblies obeying rotations but whose translation
cone is reduced to a single direction, as shown in FIGURE 3.12. In this case, the centres of rotations are
aligned.

DIRECTIONAL BLOCKING GRAPH - DBG

Should the reader be unfamiliar with graph theory, and particularly with the notion of strong connected-
ness, a quick introduction to this area of mathematics is given in APPENDIX B.
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P,

1
X ap
Figure 3.11| From left to right: an assembly made of two parts, the cones of ro-

tational freedom (counterclockwise in blue, clockwise in red) and
the cone of translational freedom.

Py

D Z
YI Py YI
x Y X
X

Figure 3.12| The (counterclockwise) rotational cone is reduced to an arc, im-
plying that the translational cone is reduced to a unique direction.

Definition

A Directional Blocking Graph (DBG), defined by Wilson and Latombe in [113], of an assembly A for a motion
xisadirected graph G(x, A) whose vertices P; correspond to each of the N +1 partsin the assembly A and
an arc from vertex P; to vertex P; means that part P; is blocked by part P; in A for an infinitesimal motion
of part P; along motion x while holding part P; in place.

For instance, referring to FIGURE 3.13, the DBGs G(x, A) for different motions « are given. Let us first take a
look at the behaviour in translation of the assembly (the rightmost part of the figure). The cone of transla-
tional freedom C; is depicted in blue, and for any & € C; (on FIGURE 3.13 one such x, in blue, is taken in the
interior of the cone and another one on its extremity), then by definition of C;, P, obeys this x, that is to say
that P; is not blocked by F;. On the other hand, P is blocked by P; along such translation. Thus, the DBG
G(zx, A) contains only one arc, eg—,; (from P, to Py), stating that P, is blocked by P; for a translation along
x. Conversely, as the arc e;_,q (from P to Py) does not exist, the graph encodes the fact that P, obeys x. If
x is taken outside of the cone of translational freedom of P; (but not inside the antipodal cone), as figured
by the two « in black, then neither P, nor P, obey x. This blocking relationship is encoded in the relevant
G(z, A) by two arcs, from P; to Py and vice-versa. Finally, because the relation P, is locally free to translate
along x relative to P; implies that P; is locally free to translate along the opposite direction —x relative to P;
the DBG G(—x, A) can be deduced from G(x, A) by simply reversing the orientation of the arcs in the latter
graph, [113].

The same principles apply to build a DBG in rotation: on FIGURE 3.13, middle, for any x € (CS¢% U CEY)
(shown in blue and red), the DBG G(x, A) contains only one arc, eg_,1. Foranyxz € 82\ (C&% UCEY)
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Py

Figure 3.13| An assembly made of two parts Py and P, and the DBGs asso-
ciated with different centres of rotation (middle) or directions of
translation (right).

(shown in black) neither P, nor P; can obey a rotation around « and thus both arcs e; ¢ and ey_,; existin
G(z, A).

A useful property of a DBG G(x, A) is that we can easily deduce whether the assembly A is interlocked

for z by checking the strong-connectedness® of the graph: if the graph is strongly connected then every part
is blocked by another. If not, then it can be decomposed into strongly connected components (possibly re-
duced to a single vertex) where at least one component has no outgoing arc and, as such, the corresponding
subassembly obeys x. For instance, on FIGURE 3.14 (where motions are restricted to translation, for illustra-
tive simplicity), the cones of translational freedom C, ; of part P;, i € {1, 2}, are shown on the left; both are
reduced to single directions, ¢; and x. Top row: the DBG associated with the horizontal direction of trans-
lation, G(x1, A) has two strongly connected components that are colour-coded: {P, } inred and { P, P}
in blue. Indeed, starting from P; one cannot reach any other node but P; while following the arcs’ orienta-
tion and, similarly, if one starts from any node in { Py, P>}, one can only go back and forth between these
two nodes. As no edge starts from P4, it is not blocked by any other node and hence it obeys ;. On the
top row still, DBG G(x2, A) is strongly connected: its strongly connected componentis { Py, Py, P>} as one
can convince oneself by walking from any node to any other. Thus every part is blocked by another and the
assembly is deadlocked for x5 (an upwards motion of translation). In short, these two DBGs say that A may
be disassembled by moving P; along 1, but it isimpossible to disassemble A by moving any part P; along
9.
On the bottom row of FIGURE 3.14 part P; has been removed and the assembly is now made of two parts
{Py, P, }. G(x1, A) is strongly connected, meaning that one cannot move any part along 1, and the one as-
sociated to the upwards translation, G(x2, A) has two strongly connected components, namely { Py } (blue)
and { P} (red). Moreover, since no edge starts from P, the latter is not blocked by P, for that upwards di-
rection x,: it can obey such x5 and as such A can be disassembled.

Note that identifying the strongly connected components of a graph can be solved by polynomial algo-
rithms, [97], and thus, from a computational point of view, it is a cheap operation.

Computation

The computation of a DBG for a given motion x is straightforward. Let A = { P, ..., Px } an assembly made
of N+1 polygonal parts. To build the DBG G(x, A), the parts are looped upon, and the DBG is built incre-
mentally, starting from a graph with no edge, by considering every pair of parts in contact.

Let P; and P;, j < 4, be two parts in contact and let S denote the set of line segments shared by both parts.
Assume the normal vectors nj, of the segments s, € S to be pointing towards P;.

Yinformally speaking, a directed graph is strongly connected if one can walk along a path respecting the orientation of the edges
between any couple of vertices (P;, P;). See APPENDIX B for a rigorous definition.
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A= {P07P17P2}

])
: G(z1,A) G(x2,A)

G(xy,A) G(x2, A)

Figure 3.14| The strongly connected components of each DBG are colour-
coded (blue and red). Top row: an assembly made of 3 parts and
the DBGs associated with the horizontal to the right and verti-
cal upwards directions of translation. Bottom row: assembly ob-
tained after removing P, and the corresponding DBGs.

Translation
If the motion considered in the DBG is a translation along a given vector x; € S, then P; is blocked by P;
if at least one segment in S has its normal vector pointing away from x;:

dsi €S, ny - x < 0 <= P;isblocked by P;
And edge e;_,, is added to the graph G(x;, A). Conversely
dsi €S, ny -z, > 0 <= P;isblocked by P;

And edge e;_,; is added to the graph G(x;, A).

Rotation

The motion is a counterclockwise rotation around a given centre x,. € R2. Foreach segment sy = [px, Pr+1] €
S, the instantaneous directions of motion of the endpoints, m,, and m,, ., are calculated. Part P; is
blocked by P; if the instantaneous direction of motion of a point on the boundary is pointing inside P;:

dsp €8, my, -n, <0ormy, ., -ng <0 <= P;isblocked by P;
And edge e;_, ; is added to the graph G(x, A). Conversely
dsi €8, my, -n, >00rmy, ., -ny > 0 <= P;isblocked by P;

And edge e;_,; is added to the graph G(x, A). Had we considered a clockwise rotation, the role played by
< and > in the two equivalences above would have been switched.
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Py

~

Figure 3.15| S and S? are partitioned into cells of dimension 0, 1, and (in the
case of S? only) 2.

NON DIRECTIONAL BLOCKING GRAPH - NDBG

Following the definition of a DBG, Wilson and Latombe introduced in [113] the concept of Non Directional
Blocking Graph (NDBG). Simply put, the NDBG of an assembly A is simply the concatenation of all DBGs
G(x, A) for any motion « (be it a rotation or a translation). In concrete terms, given an assembly A =
{Po, ..., Pn}, for any pair of parts (P;, P;) in contact, SYSTEM (3.1) and SYSTEM (3.9) are solved to get the
cones Cy, Cc* and CS™. The set of cones C; partitions the unit circle Sy into an arrangement of cells: cells of
dimension 0 (the endpoints of the cone) and of dimension 1 (the open arc of circle between two consecutive
endpoints). Similarly, the set of cones of rotational freedom partition S? into cells of dimension 0 (endpoints
of the cone), 1 (open arc of circle between two consecutive endpoints) or 2 (open surface between arcs).
Such cells are illustrated on FIGURE 3.15: each part P;, i € {1,2, 3}, defines cones C; ;, Cﬁf;” and Cﬁ};’ that
partition S or S? into cells of dimension 0, represented by dots of colours, dimension 1, depicted by the
arcs between two dots, and in the case of the rotational cones on 52, cells of dimension 2 (patches of surface
between arcs). Note that the intersections of cones C;9 and C:%” defines cells of dimension 0, 1 and 2, as
exemplified in the zoomed-in portion of the figure.

The DBGs over a given cell are regular meaning that the directed graphs remain constant when « varies
over it, [113]. Hence one can associate each cell (be it of dimension 0, 1 or 2) with a unique DBG. The NDBG
of an assembly A can therefore be defined as the locus of motions (S! in translation, S? seen as the inverse
stereographic projection of R? in the case of rotation) partitioned into cells along with the DBGs associated
to each cell. Wilson and Latombe in [113] also show that for a given cell, a subassembly S of A is locally free
to translate/rotate if and only if there is no arc connecting S to A \. S in G(x, A) for a « taken in that cell.
Worded differently, if G(x, A) is strongly connected, then no subassembly can move along x; if there is at
least one strongly connected component (thatis not the full graph) in G(x, A) without any outgoing arc then
the corresponding subassembly is free to translate along . What makes NDBG a powerful tool to compute
the relative motions of parts is that one needs only to look for strong connectedness in its constitutive DBGs
to find the interlocking state of an assembly.

Also, in [112] Wilson and Matsui state the following property:
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Py

T/f‘" &H-OO-06 ©

—_—

Ty

Figure 3.16| The DBG G(x, A) is obtained by performing a union operation of
the DBGs G(x4', A) and G(zF, A).

Property:
For any two cells f; and f, such as f is on the boundary of fs, if there exists an arc from P; to P; in G(f1),
this arc also exists in G(f2).

Where G( f) denotes the DBG of cell f. What this property means is that if there is an arc in the DBG of a cell
of a given dimension, then this arc also exists in the DBG of neighbouring cells of higher dimensions. This
property is illustrated on FIGURE 3.16: x, in red, represents a direction of translation taken in the open cone
C;.5 and one can notice that G(x, A) is the union of G(z4£, A) and G(x#, A), the DBGs of the endpoints of
the cone; arc ez_, 5 is taken from G(mgﬂ A)and arce;_,o from G(z%, A) (highlighted in red on FIGURE 3.16),
while all other arcs are present in both DBGs.

This property proves to be extremely useful: as we have already understood, the DBGs associated with
each cell state whether a part may obey any motion in that cell. Yet, as the DBG of a cell of higher dimension
can be deduced from the DBGs of neighbouring cells of lower dimensions, one notices that to fully charac-
terise the interlocking state of an assembly, i.e. to build the NDBG, it is sufficient to calculate only the DBGs
associated to cells of dimension 0, which are in finite (relatively low) number! Following the definition of
[105], we call these DBGs the base DBGs of the assembly. If all such base DBGs are strongly connected, but
the one associated with the motion of the key P; which must have 2 strongly connected components (one
being reduced to vertex P, the other being all other vertices), then, using the property, the DBGs for every
other motion are also strongly connected, and thus the assembly is interlocked.

We would like to insist on the definition of “interlock” in this dissertation. By definition, a DBG treats only
the motion of one part relative to another one. It does not convey any information on the blocking relation-
ship between a part and other ones when applying a motion to many parts at once. In that sense, a DBG
does not carry enough information to say whether an assembly is interlocked. That being said, even though
we should say that an assembly A is weakly interlocked for a given & when the associated DBG G(x, A) is
strongly connected, we will, in the remainder of this manuscript, use in its place the word interlock, for
simplicity. For instance, regarding translation only, the assembly of FIGURE 3.17 has a DBG (regular over
all S') whose graph is strongly connected, meaning that by applying a translation z; € S! to every single
part, once at a time, the puzzle cannot be disassembled. Yet, as seen in this figure, it is not interlocked as
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simultaneous motions along specific directions allow the disassembling of the assembly.

[N
\
\
\
\

& ¢

Figure 3.17| An example of a non interlocked assembly: by applying simulta-
neously a motion along the directions depicted by red arrows, the
puzzle can be disassembled. Inspired by Julien Glath’s work, [38].

CONCLUSION

This short chapter aimed at recalling a few basic facts about 2D interlocking assemblies. SEcTION 3.1.1
showed that given a separating polyline (p;);c[1,x], the cone of freedom of motion, i.e the set of motion
it can obeys is given in translation by the set C; and in rotation by the cones CS“ and CS™. These sets are
built usinginequalities of the form n;-y > 0 where y stands for either the instantaneous direction of motion
of the end points of the segment i with respect to a centre of rotation, or a direction of translation (which is
remarked to be essentially the same thing as an instantaneous direction of motion, thus unifying the con-
cepts in translation and rotation).

Introducing these inequalities helped us understand how the Directional Blocking Graph of an assem-
bly is built for a given motion x, as seen in SECTION 3.1.2. Once the graph is available, its edges (or lack of)
teaches us about the blocking relationships in the assembly along . In particular, we understood that if a
DBG G(z, A) is strongly connected, then the assembly is interlocked for motion x.

The Non Directional Blocking Graph (NDBG), presented in SECTION 3.1.3, is built upon the notion of DBG
and fully assess the interlocking of an assembly for all directions of motion. Only a discrete and finite set of
base DBGs needs to be calculated for the interlocking to be fully known. Moreover the base DBGs give all
the disassembly sequences (and thus, by reversing the order, all the assembly sequences). Indeed at each
disassembling step, the strong-connectedness of the DBGs are calculated. When one DBG is not strongly
connected, the part(s) associated to one of the strongly connected component can be removed along the
motion associated with that DBG. The corresponding vertex (or vertices) and adjacent edges are removed
from all other graphs and the next disassembling step may start, and such algorithm goes on until we are
left with part F.

While the theory behind the NDBG completely works for 3D assemblies, we have not explained how 3D
motions are encoded, and thus we cannot explain which set of motion, which cone, a 3D part may obey.
Unit dual quaternions will be introduced in SecTioN 5.1, and following that the computation of the cone of
freedom of motion for a 3D part will be explained in SECTION 5.2. As for now we leave aside the 3D world,
and CHAPTER 4 focuses on reverse-engineering the knowledge gained in this chapter so it can be used to
generate 2D interlocking assemblies.
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CHAPTER 4

CREATING AN ASSEMBLY

In SECTION 3.1.1, we have understood how the cones of freedom of motion can be calculated given an as-
sembly. The aim of this chapter is to reverse-engineer this relationship: how, given an ordered list of desired
cones of translational freedom and centres of rotation, a 2D assembly obeying these motions can be auto-
matically generated. We will first investigate how shall the first part Py, the key, be created, or equivalently
how to create a 2-parts assembly. Two approaches are explored: the first one, described secTion 4.1.1, calls
to basic and intuitive concepts but becomes cumbersome to implement when it comes to a part obeying a
rotation. Still, it seems to be a good and easy way to first discover the issue we are trying to solve. The sec-
ond one, described SEcTION 4.1.2, is much more mathematically-inclined, but has the advantage of keeping
things simple in rotation and is readily scalable in 3D. Once the key is created, SECTION 4.1.3 focuses on how
the rest of the parts shall be created.

Let us first start this study by creating a 2-parts assembly.
At the most fundamental level, generating such an assembly boils down to drawing a separating curve link-
ing two points on the boundary of the design domain. A first part is created by the geometry on one side of
the curve, and a second part by the geometry on the other side.

CREATING A 2-PARTS ASSEMBLY WITH TURTLE GRAPHICS AND A MARKOV PROCESS

While this section goes into greater details, most of the results presented here are taken from our article

[36].

Definitions

Turtle graphics is a popular way to introduce children to the basics of coding: a virtual Turtle is displayed
on the screen of the computer and moves in the 2D plane according to instructions given by the user while
leaving a trace on its path. These instructions are of the form “Walk by [ unit”; “Rotate by 6 radians”. The
children are then tasked to find and code a sequence of instructions that lead the Turtle to draw some
objective design: a square, a star of David, or any more complex shape. For instance the sequence of in-
structions:

walk 1l
rotate 90
walk 1l
rotate 90
walk 1l
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Figure 4.1| A polygon drawn by a Turtle.

] rotate 90°
[ walk1l

[ ] rotate 90°

yields the 1x 1 square presented on FIGURE 4.1 (where the Turtle is shown in both its initial and final posi-
tion and orientation).

In a spirit similar to [69], in this first approach we will use such Turtle as an agent that draws the poly-
lines partitioning the design domain into parts constituting our assembly.

In probability theory, a Markov process, or Markov chain, ([31]) is a stochastic model describing a se-
quence of possible events in which the probability of each event depends only on the state attained in the
previous event (it is memoryless). A state is said absorbing if once entered the probability to leave it is 0.
More specifically a discrete-time Markov process is a Markov chain with a countable number of states and
the chain iteratively transitions between states at discrete time steps according to some probabilistic rules.
In the present study, we introduce a discrete-time Markov chain with a finite number of states and one ab-
sorbing state, herein referred to simply as Markov chain, to play the role of children in Turtle graphics as the
one making up the sequence of orders to move the Turtle with.

Overview

Formally speaking, such a Markov process M is defined as a tuple (V, P) where

m  Visthe set of possible states that the chain will transition between.
Inourcase V = {start, rotate, walk, snap, end}.

m  State end is absorbing: once M reaches this state it cannot leave it.

m  Pisthe set of probabilistic rules specifying which transitions are available as well as their weights. It
defines mappingsp : ¥V — V. We provide here a succinct description of the rules emitted by the chain
M and how they are interpreted by the Turtle . More details are given below.
Seven rules are defined in P:

0. start — rotate
The Turtleisrandomly initialised on the boundary of the design -
domain and this order simply tells it to choose a random orienta- o }9
tion parameterised by angle 6. i 4

1. rotate — walk

The Turtle has already chosen an orientation and must now —

walk forwards by a random amount.
2. rotaterend

The Turtle has already chosen an orientation and walks forward

until meeting an edge of the design domain.
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3. walk — rotate

The Turtle has walked to a new position and must now choose
a new random orientation compatible with the prescribed cone —
of translation or centre of rotation.

4. walk+~> snap
Context: the leftmost blue cone represents the cone of translational freedom prescribed by the
user: the final design must obey any direction in the cone bounded by x#* and . The Turtle
has walked to a new position and must now choose to orient along either +x{ or Fa?.

/3\

B
+xy

5. snap+—>walk
Similar to rotate — walk: the Turtle has snapped to an orien- —

tation and walks forward by a random amount.
6. snap+~rend

Similar to rotate > end: the Turtle has snapped to an ori-
entation and walks forward until meeting an edge of the design —
domain. 5 biis

When two rules apply to the same left-hand side (for instance rotate +— walk and rotate +— end)
then the Markov chain M randomly chooses one of the two with some predefined probability as de-
picted on FIGURE 4.2.

L —po walk P2

Po

=3
start rotate P snap

1*}?1 1_]93
end

Figure 4.2| M transitions between states with the predefined probabilities p;.

These strings are iteratively composed into a random sentence, for instance on FIGURE 4.3 the full sequence
emittedby M isstart — rotate ~— walk ~— snap — walk — rotate — walk — rotate — walk
— rotate — walk — snap — walk — rotate — walk — rotate — end. At each iteration of
the algorithm, the Turtle receives one of these five strings and acts accordingly.
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input start +—> rotate +— walk +— snap + walk +—...— rotate > _.end

: P
xr L
—_—

P

Figure 4.3| A step-by-step decomposition of the Turtle ’s trajectory. High-
lighted in red on the far right are the line segments corresponding
to a snap order.

Since a sequence of the form [rotate or snap] — walk defines a segment and a polyline is simply con-
stituted of concatenated line segments, this Markov process M is sufficient to draw a polygonal assem-
bly. We do not need to add rules of the kind rotate — rotate as the final orientation could very well
be obtained after a single rotate order. Similarly a walk — walk can be obtained with the sequence
walk — rotate — walk where the Turtle happens to keep the same orientation before and after the
rotate order. We will prove below that the Markov chain M aided by the Turtle can reach the full search
space of polygonal assembly.

We propose to define a Markov process M that will instruct a Turtle so that the latter draws a polyline
dividing the design domain into two parts, one of which obeying a user-prescribed motion .

Generating a part obeying a translation

Let us first describe how to create a 2-parts assembly obeying a translation.

The user decides on two vectors of translation 4! and = bounding the cone of translational freedom of
the would-be part P;. Enforcing 4 = ¥ leads to the special case where the cone is reduced to a single
vector that is to say where P, must translate along one direction only. Then a Markov chain M emits the
start order which initialises a Turtle randomly on the boundary of the design domain. In subsequent
iterations, M tells the Turtle whether to orient itself or to move. To comply with a walk order, the length
[ by which the Turtle moves is randomly picked in a user-defined interval [lyin, Imax] (to have consistent
step size, or edge length). To obey a rotate order, the rotation angle 6 is randomly chosen in an interval
such that the normal vector n of the line segment is such that n - :c‘f‘ >0andn - :c’lg > 0. The reader’s
attention is drawn to the fact that this constraint on 6 is enough to prevent the Turt1e from crossing its path.

If the sequence of orders and random values leads the Turtle to wander outside of the design domain,
a backtracking procedure is executed to replace it inside. At the end of an iteration, M randomly applies a
production rule on the latest order it gave to get the one for the next iteration. Finally, when M emits the
end order, the Turtle walks until meeting an edge of the design domain.
Letting the Turtle move like this is likely to yield appalling results for two obvious reasons:

[ First, if the Turtle cannot cross its own path, nothing prevents it from drawing very fine details (where
the angle between two successive line segments is close to ), which are impossible to manufacture
and would anyway be very brittle. To prevent that, the Turtle is instructed to keep away from the
previously drawn segment, by the mean of a user-chosen maximal angle between two successive seg-
ments.

m  Second, and more importantly, the random separating polyline obtained at the end will be such that
the actual cone of translational freedom of P strictly includes the user-prescribed cone bounded by
x{ and 8. As an extreme example, imagine that the user specified avectorz{! = ¥ = x; = (1,0)7
aligned with the x axis (meaning that the user wants P; to translate along the horizontal axis only) and
the Turtle drew asingle line segment, asillustrated on the top row of FIGURE 4.4. Even though P; does
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obey x; it also obeys a full half-space of motion which is undesirable behaviour.

output prescribed CTF
Py
input P, /
actual CTF
Zr
> output
bed CTF Wi 5.
prescribed CTF ith Snap
Py

prescribed and actual CTF

Figure 4.4| CTF stands for Cone of translational freedom. Two snaps are neces-
sary to match the actual CTF of the polyline to the user-prescribed
one.

Toreduce the actual cone of translational freedom of P; to the user-prescribed one, the Markov chain M
is enriched by a special state that we call snap: it forces the parameter 6 to be chosen such that the Turtle
is oriented either along +x4! or Fx . The signs +1 and 1 are randomly chosen at the initialisation of the
Turtle . This ensures that when the Turtle snaps it draws a line segment whose unit normal vector n is
such that eithern - {* = 0 and n - ¥ > 0 or vice-versa by switching the superscripts 4 and 2. As such,
the Turtle draws a valid polyline (i.e., such that the cone of translational freedom of P; exactly matches
the user-prescribed cone) if and only if it snapped at least twice, once along +x1* and once along ¥z, see
FIGURE 4.4 bottom row, which gives a computationally light manner to check whether a polyline is valid.

Surjectivity of the Markov process M

We justify here that the Markov process M associated with the Turtle are sufficient to reach any polygonal
assembly, i.e the mapping from the set made of M and the space of the Turtle ’s parameters (/ and 6) to
the space of polygonal assembly is surjective.

Any polyline separating two parts must fit in the design domain. This observation gives an obvious upper
bound on the value of I,,,x, Which could be the length of the diagonal of the bounding square of the design
domain. In addition, setting [,,;, = 0 ensures that the Turtle can draw infinitely small line segments and
as such the full space of polygonal parts can be reached. But the mapping is not injective: for instance it is
possible, although unlikely, that the magnitudes to walk or rotate by chosen by the Turt1le for the sequence
rotate — walk — rotate — walk on the one hand and rotate — walk on the other lead the same line
segment, see FIGURE 4.5. As such two identical polylines can be obtained through two different sequences
of orders and the mapping is not injective. Moreover, from a practical point of view, letting the Turtle
draw infinitely small segments might not be desirable and the user may want to reduce the search space
to the subset of polylines having a minimal segment length /,,;, > 0. The upper bound /,,,,x can also be
reduced to some smaller value as any polyline with a segment length greater than [,,,,, can still be reached
by walking several times in the same direction. Thus the mapping to this subset is still surjective. Note that
this mapping can be made injective by reducing a sequence emitted by M to the smallest possible word by
tracking the times where the Turtle rotated by 0 rad (or snapped consecutively) and replacing instructions
“rotate(f;) — walk(l;) — rotate(0) — walk(l;y1)” with “rotate(6;) — walk(l; + l;iy1)"
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rotate — walk

Figure 4.5| The same line segment can be reached by walking twice in the same
direction by a magnitude é or once by a magnitude [, for some [ €
[lmin, lmax], and thus the map is not injective.

Generating a part obeying a rotation

The process to create a 2-parts assembly obeying a rotation is basically identical to the one creating an as-
sembly obeying a translation: the user specifies a centre of rotation x,. € R? (.. for rotation) and the Markov
process M successively tells the Turtle to walk, snap or rotate until the end is reached. The only key
difference is in the choice of the angle 6 to orient the Turtle . Indeed, in translation, the cone given by
the bounding directions 7' and = is chosen once by the user and stays fixed. It is thus easy to calculate
the bounds in which #; must lie for the normal n; of the i*" line segment to lie in the cone and thus for this
segment to obey the translation. When drawing a polyline obeying a rotation, the angle 6; depends on the
location of the Turtle with respect to the location of the centre of rotation x,- as well as the step size [;. Let
us explore this relationship.

Notations: let p; = (x;,4;)7 € R? be the current position of
the Turtle, and let §; and [; be the orientation and length of the my, ., \
segment drawn by the Turtle between p; and its next position
piv1 = (Tiv1,yir1)T = pi + li(cos0;,sin6;)T, as shown on the
inset. The goal of this section is to find in which set shall §; and
l; be chosen so that the line segment [p;, p;11] may obey a rota-
tion around a given centre point &, = (z,,%,)7 € R2. Assuming
p; # x, (a very reasonable assumption stating that the Turtle is

not exactly on the centre of rotation) we can define the instanta-
neous directions of motion of point p;, p;1 with respect to «,., m(p;, ) and m(p;;1, x,-), abbreviated

my, and my, . .

Referring to SYSTEM (3.12), one has (with n; = (—siné;,cos#;)” the unit normal vector of segment
[Pi, Pi+1])
[pi, Pi+1] Obeys a rotation around x, < 41

With x standing for > if the rotation is counterclockwise, < if clockwise. Let us introduce a sign s = +1 if
the rotation is counterclockwise, —1 otherwise. Then SySTEM (4.1) is rewritten:
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. sm;-my, >0
[pi, Pi+1] Obeys a rotation around x, <= 42
ST - Mp, 4 >0

—sin 6;
s “my, >0
cos 0;
<~ 43
—sin 01 — sin 9,
S . mpi T lz = O
cos 0; cos 0;

Withm,, . = m,,, +1;(—sin6;, cos 6;)T. For notational convenience let, in this section, Az = z; — x,. and
Ay = y; —y,-. APPENDIX C.1 carries out the calculations leading to the angles defined below. When the right
hand side is defined let:

= 2arctan Z4
0%, — 9 arctan 2y—llzi—|| to arctan 3/
o Az
g O p®
= min
6% — 2arctan Ayt||lzi—z.|| th (912, 912)
x B 5 N
00 — 9 arctan —2v=VIl@i—e =1 6> = max(05,07%)
3y = 2arctan — S
—Ay+y/|lzi—z |20 3 = min(f5),05,)
0¢, = 2arctan —2 i i
L l,i—Azx 0 . 6@ 9@
4, = max(03,05))

Afew calculations, developed in APPENDIX C.3, provide the enumeration of cases one need to look at to solve
for 0;, presented below.

1. IfAz =1
(a) If Ay = 0:
m  Ifs=—1:6; € 0,nosolution.
n If s =+1:6; € [61, 65]
(b) IfAy#£0:
n Ifs=+1:6; € [61,0-]
m Else:

= |fAy >0:0; € [—71',90]
- |fAy<O: 91‘6[90,7'(‘]
2. ElS@Iprzf.’BH <l
(a) Ifs=—1:6; € 0, nosolution.
(b) Ifs = +1:
[ If Ax = 0:
- IfAy<0:6; € [-7,0]
- IfAy >0:0, € [0,7]
[ ] If Az > 0: 91 S [91, 92]
m fAx<0:6; € [—m,01] U [02,7]

(a) If Az = 0:
| Ifs =—1: 0; € [6‘3,94}
[ If s = +1:

- IfAy<0:0; € [-m,0]
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- IfAy>0:0; € [0,7]
(b) IfAz #£0:

m Ifs(l; — Ax) <O
- IfsAz > 0: 0, € [max(0s,0;), min(04, 62)]
- IfsAz < 0:0; € [05,04]

m Ifs(l; —Az) >0
- IfsAzx > 0:0; € [01,0-]
- IfsAz < 0:6; € [—m, min(f3, 61)] U [max(fy, 02), 7]

Once this enumeration of if- else if - else conditions is implemented, the orientation of the Turtle is

chosen in the corresponding interval, and we can be sure that the polyline drawn as such obeys a rotation

around x,.

Notes and issues related to the behaviour of the Turtle

APPENDIX C.4 proves an intriguing property of the Turtle:

[ If s = —1, (i.e. the user asks for a part P, obeying a clockwise rotation around centre «,.) APPENDIX
C.4 proves that in this case, centre x,. becomes attractive, meaning that the Turtle must always get
closerto x,: ||pi+1 — .|| < ||pi — xr]|.

[ Onthe contrary, if s = 41 (one wants a counterclockwise rotation) then «,- becomes repulsive: ||p;+1—
|| > ||pi — z].

To further our understanding of the Turtle, several other properties may be proven:

= We state that 0, — 60; = 7

Proof.  Since x ~ arctan(x) takes value in] — 7, 7 and on this interval cosine is positive, one
. 1 :
has for z € R: cosarctan(z) = 74— Moreover sinarctan(z) = == Leta be such that

01,2 = 2arctan(a; 2).

92701 2 61 2 1
coSs = COS — COS — - SIn — SIn —
2 2
. 1 1 + as aq
Vitai/1+a} 1+a3\/1+a?
1+a1a2

V1+aiy/1+a3

And:
A, — |lp; — x|| A g =
b= 14 el sl Ayl
AL+ AY —||p - 2|
= Y
=0

We have proven that cos 92—591 = 0 and hence (since 6, > 6;) that 6, — 6, = 7. It means that when the
the orientation of the Turtle must be either § € [0, 65] or 0 € [—m, 61] U [f2, 7] then angle 6 points
in the half-plane whose bounding line crosses p; and is orthogonal to the vector p; — .. O

m A careful examination of the enumeration of cases above, as well as APPENDIX C.3, shows that when
s = +1angles 03 and 6, do not appear: the Turtle must choose its orientation 6 either in the interval
[61,02] or [—7, 01]U[02, 7r]. Bearingin mind the previous remark, we see thatwhen s = +1, the Turtle
must orient itself in a half-plane pointing away from the centre x,..
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Figure 4.6| Left: sets of possible next position of the Turtle, p;+1, for a fixed
l;. Right: sets of position when [; is left variable between two
bounds.

These properties are illustrated on FIGURE 4.6: the current position of the Turtle is p; at (0.12,0.12)7
from the centre x,.. On the left of this figure, for a given I, = 0.07, angles 6;, ¢ € [1,4] are calculated using
the enumeration given above. The Turtle will have to move to its next position p; ;1 either in the range
of positionsin blue if s = —1 orinred if s = +1. On the right of FIGURE 4.6 [; is left variable in the range
lmin = 0.01 and [,,,4, = 0.1; as such it allows to see the region on which the Turtle shall go. FIGURE 4.7
shows the same data but for multiple Turtle ’s position p;, arranged in a square grid centred on «,. on the
left, along a spiral around x,. on the right. Positions p; are shown using small black dots while the centre
x,. is depicted as the biggest black dot. On the left, we can confirm that, if s = 41 the Turtle shall move in
a half-plane opposite to where the centre x,. lies, and there is no relationship between the angle 6; and the
step length /; (the red semi-disks are pointing away from «..). The blue cones show that, when s = —1, the
Turtle shall only move towards .., and the set of possible positions is highly non-linear in [;, 6;, Ax and
Ay. On the right of FIGURE 4.7, only the regions of possible positions for s = —1 is shown. This zoomed-in
view illustrates again the non-linearity of these sets, and also shows that if p; is too close to «,- and /; is too
large, no solution can be found, the Turtle is stuck.

Figure 4.7| Left: zoomed out view of the sets of possible positions for the next

position p, 41 for various positions of p;.. Right: zoomed in view of
the sets for s = —1 and for various positions of p;.
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FIGURE 4.8 shows the limit trajectory of the Turtle in blue for s = —1 (resp. inred for s = +1): fora
given [;, the same angle 6;, i € {3,4} (resp. i € {1,2}) was chosen as to maximise (resp. minimise) the
ratio % at each successive iteration. The starting position of the Turtle is depicted by the cartoon
image of a turtle. In literary words, it is as if the Turtle was trying as much as possible not to go near x,.
when s = —1 (resp. not to move away from x,. when s = +1). Yet, as seen in this figure, when s = —1 the

Turtle is inescapably drawn to the centre x,., acting like a black hole, while when s = —1 the Turtle can
do nothing but drift away from .

[
XLy [ [
. i

Figure 4.8| The limit trajectories of the Turtle: if s = +1 the Turtleisdrawn

to the centre @,; if s = —1 the Turtle is repelled by it.

This attractiveness of x,. happens to be quite problematic: if . is inside the design domain and s = +1

then the Turtle may get closer and closer to x,. up to the point where ||p; — .|| < I; and no solution exists:
it will be unable to draw a valid partitioning curve. Such situation is illustrated on FIGURE 4.9.
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Figure 4.10| Designs obtained with the Turtle and the Markov process. From
top to bottom: the first two rows present assemblies obeying pure
translations with the prescribed cone of freedom on the left. The
next two rows show assemblies obeying pure rotations, with the
location of the centres shown on the left. The bottom row shows 69
an assembly whose key P; obeys both a translation and a rota-
tion.
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A BETTER APPROACH TO CREATE A 2-PARTS ASSEMBLY: GUIDED PROJECTION ALGO-
RITHM

The approach combining a Markov process and Turtle graphics turns out to be problematic for three reasons:

m  As explained at the end of the previous section and shown on FIGURE 4.9, it may happen that the
Turtle gets stuck when s = +1 and the centre of rotation is ill-placed. This property is highly un-
desirable, as one can only start again the algorithm from scratch when it happens, thus wasting both
time and computational resources.

m  Secondly, while this approach ensures that the whole space of separating polyline is explored, it leaves
very little control to the user: one can, at most, only specify the starting point of the Turtle and the
range [lmin, lmaz| Of the step length to guide the design. This lack of control can lead to the creation
of degenerate designs that are of no interest for any practical use.

m  Finally, this approach does not seem to be scalable to 3D: we could not find any way in which a Turtle
(or several) flying in space would generate a 3D assembly.

That being said, it is still possible to generate interlocking assemblies with the Turtle . Our article [36], as
well as our video [78] show built assemblies with novel shapes that are interlocking. Some examples are
shown in FIGURE 4.10.

The desire to do better led to an approach that solves these three points while still leaving the possibil-
ity to explore the full space of polygonal assembly. It is derived from the guided projection algorithm (GPA),
presented by Tang and coauthors in [96]. Their paper is briefly summed up hereunder.

This article is part of the field of computational geometry for architectural design. It develops a frame-
work for fast, interactive, form-finding of physically stable polyhedral meshes through a constrained iter-
ative optimisation scheme. The authors pay special attention to several constraints, such as boundary in-
terpolation, planarity of faces, statics, panel size and shape or enclosed volume, but their approach can
easily be adapted to handle other constraints. The problem to solve is simplified by introducing auxiliary
variables and equations to ensure that the constraints are at most quadratic. The gradient is therefore easy
to calculate and takes part in an iterative, Newton-type, optimisation program. Successive solutions are
biased (projected) towards both low-energy of a fairness metric and low distance to the previous solution.

This summary may feel quite abstract, so let’s dig into the specifics of the framework by solving a toy
problem.

Toy example

Assume we want to solve the following cubic equation:
23 —222 —x4+2=0 4.4

Whose roots trivially are 1, -1 and 2. The method described in [96] shall find one of these roots. The first step
is to introduce as many variables as needed to make the problem at most quadratic. Here we only need to
introduce one variable y = z2:

) zy—2y—x+2=0
EQUATION (4.4) <= 4.5

22 —y=0
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X
The unknowns x and y are stored in a vector X = . SYSTEM (4.5) is written in the standard form
Yy
di(X) = %XTHZ-X +bI'X +¢; = 0,i € {1,2} (as we only have two equations) with H; a symmetric
matrix, b; a column vector and ¢; as scalar. Here:

0 1 =1

H1 = b1 = C1 = 2
1 0 =2
2 0 0

H2 e bg = Co = 0
0 0 =1

The goalis to find a solution X * such that fori € {1, 2}, ¢;(X*) = 0. At iteration n we have an instance of
an almost-solution X,,. Using a first-order Taylor expansion one gets:

¢i(X*) =0
$i(X*) = §i(Xn) + Vi (X)) T (X* = Xon) 46

Where V¢;(X,,) is the gradient of ¢; evaluated at point X ,:
Voi(Xn) = H; X, + b;

By setting EQUATION (4.6) to 0 one gets:

Vi, ¢i(Xp) +Vei(X,)'(X - X,)=0<= HX =7 47
With
H = v¢i(X7L)T r= _¢i(Xn) + V¢L(Xn)TXn
In our specific example:
ni]' anz :L’n,n,*?
H = i r= Y
25 -1 x2

While in our example H happens to be square and invertible for most values of (z,,, y,), it is typically not
the case in a general setting. The linear system H X = r is often underdetermined, and the space it maps
toisill-conditioned, making this system unsuitable for further computation. The trick used in [96] is to solve
this system in the least-square sense by using the distance from the previous solution X, as a regularizer’;
the solution obtained is denoted by X, 1 1:

|HX 1 — 7| + €| Xyt — Xp||? = min 48

1A fairness energy is also used in the paper, but we do not present it here as such energy will not be used to generate assemblies.
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Where eis asmallvalue (typically e = 0.001); the larger ¢, the closer X, 1 to X,,. EQUATION (4.8) is quadratic
and has thus only one minimum, found by differentiation:

(H'H + DX, 1 = H'r + X, 49

X,,41 is computed from sysTem (4.9) by Cholesky factorization. The additive term €21 is of importance:
while in theory H” H has non negative eigenvalues, in practice it is often near singular and numerical im-
precision may shift one eigenvalue below or equal to 0. Adding this diagonal of small values ensures that the
matrix (HT H + ¢2I) is symmetric definite positive. This process is known as the Tikhonov regularization.
FIGURE 4.11 top row shows the basins of attraction of the method for different starting value xy. One sees
that depending on the initial value x(, the algorithm finds either one of the three roots -1, 1 and 2, high-
lighted using coloured dots. The curve highlighted in red shows the convergence of the algorithm for a
starting value zy = —3; next, at iteration 1 z; ~ —1.95, then 25 ~ —1.3 etc. until convergence to the root
—1. FIGURE 4.11 bottom row shows the absolute error of successive solutions z;, starting at 2o = —3, with
respect to the root —1: the convergence is quadratic, as expected for such method. Finally, one notices that
the algorithm could not converge for xg = —0.2 (no curve starts from that value on the top graph): this is to
be expected with Newton’s method, it can be unstable.

# iteration

-4 =2 0 2 4
Xn

absolute error
=
o
o

# iteration

Figure 4.11| Basins of attraction and convergence of the error. The three roots
are highlighted with the coloured dots.
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On the generation of a 2-parts assembly obeying a translation using the Guided Projection Algorithm

This section aims to optimise, through the guided projection algorithm (GPA), the geometry of a polyline so
that it obeys a translation.

We want to partition the design domain into two parts such that one of them obeys a direction of translation
x € S'. In secTion 3.1.1.1 we understood that given a polyline whose constitutive points are py, ..., p, of
coordinates p; = (x;,;)7, it obeys x if and only if

Az >0 Ai=|yi—yit1 Tip1—xi | € RF*2

Constraining the polyline to obey a translation

In SECTION 3.1.1.1 the polyline was given, and the set of linear inequalities A;x; > 0, of unknown x;, gives
the cone of translational freedom of the polyline. In this section, we reverse our point of view: the cone of
translational freedom is fixed, decided upon by the user (and for simplicity, we first assume the cone to be
reduced to a single direction z; € S*), and we want to find a polyline obeying it: in A;x; > 0, matrix A;
is now the variable, and x; is now the parameter. To use the GPA, we have to transform the set of linear
inequalities A;x; > 0 into a set of at most quadratic equations ¢;(X) = %XTHiX +bI'X +¢; =0.
Letz; = (z,9)7.

e BUS ORI, (@ =eraled e —elp S0
= Vie[lk—1]3w eR, (i —yir1)T + (Tip1 — i)y = of
L
Vi€ [l,k—1]3a; €R, _a§+(_y : oy _x) vi | _,
LTi41

Yi+1

Notation
Let M = (m; ;) € R"*™ a symmetric matrixand v = (v;) € R" for somen € N. The notations

a b\ <« d\ «+ k
M: v =
b c) <7 e) «+1

means that M is filled with 0, except at then entries crossing indices i and j: m; ; = a, m; ; = m;; = band
m;j,; = c. Similarly, v has 0 coefficients everywhere, except v, = d and v; = e. In the following definitions
H; is a symmetric matrix of size the dimension of vector X.
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Let o = 2k be the index such that X [o + ] maps to ;. Let

T1
Y1
T2
—y\ 2
z |+ 2i+1
X = Yk Hz=<—2)<—0+i b, = c; =0
y | +—20+2
o
—x/) < 21+3
Qg
Qg1

Thus, one has: .
Az >0 <= Vie[lk—1], iXTHiX+be+ci =0

Then, as explained in SECTION 4.1.2.1, the gradients of each ¢; are calculated, V¢;(X) = H; X + b;
and stacked in a matrix H. Similarly, scalars —¢;(X) + V¢;(X)T X are stored in a vector r, and the next
almost-solution is solution to the system (HT H + €21) X, .1 = H 'r + €2 X,,.

The first instance X, is initialised as follows: the user inputs a polyline and the coordinates z;, y; of each
point p; are stored at the appropriate location (2¢ and 2i + 1) in X,. Regarding «y, if (yv; — yit1)z +
(xi41 — x;)y > 0, meaning that the segment [p;, p;+1] obeys the direction of translation x;, then o; =

\/(yi — Yit1)T + (241 — ;)y; otherwise a; = 0. «; is then stored at index 2k + i in X.

Note that had we wanted the polyline to obey a cone bounded by two vectors ;' and = instead of
a single direction x;, one should only double the number of constraints ¢; — ¢, and the number of

variables o;; — o, a 2.

FIGURE 4.12 shows a polyline before and after a single step of the optimisation (the optimisation was
stopped after X being calculated). The direction of translation is horizontal: z; = (1,0)”. On the left,
the provided polyline is not compatible with this direction, one clearly sees line segments whose normal
vectors are pointing away from x;. On the contrary, after a GPA step, the polyline on the right shows that all
its segments have their normal vectors n; compatible with x;: n; - ; > 0.

With the given constraints ¢;, we can only make a polyline floating in the plane obey a translation. Yet
to generate a 2-parts assembly, several additional constraints must be implemented:

m  The endpoints of the polyline shall precisely lie on the edges of the design domain.
m  To prevent too fine details:

- Thelength of each line segment should be greater than some threshold [,,,;,,.

- Thecurvature at each vertex of the polyline should not be too high, so as to avoid thin tines. Thus
the angle between two successive segments should be greater than some threshold.

- the so-called interior points of the polyline (all the points but the endpoints) should not be too
close to the edges of the design domain, so as to avoid bottleneck-like features.

m  Obviously, all the polyline points should be inside the design domain.
m  Acounterpart of the snap order should be implemented, to make sure that the actual cone of freedom
of the polyline precisely matches the user-given ones.
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Figure 4.12| A polyline before (left) and after (right) a single step of GPA.

The following paragraphs address these points.

Constraint on the minimal length of the segments
Two constraints must be implemented: one that calculates the length of the segment, the other that com-
pares it to the user-given threshold /,,,,.

1. Constraint to calculate the length [; of a segment:
Forasegmenti € [1,k — 1] its length [; is given by I? = (2,41 — x:)? + (yi+1 — i)?. Let the integer o
be the index such that X [0 + 4] stores the value of /;. With:

2 0 -2 0 0\ « 2
0 2 0 -2 0f<+20+1
H;,=|-2 0 2 0 0]+ 2042 b;=0 c; =0
0 -2 0 2 O]+ 2¢+4+3
0 0 0 0 -2/ +o+1

One has .
(l‘i+1 — :Ei)Q + (yiJr]_ = yi)z = ZZQ =0 <= §XTHZ'X + b?X +c = 0

2. Constraintimposingl; > Ly in:
Note that I; > lpin <= 12 — 2, — u? = 0 for some p;. Let o; (resp. o,,) be the index such that

X oy + ] (resp. X [0, + ]) maps to I; (resp. ;). With:

2 0\ <o +1 9
Hi: bl:O Cl':*l

min
0 -2/ <+« o0,+1

One has

min

1
-1 —uf:0<:>§XTHiX+biTX+ci=0
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Constraint on the minimal angle between two successive segments
To prevent thin tines (such as the one in red
on the left of the inset) a constraint is im-
plemented to ensure that the angle between
two successive segments is greater than some
threshold 6;;,,. Such angle is given by 6 =
arccos(—n; - m;y1) where m; is the unit

normal vector of segment [p;,p;+1]. Thus
the constraint to implement is n; - ;11 +
€08 Opim, > 0 <= m; - ny1 + cos Oy — €2 = 0 for some ¢; € R. As the unit normal vectors are needed to
express this constraint, several steps (related to the computation of the normal) are required before imple-
menting it.

1. Constraint to compute a (non-unit) normal vector:
The two coordinates n;, n;, of the normal vector n; are introduced as variables. To constrain this
vector to be orthogonal to the segment, one implements n; - (pi+1 — p;) = 0 & —nx; — NiyYs +
NizTit1 + NiyYi+1 = 0. Let o be the index such that X [o + 2i] and X [o + 27 + 1] map to n;; and ny,.

0 0 0 0 -1 0\ <2
0 0 0 O 0 —1|<«+2i+1
0 0 00 1 0]+ 242
H,; = b;=0 c; =0
0 0 0 0 0 1]+ 2:+3
=1 0 1 0 0 O]« o+2:
0 -1 0 1 0 0/ <o+2i+1

And:
1
n; - (Pi+1 —pi) =0 <= iXTHZ-X + biTX +¢; =0

2. Constraint to consistently calculate the normal vector:
As the normal vector can be ambiguous (if n; is a normal vector, then so is —n;), a constraint is imple-
mented to consistently define the normal vector to be positively collinear with a 7 counterclockwise
rotation of the tangent vector p; 1 — p;. Mathematically speaking, one wants (p;+1 —p;) X n; > Oi.e.
(pir1—pi) Xxn; — 62 = 0forsomed; € R. Leto,, be the index such that X [0, + 2i] and X [0, + 2i +1]
map to n;, and n;,, and o4 such that X [og + 7] maps to d;.

0 0 O 0 0 -1 0\« 2
0 0 O 0 1 0 O]+ 2¢+1
0 0 0 0 0 1 0]+ 2t+2
H,; = 0 0 0 0 -1 0 0]« 243 b;=0 ¢ =0
01 0 -1 0 0 0]« on+2t
-1 0 1 0 0 0 Ol«+o,+2i+1
0 0 O 0 0 0 —2) < o0q4+1

And:
2 1o T
(Pit1 —pi) xm; —0; =0<—= X" HX+b; X +¢,=0
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3. Constraint to unitise the normal vector:
To calculate the angle between two segments, each normal vector must be of unit length, imple-
mented as ||n;]|> — 1 = 0. Let o be the index such that X [o + 2i] and X[o + 2i + 1] map to n;,
and n;y,.

2 0\<¢<o+2
0 2/ <o0o+21+1

And: )
l[n:||? —1=0+<= §XTHiX +b/ X +¢;=0

4. Constraint on the angle between two successive segments:
The constraint n; - n;41 + cos Oy, — €2 = 0 can now be implemented. Let o,, be the index such that
Xop, + 2i], X[on + 2i + 1], X [0, + 2¢ + 2] and X [o0,, + 2i + 3] respectively map to 1;, niy, Nit14
and n;1,. Letalso o, be the index such that X [oe + i] maps to ¢;.

0 01 0 0\ < on,+22
0 0 0 1 0l —op+2i+1
H;=|1 0 0 0 O0|<+o,+2i+2 b, =0 c; = cos(Orim)
01 0 O Ol <+on+2t+3
00 0 0 -2/« o,+i

And:
2 1 o1 T
;- Nit1 + oS Olim — €; :0<:>§X H;X+b; X+c¢;=0

All the aforementioned constrained exhibit matrices H;, vectors b; and scalars ¢; which are constant:

their values do not depend on the actual locations of points p;, i € [1, k. They only depend on the order-
ing of the p;, i.e. on the topology of the polyline. As such, assuming the polyline to not change its topology,
these constraints can be computed once at the beginning of the optimisation, and they are thus computa-
tionally cheap. They are referred to as topological constraints.
On the contrary, the following constraints depend on the locations of the polyline points, i.e. on the ge-
ometry of the polyline. Because the whole point of the optimisation is to move around the p;, their values
change at each iteration and thus they have to be recalculated at each iteration, making them computa-
tionally more expensive. They are referred to as geometrical constraints.

Constraint requiring the endpoints of the polyline to slide on the edges of the design domain
Following [96], this constraint is imple-

mented as (p; — q;) X tr(p,) = 0 where

m  p, refers to the endpoints of the poly-

T(p;) q line: i € {1,k}.
tn(p.) m  TI(p;) refers to the projection of point
p; onto the edges of the design domain;

itis the closest point to p; on the design

domain.
m  g;isone of the two points defining the segment of the design domain on which II(p;) is.
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® i, = (fis, tiy)” refers to the tangent of the edge of the design domain on which p; is projected
through II.

It constrains the vector p; —qg; to be collinear to the edge of the design domain, effectively pushing p; to slide
on the edge. To prevent numerical instabilities, among the two possible locations of point g;, it is selected
as the one the farthest away from p;. Fori € {1, k} let:

H, =0 b, = ¢ = —q; Xty

And:
1
(pi — Qi) X tn(m) =0<= iXTHZX I b;TX +c; =0

Constraint requiring the interior points to be inside the design domain, but preventing them from being
too close to the edges of the design domain
To prevent bottleneck-like features, a constraint

is implemented to ensure that each of the inte-
rior points of the polyline stays at a distance larger

than some predefined A from the edges of the de- I(p;)

sign domain. Also, to prevent interior points from &
wandering outside of the design domain, a con-

straint must be implemented to ensure they stay BECS
inside it. Fortunately, a single equation can han- N

dle both constraints. As shown on the inset, each

interior point p; is projected onto the edges of the design domain II(p;). The unit normal vector
(pointing inside the design domain) of the edge containing II(p;) is called nry,,) of coordinates
(N11(ps)a» nn(pi)y)T. Point II(p;) is translated to get g; = II(p;) + Anyy(,,). The constraint is then
implemented as: ny(,,) - (Pi — qi) > 0 <= nrp,) - (Pi — Qi) — (2 =0forsome¢; € R.

Let o be the index such that X [o + 7] maps to (;. Fori € [2,k — 2], let:

N1 (p, — 2
H,; = (—2> —o+i b, = (i) Ci = N, " qi
N(p)y ) < 20+ 1

And:
2 ! o T
Ny Pi—q) — ¢ =0 X HX +b; X +¢;,=0

Constraint requiring segments to snap

To ensure that the polyline obeys exactly the direction of translation x;, we saw in SECTION 4.1.1.3 that at
least two segments must snap: the segments should have opposite orientation and their normal vectors
should be orthogonal to «;. To model that using a quadratic equation ¢;(X ) = 0, assume that the indices
T C [1,k—1] of the segments that must snap are given. Note that Z contains at least two elements: |Z| > 2.
SECTION 4.1.3.2 deals with the relevant strategies to compute such set Z. The constraint to implement is
simplyVi € Z, n; - = 0. Let o be the index such that X [0 + 2i] and X [0 + 2i + 1] map to the coordinates
Nz and ng,, of n,. Fori € Z, let:

T\ <—o+2i
H;,=0 b, = c; =0

y) <—o+2i+1
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Figure 4.13] Input (left) and output (right) of ALGORITHM 1. Snap segments are
highlighted in red.

And: )
n;-x =0 §XTHiX+b?X+ci =0

Even though the coefficients in b; are constant, this is a geometrical constraint as the set Z depends on the
geometry of the polyline.

Had we wanted the polyline to obey a cone bounded by # and 2, we would just have had to distinguish
between Z4 and ZZ, and nothing else would have changed.

Once all these topology and geometry constraints are taken into account, one can easily generate a 2-
parts assembly obeying a translation. The algorithm is given below:

Algorithm 1: OptimisePolyline()

Input: inputPolyline: An ordered list of polyline points
1 Start:
2 X = ComputeVectorX(inputPolyline)

3 Hy, by, ¢, = ComputeGeometryConstraints(X)

H,, by, c; = ComputeTopologyConstraints()

H,, b, c, =Stack(H,, H;), Stack(bg, b,), Stack(cg, c;)
for epoch in range(MAXEPOCH) do

7 X =SolveForX(X, H,, b, c)

IS

(5]

(2]

8 H,, by, c, = ComputeGeometryConstraints(X)
9 H,, b, cs =Stack(H,, H;), Stack(bg, b,), Stack(cg, ct)
10 residual = ComputeResidual(X , H, by, c;)

11 if residual < threshold then
12 L break

13 optimisedPolyline = ExtractPolylineFromX(X)
14 return optimisedPolyine

FIGURE 4.13 shows the user-given polyline on the left, obviously not obeying the translation = (1,0)7,
and the result of the optimisation on the right. One notices that the tine on the top has been opened to meet
with the minimal angle constraint, the endpoints precisely are on the design domain, and all segments are
well oriented with respect to the direction x, some of them having snapped (in red).

On the generation of a 2-parts assembly obeying a rotation using the Guided Projection Algorithm

Letx, = (z,y)T € R? be a centre of rotation. This section aims to formulate the constraints ¢; so that a
polyline is optimised to obey a rotation around x,.. As stated by sysTem (3.12), a polyline (p;), ¢ € [1,k]
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obeys a rotation around x,. if and only if:

sm(p;,x,) -n; >0
Vie [1,k—1], (i, @) 4.10
sm(piy1, ) -1 >0

Where s = +1 stipulates whether the rotation is counterclockwise or clockwise, as understood in SECTION
4.1.1.5. The task at hand is straightforward: a first constraint shall calculate the instantaneous directions of
motion m,,, while a second constraint ensure that SsYSTEM (4.10) is met.

Constraint to calculate the instantaneous direction of motion m,

Recall that m,, = v . By introducing the coordinates (m;;, m;,) of vector m,,, one needs to
r; — T
implement two equations: m;, — y + y; = 0and m;, — z; + = = 0. Let o be the index such that X [o + 2i]

and X [o + 2i + 1] map to m,, and m;,,. Fori € [1,k — 1]

1\ +o+2
Hy =0 by = Co; = —Y
1/ «+21+1
1 —o+2i+1
Hjy 1 =0 boit1 = . N Coip1 = T
—1) < 2i

And thus:
. R 1 T . T -
i —y+yi =0 = S XTHuX + b5 X + 2 = 0

1
ity = i = i — U <—> §XTH21-+1X + b3 X + o241 =0

Note that this is a topological constraint.

Constraint requiring the polyline to obey a rotation

The constraints to implement are sm,,, - n; > 0 <= smjzNix + SMjyN4y — n3;, = 0forj € {i,i+ 1}. Let
0. be theindex such that X [o. 4 2¢] and X [0, + 2i + 1] map to 75; and 72;11. Let also o,,, be the index such
that X [o0,,, +2i] and X [0,,, + 2i + 1] map to m,,, and m;,,. Similarly, let o,, be the index such that X [o,, + 2]
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-a: .
\

Figure 4.14| Input (left) and output (right) of ALGORITHM 1 adapted to work in
rotation. Snap segments are highlighted in red.

and X (o, + 2i + 1] map to n;; and n;,,. Fori € [1,k — 1]:

0 0 s O 0\ <op,+2¢
0 0 0 s O+ o0,+2:+1
Hy;=15s 0 0 0 0]+« o0,,+2i by =0 co; =0
0 s 0 O Ol+om+20+1
0 0 0 0 =2/ <« 0.+2
0 0 s O 0\ <o, +2i+2
0 0 0 s 0| +o0,+20+3
Hy 1=|s 00 0 O0|+<o,+2 b2it1=0 coiy1 =0
0 s 0 0 Ol <+om—+2i+1
0 0 00 —2/<o0.+2

And:
1
smy,, - n; — 15 =0 <= §XTH2iX + b2 X +co =0

1
SMy, - My — Nayyq = 0 = 5XTH%HX +b3; 1 X +c241 =0

It is also a topological constraint.

Constraint requiring segments to snap

Very similar to the case in translation: given a set of indices Z C [1, k — 1], the constraint is implemented
asm,, -n; = 0,fori € Z. Hence, let 0,,, be the index such that X [o,,, + 2i] and X [o,,, + 2i + 1] map to m;,
and m;y; let o,, be the index such that X[o,, + 2i] and X{o,, + 2i + 1] map to n;, and n;,,:

0 01 0\« o,+2i
0 0 0 1|+o0,+2i+1
H, = b,=0 c; =0
1 0 0 0] <« om+2i
01 0 0/ <+on+2i+1
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Figure 4.15| Input (left) and output (right) of ALGoRITHM 1 adapted to work in
rotation and in translation. Snap segments are highlighted in red.

i 7 2 (3 '3 (3

FIGURE 4.14 shows the input/output pair of the GPA where the aforementioned constraints were added
to make it work in rotation.

On the generation of a polyline obeying both a translation and a rotation

Should the user want the polyline to obey both a translation along x; € S* and a rotation around =,. € R?,
then he/she should only implement both constraints, and the GPA optimises the polyline to meet this goal.
FIGURE 4.15 shows the input/output pair of the GPA adapted to work both in translation and rotation. In
red are the snap segments. Note that the algorithm has moved one of the endpoint of each snap segment
exactly underneath the centre of rotation =, = (0, 1)7 (the design domain being centered at 0). As such, for
these points, the instantaneous direction of motion m,,, is collinear with the horizontal axis, which happens
to be the prescribed direction of translation z; = (1,0)%. Thus these three segments, being aligned with
x¢, simultaneously snap in translation as n; - ; = 0, and in rotationas m,, x x; = n; -m,, =0.

A word of caution: special care should be taken by the user when choosing the direction of translation
x; and the centre of rotation x,.: one cannot ask for a polyline to simultaneously obey a rotation that would
lift it up while obeying a translation pointing downwards.

Results

FIGURE 4.16 shows a typical convergence of a GPA optimisation. Let ¢(X,,) = (¢1(X,.), ..., 0:(Xn),...)T
be the vector obtained by stacking the residuals ¢;(X,,) at each iteration n. FIGURE 4.16 displays the graph
of the evolution of the logarithm of the euclidean norm of the residual vector ¢, i.e. log ||®||. It shows that
whenever the residual falls below a given threshold (~ 10~!! here) either a new constraint is turned on or
the final solution is reached. The highlighted red points correspond to iterations where a new constraint
was switched on: at first, the constraint requiring the endpoints of the polyline to slide on the edges of the
design domain, and after two iterations the snap constraint.
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Figure 4.16| Evolution of the norm of the residual (log y-scale).
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We can also display the residuals of each constraint (in blue on FIGURE 4.17), as well as the associated

weight (in red). While Tang and colleagues [

] talk about smoothly varying weights, here we adopt a more

brutal approach where the weights are binary, in {0, 1}. These graphs clearly show when the sliding end-

points and snap constraints are activated. It is also noticeable that the length constraint (weight constantly

equal to 1) was met throughout the execution with a 0 residual. It is also the case for the “assemblability-

Translation” (stating that n; - ; > 0) but here it is simply because we optimised the polyline to obey a pure

rotation, and thus this weight has been constantly set to 0. On FIGURE 4.17 some constraints (“repelSeg-

ments” for instance) are shown but are not described in this dissertation as they are of minor importance.
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Figure 4.17| Evolution of the norm of the residuals for each constraint (left y-
scale) and the associated weights (right y-scale).
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Using the optimised separating polyline to partition the design domain into two parts

The last step of creating a 2-parts assembly is to actually create the parts. The goal of this section is to ex-
plain how given a polyline and a design domain, the latter can be partitioned into two parts Py and P;, with
P, obeying the prescribed motion.

Before the GPA optimisationis run, the input polyline is oriented so that its normal vectors point towards
what will be the part to move P;. In layman’s words, given the ordering of the point (p;)1<i<x, we must
check whether this ordering leads to the normal vectors being somewhat in the direction of translation (and
thus pointing towards P;). If not, then the reversed ordering (px—;+1) shall be considered.

Translation

Should the optimised polyline obey a translation «; € S', then to check whether the input polyline is well
oriented is straightforward: the algorithm loops over each initial segment [p;, p;+1] and compute its normal
vector n; by rotating its unit tangent by 7 counterclockwise. Depending on the sign of n; - x4, a positive or
negative counter is incremented. At the end of the loop a majority rule is adopted: if the positive counter
is greater than the negative, then the ordering (p;) is kept. Otherwise the polyline is flipped and the points
are ordered (py—;+1)- This ensures that most of the segments have their normal such that n; - =; > 0.

Rotation

Should the polyline obey a rotation around x,. € R?, then a simple trick is implemented: the rotation shall
be approximated by a translation, to return to the previous case. Let o denote the centroid of the design
domain. If s = +1 (counterclockwise rotation), then the centre of rotation is projected at infinity along
vector ¢, — o. Indeed, the further away is «,. from o the more collinear are the instantaneous directions
of motion m,,,. At the limit they all are orthogonal to «,, — o. This is illustrated on FIGURE 4.18: the square
is centered at the origin and, on the left, z,, = (0,1)7 and the instantaneous direction of motion m,,, are
depicted using red arrows. In the middle x,. (not shown) is moved vertically by a finite amount (to (0, 3));
it can already be noticed that the m,,, are more aligned with each other. At the limit where x,. is moved
upwards towards infinity, all m,,, are collinear with the direction «; = (1, 0)T. Effectively, in such a case,
the polyline is tasked to obey the translation «;. Had s been negative, x,- would have been moved to infinity
using the opposite vector —(x,. — o).

This trick gives us a direction of translation x; such that the instantaneous direction of motion (collinear to
x,) are somewhat close to m(p;, ). The ordering of the points (p;)1<;< is kept or flipped according to
the aforementioned algorithm in translation.

The polyline now being well oriented, it is optimised using the GPA. The design domain is ordered in a
counterclockwise fashion so that the normal vectors of its edges point inside it. At the end of the optimisa-
tion, the edge of the design domain on which the last point p;, of the polyline is recorded. Starting from the
endpoint of that edge, the vertices of the design domain are added in a list in order until arriving at the edge
where the start point p; is. There the polyline points p1, ..., px are added in that order. This list contains all
the points of the part P;.

To create part Py the same algorithm is used but the ordering of the polyline vertices is flipped. FIGURE 4.19
illustrate the process of creating part P;. The polyline is oriented from p; to py, as suggested by the blue
arrow, and the design domain from v; to vy, see the black arrow. The last point py, lies on edge [v;, v2] of
the design domain. The endvertex v is added to the list. Secondly the end vertex v3 of the following edge
[va, v3] is added. As the first point p; lies on edge [v3, v4], the whole polyline p1, ..., p is added to the list.
Thus part P; is made of points vy, vs, p1, ..., Pi. To create part Py the same process happens by considering
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Figure 4.18| The further away x, from the design domain, the more aligned
are the instantaneous directions of motion m,, .

V4

V1

V3

U2

Py

Figure 4.19| By carefully ordering the polyline points and the design domain
vertices, parts Py and P; can easily be built.

the flipped polyline py, ...

, P1.-

Thefirst task is now complete! We have now understood how to create a 2-partsassembly A = { Py, P, },

such that Py, thanks to the snap segments, obeys precisely a given direction of translation x; € S* (or, with

little work, a cone bounded by two vectors z* and ), and/or a rotation around a centre x,, € R2. We can
get on to the next task consisting in generating a N+1-parts assembly, with N > 1.

ON THE CREATION OF THE FOLLOWING PARTS

The process to create each of the following parts P;, 7 > 1 is the same as the one used to create a 2-parts
assembly described in SECTION 4.1.2. What is part P, at the end of iteration i becomes the design domain at

the beginning of iteration ¢ 4 1. Thus, 2-parts assemblies keep being created in a design domain that gets

smaller and smaller, this process is illustrated on FIGURE 4.20 for a 3+1 parts assembly. As such, creating

a N+1-parts assembly is straightforward. The difficulty lies in creating an assembly that is interlocked, i.e.

Py

P,

Py

\/

Py

Ps

Figure 4.20| Each part P; is created in what was P, at the previous iteration.

P,
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whose sole part that can be removed without colliding with any other is the key P;.

Assessing the interlocking of an assembly

As explained on SECTION 3.1.3, the Non Directional Blocking Graph (NDBG) of an assembly encodes all the
information necessary to assess the blocking relationships between its constitutive parts. Thus, to ensure
that the assembly is interlocked, at the end of the creation of each part P;, 7 > 1, the NDBG is calculated:
the cones of freedom in translation C; and counterclockwise and clockwise rotations Cc“ and CS* of each
created part are calculated. The vectors bounding the cones of translational freedom C; define the direc-
tion of translation of the base DBGs in translation. The cells of dimension 0 bounding (or resulting from the
intersection of) the cones of rotational freedom C5“” and C£" constitute the centres of translation of the
base DBGs in rotation. For each such identified motion, the corresponding base DBG is calculated, the com-
putation being summed up in SECTION 3.1.2.2. If the NDBG says that all base DBGs are strongly connected
(but the one(s) associated to P, that must have two strongly connected components, one being reduced to
Pj the other being the other parts) then the assembly consisting of parts { P, ..., P;} is interlocked and the
creation of the next part can start. Else, the assembly is not interlocked and the next iterations will not make
itinterlocked. Indeed, in this case, some other part(s) than the key can move and (since the successive parts
will be created inside the current Py) the further partitioning of Py will not change that fact. Thus, the latest
polyline is deemed invalid and must be optimised again from scratch, using a different input polyline.

Therefore, if a polyline is invalid and the optimisation must be run again, the input polyline must change
(otherwise the optimisation will deliver the same result). A first possibility is to ask the user to manually
input another polyline. A second option is to automatically generate a polyline using, for instance, the cou-
ple Turtle and Markov process: the Turtle draws an initial polyline that is then optimised using GPA. To
avoid falling into the pitfalls listed at the beginning of SECTION 4.1.2, the Turtle shall only generate a part
obeying a translation; if a rotation is imposed by the user, then the Turtle draws a polyline obeying the
pseudo-translation obtained by moving the centre of rotation to infinity, along the same process as the one
described SecTioN 4.1.2.6. This first instance of a solution is, in general, good enough for the GPA to take
over. Moreover, the user can specify goal points for the endpoints of the polyline: p; and p; should be
within a given radius from two specified points on the edge of the design domain. Such a constraint must,
of course, be implemented within the GPA framework. If this choice is made, it gives back to the user more
control over the polyline.

The outline of the algorithm is as follows:

1. Takethe part P, obtained at the end of the previous iteration, and consider it to be the design domain.

2. Either the user inputs a polyline or the Turtle is tasked with drawing one. In either case, an input
polyline is available. Goal points can optionally be specified.

3. Runthe GPAto optimise the polyline and compute the newest part P; as well as the remaining part F.

4. Computethe NDBG associated with the current assembly. Ifit says the assembly is indeed interlocked,
then this iteration is finished. Else, go back to STEP 2.

This outline is illustrated on FIGURE 4.21 for the creation of an assembly of 4+1 parts; parts P;, 7 € 1,2,3
obey a rotation around x‘ and part P, obeys a translation along =’ The top two rows show the input and
the successive iterations, as well as the fact that the NDBG is calculated from iteration 2, and as long as it
is not valid, the problematic part keeps being recreated. In the end, the design domain is partitioned into
5 parts, and the NDBG, on the bottom row, show that all base DBGs are strongly connected, except for the
DBG associated with the key which states that P; is free to rotate around .. Cones C;, C<“* and CS% have
been calculated and were all reduced to the single =% (i € {1, 2, 3}) or =}, thus proving that the four DBGs
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Figure 4.21| Workflow of the generation of an assembly made of N+1 parts.

on the figure are indeed the base DBGs of the assembly.

Further details and trick to increase the odd of an assembly to be interlocked

An important detail concerning the implementation of the GPA is that not all constraints ¢; are used simul-
taneously: as some are conflicting with each other, the GPA would sometimes get stuck, oscillating between
solutions that alternatively increase and decrease a given constraint. Forinstance, the goal points constraint
and the constraint requiring the endpoints to slide on the edges of the design domain were found to be of-
ten at odd with each other: the former, trying to minimise the distance between the endpoints and the goal
points, would try to make the endpoints move directly towards the goal points; the latter would force the
endpoints to follow the direction of the edges, leading to poor results (often slow convergence, sometimes
no convergence at all) when the edges are not oriented towards the goal points. To prevent conflicting situ-
ations like this, an on-off iterative approach is used, where constraints are alternatively switched on and off,
to aid the convergence (at the end, of course, all constraints are switched on). In our example, the sliding-
endpoints constraint is first switched off while the goal points constraint is on: this leads the endpoints of
the polyline to move quickly close to the goal points without taking into account the design domain edges.
Once they are close enough, the sliding-endpoints constraint is switched on, resulting in the endpoints be-
ing projected onto the edges of the design domain, close to the goal. This on-off approach helps the solver
find solutions faster.

In practice, all constraints are at first on, except the sliding-endpoints and snap ones. When a first stable
solution is found, the sliding-endpoints constraint is activated. Once a new solution is found, the snap con-
straint is switched on, until the final convergence of the algorithm.
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There are numerous ways to choose the snap segments, but we found two, in particular, to be well-suited

to the generation of an assembly:

1.

88

The user specifies that n > 2 segments must snap. When the snap constraint is activated then a list £
of snap segments is initialised and:

m  if the polyline must obey a translation: its segments are ranked by how close they already are
from their snap position, i.e. how close their normal is from being orthogonal to the prescribed
direction of translation x; (or one of the two directions z* and = bounding the prescribed
cone). Let ¢; denotes the unit tangent of segment [p;, p; 1] (oriented from p; to p; 1 1); the larger
|t; - x¢| the closer is the segment from its snap position. If |¢; - ;| = 1 the segment has already
snapped. These dot products are sorted and the two segments with the lowest (closest to-1) and
highest (closest to 1) values are added to the list £. It ensures that at least two segments snap
opposite to each other: one snaps to be oriented along +; (or =x;*) and the other snaps to be
along —x; (or FxP), a necessary and sufficient condition for the assembly to obey  (or the cone
x{* and =) as seen in secTioN 4.1.1.3 and illustrated on FIGURE 3.4. The n — 2 following snap
segments are added to £ according to how close to 1 s |¢; - n;|, without considering a positive
or negative orientation.

m  if the polyline must obey a rotation around a centre z, € R?: the algorithm is similar to the
translation case. The segments [p;, p;+1] of the polyline are ranked according to how orthogonal
their normal vector is to the instantaneous directions of motion m,,,, m,, . ,. Let t; denotes the
unit tangent of segment [p;, p;+1] (oriented from p; to p; 1) and let j refers to both i and i + 1;
the larger [t; - m,,, | the closer is the segment from its snap position. If [t; - m,,, | = 1 the segment
has already snapped. Then again, the segments corresponding to the smallest (close to -1) and
highest (close to 1) dot products are added to £. The list is completed with the n — 2 segments
with the largest [t; - m, |.

The second method is a trick to increase the odds of interlocking. While the first method works well
for high values of n, for low values of n it may lead to designing parts that are hard to interlock with
successive ones. For instance, on FIGURE 4.22, for n = 2, it is absolutely impossible to create an 2+1
parts interlocking assembly on the left: the geometry of P, makes it impossible for P, to be blocked.
Even if the polyline separating P, from P, started in the small recess at the bottom of the boundary
of P;, one could still lift P, and P, up simultaneously, making the assembly not interlocked. On the
right, the polyline bounding P, snapped in the opposite directions. Unless the polyline of P, starts at
the top or bottom vertical segments (small probability, assuming it may start uniformly anywhere), the
assembly will always be interlocked. Therefore, FIGURE 4.22 illustrate the importance of the directions
of the snaps for low value of n. This second method simply ensures that exactly two snaps are made,
in the directions that increase the odds of the interlocking. To select the two segments that should
go into the list £, the segments are weighted according to how close to the extremities of the polyline
they are (i.e. how close their index is close to 2 or k — 2, k being the number of polyline points) and
how close to a snap in the correct direction they already are (similar to the first method). Segments 1
and k — 1 are left out as snapping them is often undesirable as it may lead a segment to be contained
in an edge of the design domain, as would be the case in the figure. By modulating the importance
given to the weights, one reaches the full spectrum between the first method for n = 2 and the certain
snapping of segments 2 and k£ — 2 in the directions that maximise the interlocking (as P; on the right
of FIGURE 4.22).

This second method becomes useless if the user manually inputs a polyline and makes sure that two
segments are already close to a snap in the correct directions at the correct positions on the polyline.
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Figure 4.22| On the left the assembly is not interlocked. A small change in the
geometry of P; leads to an interlocking assembly on the right.
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Still, it proved to be useful when the input polyline was generated by the Turtle.

Conclusion

The task of generating an interlocking assembly made of IV + 1 parts obeying translation and/or rotation is
surprisingly fast once one knows how to generate a 2-parts assembly. As understood, the same algorithm
(generating a 2-parts assembly) is run on the successive remaining parts labelled as P,. At each iteration: >
1, the remaining part becomes the design domain and is partitioned into a P, and a new P. Following this
step, the NDBG is calculated. If it says that the assembly is not interlocked, the latest optimised polyline is
discarded and either the user or the Turtle provides a new input for the GPA. If the assembly is interlocked,
then P, becomes the design domain at the next iteration i + 1.

MECHANICAL PROPERTIES OF A GENERATED ASSEMBLY

LITERATURE REVIEW

While this manuscript is based on the observation that new manufacturing technologies can fabricate as-
semblies with geometrical features inaccessible to more traditional methods, and therefore it becomes in-
teresting to explore the space of interlocking assemblies, we have to show that the generated assemblies,
with their strange-looking features, are relevant from a mechanical perspective. The literature on the me-
chanical analysis of self-fitting joints is plentiful but mostly focuses on indirect assemblies using dowels (or
similar intermediary bodies). Seldom are the papers focusing on self-fitting carpentry joints. For instance,
Parisi et al., [75], studied a specific joint, used to build roofs around the Mediterranean and the Alps, the
birdsmouth joint. They provide an experimental and numerical analysis of such joints and compare op-
tions to retrofit them. In exactly the same vein, Branco et al. [15] further studies this joint to evaluate differ-
ent strengthening techniques. In [14], Branco and coauthors sum up the technique consisting of modelling
joints as equivalent springs to perform a semi-rigid analysis and give various recommendations regarding
the design and reinforcement of various traditional joints (tenon, lap, scarf). Quite recently, Braunetal.,[16],
build a numerical model performing linear (thus fast) analysis of single- and double-step joints under com-
pression. The model is calibrated using experimental data. Moradei et al., [64], also used numerical models
to assess the behaviour of traditional Chinese and Japanese assemblies subjected to bending moments.
What the literature lacks is a unified approach to model joint geometries, but as put by Branco “because of
the wide variety of carpentry joint geometries in existence, studying them with an exhaustive approach is [not]
realistic”. Indeed, all the aforementioned papers used the geometrical features of each joint they focused
on to propose simplifying assumptions or to calibrate their model. Such an approach is entirely out of reach
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in this PhD as the goal is to automatically generate new joints, and thus no two joints are alike. It would be
impossible to dedicate enough time to precisely model each joint, even less when taking into account the
material (if wood, the study is even more complex due to the anisotropy of the material) as was done in the
cited papers.

OVERVIEW

As amodel both precise and versatileis stillan active research topic well beyond the scope of this manuscript,
amore qualitative approach is needed. The goalis to build a numerical model that, for two given assemblies
Ay and Ag, if Ay is said to perform better than A, for some metric, it would not be far-fetched to say that
a more sophisticated model, or even the built assemblies in real life, would arrive to the same conclusion,
namely that A, performs better than A5 onthat metric. In other words, we are not interested in the absolute
values of the model (be it the stress, strain, displacements etc.) but rather in the partial ordering of these
values when comparing two assemblies. The model should only be simple enough that extrapolating the
results to reality would not change their ordering.

This section aims to find a generated assembly that performs better, for some relevant metric, than a hand-
drawn, tradition-inspired, assembly. If so, then it is not impossible that in real life, the former is also better
than the latter, which justifies the point of this manuscript, namely the exploration of the design space of
interlocking assemblies to discover novel, relevant, assemblies.

Two phenomena must absolutely be taken into account when modelling an assembly. For two parts in con-
tact:

m  Theinterface cannot transmit tensile force but can carry compression forces: if tension arises between
the two parts, they would simply move away from each other. However, if in compression, one part
simply pushes on the other, the contact is not broken.

m  Thanks to friction, an assembly may be in equilibrium even if the forces are not orthogonal to the
interface.

P, P,

Figure 4.23| Left: the gap between two parts is bridged by links, in blue. Right:
2D shell elements of the parts are connected to the 1D beam ele-
ment of the links.

These two non-linearities can be summed up in one observation: if the resulting force at a point of the
interfaceis notin the cone of friction, equilibrium is out of reach and disassembly occurs. A 2-parts assembly
A = {Py, P1} is modelled as follows: the separating curve is offset by a small amount along the normal
vectors of its segments, as shown on FIGURE 4.23a. Part P, is created using the original curve, P; using
the offset one; thus there is a gap between these two parts. Crosses are created in the gap, their geometry
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Figure 4.24] a) - links are grouped 3 by 3. b) - they can only transmit axial forces.
c) - the resultant force must lie inside the friction cone. d) - load
distribution and boundary conditions.

being defined on FIGURE 4.23b in blue. These crosses are made of two elements, that we call links: links
orthogonal to the interface (the short ones) and diagonal links (the long ones). The interiors of the parts
are meshed using triangular shell elements, as shown on FIGURE 4.23c, and the links are modelled using
standard beam elements. Special care is taken to connect the endpoints of the links to the shell elements
of the parts, 4.23d.

Links are grouped three by three: each orthogonal link is grouped with the two diagonal links whose
common endpoint is on Py. Such a group is highlighted in blue in FIGURE 4.24a. The beam elements as-
sociated with the links are pinned at both ends. Thus, they can only transmit axial forces, be it tensile or
compressive, see 4.24b. The resulting force is calculated at the point common to the three links. For this
point to be in equilibrium, this force must lie in a friction cone parametrised by an angle o, see 4.24c.

For the remaining of this section part P, will always be on the left of part P;, we can thus use words
like “left”, “top” etc. As for the boundary condition and load distribution, the leftmost edge of part P is
clamped, the rightmost edge of P; cannot move in the horizontal direction and a downwards nodal force
Fis applied on the top edge of P, exactly above the rightmost point of the separating curve, see FIGURE
4.24d for an illustration of these concepts.

As of yet, the model is far from modelling contact between two parts. Indeed, if an analysis is carried
out, an equilibrium is likely to be found where most of the resulting forces are not contained in the friction
cone. To perfect the model, an iterative algorithm is implemented. Each link is modelled as a tube with a
given diameter ¢. Atiteration n, a finite element analysis using linear theory is conducted and gives the axial
forces in each link, from which the resultant forces can easily be calculated. There are two non-excluding
possibilities:

1. Alinkcarriesatensileforce. Thenitsdiameterissetto an extremely smallvalue ¢ = ¢,,,;,, (in this study
Omin = le — 08 unit), see FIGURE 4.25a. As such, the link is prevented from transmitting a significant
amount of force, effectively cutting it from the study. This step models the fact that a link in tension is
synonymous with parts breaking contact: they cannot transmit force.

2. Theresultant force is not inside the friction cone. It means that, at this point in the interface, the tan-
gential forces are too great with respect to normal forces. These tangential forces being transmitted
by the two diagonal links only, their diameters are reduced: they are multiplied by a factor 8 € [0, 1]
(in this study 8 = 0.5), as illustrated on FIGURE 4.25b.

Otherwise (links are in compression and the resultant is in the friction cone), the diameters of the links stay
the same (4.25d). At the beginning of the first iteration, all links are initialised to a default value ¢, = 1
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= K=

Figure 4.25| Depending on the situation, the diameter of a link stays constant,
is decreased or increased.

unit; as a side note, the thickness of a tube is always set to be a hundredth of its diameter. A link that was
once in tension (and thus having its diameter ¢ < ¢,,:,) is not completely deleted from the study: if an
analysis concludes that it is now transmitting (a small amount of) compression, its diameter is brought back
to & = Pmaz, as shown on 4.25¢. This small algorithm outputs two kinds of results:

[ The diameter of an orthogonal link is either ¢ = ¢4 Or & < Giin-

[ The diameter of a diagonal link lives in the range ¢ €]0, ¢1,.q.] (it can be smaller than ¢,,,;,, as if a link
is in tension its diameter is set to ¢ = ¢,,.;, and if the resultant force is not in the cone, it is further
multiplied by 8 < 1: ¢ = Bdmin)-

Thus, if the resultant force is outside the friction cone, the diameters of the diagonal links are reduced while
the diameter of the orthogonal one stays constant, which diminishes the contribution of the tangential force
compared to the normal one, hence bringing the resultant closer to the friction cone. If a link is in tension,
its diameter becomes negligible: the tensile component disappears from the resultant, bringing it closer to
the friction cone. These new diameters are used to create the beam elements at the beginning of the next
iteration. This iterative algorithm reaches convergence when all resultant forces are either negligible or in
the friction cone.

The geometry is handled in Grasshopper®, an add-on of the software Rhinoceros®. Finite element anal-
ysis was performed with the plugin Karamba3d and the loop (necessary for the iterative algorithm) was
coded using components from the Anemone library.

CHOICE OF METRIC AND JUSTIFICATION

Once a stable solution is found by the algorithm, we use a measure of the maximalinternal stress (calculated
as the sum of the two principal stresses) in the parts as the metric to compare assemblies between them.
Yet, because of the unpredictability of the shape of the generated designs, it proved to be impossible to craft
an algorithm that could generate a quality mesh for all designs: at a point of high curvature of the separating
polyline, for instance, i.e a point of stress concentration, it happens that a bad triangle leads to extremely
high maximal stress while a slightly different mesh would yield much lower maximal stress in Py.
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Figure 4.26| Refining the mesh by adding up to ~ 75% more faces does not
significantly affect the 95% stress value.
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In addition, the point where the nodal force is applied on P, is where the maximum stress is reached, yet
itisnotan interesting point to study. The calculation of the maximal stress per se being too mesh-dependent
for Py and uninteresting for P, the choice was made to consider the 95% stress: stresses at the calculation
points are ranked according to their increasing value and the one indexed at 95% of the length of the list
is kept. This value often occurs either near the separating polyline or close to the boundaries of the mesh,
and is still representative of the high stresses in the mesh, while being completely mesh-independent, as
shown on FIGURE 4.26. In this figure, three designs are studied: the top one is hand drawn and takes inspi-
ration from a traditional mortise and tenon assembly. The middle one has been automatically generated
and obeys a translation to the right. The bottom one has also been automatically generated and obeys a
rotation. The mesh constituting the parts has been gradually refined, up to adding about 75% additional
faces, from approximately 9500 faces to 17500 faces (the exact number varies with the assembly). For each
mesh, the aforementioned algorithm was executed and the 95% stresses were recorded in each part. These
graphs show that the 95% stresses do not change significantly with mesh variations, thus proving that it is
a stable metric that we can use to quantitatively compare assemblies with.

Aside from the mesh quality, the aspect ratio of the crosses bridging the gap between P, and P, calcu-
lated as the ratio between the length of a diagonal link and the length of an orthogonal link, is a parameter
whose influence is of interest. FIGURE 4.27 shows a variation of the 95% stress with regards to the cross as-
pect ratio; it is argued that the larger the aspect ratio, the fewer the crosses that can be fitted along the sep-
arating curve, and thus the higher the force transmitted per link, which modifies the distribution of stresses,
especially near points of high curvature. That being said, the net variation does not exceed 10% of the ref-
erence value, implying that the choice of the aspect ratio is not too influential on the stress result. In the
following, the aspect ratio is fixed to /10 ~ 3.2 (see FIGURE 4.24 for a visual representation of the crosses),
as it seems to be a value around which the 95% stress does not change much.
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Figure 4.28| The friction angle has a predictable impact on the 95% stress.
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Last but not least, the friction angle a plays a significant role in the algorithm outlined above. Its influ-
ence on the 95% stress is thus studied, by having it varying in the range [10°, 45°], see FIGURE 4.28. Unsur-
prisingly, the higher « the lower the 95% stress. Indeed, as a increases, the interface between the parts can
carry more and more tangential loads, thus distributing more evenly the forces and reducing the stresses.
As such the value of o does not change the ordering of the 95% stress of two assemblies. Moreover, it has
been visually verified that o does not influence much the qualitative distribution of forces at the interface
of the part. Hence its specific value is of no importance for our needs and is fixed to o = 30°.

This small study shows that our choice of metric behaves nicely with the variation of key parameters,
hence comforting us in this choice. Yet, to further test the quality of the model and of the algorithm a qual-
itative comparison with real-life assemblies is conducted.

IMAGE CORRELATION AND QUALITATIVE COMPARISON

In addition to the 95% stress, it is possible to extract from the model the resulting force at the endpoint on
Py of each orthogonal link. As the resulting forces can only be compressive, they inform of how much a part
is pushing onto the other. In real life, this would lead to points on either side of the interface getting closer
and closer. Such behaviour can be captured and quantified using digital image correlation, and compared
to the results of the numerical model. As a consequence, several assemblies were laser cut and loaded as
to closely mimic the boundary conditions and load distribution presented on FIGURE 4.24d; see FIGURE 4.29.
This study (the making of the laser-cut specimens, the experimental apparatus, as well as the image corre-
lation) was done by Antoine Bayard during his internship at Navier laboratory in the summer of 2022. The
image correlation was done using the software GOM Correlate.

FIGURE 4.29 presents the experimental apparatus used to conduct the study: each assembly has black speck-
les sprayed over a layer of white paint. The left side of the assembly (part P;) is clamped on a supporting
frame by the means of two planks tightly enclosing the part. The right part (P;) is pinned such that only
vertical motion is possible; the rightmost metal rod prevents any rotation around the plane’s normal axis
and any translation that is both horizontal and in the plane of the assembly. The two metal rods in the mid-
dle prevent out-of-plane motion. These rods as well as the clamping planks are held together using a rope,
tightly enough to ensure contact between the parts and the supporting frame, but sufficiently loose to pre-
vent compression forces in the assembly. Thus the boundary conditions of the physically built assembly
match the ones of our numerical model, presented on FIGURE 4.24d. As for the load distribution, the nodal
force is enacted by the means of weights (16 kg of weights + 0.3kg of the basket) that are suspended with a
string to a point on the top edge of P, thatis slightly offset to the right of the rightmost point of the assembly
(itis not precisely directly above it, because the string would prevent from seeing well the interface, hinder-
ing the quality of the images). The sceneis lit using a projector, and a camera (not shown in the picture as it
was used to take it) is placed on a fixed table next to the projector. The basket is loaded 2kg by 2kg, and each
time weight is added, a picture is taken. The set of pictures is then loaded in the software GOM Correlate to
perform the image correlation.

On FIGURE 4.30 and FIGURE 4.31, the snapshots from the image correlation show only the vertical defor-

Al
1

and values are lower making thus the noise higher, and images are often less readable. Each snapshot can

mation ¢, calculated using the standard formula e, = =*. ¢, is not shown as it is not the main deformation
be considered as 3-colours coded: the interior body of the parts is in green, meaning that vertical defor-
mation is close to 0, showing that the interiors of the parts move as rigid bodies. Colours red and blue are
respectively used to encode the distance between points expanding and narrowing. The deeper the blue
or brighter the red, the more significant the corresponding phenomenon. The interface is regularly tagged
and the values of the deformation ¢, of the associated points are written.

On the left of each image, the resultant (magnitude and direction) of each assembly analysed by Karamba
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Figure 4.29| The experimental apparatus.
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Figure 4.30] Left: our analysis of the forcesin the links. Right: vertical deforma-
tion of the corresponding fabricated assembly: red indicates posi-
tive strains and thus tension, while blue indicates negative strains,
i.e. compression. The two models are in qualitative agreement.
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is shown in blue. A first obvious remark is that the image correlation captures the widening of the gap of
the interface (in red), which is completely missed by our model: because these regions of the interface work
in tension, our model can only output a binary answer, namely whether it is in tension or not. That being
said, the results in compression can be compared, and one sees on FIGURE 4.30 a perfect match between the
location of the points in compression predicted by our model and the points on both sides getting closer
on the image correlation (in blue). Better, the magnitude of the compression, calculated by our model and
displayed on theimage correlation, seems to be in line with each other: the longer the vector on the left, the
deeper the blue colour on the right. Again, our approach is purely qualitative, so we do not compare values,
we just want to see if our model agrees with the image correlation. As far as the assembly on FIGURE 4.30 is
concerned, our model fully fulfill our requirements.

Things degrade a bit when looking at the results on FIGURE 4.31. Indeed, while in most cases the two ap-
proaches show the same points in compression, our model sometimes finds an equilibrium that does not
fully correspond to the observation of the image correlation. For instance, on 4.31a and d, our model does
notfind that the segments circled in red are in compression whereas the image correlation does; 4.31c shows
another perfect match between our model and experimental data. FIGURE 4.31b shows the surprising and
interesting case of a mismatch, a colour swap: focusing on the bottom two segments of the polyline, our
model predicts that the top one is in compression and the bottom one in tension. The image displays the
opposite, which does not seem to make sense. Indeed, when looking at the somewhat horizontal segments
in the middle of the polyline, one sees that both approaches agree in saying that they are in compression.
The fact that the correlation says that the bottom segment is also in compression implies that the bottom
half of the assembly is squished, which cannot be explained given the boundary conditions and the location
of the nodal force. Moreover, the geometry of the polyline on 4.31d is close to the one on 4.31b (both were
obtained using the same input polyline, one was optimised in translation, the other in traction), but on the
former, the image correlation shows that the bottom segment is in tension, which contradicts the results of
the latter. Finally, physical manipulation of the assembly shows that, on 4.31b, our model is closer to reality
than the image correlation.

a
°

Figure 4.31] Left: Karamba analysis of the forces in the links. Right: vertical de-
formation of the corresponding fabricated assembly. Issues and
mismatches are circled in red.

There are multiple possible explanations to account for this mismatch. A first explanation is that in the
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software GOM Correlate, to our knowledge, the mesh used to carry the calculations is hidden from the user.
Therefore, one cannot specify that there is an interface between two parts where the mesh shall be refined.
Hence, it is certain that elements of the mesh were laid over the interface, and results are to be taken with
suspicion. In other words, it would just be bad luck that several such elements were all around the bottom
segments. A second, and we think quite likely, explanation is as follows: the software is highly sensitive to
the black speckles on the specimen, a sensitivity that led to conundrums: on two successive images, with
necessarily the very same speckles distribution, the software would deem the first image has to have excel-
lent distribution and the next one as having a poor one making the calculations difficult. It is thus entirely
possible that for the last image, the software considered the area around the bottom segments as having a
bad distribution, and the results are thus unpredictable. The final, maybe most likely, explanation is simply
an error in the boundary conditions during this specific experiment. This seems however surprising as ex-
periments were all done in a row, and this experiment is the only one showing an issue.

We took care of explaining where this mismatch potentially comes from to highlight the following point:

the aim of comparing our model with the image correlation approach is to qualitatively assess their differ-
ences, and to better calibrate our model using experimental data. Yet, as we saw, these images may provide
the wrong data, preventing us from further improving our model.
Nevertheless, the agreement between the two approaches is good enough for us to deem our model well
suited for our needs: being both numerically stable as justified on SECTION 4.2.3, as well as mostly in line with
experimental data as seen in the current section, it is fit for comparing automatically generated assemblies
between them consistently and reliably, which is the focus of the next section.
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COMPARISON OF AUTOMATICALLY GENERATED ASSEMBLIES

This section aims to find automatically generated designs of 2-
parts assemblies that have a lower 95% stress in both Py and
P, than a human-designed, tradition-inspired, assembly. To
prevent stress concentration at the point of application of the
nodal force, the load is now distributed along a vertical line,
at a constant distance to the right from the rightmost point
of the polyline. A tenon and mortise-like assembly A, (.. for
reference) has been created by hand, and the height of the
tenon was optimised as to minimise the 95% stress calculated

in both parts, see the inset. Our algorithm was run 50 independent times to generate as many designs con-

strained to have exactly two snap segments, like the reference assembly.

Normalised 95% stress in Py
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Figure 4.32| Most generated designs perform better than the reference.

The 95% stresses in both parts of each generated design have been calculated and compared with the

results for A,.. Of those 50 designs (that were generated in a couple of seconds) 29 dominate the reference

A,, meaning that they are calculated as having lower 95% stresses in both parts than A,.. On FIGURE 4.32 the

reference assembly A,. is highlighted in red. The 95% stress values are normalised by the values calculated

for A, and are displayed in the plane (stress in Py, stressin P;). Hence the stress values of A,. are displayed

at (1,1), with a red diamond. The normalised stress values of the generated assemblies are depicted with

dots. The 29 big blue dots correspond to the designs performing better than the reference and the 6 best

performing assemblies are shown. Only five designs were strictly dominated by the reference and their

stress values are depicted with small black dots. The remaining 16 designs are equivalent to the reference
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Figure 4.33| 39 out of 99 generated designs perform strictly better than the ref-
erence.

with the stress measure improved in one part but degraded in the other. This figure hints at a seemingly
pleasing feature of the design space of 2-parts assemblies: a random walk in this space seems likely to yield
assemblies that are relevant with regards to our numerical analysis. However, of course, not all such random
designs are good: FIGURE 4.32 shows that for some designs, stress was multiplied by as much as 2.6.
The design problem with the point load (see FIGURE 4.24d) was also investigated, though the results are not
shown as they are very close to the ones above: out of 50 designs, 23 performed better than the reference,
which again hints that a random walk gives useful results.

For a hand-drawn assembly more carefully designed, with four snap segments to distribute more evenly
the forces at the interface, results are similar. Out of 99 generated designs, 39 dominated the reference, as
shown on FIGURE 4.33.

This hints that a random search in the design space of 2-parts assemblies is powerful enough to find
novel designs performing better than human ones. But the evaluation takes time: while generating the
designs took a couple of seconds, the iterative mechanical analysis is slow, taking approximately half a
minute per design. This is mostly due to the use of tools that are not intended to be used in the way we
did (Grasshopper does not support loop, the plugin Anemone bypasses this, but at the cost of slowness),
and to create the meshes, components performing more calculation than necessary were used. A custom
implementation would certainly speed up the process, making such a search must more tractable.
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CONCLUSION

Time was spent building a finite-element computational tool that can consistently and reliably analyse any
kind of 2-parts assembly. Numerical stability and agreement with another method were studied, and this
section culminates in SECTION 4.2.5, which, albeit quite short, shows a key feature of the design space of
polygonal assemblies and helps in justifying why this manuscript bother in exploring it. Indeed, it turns out
to be quite easy to find assemblies performing better than reference ones, by simply randomly walking in
the design space. A promising route for further research would be, given designs performing better than
or close to the reference, to execute a local optimisation search, where polyline vertices are moved in ways
that improve the stresses. A naive algorithm can be outlined: each vertex is randomly moved in a small
disk centred at its location. Whenever such a motion improves the stress in the parts, the direction in which
the vertex moved is used to bias further its further displacement (akin to a “gradient direction”). The stress
measure is not expected to dramatically improve with such a naive algorithm, but it surely leads to better
designs.

STUDIES RELATED TO THE CONES OF ROTATIONAL FREEDOM

ABETTER UNDERSTANDING OF THE CONES OF ROTATIONAL FREEDOM

Figure 4.34| An assembly and the C;* (in red) of part P; (in blue)

FIGURE 4.34 shows a 2-parts assembly A = {Py, P, }, with P; (in blue) obeying a clockwise rotation
around x,.. The cone C", shown in red, has been calculated and is compact enough to be displayed in the
plane instead of projected onto the sphere. The grey lines depict the boundary of the half-planes encoded
in the system A,z < b. Two situations are zoomed upon on FIGURE 4.35: on the left the centre of rotation
x is taken as a vertex of the cone CS™; on the right x is taken on an edge. Let us first study the left situation.

x is avertex of CZv
There exists a set of indices I, (with |I,| > 2) such as the lines defined by the system

A]ma? = b[w
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Figure 4.35| Zooms on instantaneous directions of motion m(p, x), depend-
ing on whether x is a vertex of C; or on an edge.

intersectin x, where Ay, and by, means that these quantities are made of the rows indexed by I, in A, and
b . Each of these lines is derived from one of the two equations:

Eitherm,, -n; =0

Orm,, ., -n; =0

fori € I, which exactly means that the segment [p;, p;+1] is perpendicular to either the line [p;, x] or
[pi+1,x], as shown on FIGURE 4.35 left. Informally speaking, these segments snapped from the point of
view of centre x. This means that an infinitesimal rotation around x would make the points indexed by I,
slide on the boundary. As such they are critical points guiding, helping, the (dis)assembly.

x is a vertex of an open edge of C¢*

This situation is illustrated on the right of FIGURE 4.35. The same analysis as for the previous case applies,
if not for the fact that now |I,| = 1, meaning that there is only one point sliding on the interface between
the parts.

x belongs to the interior of "
In such a case there are no critical points, and all points on the boundary move away from it.

We emphasize the study of these three cases to highlight a phenomenon that may ease the (dis)assembling
process: much like we use sensory inputs when we put a key into a lock (does it slide ? is it stuck ?) a
(dis)assembling agent - be it a robot or human - could greatly benefit from contact information between the
part to move (P;) and the part remaining (P) to perform the task. To that end rotating about a point « on
the boundary of the cone C:, i € {cw, ccw} seems to be a better heuristic than rotating about a point in the
interior of the cone. Indeed at least one point stays on the boundary of the fixtured part for infinitesimal
motions and can thus inform the agent of the relative location of the parts. The most advantageous from
that point of view would be to rotate around the prescribed x,. as it is defined by at least two snaps, i.e. there
are at least two contact points (and potentially many more, on FIGURE 4.34 four segments have snapped)
between the parts.

102



2-D assemblies

NUMBER OF SNAP SEGMENTS AND CONES OF ROTATIONAL FREEDOM

Contrary to the translation case where two opposite snap segments completely close the cone of translation
freedom C, to the user-prescribed cone, as explained in SECTION 3.1.1.1, in rotation the cones CS°* and CS¥
are often not reduced to the user prescribed centre x,.: instead, they sometimes extend to infinity (meaning
that the part obeys a translation as well), which may very well be an undesirable feature of the polyline, if
only because for a multi-parts assembly, these cones may intersect, thus increasing the number of cells of
dimension 0 of the NDBG and hence increasing the number of base DBGs that must be calculated to assess
the interlocking of the assembly. It turns out that the user has indirect control over the cones C5“ and
Ce* by the means of the number of snap segments: the more snap segments, the narrower the cone. Thus,
should the user wants the cones of rotational freedom to be small, or even one reduced to {x,.} the other
empty if he/she only wants the part to obey a specific rotation in one direction, two strategies coexist:

1. Theuser asks for a large number of snap segments.
2. Oncethe polyline is optimised, the user asks for the introduction of new points on the snap segments
and runs the optimisation again by specifying that these new, smaller, segments must snap.

The second strategy was implemented to generate the 4+1 parts assembly on FIGURE 4.21, to ensure that
only four DBGs had to be calculated. Understanding why more snaps implies a narrower cone is straight-
forward: recall that the cones C: and CS* are calculated by solving SYSTEM (3.14), in the form A, x x b,
standing for > and <. The second strategy creates more segments on the polyline, thus more constraintsin
A, the more constraints, the less likely a point is to meet all of them, and thus the narrower the cone. The
first strategy does not change the number of rows in the system but ensures that a greater number of them
are equations instead of inequalities: a greater number of half-planes have their boundary intersecting pre-
cisely on the prescribed centre x,., thus narrowing the cone. To accurately measure the “closing” of cones
that may be infinite (see FIGURE 3.11 where the cone extends to infinity), the spherical area and perimeter
of its stereographic projection onto the unit sphere are measured. The perimeter is used as an additional
measure to take into account the cases where the cone is reduced to an infinite half-line, as shown on FiG-
URE 3.12. In this case, indeed, the stereographic projection of the half-line is circular arc, of zero area but a
finite perimeter. On FIGURE 4.36 twelve assemblies are displayed. The same input polyline was optimised to
obey a counterclockwise rotation four independent times for an increasing number n € {2, 3,4, 5} of snap
segments (strategy 1, vertical axis). For each design with n snap segments, the snap segments were sub-
divided from zero to two times (strategy 2, horizontal axis). Hence, for instance, the design at row indexed
by 3 and the columns indexed by 0 means that the input polyline was prescribed to snap 3 times, but no
subdivision was required. The one at (row 3, column 1) took each of the 3 snap segments and subdivided
them once by introducing a vertex in the middle. The polyline was optimised again to snap these 6 (smaller)
segments. The design in (row 3, column 2) took each of the 6 previous snap segments and subdivided them
again, totalling 12 snap segments that were optimised to snap. The design at (row 7, column 5) has i27 snap
segments. As such, the design with the smaller amount of snap segments is at (row 2, column 0) with two
snap segments, the one with the greatest at (row 5, column 2) with twenty snap segments.

The cones of rotational freedom C$°* and CS™ are calculated and are displayed on the sphere, in blue and
red respectively. The area and perimeter of each such spherical surface are displayed as coloured circles
whose radii are proportional to their values: in light blue the area of C5¢?; in dark blue the perimeter of
Cee. In light and dark red respectively the area and perimeter of CS. One sees that the more snap seg-
ments the narrower the cones. The assembly at (3 vertical, 1 horizontal) shows the noticeable case where
Cew = {0} and C: is almost reduced to a line of zero area. When no coloured circles are displayed, it
means that the counterclockwise cone is reduced to the prescribed x,- and the clockwise cone is empty.
As a side note, FIGURE 4.36 also shows the range of possible designs that are accessible given the same input
polyline.
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Increasing the number of snap segments, be it by strategy 1 or strategy 2, is a conceptually cheap method
to reduce the actual cone of rotational freedom to the user-prescribed centre of rotation, thus making the
enumeration of the base DBGs short and brief, and the assessment of the interlocking of an assembly more
direct. Note that strategy 2 barely changes the shape of the polyline: on each row i of FIGURE 4.36, the design
at (row 7, column 0) closely looks like the design at (row 4, column 2).
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ON FABRICATION IMPERFECTIONS AND MOTION TOLERANCE

What follows is a study aimed at mimicking the behaviour of a real-life assembly which calls into question
the very possibility of obeying a rotation around the prescribed centre ... In this section, C,. refers to both
Cee™ and CE™, the direction of the rotation is of no matter; x refers to > and <; 9C,. refers to the boundary
of the cone, i.e. the set of vertices and edges defining the cone and C, defines the interior of the cone. We
will conclude that in practice the rotation about x,. is the one of the least likely to happen among all the
rotations around points in C,.. To understand why we must consider two uncertainties: one on the location
of the centre of rotation x, and one on the location of the points (p;);c[1,x] constituting the separating
polyline.

Uncertainty on the location of the centre of rotation

Fore < 1letx € C, and let
x. ~x+N(0,6%)

be the centre of rotation of a part taking into account some imprecision on its location. This could model
the fact that a (dis)assembling robot is ill-calibrated or that it vibrates around the mean position . Then,
obviously if & € OC,. there is a chance that . ¢ C,.: if x is on an open edge between two vertices, then the
probability that z. ¢ C, is %; if x is a vertex of C,. (which is the case for x,.) then the probability that x. ¢ C,
is even higher. For that reason obeying a rotation about x,. is less likely than obeying a rotation about any
x € C,. Yet the main reason that explains why the rotation about x,. is less likely than the one about any
other & € C, is more subtle and comes from taking into consideration uncertainties on the position of the
vertices (p;)ici,x) Of the separating polyline.

Uncertainty on the location of the points of the separating polyline
Let
Vi € [1,k] pS ~ p; +N(0,€%)

Such (p§)ieq1,x) Models the tolerance of fabrication of a part: each point p§ is randomly shifted around its
expected position p; by a random variable following a Gaussian law with an ¢ < 1 variance. This modelling
of imperfections might be rightly deemed as quite crude, but more sophisticated models would not change
the heart of the conclusion we will arrive to.

By construction of our algorithm, at least two segments of the polyline snapped for the assembly to obey
x,. Therefore there exists a subset of indices I, such as one has the equality A;, x, = b;, . Asillustrated
ON FIGURE 4.34, this system defines | I, | lines that intersectin x... The question that arises is “What happens
to this system when we use the perturbed polyline points (p5);c1 k] to build the matrix A5, and the vector b
?” where Af and b° are built using the (p§);c[1,x] in a similar fashion as A, and b are built with (p;)ic1,x]»
see SECTION 3.1.1.2 for a definition. Let us focus on the subset of lines indexed by I, . Because the pf are
randomly shifted, in all generality one has

€ €
7, ®r—b, #0

Geometrically, the lines defined by Air and bir are randomly shifted and tilted compared to their
counterpartsdefined by Ay, andb;, . Thismeans thatthey do notallintersectin ,; in all generality, they
donoteven allintersect at the same point. Sounlessthe pointz, € CS (whereCt = {x € R? | ASx—b*0)
the rotation around «,. will be impossible.

The probability of the event x, € Cs is easily quantified. For j € I, leta; and b; be respectively the
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row of A, and the entry of b indexed by j. Similarly we define a§ and b5. As said above, in all generality one
has a$x, — b5 # 0, and because the mapping (a;,b;) — (a$,b5) is random, there is a 50-50 chance that
ajx.— b5 > 0. Geometrically and in layman terms, since ;. is on the line defined by a; and b; and since the
line defined by a§ and b is randomly shifted and tilted, then there is as much chance for z, to be “above”
this shifted line (i.e. a5z, —b; > 0) than “underneath” (a;:c,. —b5 < 0). At this step of the study, one would
conclude that the probability the z,. € CSisP(x. € C5) = ﬁ

We can go further in this study. It is possible, especially for a thin C,., that a line j bounding the cone C,. but
notindexed by I, ,i.e. not going through x,. (e.g. the upper line bounding CS* on FIGURE 4.34) shifts on the
other side of x, after the random transformation (A, b) — (A%, b°). In other words, if one has a;z, > b;
one could get, for a transformation of sufficiently high magnitude, ajz, < b5. As this could happen for any
line not indexed in I, and even if we are lucky and all lines indexed by I, are randomly moved on the

“right side” of x,. (Aj,m_ T, * bi,,) with a probability of exactly ﬁ), we arrive at the conclusion that:

. 1
P(x,. €C;) < ol

The key takeaway is that the more snap segments (i.e., the greater | I, |) the less likely an imperfect part is

1
4

we modelled the imperfections in a more sophisticated fashion, the exact value of this probability would

to obey the prescribed centre «,.. In the best-case scenario, there is a ; probability that it happens. Had
certainly have changed, but not the fact that «, is the least likely point of C,. to be obeyed. This property
is illustrated on FIGURE 4.37: the same initial polyline has been optimised ten times, for prescribed snap
numbers varying from 0 to 9. For each of such ten optimised polyline (p;);c[1,x], 200 imperfects designs
(P§)icq1,k] Were generated by slightly moving the polyline’s vertices (with ¢ = 0.001). We kept track of the
number of times an imperfect polyline obeys the prescribed centre x,. to estimate the probability of obedi-
ence P(x, € C5) (sampled mean). FIGURE 4.37 clearly shows that this (estimated) probability is capped by

—+—, as expected.
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Figure 4.37| The probability that an imperfect design obeys the prescribed

centre x.. is upper-bounded by 2%, withn = |I,,.|. The snap seg-
ments are in red.

This study naturally raises the question “Given a class of imperfect parts (p§);c[1,x], what is the proba-
bility of a point = € R? to actually be obeyed to ?”
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Likelihood of a point to be obeyed by a class of imperfect assemblies.

Givenapolyline (p;);c[1,x) and alaw to model theimperfections (pf);c[1,x], @ numerical study can swiftly be
executed to find the set of points likely to be obeyed by the part. Forinstance, on FIGURE 4.38, the separating
polyline was perturbed using e = 0.002 in p§ ~ p; + N(0, €?) (for reference, the length of the diagonal of
the design domain is 1). For each of such imperfect polylines, cone CS* was calculated. The results are
averaged over 1000 imperfect designs. The pointin red is x,.: one sees that it does not belong to the set of
points likely to be obeyed. The curve in black shows the isoline 99: it encloses points having a probability
greater than 0.99 of being obeyed by an imperfect polyline. The highlighted black point was found to be
amongst the most likely to be obeyed (out of the 1000 designs, all obey it). This numerical study confirms
that, given the modelling of imperfections, the prescribed centre x,. is extremely unlikely to be obeyed.

To get a better idea of the set of points likely to be obeyed, the same study has been repeated for varying

Figure 4.38| Heatmap of likelihood of obedience. In deep purple probability 0,
in bright yellow, probability 1.

values of ¢, see FIGURE 4.39: the box on the top right of each subfigure shows the estimated probability
P(x, € Ct). The obedient set gracefully degrades, and one sees a subset (in yellow on all figures) that
constantly has a high probability of being obeyed, no matter the magnitude of the imperfection. FIGURE
4.39 gives a choice to the user: if the location of the actual centre of rotation is not a hard constraint, then
such heatmaps give the set of points with a high probability of being obeyed, thus letting the user choose
a posteriori what the centre should be. On the other hand, if the location of the actual centre of rotation
must be precisely the prescribed x,., then one should modify the separating polyline for it to robustly obey
x,., even given the presence of some imperfection. Increasing the robustness of the separating polyline to
some imperfection is what we call the opening of the cone of rotational freedom. It is the focus of the next
section.
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£=0.001 £=0.002

£=0.003 £=0.004

£=0.005 £=0.01

Figure 4.39| Heatmaps of the likelihood of obedience for several e.

ROBUSTNESS TO IMPERFECTION

We see two manners in which one can perform the so-called opening
of the cone of rotational freedom, for it to contain the prescribed cen-
tre x,., even in the presence of some imperfection. The first method
consists of taking the separating polyline at the end of the GPA optimi-
sation, and optimise it again by implementing a constraint of the form

SNy My, > «

forsome o € RT. The greater «, the more open the cone and the more
x, is in the interior of C,.. In this section & = 0.1. Of course, in such a
case, the snap constraint must be deactivated, as it is incompatible with this constraint. The inset shows
the input polyline in blue (so the one obtained at the end of the first round of GPA optimisation is the same
as the one shown on FIGURE 4.34) and the output in red, where the snap constraint has been deactivated.

The same numerical study is conducted, and is presented FIGURE 4.40. The probability P(x, € Cf) is es-
timated on 1000 imperfect designs, for various magnitude ¢, and displayed in each subfigures. For small
enough ¢, this probability is 1 or close to 1, meaning that the polyline is now robust to small imperfections.
Obviously, the greater e the smaller P(x,. € Cf), but even for a relatively large magnitude e = 0.01, there is
still more than a fourth of a chance for the assembly to obey «,.. The downside of this method is that it is
very likely to increase the area of the cone C.,..

The second method consists of implementing a fake prescribed centre ¢, so that the centre wanted,
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£=0.001 £=0.002

® 100.0%

£=0.003 £=0.004

£=0.005 £=0.01

Figure 4.40| Heatmaps of likelihood of obedience for several € after the open-
ing of the cone through the sm;m,, > o method.

.., belongs to the interior of the cone of freedom calculated for x . This supposes having an idea of where
to put ¢, thus one should know how the heatmap degrades with €. On FIGURE 4.39 one sees that the set
of points most likely to be obeyed is up to x,, slightly to the right. So one should set = to be below z,,
slightly to the left. On FIGURE 4.41, the fake centre x is shown in light blue, while the centre x,. is depicted
in red. Similar to the previous methods, one sees that the probability P(x, € C¢) is much higher. The main
drawback of this method is that several trials must be done before arriving at a satisfying result.

CONCLUSION - ROBUST OPTIMISATION

SECTION 4.3.1 recalled the salient aspects of the cone of rotational freedom C,., for us to better understand
what it means for a part to obey a point in this cone. It highlighted one crucial aspect of our work: vertices
of the cone are critical centres of rotation such that, when performing an infinitesimal rotation around one
of them, a vertex of the polyline slides on the interface between the parts. The more constraints meet at a
vertex of a cone, the more vertices of the polyline slide. With this in mind, much like we use sensory inputs
when inserting a key in a lock, the operator tasked with (dis)assembling two parts, human or robot, greatly
benefits from contact information at their interface, if only to further guide the motion. As such, rotating
around a vertex of the cone is a relevant heuristic, as at least two vertices of the polyline stay in contact
with the other part, the most critical vertex being the user-given centre of rotation x,., as the number of
constraints meeting there is at least equal to the number of snap prescribed by the user.

In SECTION 4.3.2 we saw that the greater the number of snaps, the smaller the cone of rotational freedom
C,. It provides a cheap method to shrink the cone to the user-given rotation centre x,., and thus gives the
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£=0.001 £=0.002

® 99.8%

£=0.003 £=0.004

£=0.01

® 17.4%

Figure 4.41| Heatmaps of the likelihood of obedience for several ¢ after the
opening of the cone through the fake centre method.

user the same amount of control as in translation, where shrinking the cone C; to the user given x; isimme-
diate given exactly two well-oriented snap segments. Since, in addition, we have seen in SECTION 3.1.3 that
to assess the interlocking of a multi-parts assembly we must compute the DBGs of the cells of dimension 0
bounding and/or resulting from the intersection of different cones, we see that, because shrinking the cone
to C, = {«,} for all parts required to rotate ensures that no intersection is possible with any other cone,
the number of cells of dimension 0 is minimal, namely equal to the number of parts having to rotate around
their prescribed centres (and the DBGs in translation must be checked). Finally and quite importantly, from
a practical point of view shrinking C,. decreases the odds of accidental disassembly as fewer points are valid

centres of rotation.

At this step shrinking C,. to {,.} by increasing the number of snaps seems an excellent idea: by increas-
ing the number of constraints meeting at «,., one multiplies the points giving contact information at the
interface between the parts on one hand, and on the other, it reduces the complexity of assessing the in-
terlocking of the assembly. Yet, in SECTION 4.3.3 we understood that if we factor in uncertainties, be it on
the location of ;. or on the geometry of the separating polyline (p§);c[1,x], the more snap segments, the
less likely is the part to obey x,.. Indeed, because the snap constraints coincide in x,, any random change
dramatically decreases the odd of &, meeting all of them, making the assembly highly unlikely to obey its

prescribed rotation.

Toincrease the odds of obedience, two strategies were presented in SECTION 4.3.4: either we forget about
the snap constraint and, for some o > 0 we impose that for all segment i sn; - m; > o (forj € {i,7 + 1}),
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but then we lose control on the shape of the cone C,., or we introduce a fake centre of rotation, located such
that the actual centre x,. lies deep in the region of a high probability of obedience, but this require many
trials and errors. Whichever the strategy, they are likely to adversely affect the area of the cone C,., which
may increase the number of base DBGs to calculate, but also means that the separating polyline obeys more
rotations: it is less robust to parasitic rotations.

In this concluding section, we offer guidelines to keep the number
of DBGs tractable while ensuring that x,. stays likely to be obeyed,

even after the introduction of imperfections. We simply mix what /ﬁ’/\ — 71

we summed up above. First, we increase the number of snap seg- : 7 *
ments until we get C,, = {«,-}. Then we take the polyline resulting / \j
from this GPA optimisation (in the lightest shade of blue in the / \\

inset), and we feed it as input to a new round of GPA optimisation
where the snap constraint is deactivated, and the segments are
constrained to sn; - m; > «, for some a > 0. Since we started

from a situation where constraints were met by x,., (i.e. for some
indices we had ;- m; = 0), this new optimisation pushes the boundaries of the corresponding half-planes
encoded in A, x x b away from x,.. Because all other constraints are already met by the input polyline, this
round of optimisation stops as soon as sn; - m; > « for all 4, thus the polyline is only slightly modified,
especially for small a: on the inset the darker a polyline, the bigger the corresponding a.. The values of «
are given FIGURE 4.42. Parameter « is the minimal distance at which the boundaries are pushed from x,., it
provides thus an indirect tool to manipulate the shape of the cone of freedom C,..

On FIGURE 4.42, the imperfect cones of freedom C¢ are superimposed for various values of .. In this figure,
the standard deviation of the normal law is ¢ = 0.002. Four segments snapped on the initial polyline, thus
we have P(z, € Cf) < £, whichis consistent with the observed sampled mean of about 0.04 on the top left
subfigure, for a = 0. Then, forincreasing values of «, the cones C¢ gets broader and broaderand P(x,. € C¢)
soon reaches high values. In this figure, it seems that a good balance between the size of the cone and the

probability that «,. is obeyed is obtained for & = 0.03 (and for the estimation of the probability, ¢ = 0.002).

In a nutshell, while ideally we want C,, = {x..}, imperfections impose to have a broader cone. Yet to
avoid having too many base DBGs to calculate, a small cone is desirable. Parameter o permits to indirectly
manipulate the shape of C,., thus adjusting its size. We can outline a very simple algorithm, should the user
wants all the cone C,. of the different parts of the assembly to have similar areas, between two thresholds
Amin and A4, at each iteration, when a polyline is optimised (using the snap constraint, and o = 0), the
second round of optimisation for & > 0 is executed several times, to get to a cone area A,,,;, < A < Aas
by dichotomy: if the area is too great decrease «; else if too small increase it. By placing the centres of ro-
tation of the different parts sufficiently away from each other, such an algorithm ensures that no two cones
intersect, keeping the number of base DBGs low. Worst case scenario, if there is indeed an intersection,
simply diminish the value of « for the corresponding polylines until their cones do not touch anymore.

Imperfections on a polyline obeying a translation are much more simple to address: it suffices to slightly
increase the angular opening of the cone C; to give room to the polyline to giggle while keeping x; (or z{* and
xP) inside the perturbed cone Cs. It can be done at the first round of GPA optimisation, by simply directly
prescribing this slightly bigger cone. Moreover, as intersecting such cones of dimension 1 does not result in
more cells of dimension 0 (they keep being the endpoints of the cones) we do not need to give particular
care to the DBGs associated with directions of translation. The downside is the same as in rotation: the cone

112



2-D assemblies

a=0.01

o 38.9%

a=0.02 a=0.03

a=0.04 a=0.05

a=0.15

« 100.0%

e 99.7%

Figure 4.42| Parameter « gives an indirect control over the shape of the cone
of rotational freedom C,..

being greater, the assembly obeys more motions, and is therefore less robust to parasitic rotations: it may
become quite easy to disassemble. The user should thus use a to increase the size of the cones of freedom,
but not too much as otherwise the assembly would easily break apart.
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BACKLASHES IN ASSEMBLIES

OVERVIEW

A backlash between two imperfect parts refers to the gap between them in the assembled position. Back-
lashes are a necessity for any real assembly as it is impossible to make parts with perfect geometry.

In the present study, the hypothesis of infinitesimal motion makes it impossible to finely study the conse-
quences of a backlash between two parts. On FIGURE 4.43 three assemblies are shown. On the left column
the backlash between the parts is exemplified by the white space between the red part P, and the blue
part P;. While the gap is much larger than any realistic backlash, we will understand that because of the
infinitesimal motion hypothesis, the actual width of the gap matters not. The middle column shows the
parts in an assembled state: part P; is translated to the left until touching Py. As one can see, even in this
state, gaps still exist on the upper and lower part of the tenon. On the right, the so-called perfect cones C;,
Cee and CS* are the cones of freedom associated with a perfect assembly, with no backlash. The so-called
backlash cones are calculated taking into account the backlashes on the upper and lower segments of the
tenon: because any infinitesimal motion of P, cannot lead it to collide with such segments on P, (as they
are at a finite distance from it), any translation and/or rotation can be obeyed by these segments. As a con-
sequence, the cones of freedom can only be calculated with the segments of the interface touching each
other. In each of the three cases presented on FIGURE 4.43, only the three vertical segments of the interface
can be considered. This leads to backlash cones of freedom of motion much larger than the perfect ones.

Following this theoretical study, backlashes seem to be a major impediment to our work: since any real
assembly has backlash leading to large cones of freedom of infinitesimal motion, should our work not be
obsolete? Fortunately these theoretical results are of negligible consequences in real life: in a laser cutter
the order of magnitude of the kerf (the width of the groove burned by the laser) is 0.1mm=10"*m. The side
of the square design domain of the built assemblies is of about 10cm=10"'m. For such a backlash ratio of
about 103 we find that the physical manipulation of the assembly is coherent with the perfect numerical
model (without backlash): for most assemblies the backlash is not perceptible at all, and for a few we can
feel that small motions other than the prescribed ones are possible, but as soon as there is an additional
contact between the parts, the geometry of the interface naturally guides the motion towards the prescribed
one.

In translation, when the cone C; is bounded by two distinct vectors x7*, =7 (by opposition to being re-
duced to a single direction x;) we observe that in a tenon-and-mortise like assembly, it is possible to have
the backlash cone equals to the perfect one by having the tenon slightly larger than the mortise. Assuming
the angle difference to be greater than the width of the backlash, the two parts will be in contact at exactly
two points, ensuring that the backlash and perfect cones match, as show on FIGURE 4.44. The cost of this
operation is the stress concentration happening at the contact points.

NUMERICAL STUDY OF THE KINEMATICS OF AN ASSEMBLY WITH BACKLASH

Yet, the fact that built assemblies behave well in practice does not mean that the theoretical kinematics of
assemblies with backlash should not be investigated. We present below a succinct study of the cone of free-
dom of a 2-parts assembly with backlash obeying a finite rotation. It is the only time in this manuscript that
we stray away from the infinitesimal motion hypothesis.

In this section, we call the polyline of P, i € {0, 1}, the portion of the boundary of P; that would have
been the separating polyline between the parts had they been perfect, with no backlash. Let (p;);c[1,x] be
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R backlash C2*

Figure 4.43| Backlashes greatly expand the cones of freedom.

Figure 4.44| By playing with the respective angles of the tenon and mortise we
ensure that the backlash cone matches the perfect one.

the polyline of P;. The original position of a point on the polyline of P; refers to its position before any
rotation is done: it is p;. Once the rotation is done, the new position of this point is denoted by p,.

Constant width backlash

The goal of this section is to find the set of centres of rotation such that a finite rotation around any pointin
that set does not lead P; to collide with Py. We make two simplifying hypotheses:

m  We assume that each point of the polyline of P, moves at a constant distance r > 0 from its original
position while rotating around a given centre x. Thisis a strong assumption: in reality, the length of the
trajectory of a point is proportional to its distance to the centre of rotation, and the closer the centre
to a point, the more spread the lengths of trajectories of the other points of the polyline. Thus this
assumption only becomes reasonable when looking at centres of rotation far away from the polyline.

m  Whileinreality, the trajectory done by a pointis a circular arc, we model it by a line segment, tangent to
the trajectory at the original position of the point. Mathematically speaking, given a centre of rotation
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@ each point p, moves along the instantaneous direction of motion m(p;, «). Being afirst-order Taylor
expansion of the trajectory, thisis a reasonable assumption as in practice the width of the gap between
two parts is small compared to the radius of the trajectory and the error made by considering a line
segment instead of a circular arc is minute.

To insist on the fact that the motion we model is not a proper rotation (it is not a rigid motion), we will refer
to it as “rotation”. These two hypotheses mean that given a centre x, each point p; of the polyline of P, is

moved at ( )
~ m iy I

Pi = Di + p PR T

|lm(ps, z)|

and denote by P; the part after the “rotation” is done. Our goal is thus to find the region:
Rs={x € Rz, I:’l does not collide with Py}

Parameter ¢ will be introduced hereunder. Assume in this section that the backlash is of constant width,
denoted by A. For our “rotation” to possibly lead to a collision with Py, we must have r > A.

Figure 4.45] |llustration of the notations.

FIGURE 4.45 illustrates the notations we have introduced: the red

circle shows the set of possible location of point p; after a “rota-
tion” of p;. Two cones are highlighted in red: they correspond to
the set of positions on which p; is in the interior of Py, meaning
that P, collides with P,. Thus we want to avoid the z € R? such
that m(p;, ) is in the interior of one of the two cones. Assuming
the rotation to be counterclockwise, this means that & cannot be in
the cones obtained by rotating the ones shown on the figure by 7

counterclockwise. We call these rotated cones the forbidden cones,
noted ;5 for each vertex p;. Note that the forbidden cones only depend of the ratio § = - They are shown
forall (pi)ie[[l,k]] on the inset. As seen on this figure, several cases may occur, ranging from ;s = ( to ;5 is
constituted of several cones.

Thus, we want to find the set of points « such that none of the (m.(p;, ) );c1 5] lie in a cone ¢.5. Thisis
therefore given by:

k
Rs = {R2 \ U¢i5}
i=1
Sets R s, for various 4, are shown in blue on FIGURE 4.46. They are not convex, not even necessarily con-
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6=13 / 6=14

Figure 4.46| Several regions R, for various values of 4.

nex. But recall that our first assumption (all p; move by a constant value » = §A) is highly unrealistic near
the polyline of P;; thus, the shape of each region R s in the vicinity of the separating polyline should be taken
with a grain of salt. Far away from the polyline, R s becomes much more realistic and means that during the
disassembling process, the operator (robot or human) can rotate P; around any centre of rotation x € R
byanangle ~ ——-,assuming x to be sufficiently far from the (p;);c[1,x so that the distances ||p; — ||

[lpi—[]’
are all close to each other.

The pendant map obtained for clockwise rotations (the rotation to obtain the forbidden cones is clock-
wise and not counterclockwise) would show the region of the plane compatible with a finite rotation aimed
at assembling the parts. Such maps may be useful in the context of a cluttered assembling space where the
operator would benefit from choosing the centre of rotation to operate from.
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Varying width backlash

Inthe previous section, we assumed the gap between the
part to be of constant width A. In practice, in the ab-
sence of contact information, it seems nearly impossible
to neatly place the parts as such. In this section, we take
a more realistic stance by randomly moving P, by a small
amount so that the width of the gap is not constant, as il-
lustrated on the inset. The goal is now to find the set R

of points likely to be obeyed given the imprecision on the
location and orientation of one part with respect to the
other.

The process is the same as before: we find the set of forbidden cones and deduce R 5 by excluding them
from R2. FIGURE 4.48 shows the probability heatmap of a point to be obeyed for a finite rotation given

Figure 4.47| Forbidden cones, averaged for various random positioning of a
part with respect to the other, for6 = 1.1.

imprecise respective placements of the part. In bright yellow, the probability is 1, and in deep purple 0.
Rotating around points highlighted in yellow means that P; is very likely not to collide with P, for a finite
“rotation”. Again, the closer a possible centre of rotation to the polyline, the less accurate the heatmap.

INTERPOLATION BETWEEN 2-PARTS ASSEMBLIES

We leave the study of imperfections, backlashes and robust optimisation to enter the realm of smooth in-
terpolation between assemblies. Given two generated assemblies, the aim is to find the set of assemblies
bearing varying amount of resemblance to either of the two.

THEORY OF ELASTIC DEFORMATION OF OPEN PLANAR CURVES

This section aims at briefly summing up theory of elastic deformation of open planar curves, presented in
[93], and developed in extenso in the book [97], especially in chapters 4 and 5 to which the curious reader
is referred for more in-depth explanations. Indeed, technical explanations will be glossed over as we focus
more on conveying the main ideas of the approach, taking close inspiration from [11] who neatly synthesise
the main results. The open curve assumption is important: the mathematical process is much more com-
plex for closed polylines and is not presented here.
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6=11 6=12
6=13 6=14
6=15 6=2

Figure 4.48| Several regions R s, for various values of §.
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Consider an open curve parametrised in the form:

g : [0,1] — R?

As the parameter ¢ varies in its domain, the point 3(t) traces a path from §5(0) to 5(1). This is called a
parametrisation of (3, it dictates the rate at which the curve is traced, [92]. More parametrisations are pos-
sible: any orientation-preserving (meaning 4 > 0 on its domain) diffeomorphism ~ : [0, 1] — [0, 1] defines
a reparametrisation of 5 through the composition 3 o v, see FIGURE 4.49.

Figure 4.49| Two parametrisations of the same curve.

We are interested in the shape of the curve, thus the results should be invariant to shape-preserving
transformations (rigid motions, scaling and reparametrisation). These nuisances are listed below:

m its location in space; let R? denote the set of planar translations.
m  jtsorientation in space: let SO(2) denote the set of planar rotations.
m  itsscale; let RT* denote the set of scale parameters.

m  its parametrisation; letT" = {~: [0,1] — [0, 1], ~ isan orientation-preserving diffeomorphism}.

Let [5] be the orbit of 5, i.e. the set of curves with the same shape as 8 but with different transformations in
space:

(8] = {cO(Bo7)+z, 0 €RT*,0 € 50(2),y €T,z € R?}

Figure 4.50| Cartoon drawing of the orbit of a curve.

As our goal is to smoothly interpolate between two given curves 31 and s, it is necessary to know the
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distance between these curves. We can consider for instance the usual L2 distance defined as:

d(Br, B) = (/|@ )MQ%

Where || - || is the usual euclidean distance in R?, and we remark that in general d(31, 32) # d(B1 07, f207),
making this metric not invariant to reparametrisation: we lose some information on the shape of the curves
when using the IL? distance to compare them. Srivastava and coauthors, [92, 93], introduce the so-called
square-root velocity function (SRVF) of a curve 3 as

5O if (1) + 0
o) = F() = | Viwon 07
0 otherwise

F being continuous, if 3 is continuous, then ¢ is square-integrable, it belongs to the space L?([0, 1], R?).
Geometrically, itis a scaled velocity vector, tangent to the curve at each point. Curve 3 can be reconstructed
(up to a translation) from ¢ using 5(t) fo 7)|lg(7)||dT, showing that the SRVF is translation invariant.
For a given v € T, the SRVF of a parametrised curve 3 o -y is given by (q o 7)1/, and for two SRVFs ¢1, g2 €
L2([0, 1], R?) one can verify that

(g1, a2) = & (@1 0 M)V (@2 01V

And theL? metricisinvariant to reparametrisation. To remove the scaling variability, all curves 3 are rescaled
to be of unit length; as one notices, one has

=Anwm%=éumwm=1

which means that the SRVF of a unit-length curve is an element of S, the unit sphere in the Hilbert manifold
IL2([0, 1], R?), which will prove to be quite handy to easily interpolate between curves. Being translation
and scale invariant, one defines the orbit of ¢ as:

lq] = {O(qov)f, 0 € 850(2),vy € F}

Given two SRVFs ¢1, ¢2 € L2([0, 1], R?), let

1
p(q1,q2) = arccos (q1,q2) = arccos/ q1(%) - g2(t)dt
0

be the distance between ¢; and ¢». It corresponds to the geodesic distance (angle) between the two points
q1 on g9 on the sphere S; it is invariant to reparametrisation and rotation. The shortest distance between
two shapes is given by finding the closest points on each orbit:

s 5 = i 70 )
pollail.lae)) = | min = avccos (g (g2 ° V)

Let g5 = O*(g2 o v*) be the optimal point given by the minimisation above. Denoting v = p(q1, ¢;) one
defines the shortest arc between these two points using the standard formula for interpolating on a sphere:

0*(5) = = —(@usin (v(1 ~ 5)) + g sin(v))

for0 < s < 1. Details of the optimisation are givenin [92]. We have been using the python package fdasrsf.
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RESULTS

Figure 4.51]| Interpolation between two designs

FIGURE 4.51 shows the decoding of regularly placed points on the geodesic a*, traced between the two
end designs: one sees that the separating polyline is smoothly interpolated. But this figure hides that we
cheated: because the interpolation is invariant to translation, we do not know where to put the polyline in
the design domain. On FIGURE 4.51, the polylines were arbitrarily placed so that their first point is on the
design domain above 0 (the design domain being centred in 0). But we cannotinterpolate between polylines
at different locations in space, without placing them arbitrarily in the design domain. The scale invariance
is problematic too: for the interpolation to happen, all points must be on the unit sphere of L2([0, 1], R?),
which means, as we saw earlier, that the curves must be of unit length. Obviously, on FIGURE 4.51, the two
end polylines have very different lengths: they were scaled so that their endpoints lie on the edges of the
design domain. Another issue occurs because of the invariance to rotation: as shown on FIGURE 4.52, top
row, the interpolation between the two end polylines yielded the ones in red; they are obviously out of the
design domain and cannot be considered as separating curves. On the bottom row, while all interpolated
polylines do belong to the design domain, the invariance to rotation leads the penultimate (on the right,
highlighted in red) to be at a different orientation from the last one, whereas the shapes of the polylines
are almost identical. This leads to different assemblies, not only from the kinematic point of view as the
penultimate one does not obey the same motion as the last one, but also from a mechanical point of view,
as in this case the geometry but also the location and orientation in space of the separating polyline play an
important role.

Figure 4.52| While the separating polyline are similar in shape, their different
orientation leads to dramatically different assemblies.

To correct for the three invariances (in translation, scale and rotation) we
consider an open curve, such as the one on the inset: the design domain
is merged with the separating curve, and small segments near the
extremities of the polyline are removed, to ensure that analysed curve j
stays open. Because the vertices of the design domain are at a fixed
location and orientation in space, such an open curve encodes enough

information to locate, scale and orient unequivocally the interpolated
designs.
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Moreover, the interpolation is not constrained to meet the kinematic constraint of a separating curve: the
motion prescribed by the user may not always be the one obeyed by an interpolated polyline. To correct
that, the GPA optimisation must be executed, where each interpolated polyline is taken as the input of the
algorithm. FIGURE 4.53 shows three interpolations between the end designs of each row. In blue is the
output of the interpolation, and in red is the result of the GPA optimisation. One sees a close match between
each pair of polylines, the main changes happening at the snap segments. It can also be noticed that the
invariancesin scale, rotation and translation are now taken care of, even before the GPA optimisation, which
shows that one can successfully interpolate between 2-parts assemblies.
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Figure 4.53| The GPAslightly changes the shapes of the interpolated polylines.

The three different end designs are chosen among those dominating the reference in the 95% stresses
plane, see FIGURE 4.33. A numerical analysis (see SECTION 4.2) aimed at calculating the 95% stresses in each
part is carried out, whose results are shown in FIGURE 4.54. The three highlighted points in red correspond
to the 95% stresses of the three designs at the end of the geodesics. Points in blue show the result for the
interpolated designs. The polyline in blue is a circuit to help see the trajectory made by the stresses when
one smoothly interpolates between the three designs. The 95% stresses of each interpolated design live
closely to every other, which shows that we are able to populate the region of the stress plane dominating
the reference. In other words, we can find novel designs with good mechanical behaviour in the vicinity of
some given designs without much computational effort.

Another promising possibility of this interpolation method lies in the exploration of variations of existing
traditional assemblies. For instance on FIGURE 4.55 the triangle consisting of a dovetail joint (top right), a
gooseneck joint (bottom) and an abutted gooseneck joint (top left) is regularly interpolated.

While not implemented during the course of this PhD, we think it possible to interpolate between more-
than-2-parts assemblies by taking inspiration from Wang et al. in [103] who, in particular, interpolate be-
tween models of plant roots seen as a collection of open curves with a constraint on the location of one of
their endpoints, exactly like a multi-part polygonal assembly is nothing else but a collection of separating
polylines each with at least one end constrained to be on another.
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Figure 4.54| The interpolated designs behave similarly to each other. The nor-
malisation is done by the reference design shown in red in FIGURE
4.33.
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Figure 4.55| Exploration of the variations between three traditional assem-
blies.
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CONCLUSION

This section concludes what probably is the most important chapter of this manuscript. Indeed, this chap-
ter dealt with the central concepts, tools and properties to automatically generate sequential interlocking
assemblies. As we will see in CHAPTER 5, much of what we have used and created in this chapter to generate
2D assemblies is scalable to 3D without much effort. In SECTION 4.1.3 we first talked about the Turtle and
the Markov process to generate a polyline obeying user-given motions and explained that it ended up in a
dead-end: cases happened where the Turtle was inescapably drawn to the centre of rotation x,. until no
more motion were possible, and the total lack of control on the overall shape of the polyline often led to
degenerate designs. Yet, we decided to include this part of our research in this manuscript because we feel
that it explains at an intuitive level the constraints that must be met by a polyline to obey a motion. A bet-
ter approach was then introduced in SECTION 4.1.2, in the form of the Guided Projection Algorithm (GPA).
This method let the user choose the amount of control he/she wants to impose on the final design, as it is
relatively easy to add new constraints. The Turtle approach was not completely discarded as a simplified
version may be used to generate the first instance of an almost-solution polyline. This approach proved to
be powerful and can quickly generate a 2-parts assembly. SECTION 4.1.3 explained that generating a multi-
parts assembly is easy, one needs only to successively generate a 2-parts assembly in the remaining part
Py. What is more difficult is to generate an interlocking assembly.

While in this PhD we simply observed a simple heuristic to increase the odds of interlocking by judi-
ciously placing two snap segments on the polyline, a weakness of our work lies in the lack of a more sophis-
ticated method to ensure the interlocking. We can cite Wang et al. in [105] who, prior to the generation of a
part P;, i > 1, builds the DBGs by introducing the vertex P; and finds the most favourable set of graph edges
to ensure the interlocking across all graphs while minimising the shape complexity of the would-be part P;.
The creation of part P; is then guided by the blocking relationships encoded by the edge, and according to
the author, this method successfully increases the odds of creating an interlocking assembly. As such, fu-
ture work should try to add this kind of algorithm to our approach. Another route for future research would
be to investigate the role of friction in the creation of the DBGs. Indeed, at this step the information encoded
by each graph is binary: either P; is blocked by P;, or not, and all depends on the signs of the dot products
of the normals n; and the instantaneous direction of motions, be it m,,, in rotation or z; in translation. In
real life, for assemblies we built, we find that sometimes a part P, may push P; out of the way, despite being
blocked by it in theory: the segments of the polyline that are deemed to be blocking are oriented in such a
way that in practice the parts may slide onto each other; there is not enough friction for the interlocking to
happen in practice. To correct for that we suggest considering the standard Mohr-Coulomb law of friction
when building the DBGs (see SECTION 3.1.2.2): not only the sign but also the actual values of the dot prod-
ucts should be used: if all dot products of the same sign sum over a given threshold, then we can consider
that the blocking happens in practice.

SECTION 4.2 justifies why we bother at creating assemblies with novel, random, shapes. For the numer-
ical mechanical model used, as well as for the choice of metric (the 95% stresses in both parts of a 2-parts
assembly), we find indeed that a random sampling of the design space of polygonal assemblies very often
yields designs strictly dominating human-drawn references, thus hinting at the potential of our approach
for real-life assemblies. As studying the mechanical aspect of an assembly was not the primary goal of this
PhD, it is obvious that many aspects of our work are to be improved from that point of view. In our opinion,
future work shall be oriented in two ways. First, a more sophisticated (and faster!) numerical model should
be implemented to better assess the mechanical properties of the assemblies. Second, an optimisation
scheme should be found to modify the geometry of an assembly for it to behave better under loads. If a
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relationship can be established between some geometrical features of the polyline and good mechanical
properties, then the GPA optimisation can be used with the additional constraints to create such features.
Another possibility would be to enrich the Markov process by adding a state such that the Turtle automat-
ically draws at once these features.

In our opinion, SECTION 4.3 deals with the most intriguing geometrical aspects of an assembly obeying
rotations. After giving a better understanding of the cone of rotational freedom, this section shows that by
playing with the number of snap segments, the user may reach the same amount of control on the cone of
rotational freedom as he/she enjoys with the cone of translational freedom: for both motions, the cones
may be shrunken precisely to the prescribed motions: C,, = {«,.} and C; = {x:} (orC; is precisely bounded
by the vectors x;* and xf if the user asks for a non-degenerate cone). Shrinking the cones to singletons
is desirable for two reasons: it gives sensory feedback when (dis)assembling the pieces and dramatically
reduces the number of base DBGs needed to be calculated to assess the interlocking of an assembly. Yet
this comes at a significant cost: (dis)assembling may become impossible when introducing imperfections.
This section concludes by giving guidelines for the polyline to have both a small cone C,. and a high proba-
bility of obeying its prescribed centre x,. in the presence of imperfections, by optimising first with the snap
constraint on, then by ensuring that all sn; - m,, > a, where a > 0 is the smallest distance between x,.
and the boundaries of the half-planes of the constraints.

SECTION 4.4 carries the modelling of imperfectionsin another direction: it investigates the consequences
of a backlash between two parts in an assembly. We quickly reached the conclusion that one of our central
hypothesis, the fact that all motions considered are infinitesimal, prevents us from inquiring further in a
meaningful way: we saw that backlashes greatly expand the cones of freedom of motion, but also that in
practice it does not seem to matter much. Yet, we tried to investigate the issue in a theoretical way by look-
ing at finite motions, at the cost of making crude assumptions on the “rotation” considered. Bearing this
in mind, we found regions of the plane that were likely to be obeyed for a finite “rotation”, even when the
parts are not precisely positioned with respect to each other. Considering finite motion is an active research
subject, extending well beyond the scope of this PhD, and as such, we leave to future work the making of a
more sophisticated model.

This chapter finishes with SECTION 4.5 where the theoretical background of the elastic deformation of
a planar open curve is presented to explain how one may smoothly interpolate between two assemblies.
While interpolation helps in finding new designs with good mechanical properties, it has to be said that the
main reason behind this section is simply because it is fun: it is extremely pleasing to trace geodesics in
the IL2([0, 1], R?) space, to observe the polylines getting morphed into one another and to understand the
mathematical theory behind it (even if much more work needs to be done to fully master these concepts).

CHAPTER 5 will be relatively brief: we will simply understand how to adapt the tools developed in this
chapter for them to generate 3d assemblies.
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CHAPTERS

Let us now focus our attention on the creation of 3D assemblies. This chapter is organised as follows: SEc-
TION 5.1 introduces the mathematical object of dual quaternions. We will see indeed that any rigid body
motion in 3D space can be unequivocally represented by a unit dual quaternion. Dual quaternions, there-
fore, encode rigid body motions in space, much like a 2D vector ¢; € S! or a rotation centre z,, € R?
respectively encode a translation and a rotation in the plane. SecTioN 5.1 is divided in two parts: the reader
is kindly invited to read the first subsections, up to secTioN 5.1.3 included, but may gloss over the remain-
ing subsections as they go more in depth in the technicalities behind unit dual quaternions. The focus of
SECTION 5.2 is to define the cone of freedom of motion in 3D, in a similar fashion as what we did in trans-
lation and rotation in 2D in CHAPTER 3. SECTION 5.4 describes how the guided projection algorithm is used
to optimise a separating surface so that it obeys a given unit dual quaternion. secTioN 5.5 explains how to
create the successive parts of a N+1-parts assembly, in the same spirit as what was done in 2D in the pre-
vious chapter. Finally SEcTION 5.6 deals with the relationships between the cone of freedom and the snap
face-vertex pairs (defined later); it also shows how to create 3D assemblies robust to imperfections.

DUAL QUATERNIONS

GOAL

In the context of 3D assemblies, the user may have a prior idea of the approximate shape of a part and the
motion to disassemble it, but have no formal way to mathematically express this motion. In this case, know-
ing the assembled and disassembled poses of a part, we want to find a rotation and a translation mapping
one to the other. It turns out that unit dual quaternions are extremely convenient at formally representing
such a motion. To illustrate this, on FIGURE 5.1, the design domain is the cube and the user partitions it to
get approximate shapes P, in blue and P; inred in the assembled position. We call these approximate parts
pseudo-parts. Pseudo-part P; is then placed onto the desired disassembled pose consisting of a different
location and orientation in space, in faint red. Our goal is to express mathematically the rigid motion map-
ping pseudo-P; in the assembled state (deep red) to pseudo- P; in the disassembled state (faint red). Here,
this mapping is figured by the helical trajectory in red around the screw axis in black. We will understand in
this section that such a screw motion is encoded by a unit dual quaternion. Put simply, this section aims at
explaining how to find the rigid motion mapping two similar bodies with different locations and orientations
in space using unit dual quaternions.
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Figure 5.1| This sections describes the process to find the unit dual quaternion
encoding the screw motion mapping pseudo-P; in its assembled
pose (deep red) to pseudo-P; in its disassembled pose (faint red).

MOTIVATION

Our motivation for using dual quaternions to rigidly move 3D objects instead of the more common rotation
matrices and vector algebra stems from the very reason quaternions and not matrices are used to rotate
3D objects in the computer graphics and spacecraft industries. Rotation matrices use the so-called Euler’s
angles to manipulate objects, typically noted v, 3, ¢ and called the yaw, pitch and roll angles (not neces-
sarily in that order, it seems to be author-dependent). These angles are defined in a pre-chosen arbitrary
cartesian frame, and the ordering of the axes is of crucial importance as in general rotations do not com-
mute. Thus each person using Euler’s angles must unequivocally define the order in which the angles are
to be composed and also the convention of the ordering of the cartesian axes. More than one student, and
| can relate, had a headache figuring out which order should be used to achieve the desired result. All these
conventions lead to a plethora of possibilities, making the comparison of the works of two distinct persons
devilishly difficult. Even the name of the angles is a matter of convention: they can be a, 8,~. The dedi-
cated Wikipedia page lists as many as 10 different conventions. From a code complexity point of view, the
sine and cosine of each of these three angles must be calculated and composed using matrix multiplication,
operations that are not cheap. Moreover, the interpolation between two orientations is convoluted due to
the arbitrary nature of the rotation axes. Finally, and it is quite problematic for practical use, rotation matri-
ces are subjected to gimbal lock when the determinant becomes zero: in robotic applications, this can lead
to surprisingly fast and unpredictable motions, potentially dangerous for nearby humans.

By comparison quaternions, despite obeying seemingly more complex multiplicative rules, neatly encode a
rotation: out of the four coordinates defining a quaternion, three correspond to the coordinates of the axis
of rotation and the last encodes the angle of rotation. They are simple to compose and, by design, they are
free from Gimbal locks. For these reasons, they are massively used in the computer graphics community.
Even the popular cross-platform game engine Unity uses them, even though it is targeted to hobbyist game
creators without necessarily a deep mathematical background.

Since quaternions are more convenient to use, we made the choice of using them instead of rotation ma-
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trices. But as we are interested in generalised motions and not just rotations, we have to take into account
translations. While vector algebra is suited for this task, it simply seems more practical to use in its place
dual quaternions which encompass in a single well-defined theory both the translation and the rotation
defining a 3D motion.

LONG STORY SHORT

We present here a succinct summary of the results developed hereunder. This subsection is intended for
the hurried or not-so-mathematically-inclined reader who do not wish to dwell on the technicalities behind
unit dual quaternions.

Let DH denotes the set of dual quaternions. Any dual quaternion ¢ € DH can be written as:

i = cosé '&siné
4|y 2

with 6 a dual scalar and 4 a dual vector:

0=00+¢el. 0o,0.cR

U =ug+ eue  ugy,u. € R?
e is the so-called dual unit. 1t is a number such that:
e#£0 =0

We are interested in unit dual quaternions, whose set is denoted /(IDH). For ¢ to be a unit dual quaternion,
it must be such that:

[luol| =1 ug - ue =0

In such a case, ¢ encodes a screw motion:

The screw axis goes through the point ug x u. € R3.
The screw axis is oriented by u.

The angle of the rotation is 6.

The magnitude of the translation is 6..

The following subsections go into greater details to define and prove the aforementioned statements
and properties. Yet they are not necessary to understand the remaining of this dissertation: one can can
readily deem unit dual quaternions as a black box encoding rigid body motions in R3. As such the reader
may gloss over the following subsections and start the reading at SECTION 5.2.

QUATERNIONS

Before talking about dual quaternions, it may be convenient to introduce first the simpler quaternions, used
in the aerospace or video games industries to rotate 3D objects. This SECTION 5.1.4 provides a comprehen-
sive introduction to quaternions, with the hope that anybody with a light mathematical background would
be able to understand it. The interested reader is referred to [38] for a more concise (and, frankly, a quite
pleasant and entertaining) introduction to quaternion and spherical interpolation.

Quaternions are an absolutely fascinating and often unappreciated area of mathematics. They are four-
dimensional numbers that were first described by the Irish mathematician Hamilton on October the 16"
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1843*. Aquaternion involves a scalar part (sometimes termed real part) and a 3D imaginary part (also called
the vector part). They can be represented in many forms, among which but not exhaustively:

" g=a+ib+jc+kdwitha,bcdeR

b
U 9= 1a,|c
d
m g = [pcosO, pwsinf] where p = ||q|| is the norm of ¢ (defined later) and [cos f, w sin §] is the unit

: e : _ a 0 NP E
quaternion pointing towards g with cos § = W andsinf = pew el

m ¢ =[s,v] wheres = aisthescalar partand v = (b, c,d) is the vector part.

The set of quaternions is denoted as H in homage to Hamilton.

Multiplication

In the first representation numbers 1,4, j and k are the quaternions units and follow a certain number of
multiplicative rules that are summed up in TABLE 5.1. Note that the multiplication between two quaternions
is not commutative : 15 # j<.

~
~
1
=
N
|
LS

QS
S
o
N
1
=
~

Table 5.1| Quaternion units multiplication rules (the multiplication order is row times column)

The additive rule is straight forward

q1 + q2 = (a1 +iby + je1 + kdy) + (az + ibe + jeo + kdz)
=a1 +as + ’L(bl + bg) +j(01 + CQ) aF k(dl aF dg)

Given the two quaternions on the previous equation, their multiplication using TABLE 5.1 results in:

7192 = (araz — (biba + cic2 + didz)) + i(a1ba + azby + c1da — dica)+
j(CllCQ + ageq + diby — dgbl) + k(a1d2 + asdy + bieg — b261)

Computing quaternion multiplication using these rules can be quite cumbersome which might explain
why quaternions are sometimes considered as a “positive evil of no inconsiderable magnitude” as Heaviside
once put it. However the last representation ¢ = [s, v] can neatly define multiplication using our modern
vector algebra, namely the dot product (. - .) and cross product (. x .):

q1492 = [817 171][327 172] 51

= [(s182 — v1 - V2), (S1V2 + S2v1 + V1 X V2)] 52

1A headstone marks the bridge on which he was the moment when he got the idea.
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The addition is also very simple:

@1 + g2 = [s1,v1] + [52, V2]

= [s1 + 52,1 + V2]

The conjugate, norm and reciprocal of a quaternion

The definition of the conjugate of a quaternion is simply extended from the definition of the conjugate of
a complex number. As a reminder let z = a + b € C be a complex number. Then the conjugate of z is
z* =a — 1b.

The conjugate of the different representations given earlier are:

[ g=a+th+jc+kd = q¢*=a—1b—jc—kd

b —b
m g=|a,|c == ¢ = |a, | —c

d —d
m g=[pcosh,pwsinf] = ¢* = [pcosd, —wpsinb] = [pcos (—0), pwsin (—0)] .
m g=[s,v] = ¢ =]s,—v].

The conjugate of the product of two quaternions is equal to the product of the conjugates computed in
the reverse order: let g1 = [s1,v1] and g2 = [s2, va]

(Q1QQ)* = [s182 — V1 - V2, 51V2 + S2v1 + V1 X Va]”
= [5152 — V1 - V2, 5102 + S2v1 + V1 X V2]
= [s152 — (—v1) - (—v2),51(=v2) + s2(—v1) + (—v2 X (—v1)]
= [525 —1)2][817 _vl]
= ¢4
Recall that the norm of a complex number z = a + ib € C is the euclidean distance between the point
represented by z and the origin of C: ||z|| = Va? + b%> = v/zz*. The norm of a quaterniong = a + @b +
jc+ kd € His simply

gl = Va2 + 02 + 2+ d® = /52 + v - v = Va&© = Va'q

which also corresponds to the euclidean distance between 0 and the point (a, b, ¢, d)T € R*.
A unit quaternion g is simply such that ||g|| = 1. LetU/(H) = {q € H, ||q|| = 1} denote the set of unit
quaternions.

1= g lg =

[1,0] where [1, 0] is the quaternion representing the real number 1. The conjugate of a complex number

The reciprocal of a non zero quaternion g is by definition the quaternion ¢! such as qq—

z=a+ibisz~! = 2. = 2= This definition is extended for quaternions and:

zz* I[=]1%

*

=i q
q9 " =15
|lql|?

Note that for a unit quaternion ¢ € U/ (H), the conjugate is the reciprocal:

lgll=1 = ¢*=¢7" 53
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QUATERNIONS AND MULTIPLICATION

Just as complex (2D) numbers neatly define rotations in the plane, involving some scaling and rotating,
quaternions are quite surprisingly very pragmatic tools to describe rotations in 3D. They are more efficient
and less prone to numerical errors than other methods, including Euler angles and rotation matrices, to
handle rotations in 3D.

Notations: Let p € R3 be a pointand ¢ = [cos £,
representation of point p is denoted as the quaternion p = [0, p] € H. The result p of counterclockwise
rotation of p around axis u by angle 6 is given by:

usin &] € U(H) a unit quaternion. The quaternionic

p=100,p] = qpq"

To make this dissertation more digest, the explanations and details of this formula are glossed over in
this chapter. That being said, the interested reader is referred to APPENDIX D.1 which goes into great detail
and tries to provide intuition on the why and how of this formula. Only the most salient results are stated
hereunder.

Intuition

The computation of the product gpg~" and the proof (see APPENDIX D.1) that it does the rotation wanted
are quite cumbersome and do not let us really understand what is going on. Let’s try to understand why
defining g using half the angle we want to rotate (g) and multiplying on the right and on the left by ¢ and
g~ ! = ¢* (recall that ||q|| = 1, see EQUATION (5.3)) yields a satisfying result.

APPENDIX D.1 shows that for any point s € R? represented by the quaternion s = [0, s], and for any unit
quaternion r = [cos «, v sin ] the quaternions rs and sr form an angle « with quaternion s. Moreover this
transformation is distance-preserving: ||sr|| = ||rs|| = ||s||: itis thus a rotation. Multiplying s by r on the
left means that the rotation happens in an anticlockwise manner about v to get s and multiplying on the
right means that the rotation is clockwise.

This rotation happens in R* and any projection into the workspace R? leads to distortions: the dot product
is not preserved by this projection, hence neither are the angles nor the distances between points, which
means that the transformation is not rigid and thus the product s (or sr) cannot be considered as encoding
a 3D rotation.

Let’s zoom in the construction of p,, = gpg* where ¢ = [cos g, u sin g] for some angle 6 and unit vector u €
R3. The quaternion gp is forming an angle g with p as the rotation happened about u in an anticlockwise
manner. Taking the quaternion ¢p and multiplying it on the right by ¢! = ¢* (EQUATION (5.3)) might at first
seem odd as oneis rotating in an clockwise manner through g, so it could seem that we are rotating gp back
to p. Yet, a more careful analysis shows that ¢* can be interpreted in two ways:

0

1. ¢ =|cos? 9

5, —wsin 5]

2. ¢" =[cos 3, usin 7]

Bearing in mind that gp is multiplied on the right by ¢*, the first interpretation means that the rotation of g
happensin an clockwise manner (multiplication on theright) but about the negative axis of rotation —u. The
second interpretation suggests that the clockwise rotation is about « but through the opposite angle _7‘9.
Either way, a clockwise rotation through the positive angle about the negative axis or a clockwise rotation
about the positive axis through the negative angle yields the same result: the rotation of gp to gpg* happens
in the same direction as the rotation from p to ¢p does, i.e. an anticlockwise rotation through the positive
angle about the positive axis. All in all the operation taking p to ¢p is a rotation through half the angle, and
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the one bringing gp to gpqg* completes this rotation through the other half angle.

As shown by EQUATIONS (D.2) and (D.3), not only does the multiplication on the right by ¢* and on the left
by ¢ sums up to one rotation through the full angle 0, it keeps the scalar part of the resulting quaternion to
zero: it defines an isomorphism on the set of quaternion with a zero scalar-part, precisely the set that can
be interpreted as 3D points.

Figure 5.2| Left: a cube. Right: the image of this cube through a rotation gpg*.

The interested reader is strongly encouraged to watch the outstanding playlist on quaternions by the
youtuber 3BluelBrown, [2] to learn more at an intuitive level about this fascinating area of mathematics.
Most of my understanding comes from watching his videos.

DUAL NUMBERS

Dual numbers were developed by Clifford in 1873 [21]. A dual real number, which will be denoted using a
hat *is defined to be

T = g+ €x

Where xq and z. are real numbers respectively referred to as the real and dual parts of Z and ¢ is the dual
unit such that €2 = 0 (and more generally any power of ¢ greater than 2 is equal to 0). The addition and
multiplication of two dual numbers & and § are defined as follows:

T4+ 9= (xo+yo)+ e(xe + ye) 5.4
&Y = woyo + €(XoYe + Yoxc) 5.5

A pure dual number is defined as a dual number having a zero real part & = ex.. The inverse of a dual
number is defined for a non-pure dual number as:

And it can easily be verified that 2714 = 1.

Dual vectors

The following definitions could be generalized to any dimension, but as we are working in R? we are only
going to focus on vectors and dual vectors in three dimensions.
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Adual vector 2 is a vector whose entries are all dual numbers. Superscript .” denotes the it component.

#1 z§ + et
= |22 = |22+ ex?
#3 T3 + ex?

=
(ol
I

2>

&-9 =29 + 229 + 23¢° 5.6
j:293 _ 553@2

Txy= |z — 2193 5.7
jlyQ - jzgl

DUAL QUATERNIONS

A dual quaternion ¢ is defined by extending the definition of a dual number:
4= qo + €qe
where gy and ¢, are the quaternions:

do = [S(Joa'v%]

e = [qu ) vqe]

By additive and multiplicative rules of quaternion, a dual quaternion can also be viewed as built of a dual

scalar part and dual vector part:

The sum and product of two dual quaternion § and 7 are:

g+r= ([Sqm ’UQD] + G[SQE”U(IE]) + ([SToav"‘o] + e[srav?‘s])

(80 t Sr) + €(8q. + 8r.)s (Vgo + Vo) + €(Vg, + vr,)]
(Sqo + 6Sqe) + (8ro + €57,), (vgo + €Vq,.) + (Vrg + vy, )]
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G7 = (qo + €qc)(ro + ere)
= qoTo + €(qoTe + geTo0)
= [Sqosro = Vqq * Vrg; SqoUrg T SrgVqo T Vgo X UToH‘
€[SqoSr. + Sq.Sro — Vgo * Ure — Vg, * Urgs SqoUre + Sr.Vgo + Sq.Vrg + SroVq. + Vgo X Up, + Vg, X Up]
= [(SqoSro — Vo * Vro) + €(SqoSr. + Sq.5rg — Vgo * Vr, — Vg, * Urg),
(SqovTo + srovqo + U(IO X vT‘o) + E(sqovre + Srevqo + SqevT‘o + Srovqe + qu X Ur, + vqe X UTO)}
= [(Sqosro + E(SqOSTE + Sq. Sro)) - ('qu " Upg + 6('qu *Up, + Vg, 'Uro))v
((Sqovro + €(8qoVr, + STquO)) + (Sro"’qo + €(Sq. Vro + Srovqe)) + (”qo X Vpo + €(Vgy X Vp, + Vg, X 'Uro))]
= [848; — Vg - U, Sq0p + 8,0q + Vg X Uy
The results bear close resemblance to the sum and products of standard quaternions. A pure dual quater-
nion is a dual quaternion § whose real quaternion ¢y = 0. If ¢ is not a pure dual quaternion, then the inverse
of gis

qul

@' —eqeqp’

Two conjugates of dual quaternion § are defined:

§" =q; +eq;
q° =qp —€q; 5.8

A Ak

The product ¢¢* is a dual scalar as proved in the following equations:

44" = (qo + €qe) (g5 + €q)

= qoqq + €(q04? + qeq5)

= [qol* + f([sqovvquSqu —g.] + [Sq., Vq.][Sqo *’qu])

= [lgol* + 5([51105115 + Vg, " Vgo: Sq. Vg0 — SqoVq. — Vgo X Vg.] + [Sq.Sq0 + Vgo * Va., Sq0Vg. — Sq.Vgo — Vg. ¥ qu])
= llgol|* + €254 8q. + 2vq, - vgo, 0]

= quH2 + 26(5(105615 + Vg, - ’qu)

By definition, a unit dual quaternion is a dual quaternion ¢ such that g¢* = 1. Hence, by identifying the

A Ak

real and dual part of G4*, a unit dual quaternion ¢ must satisfy:

llqol| = 1 59
SqoSq. T Vg, - Vgo =0 5.10
When one interprets quaternions ¢g and ¢. as vectors in four dimensions : ¢y = (sqo,vgo)T and g =

(Sq.,v& )T, then one finds that EQUATION (5.10) reads that g. and go are orthogonal in R*. The fact that
ge and qq are orthogonal and that gq is a unit quaternion as stated by EQUATION (5.9) implies that the set of
unit dual quaternions is the union of the unit hypersphere in R* and the set of hyperplanes tangent to this
hypersphere (translated to the origin of R* to contain the zero quaternion).

One can also verify that EQUATIONS (5.9) and (5.10) reduce the degrees of freedom when choosing the com-
ponents of ¢ from 8 to 6, exactly the number of degrees of freedom of a particle in 3D undergoing a rigid
body motion. As stated by McCarthy in [59], the set of unit dual quaternions “is a six-dimensional algebraic

submanifold of R®, termed the image space of spatial displacements”.
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In this document, we will refer to the set of dual quaternions as DH and the set of unit dual quaternions
asU/(DH).
In what follows we develop the most salient results concerning the relationships between a rigid body mo-
tion and a unit dual quaternion.

SCREW AXIS AND RIGID BODY MOTION

Unit dual quaternion and generalised 3D motion

Let § = qo + €q. be a unit dual quaternion. Let 6 € [0, 7] and u € R? be an angle and a unit vector such that

[ =1 0 ) 9]
= v = |COS —,u SIn —
qo0 3(10 » Uqo 9 s 1n 5
Meaning that qq is a quaternion encoding a rotation about axis u by angle 6. Let also ¢ be a quaternion such

thatt = 2¢.q3. Expanding ¢ yields:

*
t = 2q¢eqq
= 2[5qe ) vqe] [Sqm _qu]
= [84.8¢0 + Vg, * Vgo» SqoVq. — Sq.Vgo t Vgo X Vg

=10, 2(sq0vq€ — 8. Vg T Vgqo X qu)]

Where the last step made use of the fact that since ||j|| = 1, go and ¢. are orthogonal. Because ¢ has a zero
scalar part, its imaginary part t = 2(s4,vq, — Sq. Vg, + Vg, X Vg, ) Can be interpreted as a vector in R?.
Sincet = 2¢.q} = q. = %tqo, G can be rewritten to be:

) 1
qd=qo+ ietqo

Whereas the quaternion representation of a point p € R? is p = [0, p], the conversion to a dual quater-
nion is defined to be:

p=1[1,0]+€[0,p] =1 +ep

Meaning that a dual quaternion # = ry + er, can be interpreted as a point in R? if and only if the non dual
part rg is equal to 1 (as a real number) and the dual part r. is a quaternion with a zero scalar part. In that
case, the vector part of the dual part can be seen as a vector in R3.

Let us compute the product of the dual representation of a point p € R? with the unit dual quaternion
G defined above using the conjugation given EQUATION (5.8):

A AAO 1 * 1 *
dpd° = ( a0+ 5etqo ) ([1,0] +€[0,p]) { @5 — 5e(tao) 51la
1 * 1 * gk
=g +¢€(qp+ thO qo — ieqot 5.11b
= qoqo T € *5qu015 + qopqy + §thqo 5.11c
1 L, 1

=1~ _5[07_t] + qopqp + 5[071:] 5.11d
=1+ e(qopgy +1t) 5.11e

qopqg is exactly the result of the rotation of p through quaternion gy as we saw SecTion 5.1.5. Therefore
the scalar part of gopgg is 0 and its imaginary part can be interpreted as a rotated point. Quaternion ¢ also
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P

has a zero scalar part and can be interpreted as a 3D vector. Thus, the dual quaternion §pG° meets all con-
ditions to be viewed as a point in R? and one can interpret the operation §pG° as rotating p by 6 around u
followed by a translation of magnitude ||¢|| along direction ﬁ In other words, § enables p to be subjected

to a rigid body motion !

Had we wanted to translate first p and then rotate it about u, we would have used the quaternion 7 =

ro + Serot with rg = go = [cos §, wsin &]. Indeed, expanding 7p7° yields:

A A AO 1 * 1 *
Fpr° = | 1o + 567"075 (I+4ep) (75— §€(T0f)

1 1
= (7“0 + € (rop + 27“0t>> (7"3 + € (—Qt*rg))

_ Lo o R S 512
=1rory +¢€ _57“0“"0 + ropry + §T0tro

1 1
=1+ €T (2[0, *t} +p+ 2[0,t]) 7'3
=1+erg(p+t)r]

For the same reason as above, 7p7° can be interpreted as a point p that is first translated along ¢ and
then rotated through quaternion rg.

The reader’s attention is drawn to the fact that a rotation without translation can be computed with a
unit dual quaternion ¢ having g. = 0 and a translation without rotation would be given by ¢ with ¢go = 1.
Notethatinthatcaseg = 1+ %et works with half the amount of translation, quite similarly to a pure rotation
working with half the angle.

Mozzi-Chasles’ theorem
The Mozzi-Chasles’ theorem (discovered by the Italian G. Mozzi in 1763 but attributed to M. Chasles in 1830)
states that ([45] page 666)

Mozzi-Chasles’ theorem
The most general rigid motion is resultant of a rotation and a translation parallel to the axis of the rotation

A neat and rigorous demonstration of this theorem is provided in [45].
Following [50] and [22] we prove in APPENDIX D.2 that any unit dual quaternion can be written down as:

where 6 is a dual angle and 4 is a dual vector in R3. Such concise expression will turn out to be particularly
convenient to encode a rigid body motion: we will understand hereunder that the dual angle 0 = 0y + €b,
contains the angle of rotation (6y) and the magnitude of the translation (6.), while the dual vector & =
ug + cu, is constituted of the so-called Pliicker coordinates of the screw axis.

Pliicker coordinates

As stated in [22], Pliicker coordinates [56] are a convenient way to store a line in R? as a sextuplet [I, 72] with
I,m € R3. Let us consider a line going through two distinct points p4 and p. A direction of the line is the
obtained as the vector: I = pgp — pa. The moment of the line is defined as m = p4 x pg. Moment m is
a vector normal to the plane defined by p 4, pp and the origin o of R? and whose length is equal to twice
the area of triangle opapp. Note that . = p x [ for any point p on the line. The tuple [I, m] defines a line
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up to a scalar multiplication [\, Am] with A # 0. Ensuring ||l|]| = 1 and ! - m = 0 reduces the number of
degree of freedom from 6 to 4, i.e. exactly the number of degree of freedom of a 3D line, which shows that
the Pliicker coordinates [I, m] uniquely defines a line.

Figure 5.3| A line and its Pliicker coordinates.

We solve the problem of finding the line associated with given Pliicker coordinates. Let [I, m] be the
Pliicker coordinates of a line with ||I|| = 1 and I - m = 0. Finding the line associated with the tuple [I, m)]
means finding a point on that line since we already know the line orientation I. Let p be such a point. p can
be decomposed into two parts: p; and p, respectively the collinear and orthogonal components of p with
respect to . By definitionm = p x land som = p, xl. Notethatp, isthe projection of the origin O onto
the line [, m], i.e. p, is the point on the line the closest to O. Expanding the cross product x m yields:

Ixm=1x(pL x1)

=({-pr— (- po)l

=PL
We have thus shown that the line given by the Pliicker coordinates [l, m] such that ||l|| = 1andl-m =0
goes through pointl x m with orientation l. Note also that when ||I|| = 1 then ||p_|| = ||m]||.

Unit dual quaternions and Pliicker coordinates

APPENDIX D.2 proves that for a unit dual quaternion § written in the form § = [cos g, U sin g] withd = 6+,

and & = ug + €eu,, then the tuple [ug, u | defines the Pliicker coordinates of a line:

‘ [ld]| = 1 < [uo, u.] are the Pliicker coordinates of a line‘

But where is the screw motion ?

Remember that for a point p € R? represented by the dual quaternion p = 1+ ep where p is the quaternion
[0, p] and a unit dual quaternion ¢ = qo + 5tqo (with £ and gy quaternions) we saw on EQUATION (5.11e) that:

5G" =1+ e(qopgy + 1)

Il
K

b

The transformed dual quaternion p can be interpreted as a point in R3 (it is in the form 1 + ¢p where pis a
quaternion with a 0 scalar part: p = [0, p|, p € R>. p can be decomposed in to parts: gopgg; on the one hand
and ¢ and the other. Bearing in mind SECTION 5.1.4, the first part is interpreted as the quaternion p = [0, p]
rotated by the quaternion ¢ around an axis going through the origin of R?; the second part t is merely a
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translation of this rotated point along an axis that may or may not have anything to do with the rotation axis
hidden in go. The question is: where is the screw motion, i.e. where is the motion of rotation and translation

along the same axis that is not necessarily going through the origin? To answer that we will need Pliicker

9 asinl|.

and the fact that any unit dual quaternion ¢ can be written down as ¢ = [cos = 3

Let 0y and 6. € R besuchas = 6y + €b.. Let also ug, u. € R3 such that @ = ug + eu. and [luol| =1
and ug - u. = 0so that the tuple [ug, u.] can be safely interpreted as a line in R3. We are going to show that
the unit dual quaternion § = {cos g, o sin g] encodes a rotation about 6y and a translation of 6. along the
line [ug, u), i.e precisely a screw motion of axis [ug, w].

As seen above, with ¢ = cos %", s = sin %‘J one can develop g as

4= qo + €qc
qo = [c, uos]

[ 0. 0. i l
e = |——=—8,Ug—C+ US
g g 50y

Developing the product ¢pg° for some dual quaternion p representing a point in R3 yields:

4pq° = 1+ €(qopqs + qeq5 — qoqr)

The rotation term gopgq;; encodes a rotation of angle 6 along an axis oriented by u going through 0. We have
the correct angle but not yet the correct axis of rotation: as far as this term is concerned the axis of rotation
is [uo, 0] and not [ug, u ] as we would like. Expanding the translation term ¢.q} — qoq yields:

qeqs — q0qF = [0, 0cug + 2ucsc + 2ug X UES2]

The good news is that the quantity 6. u, is a translation of magnitude 6. along the unit vector uy: we already
have one bit of what we want. But the bad news is that rotation term gopgj is still a rotation around an
axis going through 0 and the other part of the translation term 2u.sc + 2uy x u.s? does not have an easy
geometrical interpretation. We are going to transform it using two identities : ug - up = land ug - u. =0

2scu, + 25%ug X u, = —2sc((uo - we)uo — (wo - up)ue) + (52 +s2 -2+ c2)uo X Ue

Using the triple product: a x (b x ¢) = (a - ¢)b — (a - b)c we can rewrite the latter equation as:

2scue + 252 up X ue = up X ue — (2 — s*)ug X u + 2scugp x (ug X u))
Recall that the quantity p; = wug x u. is the point in R? that is the orthogonal projection of the origin onto
the line [ug, u.]. Also, naturally, uo - p, = 0. EQUATION (D.3) tells us that developing the product ¢o [0, p_1 g5
yields:

90[0,p1]e5 = [0, 232(u0 “pL)ug + (02 = sQ)pL + 2sc(ug X py)

= [0, (c* — 5?)(uop x ue) + 25c(ug x (ug X u,))]
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Hence:
qeqy — qoq; = [0, 0o + ug x ue — ((¢* — s*)ug X ue + 2scug x (ug X ue))]
= [079611'0 + ug X ue} - QO[O7U'0 X ue]qs
And finally:
4pq° = 1+ € (qopgs + [0, 0o + wo X ue] — qo[0, uo X u]q;) 513
=14¢€(qo(p—[0,u0 X u]) gy + [0, 0cup + wo X ue]) 5.14

This is it: this latest expression is precisely a screw motion around [ug, u.]!. To understand why, let us look
at each of the terms:

As stated above ug X u. is the orthogonal projection of the origin onto the line [ug, u.]; it is the point on this
line the closest to 0. Hence the quaternion p — [0, ug X wu.] is the quaternionic representation of the point
p that we are interested in transforming translated by the amount uy x u. towards the origin. The product
qo (p — [0, uo X uc]) g is therefore to be understood as ”take p, translate it by the amount ug x u. and rotate
this shifted point by 8y around the axis [ug, 0]. The next quaternion is the translation term: [0, 6. wo+wo X w].
The first part of this term, [0, 6. uo] merely says ”Once you have shifted and rotated p, move it by 6. along the
vector ug. The operation gg (p — [0, up X w.]) g5 + [0, Ocuo] is thus a screw motion of axis [ug, 0] where
P — ug X u is rotated about 6, and translated by .. The last translation term is [0, uy X u.] and states
“now that the screw motion of axis [ug, 0] is done, shift everything back to its original position by translating
the resulting point by ug x u. away from the origin”. With p; = wug x u. the whole process is therefore
*perform a screw motion of point p — p, at the axis oriented by uy and going through 0 and then add p to
the result” which rigorously states the same thing as ”Perform a screw motion of point p at the axis oriented
by ug and going through the point p ”, precisely the screw motion that we were looking for! On FIGURE 5.4
the blue bow is mapped to the red one using a dual quaternion whose axis is the line in black. The trajectory
in blue shows the screw motion around the axis. Arrows on the boxes hopefully help to see their respective
orientations.

Figure 5.4| A unit dual quaternion maps one box to the other.

Finding the unit dual quaternion associated to a rigid body motion

Let us take a step back. This rather long exposition on unit dual quaternions has shown that they are par-
ticularly fit at encoding rigid body motions. When we looked at 2D assemblies in CHAPTER 4, we saw that
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to generate them the user must provide a list of motions, translation and/or rotation. In 3D this principle
stays the same, except that screw motions are much harder to intuitively see. As such the user may find
it cumbersome to specify unit dual quaternions. Yet, if the user gives as well an approximate shape of the
part, a so-called pseudo-part, (much like in 2D the user could input a polyline to be optimised), he/she can
also move it in space at its resting position, and then ask to compute the unit dual quaternion mapping the
former to the latter. This process is much more intuitive as it simply consists of placing and orienting a solid
body in space. This section aims at calculating this unit dual quaternion.

Say we have two particles’ p4 and pg, like on FIGURE 5.5, and we want to find the unit dual quaternion
q = qo + €g. transforming p4 into pp: ¢g = ¢4aG° with G4 and ¢p the dual quaternions representing
points p4 and pp. We are first going to find the quaternion ¢y which rotates the orthonormal basis associ-
ated with p 4 into the one associated with pg before computing ¢..

eC[)B

DB

Figure 5.5| Two particles p4 and pp.

Calculating qo
€, €y

Given | e, , and ey orthonormal basis, we wish to find the unit quaternion g9 = [¢, ugs] (with
€4 €.p

¢ = cos %0; s = sin %0 and ||ug|| = 1) such that:

q0 [0, 693/4](]8 = [0’ ewB]
q0 [Ov ellA]lfOk = [07 eyB] B

do [Oa eZA]qS = [Ov eZB]

(® —5%)es, +25%(ug - ez, )ug + 2sc(ug X €,) = €,
(%) & q (2 —s)ey, +25%(ug - ey, )uo + 2sc(ug X e,,) = e,

(c® —s?)e,, +25%(ug - €., )ug + 2sc(ug x e,,) = e,

2A point and an orthonormal basis in R3
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Sincee;, -e;, =0fori,j € {z,y,2},i # jone has:

2 —
25 (ug - €z, )(ug - €y, ) +2sc(ug X €3,) - €y, =€z, - €y,
252(ug - €, )(ug - €,,) +2s5c(ug x €,,) €., =€, - €.,
2 —
25%(ug - ey, )(ug - €5, ) +2sc(ug X ey, ) €y, =ey, ez,

"€z4 T €yp "€z,

Uo - €ry = €z "€y

)
)
)
)(
)
)

2 —
25%(ug - e, )(up - ey, ) +2sc(ug xe.,)- ey, =e.,-€,,

Subtracting (we only develop the equations for one set of equations, the others being obtained by permuting

{z,y,2}):

(*) o 280(_(u0 X eyA) “€p, T+ (uO X eIA) : eyA) = —€yp €y, t€zy €y,

Knowingthatb- (¢ x a) =a- (b x ¢):

(*) o 280(71‘0 ) (eyA X eIA) + ug - (efﬂA X eyA)) =€zp "€y, —€yp €y,

dsc(ug - e,,) =€y €y, — €y, - €y,

Let

Ay = €zp "€y, — €yp "€,
Ay = €yp "€z — €35 "€y,

Ay = €55 €, — €z "€y
Then (since 4sc = 2sin )

2(e,, -up)sinby = a,
(%) & { 2(es, - ug)sinby = a,

2(ey, - up)sinby = a,

And so, assuming 6y ¢ {0, 7 }:

ez Ug Qg
1
*) & | el u ==
() 24 v 2 sin 6 v
T
eyA Uy Q.
Where ug = (ux,uy,uz)T.
7P
BZA Qg
Let M = eZA anda = ay |- M is orthonormal and thus invertible with M~ = M7, Assuming
T
eyA Gz
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a # 0 one has:
L7
2sin 6

(%) & ug =

Recall that ||ug|| = 1 and so:

woll=1< ulug =1
|[wol| 0
1

= a’TMM%a =1
4 sin“ 6,

& a’a = 4sin® 0o

1
& sin® 6y = —||al|?
4
. 1
& 6y = arcsin <:|:2|a|>

Two angles, negatives of each other, are solutions to the problem. As these angles are used to compute

the vector ug = M7 a we obtain two vectors ug, each the opposite of the other. The final rotation

251n0
is therefore the same whether we choose one 6y (and thus one ug) or the other as rotating by an angle
around an axis is the same as rotating by the opposite angle around the reversed axis (all rotations are an-

ticlockwise). Hence we could safely choose 6, = arcsin 1||a|| and uy = % Yet, because the function

x — arcsin  takes values in [-7, 7] the 6 obtained might not reflect the actual angle between pA ’s ba-

sis and pg’s basis. To know more about 6, we need to look at, say, the equation (with ¢ = cos %o 3 and
6o

s =sin 7):

€ry = (02 - sg)e“ + 252(u0 cegz,)Uo + 2sc(ug X ey, )

= cosbpe,, + (1 —cosby)(ug - ey, )up + 2sc(ug X e, ,)
Projecting on e, , yields:
cos By + (1 — cos ) (uo - €,,)> = €.y, - €s,

And:
€rp - €r, — (Ug- ezA)2

0y = arccos 5.15
1—(up-ez,)?
Allin all, since x +— arccos x takes value in [0, 7], if arccos ezBie_“”(‘;;(euo'jiA) < % then 6y = arcsin HQH ,
£
else §y = m — arcsin M
. 2 . . . .
This can be rewritten as 6 = atan2 ( 3 |al|, =2~ (e"(’ ?;A) ,Where atan2is a function provided in most
A

programming languages. In a nutshell the quaternion ¢q looked for is given by (assuming a # 0)

0o .t
= |cos —, ugsin —
qo 95 0 2

. (- 2
00 = atan2 (%Ha”7 €xp Cxy (uo ez ,) )

1_(u0'e:cA)2
MTa

Uy = 17
0 llall

If a = Qitis easy to see that either 6y = 0 or §y = 7: indeed recall that:

2(e,, -ug)sinby = a,
(%) & { 2(es, -ug)sinby = a,

2(ey, - ug)sinby = a,

145



3-D assemblies

Hence, since u cannot be orthogonaltoe, ,, e, , and e, , atthesametime, necessarilya = 0 < sinfy = 0
and so 0y = 0 orfy = m. To know whichever is true we only need to check the value of the e;, - €;, for
i € {x,y,z}:ifforalli,e;, - e;; = 1thenfy = 0and ¢o = [1,0]. Else, we have §y = m,c = 0and s = 1
and we are left to find the vector u

2(up - €z4)U0 — €34 = €,

(x) &
2(Up - €34)U0 - Uy — €34 - UY = €35 - Ug
g =1

(eza —ezB) -upg =0
= (eyA—eyB)-u(J:O

(e;a —e.p) ug=0

Let B be the matrix:

(exn — €x5)T
B = | (eya—eyn)"
(eza —e.p)"
Then
(x) & Buy =0
ug € ker(B) 5.16
[|luol| =1

The basis of the nullspace of B can be calculated by performing a Q R factorization of B” and taking the
column of @ that is indexed by a null coefficient on the diagonal of R. Now that we have calculated gg we

can focus on g..

Calculating g,
Recall that we can always express the conjugation of G4 (the dual quaternion representing point p4) as a
rotation by 6, around the axis ug followed by a translation ¢ represented by the quaternion ¢ = [0, ¢] such
thatt = 2q.q(: §gad* = 1+€(qoqaqs +t). The translation quaternion tis trivially given ast = qp — g0qa g,
and ¢, = %tqo. As such, s = sin %0 and ¢ = cos %":
t=qB — 9094
= [0,pB] — [0,25%(ug - pa)uo + (¢? — s*)pa + 2sc(uo X pa)] 517

t=pp — (1 —cosbty)(ug - pa)ug — costopa —sinby(ug X pa)

Finding the screw axis
Now that we have § = g + €q. we may want to find the screw axis, i.e. to rewrite gas ¢ = [cos g, u sin g
where § = 0o + €6, and & = ug + €eu, such as the screw axis is given by the Pliicker coordinates [ug, u.]

and the magnitude of the translation is ..
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We have proven earlier that with such notations one can write g, as:

[ O oo |
e = [——=s,ug—~c+ u.s
g 9 5107y

Where s = sin %0 and ¢ = cos %U. Also, g. = %tqo.
Assuming 6y ¢ {0, 7}:

1

e = 515(10

1
5 [0, t][c, uos]

1
= 5[—8“0 - t, ct + st X ug]

By identification:

OGZUO't

And:
uopl, + 2su, = ct + st X ug
2su. = ct + st X ug — c(ug - t)ug

= c((ug - ug)t — (up - t)ug) + st x ug

= CUug X (txu0)+3t><u0
And thus:

1 fo
U= g cot;uo X (t X ug) +t X ug

If §p = 0then the vector ug can be defined as uy = % and 6. = ||pp — pa||- Since this case is about
a pure translation the screw axis goes through point p 4 and u. = pa X wuy.
Finally if 6y = , 0. is still given as 6. = wuyg - t and we know that the screw axis goes through point %.

Hence u, = BATRE x .

This section has shown, how given the same rigid body in two different positions and orientations, one
finds the unit dual quaternion mapping one to the other, and as such the user can intuitively place and
rotate pseudo-parts in their disassembled state and let the aforementioned algorithm find the unit dual
quaternions mapping each pseudo-part in its assembled position to its counterpart in the disassembled
state. We almost have everything ready to generate 3D assemblies, we only need to find the instantaneous
direction of motion of a point obeying a unit dual quaternion 4.

CONE OF INFINITESIMAL FREEDOM OF MOTION IN 3D

QUATERNIONS, DUAL QUATERNIONS AND TANGENTIAL VELOCITY

Tangential velocity and quaternions

We may be interested in the tangential velocity along the trajectory of a point p € R? subjected to a rotation

through a quaternion (not adualone) g = [cos g,

the instantaneous direction of motion in CHAPTER 4. Such trajectory, in R3, is an circular arc bounded by

u sin g} . Indeed, the tangential velocity is what we called
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p and the vector part of p, = gpg* (p = [0, p];p» = [0, p.]), centered in 0 and in the plane of normal w.

Any point on this arc can be parametrised by a given A € [0, 1] such that p(A) = ¢(X\)pg*(\) with ¢(\) =

[cos 22, usin 22]. Since ¢(0) = [1,0]and ¢(1) = g,one hasthatp(0) = pand p(1) = p,.. Thus, the mapping

p : [0,1] — H
A —  p(A\)

is a bijection between the unit segment and the arc of a circle mentioned above (embedded in H).

Thetangential velocity at a point p()) is therefore the vector part of %(A). Introducing A in EQUATION
(D.4) reads:

= [0, (1 — cos(A9))(w - p)u + cos(A0)p + sin(A\0)(u x p)]
A simple derivation gives that the tangential velocity v(\) € R? is:
v(A) = 0 (sin(A0)((w - p)u — p) + cos(Af)(u X p)) 5.18

In particular, the initial velocity, also called the instantaneous direction of motion of p with respect to g, is
given by:

[ 0(0) = 0(u x p) |

Tangential velocity and dual quaternions
The same study can be done with dual quaternions. In a similar fashionasin section5.2.1.1, let us introduce
A6

a parameter A such that ¢ = |cos 57, @ sin %} . EQUATION (5.14) then reads

4pq° =1+ €e(qo(N)(p — [0, ug x uc])q5(N) + [0, Meug + ug X we]
And the tangential velocity becomes:
v(A) = 6p (sin(Mp) ((wo - p)ug — P+ ug X u.) + cos(Ay) (ug X p + ue) +) + Bug

In particular, the initial velocity, or instantaneous direction of motion of p with respect to ¢ is given by:

[0(0) = m(p,d) = foluo x p + uc) + feu |

When the unit dual quaternion is not ambiguous, we will abbreviate m(p, §) as m,,. FIGURE 5.6 shows the
instantaneous directions of motions (blue vectors) of regularly spaced points on a plane for various ¢ (with
constant ug and u. and varying g = cos 6 and 6. = sin 6): the red line shows the screw axis, and the red
curve is the trajectory of the highlighted red point for an extended motion encoded in §. On the left a pure
translation is obtained for # = +7, in the middle a pure rotation is obtained for 6 = kx, k € Z and on the
right a screw motion is given for 6 = 0.5.

THEORETICAL RESULTS

This section aims at finding the set of unit dual quaternions that can be obeyed by a given separating surface.
By definition a surface 3 (be it smooth or discrete) obeys a motion ¢ if and only if each of its constitutive
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Figure 5.6| Instantaneous directions of motion for three different unit dual
quaternions §.

points obey g:

Y obeysjg <= Vv e, n,-m, >0

where v is a point of the surface, n, the normal vector at that point and m,, the instantaneous direction of
motion of v with respect to g that is defined just above, see FIGURE 5.7 for an illustration.

Figure 5.7| Smooth and discrete surfaces obeying a unit dual quaternion §.

Notations:

Let M = (V, E, F) a discrete surface represented by a triangular mesh: V' is its set of vertices, E of edges

and F of faces. Foraface f € F let V(f) = {v;,v;,v;} refers to its vertices in a counterclockwise order;
let n s be the normal of face f.

In this section we prove the following equivalence:

Mobeysj <= Vfe FYveV(f) m, -n; >0

which implies that to check whether a triangular mesh obeys a motion g, it suffices to check for the mesh
vertices.
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Proof.

(] Proof of the implication —:
If M obeys g, then by definition all points v on the surface (vertices or not) are such that n,, - m,, > 0.
It is true in particular for the vertices of the mesh which is proof of the implication —> .

m  Proof of the implication <
AssumethatVf € FVv € V(f) m, -ny > 0. Letus show that M obeys g.
Let f € F beaface, and v;, v; and vy, its defining vertices. Let v € f be any pointin the triangle. As f
is a triangle,

3()\1', )\j, /\k) € [0, 1]3 with \; + /\j + Ar = 1suchthatv = \v; + )\j’Uj + Apvg
And

my, = Og(ug X v) + Hgue + Oug

=0y (’U/o()\i'vi + /\j’l)j = Akvk)) + (/\1 + /\j + /\k)(eoeo’u,e + QGUO)
N

=1l

= )\Z(GO(UO X ’Ui) + Ooue + 9611,0) =+ /\j (90(’11,() X ’Uj) + Ooue + QE’U,O) + )\k(eo(’UJQ X ’Uk) + Ooue + QEUO)

= A\iMy, + A\jmy,, + A\gmy,

Therefore:
My Ty = A My, T+ Aj My, Ty + A My, -y >0
>0 >0 >0 >0 >0 >0
which shows that v obeys 4.
This being true Vo € fandVf € F we have successfully shown the implication < , which ends the
proof.

O

COMPUTATION OF THE CONE OF FREEDOM

Let m be the function mapping a point and a unit dual quaternion to the instantaneous direction of motion
of that point when moved using that dual quaternion:

m : R3xUDH) — R3

(p7 qA) = GO(UO X p) + eoue + oeuo

Let M = (V, E, F) be a triangular mesh embedded in R3. For aface f € F let the set V(f) denote
the three vertices in V defining the face f and iy be a unit normal vector of that face (consistently defined
across all facesin F).

Let C ¢ be the set of unit dual quaternions such that M may obey the motion encoded by each g € C4:

Cm = {Gd € U(DH), Vf € F Yo € V(f) m(v,q) - ny > 0}

The aim of this section is to find C 4.
Let f € F of normalvectorns,v € V(f)and § € U(DH). Thenm(v, §) = 6p(uo X v) + bouc + Ocup. This
vector can be rewritten as

m(v,q) =Q xv+t
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with
Q= 90'1,&0

t= 00’(1,5 + QEUQ
and we recognise in this expression the usual expression of the tangential velocity of a rigid body. Thus
(jGéM = m(v,§) - ny>0
S Qxv+t) - ng>0

Sxng) - Q+ng-t>0

< rTe >0
With

n t
= d e RS 3= e RS
vV XNy Q

And thus ¢ € C,4 if and only if this latest inequality is true for each vertex of each face of M:

GeECpm <= Apz >0 5.19
where
ny ’Ujlcl X ng
ng  vf xXny
3
ny vy X ny
A= | T TR goir
’I’lf2 vfz X ’I’lf2

3
LT ’Uf|F\ X Mgy

and fori € [1,|F|], f; denotes the i*" face of mesh M, and for j € {1, 2,3}, v}'i denotes the jt" vertex of
V(fi)-

EQUATION (5.19) defines a 6-dimensional cone whose tip is on 0: if x satisfies EQUATION (5.19) then Az,
A > 0, does too. To find a conical section of this cone let us assume that we have a solution & satisfying
EQUATION (5.19). A conical section is given by intersecting the plane of normal &, centered in &, with the

cone.
In practice, to find such a section, we find the vertices of the 6D polytope defined by:

x> 5.20
4 — |||

where the last inequality models (x — &) - & < 0,i.e. « should be in the half plane of normal & containing 0.

SYSTEM (5.20) is solved numerically to enumerate the vertices of the polyhedron using the python package
pypoman. A cartoon illustration in R? of this process is given on FIGURE 5.8.
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Figure 5.8| Given a solution &, the conical section {@1, x2, x3} is found by in-
tersecting the cone in blue with the plane going through & and of
normal =+

IEl

By construction, the list of the 6D vertices of the polytope contains the vertex 0. Let {0, @1, ..., xy } de-
notes these vertices. Thex;,i € [1, k], are on the plane of normal & containing this point, i.e (x; —&)-& = 0.

t
As such, a conical section of the cone is given by the convex set of {x1, ...,z }. Now letx = be a
Q

pointin such section: 3(c;)ie1,1] > 0, Zle =1, = Zle a; ;. To retrieve the unit dual quaternion
G € U(DH) encoding the same motion as the one encoded in x, let us introduce the function

. o =l
f R — U(DH) .
_ 0 =6+ eb. U :ﬁ
t . -1 with and
0B = —  §= cosg,ﬁsing} U = ug + eu, 0. =t-ug
Q
ue = 5 (t—0cuo)

We can now justify that the convex set of {1, ..., ¢; } encodes all the motions that may be obeyed by M. In-
deed, suppose  to be a convex combination of the («;)1<i<x. Then, as said above, forany A > 0, M obeys
the motion encoded by Az. However one notices that for any point p € R, m(p, f(Az)) = Am(p, f(z)),
that is to say that the initial velocity of point p subjected to the motion Az is scaled by a factor A compared
to the motion encoded in , but its orientation does not change. Since we are only considering infinitesimal
motions, the norm of the tangential velocity is of no importance, we only care for its direction. From that
point of view, the motions encoded by x and Ax are the same. For that reason we may scale in sync the

el ae 90 0.
values of 6y and 6. and suppose them to be on the unit circle: 8y + T and 6, < T As such, we
) ) 0y = cos b )
may introduce a parameter §: 30 € S+, which reduces the number of parameter.
0. =sinf
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We can finally conclude:

q=f(z)
k
. T=> . .o
Cm =< ¢ € U(DH), . DL 521
21':1 Q; =

a; > 0,Vi € [1,k]

EQuATION (5.21) tells us that given the generating rays «; of the cone solution to sysTem (5.20), a solution
x is obtained by convex combination of the ;. This solution is mapped, through function f, to a unit dual
quaternion ¢ = f(x) which can be obeyed by the mesh M. The cone of freedom C s of mesh M is the set
of all such unit dual quaternions, images by f of all possible convex combinations of the generating rays of
the cone encoded in SYSTEM (5.20).

NDBG

As understood in SECTION 3.1.3, the NDBG of an assembly is based on the strong-connectedness of several
base DBGs. The principle to compute a DBG in 3D is the same as in 2D: for a given unit dual quaternion ¢
and an assembly A, initialise an empty graph G(§, A) and loop over each pair of parts in contact. Given
two polyhedral parts in contact P; and P;, represented by closed triangular meshes, denote by IF the set of
faces shared by both parts, and for f € F, let ny be the normal of face f pointing from P; to P;. For each
f={vi,v;,vi} € Fandforeachwv € f there are two possibilities:

[ Either m, - ny > 0, in which case P; is blocked by P; because of this vertex but P; is locally free to
move: add edge e;_; in the graph.
m  Orm, -n; <0,inwhich case P; is blocked by P; because of this vertex but P; is locally free to move:

add edge e;_,; in the graph.

This process is illustrated on FIGURE 5.9: a 2-parts assembly A = {P,, P, } is studied, with P, the lower
part and P; the upper one. Two faces f4 and fg are highlighted in red and blue respectively. Assume
that we build a DBG G(¢§, A) such that the instantaneous direction of motion of a vertex v adjacent to both
faces is m(v, §) such as shown in green on the figure. The directions of the vectors ny,, ns,, m(v, §) are
exemplified on the sphere. One seesthatm(v, §)-ns, < 0andm(v,§)-ny, > 0asm(v, ) belongstothe
blue hemisphere oriented by ¢, but not the red one oriented by n 4, . As such face f4 prevents the upper
part P; from obeying G, hence the edge e;_, is added to the DBG G(¢, A). Conversely, face fg prevents the
lower part P, from obeying § and the edge eq_,; is added to G(g, A).

A:{P(),Pl}

Figure 5.9| Example of a calculation of a DBG.

G(q, A)

m(v,q) Ny,

/\
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CREATING A 2-PARTS ASSEMBLY

Given a design domain, which throughout this section will be a cube of unit length centred at the origin of
IR3, this section aims at understanding how it can be partitioned into two polyhedral parts, Py and P;, with
P, obeying a user-given unit dual quaternion g.

INPUT

Figure 5.10| The input to generate a 2-parts assembly.

Even though, or perhaps because, screw motions encode all rigid body motions, they are not especially
easy to visualise. To help the user specify a unit dual quaternion ¢, he/she may wish to partition the design
domain in two pseudo-parts of approximate shape: on FIGURE 5.10 the design domain is cut in two by a
plane. Pseudo-F; isin blue and pseudo-P; inred. Then, the user may either play with the parameters ug, u.
and 6 (with 6, = cos# and 0. = sin 0) and see where it leads pseudo-P; after a motion of finite magnitude
along g, or it can move pseudo-P; in spacein an arbitrary position and location and automatically compute
q afterwards, using the equations outlined in SECTION 5.1.8.6. On FIGURE 5.10 the screw axis is the black line,
the trajectory followed by P; is depicted with the red curve, the instantaneous directions of motion of the
visible vertices of P; are shown using red arrows, and the resting position of P; used to compute q is the
body in faint red.

Once satisfied with g and with the approximate shapes of the parts, a planar triangular mesh is generated
in the design domain on the separating plane. At this step there are two options:

m  The user manually deforms the mesh by vertex painting: some vertices are moved (up or down) in a
direction orthogonal to the plane. The user can also deform the mesh by any other mean.

m  The mesh may be deformed (in an orthogonal direction to the plane) using “organic” noise applied
on the vertices. Purely random noise (each vertex is moved randomly independently from the oth-
ers) yields dull and uninteresting meshes, whereas correlating the out-of-plane motion among neigh-
bouring vertices gives a qualitatively much more pleasant mesh. The current implementation of this
algorithm uses Perlin noise.
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Once the input mesh is provided, the vertices are moved according to the following algorithm. The signed
distance d between each vertex and the separating plane is divided by a factor n € N*; Each vertex v is
moved back onto the plane and its instantaneous direction of motion m,, is calculated. The vertex is then
moved in the direction of m,, by a distance %. This iteration is repeated n times until each vertex has moved
by a distance d. On FIGURE 5.11, the original position of the mesh vertices are shown in blue, along the black
line. The mesh and the motions are projected on the plane orthogonal to ug, the direction of the screw axis,
the latter being represented by the red point. By random motion or vertex painting, the mesh vertices were
moved horizontally up to the positions in large grey dots; the signed distances d are figured by the dotted
straight lines. The original vertices are then iteratively moved by % in the direction m,, (here n = 4), and at
each new position, represented with small grey dots, the process is repeated. While it does not necessarily
help to achieve a faster convergence with the GPA for a randomly deformed mesh (it does not necessarily
hurt either), it does better condition the mesh for a more regular vertex painted one. FIGURE 5.12 shows,
for a given g, on the top row input meshes before the aforementioned conditioning, and below the same
meshes after. The leftmost mesh is initialised with Perlin noise, the middle one with vertex painting, and
the right one is a custom user-given mesh.

Figure 5.11]| Process to better condition the mesh.

GUIDED PROJECTION ALGORITHM

Given a unit dual quaternion ¢ used to condition a mesh M = (V, E| F), the GPA optimisation (see SECTION
4.1.2) is executed: the goals are:

m  Everyface f € F' mustobey g.

m  To prevent too small details, the dihedral angle 6§ between two adjacent faces must be greater than a
threshold 6;;,,,.

m  The boundary edges of M must slide on the design domain faces.

m  Asin 2D, asnap constraint must be implemented.
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v
{4

Figure 5.12| Top row: before conditioning the meshes. Bottom row: after.

Vector X is initialised with the necessary number of entries, the first 3|V| of them being the coordinates of
eachvertexv e V.

Every face must obey g

We want to impose the constraint that Vo € V(f) m,-ny > 0. We need first to calculate the normal vector
of thefaceny.

Calculation of the normal vector

By definition, n is orthogonal to face £, is of unit length and must be consistently defined across all faces,
astoalways be onthe sameside; thisisimplemented as n s is positively proportional to the non-unit normal
Vectornjcél = (v; —v;) X (v — ;).

Calculation of the non-unit normal vector: Let o and f be theindices such that X [o+3f], X[o+3f+1]
and X o+ 3f + 2] respectively map to nﬁl, njf; and njle, the coordinates of the vector n}“. By permuting
the indices z, y, z and denoting (z,, ¥, 2p) the coordinates of vertex v, € {v;, v;, v;. } one gets that:

nfe = 5 Wiz — 26) + 2i(uk — 1) + 5 (26 — 20) + 2 (vs — ve) + ve(2i — 2) + 26(y; — i)

Let i be the index such that X [3¢], X [3i + 1], X [3i + 2] map to the coordinates x;, y; and z;, indices j, k are
similarly defined. Forgq € 0,1, 2 let:
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0 0 0 1 0 -1\«3i+({(14+¢9 mod3)

0 0 -1 0 1 0|3+ (2+q mod3)

0 -1 0 0 0 1|«3+((1+q mod3) b3f+q:<—1)<—o+3i+q
Hspiq =

1 0 0 0 -1 0|«+3+((2+q) mod3) C3f4q =0

0 1 0 -1 0 0|«<3k+(1+q mod3)

1 0 1 0 0 0)«3k+((2+q mod3)
One has

1
(vj —v;) X (v —v;) — njfl =0<=Vqge{0,1,2} §XTH3f+qX + b§f+qX +c3p4=0

Calculation of a consistent normal vector: The normal ny must be positively collinear to njfl: day >
0, ny = ayn} . X isinitialised with ay = ﬁ Let
m  on, f betheindices such that X[on + 3f], X[on + 3f + 1], X [on + 3f + 2] map to the coordinates
Nfg, Nfy and Ny ofnf.
m 0y bedefined similarly for njfl.
®m  oa betheindexsuch that X [oa + f] mapsto a;.

0 1)<+ o0x1+3f+gq )
Hspiq = bsfiq = (—1> —on+3i+q C3f+q =0
1 0/ <oa+f

Where ¢ € {0,1,2}. One has

1
amm}' —ny =0« vqe{0,1,2} 5 X Hapig+ X + 055, X + 3749 =0

Constraint requiring n ; to be of unit length: We implement ||n¢||> — 1 = 0. Let o, f be the indices such
that X[o + 3f], X[o+ 3f + 1], X[o + 3f + 2] map to the coordinates n,, ns, and nys, of ny.

2 0 0\<«<o+3f
Hy=10 2 0|<o0o+3f+1 by=0 cgp=-1
0 0 2/« o0+3f+2

One has )
Ing||* —1=0 <= Vg € {0,1,2} §XTH3f+qX + b3 X +Capg =0

Constraint requiring / to obey |

For each vertex v € {v;,v;,v;} of face f, indexed by v such that X [3v], X[3v + 1] and X [3v + 2] map to
the coordinates of v, we require that m,, - n; > 0, which means that for some 7,,, m,, - ny —n2 = 0. Recall
thatm, = 0p(ug X p) + Ocuo + Gou.. Let ugy,..., uc, refer to the coordinates of vy and u.. Finally let oe be
the index such that X [oe + v] maps to 7, and on such that X [on + 3f], X [on + 3f + 1], X[on + 3f + 2]
map to the coordinates ny;, ny, and ny, of ny.

157



3-D assemblies

0 0 0 0 Oouo. —Bouoy 0\ «+ 3v
0 0 0 —6pug, 0 ooz 0]+ 3v+1
0 0 0 Oouoy —OoUos 0 0+ 3v+2
H, ;= 0 —Oouo.  Bougy 0 0 0 0|+ on+3f
Boios 0 —Oouos 0 0 0 0|«<on+3f+1
—Bouoy Oowos 0 0 0 0 0Ol+on+3f+2
0 0 0 0 0 0 -2/ <+ oe+v
Ootey + Ocugy \ < on+ 3f
bo.r = | Oouey + Ocuoy | < on+3f+1 Co,; =0
Ooue, + Ocug, ) < on+3f +2
One has

1
my mp > 0= SXTHy X +by (X +c,p=0

To prevent too small details, the dihedral angle ¢ between two adjacent faces must be greater than
a threshold 6;;,,

We make use here of the fact that the normal vector nny of a face f € F'is of unit length: ||ny|| = 1. We
require that for two adjacent faces indexed by p, g of normal n,,, ng:

2
Ny - Ng + o8 Opim — (, , =0

forsome ¢, , € R. Let o be the index such that X[o+ 3p], ..., X[o+ 3¢ + 2] mapton,,, ..., ny.,and opg
such that X [opg] maps to ¢, 4. Thus:

—o+3p
—o+3p+1
—o+3p+2

_ o O O

— o+ 3q bp,q =0 Cp,q = Cos(glim)

= o O O O
o O o o o

—o+3¢+1

—
o O O o o o

—o+3q+2

o o o

(== ]

o O o o o o
o o o o o
e e e O

—2 | + opq
One has )
Ny - Ng + o8O, > 0 <= §XTHp7qX + bin +cpg=0
Allthe above constraints are topological: to express them, we only need adjacency information between

faces and vertices, not their actual location in space.
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The boundary edges of MM must slide on the desigh domain faces.

Let v be a boundary vertex
and let p be a vertex of the
face of the design domain the
closesttow. Letn; betheunit
normal vector of face j. We
requirethatn; - (v —p) =0,

=

as illustrated on the inset. To

prevent the algorithm from
pj optimising towards v = p,
point p is dynamically chosen
among the vertices of face j
so that it is not the closest to
vertex v. This is a geometrical constraint as we need the location of v in space to select face j as well as
point p. Let v be the index such that X [3v], X [3v + 1] and X [3v + 2] map to the coordinates of vertex v,

and denote by n;,, n;, and n;, the coordinates of normal n;.

Njg | < 3v
HUZO bv: Njy —3v+1 Cy =—pP Ny

N, ) < 3v+2

One has )
n;-(v—p) :O<:>§XTHUX+6UTX+C1J:0

Snap constraint

A face f adjacent to a vertex v snaps (we will refer to f as a snap face but also to v as a snap vertex) if and
only if, when obeying ¢ for an infinitesimal motion, v slides on the plane defined by f:

m, -ny =0

We will discussin SECTION 5.4.3 the mannerin which f and v are chosen. To compute the constraint (H,_ ¢, by £, ¢y, £),
please refer to the detail of “Constraint requiring f to obey ¢” and replace H, ¢[oe + v,0e + v] = —2 by
H, loe+v,0e+v] = 0.

Other constraints

Several other constraints may be implemented, but are not described in this manuscript as they are not the
mostimportant ones, and anyway can easily be derived once one has understood the logic of the expression
of constraints in the GPA. We can think of constraining the boundary vertices to follow a goal curve, drawn
on the design domain mesh; ensuring that the area of each face is greater than some threshold (to avoid
small triangles); or, as done in the version at the time of this writing, implementing circle packing ([36]) to
well-condition the mesh.

CHOOSING WHERE TO SNAP

Preliminaries

This section explains where the so-called snap face-vertex pairs must be chosen. We saw in 2D that to reduce
the close of translational freedom C; to the user prescribed cone, exactly 2 snaps segments were required
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(secTioN 3.1.1). In rotation there is no minimal number of snap segments, we understood that it depends
on the geometry of the separating polyline.

In 3D, if we are looking at pure translations only, then we state that the minimal number of snap faces is
three: as illustrated on FIGURE 5.13 the locus of all directions of translation in 3D is the unit sphere S2. Each
snap face of an assembly (highlighted in red) defines a hemisphere of valid directions of translation, encoded
byng - x; > 0(wherex; € S? is a direction of translation in 3D), and the cone of translational freedom
is found by intersecting the hemispheres between them. One needs at least three snap faces to reduce the
cone of freedom to two antipodal points, shown in blue and red on the figure, and one non-snap face to cull
one of the two directions, leaving the cone reduced to a single direction of translation (the red point if we
are considering the upper part, the blue one if we are considering the lower part).

Figure 5.13| Three snap faces are required in 3D to reduce the cone of transla-
tional freedom to the user-prescribed cone.

Choosing the first snap face-vertex pair.

This small study gives us a lower bound of the number of snap faces: in the general case where § does not
encode a pure translation, the minimum number of snap faces is thus three. Therefore, let n > 3 be the
number of snap faces prescribed by the user. This section explains how the snap faces and snap vertices

are chosen.

Let G(M) be the Gauss map of mesh M = (V, E, F): it consists of the constellation of normal vec-
tors (nf) rer seen as points on the unit sphere S C R3. The mesh being triangular, to each face f =
{vi,vj,vx} are associated the three instantaneous directions of motion (m.,,, m,,,m,, ). As shown on
FIGURE 5.14 they can be visualised on the Gauss map as three vectors rooted in each n 5.

Having f to snap means that thereisav € {v;, v;, v} whose instantaneous direction of motion is such
that m, - ny = 0: itis contained in the tangent plane at n; of the sphere. Intuitively it means that when
disassembling the part, vertex v slides on the other part. This gives an immediate choice for the first snap
face/vertex: of all faces in F', we select the one with a m,, the closest to being in the tangent plane:

Choose f € F,v € V(f) suchthat|m, - ny| — min

To select for the next n — 1 snap faces, we cannot simply go and select the n — 1 face-vertex pair with
the smallest |m,, - n¢|. To understand why, let us go back to the pure 3D translation case.

Where to snap in the pure translation case

Assume we want to partition the design domain into two parts such that P, obeys a vertical upwards (pure)
translation. We cannot simply choose three random snap faces to reduce the cone of freedom to the north
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Figure 5.14| The normal vectors of M are visualised on G(M); each normalis
associated with a triplet of instantaneous directions of motion.

pole of the sphere as, in general, the actual cone of freedom is strictly larger. On FIGURE 5.15 the tenon-like
feature is made of four non-horizontal faces. Three of them, in red, have snapped as they are vertical, while
the last one, in blue, has not. On the right, the boundaries of the hemispheres defined by each face are of
the same colour as their corresponding face. The cone of translational freedom is highlighted in red: it is
not reduced to the prescribed north pole. For the actual cone to be reduced to the north pole, the third snap

Figure 5.15| Three random snap faces do not reduce the cone of freedom to
the prescribed direction of translation.

face fo must depend of the other two snap faces f4 and fp: the normal ny, must be chosen in the circular
arc bounded by —n ¢, and —n,, see FIGURE 5.16. Indeed, in such a case, only the north pole x; = e, and

the south pole x; = —e,, are solutions to

ng, -x; =0
nyg,-x; =0

ng, -z =0
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where the direction of translation ; is the instantaneous direction of motion m,, for any vertex v belonging
to the three faces. The south pole —e, is culled from the cone by any other non-snap face. We remark

Figure 5.16| For the cone of freedom to be reduced to «;, n s, must be chosen
on the highlighted circular arc.

that evenly distributing (each at an angle 2~ from the others) the normal vectors ny,, s, and ny, on the
equator solves the problem. It is the strategy we choose to implement to select the snap face-vertex pairs
in the general case.

Choosing the next » — 1 snap face-vertex pairs.

Letm = ﬁ >,y My be the average direction of motion of all mesh vertices, and let C be the unit circle
of normal /2. We could have calculated 72 in a more sophisticated manner, for instance by weighting each
vertex with the areas of its adjacent faces, but as we will understand, the exact value of m matters not.

The algorithm to find the next n — 1 snap face-vertex pairs is as follows. Assume the first snap face-vertex
pair has been chosen (see SECTION 5.4.3.2), labelled f; and vy, . Let p; € C be the closest point from n ¢, on
C. Starting from p,, points ps, . .., p, are evenly distributed on C, each at an angle 27—? from the previous.
Then, for each p; (2 < i < n), wefind its closest point ny, € G(M). The faces (f;);e[2,n] S0 designed are
the n — 1 remaining snap faces of the mesh. To select for the associated snap vertices (vy, );c[2,,] We simply
take among the three vertices defining f; the vy, such that m,,, - ny, is the closest to 0. This algorithm is
illustrated on FIGURE 5.17. The Gauss map G (M) is depicted using semi-transparent black dots. The average
direction 7 and circle C are shown in blue and the normal n s, of the first snap face and the projection p;
are highlighted (it is only by chance that ns, and p; are almost coincident on the figure). Starting from p,
the five (n = 6) other p;, in blue, are regularly placed on C. The closest ny, € G(M) areshowninred, and
the geodesic distances between them are figured by circular blue arcs. On the right, a zoom on a particular
1y, shows that the associated snap vertex, v,, is the one having the instantaneous direction of motion in
darker blue.

The exact value of 7@ matters very little: even though, as often in discrete geometry, there are several
reasonable ways to define this average direction, they would all define directions close to each other. Circle
C would only change by a small amount from one definition to another, and the (ny,);c[1,,] chosen would
perhaps vary, but would still be well spread around the sphere, which is what matters to define the snap
face-vertex pairs.
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Figure 5.17| Illustration of the algorithm to choose the next n — 1 snap face-
vertex pairs.

SPLITTING THE DESIGN DOMAIN INTO TWO PARTS

Creating a water-tight mesh

Before splitting the design domain into two parts, we must be able to tell unequivocally which vertex of the
design domain belongs to which part. Thisis done by stating on which side of the separating mesh a vertex of
the design domain is. To that end, we ensure that the separating surface is tightly connected to the design
domain: even if all boundary vertices of the separating mesh are constrained to slide on the faces of the
design domain, there may still be holes in the vicinity of a design domain edge. Triangle faces (obeying ) are
created until the mesh tightly hangs to the design domain, see FIGURE 5.18 where the optimised separating
surface after the GPA is shown on the left the newly created faces are highlighted in red on the right.

Figure 5.18| Faces are created so that the mesh tightly hangs to the design do-
main.

Splitting a mesh given a polyline

Now that the mesh tightly hangs to the edges of the design domain, we wish to split the design domain into
two parts. The only thing we need from the separating surface is the boundary polyline drawn on the faces
of the design domain. Thus the question we answer in this section is “How to split a mesh along a given
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polyline into two sub-meshes?” This is a general question and we answer it in the general case, temporarily
forgetting the assembly context. An illustration of the problem is given on FIGURE 5.19: we want to split the
cube mesh into two sub-meshes along the rather complex red polyline.

Figure 5.19| The cube shall be split along the red curve.

In two dimensions the winding number of a point p € R?, w(p) € Z,
Disi is a signed integer associated to a curve telling the number of times the
Y2 curve wraps around p. For each counterclockwise (resp. clockwise) rev-

olution w(p) is incremented (resp. decremented). In the discrete case,

let (pi)ic1,x] denote the points of the polyline, and let 0; be the signed

angle between vectors (p; — p) and (p;+1 — p), see the inset. Then w(p)

is given by

w(p) = - Z 0; 0; = atan2((p; — p) X (Pit+1 — P), (Pi — P) - (Pi+1 — P))

Jacobson and coauthors observed in [46] that even if the curve is not closed, this calculation is robust
enough to state whether p is on one side of the curve or the other. In the case of an open curve then w(p) €
R; the greater in absolute value, the more confident we can be that p is on a given side. We propose to use
such a generalized winding number to categorise the vertices of the mesh according to on which side of
the splitting curve they are deemed to be. A Delaunay triangulation then create the sub-mesh between the
vertices on each side and the polyline. Since the generalized winding number is only defined in the XY
plane, we proceed as follows:

m  Thetriangular faces of the mesh are grouped by coplanarity and adjacency.

(] Each group of faces is rotated, along with the splitting polyline vertices on them, to the XY plane. A
quaternion ¢ can typically be used, see FIGURE 5.20 step a.

m  Non-boundary edges are dissolved: we are left with a planar n-gon (a polygon with n edges), 5.20 step
b where the triangulation of the cube face was made with 4 triangles.

m  The generalised winding numbers of the vertices of the n-gon are calculated. Depending on the sign,
they are labelled as being on either side of the polyline, 5.20 step c.

m  Aplanar Delaunay mesh is created twice, between the two groups of n-gon vertices and the points of
the polyline, 5.20 step d.

m  These two newly created planar meshes are rotated back to their original position using ¢*, 5.20 step
e.

FIGURE 5.20 shows on the bottom row the two sub-meshes obtained after executing the above algorithm for
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each of the cube faces.

Figure 5.20| Step-by-step process to split a mesh along a polyline.

5443 Creating the parts
Given the two open sub-meshes obtained at the end of the previous section, the separating mesh is dupli-

cated, and the copies are joined to each mesh, making the parts Py and P, complete, with P, obeying g; see
FIGURE 5.21 for an illustration.

Figure 5.21| A 3D two-parts assembly and the disassembling trajectory.

5.5 ON THE CREATION OF THE FOLLOWING PARTS

The principle is the same as in 2D, see SECTION 4.1.3. Concretely the user specifies in advance the ordered
list of unit dual quaternions that each part must obey, as well as the first separating mesh that must be
optimised to create P;. Then, at the end of each iteration, the remaining part P, (in blue on FIGURE 5.21) is
considered as the next design domain to be partitioned into two, and the user is asked to provide a custom
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or vertex painted mesh to create the next part (an automatically generated random mesh may also be used).
The algorithm creates the next part and the process repeats until the completion of the assembly. At each
iteration, the NDBG is calculated and must say that the assembly is interlocking. FIGURE 5.22 shows a 4+1
parts assembly in the assembled state, as well as each of the five parts. FIGURE 5.23 shows the standard
disassembly sequence (P, then,..., then P,), as well as the NDBG stating that the assembly is interlocked.

Y@

7\

Figure 5.22| A 3D five-parts assembly.
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Figure 5.23| A disassembly sequence and the NDBG.

A A

55.1 ISSUES WITH THE CURRENT COMPUTER IMPLEMENTATION

In practice, when generating part P;, ¢ > 1, the design domain is often highly irregular: it comes indeed from
the part Py at the previous iteration whose boundary is itself a triangular mesh optimised to obey a motion,
and as such not smooth. It is thus quite difficult for the algorithm to tightly hang the separating mesh to the
design domain: it often happens that a face is outside the design domain, or that a boundary edge is not
contained in a design domain face (even though its end vertices are sliding on the design domain faces). We
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cannot skip this step and let the separating mesh loose, as it is necessary for it to tightly hang to the design
domain to calculate the generalised winding number of the design domain vertices. If we try to do so, we
are sure that the parts will be ill-constructed. Several code routines were implemented to clean and hang
properly the separating mesh, but after seeing that despite weeks of effort there were always problems, we
decided to let the user manually clean the mesh at the end of each iteration. Thus, at the time of this writing,
generating a 3D assembly is a cumbersome and fastidious task. Most of the work is done by the computer,
but the user often has to spend a dozen of minutes per separating mesh. For future work, we advise using a
professional mesh handler (or to let the coding to someone with better skills than I!).

RELATIONSHIPS BETWEEN THE SNAP FACE-VERTEX PAIRS AND THE CONE
OF FREEDOM OF MOTION

NUMBER OF SNAP FACES AND CONE OF FREEDOM

We saw in SECTION 4.3.2 that for 2D rotation the more snap segments, the thinner the cone of freedom.
Indeed, the more snap segments, the more constraints meet at the prescribed rotation centre x,., and the
less likely is any other point to belong to the cone of freedom. This line of reasoning holds in 3D: the more
snap face-vertex pairs, the less likely any unit dual quaternion distinct from the prescribed G is to be obeyed
by the separating mesh. To exemplify the shrinking of the cone of freedom with the number of snaps, we
calculated the generating rays of the cones of freedom for various separating meshes with the increasing
number of snap face-vertex pairs. Four categories of meshes were used: random ones (generated using
Perlin noise), and vertex-painted ones, with one, two or four dents, as shown on FIGURE 5.24.

Figure 5.24| The three kinds of vertex painted meshes used, and the three
kinds of prescribed motions. The trajectory of the corner vertices
of the mesh are shown in green.

They were prescribed to obey either a pure translation (left of FIGURE 5.24) or a screw motion along a
horizontal or a vertical axis (middle and right respectively). In total, we used 31 pairs of mesh-motion. Each
couple mesh-motion was then optimised 10 times with an increasing number of prescribed snap face-vertex
pairs, from 0 to 9. The generating rays of the cones of freedom of each of these 310 optimised designs are
calculated and projected onto S° the unit hypersphere in RS, While in 2D we could calculate exactly the
area and perimeter of the cones of freedom because we were working in R? (or equivalently on §2), in 3D
it is much more difficult to calculate the (hyper)volume of the cone on S°. We choose thus to approximate
this measure by calculating the volume of the convex hull formed by the unit generating rays. The evolution
of the volume and area of the cones, as well as the number of unit generating rays, is shown on FIGURE 5.25
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(bottom to top respectively). It clearly shows that the cones of freedom shrink with the number of snap
face-vertex pairs. It is also remarkable that the volume and area of the cone seem loosely proportional to
the number of generating rays. Because we should calculate a DBG for each of such generating rays, it seems
preferable to try to have a small cone of freedom to ease the assessment of the interlocking of the assembly.

3000 1
2500 -
2000 1

1500

# cone vertices

1000 1

500 -

hull area

o
IS

hull volume

4 6 8
# snap face-vertex pairs

Figure 5.25| The cones of freedom shrink with the number of snaps.

As a side note, the interested reader may look at FIGURE 5.26, which shows the projection of the unit

generating rays of a cone on the 15 cartesian planes embedded in R®.
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Figure 5.26| Projected unit generating rays. Scale is the same across all figures.
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It is important to understand what such a cone means: to any 6D-vector obtained by a convex combi-
nation of the generating rays corresponds a unit dual quaternion (see SECTION 5.2.3) that can be obeyed by
the mesh. For instance, FIGURE 5.27 shows the 5 unit dual quaternions (seen as 3D lines) corresponding to
the five rays generating the cone of freedom for the given surface. Three are shown as blue lines, one is in
red and the last is the bold green line. The redder, the greater the relative importance of the translation
term 6. compared with the rotation term 6; the bluer, the more important the rotation versus the transla-
tion. The bold green line is the prescribed unit dual quaternion (with a pure translation prescribed around
it), also corresponds to one of the generating rays of the cone. The dashed black line is calculated from a
random convex combination of the five generating rays: it corresponds to a screw motion with a relatively
large translation component, as shown by the displaced red surface and the red helical trajectory.
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Figure 5.27| The dotted black line represents a unit dual quaternion obtained
by convex combination of the generating rays shown as the
straight lines in shades of blue and red.

ON FABRICATION IMPERFECTIONS AND MOTION TOLERANCE

As shown both mathematically and numerically in SECTION 4.3.3 in the 2D case, the number of snap elements
negatively affects the probability that the prescribed motion ¢ is obeyed by an imperfect mesh M€, even
though the perfect mesh M does. By imperfect we mean a mesh M< = (V¢ E, F) whose vertices are
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not on their optimised location defined by M = (V. E, F). In this section, we first introduce a new tool
to model imperfections, namely Gaussian processes. We then numerically study the probability that an
imperfect mesh M€ obeys a prescribed quaternion ¢, before performing a more robust optimisation of the
mesh M so that an imperfect mesh M€ derived from it still has a high probability of obeying .

Gaussian processes

In SECTION 4.3.3, imperfections on the polyline were modelled using a centred Gaussian law with a diagonal
covariance matrix: it means that each polyline point could move randomly in an isotropic manner and inde-
pendently from the others. We justified that despite being quite crude, this model gave reasonable results
on the probability that an imperfect polyline obeys a 2D motion. In 3D we could have chosen to model the
imperfections on the mesh vertices similarly, but instead, we would like to introduce a new tool: Gaussian
processes. It is more complex to use but can model a broader range of imperfections and this section could
therefore be seen as a potential stepping stone to building a more refined model should the need arises in
future work.

A Gaussian process is a stochastic process of variables following a Gaussian distribution, i.e. a dynamical
system whose variables are randomly changing over time, each following a Gaussian distribution. The most
simple example of a Gaussian process is to follow the altitude of a particle moving vertically by a random
amount Ay ~ N(0, At), between two successive times, steps ¢ and ¢ + At; by construction, itis a Brownian
motion. FIGURE 5.28 shows the evolution of the altitude y with respect to time ¢ for five independent random
variables. For each realisation (path), FIGURE 5.28 displays the altitude as a function of time: y = f(¢). We
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Figure 5.28| Five independent realisations of a 1D Brownian motion.

can therefore interpret this stochastic process as a random distribution over the space of real-valued uni-
dimensional functions. With this in mind, Gaussian processes are distributions over functions f defined
over a continuous domain D C R such that:

f(@) ~ GP(u(), k(z,2'))

with 1 a mean function and « the covariance function, z € Dand (x, z’) referring to all (infinitely many) pairs
of variables of the function domain. Shifting towards discrete settings, assume X = (x1,...,z,)" € D"
be a vectors with a finite number of entries z;; € D. Let the mean vector u = p(X) = (u(1), ..., plan))t
and the covariance matrix ¥ = (X, X). The multivariate Gaussian distribution of the subset X is

f(X) ~N(p, %)
The covariance function « (also called kernel) models the correlation between every pair of random vari-
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ables x; and x;. The covariance function thus has a strong influence on the realisations of the distribution.
To be valid k must be chosen such that X is definite-positive. A well-known covariance is the exponentiated
quadratic kernel:

2
Ty — X4
K(zi, xj,a,0) = a? exp (_H’2021H>

stating that the closer z; and z;, the more correlated f(z;) and f(x;) are. As the distance between them in-
creases, the correlation decreases exponentially, as exemplified in FIGURE 5.29. Once the kernel is defined,
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Figure 5.29| Right: exponentiated quadratic covariance matrix fora = o = 1.
Left: a cross-cut view of the kernel function x(z, 0).

we choose a mean function i and we can sample realisations of the Gaussian process, as shown in FIGURE
5.30. The interested reader is referred to APPENDIX E where more kernels are defined.

y =f(x)

Figure 5.30| Independent samplings f ~ A/ (0, ) defined using the exponen-
tiated quadratic kernel.

Note that Gaussian processes can easily be adapted to provide the initial separating polyline of a 2D
assemblies: the user has greater control over the shape of the polyline than the completely random Turtle
by the means of judiciously choosing a kernel, but still enjoys the benefits of a fully automatic process (by
opposition to manually inputting a polyline). The only downside is that while the Turtle is constrained to
draw a polyline obeying the prescribed motion, a Gaussian process might output an initial polyline too far
away from obeying the motion, resulting in slow or impossible convergence.

Imperfection and cone of freedom

We use a Gaussian process to model imperfections on the location of the vertices of the separating mesh:
we use the exponentiated quadratic kernel to correlate the imperfections across close vertices. We can tune
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parameter o so that the area of highly correlated points matches the typical area of the imperfection of real
assembly. For instance, in 3D printing by fused deposition modelling, imperfections arise from thermal ex-
pansion due to the addition of hot material at the printing head. An area of imperfection corresponds to
the typical size of the region hotter than the room temperature. Also, the string of printing material may get
entangled at the entrance of the heating zone of the printer. When that happens, one has to manually dis-
entangle the string, which may make the printer head move relatively to the printing table, thus introducing

imperfections on the remaining object.

We define the kernel for any pair of vertices v;, v; € V of the separating mesh M = (V, E, F):

d(vi,vj)2>

K(vi,v;,0) = a® exp (— 552

Where d(v;, v;) is (an approximation of) the geodesic distance between the two vertices on the mesh. Be-
cause calculating the exact geodesic distance is of little use given our motivation for this study (we simply
want to numerically show that the prescribed unit dual quaternion § has little chance of being obeyed by an
imperfect mesh) we use an approximation by computing the shortest path between vertices v; and v; on
the graph G = (V, E) derived from the mesh M = (V| E, F'). Each edge in G is weighted by the euclidean
length of the corresponding edge in M. Computing the shortest path between each pair of vertices is done
by repeatedly executing the Dijkstra algorithm [24]. This distance is used to compute the covariance matrix
3’ and then three independent samplings over the mesh vertices V' are made, one for each canonical axis
of R3:
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Figure 5.31| From left to right: a mesh, the corresponding covariance matrix
3, the heatmaps of the realisations é.(V'), €,(V) and €. (V) re-
spectively.
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FIGURE 5.31 shows, for four meshes, the covariance matrix calculated using the approximate geodesic
distance, as well as the heatmaps of the realisations €, (V'), €,(V') and €,(V), vertically projected onto the
mesh. The colour code qualitatively indicates the value of the imperfection: blue means strong imperfec-
tion to the negative z, y or z directions, red means a strong imperfection in the positive directions and white
means an imperfection of small magnitude. The values are correlated to each other depending on the dis-
tance between the vertices: we see blobs of imperfection.

To model the fact that in practice the imperfections are more likely to send a vertex away from the mesh

rather than on it (for instance, when fabricating a horizontal planar surface, it is more likely to have an error
on the altitude of the fabricating device rather than on the horizontal directions; at the limit case a constant
error would be irrelevant in the horizontal directions but significant in the vertical one), we build the imper-
fections as follows.
Once calculated for each vertex v € V (FIGURE 5.32a), the values €, (v) and &,(v) are scaled down by a
factor 0 < o < 1, which effectively nudge the imperfection vector €(v) = (aé,(v), aé,(v),é.(v))T to get
closer to e, the vertical direction of R3 (5.32b). For each vertex v of the mesh we define the vertex normal
n, as the average of the normal vectors of its adjacent faces weighted by their area (5.32c), and we rotate
the imperfection vector €(v) using the quaternion ¢ sending the normal vector n,, to the vertical direction
e to get the final imperfection vector €(v) (5.32d). Thus each imperfection vector is biased to move the
corresponding vertex in the direction locally orthogonal to the mesh. The imperfect location of a vertex v
is then calculated as v = v + €(v), from which we get the set of imperfect vertices V¢ and the imperfect
mesh M€ = (V¢ E, F). FIGURE 5.32e shows, for each vertex v, 50 independent v€ in red: we see that they
are all biased to move in the direction locally orthogonal to the mesh.

@

w

Figure 5.32| Process to build the imperfections: each vertex is moved in the
direction locally orthogonal to the mesh.

Each optimised mesh M (of the 310 solutions) is deformed 100 times using the aforementioned process
to get a family of imperfect meshes M¢. The cone of freedom C 4. of each such imperfect mesh is calcu-
lated and we count the number of times the prescribed quaternion § belongs to the interior of the cone.
From that number we can calculate the sampled mean, which estimates the probability P (§ € Ca4e). FiG-
URE 5.33 shows the evolution of these estimated probabilities with the number of face-vertex snap pairs. To
be clear, in this figure there are 31 curves made of 10 points. Each of these points represents the estimated

probability (sample mean) calculated with 100 imperfect designs. Superimposed in black is the graph of
follows a power law.

the function n — =-: we see that, as proven in SECTION 4.3.3, the decrease of the likelihood of obedience

We can also study in more detail the cone of freedom of the imperfect meshes, Cr4c. To that end, we
calculated the number of generating rays, the (hyper) volume of the convex hull of the cone, as well as its
area. FIGURE 5.34 is packed with information. The small figures on the top left displays the generating rays
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"l

¢

o ¢
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Figure 5.33| Evolution of the likelihood of obedience of an imperfect mesh M*
with the number of pairs of snap face-vertex.

of Cq< in the 15 cartesian planes, same as FIGURE 5.26. On the top middle is shown the 2D PCA performed
on the rays, as well as the convex hull of the projection in red. Bottom left and middle: views of the mesh M*©
with, in green, the prescribed motion (pure rotation in this case) and in colours the unit dual quaternions
defining the cone; the brighter the red the more 6y > 6., the deeper the blue the more 6. > 6. Right:
plots showing the evolution of the area and volume of the convex hull of the cone as well as the number
of vertices, in both standard and log scale. They were calculated for various families of M€, for various
numbers of prescribed snap face-vertex pairs. The highlighted red points correspond to the mesh on the
figure. It shows that for low values of snaps (3 or less), the cones of freedom of the imperfect meshes C -
vary wildly: there is a relatively high spread of the values of the three measured metrics. For more than 3
snaps, the variation is of much lower magnitude, implying that even the imperfect meshes all have a rather
small cone of freedom. The reader is referred to APPENDIX F for more examples of this kind of data, for other
separating meshes.
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Robustness to imperfection

To make the mesh M = (V, E, F') more robust to imperfection we propose to optimise it, similarly to
what we did in 2D. We aim to find a mesh M such that any imperfect mesh M€ derived from it has a high
probability of obeying to §. As in 2D, we first increase the prescribed number of snap face-vertex pairs until
the cone of freedom of the mesh is reduced to the prescribed motion: Cyy = {¢}. Then, a second round of
GPA optimisation is executed where the snap constraint is suppressed and, for some a > 0, we impose that

Vfe FYveV(f) m(v,q) -ny >« 5.22

To confirm that this process does increase the robustness of M we calculated 100 imperfect mesh M¢
and counted the number of times § € Ca4<, from which we can derive an estimated probability (sampled
mean) P(§ € Caqe), i-e. the probability that a mesh with imperfections M€ obeys the prescribed motion 4.
The greater this probability, the more robust M. The mesh used is shown on FIGURE 5.32; it obeys a pure
rotation. FIGURE 5.35 shows the evolution of the probability P(¢ € Ca4e) with respect to increasing « (top
left). It also shows the main data on the cones C4: the number of vertices (unit generating rays) defining
it, as well as the (hyper)volume and (hyper)area of the convex hull of these vertices. The blue curve shows
the mean value averaged on 100 imperfect meshes M€, and the filled region shows the inter-quartile range
25%-75%: it means that the middle half of the observed values lie in that range.

Unsurprisingly, the greater o (geometrically, the farther away are pushed the hyper-planes constraints from
q), the more likely an imperfect mesh M¢€ is to obey ¢: the more robust the assembly to the prescribed mo-
tion and the more room the operator has when (dis)assembling the parts. The downside is that the greater o
the more voluminous the cone, and thus the more motions can be obeyed by the mesh, making the assem-
bly less robust to parasitic motions: it may become too easy to disassemble for any practical use. Moreover
the top right plot of FIGURE 5.35 shows that the greater o the more rays define the cone. This is problematic
as to assess the interlocking of the assembly a DBG must be calculated for each ray. If the cones of different
parts intersect between them, the number of DBG quickly explodes. To prevent that from happening, we
observe that if the cones associated with two distinct parts do not intersect, then the DBGs associated with
the vertices of a given cone are all constant, by exploiting the regularity property of the DBG over a cell. Thus
itisin ourinterest to reduce the extent of the cones to prevent any intersection and to reduce the complexity
of the assessment of the interlocking.

We understand here that we are caught in a crossfire: on the one hand, increasing the size of the cone by
the mean of « increases the probability of obedience of an imperfect mesh P(§ € Cpq<). On the other, too
large cones are likely to intersect, making the calculation of the NDBG much more complicated.

This conundrum leads to an interesting optimisation problem: we can leverage the monotonicity of the evo-
lution of the cone size (number of vertices (generating rays), volume and area of its convex hull) with respect
to a to minimise the value of « still leading to a high probability of obedience:

min «

st. P(G € Crme) > Pmin

For some threshold ppi, (typically pmin = 0.99). Hence, one gets the optimal value o* leading to the
smallest possible cone C < (by monotonicity of the cone size with respect to «) having a sufficiently high
probability of containing the prescribed motion encoded in §. On FIGURE 5.35 this value is eyeballed to be
a* ~ 0.048. We insist on the fact that o* is motion and geometry-dependent: for another mesh and/or
another prescribed ¢ it would have been different.
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Figure 5.35| The greater o, the larger the cone, and the greater P(§ € Cae).
For « € [0.04,0.05] the top left figure shows the probability that
an imperfect mesh M€ obeys the prescribed g: it goes from ~ 0
to 1. Top right: the greater «, the more rays generates the cones
of freedom C <. Bottom left and right respectively show that the
area and volume of the 6D convex hull of the generating rays in-
crease with a: the greater a the wider the cones.

CONCLUSION

After a rather in-depth introduction to dual quaternions in SECTION 5.1, this chapter explains how we can
use the tools and concepts introduced in CHAPTER 4 to automatically generate 3D polyhedral sequential as-
semblies. Several weaknesses of our work in 2D are listed in SECTION 4.6 and still apply in the 3D case, and
will not be recalled here.

As understood in SECTION 5.1 unit dual quaternions are the perfect mathematical objects to encode rigid
body motions. The trajectory of a point p € R? transformed by a unit dual quaternion ¢ € ¢/(DH) is helical,
and we can easily calculate its initial velocity, the so-called instantaneous direction of motion m(p, §) € R3.
From there we proved the rather elegant result, that for a triangular mesh M = (V, E, F):

Mobeysj <= Vfe FYveV(f)m, -n;>0

Armed with m(p, §) we easily adapted, in SECTION 5.4 the Guided Projection Algorithm to optimise a
mesh so that it obeys a motion prescribed by the user. Special attention was given to the snap constraint:
we understood that at least three snap face-vertex pairs must be prescribed if one hopes to reduce the cone
of freedom of the mesh to the prescribed motion Cnq = {G}. A careful analysis of the Gauss map G(M)
was carried out to judiciously choose the snap face-vertex pairs, so as to decrease as much as possible the
extent of the cone of freedom C4: the normal vectors of the snap faces must be evenly distributed around
the sphere.

Stepping away from these mathematical considerations, the rest of the section focuses on details of the ac-
tual computerimplementation. While the numerical optimisation of the mesh is fast and yields good results,
we find that, far from being a trivial task, handling and hanging irregular coarse meshes to one another to
create parts still necessitates a human touch, much to our chagrin. At the end of this PhD, it is still a tedious

178



3-D assemblies

task to generate 3D assemblies.

SECTION 5.6 investigates the relationship between the number of snap face-vertex pairs and the cone of
freedom. Much like in 2D (see SECTION 4.3), the greater the number of snaps the smaller the cone. Imperfec-
tions are modelled using Gaussian processes, where the kernel correlating the noise between the vertices
takes into account the geodesic distances between them. By tuning the parameter o we can change the size
of the patches of highly correlated noise values, thus opening the way for the modelling of a broad range of
imperfections. We saw that statistically, the more snap face-vertex pairs, the less likely an imperfect mesh is
to obey the prescribed g, which led us to robustly optimise the mesh to increase this probability by opening
the cone of freedom, at the cost of making the assembly less robust to parasitic motions and potentially
making the calculation of the NDBG much more complicated if two cones intersect.
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CHAPTER 6

The unveiling climate catastrophe and the rarefaction and disappearance of the re-
sources modern societies are built upon urge the engineer to find solutions to soften
the coming blow. In that spirit, demountable edifices undoubtedly constitute an
arrow in the quiver of the builder to erect sustainable cities. But as understood by
Mam [58], the designer should be careful of the amount of metal used in an assem-
bly. From a historical perspective, integral reversible joints, even if they increase
the overall volume of material, are found to be a sustainable alternative to perma-
nent fasteners which explains the interest of national and international initiatives
such as DiXite in that line of research. While we can certainly leverage centuries
of human trial and error to design sophisticated reversible joints, numerical tech-
nologies allow us to quickly explore the space of possible joints, and digital manu-
facturing holds the promise of being able to fabricate novel assemblies with strange
geometrical features that are potentially even more relevant than traditional ones.
This dissertation aimed at bringing a humble stone to this edifice by explaining the
tools and algorithms that were developed to fully explore the space of interlocking
assemblies.

We believe our main contributions to this field of research to be:

[ Nor catalogue nor voxel-based: our method fully explores the space of polyg-
onal/polyhedral assemblies while requiring very few human inputs, namely
an ordered list of disassembling motions.

m  To our knowledge, we are the first to generate 2D assemblies obeying rota-
tions which opens the gate to generate a much broader range of assemblies
than before. Similarly, we think to be the first able to generate 3D assemblies
obeying generalised motions.

m  While robust optimisation is a standard procedure in many scientific fields,
we have not found in the literature the robust optimisation of integral-joints
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assemblies. Our work here on opening the cone of freedom should be of great
help in the field of robotic assemblies.

RESULTS AND CONTRIBUTIONS

NON DIRECTIONAL BLOCKING GRAPH - NDBG

For this dissertation to be self-contained, we wished to give to the reader a solid
understanding of the theoretical modelling of the blocking relationships between
parts in an assembly. While cHAPTER 3 does not present any finding, it sums up
the state of the art on this subject. A Directional Blocking Graph, DBG, is a mo-
tion and a graph whose vertices correspond to the assembly’s parts and a directed
edge between two vertices indicates that one is being blocked by the other for a
motion of infinitesimal magnitude. The concatenation of the DBGs for all possible
motions given the Non Directional Blocking Graph, NDBG, which encapsulates the
entire blocking relationships between the part. We understood that quite fortu-
nately the assessment of the interlocking can be made by looking at a discrete and
finite number of so-called base DBGs. The motions in these base DBGs corresponds
to the vertices of the cones of translational and rotational freedom, C;,CS<%, CS*,
which can easily be found by solving a linear system. If all base DBGs but one are
strongly connected then the assembly is interlocked, and the DBG not strongly con-
nected indicates which part is the key and along which motion the assembly can be
disassembled.

2D ASSEMBLIES

Armed with our knowledge of the NDBG we decided to adopt a subtractive approach
to generate multi-parts assembly: the successive parts are nested in one another
by creating the next part P, in the remaining part P at the end of the previous
design step. At the end of each iteration, the NDBG is calculated to ensure that the
current, unfinished, assembly is interlocked, which leaves the computer free to find
whichever set of parts block the motion of P; ;.

Two generative algorithms were presented.

At first, we introduced a novel method to generate 2D sequential interlocking as-
semblies obeying translation, rotation, or a combination of both motions. It in-
volves an obeying agent that we called Turtle and an instruction-giver Markov
process. The Markov process randomly switches between states and for each of
such states, the Turtle is tasked to walk by a random magnitude or to rotate by
randomly sampling a carefully calculated angular interval, thus drawing a random
separating polyline to partition the design domain with. One of the main hypothe-
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ses of our work is the fact that the parts are polygonal, i.e. the separating curve be-
tween two partsis a polyline. Yet, as we derive the mathematical formula governing
avalid assembly, one notices that these equations could readily be used to explore
a broader solution space and design non-polygonal assemblies, for instance using
NURBS instead of polylines to create the separating curves. A key feature of our
work is the surjectivity of the mapping to the solution space. This ensures that,
given enough trials and computation time, any polyline can be generated and thus
that we sample homogeneously the full space of polygonal assemblies. Due to the
central place we gave to randomness our approach yields surprising and novel as-
semblies, in particular assemblies obeying rotations, which, to our knowledge, that
has not been made before. Yet, we found that the mathematical formulae driving
the Turtle did not always have a solution, a major impediment to this method.
As a consequence we decided to use a less intuitive but more robust optimisation
method, the Guided Projection Algorithm, GPA, to optimise a polyline so that it par-
titions the design domain into two parts. The Turtle approach is not entirely dis-
carded as a simplified version instantiates the initial solution of the algorithm. The
GPA proves to be a powerful and versatile tool in which the user can easily enough
add constraints to guide the final solution, thus letting them choose the amount of
freedom they want to have on the generated design.

At this step, the reader may have thought that the generated assemblies had strange
geometrical features making manufacturing cumbersome with no proof or explana-
tion on why they should be preferred to simpler and more traditional assemblies.
SECTION 4.2 justify the relevance of this work by assessing the mechanical proper-
tiesof the generated assemblies. Mechanical analyses are performed through a cus-
tom numerical model. The agreement between the forces calculated by our model
and the displacement observed by image correlation on physical assemblies rein-
forces our view that our model accurately describes the stresses and strains hap-
pening in the structure. Systematic comparisons of the stresses calculated in the
parts of generated assemblies and of those of a reference assembly consistently
showed that a simple random sampling of the design space yields a good number of
designs strictly dominating the reference, much to our surprise. This finding hints
at the potential of our approach for real-life assemblies. Yet, we insist on the fact
that the mechanical analysis of the generated assemblies was not the primary goal
of this study and we leave to future work the confirmation of this study, e.g. by com-
paring the behaviours of physically built assemblies.

What we deem to be the most relevant work in this doctoral thesis has to do with the
robust optimisation of assemblies with regard to fabrication imperfections and/or
imprecision on the location of the operator tasked with (dis)assembling. We found
that a simple two-step GPA optimisation, with and without the snap constraint ac-
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tivated, let the user indirectly choose the size of the cones of rotational freedom of
the part (the translation case being immediate to deal with). In turn, this opens the
way to toleranced assembly, a major subject in robotic assembly.

We also made a quick, and crude, enquiry on the side of finite motions to find the
set of possible centres of rotation to place the (dis)assembling operator.

This chapter finishes with a more mathematical touch, as the theory behind the
elastic deformation of planar open curves is presented for us to be able to smoothly
interpolate between two generated designs. We found that interpolated designs
mechanically behave similarly to each other making it easy to find many assem-
blies dominating a reference one.

3D ASSEMBLIES

In our opinion, the main interest of CHAPTER 5 lies in the small but hopefully thor-
ough introduction to unit dual quaternions. They are little-known mathematical
objects that are particularly fit for encoding rigid body motions in 3D space. In this
dissertation, the tangential velocity of the trajectory of a vertex moved by a unit
dual quaternion was used as the instantaneous direction of motion in the optimi-
sation of a triangular mesh. The rest of the chapter simply scales the tools used to
generate 2D assembly to the 3D cases.

PERSPECTIVES

Severalissues have been listed throughout this manuscript and should be addressed
by future research to strengthen this work. The most straightforward to deal with
relates to the fact that the NDBG outputs a binary answer: either an assembly is in-
terlocked or it is not. An implicit assumption in the calculation of the base DBGs is
that the coefficient of friction is infinitely high. Yet, for physically built assemblies
we can feel that friction plays an important role, making assemblies theoretically
interlocked disassemblable in practice. Thus the calculation of the DBGs should be
more subtle, taking into account this phenomenon.

Another route would be to reverse our approach: instead of generating a part and
then computing the NDBG and restarting this iteration from scratch if the NDBG
does not say that the assembly is interlocked, we should follow the approach pro-
posed by Wang et al. in [105] and first compute the NDBG to make it suitable and to
highlights which previous parts the current one should be blocked by, then gener-
ate the separating polyline/mesh anchored in these highlighted parts.

While in 2D a mechanical analysis of the parts was performed, this work was not ex-
tended to the 3D case. On top of that, our findings regarding the fact that a random
sampling of the design space often yields mechanically relevant assemblies should
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be confirmed by physical tests.

Our work must of course be extended to the highly non-linear realm of finite mo-
tions.

In our opinion, the most serious weakness of this work is that we did not consider
the manufacturability of the parts. This corresponds to the spirit of this disserta-
tion: who can do more can do less. Since we can reach the entire design space of
interlocking assemblies, we can in particular reach the subset of manufacturable
assemblies. It should be stressed that this subset depends on the tools the manu-
facturer chooses to use and thus that specific constraints to curate the design space
of its unfeasible solutions should be implemented for each use-case.

In 2D we were able to smoothly interpolate between designs by elastic deformation.
Recent works have scaled this theory to three-dimensional objects (parametrised
surfaces embedded in R3), [47]. While, sadly, we could not use these results in the
course of this PhD due to a lack of time, we can envision a potential application:
given two parts, one with desirable mechanical properties but not fabricable and
the other with a poorer mechanical behaviour but manufacturable, a smooth inter-
polation between them could give the best of both without much computational
effort. Another very promising avenue for research is close to what we showed in
FIGURE 4.55: given the existing database of sound traditional assemblies, some be-
ing presented in CHAPTER 2, the exploration of the space obtained by interpolating
between them would cheaply generate novel likely-to-be-sound 3D assemblies.
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APPENDIX A

INTUITION

The stereographic projection is a conformal transformation mapping a sphere to a plane. It is defined and
smooth on the entire sphere except at one particular point, the projection point. Geometrically speaking, a
line is drawn between the projection point and any other point on the sphere. The intersection of this line
and the plane define the projection of that point. In this manuscript, R? is equipped with its usual cartesian

T
frame (e, ey, e); the north pole refers to the pointe, = (0, 0, 1) . Inthis manuscript the projection point
is defined as the north pole, as illustrated on FIGURE A.1.

/

~ ~

Figure A.1| The stereographic projection maps points on the sphere (in blue)
to points in the plane (in red).

With such stereographic projection, points on the southern hemisphere are mapped inside the unit disk,
the equator is mapped to itself, and the northern hemisphere is mapped to the rest of R?.

DEFINITION

Formally speaking:

m  Let S? be the unit sphere in R3:
§?={x e R |lz| =1}
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] Let:
D §?  — R2U{c0}
T
T
1—=2
}_>
Y y
> 1—2z

be the stereographic projection of the unit sphere from the north pole.

[ Let:
p! : R2U{0} — S?

2X

X N
= ey 2y

X21v2

v T+X2+

-1+ X?2+Y?

the inverse stereographic projection mapping the plane R? onto the sphere S2.

PROPERTY

Property A.3.1. The stereographic projection of a circle on the sphere is a circle or a line.

Proof. Let P, of equation ax + by + cz +d = 0, be a plane intersecting S? and let T be the intersection. Let

X
X = € R? be such that p~!(X) € Z. By definition of the intersection Z we have that p~!(X) € P.
Y

Hence X is solution of
a 2X P 2Y +cl_X2_Y2
1+X24+Y2 1+X24+Y2 1+X24+Y2
20X +2bY +c(1 - X2 -YH) +d1+X>4+Y?) =0
(d—c)(X2+Y?) +2aX +2bY +d+c=0

+d=0

If (d — ¢) = 0then the above equation states that X lies on a line. Notethatd — ¢ = 0 <= —e, € P by
plugging —e. in the equation of the plane. Else, if d # ¢, then:

b d
(d—@u?+Y%+2m¥+%Y+d+c:0¢¢X2+Y?H%icx+23jz+dtz:0
a b d+c a? + b2
= (X+-—)2+ (Y 2 —
( +d—c) I +d—c) +d—c (d—c)?
a b a2 — a2 — b2 — 2
= (X 2y (y 2 =0
( er—c) + er—c) + (d—c)?
Since P intersects S of radius 1 we have that:
_ A
va?z + b2+ c?
Hence:
a2—|—62—|—62—d2>0
(d—c)? -
And thus, witha = —5%; 8= =2 andr = W one has:
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Figure A.2| Projection of a cartesian grid of edge length 3.

a b d2—a%2—0b%—¢2
X 2 Y 2 _ X — 2 Y — 2 _ 2 _
( +d_c)+( +d_c)+ d—o? 0 ( )+ ( B —r*=0
Which states that X lies on a circle of center («, 8) and radius r and the proof is complete. O
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APPENDIX B

Most of the contents of this appendix come from [10].

DEFINITIONS

At the most fundamental level a graph is a discrete mathematical structure aimed at representing objects
such that some pairs are, in some sense, related. These objects are represented by vertices (often called
nodes). A graph may be:

m  undirected: the problem being modeled assumes that the relation between two nodes is recipro-
cal, for instance a cousin-cousin relation: if Bertrand is the cousin of Alice, then Alice is the cousin
of Bertrand. The relation is called an edge.

m  directed: the problem being modeled assumes a non reciprocity of the relationship between the nodes,
for instance a parent-child relation: if Bertrand is the father of Alice, then Alice is not the mother of
Bertrand. In such case the relation between two nodes is called an arc.

© ©

@ @ @ @
3 3

Figure B.1| Two graphs: vertices are depicted with numbered circles. Left:
undirected graph, edges between vertices are represented by plain
line segments. Right: directed graph, arcs between vertices are
represented by arrows.

Formally, if v, and v, are two related vertices, e = (v,,v,) is an edge when the order of the pair does
not matter, an arc otherwise. Often a graph is called G = (V, E)) with V the set of vertices and E the set
of edges/arcs: e = (vp,vq) € E,vp,v4 € V. From now on, only directed graphs will be considered as an
undirected graph can simply be obtained from a directed one by "forgetting” the arcs’ orientation. A vertex
in V ofindex p will be denoted v, and the i*” arc of E from vertex v, to vertex v, will be denoted e; = (v, v,).

CONNECTIVITY
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Graphs

CHAIN AND CYCLE

Two arcs/edges are adjacent when they have a vertex in common.

A chain of cardinality ¢ is a sequence of g arcs [eq, 2, ..., €4] such as two consecutive arcs are adjacent. A
chain disregards the orientation of the arcs. For instance, on FIGURE B.2 the sequence [eq, e2, €3, e4, e5] is a
chain of cardinality 5as e; = (1, 0) shares a common vertex with e; = (1, 2) which shares a common vertex

with ez = (3,1) etc.

@ @ ©
3@

Figure B.2| The sequence of arcs [e1, ez, e3, €4, es] is a chain of cardinality 5.

A cycle is a chain whose end vertices coincide.

PATH AND CIRCUIT

Apathis achain whose arcs are all directed in the same way: [eq, €2, ..., 4] is a path of cardinality ¢ with the
end vertex of e; being equals to the start vertex of e; 11 : e; = (vp, vq) and e;11 = (vg, vr). For instance on
FIGURE B.2, [e4, e5] is a path of cardinality 2.

A circuit is a path whose end vertices coincide.

CONNECTED GRAPH

A graph (be it directed or undirected) is connected when a chain can be built between any pair of distinct
vertices. Intuitively it means that one can travel between any two distinct vertices by walking on an edge
(an arc deprived of its orientation).

The relation

B eitherv, = v,
Up = ’Uq =
or there exists a chain between v, and v,

is an equivalence relation:

m  reflexive: v, = v,
B symmetric: v, = v, = vy = Up

m  transitive: v, = v and vy = v, = v, = vy

The equivalence class that such relation induces on V' partitions the set of vertices in connected compo-
nents. Worded differently a connected component is a set of vertices from V' such as there exists a chain
made of arcs from E between any two nodes of that set. For instance FIGURE B.3 shows a graph with two
connected components composed respectively of vertices [0, 1, 2, 3] and [4, 5].
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@ @ ©®
3 @

Figure B.3| A graph with two connected components
A graph with a single connected component is therefore a connected graph.

STRONGLY CONNECTED GRAPH

A directed graph (the concept of strong connectivity does not apply to undirected graphs) is strongly con-
nected when a circuit going through any pair of distinct vertices exists. Intuitively it means that one can
travel back and forth between any two distinct vertices while following the orientation of the arcs.

The relation

either v, = v,
Up = ’Uq =
or there exists a circuit going through v, and v,.

is an equivalence relation:

[ reflexive: v, = v,
m symmetric: v, = v, = vy = Up

s transitive: v, = v, and vy = v, = v, = v,

The equivalence class that such relation induces on V' partitions the set of vertices in strongly connected
components. Worded differently a strongly connected component is a set of vertices from V' such as there
exist two paths of opposite orientation (i.e. a circuit) made of arcs from E between any two nodes of that
set. Forinstance FIGURE B.4 shows a graph with four strongly connected components: it is possible to travel
back and forth between any two nodes of the set [0, 1, 2, 3] or of the set [4, 5]. Nodes [6] and [7] are two
strongly connected components reduced to single nodes.

Figure B.4| A graph whose four strongly connected components are circled in
red.

A graph with a single connected component is therefore a strongly connected graph.
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APPENDIX C

WARM UP

Notations: let p; = (z;,%;)7 € R? be the current position of the Turtle
,and let §; and [; be the orientation and length of the segment drawn by mp, ., \
the Turtle between p; and its next position p; 11 = (zi41,%i11)7 =
p; + l;i(cosB;,sin6;)T, as shown on the inset. The goal of this section
is to find in which set shall ; and [; be chosen so that the line segment
[pi, pi+1] may obey a rotation around a given centre pointz = (z,y)? €
R2. Assuming p; # x (a very reasonable assumption stating that the

Turtle is not exactly on the centre of rotation) we can define the instan-
taneous directions of motion of point p;, p;1+1 with respect to @, m(p;, ) and m(p;,1, x), abbreviated

my, and my, . .

Referring to SYSTEM (3.12), one has (with n; = (—siné;, cos®;)T the unit normal vector of segment
[Pi, Pit1])

) n; - my, x0
[pi, Pit1] Obeys a rotation around x <~ C1
ni-my, , %0

With * standing for > if the rotation is counterclockwise, < if clockwise. Let us introduce a sign s = +1 if
the rotation is counterclockwise, —1 otherwise. Then sysTem (C.1) is rewritten:

. sm;-my, >0
[pi, Pit1] Obeys a rotation around x <— C2
sM; My, ., >0

—sin 6;
S “my, >0
cos 0;
< C3
—sin 6; —sin 6;
S . mp% + lv il O
cos 0; cos 0;

With m,,., = m,, + [;(—sin6;, cos 6;)”. For notational convenience let, in this section, Az = z; —

T
and Ay = y; — y such that m,, = (_Ay7Aa;) . Witht = tan %, recall the double-angle formulae:
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cosb; = };—i and sin §; = Let us consider the first inequality:

1+t2
—sin 6; —sin6; —Ay
s my, > 0<+=s . >0
cos 0; cos 0; Ax

<= s(Azcosb; + Aysinb;) >0

1—¢2 2t
A A >
( :l”1+t24r y1+t2> =
>0

s ( Azt? + 2Ayt + Am)

Where 6; €] — m, w[ for the inequalities to be defined. Let
Q: |—-mmn[ — R
0 — —Agxtan? g + 2Ay tan g + Az

And we have the equivalence:
sn;-my,, > 0= sQ(6;) >0

Two cases must be studied:

m fAz=0,Q: 60— 2Aytan g. Hence:

0; € [0,7] if sAy > 0
sn;-my, >0 <
0; €] —m,0] ifsAy<0

m IfAxz #0then@: 60— Q(6)isapolynomial of degree 2 in tan g. Its discriminant is

A =4||lz; —z|>>0

Hence  has two real roots:
Ay & ||z; — ||

019 = 2arctan
1,2 Az

Assuming 0; < 65 (otherwise switch them):

0 e [91702} if sAz >0

sn; -my, > 0 <
: 0; €] — m,01) U [0a, 7] ifsAz <0

C4

C5

C6

C1

C8

Note the pleasant property of this first inequality: the segment length [; and the segment orientation 6; are

independent of each other.
As for the second inequality, with again 6; €] — 7, 7 [:

— sin 0,’ —sin 91

s | my, + 1 > 0 <= s (sin0;Ay + I; sin® 0; + cos 0; Az + I; cos® ;)

cos 0; cos 0;

<= s(cosb;Ax + sin6;Ay + 1;)

2
<:>S(HA + 2t Ay—i—l)

1+ ¢2 1+¢2

= s ((li — Ax)t® + 20yt + Az + 1)
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Let
2 ]_Waﬂ[x[lminalmam] — R

(6,1) —  (I—Az)tan? g + 2Aytan & + 1+ Az

And we have the equivalence:
sn;-my, >0 sP(6;,1;) >0 o)

Several cases must be studied:

[ Ifl, = Az >0,P:0— P(0,1;) is either constant or linear in tan%
- IfAy=0thenVl €| — n,n[ P(0,l;) = l; + Az = 2]; > 0. P is constant and positive, hence:
s My, >0 s=+1 C.10
- IfAy#0,P:0~ P(f)islinearintan &:

0 < —2arctan &= ifsAy < 0

sni-my,,, >0& Ay C11
0 > —2arctan Aliy if sAy >0
[ Ifl; # Az, P: 60— P(0,1;) is a second degree polynomial in tan g whose discriminant is:
A=4(Ay*+Az® - 17) C12
=4 (||z; — z||> - 17) C13
Hence:
AZO@H:B?*(BHZL C.14
= |fH3§i—3§H<lil
P has no real roots but we can derive the following equations:
l; > ||II!1—£I?H €15
> \/Ax? + Ay? C.16
> |Ax] €17
> Ax C.18
Hence, V0 €] — 7,7, ||&; — || <l; = I; — Az >0 = P(6) > 0,thus
s -my,, ., >0 s=+1 C.19

- If||x; — || > 1;, P admits two real roots 65 and 6, such that:

Ay lw—2P =7 o

03 4 = 2arctan —
3,4 li — Az

And, assuming 05 < 60, (otherwise switch them), we have the equivalence:

9i € [93,94] Ifs(ll — ALL‘) <0
s -my,,, >0 C21
0; €] — m,05) U [04, 7] ifs(l; —Axz) >0
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Summing up: When the right hand side is defined let:

1
0y = 2arctan —

Ay
0%, = 2arctan%ﬁ'_m”
0% = Qarctanw
65, = 2arctan —Ay -~ llH—mZA_xw‘P — 7
65, = 2arctan —Ay+ liH—wiA_xm‘P — 7

0, = min(@%ﬂ%)
0y = max(@%, 05,)
03 = mm(ﬁ%,@%)

04 = max (05, 05))

A PREVERT-STYLE ENUMERATION OF CASES

Following the definition of the critical angles 6 ; 2,34 in SECTION C.1 regarding the Turtle in rotation, the
crossing of the solution sets of the two inequalities of the system

sm; -my, >0
sn; My, >0

leads to a Prévert-style enumeration of cases.

1. |Ifl; = Az
(@ IfAy=0:
m  Ifs=—1:6 € 0, nosolution.
m Ifs=+41:0; €] — m,w[N[h1,02] = 6; € [01,65]
(b)  If Ay #0:
[ If sAy < 0:

- IfsAz > 0:0; €] — 7,00 N [0, 6]
*  Iffy < 6;:0;, €0, nosolution.
*  1f6; < 6p:0; € [#1, min(hy, H2)]
If sAx < 0:0; €] —m,00] N (] —m,01] U [0, 7]):
*  Iffy < 0s:0; €] — 7, min(6p, 61)]
*  1ffy < 6p:0; €] —m,01] U |[bs, 0]
[ If sAy > 0:
- IfsAz > 0:0; € [0, 7[N]01, b2]:
x  Iffy < 0y: 0; €0, nosolution.
*  Iffy < 0s:0; € [max(6y,61), 05]
If sAz < 0:0; € [0, 7[N(] — 7,61] U [B2, 7[):
x  1f00 < 012 0; € [0, 01] U [0o, [
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x  1f6y < 00 6; € [max(8o, 82), [
Elseif ||p; — || < I;:
(a) Ifs=—1:6; € 0, nosolution.
(b) Ifs = +1:
[ If Az = 0:
- IfAy<0:0; €] — 7, 7N —7,00] = 0; €] —7,0]
- Ay >0:0, €] — 7, x[N[0, 7| = 6; € [0,
m IfAz > 0:0; € —m,7[N[01,02] = 6; € [61,02]
m fAz<0:6; €] —m,nN(] —m61]U [0z, 7]) = 0; €] —m,0:] U[02, 7
Elseif ||p; — x|| > I;:
(a) If Az = 0:
m Ifs(l; — Ax) <O
- IfsAy < 0:6; € [03,04]N] — 7, 0]:
*  If0 < 63:0; € 0,nosolution.
*  Iff3 <0:0; € [03, min(0,64)]
If sAy > 0: 6; € [03,04] N[0, 7[
*  Ifds < 0:60; € 0, nosolution.
*  1f0 < 64: 0; € [max(0,63),04]
m Ifs(l; — Ax) >0
- IfsAy<0:6; € (]| —m, 03U [0, 7[)N] — 7, 0]:
*  If0 < 64:0; €] — 7, min(0, 03)]
x  If0, < 0:6; €] — 7, 65] U [0y, 0]
- IfsAy>0:0; € (| —m, 03] U [04,7[) N[0, [
*  If0<065:0; €0,03] U [0y, [
*  Iff3 <0,0; € [max(0,04), 7]
(b)  If Az #£0:
m Ifs(l; — Az) <O:
~ IfsAz > 0:6; € [05,04] N [61,62):
*  Iff, < 6, 0r0y < 05:0; € 0,nosolution.
*  If6) < Opand O3 < 65: 0; € [max(fs3,061), min(by, 02)]
- IfsAz <0:0; € 03,04 N (] —7,01] U0z, 7[):
x  Iffs < 6, and 6y < 0: 6; € 63, min(6s, 0,)]
* If 03 < 61 and O < 64: 0; € [63,601] U [02, 04]
*  Iff; < f3and by < 05: 0; € 0, nosolution.
* If 01 < 03 and by < 04: 0; € [max(0s,05),04]
m Ifs(l; — Ax) >0
- IfsAz > 0:0; € [61,02) N (] — 7, 03] U [04, 7[):
x  Iff, < 63and 6y < O4: 6; € [0, min(6s, 65)]
* If; < 6s3and by < by:0; € [61,05] U [0y, 0]
*  Iff3 < 601 and Oy < 04: 0; € (), no solution.
* If 03 < 07 and 64 < 0s: 0; € [max(61,04), 0]
- IfsAx <0:0; € (] —m, 03] U [0y, w[) N (] —7,01] U [02,7])
*  Ifmax(0s,601) < min(fy4,062): 0; €] — m, min(f3, 61)] U [max(by, 02), 7|
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* Ifmax(ﬁg, 01) > min(04, 92): 0; E}—Tl', min(&l, 93)]U[min(04, 92), max(@l, 93)]U

[maX(94, 92), 7'('[

WHERE TO CHOOSE 0 ?

This appendix refines the above enumeration and proves also partial orderings of the 6; that are helpful to
justify the fact that the Turtle is drawn to or repelled by « depending on the value of s.

- IfAy#0

1. IfsAy=0
No change are made with regards to the enumeration provided above.

2. IfAy#0
Prerequisite:
Fora € R let:
f R — R
a -
z = x2+a®— V2 +a?
R — R
9a -

z = x?+a®+ V2 + a2

We show that for any a € R both f, and g, are positive on R. f, is trivially positive on R~
and g, on R*. Also we remark that proving f, > 0 on R™ is the same as proving g, > 0 on
R™. Soitis enough to prove f, > 0 onR*. For all z > 0 we have the equivalence:

z)>0s 22+ a® > 222 + a2
Ja(z) > >z

>0 >0
2
& (22 +a?)? > (x\/ x? + a2)

& a*(a® + 2%) > 0 always true

Hence, by equivalence, as this result is true for any z € R* we have shown that f, > 0
onRT and by consequence, as outlined above, g, > 0 onR~. Thus, we have successfully
shown that both f, and g, are positive on R forany a € R.

Let:

= Ay

_ Ay~ |[pi — =
1= I

_ Ay+ g — =l
a9 — I

ao
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suchthat 6 1 o = 2arctan(ag1,2) and 6; < 62. We prove that:

Ay<0 — 91§92§90

Ay>0 — 6y <0, <0y

Since z — 2 arctan(x) isincreasing on R proving an ordering of the 6; boils down to proving
the same ordering for the a;.

(a) Ay<0 = 6, <0256

Proof.  As by definition of 6; and 65 we have §; < 65, itis enough to prove Ay <
0 = 0y <6
Let Ay € R™*. By equivalence:

Ay +llpi —=|| _ b
li - Ay
& Ay + Ayllp — z|| > 17

& Ay + 12+ Ayy/Ay2 +12>0

< g1, (Ay) >0

0y <6y <

And we know that g;, > 0 on R so the latest inequality is true and by equivalence so
is 02 < 90.
Thus:

Ay<0 = 01 <0y <6

(b) Ay>0 = 0y <6 <0,

Proof.  As by definition of #; and 65 we have 6; < 65, it is enough to prove Ay >
0 — (90 < 0.
Let Ay € R**. By equivalence:
—li _ Ay —|lp; —z||
0, <6 —L g = ey )
0= Ay — l;
& —I7 < Ay* — Ayllpi — x|

e Ay +17 — Ayy/Ay2 +12 >0

And we know that f;, > 0 on R so the latest inequality is true and by equivalence so

i590§91.
Thus:
’Ay>0 — 0y <0, <06y
O
* If sAy >0
If sAxz < 0
SinceAz =1; > 0,sAz < 0 = s = —-landsAy >0 = Ay < 0.

Hence we know that §; < 6, < 6y and, referring to the enumeration provided
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above, in such case only one of the two assertions may happen and the Turtle
must choose 6 such as:

0 e [9077'(]
If sAz >0
Then s = +1 and Ay > 0. We know that 5 < 6; < 6. Hence the Turtle
chooses
0 € [0,,0-]
x  IfsAy <0
If sAxz <0

s=—1land Ay > 0;s0 60y < 61 < 05 and the Turtle chooses:
0 e [—ﬂ', 90]

If sAz >0
s=+1land Ay < 0;50 6, < 6> < 6y and the Turtle chooses:

= [61, 92]

m  ||p; — z|| < l; Nochange are made with regards to the enumeration.
w pi -zl 2

= If Ax =0, let

Ay — Ay - 12

as I C.22
—Ay+ /Ay? =12
g4 = 2 C23
such that fori € [3,4] 6; = 2arctan(a;) and 03 < 6. Itis easy to show that:
Ay>0 = 03<60, <0
Ay<0 = 0<603<04
Hence the enumeration can be greatly simplified into:
* Ifs =—1
0 e [93794]
* If s =+1
—7,0]if Ay < 0
g ) [ OlifAY
[0, 7] if Ay > 0
- IfAz#0
Three cases may happen when ||p; — || > [;, Az # 0and Az # ;.
1. Either Ax < 0;in which case we prove:
th <03 <04<0s C.24
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2. Or0 < Az < l;; we show that:

Either 93 < 94 < 91 < 92
C.25

Orf; <0y <63 <0,

3. Orl; < Ax;we prove that:
03 <601 <0y <0y C.26

In the following for i € [1,4] we introduce an a; € R such that§; = 2arctan(a;). Since z —
2arctan(x) is strictly increasing on R proving an ordering of the 6; boils down to proving the
same ordering for the a;.
1. IfAz <0

Then, for Az < 0; Ay € Rsuch that Az? + Ay? > I? let:

_ Ay llp; —=|
a4 = ——

Az
_ Ay—|jpi—a]
Az
Y =Dy— VPP E
3 li—Al’
o Ay VIp—alP =2
L Il — Az

such thatfori € [1,4] 6; = 2 arctan(a;) and 03 < 64 and 6; < 6. We wish to prove
a1 < az < ayg < as C.27

Since by definition a3z < a4 we just need to show that a; < az and ay < as.

(a) a; < as:

Proof.  We are going to reason by equivalence and show that a; < ag is equivalent
to a partial ordering that is always true, and hence that a; < ag is true:

Ay +|lpi — 2l _ —Ay - |lp; — «||> — 12

Az l; — Ax

= —AyAz — Azy/||p; — |2 — 12 < (Ay + ||p; — z||)(l; — Az)
= —Azy/llp; — |2 - 12 < (Ay + ||pi — 2|))l; — ||pi — z|| Az
= Az||p; — zl| — Azy/||pi — z|[2 — I < (Ay +||pi — =[]l

I ?
— Az ||pi— = 1—\/1—<1) < (Ay + ||p; — =||)l;
Az || | o — ] ( | 1)

<0 >0

a1 < az <

>0

As outlined, on the above inequality the left hand term is negative while the right
hand term is positive. Hence this inequality is always true and by equivalence so is

a1 < az. We have thus shown:
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(b) ay < as:

Proof.  We prove this inequality by equivalence:

—Ay++/||pi — z|]> = 12 _ Ay~ llpi — ||

ay < a9 <
1T I — Az Az

= (Ii — Az)(Ay — [Ip; — z|l) < —AyAz + Az||p; — x[|\/[lpi — z[]> — I?

= (Ay — [Ipi — 2|l + |lpi — @[|Az < Azy/[|p; — z|* - 17

l,' 2
— (Ay — ||p; — |l < Az ||p; — | —1+¢1_(t)
| Je= Lzl | P — |

<0 <0

<0

>0

As outlined, on the above inequality the left hand term is negative while the right
hand term is positive. Hence this inequality is always true and by equivalence so is

as < ae. We have thus shown:

In a nutshell we have successfully shown that:

’AI<O:>91<93§04<92‘ C.28

2. Ifo < Az < lz
0 < Az < l;and Ay € Rsuchthat||p;—z||? = Az +Ay? > 172 = |Ay| > /I? — Az?
let:

_ Ay —|lpi — ||
a=——7"

Az
_ Ay tllpi —xf|
Az
o —By— /lp =P =7
3 ZZ—ALC
ws = By + VIpi — |? =
1 ZZ—A.’E

such that for: € [1,4] §; = 2arctan(a;) and 3 < 04 and 6, < 6. We are going to prove
that:

either az < ag < a1 < ao
C.29

ora; <az <az < ay

Since by definition we have a; < as and a3 < a4 we just need to prove that either ay < a;
oras < az. The demonstration is in three steps:

(a) First we show that:
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(b) Then that:
Az
l;

Ays—npi—wu(l— ) N

(c)  And lastly that:

0< Az <l

Ax
— 182 lIpi—al (1- 3°)
llpi — || > 1; g

Let’s dive in!

@ Ay pi—ell(1-42) = ai<an

Proof.  We assumethat Ay > ||p; — || ( - %), i.e. that Ayl; — ||p; — =||(l; —
Azx) > 0. We prove ay < ay by equivalence:

—Ay+Vllpi —2lP & _ Ay~ |lpi — 2]
l; — Ax Az

& ~AyAz+ Azy/|lpi — 2l[2 ~ 12 < (Ay ~ ||p; — 2||)(l: — Az)
& Ayl — |Ip — 2|l — Ac) > Azy/||p; — 2| — 2

>0

aq < a1 <=

>0

2
& (Byli = [Ipi — 2|l — Ax)* > <A5E\/ |lpi — ] — l?)

& 2|lpi — ||l (Ilpi — || - Ay) (li — Az) >0
———

>0 >0 >0

As outlined the latest inequality is always true and, by equivalence, sois a4 < a3
We have proven what we aimed for:

Az
I3

Ayzlpiwl(l > = 04 <0y €30

(0 Ay<—llpi—all(1-4) = a<ax

Proof.  The demonstration is similar as the one above: assume Ay < —||p; —
x| ( - %), i.e. Ayl; + ||p; — ||(l; — Az) < 0. By equivalence:

A L —Ay — — |2 — 12
v < a0 A+ IPi= 2l ~Ay—/llpi ==l T

Az l; — Az

& (Ay+lIp: — /)i — Ag) < Ac (—Ay — i —al - l?)
& Aay/lipi—alP — B < —Ayli  |lp; — @Il — Aa)

>0 20

2
o (Am/npi ST —l%) < (= Ayl — llps — al|(l; — A))?

& 2|lpi — z||L; (|lpi — =[] + Ay) (li — Az) >0
———

>0 >0 >0
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206

As outlined the latest inequality is always true and, by equivalence, sois as < as.
We have proven what we aimed for:

A
Ay§—|pz‘—w|<1— ﬁ) = 02 <63 31
O
0< Az <; s
—> |2y] > lIpi — 2l (1 - 42);
lpi — || = I;

Proof.  We propose a proof by contradiction: recall that ||p; — || > I, and 0 <

Az < [;implies |Ay| > /1?2 — Az?

Ax
l;

2
) — 12— Az? < (Az? + Ay?) (1 A”)

18] <1ips ] 1 .

A
= (IZ - Az%) (1-1(1 - Az?)) < Az? (1— f
2 — Az? Az?

(2 — Ax?)(2l; — Ax) < Az(l; — Az)?
(l; + Ax)(2l; — Az) < Az(l; — Ax)

el

207 < 0 impossible

Hence by contradiction:

0< Az <

Ax
= |9l 2 I - oll (1 - 52)
lpi — all > 1 :

Summing up:

We have shown that in the situation

O<A$<li Az
then |Ay| > ||p; — z|| (1 - T)

lpi — || > &

Then:

*

Either Ay > ||p; — z|| ( = %) in which case we proved that 6, < 6;. Moreover, by
definition, 85 < 6, and 6; < 05. Hence, in this situation, we have theresult 65 < 64 <
0, < 0,.

orAy < —||p; — =|| ( — %) in which case we proved that #; < 63. Moreover, by
definition, 63 < 0, and #; < 6. Hence, in this situation, we have the result 8; < 6, <

03 < 0,.

Allin all we have proven:

0 <Az <l 03§04<01§92ifAy2||pi—m||(1f%>
— i
llpi — zl| > I; 91§92<93§94ifAy§—Hpi_;cH( —%’")
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For Ax > [;; Ay € R let:

_ Ay —|lpi —z||
= Az

_ Ay +|lpi — ||
= Az
o By+Ip =P =7
. —Ay— Bl
4 llfASC

such thatfori € [1,4] 6; = 2arctan(a;) and 03 < 0, and 6; < 5. We prove that:
az < ap < ag < ay

By definition a; < a3 so all we have left to proveisas < a; and as < ay4.

(a) asz < aj:

Proof.  Two cases may occur:

*  Either Ayl; — ||p; — x||(l; — Az) >0
In which case we prove our assertion by equivalence:

—Ay+ Vllpi — [P -8 _ Ay —[lpi — ]

a3 < a1 <
3 ! l; — Ax Az

C.32

& (Ay - [|ps - 2|l - Ag) < Ac (—Ay+ i — =l = Z%)

& Ayli — [|pi — x||(li — Az) < Az /||p; — @f|* = 17

>0

>0

2
& (Ayls — [lps — 2l|( — Az))? < (Ax\/nm 2P —l?)

& 2||p; — z||li (|lpi — z|| — Ay) (i — Az) <0
—_———

>0 >0 <0

As outlined the latest inequality is always true and we have shown:
Ayl, — ||pi — wH(l, = AJ)) >0 = a3z < ay

*  OrAyl; —|[|pi — z||(l — Az) <0
In which case the proposition:

Ayl; — ||pi — || (li — Az) < Az /[|pi — || — I

<0 >0

is true and as we have shown just above:

Ayl — |Ipi — z||(li — Az) < Azy/||pi —z||? — 2 & a3 < a5

Hence we have shown:

Ayll = ||p1 7$H(lz = AI) <0 = a3 < ay
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208

(b)

We have shown that the assertion ag < a; is true whether Ayl; —||p; — z||(l; — Az)
is positive or negative. Hence it is always true:

as < aq:
Proof.  Two cases may occur:

*  Either —Ayl; — ||p; — z||(li — Az) >0
In which case we prove our assertion by equivalence:

Ay+lp —xl| _ —Ay - Vllpi — =[P~ 1

Az l; — Ax

& Ayl; +|Ip; — @l|(l — Az) > —Azy/||p; — 2| — 2
& — Ayl — ||p; — 2|l - Ac) < Azyf|lp; — 2| — 2

>0

as < Q4 <=

>0

2
& (~Ayl — Ipi — 2|l — Aa))? < (Ax\/npz— ol - l%)

& 2llp; — ||l (Ilp; — =|| + Ay) (I; — Az) <0
———

>0 >0 <0

As outlined the latest inequality is always true and we have shown:
7Aylz — ||p1 — %”(lz — AZL’) <0 = ax<ay

* Or—Ayl,—sz—mH(lz—Ax)<O
In which case the proposition:

—Ayli — |lpi — || (l; — Az) < Azy/[|pi — 2| - 17

<0

>0

is true and as we have shown just above:
—Ayl; — |Ipi — z||(li = Az) < Azy/|lpi —z||? — 2 & az < aq
Hence we have shown:
—Ayl; — ||pi —z||(l; — Az) <0 = a3 < ay

We have shown that the assertion ay < a4 istrue whether —Ayl; —||p; —x||(l; — Az)
is positive or negative. Hence it is always true:
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In a nutshell, we have successfully shown that:

Ar>1; = 03 <0, <0 <0, C33

Now that we have discussed the ordering of the (6;);c[1 47 which depends on the position of Az

with respect to 0 and /; we can shed further light on the intervals in which the Turtle can choose

a 0 to orient itself. This section treats the case where ||p; — || > I; and Az # 0.

If S(li — AQT) <0

*

*

If sAz >0

1. Ifs=-1
If s = —1then Az < 0to comply with both sAz > 0and s(I; — Az) < 0. Using the
definition of the 6; provided in ITEM 1 we have

91<93§94<92

2. Ifs=+1
If s = +1 then Az > [;. Using the definition of the ; provided in ITEM 3 we have

93<91§92<94

In both case (s = +1 and s = —1) we have that ; < 6,4 and so, referring to the enumera-
tion, the Turtle always finds an angle 6 to orient itself:

0 € [max(f3,61), min(by, 63)]

If sAxz < 0

The Turtle cannot enter this condition when s = +1 (otherwise it would mean that Az <
0and Az > [;). Hence for s = —1 the Turtle is brought here when 0 < Ax < [;. In which
case, with the definition of the 8; provided ITEM 2 we have:

03 < 04 < 01 < 0> Ay > |lp; — ]| (1 - 52)
0, < 02 < 03 < 04 if Ay < —||Pi—a:||( —ATf)

We can now see that two of the four cases enumerated are impossible. We can also see that
the two remaining cases yield the same result:
We wrote : if 03 < 01 and 64 < 05 then 6 € [f3, min(f4, 01)], but as we proved that this
case is only possible when 65 < 04 < 6; < 05 we now realize that 6 € [03, 04].
We wrote: if§; < 5 and 0 < 6, then 6 € [max(03, 63),04], but as we proved that this
case is only possible when §; < 05 < 65 < 6, we now realize that 6 € [03, 64]

Hence when the Turtle is brought here it must choose

0 € [05,04]
If S(li — AJ)) >0
If sAx > 0
The Turtle cannot enter this condition when s = —1; when s = +1 the Turtle is brought

here when 0 < Ax < [;. In which case, with the definition of the 6; provided ITEM 2 we
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have:
03 < 01 < 01 < 0, f Ay > ||p; — ]| (1 - 42)

01 <0y <03 < 04if Ay < —|[p; — || (1 - %)
We can now see that two of the four cases enumerated are impossible. We can also see that

the two remaining cases yield the same result:

We wrote: if §; < #3and 05 < 64 then 6 € [, min(6s, f3)], but as we proved that this
case is only possible when 6, < 05 < 03 < 6, we now realize that § € [0, 65].
We wrote: if 03 < 6, and 04 < 0 then 6 € [max(61, 04), 0-], but as we proved that this
case is only possible when 03 < 6, < 6; < 0 we now realize that § € [0, 05]

Hence when the Turtle is brought here it must choose
0 e [91,(92]

* If sAz <0

1. Ifs=-1
If s = —1 then Az > [;. Using the definition of the §; provided in ITEM 3 we have

93<91§92<94

2. Ifs=+1
If s = +1then Az < 0. Using the definition of the 6, provided in ITEM 1 we have

91<93§94<92

In both case we have max(fs, 1) < min(6y, 62). Hence, referring to the enumeration pro-
vided above we see that one of the two cases is impossible and when the Turtle is brought
here it must choose:

0 €] — m, min(f3, 61)] U [max(8y, 03), 7|

Thisappendix helps us refine the long enumeration of secTion C.2 into a greatly simplified version presented
below. Also, the intervals where 7 appeared were left open to ensure than z — tan(z) was defined. Yet,
it can be verified that the passage to the limit still defines our expressions: the intervals can be closed.

1. IfAz=1
(@) IfAy=0:
m Ifs=—1:0; € B, no solution.
n Ifs=+1:6; € [01,0-]
(b) IfAy#£0:
n If s =+1: 6; € [61, 05]
] Else:

- IfAy >0:0; € [—m, 0]
- IfAy <0:0; € [0y, 7]
2. Elseif||p; — || <l
(a) If s = —1: 6; € 0, no solution.

(b) Ifs =+1:
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m fAz=0:
- IfAy<0:6; € [-m,0]
- IfAy >0:0; € [0,7]
m fAz > 0:6; € [01,605]
m fAx<0:6; € [—7,01] U [0z, 7]

3. Else ipri — £L'|| > li

(a) If Az = 0:
m Ifs=—1:0; € [05,04]
m fs=+1:
- IfAy<0:6; € [-7,0]
- IfAy>0:0; € [0,7]
(b) IfAz#£0:

m Ifs(l; — Ax) <O
- IfsAz > 0:60; € [max(0s,60;), min(04, 62)]
- IfsAx < 0:6; € [03,04]

m Ifs(l; — Ax) >0
- IfsAz > 0:0; € [61,6]

- IfsAz <0:6; € [—m, min(f3,61)] U [max(by, 02), 7]

PROOF THAT THE CENTRE OF ROTATION IS ATTRACTIVE WHEN s = —1

AND REPULSIVE WHEN s = +1

We now prove that the centre of rotation x acts as a repulsive (resp. attractive) point when s = +1 (resp.

s = —1)inthe sense that the Turt1le moves away from (resp. towards) «. Recall that p; denotes the current

position of the Turtle, p;1; the next position, i.e. p;+1 = p; + I

for a 8 chosen in the correct

interval as described by ENUMERATION C.3. We are going to prove that when s = +1 ||p;+1 — || > ||p; — ||
and when s = —1||p;+1 — x|| < ||p; — ||- We solve the equation ||p;+1 — z|| = ||p; — @|| of unknown 6.

Recall that Ax = x; — x and Ay = y; — y. In the following, we assume [; to be known and fixed.

1pis1 — || = |lpi — | & [[pis1 — z|* = ||pi — x|

& (Az+1;cos0)® + (Ay + I;sin0) = Az? + Ay?

& 2Ax cosl + 2Aysind +1; =0

0 0
& (I; — 2Ax) tan? 3 + 4Ay tan 3 +1;+2Ax=0

Let
P: |—-mn] — R

0 — (i —2Az) tan? § + 4Aytan § +1; + 2Ax

And we have the equivalence:

lpit1 — || = [Ip: — z|| & P(6) = 0

Several cases must be studied:

C.34
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212

If2Az = [;:

1. IfAy=0:
Then Pis constant: V0 P(6) = 2l; > 0. Also, in this case, ||p; — || < I; which implies that the
Turtle cannot be here when s = —1. Hence if the Turt1e is exactly at the distance (%, 0) from

the centre , then s = +1 and since P > 0 then ||p;.1 — || > ||p; — || which proves that =
acts as a repulsive point and the Turtle moves away from it.

If Ay # 0:
Remark that
P) =0« P(0) =1;(1+ cosf) +2Aysinf =0
™ _
Hence, P(#) = 0 & 0 = I Let § = 2arctan ;Al;. We first prove that when

2 arctan Ay
s =+1||pi+1 — z|| > ||p; — || and then that when s = —1||p;+1 — || < ||p: — =||:

- Ifs =+1:

10, w[if Ay > 0

Ipit1 — || > [|pi — || < 0 € _
| —m 0[ifAy <0

Note that the angular opening of these two cones is strictly greater than 7. We prove that
whatever the sign of Ay such open cones contain the cone [0, , 62] which is the conein which
the Turtle chooses a @ in such situation (see the (simplified) ENUMERATION C.3). Below we
demonstrate the following implication: 6 € [01, 03] = ||pi+1 — || > ||pi — x||.
(a) If Ay > 0:

We claim that 6; > 6.

Proof.  Since #; > 6; we shall obtain @ < 6, < 6, < 7 which proves the result

wanted. In such case §; = 2 arctan %
5o Ay —llpi—=l| L
0, >0<
! 1;/2 2Ay

5
& 2Ay° — 2||p; — z||Ay + 5 >0

. (LY’ 12
2 (lpi-olP = (5) ) - 2o - allay+ 3 >0
& ||p; — x|| — Ay > 0 always true

By equivalence we have demonstrated the result looked for and so far we have proven
thats = +land Ay > 0 = 0 < 6; < 0 < 7, whichmeansthaté ¢ [0;,0;] —

lpita —z[| > [Ipi — || O

(b) If Ay < 0:
We claim that 65 < 8.

Proof.  Since f; < 6 we shall obtain —7 < #; < 65 < 6 which proves the result
wanted. Here §; = 2 arctan %. Similarly as above we get the equivalence:

02 < 0 < ||p; — || + Ay > 0 always true
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O

By equivalence we have shownthats = +land Ay <0 = -7 <6; <fy <0
which meansthatd € [61,02] = ||pix1 — || > ||p: — z]|.

We have proven that no matter the sign of Ay, the cone [0;, 05] is strictly contained in the open
cone defined by y and 7. Hence, when s = +1, since the Turt1le picks a @ € [0y, 0], we have
that ||p;+1 — z|| > ||p; — || and thus the centre of rotation is repulsive.

Ifs = —1:

10, 7 if Ay < 0
lpis1 — || <|lpi —z|| & 0 € -
| =, 0lif Ay >0
Given that if ||p; — «|| < I; the Turtle cannot be in this situation when s = —1 we just need to

look at the case |[p; — z|| > l;. For Az = 4, s = +1and||p; — z|| > l; then s(l; — Az) > 0
and sAz > 0 and, according to the ENUMERATION C.3, the only cone in which the Turtle picks
an angle is [f3, 04]. So we want to demonstrate that§ < 3 < 0, < mif Ay < 0and —7 < 03 <
04 < 0if Ay > 0soastoimplythat € [03,04] = |[|pis1 — || < ||pi — z||.

First we prove the following inequality:

2|lpi — 2||* — 1 > 2|Ayly/|lpi — [2 - 2 *
Proof.
(%) & (@llpi - 2l* = )" > 489” (llps — =l* - 1)
& (2llpi —all” ~ )’ > 4 (m i - (;)) (I
< (I;||p; — =||)* > 0 always true
As outlined, the latest inequality shows that by equivalence (x) is true. O
(a) If Ay > 0:

_Ayty/pi—alP—E
vr/llp—alP—12

1;/2

In such case 64 = 2 arctan

lp—2lP-% _ &

2
& —20¢" + 289, /||pi 2| ~ 2+ 5 <0
L\? 2
o2 (lipi 21~ (£) ) + 280 /llps—2le -2 + £ <o
& 2|lpi — z||? — 12 > 28y /||pi — x||2 — 12

& (%)

94<97<:>7

Since (x) is true, so is 84 < 6 and we have proven what we wished for when Ay > 0.
(b) IfAy<O:
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214

—A -1/ i — & 2712
In such case 65 = 2 arctan —~ Ll,% E=t and:

Ay—llpi—2P—2 _ -
y=VIpi—alP =8 _

03 >0 & —

o0 li/2 2Ay
& 2l — x||? — 12 > =20y, /||pi — x||? — 12
& (%)

Since (x) is true, so is 84 < 6 and we have proven what we wished for when Ay < 0.

We have proven that no matter the sign of Ay the cone [03, 4] is strictly contained in the cone
defined by 0y and £x for which ||p;11 — z|| < ||p; — z||. Hence we have proven that § €
[05,04] = |lpit1 — || < ||p; — x||. As the Turtle must choose an angle in [f3, 64] when
s = —1 we have successfully shown that centre x acts as an attractive point (the Turtle moves
closer to it) when s = —1.

We have shown that if [; = 2Ax then the Turtle gets away from & when s = +1 and is drawn to it
when s = —1.

Ifl; — 2Az # 0:

Ifl; — 2Ax # 0 then P is a second order polynomial in tan g.

Its discriminant is:

A = 16Ay* — 4(1; — 2Az)(1; + 2Ax)
=4 (4llpi —z|* - 1)

- Wfllpi—all < &
Then A < 0 and P does not have real roots. Note that in such case we have in particular that
||p; — || < l; and so the Turtle cannot be here when s = —1.
We can derive the following implications:

U
Hpi*$‘|<§ — 2|Az| <l;
— 2Axz <
— P>0

= [[piys — || > |lpi — |

We have just proven that « is repulsive when A < 0 (and s = +1, the only case possible here),
i.e. when ||p; — z|| < 4 then P > 0, which implies |[p;+1 — || > ||p; — || and the Turtle
moves away from x.

- If||p; — z|| > 4 P admits two real roots:

—2Ay — VAllpi — z|* - I

05, = 2arctan I 27z C.35
—2Ay + VAllp; — z|]? - 7

0%, = 2arctan = QZA:C d C.36

C.37
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and let:

65 = mm(@%, 9?6)

0 = max(@%, Qg%)

To prove that « is attractive or repulsive according to the sign of s we are going to prove that the
interval in which the Turtle chooses 6 ! is contained in the interval [05, 6] or [—, 05] U [0g, 7]
(depending on whether we have P > 0 or P < 0). To that end we first prove that the intervals
[0, 04], [01,62] and [05, O] are all centered around the same value (which also show that the
complementary intervals [, 6;] U [8;, 7] are also centered around the same value). Then we
prove that the angular opening of the interval of interest (for instance 6, — 03 if the interval is
[0, 04]) is strictly less than the angular opening of the intervals bounded by 85 and 5. We then
use the fact that having two cones centered around the same value such that the angular opening
of one is strictly less than the one of the other essentially means that one of the cone is strictly
contained in the other. In other words this will show for instance that

[93,94] C [95»96}

— s attractive when the Turtle chooses 0 € [03, 04]
0 €[50 = P<O

Proof that [05, 6,], [01, 02] and [05, O¢] are all centered around the same value

Ayt||p;—=||
x

* Middle value of [#;, 62]. Let az 4 be such that 05 4 = 2arctanas 4,i.e. a4 =

0y + 6
tan — ; L — tan (arctan as + arctan ay)
_ag + ay
1— a3aq

Ay—||pi—=|| + Ay+||pi—=||
Az Az

1— Ay—||pi—z|| Ay+||p; —=||

@ Az
2Ay
_ Az
- [lpi —=||>—Ay?
1+ Ax?
Ay
- Az

x  Middle value of [3, 64]. The exact same reasoning as above yield:

93+94 Ay
n—o—m— — = —2

ta 2 Az

*  Middle value of [0, 6s]. Idem:
tan 05 + 0g . %
2 Az

We have shown that tan %1% = tan 21892 = tan %st% = andsothatthe cones [0, 04], [0, 01]
and [0s, 0] are all centered around 2 arctan %. We now prove that depending on the value of s
the cone[05, O] or [—, 05]U[0g, 7] contains the cone [0;, 6; 1] or [—7, 0;]U[0;41, 7] fori € {1, 3}.

We first start by investigate the case s = —1:
1. Ifs=-1
Since the Turt1le cannot be in a situation where s = —1and 4% < |[|p; — x|| < l; we must

150 [03, 4] or [01, 82] OF [—7, 03] U [04, ] oF [—7, 01] U [02, 7] depending on the value of Az, Ay, ; and s
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assume here that ||p; — || > I;. Looking at ENUMERATION C.3 we see that the only intervals
that we must look to are either [05, 04] or [—7, 03] U [04, 7]. Also we subdivide R in three
regions: Ax < %, % < Az < l; and Az > [;. Before investigating each of these parts we
prove the following result:

0%, — 05, > 0%, — 05, *
Where for the record:

Ay —+/llpi —=|]? - 12

0S, = 2arctan —

I, — Az
9:6394 = 2arctan —Ay+ lZH_pzA—xIJZHQ — li2
05, = 2arctan —24y — w
0%, = 2arctan —2Ay+ w
fo—0% 0%, —

o
To prove (x) we are going to prove tan % > tan %. Since the function z —

2 arctan z is strictly increasing on R we will have proven the result wanted. For the sake

ope §— — 2 _
of readability, let h = §%,u = % and a = M Let agy® = =2utvla=l oo that
0,8 _ 0,0
0:¢" = 2arctanagy

@ S
056 — 056
)

tan = tan(arctan ag; — arctan a$y)

@ o
_ Q56 — Qgp
- ® O
L+ agsass
2\/4(12—1
12k

- 1_4h2
L+ a=2n)2
2 V4a2—1
Z 1-2h
2
1-2h

=+/4a?2 -1

Similarly:
’ 0%, — 0%
tan % — a2 -1

Since (as||p; — || > I; = a > 1)V/4a? — lis greaterthan v/a2 — 1 and we have proved
the result wished for: the angular opening of the cone [05;, 05;] is greater than the one of
[05,,05,]. We can now investigate the what that means for the Turtle depending on the
value pf Az.

*x  Ar< %’
According to ENUMERATION C.3, the Turtle must choose 6 in the cone [03, 4] with
05 = 05, and 04 = 05,. Also, since [; — 2Az > 0 the polynomial  — P (tan )
is negative in between its roots: 6 €]05;, 05 = P (tanf) < 0 = ||pit1 —
z|| < ||p; — x|| = the Turtle is moving closer to z. One can verify that in such
case 05 = 65@6 and g = 9%. We had previously proven that the intervals [0, 04)
and [65, 6s] are centered around the same value and we just proved that the angular

opening of [As, 8,] is strictly less than the one of [05, 85]. Hence we have proven that
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Figure C.1| Situation when s = —1 and Az < % the cone in blue is [63, 04],

i.e. the range in which the Turtle may pick 6. Underneath in red
is the cone |05, 0¢[, i.e. the angular interval in which, when the
Turtle chooses a @ in it, it moves closer to @. As [03, 64] C]65, 06|
the Turtle moves towards .

[03, 64] C]05,06]. Summing all up we have the result that when s = —1, Az < % (and
necessarily ||p; — || > [;) the Turtle picksa 6 € [fs,04] C]05,0s[ = the Turtle
moves towards x: x is attractive. An illustration of this case is provided FIGURE C.1.

* %’ < Az <l;
Here 03 = 63,04 = 05,05 = 05 and 65 = 05;. The Turtle picks 6 € [03,04]. Also
the cone in which P is negative is |0, 7] U [—, 65] whose angular opening is 85 — 6.
These two cones being centered around the same value we have the result that the
cone [03,04] C]0s, 7] U [—m,05): whens = —land & < Az < I; (and ||p; — z|| > 1)
thend € [05,04] C)0s, 7|U[—7,05] = the Turtle movestowards x: x is attractive,
see an illustration of this case on FIGURE C.2..

* If Ax > I;
This time the cone in which the Turtle chooses 6 is [04, 7[U] — 7, 63] and the cone
in which P is negative is |6s, 7] U [—, 85]. The same line of thoughts as for the two
previous cases yields that in this case also the Turtle is drawn to «, see FIGURE C.3.

2, Ifs=+1
We could prove in this case that the Turtle moves away from « by calculation, as we did
when s = +1 butsimply we observe the following: the cone [01, 03] or [0z, w|U[—, 01 ] (seen
as a half-plane) is tangent to the circle of centre « and radius ||p; — || in p;. Indeed one can

cos 0;
verify that (p; — «) - (p; — pi+1) = Owherep; 1 = p; +1; fori € [3,4]. Hence
sin 6;

this cone does not intersect the circle of centre x and radius ||p; — x|| anywhere except in
p;: by moving on the boundary of such cone the Turtle is sure to increase its distance with
x which therefore acts as a repulsive point in the sense that the Turt1le moves away from
it, as shown on FIGURE C.4.

In this appendix we have successfully proved that no matter the relative position of p; with respect to «
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Ay
06
+m Di
. |Pi
| .
/(),»,
T Ax
>
I
(S
Figure C.2| Situation when s = —1 and % < Az < l;: see FIGURE C.1 for a
caption. The point is that the Turt1le moves towards x.
Hli
£ Ay
T pi
b
— 0 B
T Ax
>
I
oS
Figure C.3| Situation when s = —1 and Az > [;: see FIGURE C.1 for a caption.

The point is that the Turt1le moves towards x.
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Di

Figure C.4| Situation when s = +1 and Az > I;: see FIGURE C.1 for a caption.
The point is that the Turtle moves away from x.

the following assertion is true:

s=—1

s=+1

= |[|pit1 — z|| < ||p; — || x is attractive

= ||pit1 — || > ||pi — x|| x is repulsive
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APPENDIX D

QUATERNIONS

COMPLEX MULTIPLICATION

As a small warm-up before understanding why
quaternions rotate 3D objects, let us see what hap-
penson the complex plane when one wants to mul-
tiply two points, for example z; = (1,v/3) = 1 +
V3i by zp = (2,1) = 2 + 4. An elegant way to vi-
sualize the operation is to first scale zo by ||z1|| to
get ||z1]]z2 = 222 = 4 + 2i and then to rotate
this new point through the angle define by the unit
number =, ie 6 = arg(ﬁ) = Ztogetz =
(2 — V3, (1 4 2V/3)), see the inset. As one can see
in this small example, if one wants to use complex
algebra to simply rotate 25 about the origin while
/< keeping distances constant (i.e. a pure rotation or
arigid body motion) one must multiply z2 by some
unit complex number to avoid scaling it. This prop-

erty wil f quaternion multiplication.

GENERALIZING FROM 2D COMPLEX NUMBERS TO 4D QUATERNIONS

The multiplication between two quaternions ¢; and gs involves first scaling go by the norm of ¢; and then
rotating that scaled quaternion through some angle defined in ¢;:
q1
01q2 = —|la1l|g2 D.1
llqall

Where ||¢1 ||g2 represents the operation of scaling g2 by the norm of ¢; and is the direct analogous of the com-
plex multiplication described above, and II%H corresponds to a rotation in a 4D sense applied to ||g1 ||g2. As
shown by this equation and the same as complex multiplication, the rotation (so by definition an opera-
tion keeping distances constant) must involve only unit quaternions lying on the unit hypersphere of R*
otherwise, depending on whether ||¢1|| is greater or smaller than 1, the norm of the result is scaled up or
down.
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Beware of the pitfall!

What | believe to be the most naive way to generalize what we saw for complex rotation to quaternionic
rotation is shown thereafter; we are going to work through an example to see where this intuition fails and
how to rectify it to correctly express 3D rotation using quaternions.

The quaternionic representation of a vector (or a point) in R3, say vector v = (z,y, )7, is to build a quater-
nion whose scalar part is 0 and whose imaginary part is equal to the vector: v = [0, v]. Let us consider a
point p € R3 that we want to rotate around an axis ¢ € R? through an angle 6 in a clockwise manner.
Introducing the quaternionic form of our 3D point as p = [0, p] and of the action "rotate by 6 around axis
g” as ¢ = [cos 6, gsin 6], a simplistic and soon-to-be-proven-wrong translation of our problem ”perform a
clockwise rotation of p about q by 0” into the quaternionic language would simply be gp (had we wanted an
anticlockwise rotation, we would have written pq). Following EQUATION (D.1), we can without loss of gener-
ality assume that our axis of rotation is depicted in R? as a unit vector which automatically implies that our
quaternion ¢ is of unit norm. Let us compute this product to see what happens:

gp = [cos b, gsin 6][0, p]
= [—(g - p)sind, pcos + (g x p)sinf]

The norm of gp is given by

llgp||* = ((q - p)sinB)? + (pcosd + (q x p)sinh)?
((q-p)sin)” + (pcos6)® + ((q x p) sin0)*

. 2 .
= (g-p)*sin® 0 + ||pl|* cos* 0 + (||q|*||pl|* — (g - p)) " sin® 0
— |1l cos? 0 + ||p|[?sin? 0 using [lg]| = 1

= |lpll*

Or we could simply have written ||gp|| = ||q||||p|| (as can be easily checked for any quaternions g and p) and
use the fact that ||q|| = 1. What we just proved is that after transforming our quaternion p by our action ¢
we get a new quaternion gp that lies at the same distance to the origin of R* as p does which is consistent
with the definition of a pure rotation.

Let us also compute the angle « between the quaternions p and ¢p (if everything went as expected we
should get « = 6). In order to do so one must simply recall that a quaternion is nothing else that a 4D
vector and that the angle between two n-dimensional vectors vy and v is given by arccos % With
a slight abuse of notation, we will denote in this specific section both a 3D vector v € R? and its vectorized
quaternionic form v € R* with bold font and:

_ qp'p
COSX = —————+
llgpllllpll
—(q-p)sind 0
pcosf + (g X p)sind P
|lplI®
_ llpl[* cos®
|Ipl|®
= cos
We do have « = 6 and because we had ||¢p|| = ||p|| what we end up with is a quaternion gp at the same
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distance to the origin as the quaternion p and both of them are forming an angle 6 between each other.
This looks exactly like the pure rotation we were asking for. Yet there is one big issue that we overlooked
until now with our quaternion gp: its scalar part is non-zero (except for special cases such as q and p are
orthogonal or 6 is a multiple of 7r) which mean that we can no longer interpret our 4D quaternion as a 3D
point without losing some important information: for instance, if we project ¢gp into the 3D world by simply
forgetting the scalar part, we end up with a point that is not as the same distance to the origin of R3 as p is,
meaning that we are no longer looking at a rotated point. In other words, if we rotate a solid body (seen as
a collection of points) using quaternions and then forget the scalar part to project our rotated quaternions
back into the 3D world, we end up with a deformed solid not rotated like we would have wanted, which is
far from being the rigid body motion initially planned: FIGURE D.1 is obtained by successively transforming
each endpoint p of the unit cube on the left through a “rotation” encoded by a quaternion g, of the form ¢p,
and displaying the imaginary part only of the result on the right.

Figure D.1| Left: a cube. Right: the image of this cube through a rotation gp.

Before rectifying this naive approach and giving the correct procedure to use quaternions for spatial
rotations, let us build some intuition on how and why we just morphed our 3D point p into a 4D quaternion
pq that can no longer be interpreted as a point in 3D space. To do that let’s rotate a 3D sphere and try to
understand what would a 2D creature living in a plane see.

Getting some intuition: downgrading from 4D and 3D to 3D and 2D

A good way to understand with our 3D-wired brain what is going on in the 4D space when we use quaternions
is to try to understand what a 2D creature living in the XY plane would see of a rotation in 3D. With that in
mind, let us assume that we want to help a 2D creature living in the XY plane understand what rotating a
3D object looks like.

Rotating a vector in 3D is the same as unitizing this vector onto the 3D unit sphere, rotating that unit vector
and then scaling it back to its original length. That being said we can without loss of generality focus on
rotating points on the unit 3D sphere and this will give us the rotation of the entire 3D space.

On FIGURE D.2a, the unit sphere S? is depicted and the equator, in red, is the only great circle of the
sphere entirely embedded in the XY plane. Points on this equator are the only ones with a zero z-value
and are hence considered by the creature as the only “physical” points of R?, same as we, as 3D creatures,
only deem quaternions with a zero scalar part as being the only “physical” points of R*. In other words,
this equator is the only unaltered part of the 3D sphere embedded into the plane, and points on this circle
are the only ones that can be mentally represented by our hypothetical 2D creature, i.e they are the only
points having some kind of physical meaning in a 2D world. Rotating this equator as a part of the 3D sphere
is to the creature in 2D what rotating 3D points using quaternion is to us. So trying to understand how
the creature perceives this equator as it rotates should give us intuitive insights into how we perceive the
rotation of 3D points using quaternions. FIGURE D.2b lets us see what happens when the sphere is slightly
rotated and we just go naively and “forget” the z component of the now-out-of-plane equator to mimic us
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blindly ignoring the scalar part of the rotated quaternions. The blue ellipse is the vertical projection onto
the plane of the equator in red. D.2c shows the whole sphere projected onto the plane while D.2d shows, in
red, the unaltered equator and in various shades of blue the vertical projection of the equator for increasing
angles of rotation of the sphere.
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Figure D.2| What we see, versus what the 2D creatures sees.

The effect on the projected equator appears to be some kind of squishing for this particular rotation, as
the images are ellipses. Obviously, the overall motion seen by the 2D creature is far from being a rigid body
motion of the sphere as we see it ourselves in the 3D world.

One might object that this effect is an artefact of the projection chosen and that this particular projec-
tion (a vertical one by putting the z-value to 0) might not be the most suitable to represent a 3D sphere as
two points symmetrical with respect to the plane are projected onto the same point and hence some infor-
mation is necessarily lost. Asomewhat better projection that uses the infinity of the XY plane to represent
bijectively all points on the 3D sphere would be a stereographic projection, illustrated on FIGURE D.3. The
faint lines on the backgrounds are the projection of the black latitudes and longitudes of the sphere. The
equator is shown in red and its projection is in blue.

The effect of the rotation of the 3D sphere on its stereographic projection is shown in FIGURE D.4. On
the left a view of how the 2D creature might perceive the sphere as it is stereographically projected onto the
plane. The equator is highlighted in blue. Right: In red the original, unaltered, equator and in shades of
blue the successive stereographic projections of the equator as the sphere gradually rotates. As the sphere
rotates, the projection of the equator undergoes what could be best described as a translation along with
some upscaling, again a transformation that is far from being the rigid body motion that we see in 3D.

CONCLUSION

The point of this small subsection was to build an intuitive understanding of what happens behind the scene
when one multiplies the quaternionic representation of a point by a quaternion: we saw that - except in
particular cases - the result quaternion has a non-zero scalar part and thus its imaginary part cannot be in-
terpreted as the coordinates of a point after the rotation; we also showed that simply dropping the scalar
component is not a solution, as distances, in particular, may not be recorded in the imaginary part only
and the result of this projection into the 3D world is far from being a rigid body motion. A solid body trans-
formed that way will most often look deformed and not rotated. To understand this phenomenon at an
intuitive level, a tentative was made to explain what could a 2D creature living in the XY plane understand
of the rotation of the 3D sphere, in the hope that the reader might get some insights on how to rectify his or
her own perceptions on how quaternions as 4D numbers are used to rotate 3D objects.

The analogy in 2D was built around the equator of the 3D unit sphere as being the only part of the sphere
fully embedded in the XY plane (so the set of unit points with a zero z-value) and that could hence be fully
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Figure D.3| In the background is the stereographic projection of the unit
sphere. The circle in blue represents the original equator now ro-
tated. The circle in orange depicts this equator under a stereo-
graphic projection onto the XY plane.

Figure D.4| Stereographic projection and its effect on the equator of rotated
spheres.

understood by a hypothetical 2D creature. The counterpart of the equator for us is the set of unit quater-
nions having a zero scalar part and whose imaginary parts are interpreted as the coordinates of 3D points.
Following how the equator is transformed after a rotation of the sphere would be to the creature what mul-
tiplying 3D points with quaternion is to us.

To have the 2D creature “see” the 3D sphere, two projections were used. The first one, termed the vertical
projection, simply drops the z-component of the coordinates of points to project them onto the 2D plane,
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to imitate what we did when the scalar part of the result quaternion was forgotten and we only looked at
the imaginary part. The result of this projection on the rotated equator was some kind of squished circle
(see FIGURE D.2) which closely mimics how the transformation of the unit cube on FIGURE D.1 was rotated
but hugely deformed.

To show that this effect was not only an artefact of the chosen projection, another one was presented, the
stereographic projection, which takes advantage of the infinity of the 2D plane to project bijectively the 3D
sphere. There again the 2D creature could only interpret what we know to be a rigid body motion as some
kind of translation motion and a scaling stretching of the equator. What the reader should bear in mind
from now on is quite straightforward: if, after a rotation or any kind of transformation of a geometric ob-
ject, we end up with a nonzero component on a dimension we cannot visualize (be it the z value of a points’
coordinates for a 2D being or the scalar value of quaternions for us as 3D creatures) we must project this
non-physical object back into the space that we were working with in the first place. This projection will
inevitably deform in some way the geometry of the space where things happen and the result might not be
to our taste.

What we have understood is twofold:

1. When we multiply the quaternionic representation p = [0, p] of a point p € R? by a quaternion ¢ =
[cos 0, w sin 0] for some unit vector u € R? and some angle # we are in fact rotating p about w through
0 in the 4D space.

2. Aslong as the scalar part of the resulting quaternion gp (or pq) is nonzero we cannot interpret it as a
3D point without having to resort to some projection that will necessarily deform the geometry in an
unwanted way.

In the next section, the correct formula to use when rotating 3D objects with quaternions will be introduced;
we will also try to gain some intuitive understanding of why this formula works.

QUATERNIONS AND SPATIAL ROTATION

x u

Letp = | y | € R3 bea point that shall be rotated about an axisu = | » [ € R3 (with ||u|| = 1) through

z w
i
anangle § € [—m,m[in a clockwise manner. Letp = [0,p] = |0, | y be the quaternion counterpart of
z
using
point p. Letalso g = [cos §, usin §] = [cos§, | vsin & | | be the quaternion representing the operation
wsin ¢

of rotating about axis u through the half angle g. Note that by construction ¢ € U/ (H).

The claim is that the imaginary part of the quaternion p,, = gpg—!

= gpq* can be interpreted as the 3D point
that is solution to our problem (had we wanted a rotation in an anticlockwise manner, the solution would
be given by ¢~ !pq). To prove that claim, let’s compute the product given by p,.. For the sake of simplicity

in the following equations sin g is denoted as s and cos g as c. The definition of the multiplication between
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two quaternions is presented EQUATION (5.2).

br = qpq D.2

—scu-p— (cp+ suxp)-(—su), (—su-p)(—su) + c(cp + su x p) + (cp + su X p) X (—su)]
0,5%(u - p)u + c*p+ scu x p—csp x u — s%(u x p) x ul
0,5%(u - p)u + c2p + 2scu x p + s°u x (u x p)]

0,5°(u-p)u+c’p+2scu x p+ s (u(u-p) — p(u-u))]

= [0,25*(u - p)u + *p — s°p||u||* + 2sc(u x p)]

=0

0

,25%(u - p)u+ (¢ — s%)p + 2sc(u x p)] D3

, (1 —cos8)(u-p)u+ cosfp + sinf(u x p)] DA

The scalar part of p,- is equal to zero: we can safely interpret the imaginary part as the coordinates of a
point p,. = 2s%(u - p)u + (c? — s?)p + 2scu x p € R3: p, = [0, p,.]. We must now prove that ||p.|| = ||p||
and that the angle between p,. and p is 6.

, 0 0
Iprll” = 2 2 2 o2 2 2
2s*(u-p)u+ (¢ — s*)p + 2scu X p 2s°(u-p)u + (¢ — s°)p + 2scu X p

= 4s'(u-p)® +25%(? — 8*)(u - p)* + 0+ 25°(® — s*)(u - p)* + (¢ — )*|Ipl|*+
0+0+0+45202(uxp)~(uxp)

= 45> (u-p)* + (¢ = *)?||p||* + 45’ (- w)(p - p) — (u - P)(p - w))

= (¢ = s*)?[|p||* + 45°¢| |u]?|Ip|®

0 0\° 0 0\?
_ 20 .20 AP 2
= <<cos 5 —sin 2) + (2811120082) >||p||

= (cos? 0 + sin? 0)||p||?

= llpll?

Using ||p|| = ||p|| we prove that
|lp-l = llpl|

Now for the angle. Let us recall that for any two vectors p € R? and u € R%, d > 2, one can decompose p
into two vectors p| = (u - p)uandp; = p — (u - p)u that are respectively the collinear and orthogonal
components of p with respect to u. Rotating p about u through an angle ¢ is the same as rotating p, in the
plane whose normal is u through ¢ and then adding p||. That means, in our case, that it is enough to check
that the angle between p,.; and p, is 6 to prove that the quaternions p,. and p form an angle § in R*. First,

we show that Pr| = P):

pr| = (u-pr)u
= (28°(u-p)|[u|]* + (¢* = s*) (- u) + 0)u
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This result is expected: because p is rotated about u, the collinear components p| and p,.|| are the same. It
implies that ||p, || = ||pL]|| to keep the norm of the rotated vector constant (which is consistent with the
fact that we focus on rotating p, only, which keeps its length constant). We now compute that the angle
betweenp,., andp :

Dr1 DL _(Pr—Pr”)'PL
|l |[|[pL]] a llpLl]?
_ (pr— (u-p)u)) -pL
llpL|l?
((232 —1)(u-p)u+ (2 — s?)p + 2sc(u x p)) DL
llpLI?
(—cosf(u - p)u+ cosfp +sinf(u x p)) - p..
lpLl|?
((p— (u-p)u)cosf +sinf(u x p)) - p.
llpLl?
(pL-pi)cosf+0
llpL|f?

= cosf

Which proves that the angle between p,. and p is 6.

In a nutshell, we proved that the quaternion p,, = gpg~" has a zero scalar part and can therefore be inter-
preted as a 3D point p,. lying at the same distance to the origin as p does and forming an angle 6 with the
latter, i.e. we just rotated p through 6 about w.

DUAL QUATERNIONS

A CONCISE EXPRESSION

Following [50] and [22] we prove that any unit dual quaternion can be written down as:

where 6 is a dual angle and @ is a dual vector in R3.

Let § = g + Zeptq be a unit dual quaternion with ¢ = [cos &, usin ], u € R3,0 €] — m, 7] and t = [0, ],

t € R3 such that ||u|| = ||¢|| = 1. Angle 6 is the amount of rotation about axis u and p is the magnitude of

0

the translation along t. In the following let s denote sin g and c = cos 3.

Prerequisite
Fora and b € R we prove that:

cos(a + eb) = cosa — ebsina

sin(a + eb) = sina + ebcosa
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To that end recall that for all z:

& x2n
cosT = Z(—l)"
|
— (2n)!
) St . I,2n+1
Sy = Z(*l) m
n=0

Hence for a pure dual number & = ez, since € = 0 whenn > 1 one has:

Therefore:

cos(a + eb) = cos(a) cos(eb) — sin(a) sin(eb)
=cosa — ebsina
sin(a + eb) = sin(a) cos(eb) + sin(eb) cos(a)

=sina + ebcosa

In a more general setting, by extending the definition of Taylor series to functions of dual numbers, it natu-
rally follows that f(a + €b) = f(a) + €bf’(a). Back to our dual quaternion:
I =g+ >ept
q9=9q 26/’ q
1
= [c, us] + iep[—st -u, ct + st X u)

= c—egt-us,usﬁ-eg(ct—i—stxu)}

Let us rewrite the scalar part of the dual quaternion g:

Pt us—cos (- (e. )
c 62t us-cos(2 € 2t u)
(9+ept-u>
= cos —

The scalar part of § invites us to introduce a dual angle 0 =0+ ept - u. Our goal is now to express the
imaginary part of ¢ using this dual angle 6. The dual part of § is:
us + eg(tc—i—t X us) = us + eg((t —(t-wu+ (t-wu)e+t x us)

- (5+e§(t-u)c>u+eg ((t — (t - w)u)c +t x us)
— sin gu+eg ((t — (t-wu)e+t x us)

Assuming that 6 # 0 let us define:

U =

N

((t—(t-u)u)coti—i—txu)
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so that the imaginary part of § can be rewritten as:

p .0 .0
us+e§(tc+t><us) :sm§u+eu€sm§

Remark that
0 . (O+ept-u
€ESIN — —m €SN | —————
2 2
. 9+ 1) . 0
=€ [ sin = —pt - ucos =
c\Ptg TP 2
.0
— €S1n —
2

Hence, denoting & = u + cu., we get:

U

N D>

us + eg(tc—i— t X us) = sin

and:

UNIT DUAL QUATERNIONS AND PLUCKER COORDINATES

We prove here that for a unit dual quaternion ¢ written in the form ¢ = [cos g, U sin g] with 6 = 6y + €,

and & = wug + eu,, then the tuple [ug, u.] defines the Pliicker coordinates of a line. Bearing in mind the
previous SECTION 5.1.8.3, we see that it is enough to show that

=1 { ol =
Uy - e =0
Let us develop ¢:
- o . (9]
= [cos =, wsin =
1 PR
0 0 0
= [cos 5 (up + eu)(sin ?0 + 656 cos 50)}
[ 90 06 . 90 . 00+ 06 00+ . 90]
= [cos — — e—sin —, up sin — + eug— cos — + U, sin —
2 27 2770 92 772 2
0 0 0 0 0
= [cos Eo,uo sin 30] + 6[*5 sin 5071!056 cos 50 + u, sin 50]
= qo t €qc
With go =[S0, Vgo)s e = [Sq..Vq.] Where s, = cos %, vy, = uosin %, s, = —%sin®% and v, =
uo% cos %" + u. sin %0. Recall that by definition:
llgoll =1

lgll =1«
Sq05q. T Vg * Vg, =0
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Since this system is trivially met when sin % = 0 we assume it is not the case. We first prove that ||go|| =

1 & |luol| = 1:

llaoll =1 & 85, + vgo Vg =1

0 0
250+u0-uosin2 jol

< COS

50

& sin g(uo-uo—l)zo

Sug-ug=1

& [Juoll =1
Using ||uo|| = 1 we now show that 54,54, + Vg, - V4. =0 & ug - ue =0
6 0 0 0O 0
SqoSq. + Vg Vg, =0 & —0, sin?O cos(;o) + (ug sin 50) . (Uog cos 50 + u, sin 50) =0

. 0 0 0. . 6 0 . 20
@5Sin50c0850+5’sm5000s50u0-u0+u0-u€s1n250:0

Sug-ue =0

We have proven in this section that a unit dual quaternion contains the information about a unique line
whose orientation is ug and going through the point ug x u.:

[ld|] = 1 < [ug, u] are the Pliicker coordinates of a line
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APPENDIX E

The figures presented in this appendix are heavily inspired from [84]. The most basic kernel that can be used
in a Gaussian process is the white noise kernel: each random variable is completely uncorrelated from the
others, as shown on FIGURE E.1, where the kernel k(z, 0) is a Dirac function at 0 (top left), the covariance
matrix is the identity matrix (top right), and three independent samplings are shown on the bottom.

1.0 1

0.8 1

0.6 1

K(x, 0)

0.4

0.2

0.0 A

-20 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0 -2 =il

xXo

f(x)
o

-1 A

-2.0 -15 1.0 0.5 0.0 0.5 1.0 15 2.0
Figure E.1| White noise kernel.

The exponentiated quadratic kernel is given by:

_ 2
I{(l‘,y) —_ G,Zexp (_Hﬂf y” )

202

233



Gaussian Process

The greater o the more correlated are far away random variables, as shown on FIGURE E.2. The amplitude
parameter a simply scales the functions.

x
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1.04
_ 05
&
= 0.0
-0.5
~1.04
-154 =
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2 2
g 4 =
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-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

x x

Figure E.2| Several exponentiated quadratic kernels.

The rational quadratic kernel is given by

— 12\ ¢
H(x’y):(IQ (1_|_ ||£E y” )

2002

Parameter ¢ influences the magnitude of the correlation between far away values while parameter « influ-
ences the steepness of the correlation.
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Periodic kernels may also be defined. For instance:

K(,y)

a=1,0=10,a=1
5

<0

>xo

1.01

0.9

a=10=1a=0.1
5

<0

-3
= a? exp — sin?
o

(=)

Parameter p plays on the period, i.e. the distance between two highly correlated random values.
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Finally it is also possible to combine kernels. Here we define a damped periodic kernel by multiplying a
periodic kernel with and exponentiated quadratic one:

-2 o . 2
K(z,y) = a® exp (2 sin’ <7r|xy|>> exp (_”xg”)
Tp p 20

236



Gaussian Process

1.0

0.8 4

0.6 q

K(x, 0)

0.4 4

0.2

0.0

a=1l0,=1p=10=1 .
-3 d

0.8

0.6

K(X, X)

0.4

0.2

f(x)

w

0
X

1.0

0.8

0.6 1

K(x,0)

0.4 4

0.2

0.01

o
e
IN)
w

K(X, X)

fix)
o

o4

1.0

0.8 1

0.6 1

K(x, 0)

0.44

0.2

o
(=
IN]
w

a=1l,0,=1,p=1,0/=2
8

189
1.0
0.5 4
0.01

f(x)

—0.5 -
~1.0 4
—1.5
-2.04

o4

0
X

o
(0
IN]
w

237



Gaussian Process

238



APPENDIX F

On FIGURES F.1, F.2 and F.3 the small figures on the top left displays the generating rays of Cxs- in the 15
cartesian planes, same as FIGURE 5.26. On the top middle is shown the 2D PCA performed on the rays, as
well as the convex hull of the projection in red. Bottom left and middle: views of the mesh M€ with in
green the prescribed motion (pure rotation) and in colours the unit dual quaternions defining the cone; the
brighter the red the more 6y > 6., the deeper the blue the more 6. > 6. Right: plots showing the evolution
of the area and volume of the convex hull of the cone as well as the number of vertices, in both standard and
log scale. They were calculated for various family of M€, for various number of prescribed snap face-vertex
pairs. The highlighted red points correspond to the mesh on the figure. It shows that for low value of snaps
(3 orless), the cones of freedom of the imperfect meshes C - vary wildly: there is a relatively high spread of
the values of the three measured metrics. For more than 3 snaps, the variation is of much lower magnitude,
implying that even the imperfect meshes all have a rather small cone of freedom.

These three figures, combined with FIGURE 5.34, show that the evolution of the shape of the cones C -
greatly depends on the geometrical features of the perfect mesh M. While the cones abruptly shrink in size
for the mesh with four dents on FIGURE F.1 and the random one on F.3, the shrinking is slower of the meshes
with one and two dents on FIGURES 5.34, F.2. This difference in behaviour imply that we cannot give any
guidelines on what should be the number of face-vertex pairs prescribed to snap to reduce the cones to a
small size: it depends too much on the geometry of the mesh.

On FIGURE F.1, the prescribed ¢ encodes a vertical screw motion, shown on the right of FIGURE 5.24.

On FIGURE F.2, the prescribed ¢ encodes a pure rotation, shown on the left of FIGURE 5.24.

On FIGURE F.3, the prescribed ¢ encodes a pure rotation, shown on the left of FIGURE 5.24. The mesh was
randomly initialised.

239



()44

Cone convex hull -- volume: 5.41E-08; area: 2.43E-05; # vertices: 120; PCA convex hull area: 6.75E-02
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Figure F.1| See text for a description.
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Cone convex hull -- volume: 1.69E-04; area: 2.03E-02; # vertices: 467; PCA convex hull area: 1.45E+00
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Cones of freedom of imperfect meshes
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