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General Introduction 1.1 Context

Metal alloys are considered crucial in many industries due to their strength along with their formability and low cost with respect to other materials. Automotive doors and hoods, aircraft skin panels in wings and fuselage as well as beverage and packaging cans are all examples of products that depend mainly on sheet metal forming processes. Various forming processes are employed in order to obtain different thin sheet metal products. The manufacturing processes of sheet metal can be categorized into two types: contact and contactless processes. The former requires direct contact between the forming tool and the sheet metal workpiece like, Deep drawing process and metal spinning process. While the latter does not require direct contact between the tool and the workpiece, however, it uses high speed forming technique like, explosive forming, electrohydraulic forming (EHF) and electromagnetic forming (EMF). Each of the aforementioned forming categories has its advantages and disadvantages. Though, studying and analysing these processes is cumbersome, therefore, forming processes rely heavily on numerical simulation to reduce cost and solve more complex forming problems. Thanks to the tremendous development in the computation power, numerical simulation is becoming more affordable and capable of solving more complex problems including sheet metal forming problems. Considerable research is conducted on numerical analysis of sheet metal forming processes to address different aspects of the problem and various simulation methods have been proposed for sheet metal forming process.

Figure 1.1: Earing profile phenomenon in deep drawing process (Dierkraabe.com, 2019) Sheet metal forming simulations imposes various challenges that need to be addressed in order to obtain accurate results while maintaining a reasonable computation time.

These challenges can be summarized as follows:

• The material modeling for sheet metals is considered an important issue to tackle. Sheet metals incorporate anisotropic plastic behaviour due to the rolling process used to manufacture the sheets at the beginning. This anisotropic effect causes some unfavourable irregular edges in the deep drawing forming process as shown in figure(1.1) called earing profile which requires delicate analysis and design considerations before the manufacturing process. Thus, the material model used in the simulation must account for this phenomenon and consider its model in the simulation process.

• Element type is also one of the main factors that affects the accuracy of simulation results. Therefore, different element types are used in the simulation of various problems. Membrane, shell, continuum (solid) and solid-shell have been used in different simulations. Each one of these elements has it own pros and cons, though, the main requirement for the element used in thin structure simulation is to be able to alleviate most of the locking phenomena (e.g, shear locking, volumetric locking and thickness locking) while using the smallest possible number of element to save computation time.

• Another challenge is the localized loading for thin structure. This problem requires using remeshing techniques in order to be able to refine the mesh in the areas where high deformations take place while maintaining the same mesh size across the other areas. This technique saves computation time and makes the simulation more robust. Though, it introduces more complexity in the simulation process.

• Finally, dealing with problems like electromagnetic forming requires employing multiphysics simulations. This problem is a complex problem and requires an interaction between a solid finite element element solver and electromagnetic solver. This interaction is not straight forward and introduces more complexity in the simulation, not to mention the intensive calculation time required to achieve such simulation.

All of these challenges need to be overcome in order to guarantee accurate, robust and efficient sheet metal simulations. Many finite element analysis packages are used in the simulation industry for instance, Abaqus 1 , Ansys, LS-Dyna and Forge ® . Though, a few of CHAPTER 1. GENERAL INTRODUCTION them is a capable of tackling all the aforementioned problems.

Therefore, in this thesis, a tetrahedral based finite element software namely (Forge ® ) is utilized to enhance the simulation of sheet metal forming processes. This package is very robust in dealing with bulk metal forming processes due to its element formulation along with the remeshing implementation and the existing electromagnetic solver. Moreover, it allows dealing with multi material and accounts for the interactions among them [START_REF] Chenot | Finite element simulation of multi material metal forming[END_REF]. Nevertheless, the software is not suitable for tackling sheet metal problems given the fact that the implemented tetrahedral element is not convenient for thin structure problems, also the existing material model does not account for many of the anisotropic models. Not to mention, the strong dependency of the remeshing tool and electromagnetic solver on the tetrahedral element type already implemented.

Consequently, the proposed solution in this work is to enhance the current package capabilities by introducing a convenient element for sheet metal problems. In addition to improving the material modeling to be more convenient for sheet metal simulations. These modifications will require some changes in the finite element solver, the material modeling modules and the remeshing technique to incorporate the new element implementation.

Objectives of the thesis

The main objective of this thesis is to develop a finite element methodology robust enough to enable dealing with finite element modeling of multi-physics coupled forming processes of thin sheet metals with high accuracy and reduced computation time. This implies some constraints that are related to the modeling of multi-physics coupled problems. Such problems often require the use of three-dimensional finite elements rather than plate or shell elements since 3D elements facilitate dealing with other physical problems such as electromagnetics and heat transfer. Given the fact that we are dealing with metal forming problems in which high deformations are expected, remeshing is considered a corner stone in the simulation process. Thus, the use of tetrahedral elements is inevitable as these are the most suitable elements for carrying out adaptive remeshing; the use of other elements -such as hexahedral ones-means that a local mesh refinement propagates to the whole mesh due to topological reasons. In order to meet all these requirements, a set of objectives have been achieved throughout the current work, we summarize some of them herein:

• The development of a prismatic solid-shell element that is more adapted for thin structures. This included adopting a new prism division algorithm in order to represent the prism element in a tetrahedral based finite element software. Moreover, the parallel processing was also implemented for the new element implementation.
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• Efficient consideration of sheet metal anisotropy required a new implementation of material modeling library that incorporate anisotropic yield criteria which is a particular case in the sheet metal forming processes. Thus, the implementation of a new material library that includes various yield criteria and hardening laws has been carried out and connected to the finite element software in-use so that more concise simulation can be predicted.

• Simple test cases have been modeled to test the efficiency of the adopted strategy. Moreover, the new developments have been tested in various complex applications including deep drawing problem, in which the element formulation and the anisotropic yield criteria play a crucial role in predicting accurate results. Additionally, the applications domain has been extended to include multi-physics complex simulation problems and in particular, the electromagnetic forming process. This process required an interaction between the electromagnetic solver and the mechanical solver and the new element implementations has played a great role in maximizing the calculation efficiency.

• Finally, remeshing strategy has been developed for the prism element based on the tetrahedral-based remeshing algorithm. The main idea was to utilize the same algorithm used for the remeshing of tetrahedral elements -since they are the most suitable elements for carrying out adaptive remeshing-to do the remeshing of prism elements. The remeshing part considered here as a proof of concept of the implementation. Though, it is considered to be a pillar for future development and testing in this area which will enhance the behaviour in the processes that include localized high deformations.

Organization of the thesis

This thesis is structured into five main chapters other than this introductory one:

• Chapter 2 : A literature review on the principles of continuum mechanics and the different forms of its equations including strong form, weak form and the variational principle. Then, a comprehensive review of different finite element technologies exist in the literature review, like, solid elements, conventional shell elements and solid-shell elements. The advantages and disadvantages of each one of them have been reviewed in details. Finally, a review on the constitutive modeling of the metallic materials, including, the elasticity and plasticity wither isotropic or anisotropic which paves the way for the modeling of sheet metal forming processes.
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• Chapter 3 : The particular finite element formulation of different elements used in this thesis including solid-shell element along with the mixed velocity-pressure formulation element that was already implemented in the finite element software used in this thesis.

• Chapter 4 : The detailed modeling and formulation of the anisotopic yield criteria used in sheet metal forming along with a detailed analysis of the deep drawing process that incorporate an intensive application of both of the anisotopic yield criteria and the effect of element formulation on the expected results.

• Chapter 5 : The spectrum of applications that can be solved using the solid-shell element has been extended to include more complicated multi-physics simulation problems. As an example of these types of simulations, the electromagnetic forming process has been studied in details to showcase the importance of the new element formulation compared to the old element formulation that had been used in the software used before.

• Chapter 6 : Finally, the last chapter includes the general takeaways from this thesis along with the prospective of the upcoming problems to tackle in the context of this thesis. However, this chapter also includes a glimpse on the implementation of the remeshing algorithm with the prismatic solid-shell element in the context of a tetrahedral based finite element software. This is a part of the work done in this thesis and considered to be very visionary to be achieved in the future since it will have great advantages on the current implementation of the solid-shell element as it will include more complicated problems with very high deformation and localised load conditions. Ces techniques comprennent des approches telles que l'approche ASM (Assumed Strain Method), l'approche EAS (Enhanced Assumed Strain) et l'approche ANS (Assumed Natural Strain). En général, l'élément coque solide résultant est un élément robuste qui combine les avantages de l'élément solide en ce sens qu'il n'utilise que des degrés de liberté en déplacement avec un modèle constitutif 3D complet ainsi que les avantages des éléments de coque pour traiter des structures minces en utilisant uniquement un élément dans l'épaisseur.

La dernière partie du chapitre aborde en détail la modélisation des matériaux. Un aperçu complet sur les modèles décrivant le comportement du métal est présenté, dont l'élasticité et la plasticité. En outre, les équations régissant la plasticité sont étudiées. Enfin, un examen complet des différents critères de rendement anisotrope a été introduit avec les avantages et les inconvénients de chacun. Ces modèles sont appelés modèles phénoménologiques car ils dépendent d'un modèle matériel approché basé sur un ensemble de paramètres issus d'essais expérimentaux. D'autres modèles cristallins qui dépendent de la structure cristalline de la microstructure des matériaux sortent du cadre de ce travail et ne sont donc pas abordés dans cette thèse. Ces modèles seront discutés plus en détail dans le chapitre(4).

Introduction

Finite element simulation has played a key role in product design and manufacturing processes. Numerical simulations allow industries to predict the behaviour of their products in the design and optimization phase before manufacturing the products. Indeed, large-scale simulations with fine meshes are very computationally demanding and require long time to carry out. Thus, developing an efficient and accurate finite element is pivotal in accelerating the design process and reducing the computational cost of these simulations. Sheet metal forming simulation is considered to be one of the most computationally demanding problems. These simulations require dealing with thin structures that have one dimension (thickness) much smaller than the other two dimensions causing various problems (locking 1 ) in the simulation and require a special treatment, not to mention the anisotropic behavior of sheet metals. Therefore, an accurate analysis of sheet metal processes is inevitable.

Many finite element formulations have been developed to simulate sheet metal forming process, including shell element, solid elements and other types of element formulations like solid-shell elements. The shell element theory showed great potential in dealing with sheet metal forming problems. Despite the low computation cost of the shell elements, they have some limitations that might prohibit shell elements to be used in sheet metal forming problems. For instance, the shell elements are based on a degenerative formulation in which the plane-stress condition is used instead of the full 3D constitutive model. Thus, it might not be able to model metal forming problems properly. Moreover, the thickness variation of the structures is not taken into account while using shell elements since they only model the middle plane. Consequently, this causes many complications in modeling the contact conditions specially the double-sided contact condition.

Simultaneously, the solid element has been considered as a good candidate for sheet metal forming simulations since it accounts for the thickness variation in an explicit way, thus simplifies double-sided contact management. Furthermore, 3D constitutive material models are considered in solid elements, thus it can model sheet metal forming process more accurately. However, thin structures exhibit a common problem called locking phenomena that reduces element accuracy specially in bending-dominant problems and in elastoplastic applications.

As a result, tremendous efforts have been devoted to overcome the shortcomings of both solid and shell elements. One of the proposed solutions was the development of solid-shell elements. These elements combine the advantages of both shell and continuum elements. They have two main advantages, first, displacement degrees of freedom 1 Under some circumstances the displacements calculated by the finite element method are orders of magnitude smaller than they should be, and when this happens, the elements are said to be locking. The two most common types of locking are shear and volumetric locking Ls-Dyna (2021))

CHAPTER 2. BACKGROUND AND RELATED WORK are the only degrees of freedom considered in this element which simplifies their development. Second, their formulation allows them to reproduce the behavior of thin structures with low number of elements. Therefore, they are considered to be better candidates to be used in problems that might suffer from various locking phenomena like, volumetric locking and shear locking. These elements are designed to mitigate most of the locking problems that take place in the other elements using different techniques that will be discussed in detail in this chapter.

In this chapter, a literature review on the various technologies used to simulate thin sheet metal forming processes are discussed. The remaining section of this chapter are organised as follows. First, a brief introduction to solid mechanics and finite element is presented in Section (2.2). Afterwards, multitude of finite element formulations are discussed in Section (2.3), which includes 3D solid elements, conventional shell elements and solid-shell elements in Subsections (2.3.1,2.3.2,2.3.3) respectively. A brief introduction of the different formulations along with their advantages and disadvantages is presented. Finally, the mechanical behaviour of bulk metallic materials and thin sheet metals are presented in Section (2.4), which includes a brief description of the elastic material behaviour along with isotropic and anisotropic plasticity.

Background on solid mechanics

This section presents a brief background on solid mechanics and the finite element method that is being used recently to solve complex problems. The content of this section is a briefing of these texts [START_REF] Zienkiewicz | The finite element method: its basis and fundamentals[END_REF][START_REF] De Borst | Nonlinear finite element analysis of solids and structures[END_REF], [START_REF] Boffi | Mixed finite element methods and applications[END_REF] and [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF]. given by X t x t , y t , z t . Hence, the position vector in the current configuration can be presented as follows:

Kinematics of continuum medium

-→

X t = X O + ----→ M O M t = X O + U (2.1)
where U represents the displacement of point M o . In the matrix form, it can be repre- sented as follows:

x =     x y z     = x o + u =     x o y o z o     +     u v w     (2.2)
Then:

d x = ∂x ∂x 0 •d x 0 =      ∂x ∂x 0 ∂x ∂y 0 ∂x ∂z 0 ∂y ∂x 0 ∂y ∂y 0 ∂y ∂z 0 ∂z ∂x 0 ∂z ∂y 0 ∂z ∂z 0      •     d x 0 d y 0 d z 0     =     1 + u ,x 0 u ,y 0 u ,= 0 v ,x 0 1 + v ,y 0 v ,z 0 w ,x 0 w y 0 1 + w ,z 0     •     d x 0 d y 0 d z 0     = F•d x o (2.3)
The matrix F2 is called the deformation gradient which can be presented as follows:

F = I + L 0 ; L 0 = D 0 + W 0 (2.4)
where L 0 = ∇u is the gradient of the displacement, D 0 = s ym(∇u) the symmetric part of the gradient and W 0 = as ym(∇u) is the asymmetric part of the gradient.

L 0 =     u ,x 0 u ,y 0 u ,z 0 v ,x 0 v ,y 0 v ,z 0 w x 0 w ,y 0 w ,z 0     ; D 0 = 1 2 L 0 + L 0 T =     u ,x 0 1 2 u ,y 0 + v ,x 0 1 2 u ,z 0 + w ,x 0 v ,y 0 1 2 v ,z 0 + w ,y 0 s ym w ,z 0    
(2.5)

W 0 = 1 2 L 0 -L 0 T =     0 -θ z θ y θ z 0 -θ x -θ y θ x 0     (2.6) with θ x = 1 2 w ,y 0 -v ,z 0 ; θ y = 1 2 u ,z 0 -w ,x 0 ; θ z = 1 2 v ,x 0 -u ,y 0
where θ x , θ y , θ z represent the rotation around the axes x,y,z without producing any deformation and D 0 is the linear deformation tensor.

Stress and equilibrium equations

In figure(2.2) the force ∆f is applied at the point M on a unit surface ∆S with normal n in the solid body Ω t . The body in the current configuration is submitted to some surface The union of all boundaries ∂ 1 Ω t and ∂ 2 Ω t represents the total closed surface boundary ∂Ω t of Ω t . Then, the equilibrium of the system can be written as follows:

           div(σ) + f v = 0 ∀M ∈ Ω t u(M) = u d ∀M ∈ ∂ 2 Ω t σ(M) • n = f s ∀M ∈ ∂ 1 Ω t (2.7)
It is worth mentioning that in Solid Mechanics, there are different types of stresses and strains depending on the configuration in which the stresses and strains are defined.

However, in this thesis, the Cauchy stress (σ) defined in the current configuration is used along with its associate infinitesimal strain defined as follows:

ε =     u ,x 1 2 u ,y + v ,x 1 2 u ,z + w ,x v ,y 1 2 v ,z + w ,y s ym w ,z     =     ε xx ε x y ε xz ε y y ε y z s ym ε zz     (2.8)
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ε =              ε xx ε y y ε zz 2ε x y 2ε xz 2ε y z              =              ε xx ε y y ε zz γ x y γ xz γ y z              =              u ,x v ,y w ,z u ,y + v ,x u ,z + w ,x v ,z + w ,y             
(2.9)

Much more details on the different types of stresses and strains and transformations from one type to another are mentioned in detail in [START_REF] Dym | Solid mechanics[END_REF].

Constitutive equations

For a given material, there is a relation between the stresses and strains called the constitutive relation. The stresses of an elastic material can be defined as a function in strains as follows:

σ -σ 0 = C • ε (2.10)
where C is a fourth order tensor contains the components that describe the physical characteristics of the material, σ 0 is the initial stress state and for simplicity will be considered 0 in the following context.

Considering that both of σ and ε are symmetric:

C i j kl = C j i kl and C i j kl = C i j l k (2.11)
and in Voigt notation:

σ = C • ε (2.12)
where C is a 6 × 6 matrix. In 3D elasticity, the constitutive matrix can be represented as follows:

C = E (1 + v)(1 -2v)              1 -v v v 0 0 0 1 -v v 0 0 0 1 -v 0 0 0 1-2v 2 0 0 1-2v 2 0 s ym 1-2v 2              (2.13)
where E is the Young's modulus and ν is the Poisson coefficient.

The former elasticity matrix is considered for Isotropic elastic materials in which the material behaves similarly in all directions. There are Orthotropic materials that show CHAPTER 2. BACKGROUND AND RELATED WORK symmetry in only three orthogonal planes like composite materials. Moreover, there are other materials that behave differently in all directions called Anisotropic materials. More details on types of materials and the constitutive matrix representing each of them can be found in [START_REF] Dym | Solid mechanics[END_REF]. Finally, the former formulation is only valid for elasticity case, though, in this thesis, the work is extended to plasticity. Thus, the constitutive modeling is more complicated. Therefore, section(2.4) will be dedicated to present the full formulation of plasticity especially the anisotropic plasticity related to sheet metals.

So far, we have presented the governing equations form the solid mechanics prospective. These equations are called the strong form formulation, for the complex physical problem it is very hard to find an analytical solution in this strong form. Thus, Other formulations have been developed, weak form and variational form, in order to solve these problems numerically. In the following subsections, the variational form and weak form are presented which are considered the pillars of finite element analysis used in the simulation of complex physical problems.

Principle of virtual work and variational principle

The principle of virtual work aims to satisfy the equilibrium equations(2.7) (strong form) in an integral form called (weak form).

W = - ˆΩt u * • (div(σ) + f v ) d V = 0 ∀u * |u * = 0 on ∂ 2 Ω t (2.14)
where u * represents a set of test functions: virtual displacements. The first term can be transformed using integration by parts into the following form:

ˆΩt u * • div(σ)d V = ˆΩt u * i σ i j , j d V = ˆΩt u * i σ i j n j d S - ˆΩt u * i , j σ i j d V (2.15)
The surface term of the equation is also decomposed to the two surface boundaries represented by:

ˆ∂Ω t u * i σ i j n j d S = ˆ∂ 1 Ω t u * i σ i j n j d S + ˆ∂2 Ω t u * i σ i j n j d S = ˆ∂1 Ω t u * • f s d S (2.16)
Finally, the weak form of the equilibrium equations are as follows:

W = ´Ωt ∇u * : σd V -´Ωt u * • f v d V -´∂1 Ω t u * • f s d S = W int -W ext = 0 ∀u * W int = ´Ωt ∇u * : σd V W ext = ´Ωt u * • f V d V + ´∂1 Ω t u * • f s d S ∀u * |u * = 0 on ∂ 2 Ω t
(2.17)
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Then the virtual strains are defined as follows:

ε * = ε * xx ε * y y ε * zz 2ε * x y 2ε * xz 2ε * y z T = = u * ,x v * ,y w * ,z u * ,y + v * ,x u * ,z + w * ,x v * ,z + w * ,y T (2.18)
Introducing Eqs(2.18,2.12) in Eq(2.17), the final form of the virtual work principle can be presented as follows:

W (u * , u) = ´Ωt ε * T • C • εd V -´Ωt u * • f v d V -´∂1 Ω t u * • f s d S = 0 ∀u * u * = 0 on ∂ 2 Ω t and u = u d on ∂ 2 Ω t (2.19)
This is the representation of the elasticity problem, however, the problem of the plasticity is more complicated and will be discussed in detail later on in the thesis.

In the former formulation, the displacement was the only virtual field (test function).

Though, the most general variational form can be presented in this form:

W = - ˆΩt u * • (d i v (σ) + f v ) + σ * T • ε - 1 2 ∇u + ∇u T + ε * • (σ -C • ε) d V - ˆ∂1 Ω t u * • (f s -σ • n) d S - ˆ∂2 Ω t σ * • n T • (u -u d ) d S = 0 ∀u * , σ * , ε *
(2.20) using the integration by parts of the first term, we can obtain:

W = ˆΩt 1 2 ∇u * + ∇u * T T • σ -σ * T • ε - 1 2 ∇u + ∇u T -ε * T • (σ -C • ε) -u * T • f V d V - ˆσ 1 Ω t u * T • (f s -σ • n) d S - ˆ∂2 Ω t σ * • n T • (u -u d ) + u * T • (σ • n) d S = 0 ∀u * , σ * , ε * (2.21)
This is called the mixed variational principle, in which the fields (displacement, strain and stress) are assumed. The functional Π whose variation in u, σ, ε. Considering δu ≡ u * , δσ ≡ σ * , δε ≡ ε * , then:

Π(u, σ, ε) = ˆΩt 1 2 ε T • C • ε -σ T • ε - 1 2 ∇u + ∇u T -u T • f v d V - ˆ∂1 Ω t u T • (f s -σ • n) d S - ˆ∂2 Ω t [σ • n] T • (u -u d ) d S with δΠ = W = 0 (2.22)
This expression is sometimes called 3 field mixed principle or Hu-Washizu principle CHAPTER 2. BACKGROUND AND RELATED WORK

Literature review on finite element research

One of the goals in finite element research is to develop formulation with better performance under various conditions. Many elements have been proposed in the literature to solve a wide range of application. Some elements suffer from a common problem called locking that deteriorates element's accuracy and performance in different situations. In this section, elements are categorized into solid elements, shell elements and solid-shell elements. For each category, the advantages and disadvantages of this category will be mentioned. Different locking phenomena will be explained along with the proposed solutions presented in the literature to overcome these problems.

3D solid finite elements

The main objective of continuum solid finite element is to model 3D bulk structures without any geometric simplifications. The topology of the element is defined by the connectivity between its nodes, then the displacements are interpolated from the nodal displacements throughout the element. Solid elements have many advantages like: 3D constitutive models can be used without the need for any assumptions(e.g. plane-stress assumption), thickness strain variation is considered and two-side contact condition can be applied easily.

The most common geometries for the solid elements are the tetrahedral elements, prismatic elements and hexahedral elements for the linear interpolation elements with four, six and eight nodes, respectively in the case of linear interpolation(see, [START_REF] Hughes | The finite element method: linear static and dynamic finite element analysis[END_REF], [START_REF] Zienkiewicz | The finite element method: solid mechanics[END_REF]). On the other hand, these element geometries contain ten, fifteen and twenty, respectively for the quadratic interpolation(see, [START_REF] Andersen | Evaluation of integrals for a ten-node isoparametric tetrahedral finite element[END_REF][START_REF] Hellen | Effective quadrature rules for quadratic solid isopatametric finite elements[END_REF] Volumetric locking:

This locking phenomenon takes place in the in-compressible or nearly in-compressible materials. Fully integrated 3D elements suffer from over stiffness and show poor performance when the Poisson ratio of the material approaches the limit value of 0.5. This effect can not be alleviated by refining the mesh though. In order to understand the origin of this problem, we consider a linear elastic material in which the elastic strain can be decomposed into deviatoric part ε d and a volumetric part

ε v ε = ε v + ε d = 1 3 t r (ε)I + (ε - 1 3 t r (ε)I) (2.23)
where I is the identity matrix. The elastic strain energy Π i nt can also be decomposed into deviatoric and volumetric parts as follows: 24) where G = E 2(1+v) is the shear modulus, and K = E 3(1-2v) is the bulk modulus. In the case of in-compressible or nearly in-compressible materials where ν ≈ 0.5, the associated bulk modulus will become extremely large causing the volumetric strain energy part to be very large. This will generate exaggerated results for the element stiffness which contradicts the reality of the in-compressible materials. Various solutions have been proposed in the literature to mitigate this problem by using reduced integration, selective reduced integration or mixed formulations Davim (2012); [START_REF] Elguedj | F-bar projection method for finite deformation elasticity and plasticity using nurbs based isogeometric analysis[END_REF].

Π int = Π dev + Π v = 2G ˆΩe ε d : ε d d Ω e + K ˆΩe t r (ε) 2 d Ω e (2.

Shear locking:

The shear locking usually takes place when the element is subjected to bending-dominated loading. It originates from the fact that low order finite elements are not capable of modeling the pure bending condition without showing parasitic transverse shear strains. This results in stiffer element in bending problems. In order to illustrates the logic behind, the following example is presented which illustrates the case for long beam with rectangular cross section subjected to pure bending conditions as shown in figure(2.4). The analytical solution for the beam bending problem is given by [START_REF] Timoshenko | History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures[END_REF]:

u = M EI x y, v = M 2EI L 2 -x 2 - vM 2EI t 2 -y 2 (2.25)
where u and v are the displacements in the x and y directions, respectively. The elastic material properties are given by E (Young modulus), ν (Poisson ratio).

The strain components can be derived from the aforementioned displacements as:

ε x = ∂u ∂x = M EI y, ε y = ∂v ∂y = vM EI y, γ x y = ∂u ∂y + ∂v ∂x = 0 (2.26)
These equations show that the shear strain γ x y = 0 which confirms the pure bending condition.

On the other hand, the finite element displacement interpolation for a linear element can be presented as follows:

u = a 0 + a 1 x + a 2 y + a 3 x y v = b 0 + b 1 x + b 2 y + b 3 x y (2.27)
Each one of the constants a i and b i represent one possible deformation mode which are shown in figure(2.5).

In the case of the pure bending, it matches the mode in which a 3 = 0, applying this on the displacements equations and deriving the corresponding strain:

u = a 3 x y v = 0
(2.28)

ε x = ∂u ∂x = a 3 y, ε y = ∂v ∂y = 0, γ x y = ∂u ∂y + ∂v ∂x = a 3 x (2.29)
It is obvious here that the shear strain is no longer zero which means that there is an extra strain (parasitic shear strain) occurs in a situation where it should not take place. The parasitic shear strain causes the element to be stiffer in bending-dominated situations Many solutions have been proposed for the shear locking phenomenon, such as the reduced integration technique [START_REF] Zienkiewicz | Reduced integration technique in general analysis of plates and shells[END_REF], the assumed strain method proposed by [START_REF] Belytschko | Assumed strain stabilization procedure for the 9-node lagrange shell element[END_REF] or using higher order elements.

Poisson thickness locking:

This locking phenomenon occurs due to the inconsistency between the normal strain and the corresponding normal stress in the thickness of low order elements. In order to explain this, let us consider again the pure bending of the rectangular beam. The strain components are presented as follows:

   ε x = ∂u ∂x = a 1 + a 3 y ε y = ∂v ∂y = b 2 + b 3 x (2.30)
considering that the material is linear elastic material, the corresponding stress can be calculated as follows:

σ x = λε y + (λ + 2µ)ε x σ y = λε x + (λ + 2µ)ε y (2.31) where λ = vE (1+v)(1-2v) and µ = E 2(1+v) .
From the previous equations, we can see that the normal strain in the thickness ε y has a constant distribution, however, the corresponding stress σ y has a linear distribution.

This locking effect can be alleviated by modifying the elastic constitutive matrix so that the normal stress has a uniform distribution through the thickness [START_REF] Petchsasithon | A locking-free hexahedral element for the geometrically non-linear analysis of arbitrary shells[END_REF].

2D shell finite elements

Over the lase decade, many developments have been aimed at creating fast and reliable shell elements for thin structures. Various shell elements have been developed. Some of them are based on the Kirchoff-Love approach derived by [START_REF] Dhatt | Numerical analysis of thin shells by curved triangular elements based on discrete kirchhoff hypothesis[END_REF]. This approach neglects the transverse shear deformation. Reissner-Mindlin theory, developed in [START_REF] Mindlin | Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates[END_REF] adopts a constant effect of transverse shear strain along the thickness direction. Finally, a higher order shear deformation theory is derived in [START_REF] Murthy | An improved transverse shear deformation theory for laminated antisotropic plates[END_REF]. In this theory, the transverse shear strain in the thickness is considered to be parabolic. The aforementioned shell formulations are called the conventional flat shell formulations. The other family of shell elements is called the degenerated shells, which are degenerated from the formulation of the three-dimensional elements. In this type of elements, only the midsurface of the structure is considered see figure(2.6) and the physical thickness of the structure is neglected. Moreover, the normal to the mid-surface remains straight after deformation neglecting its rotation due to the large deformation of the middle surface, also, the transverse normal stress is neglected [START_REF] Zienkiewicz | The finite element method: solid mechanics[END_REF]. (1970). In the following subsection, the main concepts of the degenerated shell elements are introduced so that they can be compared to the solid-shell elements later on.

The kinematics of the degenerated shell elements are based on the reduction of the kinematics of 3D solid approach to 2D shell approach represented by the mid-surface nodal variables. Figure(2.7) shows a local coordinate system V 1i , V 2i , V 3i associated with CHAPTER 2. BACKGROUND AND RELATED WORK the mid-surface. The nodal coordinates ( x, ȳ, z) and displacements ( ū, v, w) at i t h point are interpolated from the corresponding coordinates and displacements (u, v, w) and rotations (α, β) of the top i t op and bottom points i bot t om . The detailed formulation is explained in detail in [START_REF] Ahmad | Analysis of thick and thin shell structures by curved finite elements[END_REF]; [START_REF] Choi | An effective four node degenerated shell element for geometrically nonlinear analysis[END_REF]; [START_REF] Zienkiewicz | The finite element method: solid mechanics[END_REF])

Figure 2.7: The coordinate system and nodal variables associated with the mid-surface in degenerated shell element [START_REF] Ahmad | Analysis of thick and thin shell structures by curved finite elements[END_REF] The strain and stress associated with this elements are defined in the local coordinate system x , y , z , the strain is derived from the displacement gradient, and the stress is derived from the constitutive equations of the shell element. In this formulation, the stress in the thickness direction is neglected. Thus, the strain field is expressed as follows:

ε = ∇( û) = ε x x , ε y y , 2ε x y , 2ε y z , 2ε z x T (2.32)
where vector û is the displacement field within the shell element. Also, the corresponding stress field is represented as follows:

σ = σ x x , σ y y , τ x y , τ y z , τ z x T (2.33)
Based on the relation:

σ = C e • ε (2.34)
In which, C e is a 5 × 5 plane-stress elasticity matrix.
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Locking phenomena of shell elements

Although the shell elements are very attractive for the simulation of thin structures due to their high efficiency, they have a number of locking phenomena that reduce the accuracy in particular situations. These locking effects will be discussed in the following subsection especially, the transverse shear locking and membrane locking phenomena.

Transverse shear locking:

This locking phenomenon occurs due to the fact that the Kirchhoff-Love hypothesis is not taken into consideration in the displacement interpolation of the shell elements. Thus, the element is not capable of producing zero-transverse-shear strain in the the pure bending conditions resulting in parasitic bending shear strain as indicated in [START_REF] Zienkiewicz | Reduced integration technique in general analysis of plates and shells[END_REF][START_REF] César De Sá | Development of shear locking-free shell elements using an enhanced assumed strain formulation[END_REF]).

Membrane locking:

The membrane locking takes place due to the occurrence of parasitic membrane strains in bending-dominated problems of curved beams and shell structures. It is a serious issue that is usually encountered in both low-order and high-order shell elements. The detailed explanation of this phenomenon is presented in [START_REF] Nguyen | Development of solid-shell elements for large deformation simulation and springback prediction[END_REF].

Solid-shell finite elements

Recently, many efforts have been devoted to the development of solid-shell elements.

These elements combine the advantages of both shell and continuum elements. [START_REF] Belytschko | Assumed strain stabilization of the eight node hexahedral element[END_REF], [START_REF] Wriggers | A note on enhanced strain methods for large deformations[END_REF], that first introduced the concept of enhanced assumed strain (EAS). Then [START_REF] Reese | A new locking-free brick element technique for large deformation problems in elasticity[END_REF], [START_REF] Sousa | A new onepoint quadrature enhanced assumed strain (eas)solid-shell element with multiple integration points along thickness: Part i -geometrically linear applications[END_REF][START_REF] Sousa | A new one-point quadrature enhanced assumed strain (eas) solid-shell element with multiple integration points along thickness: Part ii-nonlinear applications[END_REF][START_REF] Sousa | On the use of a reduced enhanced solid-shell (ress) element for sheet forming simulations[END_REF] built on this work and employed reduced integration while others used assumed natural strain (ANS) [START_REF] Vu-Quoc | Optimal solid shells for nonlinear analyses of multilayer composites, i. statics[END_REF]. Finally, Abed-Meraim andCombescure (2002b, 2009b) tackled some locking problems by (EAS) and in-plane reduced integration while using multiple quadrature points in the thickness. In [START_REF] Trinh | A new assumed strain solid-shell formulation "shb6" for the six-node prismatic finite element[END_REF], a prismatic solidshell element denoted SHB6 was developed. This element was formulated following the same approach used in the recently developed hexahedral solid-shell element, denoted SHB8PS Abed-Meraim andCombescure (2002b, 2009b). Briefly, this element adopted the method of reduced integration to alleviate some shear and thickness locking phenomena. This method consists of using fewer integration points than required for a complete CHAPTER 2. BACKGROUND AND RELATED WORK integration scheme in calculating the element stiffness matrix. This reduced integration technique was described in, [START_REF] Zienkiewicz | The finite element method: its basis and fundamentals[END_REF], [START_REF] Pawsey | Improved numerical integration of thick shell finite elements[END_REF]Clough (1971), Hughes et al. (1977), [START_REF] Belytschko | Assumed strain stabilization procedure for the 9-node lagrange shell element[END_REF]. Though, this method also introduces zero-energy modes "hourglass" patterns that needs special treatment like stabilization, following the approach of [START_REF] Belytschko | Assumed strain stabilization of the eight node hexahedral element[END_REF]. Moreover, other strategies have been combined with the aforementioned techniques in order to enhance the accuracy and convergence of the solid-shell elements. The most common techniques are the assumed strain method (ASM), the enhanced assumed strain (EAS) and the assumed natural strain (ANS) (see, Alves (2000); Sze et al. (2000)). These techniques will be reviewed briefly in the following subsections.

Enhanced assumed strain (EAS)

The enhanced assumed strain approach was first introduced by [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF].

The main principle consists in adding an extra enhanced assumed strain component E α to the real (compatible) strain component E com coming from the displacements. Therefore, the total strain field can be presented as follows:

E = E com + Ẽα (2.35)
applying this new strain field into Hu-Washizu principle presented in Eq(2. [START_REF] Aster | Functions of form and points of integration finite elements[END_REF],

Π(u, E, S) = Π int (u, E, S) -Π ext (u) (2.36)
where the internal and external potentials are:

Π int (u, E, S) = ´Ωe W(E)dΩ e + ´Ωe S : Ẽα dΩ e Π ext (u) = ´Ωe u • bρdΩ e + ´Se u • tdS e (2.37)
where u is the displacement field, E is the assumed strain field and S is the stress field.

W(E) denotes the strain energy, while ρb and t represent the body forces and the traction forces, respectively. [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF] suggested that the stress S is eliminated by considering the following orthogonality condition:

ˆΩe S : Ẽα dΩ e = 0 (2.38)

After applying the above condition, the final Hw-Washizu princpile can be written as follows:
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δΠ(u, E, S) = δΠ int (u, E, S) -δΠ ext (u) = ˆΩe δE com + δ E α : ∂W(E) ∂E dΩ e - ˆΩe δu • bρdΩ e - ˆSe δu • tdS e (2.39)
Therefore, the linearization of the above equations leads to:

K uu K uα K αu K αα ∆d ∆α = f ext -f u -f α (2.40)
where d are the nodal displacements, and α the enhancing parameters.

The matrices involved in Eq.(2.40) include the classical displacement-based stiffness matrix K uu , the enhanced stiffness operator K αα , and the coupling stiffness matrices K αu and K uα . The internal forces f u and f α are associated with the displacement field and the enhanced field, respectively.

This approach has been utilized in many solid-shell elements like [START_REF] Bettaieb | On the comparison of two solid-shell formulations based on in-plane reduced and full integration schemes in linear and non-linear applications[END_REF]; [START_REF] Cardoso | Enhanced one-point quadrature shell element for nonlinear applications[END_REF]; Nguyen ( 2009)).

Assumed natural strain (ANS)

The assumed natural strain method is a little bit different. In this approach, the shear strains are interpolated at specific location instead of using the standard strain field based on the displacements. This method was adopted by [START_REF] Hughes | Finite elements based upon mindlin plate theory with particular reference to the four-node bilinear isoparametric element[END_REF] and [START_REF] Dvorkin | A continuum mechanics based four-node shell element for general non-linear analysis[END_REF].

In order to clarify the main difference of this method, figure(2.8) shows a hexahedral solid-shell element in which the transverse shear strain components are interpolated separately from the local strain field E l oc related to the nodal displacements d l oc .

E l oc = B • d l oc (2.41)
where B is the discrete gradient operator, and the local strain field is composed of:

E l oc = {E 11 , E 22 , E 33 , E 12 , E 13 , E 23 } (2.42)
Then the ANS method is applied in which two assumed strain transverse shear strains are interpolated as follows:

Ẽ13 = P 1 η B E B 13 + P 2 η D E D 13 Ẽ23 = Q 1 (ξ A ) E A 23 + Q 2 (ξ C ) E C 23 ,
(2. 43) where E A 23 , E B 13 , E C 23 and E D 13 are the natural shear strains at the sampling points A, B, C and D, respectively, while P 1 , P 2 , Q 1 and Q 2 are the selected interpolation functions. These CHAPTER 2. BACKGROUND AND RELATED WORK function can be selected linear functions as in (Nguyen (2009),Vu-Quoc and[START_REF] Vu-Quoc | Optimal solid shells for nonlinear analyses of multilayer composites, i. statics[END_REF] or parabolic function as in [START_REF] Chaker | An efficient abaqus solid shell element implementation for low velocity impact analysis of fgm plates[END_REF].

Similarly, other local strain components could be replaced to diminish other locking effects like the trapezodial locking effect that could be caused be the transverse normal strain. An assumed transverse normal strain can be interpolated as follows: (2.44) where E E 33 , E F 33 , E G 33 and E H 33 are natural transverse normal strains at the points E, F, G and H, respectively, while 

E 33 = L 1 ξ E , η E E E 33 + L 2 ξ F , η F E F 33 + L 3 ξ G , η G E G 33 + L 4 ξ H , η H E H 33 ,
L 1 ξ E , η E , L 2 ξ F , η F , L 3 ξ G , η G and L 4 ξ H ,

Assumed strain method (ASM)

This approach is based on the work done by [START_REF] Simo | On the variational foundations of assumed strain methods[END_REF] which is called "The B-bar method". The main idea behind this approach is to project the classical discrete gradient operator B into a projected gradient operator B, and this projected operator has been modified so that the effect of locking is reduced. Latter, this approach has been used extensively in various solid-shell elements with which it proved to be very robust and accurate (see, Abed-Meraim and Combescure (2009a,b); [START_REF] Belytschko | Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems[END_REF]). The formulation is tackled in section (3.3), hence it is omitted from here to avoid repetition.

One of the most common solid-shell elements based on this approach is called the SHB element family. This family of elements have being developed over the past years to avoid locking problems encountered in sheet metal forming processes. There are four CHAPTER 2. BACKGROUND AND RELATED WORK types of these elements developed in the literature; a linear six-side prism element denoted SHB6 and a linear eight-node hexahedral element called SHB8PS and their quadratic counterparts SHB15 and SHB20. In this element type, the three-dimensional approach is considered with displacements being the only degrees of freedom in the formulation. The structure thickness direction is taken to be a special direction along which user-defined integration points are aligned. This allows the modeling of thin structures with only one element in the thickness. Some techniques are selected to overcome the locking phenomena, namely, the reduced integration technique RI along with the ASM approach have been chosen to alleviate the volumetric, thickness, and shear locking phenomena.

The first solid-shell element of this family consists of an eight-node hexahedral element denoted SHB8PS formulated by Abed-Meraim and Combescure (2002b). This element was further improved by controlling its hourglass modes by implementing stabilization technique in Abed-Meraim and Combescure (2009a). The results of these elements are very encouraging in various benchmark problems including sheet metal forming processes involving large deformations [START_REF] Salahouelhadj | Application of the continuum shell finite element shb8ps to sheet forming simulation using an extended large strain anisotropic elastic-plastic formulation[END_REF]. This opened the door for other elements to come like six-node prismatic solid-shell element introduced by [START_REF] Trinh | A new assumed strain solid-shell formulation "shb6" for the six-node prismatic finite element[END_REF]. Though, this element required finer mesh to match the results of its predecessor. Recently, the quadratic counterparts of the prismatic and hexahedral elements have been proposed in [START_REF] Abed-Meraim | New quadratic solid-shell elements and their evaluation on linear benchmark problems[END_REF]. The quadratic element is more accurate using a lower number of elements, however, their computational cost is higher compared to their linear counterparts. Moreover, they introduce some complexity in the remeshing process, especially the irregular complex geometries.

In this PhD, the main focus is on the six-node linear prismatic element and its implementation in a tetrahedral-based finite element software. The prism element can be decomposed into several tetrahedral elements thus, implementing prismatic elements in this context is feasible. Furthermore, the prism elements contain triangular shape lower and upper surfaces which are compatible with the surface shapes implemented in the finite element software. Additionally, the prism SHB element is the best compromise between the performance, accuracy, and ease of implementation in the current context. This is why it has been selected as a good candidate for the work of this PhD.

Element formulation is not the only aspect that needs special attention when simulating thin sheet metal forming processes. Sheet metals also exhibit anisotropy due to the crystallographic structure and the characteristics of the rolling process. Hence, plastic constitutive models and yield criteria which depict anisotropic material behavior should be considered in simulating thin sheet metal forming processes. Researchers have been developing different anisotropic yield criteria each of which has its advantages and disadvantages. [START_REF] Banabic | Sheet metal forming processes: constitutive modelling and numerical simulation[END_REF] was able to classify these yield criteria into different fami-CHAPTER 2. BACKGROUND AND RELATED WORK lies. Isotropic yield criteria contain: von Mises yield criterion was first introduced in 1913 [START_REF] Mises | Mechanik der festen körper im plastisch-deformablen zustand[END_REF] and Tresca was first introduced in 1864 Tresca (1864). While anisotropic yield criteria are numerous like; Hill48 [START_REF] Hill | A theory of the yielding and plastic flow of anisotropic metals[END_REF], Barlat89 by [START_REF] Barlat | A yield function for orthotropic sheets under plane stress conditions[END_REF], Barlat 2004-18P proposed by [START_REF] Aretz | General orthotropic yield functions based on linear stress deviator transformations[END_REF] and BBC2005 introduced by Banabic Tekkaya et al. (2015). Each of these models included different number of parameters that need to be identified experimentally to encompass the anisotropic effect in the model [START_REF] Bustos | Mechanical characterization of the elastoplastic response of asphalt felt paper[END_REF]. In the following section, a comprehensive literature review on material modeling is presented in detail along with the anisotropic plastic behaviour of thin sheet metals.
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Mechanical behaviour of thin sheet metals

In this section, the general mechanical behaviour of metallic materials will be discussed.

Then the special case of anisotropy in the sheet metals will be elaborated later in the chapter. First, the general mechanical behaviour concepts of metals are discussed including yielding functions, hardening models and flow rule. Then, the isotropic yield criteria are discussed briefly. Finally, the anisotropic yield criteria will be tackled and the most important ones will be elaborated.

Elastic and Plastic Behaviour of Metals

Bulk Metals

A classical metallic isotropic material is described by the stress strain curve showed in figure(2.9) produced by a tensile test. The behaviour of the material can be decomposed into two domains; the first domain (Elastic) in which the deformation is reversible as long as the stress is not held in the material. While the latter (Plastic) is irreversible because it changes the microstructure configuration of the material. Also, it affects the properties of the material because it shifts the elastic limit. The elastic deformation is reversible and the stress σ and the strain ε are linearly dependent and the slope of the linear curve is the Young's modulus E which is different from one material to another. When a stress is applied in one direction to the material, the other two directions exhibit negative strains. This is shown in Hooke's law equation(2.45).

ε = 1 + ν E σ - ν E t r (σ).I (2.45)
where ε and σ are respectively the strain and stress tensors and I is the second order identity tensor.
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Plastic Deformation:

To describe the plastic irreversible permanent deformation at the macroscopic scale, three elements are required to be defined. These elements are:

• Yield Criterion: is a mathematical representation of the boundary between the elastic and plastic regions. It is defined by the difference between the equivalent stress σ(σ -X(ε p )) and the strain hardening Y(ε p ) as shown:

f = σ(σ -X(ε p )) -Y(ε p ) = 0 (2.46)
where σ(σ-X(ε p )) is the equivalent stress that is function of the stress components and X(ε p ) which is the kinematic strain hardening and Y(ε p ) is the isotropic strain hardening that is function of the equivalent plastic strain. More details about yield criterion is given in section (2.4.2.2).

• Hardening: From phenomenological point of view, strain hardening is represented by a mathematical function that describes the evolution of the isotropic hardening Y(ε p ) that is function of the equivalent plastic strain or kinematic hardening X(ε p ).

Meaning that every time the plastic strain increases, a higher equivalent stress is required to reach the plastic domain. Generally, there are two types of hardening; isotropic hardening and kinematic hardening. Yet, there are other hardening type like anisotropic hardening3 but it is out of the scope of the current work. Figure(2.10) shows the difference between the isotropic hardening in which the yield surface tends to expand and the kinematic hardening in which the yield surface translates without changing its size.

• Flow rule: is used to define the direction of plastic flow. There are two types of flow rule; Associated flow rule (AFR) and Non-associated flow rule (NAFR). In the former, the plastic flow is normal to the yield surface and the strain increment is proportional to the yield function gradient. While the later states that the plastic flow is normal to another surface that is not the yield surface (called plastic potential). This allows for more general description of the material behaviour. Figure(2.11) shows the difference between the associated and non-associated flow rule and normal direction in each case. The associated flow rule can be defined as:

d ε p = d λ ∂σ ∂σ = d λn (2.47)
where λ is the plastic multiplier and n is the normal direction (yield surface gradi- 

Sheet Metals

Sheet metals exhibit anisotropy characteristics. The manufacturing process to produce sheet metals is rolling 4 . This process causes rotation to the grains of the sheet material which causes preferential orientation for them and consequently for the crystals. Thus, the distribution of the crystals in the metals is no longer random and depends on the directions. This is why, the macroscale behaviour of the material will also depend on the directions causing anisotropy in the material [START_REF] Bunge | Formability of metallic materials: plastic anisotropy, formability testing, forming limits[END_REF]. However, sheet metal does not exhibit full anisotropy rather than orthotropic behaviour with respect to three orthogonal planes. These symmetry planes are defined by three directions depend on the CHAPTER 2. BACKGROUND AND RELATED WORK rolling process; rolling direction, transverse direction and normal direction as shown in figure(2.12).

Moreover, The remarkable characteristic of sheet metal is that one dimension is much smaller than the other two dimensions. This leads to consider that the stresses in the thickness direction is negligible σ i z = 0(i = x, y, z) where z is the direction perpendicular to the plane of the sheet metal. The reason for this consideration is that the thickness is very small and the stresses on the outer surfaces are zero (free surfaces). So there is no space for the stresses to change throughout the thickness. This reduces the dimensionality of the problems and simplifies the yield function expression which is a function of all stress tensor components. Stress directionality is calculated by the fraction of the yield stress at specific angle σ θ and the yield stress in the rolling direction σ RD so the stress directionality is

σ θ σ RD with σ θ σ RD = 1 in the rolling direction RD.
While the Lankford coefficient is defined as the fraction of the plastic strain in the width direction to the plastic strain in the thickness direction.

r = ε p 22 ε p 33
(2.49)
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where ε 22 and ε 33 are the plastic strain in the width and in the thickness respectively.

r θ = ε p θ+90 • ε p ND (2.50)
If r θ > 1 this means that the plastic strain in the width is the dominant. This means that the material is exhibiting thinning resistance. Whereas if r θ < 1 it means that the plastic strain in the thickness is more dominant and the material is exhibiting thinning predisposition. 

ε p θ + ε p θ+90 • + ε p ND = 0 (2.51)
The plastic strain in the thickness can be replaced with the plastic strain in the rolling direction and in the width direction as follows.

r θ = - ε p θ+90 • ε p θ + ε p θ+90 • (2.52)
Another parameter that helps in defining some properties of the material is the average of r-values obtained from different direction in the surface of the metallic sheet. This parameter is called coefficient of normal anisotropy r n [START_REF] Banabic | Sheet metal forming processes: constitutive modelling and numerical simulation[END_REF]. As an example the normal anisotropy coefficient for the directions (0 • , 45 • , 90 • ) is defined as:

r n = 1 4 (r 0 + 2r 45 + r 90 ) (2.53)
While the variation of the anisotropy in the surface of sheet metal also named the CHAPTER 2. BACKGROUND AND RELATED WORK planar anisotropy coefficient is defined as follows:

∆r = 1 2 (r 0 -2r 45 + r 90 ) (2.54)
In order to get a better insight of the anisotropy of sheet metal, figure(2.14) shows the variation of Lankford coefficient of aluminum alloy (AA5182-0) in polar coordinates.

The figure shows symmetry about the horizontal and the vertical axes. This is due to the material orthotropy and symmetry planes discussed before. Another type of tests is the biaxial traction test in a plane state. This means that:

σ 11 = σ 22 = σ b σ 12 = 0 (2.55)
where σ b is the biaxial yield stress.

Experimental results showed that in the case of biaxial loading, the yield surface is not symmetric due to the plastic anisotropy [START_REF] Barlat | Plane stress yield function for aluminum alloy sheets-part 1: theory[END_REF]. In order to quantitatively measure this phenomenon, another coefficient has to be defined. The so-called coefficient of biaxial anisotropy r b was first introduced by [START_REF] Barlat | Plane stress yield function for aluminum alloy sheets-part 1: theory[END_REF] and his coworkers. The coefficient was experimentally measured by applying compression test on the flat surfaces of circular disk and they noticed that the final shape was more like ellipse than circle due to the plastic anisotropy. Figure(2.15) shows the relation between the strain in the rolling direction and the strain in the transverse direction for compression test of aluminum alloy AA6111-T4. The slope of the curve specifies the biaxial plastic coefficient. It was always observed that the slope of the incremental width and thickness strains was linear, i.e., that the r value does not vary as much as it was often claimed, at CHAPTER 2. BACKGROUND AND RELATED WORK least no more than within the range of experimental scatter [START_REF] Barlat | Plane stress yield function for aluminum alloy sheets-part 1: theory[END_REF].

So the coefficient of biaxial anisotropy can be defined as:

r b = ε p TD ε p RD = ε p 22 ε p 11
(2.56)

If the material is isotropic, this value will be 1 and the more it deviates from 1 the more anisotropic the material becomes.

Modeling of Plastic Isotropy and Anisotropy of sheet Metals

Overview

Many models have been developed in order to describe the material constitutive laws.

The scale of the models starts from the macroscopic scale to the microscopic scale on the level of crystals, molecules or even atoms. Macroscopic scale modeling depends on a mathematical function that describes the material behaviour and its coefficients are deduced from experimental tests. More flexible functions require more parameters and need more experiments to identify these parameters which in most cases are costly to be carried out. However, functions with lower number of parameters show poor prediction performance specially with highly anisotropic materials. the physics of plastic deformation in terms of the molecules and atoms dislocations. This scale of modeling is extremely computationally costly to the extend that the largest problem could be solved is in the scale of micrometers.

Finally, a new innovative approaches showed up in the last thirty years. In these approaches, micro-macro models are adopted to overcome the deficiency of the phenomenological model and to overcome the computational inefficiency of the microscopic models [START_REF] Habraken | Modelling the plastic anisotropy of metals[END_REF]. The characteristics of micro-macro are that they take into account the behaviour at the level of crystals and grains to provide an average macroscopic answer. There are two main categories of these models; macroscopic laws without yield locus in which computation on discrete set of crystals provide the macroscopic material behaviour. The other is macroscopic laws with macroscopic yield locus defined by microscopic computations. Many different models belong to the two previously mentioned categories are mentioned in detail in [START_REF] Habraken | Modelling the plastic anisotropy of metals[END_REF].

In this work, the main focus will be on the phenomenological description of the material behaviour since the ultimate goal of the work is integrate the anisotopic effect of the material in a macroscopic scale to carry out simulations of sheet metal forming processes.

Adopting phenomenological will be more efficient to carry out large simulation rather than the microscopic models that would require huge computational time and resources to simulate a piratical forming process.

A quantitative comparison will be carried out between different phenomenological models and some of them will be selected to be implemented in a C++ library to improve the modeling capabilities of Forge ® software. In the following section, isotropic yield criteria will be discussed. Then, ansiotropic yield criteria followed by the quantitative comparison and implementation of the selected ones.

Yield Criterion

The yield criterion is a representation of the boundary between the elastic and plastic deformation. In case of multi-axial stress state, it is hard to define the state at which the material transitions from the elastic to plastic behaviour. This is why a yield function is very convenient, as it is used to identify the material status whether in elastic or plastic domain.

f (σ(σ, X), Y) = 0 (2.57)
Where σ is the stress tensor. Y is the isotopic hardening and X is kinematic hardening. [START_REF] Banabic | Sheet metal forming processes: constitutive modelling and numerical simulation[END_REF].

This equation is a mathematical description of a surface in three dimensional space of principle stresses and curve in plane stress two dimensional case.

All points inside the surface f < 0 are considered in the elastic domain. While all the point CHAPTER 2. BACKGROUND AND RELATED WORK on the surface itself f = 0 are considered the elasto-plastic case. The points outside the surface are not defined f > 0 . When the material reaches the plastic deformation, it starts to evolve and defines new elastic limit Y such that the value f = 0 is always verified.

Yield criteria can be classified into two different categories; the first for isotropic materials and the second for anisotropic materials. Both of them will be discussed giving more focus on the anisotropic yield criteria due to the anisotropic behaviour that sheet 

Isotropic Yield Criteria

Tresca Yield Criterion:

It was first introduced in 1864 Tresca (1864) known as the first ever yield criterion. According to this criterion the material transitions from elastic to plastic deformation when the maximum shear stress τ max reaches a specific value

max[|σ 1 -σ 2 |, |σ 2 -σ 3 |, |σ 3 -σ 1 |] = 2τ 0 (2.58)
where σ 1 , σ 2 , σ 3 are the principal stresses This criterion is represented as polygon in the case of plane stress and as hexagonal prism in 3D case. 

f = (σ 11 -σ 22 ) 2 + (σ 22 -σ 33 ) 2 + (σ 33 -σ 11 ) 2 + 6(σ 2 12 + σ 2 13 + σ 2 23 ) -2σ 2 0 (2.59)
where σ i j i , j = 1, 2, 3 are the stress tensor components. Also, von Mises yield function can be formulated in terms of principal stresses as follows:

f = (σ 1 -σ 2 ) 2 + (σ 2 -σ 3 ) 2 + (σ 1 -σ 3 ) 2 -2σ 2 0 (2.60)
where σ 1 , σ 2 , σ 3 are the principal stresses and σ 0 is the yield stress in direction 1. This criterion is represented by an ellipse in the plane of principal stresses σ 1 , σ 2 .

Hosford Yield Criterion:

This criterion is considered to be a generalization to von Mises yield criterion. It takes the following form:

f = |σ 1 -σ 2 | n + |σ 2 -σ 3 | n + |σ 1 -σ 3 | n -2σ n 0 (2.61)
As the exponent is no longer 2 but it can take any value. Hosford yield criterion can be reduced to von Mises yield criterion when n = 2 and to Tresca yield criterion when n = ∞. 
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Anisotropic Yield Criteria

There are many approaches to transform the isotropic yield criteria formulations into anisotropic expressions. The first approach is to include new parameters into an isotropic function [START_REF] Banabic | Sheet metal forming processes: constitutive modelling and numerical simulation[END_REF]. This includes Hill'48 [START_REF] Hill | A theory of the yielding and plastic flow of anisotropic metals[END_REF] which contains new coefficient into von [START_REF] Mises | Mechanik der festen körper im plastisch-deformablen zustand[END_REF]. Similarly, the developers of BBC2003 and BBC2005 Banabic et al. (2005) included new parameters into Hershey's formulation [START_REF] Banabic | Sheet metal forming processes: constitutive modelling and numerical simulation[END_REF]. The second approach is to use a linear transformation that includes the anisotropy coefficients.

This approach is used in Barlat'91 and Yld2000-2d [START_REF] Barlat | Plane stress yield function for aluminum alloy sheets-part 1: theory[END_REF]. The final approach is a geometrical method such as in Vegter model Vegter and van den Boogaard ( 2006) in which the yield function is fitted to the experimental data using second-order Bezier interpolations. In the following section, the most common criteria will be discussed in detail. Interested reader should refer to [START_REF] Banabic | Sheet metal forming processes: constitutive modelling and numerical simulation[END_REF] for more detailed information about the other models. In the following formulations neither the kinematic hardening nor the isotropic hardening will be considered for the sake of simplicity.

Hill's Family Yield Criteria Hill 1948 Yield Criterion

The criterion is a generalization of the von Mises yield function with consideration for the anisotropy of the material with the existence of the otrthotropy in three planes [START_REF] Hill | A theory of the yielding and plastic flow of anisotropic metals[END_REF].

The anisotropy is introduced into von Mises equation (2.59) as a function of the r-values or yield stresses.

2 f = F(σ 22 -σ 33 ) 2 + G(σ 33 -σ 11 ) 2 + H(σ 11 -σ 22 ) 2 + 2Lσ 2 23 + 2Mσ 2 31 + 2Nσ 2 12 = 1 (2.62)
Equation (2.62) shows the general formulation of Hill criterion, where f is the yield function and (F, G, H, L, M, N) are the material anisotropy constants.

Considering the plane stress case in which the principal stresses are coincident with the anisotropy axes, the yield criterion can be simplified to equation (2.63).

f = σ 2 1 - 2r 0 1 + r 0 σ 1 σ 2 + r 0 (1 + r 90 ) r 90 (1 + r 0 ) σ 2 2 -σ 2 0 (2.63)
where σ 1 , σ 2 are the principal stresses in two directions and σ 0 is the yield stress in the rolling direction RD and r 0 , r 90 are the r-values in the RD and TD respectively.

Hill's criterion is the most widely used criterion in commercial FEM software due to its mathematical simplicity and only needs four parameters to be identified in plane stress CHAPTER 2. BACKGROUND AND RELATED WORK case. On the other hand, it fails to predict the first and second order anomalous5 phenomena [START_REF] Woodthorpe | The anomalous behaviour of aluminium sheet under balanced biaxial tension[END_REF]. Furthermore, it can not predict more than 4 earing profile.

Yield Functions Based on Hershey's Yield Criterion Barlat 1989

Barlat and Lian [START_REF] Barlat | A yield function for orthotropic sheets under plane stress conditions[END_REF] proposed the yield criterion is based on Hershy's criterion for isotropic material [START_REF] Hosford | A generalized isotropic yield criterion[END_REF]:

f = a|k 1 + k 2 | M + a|k 1 -k 2 | M + c|2k 2 | M -2σ M 0 (2.64)
where f is the yield function, σ 0 is the yield stress determined by the hardening model and k 1 , k 2 are functions of the invariant of the stress tensor:

k 1 = σ 11 + hσ 22 2 k 2 = ( σ 11 -hσ 22 2 ) 2 + p 2 σ 2 12
(2.65) (a, c, h, p) are material constants and M should be selected based on the crystallographic structure of the material. Material constants can be identified in terms of the r-values in three different direction as follows:

a = 2 -c = 2 -2 ( r 0 1 + r 0 )( r 90 1 + r 90 ) h = ( r 0 1 + r 0 )( r 90 1 + r 90 ) (2.66)
Although Barlat'89 criterion can predict the yield behaviour for aluminum alloys, it cannot give accurate prediction of biaxial yield stress especially for highly anisotropic aluminum alloys. It also requires nonlinear equation solver to identify the parameter p since there is no explicit expression of p in terms of the r-values or the yield stress in any direction. So, the only way to identify p is to substitute in the yield function with one loading condition (axial tension in one direction) and substitute with the corresponding yield stress and solve a nonlinear equation for p.
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Advanced Anisotropic Yield Criteria

Yld2004-18p

The former yield criterion is based on the plane stress condition so it cannot describe the full stress state case. A modified version of this criterion is Barlat 2004-18P proposed by [START_REF] Aretz | General orthotropic yield functions based on linear stress deviator transformations[END_REF] which needs 18 coefficients to represent the full 3D state case. The yield criterion can be represented as follows:

f = |X 1 -X 1 | M + |X 1 -X 2 | M + |X 1 -X 3 | M + |X 2 -X 1 | M + |X 2 -X 2 | M + |X 2 -X 3 | M + |X 3 -X 1 | M + |X 3 -X 2 | M + |X 3 -X 3 | M -4σ 0 M (2.67)
where σ 0 represents the unaxial yield stress and M is an exponent that can be determined based on the crystallographic structure of the material. The linear transformation associated with this yield criteria is as follows:

C =              0 -C 12 -C 13 0 0 0 -C 21 0 -C 23 0 0 0 -C 31 -C 32 0 0 0 0 0 0 0 C 44 0 0 0 0 0 0 C 55 0 0 0 0 0 0 C 66              (2.68)
The matrix in equation (2.68) is used for C to get X 1 , X 2 , X 3 and for C to get X 1 , X 2 , X 3 which results in 18 different parameters that need to be determined from the experiment.

This can be provided using uniaxial tension test in 7 directions (0

• , 15 • , 30 • , 45 • , 60 • , 75 • , 90 • )
along with the biaxial tension and out of plane properties are also needed. Since there is no simple experiments can give the properties for the yz and zx stress components, polycrystal simulations are usually performed to provide the yield stress for simple shear in the yz and zx planes and uniaxial tension at 45 • between y and z, and between z and x (z is normal direction to the sheet metal surface). Although this model can predict the yield surface and earing profile for highly anisotropic aluminum alloys, it requires many experiments and numerical solvers to identify the 18 parameters [START_REF] Barlat | Linear transfomation-based anisotropic yield functions[END_REF].

Banabic-Balan-Comsa (BBC 2000)

The new formulation was developed on the basis of the isotropic formulation proposed by Hershey. By adding weight coefficients to that model, the researchers succeeded in developing a flexible yield criterion. It has the following formulation:
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f = σ -σ 0 σ = [a(bΓ + cΨ) 2k + a(bΓ -cΨ) 2k + (1 -a)(2cΨ) 2k ] 1/2k
(2.69)

Where Ψ and Γ are functions of the second and third invariant of the fictitious deviatoric stress tensor s = L • σ. Material parameters are identified in the L transformation tensor [START_REF] Barlat | Plane stress yield function for aluminum alloy sheets-part 1: theory[END_REF] as follows:

L = C              1 β 1 β 2 0 0 0 β 1 α 1 β 3 0 0 0 β 2 β 3 α 2 0 0 0 0 0 0 γ 1 0 0 0 0 0 0 γ 2 0 0 0 0 0 0 γ 3             
(2.70) by using the pressure independence condition we can obtain: 

β 1 = α 2 -α 1 -1 2 β 2 = α 1 -α 2 -1 2 β 3 = 1 -α 1 -α 2 2 (2.
Ψ = (s γγ ) 2 -d et (s αβ ), Γ = -d et (s αβ )s γγ (2.72)
where α, β, γ take the value 1, 2. However in plane stress case, the functions takes the following form:

Ψ = s γγ , Γ = d et (s αβ ) (2.73)
For simplification, s can be expressed in terms of original stress components as follow: 

BBC 2003 Yield Criterion

This yield criterion could be thought as an extension to the yield criterion Baralat '89 Alharthi (2016). It was proved that BBC2003 and Yld2000-2d are the same although each one of them was deduced using different method [START_REF] Bibliography Barlat | On linear transformations of stress tensors for the description of plastic anisotropy[END_REF]. As the author of BBC2003 introduced new parameters in Hershy's formulation [START_REF] Banabic | An improved analytical description of orthotropy in metallic sheets[END_REF] while the author of Yld2000-2d used a linear transformation [START_REF] Barlat | Plane stress yield function for aluminum alloy sheets-part 1: theory[END_REF]. The new phenomenological model proposed by [START_REF] Banabic | An improved analytical description of orthotropy in metallic sheets[END_REF] is as follows:

f = σ -σ 0 = 0 σ = [a(Ψ + Γ) 2k + a(Ψ -Γ) 2k + (1 -a)(2Λ) 2k ] 1/2k
(2.76) where

Ψ = σ 11 + Mσ 22 2 Γ = (Nσ 11 -Pσ 22 ) 2 4 + Q 2 σ 12 σ 21 Λ = (Rσ 11 -Sσ 22 ) 2 4 + T 2 σ 12 σ 21
(2.77)

CHAPTER 2. BACKGROUND AND RELATED WORK These 8 parameters (M, N, P, Q, R, S, T, a) can be solved using 8 coupled equations that are function of the anisotropic coefficients and the yield stress values in different direction. Then, these equations can be solved numerically using Newton Raphson method or any other error minimization calibration method. The minimum number of experimental data needed for this criterion is eight; Three direction yield stresses at three angles 0 • , 45 • , 90 • , three r-values corresponding to 0 • , 45 • , 90 • orientations and r-value and yield stress for biaxial loading. The details of parameter estimation procedures are mentioned in [START_REF] Banabic | An improved analytical description of orthotropy in metallic sheets[END_REF].

In this section, material modeling of sheet metals has been investigated. In the beginning, the difference between isotropic and anisotropic material behaviour has been clarified. Then, the anisortopic material properties of sheet metals were defined and how these parameters affect the metal behaviour in different directions. Consequently, a more flexible yield criterion was required to capture the anisotropic behaviour of the metal since the traditional isotropic ones (von Mises, Tresca) would not work. Other anisotropic yield criteria were discussed in terms of their formulation, advantages and disadvantages.

Although there are more than 20 yield criteria, only 7 were selected based on their popularity in the sheet metal forming application and their relatively accurate results. This comprehensive study is the corner stone for the material library created in this PhD which include various yield criteria and hardening models. This allowed us to simulate different sheet metal forming process and obtain the most accurate results chapter (4).
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Conclusion

In this chapter, a comprehensive literature review on all the topics related and required for the modeling of thin structural problem have been discussed in detail. At the beginning, a glimpse on the mechanics and the governing equations of this problem has been presented. Then, more detailed discussion on most of the finite element technologies exist in the literature has been tackled in detail. Each one of the presented element formulation has been investigated in detail showing its advantages and limitations and the proposed techniques to overcome these limitations. Consequently, the need for an emerging element technology was inevitable, thus, solid-shell elements have been discussed showing the adapted techniques to mitigate the limitation of the standard element technologies like standard solid and conventional shell elements. These techniques include approaches such as the ASM (Assumed Strain Method) approach, EAS (Enhanced Assumed Strain) approach and ANS (Assumed Natural Strain) approach. In general, the resulting solid-shell element is a robust and combines the advantages of solid element in the sense that it only uses displacement degrees of freedom with full 3D constitutive model along with the advantages of the shell elements for dealing with thin structures using only one element in the thickness.

After discussing, the various element formulation, it was necessary to discuss the material modeling point of view of sheet metals. The models that describes metal behaviours in elastic and plastic regimes have been described in detail. Furthermore, the plasticity governing equations were investigated in detail. Finally, a comprehensive review on various anisotropic yield criteria have been introduced with the pros and cons of each one.

The following chapters will discuss in more in-depth the detailed formulations and material models used in this thesis to tackle some complex sheet metal forming problems. 

Introduction

This chapter is dedicated to discuss the finite element formulations used in this thesis. The chapter tackles the formulations of two main elements; the the mixed velocity pressure P1+/P1 (MINI element) and assumed-strain-based solid-shell element (SHB element). The former is based on the mixed formulation of velocity-pressure with bubble stabilization methodology that enhances the element performance in volumetric locking situations and is thus used extensively in metal forming processes. While the latter is based on 3D formulation with only velocities as the degrees of freedom combined with reduced integration scheme along with an assumed-strain method that mitigates most of the locking problems, which makes it very attractive and competitive for the 3D analysis of thin structures.

The formulation details of the two elements are discussed in the following sections. shape that is compatible with the proposed element formulation. However, this work is built over an existing finite element library that contains an efficient tetrahedral-based data structure. We aim here at introducing another element topology while preserving the efficiency of the data structure. Hence, a novel strategy is discussed to implement the prism SHB element. The proposed strategy allows decomposing the SHB element into a set of overlapping tetrahedral elements. The element performance has been assessed using two problems; the first is a linear displacement, small strain, and linear isotropic beam deflection problem and the second is a plate bending problem that includes geometric non-linearity.

Finally, the problem of parallel processing is discussed. The fact that the utilized software is completely based on tetrahedral elements introduced a problem in mesh partitioning needed for parallel processing calculation. A solution has been proposed that is based on a different partitioning strategy. Finally, the effectiveness of the parallel processing has been presented for one of the sheet metal forming applications.

MINI element formulation

For the MINI element, the strong form of the mechanical problem is defined by conservation equation along with the boundary conditions. Since the problem that is being tackled involves the elasto-plasticity of thin material sheets, stress decomposition into deviatoric and spherical parts seems appropriate. Considering the decomposition of the stress tensor into spherical and deviatoric parts, the mechanical problem is represented on the domain Ω and the external boundary Γ = ∂Ω, shown in figure (3.1). The boundary is decomposed to several parts depending on the type of loading applied:

Γ = Γ f r ∪ Γ t ∪ Γ v ∪ Γ c
where:

• Γ f r : Free surface boundary.

• Γ t : Imposed external traction boundary.

• Γ v : Imposed external velocity boundary.

• Γ c : Contact condition on the boundary with other tools (rigid or deformable). The system of equations representing the mechanical problem can be summarized as follows:

                               ∇ • s -∇p = f ext ∇ • v = - ṗ κ v = v 0 on ∂Ω v t = t 0 on ∂Ω t (3.1)
The first two equations represent the conservation of momentum in the system. Although, the representation used here is divided to deviatoric stress and pressure that will help later in developing the mixed formulation element approach. The weak form is based on a mixed velocity-pressure formulation. The formulation is written for test functions (v * ,p * ) as follows:

                             ´Ω s(v) : ε (v * ) d Ω -´Ω p∇ • v * d Ω -´Ω F bod y • v * d Ω -´∂Ω t t 0 • v * d Γ = 0 ´Ω p * -∇ • v - ṗ κ d Ω = 0 ∀ v * , p * ∈ V 0 × P (3.2)
where s(v) is the deviatoric stress, p is the pressure, v is the velocity vector, ε the strain rate and κ is the bulk modulus.

               V 0 = v * ∈ H 1 (Ω) 3 , v * | ∂Ω v = - → 0 sur Ω P = L 2 (Ω) (3.3) 
H 1 is the Sobolov space and L 2 is the L p space of square functions summed on Ω .

This problem has a unique solution. Although, from a numerical point of view, numerical instabilities can arise depending on the choice of the discretization space for v and P. In order to ensure the stability of this approach, the numerical formulation should pass the Brezzi condition [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]. The P1+/P1 discretization allows to pass Brezzi condition leading to a well posed discrete problem [START_REF] Fortin | Mixed and hybrid finite element methods[END_REF].

The element used for this formulation is tetrahedral linear 3D element in which both the pressure and velocity are linearly interpolated. However, the velocity interpolation is enhanced by a supplementary degree of freedom at the center of the element, called "bubble", as shown in figure (3.2) since this bubble degree of freedom is internal in the element, static condensation can be used and the overall size of the final problem is the same as P1+/P1. The following equation presents the interpolation function for both the velocity and pressure. The velocity field is divided into two parts: linear and bubble interpolation func-

tions.              v h (x) = Nbnod e k=1 N l k (x)V l k + Nbel t j =1 N b j (x)V b j p h (x) = Nbnod e k=1 N l k (x)P k (3.4)
where N l k , k = 1...Nbnod e are the shape function of the linear interpolation for the velocity and pressure, while N b j , j = 1...Nbel t is the bubble function [START_REF] Fayolle | Etude de la modélisation de la pose et de la tenue mécanique des assemblages par déformation plastique[END_REF]. The P1+/P1 element is very robust in dealing with in-compressible problem specially the bulk metal forming problems. However, when it comes to very thin structures, the element shows poor performance and accuracy specially when using single element in the thickness due to the face it is a linear solid element which exhibit sheet locking problem. Therefore, another element formulation that is more convenient for thin sheet metal application had to be implemented in order to enhance the modeling capabilities of the current library.

Solid-shell (SHB) element formulation

In this section, the general formulation of the SHB solid shell element family will be briefly 

Geometry and integration points

The geometry and location of the integration points for triangular prism SHB elements are presented in figure (3.3a). For the sake of comparison, the integration points of a classic linear prism element is presented in figure (3.3b). In this work, the SHB6 (6-node-prism) element will be implemented as it is the most efficient choice, especially since the upper and lower surfaces are triangular and will enable us to use an efficient contact analysis algorithm. The element is designed in such a way that the direction ζ is aligned in the thick- No. of the node ξ η ζ

1 0 0 -1 2 1 0 -1 3 0 1 -1 4 0 0 1 5 1 0 1 6 0 1 1 Table 3.1: Nodal coordinates of the prism SHB element
The Gauss Quadrature integration rule [START_REF] Zienkiewicz | The finite element method: its basis and fundamentals[END_REF] has been used to obtain the coordinates and associated weights of these integration points. However, it is worth noting that in this element, reduced integration is being used, and only integration points on the thickness direction are considered Wang et al. (2017c) which is very convenient for thin structures problems. Tables (3.2, 3.3) show a comparison between the positions and the weights of the integration points used for both of the fully integrated prism solid element in figure (3.3b) and the reduced integration prism solid-shell element in figure (3.3a). The full integration requires that three integration points are distributed in the triangular plane (ξ, η) and two sets of integration point in the thickness direction.

On the other hand, the reduced integration uses lower number of integration point in the plane while more integration points in the thickness. Reduced integration usually needs less computational time to calculate, but it might have a considerable impact on the element's accuracy for a specific situation. The locking phenomena contributions in the CHAPTER 3. NUMERICAL MODELING AND IMPLEMENTATION OF SOLID-SHELL ELEMENT SHB stiffness matrix can often be overestimated in displacement-based linear finite element formulations, thus using fewer integration points should often leads to more accurate results. As a result, in some circumstances, particularly with non-linear problems like plasticity or incompressible materials, reduced integration rather than full integration is preferable. The improvement in approximation to real-life behavior compensates for the small loss of accuracy [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF]. At the beginning, the reduced integration was seen as good practice to improve the accuracy of finite elements in locking situation. However, later, it was shown that there is a complete equivalence between reduced integration procedures and the mixed formulation. This equivalence was first shown by [START_REF] Malkus | Mixed finite element methods-reduced and selective integration techniques: a unification of concepts[END_REF] and later in a general context by [START_REF] Zienkiewicz | On variational formulation and its modifications for numerical solution[END_REF]. 1) 1/3 1/3 -0.91 0.24 P(2) 1/3 1/3 -0.54 0.48 P(3) 1/3 1/3 0 0.57 P(4) 1/3 1/3 0.54 0.48 P(5) 1/3 1/3 0.91 0.24 

η ξ ζ w(ξ, η, ζ) P(
η ξ ζ w(ξ, η, ζ) P(1) 0 1/2 -1/ 3 1/6 P(2) 1/2 1/2 -1/ 3 1/6 P(3) 1/2 0 -1/ 3 1/6 P(4) 0 1/2 1/ 3 1/6 P(5) 1/2 1/2 1/ 3 1/6 P(6) 1/2 0 1/ 3 1/6

Kinematics and finite element interpolation

The SHB solid shell elements are based on a 3D approach using the classical isoparametric linear shape functions. The interpolation of the coordinates x i and the displacements u i is as follows:

x i = x i I N I (ξ, η, ζ) = 6 I=1 x i I N I (ξ, η, ζ) (3.5) u i = u i I N I (ξ, η, ζ) = 6 I=1 u i I N I (ξ, η, ζ) (3.6)
where N I , u i I and x i I are the shape functions, the nodal displacements and the nodal coordinates respectively. Also, the lowercase subscript i varies from 1 to 3 representing the spatial coordinates, the uppercase subscript I varies from 1 to 6, representing the number of nodes per element.
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Strain-displacement relation and discrete gradient operator

The displacement interpolation presented in eq.( 3.6) allows us to write the displacement gradient as follows:

u i , j = u i I N I, j (3.7)
where (u i , j is ∂u i /∂u j ).

According to [START_REF] Trinh | A new assumed strain solid-shell formulation "shb6" for the six-node prismatic finite element[END_REF]; Wang et al. (2017a,b,c), The linear part of the strain tensor is defined as follows:

ε i j = 1 2 u i , j + u j ,i (3.8) 
The iso-parametric form of the shape functions N I (ξ, η, ζ) associated with the SHB element are as follows:

N(ξ, η, ζ) = 1 2              (1 -ξ)η (1 -ξ)ζ (1 -ξ)(1 -η -ζ) (1 + ξ)η (1 + ξ)ζ (1 + ξ)(1 -η -ζ)              (3.9) ζ = [0, 1]; η = [0, 1 -ζ]; ξ = [-1, 1]
These shape functions transform a regular prism in space (ξ, η, ζ) into another prism in space (x 1 , x 2 , x 3 ) or ( x, y, z). By combining the eqs. (3.5, 3.6, 3.9), we manage to develop the displacement field as a constant term, linear terms in x i and terms involving h α functions:

       u i = a 0i + a 1i x 1 + a 2i x 2 + a 3i x 3 + c 1i h 1 + c 2i h 2 i = 1, 2, 3 h 1 = ξη, h 2 = ξζ (3.10)
Evaluating eq.( 3.10) at the six element nodes, we obtain three systems of equation with six equations each:

d i = a 0i S + a 1i x 1 + a 2i x 2 + a 3i x 3 + c 1i h 1 + c 2i h 2 i = 1, 2, 3 (3.11)
where the vectors d i and x i represent the displacement and the coordinates of the element nodes:

d T i = (u i 1 , u i 2 , u i 3 , u i 4 , u i 5 , u i 6 ) x T i = (x i 1 , x i 2 , x i 3 , x i 4 , x i 5 , x i 6 ) (3.12)
and the vectors S and h α (α = 1, 2) are given by: CHAPTER 3. NUMERICAL MODELING AND IMPLEMENTATION OF SOLID-SHELL ELEMENT SHB

       S T = (1, 1, 1, 1, 1, 1) h T 1 = (-1, 0, 0, 1, 0, 0) h T 2 = (0, -1, 0, 0, 1, 0) (3.13)
In order to facilitate the definition of the discrete gradient operator B, we will define the three vectors b i as follows:

b i = N ,i (0) = ∂N ∂x i |ξ=η=ζ=0 i = 1, 2, 3 (3.14)
substituting (ξ, η, ζ) = (0, 0, 0) we will get:

b T j = N T , j (0, 0, 0) (3.15)
expressing N T , j in its components we get: with ξ = η = ζ = 0, we will get:

b T i = N T ,i (0) = ∂N 1 ∂x i ∂N 2 ∂x i ∂N 3 ∂x i ∂N 4 ∂x i ∂N 5 ∂x i ∂N 6 ∂x i |ξ=η=ζ=0 (3.16) ∂N I ∂x j = ∂N I ∂ξ ∂ξ ∂x j + ∂N I ∂η ∂η ∂x j + ∂N I ∂ζ ∂ζ ∂x j = ∂N I ∂ξ j 1 j + ∂N I ∂η j 2 j + ∂N I ∂ζ j 3 j (3.
∂N 1 ∂ξ = -1 2 η = 0 ∂N 1 ∂η = 1 2 (1 -ξ) = 1 2 ∂N 1 ∂ζ = 0 ∂N 2 ∂ξ = -1 2 ζ = 0 ∂N 2 ∂η = 0 ∂N 2 ∂ζ = 1 2 (1 -ξ) = 1 2 ∂N 3 ∂ξ = -1 2 (1 -η -ζ) = -1 2 ∂N 3 ∂η = -1 2 (1 -ξ) = -1 2 ∂N 3 ∂ζ = -1 2 (1 -ξ) = -1 2 ∂N 4 ∂ξ = 1 2 η = 0 ∂N 4 ∂η = 1 2 (1 + ξ) = 1 2 ∂N 4 ∂ζ = 0 ∂N 5 ∂ξ = 1 2 ζ = 0 ∂N 5 ∂η = 0 ∂N 5 ∂ζ = 1 2 (1 + ξ) = 1 2 ∂N 6 ∂ξ = 1 2 (1 -η -ζ) = 1 2 ∂N 6 ∂η = -1 2 (1 + ξ) = -1 2 ∂N 6 ∂ζ = -1 2 (1 + ξ) = -1 2 (3.19)
finally we have:

b T i = j 1i j 2i j 3i     0 0 -1 2 0 0 1 2 1 2 0 -1 2 1 2 0 -1 2 0 1 2 -1 2 0 1 2 -1 2     (3.20)
Recall that these vectors b i represent the simplest form of the reduced integrated dis-CHAPTER 3. NUMERICAL MODELING AND IMPLEMENTATION OF SOLID-SHELL ELEMENT SHB crete gradient introduced by [START_REF] Hallquist | Theoretical manual for dyna3d[END_REF] in the case of the hexahedron with eight nodes and based on the evaluation of derivatives of iso-parametric shape functions at the origin of the reference element (ξ, η, ζ).

The following orthogonality conditions can be verified:

                   b T i • h α = 0 b T i • S = 0 b T i • x j = δ i j h T α • S = 0 h T α • h β = 2δ αβ (3.21)
with i , j = 1, 2, 3 and α, β = 1, 2

Using these constraints, the unknowns constants presented in eq.( 3.11) can be deduced as follows:

b T j • d i = a 0i b T j • S + a 1i b T j • x 1 + a 2i b T j • x 2 + a 3i b T j • x 3 + c 1i b T j • h 1 + c 2i b T j • h 2 = 0 + a 1i b T j • x 1 + a 2i b T j • x 2 + a 3i b T j • x 3 + 0 = a j i h T 1 • d i = a 0i h T 1 • S + a 1i h T 1 • x 1 + a 2i h T 1 • x 2 + a 3i h T 1 • x 3 + c 1i h T 1 • h 1 + c 2i h T 1 • h 2 = 0 + h T 1 • x j b T j • d i + 2c 1i h T 2 • d i = a 0i h T 2 • S + a 1i h T 2 • x 1 + a 2i h T 2 • x 2 + a 3i h T 2 • x 3 + c 1i h T 2 • h 1 + c 2i h T 2 • h 2 = 0 + h T 2 • x j b T j • d i + 2c 2i (3.22)    a j i = b T j • d i c αi = γ T α • d i (3.23)
where

γ α = 1 2 h α - 3 j =1 h T α • x j b j α = 1, 2 (3.24)
Finally the displacement gradient is obtained as follows:

u i , j = b T j + α h α, j γ T α • d i = b T j + h α, j γ T α • d i (3.25)
The discrete gradient operator B defining the relationship between the strain field ∇ s (u) and the nodal displacement field d is given by: 

∇ s (u) = B • d (3.
(u) =              u x,x u y,y u z,z u x,y + u y,x u y,z + u z,y u x,z + u z,x              , d =     d 1 d 2 d 3     (3.27)
The detailed derivation of B is defined as follows:

B =              b T x + h α,x γ T α 0 0 0 b T y + h α,y γ T α 0 0 0 b T z + h α,z γ T α b T y + h α,y γ T α b T x + h α,x γ T α 0 0 b T z + h α,z γ T α b T y + h α,y γ T α b T z + h α,z γ T α 0 b T x + h α,x γ T α              (3.28)
This makes it possible to separate each of the deformation modes in order to enhance the ones which are really activated in order to get more accurate deformation predictions.

Hu-Washizu variational principle

The Hu-Washizu variational principle for nonlinear solid mechanics was introduced by Fish and [START_REF] Fish | Elements with embedded localization zones for large deformation problems[END_REF]. This three-field variational principle reads:

δπ( u, ε, σ) = ˆΩe δε T • σd Ω + δ ˆΩe σT • ∇ s ( u) -ε d Ω -δ ḋT • f ext = 0 (3.29)
where δ denotes a variation, u the velocity field, ε the assumed-strain rate, σ the interpolated stress ,σ the stress field evaluated by constitutive model, ḋ the nodal velocities, f ext the external nodal forces and ∇ s ( u) the symmetric part of the velocity gradient.

The assumed-strain method used in the formulation of the SHB elements is based on the simplified form of Hu-Washizu principle introduced by Simo and Hughes in [START_REF] Simo | On the variational foundations of assumed strain methods[END_REF]. In this form the interpolated stress is assumed to be orthogonal to the difference between the symmetric part of the velocity gradient and the assumed strain rate which gives:

δπ( u, ε) = ˆΩe δ εT • σd Ω -δ uT • f ext = 0 (3.30)
The assumed-strain rate ε, represented by a six-component vector is expressed in terms CHAPTER 3. NUMERICAL MODELING AND IMPLEMENTATION OF SOLID-SHELL ELEMENT SHB of a B matrix, projected from the classical discrete gradient B defined by: ε

(x, t ) = B(x) • ḋ(t ) (3.31)
The projected assumed strain matrix B(x) is used to overcome the locking problem by manipulating some of the shear components of strain tensor [START_REF] Trinh | A new assumed strain solid-shell formulation "shb6" for the six-node prismatic finite element[END_REF]. The Operator B is first separated into two parts B 1 and B 2 . The matrix B 1 contains the gradients associated with the in-plane strains and the normal strain, while B 2 contains the gradients associated with the transverse shear strains.

B =              b T 1 + h α,x 1 γ T α 0 0 0 b T 2 + h α,x 2 γ T α 0 0 0 b T 3 + h α,x 3 γ T α b T 2 + h α,x 2 γ T α b T 1 + h α,x 1 γ T α 0 0 0 0 0 0 0              +              0 0 0 0 0 0 0 0 0 0 0 0 b T 3 + h α,x 3 γ T α 0 b T 1 + h α,x 1 γ T α 0 b T 3 + h α,x 3 γ T α b T 2 + h α,x 2 γ T α             
The locking found in the element comes from the transverse shears. We're going to look for an integration scheme that allows this part of the energy to be reduced. Therefore, we want to control each component entering the transverse shear energy. Given the form of the matrix B we have 12 non-zero terms that intervene in the deformation. They will be controlled by the introduction of the parameter ω in

B 2 B2 = ω              0 0 0 0 0 0 0 0 0 0 0 0 b T 3 + h α,x 3 γ T α 0 b T 1 + h α,x 1 γ T α 0 b T 3 + h α,x 3 γ T α b T 2 + h α,x 2 γ T α              B = B 1 + B2 (3.32) B2 = ωB 2 (3.33)
B 1 contains the components corresponding to the normal strains along with membrane strains, while B 2 contains the components corresponding to the transverse shear strains and ω is scaling factor. Also, it is worth noting that the value of ω is determined to be 0.5 by numerical experimentation as mentioned in [START_REF] Trinh | A new assumed strain solid-shell formulation "shb6" for the six-node prismatic finite element[END_REF].

Inserting Eq. (3.31) in the variational principle Eq. (3.30). The element stiffness matrix and force vector can be defined:

CHAPTER 3. NUMERICAL MODELING AND IMPLEMENTATION OF SOLID-SHELL ELEMENT SHB δu T • ˆΩe BT • σd Ω -f ex t = 0 (3.34)
and since δu T can be chosen arbitrarily, the previous equation is equivalent to:

f i nt = f ext (3.35) f i nt = ˆΩe BT • σd Ω (3.36
)

K e = ˆΩe BT • C ep • Bd Ω (3.37)
C ep is the elastic-plastic tangent modulus associated with the material behavior law.

refer to [START_REF] Trinh | A new assumed strain solid-shell formulation "shb6" for the six-node prismatic finite element[END_REF] for more details on the formulation of this element.

This 6-node prismatic element, "SHB6", has 5 integration points which are on the same line following the thickness. Their coordinates (ξ, η, ζ) and their integration weights are given in table (3.2). The stiffness matrix K e is defined as follows:

K e = n j =1 w P j J P j B T P j • C • B P j
where n is the number of integration points, J P j is the jacobian calculated at the integration points P j .

Definition of local frames

The SHB element is designed to work in large displacements and rotations. Nevertheless, the wide spectrum of applications that can be simulated using this element like sheet metal forming. These applications require the definition of elasto-plastic constitutive models along with anisotropic yield criteria that requires special coordinate system definitions (the details of elasto-plastic modeling is in chapter ( 4)). Therefore, sev- Figure (3.4) shows the different local frames required for the formulation of SHB element along with the transformation matrices that transform from and to the global coordinate system. The first local frame denoted "element frame", is attached to the mid-plane associated with each of the integration points of the element. The fourth-order elasticity tensor is defined in this frame and then transformed to the global frame. The second local frame is denoted "material frame", which is introduced to define the anisotropic plastic behaviour in case of metallic materials. In this frame, the time integration of the elasto-plastic constitutive model is carried out at each integration point. The transfor-CHAPTER 3. NUMERICAL MODELING AND IMPLEMENTATION OF SOLID-SHELL ELEMENT SHB

Constitutive modeling

The elastic constitutive laws used in the solid-shell element (SHB) is quite different from the one used in an ordinary 3D solid element. Similar to the work presented in Abed-Meraim and Combescure (2009a); [START_REF] Legay | Elastoplastic stability analysis of shells using the physically stabilized finite element shb8ps[END_REF], an improved planestress type constitutive law is adopted, in order to enhance the element's immunity with regard to thickness locking. This specific law, which decouples the response in terms of in-plane and transverse normal stress versus normal strain, is given by:

C ele =              λ + 2µ λ 0 0 0 0 λ λ + 2µ 0 0 0 0 0 0 E 0 0 0 0 0 0 µ 0 0 0 0 0 0 µ 0 0 0 0 0 0 µ              with λ = Ev 1 -v 2 , µ = E 2(1 + v) (3.39)
where E is Young's modulus and ν is the Poisson's ratio.

It is worth noting that these material properties are defined with respect to the local physical coordinate system, in which xy-plane corresponds to the element mid-plane defined by ζ-coordinate of the considered integration point, see figure (3.4). This constitutive matrix avoids the locking problems without the need to use plane-stress assumption.

The modified stiffness matrix allows the deformation in the thickness to be taken into consideration.

On the other hand, MINI element presented in section (3.2) does not consider any modifications in the elasticity matrix. Thus, the standard elasticity matrix used with MINI element is as follow: 

C ele =              λ + 2µ λ λ 0 0 0 λ λ + 2µ λ 0 0 0 λ λ λ + 2µ 0 0 0 0 0 0 µ 0 0 0 0 0 0 µ 0 0 0 0 0 0 µ              with λ = Ev (1 + v)(1 -2v) , µ = E 2(1 + v) (3.

SHB element implementation in a tetrahedral element based finite element software

The main strength of our finite element code is related to its capability to handle large strain conditions involved in material forming processes. This is mainly possible thanks to its robust and reliable remeshing and contact algorithms. In order to take advantage of these capabilities and taking into account the current structure of the code, it is mandatory to stick with tetrahedral element topology. Therefore, the idea of dividing one prism element into six overlapping tetrahedral element is an efficient way to solve this problem.

The overlapping of elements is crucial so that all the components of the original SHB stiffness matrix could be represented in at least one of the generated tetrahedral elements.

Considering one prism element that has to be divided into six overlapping tetrahedral elements as shown in figure (3.5). Each tetrahedral element and its corresponding nodes are listed in table (3.5). This division algorithm insures that there is at least one tetrahedral element that contains two nodes permutations of the original prism element and consequently all prism stiffness matrix components are represented in the resulting tetrahedral Table 3.5: Tetrahedral elements produced from division and their corresponding nodes.

The original prism stiffness matrix is presented in Eq (3.41). the subscript of the components represent the two nodes that this component links, while the superscript represents all tetrahedral elements that this component exists in. For example, taking the component K 123 12 , this component links between the first and second nodes in the original prism element. The nodes 1 and 2 also exists in the tetrahedral elements number (1,2,3), refer to table (3.5). Following this logic, we are able to identify which tetrahedral elements contain each of the components of the original prism stiffness matrix and dividing it to the six matrices of the tetrahedral elements. It is worth noting that each of the components of the original prism stiffness matrix should be divided by the number of the tetrahedral elements that happen to contain it so that the final assembled matrix of the tetrahedral elements would be the same as the original one. Finally, the new stiffness matrices for the tetrahedral elements can be constructed as in Eq (3.42). This methodology guarantees that each prism stiffness matrix can be represented as a set of tetrahedral stiffness matrices in such away that all the original components are represented and the final assembled matrix is the same as the original one. 

             K 1234
       K 11 4 K 12 3 K 13 3 K 14 2 K 22 4 K 23 3 K 24 2 K 33 4 K 34 2 K 44 4        el ement 2 :        K 11 4 K 12 3 K 13 3 K 15 2 K 22 4 K 23 3 K 25 2 K 33 4 K 35 2 K 55 4        el ement 3 :        K 11 4 K 12 3 K 13 3 K 16 2 K 22 4 K 23 3 K 26 2 K 33 4 K 36 2 K 66 4        el ement 4 :        K 11 4 K 14 2 K 15 2 K 16 2 K 44 4 K 45 3 K 46 3 K 55 4 K 56 3 K 66 4        el ement 5 :        K 22 4 K 24 2 K 25 2 K 26 2 K 44 4 K 45 3 K 46 3 K 55 4 K 56 3 K 66 4        el ement 6 :        K 33 4 K 34 2 K 35 2 K 36 2 K 44 4 K 45 3 K 46 3 K 55 4 K 56 3 K 66 4        (3.42)

Validation examples of SHB element implementation

The following two tests are performed to assess the accuracy of the SHB element in bending dominant problems. The two problems are linear elastic problems, though, the second problem exhibits geometric non-linearity.

Elastic cantilever beam subjected to out-of-plane bending forces

The first linear test is an elastic cantilever beam subjected to tip loading. However, the problem is subjected to displacement control loading instead of force control. The geometric dimensions along with the material parameters are given in figure (3.6). The analytical solution of this problem is F r e f = 4N. Mesh convergence study has been carried out to determine the optimum mesh size. The results of SHB element are presented in table (3.6), also, the normalized force with respect to reference force. Moreover, the same test has been carried out with MINI element(standard element used in Forge ® ) in table(3.7) to showcase the accuracy of this element and the number of elements needed to obtain reasonable results. ear elements, the results given by the SHB element are closer to the solutions of [START_REF] Li | An 8-node brick element with mixed formulation for large deformation analyses[END_REF] and [START_REF] Nguyen | Development of solid-shell elements for large deformation simulation and springback prediction[END_REF] than those given by the ABAQUS prismatic solid element (C3D6). It is worth noting that SHB element results approach the analytical solution at a moderate loading (F < 100) where displacements and strains in the plate remain small.

Mesh (Prism) F (N) F

Hence numerical results from large strain version should match the analytical solution.

With increasing loading, geometrically nonlinear effects become significant, this is due to membrane effects which makes the plate stiffer. It explains why all numerical results are higher than the analytical one which does not take into account the membrane effect.

Parallel processing

One of the corner stones of modern finite element codes is the ability to work on multiple processors which reduces time of simulation dramatically. This is achieved by sub- The problem is that some of these codes are based on tetrahedral elements, this presents some implications in the partitioning approach adopted by these codes. In our case, the code uses algorithm to carry out partitioning for tetrahedral elements only. This will cause some problems when the algorithm tries to construct the geometry of the prism out of the existing tetrahedral elements which are not complete figure (3.10).

The proposed solution is to use an external partitioning library (Metis Karypis and Kumar (1998) in our case) to create mesh partitions that contains prism elements instead of tetrahedral elements figure (3.11). In this way, including prism element mesh in a tetrahedral based finite element code is feasible without the need to modify the core partitioning algorithm. The implementation of the prism multiprocessing allowed us to solve larger problems and to reduce the overall computation time dramatically. This is very critical in tackling complex sheet metal forming problem specially the multi-physics problems that will be discussed in chapter(6).

Validation of parallel processing technique

The developed parallel processing technique has been used in most of the simulations carried out in this thesis and discussed in details in chapter (4). Nevertheless the results of one application is presented here to showcase the power of parallel processing on reducing simulation time.

Figure (3.12) shows the partitioning of Deep drawing problem on 4 processors along CHAPTER 3. NUMERICAL MODELING AND IMPLEMENTATION OF SOLID-SHELL ELEMENT SHB the final deformed shape, the detailed results for this problem is presented in chapter (4).

table (3.8) shows the difference in computation time when using single processor and 4

processors. The computation time suggest that using 4 processors have reduced the computation to the half approximately. This feature facilitates undergoing bigger problem and more complex geometries that might require large number of elements and allows us to have accurate the results in a reasonable time. We would have expected that the computation will run four times faster when running on four time as many processors. However, this is not always the case, since there is always an overhead that slows down the computation time. 

Conclusion

In this chapter, the formulations of two different elements have been presented. First, the formulation of the assumed-strain-based element (SHB element) has been addressed.

Then, a mixed velocity-pressure formulation element (MINI element) has been presented

as the standard element used in Forge ® . The two elements have been implemented in finite element software Forge ® . The implementation details of the proposed solid-shell element have been presented. The suggested prismatic solid-shell element introduced some challenges in the implementation inside a tetrahedral-based finite element software. These challenges included; geometric inconsistency between the proposed element and the data structure adopted in the finite element software, and parallel processing inconsistency.

The geometric inconsistency problem was solved by adopting a prism division algorithm that was developed to overcome this problem. The element formulation and implementation were tested in two simple test cases that included geometric and material nonlinearity in bending dominant problems. The SHB element showed good performance in comparison with other similar elements with a low number of elements and one element in the thickness.

The parallel processing problem was due to the standard partitioning algorithm that is based on the tetrahedral element instead of the prism element. This problem was mitigated by utilizing a prism-based partitioner and connecting it to the finite element code.

The power of parallel processing was presented in one of the complex applications in which multiple processors were used against one single processor and the calculation time was recorded to show the huge impact of parallel processing. Ces résultats sont encourageants pour aborder des problèmes plus complexes comme l'application de formage électromagnétique présentée au chapitre( 5)

Introduction

In this chapter, sheet metal forming applications are presented. In order to tackle forming applications of sheet metal, the elasto-plastic constitutive models should be presented and elaborated in more detail. Moreover, anisotropic plastic behaviour is modeled and developed in detail due to the anisotropic plastic nature that sheet metals exhibit.

The first part of this section presents the governing equations of the elasto-plastic model used for metal forming applications. The model is enhanced to incorporate different anisortopic yield criteria along with various hardening models to facilitate the simulation of sheet metals in different forming applications. Then, the implementation methodology adopted in this work is presented in detail. Afterwards, some problems that include elaso-plastic behaviour are presented to validate the presented model and its implementation.

The rest of the chapter tackles the unconstrained bending and the deep drawing applications. The first application is presented to asses the feasibility of using the element implementation with double sided contact and plasticity while the second application is a complex application problem that contains plastic anisotropy and double sided contact.

Throughout this section, the results of SHB element are compared with the results of the original element of Forge ® (MINI) and reference results from Abaqus using elements that are specially designed for thin structure problems like C3D8I element(8-node three-dimension continuum element with incompatible modes). The standard element of Forge ® (MINI) is a tetrahedral solid element based on the mixed velocity-pressure formulation with P1+/P1 interpolation scheme. In all presented applications, using solid shell element instead of MINI element reduces the computational cost of the simulation dramatically as lower number of SHB elements are needed in thickness to obtain accurate results.

Constitutive modeling of elasto-plasticity with Anisotropic yield criteria

The elements presented earlier are all coupled with various constitutive models, this facilitates dealing with a broad range of applications specially in sheets of metallic materials.

In this section, different constitutive models are presented, this includes, isotropic elasticity, isotropic and anisotropic plasticity along with various hardening models.

Elasto-plastic constitutive equations for metals

The element formulation used in this thesis is extended to the framework of anisotropic plastic constitutive equations. The general constitutive equations are presented in this sections for the sake of generality. The constitutive equations are written in a material coordinate system to ensure the objectivity with respect to the material rotation Abed- or hardening models apart from the finite element code. Then, the library can be coupled with any finite element code to carry out simulations refer to section (4.3).

The general algorithm used in solving plasticity models is radial return mapping [START_REF] Simo | Computational inelasticity[END_REF]. The development of tangent matrix requires the definition of some plasticity concepts:

Yield function

the yield surface equation is represented as:

f (σ, X, σ Y ) = σ e (σ n+1 -X n+1 (ε pl n+1 )) -σ Y (ε pl n+1 ) = 0 (4.1)
where f (σ, X, σ Y ) is the yield function, σ e is equivalent stress, ε pl is the equivalent plastic strain and σ Y is the isotropic hardening function that is driven by ε pl . X((ε pl )) is the kinematic hardening known as the back stress tensor which is a function in plastic strain tensor ε pl .
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Associative plastic flow rule

The plastic strain tensor increment ∆ε p is expressed as

∆ε p = ∆λ ∂ f ∂σ n+1 = ∆λ nn+1 (4.
2)

The direction of the plastic strain increment is specified by the direction nn+1 which is defined by the derivative of the yield function f (σ, X, σ Y ) with respect to the stress components σ at increment n+1.

From the additive strain decomposition, the elastic strain tensor increment is defined:

∆ε e = ∆ε -∆ε p (4.3)
where ∆ε, ∆ε e , ∆ε P are the second order tensors of total strain, elastic strain and plastic strain increments respectively. From the elastic constitutive law, the stress tensor increment can be represented as

σ n+1 = σ n + C e ∆ε e = σ n + C e ∆ε -∆λC e nn+1 = σ t r -∆λC e nn+1 (4.4)
where C e is the elasticity matrix and σ t r is the trial stress tensor.

Elasto-plastic tangent modulus

The elasto-plastic tangent modulus is the tensor relating the perturbed stress tensor increment δ∆σ and perturbed strain tensor increment δ∆ε. This can be achieved by inducing perturbation in the eqs.( 4.1) and ( 4.4) After a lengthy simplifications that can be found in [START_REF] Alfano | A general approach to the evaluation of consistent tangent operators for rate-independent elastoplasticity[END_REF], the elasto-plastic consistent tangent matrix can be found as:

C ep = C e -∆λC e d 2 σσ f F -1 C e - [C e -∆λC e (d 2 σσ f )F -1 (C e + H ki n )] n ⊗ [C e -∆λC e (d 2 σσ f )F -1 (C e + H ki n )] n [(C e + H ki n ) -∆λ(C e + H ki n )(d 2 σσ f )F -1 (C e + H ki n )] n • n + h i so (4.5)
Where C ep is the elasto-plastic consistent tangent modulus, ∆λ is the plastic multiplier.

d 2 σσ f is the second derivative of the yield function (Hessian of the yield function) and H ki n , h i so are the kinematic hardening fourth hardening tensor and isotropic hardening modulus respectively. where they are as follows:
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H ki n = ∂∆X ∂∆ε p h i so = ∂σ Y ∂ε pl (4.6)
Where ε pl is the equivalent plastic strain. Finally F -1 can be derived as:

F -1 = (I + ∆λ(C e + H ki n )d 2 σσ f ) -1 (4.7)
where I is the fourth order unit tensor. From the previous equations, it can be shown that the derivation of the consistent tangent modulus and the stress integration are feasible if the first and second derivative of the equivalent yield function are defined Takizawa et al.

(2018).

Anisotropic yield criteria

In this thesis, two anisotropic yield criteria will be tackled; Hill'48 Hill (1948) and nonquadratic Yld2004-18P [START_REF] Barlat | Linear transfomation-based anisotropic yield functions[END_REF] which is more accurate in modeling highly anisotropic aluminum alloys.

Hill'48 yield function

Hill [START_REF] Hill | A theory of the yielding and plastic flow of anisotropic metals[END_REF] is a quadratic yield function for plastic anisotropy. It is considered to be an extension to von Mises yield function and can be presented in this form:

f = F (σ 11 -σ 22 ) 2 + G (σ 22 -σ 33 ) 2 + H (σ 11 -σ 33 ) 2 +2Lσ 2 12 + 2Mσ 2 23 + 2Nσ 2 13 -Y ≤ 0 (4.8)
where F, G, H, L, M and N are the Hill anisotropy coefficients.

The quadratic Hill'48 yield criterion is unable to capture the anisotropy at different angles with respect to the rolling direction other than 0 0 , 45 0 and 90 0 . Due to the smaller number of anisotropy coefficients, Hill'48 yield surface is not expected to be very accurate especially in simulating highly anisotropic aluminum alloys.

Barlat Yld2004-18P yield function

The yield function proposed by [START_REF] Barlat | Linear transfomation-based anisotropic yield functions[END_REF] is considered to be one of the most accurate criteria in predicating the plastic behavior of anisotropic material. Yld2004-18P is able to capture different anisotropic behavior since complex yielding loci can be obtained. It is based on two linear transformations of the Cauchy stress tensor:

CHAPTER 4. ELASTO-PLASTIC SHEET METAL SIMULATION : APPLICATION TO DEEP DRAWING PROCESS f = S(1) 1 -S(2) 1 a + S(1) 1 -S(2) 2 a + S(1) 1 -S(2) 3 a + S(1) 2 -S(2) 1 a + S(1) 2 -S(2) 2 a + S(1) 2 -S(2) 3 a + S(1) 3 -S(2) 1 a + S(1) 3 -S(2) 2 a + S(1) 3 -S(2) 3 a -4Y a ≤ 0 (4.9)
where S(1) 1 , S(1) 2 and S(1) 3 are the principal values of the first linearly transformed stress tensor S(1) , while S(2) 1 , S(2) 2 and S(2) 3 are the principal values of the second linearly transformed stress tensor S(2) . Mathematically:

S(k) = L (k) S, wher e k = 1, 2 (4.10) 
where S = Tσ is the deviatoric part of the Cauchy stress, defined using the transformation matrix T, which is expressed below using voigt's notation:

T = 1 3              2 -1 -1 0 0 0 -1 2 -1 0 0 0 -1 -1 2 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 0 0 0 0 3              with σ =                          σ xx σ y y σ zz σ x y σ xz σ y z                          (4.11) 
The two transformation matrices L (1) and L (2) used for the two linear transformations contain 18 anisotropy coefficients, and their expressions are:

L (1) =              0 -c 1 -c 2 0 0 0 -c 3 0 -c 4 0 0 0 -c 5 -c 6 0 0 0 0 0 0 0 c 7 0 0 0 0 0 0 c 8 0 0 0 0 0 0 c 9              (4.12)
and

L (2) =              0 -c 10 -c 11 0 0 0 -c 12 0 -c 13 0 0 0 -c 14 -c 15 0 0 0 0 0 0 0 c 16 0 0 0 0 0 0 c 17 0 0 0 0 0 0 c 18              (4.13)
In order to determine the coefficients for anisotropic materials, an error function is
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where p represents the number of experimental flow stresses and q represents the number of experimental r1 values available. In the above equation, the superscript denotes whether the corresponding value is experimental or predicted. Each term in the error function is weighted by w. It is worth noting that these parameters could also be obtained by using other inverse identification techniques.

Hardening models

Numerous hardening models can be incorporated in the currently developed general elastoplastic framework. For each hardening model, h i so and H ki n representing isotropic hardening and kinematic hardening respectively should be defined. In this work, only isotropic hardening models are used for the problems discussed later. Many isotropic hardening models have been implemented including: linear, swift, Voce and Ludwick. Table (4.1) presents various isotropic hardening models. These hardening models have been implemented and tested in MPCP.

Hardening

Perfectly plastic Linear Swift Voce Ludwig

σ Y σ 0 σ 0 + Kε pl K ε 0 + εpl N σ 0 + K 1 -e -Nε pl σ 0 + Kε N pl h i so = d σ Y /d εpl 0 K NK 1 N σ Y N-1 N N (σ 0 + K -σ Y ) NK 1 N (σ Y -σ 0 ) N-1 N Table 4
.1: Definition of the commonly used isotropic hardening models and their evolution laws

Where K, N, ε 0 are material constants that can be identified from experiment.

Numerical implementation of the constitutive models

The adopted approach for modeling elasto-placitiy based on the radial return mapping algorithm is widely used in the literature De Borst et al. ( 2012); [START_REF] Simo | Computational inelasticity[END_REF] and showed good results for predicting plastic behavior. The anisotropic elasto-plastic constitutive models are implemented in a standalone C++ library developed at CEMEF called MPCP. This library facilitates the development of any new yield criteria or hardening model regardless the finite element code. Then, the library can be coupled with any finite element code to carry out complex simulations. The stress integration and derivation of the consistent tangent, the yield function and its first and second order partial differentials are required for each of the anisotropic yield criteria. Moreover, various isotropic and kinematic hardening models can be integrated with different yield criteria. Therefore, FlowRule, IsotropicHardening, KinematicHardening are all virtual classes which have multiple classes that implement various yield function and calculates its first and second derivatives, also they implement different isotropic hardening and kinematic hardening models.

On the other hand, other numerical procedures are common and independent of the type of yield function. Thus, the material model can be unified as the common part of the numerical procedure. This facilities the integration with any external FE software.

Figure (4.1) shows the framework of MPCP. The center of the structure is a core program, which is the common part of the numerical procedure in elasto-plastic calculations. This core program is called from FE code through an interface. Then the core module will call the ConstitutiveModel, FlowRule, IsotropicHardening and KinematicHardening modules.

Each one will only call the subclass that is responsible for a specific type of yield criterion and hardening models. Then, all the calculations are assembled in the ElastoViscoPlasticity class which calculates, the stresses and tangent matrix for the next step and return it to the FE software. 

Elastic-plastic bending of a cantilever beam

In the second validation test, an elastic-plastic cantilever beam under bending load is investigated. Figure (4.4) and table (4.3) show the geometry, boundary conditions and material properties of the beam bending problem respectively Abed-Meraim and Combescure (2009a). The problem is solved under two conditions: first, pure elastic problem where no plasticity is considered and only geometric non-linearities are considered in this problem. Second, perfect plasticity is considered, in which both of the material and geometric non-linearities are considered. One remark to take into consideration, is the different curve shapes between the results of C3D8I element and SHB element shown in the black oval represented in fig-

ure (4.6). The transition between elastic domain and plastic domain is sharper in case of C3D8I element than in SHB element. One of the main reasons for this observation is the element shape, which is hexahedral in case of C3D8I element and prism in SHB. Hexahedral elements are thought to be more flexible than prism element given the fact that more degrees of freedom are available in 8-node hexahedral element than in 6-node prism element. That is the reason that more C3D8I element reach plasticity causing the transition between elasticity and plasticity to be sharper. In order to justify this, the same simulation has been repeated in Abaqus but with different element shape, in this case prism element (C3D6). the results of this element are shown to be stiffer than SHB and C3D8I element and the transition between elasticity and plasticity looks smoother than in C3D8I, which justifies our claim of the effect of the element shape. 

Unconstrained cylindrical bending

The benchmark of unconstrained cylindrical bending problem using SHB element is investigated in detail by [START_REF] Mahmoud | An efficient multiphysics solid shell based finite element approach for modeling thin sheet metal forming processes[END_REF]. It was first introduced as a benchmark problem in Numisheet 2002, then it has been used in many references Cardoso et al.

(2007); de [START_REF] De Sousa | Unconstrained springback behavior of al-mg-si sheets for different sitting times[END_REF][START_REF] Bibliography Meinders | A sensitivity analysis on the springback behavior of the unconstrained bending problem[END_REF]; [START_REF] Salahouelhadj | Application of the continuum shell finite element shb8ps to sheet forming simulation using an extended large strain anisotropic elastic-plastic formulation[END_REF] as a benchmark to assess the performance and accuracy of different elements. This benchmark involves bending-dominated deformation since there is no blank holder. Moreover, the problem contains geometric and material non-linearities along with contact boundary conditions. Figure (4.7) shows the schematic view of the problem, also table (4.5) shows the dimensions and the geometric parameters of the problem. Aluminum Alloy 6111-T4 is selected for this problem. The material is considered as elastic-plastic with isotropic hardening following swift law given by Eq. ( 4.15). Table (4.6) shows the material properties and hardening law parameters of the Aluminum Alloy 6111-T4 along with Coloumb friction law coefficient that describes the interaction between the die , the punch and the sheet. 

σ Y = K 0 + ε pl n (4.15)
where σ y is the yield stress, ε pl is the equivalent plastic strain and 0 initial plastic strain.

This problem was crucial to verify that contact algorithm was not perturbed by the new element implementation in Forge ® . It also showcases the performance of SHB ele- The experimental results were published by Numisheet 2002 conference and Abaqus C3D8I element results were obtained from the literature [START_REF] Salahouelhadj | Application of the continuum shell finite element shb8ps to sheet forming simulation using an extended large strain anisotropic elastic-plastic formulation[END_REF]. On the other hand, the problem was simulated in Forge ® using SHB element with low number of elements ≈ 1600 elements2 and also a low number number of MINI elements ≈ 5000 elements. The results show good agreement between the experimental results, C3D8I element and SHB element. However, the results of MINI element are much higher than the reference results. These results match our expectations as the MINI element is known to be stiffer element and does not work well in bending-dominant problems. The solid element of Abaqus is very close to the results of SHB. However, the number of elements used for Abaqus element is higher than the elements used for SHB.

It was also noticed that some perturbations take place in the numerical results at the end of simulation (highlighted in the black rectangle in figure (4.8)). These perturbations DRAWING PROCESS Figure 4.9: deformed shape of unconstrained cylindrical bending problem are expected to be due to the effect of the friction since the friction forces become dominant at the end of the simulation when a large surface of area of the sheet gets in contact with the die surface, refer to figure(4.9). Overall, the preliminary results of SHB element are promising for more in-depth investigations with more complex problems. Table (4.7) shows the CPU time for the different elements used in the unconstrained bending problem. Though, the computation time of Abaqus simulation is not mentioned as it was taken from [START_REF] Salahouelhadj | Application of the continuum shell finite element shb8ps to sheet forming simulation using an extended large strain anisotropic elastic-plastic formulation[END_REF] and the author did not run computation time analysis.

SHB-1574 MINI-4722 CPU time 718 (s) 435 (s) Table 4.7: Computation time of unconstrained bending problem using different element and mesh sizes

Deep Drawing Process

The deep drawing problem is considered one of the most complex sheet metal forming processes. This is due to the fact that it contains all possible non-linearities including: geometric non-linearity; material non-linearity (plasticity); contact non-linearity (double sided contact. Moreover, the earing profile phenomenon that appears due to the anisotropic nature of sheet metals which requires accurate anisotropic yield criteria and hardening model to accurately predict the earing profile. Therefore, the deep drawing problem has been selected to be studied in detail in this subsection. The problem will be solved using different element and material models and the results will be compared to the experimental benchmark results. The performance of SHB element is assessed through the simulation of deep drawing process of cylindrical cup [START_REF] Mahmoud | An efficient multiphysics solid shell based finite element approach for modeling thin sheet metal forming processes[END_REF].

The problem involves anisotropic plasticity and double sided contact. The results of the proposed element are compared to the results of Abaqus element (C3D8I) presented in [START_REF] Younas | Finite element simulation of sheet metal forming processes using non-quadratic anisotropic plasticity models and solid-shell finite elements[END_REF].

Description of the finite element model

The geometry and dimensions of the problem is presented in figure (4.10). The material of the sheet is an AA2090-T3 aluminum alloy, with an initial thickness of 1.6 mm. During the simulation, a constant holder force of 22.2kN is applied, and the coulomb friction coefficient associated with the contact between the sheet and the forming tools is taken equal to 0.1. Also, Swift hardening law Eq. ( 4.16) was used to account for the hardening behavior. Table (4.8) summarizes the material parameters for Hill's criterion. While, table(4.9)

presents the material parameters for Yld2004-18P criterion. Then, the same elements were used to simulate the problem with Hill'48 yield criterion along with experimental results provided by [START_REF] Yoon | Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function[END_REF]. Figure (4.13) shows the results of the predicted cup height using Hill'48 criterion. The results show the formation of the earing profile which is expected due to the anisotropic nature of Hill'48 criterion. Comparing the cup heights of the three simulated elements, both of the results of SHB element and Abaqus element are closer to the experimental results, while MINI element is slightly higher than the other two elements. Quantitative difference between the values of the SHB element and Abaqus element is presented in table (4.10) that shows that the mean difference is low.

σ Y = K 0 + εpl n (4.16) F G H L M N 0.
Finally, the same simulation was repeated for the more complicated Yld2004-18P criterion figure (4.14). The SHB element was used in the simulation and the results show a slight deviation with respect to Abaqus element table (4.10 ). This deviation could be due to many reasons. First, the two compared elements have different formulation, nevertheless that Abaqus element is a hexahedral element that contains more dofs and consequently would be more accurate. Second, the contact and friction implementations are different in both software which could greatly affect the results. Nevertheless, the results of SHB element seem to be closer to the experimental results than the results of Abaqus element (C3D8I) which ensures the validity of the SHB element results.

From another prospective, mesh study on MINI element has been carried out to un- In order to justify the use of SHB element in such problems, computation time analysis has been carried out. Table (4.11) shows the CPU time for the case with Yld-2004 criterion for SHB element, MINI element with coarse and fine mesh. The results show that using MINI element with relatively low number of element is faster than using SHB element, however the accuracy of the results are not comparable. 

Conclusion

The capabilities of SHB element have been verified throughout several complex benchmark problems involving different types of non-linearities: geometric, material and contact. The benchmarks showed good agreement of the results of SHB with respect to experimental results or similar numerical results of more computationally expensive elements like C3D8I element. On the other hand, the classical alternative of using a very refined tetrahedral mesh coupled with a P1+/P1 formulation (MINI element) is less efficient and less accurate compared to the newly proposed approach.

The unconstrained cylindrical bending problem has been investigated. SHB element shows a good agreement with the experimental results for the punch force. With relatively low mesh density, SHB performs as good as C3D8I which is more computationally expensive solid element used in Abaqus.

Moreover, the Deep drawing process has been simulated using the SHB element. This problem is challenging since it introduces anisotropy and double sided contact. The problem is solved using different anisotropic criteria and using different elements and mesh configurations. The takeaway from the results is that SHB element is very convenient for such problems since it can predict more accurate results using less elements.

MINI element shows good performance with more dense mesh which consequently affected the simulation time dramatically.

Overall, the solid-shell element has shown more accurate results using one element in the thickness than the MINI element in sheet metal forming applications. These results are encouraging to tackle more complex problems like electromagnetic forming application presented in chapter( 5) FORMING PROCESS

Résumé

Ce chapitre présente une application à un procédé multiphysique (magnétique/mécanique) de formage par impulsion magnétique de tôles. La modélisation de ce procédé de formage nécessite une interaction entre un solveur électromagnétique pour résoudre les équations de Maxwell, avec un solveur mécanique pour calculer la déformation de la tôle mince.

Une analyse approfondie des procédés de formage par impulsions magnétiques directes 

Introduction

Electromagnetic forming (EMF) is a process in which an intense electromagnetic pulse is applied directly or indirectly on an electrical conductive material causing plastic deformations. It is a high speed forming process whose strain rates, ranging from 10 3 s -1 to 10 4 s -1 . [START_REF] Psyk | Electromagnetic forming-a review[END_REF] discussed in details the advantages of high speed forming processes over the conventional forming processes for example, no contact between the tool and the workpiece, thus no lubrication is needed and improved formability with respect to the conventional forming processes. Additionally, [START_REF] Priem | On the forming of metallic parts through electromagnetic and electrohydraulic processing[END_REF] presented two high speed forming processes. The first is the electromagnetic forming process which requires the workpiece to be electrically conductive. While the second is the electrohydraulic forming which is exempt from this material constraint as the deformation is generated by a shock wave in a fluid through electric discharge in between the electrodes.

In this process, An intense magnetic field generated by a coil is applied on an adjacent electrical conductive workpiece. The induced current along with the applied magnetic field produce Lorentz body forces on the workpiece. These forces supply additional momentum and energy to the workpiece causing deformations [START_REF] Bibliography Psyk | Integration of electromagnetic calibration into the deep drawing process of an industrial demonstrator part[END_REF]. [START_REF] Unger | Strategies for 3d simulation of electromagnetic forming processes[END_REF] stated that the electromagnetic part of the system is highly dependant on the spatio-temporal evolution of the deformation of the workpiece. Therefore, designing this process remains cumbersome as it deals with strongly coupled multi-physics phenomena. Thus, the design process is often carried out with the support of computational models. Recently, many endeavours have been made to simulate such complicated problems. Most of these approaches were mainly restricted to axisymmetric geometries or small deformation problems. [START_REF] Fenton | Modeling of electromagnetically formed sheet metal[END_REF] tackled the simulation problem of magnetic pulse welding, also, [START_REF] Imbert | Numerical modeling of an electromagnetic corner fill operation[END_REF] worked on the simulation of corner fill operation process, though both of them worked on axisymmetric geometries. Moreover, [START_REF] Schinnerl | Multigrid methods for the three-dimensional simulation of nonlinear magnetomechanical systems[END_REF] tackled the simulation of 3D magnetic pulse forming but in small deformations.

Three dimensional modeling along with plastic deformations are necessary to simulate real world metal forming process using electromagnetic forming. [START_REF] Unger | Strategies for 3d simulation of electromagnetic forming processes[END_REF] developed a model for 3D simulation of electromagnetic forming using a solid-shell element [START_REF] Reese | A large deformation solid-shell concept based on reduced integration with hourglass stabilization[END_REF] for the mechanical solution to reduce the computational cost. Unger This chapter focuses on the study of one application of the EMF processes which is the magnetic pulse forming (MPF) of thin sheets. This process can be used in either direct forming used for highly conductive materials or indirect forming for less or nonconductive materials. [START_REF] Reese | On a new finite element technology for electromagnetic metal forming processes[END_REF] introduced the solution of electromagnetic forming problem using axisymmetric model. This model is very common for geometrically axisymmetric workpieces, however, it will not work with other workpiece geometries. We have chosen to use 3D approach to model the problem for some reasons. First, the approaches developed in this work can be general purpose and can solve any 3D problems in the future. Second, the ultimate goal is to include the effect of plastic anisotropy in the future simulations which is more accurate in 3D finite elements. Ultimately, the aim of the current approach is to solve general 3D problems considering either isotropic constitutive models or anisotropic models. Herein, The simulations is carried out using different element types: MINI element [START_REF] Arnold | A stable finite element for the stokes equations[END_REF] and solid-shell element [START_REF] Trinh | A new assumed strain solid-shell formulation "shb6" for the six-node prismatic finite element[END_REF].

This solid-shell element was developed and modified to fit magnetic pulse forming applications Mahmoud et al. (2021a) and [START_REF] Mahmoud | Modeling of thin sheet forming processes by combining solid-shell finite element with isotropic elastoviscoplastic model[END_REF]. Using solid-shell element instead of MINI element reduces the computational cost of the simulation dramatically.

Finally various challenges were encountered during simulating this problem and numerous solutions have been carried out to overcome these problems. This includes the development of a stop criterion for the electromagnetic model and using adaptive remeshing for the electromagnetic domain.

The chapter is divided as follows: Section(5.2) discusses the modeling of the electromagnetic problem and the mechanical problem in brief along with a glimpse on the implementation strategy adopted for this simulations, Section (5.3) tackles the description of the magnetic pulse forming application, its finite element description, the results and their physical interpretation. Finally, section (5.4) sheds the light on the concluding remarks.

Modeling of the magnetic pulse forming process

Multi-physics simulations, including electromagnetic simulations, can be very computationally expensive. Additionally, design processes that include multiple simulation iterations and optimization processes require high computational power to be carried out.

Thus, it is important to select the most appropriate numerical method to solve these problems in a reasonable time while maintaining good accuracy.

A numerical toolbox based on finite elements methods for the electromagnetic forming applications has been developed to solve electromagnetic forming problems (Bay FORMING PROCESS et al., 2014;Bay and Zapata, 2014). This toolbox is a coupling between Forge ® -for the mechanical modeling of large deformation-and MATELEC-which solves the electromagnetic wave propagation problem-based on the Maxwell's equations. The following subsections explain the electromagnetic and mechanical models used in the simulation of the magnetic pulse forming process.

Electromagnetic model

Maxwell's equations and the potential formulation

The electromagnetic solver is based on the well-known Maxwell's electromagnetic field equations: Eq. ( 5.2): (Maxwell Ampere) represents the creation of a magnetic field due to a running electric current using quasistatic approximation Eq. ( 5.3): (Maxwell gauss) represents the conservation of electric charge in the material.

∇ ∇ ∇ × E = - ∂B ∂t (5.1) ∇ ∇ ∇ × H = J (5.2) ∇ ∇ ∇ • D = 0 (5.3) ∇ ∇ ∇ • B = 0 (5.
Eq. ( 5.4): Represents the conservation of the magnetic induction.

Although, a reduced form of Maxwell-gauss Eq. ( 5.3) is used in which ρ e = 0, since there is no fixed electric charge to be considered in this problem. Moreover, a reduced form of Maxwell-Ampere Eq. ( 5.2) is used in the current applications of metal forming, since electromagnetic wave propagation may be neglected [START_REF] Svendsen | Continuum thermodynamic formulation of models for electromagnetic thermoinelastic solids with application in electromagnetic metal forming[END_REF]; thus, ( ∂D ∂t = 0). Then, the model is completed with the electromagnetic constitutive relations:

B = µH ; J = 1 ρ E E (5.5)
where µ is magnetic permeability and ρ E the electrical resistivity. These material param-CHAPTER 5. MULTI-PHYSICS SIMULATIONS : APPLICATION TO ELECTROMAGNETIC FORMING PROCESS eters depend on the temperature and µ depends also on the intensity of the magnetic field ||H||.

In many cases, it is more convenient to express this system of equations using potential formulation (A,φ) [START_REF] Chari | Three-dimensional vector potential analysis for machine field problems[END_REF] where A is the magnetic vector potential function and φ is the scalar potential function that can be represented by the following equations:

∇ ∇ ∇ • B = 0 ⇒ B = ∇ ∇ ∇ × A (5.6)
Combining Eq. ( 5.1) with Eq. ( 5.6):

∇ ∇ ∇ × E = - ∂B ∂t ⇒ ∇ ∇ ∇ × E = - ∂ ∂t (∇ ∇ ∇ × A) ⇒ ∇ ∇ ∇ × E + ∂A ∂t = 0 (5.7)
Since for any scalar function φ, ∇ ∇ ∇ × (-∇ ∇ ∇φ) = 0 holds, then

⇒ E + ∂A ∂t = -∇ ∇ ∇φ ⇒ E = -∇ ∇ ∇φ - ∂A ∂t (5.8)
Finally, after substitution of (A, φ) in Maxwell's equation and considering law of the charge conservation, the final equations can be written as follows:

1 ρ E ∂A ∂t + ∇ ∇ ∇ × 1 µ H ∇ ∇ ∇ × (A) = - 1 ρ E ∇ ∇ ∇(φ) (5.9) ∇ ∇ ∇ • ( 1 ρ E ∇ ∇ ∇φ) + ∇ ∇ ∇ • 1 ρ E ∂ t A = 0 (5.10)
This is a four variables (φ, A x , A y , A z ) four equations system instead of six variables for a double vector field formulation. Equations (5.10) is discretized in space by Nedelec elements [START_REF] Nédélec | A new family of mixed finite elements in R 3[END_REF] and A is solved at the edges while φ is solved at the nodes.

Weak formulation and discritizatoin of electromagnetic problem

The electromagnetic problem consists of a single domain, as indicated in figure (5.1). The [START_REF] Biro | On the use of the magnetic vector potential in the finiteelement analysis of three-dimensional eddy currents[END_REF].

Hence, the equation( 5.10) is reduced to:

∇ ∇ ∇ • ( 1 ρ E ∇ ∇ ∇φ) = 0 (5.12)
Therefore, the weak form of the electromagnetic differential equations in Eq. ( 5.10) will take the following form:

Ψ, 1 ρ E ∂ t A + ∇ ∇ ∇ × 1 µ H ∇ ∇ ∇ × A + 1 ρ E ∇ ∇ ∇φ = 0 〈ϕ, ∇ ∇ ∇ • ( 1 ρ E ∇ ∇ ∇φ)〉 = 0 (5.13)
for all Ψ ∈ H curl and ϕ ∈ H 1 0 . Where, Space of functions vanishing at the boundary H 1 0 (Ω) ⊂ H 1 (Ω).

H 1 0 (Ω) = ϕ ∈ H 1 (Ω)/ϕ = 0 ∈ ∂Ω (5.14)
Space of vector functions with square-integrable curl.

H curl (Ω) = Ψ ∈ L 2 (Ω) 3 /∇ ∇ ∇ × Ψ ∈ L 2 (Ω) 3 (5.15)
Inner products: The following notation for the inner product of the spaces will allow simplifying the notation for the weak forms.

ˆΩ f • g d Ω = 〈 f , g 〉 (5.16)
ALVES ZAPATA (2016) developed the detailed mathematical model and considered natural conditions to reach the final weak form:

〈Ψ, σ∂ t A〉 + ∇ ∇ ∇ × Ψ, 1 µ ∇ ∇ ∇ × A + 〈Ψ, 1 ρ E ∇ ∇ ∇φ〉 = 0 〈∇ ∇ ∇ϕ, 1 ρ E ∇ ∇ ∇φ〉 = 0
(5.17)

CHAPTER 5. MULTI-PHYSICS SIMULATIONS : APPLICATION TO ELECTROMAGNETIC FORMING PROCESS Afterwards, the approximate fields solutions representing the finite elements discretization is defined as: 5.18) where ϕ n (x) are the nodal shape functions and Ψ d (x) are the edge shape functions (Nedelec elements). ALVES ZAPATA (2016) addresses in more details the interpolation functions and finite element formulation of this problem.

φ(t , x) ≈ φ h (t , x) = n φ n (t )ϕ n (x) A(t , x) ≈ A h (t , x) = d a d (t )Ψ d (x) ( 
Finally, Lorentz forces can be computed from the potential formulation as follows:

F l or ent z = J × B F l or ent z = 1 ρ E - ∂A ∂t × (∇ ∇ ∇ × A) (5.19)
The Lorentz force is dependant only on A, which can be computed directly after solving for A.

Solid mechanics model

The second part of the simulation is related to solid mechanics simulation in which the electromagnetic forces are transferred to the metal part, causing deformation. In this work, two different formulations are considered in the simulation results: a mixed pressurevelocity element formulation (MINI) element [START_REF] Arnold | A stable finite element for the stokes equations[END_REF] and an enhanced assumed strain element formulation [START_REF] Trinh | A new assumed strain solid-shell formulation "shb6" for the six-node prismatic finite element[END_REF]. The detailed formulation for both of MINI element and SHB element are presented in chapter (3).

Electromagnetic-Mechanical Coupling algorithm

Figure (5.2) shows a schematic view of the coupling strategy between the electromagnetic solver and mechanical solver used to solve the MPF problem. A weak coupling is used for the electromagnetic and mechanical problems. Therefore, each solver (Matelec, Forge ® ) solves its own physical problem separately, independently of the other solver. After every time step, the two solvers communicate the corresponding data and variables between each other. This is known as a loosely-coupled scheme [START_REF] Alves | Magnetic pulse forming: Simulation and experiments for high-speed forming processes[END_REF]. Moreover, this approach allows adapting the mesh separately for each solver separately. This is very important specially in the electromagnetic solver in which the air surrounding the moving parts should be remeshed. Moreover, the workpiece can be remeshed in the mechanical solver when it undergoes very high deformations. Mesh : Different mesh sizes and element types have been used to simulate the mechanical problem and the results were compared. In the results section, each curve will present the element type and the number of elements used for these results. Mesh study CHAPTER 5. MULTI-PHYSICS SIMULATIONS : APPLICATION TO ELECTROMAGNETIC FORMING PROCESS has been carried out to investigate the difference in results using different mesh sizes in section (5.3.5.3) and the most appropriate mesh sizes are used in the results sections. ( 5.20) shows the constitutive law used and table (5.2) shows the corresponding constants.

Magnetic pulse forming case study

σ Y = A + B¯ n pl 1 + C ln ˙ pl ˙ 0 (5.20)
where σ Y is the yield stress, ¯ pl is equivalent plastic strain, ˙ pl plastic strain rate and ˙ 0 initial plastic strain rate. is the only part in the mechanical solver. Thus, there is no contact condition added in this simulation. However, there is a bilateral sticking condition between the green ring manipulator shown in figure (5.5) and the workpiece. This induces fixed boundary conditions on the circumference of the part. On the other hand, the indirect forming contains two metal parts: aluminum and steel. There is a sliding contact condition between aluminum and steel. Table (5.3) summarizes all the boundary conditions adopted in this simulation.

Results overview

This section is fully dedicated to discuss the results of the MPF problem in the utmost details possible. The following subsections will tackle two basic types of the MPF process: piece is formed by MPF directly. whereas the latter, an aluminum disc is placed between the coil and the steel workpiece since Al has a much higher electrical conductivity than steel and will enhance the steel material forming [START_REF] Alves | Magnetic pulse forming: Simulation and experiments for high-speed forming processes[END_REF]. Many tests have been carried out either by direct forming or indirect forming.

Direct forming

In this subsection, the results of the direct forming process are presented. Two different workpieces were tested under direct forming: 0.5 mm thick Al and 1 mm thick Steel.

Equivalent strains of both Steel and Al at 7kV and 3kV are shown in figures (5.6a,5.6b) respectively. The equivalent strain gives some insights of the local deformation of the workpiece. It is obvious that the strain distribution in the Aluminum part is more homogeneous than in the steel case. This is justified by the fact that Aluminum is a much better electrical conductor than steel which enhances the generated Lorentz forces causing distributed deformation. Whereas in steel, the deformation is concentrated at the center. 

Indirect forming

The indirect forming process results will be the main focus of this sections. More in-depth investigation will be tackled in this subsection. Figure (5.9) shows the equivalent strain of the workpiece in the indirect forming case either for 5kV or 7kV. The equivalent strain in the indirect forming is more homogeneous than that shown in the direct forming case due to using aluminum workpiece underneath the steel workpiece to enhance the forming process. Likewise, numerical simulations are carried out for the indirect case using two Figures (5.10,5.11) show the displacement profiles for SHB, MINI elements. The overall conclusion of these results is that the numerical results for both elements are very close even though the mesh sizes are different.

Overall, the results of the recently implemented element SHB showed very good agreement with its counterpart MINI element. These results are very encouraging to use this element in such complicated simulations as it proved its precision and efficiency. Though, more investigation is required to better compare the two elements which will be introduced in the following section. FORMING PROCESS 

Simulation time

The aim of implementing the new element SHB is to use a special element for bendingdominated problems and get accurate results with a lower number of elements. The use of this element showed to be very effective as the simulation time was greatly reduced. Finding a way to reduce the simulation time of the magnetic pulse forming is tremendously important especially in the optimization processes. Optimization iterations have to be run to optimize the shape of the workpiece, study the effect of the workpieces thickness and carry out material parameter identification process. This is considered as a crucial milestone in the simulation of MPF processes and similar problems.

Discussion on electromagnetic forming process

This section is dedicated to introduce a better insight of the results along with discussing other results that explain the physical sense of the process. Nevertheless, some challenges have been encountered during simulating the problem. Therefore, some of these These problems include determining the final forming time, remeshing of the electromagnetic domain mesh and the effect of the mechanical mesh on the results. In the following subsections, the energy notion will be used to explain some of the difficulties that have been encountered during solving the problem. Therefore, it is important to carry out an energy analysis of the process.

The initial energy input in the electromagnetic system given by eq.(5.21): 5.21) where E i n is the input energy, C el e is the electric capacitance of the coil and V is the voltage applied to the coil.

E i n = 1 2 • C el e • V 2 ( 
This energy is equal to the total energy in the system:

E t ot al = E el ec + E t her m + E Meca E el ec = 0 E t her m = 0 (5.22)
In our case, we are not considering E el ec which is the dissipated energy due to electric resistance of the coil. Also, E t her m is neglected which is the dissipated thermal energy in the coil and in the mechanical system. This leaves only E Meca which is represented by : CHAPTER 5. MULTI-PHYSICS SIMULATIONS : APPLICATION TO ELECTROMAGNETIC FORMING PROCESS

E Meca = E el + E pl + E ki n E el = ˆσ : εel d t E pl = ˆσ : εpl d t E ki n = 1 2 ρ • v(x, t ) : v(x, t ) (5.23)
where E el , E pl , E ki n are the elastic strain energy, plastic strain energy and kinetic energy respectively.

Final forming time

One of the main issues with all these models is determining the final forming time of the simulation. At the beginning, the simulation time was set to 150µs but the exact termination time of the process could not be determined and by setting very small value, we got transient displacement profile, not the final one. The oscillations which are observed in the red square for figure (5.15a) may be due to a balance between the elastic energy -for which the oscillations can be observed on figure (5.15b) -and the kinetic energy.

Remeshing of electromagnetic domain mesh

At the beginning, the numerical simulations were carried out using a very fine mesh in the electromagnetic domain as shown in figure (5.16) since remeshing takes more computation time. Though, the results were not very satisfactory.

The remeshing algorithm checks the deformation of the workpiece in the mechanical simulation and remeshes the surrounding of the workpiece in the electromagnetic simulation. Once the elements around the workpiece is highly deformed, the remesher refines these element to maintain good mesh quality. This technique ensures that the mesh around the workpiece is always fine and clean and thus guarantees correct calculations of the electromagnetic field and Lorentz forces preventing the loss of energy. Figure (5.17) shows the electromagnetic mesh with activating remeshing before and after remeshing process.

Therefore, all the results in the previous subsections are obtained with remeshing activated. Although, this increased the total simulation time, the obtained results can be energy due to Lorentz force and thermal energy in the system and some loss as electrical energy in the coil. 

Effect of mechanical mesh refinement

One of the questions that was intriguing while studying this process was the effect of the mechanical mesh on the accuracy of the results. Thus, the indirect forming process has been simulated again with a coarser MINI element mesh and its results have been compared to both the MINI element fine mesh and the SHB mesh. Figure (5.18) shows the displacement profile of the final deformed profiles for the previously mentioned elements and mesh sizes. The overall observation on the results is that the displacement profiles converge towards two close but slightly distinct solutions. The solution converges quite fast for both kind of elements. We can notice that in the SHB element provides slightly stiffer results than the MINI element but however the solutions are too close to draw a global conclusion. In order to make sure that we have converged to mesh independent results, the simulation was repeated using more SHB elements ≈ 3600 elements as shown in the black curve. The difference between the red and the black curves are really small meaning that the results obtained with the lower mesh size can be trusted.

Thus, We decided to pay specific attention to the mechanical energy in the three cases. Figure (5.19) shows the total mechanical energy for the three mesh cases. It is fairly noticeable that the energy for the coarse SHB mesh is the lowest and the one for the with fine MINI element mesh energy is approaching it with minute difference. However, the energy for the coarse MINI element mesh has a higher value for the same deformation profilethus showing a stiffness reduction as the MINI element mesh gets finer. 

Conclusion

An efficient approach for the simulation of magnetic pulse forming process of thin sheet metals was conducted through combining an electromagnetic solver, based on Maxwell's equations, with a mechanical solver, based on the conservation of momentum equations.

In-depth analysis direct and indirect magnetic pulse forming processes was carried out.

Tetrahedral element (MINI) and solid-shell prism element were employed to solve the mechanical problem and quantitative comparisons were carried out to assess their performance in such applications.

The overall results showed that the accuracy obtained with a coarse SHB element approach (low number of elements) was comparable to that of a fine MINI mesh technique (high number of elements). Finally, a computational cost study was carried out and demonstrated a higher computational efficiency for the SHB element since a smaller number of elements could be used while maintaining comparable accuracy to that of the MINI element. These results are very promising for the application of SHB element not only in MPF (Magnetic Pulse Forming) application, but also in other processes.

Many challenges were encountered during the simulation of this multi-physics problem and methods to overcome them were devised. First, determining the final forming time, it was challenging to determine the exact final simulation time since the deformation takes place in the order of magnitude of milliseconds. Consequently, a criterion based on measuring the change in the mechanical energy variation was adopted to find the termination time at which the energy variation is minimum. Second, the electromagnetic mesh had to be adjusted to consider the new deformation since the electromagnetic solution is highly dependent on the spatio-temporal evolution of the deformation of the workpiece in the mechanical solver. Hence, a remeshing strategy was utilized for the electromagnetic mesh.

Chapter 6

Conclusions and Perspectives

Conclusions

This work aimed at developing an efficient approach for mechanical and multi-physics modeling of thin sheet metal forming processes. In order to achieve this goal, a linear prismatic solid shell (SHB) element has been selected and coupled with a tetrahedralbased finite element software to simulate typical sheet metal forming processes along with multi-physics thin sheet metal forming processes. This element formulation involves a combination of reduced integration scheme with EAS (Enhanced Assumed Strain) method and specific projection to eliminate locking phenomena. The prismatic shape element is divided into several tetrahedral elements using a prism division algorithm. We selected this approach as tetrahedral elements are widely used in the domain of metal forming due to their flexibility in remeshing non-structured meshes. This allows handling large deformations while maintaining a good mesh quality. Moreover, multi-physics simulations require interaction with other solvers such as electromagnetic solver which are often based on tetrahedral elements. Thus, the transfer of fields and variables between different solvers would be simpler if both solvers use the same element topology. In addition to the element implementation, the constitutive modeling library has been extended

to incorporate various complex anisotropic yield criteria. This enhanced the modeling capability of our software to predict more accurate results specially in the problems that include thin sheet metals with highly anisotropic plastic behaviours.

The capabilities of SHB element have been verified throughout several validation examples involving different types of non-linearities: geometric, material and contact. The validation examples showed good agreement of the results of SHB with respect to experimental results or similar numerical results of other elements like C3D8I element in Abaqus. On the other hand, the classical alternative of using a very refined tetrahedral mesh coupled with a P1+/P1 formulation (MINI element) was less efficient and less accurate compared to the newly proposed approach.
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The unconstrained cylindrical bending problem has also been investigated. SHB element showed a good agreement with the experimental results for the punch force. With relatively low mesh density, SHB performs as good as C3D8I which is more computationally expensive solid element used in Abaqus.

Deep drawing process has been simulated using the SHB element. This problem is challenging since it introduces anisotropy and double sided contact. The problem was solved using different anisotropic criteria and using different elements and mesh configurations. The takeaway from the results is that SHB element is very convenient for such problems since it can predict more accurate results using less elements. MINI element showed good performance with more dense mesh which consequently affected the simulation time dramatically.

Finally, An efficient approach for the simulation of magnetic pulse forming process of thin sheet metals has been elaborated through combining an electromagnetic solver, relying on Maxwell's equations, with a mechanical solver, based on the conservation of momentum equations. In-depth analysis of the types of the magnetic pulse forming processes was carried out, namely direct forming and indirect forming. Tetrahedral element (MINI) and solid-shell prism element were employed to solve the mechanical problem and quantitative comparisons were carried out to assess their performance in such applications. The overall results showed that the accuracy obtained with a low resolution SHB approach (low number of elements) was comparable to that of a high resolution MINI element based technique (high number of elements). Finally, a computational cost study was carried out and demonstrated a higher computational efficiency for the SHB element since a smaller number of elements could be used while maintaining comparable accuracy to that of the MINI element. These results are very promising and they attract more interest in studying the performance of SHB element not only in MPF application, but also in other applications. Many challenges were encountered during the simulation of this multi-physics problem and methods to overcome them were devised. First, the final forming time, it was very challenging to determine the exact final simulation time since the deformation takes place in the order of magnitude of milliseconds. Consequently, a criteria based on measuring the change in the mechanical energy variation was adopted to find the termination time at which the energy variation is minimum. Second, the electromagnetic mesh had to be adjusted to consider the new deformation since the electromagnetic solution is highly dependent on the spatio-temporal evolution of the deformation of the work-piece in the mechanical solver. Hence, a remeshing strategy was utilized for the electromagnetic mesh.

Remeshing Algorithm

Motivation of remeshing

Remeshing is a technique in which the mesh of the workpiece is being changed during the simulation process in order to increase the simulation accuracy and efficiency. The remeshing is triggered when a certain condition is fulfilled for example, when the equivalent plastic strain or other field metrics (stress, strains) overpasses a certain threshold in the elements of the mesh. Additionally, the remeshing can be triggered based on some geometric criteria, like mesh quality and aspect ratio, etc. This gives an indication that the elements are over deformed and need to be remeshed to reshape it or even to resize it so that the simulation results are always accurate. The technical details of the remeshing process is a lengthy topic and there are a lot of research ongoing in this field [START_REF] Díez | A unified approach to remeshing strategies for finite element h-adaptivity[END_REF]; [START_REF] Bibliography Habraken | An automatic remeshing technique for finite element simulation of forming processes[END_REF]; [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF]. The remeshing technique shines in the situations where localized deformations and concentrated loads are applied. In such situations, keeping a fine mesh where the deformation is localised and coarse mesh elsewhere is the most optimised technique to reduce computation time and maintain accurate results. One of the applications where remeshing is necessary is the flow forming process shown in figure (6.1). The roller tool keeps moving over the blank to shape it and meanwhile it causes localised deformations, thus, the mesh should be refined where the roller tool passes and kept coarse far from the tool. The remeshing problem is considered one of the challenges that need to be solved in this project. Forge remesher is based on tetrahedral elements in 3D and triangle elements in 2D. Implementing a new remesher that is based purely on prism element is not possible. Therefore, the most appropriate way to mitigate this problem is to try to use the already implemented remesher to generate prism compatible meshes after remesh-CHAPTER 6. CONCLUSIONS AND PERSPECTIVES ing in a classical way. The approach to solve this problem in explained in the following subsection. Herein, we are going to explain all the steps in more details:

Implementation approach

1. The first step of the remeshing process is to make sure that one master surface of the workpiece is identifiable (lower/upper). This will help us later on to extrude the new triangular mesh of this surface to the prism-element mesh. Initially, The master surface can be identified by calculating the normal vector of all the external triangle elements and collect the elements corresponding to a normal vector in particular direction that represent the lower surface for example.
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Once, the triangular elements corresponding to the lower surface have been identified, they are tagged with a parameter that has a value of 1 for these elements and 0 elsewhere. Figure(6.3) shows the identified triangular elements and the value of the tagging parameter that has a value of 1 for the lower surface only and 0 everywhere else. This parameter field is used to identify the master (lower) surface after the workpiece is deformed. 2. 3D tetrahedral-based remeshing is employed to create a new tetrahedral mesh. The remeshing step is always accompanied with transfer of field step, in which all the fields (stresses, strains) and other variables including the tagging parameter are interpolated from the old mesh to the new mesh.

3. Once the tagging parameter values are transported to the new mesh, the same lower surface (with the new mesh structure can be identified whose tagging parameter ≈ 1). In this way, the lower surface has been remeshed and identified with its new mesh and ready to generate the prism elements.

4. The new triangular mesh generated for the lower surface and identified in the previous step are extruded in the thickness direction (perpendicular on the surface) with the thickness value to create prism elements from the triangular elements. The thickness at each node is calculated from the previous step (mesh) and transferred to the nodes of the new mesh.

5. The prism division algorithm explained earlier in the thesis is applied to the prism elements so that they can be incorporated in the finite element software.

6. Finally, the finite element solver is called to read the newly generated elements and run the required simulations. The purpose of this test case is to show that the proposed remeshing technique is working well and also to compare the output mesh with the regular tetrahedral-based remeshing technique. Given the fact that it is hard to isolate a single element and visualize it in the mesh, the results will be presented as the mesh of the front and back surfaces of the plate.

• In the case of tetrahedral-based remesher, the new mesh consists of pure tetrahedral elements. therefore, there is no constraint on the front and back 2D mesh to be identical. This can be proven by the discrepancy in the mesh of the front and back surfaces shown in figure(6.5). The proposed remeshing technique, although it looks conceptually simple, its implementation was extremely complicated in the current framework. It required many modification in various parts of the regular remeshing module so that the whole process could be well implemented. Thus, it has taken a long time in order to be implemented correctly in the current framework.

Despite it has been implemented and tested for simple test case, it has not been included in the main sections of the thesis since it lacks more extensive testing and solving complex applications. Therefore, it was decided to make it as a part of the future work since it opens the horizon for solving a multitude of applications with improved accuracy and efficiency.
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 2 Figure(2.1) shows a solid body in its initial configuration Ω O . Then, this body is transformed to the current configuration Ω t after applying some loading over time t Considering one material point on the initial configuration M o with respect to the global Cartesian coordinates O(x, y, z), the position of M o is given by X O x o , y o , z o . Though, the position vector of the same material point on the current configuration at time t is
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 22 Figure 2.2: Surface normal and applied load at point M
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 24 Figure 2.4: Rectangular beam subjected to pure bending conditions
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 25 Figure 2.5: Possible deformation modes of beam bending for low order finite element
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 26 Figure 2.6: Illustration of the degenerated shell element Peng (2017)

  [START_REF] Alves De Sousa | A new one-point quadrature enhanced assumed strain (eas) BIBLIOGRAPHY solid-shell element with multiple integration points along thickness-part ii: nonlinear applications[END_REF]; Bouclier et al. (2013a,b); Cho et al. (1998); Flores (2013); Hauptmann and Schweizerhof (1998); Moreira et al. (2010); Reese (2007); Sze and Yao

  Figure2.8: The interpolated transverse shear strains in ANS method[START_REF] Nguyen | Development of solid-shell elements for large deformation simulation and springback prediction[END_REF] 
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 29 Figure2.9: Stress strain curve of aluminum material[START_REF] Banabic | Sheet metal forming processes: constitutive modelling and numerical simulation[END_REF] 
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 2 Figure2.10: Evolution of isotropic and kinematic hardening with loading[START_REF] Simo | Computational inelasticity[END_REF] 
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 2 Figure 2.11: Associated and Non-associated flow rule[START_REF] Pradeau | Anisotropic behaviour and fracture for sheet metals under associated and non-associated flow plasticity[END_REF] 
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 2 Figure2.12: Orthotropy axes of the rolled sheet metal[START_REF] Banabic | Sheet metal forming processes: constitutive modelling and numerical simulation[END_REF] 
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 2 Figure2.13: Tensile specimen cut at angle θ with respect toRD Banabic (2010) 

Figure 2 .

 2 Figure 2.14: Variation of Lankford coefficient in the surface of an AA5182-0 sheet metal Banabic (2010)

Figure 2 .

 2 Figure 2.15: Logarithmic strains measured on the specimen during the disk compression test[START_REF] Barlat | A six-component yield function for anisotropic materials[END_REF] 

  metals exhibit. The effect of the anisotropy becomes obvious in sheet metal deep drawing process. Due to the anisotropy of the material the edge of the cup is not smooth and have some wrinkles (earings) as shown in figure(2.16). This behaviour can not be expected using isotropic yield criteria and anisotropic yield criteria has to be used to predict the right number and position of these earings[START_REF] Yoon | Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function[END_REF].

Figure 2 .

 2 Figure 2.16: Deep drawing simulation for AA2090-T3 showing the earing occurring due to anisotropy[START_REF] Yoon | Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function[END_REF] 

Figure( 2

 2 Figure(2.17) shows the representation of the general Hosford criterion along with Tresca and von Mises yield criteria on the principal stresses σ 1 , σ 2 plane in the case of plane stress condition.

Figure 2 . 17 :

 217 Figure2.17: Representation of Tresca, Von mises and Hosford yield criteria[START_REF] Pradeau | Anisotropic behaviour and fracture for sheet metals under associated and non-associated flow plasticity[END_REF] 

  71) so we end up having 6 parameters from the transformation [C, α 1 , α 2 , γ 1 , γ 2 , γ 3 ] and another 4 parameters from the yield function itself [a, b, c, k] in 3D case. While in plane stress case, only 4 parameters from the transformation [C, α 1 , α 2 , γ 3 ] and the rest 3 parameters [a,b,c] are the same. So the functions Ψ and Γ can be defined in terms of the transformed deviatoric stress components in 3D as follows:

s

  11 = d σ 11 + eσ 22 s 22 = eσ 11 + f σ 22 s 33 = -(d + e)σ 11 -(e + f )σ 22 s 12 = g σ 12 s 13 = 0 (2.74) CHAPTER 2. BACKGROUND AND RELATED WORK Then Ψ and Γ can be defined in terms of the original stress components as follows: Ψ = Mσ 11 + Nσ 22 , Γ = (Pσ 11 + Qσ 22 ) 2 + Rσ 12 σ 21 (2.75)whereM = d+e, N = e+f, P = d -e 2 , Q = e-f 2 , R = g 2The parameters (a, b, c, d, e, f, g) are the components of the Karafillis-Boyce linear transformation L[START_REF] Karafillis | A general anisotropic yield criterion using bounds and a transformation weighting tensor[END_REF]. The identification procedure of the parameters can be carried out using different experimental data in different directions with respect to rolling direction RD. In this Case, to solve for the 7 material parameters. The solution procedure is mentioned in detail in[START_REF] Barlat | Plane stress yield function for aluminum alloy sheets-part 1: theory[END_REF].This yield criterion enhances the accuracy of Barlat'89 yield criteria as it improves flexibility to Barlat'89 yield function by introducing 2 more parameters in the yield function which allows better representation of the plastic behaviour of sheet metal. It can describe accurately the yield surface and it can predict the planar distribution of the uniaxial yield stress and the uniaxial coefficient of anisotropy.
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 34 and integration points . . . . . . . . . . . . . . . . . . . . . 3.3.2 Kinematics and finite element interpolation . . . . . . . . . . . . . . 3.3.3 Strain-displacement relation and discrete gradient operator . . . . 3.3.4 Hu-Washizu variational principle . . . . . . . . . . . . . . . . . . . . 3.3.5 Definition of local frames . . . . . . . . . . . . . . . . . . . . . . . . . Constitutive modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 SHB element implementation in a tetrahedral element based finite element software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.5.1 Validation examples of SHB element implementation . . . . . . . . 3.5.1.1 Elastic cantilever beam subjected to out-of-plane bending forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1.2 Simply supported elastic square plate . . . . . . . . . . . . of parallel processing technique . . . . . . . . . . . . . . . , les formulations de deux éléments différents sont présentées. La première formulation est l'élément tétraédrique mixte de vitesse-pression P1+/P1 qui est l'élément standard du logiciel de simulation Forge ® . La forme forte et la forme faible de la formulation sont abordées avec la formulation par éléments finis. Cet élément décompose les contraintes en déviateur et pression, et interpole les vitesses et la pression séparément avec des fonctions d'interpolation linéaires. Cependant, l'interpolation en vitesse est renforcée par un degré de liberté supplémentaire au centre de l'élément, appelé "bulle" pour satisfaire la condition de compatibilité de Brezzi. D'autre part, la formulation de l'élément coque solide SHB est présentée. Ce dernier est un prisme à 6 noeuds, et il utilise une intégration réduite au lieu d'une intégration complète pour remédier à certains problèmes de verrouillage. De plus, l'élément utilise une méthodologie de déformation supposée pour améliorer les comportements de l'élément dans les problèmes dominants de flexion et pour éviter le verrouillage par cisaillement. Le principe variationnel de Hu-Washizu est la pierre angulaire de cet élément car il permet d'utiliser des vitesses, des déformations et des contraintes supposées dans la formulation. Ensuite, la formulation est réduite à des vitesses et des déformations supposées avec un champ de contraintes particulier supposé. La formulation par éléments finis de l'élément SHB est bien développée dans ce chapitre et la matrice de rigidité et le vecteur de chargement en sont déduits. Après avoir introduit les aspects théoriques de l'élément SHB, les détails de mise en oeuvre sont présentés. Cette partie est considérée comme le coeur du travail de cette thèse, car l'élément doit être implémenté dans un logiciel d'éléments finis à support géométrique tétraédrique ; ce type de support permet en effet une forte efficacité pour permettre d'utiliser des techniques de remaillage non structure en grandes déformations . La mise en oeuvre a nécessité le développement d'une nouvelle technique de subdivision de prisme pour introduire l'élément de prisme sous la forme d'un ensemble d'éléments tétraédriques qui se chevauchent. Cela nous a permis d'intégrer la nouvelle formulation d'éléments dans le logiciel existant en restant cohérent avec l'approche numérique utilisée. De plus, nous avons développé une solution pour permettre l'utilisation d'une approche de calcul parallèle efficace de l'élément SHB dans le cadre actuel. Enfin, un ensemble de problèmes de référence ont été résolus pour valider la mise en oeuvre du nouvel élément dont les résultats sont comparés soit aux résultats analytiques pour montrer sa précision, soit à d'autres résultats de la littérature pour s'assurer que l'élément est correctement mis en oeuvre. Cependant, une comparaison détaillée entre les deux éléments est présentée dans chapitre(4).

  Variational principle, finite element interpolation, and the various frames of reference used for SHB elements are discussed in detail. Similarly, the strong form and weak form formulations along with the finite element interpolation and bubble function for the MINI element are addressed in the following sections. Although the SHB element family has been implemented in previous work of Abed-Meraim and Combescure (2002a, 2009a); Abed-Meraim et al. (2013); Trinh et al. (2011); Wang et al. (2017b), the implementation was always straight forward using an element
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 31 Figure 3.1: Representation of the domain Ω and the boundary conditions (ALVES ZAPATA, 2016).
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 3 NUMERICAL MODELING AND IMPLEMENTATION OF SOLID-SHELL ELEMENT SHB Third equation represents Dirichlet boundary condition and fourth equation represents Neumann boundary condition.

Figure 3 . 2 :

 32 Figure 3.2: Degrees of freedom for the velocity and pressure for the tetrahedral element P1+/P1.

  discussed. The detailed formulation can be found in many resources Abed-Meraim and Combescure (2009a); Abed-Meraim et al. (2013); Trinh et al. (2011).
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 3 NUMERICAL MODELING AND IMPLEMENTATION OF SOLID-SHELL ELEMENT SHB ness direction of the structure. Usually, for plasticity problem, such as metal forming, the number of integration points in the thickness direction is chosen to be five Abed-Meraim and Combescure (2009a).
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 33 Figure 3.3: Geometry and location of integration points of solid and solid-shell prism element
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  eral local frames have been introduced in the formulation of this element according toAbed-Meraim and Combescure (2002b, 2009a);[START_REF] Trinh | A new assumed strain solid-shell formulation "shb6" for the six-node prismatic finite element[END_REF];[START_REF] Wang | Linear and quadratic solid-shell elements for quasi-static and dynamic simulations of thin 3d structures: Application to a deep drawing process[END_REF].
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 335 Figure 3.5: Prism division to 6 overlapping tetrahedral elements.

Figure 3

 3 Figure(3.7) illustrates a simply supported isotropic elastic square plate subjected to a central concentrated force. The geometric dimensions along with the material parameters are given in figure(3.6). Due to the symmetry of the problem, only one quarter of the plate is analyzed and symmetry boundary conditon is applied. Figure(3.8) shows the

  dividing the computation over several processors by allocating portion of the mesh onto each processor. The software used in this thesis is based in SMPD (Single Program Multiple Data) approach that is based on executing the same code instruction on several cores with different set of data. Meaning that different cores will have different sub-domains of CHAPTER 3. NUMERICAL MODELING AND IMPLEMENTATION OF SOLID-SHELL ELEMENT SHB the global mesh and different set of data.The program that splits the global mesh (called partitioner) must balance the load between all cores by having comparable number of elements in each sub-domain. shows an illustration of the partitioning process takes place in Forge ® to generate sub-domains that share some nodes and edges among each other. The nodes in common between two sub-domains must behave the same way and consequently a communication step is required at each interface to ensure the continuity of results between the sub-domains.

Figure 3 .

 3 Figure 3.9: schematic view of the portioning process in parallel computation ALVES ZAPATA (2016)
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 3 Figure 3.10: Mesh partitions for three processors using tetrahedral elements.

Figure 3 .

 3 Figure 3.11: Mesh partitions for three processors using external library Metis showing Prism elements.

Figure 3 .

 3 Figure 3.12: Mesh partitions of Deep drawing problem using Prism element.

CHAPTER 4 .

 4 ELASTO-PLASTIC SHEET METAL SIMULATION : APPLICATION TO DEEP DRAWING PROCESS Résumé La première partie de ce chapitre porte sur la modélisation du comportement des tôles minces pour les applications de formage des métaux. Les équations constitutives du modèle de matériau élasto-plastique sont présentées. La plasticité anisotrope associée aux tôles minces est discutée. De plus, plusieurs critères d'anisotropie sont présentés ainsi que les paramètres expérimentaux requis pour chaque modèle. Nous abordons ensuite la mise en oeuvre d'une bibliothèque de modélisation des matériaux à usage général (MPCP) créée au CEMEF pour améliorer la modélisation des matériaux en lien avec un logiciel d'éléments finis associé. La structure principale de la bibliothèque est discutée et les différents critères d'élasticité, les modèles d'écrouissage isotrope et d'écrouissage cinématique ont été ajoutés à la bibliothèque. Cette bibliothèque a enrichi les capacités de modélisation du logiciel d'éléments finis utilisé dans cette thèse et nous a permis de simuler un processus de formage de tôle plus compliqué dans lequel l'anisotropie joue un rôle crucial comme l'emboutissage profond.La deuxième partie de ce chapitre est consacrée à la validation de l'élément SHB à l'aide de différents problèmes de référence faisant intervenir différents types de non-linéarités : géométriques, matérielles et de contact.Le problème de flexion d'un cylindre est étudié. L'élément SHB montre un bon accord avec les résultats expérimentaux pour la force de flexion. Avec un maillage relativement grossier, SHB fonctionne aussi bien que l'élément solide C3D8I plus coûteux en calcul utilisé dans Abaqus.De plus, le processus d'emboutissage profond a été simulé à l'aide de l'élément SHB. Ce problème est difficile car il induit une anisotropie et un contact double face. Le problème est résolu en utilisant différents critères anisotropes et en utilisant différents éléments et configurations de maillage. Le point à retenir des résultats est que l'élément SHB est très pratique pour de tels problèmes car il peut fournir des résultats plus précis en utilisant moins d'éléments. L'élément MINI nécessite un maillage plus dense pour atteindre de bonnes performances, ce qui affecte considérablement le temps de simulation. Dans l'ensemble, l'élément à coque solide a montré des résultats plus précis en utilisant un élément dans l'épaisseur que l'élément MINI dans les applications de formage de tôle.

  [START_REF] Abed-Meraim | New quadratic solid-shell elements and their evaluation on linear benchmark problems[END_REF]. This material local frame is different from the element local frame discussed earlier in this section. Rotation matrices are developed to transform from the local element frame, material local frame and global frame and vice-versa discussed in section(3.3). The adopted approach for modeling elasto-plasticity based on the radial return mapping algorithm is widely used in the literature De[START_REF] De Borst | Nonlinear finite element analysis of solids and structures[END_REF];[START_REF] Simo | Computational inelasticity[END_REF] and showed good results for predicting plastic behavior. The anisotropic elasto-plastic constitutive models are implemented in a standalone C++ library developed at CEMEF called MPCP. This library facilitates the development of any new yield criteria
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Figure 4 .

 4 Figure 4.1: Flow diagram of MPCP code structure

Figure 4 Figure 4 . 3 :

 443 Figure 4.2: Displacement history; u x u 0 is the normalized displacement in x direction with respect to a reference displacement; u y u 0 is the normalized displacement in x direction with respect to a reference displacement
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 44454 Figure 4.4: Geometry and boundary conditions of elastic-plastic beam bending

Figure 4 5 :

 45 Figure 4.7: Geometry and boundary conditions of unconstrained cylindrical bending

Figure 4

 4 Figure 4.8: load-displacement curves for different element types for unconstrained cylindricalbending problem(element type is followed by number of mesh elements in the legend)

Figure 4 .

 4 Figure 4.10: Deep drawing problem geometry and dimensions.

Figure( 4 .

 4 Figure(4.11) shows a qualitative comparison between the deformed shapes of the cylindrical cup using three different yield criteria. The earing profile changes dramatically between the three criteria showing the importance of using accurate yield criteria in predicting the real earing profile of deep drawing process.

Figure 4 .Figure 4 .

 44 Figure 4.11: Final deformed shape of cylindrical cup using SHB8PS element:(a) with von Mises yield surface (b) with Hill'48 yield surface and (c) with Yld2004-18P yield surface.

Figure 4 .

 4 Figure 4.13: Predicted cup height profiles obtained using the anisotropic Hill'48 yield surface.

Figure 4 .

 4 Figure 4.14: Predicted cup height profiles obtained using the non-quadratic Yld2004-18P anisotropic yield surface.

  et indirectes a été réalisée. L'élément tétraédrique (MINI) et l'élément de prisme à coque solide ont été utilisés pour résoudre le problème mécanique et des comparaisons quantitatives ont été effectuées pour évaluer leurs performances dans de telles applications. La simulation est effectuée pour deux processus de formage différents, le formage direct et le formage indirect. Le premier nécessite un matériau bon conducteur d'électricité pour la pièce à former, tandis que le second est utilisé pour un matériau faiblement conducteur d'électricité et dans ce cas un autre matériau bon conducteur est utilisé comme outil pousseur pour aider à former la pièce. Les résultats globaux ont montré que la précision obtenue avec un maillage grossier par éléments SHB donne des résultats de précision comparable à ceux obtenus par un maillage fin avec des éléments MINI. Enfin, une étude des coûts de temps calcul a été réalisée et a démontré une efficacité de calcul plus élevée pour l'élément SHB puisqu'un nombre réduit d'éléments pouvait être utilisé tout en conservant une précision comparable à celle de l'élément MINI. Ces résultats sont très prometteurs pour l'application de l'élément SHB non seulement à l'application MPF, mais également à d'autres procédés. De nombreux défis ont été rencontrés lors de la simulation de ce problème multi-physique et ont nécessité des développements pour être résolus. Tout d'abord, la détermination du temps de simulation du procédé doit être menée; un critère basé sur la mesure de l'évolution de la variation d'énergie mécanique a été adopté pour déterminer le moment où les variations résiduelles d'énergie sont minimales. Ensuite, le maillage électromagnétique a dû être ajusté pour tenir compte de la nouvelle déformation puisque la solution électromagnétique est fortement dépendante de l'évolution spatiale et temporelle du à la déformation mécanique de la pièce. Par conséquent, une stratégie de remaillage a été utilisée pour le maillage électromagnétique et les résultats ont été comparés à ceux obtenus sans remaillage.

  et al. (2008) addressed the problem of rectangular shape workpiece. Additionally, multi-physics commercial models already exist in the market, like AN-SYS/EMAG or LS-DYNA (L'Eplattenier and Çaldichoury, 2012). They are based on the coupling between boundary elements and finite elements to model the electromagnetic problem and the mechanical respectively. This work is complementary to the work of Alves Z and Bay (2015), in which the authors developed a model that is based on the cou-CHAPTER 5. MULTI-PHYSICS SIMULATIONS : APPLICATION TO ELECTROMAGNETIC FORMING PROCESS pling between Nedelec edge elements for the electromagnetic problem and solid finite elements for the implicit mechanical problem.

  field intensity B : Magnetic flux intensity ρ e : Electric charge density J : Electric current density Eq. (5.1): (Maxwell Faraday) represents the electric induction due to a varying magnetic field.
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 51 Figure 5.1: Boundaries of an EMF process. Ω represents the global domain solids + surroundings. Ω P is the workpiece. Ω I represents the inductor domain. The electrical input and output connections of the inductor are given by Γ I i np and Γ I out[START_REF] Biro | On the use of the magnetic vector potential in the finiteelement analysis of three-dimensional eddy currents[END_REF]).

Figure 5 .

 5 Figure 5.2: Schematic view of the coupling strategy between mechanical and electromagnetic solvers[START_REF] Alves | Magnetic pulse forming: Simulation and experiments for high-speed forming processes[END_REF].

Figure( 5 . 3 )

 53 Figure(5.3) shows the schematic view of the free bulging process. A round flat coil is used along with a ring-shaped matrix that blocks the displacement at the circumference of the workpiece. This problem is very convenient for clarifying the coupling between the electromagnetic and mechanical solvers discussed earlier. The following subsections will tackle the details of the simulation setup with respect to the electromagnetic simulation and the mechanical simulation.

Figure 5 . 3 :

 53 Figure 5.3: Illustration of magnetic pulse forming setup Risch et al. (2004).
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 3154 Figure 5.4: Electromagnetic simulation setup
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 55 Figure 5.5: Geometry and dimensions of the mechanical simulation

3 :

 3 Boundary conditions for the indirect forming simulation direct forming and indirect forming. The former, a 160mm diameter disc-shaped work-
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 56 Figure 5.6: Equivalent strain of Steel and Al separately after direct forming using MINI element

Figure 5 . 7 :

 57 Figure 5.7: Displacement profile of direct forming process of Al
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 58 Figure 5.8: Displacement profile of direct forming process of Steel
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 595 Figure 5.9: Equivalent strain of Steel and Al after indirect forming using MINI element

Figure( 5 .Figure 5 .Figure 5 .

 555 Figure(5.12) shows bar chart for the CPU time needed for both of the electromagnetic and mechanical simulations separately for indirect forming cases at two different voltages 5kV and 7kV. contrary to electromagnetic simulation where CPU time was almost identical, the mechanical simulations times were greatly decreased by using SHB element. The simulation time is reduced by almost 10× in SHB case.Similarly, the CPU time of the direct forming process represent the same trend. Figure(5.13) shows the bar chart of the direct forming of Al at two different voltages, 2kV and 3kV. Electromagnetic simulation CPU times are almost identical. Whereas, the mechanical simulation time is almost three times for SHB element than MINI element. MINI element is used with a mesh of 52,000 tetra element and SHB elements with 1,300 elements. This difference in number of element causes the simulation time difference remarked in
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 5 Figure 5.13: Simulation time of direct forming process of Al
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 555 Figure 5.14: Displacement profile of direct forming process of Al at 3kV
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 5517 Figure 5.16: Electromagnetic mesh without remeshing

Figure 5 . 18 :

 518 Figure 5.18: Displacement profile of indirect forming process at 7kV using different elements and mesh sizes

Figure 5 .

 5 Figure 5.19: Total Mechanical Energy comparisons for different elements and mesh sizes for indirect forming at 7kV

Figure 6 . 1 :

 61 Figure 6.1: Flow forming illustration.

Figure( 6

 6 Figure(6.2) shows the proposed algorithm for the remeshing technique of prism elements utilizing the existing tetrahedral element remesher.

Figure 6 . 3 :

 63 Figure 6.3: The identified surface with the tagging parameter(The geometry is inverted to show the lower surface).

  This algorithm has been implemented during the thesis in its simplest form and the new remeshing technique was tested on a simple tension test of a square plate shown in figure(6.4).
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 64 Figure 6.4: A simple tension test for a square plate
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 65 Figure 6.5: Front and back surface mesh of the plate sample after applying regular tetrahedralbased remesher

Figure 6 . 6 :

 66 Figure 6.6: Front and back surface mesh of the plate sample after applying prism element remesher
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  ).Figure(2.3) presents the geometries of different 3D elements.
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	2.3Using low order continuum-based element exhibits locking effects like, volumetric lock-
	ing, shear locking and Poisson thickness locking Petchsasithon and Gosling (2005); Puso
	and Solberg (2006).
	Figure 2.3: Various geometries of continuum solid elements Peng (2017)

  CHAPTER 2. BACKGROUND AND RELATED WORK von Mises yield criterion was first introduced in 1913[START_REF] Mises | Mechanik der festen körper im plastisch-deformablen zustand[END_REF] as the second yield function. The concept behind this criterion is that the hydrostatic pressure does not cause any plastic yielding for the material. This means that, the elastic energy of distortion is the only thing that influences the transition from elastic to plastic state. The material passes from the elastic state to the plastic state when the elastic energy distortion reaches a critical value[START_REF] Banabic | Sheet metal forming processes: constitutive modelling and numerical simulation[END_REF]. von Mises criterion is often used and verified with metals while other brittle materials tend to use Tresca function. The von Mises yield criterion can be written as follows:

von Mises Yield Criterion:
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2: Reduced integration
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 33 

: Full integration Table

3

.4: position and weights of integration points of different integration techniques for prism element
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 3 

			r e f /F
	48	5.7	0.701
	96	4.45	0.897
	192	4.148 0.964
	800	4.045 0.988

.6: Force at the tip of the beam using SHB element with different mesh sizes (only one element in the thickness) CHAPTER 3. NUMERICAL MODELING AND IMPLEMENTATION OF SOLID-SHELL ELEMENT SHB Figure 3.6: Geometric and material parameters for Elastic cantilever beam
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7: Force at the tip of the beam using MINI element with different mesh sizes These simulation results show that the SHB element provides an excellent convergence rate compared to the standard element used in Forge ® which needs a very large number of tetrahedral elements to obtain accurate results.

Table 3 .

 3 8: Simulation time required for the deep drawing problem.

	CHAPTER 3. NUMERICAL MODELING AND IMPLEMENTATION OF SOLID-SHELL
	ELEMENT SHB

Table 4 .

 4 Table(4.4) shows the CPU time for all elements used in this examples in the elastic and plastic cases. 4: Computation time of beam bending using different element and mesh sizes

		Elastic Plastic
	SHB-2054	407 (s) 584 (s)
	MINI-17300 251 (s) 444 (s)
	MINI-43559 522 (s) 1228 (s)
	C3D8I-1000 40 (s)	38 (s)

Table 4 .

 4 25217 0.82542 0.17457 1.5 1.5 2.23805 8: Hill'48 anisotropy coefficients for Al2090-T3 aluminum alloy

	c 1	-0.069888	c 11	0.476741
	c 2	0.936408	c 12	0.575316
	c 3	0.079143	c 13	0.866827
	c 4	1.00360	c 14	1.145010
	c 5	0.524741	c 15	-0.079294
	c 6	1.363180	c 16	1.404620
	c 7	0.954322	c 17	1.147100
	c 8	1.069060	c 18	1.051660
	c 9	1.023770	a	8
	c 10	0.981171		
	Table 4.9: Yld2004-18P anisotropy coefficients for Al2090-T3 aluminum alloy

Table 4 .

 4 Thus, more MINI elements need 11: Computation time of Deep drawing process using different element and mesh sizes CHAPTER 4. ELASTO-PLASTIC SHEET METAL SIMULATION : APPLICATION TO DEEP DRAWING PROCESS

	CHAPTER 4. ELASTO-PLASTIC SHEET METAL SIMULATION : APPLICATION TO DEEP
	DRAWING PROCESS				
			Von Mises Hill'48 Yld2004-18P
	Mean Difference	0.9	1.4	3.0
	Standard Diviation	0.2	0.8	1.0
	Standard Error(%)	0.045	0.178	0.224
	Table 4.10: Difference estimation between the results of SHB element and Abaqus element
	to be added to improve the accuracy of the results as shown in figure(4.14). Increasing
	number of MINI elements to approach more precise results has increased the time of
	calculation dramatically as seen in table(4.11). Overall, SHB element can combine both
	of accuracy and computation efficiency for more complex problems as the deep drawing
	problem.				
		C3D8I-2400 SHB-1326 MINI-3978 MINI-40000
	CPU time (min)	187	78	52	2100

Table 5 .

 5 2: Material properties and Johnson-Cook law parameters of Al and Steel

	Property	Al	Steel
	Elastic modulus (E) 73.1GPa 200GPa
	Poisson ratio (ν)	0.279	0.3
	A	83MPa	610MPa
	B	426MPa 750MPa
	C	0.025	0.008
	n	0.35	0.25

Boundary conditions : In the direct forming, aluminum workpiece

Abaqus implicit has been used for all numerical examples

In this thesis, bold characters designate tensors of order at least one.

Anisotropic hardening involves constant update of anisotropic coefficients during plasticity

Rolling is a manufacturing process in which the material is passed between two roller to reduce the thickness of the material step by step until it reaches the desired thickness

phenomenon occurs in some aluminum alloys when r < 1 but σ b > σ u or when r 0 r 90 > 1 and σ 0 σ 90 < 1 which contradicts what the criteria expects.

r-value (Lankford coefficient) is defined as the fraction of the plastic strain in the width direction to the plastic strain in the thickness direction.

The mesh used is unstructured prism mesh with a mesh size ≈ 2.5mm and containing around 1574 prism element with one layer of elements in the thickness.

Electromagnetic energy represents the total energy is the system, it is then transformed to mechanical
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 [START_REF] Peng | Solid-Shell finite elements for quasi-static and dynamic analysis of 3D thin structures:Application to sheet metal forming processes[END_REF]mation form and to the global coordinate system is achieved using rotation matrix R as follows:

where a loc and A loc represent second-order and fourth-order tensors respectively, expressed in the local coordinate system, while a glo and A glo are their expressions in the global coordinate frame.

The element formulation is only one part of the problem. Constitutive modeling that governs the relations between the stresses and strains and takes into account the material properties should also be tackled in details. In the following subsection, we discuss the constitutive modeling associated with the solid-shell element for elasticity. this will be the core for the development of the plasticity constitutive model presented in chapter( 4)

Perspectives

The developments carried out in this thesis are the main motivation to investigate thin sheet metal forming problems using a tetrahedral-based finite element software that was not originally designed for such problems. Although, the implementations and results

achieved in this work are quite satisfactory, there are a few issues that need to be worked on in the future and herein we list some of them:

1. The results obtained in this thesis were compared to results from the literature for similar problems. However, experimental results would be needed to better validate the obtained simulation results of current implementations. Moreover, experimental trials would be also needed in order to calibrate the material parameters used in the simulation specially for the parameters of the anisotropic yield criteria [START_REF] Knockaert | Etude expérimentale et numérique de la localisation de la déformation lors de la mise en forme de produits minces[END_REF].

2. The current work focused only on the implementation of prism solid-shell element SHB6 and integrate it in the tetrahedral-based finite element software. Though, there are other elements with different topologies (e.g. Hexahedral solid-shell elements SHB8 Abed-Meraim and Combescure (2009a)) that proved to be more accurate than the prism element. Nevertheless, the prism division algorithm used with the prism element can be also implemented with hexahedral element and the other elements can be integrated into the current framework. However, this would make the remeshing much harder or even not possible.

3. Expanding the types of metal forming application simulated using the current implementation. More complex applications can be simulated to prove the credibility and the efficiency of the solid-shell element within the current framework, for example, the flow forming process [START_REF] Houillon | 3d fem simulation of the flow forming process using lagrangian and ale methods[END_REF] which is considered a very complicated problem and requires very high dense mesh specially in the thickness to obtain accurate results. More application in electromagnetic forming process could be simulated to investigate the behaviour of the current implementations with different workpiece geometries and various materials. Appendix A

Large and small deflections of a cantilever beam

The following analysis gives a small glimpse on the difference between small and large deflection of a cantilever beam. This section is based on the analysis developed in [START_REF] Beléndez | Large and small deflections of a cantilever beam[END_REF]. where the bending moment at point A can be given by:

This leads to the following second order nonlinear differential equation:

although straightforward in appearance, is in fact rather difficult to solve because of the non-linearity inherent in the term cos ϕ.

However, in the case of small deflection cos ϕ ≈ 1 for small ε. Thus, the equation is turned to be linear and can be integrated easily to get the value of ϕ and the maximum vertical deflection δ y as follows:

These are the relations used to find the analytical results in beam bending problem in this paper which are based on the small deflection. Thus, the analytical results are linear, although the numerical results are nonlinear as shown in figures (4.5,4.6).

II

MOTS CLÉS

Elément fini solide-coque; Les tôles minces; Sous-intégration;Plasticite anisotrope; Formage electromagnetique; Emboutissage profound RÉSUMÉ Ce travail est axé sur le développement d'un outil de calcul 3D efficace pour la modélisation des processus de formage des tôles minces à l'aide de techniques avancées de remaillage et de calculs parallèles. Un des points clés réside dans l'implémentation d'une formulation d'élément de coque solide prismatiques et de leur adaptation à l'aide d'un algorithme de division de prisme pour permettre leur fonctionnement dans un outil numérique basé sur des tétraèdres (Forge ® ). Un algorithme de partitionnement a été adapté afin de permettre une approche effica en calcul parallèle. Les méthodologies proposées permettent de gérer diverses applications de formage de tôle telles que: (1). Problème de flexion de cylindre pour une déformation plastique de structure mince à avec flexion fortement dominante; (2). Procédé d'emboutissage profond dans lequel le comportement plastique anisotrope de la tôle devient plus important et affecte la précision pour la prédiction du profil des « oreilles d'emboutissage » ; [START_REF] Cho | Stability analysis using a geometrically nonlinear assumed strain solid shell element model[END_REF]. Procédés de formage par impulsion électromagnétique -direct et indirect -où les interactions multi-physique nécessitent une méthodologie appropriée pour permettre l'extension des travaux précédents à la modélisation des couplages entre solveur mécanique et solveur électromagnétique.

Des comparaisons avec des formulations standards d'éléments finis mixtes ont été effectuées et montrent la supériorité des éléments à coque solide pour la plupart des procédés de formage de tôles minces impliquant des effets de flexion dominants.

Ces calculs permettent également une grande réduction du temps de calcul tout en conservant une haute précision. De plus, une nouvelle stratégie de remaillage permettant au remailleur tétraédrique de générer des maillages compatibles avec les prismes pour le nouvel élément a été développée et devrait ouvrir la voie à d'autres applications de formage des tôles.

ABSTRACT

The core of this work is focused on the development of an efficient 3D computational tool for modeling thin sheet metal forming processes using advanced remeshing and parallel computations techniques. One of the main topics lies in the implementation of a prism division algorithm and a prismatic solid-shell element formulation in the tetrahedral-based Forge ® software. A partitioning algorithm has been adapted in order to enable distributed memory computation.

The proposed methodologies offer a numerical tool that is capable of handling various sheet metal forming applications such as: (1). Unconstrained cylindrical bending problem for a highly bending-dominant thin structure plastic deformation;

(2). Deep drawing process in which the anisotropic plastic behavior of sheet metal comes more prominent and affects the accuracy of the predicted earing profile; (3) Electromagnetic forming processing with the direct and indirect forming process which is a direct application of the multi-physics interaction between the mechanical solver and Electromagnetic solver.

Comparisons with standard mixed finite element formulations have been performed and show the superiority of solidshell elements for most thin sheet metal forming processes with dominant high bending effects. These computations also enable a large reduction of computational time while retaining high accuracy. Moreover, a new remeshing strategy for enabling the tetrahedral remesher to generate prism-compatible meshes for the new element has been developed and will open the way for additional sheet metal forming applications.
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Solid-shell finite elements; Sheet metal; Reduced integration; Anisotropic plasticity; Electromagnetic forming; Deep drawing