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ABSTRACT

In the context of sustainable construction in a circular economy, demountable wooden buildings represent
an interesting research perspective. The question of reuse, i.e. the best possible reuse of the finished prod‑
ucts resulting from the dismantling of buildings, requires that the building not be demolished, whichmakes
it difficult to use nails or any other assembly devices of the same type. On the other hand, the elimination of
modernmetal assemblies common in wooden structures greatly reduces the carbon footprint of the build‑
ing. Concerning their environmental impact, wooden assemblies offer much better prospects than their
metal counterparts. However, fewmodern buildings are built withoutmetal; for example, the Louis Vuitton
Foundation is extremely consumer of metal products even though it clearly states the ambition to make it
out ofwood. Designing demountable structures andbuildings is an ancient problem: someAustrian chalets
are 500 years old, and the oldest inn in the world, the Nishiyama Onsen Keiunkan in Japan, was built in 705!
their longevity is due to their demountability: when a part of the structure ages and begins to show signs of
weakness, it is partially dismantled and replaced by a new one. Thus, element after element, these struc‑
tures have withstood the test of time and are still functional today. What could be more sustainable than a
1300‑year‑old old building still in operation? The question also arises on the other hand: what to do with a
30‑ or 50‑year‑old building which, as the city and society change, has reached its expiration date and is no
longer used? Here again, the question of dismantling and reusing its structural elements as much as possi‑
ble for newprojects (which potentially greatly reduces their environmental footprint) is part of a sustainable
construction approach. Finally, with recent and future advances in robotic construction, the cost and time
of manufacturing such assemblies will likely become increasingly competitive with their modern counter‑
parts, both in economical and ecological terms. This PhD project ambitions to participate in the reflection
on interlocking assemblies by exploring the feasible space of such assemblies and building generative tools
to design them.
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CHAPTER 1

INTRODUCTION

Social, economical and ecological contexts
The 19th and 20th centuries saw two concomitant phenomena in the construction
sector. Labour legislation modifications and major improvements in health and
safety on the construction site led to an increase in the cost of labour. Simulta‑
neously, the rapid decrease of the prices of construction materials was made pos‑
sible both by the explosive economic growth, seen especially in western countries,
throughout the 20th century (which was enabled by cheap energy coming from the
burning of fossil fuels) and by the omission the environmental and life destruc‑
tion brought by the over‑consumption of natural resources in the calculation of the
price. In this context, it was, and still is, in the interest of construction companies
to standardize their products: they simplify the design of structures and eased the
assemblingprocess asmuchaspossible to shortenworkinghours and increasepro‑
ductivity, even if it implies consumingmore resources than necessary.

Yet this evolutionmaysoon reverseas theparenthesisof abundantenergy seems
to be closing. Helle Kristoffersen, the president of Strategy and Innovation at Total‑
Energies (the major French company in oil and gas) stated that by 2025 the world
will lack 10 million barrels of petrol per day [73], more than 10% of the current oil
production. By comparison, the second oil crisis in 1979 saw a reduction of 7% of
the oil production of the time. Yet contrary to the recovery that happened in the
eighties, forecasts on the future of oil production show that the peak is likely to be
reached in the 2020 decade, see FiGURE 1.1, mainly because of a depletion of the
stock, the low rate of discovery of profitable deposit, and because shale oil in the
US as yet to be proven cost‑effective ([8]).
Coal production is also entering a period of high uncertainty. While acknowledging
that thedata towhich theyhaveaccess is limited, poorlydetailed, andhard tocheck
[8], academic researchers agree that the peak of coal production in China will likely
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Figure 1.1| Left: forecast of the oil production of
countries supplying France, from [7].
Right: forecast of the coal production in
China, from [104].

be reached this decade, or at the latest in the 2030s, as shown in FiGURE 1.1. This
could havemajor various impacts, as was seen recently when coal prices rose up in
2021 (before the war in Ukraine): gas prices surged in Europe, power outages hap‑
pened in India [81], and the price of silicon, vital to make solar panels, has tripled
[82].
Natural gas (mostlymethane)production in theEuropeanUnion (EU)hasbeensteadily
declining for the past two decades, while its consumption increased [65] resulting
in varying degrees of dependence of the EU members on gas exporting countries.
This provoked social unrest in the aftermath of the Ukraine war due to a soaring
life price (which was already quite high with the disruptions of the supply chains
caused by the coronavirus pandemic). Even if the war had not happened, the in‑
exorable decline of domestic production due to stock depletion on the one hand
and on the other “an increase in demand due to the exit from coal and the inter‑
mittence of renewable energies will surely further aggravate the collapse of Europe’s
most energy‑intensive industrial activities”, [8]. At the time of this writing, inflation
in Europe led to a drastic reduction of production in some industries [19, 80].

Setting aside these economical and geopolitical considerations, climate imper‑
atives put even more pressure on fossil fuels. As the International Energy Agency
(IEA)urges to stop investments innew fossil fuel supplyprojects [76], a recent article
[110] estimates that for theworld to have aone‑out‑of‑two chanceof limiting global
warming to 1.5◦C , 58% of oil, 59% of fossil methane gas and 89% of coal should
stay in the ground by 2050 (taking as reference the reserves found in 2018). While
the description of the effects of climate change is not the focus of this manuscript
the reader is referred to, e.g., [60, 63] for a chilling description of the world we are
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on track to living in.

Whatmust be done
The main challenges facing all industries in the coming decades are two‑fold: en‑
ergetic sobriety on the one hand as fossil fuels are coming to an end, possibly faster
than expected, and with them so is the era of abundant energy and cheap mate‑
rials. On the other hand, there must be a massive decrease in the environmental
footprints of the products manufactured to avoid the worst of suffering due to cli‑
mate change, but also to preserve critical resources (sand, minerals, arable lands,
water, etc.) for the generations yet to come— or even ourselves in a few years.
While some governments loudly advertise green growth made possible by an en‑
ergy shift towards renewable sources it remains to be seen whether the Earth has
enoughmineral resources to carry out this task [102]. So far it seems, tome at least,
that we are just shifting from dependence on fossil fuels to dependence on fos‑
sil minerals, with high uncertainties on the stocks available (those that are known
are in the hands of even fewer countries than oil deposits, diminishing further the
sovereignty one could hope to have), and whose extraction exerts a heavy toll on
ecosystems. According to Dr Fatih Birol, the IEA executive director, “today, the data
shows a loomingmismatch between theworld’s strengthened climate ambitions and
the availability of critical minerals that are essential to realising those ambitions”.

Thus, like all industries, the construction sector must reduce the embodied en‑
ergy of the built environment, where the “embodied energy can be viewed as the
quantity of energy required to process, and supply to the construction site, the ma‑
terial under consideration” [49], but also reduce the various impacts on the geo‑
chemical and bio‑spheres it currently has (toxicity on humans, marine and terres‑
trial ecosystems, mineral resources used, water scarcity, climate change, land use
change, etc.). While one may rightly be dubious about high‑tech solutions in gen‑
eral as they are more energy intensive than low‑tech ones, and high‑tech construc‑
tion will certainly not solve all these problems, it may help in some cases, and the
numerical exploration of various alternatives of a given design may also put in ev‑
idence structures necessitating relatively few resources and with lower impacts on
the world1. DiXite project [25], which finances this work, was created to study the
role played by digital technologies in the construction industry. One of the main
issues the project tackles is how the future built environment can bemade sustain‑
able.

1That being said, the most ecological edifice is the non‑built one. A balance must be found between
planetary limits and human needs, desires and hubris.
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What did the Ancients do?
To answer this question we do not need to start from a blank page: instead, we
may leverage the 12 000 years of sustainable civilisations preceding us. Coarsely
speaking, our ancestors dealt with sustainable construction in twomanners:

■ Build‑to‑last:
Whether we look at the Egyptian or Maya civilisations, with their impressive
pyramids, or the ancient Greeks andRomanswith someof their edifices still in
a remarkable state of conservation ‑ ThePont duGard in France, the Pantheon
in Rome or the Parthenon in Athens ‑ several civilisationsmassively oversized
their buildings, for reasons ranging from religious zeal to beautiful aesthetics
to demonstration of political power, with the side effect of making them last
millennia. Evenmore day‑to‑day buildings can last centuries: it is not that un‑
common in Europe to live in a house built 500 years ago. These long‑lasting
buildings dilute their potential negative environmental impacts over their life‑
time.

■ Build‑to‑maintain:
Other civilisations took a complementary approach: they based their built en‑
vironmentondemountablewoodenstructures so thatdamagedorweakparts
can easily be replaced without taking down the entire building. By regular
maintenance, some Alpine chalets are still in use centuries after being built,
and in Japan, the inns Nishiyama Onsen Keiunkan and Hōshi Ryokan were re‑
spectively founded in705and718andhaveseencontinuousserviceever since2.
A low‑techbuilding inuse for1300years surelyqualifiesas sustainable. Japanese
mastered the art of demountable buildings, with in particular the Ise shrine,
see FiGURE 1.2: foundedaround690, this temple is to be rebuilt every 20 years.
The next rebuilding is scheduled for 2033. One can also think of Scandinavian
stave churches, some built in the 12th century and maintained to this day, or
Chinese structures erected a thousand years ago.

Thiswork explores the alliancebetweenmodernnumerical tools and the histor‑
ically proven approach of demountable structures. What explains the durability of
demountable structures? Aside from the ease of maintenance, many interrelated
factors play a role in this: according to Glahn who focused on Chinese architecture
in [37], the quality of the wood, the flexibility of the joints which dampens the os‑
cillations of the structure, and the fact that the columns merely rests on stone feet
instead of being anchored, which prevents excessive strain during an earthquake,
aswell as theweight of the roofwhich counterbalancewind loads during typhoons,
all explain the surviving of these structures for centuries. Aside from the strict dura‑
bility of these edifices, in our ever‑changing modern cities, demountable designs

2Operated by the same families for 52 and 46 generations!
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Figure 1.2| Top left: a view of the Hōshi Ryokan,
Japan, source: Wikipedia. Right: a pic‑
ture of the Ise shrine, Japan, source: the
Internet. Bottom left: a view of the inte‑
rior of the Torpo stave church inHalling‑
dal, Norway, source: the Internet. Bot‑
tom right: an exploded and assembled
view of a bracket‑arm set, typical ofme‑
dieval Chinese architecture, from [37].

are of interest as they enable to reuse of structural members. Indeed, today, at the
end of the lifetime of a building, assemblies are often destroyedwhich prevents the
reuse of structural components and has a significant impact on the planet: accord‑
ing to the French agency for the environment and energymanagement, ADEME [23]
the construction sector generated almost 70% of the waste in France in 2017. Con‑
versely, new construction materials have a severe environmental impact, up to 7%
of the emission of greenhouse gas in France in 2016 [67].

Yet, whenwe look at the wooden edifices built today, we see a profusion of irre‑
versible joints making the structure permanent, whether because of metal fasten‑
ers such as nails, screws, bolts and nuts, or because of the use of glue. In the United
States of America, 92% of the new residential buildings weremade of wood in 2021
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[100], mainly through a technique called platform framing which has extensive use
of nails. It is thus no wonder that the technical know‑how presiding the designs of
these demountable joints virtually disappeared in the last two centuries in wood
buildings despite their proven relevance. It turns out that historians precisely pin‑
point the shift from the design of demountable structures to the irreversible ones
that are common today, in the village of Chicago in the fall of 1832, with the inven‑
tion of the so‑called balloon frame.
Thewestwards expansion of the American people in the first half of the 19th century
resulted in the rapid growth of the villages inhabited by pioneers. In Chicago, the
population was multiplied by almost 12 in five years, from 30 inhabitants in 1829
to 350 in 1833 [91]. This sudden surge, or rather the associated demand for build‑
ings, provoked a shortage of the large timbers that were traditionally used in log
construction, which in any case could not have been worked with because there
were no skilled carpenters in Chicago at the time. Simultaneously the industriali‑
sation andmechanisation of nail factories drove their price down, from a historical
25 cents a pound to 5 cents a pound in 1833 [13]. Taking advantage of these cheap
machine‑cut nails, as well as of the abundance of small trees in the vicinity of the
village, a man named George Snow [35] in the need of a warehouse [91] invented
the balloon frame consisting of lumber of small dimensions permanently nailed to
each other, see FiGURE 1.3, which differs greatly from the larger sections needed to
carve traditional reversible assemblies. The termballoon framewas originally used
to ridicule a structure that was deemed too thin and light (compared to traditional
designs) to withstand loads. According to the New York engineer Francis W. Wood‑
wards, the balloon frame could “be put up for 40% less money than the mortice and
tenon frame” [114]. The further development of the nail and timber industries and
the fabrication of standardised pieces, as well as the absence of skills required to
build a balloon frame resulted in the adoption of this technique to build houses in
the treeless regions of the West: “the western prairies are dotted over with houses
which have been shipped there all made, and the various pieces numbered, so that
they could be put up complete, by any one” [40]. The invention of the balloon frame
“converted building in wood from a complicated craft, practiced by skilled labor, into
an industry” [35], and led to the disappearance of master carpenters which were
replaced by unskilled labourers. In the course of the 20th century, balloon framing
progressivelymadeway toplatform framing, easier and safer to erect andmore fire‑
proof.

Since balloon frames are thinner and use less material than their traditional
counterparts and given the availability of iron in the planet’s crust to make struc‑
tural steel with, the reader might rightly wonder why we should bother in finding
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Figure 1.3| Isometric view of a balloon frame.
From [114].

novel and complex assemblies when we could keep using balloon‑frame‑like ones.
As said above a decrease in the availability of energy is to be expected. According
to [95] the energy needed to process a cubemeter of steel is 42.9 MWh. By compar‑
ison, T. Gobin estimates the embodied energy of machined wood to be around 0.5
MWh/m3 [39]. If relatively little steel is needed tomake nails, its high embodied en‑
ergymaymake a steel‑based assembly less attractive than awood‑wood joint, also
called integral joints; thus, this embodied energy ratio of about 80 shows that care‑
ful calculations should be carried out when designing assemblies as to choose one
with the least embodied energy. The environmental footprints of assemblies were
recently investigated in depth in the doctoral thesis of K. Mam [58]. He states that
“the production of steel in assemblies can account for up to 61% of the total climate
change impact of a timber structure, almost all (97%) of the carcinogenic toxicity im‑
pact and 32% of the fine particle formation impact”. He concludes that “the idea
appears that the optimisation of the structure would not necessarily involve reduc‑
ing the volume of wood, but rather thinking about the manufacturing processes and
the types of assembly of the elements”. It seems therefore to be a good idea to try
and reduce the quantity of steel used in an assembly, which implies shifting back to
tradition‑inspired wood‑wood assemblies, precisely the focus of this manuscript.
The above remarks should be qualified: indeed a recent study [62] finds that, by
2100, if only half of the new urban dwellers live in timber buildings, forest plan‑
tations area should expand by 160%. If we consider instead 90% of new urban
dwellers in timber buildings, said area should triple! The authors specify that this
estimate is conservative as it does not take into account adverse effects of climate
change (e.g. mega‑fires and tree dieback) and the renovation or replacement of
already‑existing edifices. The ADEME estimates that by 2050 about 85% of the con‑
sumption of construction materials for housing and tertiary buildings will be con‑
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crete constituents (sand, gravels, cement) [79]. If timber buildings certainly has a
huge potential for carbon emissionmitigation [62], it does not seem to become the
main constructionmaterial of tomorrow andwill not suffice to answer the industry
demand. That is why in this dissertation we adopt a material‑agnostic stance: we
will not consider a specific material for our assemblies.

Intent of the dissertation
This dissertation investigates the automatic design of integral joints between parts
of an assembly. We aim at numerically finding novel assemblies, with surprising
geometrical features, that are relevant to the construction industry. The work pre‑
sented in this dissertation is still in its infancy: we focus almost exclusively on the
geometrical aspect of an assembly. While some work has been done to assess the
mechanical relevance of the generated assemblies, the fabricability aspect has not
been investigated at all. Thus, there is still a long way to go before having a stream‑
linedworkflow from the numerical finding of an assembly (studied here) to the dig‑
ital fabrication of mechanically relevant designs.

Organisation
This manuscript is organised as follows: CHAPTER 2 defines what we mean by as‑
semblies and presents some past assemblies revealing the skills of master carpen‑
ters. It is followed by a review of the work done in puzzle generation, assembly
planning and robotic fabrication, fields that are related to ours. The short CHAP‑
TER 3 is an in‑depth presentation of the knowledge the scientific community has on
assessing the interlocking of an assembly. While no new concepts are introduced
there, it is necessary to read it to understand this manuscript, as our whole ap‑
proach is to reverse‑engineer key principles presented there. CHAPTER 4 is the bulk
of this dissertation: we derive the mathematical equations that must be obeyed
by a 2D assembly whose kinematics are prescribed, adapt an optimisation algo‑
rithm to generate such an assembly and study in depth the mechanical properties
of its constitutive parts, aswell as the influence played by fabrication imperfections
on the kinematics of the assembly. Finally, in this chapter, we introduce what we
deem to be our most significant contribution, namely the robust optimisation of
assemblies with regard to imperfections. The last CHAPTER 5 simply extends the
concepts presented in the previous chapter to 3D assemblies. The main interest of
this chapter, in our opinion, lies in the thorough and detailed introduction of unit
dual quaternions, little‑known mathematical objects that perfectly describe a 3D
assembly kinematics.
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CHAPTER 2

SEQUENTIAL ASSEMBLIES

2.1 INTRODUCTION

This chapter aims to introduceanddefinewhat assemblies are, aswell as togive examplesof researchworks
and built structures.

2.1.1 OVERVIEW

This chapter naturally begins by defining the concept of assembly. We briefly present several kinds of as‑
semblies necessitating an intermediary body, typically a nail, to hold together before looking at the specific
kind of assembly that will be the focus of this manuscript, namely reversible interlocking assemblies held
together through the geometrical features of its constitutive parts.

2.1.2 CONTRIBUTION OF THIS CHAPTER

■ A (non‑exhaustive) catalogue of existing timber assemblies, spanning continents and ages, is pre‑
sented to reveal the richness and technical know‑how of past carpenters and to ponder on human
ingenuity when it comes to designing such non‑intuitive mechanical puzzles.

■ Anup‑to‑date reviewof the scientific literatureon the computational designof interlockingassemblies
is established.

2.2 DEFINITION

Amechanical assembly is the connection of different parts of an assembly or product. Assemblies are ubiq‑
uitous: whether it is the supporting structure of a house, the container and cap of a toothpaste tube, or a
robotic arm transferringmotion or applying force, everything from everyday objects to highly sophisticated
scientific machines is, ultimately, parts and pieces holding together.
Despite this huge variety, assemblies can be broadly classified into two categories: an assembly is either
direct or indirect. Each kind of assembly is also either reversible or non‑reversible,meaning that once in the
assembled state, it is possible, or not, to disassemble the assembly.

2.2.1 INDIRECT ASSEMBLIES

Indirect assemblies refer to assemblies where two parts are connected together through a third, intermedi‑
ary body. This body may be:
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■ Glue is used to bind parts together by adhesion. Several examples could be given: a windshield is
glued onto a car, parts of some home furniture are glued as well, and the mortar between two bricks
is a glue... More often than not such assemblies are non‑reversible.

■ A staple is a fastener, often metallic, used for joining material to‑
gether. Stapled elements are often quite thin, even though, in an‑
cient times it was not uncommon in masonry works to tighten two
stones using a metallic staple, see for instance the dovetail sta‑
ples from Pasargadae, Persia, on the inset on the right (source:
Wikipedia). This kind of assembly may be reversible, at the cost of
the destruction of the staple.

■ A key, sometimes called a wedge, is a small component that connects two parts in rotation. The as‑
sembly is reversible.

■ A nail is a fastener, oftenmetallic, used in construction andwoodworking to pin two parts together, by
friction in the axial direction and shear strength laterally. This kind of assembly may be reversible, at
the cost of the destruction of the nail.

■ A pin is a metal cylinder intended to be loaded in shear at relatively low forces. The connection is due
to the adhesion between the pin and the connected parts. When the connection of a shaft to a hub is
subject to high loads, a key is used instead. The assembly is reversible.

■ A rivet, usually a cylindricalmetallic rodwitha “head”atoneend, is apermanent fastener. It is typically
used to join metallic pieces, be it on a plane, a ship or a bridge structure. The assembly is reversible.

■ A fishplate is intended to immobilise several moving parts of a mechanical assembly (rails, members,
chords, etc.) or to stiffen and support a soft or flexible body (cheese, member, etc.). The assembly is
reversible.

■ A screw is a mechanical part, made of a threaded shaft and a head; intended to fix one or more parts
by pressure, several mechanical fasteners work in the same way: nut, bolt, stud, thread, tap etc. The
assembly is reversible.

2.2.2 DIRECT ASSEMBLIES

Anassembly is saiddirectwhen it doesnot require any intermediatebodies, the shapeof theparts in contact
is sufficient for its realization.

■ Welding, one of the most common techniques, is a non‑reversible joining process that ensures the
continuity of the material between the parts joined. It is done by heating the parts. The continuity
happens at the atomic level in the case of metal or molecular level in the case of plastics. Note that it
is alsopossible toweldwood: twopieces ofwoodare rubbedagainst eachother; thehigh temperature
resulting from the friction as well as the pressure applied on the wood softens the lignin and hemicel‑
lulose at the interface, [34]. Once softened, these polymers get entangled, and the pieces of wood are
welded together.

■ What seems to be the most intuitive direct assembly is the friction fit: parts with complementary
shapes are tightly held together by friction once they are pushed together. Following [107], as the
shapes are complementary, we define as integral joints the portion of each part in contact with adja‑
cent parts. Assemblies with integral joints that may optionally hold through friction will be the focus
of this manuscript. In a friction fit assembly, parts may be forced together by hand or using a hammer
or a press. Lego bricks are a typical example of such a fit. When the structural integrity of the parts
is required and it is therefore desirable not to hammer them against each other, they may be joined
using a shrink fit. Depending on the friction force, this kind of assemblymay not always be reversible.
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■

Figure 2.1| A rivet is heated, and inserted in
the parts before its end is ham‑
mered. Renovations of the Grand
Palais, Paris, France. Source: [1].

A shrink fit aims at joining metallic parts by changing
their relative size after assembling using thermal expan‑
sion. One part is heated and thus expands, making it
possible to fit the other part, at room temperature, with‑
out using toomuch force. Once the first part cools down
it shrinks (hence the name of the fit) and tightly holds
the second part. It is a non‑reversible assembly. As a
side, yet quite interesting, note, the metal structure of
theGrandPalais inParis, France, (1897‑1899)was assem‑
bled by shrink fit, using rivets (hence it qualifies as an in‑
direct assembly): three workers would work together around one rivet; the first heated the rivet to
a blank, while the other two hammered each end (which had become soft due to the heat) to round
them and thus wedge the rivet between the parts to be joined [54]. Once cooled, the rivet shrinks and
presses the two parts together.

■ Clinching is a method to join thin sheets of metal in a non‑reversible manner: a tool presses several
sheets together until they are plastically deformed and tightly interlocked.

■ Snap‑fit aims at attaching flexible parts. One of the two parts, the male part, is elastically deformed
during the introduction into the more rigid female part. Once assembled, the male part has room
to return to its original shape and is blocked by the female part. Such process may be reversible, for
instance the snap‑fit buttons of somecoats and jackets or the capof somepens, or non‑reversible such
aswhat can be seen on somemobile phoneswhere unscrupulousmanufacturersmake sure that once
assembled, the product cannot be disassembled and thus, when a component is defective it cannot
be replaced and the whole phonemust be thrown away and bought anew.

2.3 REVIEW

As hinted in the previous section, this manuscript studies exclusively the automatic design of reversible in‑
tegral joint assemblies. Historically, several civilisations used such shape‑fitting assemblies in their timber
constructions, be it in the Alps, Scandinavia or Japan. Centuries of human ingenuity and trial and error
gave joints that take into account the shrinkage of the wood as well as naturally balance shear, compres‑
sion, bending and torsion. Also, as they are reversible, the design of such assemblies is an active research
topic in the construction sector as they enable the reuse of structural members and as such help reduce the
amount of new material that must be extracted and stir the industry towards a more circular economy. As
remarkable examples of durability, consider the Japanese inns Nishiyama Onsen Keiunkan built in 705 or
Hōshi Ryokan founded in 718: they have been in used for more than 1300 years and are fully dismountable.
As such, whenever a part has decayed it can simply be replaced by a new one. As for the reusing, the Ise
shrine, in Japan, has continuously been rebuilt every 20 years for more than 1300 years, while reusing as
much as possible the parts from one instance to the other ([118]).

2.3.1 BUILT TIMBER ASSEMBLIES

It would be impossible to give an exhaustive list of past and existing timber assemblies. Indeed, as any car‑
penter would know, [118], wood is a capricious material that has a life of its own. Whether it is the overall
shape of the piece of wood, the orientation of the grain, its density or the presence of bulks, no two pieces
are alike. As such, the skilled carpenter adapts the geometry of the joint he/she aims to build to the nature
of the wood at hand and the geometry of the structure surrounding the joint. That being said, a classifica‑
tion of wood joints is not totally out of reach, and some authors did try to list the most common ones [43,
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77, 101, 118]. While Klaus Zwerger in [118] compares wood joints in Europe and Asia in a rather literary style
and provides numerous pictures of built assemblies in these continents, Torashichi andMatsui in [101] have
a more engineering approach as they provide a short description and pictures of toy assemblies, detailed
diagrams if onewants to try to fabricate some, aswell as, quite interestingly,mechanical test results to com‑
pare the geometrical resistance and failure modes of similar joints. They also provide, for some joints, the
algorithmandgeometrical formulae one should follow to carve them. In a similar spirit, Sato andNakahara,
[43] describe at length (and it resonateswith someparagraphs of [118]) the tools needed to build traditional
Japanese joinery, as well as the posture one should adopt on its workbench for each tool, before giving de‑
tailed and illustrated instructions on how to build such assemblies. They also provide a thorough chapter
on where in a building should a given joint be used. Hereafter the enumeration of traditional timber joints
is mainly inspired from [118] and [101], as well as the online dictionary [74].

Let us first begin with splice joints, aimed at joining structural members end‑to‑end. Numerous joints
can be categorised as such, and are presented FiGURE 2.2. On the right of each joint, the cone of transla‑
tional freedom of the blue part is depicted in blue: it means that the blue part may be disassembled from
the black part by translating along any vector whose tip is on the blue cap. The simplest joint of all is the
butt‑joint, FiGURE 2.2a. It consists of two pieces of wood laid together without any real interlocking. The
edge‑halved scarf FiGURE 2.2b is also quite basic. It admits two variations obtained by rotating negatively,
FiGURE 2.2c, and positively, FiGURE 2.2d, the cut line parallel to the grain of the wood. Note that contrary to
FiGURE 2.2c, FiGURE 2.2dmay withstand a limited amount of tension. A first kind of tenon joint is presented
on FiGURE 2.2e: themortise is open and the assemblymay be (dis) assembled along planar translation only.
This joint may withstand a small amount of tension if the tenon is inserted by force in the mortise, thus
creating friction at the two interfaces parallel to the grain of the wood. Otherwise, the assembly may eas‑
ily be pulled apart. FiGURE 2.2f presents a very common type of tenon joint, the stepped dovetailed splice
(koshikake aritsugi in Japanese), to be used when the pieces of wood have to withstand both tension and
compression. [101] specifies that the timber sections typically range between 105 and 120 mm. Special
attention must be taken by the carpenter regarding the angle of the cheek of the dovetail: too small and
the assembly could be still disassembled by tension. Too large and the shearing capacity of the joint would
decrease. Torashichi and Matsui conducted a tensile test in [101]: the female part developed a crack along
the grain of the wood, thus failing. Note that such dovetail joint and the edge‑halved scarf (FiGURE 2.2b)
were frequently combined to make the joint suitable for unsupported compressive loads ([118]). Used on
larger timber pieces than the dovetail joint (150 to 200m), the stepped gooseneck splice (koshikake kamat‑
sugi) was quite common in Japan, much less in Europe. A tensile test conducted on similar pieces of wood
by [101] shows that the gooseneck joint has a stiffness about 7 times greater1 than the dovetail joint and
fails for a load 5 times greater. Two failure modes were observed at the head of the gooseneck: crushing
of the wood on one side on the male part, and shearing on the other side on the female part. To prevent
out‑of‑plane buckling and themale part slipping out of the female part, abutments could be added on both
sides of the gooseneck, FiGURE 2.2h. For sections greater than 200mm that had to withstand tension forces,
the rabbeted oblique scarf splice (okkake daisen tsugi), FiGURE 2.2i, is themost indicated. The two parts are
identical. Additionally, to prevent lateral motions, two pins, depicted in red, could be inserted in mortises
carved in the adhesion planes. While the pins are inserted, the blue part cannot be disassembled. The same
tensile test shows a stiffness about 10 times greater and amaximal load 8.3 times greater thanwhatwas ob‑
servedon thedovetail joint. A failureoccurred through shearing throughoneof theadhesionplanes. A close
cousin is themortised rabbeted oblique splice (kanawa tsugi) on FiGURE 2.2j. Parts must be assembled first
vertically, then they must slide longitudinally onto each other to create room to insert a single draw pin, in
red. Lateral motions are blocked by the abutments. According to [101], for the same tensile test, the ulti‑

1Stiffness ratios were eyeballed from graphs in the book.
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Figure 2.2| Several common splice joints and the possible translational disas‑
sembly kinematics represented on the sphere.
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mate load is the same as for the previous joint. However, the nonlinear behaviour of this joint is much less
stiff than the previous one. Two other joints, suitable to carry tension forces are depicted FiGURE 2.2k,l: the
halved and tabled joint and its abutted version respectively.

Tenon joints are also a very large group. The oldest example known so far of a tenon and mortise joint
dates back to 6000‑4000 BC and was found in ancient water well in Germany [98]. Examples of such joints
werealreadygiven FiGURE2.2e,f,g,h, but the list goeson. Theyareused toassemblewoodpieces end‑to‑end
aswell as orthogonally, FiGURE 2.3a. Among the significant joints, onemay cite themost common one, be it
in Japan or Europe FiGURE 2.3b. In the case of two orthogonal pieces of wood, the mortise may be open so
that the tenon goes completely through it. In such a case, a pinmay be inserted in the tenon to prevent dis‑
assembly. Otherwise, such joints are not suitable to carry tensile forces and, consequently, are sometimes
combinedwith other joints (or fasteners) to prevent accidental disassembly. FiGURE 2.3c presents the cross‑
shaped tenon andmortise splice (juji mechiire), effective against torsion, [101], but having the inconvenient
of showing a jagged line across all faces. A more aesthetic option is given FiGURE 2.3d (kaneori mechiire),
where two faces out of four reveal a straight line. On FiGURE 2.3e (kakushi mechiire), only one face shows a
jagged line. Note that this is the only joint in this figure where the disassemblingmotions are not restricted
to the longitudinal axis. Finally, a technically difficult but aesthetically pleasing 2.3f (hako mechiire) shows
only a straight line on all four faces of the assembly.

a b c

d e f

Figure 2.3| Several common tenon and mortise joints. Depending on the ge‑
ometry of the joint, the seambetween the two partsmay be visible
on a varying number of faces. After [101, 118].

If a mortise and tenon joint is employed to join pieces of wood edge‑to‑edge, i.e. is the direction of
the grain, it would be referred to as tongue‑and‑groove, to assemble floor planks or mural panels, FiGURE
2.4b (honzanehagi). Hardwood should be used. According to [118], such assembly is not very stable and
should be nailed to a supporting frame. To qualify this statement, such boards were used as mural panels
in some stave churches in Scandinavia and stood the test of time. The simplest of such an edge‑to‑edge
joint is the butted boards (imohagi), see FiGURE 2.4a, which does not constitute a proper assembly. A very
stable edge‑to‑edge assembly is presented FiGURE 2.4c: a dovetailed plank is inserted in a corresponding
groove orthogonal to the direction of the butted planks. It joins them into one unified surface, particularly
fitted for flooring. The V‑groove joint of 2.4d (hibukurahagi) is not strong enough for flooring but works
well for panelling. Similarly the rabbeted joint 2.4e (chigaihagi) was good for paneling and exterior siding.
It could also replace the abutted boards of the dovetail joint 2.4c ([118]). Finally, the spline joint of 2.4f
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Figure 2.4| Some floor and panel joints, after [74, 101, 118].

(yatoizanehagi) should be made of hardwood and inserted into a groove cut in the sides of planks made of
softwood.

A particularly interesting category of splices that were quite common in Japan but virtually unknown in
Europe [118] were the family of the edge‑and‑faces‑halved scarf, also called rabbeted oblique scarf splice
in [101]. They were decorative splices with no particular structural application. Contrary to the joints pre‑
sented FiGURE 2.2 which could be used both horizontally and vertically, the oblique scarf splices could only
be used horizontally. The length of the inclined plane of the halved rabbeted oblique scarf splice, shown on
FiGURE 2.5a (isuka tsugi), should lie between once and twice the side of the cross‑section. The shorter the
more structurally able ([101]). To this design could be added abutments and/or a key to prevent disassem‑
bly, as depicted 2.5b. Note that if the key is added, as depicted in red in the figure, it does not reach through
the lower surface. It was used where the outer appearance of the joint was of no concern, typically the
dormitories of temples’ monks, [74]. The elegant quadruple‑faced halved rabbet oblique scarf splice, 2.5c,
requires sophisticated craftsmanship to complete it. A variant, also technically difficult to manufacture, is
the triple‑faced halved rabbeted oblique scarf splice (here with a key) on FiGURE 2.5d.

a b

c d

Figure 2.5| Decorative oblique splices, after [101, 118].

Several other joints destined to finishing material are listed by [101] and [43] and are presented on FiG‑
URE 2.6. The housed rabbeted oblique scarf splice 2.6a (kakushi kanawa) produces a clean straight line on
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Figure 2.6| Decorative oblique splices. The geometry of the joint leads to vari‑
ous seamson the visible faces of the parts. After [101]. The saotsugi
illustration (e) is adapted from [43].

what should be the two visible faces (these two faces are not shown in the figure). Its close cousin is the
blind tenon and mortise 2.6b (hako daimochi). The blind pin 2.6c (hako sen) has the particularity of having
two keys. It is said to be cumbersome to carve [101]. The pole tenon 2.6d (saotsugi) is used on exposed
ceiling elements. Compared to a dovetail or a gooseneck joint (FiGURE 2.2f,g,h) the assembling motion of
the two pieces is longitudinal and only the keys are to be slid down vertically. Such a joint is necessary to
assemble elements crossing a post, (which blocks any vertical motion and thus forbids the use of the dove‑
tail or gooseneck joints), as illustrated 2.6e.

Crossed right‑angle joints were used to connect two horizontal orthogonal members of a roof or floor
structure, seeFiGURE2.7. These jointsare simpleenoughso that theycaneasilybeadapted tonon‑orthogonal
beams. The simplest of such joints, the stop dadoed crossed lap joint of 2.7a (watari kaki) consists simply
of a notched beam inserted on top of another. A slightly more complex version consists in hollowing partly
the other beam so it also has a notch, 2.7b, (watari ago). An elegant way to connect two beams so that the
whole assembly is of constant height is to use a cross‑lap joint 2.7c (ai kaki) where each beam is hollowed at
half its depth. FiGURE 2.7d depicts an original joint (tasuki kake watari ago) where two opposing quadrants
of a cross are hollowed out.

To assemble a column with ties, groundsills, girders etc. so‑called connecting joints are used, FiGURE
2.8. The suitsuki sashi shikuchi of 2.8a consists of a tenon and a dovetail groove in which the horizontal part
slides during (dis)assembly. The housed dovetail joint 2.8b (okuri ari) was frequently used on hanging posts
([101]). The dovetail is inserted in the largest opening before being slid to the narrower complementary
hole. A plug (not represented in the figure) can be pounded in the larger hole to prevent easy disassem‑
bly. FiGURE 2.8c depicts the sumiyoshi double tenon, named after one of the coauthor of [101]. Despite the
easiness of assembly, as the tenon simply slides diagonally until reaching its final position, this joint seems
to be cumbersome to fabricate. FiGURE 2.8d shows a wedging joint (wari kusabi), an original joint aimed
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a b dc

Figure 2.7| Crossed right angle joints. By tuning the depth of the hollowing the
assembly reaches various heights. After [43].

at creating a non‑reversible2 assembly. Two small notches (blue) are cut on an otherwise standard tenon.
Once inserted in the mortise and in the final position, two wedges (red) are pounded inside the notches,
which has the effect of splitting the tenon open and locking it, by friction, on the side of themortise. A blind
version jigoku hozo, i.e. a version where the tenon does not reach through the full depth of the other beam,
is shown 2.8e. There the tenon beam is pounded on its back side until the tenon is split. The half dovetail
joint 2.8f (katasage ari) connects a tie to a column. The dovetail is inserted by sliding its upper face (the non‑
inclined plane) on the top of themortise hole. Once fully in, it is slid downwards until the small abutment at
the start of the dovetail, lower face, fits in the corresponding hole in the column. This opens a rectangular
hole on top of the joint. Finally, a plug is driven in this hole to prevent accidental disassembly. The same
process happens for the nimai kama tsugi 2.8g: the mortise hole is made taller than the extent of the two
horizontal beams to leave enough room to slide one over the other. Once the end sides of the beams are
touching each other, the upper beam is slid downwards and two wedges are symmetrically pounded in the
hole to lock the assembly. FiGURE 2.8h shows how several joints are used together to create a sophisticated
assembly connecting three beams to a column. The shortermale piece, a simple tenonwith a hole for a pin,
is inserted in the column and locked in place thanks to a transversal draw pint. The two other parts, long
male and female pieces, are simply a pole tenon (saotsugi) whose working is presented FiGURE 2.6d,e with
the addition of a transversal pin to further prevent any disassembling motion. When seen from below, this
assembly seems seamless.

Let us finish this overview of built timber assemblies by the column splices FiGURE 2.9 (for illustrative
convenience, the assembled columns are shown lying on their sides). Suitable for large sections of wood,
these joints were used at the base of gates, shrines or belfry posts, [74]. Hardwood should be used, [101].
The first of such joints are the four faces dovetail splices (shiouhari) where two dovetail joints (see FiGURE
2.2f) are carved on two adjacent faces of the post and then extruded diagonally to the other two faces. As
such, the joint has the particularity of showing a dovetail on each of its four faces. Its close cousin, the four
faces gooseneck joint 2.9b, is better able towithstand tensile forces, butmuch harder tomanufacture. Both
of the joints should be assembled diagonally, in the direction of the extrusion. FiGURE 2.9c shows a splice
that has only been found at the Otemon gate of Osaka castle. Contrary to the previous two joints, it should
be assembled in a diagonal‑downwards direction. While the blind splice, shown on 2.9d (hako tsugi), is
said to be inferior in strength to the rabbeted oblique scarf splice (see FiGURE 2.2i, [101]), this joint has the
advantage of being seamless, as the jointing lines are on the edge of the section, thus making it attractive
when aesthetics is required. The last joint of this series is the clam‑shaped splice (kai no guchi) which is to
be assembled vertically (which is inconvenient for underpinning) and is, in a sense, similar to the tasuki kake
watari ago shown on FiGURE 2.7d. Two opposite quadrants of a cross are hollowed, and the extremities of

2That cannot be disassembled.

25



Sequential Assemblies

each quadrant exhibit a tenon‑and‑mortise pattern. This joint was used for prominent elements, [101].

a b c

d e f

g h

Figure 2.8| Connecting joints. When notches are shown (in blue, d) and e)) the
wedges (in red) make the assembly permanent. After [101].

a b c d e

Figure 2.9| Some column splices. Of large section these assemblies were used
on prominent columns. After [101].
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a b c

Figure 2.10| Three kinds of integral joints. a) ‑ planar contact joints; b) ‑ curved
contact joints; c) ‑ traditional (here tenon andmortise) joints. The
blue cones on the bottom row depict the cone of translational
freedom of the corresponding blue part. Blue arrows represent
several valid directions of translation to disassemble the parts.
Adapted from [107].

This brief overview shows us the extent, in form and function, a skilled carpenter might reach when
building complex joints. As we have just seen, this set is very rich but is ultimately limited by the manu‑
facturing tools: saws and chisels can only cut straight edges. Thus, traditional joinery leaves unexplored a
large range of design options. With modern digital fabrication technologies, such as CNC milling, robotic
manipulation, laser cutting and additivemanufacturing, the space ofmanufacturable assemblies getmuch
broader. The will to explore this space has pushed numerous researchers to investigate various computa‑
tional approaches to design interlocking puzzles as well as robotic assemblies. SECTiON 2.3.2 presents a
review of the scientific literature on this subject.

2.3.2 COMPUTATIONAL DESIGN OF INTERLOCKING ASSEMBLY

2.3.2.1 Designing interlocking assemblies
Interlocking assemblies are defined by Song et al. in [89] as an assembly of rigid parts such that only one of
them, the key, is movable while any other part or subset of parts are immobilised relative to one another.
The literature on the subject is rich with, for instance, [117] who designed furniture joinery and study the
stability of the structure, [53] who introduces a remarkable software to design wood joints with a special
focus on fabricability, or [105] who builds a framework aimed at generating novel assemblies and presents
examples of voxelised puzzles. These approaches can be categorised into two families: they are catalogue‑
based, meaning that possible joints are predefined in some catalogue (or similarly that the user is supposed
to already have some knowledge of the geometry of the joint) or voxel‑based which limits the space of ac‑
cessible shapes for a given voxel resolution.

Catalogue‑based designs:
As recalled by [107], there mainly are three kinds of integral joints3, shown on FiGURE 2.10, and numer‑
ous the authors who derived assemblies whose joints are of one of these types. The simplest of all, planar
contact joint 2.10a, is typically used inmasonrymodelling, be it to procedurally model historically‑inspired
buildings [111] stable under self‑weight (see FiGURE 2.11a), puzzles [29] 2.11b or, a rather rich field of re‑
search, to design topological interlocking assemblies. In [28] Estrin and coauthors define “a topological

3Joints created by the complementary shapes of parts in contact.
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Figure 2.11| Assemblies joined through planar contact. a)‑ masonry mod‑
elling, from [111]. b) ‑ stable puzzle, from [29]. c) ‑ a drawing of
an Abeille’s vault, from [32]. d) and e) ‑ topologically interlocked
structures, respectively from [56] and [108].

interlocking is a design principle by which elements (blocks) of special shape are arranged in such a way that
thewhole structure can be held together by a global peripheral constraint, while locally the elements are kept
in place by kinematic constraints imposed through the shape and mutual arrangement of the elements”. To
the best of our knowledge, the first recorded example of such assembly is Abeille’s flat vault, [32] 2.11c,
patented in 1699, which consists in the geometric arrangement of a single repeated truncated tetrahedron.
Two faces of the block are supported by two adjacent blocks while two others faces carry two neighbouring
blocks. The structure assumes a fixed surrounding frame. This geometrical finding was further extended
in numerous works, with for instance [56] (2.11d) or [108] (2.11e) who, by slightly modifying the geometry
of each convex part, find a stable (under gravity) topologically interlocked design approaching a free‑form
goal surface. In [109], Weizmann and coauthors study the mechanical behaviour of floors made of vari‑
ous types of topological interlocked blocks. They found that it led to an increase in material consumption
compared to more traditional flooring techniques and finish their article by applying topology optimisa‑
tion on a block already possessing the interlocking qualities in order to reduce its mass. Wang et al. [108]
also developed an optimisation scheme, but this time to make a topological interlocking structure stable
under a given amount of lateral loading. The mechanical behaviour of such Abeille’s type bound has also
been studied extensively in for instance [17] and, in a nutshell, the results are that in addition to the ease
of (dis)assembling such structures, they exhibit large energy absorption capacity, high resistance to crack
propagation and tolerance to local failures [28].

The second class of integral joint is the curved contact, shown on FiGURE 2.10b. Quite interestingly, ac‑
cording to J. Gallon in [33], father S. Truchet was dissatisfied with the inverted‑pyramidal hole left in the
extrados of Abeille’s surface (see FiGURE 2.11c). As a consequence, he developed right after Abeille a non‑
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Figure 2.12| Assemblies joined through curved contact. a) ‑ Non‑convex
Abeille’s vault, from [33]. b) ‑ osteomorphic blocks from [27]. c)
and d) 3D tile components, respectively from [94] and [5].

convex element so that both the intrados and extrados of the surface would be filled, see FiGURE 2.12a. The
principle stays the same: a repeated element carries two neighbours and is supported by two others. Exten‑
sion to this work were made in [27] with the so‑called osteomorphic block (2.12b), in [28] or recently in [4].
Themechanics of curved topological interlocking assemblies are studied in [26]. In a different spirit, curved
assemblies are also used to tile 3D‑space with Delaunay lofts [94], 2.12c, or bi‑axial generalised Abeille’s
tiles [5], 2.12d. Wang et al. built a tool in [106] aimed at creating curved cone joints between user‑given
parts. Their work is hybrid: while a joint is always modelled by a cubic spline (or a discretised counterpart)
and thus their method qualifies as catalogue‑based, the specific shape of each joint is optimised, taking
into account the geometrical features of the other parts and some stabilitymeasure, thusmaking each joint
different from the others.

The third and last kind of integral joints listed in the survey [107] are conventional, or traditional, joints.
Significant work has beenmade to automatically generate assemblies made of parts chosen in a catalogue
of such conventional joints: several authors [20, 44, 87], investigated the creation of 3d assemblies made
of planar pieces that are laser cut. The joint is always a notch in at least one of the two parts in contact.
Testuz and coauthors [99] build hollow 3D shapes using a finite set of Lego bricks, which are mortise and
tenon. Lo et al. [55] create 3D puzzles by meshing a given surface using quads, extruding them to give the
puzzle some depth and merging adjacent quads to create polynomios (Tetris‑like shapes). Careful consid‑
eration of themotion space for each polynomio gives an assembly direction and thus the orientation of the
tenons andmortises assembling two parts. Xin et al., [115], explore the partitioning of 3D shapes into a set
of 6‑parts burr puzzles, consisting of notched sticks, much like what is shown on FiGURE 2.7a and c; Fu and
coauthors [30] developed amethod aimed at creating global interlocking furniture assembly from amodel
of orthogonally intersecting 3D shapes and generated the joints froma lookup table containing, among oth‑
ers, different kind of dovetails and mortise and tenon joints. In a different spirit, Luo et al., [57], partition a
3D shape into printable parts and assembles them throughmortise and tenon kind of joints and Yang et al.
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[116] present amaterial‑aware algorithm tomodify the overall shape of a structure but connects parts with
mortise and tenon joints.

The interested reader is referred to the survey [107], which thoroughly reviews the literature on sev‑
eral aspects, unexplored in this manuscript, regarding assemblies with rigid parts: structural stability of an
assembly, packing efficiency, fabrication aware assembly (3d printing, CNC machining), or reconfigurable
assemblies.

Voxel‑based designs:
Most of the othermethods available in the literature to generate interlocking puzzles are voxel‑basedwhich
restrict the assemblingmotions to the three canonical orthogonal directionsofR3: [89] focuseson recursive
interlocking puzzles where at each step of the assembly sliding sequences of 3 parts are tightly interlocked.
Thus only one assembling sequence is possible. This workwas later refined in [90] who carefully subdivides
an inputmesh into a set of voxelised parts such that everyK ≥ 3 parts are tightly interlocked, FiGURE 2.13a.

Yao et al. [117] implemented a tool that asks the user for the exterior appearance of the joints between
structural components and automatically computes the internal solid geometry needed to connect and as‑
semble the parts. Remarkably they were able to rediscover many traditional Japanese joints with intricate
geometry. Themain drawback of their approach is that the assemblingmotions are restricted to a set of 26
directions of translation in 3D (8 in 2D).

A compelling study has recently beenmade by the authors of [53]: their work about the design of wood
joints is bothvoxel‑basedandcatalogue‑based (but supports adaptation tonon‑orthogonal andnon‑square
jointsby linearly deforming thegridof voxels) andprimarily focuseson interactionwith thehumanuser, fab‑
rication andmechanical relevance. An example of a built joint obtained through their method is presented
on FiGURE 2.13b.

Aharoni et al. wrote an elegant paper [3] that does not fit in any of the above categories. They generate
multi‑part interlocking assemblies through a density‑based topology optimisation scheme taking into ac‑
countboth theassembling (whichmustbeas easyaspossible) and the interlock level (as highaspossible). A
prominent feature of theirwork is the fact that the structural behaviour of the parts is considered andguides
the optimisation. The main drawback is that the user must specify in advance which parts are in contact,
and what motion should each part block with respect to its neighbours. As such it is a tool for optimisation
rather than exploration, more suitable in later design phases. We shall focus on an earlier stage, where the
user inputs less information and thus enjoy a greater design freedom, but where no structural optimisation
is performed.

2.3.2.2 Disassembly planning
Assemblyplanning (or its pendantdisassemblyplanning) refers to theproblemof findinga sequence to fully
(dis)assemble the parts constituting an assemblage, [48]. Several methods were developed and are thor‑
oughly reviewed by [52], [107]. An interesting approach, on which we put an emphasis, was first proposed
in [113]: given an assembly made of various parts, the authors introduced the concept of Non Directional
Blocking Graph (NDBG) to encode blocking relations between the parts in directed graphs. By analysing
these graphs the authors are able to find, for each step of the (dis)assembly process, which set of parts to
move andwhatmotion to follow to perform the task. While themethodworks theoretically both for transla‑
tion and rotation, in practice they implemented an algorithm that “considers all pure translations plus some
suggested generalised motions” without adding more details. Their method, for translation only, was later
improved in [85] which makes further use of local contact information between parts.

Wang and coauthors in [105] were the first to leverage the kind of graph analysis introduced in [113] to
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Figure 2.13| Voxel‑based assemblies. a)‑ 3D printed pieces forming an inter‑
locked vase‑like puzzle, from [90]. b) ‑ Complex joint obtained by
[53]. c) ‑ 3D puzzles automatically generated by [105].

automatically generate voxel‑based interlocking assemblies. They designed an efficient puzzle generator
that can be assembled along orthogonal translations. Even though they restrict themselves to voxelised
structures, the authors fully explore the accessible design space and successfully manage to generate glob‑
ally interlocking pieceswithoutmuch computational effort, see FiGURE 2.13c. Their work serves as the basis
of ours.

2.3.3 ROBOTIC ASSEMBLY

Among many possible solutions, a route worth exploring to assemble in practice the assemblies involves
robots helping skilled humanworkers to assemble reversible structures. Several national and international
initiatives are already undertaken in this direction, DFab at ETHZurich, the Cluster of Excellence in Stuttgart,
and the DiXite project in France, of which this thesis is a part.
In an environmental stance akin to ours Kunic and colleagues [51] developed a set of 13 timber elements
that can be assembled pairwise in numerous ways; the discrete design space has a size combinatorial in
the number of base elements, similar to a Lego kit. In a seamless workflow, a stress‑optimised structure
is assembled by a robotic arm working collaboratively with a human through reversible bolts and nuts as‑
semblies. The human is made necessary by the build‑up of errors and tolerances along the construction of
the structure. Individual elements can therefore be extracted at the end of the lifetime of the structure, and
their versatilitymakes them suitable for being assembled in a different geometry. Apolinarska et al. further
automatised the assembly process in [6]. They used reinforcement learning to have a robot learn to assem‑
ble beams through integral lap joints subjected to tolerance, by leveraging contact information between
the parts, see FiGURE 2.15a. In their book [12] (chapter 6) Bock and Linner argue that tolerances and accu‑
racy are of major importance in robotic fabrication give guidelines to improve the construction design: the
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overall number of joints should be low, the joining mechanism should be simple (riveting instead of screw‑
ing for instance), and the joining system should be standardized. They also introduce the idea of compliant
design to help for the self‑adjustment and self‑fixation of the parts of the assembly, see FiGURE 2.14, where
the edges of the separating surfaces between the parts are bevelled so that when assembling, any error on
the locations of the parts can be corrected by sliding. In this context of toleranced assembly, the geometri‑
cal features of the parts guide the assembling agent. In the course of this work (SECTiON 4.3.4) special care
is taken to robustly optimise the assemblies generated through our method to ease the (dis)assembling
process.

Figure 2.14| Compliant design: mechanisms for self‑adjustment and self‑
fixation can be built into components. Source (caption and im‑
age): [12]

On the subject of robot‑based timber assembly, Helm et al. [42] carefully designed a workflow to lever‑
age the flexibility and capacity for precisemanipulationof a robotic arm to create an intricate truss structure
where beams are glued onto each other. On integral joints, Robeller and Weinand [83] designed a pavilion
with folded geometry by assembling timber plates edge‑to‑edge through CNC‑milled dovetail joints. Mesnil
et al. in [61] present a computation and fabricationworkflow of a shell‑nexorade hybrid. The highmanufac‑
turing complexities of the jointsmade it necessary to use synchronously two robots forming a 6‑axismilling
machine.

The use of cooperative robots has also been extended to build non‑planar structures. In [70] Parascho
and coauthors used two robotic arms to sequentially built a structure made of triangulated discrete steel
tubes. The robots switch their roles iteratively, alternating between a placing and supporting role: the first
robot manipulates a steel tube to its position in the structure, maintains it while a human welds it to other
tubes, and then acts as temporary support to hold the unstable structure. The second robot then becomes
themanipulator of another tube before becoming in turn the support, which frees the first robot to go back
to being a manipulator. This alternate process goes on until the completion of the structure. A prominent
challengewith this approach lies in the fact that the robotsmust be carefully coordinated to avoid collisions.
Yet, aside from making scaffolding obsolete, this method has the great advantage of increasing the space
of topologically and geometrically feasible structures, compared to using only one robot. This process was
later refined in [71, 72] where a masonry vault is built in tandem by two brick‑laying robots: first, a central
arch is built byboth robots, and theneach completes half of the structure. On topof the cooperationneeded
to address such a challenge, this research also used the full payload capacity of the robots, for them to
support the self‑weight of the bricks, see FiGURE 2.15c and d. Yet there are two problems with this method:
when supporting a brick of the central arch out‑of‑planemotions arise due to an offset support point, which
forbids the scalability of thismethod to larger structures. To circumvent this issue, the authors had the idea
to use amortar (epoxy) between the bricks, so that a few consecutive bricks could support their self‑weight
in tension, letting the supporting robot only grip the bricks in the line of thrust of the arch, which prevents
bendingmoments. Yet again, thismethod is not scalable for larger structures due to the timeneeded for the
mortar to take, so the researchers envisioned adding a third robot to the process. An optimisation program
is executed at each step to select the brick that should be gripped by the third robot to optimise various
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Figure 2.15| a) ‑ Through reinforcement learning, a robot learned to join
beams, from [6]. b) ‑ Creative robots dynamically build a discrete‑
sphere structure, from [18]. c) and d) ‑ Cooperative robots build a
masonry vault, from [72].

construction‑related metrics. Again, the three robots alternatively switch roles. Finally, on the subject of
human‑robot cooperation, an exciting paper [18] was recently written by Bruun and coauthors. From the
observation that in the aforementioned papers (and others) robots are always used as performers following
a predefined execution plan but never as designers, the authors proposed an original design process where
a duo of robots and a human operator communicate on the design while it is being constructed, allowing
it to change dynamically during the erection process; neither the robots nor the human know in advance
the structure. In concrete terms, a discrete sphere structure is incrementally built by two robots in tandem
along the aforementioned process support‑then‑place, see FiGURE 2.15b. At each step, the location of a new
sphere is randomly decided. If the placing robot evaluates it to be reachable, the location is then proposed
to the human who validates it based on arbitrary criteria (aesthetics for instance). The central place the
authors give to randomness ensures that the geometrical and topological spaces are thoroughly searched,
which is also somethingwe put an emphasis on in our work. The evaluationmade by the robot reduces this
broad space to the smaller feasible one, while the evaluationmade by the human further bias this space to
the desirable one.

2.4 PROBLEM STATEMENT

Generating interlocking assemblies is a difficult geometric challenge ([89]) and the methods reviewed in
the literature attempt to simplify the problem bymaking strong assumptions on the shape of the assembly
and the (dis)assemblingmotions which negatively impact the freedom needed to design novel assemblies.
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Figure 2.16| Digital technology makes it possible to envisage completely dif‑
ferent methods of application, beyond traditional carpentry.
Source: [68].
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Weargue that these assumptions ultimately stem from the fact that
designing interlocking assemblies is essentially a wicked problem:
each problem is unique, can be approached by many different
methods, infinitely many designs are solutions to it, and because
of competing goals (ease of fabrication, of assembly, mechanical
relevance, etc.) no solution is best, one can only say that some
designs are better than others. More formally, as for any structural
object, the quality of an interlocking assembly strongly depends on
the interaction of the five axes of design proposed by [9], namely
form, force, structure, material, and technology. This conceptual
approach is exemplified on the work of Larsson et al., [53], on the
inset.

On this example,while delivering stunning results, the authors had to assumeanassembly (structure)made
of wood (material), carrying most probably bending moments (force), milled with a 3‑axis CNC machine
(technology), with a grid of voxel as a design space (form), as well as additional assumptions such as a cube
as a design domain and a single axis of assembly. Any change in those premises, for instance switching to a
5‑axisCNCmachine, greatly impacts the spaceof solutionsand requires another algorithmtosearch it. More
generally a good approach to designing assemblies, shown in FiGURE 2.17, would be through amulti‑criteria
optimisationwhere several designs are proposed to the designerwhomakes the final choice as to orient her
work. These criteria (choiceofmaterial, technology, etc) areproblem‑dependent andcould thereforebe im‑
plemented a posteriori to curate the space of solutions, once the user knows how to navigate and explore
the space of possible assemblies. As an example, for timber assemblies, themilling technology (3 to 5 axes,
size ofmilling tools) andmechanical performance (governed by the strong anisotropy of wood) are obvious
practical constraints that will dictate the performance of the assembly and, thus, the subset of suitable as‑
sembly shapes. Other technologies and material, like 3d‑printed steel nodes [68] FiGURE 2.16, would come
with different sets of feasibility constraints which would bemet by different geometries of assembly.

2.4.1 PROBLEM STATEMENT

Our aim is to build design tools that fit in with the design for (dis)assembly movement. We want to explore
the feasible design space rather than to optimise a single solution (FiGURE 2.17), and generate novel assem‑
blies with the minimum of user inputs, and avoid a local optimum. To that end randomness plays a central
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Figure 2.17| This dissertation mainly focuses on the design knowledge step of
the process to design interlocking assemblies: we shall generate
all possible geometrical interlocking design.

role in our approach.

Given adesigndomain andanordered list ofN motions for disassembling (translations and/or rotations
in 2D, generalisedmotions in 3D), the aim of this work is to partition the domain intoN +1 parts forming a
sequential assemblyA = {P0, P1, ..., PN}. Two parts play a special role: part P0 is the reference part: it is
held in place throughout the (dis)assembly sequence to prevent any ambiguity where the whole assembly
may obey a rigid body motion; part P1 is the key ‑ as long as P1 has not been removed from the assembly,
no other part canmove ‑ and as such the assembly is interlocked. While the reference part P0 is fixed, each
Pi, i ≥ 1, can only move along its prescribed motion in an infinitesimal sense, meaning that a motion of
arbitrarily small magnitude does not lead a part to collide with any other. The puzzle created should not be
recursively interlocking: P1 shall be a key such as when not moved the entire assembly is blocked, but as
soon asP1 is removed,P2,P3, ...,PN can be removed aswell. The only criterion that will be imposed is that
the disassembling sequence “remove P1, then P2, ..., then PN” always exists (as illustrated on FiGURE 2.18),
possibly among others.

A word of caution: the fact that the assemblies created and studied in this manuscript have parts that
can only obey an infinitesimalmotionmay lead to degenerate caseswhere a part does obey an infinitesimal
motion butwill collidewith another part for amotion of finitemagnitude, and as suchmaking the assembly
deadlocked4 for any practical purpose, see FiGURE 2.19.

4Impossible to (dis)assemble
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Figure 2.18| A 3D assembly is disassembled sequentially. The whitest part in
the middle is the reference part, P0, and the part in the lightest
shade of blue, at the top of each frame, is the key P1.

Figure 2.19| Even though P2 obeys an infinitesimal downwards translation, a
finite motion will lead to a collision with P0.

A clarification is needed concerning the definition of “interlocking”. Some authors, [108], say that a
structure made of multiple parts is interlocked when, assuming that one part is fixed in place (to prevent
global rigid bodymotionof thewhole structure), it is in equilibriumunder any arbitrary set of external forces
(i.e. the interaction forces between the parts match the external forces applied on the assembly). In other
words, by applying any (possibly different) motion(s) to any subassembly, nothing moves. This is typically
the case for an Abeille’s flat vault, FiGURE 2.11c.

On the contrary, an assembly is not interlockedwhenby applying amotion alongoneormanydirections
of translation to a subassembly some parts move, with an example given on FiGURE 2.20.

Figure 2.20| An example of a non interlocked assembly: by applying simulta‑
neously amotion along the directions depicted by red arrows, the
puzzle can be disassembled. Inspired by Julien Glath’s work, [38].

That being said, in this manuscript an assembly is said to be interlocked when, given a fixed key, every
part or set of parts is immobilised for all possiblemotions applied on each part, once a a time. Once the key
is removed, the other parts may be taken off one at a time, such as illustrated on FiGURE 2.18. More details
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are given SECTiON 3.1.3.

2.4.2 CONTRIBUTIONS

Theaimof thisdissertation is tocontribute to the researchefforton the fieldof generatingassembliesmainly
along the following points:

■ With the notable, recent, exception of [3] which has the drawback of specifying which parts are in con‑
tact, the literature so far only considers either catalogue‑based joints, which do not explore at all the
space of possible joins, or voxel‑based, which explores only a very limited subset of this space. The
first aim of this document is to fully explore the space of interlocking assemblies.

■ To the best of our knowledge, no research has ever been conducted on the generation of assemblies
whose parts are to be (dis)assembled along rotational motions in 2D, or generalised 3D motions. The
second aim of this document is therefore to unveil this blind spot.

■ While actual robotic manipulation was not a part of this PhD, extensive statistical studies of the role
played by imperfections (on the geometry of the assembly and/or on the location of the actuator ma‑
nipulating it) were conducted as to give guidelines and heuristics to better optimise assemblies and
to control the amount of freedom given to the operator (human or robot) tasked with (dis)assembling
them. To our knowledge, it is the first time that this type of robust geometrical optimisation has been
conducted on assemblies.

2.4.3 DEFINITIONS

Using the terminology presented in [107], we restrict our study to interlocking sequential assemblies made
of rigid polygonal parts in two dimensions (2D), and polyhedral parts in three dimensions (3D), obeying
infinitesimal motions. Several terms need to be explained and clarified using [41]:

■ Workspace: In this study, the workspace refers to the physical space in which the assembly is. It is
modelled either byR2 orR3.

■ Design domain: The design domain is a rigid body, modelled by a finite compact manifold, which is
partitioned into parts forming an assembly. Throughout this manuscript, unless specified otherwise,
the design domain will be a square or a cube.

■ Part: A part is a rigid body modelled by a finite compact manifold in the workspace.
■ Polygonal part: InR2, the boundary separating a part from the rest of the assembly

is a polyline, i.e. a closed curve made of end‑to‑end concatenated line segments
such as illustrated on the inset on the right, top.

■ Polyhedral part: In R3, the boundary separating a part from the rest of the
workspace is a closed triangular mesh, i.e. a mesh, with no boundary edge, made
of triangular faces such as illustrated on the inset on the right, bottom.

■ Separating curve/surface of a part: The separating curve (in 2D) or surface (in 3D)
is the portion of the boundary of the part that separates it from the rest of the
assembly. By construction, it is always in the interior of the design domain.

■ Motion: In this work, amotion refers to any translation, rotation or combination of both used tomove
a point in the workspace.

■ A part obeys an infinitesimal motion: Given two parts Pi and Pj in contact (i.e. a subset of each of
their boundary overlaps), Pi obeys an infinitesimal motion if, at the end of a trajectory of arbitrarily
small length along that motion, no point in Pi belongs to the interior of Pj . Otherwise, Pi does not
obey that motion and the two parts collide. By extension, we will also say that an assembly obeys a
set of motions if and only if each of its constitutive parts obeys an infinitesimal motion from that set.
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■ Assembly: An assembly refers to the set of parts in contact with each other whose
union is the design domain, and the intersection of two distinct parts only yields a
subset of the boundary of these parts, see the inset on the right.

■ Interlocking: An assembly is interlocked if no single part can obey any motion
while holding in place a specific part called the key.

■ Sequential: An assembly is sequential if one needs a (non‑necessarily unique) or‑
dering of the parts such that each successive part can be disassembled by obeying
a motion.
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CHAPTER 3

NON DIRECTIONAL BLOCKING GRAPH

3.1 BLOCKING RELATIONSHIP IN ASSEMBLIES
For this exposition to be self‑contained we recall some elementary facts about blocking relationships in as‑
semblies. Additional details and proofs can be found in [113].
The aim of this chapter is, given a 2D assemblyA = {P0, P1, ..., PN}, to explain how to check whether it is
interlocked and which set of motions each part may obey. To that end, SECTiON 3.1.1 explores the relation‑
ship between a given 2D assemblyA = {P0, P1} and the set ofmotionsP1 can obey, SECTiON 3.1.2 explains
how, given an assembly and a motion (translation or rotation), one can assess the blocking relationships
between the parts for that motion, and SECTiON 3.1.3 investigates how, given an assembly, its interlocking
for all directions of motion is determined only by the interlocking of a small discrete set of motions.

3.1.1 CONE OF INFINITESIMAL FREEDOMOFMOTION IN 2D

3.1.1.1 Translation
For the sake of simplicity and illustrative purposes, we begin this study by only considering 2D assemblies
obeying translations.
A formal way to represent a direction of translation in 2D is by the mean of a vector xt ∈ R2 (subscript t

for translation). As we consider infinitesimal motions only, what matters to us is the direction and not the
magnitude of xt. As such we can, without loss of generality, scale xt to be a unit vector: ||xt|| = 1. Vector
xt can be reinterpreted as being a point in R2. Because this point is at a distance 1 from the origin, it lies
on the unit circle. This being true for any unitxt ∈ R2 we denote the locus of all directions of translation in
R2 by the unit circle S1. In other words, any point on the 2D unit circle S1 is a direction of translation. This
section aims to understand the relationship between a given 2‑parts assemblyA = {P0, P1} and the set of
translational motions P1 can obey.

Figure 3.1| The 2D unit circle S1 is seen as the locus of the directions of trans‑
lation inR2.



Non Directional Blocking Graph

The simplest polygonal assembly A = {P0, P1} we can think of is such that the separating curve be‑
tween P0 and P1 is simply a line segment. On FiGURE 3.2, the design domain is the square on the left,
the separating curve between the two parts is the line segment highlighted in blue and the green arrows
represent several valid directions of translation such that P1 can obey them. The red ones depict invalid
directions of translation as moving P1 along them will lead the two parts to intersect. The set of all valid
translations constitutes a so‑called half‑space of motion. On FiGURE 3.2, let n be the unit normal vector of
the separating curve oriented from P0 to P1 (the black arrow). Then we can state that P1 may obey a direc‑
tionxt ∈ R2 if and only ifn ·xt ≥ 0, that is to say ifxt belongs to the blue semi‑circle oriented byn, on the
right of the figure.

Figure 3.2| On the left an assemblyA = {P0, P1}. On the right, the semi unit
disc in blue represents the half‑space of motion of P1.

A somewhat more complex result can be obtained by analysing a separating curve made of two line
segments. On FiGURE 3.3 each line segment of the separating curve defines a half‑space of motion. P1 can
obey any xt that is in both half‑spaces of motion i.e. any xt such thatnA · xt ≥ 0 andnB · xt ≥ 0. We call
cone of translational freedom the cone resulting from the intersection of the half‑spaces of motion defined
by the normal of each line segment of the separating curve.

=

Figure 3.3| On the left an assembly A = {P0, P1}. On the right, the cone
of translational freedom results from the intersection of the half‑
spaces of motion associated with each line segment of the sepa‑
rating curve.

More generally, for a polylinemadeofk line segments, any vectorxt in the coneof translational freedom
is a solution to the linear system 

n1 · xt ≥ 0

...

nk · xt ≥ 0

3.1

Note that when two half‑spaces of motion are antipodal (meaning there exists two normalsnp andnq neg‑
ative of each other,np = −nq , andnq ·xt = 0), the resulting cone of freedom reduces to a single direction,
as depicted on FiGURE 3.4. Observe that given two parts in contact Pi and Pj , the cone of freedom of Pj
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Figure 3.4| By intersecting half‑spaces of motion, the cone of translational
freedom of P1 can be defined. Note that this conemay be reduced
to a single direction as highlighted in the example on the right.

relative to Pi is exactly the antipodal cone of Pi relative to Pj : indeed if Pi is able to translate along a given
xt ∈ R2 while Pj is held in place, then Pj can translate along−xt while Pi is fixtured, [113]. In that sense,
we can focus on only one half of the total set of directions of translation (so only one semicircle of the locus
of all directions of translation in 2D) as the other half conveys the same information. That is why only the
cone of freedom of one part relative to the other will be represented as the antipodal cone does not add to
the sum of information available.

SYSTEM (3.1) can be rewritten in a matrix form:

Atxt ≥ 0 3.2

Where the subscript t stands for translation, and:

At =


...

...

yi − yi+1 xi+1 − xi
...

...

 ∈ Rk×2

Using this formalism, the cone of translational freedom is the set

Ct = {x ∈ S1, Atx ≥ 0} 3.3

3.1.1.2 Rotation

The mathematical formula that finds, given a 2‑parts assembly, the cone of translational freedom of P1

is quite straightforward to derive. When considering rotational motions, things are almost as forthright,
especially thanks to the infinitesimal motion hypothesis.
In a general setting, the point p̂ = (x̂, ŷ)T obtained by rotating a point p = (x, y)T by an angle ψ around a
centre point xr = (xr, yr) (subscript r for rotation) is given by:x̂

ŷ

 =

cosψ − sinψ

sinψ cosψ

x− xr
y − yr

+

xr
yr


Because we restrict this study to infinitesimal motions, we assume |ψ| � 1 and a first‑order Taylor expan‑
sion yields x̂

ŷ

 =

x
y

+ ψ

yr − y
x− xr

 3.4

EQUATiON (3.4) states that an infinitesimal rotation ofp aroundxr is the same as an infinitesimal translation
of p along the vector (yr − y, x− xr)T .
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Let the vector‑valued function

m : R2 × R2 −→ R2p =

x
y

 ,xr =

xr
yr

 7→

yr − y
x− xr

 3.5

We callm(p,xr) the instantaneous direction of motion of point p relative to xr, abbreviatedmp when the
location ofxr has been specified and is not ambiguous. Note that this vector is orthogonal to the line going
through xr and p. These quantities are illustrated on FiGURE 3.5.

Figure 3.5| The instantaneous direction of motion of point pA (resp. pB , p) is
the vector,mpA (resp. mpB ,mp).

Anecessary and sufficient condition for the partP1 to obey a (counterclockwise) rotation around a given
centrexr is tohave the instantaneousdirectionsofmotionof all pointspon theboundaryofP1 notpointing
towards the interior ofP0. Indeed if there is one pointp on the boundary ofP1 such thatmp points towards
the interiorofP0 thenan infinitesimal rotationaroundxrwill send thatpoint tocollidewithP0whichexactly
means that P1 does not obey xr. Moreover, since we focus on infinitesimal motions, we only need to study
the points on the boundary of both P0 and P1. In other words the fact that P1 obeys xr depends only on
the geometry of the separating curve between P0 and P1.
On the assembly depicted on FiGURE 3.5, the separating curve between the two parts is the line segment
[pA,pB ]of normaln. Having the instantaneousdirectionofmotion,mp, of eachpointpof the line segment
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Figure 3.6| P1 may obey counterclockwise (on the left in blue), (resp. clock‑
wiseon the right in red) rotations aroundcentres in the intersection
of both half‑planes, depicted as the darkest shade of blue (resp.
red) in the top right (resp. bottom left).

to be pointing inside P1 means that ∀p ∈ [pA,pB ]mp · n ≥ 0 . Thus, one has the equivalences:

P1 obeys a rotation around xr ⇐⇒ ∀p ∈ [pA,pB ]mp · n ≥ 0 3.6

⇐⇒ ∀p ∈ [pA,pB ] ∃t ∈ [0, 1]


p = (1− t)pA + tpByr − ((1− t)yA + tyB)

(1− t)xA + txB − xr

 · n ≥ 0

3.7

⇐⇒ ∀t ∈ [0, 1] ((1− t)mpA
+ tmpB

) · n ≥ 0 3.8

⇐⇒

mpA
· n ≥ 0

mpB
· n ≥ 0

3.9

With∆x = xA − xB and∆y = yA − yB , EQUATiON (3.9) can be rewritten as a matrix inequality:

EQUATiON (3.9)⇐⇒

∆x ∆y

∆x ∆y

xr
yr

 ≥
xA∆x+ yA∆y

xB∆x+ yB∆y

 3.10

EQUATiON (3.10) reveals the geometrical meaning of the equations: it states that for P1 to obey a rotation
aroundxr thenxr must lie in the intersection of two half‑planes whose respective boundaries are lines or‑
thogonal to the segment [pA,pB ] and going throughpA andpB , such as illustrated on the left of FiGURE 3.6.
Note that one can readily find the half‑plane containing points around whichP1 obeys a clockwise rotation
by inverting the inequality in EQUATiON (3.10), as illustrated on the right part of FiGURE 3.6.

Tosumup, given thesimplest2Dpolygonalassemblywhere theseparatingcurve is thesegment [pA,pB ],
the planeR2 can be partitioned in 3 semi‑infinite regions:

■

x ∈ R2,

m(pA,x) · n ≥ 0

m(pB ,x) · n ≥ 0

 and P1 obeys a counterclockwise rotation around any point in

that set. On FiGURE 3.7, this set is the half‑plane “above” the blue line.

■

x ∈ R2,

m(pA,x) · n < 0

m(pB ,x) · n ≥ 0

 and P1 cannot obey a rotation around any point in that set. On
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FiGURE 3.7, this set lies “between” the blue and red lines.

■

x ∈ R2,

m(pA,x) · n < 0

m(pB ,x) · n < 0

 and P1 obeys a clockwise rotation around any point in that set.

On FiGURE 3.7, this set is the half‑plane “below” the red line.

Obeys a counterclockwise rotation Obeys a clockwise rotationObeys no rotation

Figure 3.7| Depending on the location of the centre of rotationxr , partP1 may
obey a counterclockwise rotation (left), no rotation (middle), or a
clockwise rotation (right).

Stereographic projection
For illustrative purposes, it may be easier not tomanipulate these semi‑infinite planes but rather their pro‑
jection on S2, the unit sphere embedded in R3. Indeed, as the whole plane is mapped to the sphere, such
half planes aremapped to spherical caps,making the illustrationmuchmore compact and oftenmore read‑
able. The interested reader is referred to APPENDiX A for a rigorous definition of the stereographic projection
used in this manuscript. On FiGURE 3.8, the (inverse) stereographic projection maps the half‑planes cor‑

Figure 3.8| The half‑planes of possible centres of rotation are projected onto
theunit sphereS2 as spherical caps, the so‑called capsof rotational
freedom, that are tangent at the north pole (0, 0, 1)T .

responding to the set of counterclockwise and clockwise centres of rotation to two spherical caps. These
caps are termed caps of counterclockwise (or clockwise) rotational freedom. The infinite stripe separating
the half‑planes (in white on the left of FiGURE 3.8) is mapped to the grey area on the sphere. These three
regions are tangent at the north pole (the projection point, (0, 0, 1)T in the usual cartesian frame): indeed
as the north pole on S2 is mapped to infinity onR2, and a rotation with a centre at infinity is the same as a
translation, the fact that the north pole belongs simultaneously to the three regions (to both caps, aswell as
to the remaining, grey, region), simply means that, for this assembly, one can find directions of translation
that could be obeyed (for instance a translation to the right, on FiGURE 3.8), or not (translation upwards), by
P1.
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In the remainder of this manuscript, when dealing with 2D rotations, xr will refer indistinctively to a
centre of rotationxr ∈ R2 or its projectionxr ∈ S2. Any ambiguity can be removed by simplymoving back
and forth between these two representations.

Let’s further our understanding of the set of valid centres of rotation. If the separating curve is made of
two line segments between pointsp1,p2 andp3, of normal vectorsn12 andn23 oriented fromP0 toP1, the
set of possible centres of rotation is given as the solution to the system of unknown xr ∈ R2:

m(p1,xr) · n12 ⋆ 0

m(p2,xr) · n12 ⋆ 0

m(p2,xr) · n23 ⋆ 0

m(p3,xr) · n23 ⋆ 0

3.11

where operator ⋆ stands for≥ to find the set of centres of counterclockwise rotation or≤ to find the set of
clockwise centres. Geometrically, this set is found by intersecting the relevant half‑planes in R2, or, equiv‑
alently, the relevant caps on S2, as depicted on FiGURE 3.9. Once projected on the sphere S2, such a set can
be seen as a cone, hence the name cone of rotational freedom.

=

Figure 3.9| Given an assembly of two parts, whose separating curve ismade of
two line segments, the cones of rotational freedomare obtained by
intersecting the caps built with each line segment.

More generally, for a polyline made of k line segments, linking points p1, ..., pk+1, with normal vectors
n1, ...,nk, the cone of rotational freedom is the set of points solution to the system of unknown x ∈ R2:

m(p1,xr) · n1 ⋆ 0

m(p2,xr) · n1 ⋆ 0

m(p2,xr) · n2 ⋆ 0

...

m(pk,xr) · nk ⋆ 0

m(pk+1,xr) · nk ⋆ 0

⇐⇒ ∀i ∈ J1, kK,
m(pi,xr) · ni ⋆ 0

m(pi+1,xr) · ni ⋆ 0
3.12

For instance, on FiGURE 3.10, given the assembly on the left, there only exists the cone of clockwise rotation:
no counterclockwise rotation (and no translation since the north pole does not belong to the set) can be
obeyed byP1. The cone of rotationmay also be reduced to a single point, as depicted on FiGURE 3.10, right.
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Figure 3.10| P1 may obey only clockwise rotations around centres belonging
toaclosedsurfaceon the left; itmayonlyobeyacounterclockwise
rotation around a unique centre on the right.

SYSTEM (3.12) can be written in matrix form:

Arxr ⋆ b 3.13

Where subscript r stands for rotation, and:

Ar =



x2 − x1 y2 − y1

x2 − x1 y2 − y1

x3 − x2 y3 − y2

x3 − x2 y3 − y2
...

...

xk+1 − xk yk+1 − yk

xk+1 − xk yk+1 − yk


∈ R2k×2 b =



(x2 − x1)x1 + (y2 − y1)y1

(x2 − x1)x2 + (y2 − y1)y2

(x3 − x2)x2 + (y3 − y2)y2

(x3 − x2)x3 + (y3 − y2)y3
...

(xk+1 − xk)xk + (yk+1 − yk)yk

(xk+1 − xk)xk+1 + (yk+1 − yk)yk+1


∈ R2k

With this formalism, the cones of rotational freedom (be it counterclockwise or clockwise) are the sets:

Cccwr = {x ∈ R2, Arx ≥ b}

Ccwr = {x ∈ R2, Arx ≤ b}

3.14a

3.14b

Where superscript ccw (resp. cw) stands for counterclockwise (resp. clockwise).

3.1.1.3 Translation and rotation
As hinted on FiGURE 3.9, when a cone of freedomextends to the north pole ofS2 (the projection point), then
the part obeys a translation (as a rotation around a centre at infinity is the same as a translation). Given a
polyline, one only needs to build the matricesAt,Ar and vector b and compute the sets Ct, Cccwr and Ccwr
given by SYSTEMS (3.3) and (3.14), see FiGURE 3.11.

Note that, quite surprisingly, it is possible to find assemblies obeying rotations but whose translation
cone is reduced to a single direction, as shown in FiGURE 3.12. In this case, the centres of rotations are
aligned.

3.1.2 DIRECTIONAL BLOCKING GRAPH ‑ DBG

Should the reader be unfamiliar with graph theory, and particularly with the notion of strong connected‑
ness, a quick introduction to this area of mathematics is given in APPENDiX B.
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Figure 3.11| From left to right: an assemblymade of twoparts, the cones of ro‑
tational freedom (counterclockwise in blue, clockwise in red) and
the cone of translational freedom.

Figure 3.12| The (counterclockwise) rotational cone is reduced to an arc, im‑
plying that the translational cone is reduced to auniquedirection.

3.1.2.1 Definition

ADirectional BlockingGraph (DBG), defined byWilson and Latombe in [113], of an assemblyA for amotion
x is a directed graphG(x, A)whose verticesPi correspond to each of theN+1parts in the assemblyA and
an arc from vertex Pi to vertex Pj means that part Pi is blocked by part Pj inA for an infinitesimal motion
of part Pi alongmotion xwhile holding part Pj in place.
For instance, referring to FiGURE 3.13, the DBGsG(x, A) for different motionsx are given. Let us first take a
look at the behaviour in translation of the assembly (the rightmost part of the figure). The cone of transla‑
tional freedom Ct is depicted in blue, and for any x ∈ Ct (on FiGURE 3.13 one such x, in blue, is taken in the
interior of the cone and another one on its extremity), then by definition of Ct,P1 obeys thisx, that is to say
that P1 is not blocked by P0. On the other hand, P0 is blocked by P1 along such translation. Thus, the DBG
G(x, A) contains only one arc, e0→1 (fromP0 toP1), stating thatP0 is blocked byP1 for a translation along
x. Conversely, as the arc e1→0 (from P1 to P0) does not exist, the graph encodes the fact that P1 obeysx. If
x is taken outside of the cone of translational freedom of P1 (but not inside the antipodal cone), as figured
by the two x in black, then neither P1 nor P0 obey x. This blocking relationship is encoded in the relevant
G(x, A) by two arcs, fromP1 toP0 and vice‑versa. Finally, because the relationPi is locally free to translate
alongx relative toPj implies thatPj is locally free to translate along the opposite direction−x relative toPi

the DBGG(−x, A) can be deduced fromG(x, A) by simply reversing the orientation of the arcs in the latter
graph, [113].
The same principles apply to build a DBG in rotation: on FiGURE 3.13, middle, for any x ∈ (Cccwr ∪ Ccwr )

(shown in blue and red), the DBG G(x, A) contains only one arc, e0→1. For any x ∈ S2 \ (Cccwr ∪ Ccwr )
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Figure 3.13| An assembly made of two parts P0 and P1 and the DBGs asso‑
ciated with different centres of rotation (middle) or directions of
translation (right).

(shown in black) neither P0 nor P1 can obey a rotation around x and thus both arcs e1→0 and e0→1 exist in
G(x, A).

A useful property of a DBGG(x, A) is that we can easily deduce whether the assemblyA is interlocked
forxby checking the strong‑connectedness1 of the graph: if the graph is strongly connected then every part
is blocked by another. If not, then it can be decomposed into strongly connected components (possibly re‑
duced to a single vertex)where at least one component has no outgoing arc and, as such, the corresponding
subassembly obeysx. For instance, on FiGURE 3.14 (wheremotions are restricted to translation, for illustra‑
tive simplicity), the cones of translational freedom Ct,i of part Pi, i ∈ {1, 2}, are shown on the left; both are
reduced to single directions,x1 andx2. Top row: the DBG associatedwith the horizontal direction of trans‑
lation,G(x1, A) has two strongly connected components that are colour‑coded: {P1} in red and {P0, P2}
in blue. Indeed, starting from P1 one cannot reach any other node but P1 while following the arcs’ orienta‑
tion and, similarly, if one starts from any node in {P0, P2}, one can only go back and forth between these
two nodes. As no edge starts from P1, it is not blocked by any other node and hence it obeys x1. On the
top row still, DBGG(x2, A) is strongly connected: its strongly connected component is {P0, P1, P2} as one
can convince oneself by walking from any node to any other. Thus every part is blocked by another and the
assembly is deadlocked forx2 (an upwardsmotion of translation). In short, these two DBGs say thatAmay
be disassembled bymovingP1 alongx1, but it is impossible to disassembleA bymoving any partPi along
x2.
On the bottom row of FiGURE 3.14 part P1 has been removed and the assembly is now made of two parts
{P0, P2}. G(x1, A) is strongly connected,meaning that one cannotmoveanypart alongx1, and theoneas‑
sociated to the upwards translation,G(x2, A)has two strongly connected components, namely {P0} (blue)
and {P2} (red). Moreover, since no edge starts from P2, the latter is not blocked by P0 for that upwards di‑
rection x2: it can obey such x2 and as suchA can be disassembled.

Note that identifying the strongly connected components of a graph can be solved by polynomial algo‑
rithms, [97], and thus, from a computational point of view, it is a cheap operation.

3.1.2.2 Computation

The computation of a DBG for a givenmotionx is straightforward. LetA = {P0, ..., PN} an assemblymade
ofN+1 polygonal parts. To build the DBG G(x, A), the parts are looped upon, and the DBG is built incre‑
mentally, starting from a graph with no edge, by considering every pair of parts in contact.
Let Pi and Pj , j < i, be two parts in contact and let S denote the set of line segments shared by both parts.
Assume the normal vectorsnk of the segments sk ∈ S to be pointing towards Pi.

1Informally speaking, a directed graph is strongly connected if one can walk along a path respecting the orientation of the edges
between any couple of vertices (Pi,Pj ). See APPENDiX B for a rigorous definition.
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Figure 3.14| The strongly connected components of each DBG are colour‑
coded (blue and red). Top row: an assembly made of 3 parts and
the DBGs associated with the horizontal to the right and verti‑
cal upwards directions of translation. Bottom row: assembly ob‑
tained after removing P1 and the corresponding DBGs.

Translation
If the motion considered in the DBG is a translation along a given vector xt ∈ S1, then Pi is blocked by Pj

if at least one segment in S has its normal vector pointing away from xt:

∃sk ∈ S, nk · x < 0⇐⇒ Pi is blocked by Pj

And edge ei→j is added to the graphG(xt, A). Conversely

∃sk ∈ S, nk · xt > 0⇐⇒ Pj is blocked by Pi

And edge ej→i is added to the graphG(xt, A).

Rotation
Themotion isacounterclockwise rotationaroundagivencentrexr ∈ R2. Foreachsegmentsk = [pk,pk+1] ∈
S, the instantaneous directions of motion of the endpoints, mpk

and mpk+1
, are calculated. Part Pi is

blocked by Pj if the instantaneous direction of motion of a point on the boundary is pointing inside Pj :

∃sk ∈ S, mpk
· nk < 0 ormpk+1

· nk < 0⇐⇒ Pi is blocked by Pj

And edge ei→j is added to the graphG(x, A). Conversely

∃sk ∈ S, mpk
· nk > 0 ormpk+1

· nk > 0⇐⇒ Pj is blocked by Pi

And edge ej→i is added to the graphG(x, A). Had we considered a clockwise rotation, the role played by
< and> in the two equivalences above would have been switched.
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Figure 3.15| S1 and S2 are partitioned into cells of dimension 0, 1, and (in the
case of S2 only) 2.

3.1.3 NON DIRECTIONAL BLOCKING GRAPH ‑ NDBG

Following the definition of a DBG, Wilson and Latombe introduced in [113] the concept of Non Directional
Blocking Graph (NDBG). Simply put, the NDBG of an assembly A is simply the concatenation of all DBGs
G(x, A) for any motion x (be it a rotation or a translation). In concrete terms, given an assembly A =

{P0, ..., PN}, for any pair of parts (Pi, Pj) in contact, SYSTEM (3.1) and SYSTEM (3.9) are solved to get the
cones Ct, Cccwr and Ccwr . The set of cones Ct partitions the unit circleS1 into an arrangement of cells: cells of
dimension 0 (the endpoints of the cone) and of dimension 1 (the open arc of circle between two consecutive
endpoints). Similarly, the set of conesof rotational freedompartitionS2 into cells of dimension0 (endpoints
of the cone), 1 (open arc of circle between two consecutive endpoints) or 2 (open surface between arcs).
Such cells are illustrated on FiGURE 3.15: each part Pi, i ∈ {1, 2, 3}, defines cones Ct,i, Cccwr,i and Ccwr,i that
partition S1 or S2 into cells of dimension 0, represented by dots of colours, dimension 1, depicted by the
arcs between twodots, and in the case of the rotational cones onS2, cells of dimension 2 (patches of surface
between arcs). Note that the intersections of cones Cccwr,1 and Cccwr,3 defines cells of dimension 0, 1 and 2, as
exemplified in the zoomed‑in portion of the figure.

The DBGs over a given cell are regularmeaning that the directed graphs remain constant whenx varies
over it, [113]. Hence one can associate each cell (be it of dimension 0, 1 or 2) with a unique DBG. The NDBG
of an assemblyA can therefore be defined as the locus of motions (S1 in translation, S2 seen as the inverse
stereographic projection ofR2 in the case of rotation) partitioned into cells along with the DBGs associated
to each cell. Wilson and Latombe in [113] also show that for a given cell, a subassemblyS ofA is locally free
to translate/rotate if and only if there is no arc connecting S to A ∖ S inG(x, A) for a x taken in that cell.
Worded differently, ifG(x, A) is strongly connected, then no subassembly can move along x; if there is at
leastone strongly connectedcomponent (that is not the full graph) inG(x, A)withoutanyoutgoingarc then
the corresponding subassembly is free to translate along x. What makes NDBG a powerful tool to compute
the relativemotions of parts is that one needs only to look for strong connectedness in its constitutive DBGs
to find the interlocking state of an assembly.

Also, in [112] Wilson and Matsui state the following property:
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Figure 3.16| The DBGG(x, A) is obtained by performing a union operation of
the DBGsG(xA

3 , A) andG(xB
3 , A).

Property:
For any two cells f1 and f2 such as f1 is on the boundary of f2, if there exists an arc from Pi to Pj inG(f1),
this arc also exists inG(f2).

WhereG(f) denotes the DBG of cell f . What this propertymeans is that if there is an arc in the DBG of a cell
of a given dimension, then this arc also exists in the DBG of neighbouring cells of higher dimensions. This
property is illustrated on FiGURE 3.16: x, in red, represents a direction of translation taken in the open cone
C̊t,3 and one can notice thatG(x,A) is the union ofG(xA

3 , A) andG(xB
3 , A), the DBGs of the endpoints of

the cone; arc e3→2 is taken fromG(xA
3 , A) and arc e1→2 fromG(xB

3 , A) (highlighted in red on FiGURE 3.16),
while all other arcs are present in both DBGs.

This property proves to be extremely useful: as we have already understood, the DBGs associated with
each cell state whether a partmay obey anymotion in that cell. Yet, as the DBG of a cell of higher dimension
can be deduced from the DBGs of neighbouring cells of lower dimensions, one notices that to fully charac‑
terise the interlocking state of an assembly, i.e. to build the NDBG, it is sufficient to calculate only the DBGs
associated to cells of dimension 0, which are in finite (relatively low) number! Following the definition of
[105], we call these DBGs the base DBGs of the assembly. If all such base DBGs are strongly connected, but
the one associated with the motion of the key P1 which must have 2 strongly connected components (one
being reduced to vertex P1, the other being all other vertices), then, using the property, the DBGs for every
other motion are also strongly connected, and thus the assembly is interlocked.

Wewould like to insist on thedefinitionof “interlock” in this dissertation. Bydefinition, aDBG treats only
themotion of one part relative to another one. It does not convey any information on the blocking relation‑
ship between a part and other ones when applying a motion to many parts at once. In that sense, a DBG
does not carry enough information to saywhether an assembly is interlocked. That being said, even though
we should say that an assembly A is weakly interlocked for a given x when the associated DBGG(x, A) is
strongly connected, we will, in the remainder of this manuscript, use in its place the word interlock, for
simplicity. For instance, regarding translation only, the assembly of FiGURE 3.17 has a DBG (regular over
all S1) whose graph is strongly connected, meaning that by applying a translation xt ∈ S1 to every single
part, once at a time, the puzzle cannot be disassembled. Yet, as seen in this figure, it is not interlocked as
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simultaneous motions along specific directions allow the disassembling of the assembly.

Figure 3.17| An example of a non interlocked assembly: by applying simulta‑
neously amotion along the directions depicted by red arrows, the
puzzle can be disassembled. Inspired by Julien Glath’s work, [38].

3.2 CONCLUSION
This short chapter aimed at recalling a few basic facts about 2D interlocking assemblies. SECTiON 3.1.1
showed that given a separating polyline (pi)i∈J1,kK, the cone of freedom of motion, i.e the set of motion
it can obeys is given in translation by the set Ct and in rotation by the cones Cccwr and Ccwr . These sets are
built using inequalities of the formni ·y ≥ 0wherey stands for either the instantaneousdirectionofmotion
of the end points of the segment iwith respect to a centre of rotation, or a direction of translation (which is
remarked to be essentially the same thing as an instantaneous direction of motion, thus unifying the con‑
cepts in translation and rotation).

Introducing these inequalities helped us understand how the Directional Blocking Graph of an assem‑
bly is built for a given motion x, as seen in SECTiON 3.1.2. Once the graph is available, its edges (or lack of)
teaches us about the blocking relationships in the assembly along x. In particular, we understood that if a
DBGG(x, A) is strongly connected, then the assembly is interlocked for motion x.

TheNonDirectional BlockingGraph (NDBG), presented in SECTiON 3.1.3, is built upon the notion of DBG
and fully assess the interlocking of an assembly for all directions of motion. Only a discrete and finite set of
base DBGs needs to be calculated for the interlocking to be fully known. Moreover the base DBGs give all
the disassembly sequences (and thus, by reversing the order, all the assembly sequences). Indeed at each
disassembling step, the strong‑connectedness of the DBGs are calculated. When one DBG is not strongly
connected, the part(s) associated to one of the strongly connected component can be removed along the
motion associated with that DBG. The corresponding vertex (or vertices) and adjacent edges are removed
from all other graphs and the next disassembling step may start, and such algorithm goes on until we are
left with part P0.

While the theory behind the NDBG completely works for 3D assemblies, we have not explained how 3D
motions are encoded, and thus we cannot explain which set of motion, which cone, a 3D part may obey.
Unit dual quaternions will be introduced in SECTiON 5.1, and following that the computation of the cone of
freedom of motion for a 3D part will be explained in SECTiON 5.2. As for now we leave aside the 3D world,
and CHAPTER 4 focuses on reverse‑engineering the knowledge gained in this chapter so it can be used to
generate 2D interlocking assemblies.
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CHAPTER 4

2‑D ASSEMBLIES

4.1 CREATING AN ASSEMBLY
In SECTiON 3.1.1, we have understood how the cones of freedom of motion can be calculated given an as‑
sembly. The aimof this chapter is to reverse‑engineer this relationship: how, given anordered list of desired
cones of translational freedom and centres of rotation, a 2D assembly obeying these motions can be auto‑
matically generated. We will first investigate how shall the first part P1, the key, be created, or equivalently
how to create a 2‑parts assembly. Two approaches are explored: the first one, described SECTiON 4.1.1, calls
to basic and intuitive concepts but becomes cumbersome to implement when it comes to a part obeying a
rotation. Still, it seems to be a good and easy way to first discover the issue we are trying to solve. The sec‑
ond one, described SECTiON 4.1.2, ismuchmoremathematically‑inclined, but has the advantage of keeping
things simple in rotation and is readily scalable in 3D. Once the key is created, SECTiON 4.1.3 focuses on how
the rest of the parts shall be created.

Let us first start this study by creating a 2‑parts assembly.
At themost fundamental level, generating such an assembly boils down to drawing a separating curve link‑
ing two points on the boundary of the design domain. A first part is created by the geometry on one side of
the curve, and a second part by the geometry on the other side.

4.1.1 CREATING A 2‑PARTS ASSEMBLYWITH TURTLE GRAPHICS AND AMARKOV PROCESS

While this section goes into greater details, most of the results presented here are taken from our article
[36].

4.1.1.1 Definitions
Turtle graphics is a popular way to introduce children to the basics of coding: a virtual Turtle is displayed
on the screen of the computer and moves in the 2D plane according to instructions given by the user while
leaving a trace on its path. These instructions are of the form “Walk by l unit”; “Rotate by θ radians”. The
children are then tasked to find and code a sequence of instructions that lead the Turtle to draw some
objective design: a square, a star of David, or any more complex shape. For instance the sequence of in‑
structions:

■ walk 1
■ rotate 90

◦

■ walk 1
■ rotate 90

◦

■ walk 1
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Figure 4.1| A polygon drawn by a Turtle .

■ rotate 90
◦

■ walk 1
■ rotate 90

◦

yields the 1×1 square presented on FiGURE 4.1 (where the Turtle is shown in both its initial and final posi‑
tion and orientation).

In a spirit similar to [69], in this first approach we will use such Turtle as an agent that draws the poly‑
lines partitioning the design domain into parts constituting our assembly.

In probability theory, a Markov process, or Markov chain, ([31]) is a stochastic model describing a se‑
quence of possible events in which the probability of each event depends only on the state attained in the
previous event (it is memoryless). A state is said absorbing if once entered the probability to leave it is 0.
More specifically a discrete‑time Markov process is a Markov chain with a countable number of states and
the chain iteratively transitions between states at discrete time steps according to some probabilistic rules.
In the present study, we introduce a discrete‑time Markov chain with a finite number of states and one ab‑
sorbing state, herein referred to simply as Markov chain, to play the role of children in Turtle graphics as the
onemaking up the sequence of orders to move the Turtle with.

4.1.1.2 Overview

Formally speaking, such a Markov processM is defined as a tuple (V,P)where

■ V is the set of possible states that the chain will transition between.
In our case V = {start, rotate, walk, snap, end}.

■ State end is absorbing: onceM reaches this state it cannot leave it.
■ P is the set of probabilistic rules specifying which transitions are available as well as their weights. It

definesmappings p : V → V . We provide here a succinct description of the rules emitted by the chain
M and how they are interpreted by the Turtle . More details are given below.
Seven rules are defined inP :

0. start 7→ rotate
The Turtle is randomly initialised on the boundary of the design
domain and this order simply tells it to choose a randomorienta‑
tion parameterised by angle θ.

1. rotate 7→ walk
The Turtle has already chosen an orientation and must now
walk forwards by a random amount.

2. rotate 7→ end
The Turtlehas already chosen anorientation andwalks forward
until meeting an edge of the design domain.
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3. walk 7→ rotate
The Turtle has walked to a new position and must now choose
a new random orientation compatible with the prescribed cone
of translation or centre of rotation.

4. walk 7→ snap
Context: the leftmost blue cone represents the cone of translational freedom prescribed by the
user: the final design must obey any direction in the cone bounded by xA

1 and xB
1 . The Turtle

has walked to a new position andmust now choose to orient along either±xA
1 or∓xB

1 .

or

5. snap 7→ walk
Similar to rotate 7→ walk: the Turtle has snapped to an orien‑
tation and walks forward by a random amount.

6. snap 7→ end
Similar to rotate 7→ end: the Turtle has snapped to an ori‑
entation and walks forward until meeting an edge of the design
domain.

When two rules apply to the same left‑hand side (for instance rotate 7→ walk and rotate 7→ end)
then the Markov chainM randomly chooses one of the two with some predefined probability as de‑
picted on FiGURE 4.2.

Figure 4.2|M transitions between states with the predefined probabilities pi.

These strings are iteratively composed into a random sentence, for instance on FiGURE 4.3 the full sequence
emittedbyM isstart 7→ rotate 7→ walk 7→ snap 7→ walk 7→ rotate 7→ walk 7→ rotate 7→ walk
7→ rotate 7→ walk 7→ snap 7→ walk 7→ rotate 7→ walk 7→ rotate 7→ end. At each iteration of
the algorithm, the Turtle receives one of these five strings and acts accordingly.
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input

Figure 4.3| A step‑by‑step decomposition of the Turtle ’s trajectory. High‑
lighted in red on the far right are the line segments corresponding
to a snap order.

Since a sequence of the form [rotate or snap] 7→ walk defines a segment and a polyline is simply con‑
stituted of concatenated line segments, this Markov processM is sufficient to draw a polygonal assem‑
bly. We do not need to add rules of the kind rotate 7→ rotate as the final orientation could very well
be obtained after a single rotate order. Similarly a walk 7→ walk can be obtained with the sequence
walk 7→ rotate 7→ walk where the Turtle happens to keep the same orientation before and after the
rotate order. We will prove below that the Markov chainM aided by the Turtle can reach the full search
space of polygonal assembly.

We propose to define a Markov processM that will instruct a Turtle so that the latter draws a polyline
dividing the design domain into two parts, one of which obeying a user‑prescribedmotion x.

4.1.1.3 Generating a part obeying a translation
Let us first describe how to create a 2‑parts assembly obeying a translation.
The user decides on two vectors of translation xA

1 and xB
1 bounding the cone of translational freedom of

the would‑be part P1. Enforcing xA
1 = xB

1 leads to the special case where the cone is reduced to a single
vector that is to say where P1 must translate along one direction only. Then a Markov chainM emits the
start order which initialises a Turtle randomly on the boundary of the design domain. In subsequent
iterations,M tells the Turtle whether to orient itself or to move. To comply with a walk order, the length
l by which the Turtle moves is randomly picked in a user‑defined interval [lmin, lmax] (to have consistent
step size, or edge length). To obey a rotate order, the rotation angle θ is randomly chosen in an interval
such that the normal vector n of the line segment is such that n · xA

1 ≥ 0 and n · xB
1 ≥ 0. The reader’s

attention is drawn to the fact that this constraint on θ is enough toprevent theTurtle fromcrossing its path.

If the sequence of orders and random values leads the Turtle to wander outside of the design domain,
a backtracking procedure is executed to replace it inside. At the end of an iteration,M randomly applies a
production rule on the latest order it gave to get the one for the next iteration. Finally, whenM emits the
end order, the Turtle walks until meeting an edge of the design domain.
Letting the Turtle move like this is likely to yield appalling results for two obvious reasons:

■ First, if the Turtle cannot cross its ownpath, nothing prevents it fromdrawing very fine details (where
the angle between two successive line segments is close to π), which are impossible to manufacture
and would anyway be very brittle. To prevent that, the Turtle is instructed to keep away from the
previously drawn segment, by themean of a user‑chosenmaximal angle between two successive seg‑
ments.

■ Second, and more importantly, the random separating polyline obtained at the end will be such that
the actual cone of translational freedom of P1 strictly includes the user‑prescribed cone bounded by
xA
1 andxB

1 . As an extremeexample, imagine that the user specified a vectorxA
1 = xB

1 ≡ x1 = (1, 0)T

alignedwith thex axis (meaning that the userwantsP1 to translate along the horizontal axis only) and
theTurtledrewasingle line segment, as illustratedon the top rowof FiGURE4.4. Even thoughP1 does
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obey x1 it also obeys a full half‑space of motion which is undesirable behaviour.

input

output prescribed CTF

actual CTF

without snap

with snap

output

prescribed and actual CTF

prescribed CTF

Figure 4.4| CTF stands for Cone of translational freedom. Two snaps are neces‑
sary to match the actual CTF of the polyline to the user‑prescribed
one.

To reduce theactual coneof translational freedomofP1 to theuser‑prescribedone, theMarkov chainM
is enriched by a special state that we call snap: it forces the parameter θ to be chosen such that the Turtle
is oriented either along±xA

1 or∓xB
1 . The signs±1 and∓1 are randomly chosen at the initialisation of the

Turtle . This ensures that when the Turtle snaps it draws a line segment whose unit normal vector n is
such that either n · xA

1 = 0 and n · xB
1 ≥ 0 or vice‑versa by switching the superscripts A and B . As such,

the Turtle draws a valid polyline (i.e., such that the cone of translational freedom of P1 exactly matches
the user‑prescribed cone) if and only if it snapped at least twice, once along±xA

1 and once along∓xB
1 , see

FiGURE 4.4 bottom row, which gives a computationally light manner to check whether a polyline is valid.

4.1.1.4 Surjectivity of the Markov processM
We justify here that theMarkov processM associatedwith the Turtle are sufficient to reach any polygonal
assembly, i.e the mapping from the set made ofM and the space of the Turtle ’s parameters (l and θ) to
the space of polygonal assembly is surjective.
Any polyline separating two parts must fit in the design domain. This observation gives an obvious upper
bound on the value of lmax, which could be the length of the diagonal of the bounding square of the design
domain. In addition, setting lmin = 0 ensures that the Turtle can draw infinitely small line segments and
as such the full space of polygonal parts can be reached. But the mapping is not injective: for instance it is
possible, althoughunlikely, that themagnitudes towalk or rotate by chosenby theTurtle for the sequence
rotate 7→ walk 7→ rotate 7→ walk on the one hand and rotate 7→ walk on the other lead the same line
segment, see FiGURE 4.5. As such two identical polylines can be obtained through two different sequences
of orders and the mapping is not injective. Moreover, from a practical point of view, letting the Turtle
draw infinitely small segments might not be desirable and the user may want to reduce the search space
to the subset of polylines having a minimal segment length lmin > 0. The upper bound lmax can also be
reduced to some smaller value as any polyline with a segment length greater than lmax can still be reached
by walking several times in the same direction. Thus themapping to this subset is still surjective. Note that
thismapping can bemade injective by reducing a sequence emitted byM to the smallest possible word by
tracking the timeswhere the Turtle rotated by 0 rad (or snapped consecutively) and replacing instructions
“rotate(θi) 7→ walk(li) 7→ rotate(0) 7→ walk(li+1)” with “rotate(θi) 7→ walk(li + li+1)”.
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Figure 4.5| Thesame line segmentcanbe reachedbywalking twice in thesame
direction by a magnitude l

2
or once by a magnitude l, for some l ∈

[lmin, lmax], and thus the map is not injective.

4.1.1.5 Generating a part obeying a rotation

The process to create a 2‑parts assembly obeying a rotation is basically identical to the one creating an as‑
sembly obeying a translation: the user specifies a centre of rotationxr ∈ R2 (r for rotation) and theMarkov
processM successively tells the Turtle to walk, snap or rotate until the end is reached. The only key
difference is in the choice of the angle θ to orient the Turtle . Indeed, in translation, the cone given by
the bounding directions xA

t and xB
t is chosen once by the user and stays fixed. It is thus easy to calculate

the bounds in which θi must lie for the normalni of the ith line segment to lie in the cone and thus for this
segment to obey the translation. When drawing a polyline obeying a rotation, the angle θi depends on the
location of the Turtlewith respect to the location of the centre of rotationxr as well as the step size li. Let
us explore this relationship.

Notations: let pi = (xi, yi)
T ∈ R2 be the current position of

the Turtle , and let θi and li be the orientation and length of the
segment drawn by the Turtle between pi and its next position
pi+1 = (xi+1, yi+1)

T = pi + li(cos θi, sin θi)T , as shown on the
inset. The goal of this section is to find in which set shall θi and
li be chosen so that the line segment [pi,pi+1] may obey a rota‑
tion around a given centre point xr = (xr, yr)

T ∈ R2. Assuming
pi 6= xr (a very reasonable assumption stating that the Turtle is
not exactly on the centre of rotation) we can define the instanta‑
neous directions of motion of point pi, pi+1 with respect to xr, m(pi,xr) andm(pi+1,xr), abbreviated
mpi

andmpi+1
.

Referring to SYSTEM (3.12), one has (with ni = (− sin θi, cos θi)T the unit normal vector of segment
[pi,pi+1])

[pi,pi+1] obeys a rotation around xr ⇐⇒

ni ·mpi
⋆ 0

ni ·mpi+1
⋆ 0

4.1

With ⋆ standing for ≥ if the rotation is counterclockwise, ≤ if clockwise. Let us introduce a sign s = +1 if
the rotation is counterclockwise,−1 otherwise. Then SYSTEM (4.1) is rewritten:
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[pi,pi+1] obeys a rotation around xr ⇐⇒

 sni ·mpi
≥ 0

sni ·mpi+1 ≥ 0
4.2

⇐⇒


s

− sin θi
cos θi

 ·mpi
≥ 0

s

− sin θi
cos θi

 ·
mpi

+ li

− sin θi
cos θi

 ≥ 0

4.3

Withmpi+1
= mpi

+ li(− sin θi, cos θi)T . For notational convenience let, in this section,∆x = xi−xr and
∆y = yi−yr. APPENDiX C.1 carries out the calculations leading to the angles defined below. When the right
hand side is defined let:



θ⊖12 = 2 arctan ∆y−||xi−xr||
∆x

θ⊕12 = 2 arctan ∆y+||xi−xr||
∆x

θ⊖34 = 2 arctan −∆y−
√

||xi−xr||2−l2i
li−∆x

θ⊕34 = 2 arctan −∆y+
√

||xi−xr||2−l2i
li−∆x



θ0 = 2 arctan −li
∆y

θ1 = min(θ⊖12, θ⊕12)

θ2 = max(θ⊖12, θ⊕12)

θ3 = min(θ⊖34, θ⊕34)

θ4 = max(θ⊖34, θ⊕34)

A fewcalculations, developed in APPENDiX C.3, provide the enumerationof cases oneneed to look at to solve
for θi, presented below.

1. If∆x = li

(a) If∆y = 0:
■ If s = −1: θi ∈ ∅, no solution.
■ If s = +1: θi ∈ [θ1, θ2]

(b) If∆y 6= 0:
■ If s = +1: θi ∈ [θ1, θ2]

■ Else:
– If∆y > 0: θi ∈ [−π, θ0]
– If∆y < 0: θi ∈ [θ0, π]

2. Else if ||pi − x|| < li

(a) If s = −1: θi ∈ ∅, no solution.
(b) If s = +1:

■ If∆x = 0:
– If∆y < 0: θi ∈ [−π, 0]
– If∆y > 0: θi ∈ [0, π]

■ If∆x > 0: θi ∈ [θ1, θ2]

■ If∆x < 0: θi ∈ [−π, θ1] ∪ [θ2, π]

3. Else if ||pi − x|| ≥ li

(a) If∆x = 0:
■ If s = −1: θi ∈ [θ3, θ4]

■ If s = +1:
– If∆y < 0: θi ∈ [−π, 0]
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– If∆y > 0: θi ∈ [0, π]

(b) If∆x 6= 0:
■ If s(li −∆x) < 0:

– If s∆x > 0: θi ∈ [max(θ3, θ1),min(θ4, θ2)]
– If s∆x < 0: θi ∈ [θ3, θ4]

■ If s(li −∆x) > 0:
– If s∆x > 0: θi ∈ [θ1, θ2]

– If s∆x < 0: θi ∈ [−π,min(θ3, θ1)] ∪ [max(θ4, θ2), π]

Once this enumeration of if‑ else if ‑ else conditions is implemented, the orientation of the Turtle is
chosen in the corresponding interval, and we can be sure that the polyline drawn as such obeys a rotation
around xr.

4.1.1.6 Notes and issues related to the behaviour of the Turtle
APPENDiX C.4 proves an intriguing property of the Turtle :

■ If s = −1, (i.e. the user asks for a part P1 obeying a clockwise rotation around centre xr) APPENDiX
C.4 proves that in this case, centre xr becomes attractive, meaning that the Turtle must always get
closer to xr: ||pi+1 − xr|| < ||pi − xr||.

■ On the contrary, if s = +1 (onewants a counterclockwise rotation) thenxr becomes repulsive: ||pi+1−
xr|| > ||pi − xr||.

To further our understanding of the Turtle , several other properties may be proven:

■ We state that θ2 − θ1 = π:

Proof. Since x 7→ arctan(x) takes value in ] − π
2 ,

π
2 [ and on this interval cosine is positive, one

has for x ∈ R: cos arctan(x) = 1√
1+x2

. Moreover sin arctan(x) = x√
1+x2

. Let a1,2 be such that
θ1,2 = 2 arctan(a1,2).

cos θ2 − θ1
2

= cos θ2
2

cos θ1
2

+ sin θ2
2

sin θ1
2

=
1√

1 + a22

1√
1 + a21

+
a2√
1 + a22

a1√
1 + a21

=
1 + a1a2√

1 + a21
√
1 + a22

And:

1 + a1a2 = 1 +
∆y − ||pi − x||

∆x

∆y + ||pi − x||
∆x

=
∆2

x +∆2
y − ||pi − x||2

∆2
x

= 0

Wehave proven that cos θ2−θ1
2 = 0 and hence (since θ2 ≥ θ1) that θ2−θ1 = π. Itmeans thatwhen the

the orientation of the Turtle must be either θ ∈ [θ1, θ2] or θ ∈ [−π, θ1] ∪ [θ2, π] then angle θ points
in the half‑plane whose bounding line crosses pi and is orthogonal to the vector pi − xr.

■ A careful examination of the enumeration of cases above, as well as APPENDiX C.3, shows that when
s = +1 angles θ3 and θ4 do not appear: the Turtlemust choose its orientation θ either in the interval
[θ1, θ2]or [−π, θ1]∪[θ2, π]. Bearing inmind theprevious remark,we see thatwhen s = +1, theTurtle
must orient itself in a half‑plane pointing away from the centre xr.
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Figure 4.6| Left: sets of possible next position of the Turtle , pi+1, for a fixed
li. Right: sets of position when li is left variable between two
bounds.

These properties are illustrated on FiGURE 4.6: the current position of the Turtle is pi at (0.12, 0.12)T

from the centre xr. On the left of this figure, for a given li = 0.07, angles θi, i ∈ J1, 4K are calculated using
the enumeration given above. The Turtle will have to move to its next position pi+1 either in the range
of positions in blue if s = −1 or in red if s = +1. On the right of FiGURE 4.6 li is left variable in the range
lmin = 0.01 and lmax = 0.1; as such it allows to see the region on which the Turtle shall go. FiGURE 4.7
shows the same data but for multiple Turtle ’s position pi, arranged in a square grid centred on xr on the
left, along a spiral around xr on the right. Positions pi are shown using small black dots while the centre
xr is depicted as the biggest black dot. On the left, we can confirm that, if s = +1 the Turtle shall move in
a half‑plane opposite to where the centrexr lies, and there is no relationship between the angle θi and the
step length li (the red semi‑disks are pointing away from xr). The blue cones show that, when s = −1, the
Turtle shall only move towards xr, and the set of possible positions is highly non‑linear in li, θi,∆x and
∆y. On the right of FiGURE 4.7, only the regions of possible positions for s = −1 is shown. This zoomed‑in
view illustrates again the non‑linearity of these sets, and also shows that if pi is too close toxr and li is too
large, no solution can be found, the Turtle is stuck.
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Figure 4.7| Left: zoomed out view of the sets of possible positions for the next
position pi+1 for various positions of pi.. Right: zoomed in view of
the sets for s = −1 and for various positions of pi.
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FiGURE 4.8 shows the limit trajectory of the Turtle in blue for s = −1 (resp. in red for s = +1): for a
given li, the same angle θi, i ∈ {3, 4} (resp. i ∈ {1, 2}) was chosen as to maximise (resp. minimise) the
ratio ||pi+1−xr||

||pi−xr|| at each successive iteration. The starting position of the Turtle is depicted by the cartoon
image of a turtle. In literary words, it is as if the Turtle was trying as much as possible not to go near xr

when s = −1 (resp. not to move away from xr when s = +1). Yet, as seen in this figure, when s = −1 the
Turtle is inescapably drawn to the centre xr, acting like a black hole, while when s = −1 the Turtle can
do nothing but drift away from x.

Figure 4.8| The limit trajectories of the Turtle : if s = +1 the Turtle is drawn
to the centrexr ; if s = −1 the Turtle is repelled by it.

This attractiveness ofxr happens to be quite problematic: ifxr is inside the design domain and s = +1

then the Turtlemayget closer and closer toxr up to the pointwhere ||pi−xr|| < li andno solution exists:
it will be unable to draw a valid partitioning curve. Such situation is illustrated on FiGURE 4.9.

Figure 4.9| The Turtle is stuck!
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Figure 4.10| Designs obtained with the Turtle and the Markov process. From
top tobottom: the first two rowspresent assemblies obeyingpure
translations with the prescribed cone of freedom on the left. The
next two rows show assemblies obeying pure rotations, with the
location of the centres shown on the left. The bottom row shows
an assembly whose key P1 obeys both a translation and a rota‑
tion.
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4.1.2 A BETTER APPROACH TO CREATE A 2‑PARTS ASSEMBLY: GUIDED PROJECTION ALGO‑
RITHM

TheapproachcombiningaMarkovprocessandTurtlegraphics turnsout tobeproblematic for three reasons:

■ As explained at the end of the previous section and shown on FiGURE 4.9, it may happen that the
Turtle gets stuck when s = +1 and the centre of rotation is ill‑placed. This property is highly un‑
desirable, as one can only start again the algorithm from scratch when it happens, thus wasting both
time and computational resources.

■ Secondly, while this approach ensures that thewhole spaceof separatingpolyline is explored, it leaves
very little control to the user: one can, at most, only specify the starting point of the Turtle and the
range [lmin, lmax] of the step length to guide the design. This lack of control can lead to the creation
of degenerate designs that are of no interest for any practical use.

■ Finally, this approach does not seem to be scalable to 3D:we could not find anyway inwhich a Turtle
(or several) flying in space would generate a 3D assembly.

That being said, it is still possible to generate interlocking assemblies with the Turtle . Our article [36], as
well as our video [78] show built assemblies with novel shapes that are interlocking. Some examples are
shown in FiGURE 4.10.

The desire to do better led to an approach that solves these three points while still leaving the possibil‑
ity to explore the full space of polygonal assembly. It is derived from the guided projection algorithm (GPA),
presented by Tang and coauthors in [96]. Their paper is briefly summed up hereunder.

This article is part of the field of computational geometry for architectural design. It develops a frame‑
work for fast, interactive, form‑finding of physically stable polyhedral meshes through a constrained iter‑
ative optimisation scheme. The authors pay special attention to several constraints, such as boundary in‑
terpolation, planarity of faces, statics, panel size and shape or enclosed volume, but their approach can
easily be adapted to handle other constraints. The problem to solve is simplified by introducing auxiliary
variables and equations to ensure that the constraints are at most quadratic. The gradient is therefore easy
to calculate and takes part in an iterative, Newton‑type, optimisation program. Successive solutions are
biased (projected) towards both low‑energy of a fairness metric and low distance to the previous solution.

This summary may feel quite abstract, so let’s dig into the specifics of the framework by solving a toy
problem.

4.1.2.1 Toy example

Assume we want to solve the following cubic equation:

x3 − 2x2 − x+ 2 = 0 4.4

Whose roots trivially are 1, ‑1 and 2. Themethod described in [96] shall find one of these roots. The first step
is to introduce as many variables as needed to make the problem at most quadratic. Here we only need to
introduce one variable y = x2:

EQUATiON (4.4)⇐⇒

 xy − 2y − x+ 2 = 0

x2 − y = 0
4.5
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The unknowns x and y are stored in a vector X =

x
y

. SYSTEM (4.5) is written in the standard form

ϕi(X) = 1
2X

THiX + bTi X + ci = 0, i ∈ {1, 2} (as we only have two equations) withHi a symmetric
matrix, bi a column vector and ci as scalar. Here:

H1 =

0 1

1 0

 b1 =

−1
−2

 c1 = 2

H2 =

2 0

0 0

 b2 =

 0

−1

 c2 = 0

The goal is to find a solutionX⋆ such that for i ∈ {1, 2}, ϕi(X⋆) = 0. At iteration nwe have an instance of
an almost‑solutionXn. Using a first‑order Taylor expansion one gets:

ϕi(X
⋆) = 0

ϕi(X
⋆) ' ϕi(Xn) +∇ϕi(Xn)

T (X⋆ −Xn) 4.6

Where∇ϕi(Xn) is the gradient of ϕi evaluated at pointXn:

∇ϕi(Xn) = HiXn + bi

By setting EQUATiON (4.6) to 0 one gets:

∀i, ϕi(Xn) +∇ϕi(Xn)
T (X −Xn) = 0⇐⇒HX = r 4.7

With

H =


...

∇ϕi(Xn)
T

...

 r =


...

−ϕi(Xn) +∇ϕi(Xn)
TXn

...


In our specific example:

H =

yn − 1 xn − 2

2xn −1

 r =

xnyn − 2

x2n


While in our exampleH happens to be square and invertible for most values of (xn, yn), it is typically not
the case in a general setting. The linear systemHX = r is often underdetermined, and the space it maps
to is ill‑conditioned,making this systemunsuitable for further computation. The trick used in [96] is to solve
this system in the least‑square sense by using the distance from the previous solutionXn as a regularizer1;
the solution obtained is denoted byXn+1:

||HXn+1 − r||2 + ϵ2||Xn+1 −Xn||2 → min 4.8

1A fairness energy is also used in the paper, but we do not present it here as such energy will not be used to generate assemblies.
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Where ϵ is a small value (typically ϵ = 0.001); the larger ϵ, the closerXn+1 toXn. EQUATiON (4.8) is quadratic
and has thus only oneminimum, found by differentiation:

(HTH + ϵ2I)Xn+1 = HTr + ϵ2Xn 4.9

Xn+1 is computed from SYSTEM (4.9) by Cholesky factorization. The additive term ϵ2I is of importance:
while in theoryHTH has non negative eigenvalues, in practice it is often near singular and numerical im‑
precisionmay shiftone eigenvaluebelowor equal to 0. Adding this diagonal of small values ensures that the
matrix (HTH + ϵ2I) is symmetric definite positive. This process is known as the Tikhonov regularization.
FiGURE 4.11 top row shows the basins of attraction of the method for different starting value x0. One sees
that depending on the initial value x0, the algorithm finds either one of the three roots ‑1, 1 and 2, high‑
lighted using coloured dots. The curve highlighted in red shows the convergence of the algorithm for a
starting value x0 = −3; next, at iteration 1 x1 ' −1.95, then x2 ' −1.3 etc. until convergence to the root
−1. FiGURE 4.11 bottom row shows the absolute error of successive solutions xi, starting at x0 = −3, with
respect to the root−1: the convergence is quadratic, as expected for suchmethod. Finally, one notices that
the algorithm could not converge for x0 = −0.2 (no curve starts from that value on the top graph): this is to
be expected with Newton’s method, it can be unstable.
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Figure 4.11| Basins of attraction and convergence of the error. The three roots
are highlighted with the coloured dots.
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4.1.2.2 On the generation of a 2‑parts assembly obeying a translation using theGuided Projection Algorithm

This section aims to optimise, through the guided projection algorithm (GPA), the geometry of a polyline so
that it obeys a translation.
Wewant to partition the design domain into twoparts such that one of themobeys a direction of translation
x ∈ S1. In SECTiON 3.1.1.1 we understood that given a polyline whose constitutive points are p1, ...,pk, of
coordinates pi = (xi, yi)

T , it obeys x if and only if

Atx ≥ 0 At =


...

...

yi − yi+1 xi+1 − xi
...

...

 ∈ Rk×2

Constraining the polyline to obey a translation
In SECTiON 3.1.1.1 the polyline was given, and the set of linear inequalitiesAtxt ≥ 0, of unknownxt, gives
the cone of translational freedom of the polyline. In this section, we reverse our point of view: the cone of
translational freedom is fixed, decided upon by the user (and for simplicity, we first assume the cone to be
reduced to a single direction xt ∈ S1), and we want to find a polyline obeying it: inAtxt ≥ 0, matrixAt

is now the variable, and xt is now the parameter. To use the GPA, we have to transform the set of linear
inequalitiesAtxt ≥ 0 into a set of at most quadratic equations ϕi(X) = 1

2X
THiX + bTi X + ci = 0.

Let xt = (x, y)T .

Atxt ≥ 0⇐⇒ ∀i ∈ J1, k − 1K, (yi − yi+1)x+ (xi+1 − xi)y ≥ 0

⇐⇒ ∀i ∈ J1, k − 1K∃αi ∈ R, (yi − yi+1)x+ (xi+1 − xi)y = α2
i

⇐⇒ ∀i ∈ J1, k − 1K∃αi ∈ R, −α2
i +

(
−y x y −x

)


xi

yi

xi+1

yi+1

 = 0

Notation
LetM = (mi,j) ∈ Rn×n a symmetric matrix and v = (vi) ∈ Rn for some n ∈ N. The notations

M =

a b

b c

← i

← j
v =

d
e

← k

← l

means thatM is filled with 0, except at then entries crossing indices i and j:mi,i = a,mi,j = mj,i = b and
mj,j = c. Similarly, v has 0 coefficients everywhere, except vk = d and vl = e. In the following definitions
Hi is a symmetric matrix of size the dimension of vectorX .
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Let o = 2k be the index such thatX[o+ i]maps to αi. Let

X =



x1

y1

x2
...

yk

α1

α2

...

αk−1



Hi =
(
−2
)
← o+ i bi =


−y

x

y

−x


← 2i

← 2i+ 1

← 2i+ 2

← 2i+ 3

ci = 0

Thus, one has:
Atx ≥ 0⇐⇒ ∀i ∈ J1, k − 1K, 1

2
XTHiX + bTi X + ci = 0

Then, as explained in SECTiON 4.1.2.1, the gradients of each ϕi are calculated, ∇ϕi(X) = HiX + bi

and stacked in a matrixH . Similarly, scalars−ϕi(X) +∇ϕi(X)TX are stored in a vector r, and the next
almost‑solution is solution to the system (HTH + ϵ2I)Xn+1 = HTr + ϵ2Xn.
The first instanceX0 is initialised as follows: the user inputs a polyline and the coordinates xi, yi of each
point pi are stored at the appropriate location (2i and 2i + 1) in X0. Regarding αi, if (yi − yi+1)x +

(xi+1 − xi)y ≥ 0, meaning that the segment [pi,pi+1] obeys the direction of translation xt, then αi =√
(yi − yi+1)x+ (xi+1 − xi)y; otherwise αi = 0. αi is then stored at index 2k + i inX0.

Note that had we wanted the polyline to obey a cone bounded by two vectors xA
t and xB

t instead of
a single direction xt, one should only double the number of constraints ϕi → ϕAi , ϕ

B
i and the number of

variables αi → αA
i , α

B
i .

FiGURE 4.12 shows a polyline before and after a single step of the optimisation (the optimisation was
stopped after X1 being calculated). The direction of translation is horizontal: xt = (1, 0)T . On the left,
the provided polyline is not compatible with this direction, one clearly sees line segments whose normal
vectors are pointing away fromxt. On the contrary, after a GPA step, the polyline on the right shows that all
its segments have their normal vectorsni compatible with xt: ni · xt ≥ 0.

With the given constraints ϕi, we can only make a polyline floating in the plane obey a translation. Yet
to generate a 2‑parts assembly, several additional constraints must be implemented:

■ The endpoints of the polyline shall precisely lie on the edges of the design domain.
■ To prevent too fine details:

– The length of each line segment should be greater than some threshold lmin.
– The curvature at each vertex of the polyline should not be too high, so as to avoid thin tines. Thus

the angle between two successive segments should be greater than some threshold.
– the so‑called interior points of the polyline (all the points but the endpoints) should not be too

close to the edges of the design domain, so as to avoid bottleneck‑like features.

■ Obviously, all the polyline points should be inside the design domain.
■ A counterpart of the snap order should be implemented, tomake sure that the actual cone of freedom

of the polyline precisely matches the user‑given ones.
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Figure 4.12| A polyline before (left) and after (right) a single step of GPA.

The following paragraphs address these points.

Constraint on theminimal length of the segments
Two constraints must be implemented: one that calculates the length of the segment, the other that com‑
pares it to the user‑given threshold lmin.

1. Constraint to calculate the length li of a segment:
For a segment i ∈ J1, k− 1K its length li is given by l2i = (xi+1 − xi)2 + (yi+1 − yi)2. Let the integer o
be the index such thatX[o+ i] stores the value of li. With:

Hi =



2 0 −2 0 0

0 2 0 −2 0

−2 0 2 0 0

0 −2 0 2 0

0 0 0 0 −2



← 2i

← 2i+ 1

← 2i+ 2

← 2i+ 3

← o+ i

bi = 0 ci = 0

One has
(xi+1 − xi)2 + (yi+1 − yi)2 − l2i = 0⇐⇒ 1

2
XTHiX + bTi X + ci = 0

2. Constraint imposing li ≥ lmin:
Note that li ≥ lmin ⇐⇒ l2i − l2min − µ2

i = 0 for some µi. Let ol (resp. om) be the index such that
X[ol + i] (resp. X[om + i]) maps to li (resp. µi). With:

Hi =

2 0

0 −2

← ol + i

← om + i
bi = 0 ci = −l2min

One has
l2i − l2min − µ2

i = 0⇐⇒ 1

2
XTHiX + bTi X + ci = 0
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Constraint on theminimal angle between two successive segments
To prevent thin tines (such as the one in red
on the left of the inset) a constraint is im‑
plemented to ensure that the angle between
two successive segments is greater than some
threshold θlim. Such angle is given by θ =

arccos(−ni · ni+1) where nj is the unit
normal vector of segment [pj ,pj+1]. Thus
the constraint to implement is ni · ni+1 +

cos θlim ≥ 0⇐⇒ ni · ni+1 + cos θlim − ϵ2i = 0 for some ϵi ∈ R. As the unit normal vectors are needed to
express this constraint, several steps (related to the computation of the normal) are required before imple‑
menting it.

1. Constraint to compute a (non‑unit) normal vector:
The two coordinates nix, niy of the normal vector ni are introduced as variables. To constrain this
vector to be orthogonal to the segment, one implements ni · (pi+1 − pi) = 0 ⇔ −nixxi − niyyi +
nixxi+1 + niyyi+1 = 0. Let o be the index such thatX[o+ 2i] andX[o+ 2i+ 1]map to nix and niy .

Hi =



0 0 0 0 −1 0

0 0 0 0 0 −1

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 1 0 0 0

0 −1 0 1 0 0



← 2i

← 2i+ 1

← 2i+ 2

← 2i+ 3

← o+ 2i

← o+ 2i+ 1

bi = 0 ci = 0

And:
ni · (pi+1 − pi) = 0⇐⇒ 1

2
XTHiX + bTi X + ci = 0

2. Constraint to consistently calculate the normal vector:
As the normal vector can be ambiguous (ifni is a normal vector, then so is−ni), a constraint is imple‑
mented to consistently define the normal vector to be positively collinear with a π

2 counterclockwise
rotation of the tangent vectorpi+1−pi. Mathematically speaking, onewants (pi+1−pi)×ni ≥ 0 i.e.
(pi+1−pi)×ni−δ2i = 0 for some δi ∈ R. Let on be the index such thatX[on+2i] andX[on+2i+1]

map to nix and niy , and od such thatX[od + i]maps to δi.

Hi =



0 0 0 0 0 −1 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 −1 0 0

0 1 0 −1 0 0 0

−1 0 1 0 0 0 0

0 0 0 0 0 0 −2



← 2i

← 2i+ 1

← 2i+ 2

← 2i+ 3

← on + 2i

← on + 2i+ 1

← od + i

bi = 0 ci = 0

And:
(pi+1 − pi)× ni − δ2i = 0⇐⇒ 1

2
XTHiX + bTi X + ci = 0
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3. Constraint to unitise the normal vector:
To calculate the angle between two segments, each normal vector must be of unit length, imple‑
mented as ||ni||2 − 1 = 0. Let o be the index such that X[o + 2i] and X[o + 2i + 1] map to nix
and niy . 2 0

0 2

← o+ 2i

← o+ 2i+ 1
bi = 0 ci = −1

And:
||ni||2 − 1 = 0⇐⇒ 1

2
XTHiX + bTi X + ci = 0

4. Constraint on the angle between two successive segments:
The constraintni · ni+1 + cos θlim − ϵ2i = 0 can now be implemented. Let on be the index such that
X[on + 2i],X[on + 2i + 1],X[on + 2i + 2] andX[on + 2i + 3] respectively map to nix, niy , ni+1x

and ni+1y . Let also oe be the index such thatX[oe+ i]maps to ϵi.

Hi =



0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 −2



← on + 2i

← on + 2i+ 1

← on + 2i+ 2

← on + 2i+ 3

← oe + i

bi = 0 ci = cos(θlim)

And:
ni · ni+1 + cos θlim − ϵ2i = 0⇐⇒ 1

2
XTHiX + bTi X + ci = 0

All the aforementioned constrained exhibit matrices Hi, vectors bi and scalars ci which are constant:
their values do not depend on the actual locations of points pi, i ∈ J1, kK. They only depend on the order‑
ing of the pi, i.e. on the topology of the polyline. As such, assuming the polyline to not change its topology,
these constraints can be computed once at the beginning of the optimisation, and they are thus computa‑
tionally cheap. They are referred to as topological constraints.
On the contrary, the following constraints depend on the locations of the polyline points, i.e. on the ge‑
ometry of the polyline. Because the whole point of the optimisation is to move around the pi, their values
change at each iteration and thus they have to be recalculated at each iteration, making them computa‑
tionally more expensive. They are referred to as geometrical constraints.

Constraint requiring the endpoints of the polyline to slide on the edges of the design domain
Following [96], this constraint is imple‑
mented as (pi − qi)× tΠ(pi) = 0where

■ pi refers to the endpoints of the poly‑
line: i ∈ {1, k}.

■ Π(pi) refers to the projection of point
pi onto the edges of the design domain;
it is the closest point topi on the design
domain.

■ qi is one of the two points defining the segment of the design domain on whichΠ(pi) is.
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■ tΠ(pi) = (tix, tiy)
T refers to the tangent of the edge of the design domain on which pi is projected

throughΠ.

It constrains the vectorpi−qi tobe collinear to the edgeof thedesigndomain, effectively pushingpi to slide
on the edge. To prevent numerical instabilities, among the two possible locations of point qi, it is selected
as the one the farthest away from pi. For i ∈ {1, k} let:

Hi = 0 bi =

 tiy

−tix

← 2i

← 2i+ 1
ci = −qi × tΠ(p)

And:
(pi − qi)× tΠ(pi) = 0⇐⇒ 1

2
XTHiX + bTi X + ci = 0

Constraint requiring the interiorpoints tobe inside thedesigndomain, butpreventing themfrombeing
too close to the edges of the design domain
To prevent bottleneck‑like features, a constraint
is implemented to ensure that each of the inte‑
rior points of the polyline stays at a distance larger
than some predefined∆ from the edges of the de‑
sign domain. Also, to prevent interior points from
wandering outside of the design domain, a con‑
straint must be implemented to ensure they stay
inside it. Fortunately, a single equation can han‑
dle both constraints. As shown on the inset, each
interior point pi is projected onto the edges of the design domain Π(pi). The unit normal vector
(pointing inside the design domain) of the edge containing Π(pi) is called nΠ(pi) of coordinates
(nΠ(pi)x, nΠ(pi)y)

T . Point Π(pi) is translated to get qi = Π(pi) + ∆nΠ(pi). The constraint is then
implemented as: nΠ(pi) · (pi − qi) ≥ 0⇐⇒ nΠ(pi) · (pi − qi)− ζ2i = 0 for some ζi ∈ R.
Let o be the index such thatX[o+ i]maps to ζi. For i ∈ J2, k − 2K, let:

Hi =
(
−2
)
← o+ i bi =

nΠ(pi)x

nΠ(pi)y

← 2i

← 2i+ 1
ci = −nΠ(pi) · qi

And:
nΠ(pi) · (pi − qi)− ζ2i = 0⇐⇒ 1

2
XTHiX + bTi X + ci = 0

Constraint requiring segments to snap
To ensure that the polyline obeys exactly the direction of translation xt, we saw in SECTiON 4.1.1.3 that at
least two segments must snap: the segments should have opposite orientation and their normal vectors
should be orthogonal to xt. To model that using a quadratic equation ϕi(X) = 0, assume that the indices
I ⊂ J1, k−1Kof the segments thatmust snap are given. Note thatI contains at least twoelements: |I| ≥ 2.
SECTiON 4.1.3.2 deals with the relevant strategies to compute such set I. The constraint to implement is
simply ∀i ∈ I, ni ·x = 0. Let o be the index such thatX[o+2i] andX[o+2i+1]map to the coordinates
nix and niy ofni. For i ∈ I , let:

Hi = 0 bi =

x
y

← o+ 2i

← o+ 2i+ 1
ci = 0
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Figure 4.13| Input (left) and output (right) of ALGORiTHM 1. Snap segments are
highlighted in red.

And:
ni · x = 0⇐⇒ 1

2
XTHiX + bTi X + ci = 0

Even though the coefficients in bi are constant, this is a geometrical constraint as the set I depends on the
geometry of the polyline.
Had we wanted the polyline to obey a cone bounded by xA and xB , we would just have had to distinguish
between IA and IB , and nothing else would have changed.

Once all these topology and geometry constraints are taken into account, one can easily generate a 2‑
parts assembly obeying a translation. The algorithm is given below:
Algorithm 1: OptimisePolyline()
Input: inputPolyline: An ordered list of polyline points

1 Start:
2 X = ComputeVectorX(inputPolyline)
3 Hg, bg, cg = ComputeGeometryConstraints(X)
4 Ht, bt, ct = ComputeTopologyConstraints()
5 Hs, bs, cs = Stack(Hg,Ht), Stack(bg, bt), Stack(cg, ct)
6 for epoch in range(MAXEPOCH) do
7 X = SolveForX(X,Hs, bs, cs) // Build matrix H and vector r, and solve

(HTH + ϵ2I)Xn+1 = Htr + ϵ2Xn

8 Hg, bg, cg = ComputeGeometryConstraints(X)
9 Hs, bs, cs = Stack(Hg,Ht), Stack(bg, bt), Stack(cg, ct)

10 residual = ComputeResidual(X,Hs, bs, cs) // Compute the norm of the vector obtained by

stacking the ϕi(X)

11 if residual < threshold then
12 break

13 optimisedPolyline = ExtractPolylineFromX(X)
14 return optimisedPolyine

FiGURE 4.13 shows the user‑given polyline on the left, obviously not obeying the translationx = (1, 0)T ,
and the result of the optimisation on the right. Onenotices that the tine on the tophas beenopened tomeet
with the minimal angle constraint, the endpoints precisely are on the design domain, and all segments are
well oriented with respect to the direction x, some of them having snapped (in red).

4.1.2.3 On the generation of a 2‑parts assembly obeying a rotation using the Guided Projection Algorithm

Let xr = (x, y)T ∈ R2 be a centre of rotation. This section aims to formulate the constraints ϕi so that a
polyline is optimised to obey a rotation around xr. As stated by SYSTEM (3.12), a polyline (pi), i ∈ J1, kK
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obeys a rotation around xr if and only if:

∀i ∈ J1, k − 1K,
 sm(pi,xr) · ni ≥ 0

sm(pi+1,xr) · ni ≥ 0
4.10

Where s = ±1 stipulates whether the rotation is counterclockwise or clockwise, as understood in SECTiON
4.1.1.5. The task at hand is straightforward: a first constraint shall calculate the instantaneous directions of
motionmpi while a second constraint ensure that SYSTEM (4.10) is met.

Constraint to calculate the instantaneous direction of motionmpi

Recall that mpi
=

y − yi
xi − x

. By introducing the coordinates (mix,miy) of vector mpi
, one needs to

implement two equations: mix − y + yi = 0 andmiy − xi + x = 0. Let o be the index such thatX[o+ 2i]

andX[o+ 2i+ 1]map tomix andmiy . For i ∈ J1, k − 1K
H2i = 0 b2i =

1

1

← o+ 2i

← 2i+ 1
c2i = −y

H2i+1 = 0 b2i+1 =

 1

−1

← o+ 2i+ 1

← 2i
c2i+1 = x

And thus:

mix − y + yi = 0⇐⇒ 1

2
XTH2iX + bT2iX + c2i = 0

miy − xi + x = 0⇐⇒ 1

2
XTH2i+1X + bT2i+1X + c2i+1 = 0

Note that this is a topological constraint.

Constraint requiring the polyline to obey a rotation
The constraints to implement are smpj

· ni ≥ 0⇐⇒ smjxnix + smjyniy − η22i = 0 for j ∈ {i, i+ 1}. Let
oe be the index such thatX[oe+2i] andX[oe+2i+1]map to η2i and η2i+1. Let also om be the index such
thatX[om+2i] andX[om+2i+1]map tomix andmiy . Similarly, let on be the index such thatX[on+2i]
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Figure 4.14| Input (left) and output (right) of ALGORiTHM 1 adapted to work in
rotation. Snap segments are highlighted in red.

andX[on + 2i+ 1]map to nix and niy . For i ∈ J1, k − 1K:

H2i =



0 0 s 0 0

0 0 0 s 0

s 0 0 0 0

0 s 0 0 0

0 0 0 0 −2



← on + 2i

← on + 2i+ 1

← om + 2i

← om + 2i+ 1

← oe + 2i

b2i = 0 c2i = 0

H2i+1 =



0 0 s 0 0

0 0 0 s 0

s 0 0 0 0

0 s 0 0 0

0 0 0 0 −2



← on + 2i+ 2

← on + 2i+ 3

← om + 2i

← om + 2i+ 1

← oe + 2i

b2i+1 = 0 c2i+1 = 0

And:

smpi
· ni − η22i = 0⇐⇒ 1

2
XTH2iX + bT2iX + c2i = 0

smpi
· ni − η22i+1 = 0⇐⇒ 1

2
XTH2i+1X + bT2i+1X + c2i+1 = 0

It is also a topological constraint.

Constraint requiring segments to snap
Very similar to the case in translation: given a set of indices I ⊂ J1, k − 1K, the constraint is implemented
asmpi

·ni = 0, for i ∈ I . Hence, let om be the index such thatX[om +2i] andX[om +2i+1]map tomix

andmiy ; let on be the index such thatX[on + 2i] andX[on + 2i+ 1]map to nix and niy :

Hi =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


← on + 2i

← on + 2i+ 1

← om + 2i

← om + 2i+ 1

bi = 0 ci = 0
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Figure 4.15| Input (left) and output (right) of ALGORiTHM 1 adapted to work in
rotation and in translation. Snap segments are highlighted in red.

And
mpi · ni = 0⇐⇒ 1

2
XTHiX + bTi X + ci = 0

FiGURE 4.14 shows the input/output pair of the GPA where the aforementioned constraints were added
to make it work in rotation.

4.1.2.4 On the generation of a polyline obeying both a translation and a rotation

Should the user want the polyline to obey both a translation alongxt ∈ S1 and a rotation aroundxr ∈ R2,
then he/she should only implement both constraints, and the GPA optimises the polyline to meet this goal.
FiGURE 4.15 shows the input/output pair of the GPA adapted to work both in translation and rotation. In
red are the snap segments. Note that the algorithm has moved one of the endpoint of each snap segment
exactly underneath the centre of rotationxr = (0, 1)T (the design domain being centered at0). As such, for
these points, the instantaneous direction ofmotionmpi is collinearwith the horizontal axis, which happens
to be the prescribed direction of translation xt = (1, 0)T . Thus these three segments, being aligned with
xt, simultaneously snap in translation asni · xt = 0, and in rotation asmpi

∝ xt =⇒ ni ·mpi
= 0.

A word of caution: special care should be taken by the user when choosing the direction of translation
xt and the centre of rotationxr: one cannot ask for a polyline to simultaneously obey a rotation that would
lift it up while obeying a translation pointing downwards.

4.1.2.5 Results

FiGURE 4.16 shows a typical convergence of a GPA optimisation. Letϕ(Xn) = (ϕ1(Xn), . . . , ϕi(Xn), . . .)
T

be the vector obtained by stacking the residuals ϕi(Xn) at each iteration n. FiGURE 4.16 displays the graph
of the evolution of the logarithm of the euclidean norm of the residual vectorϕ, i.e. log ||ϕ||. It shows that
whenever the residual falls below a given threshold (' 10−11 here) either a new constraint is turned on or
the final solution is reached. The highlighted red points correspond to iterations where a new constraint
was switched on: at first, the constraint requiring the endpoints of the polyline to slide on the edges of the
design domain, and after two iterations the snap constraint.
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Figure 4.16| Evolution of the norm of the residual (log y‑scale).

We can also display the residuals of each constraint (in blue on FiGURE 4.17), as well as the associated
weight (in red). While Tang and colleagues [96] talk about smoothly varying weights, here we adopt amore
brutal approach where the weights are binary, in {0, 1}. These graphs clearly show when the sliding end‑
points and snap constraints are activated. It is also noticeable that the length constraint (weight constantly
equal to 1) was met throughout the execution with a 0 residual. It is also the case for the “assemblability‑
Translation” (stating thatni ·xt ≥ 0) but here it is simply becausewe optimised the polyline to obey a pure
rotation, and thus this weight has been constantly set to 0. On FiGURE 4.17 some constraints (“repelSeg‑
ments” for instance) are shown but are not described in this dissertation as they are of minor importance.
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4.1.2.6 Using the optimised separating polyline to partition the design domain into two parts
The last step of creating a 2‑parts assembly is to actually create the parts. The goal of this section is to ex‑
plain how given a polyline and a design domain, the latter can be partitioned into two partsP0 andP1, with
P1 obeying the prescribedmotion.

Before theGPAoptimisation is run, the input polyline is oriented so that its normal vectors point towards
what will be the part to move P1. In layman’s words, given the ordering of the point (pi)1≤i≤k, we must
checkwhether this ordering leads to the normal vectors being somewhat in the direction of translation (and
thus pointing towards P1). If not, then the reversed ordering (pk−i+1) shall be considered.

Translation
Should the optimised polyline obey a translationxt ∈ S1, then to check whether the input polyline is well
oriented is straightforward: the algorithm loops over each initial segment [pi,pi+1] and compute its normal
vectorni by rotating its unit tangent by π

2 counterclockwise. Depending on the sign ofni · xt, a positive or
negative counter is incremented. At the end of the loop a majority rule is adopted: if the positive counter
is greater than the negative, then the ordering (pi) is kept. Otherwise the polyline is flipped and the points
are ordered (pk−i+1). This ensures that most of the segments have their normal such thatni · xt ≥ 0.

Rotation
Should the polyline obey a rotation aroundxr ∈ R2, then a simple trick is implemented: the rotation shall
be approximated by a translation, to return to the previous case. Let o denote the centroid of the design
domain. If s = +1 (counterclockwise rotation), then the centre of rotation is projected at infinity along
vector xr − o. Indeed, the further away is xr from o the more collinear are the instantaneous directions
of motionmpi

. At the limit they all are orthogonal to xr − o. This is illustrated on FiGURE 4.18: the square
is centered at the origin and, on the left, xr = (0, 1)T and the instantaneous direction of motionmpi

are
depicted using red arrows. In the middle xr (not shown) is moved vertically by a finite amount (to (0, 3));
it can already be noticed that the mpi

are more aligned with each other. At the limit where xr is moved
upwards towards infinity, allmpi

are collinear with the direction xt = (1, 0)T . Effectively, in such a case,
the polyline is tasked to obey the translationxt. Had sbeen negative,xr would have beenmoved to infinity
using the opposite vector−(xr − o).
This trick gives us a direction of translationxt such that the instantaneous direction of motion (collinear to
xt) are somewhat close tom(pi,xr). The ordering of the points (pi)1≤i≤k is kept or flipped according to
the aforementioned algorithm in translation.

The polyline now being well oriented, it is optimised using the GPA. The design domain is ordered in a
counterclockwise fashion so that the normal vectors of its edges point inside it. At the end of the optimisa‑
tion, the edge of the design domain onwhich the last point pk of the polyline is recorded. Starting from the
endpoint of that edge, the vertices of the design domain are added in a list in order until arriving at the edge
where the start point p1 is. There the polyline points p1, ...,pk are added in that order. This list contains all
the points of the part P1.
To create partP0 the same algorithm is used but the ordering of the polyline vertices is flipped. FiGURE 4.19
illustrate the process of creating part P1. The polyline is oriented from p1 to pk, as suggested by the blue
arrow, and the design domain from v1 to v4, see the black arrow. The last point pk lies on edge [v1,v2] of
the design domain. The endvertex v2 is added to the list. Secondly the end vertex v3 of the following edge
[v2,v3] is added. As the first point p1 lies on edge [v3,v4], the whole polyline p1, ...,pk is added to the list.
Thus partP1 ismade of pointsv2,v3,p1, ...,pk. To create partP0 the sameprocess happens by considering
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Figure 4.18| The further away xr from the design domain, the more aligned
are the instantaneous directions of motionmpi .

Figure 4.19| By carefully ordering the polyline points and the design domain
vertices, parts P0 and P1 can easily be built.

the flipped polyline pk, ...,p1.

The first task is nowcomplete! Wehavenowunderstoodhowtocreate a2‑parts assemblyA = {P0, P1},
such thatP1, thanks to the snap segments, obeys precisely a given direction of translationxt ∈ S1 (or, with
little work, a cone bounded by two vectorsxA

t andxB
t ), and/or a rotation around a centrexr ∈ R2. We can

get on to the next task consisting in generating aN+1‑parts assembly, withN > 1.

4.1.3 ON THE CREATION OF THE FOLLOWING PARTS

The process to create each of the following parts Pi, i > 1 is the same as the one used to create a 2‑parts
assembly described in SECTiON 4.1.2. What is partP0 at the end of iteration i becomes the design domain at
the beginning of iteration i + 1. Thus, 2‑parts assemblies keep being created in a design domain that gets
smaller and smaller, this process is illustrated on FiGURE 4.20 for a 3+1 parts assembly. As such, creating
aN+1‑parts assembly is straightforward. The difficulty lies in creating an assembly that is interlocked, i.e.

Figure 4.20| Each part Pi is created in what was P0 at the previous iteration.
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whose sole part that can be removed without colliding with any other is the key P1.

4.1.3.1 Assessing the interlocking of an assembly
As explained on SECTiON 3.1.3, the Non Directional Blocking Graph (NDBG) of an assembly encodes all the
information necessary to assess the blocking relationships between its constitutive parts. Thus, to ensure
that the assembly is interlocked, at the end of the creation of each part Pi, i > 1, the NDBG is calculated:
the cones of freedom in translation Ct and counterclockwise and clockwise rotations Cccwr and Ccwr of each
created part are calculated. The vectors bounding the cones of translational freedom Ct define the direc‑
tion of translation of the base DBGs in translation. The cells of dimension 0 bounding (or resulting from the
intersection of) the cones of rotational freedom Cccwr and Ccwr constitute the centres of translation of the
base DBGs in rotation. For each such identifiedmotion, the corresponding base DBG is calculated, the com‑
putation being summed up in SECTiON 3.1.2.2. If the NDBG says that all base DBGs are strongly connected
(but the one(s) associated toP1 that must have two strongly connected components, one being reduced to
P1 the other being the other parts) then the assembly consisting of parts {P0, ..., Pi} is interlocked and the
creation of the next part can start. Else, the assembly is not interlocked and the next iterationswill notmake
it interlocked. Indeed, in this case, someother part(s) than the key canmove and (since the successive parts
will be created inside the currentP0) the further partitioning ofP0 will not change that fact. Thus, the latest
polyline is deemed invalid andmust be optimised again from scratch, using a different input polyline.

Therefore, if a polyline is invalid and the optimisationmust be run again, the input polylinemust change
(otherwise the optimisation will deliver the same result). A first possibility is to ask the user to manually
input another polyline. A second option is to automatically generate a polyline using, for instance, the cou‑
ple Turtle and Markov process: the Turtle draws an initial polyline that is then optimised using GPA. To
avoid falling into the pitfalls listed at the beginning of SECTiON 4.1.2, the Turtle shall only generate a part
obeying a translation; if a rotation is imposed by the user, then the Turtle draws a polyline obeying the
pseudo‑translation obtained bymoving the centre of rotation to infinity, along the same process as the one
described SECTiON 4.1.2.6. This first instance of a solution is, in general, good enough for the GPA to take
over. Moreover, the user can specify goal points for the endpoints of the polyline: p1 and pk should be
within a given radius from two specified points on the edge of the design domain. Such a constraint must,
of course, be implemented within the GPA framework. If this choice is made, it gives back to the user more
control over the polyline.
The outline of the algorithm is as follows:

1. Take the partP0 obtained at the end of the previous iteration, and consider it to be the design domain.
2. Either the user inputs a polyline or the Turtle is tasked with drawing one. In either case, an input

polyline is available. Goal points can optionally be specified.
3. Run theGPA to optimise the polyline and compute the newest partPi aswell as the remaining partP0.
4. Compute theNDBGassociatedwith the current assembly. If it says the assembly is indeed interlocked,

then this iteration is finished. Else, go back to STEP 2.

This outline is illustrated on FiGURE 4.21 for the creation of an assembly of 4+1 parts; parts Pi, i ∈ 1, 2, 3

obey a rotation around xi
r and part P4 obeys a translation along xt

4. The top two rows show the input and
the successive iterations, as well as the fact that the NDBG is calculated from iteration 2, and as long as it
is not valid, the problematic part keeps being recreated. In the end, the design domain is partitioned into
5 parts, and the NDBG, on the bottom row, show that all base DBGs are strongly connected, except for the
DBG associated with the key which states that P1 is free to rotate around x1

r . Cones Ct, Cccwr and Ccwr have
been calculated and were all reduced to the single xi

r (i ∈ {1, 2, 3}) or x4
t , thus proving that the four DBGs
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Figure 4.21|Workflow of the generation of an assembly made ofN+1 parts.

on the figure are indeed the base DBGs of the assembly.

4.1.3.2 Further details and trick to increase the odd of an assembly to be interlocked
An important detail concerning the implementation of the GPA is that not all constraints ϕi are used simul‑
taneously: as someare conflictingwith each other, theGPAwould sometimes get stuck, oscillating between
solutions that alternatively increaseanddecreaseagivenconstraint. For instance, thegoalpoints constraint
and the constraint requiring the endpoints to slide on the edges of the design domain were found to be of‑
ten at oddwith each other: the former, trying tominimise the distance between the endpoints and the goal
points, would try to make the endpoints move directly towards the goal points; the latter would force the
endpoints to follow the direction of the edges, leading to poor results (often slow convergence, sometimes
no convergence at all) when the edges are not oriented towards the goal points. To prevent conflicting situ‑
ations like this, an on‑off iterative approach is used, where constraints are alternatively switched on and off,
to aid the convergence (at the end, of course, all constraints are switched on). In our example, the sliding‑
endpoints constraint is first switched off while the goal points constraint is on: this leads the endpoints of
the polyline to move quickly close to the goal points without taking into account the design domain edges.
Once they are close enough, the sliding‑endpoints constraint is switched on, resulting in the endpoints be‑
ing projected onto the edges of the design domain, close to the goal. This on‑off approach helps the solver
find solutions faster.
In practice, all constraints are at first on, except the sliding‑endpoints and snap ones. When a first stable
solution is found, the sliding‑endpoints constraint is activated. Once a new solution is found, the snap con‑
straint is switched on, until the final convergence of the algorithm.
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Therearenumerousways tochoose the snapsegments, butwe found two, inparticular, tobewell‑suited
to the generation of an assembly:

1. The user specifies that n ≥ 2 segments must snap. When the snap constraint is activated then a listL
of snap segments is initialised and:

■ if the polyline must obey a translation: its segments are ranked by how close they already are
from their snap position, i.e. how close their normal is from being orthogonal to the prescribed
direction of translation xt (or one of the two directions xA

t and xB
t bounding the prescribed

cone). Let ti denotes the unit tangent of segment [pi,pi+1] (oriented from pi to pi+1); the larger
|ti · xt| the closer is the segment from its snap position. If |ti · xt| = 1 the segment has already
snapped. These dot products are sorted and the two segmentswith the lowest (closest to ‑1) and
highest (closest to 1) values are added to the list L. It ensures that at least two segments snap
opposite to each other: one snaps to be oriented along+xt (or±xA

t ) and the other snaps to be
along−xt (or∓xB

t ), a necessary and sufficient condition for the assembly to obeyx (or the cone
xA
t and xB

t ) as seen in SECTiON 4.1.1.3 and illustrated on FiGURE 3.4. The n − 2 following snap
segments are added to L according to how close to 1 is |ti · ni|, without considering a positive
or negative orientation.

■ if the polyline must obey a rotation around a centre xr ∈ R2: the algorithm is similar to the
translation case. The segments [pi,pi+1]of the polyline are ranked according to howorthogonal
their normal vector is to the instantaneous directions of motionmpi

,mpi+1
. Let ti denotes the

unit tangent of segment [pi,pi+1] (oriented from pi to pi+1) and let j refers to both i and i + 1;
the larger |ti ·mpj

| the closer is the segment from its snap position. If |ti ·mpj
| = 1 the segment

has already snapped. Then again, the segments corresponding to the smallest (close to ‑1) and
highest (close to 1) dot products are added to L. The list is completed with the n − 2 segments
with the largest |ti ·mpj |.

2. The second method is a trick to increase the odds of interlocking. While the first method works well
for high values of n, for low values of n it may lead to designing parts that are hard to interlock with
successive ones. For instance, on FiGURE 4.22, for n = 2, it is absolutely impossible to create an 2+1
parts interlocking assembly on the left: the geometry of P1 makes it impossible for P2 to be blocked.
Even if the polyline separating P2 from P0 started in the small recess at the bottom of the boundary
of P1, one could still lift P1 and P2 up simultaneously, making the assembly not interlocked. On the
right, the polyline bounding P1 snapped in the opposite directions. Unless the polyline of P2 starts at
the topor bottomvertical segments (small probability, assuming itmay start uniformly anywhere), the
assemblywill always be interlocked. Therefore, FiGURE 4.22 illustrate the importance of the directions
of the snaps for low value of n. This second method simply ensures that exactly two snaps are made,
in the directions that increase the odds of the interlocking. To select the two segments that should
go into the listL, the segments are weighted according to how close to the extremities of the polyline
they are (i.e. how close their index is close to 2 or k − 2, k being the number of polyline points) and
how close to a snap in the correct direction they already are (similar to the first method). Segments 1
and k − 1 are left out as snapping them is often undesirable as it may lead a segment to be contained
in an edge of the design domain, as would be the case in the figure. By modulating the importance
given to theweights, one reaches the full spectrumbetween the firstmethod forn = 2 and the certain
snapping of segments 2 and k − 2 in the directions that maximise the interlocking (as P1 on the right
of FiGURE 4.22).
This second method becomes useless if the user manually inputs a polyline and makes sure that two
segments are already close to a snap in the correct directions at the correct positions on the polyline.
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Figure 4.22| On the left the assembly is not interlocked. A small change in the
geometry of P1 leads to an interlocking assembly on the right.

Still, it proved to be useful when the input polyline was generated by the Turtle .

4.1.3.3 Conclusion
The task of generating an interlocking assemblymade ofN +1 parts obeying translation and/or rotation is
surprisingly fast once one knows how to generate a 2‑parts assembly. As understood, the same algorithm
(generating a 2‑parts assembly) is run on the successive remaining parts labelled asP0. At each iteration i >
1, the remaining part becomes the design domain and is partitioned into a Pi and a new P0. Following this
step, the NDBG is calculated. If it says that the assembly is not interlocked, the latest optimised polyline is
discarded and either the user or the Turtle provides a new input for the GPA. If the assembly is interlocked,
then P0 becomes the design domain at the next iteration i+ 1.

4.2 MECHANICAL PROPERTIES OF A GENERATED ASSEMBLY

4.2.1 LITERATURE REVIEW

While this manuscript is based on the observation that new manufacturing technologies can fabricate as‑
semblies with geometrical features inaccessible to more traditional methods, and therefore it becomes in‑
teresting to explore the space of interlocking assemblies, we have to show that the generated assemblies,
with their strange‑looking features, are relevant from a mechanical perspective. The literature on the me‑
chanical analysis of self‑fitting joints is plentiful but mostly focuses on indirect assemblies using dowels (or
similar intermediary bodies). Seldom are the papers focusing on self‑fitting carpentry joints. For instance,
Parisi et al., [75], studied a specific joint, used to build roofs around the Mediterranean and the Alps, the
birdsmouth joint. They provide an experimental and numerical analysis of such joints and compare op‑
tions to retrofit them. In exactly the same vein, Branco et al. [15] further studies this joint to evaluate differ‑
ent strengthening techniques. In [14], Branco and coauthors sum up the technique consisting of modelling
joints as equivalent springs to perform a semi‑rigid analysis and give various recommendations regarding
thedesignand reinforcementof various traditional joints (tenon, lap, scarf). Quite recently, Braunetal., [16],
build a numerical model performing linear (thus fast) analysis of single‑ and double‑step joints under com‑
pression. Themodel is calibrated using experimental data. Moradei et al., [64], also used numerical models
to assess the behaviour of traditional Chinese and Japanese assemblies subjected to bending moments.
What the literature lacks is a unified approach to model joint geometries, but as put by Branco “because of
thewide variety of carpentry joint geometries in existence, studying themwith an exhaustive approach is [not]
realistic”. Indeed, all the aforementioned papers used the geometrical features of each joint they focused
on to propose simplifying assumptions or to calibrate theirmodel. Such an approach is entirely out of reach
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in this PhD as the goal is to automatically generate new joints, and thus no two joints are alike. It would be
impossible to dedicate enough time to precisely model each joint, even less when taking into account the
material (if wood, the study is evenmore complex due to the anisotropy of thematerial) as was done in the
cited papers.

4.2.2 OVERVIEW

Asamodelbothpreciseandversatile is still anactive research topicwell beyond thescopeof thismanuscript,
amorequalitative approach is needed. Thegoal is tobuild anumericalmodel that, for twogivenassemblies
A1 and A2, if A1 is said to perform better than A2 for some metric, it would not be far‑fetched to say that
a more sophisticated model, or even the built assemblies in real life, would arrive to the same conclusion,
namely thatA1 performsbetter thanA2 on thatmetric. In otherwords,wearenot interested in the absolute
values of the model (be it the stress, strain, displacements etc.) but rather in the partial ordering of these
values when comparing two assemblies. The model should only be simple enough that extrapolating the
results to reality would not change their ordering.
This section aims to find a generated assembly that performs better, for some relevantmetric, than a hand‑
drawn, tradition‑inspired, assembly. If so, then it is not impossible that in real life, the former is also better
than the latter, which justifies the point of this manuscript, namely the exploration of the design space of
interlocking assemblies to discover novel, relevant, assemblies.
Two phenomenamust absolutely be taken into account whenmodelling an assembly. For two parts in con‑
tact:

■ The interface cannot transmit tensile force but can carry compression forces: if tension arises between
the two parts, they would simply move away from each other. However, if in compression, one part
simply pushes on the other, the contact is not broken.

■ Thanks to friction, an assembly may be in equilibrium even if the forces are not orthogonal to the
interface.

a b c d

Figure 4.23| Left: the gap between two parts is bridged by links, in blue. Right:
2D shell elements of the parts are connected to the 1D beam ele‑
ment of the links.

These two non‑linearities can be summed up in one observation: if the resulting force at a point of the
interface is not in the coneof friction, equilibrium is out of reachanddisassemblyoccurs. A 2‑parts assembly
A = {P0, P1} is modelled as follows: the separating curve is offset by a small amount along the normal
vectors of its segments, as shown on FiGURE 4.23a. Part P0 is created using the original curve, P1 using
the offset one; thus there is a gap between these two parts. Crosses are created in the gap, their geometry
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a b c d

Figure 4.24| a) ‑ linksaregrouped3by3. b) ‑ theycanonly transmitaxial forces.
c) ‑ the resultant force must lie inside the friction cone. d) ‑ load
distribution and boundary conditions.

being defined on FiGURE 4.23b in blue. These crosses are made of two elements, that we call links: links
orthogonal to the interface (the short ones) and diagonal links (the long ones). The interiors of the parts
are meshed using triangular shell elements, as shown on FiGURE 4.23c, and the links are modelled using
standard beam elements. Special care is taken to connect the endpoints of the links to the shell elements
of the parts, 4.23d.

Links are grouped three by three: each orthogonal link is grouped with the two diagonal links whose
common endpoint is on P0. Such a group is highlighted in blue in FiGURE 4.24a. The beam elements as‑
sociated with the links are pinned at both ends. Thus, they can only transmit axial forces, be it tensile or
compressive, see 4.24b. The resulting force is calculated at the point common to the three links. For this
point to be in equilibrium, this force must lie in a friction cone parametrised by an angle α, see 4.24c.

For the remaining of this section part P0 will always be on the left of part P1, we can thus use words
like “left”, “top” etc. As for the boundary condition and load distribution, the leftmost edge of part P0 is
clamped, the rightmost edge of P1 cannot move in the horizontal direction and a downwards nodal force
F is applied on the top edge of P1, exactly above the rightmost point of the separating curve, see FiGURE
4.24d for an illustration of these concepts.

As of yet, the model is far from modelling contact between two parts. Indeed, if an analysis is carried
out, an equilibrium is likely to be found where most of the resulting forces are not contained in the friction
cone. To perfect the model, an iterative algorithm is implemented. Each link is modelled as a tube with a
givendiameterϕ. At iterationn, a finite element analysis using linear theory is conductedandgives the axial
forces in each link, from which the resultant forces can easily be calculated. There are two non‑excluding
possibilities:

1. A link carries a tensile force. Then its diameter is set to anextremely small valueϕ = ϕmin (in this study
ϕmin = 1e − 08 unit), see FiGURE 4.25a. As such, the link is prevented from transmitting a significant
amount of force, effectively cutting it from the study. This stepmodels the fact that a link in tension is
synonymous with parts breaking contact: they cannot transmit force.

2. The resultant force is not inside the friction cone. It means that, at this point in the interface, the tan‑
gential forces are too great with respect to normal forces. These tangential forces being transmitted
by the two diagonal links only, their diameters are reduced: they are multiplied by a factor β ∈ [0, 1[

(in this study β = 0.5), as illustrated on FiGURE 4.25b.

Otherwise (links are in compression and the resultant is in the friction cone), the diameters of the links stay
the same (4.25d). At the beginning of the first iteration, all links are initialised to a default value ϕmax = 1
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a b

c d

Figure 4.25| Depending on the situation, the diameter of a link stays constant,
is decreased or increased.

unit; as a side note, the thickness of a tube is always set to be a hundredth of its diameter. A link that was
once in tension (and thus having its diameter ϕ ≤ ϕmin) is not completely deleted from the study: if an
analysis concludes that it is now transmitting (a small amount of) compression, its diameter is brought back
to ϕ = ϕmax, as shown on 4.25c. This small algorithm outputs two kinds of results:

■ The diameter of an orthogonal link is either ϕ = ϕmax or ϕ ≤ ϕmin.
■ The diameter of a diagonal link lives in the range ϕ ∈]0, ϕmax] (it can be smaller than ϕmin as if a link

is in tension its diameter is set to ϕ = ϕmin and if the resultant force is not in the cone, it is further
multiplied by β < 1: ϕ = βϕmin).

Thus, if the resultant force is outside the friction cone, the diameters of the diagonal links are reducedwhile
thediameter of theorthogonal one stays constant, whichdiminishes the contributionof the tangential force
compared to the normal one, hence bringing the resultant closer to the friction cone. If a link is in tension,
its diameter becomes negligible: the tensile component disappears from the resultant, bringing it closer to
the friction cone. These new diameters are used to create the beam elements at the beginning of the next
iteration. This iterative algorithm reaches convergence when all resultant forces are either negligible or in
the friction cone.

The geometry is handled in Grasshopper®, an add‑on of the software Rhinoceros®. Finite element anal‑
ysis was performed with the plugin Karamba3d and the loop (necessary for the iterative algorithm) was
coded using components from the Anemone library.

4.2.3 CHOICE OFMETRIC AND JUSTIFICATION

Oncea stable solution is foundby thealgorithm,weuse ameasureof themaximal internal stress (calculated
as the sum of the two principal stresses) in the parts as the metric to compare assemblies between them.
Yet, because of the unpredictability of the shape of the generated designs, it proved to be impossible to craft
analgorithm that could generate a qualitymesh for all designs: at a point of high curvature of the separating
polyline, for instance, i.e a point of stress concentration, it happens that a bad triangle leads to extremely
high maximal stress while a slightly different mesh would yield much lower maximal stress in P0.
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Figure 4.26| Refining the mesh by adding up to ≃ 75% more faces does not
significantly affect the 95% stress value.
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Figure 4.27| The aspect ratio of the cross has a significant impact on the 95%
stress.
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In addition, the pointwhere the nodal force is applied onP1 is where themaximumstress is reached, yet
it is not an interestingpoint to study. Thecalculationof themaximal stressper sebeing toomesh‑dependent
for P0 and uninteresting for P1, the choice wasmade to consider the 95% stress: stresses at the calculation
points are ranked according to their increasing value and the one indexed at 95% of the length of the list
is kept. This value often occurs either near the separating polyline or close to the boundaries of the mesh,
and is still representative of the high stresses in the mesh, while being completely mesh‑independent, as
shown on FiGURE 4.26. In this figure, three designs are studied: the top one is hand drawn and takes inspi‑
ration from a traditional mortise and tenon assembly. The middle one has been automatically generated
and obeys a translation to the right. The bottom one has also been automatically generated and obeys a
rotation. The mesh constituting the parts has been gradually refined, up to adding about 75% additional
faces, from approximately 9500 faces to 17500 faces (the exact number varies with the assembly). For each
mesh, the aforementioned algorithmwas executed and the 95% stresses were recorded in each part. These
graphs show that the 95% stresses do not change significantly with mesh variations, thus proving that it is
a stable metric that we can use to quantitatively compare assemblies with.

Aside from themesh quality, the aspect ratio of the crosses bridging the gap between P0 and P1, calcu‑
lated as the ratio between the length of a diagonal link and the length of an orthogonal link, is a parameter
whose influence is of interest. FiGURE 4.27 shows a variation of the 95% stress with regards to the cross as‑
pect ratio; it is argued that the larger the aspect ratio, the fewer the crosses that can be fitted along the sep‑
arating curve, and thus the higher the force transmitted per link, whichmodifies the distribution of stresses,
especially near points of high curvature. That being said, the net variation does not exceed 10% of the ref‑
erence value, implying that the choice of the aspect ratio is not too influential on the stress result. In the
following, the aspect ratio is fixed to

√
10 ' 3.2 (see FiGURE 4.24 for a visual representation of the crosses),

as it seems to be a value around which the 95% stress does not changemuch.
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Figure 4.28| The friction angle has a predictable impact on the 95% stress.
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Last but not least, the friction angle α plays a significant role in the algorithm outlined above. Its influ‑
ence on the 95% stress is thus studied, by having it varying in the range [10◦, 45◦], see FiGURE 4.28. Unsur‑
prisingly, the higherα the lower the 95% stress. Indeed, asα increases, the interface between the parts can
carry more and more tangential loads, thus distributing more evenly the forces and reducing the stresses.
As such the value of α does not change the ordering of the 95% stress of two assemblies. Moreover, it has
been visually verified that α does not influence much the qualitative distribution of forces at the interface
of the part. Hence its specific value is of no importance for our needs and is fixed to α = 30◦.

This small study shows that our choice of metric behaves nicely with the variation of key parameters,
hence comforting us in this choice. Yet, to further test the quality of the model and of the algorithm a qual‑
itative comparison with real‑life assemblies is conducted.

4.2.4 IMAGE CORRELATION AND QUALITATIVE COMPARISON

In addition to the 95% stress, it is possible to extract from the model the resulting force at the endpoint on
P0 of each orthogonal link. As the resulting forces can only be compressive, they inform of howmuch a part
is pushing onto the other. In real life, this would lead to points on either side of the interface getting closer
and closer. Such behaviour can be captured and quantified using digital image correlation, and compared
to the results of the numerical model. As a consequence, several assemblies were laser cut and loaded as
to closelymimic the boundary conditions and load distribution presented on FiGURE 4.24d; see FiGURE 4.29.
This study (the making of the laser‑cut specimens, the experimental apparatus, as well as the image corre‑
lation) was done by Antoine Bayard during his internship at Navier laboratory in the summer of 2022. The
image correlation was done using the software GOM Correlate.
FiGURE4.29presents theexperimental apparatusused toconduct the study: eachassemblyhasblack speck‑
les sprayed over a layer of white paint. The left side of the assembly (part P0) is clamped on a supporting
frame by the means of two planks tightly enclosing the part. The right part (P1) is pinned such that only
vertical motion is possible; the rightmost metal rod prevents any rotation around the plane’s normal axis
and any translation that is both horizontal and in the plane of the assembly. The twometal rods in themid‑
dle prevent out‑of‑planemotion. These rods as well as the clamping planks are held together using a rope,
tightly enough to ensure contact between the parts and the supporting frame, but sufficiently loose to pre‑
vent compression forces in the assembly. Thus the boundary conditions of the physically built assembly
match the ones of our numerical model, presented on FiGURE 4.24d. As for the load distribution, the nodal
force is enacted by the means of weights (16 kg of weights + 0.3kg of the basket) that are suspended with a
string to apoint on the top edgeofP1 that is slightly offset to the right of the rightmost point of the assembly
(it is not precisely directly above it, because the string would prevent from seeingwell the interface, hinder‑
ing the quality of the images). The scene is lit using a projector, and a camera (not shown in the picture as it
was used to take it) is placed on a fixed table next to the projector. The basket is loaded 2kg by 2kg, and each
time weight is added, a picture is taken. The set of pictures is then loaded in the software GOM Correlate to
perform the image correlation.

On FiGURE 4.30 and FiGURE 4.31, the snapshots from the image correlation show only the vertical defor‑
mation ϵy , calculated using the standard formula ϵy = ∆l

l . ϵx is not shown as it is not themain deformation
and values are lower making thus the noise higher, and images are often less readable. Each snapshot can
be considered as 3‑colours coded: the interior body of the parts is in green, meaning that vertical defor‑
mation is close to 0, showing that the interiors of the parts move as rigid bodies. Colours red and blue are
respectively used to encode the distance between points expanding and narrowing. The deeper the blue
or brighter the red, the more significant the corresponding phenomenon. The interface is regularly tagged
and the values of the deformation ϵy of the associated points are written.
On the left of each image, the resultant (magnitude and direction) of each assembly analysed by Karamba
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Figure 4.29| The experimental apparatus.

Figure 4.30| Left: ouranalysisof the forces in the links. Right: verticaldeforma‑
tionof the corresponding fabricatedassembly: red indicates posi‑
tive strains and thus tension,while blue indicatesnegative strains,
i.e. compression. The twomodels are in qualitative agreement.
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is shown in blue. A first obvious remark is that the image correlation captures the widening of the gap of
the interface (in red), which is completelymissed by ourmodel: because these regions of the interfacework
in tension, our model can only output a binary answer, namely whether it is in tension or not. That being
said, the results in compression can be compared, and one sees on FiGURE 4.30 a perfectmatch between the
location of the points in compression predicted by our model and the points on both sides getting closer
on the image correlation (in blue). Better, the magnitude of the compression, calculated by our model and
displayed on the image correlation, seems to be in linewith each other: the longer the vector on the left, the
deeper the blue colour on the right. Again, our approach is purely qualitative, sowe do not compare values,
we just want to see if our model agrees with the image correlation. As far as the assembly on FiGURE 4.30 is
concerned, our model fully fulfill our requirements.
Things degrade a bit when looking at the results on FiGURE 4.31. Indeed, while in most cases the two ap‑
proaches show the same points in compression, our model sometimes finds an equilibrium that does not
fully correspond to the observation of the image correlation. For instance, on 4.31a and d, our model does
not find that the segments circled in redare incompressionwhereas the imagecorrelationdoes; 4.31c shows
another perfect match between our model and experimental data. FiGURE 4.31b shows the surprising and
interesting case of a mismatch, a colour swap: focusing on the bottom two segments of the polyline, our
model predicts that the top one is in compression and the bottom one in tension. The image displays the
opposite, which does not seem tomake sense. Indeed, when looking at the somewhat horizontal segments
in the middle of the polyline, one sees that both approaches agree in saying that they are in compression.
The fact that the correlation says that the bottom segment is also in compression implies that the bottom
half of the assembly is squished, which cannot be explained given the boundary conditions and the location
of the nodal force. Moreover, the geometry of the polyline on 4.31d is close to the one on 4.31b (both were
obtained using the same input polyline, one was optimised in translation, the other in traction), but on the
former, the image correlation shows that the bottom segment is in tension, which contradicts the results of
the latter. Finally, physicalmanipulation of the assembly shows that, on 4.31b, ourmodel is closer to reality
than the image correlation.

a b

c d

Figure 4.31| Left: Karambaanalysis of the forces in the links. Right: vertical de‑
formation of the corresponding fabricated assembly. Issues and
mismatches are circled in red.

There are multiple possible explanations to account for this mismatch. A first explanation is that in the
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software GOMCorrelate, to our knowledge, themesh used to carry the calculations is hidden from the user.
Therefore, one cannot specify that there is an interface between two parts where themesh shall be refined.
Hence, it is certain that elements of the mesh were laid over the interface, and results are to be taken with
suspicion. In other words, it would just be bad luck that several such elements were all around the bottom
segments. A second, and we think quite likely, explanation is as follows: the software is highly sensitive to
the black speckles on the specimen, a sensitivity that led to conundrums: on two successive images, with
necessarily the very same speckles distribution, the software would deem the first image has to have excel‑
lent distribution and the next one as having a poor one making the calculations difficult. It is thus entirely
possible that for the last image, the software considered the area around the bottom segments as having a
bad distribution, and the results are thus unpredictable. The final, maybemost likely, explanation is simply
an error in the boundary conditions during this specific experiment. This seems however surprising as ex‑
periments were all done in a row, and this experiment is the only one showing an issue.

We took care of explainingwhere thismismatch potentially comes from to highlight the following point:
the aim of comparing our model with the image correlation approach is to qualitatively assess their differ‑
ences, and to better calibrate ourmodel using experimental data. Yet, as we saw, these imagesmay provide
the wrong data, preventing us from further improving our model.
Nevertheless, the agreement between the two approaches is good enough for us to deem our model well
suited for ourneeds: beingbothnumerically stable as justifiedonSECTiON4.2.3, aswell asmostly in linewith
experimental data as seen in the current section, it is fit for comparing automatically generated assemblies
between them consistently and reliably, which is the focus of the next section.
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4.2.5 COMPARISONOF AUTOMATICALLY GENERATED ASSEMBLIES

This section aims to find automatically generateddesigns of 2‑
parts assemblies that have a lower 95% stress in both P0 and
P1 than a human‑designed, tradition‑inspired, assembly. To
prevent stress concentration at the point of application of the
nodal force, the load is now distributed along a vertical line,
at a constant distance to the right from the rightmost point
of the polyline. A tenon and mortise‑like assembly Ar (r for
reference) has been created by hand, and the height of the
tenonwas optimised as tominimise the 95% stress calculated

in both parts, see the inset. Our algorithmwas run 50 independent times to generate as many designs con‑
strained to have exactly two snap segments, like the reference assembly.
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Figure 4.32|Most generated designs perform better than the reference.

The 95% stresses in both parts of each generated design have been calculated and compared with the
results forAr. Of those 50 designs (that were generated in a couple of seconds) 29 dominate the reference
Ar, meaning that they are calculated as having lower 95%stresses in bothparts thanAr. On FiGURE 4.32 the
reference assemblyAr is highlighted in red. The 95% stress values are normalised by the values calculated
forAr and are displayed in the plane (stress inP0, stress inP1). Hence the stress values ofAr are displayed
at (1,1), with a red diamond. The normalised stress values of the generated assemblies are depicted with
dots. The 29 big blue dots correspond to the designs performing better than the reference and the 6 best
performing assemblies are shown. Only five designs were strictly dominated by the reference and their
stress values are depicted with small black dots. The remaining 16 designs are equivalent to the reference
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Figure 4.33| 39 out of 99 generated designs perform strictly better than the ref‑
erence.

with the stress measure improved in one part but degraded in the other. This figure hints at a seemingly
pleasing feature of the design space of 2‑parts assemblies: a randomwalk in this space seems likely to yield
assemblies that are relevantwith regards toournumerical analysis. However, of course, not all such random
designs are good: FiGURE 4.32 shows that for some designs, stress was multiplied by as much as 2.6.
The design problemwith the point load (see FiGURE 4.24d) was also investigated, though the results are not
shown as they are very close to the ones above: out of 50 designs, 23 performed better than the reference,
which again hints that a randomwalk gives useful results.
For a hand‑drawn assembly more carefully designed, with four snap segments to distribute more evenly
the forces at the interface, results are similar. Out of 99 generated designs, 39 dominated the reference, as
shown on FiGURE 4.33.

This hints that a random search in the design space of 2‑parts assemblies is powerful enough to find
novel designs performing better than human ones. But the evaluation takes time: while generating the
designs took a couple of seconds, the iterative mechanical analysis is slow, taking approximately half a
minute per design. This is mostly due to the use of tools that are not intended to be used in the way we
did (Grasshopper does not support loop, the plugin Anemone bypasses this, but at the cost of slowness),
and to create the meshes, components performing more calculation than necessary were used. A custom
implementation would certainly speed up the process, making such a search must more tractable.
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4.2.6 CONCLUSION

Timewas spent building a finite‑element computational tool that can consistently and reliably analyse any
kind of 2‑parts assembly. Numerical stability and agreement with another method were studied, and this
section culminates in SECTiON 4.2.5, which, albeit quite short, shows a key feature of the design space of
polygonal assemblies and helps in justifying why thismanuscript bother in exploring it. Indeed, it turns out
to be quite easy to find assemblies performing better than reference ones, by simply randomly walking in
the design space. A promising route for further research would be, given designs performing better than
or close to the reference, to execute a local optimisation search, where polyline vertices are moved in ways
that improve the stresses. A naive algorithm can be outlined: each vertex is randomly moved in a small
disk centred at its location. Whenever such amotion improves the stress in the parts, the direction in which
the vertex moved is used to bias further its further displacement (akin to a “gradient direction”). The stress
measure is not expected to dramatically improve with such a naive algorithm, but it surely leads to better
designs.

4.3 STUDIES RELATED TO THE CONES OF ROTATIONAL FREEDOM

4.3.1 A BETTER UNDERSTANDING OF THE CONES OF ROTATIONAL FREEDOM

Figure 4.34| An assembly and the Ccw
r (in red) of part P1 (in blue)

FiGURE 4.34 shows a 2‑parts assembly A = {P0, P1}, with P1 (in blue) obeying a clockwise rotation
around xr. The cone Ccwr , shown in red, has been calculated and is compact enough to be displayed in the
plane instead of projected onto the sphere. The grey lines depict the boundary of the half‑planes encoded
in the systemArx ≤ b. Two situations are zoomed upon on FiGURE 4.35: on the left the centre of rotation
x is taken as a vertex of the cone Ccwr ; on the rightx is taken on an edge. Let us first study the left situation.

x is a vertex of Ccwr
There exists a set of indices Ix (with |Ix| ≥ 2) such as the lines defined by the system

AIxx = bIx
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Figure 4.35| Zooms on instantaneous directions of motionm(p,x), depend‑
ing on whetherx is a vertex of Ccw

r or on an edge.

intersect inx, whereAIx and bIx means that these quantities aremade of the rows indexed by Ix inAr and
b . Each of these lines is derived from one of the two equations: Eithermpi

· ni = 0

Ormpi+1
· ni = 0

for i ∈ Ix which exactly means that the segment [pi,pi+1] is perpendicular to either the line [pi,x] or
[pi+1,x], as shown on FiGURE 4.35 left. Informally speaking, these segments snapped from the point of
view of centre x. This means that an infinitesimal rotation around x would make the points indexed by Ix
slide on the boundary. As such they are critical points guiding, helping, the (dis)assembly.

x is a vertex of an open edge of Ccwr
This situation is illustrated on the right of FiGURE 4.35. The same analysis as for the previous case applies,
if not for the fact that now |Ix| = 1, meaning that there is only one point sliding on the interface between
the parts.

x belongs to the interior of Ccwr
In such a case there are no critical points, and all points on the boundary move away from it.

Weemphasize thestudyof these threecases tohighlightaphenomenon thatmayease the (dis)assembling
process: much like we use sensory inputs when we put a key into a lock (does it slide ? is it stuck ?) a
(dis)assembling agent ‑ be it a robot or human ‑ could greatly benefit from contact information between the
part to move (P1) and the part remaining (P0) to perform the task. To that end rotating about a point x on
the boundary of the cone Cir, i ∈ {cw, ccw} seems to be a better heuristic than rotating about a point in the
interior of the cone. Indeed at least one point stays on the boundary of the fixtured part for infinitesimal
motions and can thus inform the agent of the relative location of the parts. The most advantageous from
that point of viewwouldbe to rotate around theprescribedxr as it is definedby at least two snaps, i.e. there
are at least two contact points (and potentially many more, on FiGURE 4.34 four segments have snapped)
between the parts.
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4.3.2 NUMBER OF SNAP SEGMENTS AND CONES OF ROTATIONAL FREEDOM

Contrary to the translation casewhere twoopposite snap segments completely close the coneof translation
freedom Ct to the user‑prescribed cone, as explained in SECTiON 3.1.1.1, in rotation the cones Cccwr and Ccwr
are often not reduced to the user prescribed centrexr: instead, they sometimes extend to infinity (meaning
that the part obeys a translation as well), which may very well be an undesirable feature of the polyline, if
only because for a multi‑parts assembly, these cones may intersect, thus increasing the number of cells of
dimension 0 of the NDBG and hence increasing the number of base DBGs that must be calculated to assess
the interlocking of the assembly. It turns out that the user has indirect control over the cones Cccwr and
Ccwr by themeans of the number of snap segments: themore snap segments, the narrower the cone. Thus,
should the user wants the cones of rotational freedom to be small, or even one reduced to {xr} the other
empty if he/she only wants the part to obey a specific rotation in one direction, two strategies coexist:

1. The user asks for a large number of snap segments.
2. Once the polyline is optimised, the user asks for the introduction of new points on the snap segments

and runs the optimisation again by specifying that these new, smaller, segments must snap.

The second strategywas implemented to generate the 4+1 parts assembly on FiGURE 4.21, to ensure that
only four DBGs had to be calculated. Understanding why more snaps implies a narrower cone is straight‑
forward: recall that the cones Cccwr and Ccwr are calculated by solving SYSTEM (3.14), in the formArx ⋆ b, ⋆
standing for≥ and≤. The second strategy createsmore segments on the polyline, thusmore constraints in
Ar: the more constraints, the less likely a point is to meet all of them, and thus the narrower the cone. The
first strategy does not change the number of rows in the system but ensures that a greater number of them
are equations instead of inequalities: a greater number of half‑planes have their boundary intersecting pre‑
cisely on the prescribed centre xr, thus narrowing the cone. To accurately measure the “closing” of cones
that may be infinite (see FiGURE 3.11 where the cone extends to infinity), the spherical area and perimeter
of its stereographic projection onto the unit sphere are measured. The perimeter is used as an additional
measure to take into account the cases where the cone is reduced to an infinite half‑line, as shown on FiG‑
URE 3.12. In this case, indeed, the stereographic projection of the half‑line is circular arc, of zero area but a
finite perimeter. On FiGURE 4.36 twelve assemblies are displayed. The same input polylinewas optimised to
obey a counterclockwise rotation four independent times for an increasing number n ∈ {2, 3, 4, 5} of snap
segments (strategy 1, vertical axis). For each design with n snap segments, the snap segments were sub‑
divided from zero to two times (strategy 2, horizontal axis). Hence, for instance, the design at row indexed
by 3 and the columns indexed by 0 means that the input polyline was prescribed to snap 3 times, but no
subdivision was required. The one at (row 3, column 1) took each of the 3 snap segments and subdivided
themonce by introducing a vertex in themiddle. The polylinewas optimised again to snap these 6 (smaller)
segments. The design in (row 3, column 2) took each of the 6 previous snap segments and subdivided them
again, totalling 12 snap segments that were optimised to snap. The design at (row i, column j) has i2j snap
segments. As such, the design with the smaller amount of snap segments is at (row 2, column 0) with two
snap segments, the one with the greatest at (row 5, column 2) with twenty snap segments.
The cones of rotational freedom Cccwr and Ccwr are calculated and are displayed on the sphere, in blue and
red respectively. The area and perimeter of each such spherical surface are displayed as coloured circles
whose radii are proportional to their values: in light blue the area of Cccwr ; in dark blue the perimeter of
Cccwr . In light and dark red respectively the area and perimeter of Ccwr . One sees that the more snap seg‑
ments the narrower the cones. The assembly at (3 vertical, 1 horizontal) shows the noticeable case where
Ccwr = {∅} and Cccwr is almost reduced to a line of zero area. When no coloured circles are displayed, it
means that the counterclockwise cone is reduced to the prescribed xr and the clockwise cone is empty.
As a side note, FiGURE 4.36 also shows the range of possible designs that are accessible given the same input
polyline.
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Increasing the number of snap segments, be it by strategy 1 or strategy 2, is a conceptually cheap method
to reduce the actual cone of rotational freedom to the user‑prescribed centre of rotation, thus making the
enumeration of the base DBGs short and brief, and the assessment of the interlocking of an assemblymore
direct. Note that strategy 2barely changes the shapeof thepolyline: on each row iof FiGURE 4.36, thedesign
at (row i, column 0) closely looks like the design at (row i, column 2).
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Figure 4.36| The greater the number of snaps and/or snap segment subdivision, the narrower the cones of rotational freedom.
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4.3.3 ON FABRICATION IMPERFECTIONS ANDMOTION TOLERANCE

What follows is a study aimed at mimicking the behaviour of a real‑life assembly which calls into question
the very possibility of obeying a rotation around the prescribed centre xr. In this section, Cr refers to both
Cccwr and Ccwr , the direction of the rotation is of no matter; ⋆ refers to≥ and≤; ∂Cr refers to the boundary
of the cone, i.e. the set of vertices and edges defining the cone and C̊r defines the interior of the cone. We
will conclude that in practice the rotation about xr is the one of the least likely to happen among all the
rotations around points in Cr. To understand why wemust consider two uncertainties: one on the location
of the centre of rotation xr and one on the location of the points (pi)i∈J1,kK constituting the separating
polyline.

4.3.3.1 Uncertainty on the location of the centre of rotation
For ϵ� 1 let x ∈ Cr and let

xϵ ∼ x+N (0, ϵ2)

be the centre of rotation of a part taking into account some imprecision on its location. This could model
the fact that a (dis)assembling robot is ill‑calibrated or that it vibrates around the mean position x. Then,
obviously if x ∈ ∂Cr there is a chance that xϵ /∈ Cr: if x is on an open edge between two vertices, then the
probability thatxϵ /∈ Cr is 1

2 ; ifx is a vertex of Cr (which is the case forxr) then the probability thatxϵ /∈ Cr
is even higher. For that reason obeying a rotation about xr is less likely than obeying a rotation about any
x ∈ C̊r. Yet the main reason that explains why the rotation about xr is less likely than the one about any
other x ∈ Cr is more subtle and comes from taking into consideration uncertainties on the position of the
vertices (pi)i∈J1,kK of the separating polyline.

4.3.3.2 Uncertainty on the location of the points of the separating polyline
Let

∀i ∈ J1, kK pϵ
i ∼ pi +N (0, ϵ2)

Such (pϵ
i)i∈J1,kK models the tolerance of fabrication of a part: each point pϵ

i is randomly shifted around its
expected position pi by a random variable following a Gaussian lawwith an ϵ� 1 variance. Thismodelling
of imperfectionsmight be rightly deemed as quite crude, butmore sophisticatedmodels would not change
the heart of the conclusion we will arrive to.

By constructionof our algorithm, at least two segments of thepolyline snapped for the assembly toobey
xr. Therefore there exists a subset of indices Ixr

such as one has the equalityAIxr
xr = bIxr

. As illustrated
on FiGURE 4.34, this systemdefines |Ixr

| lines that intersect inxr. The question that arises is “What happens
to this system when we use the perturbed polyline points (pϵ

i)i∈J1,kK to build the matrixAϵ
r and the vector bϵ

?” whereAϵ
r and bϵ are built using the (pϵ

i)i∈J1,kK in a similar fashion asAr and b are built with (pi)i∈J1,kK,
see SECTiON 3.1.1.2 for a definition. Let us focus on the subset of lines indexed by Ixr

. Because the pϵ
i are

randomly shifted, in all generality one has

Aϵ
Ixr

xr − bϵIxr
6= 0

Geometrically, the lines defined by Aϵ
Ixr

and bϵIxr
are randomly shifted and tilted compared to their

counterparts defined byAIxr
and bIxr

. Thismeans that they do not all intersect inxr; in all generality, they
donotevenall intersect at the samepoint. Sounless thepointxr ∈ Cϵr (whereCϵr = {x ∈ R2 | Aϵ

rx−bϵ⋆0)
the rotation around xr will be impossible.

The probability of the event xr ∈ Cϵr is easily quantified. For j ∈ Ixr
let aj and bj be respectively the
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row ofAr and the entry of b indexed by j. Similarly we defineaϵ
j and bϵj . As said above, in all generality one

has aϵ
jxr − bϵj 6= 0, and because the mapping (aj , bj) 7→ (aϵ

j , b
ϵ
j) is random, there is a 50‑50 chance that

aϵ
jxc−bϵj > 0. Geometrically and in layman terms, sincexr is on the line defined byaj and bj and since the

line defined by aϵ
j and bϵj is randomly shifted and tilted, then there is as much chance for xr to be “above”

this shifted line (i.e. aϵ
jxr− bϵj ≥ 0) than “underneath” (aϵ

jxr− bϵj ≤ 0). At this step of the study, onewould
conclude that the probability the xr ∈ Cϵr is P(xc ∈ Cϵr) = 1

2|Ixc | .
We can go further in this study. It is possible, especially for a thin Cr, that a line j bounding the cone Cr but
not indexed by Ixr

, i.e. not going throughxr (e.g. the upper line bounding Ccwr on FiGURE 4.34) shifts on the
other side of xr after the random transformation (Ar, b) 7→ (Aϵ

r, b
ϵ). In other words, if one has ajxr > bj

one could get, for a transformation of sufficiently highmagnitude, aϵ
jxr < bϵj . As this could happen for any

line not indexed in Ixr
, and even if we are lucky and all lines indexed by Ixr

are randomly moved on the
“right side” of xr (Aϵ

Ixr
xr ⋆ b

ϵ
Ixr

) with a probability of exactly 1
2|Ixr | ), we arrive at the conclusion that:

P(xr ∈ Cϵr) ≤
1

2|Ixr |

The key takeaway is that the more snap segments (i.e., the greater |Ixr |) the less likely an imperfect part is
to obey the prescribed centre xr. In the best‑case scenario, there is a 1

4 probability that it happens. Had
we modelled the imperfections in a more sophisticated fashion, the exact value of this probability would
certainly have changed, but not the fact that xr is the least likely point of Cr to be obeyed. This property
is illustrated on FiGURE 4.37: the same initial polyline has been optimised ten times, for prescribed snap
numbers varying from 0 to 9. For each of such ten optimised polyline (pi)i∈J1,kK, 200 imperfects designs
(pϵ

i)i∈J1,kK were generated by slightly moving the polyline’s vertices (with ϵ = 0.001). We kept track of the
number of times an imperfect polyline obeys the prescribed centrexr to estimate the probability of obedi‑
ence P(xr ∈ Cϵr) (sampled mean). FiGURE 4.37 clearly shows that this (estimated) probability is capped by

1
2|Ixr | , as expected.
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Figure 4.37| The probability that an imperfect design obeys the prescribed
centrexr is upper‑bounded by 1

2n
, with n = |Ixr |. The snap seg‑

ments are in red.

This study naturally raises the question “Given a class of imperfect parts (pϵ
i)i∈J1,kK, what is the proba‑

bility of a point x ∈ R2 to actually be obeyed to ?”
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4.3.3.3 Likelihood of a point to be obeyed by a class of imperfect assemblies.
Givenapolyline (pi)i∈J1,kK anda lawtomodel the imperfections (pϵ

i)i∈J1,kK, anumerical studycanswiftlybe
executed to find the set of points likely to be obeyedby the part. For instance, on FiGURE 4.38, the separating
polyline was perturbed using ϵ = 0.002 in pϵ

i ∼ pi + N (0, ϵ2) (for reference, the length of the diagonal of
the design domain is 1). For each of such imperfect polylines, cone Ccwr was calculated. The results are
averaged over 1000 imperfect designs. The point in red is xr: one sees that it does not belong to the set of
points likely to be obeyed. The curve in black shows the isoline 99: it encloses points having a probability
greater than 0.99 of being obeyed by an imperfect polyline. The highlighted black point was found to be
amongst the most likely to be obeyed (out of the 1000 designs, all obey it). This numerical study confirms
that, given the modelling of imperfections, the prescribed centre xr is extremely unlikely to be obeyed.
To get a better idea of the set of points likely to be obeyed, the same study has been repeated for varying

Figure 4.38| Heatmap of likelihood of obedience. In deep purple probability 0,
in bright yellow, probability 1.

values of ϵ, see FiGURE 4.39: the box on the top right of each subfigure shows the estimated probability
P(xr ∈ Cϵr). The obedient set gracefully degrades, and one sees a subset (in yellow on all figures) that
constantly has a high probability of being obeyed, no matter the magnitude of the imperfection. FiGURE
4.39 gives a choice to the user: if the location of the actual centre of rotation is not a hard constraint, then
such heatmaps give the set of points with a high probability of being obeyed, thus letting the user choose
a posteriori what the centre should be. On the other hand, if the location of the actual centre of rotation
must be precisely the prescribed xr, then one should modify the separating polyline for it to robustly obey
xr, even given the presence of some imperfection. Increasing the robustness of the separating polyline to
some imperfection is what we call the opening of the cone of rotational freedom. It is the focus of the next
section.
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Figure 4.39| Heatmaps of the likelihood of obedience for several ϵ.

4.3.4 ROBUSTNESS TO IMPERFECTION

We see two manners in which one can perform the so‑called opening
of the cone of rotational freedom, for it to contain the prescribed cen‑
tre xr, even in the presence of some imperfection. The first method
consists of taking the separating polyline at the end of the GPA optimi‑
sation, and optimise it again by implementing a constraint of the form

sni ·mpi
≥ α

for someα ∈ R+. The greaterα, themore open the cone and themore
xr is in the interior of Cr. In this section α = 0.1. Of course, in such a
case, the snap constraint must be deactivated, as it is incompatible with this constraint. The inset shows
the input polyline in blue (so the one obtained at the end of the first round of GPA optimisation is the same
as the one shown on FiGURE 4.34) and the output in red, where the snap constraint has been deactivated.

The same numerical study is conducted, and is presented FiGURE 4.40. The probability P(xr ∈ Cϵr) is es‑
timated on 1000 imperfect designs, for various magnitude ϵ, and displayed in each subfigures. For small
enough ϵ, this probability is 1 or close to 1, meaning that the polyline is now robust to small imperfections.
Obviously, the greater ϵ the smaller P(xr ∈ Cϵr), but even for a relatively large magnitude ϵ = 0.01, there is
still more than a fourth of a chance for the assembly to obey xr. The downside of this method is that it is
very likely to increase the area of the cone Cr.

The second method consists of implementing a fake prescribed centre xf , so that the centre wanted,
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Figure 4.40| Heatmaps of likelihood of obedience for several ϵ after the open‑
ing of the cone through the snimpi ≥ αmethod.

xr, belongs to the interior of the cone of freedom calculated forxf . This supposes having an idea of where
to put xf , thus one should know how the heatmap degrades with ϵ. On FiGURE 4.39 one sees that the set
of points most likely to be obeyed is up to xr, slightly to the right. So one should set xf to be below xr,
slightly to the left. On FiGURE 4.41, the fake centre xf is shown in light blue, while the centre xr is depicted
in red. Similar to the previous methods, one sees that the probability P(xr ∈ Cϵr) is much higher. The main
drawback of this method is that several trials must be done before arriving at a satisfying result.

4.3.5 CONCLUSION ‑ ROBUST OPTIMISATION

SECTiON 4.3.1 recalled the salient aspects of the cone of rotational freedom Cr, for us to better understand
what it means for a part to obey a point in this cone. It highlighted one crucial aspect of our work: vertices
of the cone are critical centres of rotation such that, when performing an infinitesimal rotation around one
of them, a vertex of the polyline slides on the interface between the parts. The more constraints meet at a
vertex of a cone, the more vertices of the polyline slide. With this in mind, much like we use sensory inputs
when inserting a key in a lock, the operator tasked with (dis)assembling two parts, human or robot, greatly
benefits from contact information at their interface, if only to further guide the motion. As such, rotating
around a vertex of the cone is a relevant heuristic, as at least two vertices of the polyline stay in contact
with the other part, the most critical vertex being the user‑given centre of rotation xr, as the number of
constraints meeting there is at least equal to the number of snap prescribed by the user.

In SECTiON 4.3.2we saw that the greater the number of snaps, the smaller the cone of rotational freedom
Cr. It provides a cheap method to shrink the cone to the user‑given rotation centre xr, and thus gives the
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Figure 4.41| Heatmaps of the likelihood of obedience for several ϵ after the
opening of the cone through the fake centre method.

user the same amount of control as in translation, where shrinking the cone Ct to the user givenxt is imme‑
diate given exactly two well‑oriented snap segments. Since, in addition, we have seen in SECTiON 3.1.3 that
to assess the interlocking of a multi‑parts assembly we must compute the DBGs of the cells of dimension 0
bounding and/or resulting from the intersection of different cones, we see that, because shrinking the cone
to Cr = {xr} for all parts required to rotate ensures that no intersection is possible with any other cone,
the number of cells of dimension 0 isminimal, namely equal to the number of parts having to rotate around
their prescribed centres (and the DBGs in translationmust be checked). Finally and quite importantly, from
a practical point of view shrinking Cr decreases the odds of accidental disassembly as fewer points are valid
centres of rotation.

At this step shrinking Cr to {xr} by increasing the number of snaps seems an excellent idea: by increas‑
ing the number of constraints meeting at xr, one multiplies the points giving contact information at the
interface between the parts on one hand, and on the other, it reduces the complexity of assessing the in‑
terlocking of the assembly. Yet, in SECTiON 4.3.3 we understood that if we factor in uncertainties, be it on
the location of xϵ

r or on the geometry of the separating polyline (pϵ
i)i∈J1,kK, the more snap segments, the

less likely is the part to obey xr. Indeed, because the snap constraints coincide in xr, any random change
dramatically decreases the odd of xr meeting all of them, making the assembly highly unlikely to obey its
prescribed rotation.

To increase theoddsofobedience, twostrategieswerepresented inSECTiON4.3.4: eitherwe forgetabout
the snap constraint and, for some α > 0we impose that for all segment i sni ·mj ≥ α (for j ∈ {i, i+ 1}),
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but thenwe lose control on the shape of the cone Cr, or we introduce a fake centre of rotation, located such
that the actual centre xr lies deep in the region of a high probability of obedience, but this require many
trials and errors. Whichever the strategy, they are likely to adversely affect the area of the cone Cr, which
may increase the number of baseDBGs to calculate, but alsomeans that the separating polyline obeysmore
rotations: it is less robust to parasitic rotations.

In this concluding section, we offer guidelines to keep the number
of DBGs tractable while ensuring that xr stays likely to be obeyed,
even after the introduction of imperfections. We simply mix what
we summed up above. First, we increase the number of snap seg‑
ments until we get Cr = {xr}. Then we take the polyline resulting
from this GPA optimisation (in the lightest shade of blue in the
inset), and we feed it as input to a new round of GPA optimisation
where the snap constraint is deactivated, and the segments are
constrained to sni ·mj ≥ α, for some α > 0. Since we started
from a situation where constraints were met by xr, (i.e. for some
indiceswe hadni ·mj = 0), this newoptimisation pushes the boundaries of the corresponding half‑planes
encoded inArx ⋆ b away fromxr. Because all other constraints are alreadymet by the input polyline, this
round of optimisation stops as soon as sni ·mj ≥ α for all i, thus the polyline is only slightly modified,
especially for small α: on the inset the darker a polyline, the bigger the corresponding α. The values of α
are given FiGURE 4.42. Parameter α is the minimal distance at which the boundaries are pushed from xr, it
provides thus an indirect tool to manipulate the shape of the cone of freedom Cr.

On FiGURE 4.42, the imperfect cones of freedom Cϵr are superimposed for various values of α. In this figure,
the standard deviation of the normal law is ϵ = 0.002. Four segments snapped on the initial polyline, thus
wehaveP(xr ∈ Cϵr) ≤ 1

16 , which is consistentwith the observed sampledmeanof about 0.04on the top left
subfigure, forα = 0. Then, for increasing values ofα, the conesCϵr gets broader andbroader andP(xr ∈ Cϵr)
soon reaches high values. In this figure, it seems that a good balance between the size of the cone and the
probability thatxr is obeyed is obtained forα = 0.03 (and for the estimation of the probability, ϵ = 0.002).

In a nutshell, while ideally we want Cr = {xr}, imperfections impose to have a broader cone. Yet to
avoid having too many base DBGs to calculate, a small cone is desirable. Parameter α permits to indirectly
manipulate the shape of Cr, thus adjusting its size. We can outline a very simple algorithm, should the user
wants all the cone Cr of the different parts of the assembly to have similar areas, between two thresholds
Amin andAmax: at each iteration, when a polyline is optimised (using the snap constraint, and α = 0), the
second round of optimisation for α > 0 is executed several times, to get to a cone areaAmin ≤ A ≤ Amax

by dichotomy: if the area is too great decrease α; else if too small increase it. By placing the centres of ro‑
tation of the different parts sufficiently away from each other, such an algorithm ensures that no two cones
intersect, keeping the number of base DBGs low. Worst case scenario, if there is indeed an intersection,
simply diminish the value of α for the corresponding polylines until their cones do not touch anymore.

Imperfections on a polyline obeying a translation aremuchmore simple to address: it suffices to slightly
increase theangularopeningof the coneCt togive roomto thepolyline togigglewhile keepingxt (orxA

t and
xB
t ) inside the perturbed cone Cϵt . It can be done at the first round of GPA optimisation, by simply directly

prescribing this slightly bigger cone. Moreover, as intersecting such cones of dimension 1 does not result in
more cells of dimension 0 (they keep being the endpoints of the cones) we do not need to give particular
care to theDBGs associatedwith directions of translation. The downside is the sameas in rotation: the cone
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Figure 4.42| Parameter α gives an indirect control over the shape of the cone
of rotational freedom Cr .

being greater, the assembly obeys more motions, and is therefore less robust to parasitic rotations: it may
become quite easy to disassemble. The user should thus useα to increase the size of the cones of freedom,
but not toomuch as otherwise the assembly would easily break apart.
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4.4 BACKLASHES IN ASSEMBLIES

4.4.1 OVERVIEW

A backlash between two imperfect parts refers to the gap between them in the assembled position. Back‑
lashes are a necessity for any real assembly as it is impossible to make parts with perfect geometry.
In the present study, the hypothesis of infinitesimal motion makes it impossible to finely study the conse‑
quences of a backlash between two parts. On FiGURE 4.43 three assemblies are shown. On the left column
the backlash between the parts is exemplified by the white space between the red part P0 and the blue
part P1. While the gap is much larger than any realistic backlash, we will understand that because of the
infinitesimal motion hypothesis, the actual width of the gap matters not. The middle column shows the
parts in an assembled state: part P1 is translated to the left until touching P0. As one can see, even in this
state, gaps still exist on the upper and lower part of the tenon. On the right, the so‑called perfect cones Ct,
Cccwr and Ccwr are the cones of freedom associated with a perfect assembly, with no backlash. The so‑called
backlash cones are calculated taking into account the backlashes on the upper and lower segments of the
tenon: because any infinitesimal motion of P1 cannot lead it to collide with such segments on P0 (as they
are at a finite distance from it), any translation and/or rotation can be obeyed by these segments. As a con‑
sequence, the cones of freedom can only be calculated with the segments of the interface touching each
other. In each of the three cases presented on FiGURE 4.43, only the three vertical segments of the interface
can be considered. This leads to backlash cones of freedom of motionmuch larger than the perfect ones.

Following this theoretical study, backlashes seem to be amajor impediment to our work: since any real
assembly has backlash leading to large cones of freedom of infinitesimal motion, should our work not be
obsolete? Fortunately these theoretical results are of negligible consequences in real life: in a laser cutter
the order ofmagnitude of the kerf (thewidth of the groove burned by the laser) is 0.1mm= 10−4m. The side
of the square design domain of the built assemblies is of about 10cm=10−1m. For such a backlash ratio of
about 10−3 we find that the physical manipulation of the assembly is coherent with the perfect numerical
model (without backlash): for most assemblies the backlash is not perceptible at all, and for a few we can
feel that small motions other than the prescribed ones are possible, but as soon as there is an additional
contactbetween theparts, thegeometryof the interfacenaturally guides themotion towards theprescribed
one.

In translation, when the cone Ct is bounded by two distinct vectors xA
t , xB

t (by opposition to being re‑
duced to a single direction xt) we observe that in a tenon‑and‑mortise like assembly, it is possible to have
the backlash cone equals to the perfect one by having the tenon slightly larger than the mortise. Assuming
the angle difference to be greater than the width of the backlash, the two parts will be in contact at exactly
two points, ensuring that the backlash and perfect cones match, as show on FiGURE 4.44. The cost of this
operation is the stress concentration happening at the contact points.

4.4.2 NUMERICAL STUDY OF THE KINEMATICS OF AN ASSEMBLYWITH BACKLASH

Yet, the fact that built assemblies behave well in practice does not mean that the theoretical kinematics of
assemblieswith backlash should not be investigated. We present below a succinct study of the cone of free‑
dom of a 2‑parts assembly with backlash obeying a finite rotation. It is the only time in this manuscript that
we stray away from the infinitesimal motion hypothesis.

In this section, we call the polyline of Pi, i ∈ {0, 1}, the portion of the boundary of Pi that would have
been the separating polyline between the parts had they been perfect, with no backlash. Let (pi)i∈J1,kK be
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Figure 4.43| Backlashes greatly expand the cones of freedom.

Figure 4.44| By playingwith the respective angles of the tenon andmortisewe
ensure that the backlash conematches the perfect one.

the polyline of P1. The original position of a point on the polyline of P1 refers to its position before any
rotation is done: it is pi. Once the rotation is done, the new position of this point is denoted by p̃i.

4.4.2.1 Constant width backlash
The goal of this section is to find the set of centres of rotation such that a finite rotation around any point in
that set does not lead P1 to collide with P0. Wemake two simplifying hypotheses:

■ We assume that each point of the polyline of P1 moves at a constant distance r > 0 from its original
positionwhile rotatingaroundagivencentrex. This is a strongassumption: in reality, the lengthof the
trajectory of a point is proportional to its distance to the centre of rotation, and the closer the centre
to a point, the more spread the lengths of trajectories of the other points of the polyline. Thus this
assumption only becomes reasonable when looking at centres of rotation far away from the polyline.

■ While in reality, the trajectory donebyapoint is a circular arc,wemodel it by a line segment, tangent to
the trajectory at the original position of the point. Mathematically speaking, given a centre of rotation
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xeachpointpimovesalong the instantaneousdirectionofmotionm(pi,x). Beinga first‑order Taylor
expansionof the trajectory, this is a reasonable assumptionas inpractice thewidthof the gapbetween
two parts is small compared to the radius of the trajectory and the error made by considering a line
segment instead of a circular arc is minute.

To insist on the fact that themotion wemodel is not a proper rotation (it is not a rigid motion), we will refer
to it as “rotation”. These two hypotheses mean that given a centre x, each point pi of the polyline of P1 is
moved at

p̃i = pi + r
m(pi,x)

||m(pi,x)||

and denote by P̃1 the part after the “rotation” is done. Our goal is thus to find the region:

Rδ = {x ∈ R2, P̃1 does not collide with P0}

Parameter δ will be introduced hereunder. Assume in this section that the backlash is of constant width,
denoted by∆. For our “rotation” to possibly lead to a collision with P0, we must have r > ∆.

Figure 4.45| Illustration of the notations.

FiGURE 4.45 illustrates the notations we have introduced: the red
circle shows the set of possible location of point p̃i after a “rota‑
tion” of pi. Two cones are highlighted in red: they correspond to
the set of positions on which p̃i is in the interior of P0, meaning
that P̃1 collides with P0. Thus we want to avoid the x ∈ R2 such
that m(pi,x) is in the interior of one of the two cones. Assuming
the rotation to be counterclockwise, this means thatx cannot be in
the cones obtained by rotating the ones shown on the figure by π

2

counterclockwise. We call these rotated cones the forbidden cones,
noted �Ciδ for each vertexpi. Note that the forbidden cones only depend of the ratio δ = r

∆ . They are shown
for all (pi)i∈J1,kK on the inset. As seen on this figure, several casesmay occur, ranging from �Ciδ = ∅ to �Ciδ is
constituted of several cones.

Thus, we want to find the set of pointsx such that none of the (m(pi,x))i∈J1,kK lie in a cone �Ciδ . This is
therefore given by:

Rδ =

{
R2 \

k⋃
i=1

�Ciδ

}
SetsRδ , for various δ, are shown in blue on FiGURE 4.46. They are not convex, not even necessarily con‑
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Figure 4.46| Several regionsRδ , for various values of δ.

nex. But recall that our first assumption (all pi move by a constant value r = δ∆) is highly unrealistic near
thepolylineofP1; thus, the shapeof each regionRδ in the vicinity of the separatingpolyline shouldbe taken
with a grain of salt. Far away from the polyline,Rδ becomesmuchmore realistic andmeans that during the
disassembling process, the operator (robot or human) can rotate P1 around any centre of rotation x ∈ Rδ

by an angle θ ' r
||pi−x|| , assumingx to be sufficiently far from the (pi)i∈J1,kK so that the distances ||pi−x||

are all close to each other.

The pendant map obtained for clockwise rotations (the rotation to obtain the forbidden cones is clock‑
wise and not counterclockwise) would show the region of the plane compatible with a finite rotation aimed
at assembling the parts. Suchmapsmay be useful in the context of a cluttered assembling space where the
operator would benefit from choosing the centre of rotation to operate from.
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4.4.2.2 Varying width backlash
In theprevious section,weassumed thegapbetween the
part to be of constant width ∆. In practice, in the ab‑
sence of contact information, it seems nearly impossible
to neatly place the parts as such. In this section, we take
amore realistic stanceby randomlymovingP0 bya small
amount so that thewidth of the gap is not constant, as il‑
lustrated on the inset. The goal is now to find the setRδ

of points likely to be obeyed given the imprecision on the
location and orientation of one part with respect to the
other.

The process is the same as before: we find the set of forbidden cones and deduceRδ by excluding them
from R2. FiGURE 4.48 shows the probability heatmap of a point to be obeyed for a finite rotation given

Figure 4.47| Forbidden cones, averaged for various random positioning of a
part with respect to the other, for δ = 1.1.

imprecise respective placements of the part. In bright yellow, the probability is 1, and in deep purple 0.
Rotating around points highlighted in yellow means that P1 is very likely not to collide with P0 for a finite
“rotation”. Again, the closer a possible centre of rotation to the polyline, the less accurate the heatmap.

4.5 INTERPOLATION BETWEEN 2‑PARTS ASSEMBLIES
We leave the study of imperfections, backlashes and robust optimisation to enter the realm of smooth in‑
terpolation between assemblies. Given two generated assemblies, the aim is to find the set of assemblies
bearing varying amount of resemblance to either of the two.

4.5.1 THEORY OF ELASTIC DEFORMATION OF OPEN PLANAR CURVES

This section aims at briefly summing up theory of elastic deformation of open planar curves, presented in
[93], and developed in extenso in the book [92], especially in chapters 4 and 5 to which the curious reader
is referred for more in‑depth explanations. Indeed, technical explanations will be glossed over as we focus
more on conveying themain ideas of the approach, taking close inspiration from [11] who neatly synthesise
the main results. The open curve assumption is important: the mathematical process is much more com‑
plex for closed polylines and is not presented here.
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Figure 4.48| Several regionsRδ , for various values of δ.
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Consider an open curve parametrised in the form:

β : [0, 1] −→ R2

t 7→

x(t)
y(t)


As the parameter t varies in its domain, the point β(t) traces a path from β(0) to β(1). This is called a
parametrisation of β, it dictates the rate at which the curve is traced, [92]. More parametrisations are pos‑
sible: any orientation‑preserving (meaning γ̇ > 0 on its domain) diffeomorphism γ : [0, 1]→ [0, 1] defines
a reparametrisation of β through the composition β ◦ γ, see FiGURE 4.49.

Figure 4.49| Two parametrisations of the same curve.

We are interested in the shape of the curve, thus the results should be invariant to shape‑preserving
transformations (rigid motions, scaling and reparametrisation). These nuisances are listed below:

■ its location in space; letR2 denote the set of planar translations.
■ its orientation in space: let SO(2) denote the set of planar rotations.
■ its scale; letR+∗ denote the set of scale parameters.
■ its parametrisation; let Γ = {γ : [0, 1]→ [0, 1], γ is an orientation‑preserving diffeomorphism}.

Let [β] be the orbit of β, i.e. the set of curves with the same shape as β but with different transformations in
space:

[β] =
{
σO(β ◦ γ) + x, σ ∈ R+∗, O ∈ SO(2), γ ∈ Γ, x ∈ R2

}

Figure 4.50| Cartoon drawing of the orbit of a curve.

As our goal is to smoothly interpolate between two given curves β1 and β2, it is necessary to know the
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distance between these curves. We can consider for instance the usual L2 distance defined as:

d(β1, β2) =

(∫ 1

0

||β1(t)− β2(t)||2dt
) 1

2

Where || · || is the usual euclidean distance inR2, andwe remark that in general d(β1, β2) 6= d(β1 ◦γ, β2 ◦γ),
making thismetric not invariant to reparametrisation: we lose some information on the shape of the curves
when using the L2 distance to compare them. Srivastava and coauthors, [92, 93], introduce the so‑called
square‑root velocity function (SRVF) of a curve β as

q(t) = F (β̇(t)) =


˙β(t)√

|| ˙β(t)||
if β̇(t) 6= 0

0 otherwise

F being continuous, if β is continuous, then q is square‑integrable, it belongs to the space L2([0, 1],R2).
Geometrically, it is a scaled velocity vector, tangent to the curve at each point. Curveβ canbe reconstructed
(up to a translation) from q using β(t) =

∫ t

0
q(τ)||q(τ)||dτ , showing that the SRVF is translation invariant.

For a given γ ∈ Γ, the SRVF of a parametrised curve β ◦ γ is given by (q ◦ γ)
√
γ̇, and for two SRVFs q1, q2 ∈

L2([0, 1],R2) one can verify that

d(q1, q2) = d
(
(q1 ◦ γ)

√
γ̇, (q2 ◦ γ)

√
γ̇
)

AndtheL2metric is invariant to reparametrisation. To remove thescalingvariability, all curvesβ are rescaled
to be of unit length; as one notices, one has

d(q, q)2 =

∫ 1

0

||q(t)||2dt =
∫ 1

0

||β̇(t)||dt = 1

whichmeans that the SRVF of a unit‑length curve is an element ofS , the unit sphere in the Hilbert manifold
L2([0, 1],R2), which will prove to be quite handy to easily interpolate between curves. Being translation
and scale invariant, one defines the orbit of q as:

[q] =
{
O(q ◦ γ)

√
γ̇, O ∈ SO(2), γ ∈ Γ

}
Given two SRVFs q1, q2 ∈ L2([0, 1],R2), let

ρ(q1, q2) = arccos 〈q1, q2〉 = arccos
∫ 1

0

q1(t) · q2(t)dt

be the distance between q1 and q2. It corresponds to the geodesic distance (angle) between the two points
q1 on q2 on the sphere S ; it is invariant to reparametrisation and rotation. The shortest distance between
two shapes is given by finding the closest points on each orbit:

ρs([q1], [q2]) = min
(O,γ)∈SO(2)×Γ

arccos 〈q1, O(q2 ◦ γ)
√
γ̇〉

Let q∗2 = O∗(q2 ◦ γ∗) be the optimal point given by the minimisation above. Denoting ν = ρ(q1, q
∗
2) one

defines the shortest arc between these two points using the standard formula for interpolating on a sphere:

α∗(s) =
1

sin ν (q1 sin (ν(1− s)) + q∗2 sin(νs))

for0 ≤ s ≤ 1. Detailsof theoptimisationaregiven in [92]. Wehavebeenusing thepythonpackagefdasrsf.

121



2‑D assemblies

4.5.2 RESULTS

Figure 4.51| Interpolation between two designs

FiGURE 4.51 shows the decoding of regularly placed points on the geodesic α∗, traced between the two
end designs: one sees that the separating polyline is smoothly interpolated. But this figure hides that we
cheated: because the interpolation is invariant to translation, we do not know where to put the polyline in
the design domain. On FiGURE 4.51, the polylines were arbitrarily placed so that their first point is on the
designdomainabove0 (thedesigndomainbeingcentred in0). Butwecannot interpolatebetweenpolylines
at different locations in space, without placing them arbitrarily in the design domain. The scale invariance
is problematic too: for the interpolation to happen, all points must be on the unit sphere of L2([0, 1],R2),
which means, as we saw earlier, that the curves must be of unit length. Obviously, on FiGURE 4.51, the two
end polylines have very different lengths: they were scaled so that their endpoints lie on the edges of the
design domain. Another issue occurs because of the invariance to rotation: as shown on FiGURE 4.52, top
row, the interpolation between the two end polylines yielded the ones in red; they are obviously out of the
design domain and cannot be considered as separating curves. On the bottom row, while all interpolated
polylines do belong to the design domain, the invariance to rotation leads the penultimate (on the right,
highlighted in red) to be at a different orientation from the last one, whereas the shapes of the polylines
are almost identical. This leads to different assemblies, not only from the kinematic point of view as the
penultimate one does not obey the samemotion as the last one, but also from amechanical point of view,
as in this case the geometry but also the location and orientation in space of the separating polyline play an
important role.

Figure 4.52|While the separating polyline are similar in shape, their different
orientation leads to dramatically different assemblies.

To correct for the three invariances (in translation, scale and rotation) we
consider an open curve, such as the one on the inset: the design domain
is merged with the separating curve, and small segments near the
extremities of the polyline are removed, to ensure that analysed curve
stays open. Because the vertices of the design domain are at a fixed
location and orientation in space, such an open curve encodes enough
information to locate, scale and orient unequivocally the interpolated
designs.
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Moreover, the interpolation is not constrained to meet the kinematic constraint of a separating curve: the
motion prescribed by the user may not always be the one obeyed by an interpolated polyline. To correct
that, the GPA optimisation must be executed, where each interpolated polyline is taken as the input of the
algorithm. FiGURE 4.53 shows three interpolations between the end designs of each row. In blue is the
output of the interpolation, and in red is the result of theGPAoptimisation. One sees a closematchbetween
each pair of polylines, the main changes happening at the snap segments. It can also be noticed that the
invariances in scale, rotation and translation are now taken care of, evenbefore theGPAoptimisation, which
shows that one can successfully interpolate between 2‑parts assemblies.

Figure 4.53| TheGPA slightly changes the shapes of the interpolated polylines.

The three different end designs are chosen among those dominating the reference in the 95% stresses
plane, see FiGURE 4.33. A numerical analysis (see SECTiON 4.2) aimed at calculating the 95% stresses in each
part is carried out, whose results are shown in FiGURE 4.54. The three highlighted points in red correspond
to the 95% stresses of the three designs at the end of the geodesics. Points in blue show the result for the
interpolated designs. The polyline in blue is a circuit to help see the trajectory made by the stresses when
one smoothly interpolates between the three designs. The 95% stresses of each interpolated design live
closely to every other, which shows that we are able to populate the region of the stress plane dominating
the reference. In other words, we can find novel designs with good mechanical behaviour in the vicinity of
some given designs without much computational effort.

Another promising possibility of this interpolationmethod lies in the exploration of variations of existing
traditional assemblies. For instance on FiGURE 4.55 the triangle consisting of a dovetail joint (top right), a
gooseneck joint (bottom) and an abutted gooseneck joint (top left) is regularly interpolated.

While not implemented during the course of this PhD, we think it possible to interpolate betweenmore‑
than‑2‑parts assemblies by taking inspiration from Wang et al. in [103] who, in particular, interpolate be‑
tween models of plant roots seen as a collection of open curves with a constraint on the location of one of
their endpoints, exactly like a multi‑part polygonal assembly is nothing else but a collection of separating
polylines each with at least one end constrained to be on another.
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Figure 4.54| The interpolated designs behave similarly to each other. The nor‑
malisation is done by the reference design shown in red in FiGURE
4.33.
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Figure 4.55| Exploration of the variations between three traditional assem‑
blies.
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4.6 CONCLUSION

This section concludes what probably is the most important chapter of this manuscript. Indeed, this chap‑
ter dealt with the central concepts, tools and properties to automatically generate sequential interlocking
assemblies. As wewill see in CHAPTER 5, much of what we have used and created in this chapter to generate
2D assemblies is scalable to 3D without much effort. In SECTiON 4.1.3 we first talked about the Turtle and
the Markov process to generate a polyline obeying user‑given motions and explained that it ended up in a
dead‑end: cases happened where the Turtle was inescapably drawn to the centre of rotation xr until no
more motion were possible, and the total lack of control on the overall shape of the polyline often led to
degenerate designs. Yet, we decided to include this part of our research in this manuscript because we feel
that it explains at an intuitive level the constraints that must be met by a polyline to obey a motion. A bet‑
ter approach was then introduced in SECTiON 4.1.2, in the form of the Guided Projection Algorithm (GPA).
This method let the user choose the amount of control he/she wants to impose on the final design, as it is
relatively easy to add new constraints. The Turtle approach was not completely discarded as a simplified
version may be used to generate the first instance of an almost‑solution polyline. This approach proved to
be powerful and can quickly generate a 2‑parts assembly. SECTiON 4.1.3 explained that generating a multi‑
parts assembly is easy, one needs only to successively generate a 2‑parts assembly in the remaining part
P0. What is more difficult is to generate an interlocking assembly.

While in this PhD we simply observed a simple heuristic to increase the odds of interlocking by judi‑
ciously placing two snap segments on the polyline, a weakness of our work lies in the lack of amore sophis‑
ticatedmethod to ensure the interlocking. We can cite Wang et al. in [105] who, prior to the generation of a
partPi, i > 1, builds the DBGs by introducing the vertexPi and finds themost favourable set of graph edges
to ensure the interlocking across all graphs whileminimising the shape complexity of the would‑be partPi.
The creation of part Pi is then guided by the blocking relationships encoded by the edge, and according to
the author, this method successfully increases the odds of creating an interlocking assembly. As such, fu‑
ture work should try to add this kind of algorithm to our approach. Another route for future research would
be to investigate the role of friction in the creation of theDBGs. Indeed, at this step the information encoded
by each graph is binary: either Pi is blocked by Pj , or not, and all depends on the signs of the dot products
of the normals ni and the instantaneous direction of motions, be itmpi

in rotation or xt in translation. In
real life, for assemblieswe built, we find that sometimes a partPi maypushPj out of theway, despite being
blocked by it in theory: the segments of the polyline that are deemed to be blocking are oriented in such a
way that in practice the parts may slide onto each other; there is not enough friction for the interlocking to
happen in practice. To correct for that we suggest considering the standard Mohr‑Coulomb law of friction
when building the DBGs (see SECTiON 3.1.2.2): not only the sign but also the actual values of the dot prod‑
ucts should be used: if all dot products of the same sign sum over a given threshold, then we can consider
that the blocking happens in practice.

SECTiON 4.2 justifies why we bother at creating assemblies with novel, random, shapes. For the numer‑
ical mechanical model used, as well as for the choice of metric (the 95% stresses in both parts of a 2‑parts
assembly), we find indeed that a random sampling of the design space of polygonal assemblies very often
yields designs strictly dominating human‑drawn references, thus hinting at the potential of our approach
for real‑life assemblies. As studying the mechanical aspect of an assembly was not the primary goal of this
PhD, it is obvious that many aspects of our work are to be improved from that point of view. In our opinion,
future work shall be oriented in twoways. First, a more sophisticated (and faster!) numerical model should
be implemented to better assess the mechanical properties of the assemblies. Second, an optimisation
scheme should be found to modify the geometry of an assembly for it to behave better under loads. If a
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relationship can be established between some geometrical features of the polyline and good mechanical
properties, then the GPA optimisation can be used with the additional constraints to create such features.
Another possibility would be to enrich the Markov process by adding a state such that the Turtle automat‑
ically draws at once these features.

In our opinion, SECTiON 4.3 deals with the most intriguing geometrical aspects of an assembly obeying
rotations. After giving a better understanding of the cone of rotational freedom, this section shows that by
playing with the number of snap segments, the user may reach the same amount of control on the cone of
rotational freedom as he/she enjoys with the cone of translational freedom: for both motions, the cones
may be shrunken precisely to the prescribedmotions: Cr = {xr} and Ct = {xt} (or Ct is precisely bounded
by the vectors xA

t and xB
t if the user asks for a non‑degenerate cone). Shrinking the cones to singletons

is desirable for two reasons: it gives sensory feedback when (dis)assembling the pieces and dramatically
reduces the number of base DBGs needed to be calculated to assess the interlocking of an assembly. Yet
this comes at a significant cost: (dis)assembling may become impossible when introducing imperfections.
This section concludes by giving guidelines for the polyline to have both a small cone Cr and a high proba‑
bility of obeying its prescribed centre xr in the presence of imperfections, by optimising first with the snap
constraint on, then by ensuring that all sni ·mpj ≥ α, where α > 0 is the smallest distance between xr

and the boundaries of the half‑planes of the constraints.

SECTiON4.4 carries themodellingof imperfections in anotherdirection: it investigates the consequences
of a backlash between two parts in an assembly. We quickly reached the conclusion that one of our central
hypothesis, the fact that all motions considered are infinitesimal, prevents us from inquiring further in a
meaningful way: we saw that backlashes greatly expand the cones of freedom of motion, but also that in
practice it does not seem tomatter much. Yet, we tried to investigate the issue in a theoretical way by look‑
ing at finite motions, at the cost of making crude assumptions on the “rotation” considered. Bearing this
in mind, we found regions of the plane that were likely to be obeyed for a finite “rotation”, even when the
parts are not precisely positionedwith respect to each other. Considering finitemotion is an active research
subject, extending well beyond the scope of this PhD, and as such, we leave to future work the making of a
more sophisticatedmodel.

This chapter finishes with SECTiON 4.5 where the theoretical background of the elastic deformation of
a planar open curve is presented to explain how one may smoothly interpolate between two assemblies.
While interpolation helps in finding new designs with goodmechanical properties, it has to be said that the
main reason behind this section is simply because it is fun: it is extremely pleasing to trace geodesics in
the L2([0, 1],R2) space, to observe the polylines getting morphed into one another and to understand the
mathematical theory behind it (even if muchmore work needs to be done to fully master these concepts).

CHAPTER 5 will be relatively brief: we will simply understand how to adapt the tools developed in this
chapter for them to generate 3d assemblies.
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CHAPTER 5

3‑D ASSEMBLIES

Let us now focus our attention on the creation of 3D assemblies. This chapter is organised as follows: SEC‑
TiON 5.1 introduces the mathematical object of dual quaternions. We will see indeed that any rigid body
motion in 3D space can be unequivocally represented by a unit dual quaternion. Dual quaternions, there‑
fore, encode rigid body motions in space, much like a 2D vector xt ∈ S1 or a rotation centre xr ∈ R2

respectively encode a translation and a rotation in the plane. SECTiON 5.1 is divided in two parts: the reader
is kindly invited to read the first subsections, up to SECTiON 5.1.3 included, but may gloss over the remain‑
ing subsections as they go more in depth in the technicalities behind unit dual quaternions. The focus of
SECTiON 5.2 is to define the cone of freedom of motion in 3D, in a similar fashion as what we did in trans‑
lation and rotation in 2D in CHAPTER 3. SECTiON 5.4 describes how the guided projection algorithm is used
to optimise a separating surface so that it obeys a given unit dual quaternion. SECTiON 5.5 explains how to
create the successive parts of a N+1‑parts assembly, in the same spirit as what was done in 2D in the pre‑
vious chapter. Finally SECTiON 5.6 deals with the relationships between the cone of freedom and the snap
face‑vertex pairs (defined later); it also shows how to create 3D assemblies robust to imperfections.

5.1 DUAL QUATERNIONS

5.1.1 GOAL

In the context of 3D assemblies, the user may have a prior idea of the approximate shape of a part and the
motion todisassemble it, but haveno formalway tomathematically express thismotion. In this case, know‑
ing the assembled and disassembled poses of a part, we want to find a rotation and a translation mapping
one to the other. It turns out that unit dual quaternions are extremely convenient at formally representing
such a motion. To illustrate this, on FiGURE 5.1, the design domain is the cube and the user partitions it to
get approximate shapesP0 in blue andP1 in red in the assembled position. We call these approximate parts
pseudo‑parts. Pseudo‑part P1 is then placed onto the desired disassembled pose consisting of a different
location and orientation in space, in faint red. Our goal is to express mathematically the rigid motion map‑
ping pseudo‑P1 in the assembled state (deep red) to pseudo‑P1 in the disassembled state (faint red). Here,
this mapping is figured by the helical trajectory in red around the screw axis in black. Wewill understand in
this section that such a screwmotion is encoded by a unit dual quaternion. Put simply, this section aims at
explaininghow to find the rigidmotionmapping twosimilar bodieswithdifferent locations andorientations
in space using unit dual quaternions.
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Figure 5.1| This sections describes the process to find the unit dual quaternion
encoding the screw motion mapping pseudo‑P1 in its assembled
pose (deep red) to pseudo‑P1 in its disassembled pose (faint red).

5.1.2 MOTIVATION

Ourmotivation for using dual quaternions to rigidly move 3D objects instead of themore common rotation
matrices and vector algebra stems from the very reason quaternions and not matrices are used to rotate
3D objects in the computer graphics and spacecraft industries. Rotation matrices use the so‑called Euler’s
angles to manipulate objects, typically noted ψ, β, ϕ and called the yaw, pitch and roll angles (not neces‑
sarily in that order, it seems to be author‑dependent). These angles are defined in a pre‑chosen arbitrary
cartesian frame, and the ordering of the axes is of crucial importance as in general rotations do not com‑
mute. Thus each person using Euler’s angles must unequivocally define the order in which the angles are
to be composed and also the convention of the ordering of the cartesian axes. More than one student, and
I can relate, had a headache figuring out which order should be used to achieve the desired result. All these
conventions lead to a plethora of possibilities, making the comparison of the works of two distinct persons
devilishly difficult. Even the name of the angles is a matter of convention: they can be α, β, γ. The dedi‑
cated Wikipedia page lists as many as 10 different conventions. From a code complexity point of view, the
sine and cosine of each of these three anglesmust be calculated and composed usingmatrixmultiplication,
operations that are not cheap. Moreover, the interpolation between two orientations is convoluted due to
the arbitrary nature of the rotation axes. Finally, and it is quite problematic for practical use, rotationmatri‑
ces are subjected to gimbal lock when the determinant becomes zero: in robotic applications, this can lead
to surprisingly fast and unpredictable motions, potentially dangerous for nearby humans.
By comparison quaternions, despite obeying seeminglymore complexmultiplicative rules, neatly encode a
rotation: out of the four coordinates defining a quaternion, three correspond to the coordinates of the axis
of rotation and the last encodes the angle of rotation. They are simple to compose and, by design, they are
free from Gimbal locks. For these reasons, they are massively used in the computer graphics community.
Even the popular cross‑platform game engine Unity uses them, even though it is targeted to hobbyist game
creators without necessarily a deepmathematical background.
Since quaternions are more convenient to use, we made the choice of using them instead of rotation ma‑
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trices. But as we are interested in generalised motions and not just rotations, we have to take into account
translations. While vector algebra is suited for this task, it simply seems more practical to use in its place
dual quaternions which encompass in a single well‑defined theory both the translation and the rotation
defining a 3Dmotion.

5.1.3 LONG STORY SHORT

We present here a succinct summary of the results developed hereunder. This subsection is intended for
the hurried or not‑so‑mathematically‑inclined reader who do not wish to dwell on the technicalities behind
unit dual quaternions.

LetDH denotes the set of dual quaternions. Any dual quaternion q̂ ∈ DH can be written as:

q̂ =

[
cos θ̂

2
, û sin θ̂

2

]

with θ̂ a dual scalar and û a dual vector:

θ̂ = θ0 + ϵθϵ θ0, θϵ ∈ R

û = u0 + ϵuϵ u0,uϵ ∈ R3

ϵ is the so‑called dual unit. It is a number such that:

ϵ 6= 0 ϵ2 = 0

We are interested in unit dual quaternions, whose set is denotedU(DH). For q̂ to be a unit dual quaternion,
it must be such that:

||u0|| = 1 u0 · uϵ = 0

In such a case, q̂ encodes a screwmotion:

■ The screw axis goes through the pointu0 × uϵ ∈ R3.
■ The screw axis is oriented byu0.
■ The angle of the rotation is θ0.
■ Themagnitude of the translation is θϵ.

The following subsections go into greater details to define and prove the aforementioned statements
and properties. Yet they are not necessary to understand the remaining of this dissertation: one can can
readily deem unit dual quaternions as a black box encoding rigid body motions in R3. As such the reader
may gloss over the following subsections and start the reading at SECTiON 5.2.

5.1.4 QUATERNIONS

Before talking about dual quaternions, itmaybe convenient to introduce first the simpler quaternions, used
in the aerospace or video games industries to rotate 3D objects. This SECTiON 5.1.4 provides a comprehen‑
sive introduction to quaternions, with the hope that anybody with a light mathematical background would
be able to understand it. The interested reader is referred to [88] for a more concise (and, frankly, a quite
pleasant and entertaining) introduction to quaternion and spherical interpolation.

Quaternions are an absolutely fascinating and often unappreciated area ofmathematics. They are four‑
dimensional numbers that were first described by the Irish mathematician Hamilton on October the 16th
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18431. A quaternion involves a scalar part (sometimes termed real part) and a 3D imaginary part (also called
the vector part). They can be represented in many forms, among which but not exhaustively:

■ q = a+ ib+ jc+ kdwith a, b, c, d ∈ R

■ q =

a,

b

c

d




■ q = [ρ cos θ, ρw sin θ] where ρ = ||q|| is the norm of q (defined later) and [cos θ,w sin θ] is the unit
quaternion pointing towards q with cos θ = a√

a2+b2+c2+d2
and sin θ =

√
b2+c2+d2

√
a2+b2+c2+d2

.
■ q = [s,v]where s = a is the scalar part and v = (b, c, d)T is the vector part.

The set of quaternions is denoted asH in homage to Hamilton.

5.1.4.1 Multiplication

In the first representation numbers 1, i, j and k are the quaternions units and follow a certain number of
multiplicative rules that are summedup in TABLE 5.1. Note that themultiplication between twoquaternions
is not commutative : ij 6= ji.

× 1 i j k

1 1 i j k

i i ‑1 k −j

j j −k ‑1 i

k k j −i ‑1

Table 5.1| Quaternion units multiplication rules (the multiplication order is row times column)

The additive rule is straight forward

q1 + q2 = (a1 + ib1 + jc1 + kd1) + (a2 + ib2 + jc2 + kd2)

= a1 + a2 + i(b1 + b2) + j(c1 + c2) + k(d1 + d2)

Given the two quaternions on the previous equation, their multiplication using TABLE 5.1 results in:

q1q2 = (a1a2 − (b1b2 + c1c2 + d1d2)) + i(a1b2 + a2b1 + c1d2 − d1c2)+

j(a1c2 + a2c1 + d1b2 − d2b1) + k(a1d2 + a2d1 + b1c2 − b2c1)

Computing quaternion multiplication using these rules can be quite cumbersome which might explain
why quaternions are sometimes considered as a “positive evil of no inconsiderablemagnitude” as Heaviside
once put it. However the last representation q = [s,v] can neatly define multiplication using our modern
vector algebra, namely the dot product (. · .) and cross product (.× .):

q1q2 = [s1,v1][s2,v2] 5.1

= [(s1s2 − v1 · v2), (s1v2 + s2v1 + v1 × v2)] 5.2

1A headstonemarks the bridge on which he was the moment when he got the idea.
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The addition is also very simple:

q1 + q2 = [s1,v1] + [s2,v2]

= [s1 + s2,v1 + v2]

5.1.4.2 The conjugate, norm and reciprocal of a quaternion
The definition of the conjugate of a quaternion is simply extended from the definition of the conjugate of
a complex number. As a reminder let z = a + ib ∈ C be a complex number. Then the conjugate of z is
z∗ = a− ib.
The conjugate of the different representations given earlier are:

■ q = a+ ib+ jc+ kd =⇒ q∗ = a− ib− jc− kd

■ q =

a,

b

c

d


 =⇒ q∗ =

a,

−b

−c

−d




■ q = [ρ cos θ, ρw sin θ] =⇒ q∗ = [ρ cos θ,−wρ sin θ] = [ρ cos (−θ), ρw sin (−θ)] .
■ q = [s,v] =⇒ q∗ = [s,−v].

The conjugate of the product of two quaternions is equal to the product of the conjugates computed in
the reverse order: let q1 = [s1,v1] and q2 = [s2,v2](

q1q2
)∗

= [s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2]
∗

= [s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2]

= [s1s2 − (−v1) · (−v2), s1(−v2) + s2(−v1) + (−v2 × (−v1)]

= [s2,−v2][s1,−v1]

= q∗2q
∗
1

Recall that the norm of a complex number z = a + ib ∈ C is the euclidean distance between the point
represented by z and the origin of C: ||z|| =

√
a2 + b2 =

√
zz∗. The norm of a quaternion q = a + ib +

jc+ kd ∈ H is simply

||q|| =
√
a2 + b2 + c2 + d2 =

√
s2 + v · v =

√
qq∗ =

√
q∗q

which also corresponds to the euclidean distance between 0 and the point (a, b, c, d)T ∈ R4.
A unit quaternion q is simply such that ||q|| = 1. Let U(H) = {q ∈ H, ||q|| = 1} denote the set of unit
quaternions.

The reciprocal of a non zero quaternion q is by definition the quaternion q−1 such as qq−1 = q−1q =

[1,0] where [1,0] is the quaternion representing the real number 1. The conjugate of a complex number
z = a+ ib is z−1 = z∗

zz∗ = a−ib
||z||2 . This definition is extended for quaternions and:

q−1 =
q∗

||q||2

Note that for a unit quaternion q ∈ U(H), the conjugate is the reciprocal:

||q|| = 1 =⇒ q∗ = q−1 5.3
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5.1.5 QUATERNIONS ANDMULTIPLICATION

Just as complex (2D) numbers neatly define rotations in the plane, involving some scaling and rotating,
quaternions are quite surprisingly very pragmatic tools to describe rotations in 3D. They are more efficient
and less prone to numerical errors than other methods, including Euler angles and rotation matrices, to
handle rotations in 3D.

Notations: Let p ∈ R3 be a point and q =
[
cos θ

2 ,u sin θ
2

]
∈ U(H) a unit quaternion. The quaternionic

representation of point p is denoted as the quaternion p = [0,p] ∈ H. The result p̃ of counterclockwise
rotation of p around axisu by angle θ is given by:

p̃ = [0, p̃] = qpq−1

To make this dissertation more digest, the explanations and details of this formula are glossed over in
this chapter. That being said, the interested reader is referred to APPENDiX D.1 which goes into great detail
and tries to provide intuition on the why and how of this formula. Only the most salient results are stated
hereunder.

Intuition
The computation of the product qpq−1 and the proof (see APPENDiX D.1) that it does the rotation wanted
are quite cumbersome and do not let us really understand what is going on. Let’s try to understand why
defining q using half the angle we want to rotate

(
θ
2

)
and multiplying on the right and on the left by q and

q−1 = q∗ (recall that ||q|| = 1, see EQUATiON (5.3)) yields a satisfying result.

APPENDiX D.1 shows that for any point s ∈ R3 represented by the quaternion s = [0, s], and for any unit
quaternion r = [cosα,v sinα] the quaternions rs and sr form an angle αwith quaternion s. Moreover this
transformation is distance‑preserving: ||sr|| = ||rs|| = ||s||: it is thus a rotation. Multiplying s by r on the
left means that the rotation happens in an anticlockwise manner about v to get rs and multiplying on the
right means that the rotation is clockwise.
This rotation happens inR4 and any projection into the workspaceR3 leads to distortions: the dot product
is not preserved by this projection, hence neither are the angles nor the distances between points, which
means that the transformation is not rigid and thus the product rs (or sr) cannot be considered as encoding
a 3D rotation.
Let’s zoom in the construction of pr = qpq∗ where q = [cos θ

2 ,u sin θ
2 ] for some angle θ and unit vectoru ∈

R3. The quaternion qp is forming an angle θ
2 with p as the rotation happened about u in an anticlockwise

manner. Taking the quaternion qp andmultiplying it on the right by q−1 = q∗ (EQUATiON (5.3)) might at first
seemodd as one is rotating in an clockwisemanner through θ

2 , so it could seem thatwe are rotating qp back
to p. Yet, a more careful analysis shows that q∗ can be interpreted in two ways:

1. q∗ = [cos θ
2 ,−u sin θ

2 ]

2. q∗ = [cos −θ
2 ,u sin −θ

2 ]

Bearing in mind that qp is multiplied on the right by q∗, the first interpretation means that the rotation of θ
2

happens inanclockwisemanner (multiplicationon the right)butabout thenegativeaxisof rotation−u. The
second interpretation suggests that the clockwise rotation is about u but through the opposite angle −θ

2 .
Either way, a clockwise rotation through the positive angle about the negative axis or a clockwise rotation
about the positive axis through the negative angle yields the same result: the rotation of qp to qpq∗ happens
in the same direction as the rotation from p to qp does, i.e. an anticlockwise rotation through the positive
angle about the positive axis. All in all the operation taking p to qp is a rotation through half the angle, and
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the one bringing qp to qpq∗ completes this rotation through the other half angle.
As shown by EQUATiONS (D.2) and (D.3), not only does the multiplication on the right by q∗ and on the left
by q sums up to one rotation through the full angle θ, it keeps the scalar part of the resulting quaternion to
zero: it defines an isomorphism on the set of quaternion with a zero scalar‑part, precisely the set that can
be interpreted as 3D points.

Figure 5.2| Left: a cube. Right: the image of this cube through a rotation qpq∗.

The interested reader is strongly encouraged to watch the outstanding playlist on quaternions by the
youtuber 3Blue1Brown, [2] to learn more at an intuitive level about this fascinating area of mathematics.
Most of my understanding comes fromwatching his videos.

5.1.6 DUAL NUMBERS

Dual numbers were developed by Clifford in 1873 [21]. A dual real number, which will be denoted using a
hat ·̂ is defined to be

x̂ = x0 + ϵxϵ

Where x0 and xϵ are real numbers respectively referred to as the real and dual parts of x̂ and ϵ is the dual
unit such that ϵ2 = 0 (and more generally any power of ϵ greater than 2 is equal to 0). The addition and
multiplication of two dual numbers x̂ and ŷ are defined as follows:

x̂+ ŷ = (x0 + y0) + ϵ(xϵ + yϵ) 5.4

x̂ŷ = x0y0 + ϵ(x0yϵ + y0xϵ) 5.5

A pure dual number is defined as a dual number having a zero real part x̂ = ϵxϵ. The inverse of a dual
number is defined for a non‑pure dual number as:

x̂−1 =

(
1

x0
+ ϵ

xϵ
x20

)
And it can easily be verified that x̂−1x̂ = 1.

5.1.6.1 Dual vectors

The following definitions could be generalized to any dimension, but as we are working in R3 we are only
going to focus on vectors and dual vectors in three dimensions.
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A dual vector x̂ is a vectorwhose entries are all dual numbers. Superscript .i denotes the ith component.

x̂ =


x̂1

x̂2

x̂3

 =


x10 + ϵx1ϵ

x20 + ϵx2ϵ

x30 + ϵx3ϵ


The product of a dual number x̂with a dual vector x̂ is obtained under the standard multiplicative rule:

x̂x̂ =


x̂x̂0

x̂x̂1

x̂x̂2


The dot product and cross product between dual vectors x̂ and ŷ are respectively defined to be:

x̂ · ŷ = x̂1ŷ1 + x̂2ŷ2 + x̂3ŷ3 5.6

x̂× ŷ =


x̂2ŷ3 − x̂3ŷ2

x̂3ŷ1 − x̂1ŷ3

x̂1ŷ2 − x̂2ŷ1

 5.7

5.1.7 DUAL QUATERNIONS

A dual quaternion q̂ is defined by extending the definition of a dual number:

q̂ = q0 + ϵqϵ

where q0 and qϵ are the quaternions:

q0 = [sq0 ,vq0 ]

qϵ = [sqϵ ,vqϵ ]

By additive and multiplicative rules of quaternion, a dual quaternion can also be viewed as built of a dual
scalar part and dual vector part:

q̂ = q0 + ϵqϵ

= [sq0 ,vq0 ] + ϵ[sqϵ ,vqϵ ]

= [sq0 + ϵsqϵ ,vq0 + ϵvqϵ ]

= [ŝq, v̂q]

The sum and product of two dual quaternion q̂ and r̂ are:

q̂ + r̂ =
(
[sq0 ,vq0 ] + ϵ[sqϵ ,vqϵ ]

)
+
(
[sr0 ,vr0 ] + ϵ[srϵ ,vrϵ ]

)
= [sq0 + sr0 ,vq0 + vr0 ] + ϵ[sqϵ + srϵ ,vqϵ + vrϵ ]

= [(sq0 + sr0) + ϵ(sqϵ + srϵ), (vq0 + vr0) + ϵ(vqϵ + vrϵ)]

= [(sq0 + ϵsqϵ) + (sr0 + ϵsrϵ), (vq0 + ϵvqϵ) + (vr0 + ϵvrϵ)]

= [ŝq + r̂q, v̂q + v̂r]
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q̂r̂ = (q0 + ϵqϵ)(r0 + ϵrϵ)

= q0r0 + ϵ(q0rϵ + qϵr0)

= [sq0sr0 − vq0 · vr0 , sq0vr0 + sr0vq0 + vq0 × vr0 ]+

ϵ[sq0srϵ + sqϵsr0 − vq0 · vrϵ − vqϵ · vr0 , sq0vrϵ + srϵvq0 + sqϵvr0 + sr0vqϵ + vq0 × vrϵ + vqϵ × vr0 ]

= [(sq0sr0 − vq0 · vr0) + ϵ(sq0srϵ + sqϵsr0 − vq0 · vrϵ − vqϵ · vr0),

(sq0vr0 + sr0vq0 + vq0 × vr0) + ϵ(sq0vrϵ + srϵvq0 + sqϵvr0 + sr0vqϵ + vq0 × vrϵ + vqϵ × vr0)]

= [
(
sq0sr0 + ϵ(sq0srϵ + sqϵsr0)

)
−
(
vq0 · vr0 + ϵ(vq0 · vrϵ + vqϵ · vr0)

)
,(

(sq0vr0 + ϵ(sq0vrϵ + srϵvq0)
)
+
(
sr0vq0 + ϵ(sqϵvr0 + sr0vqϵ)

)
+
(
vq0 × vr0 + ϵ(vq0 × vrϵ + vqϵ × vr0)

)
]

= [ŝq ŝr − v̂q · v̂r, ŝqv̂r + ŝrv̂q + v̂q × v̂r]

The results bear close resemblance to the sum and products of standard quaternions. A pure dual quater‑
nion is a dual quaternion q̂whose real quaternion q0 = 0. If q̂ is not a pure dual quaternion, then the inverse
of q̂ is

q̂−1 = q−1
0 − ϵqϵq

−2
0

Two conjugates of dual quaternion q̂ are defined:

q̂∗ = q∗0 + ϵq∗ϵ

q̂◦ = q∗0 − ϵq∗ϵ 5.8

The product q̂q̂∗ is a dual scalar as proved in the following equations:

q̂q̂∗ = (q0 + ϵqϵ)(q
∗
0 + ϵq∗ϵ )

= q0q
∗
0 + ϵ(q0q

∗
ϵ + qϵq

∗
0)

= ||q0||2 + ϵ
(
[sq0 ,vq0 ][sqϵ ,−vqϵ ] + [sqϵ ,vqϵ ][sq0 ,−vq0 ]

)
= ||q0||2 + ϵ

(
[sq0sqϵ + vqϵ · vq0 , sqϵvq0 − sq0vqϵ − vq0 × vqϵ ] + [sqϵsq0 + vq0 · vqϵ , sq0vqϵ − sqϵvq0 − vqϵ × vq0 ]

)
= ||q0||2 + ϵ[2sq0sqϵ + 2vqϵ · vq0 ,0]

= ||q0||2 + 2ϵ(sq0sqϵ + vqϵ · vq0)

By definition, a unit dual quaternion is a dual quaternion q̂ such that q̂q̂∗ = 1. Hence, by identifying the
real and dual part of q̂q̂∗, a unit dual quaternion q̂must satisfy:

||q0|| = 1 5.9

sq0sqϵ + vqϵ · vq0 = 0 5.10

When one interprets quaternions q0 and qϵ as vectors in four dimensions : q0 = (sq0 ,v
T
q0
)T and qϵ =

(sqϵ ,v
T
qϵ
)T , then one finds that EQUATiON (5.10) reads that qϵ and q0 are orthogonal in R4. The fact that

qϵ and q0 are orthogonal and that q0 is a unit quaternion as stated by EQUATiON (5.9) implies that the set of
unit dual quaternions is the union of the unit hypersphere inR4 and the set of hyperplanes tangent to this
hypersphere (translated to the origin ofR4 to contain the zero quaternion).
One can also verify that EQUATiONS (5.9) and (5.10) reduce the degrees of freedomwhen choosing the com‑
ponents of q̂ from 8 to 6, exactly the number of degrees of freedom of a particle in 3D undergoing a rigid
body motion. As stated by McCarthy in [59], the set of unit dual quaternions “is a six‑dimensional algebraic
submanifold ofR8, termed the image space of spatial displacements”.
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In this document, wewill refer to the set of dual quaternions asDH and the set of unit dual quaternions
as U(DH).
In what follows we develop the most salient results concerning the relationships between a rigid body mo‑
tion and a unit dual quaternion.

5.1.8 SCREW AXIS AND RIGID BODYMOTION

5.1.8.1 Unit dual quaternion and generalised 3Dmotion
Let q̂ = q0+ ϵqϵ be a unit dual quaternion. Let θ ∈ [0, π] andu ∈ R3 be an angle and a unit vector such that

q0 = [sq0 ,vq0 ] = [cos θ
2
,u sin θ

2
]

Meaning that q0 is a quaternion encoding a rotation about axisu by angle θ. Let also t be a quaternion such
that t = 2qϵq

∗
0 . Expanding t yields:

t = 2qϵq
∗
0

= 2[sqϵ ,vqϵ ][sq0 ,−vq0 ]

= [sqϵsq0 + vqϵ · vq0 , sq0vqϵ − sqϵvq0 + vq0 × vqϵ ]

= [0, 2
(
sq0vqϵ − sqϵvq0 + vq0 × vqϵ

)
]

Where the last step made use of the fact that since ||q̂|| = 1, q0 and qϵ are orthogonal. Because t has a zero
scalar part, its imaginary part t = 2

(
sq0vqϵ − sqϵvq0 + vq0 × vqϵ

)
can be interpreted as a vector inR3.

Since t = 2qϵq
∗
0 =⇒ qϵ =

1
2 tq0, q̂ can be rewritten to be:

q̂ = q0 +
1

2
ϵtq0

Whereas the quaternion representation of a point p ∈ R3 is p = [0,p], the conversion to a dual quater‑
nion is defined to be:

p̂ = [1,0] + ϵ[0,p] = 1 + ϵp

Meaning that a dual quaternion r̂ = r0 + ϵrϵ can be interpreted as a point inR3 if and only if the non dual
part r0 is equal to 1 (as a real number) and the dual part rϵ is a quaternion with a zero scalar part. In that
case, the vector part of the dual part can be seen as a vector inR3.

Let us compute the product of the dual representation of a point p ∈ R3 with the unit dual quaternion
q̂ defined above using the conjugation given EQUATiON (5.8):

q̂p̂q̂◦ =

(
q0 +

1

2
ϵtq0

)(
[1,0] + ϵ[0,p]

)(
q∗0 −

1

2
ϵ(tq0)

∗
)

5.11a

=

(
q0 + ϵ

(
q0p+

1

2
tq0

))(
q∗0 −

1

2
ϵq∗0t

∗
)

5.11b

= q0q
∗
0 + ϵ

(
−1

2
q0q

∗
0t

∗ + q0pq
∗
0 +

1

2
tq0q

∗
0

)
5.11c

= 1 + ϵ

(
−1

2
[0,−t] + q0pq

∗
0 +

1

2
[0, t]

)
5.11d

= 1 + ϵ(q0pq
∗
0 + t) 5.11e

q0pq
∗
0 is exactly the result of the rotation of p through quaternion q0 as we saw SECTiON 5.1.5. Therefore

the scalar part of q0pq∗0 is 0 and its imaginary part can be interpreted as a rotated point. Quaternion t also
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has a zero scalar part and can be interpreted as a 3D vector. Thus, the dual quaternion q̂p̂q̂◦ meets all con‑
ditions to be viewed as a point in R3 and one can interpret the operation q̂p̂q̂◦ as rotating p by θ around u

followed by a translation ofmagnitude ||t|| along direction t
||t|| . In other words, q̂ enables p to be subjected

to a rigid body motion !

Had we wanted to translate first p and then rotate it about u, we would have used the quaternion r̂ =

r0 +
1
2ϵr0twith r0 = q0 = [cos θ

2 ,u sin θ
2 ]. Indeed, expanding r̂p̂r̂

◦ yields:

r̂p̂r̂◦ =

(
r0 +

1

2
ϵr0t

)
(1 + ϵp)

(
r∗0 −

1

2
ϵ(r0t)

∗
)

=

(
r0 + ϵ

(
r0p+

1

2
r0t

))(
r∗0 + ϵ

(
−1

2
t∗r∗0

))
= r0r

∗
0 + ϵ

(
−1

2
r0tr

∗
0 + r0pr

∗
0 +

1

2
r0tr

∗
0

)
= 1 + ϵr0

(
−1

2
[0,−t] + p+

1

2
[0, t]

)
r∗0

= 1 + ϵr0(p+ t)r∗0

5.12

For the same reason as above, r̂p̂r̂◦ can be interpreted as a point p that is first translated along t and
then rotated through quaternion r0.

The reader’s attention is drawn to the fact that a rotation without translation can be computed with a
unit dual quaternion q̂ having qϵ = 0 and a translation without rotation would be given by q̂ with q0 = 1.
Note that in that case q̂ = 1+ 1

2ϵtworkswithhalf the amountof translation, quite similarly to apure rotation
working with half the angle θ

2 .

5.1.8.2 Mozzi–Chasles’ theorem
TheMozzi–Chasles’ theorem (discovered by the Italian G. Mozzi in 1763 but attributed toM. Chasles in 1830)
states that ([45] page 666)

Mozzi–Chasles’ theorem
The most general rigid motion is resultant of a rotation and a translation parallel to the axis of the rotation

A neat and rigorous demonstration of this theorem is provided in [45].
Following [50] and [22] we prove in APPENDiX D.2 that any unit dual quaternion can be written down as:

q̂ =

[
cos θ̂

2
, û sin θ̂

2

]

where θ̂ is a dual angle and û is a dual vector inR3. Such concise expression will turn out to be particularly
convenient to encode a rigid body motion: we will understand hereunder that the dual angle θ̂ = θ0 + ϵθϵ

contains the angle of rotation (θ0) and the magnitude of the translation (θϵ), while the dual vector û =

u0 + ϵuϵ is constituted of the so‑called Plücker coordinates of the screw axis.

5.1.8.3 Plücker coordinates
As stated in [22], Plücker coordinates [66] are a convenientway to store a line inR3 as a sextuplet [l,m]with
l,m ∈ R3. Let us consider a line going through two distinct points pA and pB . A direction of the line is the
obtained as the vector: l = pB − pA. The moment of the line is defined asm = pA × pB . Momentm is
a vector normal to the plane defined by pA,pB and the origin o of R3 and whose length is equal to twice
the area of triangle opApB . Note thatm = p× l for any point p on the line. The tuple [l,m] defines a line
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up to a scalar multiplication [λl, λm] with λ 6= 0. Ensuring ||l|| = 1 and l ·m = 0 reduces the number of
degree of freedom from 6 to 4, i.e. exactly the number of degree of freedom of a 3D line, which shows that
the Plücker coordinates [l,m] uniquely defines a line.

Figure 5.3| A line and its Plücker coordinates.

We solve the problem of finding the line associated with given Plücker coordinates. Let [l,m] be the
Plücker coordinates of a line with ||l|| = 1 and l ·m = 0. Finding the line associated with the tuple [l,m]

means finding a point on that line since we already know the line orientation l. Let p be such a point. p can
be decomposed into two parts: p∥ and p⊥ respectively the collinear and orthogonal components of pwith
respect to l. By definitionm = p× l and som = p⊥× l. Note thatp⊥ is the projection of the originO onto
the line [l,m], i.e. p⊥ is the point on the line the closest toO. Expanding the cross product l×m yields:

l×m = l× (p⊥ × l)

= (l · l)p⊥ − (l · p⊥)l

= p⊥

We have thus shown that the line given by the Plücker coordinates [l,m] such that ||l|| = 1 and l ·m = 0

goes through point l×mwith orientation l. Note also that when ||l|| = 1 then ||p⊥|| = ||m||.

5.1.8.4 Unit dual quaternions and Plücker coordinates

APPENDiXD.2proves that for aunit dual quaternion q̂written in the form q̂ = [cos θ̂
2 , û sin θ̂

2 ]with θ̂ = θ0+ϵθϵ

and û = u0 + ϵuϵ, then the tuple [u0,uϵ] defines the Plücker coordinates of a line:

||q̂|| = 1⇔ [u0,uϵ] are the Plücker coordinates of a line

5.1.8.5 But where is the screwmotion ?
Remember that for a pointp ∈ R3 represented by the dual quaternion p̂ = 1+ ϵpwhere p is the quaternion
[0,p] and a unit dual quaternion q̂ = q0+

ϵ
2 tq0 (with t and q0 quaternions) we saw on EQUATiON (5.11e) that:

ˆ̃p ≡ q̂p̂q̂
◦
= 1 + ϵ(q0pq

∗
0 + t)

The transformed dual quaternion ˆ̃p can be interpreted as a point in R3 (it is in the form 1 + ϵp̃ where p̃ is a
quaternionwith a 0 scalar part: p̃ = [0, p̃], p̃ ∈ R3. p̃ can be decomposed in to parts: q0pq∗0 on the one hand
and t and the other. Bearing in mind SECTiON 5.1.4, the first part is interpreted as the quaternion p = [0,p]

rotated by the quaternion q0 around an axis going through the origin ofR3; the second part t is merely a
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translation of this rotated point along an axis thatmay ormay not have anything to dowith the rotation axis
hidden in q0. The question is: where is the screwmotion, i.e. where is themotion of rotation and translation
along the same axis that is not necessarily going through the origin? To answer that we will need Plücker
and the fact that any unit dual quaternion q̂ can be written down as q̂ =

[
cos θ̂

2 , û sin θ̂
2

]
.

Let θ0 and θϵ ∈ R be such as θ̂ = θ0 + ϵθϵ. Let also u0,uϵ ∈ R3 such that û = u0 + ϵuϵ and ||u0|| = 1

andu0 ·uϵ = 0 so that the tuple [u0,uϵ] can be safely interpreted as a line inR3. We are going to show that
the unit dual quaternion q̂ =

[
cos θ̂

2 , û sin θ̂
2

]
encodes a rotation about θ0 and a translation of θϵ along the

line [u0,uϵ], i.e precisely a screwmotion of axis [u0,uϵ].

As seen above, with c = cos θ0
2 , s = sin θ0

2 one can develop q̂ as

q̂ = q0 + ϵqϵ

q0 = [c,u0s]

qϵ = [−θϵ
2
s,u0

θϵ
2
c+ uϵs]

Developing the product q̂p̂q̂◦ for some dual quaternion p̂ representing a point inR3 yields:

q̂p̂q̂◦ = 1 + ϵ(q0pq
∗
0 + qϵq

∗
0 − q0q∗ϵ )

The rotation term q0pq
∗
0 encodes a rotation of angle θ along an axis oriented byu0 going through 0. We have

the correct angle but not yet the correct axis of rotation: as far as this term is concerned the axis of rotation
is [u0,0] and not [u0,uϵ] as we would like. Expanding the translation term qϵq

∗
0 − q0q∗ϵ yields:

qϵq
∗
0 − q0q∗ϵ = [0, θϵu0 + 2uϵsc+ 2u0 × uϵs

2]

The goodnews is that the quantity θϵu0 is a translation ofmagnitude θϵ along the unit vectoru0: we already
have one bit of what we want. But the bad news is that rotation term q0pq

∗
0 is still a rotation around an

axis going through 0 and the other part of the translation term 2uϵsc + 2u0 × uϵs
2 does not have an easy

geometrical interpretation. We are going to transform it using two identities : u0 · u0 = 1 andu0 · uϵ = 0

2scuϵ + 2s2u0 × uϵ = −2sc((u0 · uϵ)u0 − (u0 · u0)uϵ) + (s2 + s2 − c2 + c2)u0 × uϵ

Using the triple product: a× (b× c) = (a · c)b− (a · b)cwe can rewrite the latter equation as:

2scuϵ + 2s2u0 × uϵ = u0 × uϵ −
(
(c2 − s2)u0 × uϵ + 2scu0 × (u0 × uϵ)

)
Recall that the quantity p⊥ = u0 ×uϵ is the point inR3 that is the orthogonal projection of the origin onto
the line [u0,uϵ]. Also, naturally,u0 ·p⊥ = 0. EQUATiON (D.3) tells us that developing the product q0[0,p⊥]q

∗
0

yields:

q0[0,p⊥]q
∗
0 = [0, 2s2(u0 · p⊥)u0 + (c2 − s2)p⊥ + 2sc(u0 × p⊥)

= [0, (c2 − s2)(u0 × uϵ) + 2sc(u0 × (u0 × uϵ))]
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Hence:

qϵq
∗
0 − q0q∗ϵ = [0, θϵu0 + u0 × uϵ −

(
(c2 − s2)u0 × uϵ + 2scu0 × (u0 × uϵ)

)
]

= [0, θϵu0 + u0 × uϵ]− q0[0,u0 × uϵ]q
∗
0

And finally:

q̂p̂q̂◦ = 1 + ϵ (q0pq
∗
0 + [0, θϵu0 + u0 × uϵ]− q0[0,u0 × uϵ]q

∗
0) 5.13

= 1 + ϵ (q0 (p− [0,u0 × uϵ]) q
∗
0 + [0, θϵu0 + u0 × uϵ]) 5.14

This is it: this latest expression is precisely a screwmotion around [u0,uϵ]!. To understand why, let us look
at each of the terms:
As stated aboveu0×uϵ is the orthogonal projection of the origin onto the line [u0,uϵ]; it is the point on this
line the closest to 0. Hence the quaternion p − [0,u0 × uϵ] is the quaternionic representation of the point
p that we are interested in transforming translated by the amountu0 ×uϵ towards the origin. The product
q0 (p− [0,u0 × uϵ]) q

∗
0 is therefore tobeunderstoodas ”takep, translate it by theamountu0×uϵ and rotate

this shiftedpoint by θ0 around theaxis [u0,0]. Thenextquaternion is the translation term: [0, θϵu0+u0×uϵ].
The first part of this term, [0, θϵu0]merely says ”Once you have shifted and rotated p, move it by θϵ along the
vector u0. The operation q0 (p− [0,u0 × uϵ]) q

∗
0 + [0, θϵu0] is thus a screw motion of axis [u0, 0] where

p − u0 × uϵ is rotated about θ0 and translated by θϵ. The last translation term is [0,u0 × uϵ] and states
”now that the screw motion of axis [u0,0] is done, shift everything back to its original position by translating
the resulting point by u0 × uϵ away from the origin”. With p⊥ = u0 × uϵ the whole process is therefore
”perform a screw motion of point p− p⊥ at the axis oriented by u0 and going through 0 and then add p⊥ to
the result” which rigorously states the same thing as ”Perform a screwmotion of point p at the axis oriented
by u0 and going through the point p⊥”, precisely the screwmotion that we were looking for! On FiGURE 5.4
the blue bow ismapped to the red one using a dual quaternionwhose axis is the line in black. The trajectory
in blue shows the screwmotion around the axis. Arrows on the boxes hopefully help to see their respective
orientations.

Figure 5.4| A unit dual quaternionmaps one box to the other.

5.1.8.6 Finding the unit dual quaternion associated to a rigid bodymotion
Let us take a step back. This rather long exposition on unit dual quaternions has shown that they are par‑
ticularly fit at encoding rigid body motions. When we looked at 2D assemblies in CHAPTER 4, we saw that
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to generate them the user must provide a list of motions, translation and/or rotation. In 3D this principle
stays the same, except that screw motions are much harder to intuitively see. As such the user may find
it cumbersome to specify unit dual quaternions. Yet, if the user gives as well an approximate shape of the
part, a so‑called pseudo‑part, (much like in 2D the user could input a polyline to be optimised), he/she can
alsomove it in space at its resting position, and then ask to compute the unit dual quaternionmapping the
former to the latter. This process ismuchmore intuitive as it simply consists of placing and orienting a solid
body in space. This section aims at calculating this unit dual quaternion.
Say we have two particles2 pA and pB , like on FiGURE 5.5, and we want to find the unit dual quaternion
q̂ = q0 + ϵqϵ transforming pA into pB : q̂B = q̂q̂Aq̂

◦ with q̂A and q̂B the dual quaternions representing
points pA and pB . We are first going to find the quaternion q0 which rotates the orthonormal basis associ‑
ated with pA into the one associated with pB before computing qϵ.

Figure 5.5| Two particles pA and pB .

Calculating q0

Given


exA

eyA

ezA

 and


exB

eyB

ezB

 orthonormal basis, we wish to find the unit quaternion q0 = [c,u0s] (with

c = cos θ0
2 ; s = sin θ0

2 and ||u0|| = 1) such that:
q0[0, exA

]q∗0 = [0, exB
]

q0[0, eyA
]q∗0 = [0, eyB

]

q0[0, ezA ]q
∗
0 = [0, ezB ]

⋆

(⋆)⇔


(c2 − s2)exA

+ 2s2(u0 · exA
)u0 + 2sc(u0 × exA

) = exB

(c2 − s2)eyA
+ 2s2(u0 · eyA

)u0 + 2sc(u0 × eyA
) = eyB

(c2 − s2)ezA + 2s2(u0 · ezA)u0 + 2sc(u0 × ezA) = ezB

2A point and an orthonormal basis inR3
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Since eiA · ejA = 0 for i, j ∈ {x, y, z}, i 6= j one has:

(⋆)⇔



 2s2(u0 · exA
)(u0 · eyA

) + 2sc(u0 × exA
) · eyA

= exB
· eyA

2s2(u0 · exA
)(u0 · ezA) + 2sc(u0 × exA

) · ezA = exB
· ezA 2s2(u0 · eyA

)(u0 · exA
) + 2sc(u0 × eyA

) · exA
= eyB

· exA

2s2(u0 · eyA
)(u0 · ezA) + 2sc(u0 × eyA

) · ezA = eyB
· ezA 2s2(u0 · ezA)(u0 · exA

) + 2sc(u0 × ezA) · exA
= ezB · exA

2s2(u0 · ezA)(u0 · eyA
) + 2sc(u0 × ezA) · eyA

= ezB · eyA

Subtracting (weonlydevelop theequations foronesetof equations, theothersbeingobtainedbypermuting
{x, y, z}):

(⋆)⇔

 2sc (−(u0 × eyA
) · exA

+ (u0 × exA
) · eyA

) = −eyB
· exA

+ exB
· eyA

...

Knowing that b · (c× a) = a · (b× c):

(⋆)⇔

 2sc (−u0 · (eyA
× exA

) + u0 · (exA
× eyA

)) = exB
· eyA

− eyB
· exA

...

⇔

 4sc(u0 · ezA) = exB
· eyA

− eyB
· exA

...

Let

ax = exB
· eyA

− eyB
· exA

ay = eyB
· ezA − ezB · eyA

az = ezB · exA
− exB

· ezA

Then (since 4sc = 2 sin θ0)

(⋆)⇔


2(ezA · u0) sin θ0 = ax

2(exA
· u0) sin θ0 = ay

2(eyA
· u0) sin θ0 = az

And so, assuming θ0 /∈ {0, π}:

(⋆)⇔


eTzA

eTxA

eTyA



ux

uy

uz

 =
1

2 sin θ0


ax

ay

az


Whereu0 = (ux, uy, uz)

T .

LetM =


eTzA

eTxA

eTyA

 and a =


ax

ay

az

. M is orthonormal and thus invertible withM−1 = MT . Assuming
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a 6= 0 one has:
(⋆)⇔ u0 =

1

2 sin θ0
MTa

Recall that ||u0|| = 1 and so:

||u0|| = 1⇔ uT
0 u0 = 1

⇔ 1

4 sin2 θ0
aTMMTa = 1

⇔ aTa = 4 sin2 θ0

⇔ sin2 θ0 =
1

4
||a||2

⇔ θ0 = arcsin
(
±1

2
||a||

)
Two angles, negatives of each other, are solutions to the problem. As these angles are used to compute
the vector u0 = 1

2 sin θ0
MTa we obtain two vectors u0, each the opposite of the other. The final rotation

is therefore the same whether we choose one θ0 (and thus one u0) or the other as rotating by an angle
around an axis is the same as rotating by the opposite angle around the reversed axis (all rotations are an‑
ticlockwise). Hence we could safely choose θ0 = arcsin 1

2 ||a|| and u0 = MTa
||a|| . Yet, because the function

x 7→ arcsinx takes values in [−π
2 ,

π
2 ] the θ0 obtained might not reflect the actual angle between pA’s ba‑

sis and pB ’s basis. To know more about θ0 we need to look at, say, the equation (with c = cos θ0
2 and

s = sin θ0
2 ):

exB
= (c2 − s2)exA

+ 2s2(u0 · exA
)u0 + 2sc(u0 × exA

)

= cos θ0exA
+ (1− cos θ0)(u0 · exA

)u0 + 2sc(u0 × exA
)

Projecting on exA
yields:

cos θ0 + (1− cos θ0)(u0 · exA
)2 = exB

· exA

And:
θ0 = arccos exB

· exA
− (u0 · exA

)2

1− (u0 · exA
)2

5.15

All in all, since x 7→ arccosx takes value in [0, π], if arccos exB
·exA

−(u0·exA
)2

1−(u0·exA
)2 < π

2 then θ0 = arcsin ||a||
2 ,

else θ0 = π − arcsin ||a||
2 .

This canbe rewrittenas θ0 = atan2
(

1
2 ||a||,

exB
·exA

−(u0·exA
)2

1−(u0·exA
)2

)
, whereatan2 is a functionprovided inmost

programming languages. In a nutshell the quaternion q0 looked for is given by (assuming a 6= 0):

q0 =

[
cos θ0

2
,u0 sin θ0

2

]
 θ0 = atan2

(
1
2 ||a||,

exB
·exA

−(u0·exA
)2

1−(u0·exA
)2

)
u0 = MTa

||a||

If a = 0 it is easy to see that either θ0 = 0 or θ0 = π: indeed recall that:

(⋆)⇔


2(ezA · u0) sin θ0 = ax

2(exA
· u0) sin θ0 = ay

2(eyA
· u0) sin θ0 = az
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Hence, sinceu0 cannotbeorthogonal toexA
, exA

andezA at the same time, necessarilya = 0⇔ sin θ0 = 0

and so θ0 = 0 or θ0 = π. To know whichever is true we only need to check the value of the eiA · eiB for
i ∈ {x, y, z}: if for all i, eiA · eiB = 1 then θ0 = 0 and q0 = [1, 0]. Else, we have θ0 = π, c = 0 and s = 1

and we are left to find the vectoru0

(⋆)⇔

 2(u0 · exA)u0 − exA = exB

...

⇔


2(u0 · exA)u0 · u0︸ ︷︷ ︸

=1

− exA · u0 = exB · u0

...

⇔


(exA − exB) · u0 = 0

(eyA − eyB) · u0 = 0

(ezA − ezB) · u0 = 0

LetB be the matrix:

B =


(exA − exB)

T

(eyA − eyB)
T

(ezA − ezB)
T


Then

(⋆)⇔ Bu0 = 0

⇔

u0 ∈ ker(B)

||u0|| = 1

5.16

The basis of the nullspace ofB can be calculated by performing aQR factorization ofBT and taking the
column ofQ that is indexed by a null coefficient on the diagonal ofR. Now that we have calculated q0 we
can focus on qϵ.

Calculating qϵ
Recall that we can always express the conjugation of q̂A (the dual quaternion representing point pA) as a
rotation by θ0 around the axis u0 followed by a translation t represented by the quaternion t = [0, t] such
that t = 2qϵq

∗
0 : q̂q̂Aq̂∗ = 1+ϵ(q0qAq

∗
0+t). The translation quaternion t is trivially given as t = qB−q0qAq∗0 ,

and qϵ = 1
2 tq0. As such, s = sin θ0

2 and c = cos θ0
2 :

t = qB − q0qAq∗0
= [0,pB ]− [0, 2s2(u0 · pA)u0 + (c2 − s2)pA + 2sc(u0 × pA)]

t = pB − (1− cos θ0)(u0 · pA)u0 − cos θ0pA − sin θ0(u0 × pA)

5.17

Finding the screw axis
Now that we have q̂ = q0 + ϵqϵ wemay want to find the screw axis, i.e. to rewrite q̂ as q̂ =

[
cos θ̂

2 , û sin θ̂
2

]
where θ̂ = θ0 + ϵθϵ and û = u0 + ϵuϵ such as the screw axis is given by the Plücker coordinates [u0, uϵ]
and the magnitude of the translation is θϵ.
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We have proven earlier that with such notations one can write qϵ as:

qϵ = [−θϵ
2
s,u0

θϵ
2
c+ uϵs]

Where s = sin θ0
2 and c = cos θ0

2 . Also, qϵ =
1
2 tq0.

Assuming θ0 /∈ {0, π}:

qϵ =
1

2
tq0

=
1

2
[0, t][c,u0s]

=
1

2
[−su0 · t, ct+ st× u0]

By identification:

θϵ = u0 · t

And:

u0θϵ + 2suϵ = ct+ st× u0

2suϵ = ct+ st× u0 − c(u0 · t)u0

= c ((u0 · u0)t− (u0 · t)u0) + st× u0

= cu0 × (t× u0) + st× u0

And thus:
uϵ =

1

2

(
cot θ0

2
u0 × (t× u0) + t× u0

)
If θ0 = 0 then the vectoru0 can be defined asu0 = pB−pA

||pB−pA|| and θϵ = ||pB−pA||. Since this case is about
a pure translation the screw axis goes through point pA anduϵ = pA × u0.
Finally if θ0 = π, θϵ is still given as θϵ = u0 · t and we know that the screw axis goes through point pA+pB

2 .
Henceuϵ =

pA+pB

2 × u0.

This section has shown, how given the same rigid body in two different positions and orientations, one
finds the unit dual quaternion mapping one to the other, and as such the user can intuitively place and
rotate pseudo‑parts in their disassembled state and let the aforementioned algorithm find the unit dual
quaternions mapping each pseudo‑part in its assembled position to its counterpart in the disassembled
state. We almost have everything ready to generate 3D assemblies, we only need to find the instantaneous
direction of motion of a point obeying a unit dual quaternion q̂.

5.2 CONE OF INFINITESIMAL FREEDOMOFMOTION IN 3D

5.2.1 QUATERNIONS, DUAL QUATERNIONS AND TANGENTIAL VELOCITY

5.2.1.1 Tangential velocity and quaternions
Wemaybe interested in the tangential velocity along the trajectory of a pointp ∈ R3 subjected to a rotation
through a quaternion (not a dual one) q =

[
cos θ

2 ,u sin θ
2

]
. Indeed, the tangential velocity is what we called

the instantaneous direction of motion in CHAPTER 4. Such trajectory, in R3, is an circular arc bounded by
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p and the vector part of pr = qpq∗ (p = [0,p]; pr = [0,pr]), centered in 0 and in the plane of normal u.
Any point on this arc can be parametrised by a given λ ∈ [0, 1] such that p(λ) = q(λ)pq∗(λ) with q(λ) =[
cos λθ

2 ,u sin λθ
2

]
. Since q(0) = [1, 0]and q(1) = q, onehas thatp(0) = pandp(1) = pr. Thus, themapping

p : [0, 1] −→ H

λ 7→ p(λ)

is a bijection between the unit segment and the arc of a circle mentioned above (embedded inH).

The tangential velocity at a pointp(λ) is therefore the vector part of ∂qpq∗

∂λ (λ). Introducingλ in EQUATiON
(D.4) reads:

p(λ) = q(λ)p(0)q∗(λ)

= [0, (1− cos(λθ))(u · p)u+ cos(λθ)p+ sin(λθ)(u× p)]

A simple derivation gives that the tangential velocity v(λ) ∈ R3 is:

v(λ) = θ (sin(λθ)((u · p)u− p) + cos(λθ)(u× p)) 5.18

In particular, the initial velocity, also called the instantaneous direction of motion of p with respect to q, is
given by:

v(0) = θ(u× p)

5.2.1.2 Tangential velocity and dual quaternions

The samestudy canbedonewithdual quaternions. In a similar fashionas in SECTiON5.2.1.1, let us introduce
a parameter λ such that q̂ =

[
cos λθ̂

2 , û sin λθ̂
2

]
. EQUATiON (5.14) then reads

q̂p̂q̂◦ = 1 + ϵ(q0(λ)(p− [0,u0 × uϵ])q
∗
0(λ) + [0, λθϵu0 + u0 × uϵ]

And the tangential velocity becomes:

v(λ) = θ0 (sin(λθ0) ((u0 · p)u0 − p+ u0 × uϵ) + cos(λθ0) (u0 × p+ uϵ)+) + θϵu0

In particular, the initial velocity, or instantaneous direction of motion of pwith respect to q̂ is given by:

v(0) = m(p, q̂) = θ0(u0 × p+ uϵ) + θϵu0

When the unit dual quaternion is not ambiguous, we will abbreviatem(p, q̂) asmp. FiGURE 5.6 shows the
instantaneous directions of motions (blue vectors) of regularly spaced points on a plane for various q̂ (with
constant u0 and uϵ and varying θ0 = cos θ and θϵ = sin θ): the red line shows the screw axis, and the red
curve is the trajectory of the highlighted red point for an extended motion encoded in q̂. On the left a pure
translation is obtained for θ = ±π

2 , in the middle a pure rotation is obtained for θ = kπ, k ∈ Z and on the
right a screwmotion is given for θ = 0.5.

5.2.2 THEORETICAL RESULTS

This sectionaimsat finding the setof unit dual quaternions that canbeobeyedbyagiven separating surface.
By definition a surface Σ (be it smooth or discrete) obeys a motion q̂ if and only if each of its constitutive
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Figure 5.6| Instantaneous directions of motion for three different unit dual
quaternions q̂.

points obey q̂:
Σ obeys q̂ ⇐⇒ ∀v ∈ Σ, nv ·mv ≥ 0

where v is a point of the surface,nv the normal vector at that point andmv the instantaneous direction of
motion of v with respect to q̂ that is defined just above, see FiGURE 5.7 for an illustration.

Figure 5.7| Smooth and discrete surfaces obeying a unit dual quaternion q̂.

Notations:
LetM = (V,E, F ) a discrete surface represented by a triangular mesh: V is its set of vertices,E of edges
and F of faces. For a face f ∈ F let V (f) = {vi,vj ,vk} refers to its vertices in a counterclockwise order;
letnf be the normal of face f .

In this section we prove the following equivalence:

M obeys q̂ ⇐⇒ ∀f ∈ F ∀v ∈ V (f) mv · nf ≥ 0

which implies that to check whether a triangular mesh obeys a motion q̂, it suffices to check for the mesh
vertices.
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Proof.
■ Proof of the implication =⇒ :

IfM obeys q̂, then by definition all points v on the surface (vertices or not) are such thatnv ·mv ≥ 0.
It is true in particular for the vertices of the mesh which is proof of the implication =⇒ .

■ Proof of the implication ⇐= :
Assume that ∀f ∈ F ∀v ∈ V (f) mv · nf ≥ 0. Let us show thatM obeys q̂.
Let f ∈ F be a face, and vi, vj and vk its defining vertices. Let v ∈ f be any point in the triangle. As f
is a triangle,

∃(λi, λj , λk) ∈ [0, 1]3 with λi + λj + λk = 1 such that v = λivi + λjvj + λkvk

And

mv = θ0(u0 × v) + θ0uϵ + θϵu0

= θ0 (u0(λivi + λjvj + λkvk)) + (λi + λj + λk)︸ ︷︷ ︸
=1

(θ0θ0uϵ + θϵu0)

= λi(θ0(u0 × vi) + θ0uϵ + θϵu0) + λj(θ0(u0 × vj) + θ0uϵ + θϵu0) + λk(θ0(u0 × vk) + θ0uϵ + θϵu0)

= λimvi + λjmvj + λkmvk

Therefore:
mv · nf = λi︸︷︷︸

≥0

mvi · nf︸ ︷︷ ︸
≥0

+ λj︸︷︷︸
≥0

mvj · nf︸ ︷︷ ︸
≥0

+ λk︸︷︷︸
≥0

mvk · nf︸ ︷︷ ︸
≥0

≥ 0

which shows that v obeys q̂.
This being true ∀v ∈ f and ∀f ∈ F we have successfully shown the implication ⇐= , which ends the
proof.

5.2.3 COMPUTATION OF THE CONE OF FREEDOM

Letm be the functionmapping a point and a unit dual quaternion to the instantaneous direction ofmotion
of that point whenmoved using that dual quaternion:

m : R3 × U(DH) −→ R3

(p, q̂) 7→ θ0(u0 × p) + θ0uϵ + θϵu0

LetM = (V,E, F ) be a triangular mesh embedded in R3. For a face f ∈ F let the set V (f) denote
the three vertices in V defining the face f andnf be a unit normal vector of that face (consistently defined
across all faces in F ).
Let ĈM be the set of unit dual quaternions such thatMmay obey the motion encoded by each q̂ ∈ ĈM:

ĈM = {q̂ ∈ U(DH), ∀f ∈ F ∀v ∈ V (f) m(v, q̂) · nf ≥ 0}

The aim of this section is to find ĈM.
Let f ∈ F of normal vectornf , v ∈ V (f) and q̂ ∈ U(DH). Thenm(v, q̂) = θ0(u0×v)+ θ0uϵ + θϵu0. This
vector can be rewritten as

m(v, q̂) = Ω× v + t
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with Ω = θ0u0

t = θ0uϵ + θϵu0

and we recognise in this expression the usual expression of the tangential velocity of a rigid body. Thus

q̂ ∈ ĈM =⇒ m(v, q̂) · nf ≥ 0

⇔ (Ω× v + t) · nf ≥ 0

⇔ (v × nf ) ·Ω+ nf · t ≥ 0

⇔ rTx ≥ 0

With

r =

 nf

v × nf

 ∈ R6 x =

 t

Ω

 ∈ R6

And thus q̂ ∈ ĈM if and only if this latest inequality is true for each vertex of each face ofM:

q̂ ∈ ĈM ⇔ AMx ≥ 0 5.19

where

AM =



nf1 v1
f1
× nf1

nf1 v2
f1
× nf1

nf1 v3
f1
× nf1

nf2 v1
f2
× nf2

...
...

nf|F | v3
f|F |
× nf|F |


∈ R3|F |×6

and for i ∈ J1, |F |K, fi denotes the ith face of meshM, and for j ∈ {1, 2, 3}, vj
fi
denotes the jth vertex of

V (fi).

EQUATiON (5.19) defines a 6‑dimensional cone whose tip is on 0: if x satisfies EQUATiON (5.19) then λx,
λ ≥ 0, does too. To find a conical section of this cone let us assume that we have a solution x̃ satisfying
EQUATiON (5.19). A conical section is given by intersecting the plane of normal x̃, centered in x̃, with the
cone.

In practice, to find such a section, we find the vertices of the 6D polytope defined by:AM

−x̃T

x ≥

 0

−||x̃||2

 5.20

where the last inequalitymodels (x− x̃) · x̃ ≤ 0, i.e. x should be in the half plane of normal x̃ containing 0.
SYSTEM (5.20) is solved numerically to enumerate the vertices of the polyhedron using the python package
pypoman. A cartoon illustration inR3 of this process is given on FiGURE 5.8.
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Figure 5.8| Given a solution x̃, the conical section {x1,x2,x3} is found by in‑
tersecting the cone in blue with the plane going through x̃ and of
normal x̃

||x̃|| .

By construction, the list of the 6D vertices of the polytope contains the vertex 0. Let {0,x1, ...,xk} de‑
notes these vertices. Thexi, i ∈ J1, kK, areon theplaneof normal x̃ containing this point, i.e (xi−x̃)·x̃ = 0.

As such, a conical section of the cone is given by the convex set of {x1, ...,xk}. Now let x =

 t

Ω

 be a

point in such section: ∃(αi)i∈J1,kK ≥ 0,
∑k

i=1 αi = 1, x =
∑k

i=1 αixi. To retrieve the unit dual quaternion
q̂ ∈ U(DH) encoding the samemotion as the one encoded in x, let us introduce the function

f : R6 −→ U(DH)

x =

 t

Ω

 7→ q̂ =
[
cos θ̂

2 , û sin θ̂
2

] with

 θ̂ = θ0 + ϵθϵ

û = u0 + ϵuϵ

and



θ0 = ||Ω||

u0 = Ω
||Ω||

θϵ = t · u0

uϵ = 1
θ0
(t− θϵu0)

Wecannow justify that the convex set of {x1, ...,xk} encodes all themotions thatmay be obeyedbyM. In‑
deed, supposex to be a convex combination of the (xi)1≤i≤k. Then, as said above, for anyλ ≥ 0,M obeys
the motion encoded by λx. However one notices that for any point p ∈ R3,m(p, f(λx)) = λm(p, f(x)),
that is to say that the initial velocity of point p subjected to themotion λx is scaled by a factor λ compared
to themotion encoded inx, but its orientation does not change. Sincewe are only considering infinitesimal
motions, the norm of the tangential velocity is of no importance, we only care for its direction. From that
point of view, the motions encoded by x and λx are the same. For that reason we may scale in sync the
values of θ0 and θϵ and suppose them to be on the unit circle: θ0 ← θ0√

θ2
0+θ2

ϵ

and θϵ ← θϵ√
θ2
0+θ2

ϵ

. As such, we

may introduce a parameter θ: ∃θ ∈ S1,

 θ0 = cos θ

θϵ = sin θ
which reduces the number of parameter.
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We can finally conclude:

ĈM =


q̂ ∈ U(DH),



q̂ = f(x)

x =
∑k

i=1 αixi∑k
i=1 αi = 1

αi ≥ 0, ∀i ∈ J1, kK


5.21

EQUATiON (5.21) tells us that given the generating rays xi of the cone solution to SYSTEM (5.20), a solution
x is obtained by convex combination of the xi. This solution is mapped, through function f , to a unit dual
quaternion q̂ = f(x)which can be obeyed by the meshM. The cone of freedom ĈM of meshM is the set
of all such unit dual quaternions, images by f of all possible convex combinations of the generating rays of
the cone encoded in SYSTEM (5.20).

5.3 NDBG

As understood in SECTiON 3.1.3, the NDBG of an assembly is based on the strong‑connectedness of several
base DBGs. The principle to compute a DBG in 3D is the same as in 2D: for a given unit dual quaternion q̂
and an assembly A, initialise an empty graph G(q̂, A) and loop over each pair of parts in contact. Given
two polyhedral parts in contact Pi and Pj , represented by closed triangular meshes, denote by F the set of
faces shared by both parts, and for f ∈ F, let nf be the normal of face f pointing from Pj to Pi. For each
f = {vi,vj ,vk} ∈ F and for each v ∈ f there are two possibilities:

■ Eithermv · nf ≥ 0, in which case Pj is blocked by Pi because of this vertex but Pi is locally free to
move: add edge ej→i in the graph.

■ Ormv ·nf ≤ 0 , in which casePi is blocked byPj because of this vertex butPj is locally free tomove:
add edge ei→j in the graph.

This process is illustrated on FiGURE 5.9: a 2‑parts assembly A = {P0, P1} is studied, with P0 the lower
part and P1 the upper one. Two faces fA and fB are highlighted in red and blue respectively. Assume
that we build a DBGG(q̂, A) such that the instantaneous direction of motion of a vertex v adjacent to both
faces ism(v, q̂) such as shown in green on the figure. The directions of the vectors nfA , nfB ,m(v, q̂) are
exemplified on the sphere. One sees thatm(v, q̂)·nfA ≤ 0 andm(v, q̂)·nfB ≥ 0 asm(v, q̂)belongs to the
blue hemisphere oriented bynfB but not the red one oriented bynfA . As such face fA prevents the upper
partP1 from obeying q̂, hence the edge e1→0 is added to the DBGG(q̂, A). Conversely, face fB prevents the
lower part P0 from obeying q̂ and the edge e0→1 is added toG(q̂, A).

Figure 5.9| Example of a calculation of a DBG.
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5.4 CREATING A 2‑PARTS ASSEMBLY
Given a design domain, which throughout this section will be a cube of unit length centred at the origin of
R3, this section aims at understanding how it can be partitioned into two polyhedral parts, P0 and P1, with
P1 obeying a user‑given unit dual quaternion q̂.

5.4.1 INPUT

Figure 5.10| The input to generate a 2‑parts assembly.

Even though, or perhaps because, screwmotions encode all rigid bodymotions, they are not especially
easy to visualise. To help the user specify a unit dual quaternion q̂, he/she may wish to partition the design
domain in two pseudo‑parts of approximate shape: on FiGURE 5.10 the design domain is cut in two by a
plane. Pseudo‑P0 is in blueandpseudo‑P1 in red. Then, theusermayeither playwith theparametersu0,uϵ

and θ (with θ0 = cos θ and θϵ = sin θ) and see where it leads pseudo‑P1 after a motion of finite magnitude
along q̂, or it canmove pseudo‑P1 in space in an arbitrary position and location and automatically compute
q̂ afterwards, using the equations outlined in SECTiON 5.1.8.6. On FiGURE 5.10 the screw axis is the black line,
the trajectory followed by P1 is depicted with the red curve, the instantaneous directions of motion of the
visible vertices of P1 are shown using red arrows, and the resting position of P1 used to compute q̂ is the
body in faint red.

Once satisfiedwith q̂ andwith theapproximate shapesof theparts, aplanar triangularmesh is generated
in the design domain on the separating plane. At this step there are two options:

■ The user manually deforms the mesh by vertex painting: some vertices are moved (up or down) in a
direction orthogonal to the plane. The user can also deform the mesh by any other mean.

■ The mesh may be deformed (in an orthogonal direction to the plane) using “organic” noise applied
on the vertices. Purely random noise (each vertex is moved randomly independently from the oth‑
ers) yields dull and uninteresting meshes, whereas correlating the out‑of‑planemotion among neigh‑
bouring vertices gives a qualitatively much more pleasant mesh. The current implementation of this
algorithm uses Perlin noise.
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Once the input mesh is provided, the vertices are moved according to the following algorithm. The signed
distance d between each vertex and the separating plane is divided by a factor n ∈ N∗; Each vertex v is
moved back onto the plane and its instantaneous direction of motionmv is calculated. The vertex is then
moved in the direction ofmv by a distance d

n . This iteration is repeatedn times until each vertex hasmoved
by a distance d. On FiGURE 5.11, the original position of themesh vertices are shown in blue, along the black
line. Themesh and themotions are projected on the plane orthogonal tou0, the direction of the screw axis,
the latter being represented by the red point. By randommotion or vertex painting, themesh vertices were
moved horizontally up to the positions in large grey dots; the signed distances d are figured by the dotted
straight lines. The original vertices are then iteratively moved by d

n in the directionmv (here n = 4), and at
each new position, represented with small grey dots, the process is repeated. While it does not necessarily
help to achieve a faster convergence with the GPA for a randomly deformed mesh (it does not necessarily
hurt either), it does better condition the mesh for a more regular vertex painted one. FiGURE 5.12 shows,
for a given q̂, on the top row input meshes before the aforementioned conditioning, and below the same
meshes after. The leftmost mesh is initialised with Perlin noise, the middle one with vertex painting, and
the right one is a custom user‑givenmesh.

Figure 5.11| Process to better condition the mesh.

5.4.2 GUIDED PROJECTION ALGORITHM

Given a unit dual quaternion q̂ used to condition ameshM = (V,E, F ), the GPA optimisation (see SECTiON
4.1.2) is executed: the goals are:

■ Every face f ∈ F must obey q̂.
■ To prevent too small details, the dihedral angle θ between two adjacent faces must be greater than a

threshold θlim.
■ The boundary edges ofMmust slide on the design domain faces.
■ As in 2D, a snap constraint must be implemented.
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Figure 5.12| Top row: before conditioning the meshes. Bottom row: after.

VectorX is initialised with the necessary number of entries, the first 3|V | of them being the coordinates of
each vertex v ∈ V .

5.4.2.1 Every facemust obey q̂

Wewant to impose the constraint that∀v ∈ V (f) mv ·nf ≥ 0. We need first to calculate the normal vector
of the facenf .

Calculation of the normal vector
By definition,nf is orthogonal to face f , is of unit length andmust be consistently defined across all faces,
as to alwaysbeon the sameside; this is implementedasnf is positively proportional to thenon‑unit normal
vectorn ̸=1

f = (vj − vi)× (vk − vi).

Calculation of the non‑unit normal vector: Let o and f be the indices such thatX[o+3f ],X[o+3f+1]

andX[o+3f +2] respectivelymap to n ̸=1
fx , n

̸=1
fy and n ̸=1

fz , the coordinates of the vectorn
̸=1
f . By permuting

the indices x, y, z and denoting (xp, yp, zp) the coordinates of vertex vp ∈ {vi,vj ,vk} one gets that: n ̸=1
fx = 1

2 (yi(zj − zk) + zi(yk − yi) + yj(zk − zi) + zj(yi − yk) + yk(zi − zj) + zk(yj − yi))

. . .

Let i be the index such thatX[3i],X[3i+1],X[3i+2]map to the coordinates xi, yi and zi, indices j, k are
similarly defined. For q ∈ 0, 1, 2 let:
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H3f+q =



0 0 0 1 0 −1

0 0 −1 0 1 0

0 −1 0 0 0 1

1 0 0 0 −1 0

0 1 0 −1 0 0

−1 0 1 0 0 0



← 3i+ ((1 + q) mod 3)

← 3i+ ((2 + q) mod 3)

← 3j + ((1 + q) mod 3)

← 3j + ((2 + q) mod 3)

← 3k + ((1 + q) mod 3)

← 3k + ((2 + q) mod 3)

 b3f+q =
(
−1
)
← o+ 3i+ q

c3f+q = 0

One has

(vj − vi)× (vk − vi)− n ̸=1
f = 0⇐⇒ ∀q ∈ {0, 1, 2} 1

2
XTH3f+qX + bT3f+qX + c3f+q = 0

Calculation of a consistent normal vector: The normal nf must be positively collinear to n ̸=1
f : ∃αf >

0, nf = αfn
̸=1
f . X is initialised with αf = 1

||n ̸=1
f ||

. Let

■ on, f be the indices such thatX[on + 3f ],X[on + 3f + 1],X[on + 3f + 2]map to the coordinates
nfx, nfy and nfz ofnf .

■ o ̸=1 be defined similarly forn ̸=1
f .

■ oa be the index such thatX[oa+ f ]maps to αf .

H3f+q =

0 1

1 0

← o ̸=1 + 3f + q

← oa+ f
b3f+q =

(
−1
)
← on+ 3i+ q c3f+q = 0

Where q ∈ {0, 1, 2}. One has

αfn
̸=1
f − nf = 0⇐⇒ ∀q ∈ {0, 1, 2} 1

2
XTH3f+q +X + bT3f+qX + c3f+q = 0

Constraint requiringnf to be of unit length:We implement ||nf ||2−1 = 0. Let o, f be the indices such
thatX[o+ 3f ],X[o+ 3f + 1],X[o+ 3f + 2]map to the coordinates nfx, nfy and nfz ofnf .

Hf =


2 0 0

0 2 0

0 0 2


← o+ 3f

← o+ 3f + 1

← o+ 3f + 2

bf = 0 cf = −1

One has
||nf ||2 − 1 = 0⇐⇒ ∀q ∈ {0, 1, 2} 1

2
XTH3f+qX + bT3f+qX + c3f+q = 0

Constraint requiring f to obey q̂
For each vertex v ∈ {vi,vj ,vk} of face f , indexed by v such thatX[3v],X[3v + 1] andX[3v + 2]map to
the coordinates of v, we require thatmv ·nf ≥ 0, whichmeans that for some ηv ,mv ·nf − η2v = 0. Recall
thatmv = θ0(u0 × p) + θϵu0 + θ0uϵ. Let u0x,..., uϵz refer to the coordinates ofu0 anduϵ. Finally let oe be
the index such thatX[oe + v]maps to ηv and on such thatX[on + 3f ],X[on + 3f + 1],X[on + 3f + 2]

map to the coordinates nfx, nfy and nfz ofnf .
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Hv,f =



0 0 0 0 θ0u0z −θ0u0y 0

0 0 0 −θ0u0z 0 θ0u0x 0

0 0 0 θ0u0y −θ0u0x 0 0

0 −θ0u0z θ0u0y 0 0 0 0

θ0u0z 0 −θ0u0x 0 0 0 0

−θ0u0y θ0u0x 0 0 0 0 0

0 0 0 0 0 0 −2



← 3v

← 3v + 1

← 3v + 2

← on+ 3f

← on+ 3f + 1

← on+ 3f + 2

← oe+ v

bv,f =


θ0uϵx + θϵu0x

θ0uϵy + θϵu0y

θ0uϵz + θϵu0z


← on+ 3f

← on+ 3f + 1

← on+ 3f + 2

cv,f = 0

One has
mv · nf ≥ 0⇐⇒ 1

2
XTHv,fX + bTv,fX + cv,f = 0

5.4.2.2 To prevent too small details, the dihedral angle θ between two adjacent faces must be greater than
a threshold θlim

We make use here of the fact that the normal vector nf of a face f ∈ F is of unit length: ||nf || = 1. We
require that for two adjacent faces indexed by p, q of normalnp,nq :

np · nq + cos θlim − ζ2p,q = 0

for some ζp,q ∈ R. Let o be the index such thatX[o+3p], . . . ,X[o+3q+2]map tonpx, . . . ,nqz , and opq
such thatX[opq]maps to ζp,q . Thus:

Hp,q =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 −2



← o+ 3p

← o+ 3p+ 1

← o+ 3p+ 2

← o+ 3q

← o+ 3q + 1

← o+ 3q + 2

← opq

bp,q = 0 cp,q = cos(θlim)

One has
np · nq + cos θlim ≥ 0⇐⇒ 1

2
XTHp,qX + bTp,qX + cp,q = 0

All the above constraints are topological: to express them,weonly needadjacency informationbetween
faces and vertices, not their actual location in space.
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5.4.2.3 The boundary edges ofMmust slide on the design domain faces.
Let v be a boundary vertex
and let p be a vertex of the
face of the design domain the
closest tov. Letnj be theunit
normal vector of face j. We
require thatnj · (v − p) = 0,
as illustrated on the inset. To
prevent the algorithm from
optimising towards v = p,
pointp is dynamically chosen
among the vertices of face j
so that it is not the closest to

vertex v. This is a geometrical constraint as we need the location of v in space to select face j as well as
point p. Let v be the index such thatX[3v],X[3v + 1] andX[3v + 2]map to the coordinates of vertex v,
and denote by njx, njy and njz the coordinates of normalnj .

Hv = 0 bv =


njx

njy

njz


← 3v

← 3v + 1

← 3v + 2

cv = −p · nj

One has
nj · (v − p) = 0⇐⇒ 1

2
XTHvX + bTv X + cv = 0

5.4.2.4 Snap constraint
A face f adjacent to a vertex v snaps (we will refer to f as a snap face but also to v as a snap vertex) if and
only if, when obeying q̂ for an infinitesimal motion, v slides on the plane defined by f :

mv · nf = 0

Wewill discuss inSECTiON5.4.3 themanner inwhichf andv arechosen. Tocompute theconstraint (Hv,f , bv,f , cv,f ),
please refer to the detail of “Constraint requiring f to obey q̂” and replaceHv,f [oe + v, oe + v] = −2 by
Hv,f [oe+ v, oe+ v] = 0.

5.4.2.5 Other constraints
Several other constraintsmay be implemented, but are not described in thismanuscript as they are not the
most important ones, andanyway caneasily bederivedonceonehas understood the logic of the expression
of constraints in the GPA. We can think of constraining the boundary vertices to follow a goal curve, drawn
on the design domain mesh; ensuring that the area of each face is greater than some threshold (to avoid
small triangles); or, as done in the version at the time of this writing, implementing circle packing ([86]) to
well‑condition the mesh.

5.4.3 CHOOSINGWHERE TO SNAP

5.4.3.1 Preliminaries
This sectionexplainswhere the so‑called snap face‑vertexpairsmustbe chosen. We saw in2D that to reduce
the close of translational freedom Ct to the user prescribed cone, exactly 2 snaps segments were required
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(SECTiON 3.1.1). In rotation there is no minimal number of snap segments, we understood that it depends
on the geometry of the separating polyline.
In 3D, if we are looking at pure translations only, then we state that the minimal number of snap faces is
three: as illustrated on FiGURE 5.13 the locus of all directions of translation in 3D is the unit sphere S2. Each
snap faceofanassembly (highlighted in red)definesahemisphereof validdirectionsof translation, encoded
by nf · xt ≥ 0 (where xt ∈ S2 is a direction of translation in 3D), and the cone of translational freedom
is found by intersecting the hemispheres between them. One needs at least three snap faces to reduce the
cone of freedom to two antipodal points, shown in blue and red on the figure, and one non‑snap face to cull
one of the two directions, leaving the cone reduced to a single direction of translation (the red point if we
are considering the upper part, the blue one if we are considering the lower part).

Figure 5.13| Three snap faces are required in 3D to reduce the cone of transla‑
tional freedom to the user‑prescribed cone.

5.4.3.2 Choosing the first snap face‑vertex pair.
This small study gives us a lower bound of the number of snap faces: in the general case where q̂ does not
encode a pure translation, the minimum number of snap faces is thus three. Therefore, let n ≥ 3 be the
number of snap faces prescribed by the user. This section explains how the snap faces and snap vertices
are chosen.

Let G(M) be the Gauss map of meshM = (V,E, F ): it consists of the constellation of normal vec‑
tors (nf )f∈F seen as points on the unit sphere S2 ⊂ R3. The mesh being triangular, to each face f =

{vi,vj ,vk} are associated the three instantaneous directions of motion (mvi ,mvj ,mvk). As shown on
FiGURE 5.14 they can be visualised on the Gauss map as three vectors rooted in eachnf .

Having f to snapmeans that there is a v ∈ {vi,vj ,vk}whose instantaneous direction ofmotion is such
thatmv · nf = 0: it is contained in the tangent plane at nf of the sphere. Intuitively it means that when
disassembling the part, vertex v slides on the other part. This gives an immediate choice for the first snap
face/vertex: of all faces in F , we select the one with amv the closest to being in the tangent plane:

Choose f ∈ F,v ∈ V (f) such that |mv · nf | → min

To select for the next n − 1 snap faces, we cannot simply go and select the n − 1 face‑vertex pair with
the smallest |mv · nf |. To understand why, let us go back to the pure 3D translation case.

5.4.3.3 Where to snap in the pure translation case
Assumewewant to partition the design domain into two parts such thatP1 obeys a vertical upwards (pure)
translation. We cannot simply choose three random snap faces to reduce the cone of freedom to the north
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Figure 5.14| The normal vectors ofM are visualised onG(M); each normal is
associated with a triplet of instantaneous directions of motion.

pole of the sphere as, in general, the actual cone of freedom is strictly larger. On FiGURE 5.15 the tenon‑like
feature is made of four non‑horizontal faces. Three of them, in red, have snapped as they are vertical, while
the last one, in blue, has not. On the right, the boundaries of the hemispheres defined by each face are of
the same colour as their corresponding face. The cone of translational freedom is highlighted in red: it is
not reduced to the prescribed north pole. For the actual cone to be reduced to the north pole, the third snap

Figure 5.15| Three random snap faces do not reduce the cone of freedom to
the prescribed direction of translation.

face fC must depend of the other two snap faces fA and fB : the normalnfc must be chosen in the circular
arc bounded by−nfA and−nfB , see FiGURE 5.16. Indeed, in such a case, only the north pole xt = ez and
the south pole xt = −ez are solutions to 

nfA · xt = 0

nfB · xt = 0

nfC · xt = 0
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where the direction of translationxt is the instantaneous direction ofmotionmv for any vertexv belonging
to the three faces. The south pole −ez is culled from the cone by any other non‑snap face. We remark

Figure 5.16| For the cone of freedom to be reduced toxt,nfC must be chosen
on the highlighted circular arc.

that evenly distributing (each at an angle 2π
3 from the others) the normal vectors nfA , nfb and nfc on the

equator solves the problem. It is the strategy we choose to implement to select the snap face‑vertex pairs
in the general case.

5.4.3.4 Choosing the next n− 1 snap face‑vertex pairs.

Letm = 1
|V |
∑

v∈V mv be the average direction of motion of all mesh vertices, and let C be the unit circle
of normalm. We could have calculatedm in a more sophisticated manner, for instance by weighting each
vertex with the areas of its adjacent faces, but as we will understand, the exact value ofmmatters not.

The algorithm to find the nextn−1 snap face‑vertex pairs is as follows. Assume the first snap face‑vertex
pair has been chosen (see SECTiON 5.4.3.2), labelled f1 and vf1 . Let p1 ∈ C be the closest point fromnf1 on
C. Starting from p1, points p2, . . . ,pn are evenly distributed on C, each at an angle 2π

n from the previous.
Then, for each pi (2 ≤ i ≤ n), we find its closest point nfi ∈ G(M). The faces (fi)i∈J2,nK so designed are
then−1 remaining snap faces of themesh. To select for the associated snap vertices (vfi)i∈J2,nK we simply
take among the three vertices defining fi the vfi such thatmvfi

· nfi is the closest to 0. This algorithm is
illustratedonFiGURE5.17. TheGaussmapG(M) is depictedusing semi‑transparentblackdots. Theaverage
directionm and circle C are shown in blue and the normal nf1 of the first snap face and the projection p1

are highlighted (it is only by chance that nf1 and p1 are almost coincident on the figure). Starting from p1

the five (n = 6) other pi, in blue, are regularly placed on C. The closestnfi ∈ G(M) are shown in red, and
the geodesic distances between them are figured by circular blue arcs. On the right, a zoom on a particular
nfi shows that the associated snap vertex, vfi , is the one having the instantaneous direction of motion in
darker blue.

The exact value ofmmatters very little: even though, as often in discrete geometry, there are several
reasonable ways to define this average direction, theywould all define directions close to each other. Circle
C would only change by a small amount from one definition to another, and the (nfi)i∈J1,nK chosen would
perhaps vary, but would still be well spread around the sphere, which is what matters to define the snap
face‑vertex pairs.
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Figure 5.17| Illustration of the algorithm to choose the next n − 1 snap face‑
vertex pairs.

5.4.4 SPLITTING THE DESIGN DOMAIN INTO TWO PARTS

5.4.4.1 Creating a water‑tight mesh
Before splitting the design domain into two parts, wemust be able to tell unequivocally which vertex of the
designdomainbelongs towhichpart. This is doneby statingonwhich sideof the separatingmeshavertexof
the design domain is. To that end, we ensure that the separating surface is tightly connected to the design
domain: even if all boundary vertices of the separating mesh are constrained to slide on the faces of the
designdomain, theremay still beholes in the vicinity of adesigndomain edge. Triangle faces (obeying q̂) are
created until themesh tightly hangs to the design domain, see FiGURE 5.18 where the optimised separating
surface after the GPA is shown on the left the newly created faces are highlighted in red on the right.

Figure 5.18| Faces are created so that themesh tightly hangs to the design do‑
main.

5.4.4.2 Splitting amesh given a polyline
Now that themesh tightly hangs to the edges of the design domain, wewish to split the design domain into
two parts. The only thing we need from the separating surface is the boundary polyline drawn on the faces
of the design domain. Thus the question we answer in this section is “How to split a mesh along a given
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polyline into two sub‑meshes?” This is a general question and we answer it in the general case, temporarily
forgetting the assembly context. An illustration of the problem is given on FiGURE 5.19: we want to split the
cubemesh into two sub‑meshes along the rather complex red polyline.

Figure 5.19| The cube shall be split along the red curve.

In two dimensions the winding number of a point p ∈ R2, w(p) ∈ Z,
is a signed integer associated to a curve telling the number of times the
curve wraps around p. For each counterclockwise (resp. clockwise) rev‑
olution w(p) is incremented (resp. decremented). In the discrete case,
let (pi)i∈J1,kK denote the points of the polyline, and let θi be the signed
angle between vectors (pi−p) and (pi+1−p), see the inset. Thenw(p)
is given by

w(p) =
1

2π

k∑
i=1

θi θi = atan2((pi − p)× (pi+1 − p), (pi − p) · (pi+1 − p))

Jacobson and coauthors observed in [46] that even if the curve is not closed, this calculation is robust
enough to state whether p is on one side of the curve or the other. In the case of an open curve thenw(p) ∈
R; the greater in absolute value, the more confident we can be that p is on a given side. We propose to use
such a generalized winding number to categorise the vertices of the mesh according to on which side of
the splitting curve they are deemed to be. A Delaunay triangulation then create the sub‑mesh between the
vertices on each side and the polyline. Since the generalized winding number is only defined in the XY
plane, we proceed as follows:

■ The triangular faces of the mesh are grouped by coplanarity and adjacency.
■ Each group of faces is rotated, along with the splitting polyline vertices on them, to theXY plane. A

quaternion q can typically be used, see FiGURE 5.20 step a.
■ Non‑boundary edges are dissolved: we are leftwith a planarn‑gon (a polygonwithn edges), 5.20 step

b where the triangulation of the cube face was made with 4 triangles.
■ The generalised winding numbers of the vertices of the n‑gon are calculated. Depending on the sign,

they are labelled as being on either side of the polyline, 5.20 step c.
■ A planar Delaunay mesh is created twice, between the two groups of n‑gon vertices and the points of

the polyline, 5.20 step d.
■ These two newly created planar meshes are rotated back to their original position using q̂∗, 5.20 step

e.

FiGURE 5.20 shows on the bottom row the two sub‑meshes obtained after executing the above algorithm for
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each of the cube faces.

a b c d e

Figure 5.20| Step‑by‑step process to split a mesh along a polyline.

5.4.4.3 Creating the parts
Given the two open sub‑meshes obtained at the end of the previous section, the separating mesh is dupli‑
cated, and the copies are joined to eachmesh,making the partsP0 andP1 complete, withP1 obeying q̂; see
FiGURE 5.21 for an illustration.

Figure 5.21| A 3D two‑parts assembly and the disassembling trajectory.

5.5 ON THE CREATION OF THE FOLLOWING PARTS
The principle is the same as in 2D, see SECTiON 4.1.3. Concretely the user specifies in advance the ordered
list of unit dual quaternions that each part must obey, as well as the first separating mesh that must be
optimised to create P1. Then, at the end of each iteration, the remaining part P0 (in blue on FiGURE 5.21) is
considered as the next design domain to be partitioned into two, and the user is asked to provide a custom
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or vertex paintedmesh to create the next part (an automatically generated randommeshmay also be used).
The algorithm creates the next part and the process repeats until the completion of the assembly. At each
iteration, the NDBG is calculated and must say that the assembly is interlocking. FiGURE 5.22 shows a 4+1
parts assembly in the assembled state, as well as each of the five parts. FiGURE 5.23 shows the standard
disassembly sequence (P1 then,..., then P4), as well as the NDBG stating that the assembly is interlocked.

Figure 5.22| A 3D five‑parts assembly.

Figure 5.23| A disassembly sequence and the NDBG.

5.5.1 ISSUESWITH THE CURRENT COMPUTER IMPLEMENTATION

In practice, whengeneratingpartPi, i > 1, the designdomain is oftenhighly irregular: it comes indeed from
the partP0 at the previous iterationwhose boundary is itself a triangularmesh optimised to obey amotion,
and as such not smooth. It is thus quite difficult for the algorithm to tightly hang the separatingmesh to the
design domain: it often happens that a face is outside the design domain, or that a boundary edge is not
contained in a design domain face (even though its end vertices are sliding on the design domain faces). We
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cannot skip this step and let the separating mesh loose, as it is necessary for it to tightly hang to the design
domain to calculate the generalised winding number of the design domain vertices. If we try to do so, we
are sure that the parts will be ill‑constructed. Several code routines were implemented to clean and hang
properly the separatingmesh, but after seeing that despite weeks of effort there were always problems, we
decided to let the usermanually clean themesh at the endof each iteration. Thus, at the timeof thiswriting,
generating a 3D assembly is a cumbersome and fastidious task. Most of the work is done by the computer,
but the user often has to spend a dozen of minutes per separatingmesh. For future work, we advise using a
professional mesh handler (or to let the coding to someone with better skills than I!).

5.6 RELATIONSHIPSBETWEENTHESNAPFACE‑VERTEXPAIRSANDTHECONE
OF FREEDOMOFMOTION

5.6.1 NUMBER OF SNAP FACES AND CONE OF FREEDOM

We saw in SECTiON 4.3.2 that for 2D rotation the more snap segments, the thinner the cone of freedom.
Indeed, the more snap segments, the more constraints meet at the prescribed rotation centre xr, and the
less likely is any other point to belong to the cone of freedom. This line of reasoning holds in 3D: the more
snap face‑vertex pairs, the less likely any unit dual quaternion distinct from the prescribed q̂ is to be obeyed
by the separating mesh. To exemplify the shrinking of the cone of freedom with the number of snaps, we
calculated the generating rays of the cones of freedom for various separating meshes with the increasing
number of snap face‑vertex pairs. Four categories of meshes were used: random ones (generated using
Perlin noise), and vertex‑painted ones, with one, two or four dents, as shown on FiGURE 5.24.

Figure 5.24| The three kinds of vertex painted meshes used, and the three
kinds of prescribedmotions. The trajectory of the corner vertices
of the mesh are shown in green.

They were prescribed to obey either a pure translation (left of FiGURE 5.24) or a screw motion along a
horizontal or a vertical axis (middle and right respectively). In total, we used 31 pairs of mesh‑motion. Each
couplemesh‑motionwas thenoptimised 10 timeswith an increasingnumber of prescribed snap face‑vertex
pairs, from 0 to 9. The generating rays of the cones of freedom of each of these 310 optimised designs are
calculated and projected onto S5 the unit hypersphere in R6. While in 2D we could calculate exactly the
area and perimeter of the cones of freedom because we were working in R2 (or equivalently on S2), in 3D
it is much more difficult to calculate the (hyper)volume of the cone on S5. We choose thus to approximate
thismeasure by calculating the volume of the convex hull formed by the unit generating rays. The evolution
of the volume and area of the cones, as well as the number of unit generating rays, is shown on FiGURE 5.25
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(bottom to top respectively). It clearly shows that the cones of freedom shrink with the number of snap
face‑vertex pairs. It is also remarkable that the volume and area of the cone seem loosely proportional to
thenumber of generating rays. Becausewe should calculate aDBG for eachof suchgenerating rays, it seems
preferable to try to have a small cone of freedom to ease the assessment of the interlocking of the assembly.
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Figure 5.25| The cones of freedom shrink with the number of snaps.

As a side note, the interested reader may look at FiGURE 5.26, which shows the projection of the unit
generating rays of a cone on the 15 cartesian planes embedded inR6.
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bliesFigure 5.26| Projected unit generating rays. Scale is the same across all figures.
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It is important to understand what such a cone means: to any 6D‑vector obtained by a convex combi‑
nation of the generating rays corresponds a unit dual quaternion (see SECTiON 5.2.3) that can be obeyed by
the mesh. For instance, FiGURE 5.27 shows the 5 unit dual quaternions (seen as 3D lines) corresponding to
the five rays generating the cone of freedom for the given surface. Three are shown as blue lines, one is in
red and the last is the bold green line. The redder, the greater the relative importance of the translation
term θϵ compared with the rotation term θ0; the bluer, the more important the rotation versus the transla‑
tion. The bold green line is the prescribed unit dual quaternion (with a pure translation prescribed around
it), also corresponds to one of the generating rays of the cone. The dashed black line is calculated from a
random convex combination of the five generating rays: it corresponds to a screw motion with a relatively
large translation component, as shown by the displaced red surface and the red helical trajectory.

Figure 5.27| The dotted black line represents a unit dual quaternion obtained
by convex combination of the generating rays shown as the
straight lines in shades of blue and red.

5.6.2 ON FABRICATION IMPERFECTIONS ANDMOTION TOLERANCE

As shownbothmathematically andnumerically in SECTiON4.3.3 in the2Dcase, thenumberof snapelements
negatively affects the probability that the prescribed motion q̂ is obeyed by an imperfect meshMϵ, even
though the perfect meshM does. By imperfect we mean a meshMϵ = (V ϵ, E, F ) whose vertices are
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not on their optimised location defined byM = (V,E, F ). In this section, we first introduce a new tool
to model imperfections, namely Gaussian processes. We then numerically study the probability that an
imperfect meshMϵ obeys a prescribed quaternion q̂, before performing amore robust optimisation of the
meshM so that an imperfect meshMϵ derived from it still has a high probability of obeying q̂.

5.6.2.1 Gaussian processes
In SECTiON 4.3.3, imperfections on the polylineweremodelled using a centred Gaussian lawwith a diagonal
covariancematrix: itmeans that each polyline point couldmove randomly in an isotropicmanner and inde‑
pendently from the others. We justified that despite being quite crude, this model gave reasonable results
on the probability that an imperfect polyline obeys a 2D motion. In 3D we could have chosen to model the
imperfections on the mesh vertices similarly, but instead, we would like to introduce a new tool: Gaussian
processes. It is more complex to use but canmodel a broader range of imperfections and this section could
therefore be seen as a potential stepping stone to building a more refined model should the need arises in
future work.

AGaussianprocess is a stochastic process of variables following aGaussiandistribution, i.e. a dynamical
systemwhose variables are randomly changing over time, each following aGaussian distribution. Themost
simple example of a Gaussian process is to follow the altitude of a particle moving vertically by a random
amount∆y ∼ N (0,∆t), between two successive times, steps t and t+∆t; by construction, it is a Brownian
motion. FiGURE5.28 shows theevolutionof thealtitude ywith respect to time t for five independent random
variables. For each realisation (path), FiGURE 5.28 displays the altitude as a function of time: y = f(t). We
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Figure 5.28| Five independent realisations of a 1D Brownianmotion.

can therefore interpret this stochastic process as a random distribution over the space of real‑valued uni‑
dimensional functions. With this in mind, Gaussian processes are distributions over functions f defined
over a continuous domainD ⊆ R such that:

f(x) ∼ GP(µ(x), κ(x, x′))

withµamean functionandκ thecovariance function,x ∈ D and (x, x′) referring toall (infinitelymany)pairs
of variables of the function domain. Shifting towards discrete settings, assumeX = (x1, . . . , xn)

T ∈ Dn

be a vectors with a finite number of entries xi ∈ D. Let the mean vectorµ = µ(X) = (µ(x1), . . . , µ(xn))
T

and the covariance matrixΣ = κ(X,X). The multivariate Gaussian distribution of the subsetX is

f(X) ∼ N (µ,Σ)

The covariance functionκ (also called kernel)models the correlationbetween every pair of randomvari‑
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ables xi and xj . The covariance function thus has a strong influence on the realisations of the distribution.
To be validκmust be chosen such thatΣ is definite‑positive. Awell‑known covariance is the exponentiated
quadratic kernel:

κ(xi, xj , a, σ) = a2 exp
(
−||xi − xj ||

2

2σ2

)
stating that the closer xi and xj , themore correlated f(xi) and f(xj) are. As the distance between them in‑
creases, the correlation decreases exponentially, as exemplified in FiGURE 5.29. Once the kernel is defined,

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

co
va

ria
nc

e

-4 -3 -2 -1 0 1 2 3 4
x

-4
-3
-2
-1
0
1
2
3
4

x
0.0

0.2

0.4

0.6

0.8

1.0

k(
x,

x)

Figure 5.29| Right: exponentiated quadratic covariance matrix for a = σ = 1.
Left: a cross‑cut view of the kernel function κ(x, 0).

we choose a mean function µ and we can sample realisations of the Gaussian process, as shown in FiGURE
5.30. The interested reader is referred to APPENDiX E where more kernels are defined.
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Figure 5.30| Independent samplings f ∼ N (0,Σ)definedusing the exponen‑
tiated quadratic kernel.

Note that Gaussian processes can easily be adapted to provide the initial separating polyline of a 2D
assemblies: the user has greater control over the shape of the polyline than the completely random Turtle
by the means of judiciously choosing a kernel, but still enjoys the benefits of a fully automatic process (by
opposition to manually inputting a polyline). The only downside is that while the Turtle is constrained to
draw a polyline obeying the prescribed motion, a Gaussian process might output an initial polyline too far
away from obeying the motion, resulting in slow or impossible convergence.

5.6.2.2 Imperfection and cone of freedom
We use a Gaussian process to model imperfections on the location of the vertices of the separating mesh:
we use the exponentiated quadratic kernel to correlate the imperfections across close vertices. We can tune
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parameter σ so that the area of highly correlated pointsmatches the typical area of the imperfection of real
assembly. For instance, in 3D printing by fused deposition modelling, imperfections arise from thermal ex‑
pansion due to the addition of hot material at the printing head. An area of imperfection corresponds to
the typical size of the region hotter than the room temperature. Also, the string of printingmaterial may get
entangled at the entrance of the heating zone of the printer. When that happens, one has to manually dis‑
entangle the string, whichmaymake the printer headmove relatively to the printing table, thus introducing
imperfections on the remaining object.

We define the kernel for any pair of vertices vi,vj ∈ V of the separating meshM = (V,E, F ):

κ(vi,vj , σ) = a2 exp
(
−d(vi,vj)

2

2σ2

)
Where d(vi,vj) is (an approximation of) the geodesic distance between the two vertices on the mesh. Be‑
cause calculating the exact geodesic distance is of little use given our motivation for this study (we simply
want to numerically show that the prescribed unit dual quaternion q̂ has little chance of being obeyed by an
imperfect mesh) we use an approximation by computing the shortest path between vertices vi and vj on
the graphG = (V,E) derived from the meshM = (V,E, F ). Each edge inG is weighted by the euclidean
length of the corresponding edge inM. Computing the shortest path between each pair of vertices is done
by repeatedly executing the Dijkstra algorithm [24]. This distance is used to compute the covariancematrix
Σ and then three independent samplings over the mesh vertices V are made, one for each canonical axis
ofR3:

ϵ̃x(V ), ϵ̃y(V ), ϵ̃z(V ) ∼ N (0,Σ)

Figure 5.31| From left to right: a mesh, the corresponding covariance matrix
Σ, the heatmaps of the realisations ϵ̃x(V ), ϵ̃y(V ) and ϵ̃z(V ) re‑
spectively.
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FiGURE 5.31 shows, for four meshes, the covariance matrix calculated using the approximate geodesic
distance, as well as the heatmaps of the realisations ϵ̃x(V ), ϵ̃y(V ) and ϵ̃z(V ), vertically projected onto the
mesh. The colour code qualitatively indicates the value of the imperfection: blue means strong imperfec‑
tion to the negativex, y or z directions, redmeans a strong imperfection in the positive directions andwhite
means an imperfection of small magnitude. The values are correlated to each other depending on the dis‑
tance between the vertices: we see blobs of imperfection.

Tomodel the fact that in practice the imperfections aremore likely to send a vertex away from themesh
rather than on it (for instance, when fabricating a horizontal planar surface, it is more likely to have an error
on the altitude of the fabricating device rather than on the horizontal directions; at the limit case a constant
error would be irrelevant in the horizontal directions but significant in the vertical one), we build the imper‑
fections as follows.
Once calculated for each vertex v ∈ V (FiGURE 5.32a), the values ϵ̃x(v) and ϵ̃y(v) are scaled down by a
factor 0 < α < 1, which effectively nudge the imperfection vector ϵ̃(v) = (αϵ̃x(v), αϵ̃y(v), ϵ̃z(v))

T to get
closer to ez , the vertical direction ofR3 (5.32b). For each vertex v of the mesh we define the vertex normal
nv as the average of the normal vectors of its adjacent faces weighted by their area (5.32c), and we rotate
the imperfection vector ϵ̃(v) using the quaternion q sending the normal vector nv to the vertical direction
ez to get the final imperfection vector ϵ(v) (5.32d). Thus each imperfection vector is biased to move the
corresponding vertex in the direction locally orthogonal to the mesh. The imperfect location of a vertex v
is then calculated as vϵ = v + ϵ(v), from which we get the set of imperfect vertices V ϵ and the imperfect
meshMϵ = (V ϵ, E, F ). FiGURE 5.32e shows, for each vertex v, 50 independent vϵ in red: we see that they
are all biased to move in the direction locally orthogonal to the mesh.

a b

c d

e

Figure 5.32| Process to build the imperfections: each vertex is moved in the
direction locally orthogonal to the mesh.

Each optimisedmeshM (of the 310 solutions) is deformed 100 times using the aforementioned process
to get a family of imperfect meshesMϵ. The cone of freedom CMϵ of each such imperfect mesh is calcu‑
lated and we count the number of times the prescribed quaternion q̂ belongs to the interior of the cone.
From that number we can calculate the sampled mean, which estimates the probability P (q̂ ∈ CMϵ). FiG‑
URE 5.33 shows the evolution of these estimated probabilities with the number of face‑vertex snap pairs. To
be clear, in this figure there are 31 curves made of 10 points. Each of these points represents the estimated
probability (sample mean) calculated with 100 imperfect designs. Superimposed in black is the graph of
the function n 7→ 1

2n : we see that, as proven in SECTiON 4.3.3, the decrease of the likelihood of obedience
follows a power law.

We can also study in more detail the cone of freedom of the imperfect meshes, CMϵ . To that end, we
calculated the number of generating rays, the (hyper) volume of the convex hull of the cone, as well as its
area. FiGURE 5.34 is packed with information. The small figures on the top left displays the generating rays
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Figure 5.33| Evolutionof the likelihoodof obedienceof an imperfectmeshMϵ

with the number of pairs of snap face‑vertex.

of CMϵ in the 15 cartesian planes, same as FiGURE 5.26. On the top middle is shown the 2D PCA performed
on the rays, aswell as the convexhull of theprojection in red. Bottom leftandmiddle: viewsof themeshMϵ

with, in green, the prescribed motion (pure rotation in this case) and in colours the unit dual quaternions
defining the cone; the brighter the red the more θ0 > θϵ, the deeper the blue the more θϵ > θ0. Right:
plots showing the evolution of the area and volume of the convex hull of the cone as well as the number
of vertices, in both standard and log scale. They were calculated for various families ofMϵ, for various
numbers of prescribed snap face‑vertex pairs. The highlighted red points correspond to the mesh on the
figure. It shows that for low values of snaps (3 or less), the cones of freedom of the imperfect meshes CMϵ

vary wildly: there is a relatively high spread of the values of the three measured metrics. For more than 3
snaps, the variation is of much lowermagnitude, implying that even the imperfect meshes all have a rather
small cone of freedom. The reader is referred to APPENDiX F formore examples of this kind of data, for other
separating meshes.

175



3‑D
assem

blies

Figure 5.34| See text for a description.
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5.6.2.3 Robustness to imperfection

To make the meshM = (V,E, F ) more robust to imperfection we propose to optimise it, similarly to
what we did in 2D. We aim to find a meshM such that any imperfect meshMϵ derived from it has a high
probability of obeying to q̂. As in 2D, we first increase the prescribed number of snap face‑vertex pairs until
the cone of freedom of the mesh is reduced to the prescribed motion: CM = {q̂}. Then, a second round of
GPA optimisation is executedwhere the snap constraint is suppressed and, for someα > 0, we impose that

∀f ∈ F ∀v ∈ V (f) m(v, q̂) · nf ≥ α 5.22

To confirm that this process does increase the robustness ofM we calculated 100 imperfect meshMϵ

and counted the number of times q̂ ∈ CMϵ , from which we can derive an estimated probability (sampled
mean) P(q̂ ∈ CMϵ), i.e. the probability that a mesh with imperfectionsMϵ obeys the prescribed motion q̂.
The greater this probability, the more robustM. The mesh used is shown on FiGURE 5.32; it obeys a pure
rotation. FiGURE 5.35 shows the evolution of the probability P(q̂ ∈ CMϵ) with respect to increasing α (top
left). It also shows the main data on the cones CMϵ : the number of vertices (unit generating rays) defining
it, as well as the (hyper)volume and (hyper)area of the convex hull of these vertices. The blue curve shows
themean value averaged on 100 imperfect meshesMϵ, and the filled region shows the inter‑quartile range
25%‑75%: it means that the middle half of the observed values lie in that range.
Unsurprisingly, the greaterα (geometrically, the farther away are pushed the hyper‑planes constraints from
q̂), the more likely an imperfect meshMϵ is to obey q̂: the more robust the assembly to the prescribedmo‑
tion and themore roomtheoperator haswhen (dis)assembling theparts. Thedownside is that the greaterα
themore voluminous the cone, and thus themoremotions can be obeyed by themesh, making the assem‑
bly less robust to parasitic motions: it may become too easy to disassemble for any practical use. Moreover
the top right plot of FiGURE 5.35 shows that the greaterα themore rays define the cone. This is problematic
as to assess the interlocking of the assembly a DBGmust be calculated for each ray. If the cones of different
parts intersect between them, the number of DBG quickly explodes. To prevent that from happening, we
observe that if the cones associated with two distinct parts do not intersect, then the DBGs associated with
the vertices of a given cone are all constant, by exploiting the regularity property of theDBGover a cell. Thus
it is in our interest to reduce the extent of the cones to prevent any intersection and to reduce the complexity
of the assessment of the interlocking.
We understand here that we are caught in a crossfire: on the one hand, increasing the size of the cone by
the mean of α increases the probability of obedience of an imperfect mesh P(q̂ ∈ CMϵ). On the other, too
large cones are likely to intersect, making the calculation of the NDBGmuchmore complicated.
This conundrum leads to an interesting optimisationproblem: we can leverage themonotonicity of the evo‑
lution of the cone size (number of vertices (generating rays), volumeand area of its convex hull) with respect
to α to minimise the value of α still leading to a high probability of obedience:

min α

s.t. P(q̂ ∈ CMϵ) ≥ pmin

For some threshold pmin (typically pmin = 0.99). Hence, one gets the optimal value α∗ leading to the
smallest possible cone CMϵ (by monotonicity of the cone size with respect to α) having a sufficiently high
probability of containing the prescribed motion encoded in q̂. On FiGURE 5.35 this value is eyeballed to be
α∗ ' 0.048. We insist on the fact that α∗ is motion and geometry‑dependent: for another mesh and/or
another prescribed q̂ it would have been different.
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Figure 5.35| The greater α, the larger the cone, and the greater P(q̂ ∈ CMϵ ).
For α ∈ [0.04, 0.05] the top left figure shows the probability that
an imperfect meshMϵ obeys the prescribed q̂: it goes from≃ 0
to 1. Top right: the greater α, the more rays generates the cones
of freedom CMϵ . Bottom left and right respectively show that the
area and volume of the 6D convex hull of the generating rays in‑
crease with α: the greater α the wider the cones.

5.7 CONCLUSION

After a rather in‑depth introduction to dual quaternions in SECTiON 5.1, this chapter explains how we can
use the tools and concepts introduced in CHAPTER 4 to automatically generate 3D polyhedral sequential as‑
semblies. Several weaknesses of our work in 2D are listed in SECTiON 4.6 and still apply in the 3D case, and
will not be recalled here.

As understood in SECTiON 5.1 unit dual quaternions are the perfectmathematical objects to encode rigid
bodymotions. The trajectory of a pointp ∈ R3 transformed by a unit dual quaternion q̂ ∈ U(DH) is helical,
andwecaneasily calculate its initial velocity, the so‑called instantaneousdirectionofmotionm(p, q̂) ∈ R3.
From there we proved the rather elegant result, that for a triangular meshM = (V,E, F ):

M obeys q̂ ⇐⇒ ∀f ∈ F ∀v ∈ V (f) mv · nf ≥ 0

Armed with m(p, q̂) we easily adapted, in SECTiON 5.4 the Guided Projection Algorithm to optimise a
mesh so that it obeys a motion prescribed by the user. Special attention was given to the snap constraint:
we understood that at least three snap face‑vertex pairsmust be prescribed if one hopes to reduce the cone
of freedom of the mesh to the prescribed motion CM = {q̂}. A careful analysis of the Gauss map G(M)

was carried out to judiciously choose the snap face‑vertex pairs, so as to decrease as much as possible the
extent of the cone of freedom CM: the normal vectors of the snap faces must be evenly distributed around
the sphere.
Stepping away from thesemathematical considerations, the rest of the section focuses on details of the ac‑
tual computer implementation. While thenumerical optimisationof themesh is fast andyields good results,
we find that, far from being a trivial task, handling and hanging irregular coarse meshes to one another to
create parts still necessitates a human touch, much to our chagrin. At the end of this PhD, it is still a tedious
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task to generate 3D assemblies.

SECTiON 5.6 investigates the relationship between the number of snap face‑vertex pairs and the cone of
freedom. Much like in 2D (see SECTiON 4.3), the greater the number of snaps the smaller the cone. Imperfec‑
tions are modelled using Gaussian processes, where the kernel correlating the noise between the vertices
takes into account the geodesic distances between them. By tuning the parameterσwe can change the size
of the patches of highly correlated noise values, thus opening the way for themodelling of a broad range of
imperfections. We saw that statistically, themore snap face‑vertex pairs, the less likely an imperfectmesh is
to obey the prescribed q̂, which led us to robustly optimise themesh to increase this probability by opening
the cone of freedom, at the cost of making the assembly less robust to parasitic motions and potentially
making the calculation of the NDBGmuchmore complicated if two cones intersect.

179



3‑D assemblies

REFERENCES
2 3Blue1Brown. Visualizing quaternions (4d numbers)with stereographic projection. Youtube. 2018. URL:

https://www.youtube.com/watch?v=d4EgbgTm0Bg.

21 Clifford. “Preliminary Sketch of Biquaternions”. In: Proceedings of The London Mathematical Society
(1873), pp. 381–395.

22 KonstantinosDaniilidis. “Hand‑EyeCalibrationUsingDualQuaternions”. In: The International Journal
of Robotics Research 18.3 (Mar. 1999), pp. 286–298. iSSN: 0278‑3649, 1741‑3176. URL: http://journals.
sagepub.com/doi/10.1177/02783649922066213 (visited on 01/09/2020).

24 Edsger W Dijkstra et al. “A note on two problems in connexion with graphs”. In: Numerische mathe‑
matik 1.1 (1959), pp. 269–271.

45 DunhamJackson. “The InstantaneousMotionof aRigidBody”. In:TheAmericanMathematicalMonthly
(Dec. 1942), 661 to 667.

46 Alec Jacobson, LadislavKavan, andOlgaSorkine‑Hornung. “Robust Inside‑OutsideSegmentationUs‑
ingGeneralizedWindingNumbers”. In:ACMTrans. Graph. 32.4 (July 2013). iSSN: 0730‑0301. URL: https:
//doi.org/10.1145/2461912.2461916.

50 Ladislav Kavan et al. “Dual Quaternions for Rigid Transformation Blending”. In: (2006), p. 10.

59 J.M. McCarthy. An Introduction to Theoretical Kinematics. The MIT Press, 1990.

66 NeueGeometrie des Raumes gegründet auf die Betrachtungder geraden Linie als Raumelement Abth.2.
ger. 1869. URL: http://eudml.org/doc/203056.

86 Alexander Schiftner et al. “Packing Circles and Spheres on Surfaces”. In: ACM Trans. Graph. 28.5 (Dec.
2009), pp. 1–8. iSSN: 0730‑0301. URL: https://doi.org/10.1145/1618452.1618485.

88 Ken Shoemake. “Animating rotation with quaternion curves”. In: SIGGRAPH ’85. 1985.

180

https://www.youtube.com/watch?v=d4EgbgTm0Bg
http://dx.doi.org/10.1177/02783649922066213
http://journals.sagepub.com/doi/10.1177/02783649922066213
http://journals.sagepub.com/doi/10.1177/02783649922066213
http://dx.doi.org/10.1145/2461912.2461916
http://dx.doi.org/10.1145/2461912.2461916
https://doi.org/10.1145/2461912.2461916
https://doi.org/10.1145/2461912.2461916
http://eudml.org/doc/203056
http://dx.doi.org/10.1145/1618452.1618485
https://doi.org/10.1145/1618452.1618485


CHAPTER 6

CONCLUSIONANDPERSPECTIVES

The unveiling climate catastrophe and the rarefaction and disappearance of the re‑
sourcesmodernsocietiesarebuilt uponurge theengineer to findsolutions to soften
the coming blow. In that spirit, demountable edifices undoubtedly constitute an
arrow in the quiver of the builder to erect sustainable cities. But as understood by
Mam [58], the designer should be careful of the amount of metal used in an assem‑
bly. From a historical perspective, integral reversible joints, even if they increase
the overall volume of material, are found to be a sustainable alternative to perma‑
nent fasteners which explains the interest of national and international initiatives
such as DiXite in that line of research. While we can certainly leverage centuries
of human trial and error to design sophisticated reversible joints, numerical tech‑
nologies allow us to quickly explore the space of possible joints, and digital manu‑
facturingholds thepromise of being able to fabricate novel assemblieswith strange
geometrical features that are potentially evenmore relevant than traditional ones.
This dissertation aimed at bringing a humble stone to this edifice by explaining the
tools and algorithms that were developed to fully explore the space of interlocking
assemblies.

We believe our main contributions to this field of research to be:

■ Nor catalogue nor voxel‑based: our method fully explores the space of polyg‑
onal/polyhedral assemblies while requiring very few human inputs, namely
an ordered list of disassembling motions.

■ To our knowledge, we are the first to generate 2D assemblies obeying rota‑
tions which opens the gate to generate a much broader range of assemblies
than before. Similarly, we think to be the first able to generate 3D assemblies
obeying generalised motions.

■ While robust optimisation is a standard procedure in many scientific fields,
we have not found in the literature the robust optimisation of integral‑joints
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assemblies. Ourwork here on opening the cone of freedom should be of great
help in the field of robotic assemblies.

6.1 RESULTS AND CONTRIBUTIONS

6.1.1 NON DIRECTIONAL BLOCKING GRAPH ‑ NDBG

For this dissertation to be self‑contained, we wished to give to the reader a solid
understanding of the theoretical modelling of the blocking relationships between
parts in an assembly. While CHAPTER 3 does not present any finding, it sums up
the state of the art on this subject. A Directional Blocking Graph, DBG, is a mo‑
tion and a graph whose vertices correspond to the assembly’s parts and a directed
edge between two vertices indicates that one is being blocked by the other for a
motion of infinitesimal magnitude. The concatenation of the DBGs for all possible
motions given the Non Directional Blocking Graph, NDBG, which encapsulates the
entire blocking relationships between the part. We understood that quite fortu‑
nately the assessment of the interlocking can bemade by looking at a discrete and
finite number of so‑called base DBGs. Themotions in these base DBGs corresponds
to the vertices of the cones of translational and rotational freedom, Ct, Cccwr , Ccwr ,
which can easily be found by solving a linear system. If all base DBGs but one are
strongly connected then the assembly is interlocked, and the DBGnot strongly con‑
nected indicateswhich part is the key and alongwhichmotion the assembly can be
disassembled.

6.1.2 2D ASSEMBLIES

Armedwithourknowledgeof theNDBGwedecided toadopta subtractiveapproach
to generate multi‑parts assembly: the successive parts are nested in one another
by creating the next part Pi+1 in the remaining part P0 at the end of the previous
design step. At the end of each iteration, the NDBG is calculated to ensure that the
current, unfinished, assembly is interlocked, which leaves the computer free to find
whichever set of parts block the motion of Pi+1.
Two generative algorithms were presented.
At first, we introduced a novel method to generate 2D sequential interlocking as‑
semblies obeying translation, rotation, or a combination of both motions. It in‑
volves an obeying agent that we called Turtle and an instruction‑giver Markov
process. The Markov process randomly switches between states and for each of
such states, the Turtle is tasked to walk by a random magnitude or to rotate by
randomly sampling a carefully calculated angular interval, thus drawing a random
separating polyline to partition the design domain with. One of the main hypothe‑
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ses of our work is the fact that the parts are polygonal, i.e. the separating curve be‑
tween twoparts is a polyline. Yet, aswederive themathematical formula governing
a valid assembly, one notices that these equations could readily be used to explore
a broader solution space and design non‑polygonal assemblies, for instance using
NURBS instead of polylines to create the separating curves. A key feature of our
work is the surjectivity of the mapping to the solution space. This ensures that,
given enough trials and computation time, any polyline can be generated and thus
that we sample homogeneously the full space of polygonal assemblies. Due to the
central place we gave to randomness our approach yields surprising and novel as‑
semblies, in particular assemblies obeying rotations, which, to our knowledge, that
has not been made before. Yet, we found that the mathematical formulae driving
the Turtle did not always have a solution, a major impediment to this method.
As a consequence we decided to use a less intuitive but more robust optimisation
method, the Guided Projection Algorithm, GPA, to optimise a polyline so that it par‑
titions the design domain into two parts. The Turtle approach is not entirely dis‑
carded as a simplified version instantiates the initial solution of the algorithm. The
GPA proves to be a powerful and versatile tool in which the user can easily enough
add constraints to guide the final solution, thus letting them choose the amount of
freedom they want to have on the generated design.
At this step, the readermayhave thought that thegeneratedassemblieshadstrange
geometrical featuresmakingmanufacturingcumbersomewithnoproofor explana‑
tion on why they should be preferred to simpler and more traditional assemblies.
SECTiON 4.2 justify the relevance of this work by assessing the mechanical proper‑
tiesof thegeneratedassemblies. Mechanical analysesareperformedthroughacus‑
tom numerical model. The agreement between the forces calculated by our model
and the displacement observed by image correlation on physical assemblies rein‑
forces our view that our model accurately describes the stresses and strains hap‑
pening in the structure. Systematic comparisons of the stresses calculated in the
parts of generated assemblies and of those of a reference assembly consistently
showed that a simple randomsamplingof thedesign space yields a goodnumber of
designs strictly dominating the reference, much to our surprise. This finding hints
at the potential of our approach for real‑life assemblies. Yet, we insist on the fact
that themechanical analysis of the generated assemblies was not the primary goal
of this study andwe leave to futurework the confirmationof this study, e.g. by com‑
paring the behaviours of physically built assemblies.
Whatwedeemtobe themost relevantwork in this doctoral thesis has todowith the
robust optimisation of assemblies with regard to fabrication imperfections and/or
imprecision on the location of the operator tasked with (dis)assembling. We found
that a simple two‑step GPA optimisation, with and without the snap constraint ac‑
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tivated, let the user indirectly choose the size of the cones of rotational freedom of
the part (the translation case being immediate to deal with). In turn, this opens the
way to toleranced assembly, a major subject in robotic assembly.
We also made a quick, and crude, enquiry on the side of finite motions to find the
set of possible centres of rotation to place the (dis)assembling operator.
This chapter finishes with a more mathematical touch, as the theory behind the
elastic deformation of planar open curves is presented for us to be able to smoothly
interpolate between two generated designs. We found that interpolated designs
mechanically behave similarly to each other making it easy to find many assem‑
blies dominating a reference one.

6.1.3 3D ASSEMBLIES

In our opinion, the main interest of CHAPTER 5 lies in the small but hopefully thor‑
ough introduction to unit dual quaternions. They are little‑known mathematical
objects that are particularly fit for encoding rigid body motions in 3D space. In this
dissertation, the tangential velocity of the trajectory of a vertex moved by a unit
dual quaternion was used as the instantaneous direction of motion in the optimi‑
sation of a triangular mesh. The rest of the chapter simply scales the tools used to
generate 2D assembly to the 3D cases.

6.2 PERSPECTIVES
Several issueshavebeen listed throughout thismanuscriptandshouldbeaddressed
by future research to strengthen this work. The most straightforward to deal with
relates to the fact that the NDBG outputs a binary answer: either an assembly is in‑
terlocked or it is not. An implicit assumption in the calculation of the base DBGs is
that the coefficient of friction is infinitely high. Yet, for physically built assemblies
we can feel that friction plays an important role, making assemblies theoretically
interlocked disassemblable in practice. Thus the calculation of the DBGs should be
more subtle, taking into account this phenomenon.
Another route would be to reverse our approach: instead of generating a part and
then computing the NDBG and restarting this iteration from scratch if the NDBG
does not say that the assembly is interlocked, we should follow the approach pro‑
posed byWang et al. in [105] and first compute the NDBG tomake it suitable and to
highlights which previous parts the current one should be blocked by, then gener‑
ate the separating polyline/mesh anchored in these highlighted parts.
While in 2D amechanical analysis of the parts was performed, this workwas not ex‑
tended to the 3D case. On top of that, our findings regarding the fact that a random
sampling of the design space often yieldsmechanically relevant assemblies should
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be confirmed by physical tests.
Our work must of course be extended to the highly non‑linear realm of finite mo‑
tions.
In our opinion, the most serious weakness of this work is that we did not consider
the manufacturability of the parts. This corresponds to the spirit of this disserta‑
tion: who can do more can do less. Since we can reach the entire design space of
interlocking assemblies, we can in particular reach the subset of manufacturable
assemblies. It should be stressed that this subset depends on the tools the manu‑
facturer chooses to use and thus that specific constraints to curate the design space
of its unfeasible solutions should be implemented for each use‑case.
In 2Dwewereable to smoothly interpolatebetweendesignsbyelastic deformation.
Recent works have scaled this theory to three‑dimensional objects (parametrised
surfaces embedded inR3), [47]. While, sadly, we could not use these results in the
course of this PhD due to a lack of time, we can envision a potential application:
given two parts, one with desirable mechanical properties but not fabricable and
the other with a poorermechanical behaviour butmanufacturable, a smooth inter‑
polation between them could give the best of both without much computational
effort. Another very promising avenue for research is close to what we showed in
FiGURE 4.55: given the existing database of sound traditional assemblies, some be‑
ing presented in CHAPTER 2, the exploration of the space obtained by interpolating
between themwould cheaply generate novel likely‑to‑be‑sound 3D assemblies.
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APPENDIX A

STEREOGRAPHIC PROJECTION

A.1 INTUITION

The stereographic projection is a conformal transformation mapping a sphere to a plane. It is defined and
smooth on the entire sphere except at one particular point, the projection point. Geometrically speaking, a
line is drawn between the projection point and any other point on the sphere. The intersection of this line
and the plane define the projection of that point. In thismanuscript,R3 is equippedwith its usual cartesian
frame (ex, ey, ez); the northpole refers to thepointez =

(
0, 0, 1

)T
. In thismanuscript theprojectionpoint

is defined as the north pole, as illustrated on FiGURE A.1.

Figure A.1| The stereographic projection maps points on the sphere (in blue)
to points in the plane (in red).

With such stereographic projection, points on the southern hemisphere aremapped inside the unit disk,
the equator is mapped to itself, and the northern hemisphere is mapped to the rest ofR2.

A.2 DEFINITION

Formally speaking:

■ Let S2 be the unit sphere inR3:
S2 = {x ∈ R3, ||x|| = 1}
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■ Let:

p : S2 −→ R2 ∪ {∞}
x

y

z

 7→

 x
1−z

y
1−z


be the stereographic projection of the unit sphere from the north pole.

■ Let:

p−1 : R2 ∪ {∞} −→ S2X
Y

 7→ 1
1+X2+Y 2


2X

2Y

−1 +X2 + Y 2


the inverse stereographic projection mapping the planeR2 onto the sphere S2.

A.3 PROPERTY

Property A.3.1. The stereographic projection of a circle on the sphere is a circle or a line.

Proof. LetP , of equation ax+ by+ cz+ d = 0, be a plane intersecting S2 and let I be the intersection. Let

X =

X
Y

 ∈ R2 be such that p−1(X) ∈ I . By definition of the intersection I we have that p−1(X) ∈ P .

HenceX is solution of

a
2X

1 +X2 + Y 2
+ b

2Y

1 +X2 + Y 2
+ c

1−X2 − Y 2

1 +X2 + Y 2
+ d = 0

2aX + 2bY + c(1−X2 − Y 2) + d(1 +X2 + Y 2) = 0

(d− c)(X2 + Y 2) + 2aX + 2bY + d+ c = 0

If (d − c) = 0 then the above equation states thatX lies on a line. Note that d − c = 0 ⇐⇒ −ez ∈ P by
plugging−ez in the equation of the plane. Else, if d 6= c, then:

(d− c)(X2 + Y 2) + 2aX + 2bY + d+ c = 0⇐⇒ X2 + Y 2 + 2
a

d− c
X + 2

b

d− c
+
d+ c

d− c
= 0

⇐⇒ (X +
a

d− c
)2 + (Y +

b

d− c
)2 +

d+ c

d− c
− a2 + b2

(d− c)2

⇐⇒ (X +
a

d− c
)2 + (Y +

b

d− c
)2 +

d2 − a2 − b2 − c2

(d− c)2
= 0

SinceP intersects S2 of radius 1 we have that:

|d|√
a2 + b2 + c2

≤ 1

Hence:
a2 + b2 + c2 − d2

(d− c)2
≥ 0

And thus, with α = − a
d−c ; β = −b

d−c and r =
√

a2+b2+c2−d2

(d−c)2 one has:
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Figure A.2| Projection of a cartesian grid of edge length 1
2
.

(X +
a

d− c
)2 + (Y +

b

d− c
)2 +

d2 − a2 − b2 − c2

(d− c)2
= 0⇐⇒ (X − α)2 + (Y − β)2 − r2 = 0

Which states thatX lies on a circle of center (α, β) and radius r and the proof is complete.
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APPENDIX B

GRAPHS

Most of the contents of this appendix come from [10].

B.1 DEFINITIONS
At the most fundamental level a graph is a discrete mathematical structure aimed at representing objects
such that some pairs are, in some sense, related. These objects are represented by vertices (often called
nodes). A graphmay be:

■ undirected: the problem being modeled assumes that the relation between two nodes is recipro‑
cal, for instance a cousin‑cousin relation: if Bertrand is the cousin of Alice, then Alice is the cousin
of Bertrand. The relation is called an edge.

■ directed: theproblembeingmodeledassumesanonreciprocityof the relationshipbetween thenodes,
for instance a parent‑child relation: if Bertrand is the father of Alice, then Alice is not the mother of
Bertrand. In such case the relation between two nodes is called an arc.

Figure B.1| Two graphs: vertices are depicted with numbered circles. Left:
undirected graph, edges between vertices are represented by plain
line segments. Right: directed graph, arcs between vertices are
represented by arrows.

Formally, if vp and vq are two related vertices, e = (vp, vq) is an edge when the order of the pair does
not matter, an arc otherwise. Often a graph is called G = (V,E) with V the set of vertices and E the set
of edges/arcs: e = (vp, vq) ∈ E, vp, vq ∈ V . From now on, only directed graphs will be considered as an
undirected graph can simply be obtained from a directed one by ”forgetting” the arcs’ orientation. A vertex
inV of indexpwill bedenotedvp and the ith arcofE fromvertexvp to vertexvq will bedenoted ei = (vp, vq).

B.2 CONNECTIVITY

191



Graphs

B.2.1 CHAIN AND CYCLE

Two arcs/edges are adjacentwhen they have a vertex in common.
A chain of cardinality q is a sequence of q arcs [e1, e2, ..., eq] such as two consecutive arcs are adjacent. A
chain disregards the orientation of the arcs. For instance, on FiGURE B.2 the sequence [e1, e2, e3, e4, e5] is a
chain of cardinality 5 as e1 = (1, 0) shares a common vertexwith e2 = (1, 2)which shares a common vertex
with e3 = (3, 1) etc.

Figure B.2| The sequence of arcs [e1, e2, e3, e4, e5] is a chain of cardinality 5.

A cycle is a chain whose end vertices coincide.

B.2.2 PATH AND CIRCUIT

A path is a chainwhose arcs are all directed in the sameway: [e1, e2, ..., eq] is a path of cardinality qwith the
end vertex of ei being equals to the start vertex of ei+1 : ei = (vp, vq) and ei+1 = (vq, vr). For instance on
FiGURE B.2, [e4, e5] is a path of cardinality 2.
A circuit is a path whose end vertices coincide.

B.2.3 CONNECTED GRAPH

A graph (be it directed or undirected) is connected when a chain can be built between any pair of distinct
vertices. Intuitively it means that one can travel between any two distinct vertices by walking on an edge
(an arc deprived of its orientation).
The relation

vp ≡ vq =

 either vp = vq

or there exists a chain between vp and vq

is an equivalence relation:

■ reflexive: vp ≡ vp
■ symmetric: vp ≡ vq =⇒ vq ≡ vp
■ transitive: vp ≡ vq and vq ≡ vr =⇒ vp ≡ vr

The equivalence class that such relation induces on V partitions the set of vertices in connected compo‑
nents. Worded differently a connected component is a set of vertices from V such as there exists a chain
made of arcs from E between any two nodes of that set. For instance FiGURE B.3 shows a graph with two
connected components composed respectively of vertices [0, 1, 2, 3] and [4, 5].
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Figure B.3| A graph with two connected components

A graph with a single connected component is therefore a connected graph.

B.2.4 STRONGLY CONNECTED GRAPH

A directed graph (the concept of strong connectivity does not apply to undirected graphs) is strongly con‑
nected when a circuit going through any pair of distinct vertices exists. Intuitively it means that one can
travel back and forth between any two distinct vertices while following the orientation of the arcs.

The relation

vp ≡ vq =

 either vp = vq

or there exists a circuit going through vp and vq .

is an equivalence relation:

■ reflexive: vp ≡ vp
■ symmetric: vp ≡ vq =⇒ vq ≡ vp
■ transitive: vp ≡ vq and vq ≡ vr =⇒ vp ≡ vr

The equivalence class that such relation induces on V partitions the set of vertices in strongly connected
components. Worded differently a strongly connected component is a set of vertices from V such as there
exist two paths of opposite orientation (i.e. a circuit) made of arcs from E between any two nodes of that
set. For instance FiGURE B.4 shows a graphwith four strongly connected components: it is possible to travel
back and forth between any two nodes of the set [0, 1, 2, 3] or of the set [4, 5]. Nodes [6] and [7] are two
strongly connected components reduced to single nodes.

Figure B.4| A graph whose four strongly connected components are circled in
red.

A graph with a single connected component is therefore a strongly connected graph.
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APPENDIX C

INTERVALS ‑ TURTLE IN ROTATION

C.1 WARMUP

Notations: let pi = (xi, yi)
T ∈ R2 be the current position of the Turtle

, and let θi and li be the orientation and length of the segment drawn by
the Turtle between pi and its next position pi+1 = (xi+1, yi+1)

T =

pi + li(cos θi, sin θi)T , as shown on the inset. The goal of this section
is to find in which set shall θi and li be chosen so that the line segment
[pi,pi+1]may obey a rotation around a given centre pointx = (x, y)T ∈
R2. Assuming pi 6= x (a very reasonable assumption stating that the
Turtle is not exactly on the centre of rotation) we can define the instan‑
taneous directions of motion of point pi, pi+1 with respect to x, m(pi,x) and m(pi+1,x), abbreviated
mpi

andmpi+1
.

Referring to SYSTEM (3.12), one has (with ni = (− sin θi, cos θi)T the unit normal vector of segment
[pi,pi+1])

[pi,pi+1] obeys a rotation around x⇐⇒

ni ·mpi
⋆ 0

ni ·mpi+1 ⋆ 0
C.1

With ⋆ standing for ≥ if the rotation is counterclockwise, ≤ if clockwise. Let us introduce a sign s = +1 if
the rotation is counterclockwise,−1 otherwise. Then SYSTEM (C.1) is rewritten:

[pi,pi+1] obeys a rotation around x⇐⇒

 sni ·mpi
≥ 0

sni ·mpi+1 ≥ 0
C.2

⇐⇒


s

− sin θi
cos θi

 ·mpi
≥ 0

s

− sin θi
cos θi

 ·
mpi

+ li

− sin θi
cos θi

 ≥ 0

C.3

With mpi+1
= mpi

+ li(− sin θi, cos θi)T . For notational convenience let, in this section, ∆x = xi − x

and ∆y = yi − y such that mpi
=
(
−∆y,∆x

)T
. With t = tan θi

2 , recall the double‑angle formulae:
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cos θi = 1−t2

1+t2 and sin θi = 2t
1+t2 . Let us consider the first inequality:

s

− sin θi
cos θi

 ·mpi
≥ 0⇐⇒ s

− sin θi
cos θi

 ·
−∆y

∆x

 ≥ 0

⇐⇒ s (∆x cos θi +∆y sin θi) ≥ 0

⇐⇒ s

(
∆x

1− t2

1 + t2
+∆y

2t

1 + t2

)
≥ 0

⇐⇒ s
(
−∆xt2 + 2∆yt+∆x

)
≥ 0

Where θi ∈]− π, π[ for the inequalities to be defined. Let

Q : ]− π, π[ → R

θ 7→ −∆x tan2 θ
2 + 2∆y tan θ

2 +∆x

And we have the equivalence:
sni ·mpi

≥ 0⇐⇒ sQ(θi) ≥ 0 C.4

Two cases must be studied:

■ If∆x = 0,Q : θ 7→ 2∆y tan θ
2 . Hence:

sni ·mpi
≥ 0⇐⇒

 θi ∈ [0, π[ if s∆y > 0

θi ∈]− π, 0] if s∆y < 0
C.5

■ If∆x 6= 0 thenQ : θ 7→ Q(θ) is a polynomial of degree 2 in tan θ
2 . Its discriminant is

∆ = 4||xi − x||2 > 0 C.6

HenceQ has two real roots:
θ1,2 = 2 arctan ∆y ± ||xi − x||

∆x
C.7

Assuming θ1 < θ2 (otherwise switch them):

sni ·mpi
≥ 0⇐⇒

 θ ∈ [θ1, θ2] if s∆x > 0

θi ∈]− π, θ1] ∪ [θ2, π[ if s∆x < 0
C.8

Note the pleasant property of this first inequality: the segment length li and the segment orientation θi are
independent of each other.
As for the second inequality, with again θi ∈]− π, π[:

s

− sin θi
cos θi

 ·
mpi + li

− sin θi
cos θi

 ≥ 0⇐⇒ s
(
sin θi∆y + li sin2 θi + cos θi∆x+ li cos2 θi

)
⇐⇒ s (cos θi∆x+ sin θi∆y + li)

⇐⇒ s

(
1− t2

1 + t2
∆x+

2t

1 + t2
∆y + li

)
⇐⇒ s

(
(li −∆x)t2 + 2∆yt+∆x+ li

)
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Let
P : ]− π, π[×[lmin, lmax] → R

(θ, l) 7→ (l −∆x) tan2 θ
2 + 2∆y tan θ

2 + l +∆x

And we have the equivalence:
sni ·mpi+1 ≥ 0⇐⇒ sP (θi, li) ≥ 0 C.9

Several cases must be studied:

■ If li = ∆x ≥ 0, P̃ : θ 7→ P (θ, li) is either constant or linear in tan θ
2

– If∆y = 0 then ∀θ ∈]− π, π[ P (θ, li) = li +∆x = 2li > 0. P is constant and positive, hence:

sni ·mpi+1
≥ 0⇔ s = +1 C.10

– If∆y 6= 0, P̃ : θ 7→ P (θ) is linear in tan θ
2 :

sni ·mpi+1
≥ 0⇔

 θ ≤ −2 arctan li
∆y if s∆y < 0

θ ≥ −2 arctan li
∆y if s∆y > 0

C.11

■ If li 6= ∆x, P̃ : θ 7→ P (θ, li) is a second degree polynomial in tan θ
2 whose discriminant is:

∆ = 4
(
∆y2 +∆x2 − l2i

)
C.12

= 4
(
||xi − x||2 − l2i

)
C.13

Hence:
∆ ≥ 0⇔ ||xi − x|| ≥ li C.14

– If ||xi − x|| < li:
P has no real roots but we can derive the following equations:

li > ||xi − x|| C.15

>
√

∆x2 +∆y2 C.16

> |∆x| C.17

> ∆x C.18

Hence, ∀θ ∈]− π, π[, ||xi − x|| < li =⇒ li −∆x > 0 =⇒ P̃ (θ) > 0, thus

sni ·mpi+1 ≥ 0⇔ s = +1 C.19

– If ||xi − x|| ≥ li , P̃ admits two real roots θ3 and θ4 such that:

θ3,4 = 2 arctan −∆y ±
√
||xi − x||2 − l2i
li −∆x

C.20

And, assuming θ3 < θ4 (otherwise switch them), we have the equivalence:

sni ·mpi+1
≥ 0⇔

 θi ∈ [θ3, θ4] if s(li −∆x) < 0

θi ∈]− π, θ3] ∪ [θ4, π] if s(li −∆x) > 0
C.21
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Summing up:When the right hand side is defined let:

θ0 = 2 arctan −li
∆y

θ⊖12 = 2 arctan ∆y − ||xi − x||
∆x

θ⊕12 = 2 arctan ∆y + ||xi − x||
∆x

θ⊖34 = 2 arctan −∆y −
√
||xi − x||2 − l2i
li −∆x

θ⊕34 = 2 arctan −∆y +
√
||xi − x||2 − l2i
li −∆x

θ1 = min(θ⊖12, θ⊕12)

θ2 = max(θ⊖12, θ⊕12)

θ3 = min(θ⊖34, θ⊕34)

θ4 = max(θ⊖34, θ⊕34)

C.2 A PRÉVERT‑STYLE ENUMERATION OF CASES
Following the definition of the critical angles θ0,1,2,3,4 in SECTiON C.1 regarding the Turtle in rotation, the
crossing of the solution sets of the two inequalities of the system sni ·mpi

≥ 0

sni ·mpi+1
≥ 0

leads to a Prévert‑style enumeration of cases.

1. If li = ∆x:

(a) If∆y = 0:
■ If s = −1: θ ∈ ∅, no solution.
■ If s = +1: θi ∈]− π, π[∩[θ1, θ2] =⇒ θi ∈ [θ1, θ2]

(b) If∆y 6= 0:
■ If s∆y < 0:

– If s∆x > 0: θi ∈]− π, θ0] ∩ [θ1, θ2]:

* If θ0 < θ1 : θi ∈ ∅, no solution.

* If θ1 ≤ θ0: θi ∈ [θ1,min(θ0, θ2)]
– If s∆x < 0: θi ∈]− π, θ0] ∩ (]− π, θ1] ∪ [θ2, π[):

* If θ0 < θ2: θi ∈]− π,min(θ0, θ1)]

* If θ2 ≤ θ0: θi ∈]− π, θ1] ∪ [θ2, θ0]

■ If s∆y > 0:
– If s∆x > 0: θi ∈ [θ0, π[∩[θ1, θ2]:

* If θ2 < θ0: θi ∈ ∅, no solution.

* If θ0 ≤ θ2: θi ∈ [max(θ0, θ1), θ2]
– If s∆x < 0: θi ∈ [θ0, π[∩(]− π, θ1] ∪ [θ2, π[):

* If θ0 ≤ θ1: θi ∈ [θ0, θ1] ∪ [θ2, π[
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* If θ1 < θ0: θi ∈ [max(θ0, θ2), π[

2. Else if ||pi − x|| < li:

(a) If s = −1: θi ∈ ∅, no solution.
(b) If s = +1:

■ If∆x = 0:
– If∆y < 0: θi ∈]− π, π[∩]− π, 0] =⇒ θi ∈]− π, 0]
– If∆y > 0: θi ∈]− π, π[∩[0, π[ =⇒ θi ∈ [0, π[

■ If∆x > 0: θi ∈]− π, π[∩[θ1, θ2] =⇒ θi ∈ [θ1, θ2]

■ If∆x < 0: θi ∈]− π, π[∩(]− π, θ1] ∪ [θ2, π[) =⇒ θi ∈]− π, θ1] ∪ [θ2, π[

3. Else if ||pi − x|| ≥ li:

(a) If∆x = 0:
■ If s(li −∆x) < 0:

– If s∆y < 0: θi ∈ [θ3, θ4]∩]− π, 0]:

* If 0 < θ3: θi ∈ ∅, no solution.

* If θ3 ≤ 0: θi ∈ [θ3,min(0, θ4)]
– If s∆y > 0: θi ∈ [θ3, θ4] ∩ [0, π[

* If θ4 < 0: θi ∈ ∅, no solution.

* If 0 ≤ θ4: θi ∈ [max(0, θ3), θ4]
■ If s(li −∆x) > 0:

– If s∆y < 0: θi ∈ (]− π, θ3] ∪ [θ4, π[)∩]− π, 0]:

* If 0 < θ4: θi ∈]− π,min(0, θ3)]

* If θ4 ≤ 0: θi ∈]− π, θ3] ∪ [θ4, 0]

– If s∆y > 0: θi ∈ (]− π, θ3] ∪ [θ4, π[) ∩ [0, π[

* If 0 ≤ θ3: θi ∈ [0, θ3] ∪ [θ4, π[

* If θ3 < 0, θi ∈ [max(0, θ4), π[
(b) If∆x 6= 0:

■ If s(li −∆x) < 0:
– If s∆x > 0: θi ∈ [θ3, θ4] ∩ [θ1, θ2]:

* If θ4 < θ1 or θ2 < θ3: θi ∈ ∅, no solution.

* If θ1 ≤ θ4 and θ3 ≤ θ2: θi ∈ [max(θ3, θ1),min(θ4, θ2)]
– If s∆x < 0: θi ∈ [θ3, θ4] ∩ (]− π, θ1] ∪ [θ2, π[):

* If θ3 ≤ θ1 and θ4 < θ2: θi ∈ [θ3,min(θ4, θ1)]

* If θ3 ≤ θ1 and θ2 ≤ θ4: θi ∈ [θ3, θ1] ∪ [θ2, θ4]

* If θ1 < θ3 and θ4 < θ2: θi ∈ ∅, no solution.

* If θ1 < θ3 and θ2 ≤ θ4: θi ∈ [max(θ3, θ2), θ4]
■ If s(li −∆x) > 0:

– If s∆x > 0: θi ∈ [θ1, θ2] ∩ (]− π, θ3] ∪ [θ4, π[):

* If θ1 ≤ θ3 and θ2 < θ4: θi ∈ [θ1,min(θ2, θ3)]

* If θ1 ≤ θ3 and θ4 ≤ θ2: θi ∈ [θ1, θ3] ∪ [θ4, θ2]

* If θ3 < θ1 and θ2 < θ4: θi ∈ ∅, no solution.

* If θ3 < θ1 and θ4 ≤ θ2: θi ∈ [max(θ1, θ4), θ2]
– If s∆x < 0: θi ∈ (]− π, θ3] ∪ [θ4, π[) ∩ (]− π, θ1] ∪ [θ2, π[)

* If max(θ3, θ1) ≤ min(θ4, θ2): θi ∈]− π,min(θ3, θ1)] ∪ [max(θ4, θ2), π[
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* Ifmax(θ3, θ1) > min(θ4, θ2): θi ∈]−π,min(θ1, θ3)]∪[min(θ4, θ2),max(θ1, θ3)]∪
[max(θ4, θ2), π[

C.3 WHERE TO CHOOSE θ ?

This appendix refines the above enumeration and proves also partial orderings of the θi that are helpful to
justify the fact that the Turtle is drawn to or repelled by x depending on the value of s.

■ If∆x = li

– If∆y 6= 0

1. If s∆y = 0

No change are made with regards to the enumeration provided above.
2. If∆y ̸= 0

Prerequisite:
For a ∈ R let:

fa :
R → R

x 7→ x2 + a2 − x
√
x2 + a2

ga :
R → R

x 7→ x2 + a2 + x
√
x2 + a2

We show that for any a ∈ R both fa and ga are positive onR. fa is trivially positive onR−

and ga onR+. Also we remark that proving fa ≥ 0 onR+ is the same as proving ga ≥ 0 on
R−. So it is enough to prove fa ≥ 0 onR+. For all x ≥ 0we have the equivalence:

fa(x) ≥ 0⇔ x2 + a2︸ ︷︷ ︸
≥0

≥ x
√
x2 + a2︸ ︷︷ ︸
≥0

⇔ (x2 + a2)2 ≥
(
x
√
x2 + a2

)2
⇔ a2(a2 + x2) ≥ 0 always true

Hence, by equivalence, as this result is true for any x ∈ R+ we have shown that fa ≥ 0

on R+ and by consequence, as outlined above, ga ≥ 0 on R−. Thus, we have successfully
shown that both fa and ga are positive onR for any a ∈ R.

Let:

a0 =
−li
∆y

a1 =
∆y − ||pi − x||

li

a2 =
∆y + ||pi − x||

li
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such that θ0,1,2 = 2 arctan(a0,1,2) and θ1 ≤ θ2. We prove that:

∆y < 0 =⇒ θ1 ≤ θ2 ≤ θ0
∆y > 0 =⇒ θ0 ≤ θ1 ≤ θ2

Sincex 7→ 2 arctan(x) is increasingonRprovinganorderingof the θi boils down toproving
the same ordering for the ai.

(a) ∆y < 0 =⇒ θ1 ≤ θ2 ≤ θ0

Proof. As by definition of θ1 and θ2 we have θ1 ≤ θ2, it is enough to prove∆y <
0 =⇒ θ2 ≤ θ0.
Let∆y ∈ R−∗. By equivalence:

θ2 ≤ θ0 ⇔
∆y + ||pi − x||

li
≤ −li

∆y

⇔ ∆y2 +∆y||pi − x|| ≥ −l2i

⇔ ∆y2 + l2i +∆y
√

∆y2 + l2i ≥ 0

⇔ gli(∆y) ≥ 0

And we know that gli ≥ 0 onR so the latest inequality is true and by equivalence so
is θ2 ≤ θ0.
Thus:

∆y < 0 =⇒ θ1 ≤ θ2 ≤ θ0

(b) ∆y > 0 =⇒ θ0 ≤ θ1 ≤ θ2

Proof. As by definition of θ1 and θ2 we have θ1 ≤ θ2, it is enough to prove∆y >
0 =⇒ θ0 ≤ θ1.
Let∆y ∈ R+∗. By equivalence:

θ0 ≤ θ1 ⇔
−li
∆y
≤ ∆y − ||pi − x||

li

⇔ −l2i ≤ ∆y2 −∆y||pi − x||

⇔ ∆y2 + l2i −∆y
√
∆y2 + l2i ≥ 0

⇔ fli(∆y) ≥ 0

And we know that fli ≥ 0 onR so the latest inequality is true and by equivalence so
is θ0 ≤ θ1.
Thus:

∆y > 0 =⇒ θ0 ≤ θ1 ≤ θ2

* If s∆y > 0

· If s∆x < 0

Since ∆x = li > 0, s∆x < 0 =⇒ s = −1 and s∆y > 0 =⇒ ∆y < 0.
Hence we know that θ1 ≤ θ2 ≤ θ0 and, referring to the enumeration provided

201



Intervals ‑ Turtle in rotation

above, in such case only one of the two assertions may happen and the Turtle
must choose θ such as:

θ ∈ [θ0, π]

· If s∆x > 0

Then s = +1 and ∆y > 0. We know that θ0 ≤ θ1 ≤ θ2. Hence the Turtle
chooses

θ ∈ [θ1, θ2]

* If s∆y < 0

· If s∆x < 0

s = −1 and∆y > 0; so θ0 ≤ θ1 ≤ θ2 and the Turtle chooses:

θ ∈ [−π, θ0]

· If s∆x > 0

s = +1 and∆y < 0; so θ1 ≤ θ2 ≤ θ0 and the Turtle chooses:

θ ∈ [θ1, θ2]

■ ||pi − x|| < li No change are made with regards to the enumeration.
■ ||pi − x|| ≥ li

– If∆x = 0, let

a3 =
−∆y −

√
∆y2 − l2i
li

C.22

a4 =
−∆y +

√
∆y2 − l2i
li

C.23

such that for i ∈ J3, 4K θi = 2 arctan(ai) and θ3 ≤ θ4. It is easy to show that:

∆y > 0 =⇒ θ3 ≤ θ4 < 0

∆y < 0 =⇒ 0 < θ3 ≤ θ4

Hence the enumeration can be greatly simplified into:

* If s = −1
θ ∈ [θ3, θ4]

* If s = +1

θ ∈

 [−π, 0] if∆y < 0

[0, π] if∆y > 0

– If∆x 6= 0

Three cases may happen when ||pi − x|| ≥ li,∆x 6= 0 and∆x 6= li.

1. Either∆x < 0; in which case we prove:

θ1 < θ3 ≤ θ4 < θ2 C.24
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2. Or 0 < ∆x < li; we show that: Either θ3 ≤ θ4 ≤ θ1 ≤ θ2
Or θ1 ≤ θ2 ≤ θ3 ≤ θ4

C.25

3. Or li < ∆x; we prove that:
θ3 < θ1 ≤ θ2 < θ4 C.26

In the following for i ∈ J1, 4K we introduce an ai ∈ R such that θi = 2 arctan(ai). Since x 7→
2 arctan(x) is strictly increasing on R proving an ordering of the θi boils down to proving the
same ordering for the ai.

1. If∆x < 0

Then, for∆x < 0;∆y ∈ R such that∆x2 +∆y2 ≥ l2i let:

a1 =
∆y + ||pi − x||

∆x

a2 =
∆y − ||pi − x||

∆x

a3 =
−∆y −

√
||pi − x||2 − l2i
li −∆x

a4 =
−∆y +

√
||pi − x||2 − l2i
li −∆x

such that for i ∈ J1, 4K θi = 2 arctan(ai) and θ3 ≤ θ4 and θ1 ≤ θ2. We wish to prove

a1 < a3 ≤ a4 < a2 C.27

Since by definition a3 ≤ a4 we just need to show that a1 < a3 and a4 < a2.

(a) a1 < a3:

Proof. We are going to reason by equivalence and show that a1 < a3 is equivalent
to a partial ordering that is always true, and hence that a1 < a3 is true:

a1 < a3 ⇐⇒
∆y + ||pi − x||

∆x
<
−∆y −

√
||pi − x||2 − l2i
li −∆x

⇐⇒ −∆y∆x−∆x
√
||pi − x||2 − l2i < (∆y + ||pi − x||)(li −∆x)

⇐⇒ −∆x
√
||pi − x||2 − l2i < (∆y + ||pi − x||)li − ||pi − x||∆x

⇐⇒ ∆x||pi − x|| −∆x
√
||pi − x||2 − l2i < (∆y + ||pi − x||)li

⇐⇒ ∆x︸︷︷︸
<0

||pi − x||

1−

√
1−

(
li

||pi − x||

)2


︸ ︷︷ ︸
≥0

< (∆y + ||pi − x||)li︸ ︷︷ ︸
>0

As outlined, on the above inequality the left hand term is negative while the right
hand term is positive. Hence this inequality is always true and by equivalence so is
a1 < a3. We have thus shown:

θ1 < θ3
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(b) a4 < a2:

Proof. We prove this inequality by equivalence:

a4 < a2 ⇐⇒
−∆y +

√
||pi − x||2 − l2i
li −∆x

<
∆y − ||pi − x||

∆x

⇐⇒ (li −∆x)(∆y − ||pi − x||) < −∆y∆x+∆x||pi − x||
√
||pi − x||2 − l2i

⇐⇒ (∆y − ||pi − x||)li + ||pi − x||∆x < ∆x
√
||pi − x||2 − l2i

⇐⇒ (∆y − ||pi − x||)li︸ ︷︷ ︸
<0

< ∆x︸︷︷︸
<0

||pi − x||

−1 +
√

1−
(

li
||pi − x||

)2


︸ ︷︷ ︸
<0︸ ︷︷ ︸

>0

As outlined, on the above inequality the left hand term is negative while the right
hand term is positive. Hence this inequality is always true and by equivalence so is
a4 < a2. We have thus shown:

θ4 < θ2

In a nutshell we have successfully shown that:

∆x < 0 =⇒ θ1 < θ3 ≤ θ4 < θ2 C.28

2. If 0 < ∆x < li

0 < ∆x < li and∆y ∈ R such that ||pi−x||2 = ∆x2+∆y2 ≥ l2i =⇒ |∆y| ≥
√
l2i −∆x2

let:

a1 =
∆y − ||pi − x||

∆x

a2 =
∆y + ||pi − x||

∆x

a3 =
−∆y −

√
||pi − x||2 − l2i
li −∆x

a4 =
−∆y +

√
||pi − x||2 − l2i
li −∆x

such that for i ∈ J1, 4K θi = 2 arctan(ai) and θ3 ≤ θ4 and θ1 ≤ θ2. We are going to prove
that:  either a3 ≤ a4 ≤ a1 ≤ a2

or a1 ≤ a2 ≤ a3 ≤ a4
C.29

Since by definition we have a1 ≤ a2 and a3 ≤ a4 we just need to prove that either a4 ≤ a1

or a2 ≤ a3. The demonstration is in three steps:

(a) First we show that:

∆y ≥ ||pi − x||
(
1− ∆x

li

)
=⇒ a4 < a1
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(b) Then that:

∆y ≤ −||pi − x||
(
1− ∆x

li

)
=⇒ a2 < a3

(c) And lastly that: 0 < ∆x < li

||pi − x|| ≥ li
=⇒ |∆y| ≥ ||pi − x||

(
1− ∆x

li

)

Let’s dive in!

(a) ∆y ≥ ||pi − x||
(
1− ∆x

li

)
=⇒ a4 < a1:

Proof. We assume that∆y ≥ ||pi − x||
(
1− ∆x

li

)
, i.e. that∆yli − ||pi − x||(li −

∆x) ≥ 0. We prove a4 < a1 by equivalence:

a4 < a1 ⇔
−∆y +

√
||pi − x||2 − l2i
li −∆x

<
∆y − ||pi − x||

∆x

⇔ −∆y∆x+∆x
√
||pi − x||2 − l2i < (∆y − ||pi − x||)(li −∆x)

⇔ ∆yli − ||pi − x||(li −∆x)︸ ︷︷ ︸
≥0

> ∆x
√
||pi − x||2 − l2i︸ ︷︷ ︸

≥0

⇔ (∆yli − ||pi − x||(li −∆x))
2
>

(
∆x
√
||pi − x||2 − l2i

)2

⇔ 2||pi − x||li︸ ︷︷ ︸
>0

(||pi − x|| −∆y)︸ ︷︷ ︸
>0

(li −∆x)︸ ︷︷ ︸
>0

> 0

As outlined the latest inequality is always true and, by equivalence, so is a4 < a1

We have proven what we aimed for:

∆y ≥ ||pi − x||
(
1− ∆x

li

)
=⇒ θ4 < θ1 C.30

(b) ∆y ≤ −||pi − x||
(
1− ∆x

li

)
=⇒ a2 < a3:

Proof. The demonstration is similar as the one above: assume ∆y ≤ −||pi −
x||
(
1− ∆x

li

)
, i.e. ∆yli + ||pi − x||(li −∆x) ≤ 0. By equivalence:

a2 < a3 ⇔
∆y + ||pi − x||

∆x
<
−∆y −

√
||pi − x||2 − l2i
li −∆x

⇔ (∆y + ||pi − x||)(li −∆x) < ∆x

(
−∆y −

√
||pi − x||2 − l2i

)
⇔ ∆x

√
||pi − x||2 − l2i︸ ︷︷ ︸

≥0

< −∆yli − ||pi − x||(li −∆x)︸ ︷︷ ︸
≥0

⇔
(
∆x
√
||pi − x||2 − l2i

)2

< (−∆yli − ||pi − x||(li −∆x))
2

⇔ 2||pi − x||li︸ ︷︷ ︸
>0

(||pi − x||+∆y)︸ ︷︷ ︸
>0

(li −∆x)︸ ︷︷ ︸
>0

> 0
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As outlined the latest inequality is always true and, by equivalence, so is a2 < a3.
We have proven what we aimed for:

∆y ≤ −||pi − x||
(
1− ∆x

li

)
=⇒ θ2 < θ3 C.31

(c)

 0 < ∆x < li

||pi − x|| ≥ li
=⇒ |∆y| ≥ ||pi − x||

(
1− ∆x

li

)
:

Proof. We propose a proof by contradiction: recall that ||pi − x|| ≥ li and 0 <

∆x < li implies |∆y| ≥
√
l2i −∆x2

|∆y| < ||pi − x||
(
1− ∆x

li

)
=⇒ l2i −∆x2 < (∆x2 +∆y2)

(
1− ∆x

li

)2

=⇒ (l2i −∆x2)
(
1− 1

(
1−∆x2

))
< ∆x2

(
1− ∆x

li

)2

=⇒ l2i −∆x2

l2i
∆x(2li −∆x) <

∆x2

l2i
(li −∆x)2

=⇒ (l2i −∆x2)(2li −∆x) < ∆x(li −∆x)2

=⇒ (li +∆x)(2li −∆x) < ∆x(li −∆x)

=⇒ 2l2i < 0 impossible

Hence by contradiction:

 0 < ∆x < li

||pi − x|| ≥ li
=⇒ |∆y| ≥ ||pi − x||

(
1− ∆x

li

)

Summing up:

We have shown that in the situation

 0 < ∆x < li

||pi − x|| ≥ li
then |∆y| ≥ ||pi −x||

(
1− ∆x

li

)
.

Then:

* Either∆y ≥ ||pi − x||
(
1− ∆x

li

)
in which case we proved that θ4 < θ1. Moreover, by

definition, θ3 ≤ θ4 and θ1 ≤ θ2. Hence, in this situation, we have the result θ3 ≤ θ4 <
θ1 ≤ θ2.

* Or∆y ≤ −||pi − x||
(
1− ∆x

li

)
in which case we proved that θ2 < θ3. Moreover, by

definition, θ3 ≤ θ4 and θ1 ≤ θ2. Hence, in this situation, we have the result θ1 ≤ θ2 <
θ3 ≤ θ4.

All in all we have proven:

 0 < ∆x < li

||pi − x|| ≥ li
=⇒

 θ3 ≤ θ4 < θ1 ≤ θ2 if∆y ≥ ||pi − x||
(
1− ∆x

li

)
θ1 ≤ θ2 < θ3 ≤ θ4 if∆y ≤ −||pi − x||

(
1− ∆x

li

)
3. If∆x > li
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For∆x > li;∆y ∈ R let:

a1 =
∆y − ||pi − x||

∆x

a2 =
∆y + ||pi − x||

∆x

a3 =
−∆y +

√
||pi − x||2 − l2i
li −∆x

a4 =
−∆y −

√
||pi − x||2 − l2i
li −∆x

such that for i ∈ J1, 4K θi = 2 arctan(ai) and θ3 ≤ θ4 and θ1 ≤ θ2. We prove that:

a3 < a1 ≤ a2 < a4 C.32

By definition a1 ≤ a2 so all we have left to prove is a3 ≤ a1 and a2 ≤ a4.
(a) a3 < a1:

Proof. Two cases may occur:

* Either∆yli − ||pi − x||(li −∆x) ≥ 0

In which case we prove our assertion by equivalence:

a3 < a1 ⇔
−∆y +

√
||pi − x||2 − l2i
li −∆x

<
∆y − ||pi − x||

∆x

⇔ (∆y − ||pi − x||)(li −∆x) < ∆x

(
−∆y +

√
||pi − x||2 − l2i

)
⇔ ∆yli − ||pi − x||(li −∆x)︸ ︷︷ ︸

≥0

< ∆x
√
||pi − x||2 − l2i︸ ︷︷ ︸

≥0

⇔ (∆yli − ||pi − x||(li −∆x))
2
<

(
∆x
√
||pi − x||2 − l2i

)2

⇔ 2||pi − x||li︸ ︷︷ ︸
>0

(||pi − x|| −∆y)︸ ︷︷ ︸
>0

(li −∆x)︸ ︷︷ ︸
<0

< 0

As outlined the latest inequality is always true and we have shown:

∆yli − ||pi − x||(li −∆x) ≥ 0 =⇒ a3 < a1

* Or∆yli − ||pi − x||(li −∆x) < 0

In which case the proposition:

∆yli − ||pi − x||(li −∆x)︸ ︷︷ ︸
<0

< ∆x
√
||pi − x||2 − l2i︸ ︷︷ ︸

≥0

is true and as we have shown just above:

∆yli − ||pi − x||(li −∆x) < ∆x
√
||pi − x||2 − l2i ⇔ a3 < a1

Hence we have shown:

∆yli − ||pi − x||(li −∆x) < 0 =⇒ a3 < a1
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We have shown that the assertion a3 < a1 is truewhether∆yli−||pi−x||(li−∆x)

is positive or negative. Hence it is always true:

θ3 < θ1

(b) a2 < a4:

Proof. Two cases may occur:

* Either−∆yli − ||pi − x||(li −∆x) ≥ 0

In which case we prove our assertion by equivalence:

a2 < a4 ⇔
∆y + ||pi − x||

∆x
<
−∆y −

√
||pi − x||2 − l2i
li −∆x

⇔ ∆yli + ||pi − x||(li −∆x) > −∆x
√
||pi − x||2 − l2i

⇔ −∆yli − ||pi − x||(li −∆x)︸ ︷︷ ︸
≥0

< ∆x
√
||pi − x||2 − l2i︸ ︷︷ ︸

≥0

⇔ (−∆yli − ||pi − x||(li −∆x))
2
<

(
∆x
√
||pi − x||2 − l2i

)2

⇔ 2||pi − x||li︸ ︷︷ ︸
>0

(||pi − x||+∆y)︸ ︷︷ ︸
>0

(li −∆x)︸ ︷︷ ︸
<0

< 0

As outlined the latest inequality is always true and we have shown:

−∆yli − ||pi − x||(li −∆x) < 0 =⇒ a2 < a4

* Or−∆yli − ||pi − x||(li −∆x) < 0

In which case the proposition:

−∆yli − ||pi − x||(li −∆x)︸ ︷︷ ︸
<0

< ∆x
√
||pi − x||2 − l2i︸ ︷︷ ︸

≥0

is true and as we have shown just above:

−∆yli − ||pi − x||(li −∆x) ≤ ∆x
√
||pi − x||2 − l2i ⇔ a2 < a4

Hence we have shown:

−∆yli − ||pi − x||(li −∆x) < 0 =⇒ a2 < a4

Wehave shown that theassertiona2 < a4 is truewhether−∆yli−||pi−x||(li−∆x)
is positive or negative. Hence it is always true:

θ2 < θ4
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In a nutshell, we have successfully shown that:

∆x > li =⇒ θ3 < θ1 ≤ θ2 < θ4 C.33

Now that we have discussed the ordering of the (θi)i∈J1,4K which depends on the position of∆x
with respect to 0 and li we can shed further light on the intervals inwhich the Turtle can choose
a θ to orient itself. This section treats the case where ||pi − x|| ≥ li and∆x 6= 0.

If s(li −∆x) < 0

* If s∆x > 0

1. If s = −1
If s = −1 then∆x < 0 to comply with both s∆x > 0 and s(li −∆x) < 0. Using the
definition of the θi provided in iTEM 1 we have

θ1 < θ3 ≤ θ4 < θ2

2. If s = +1

If s = +1 then∆x > li. Using the definition of the θi provided in iTEM 3 we have

θ3 < θ1 ≤ θ2 < θ4

In both case (s = +1 and s = −1) we have that θ1 ≤ θ4 and so, referring to the enumera‑
tion, the Turtle always finds an angle θ to orient itself:

θ ∈ [max(θ3, θ1),min(θ4, θ2)]

* If s∆x < 0

The Turtle cannot enter this condition when s = +1 (otherwise it wouldmean that∆x <
0 and∆x > li). Hence for s = −1 the Turtle is brought here when 0 < ∆x < li. In which
case, with the definition of the θi provided iTEM 2 we have: θ3 ≤ θ4 < θ1 ≤ θ2 if∆y ≥ ||pi − x||

(
1− ∆x

li

)
θ1 ≤ θ2 < θ3 ≤ θ4 if∆y ≤ −||pi − x||

(
1− ∆x

li

)
We can now see that two of the four cases enumerated are impossible. We can also see that
the two remaining cases yield the same result:
· We wrote : if θ3 ≤ θ1 and θ4 < θ2 then θ ∈ [θ3,min(θ4, θ1)], but as we proved that this

case is only possible when θ3 ≤ θ4 < θ1 ≤ θ2 we now realize that θ ∈ [θ3, θ4].
· Wewrote : if θ1 < θ3 and θ2 ≤ θ4 then θ ∈ [max(θ3, θ2), θ4], but as we proved that this

case is only possible when θ1 ≤ θ2 < θ3 ≤ θ4 we now realize that θ ∈ [θ3, θ4]

Hence when the Turtle is brought here it must choose

θ ∈ [θ3, θ4]

If s(li −∆x) > 0

* If s∆x > 0

The Turtle cannot enter this condition when s = −1; when s = +1 the Turtle is brought
here when 0 < ∆x < li. In which case, with the definition of the θi provided iTEM 2 we
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have:  θ3 ≤ θ4 < θ1 ≤ θ2 if∆y ≥ ||pi − x||
(
1− ∆x

li

)
θ1 ≤ θ2 < θ3 ≤ θ4 if∆y ≤ −||pi − x||

(
1− ∆x

li

)
We can now see that two of the four cases enumerated are impossible. We can also see that
the two remaining cases yield the same result:
· We wrote : if θ1 ≤ θ3 and θ2 < θ4 then θ ∈ [θ1,min(θ2, θ3)], but as we proved that this

case is only possible when θ1 ≤ θ2 < θ3 ≤ θ4 we now realize that θ ∈ [θ1, θ2].
· Wewrote : if θ3 < θ1 and θ4 ≤ θ2 then θ ∈ [max(θ1, θ4), θ2], but as we proved that this

case is only possible when θ3 ≤ θ4 < θ1 ≤ θ2 we now realize that θ ∈ [θ1, θ2]

Hence when the Turtle is brought here it must choose

θ ∈ [θ1, θ2]

* If s∆x < 0

1. If s = −1
If s = −1 then∆x > li. Using the definition of the θi provided in iTEM 3 we have

θ3 < θ1 ≤ θ2 < θ4

2. If s = +1

If s = +1 then∆x < 0. Using the definition of the θi provided in iTEM 1 we have

θ1 < θ3 ≤ θ4 < θ2

In both case we have max(θ3, θ1) ≤ min(θ4, θ2). Hence, referring to the enumeration pro‑
vided abovewe see that one of the two cases is impossible andwhen the Turtle is brought
here it must choose:

θ ∈]− π,min(θ3, θ1)] ∪ [max(θ4, θ2), π[

This appendixhelpsus refine the longenumerationof SECTiONC.2 intoagreatly simplifiedversionpresented
below. Also, the intervals where±π appeared were left open to ensure than x 7→ tan(x)was defined. Yet,
it can be verified that the passage to the limit still defines our expressions: the intervals can be closed.

1. If∆x = li

(a) If∆y = 0:
■ If s = −1: θi ∈ ∅, no solution.
■ If s = +1: θi ∈ [θ1, θ2]

(b) If∆y 6= 0:
■ If s = +1: θi ∈ [θ1, θ2]

■ Else:
– If∆y > 0: θi ∈ [−π, θ0]
– If∆y < 0: θi ∈ [θ0, π]

2. Else if ||pi − x|| < li

(a) If s = −1: θi ∈ ∅, no solution.
(b) If s = +1:
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■ If∆x = 0:
– If∆y < 0: θi ∈ [−π, 0]
– If∆y > 0: θi ∈ [0, π]

■ If∆x > 0: θi ∈ [θ1, θ2]

■ If∆x < 0: θi ∈ [−π, θ1] ∪ [θ2, π]

3. Else if ||pi − x|| ≥ li

(a) If∆x = 0:
■ If s = −1: θi ∈ [θ3, θ4]

■ If s = +1:
– If∆y < 0: θi ∈ [−π, 0]
– If∆y > 0: θi ∈ [0, π]

(b) If∆x 6= 0:
■ If s(li −∆x) < 0:

– If s∆x > 0: θi ∈ [max(θ3, θ1),min(θ4, θ2)]
– If s∆x < 0: θi ∈ [θ3, θ4]

■ If s(li −∆x) > 0:
– If s∆x > 0: θi ∈ [θ1, θ2]

– If s∆x < 0: θi ∈ [−π,min(θ3, θ1)] ∪ [max(θ4, θ2), π]

C.4 PROOF THAT THE CENTRE OF ROTATION IS ATTRACTIVE WHEN s = −1
AND REPULSIVEWHEN s = +1

We now prove that the centre of rotation x acts as a repulsive (resp. attractive) point when s = +1 (resp.
s = −1) in the sense that the Turtlemoves away from (resp. towards)x. Recall thatpi denotes the current

position of the Turtle , pi+1 the next position, i.e. pi+1 = pi + li

cos θ

sin θ

 for a θ chosen in the correct

interval as described by ENUMERATiON C.3. We are going to prove that when s = +1 ||pi+1−x|| > ||pi−x||
and when s = −1 ||pi+1 − x|| < ||pi − x||. We solve the equation ||pi+1 − x|| = ||pi − x|| of unknown θ.
Recall that∆x = xi − x and∆y = yi − y. In the following, we assume li to be known and fixed.

||pi+1 − x|| = ||pi − x|| ⇔ ||pi+1 − x||2 = ||pi − x||2

⇔ (∆x+ li cos θ)2 + (∆y + li sin θ)2 = ∆x2 +∆y2

⇔ 2∆x cos θ + 2∆y sin θ + li = 0

⇔ (li − 2∆x) tan2 θ

2
+ 4∆y tan θ

2
+ li + 2∆x = 0

Let
P : ]− π, π[ → R

θ 7→ (li − 2∆x) tan2 θ
2 + 4∆y tan θ

2 + li + 2∆x

And we have the equivalence:

||pi+1 − x|| = ||pi − x|| ⇔ P (θ) = 0 C.34

Several cases must be studied:
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■ If 2∆x = li:

1. If∆y = 0:
Then P is constant: ∀θ P (θ) = 2li > 0. Also, in this case, ||pi − x|| < li which implies that the
Turtle cannot be here when s = −1. Hence if the Turtle is exactly at the distance

(
li
2 , 0
)
from

the centre x, then s = +1 and since P > 0 then ||pi+1 − x|| > ||pi − x|| which proves that x
acts as a repulsive point and the Turtle moves away from it.

2. If∆y 6= 0:
Remark that

P (θ) = 0⇔ P̄ (θ) ≡ li(1 + cos θ) + 2∆y sin θ = 0

Hence, P (θ) = 0 ⇔ θ =

 π

2 arctan −li
2∆y

. Let θ̄ = 2 arctan −li
2∆y . We first prove that when

s = +1 ||pi+1 − x|| > ||pi − x|| and then that when s = −1 ||pi+1 − x|| < ||pi − x||:

– If s = +1:

||pi+1 − x|| > ||pi − x|| ⇔ θ ∈

 ]θ̄, π[ if∆y > 0

]− π, θ̄[ if∆y < 0

Note that the angular opening of these two cones is strictly greater than π. We prove that
whatever the signof∆y suchopencones contain the cone [θ1, θ2]which is the cone inwhich
the Turtle chooses a θ in such situation (see the (simplified) ENUMERATiON C.3). Below we
demonstrate the following implication: θ ∈ [θ1, θ2] =⇒ ||pi+1 − x|| > ||pi − x||.

(a) If∆y > 0:
We claim that θ1 > θ̄.

Proof. Since θ2 > θ1 we shall obtain θ̄ < θ1 < θ2 < π which proves the result
wanted. In such case θ1 = 2 arctan ∆y−||pi−x||

li/2

θ1 > θ̄ ⇔ ∆y − ||pi − x||
li/2

>
−li
2∆y

⇔ 2∆y2 − 2||pi − x||∆y + l2i
2
> 0

⇔ 2

(
||pi − x||2 −

(
li
2

)2
)
− 2||pi − x||∆y + l2i

2
> 0

⇔ ||pi − x|| −∆y > 0 always true

Byequivalencewehavedemonstrated the result looked forandso farwehaveproven
that s = +1 and∆y > 0 =⇒ θ̄ < θ1 < θ2 < π, whichmeans that θ ∈ [θ1, θ2] =⇒
||pi+1 − x|| > ||pi − x||

(b) If∆y < 0:
We claim that θ2 < θ̄.

Proof. Since θ1 < θ2 we shall obtain−π < θ1 < θ2 < θ̄ which proves the result
wanted. Here θ2 = 2 arctan ∆y+||pi−x||

li/2
. Similarly as above we get the equivalence:

θ2 < θ̄ ⇔ ||pi − x||+∆y > 0 always true
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By equivalence we have shown that s = +1 and∆y < 0 =⇒ −π < θ1 < θ2 < θ̄

which means that θ ∈ [θ1, θ2] =⇒ ||pi+1 − x|| > ||pi − x||.

We have proven that no matter the sign of∆y, the cone [θ1, θ2] is strictly contained in the open
cone defined by θ̄0 and±π. Hence, when s = +1, since the Turtle picks a θ ∈ [θ1, θ2], we have
that ||pi+1 − x|| > ||pi − x|| and thus the centre of rotation is repulsive.

3. If s = −1:

||pi+1 − x|| < ||pi − x|| ⇔ θ ∈

 ]θ̄, π[ if∆y < 0

]− π, θ̄[ if∆y > 0

Given that if ||pi − x|| < li the Turtle cannot be in this situation when s = −1we just need to
look at the case ||pi − x|| ≥ li. For∆x = li

2 , s = +1 and ||pi − x|| ≥ li then s(li − ∆x) > 0

and s∆x > 0 and, according to the ENUMERATiON C.3, the only cone in which the Turtle picks
an angle is [θ3, θ4]. So we want to demonstrate that θ̄ < θ3 < θ4 < π if∆y < 0 and−π < θ3 <

θ4 < θ̄ if∆y > 0 so as to imply that θ ∈ [θ3, θ4] =⇒ ||pi+1 − x|| < ||pi − x||.
First we prove the following inequality:

2||pi − x||2 − l2i > 2|∆y|
√
||pi − x||2 − l2i ⋆

Proof.

(⋆)⇔
(
2||pi − x||2 − l2i

)2
> 4∆y2

(
||pi − x||2 − l2i

)
⇔
(
2||pi − x||2 − l2i

)2
> 4

(
||pi − x||2 −

(
li
2

)2
)(
||pi − x||2 − l2i

)
⇔ (li||pi − x||)2 > 0 always true

As outlined, the latest inequality shows that by equivalence (⋆) is true.

(a) If∆y > 0:

In such case θ4 = 2 arctan −∆y+
√

||pi−x||2−l2i
li/2

and:

θ4 < θ̄ ⇔
−∆y +

√
||pi − x||2 − l2i
li/2

< − li
2∆y

⇔ −2∆y2 + 2∆y
√
||pi − x||2 − l2i +

l2i
2
< 0

⇔ −2

(
||pi − x||2 −

(
li
2

)2
)

+ 2∆y
√
||pi − x||2 − l2i +

l2i
2
< 0

⇔ 2||pi − x||2 − l2i > 2∆y
√
||pi − x||2 − l2i

⇔ (⋆)

Since (⋆) is true, so is θ4 < θ̄ and we have proven what we wished for when∆y > 0.
(b) If∆y < 0:
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In such case θ3 = 2 arctan −∆y−
√

||pi−x||2−l2i
li/2

and:

θ3 > θ̄ ⇔
−∆y −

√
||pi − x||2 − l2i
li/2

>
−li
2∆y

⇔ 2||pi − x||2 − l2i > −2∆y
√
||pi − x||2 − l2i

⇔ (⋆)

Since (⋆) is true, so is θ4 < θ̄ and we have proven what we wished for when∆y < 0.

We have proven that no matter the sign of∆y the cone [θ3, θ4] is strictly contained in the cone
defined by θ̄0 and ±π for which ||pi+1 − x|| < ||pi − x||. Hence we have proven that θ ∈
[θ3, θ4] =⇒ ||pi+1 − x|| < ||pi − x||. As the Turtle must choose an angle in [θ3, θ4] when
s = −1we have successfully shown that centre x acts as an attractive point (the Turtle moves
closer to it) when s = −1.

We have shown that if li = 2∆x then the Turtle gets away from x when s = +1 and is drawn to it
when s = −1.

■ If li − 2∆x 6= 0:
If li − 2∆x 6= 0 then P is a second order polynomial in tan θ

2 .
Its discriminant is:

∆ = 16∆y2 − 4(li − 2∆x)(li + 2∆x)

= 4
(
4||pi − x||2 − l2i

)
– If ||pi − x|| < li

2 :
Then ∆ < 0 and P does not have real roots. Note that in such case we have in particular that
||pi − x|| < li and so the Turtle cannot be here when s = −1.
We can derive the following implications:

||pi − x|| < li
2

=⇒ 2|∆x| < li

=⇒ 2∆x < li

=⇒ P > 0

=⇒ ||pi+1 − x|| > ||pi − x||

We have just proven that x is repulsive when∆ < 0 (and s = +1, the only case possible here),
i.e. when ||pi − x|| < li

2 then P > 0, which implies ||pi+1 − x|| > ||pi − x|| and the Turtle
moves away from x.

– If ||pi − x|| ≥ li
2 P admits two real roots:

θ⊖56 = 2 arctan −2∆y −
√
4||pi − x||2 − l2i

li − 2∆x
C.35

θ⊕56 = 2 arctan −2∆y +
√

4||pi − x||2 − l2i
li − 2∆x

C.36

C.37

214



Intervals ‑ Turtle in rotation

and let:

θ5 = min(θ⊖56, θ⊕56)

θ6 = max(θ⊖56, θ⊕56)

To prove thatx is attractive or repulsive according to the sign of swe are going to prove that the
interval in which the Turtle chooses θ 1 is contained in the interval [θ5, θ6] or [−π, θ5] ∪ [θ6, π]

(depending on whether we have P > 0 or P < 0). To that end we first prove that the intervals
[θ3, θ4], [θ1, θ2] and [θ5, θ6] are all centered around the same value (which also show that the
complementary intervals [−π, θi] ∪ [θj , π] are also centered around the same value). Then we
prove that the angular opening of the interval of interest (for instance θ4 − θ3 if the interval is
[θ3, θ4]) is strictly less than the angular opening of the intervals bounded by θ5 and θ6. We then
use the fact that having twocones centeredaround the samevalue such that the angular opening
of one is strictly less than the one of the other essentially means that one of the cone is strictly
contained in the other. In other words this will show for instance that [θ3, θ4] ⊂ [θ5, θ6]

θ ∈ [θ5, θ6] =⇒ P < 0
=⇒ x is attractive when the Turtle chooses θ ∈ [θ3, θ4]

Proof that [θ3, θ4], [θ1, θ2] and [θ5, θ6] are all centered around the same value

* Middle value of [θ1, θ2]. Let a3,4 be such that θ3,4 = 2 arctan a3,4, i.e. a3,4 = ∆y±||pi−x||
∆x

tan θ2 + θ1
2

= tan (arctan a3 + arctan a4)

=
a3 + a4
1− a3a4

=
∆y−||pi−x||

∆x + ∆y+||pi−x||
∆x

1− ∆y−||pi−x||
∆x

∆y+||pi−x||
∆x

=
2∆y
∆x

1 + ||pi−x||2−∆y2

∆x2

=
∆y

∆x

* Middle value of [θ3, θ4]. The exact same reasoning as above yield:

tan θ3 + θ4
2

=
∆y

∆x

* Middle value of [θ5, θ6]. Idem:

tan θ5 + θ6
2

=
∆y

∆x

Wehave shown that tan θ3+θ4
2 = tan θ1+θ2

2 = tan θ5+θ6
2 = and so that the cones [θ3, θ4], [θ4, θ1]

and [θ5, θ6] are all centered around 2 arctan ∆y
∆x . We now prove that depending on the value of s

the cone [θ5, θ6]or [−π, θ5]∪[θ6, π] contains the cone [θi, θi+1]or [−π, θi]∪[θi+1, π] for i ∈ {1, 3}.
We first start by investigate the case s = −1:
1. If s = −1

Since the Turtle cannot be in a situation where s = −1 and li
2 ≤ ||pi − x|| < li wemust

1so [θ3, θ4] or [θ1, θ2] or [−π, θ3] ∪ [θ4, π] or [−π, θ1] ∪ [θ2, π] depending on the value of∆x,∆y, li and s
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assume here that ||pi−x|| ≥ li. Looking at ENUMERATiON C.3 we see that the only intervals
that we must look to are either [θ3, θ4] or [−π, θ3] ∪ [θ4, π]. Also we subdivide R in three
regions: ∆x < li

2 ;
li
2 < ∆x < li and∆x > li. Before investigating each of these parts we

prove the following result:
θ⊕56 − θ

⊖
56 > θ⊕34 − θ

⊖
34 ⋆

Where for the record:

θ⊖34 = 2 arctan −∆y −
√
||pi − x||2 − l2i
li −∆x

θ⊕34 = 2 arctan −∆y +
√
||pi − x||2 − l2i
li −∆x

θ⊖56 = 2 arctan −2∆y −
√
4||pi − x||2 − l2i

li − 2∆x

θ⊕56 = 2 arctan −2∆y +
√
4||pi − x||2 − l2i

li − 2∆x

To prove (⋆) we are going to prove tan θ⊕
56−θ⊖

56

2 > tan θ⊕
34−θ⊖

34

2 . Since the function x 7→
2 arctanx is strictly increasing on R we will have proven the result wanted. For the sake
of readability, let h = ∆x

li
, u = ∆y

li
and a = ||pi−x||

li
. Let a⊖,⊕

56 = −2u±
√
4a2−1

1−2h , so that
θ⊖,⊕
56 = 2 arctan a⊖,⊕

56

tan θ
⊕
56 − θ

⊖
56

2
= tan(arctan a⊕56 − arctan a⊖56)

=
a⊕56 − a

⊖
56

1 + a⊕56a
⊖
56

=
2
√
4a2−1
1−2h

1 + 1−4h2

(1−2h)2

=
2
√
4a2−1
1−2h
2

1−2h

=
√
4a2 − 1

Similarly:

tan θ
⊕
12 − θ

⊖
12

2
=
√
a2 − 1

Since (as ||pi−x|| ≥ li =⇒ a ≥ 1)
√
4a2 − 1 is greater than

√
a2 − 1 andwe have proved

the result wished for: the angular opening of the cone [θ⊖56, θ⊕56] is greater than the one of
[θ⊖34, θ

⊕
34]. We can now investigate the what that means for the Turtle depending on the

value pf∆x.

* ∆x < li
2 :

According to ENUMERATiON C.3, the Turtle must choose θ in the cone [θ3, θ4] with
θ3 = θ⊖34 and θ4 = θ⊕34. Also, since li − 2∆x > 0 the polynomial θ 7→ P

(
tan θ

2

)
is negative in between its roots: θ ∈]θ⊖56, θ⊕56[ =⇒ P

(
tan θ

2

)
< 0 =⇒ ||pi+1 −

x|| < ||pi − x|| =⇒ the Turtle is moving closer to x. One can verify that in such
case θ5 = θ⊖56 and θ6 = θ⊕56. We had previously proven that the intervals [θ3, θ4]
and [θ5, θ6] are centered around the same value and we just proved that the angular
opening of [θ3, θ4] is strictly less than the one of [θ5, θ6]. Hence we have proven that
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Figure C.1| Situation when s = −1 and∆x < li
2
: the cone in blue is [θ3, θ4],

i.e. the range in which the Turtle may pick θ. Underneath in red
is the cone ]θ5, θ6[, i.e. the angular interval in which, when the
Turtle chooses a θ in it, it moves closer to x. As [θ3, θ4] ⊂]θ5, θ6[
the Turtle moves towardsx.

[θ3, θ4] ⊂]θ5, θ6[. Summing all upwe have the result that when s = −1,∆x < li
2 (and

necessarily ||pi − x|| ≥ li) the Turtle picks a θ ∈ [θ3, θ4] ⊂]θ5, θ6[ =⇒ the Turtle
moves towards x: x is attractive. An illustration of this case is provided FiGURE C.1.

* li
2 < ∆x < li

Here θ3 = θ⊖34, θ4 = θ⊕34, θ5 = θ⊕56 and θ6 = θ⊖56. The Turtle picks θ ∈ [θ3, θ4]. Also
the cone in which P is negative is ]θ6, π] ∪ [−π, θ5]whose angular opening is θ5 − θ6.
These two cones being centered around the same value we have the result that the
cone [θ3, θ4] ⊂]θ6, π] ∪ [−π, θ5]: when s = −1 and li

2 < ∆x < li (and ||pi − x|| ≥ li)
then θ ∈ [θ3, θ4] ⊂]θ6, π]∪[−π, θ5] =⇒ theTurtlemoves towardsx: x is attractive,
see an illustration of this case on FiGURE C.2..

* If∆x > li

This time the cone in which the Turtle chooses θ is [θ4, π[∪] − π, θ3] and the cone
in which P is negative is ]θ6, π] ∪ [−π, θ5]. The same line of thoughts as for the two
previous cases yields that in this case also the Turtle is drawn to x, see FiGURE C.3.

2. If s = +1

We could prove in this case that the Turtle moves away from x by calculation, as we did
whens = +1but simplyweobserve the following: thecone [θ1, θ2]or [θ2, π]∪[−π, θ1] (seen
as a half‑plane) is tangent to the circle of centrex and radius ||pi−x|| inpi. Indeed one can

verify that (pi − x) · (pi − pi+1) = 0where pi+1 = pi + li

cos θi
sin θi

 for i ∈ J3, 4K. Hence
this cone does not intersect the circle of centre x and radius ||pi − x|| anywhere except in
pi: bymoving on the boundary of such cone the Turtle is sure to increase its distancewith
x which therefore acts as a repulsive point in the sense that the Turtle moves away from
it, as shown on FiGURE C.4.

In this appendix we have successfully proved that nomatter the relative position of pi with respect tox
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Figure C.2| Situation when s = −1 and li
2

< ∆x < li: see FiGURE C.1 for a
caption. The point is that the Turtle moves towardsx.

Figure C.3| Situation when s = −1 and∆x > li: see FiGURE C.1 for a caption.
The point is that the Turtle moves towardsx.
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Figure C.4| Situation when s = +1 and∆x > li: see FiGURE C.1 for a caption.
The point is that the Turtle moves away fromx.

the following assertion is true:

 s = −1 =⇒ ||pi+1 − x|| < ||pi − x|| x is attractive

s = +1 =⇒ ||pi+1 − x|| > ||pi − x|| x is repulsive
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APPENDIX D

QUATERNIONS AND DUAL QUATERNIONS

D.1 QUATERNIONS

D.1.1 COMPLEXMULTIPLICATION

As a small warm‑up before understanding why
quaternions rotate 3D objects, let us see what hap‑
pens on the complex planewhenonewants tomul‑
tiply two points, for example z1 = (1,

√
3) = 1 +√

3i by z2 = (2, 1) = 2 + i. An elegant way to vi‑
sualize the operation is to first scale z2 by ||z1|| to
get ||z1||z2 = 2z2 = 4 + 2i and then to rotate
this new point through the angle define by the unit
number z1

||z1|| , i.e θ = arg( z1
||z1|| ) = π

3 to get z3 =

(2 −
√
3, (1 + 2

√
3)), see the inset. As one can see

in this small example, if one wants to use complex
algebra to simply rotate z2 about the origin while
keeping distances constant (i.e. a pure rotation or
a rigid bodymotion) onemust multiply z2 by some
unit complex number to avoid scaling it. This prop‑

erty will hold for quaternionmultiplication.

D.1.2 GENERALIZING FROM 2D COMPLEX NUMBERS TO 4D QUATERNIONS

The multiplication between two quaternions q1 and q2 involves first scaling q2 by the norm of q1 and then
rotating that scaled quaternion through some angle defined in q1:

q1q2 =
q1
||q1||

||q1||q2 D.1

Where ||q1||q2 represents theoperationof scaling q2 by thenormof q1 and is thedirect analogousof the com‑
plexmultiplication described above, and q1

||q1|| corresponds to a rotation in a 4D sense applied to ||q1||q2. As
shown by this equation and the same as complex multiplication, the rotation (so by definition an opera‑
tion keeping distances constant) must involve only unit quaternions lying on the unit hypersphere of R4

otherwise, depending on whether ||q1|| is greater or smaller than 1, the norm of the result is scaled up or
down.
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D.1.2.1 Beware of the pitfall !

What I believe to be the most naive way to generalize what we saw for complex rotation to quaternionic
rotation is shown thereafter; we are going to work through an example to see where this intuition fails and
how to rectify it to correctly express 3D rotation using quaternions.
The quaternionic representation of a vector (or a point) inR3, say vector v = (x, y, z)T , is to build a quater‑
nion whose scalar part is 0 and whose imaginary part is equal to the vector: v = [0,v]. Let us consider a
point p ∈ R3 that we want to rotate around an axis q ∈ R3 through an angle θ in a clockwise manner.
Introducing the quaternionic form of our 3D point as p = [0,p] and of the action ”rotate by θ around axis
q” as q = [cos θ, q sin θ], a simplistic and soon‑to‑be‑proven‑wrong translation of our problem ”perform a
clockwise rotation of p about q by θ” into the quaternionic language would simply be qp (had wewanted an
anticlockwise rotation, we would have written pq). Following EQUATiON (D.1), we can without loss of gener‑
ality assume that our axis of rotation is depicted inR3 as a unit vector which automatically implies that our
quaternion q is of unit norm. Let us compute this product to see what happens:

qp = [cos θ, q sin θ][0,p]

= [−(q · p) sin θ,p cos θ + (q × p) sin θ]

The norm of qp is given by

||qp||2 = ((q · p) sin θ)2 + (p cos θ + (q × p) sin θ)2

= ((q · p) sin θ)2 + (p cos θ)2 + ((q × p) sin θ)2

= (q · p)2 sin2 θ + ||p||2 cos2 θ +
(
||q||2||p||2 − (q · p)

)2 sin2 θ

= ||p||2 cos2 θ + ||p||2 sin2 θ using ||q|| = 1

= ||p||2

Orwe could simply havewritten ||qp|| = ||q||||p|| (as can be easily checked for any quaternions q and p) and
use the fact that ||q|| = 1. What we just proved is that after transforming our quaternion p by our action q
we get a new quaternion qp that lies at the same distance to the origin of R4 as p does which is consistent
with the definition of a pure rotation.

Let us also compute the angle α between the quaternions p and qp (if everything went as expected we
should get α = θ). In order to do so one must simply recall that a quaternion is nothing else that a 4D
vector and that the angle between two n‑dimensional vectors v1 and v2 is given by arccos v1·v2

||v1||||v2|| . With
a slight abuse of notation, we will denote in this specific section both a 3D vector v ∈ R3 and its vectorized
quaternionic form v ∈ R4 with bold font and:

cosα =
qp · p
||qp||||p||

=

 −(q · p) sin θ

p cos θ + (q × p) sin θ

 ·
0

p


||p||2

=
||p||2 cos θ
||p||2

= cos θ

We do haveα = θ and because we had ||qp|| = ||p||what we end upwith is a quaternion qp at the same
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distance to the origin as the quaternion p and both of them are forming an angle θ between each other.
This looks exactly like the pure rotation we were asking for. Yet there is one big issue that we overlooked
until now with our quaternion qp: its scalar part is non‑zero (except for special cases such as q and p are
orthogonal or θ is a multiple of π) which mean that we can no longer interpret our 4D quaternion as a 3D
point without losing some important information: for instance, if we project qp into the 3D world by simply
forgetting the scalar part, we end up with a point that is not as the same distance to the origin ofR3 as p is,
meaning that we are no longer looking at a rotated point. In other words, if we rotate a solid body (seen as
a collection of points) using quaternions and then forget the scalar part to project our rotated quaternions
back into the 3D world, we end up with a deformed solid not rotated like we would have wanted, which is
far from being the rigid body motion initially planned: FiGURE D.1 is obtained by successively transforming
each endpoint p of the unit cube on the left through a “rotation” encoded by a quaternion q, of the form qp,
and displaying the imaginary part only of the result on the right.

Figure D.1| Left: a cube. Right: the image of this cube through a rotation qp.

Before rectifying this naive approach and giving the correct procedure to use quaternions for spatial
rotations, let us build some intuition on how and why we just morphed our 3D point p into a 4D quaternion
pq that can no longer be interpreted as a point in 3D space. To do that let’s rotate a 3D sphere and try to
understand what would a 2D creature living in a plane see.

D.1.2.2 Getting some intuition: downgrading from 4D and 3D to 3D and 2D
Agoodway tounderstandwithour 3D‑wiredbrainwhat is goingon in the4D spacewhenweusequaternions
is to try to understand what a 2D creature living in theXY plane would see of a rotation in 3D. With that in
mind, let us assume that we want to help a 2D creature living in theXY plane understand what rotating a
3D object looks like.
Rotating a vector in 3D is the same as unitizing this vector onto the 3D unit sphere, rotating that unit vector
and then scaling it back to its original length. That being said we can without loss of generality focus on
rotating points on the unit 3D sphere and this will give us the rotation of the entire 3D space.

On FiGURE D.2a, the unit sphere S2 is depicted and the equator, in red, is the only great circle of the
sphere entirely embedded in the XY plane. Points on this equator are the only ones with a zero z‑value
and are hence considered by the creature as the only “physical” points ofR3, same as we, as 3D creatures,
only deem quaternions with a zero scalar part as being the only “physical” points of R4. In other words,
this equator is the only unaltered part of the 3D sphere embedded into the plane, and points on this circle
are the only ones that can be mentally represented by our hypothetical 2D creature, i.e they are the only
points having some kind of physical meaning in a 2Dworld. Rotating this equator as a part of the 3D sphere
is to the creature in 2D what rotating 3D points using quaternion is to us. So trying to understand how
the creature perceives this equator as it rotates should give us intuitive insights into how we perceive the
rotation of 3D points using quaternions. FiGURE D.2b lets us see what happens when the sphere is slightly
rotated and we just go naively and “forget” the z component of the now‑out‑of‑plane equator to mimic us
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blindly ignoring the scalar part of the rotated quaternions. The blue ellipse is the vertical projection onto
the plane of the equator in red. D.2c shows the whole sphere projected onto the plane while D.2d shows, in
red, the unaltered equator and in various shades of blue the vertical projection of the equator for increasing
angles of rotation of the sphere.

a b c d

Figure D.2|What we see, versus what the 2D creatures sees.

The effect on the projected equator appears to be some kind of squishing for this particular rotation, as
the images are ellipses. Obviously, the overall motion seen by the 2D creature is far from being a rigid body
motion of the sphere as we see it ourselves in the 3D world.

One might object that this effect is an artefact of the projection chosen and that this particular projec‑
tion (a vertical one by putting the z‑value to 0) might not be the most suitable to represent a 3D sphere as
two points symmetrical with respect to the plane are projected onto the same point and hence some infor‑
mation is necessarily lost. A somewhat better projection that uses the infinity of theXY plane to represent
bijectively all points on the 3D sphere would be a stereographic projection, illustrated on FiGURE D.3. The
faint lines on the backgrounds are the projection of the black latitudes and longitudes of the sphere. The
equator is shown in red and its projection is in blue.

The effect of the rotation of the 3D sphere on its stereographic projection is shown in FiGURE D.4. On
the left a view of how the 2D creaturemight perceive the sphere as it is stereographically projected onto the
plane. The equator is highlighted in blue. Right: In red the original, unaltered, equator and in shades of
blue the successive stereographic projections of the equator as the sphere gradually rotates. As the sphere
rotates, the projection of the equator undergoes what could be best described as a translation along with
some upscaling, again a transformation that is far from being the rigid body motion that we see in 3D.

D.1.3 CONCLUSION

Thepoint of this small subsectionwas tobuild an intuitive understandingofwhat happensbehind the scene
when one multiplies the quaternionic representation of a point by a quaternion: we saw that ‑ except in
particular cases ‑ the result quaternion has a non‑zero scalar part and thus its imaginary part cannot be in‑
terpreted as the coordinates of a point after the rotation; we also showed that simply dropping the scalar
component is not a solution, as distances, in particular, may not be recorded in the imaginary part only
and the result of this projection into the 3D world is far from being a rigid body motion. A solid body trans‑
formed that way will most often look deformed and not rotated. To understand this phenomenon at an
intuitive level, a tentative wasmade to explain what could a 2D creature living in theXY plane understand
of the rotation of the 3D sphere, in the hope that the reader might get some insights on how to rectify his or
her own perceptions on how quaternions as 4D numbers are used to rotate 3D objects.

The analogy in 2Dwas built around the equator of the 3Dunit sphere as being the only part of the sphere
fully embedded in theXY plane (so the set of unit points with a zero z‑value) and that could hence be fully
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Figure D.3| In the background is the stereographic projection of the unit
sphere. The circle in blue represents the original equator now ro‑
tated. The circle in orange depicts this equator under a stereo‑
graphic projection onto theXY plane.

Figure D.4| Stereographic projection and its effect on the equator of rotated
spheres.

understood by a hypothetical 2D creature. The counterpart of the equator for us is the set of unit quater‑
nions having a zero scalar part and whose imaginary parts are interpreted as the coordinates of 3D points.
Following how the equator is transformed after a rotation of the sphere would be to the creature whatmul‑
tiplying 3D points with quaternion is to us.
To have the 2D creature “see” the 3D sphere, two projections were used. The first one, termed the vertical
projection, simply drops the z‑component of the coordinates of points to project them onto the 2D plane,
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to imitate what we did when the scalar part of the result quaternion was forgotten and we only looked at
the imaginary part. The result of this projection on the rotated equator was some kind of squished circle
(see FiGURE D.2) which closely mimics how the transformation of the unit cube on FiGURE D.1 was rotated
but hugely deformed.
To show that this effect was not only an artefact of the chosen projection, another one was presented, the
stereographic projection, which takes advantage of the infinity of the 2D plane to project bijectively the 3D
sphere. There again the 2D creature could only interpret what we know to be a rigid body motion as some
kind of translation motion and a scaling stretching of the equator. What the reader should bear in mind
from now on is quite straightforward: if, after a rotation or any kind of transformation of a geometric ob‑
ject, we end upwith a nonzero component on a dimensionwe cannot visualize (be it the z value of a points’
coordinates for a 2D being or the scalar value of quaternions for us as 3D creatures) we must project this
non‑physical object back into the space that we were working with in the first place. This projection will
inevitably deform in someway the geometry of the space where things happen and the result might not be
to our taste.

What we have understood is twofold:

1. When we multiply the quaternionic representation p = [0,p] of a point p ∈ R3 by a quaternion q =

[cos θ,u sin θ] for some unit vectoru ∈ R3 and some angle θwe are in fact rotating p aboutu through
θ in the 4D space.

2. As long as the scalar part of the resulting quaternion qp (or pq) is nonzero we cannot interpret it as a
3D point without having to resort to some projection that will necessarily deform the geometry in an
unwanted way.

In the next section, the correct formula to usewhen rotating 3D objectswith quaternionswill be introduced;
we will also try to gain some intuitive understanding of why this formula works.

D.1.4 QUATERNIONS AND SPATIAL ROTATION

Let p =


x

y

z

 ∈ R3 be a point that shall be rotated about an axisu =


u

v

w

 ∈ R3 (with ||u|| = 1) through

an angle θ ∈ [−π, π[ in a clockwisemanner. Let p = [0,p] =

0,

x

y

z


 be the quaternion counterpart of

point p. Let also q = [cos θ
2 ,u sin θ

2 ] =

cos θ
2 ,


u sin θ

2

v sin θ
2

w sin θ
2


 be the quaternion representing the operation

of rotating about axisu through the half angle θ
2 . Note that by construction q ∈ U(H).

The claim is that the imaginary part of the quaternion pr = qpq−1 = qpq∗ canbe interpreted as the 3Dpoint
that is solution to our problem (had we wanted a rotation in an anticlockwisemanner, the solution would
be given by q−1pq). To prove that claim, let’s compute the product given by pr. For the sake of simplicity
in the following equations sin θ

2 is denoted as s and cos θ
2 as c. The definition of themultiplication between
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two quaternions is presented EQUATiON (5.2).

pr = qpq∗ D.2

= [c, su][0,p][c,−su]

= [−su · p, cp+ su× p][c,−su]

= [−scu · p− (cp+ su× p) · (−su), (−su · p)(−su) + c(cp+ su× p) + (cp+ su× p)× (−su)]

= [0, s2(u · p)u+ c2p+ scu× p− csp× u− s2(u× p)× u]

= [0, s2(u · p)u+ c2p+ 2scu× p+ s2u× (u× p)]

= [0, s2(u · p)u+ c2p+ 2scu× p+ s2
(
u(u · p)− p(u · u)

)
]

= [0, 2s2(u · p)u+ c2p− s2p||u||2 + 2sc(u× p)]

= [0, 2s2(u · p)u+ (c2 − s2)p+ 2sc(u× p)] D.3

= [0, (1− cos θ)(u · p)u+ cos θp+ sin θ(u× p)] D.4

The scalar part of pr is equal to zero: we can safely interpret the imaginary part as the coordinates of a
point pr = 2s2(u · p)u+ (c2 − s2)p+ 2scu× p ∈ R3: pr = [0,pr]. Wemust now prove that ||pr|| = ||p||
and that the angle between pr and p is θ.

||pr||2 =

 0

2s2(u · p)u+ (c2 − s2)p+ 2scu× p

 ·
 0

2s2(u · p)u+ (c2 − s2)p+ 2scu× p


= 4s4(u · p)2 + 2s2(c2 − s2)(u · p)2 + 0 + 2s2(c2 − s2)(u · p)2 + (c2 − s2)2||p||2+

0 + 0 + 0 + 4s2c2(u× p) · (u× p)

= 4s2c2(u · p)2 + (c2 − s2)2||p||2 + 4s2c2
(
(u · u)(p · p)− (u · p)(p · u)

)
= (c2 − s2)2||p||2 + 4s2c2||u||2||p||2

=

((
cos2 θ

2
− sin2 θ

2

)2

+

(
2 sin θ

2
cos θ

2

)2
)
||p||2

= (cos2 θ + sin2 θ)||p||2

= ||p||2

Using ||p|| = ||p||we prove that
||pr|| = ||p||

Now for the angle. Let us recall that for any two vectors p ∈ Rd and u ∈ Rd, d ≥ 2, one can decompose p
into two vectors p∥ = (u · p)u and p⊥ = p − (u · p)u that are respectively the collinear and orthogonal
components of pwith respect tou. Rotating p aboutu through an angle θ is the same as rotating p⊥ in the
plane whose normal isu through θ and then adding p∥. That means, in our case, that it is enough to check
that the angle between pr⊥ and p⊥ is θ to prove that the quaternions pr and p form an angle θ inR4. First,
we show that pr∥ = p∥:

pr∥ = (u · pr)u

=
(
2s2(u · p)||u||2 + (c2 − s2)(p · u) + 0

)
u

=
(
(c2 + s2)u · p

)
u

= (u · p)u

= p∥
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This result is expected: because p is rotated aboutu, the collinear components p∥ and pr∥ are the same. It
implies that ||pr⊥|| = ||p⊥|| to keep the norm of the rotated vector constant (which is consistent with the
fact that we focus on rotating p⊥ only, which keeps its length constant). We now compute that the angle
between pr⊥ and p⊥:

pr⊥ · p⊥

||pr⊥||||p⊥||
=

(pr − pr∥) · p⊥

||p⊥||2

=

(
pr − (u · p)u)

)
· p⊥

||p⊥||2

=

(
(2s2 − 1)(u · p)u+ (c2 − s2)p+ 2sc(u× p)

)
· p⊥

||p⊥||2

=
(− cos θ(u · p)u+ cos θp+ sin θ(u× p)

)
· p⊥

||p⊥||2

=

(
(p− (u · p)u) cos θ + sin θ(u× p)

)
· p⊥

||p⊥||2

=
(p⊥ · p⊥) cos θ + 0

||p⊥||2

= cos θ

Which proves that the angle between pr and p is θ.
In a nutshell, we proved that the quaternion pr = qpq−1 has a zero scalar part and can therefore be inter‑
preted as a 3D point pr lying at the same distance to the origin as p does and forming an angle θ with the
latter, i.e. we just rotated p through θ aboutu.

D.2 DUAL QUATERNIONS

D.2.1 A CONCISE EXPRESSION

Following [50] and [22] we prove that any unit dual quaternion can be written down as:

q̂ =

[
cos θ̂

2
, û sin θ̂

2

]

where θ̂ is a dual angle and v̂ is a dual vector inR3.
Let q̂ = q + 1

2ϵρtq be a unit dual quaternion with q =
[
cos θ

2 ,u sin θ
2

]
, u ∈ R3, θ ∈] − π, π] and t = [0, t],

t ∈ R3 such that ||u|| = ||t|| = 1. Angle θ is the amount of rotation about axis u and ρ is the magnitude of
the translation along t. In the following let s denote sin θ

2 and c = cos θ
2 .

Prerequisite
For a and b ∈ Rwe prove that:

cos(a+ ϵb) = cos a− ϵb sin a

sin(a+ ϵb) = sin a+ ϵb cos a
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To that end recall that for all x:

cosx =

∞∑
n=0

(−1)n x2n

(2n)!

sinx =

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!

Hence for a pure dual number x̂ = ϵx, since ϵn = 0when n > 1 one has:

cos x̂ = 1

sin x̂ = x̂

Therefore:

cos(a+ ϵb) = cos(a) cos(ϵb)− sin(a) sin(ϵb)

= cos a− ϵb sin a

sin(a+ ϵb) = sin(a) cos(ϵb) + sin(ϵb) cos(a)

= sin a+ ϵb cos a

In a more general setting, by extending the definition of Taylor series to functions of dual numbers, it natu‑
rally follows that f(a+ ϵb) = f(a) + ϵbf ′(a). Back to our dual quaternion:

q̂ = q +
1

2
ϵρtq

= [c,us] +
1

2
ϵρ[−st · u, ct+ st× u]

=
[
c− ϵρ

2
t · us,us+ ϵ

ρ

2
(ct+ st× u)

]
Let us rewrite the scalar part of the dual quaternion q̂:

c− ϵρ
2
t · us = cos

(
θ

2
− ϵ
(ρ
2
t · u

))
= cos

(
θ + ϵρt · u

2

)

The scalar part of q̂ invites us to introduce a dual angle θ̂ = θ + ϵρt · u. Our goal is now to express the
imaginary part of q̂ using this dual angle θ̂. The dual part of q̂ is:

us+ ϵ
ρ

2
(tc+ t× us) = us+ ϵ

ρ

2
((t− (t · u)u+ (t · u)u)c+ t× us)

=
(
s+ ϵ

ρ

2
(t · u)c

)
u+ ϵ

ρ

2
((t− (t · u)u)c+ t× us)

= sin θ̂
2
u+ ϵ

ρ

2
((t− (t · u)u)c+ t× us)

Assuming that θ 6= 0 let us define:

uϵ =
ρ

2

(
(t− (t · u)u) cot θ

2
+ t× u

)
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so that the imaginary part of q̂ can be rewritten as:

us+ ϵ
ρ

2
(tc+ t× us) = sin θ̂

2
u+ ϵuϵ sin θ

2

Remark that

ϵ sin θ̂
2
= ϵ sin

(
θ + ϵρt · u

2

)
= ϵ

(
sin θ

2
+ ϵ

ρ

2
ρt · u cos θ

2

)
= ϵ sin θ

2

Hence, denoting û = u+ ϵuϵ, we get:

us+ ϵ
ρ

2
(tc+ t× us) = sin θ̂

2
û

and:

q̂ =

[
cos θ̂

2
, û sin θ̂

2

]

D.2.2 UNIT DUAL QUATERNIONS AND PLÜCKER COORDINATES

We prove here that for a unit dual quaternion q̂ written in the form q̂ = [cos θ̂
2 , û sin θ̂

2 ] with θ̂ = θ0 + ϵθϵ

and û = u0 + ϵuϵ, then the tuple [u0,uϵ] defines the Plücker coordinates of a line. Bearing in mind the
previous SECTiON 5.1.8.3, we see that it is enough to show that

||q̂|| = 1⇔

 ||u0|| = 1

u0 · uϵ = 0

Let us develop q̂:

q̂ = [cos θ̂
2
, û sin θ̂

2
]

= [cos θ̂
2
, (u0 + ϵuϵ)(sin

θ0
2

+ ϵ
θϵ
2

cos θ0
2
)]

= [cos θ0
2
− ϵθϵ

2
sin θ0

2
,u0 sin θ0

2
+ ϵu0

θϵ
2

cos θ0
2

+ ϵuϵ sin θ0
2
]

= [cos θ0
2
,u0 sin θ0

2
] + ϵ[−θϵ

2
sin θ0

2
,u0

θϵ
2

cos θ0
2

+ uϵ sin θ0
2
]

= q0 + ϵqϵ

With q0 = [sq0 ,vq0 ], qϵ = [sqϵ ,vqϵ ] where sq0 = cos θ0
2 , vq0 = u0 sin θ0

2 , sqϵ = − θϵ
2 sin θ0

2 and vqϵ =

u0
θϵ
2 cos θ0

2 + uϵ sin θ0
2 . Recall that by definition:

||q̂|| = 1⇔

 ||q0|| = 1

sq0sqϵ + vq0 · vqϵ = 0
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Since this system is trivially met when sin θ0
2 = 0 we assume it is not the case. We first prove that ||q0|| =

1⇔ ||u0|| = 1:

||q0|| = 1⇔ s2q0 + vq0 · vq0 = 1

⇔ cos2 θ0
2

+ u0 · u0 sin2 θ0
=
1

⇔ sin2 θ0
2
(u0 · u0 − 1) = 0

⇔ u0 · u0 = 1

⇔ ||u0|| = 1

Using ||u0|| = 1we now show that sq0sqϵ + vq0 · vqϵ = 0⇔ u0 · uϵ = 0

sq0sqϵ + vq0 · vqϵ = 0⇔ −θϵ sin θ0
2

cos(θ0
2
) + (u0 sin θ0

2
) · (u0

θϵ
2

cos θ0
2

+ uϵ sin θ0
2
) = 0

⇔ θϵ
2

sin θ0
2

cos θ0
2

+
θϵ
2

sin θ0
2

cos θ0
2
u0 · u0 + u0 · uϵ sin2 θ0

2
= 0

⇔ u0 · uϵ = 0

We have proven in this section that a unit dual quaternion contains the information about a unique line
whose orientation isu0 and going through the pointu0 × uϵ:

||q̂|| = 1⇔ [u0,uϵ] are the Plücker coordinates of a line
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APPENDIX E

GAUSSIAN PROCESS

The figures presented in this appendix are heavily inspired from [84]. Themost basic kernel that canbeused
in a Gaussian process is the white noise kernel: each random variable is completely uncorrelated from the
others, as shown on FiGURE E.1, where the kernel κ(x, 0) is a Dirac function at 0 (top left), the covariance
matrix is the identity matrix (top right), and three independent samplings are shown on the bottom.
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Figure E.1|White noise kernel.

The exponentiated quadratic kernel is given by:

κ(x, y) = a2 exp
(
−||x− y||

2

2σ2

)
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The greater σ the more correlated are far away random variables, as shown on FiGURE E.2. The amplitude
parameter a simply scales the functions.
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Figure E.2| Several exponentiated quadratic kernels.

The rational quadratic kernel is given by

κ(x, y) = a2
(
1 +
||x− y||2

2ασ2

)−α

Parameter σ influences the magnitude of the correlation between far away values while parameter α influ‑
ences the steepness of the correlation.
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a = 1, = 2, = 1
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Periodic kernels may also be defined. For instance:

κ(x, y) = a2 exp
(
−2
σ2

sin2

(
π
|x− y|
p

))
Parameter p plays on the period, i.e. the distance between two highly correlated random values.
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a = 1, = 1, p = 1
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Finally it is also possible to combine kernels. Here we define a damped periodic kernel bymultiplying a
periodic kernel with and exponentiated quadratic one:
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APPENDIX F

CONESOFFREEDOMOF IMPERFECTMESHES

On FiGURES F.1, F.2 and F.3 the small figures on the top left displays the generating rays of CMϵ in the 15
cartesian planes, same as FiGURE 5.26. On the top middle is shown the 2D PCA performed on the rays, as
well as the convex hull of the projection in red. Bottom left and middle: views of the meshMϵ with in
green the prescribedmotion (pure rotation) and in colours the unit dual quaternions defining the cone; the
brighter the red themore θ0 > θϵ, the deeper the blue themore θϵ > θ0. Right: plots showing the evolution
of the area and volumeof the convex hull of the cone aswell as the number of vertices, in both standard and
log scale. They were calculated for various family ofMϵ, for various number of prescribed snap face‑vertex
pairs. The highlighted red points correspond to themesh on the figure. It shows that for low value of snaps
(3 or less), the cones of freedomof the imperfectmeshes CMϵ varywildly: there is a relatively high spread of
the values of the threemeasuredmetrics. Formore than 3 snaps, the variation is ofmuch lowermagnitude,
implying that even the imperfect meshes all have a rather small cone of freedom.

These three figures, combined with FiGURE 5.34, show that the evolution of the shape of the cones CMϵ

greatly depends on the geometrical features of the perfectmeshM. While the cones abruptly shrink in size
for themeshwith four dents on FiGURE F.1 and the randomone on F.3, the shrinking is slower of themeshes
with one and two dents on FiGURES 5.34, F.2. This difference in behaviour imply that we cannot give any
guidelines on what should be the number of face‑vertex pairs prescribed to snap to reduce the cones to a
small size: it depends toomuch on the geometry of the mesh.
On FiGURE F.1, the prescribed q̂ encodes a vertical screwmotion, shown on the right of FiGURE 5.24.
On FiGURE F.2, the prescribed q̂ encodes a pure rotation, shown on the left of FiGURE 5.24.
On FiGURE F.3, the prescribed q̂ encodes a pure rotation, shown on the left of FiGURE 5.24. The mesh was
randomly initialised.
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Figure F.1| See text for a description.
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Figure F.2| See text for a description.
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Figure F.3| See text for a description.
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