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Ultrafast ultrasound is a recent imaging modality derived from conventional medical ultrasound. It relies on the coherent compounding of backscattered echoes resulting from successive ultrasonic plane wave emissions, which enables high spatio-temporal resolution. In particular, ultrafast ultrasound is used for ultrafast Doppler imaging (uDoppler), which enables the visualization and characterization of blood flow with an exceptional sensitivity. With a technique known as functional ultrasound (fUS), uDoppler is capable of indirectly measuring neuronal activity in the brain, making it a powerful tool for neurosciences. Initially implemented in 2D, fUS is now being developed for 3D imaging of the whole brain, resulting in a considerable amount of data to be analyzed. Yet, fUS research remains limited by positioning uncertainty and variable image quality, making it difficult to analyze and compare the large volume of data obtained from different recording sessions. Machine learning algorithms, in particular convolutional neural networks (CNNs), which have demonstrated the capacity to perform complex visual tasks, could offer a solution to assist and automate the analysis of fUS data. This PhD thesis focuses on the development and validation of robust tools for automated fUS data processing, based on machine learning techniques. First, we improved image quality for real-time visualization in 2D uDoppler transcranial images of the brain, for which the skull attenuates the ultrasonic waves, increasing noise and lowering the sensitivity to small blood vessels. For this, we proposed and evaluated a turn-key solution based on a CNN specifically designed to improve blood vessel perception in real-time (0.05 s). We showed that this automatic solution outperforms standard image enhancement methods both by increasing contrast and preserving high resolution for small vessels. Then, we adapted an existing operator dependent registration pipeline for vascular network alignment in 3D, with an automatic key point localization strategy based on semantic segmentation. This enables accurate misalignment correction within 0.8 s,
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Résumé

L'échographie ultrarapide est une nouvelle méthode d'imagerie utilisant des ondes planes à très haute cadence, permettant l'observation de tissus biologiques avec une excellente résolution spatiale. Appliquée à l'imagerie Doppler, elle permet l'observation et la caractérisation des flux sanguins avec une très grande sensibilité. Elle est également utilisée pour mesurer indirectement l'activité cérébrale, ce qui en fait une modalité d'imagerie indispensable pour les neurosciences. Initialement appliquée à l'imagerie cérébrale 2D, l'imagerie fonctionnelle par ultrasons (fUS) se développe maintenant en 3D, ce qui engendre une quantité phénoménale de données à analyser. Cependant, l'imagerie fUS reste limitée par la qualité variable des images produites, conduisant à des difficultés de positionnement, ce qui complexifie l'analyse et la comparaison des données. Il est donc crucial de développer des outils puissants d'analyse automatique. L'apprentissage machine pourrait apporter une solution à ce problème. En particulier, les réseaux de neurones artificiels convolutifs, capables de réaliser des tâches visuelles complexes à une vitesse surhumaine, pourraient nous permettre d'améliorer et d'automatiser l'analyse des données fUS. Ainsi, durant cette thèse nous proposons de développer puis de valider des algorithmes d'apprentissage machine dans l'objectif de faciliter l'examen des données fUS. Dans un premier temps nous nous sommes intéressés à l'amélioration d'images vasculaires de mauvaise qualité. Nous avons conçu et entraîné un réseau de neurones convolutifs dans le but d'accentuer notre perception des petits vaisseaux sanguins, initialement peu visibles en imagerie transcrânienne. Notre approche, qui fonctionne en temps réel (0.05 s), surpasse les techniques classiques d'amélioration d'image, en augmentant le contraste tout en préservant les détails les plus fins du réseau vasculaire. Ensuite, nous avons étudié l'efficacité d'un algorithme de détection automatique de points de repère pour le recalage vasculaire de volumes cérébraux. Ainsi, nous avons pu aligner plusieurs volumes vasculaires, même pathologiques ou fortexi xii Résumé ment éloignés, en moins d'une seconde (0.8 s), avec une très grande précision, sans intervention manuelle. Suite à cette étude, nous proposons une nouvelle modalité de recalage automatique en 3D pour faciliter et accélérer la comparaison de différents enregistrements fUS espacés dans le temps. Enfin, nous avons entrepris d'appliquer les méthodes d'apprentissage machine à l'identification d'états cérébraux chez le primate non humain, durant une tâche oculomotrice cognitive. Nous avons montré qu'un simple réseau de neurones convolutifs permet la classification de deux états de consciences : un état actif et un état passif. De plus, nous nous sommes intéressés aux mécanismes de décision mis en jeu par notre réseau de neurones, pour essayer de comprendre quelles structures cérébrales sont liées à la reprise volontaire d'une tâche après une pause. Cette approche, qui reste encore très expérimentale, pourrait nous aider à mieux concevoir le fonctionnement des procédés cérébraux impliqués dans l'expression de la volonté. 

Neurosciences and neuroimaging

The brain is the most fascinating and complex organ of the human body. It is responsible for controlling all of our thoughts, actions and behaviors and continues to intrigue and inspire neuroscientists, who have yet to fully solve its mysteries. Neurosciences are a multidisciplinary field involving the integration of several disciplines, including biology, psychology, physics, chemistry and engineering, aiming to understand how the nervous system functions at the molecular, cellular [START_REF] Willig | STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[END_REF], [START_REF] Komiyama | Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice[END_REF], and systems levels [START_REF] Oh | A mesoscale connectome of the mouse brain[END_REF], [START_REF] Mohammadi-Nejad | Neonatal brain resting-state functional connectivity imaging modalities[END_REF]. A large part of the field is dedicated to investigating how the brain works. This includes unraveling the processes of consciousness [START_REF] Dehaene | Experimental and Theoretical Approaches to Conscious Processing[END_REF], learning, remembering [START_REF] Moser | Place Cells, Grid Cells, and the Brain's Spatial Representation System[END_REF], [START_REF] Seung | Reading the Book of Memory: Sparse Sampling versus Dense Mapping of Connectomes[END_REF], deciding, interacting and communicating [START_REF] Rilling | The Neuroscience of Social Decision-Making[END_REF], with the aim to better understand ourselves and others. Additionally, neurosciences are crucial to provide insights into a wide range of medical conditions, including brain injuries [9], brain tumors [START_REF] Provost | Simultaneous positron emission tomography and ultrafast ultrasound for hybrid molecular, anatomical and functional imaging[END_REF], stroke [START_REF] Mirsky | Pathways for Neuroimaging of Childhood Stroke[END_REF], [START_REF] Gómez-De Frutos | The Role of Ultrasound as a Diagnostic and Therapeutic Tool in Experimental Animal Models of Stroke: A Review[END_REF] and mental health disorders [START_REF] Linden | The Challenges and Promise of Neuroimaging in Psychiatry[END_REF]. By studying the brain, neuroscientists may discover new therapies and treatments that will improve people's health and well-being.

Parallel to the development of modern neurosciences, research in the medical imaging field led to the development of advanced imaging devices. These are now commonly used to visualize the brain and its activity in unprecedented details within neuroimaging studies. With these extraordinary tools, neuroscientists can picture how anatomical structures are organized in the brain, this is structural neuroimaging. Among others, structural neuroimaging allows for the detection of cerebral pathologies, such as brain lesions causing cognitive deficits. On the other hand, functional imaging modes enable the characterization of the active brain by measuring cerebral activity. Neuroimaging modalities are multiple, including but not limited to, fluorescence microscopy [START_REF] Denk | Two-Photon Laser Scanning Fluorescence Microscopy[END_REF], electroencephalography, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET). In the following, we will focus on ultrafast ultrasound, derived from conventional medical ultrasound, which is one of the most promising neuroimaging modalities, allowing both structural and functional analysis. 

Basics of medical ultrasound imaging

Medical ultrasound is a non-ionizing and non-invasive imaging modality, commonly used to visualize a variety of organs in the human body. Its low cost and portability make it an extremely useful tool in clinics. It uses the backscattered echoes returned by high-frequency sound waves to produce an image of biological tissues. The sound wave is a compression wave generated by a probe made of one or several piezoelectric transducers capable of converting an electric signal into vibrations, which propagates in the medium being imaged. Whenever the wave encounters an interface with another material of different acoustic impedance Z given by:

Z = ρc (1.1)
where ρ is the material density (in kg.m -3 ) and c is the speed of sound (in m.s -1 ) in the material, some of the wave's energy is transmitted and part of it is reflected back to the transducers. Then, the transducers detect the back-scattered echo and convert it into an electric signal to be processed. From the delay between the emission and the reception of the echo, and the speed of sound in the propagation medium, the position of the interface can be deduced. In biological tissues, a value of c = 1540 m.s -1 is generally chosen, which corresponds to the speed of sound in water.

In conventional medical ultrasound, a linear probe, typically consisting of 128 transducers, is used to form an image by successively focalizing a sound wave under each transducer (figure 1.1). To do this, parabolic time delays are applied to the emitting transducers in order to focalize the ultrasound beam at a chosen depth. Scatterers in the medium produce echoes, which travel back to the probe. Then, the same parabolic time delays are used to focus the backscattered echoes in reception, retrieving the positions of each scatterer source in the sonicated medium. This step is known as beamforming. This operation of focalization in both emission and reception under one transducer is repeated all along the ultrasound probe. Thus, the final ultrasonic image results from an horizontal screening of the medium, leading to frame rates of hundreds of Hertz (Hz).
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For each source position, the amplitude of the backscattered echo provides the value of the corresponding pixel in the final image. 

Ultrafast ultrasound imaging

In the early 2000s, a new imaging technique emerged for medical ultrasound imaging. Instead of focusing the sound waves, the probe generates a single plane-wave, which insonifies the medium once [START_REF] Tanter | Ultrafast compound imaging for 2-D motion vector estimation: application to transient elastography[END_REF]. Modern computing capabilities allow for the recording of backscattered echoes received on all transducers in parallel. Hence, the image frame rate is no longer limited by sequential scanning with a focused ultrasound beam, but by the travel time of the plane-wave propagating through the medium and back to the probe. Thus, the achievable frame rate increases drastically, with frame rates up to thousands of Hz. Figure 1.2 illustrates how all pixels in the image are reconstructed with only one plane-wave emission. Yet, high frame rates come at the cost of less contrast in the final image and a slightly degraded resolution. 

Coherent plane-wave compounding

With ultrafast plane-wave imaging, the wave energy is distributed throughout the entire medium, lowering the amplitude of the recorded echoes compared to focused ultrasound. Additionally echoes from different sources can overlap and interfere, resulting in a diminished contrast in the reconstructed image. However, there is a way to recover high contrast with plane-waves, maintaining high frame rates. By emitting multiple plane-waves at different angles before recombining the resulting images by coherent synthetic summation in receive mode, high quality images are restored [START_REF] Tanter | Ultrafast imaging in biomedical ultrasound[END_REF].

Yet, increasing the number of tilted plane-waves reduces the frame rate. Typically, between 10 and 20 plane-waves are used, leading to frame rates in the range of 1000 Hz, which remain 10 times higher than with conventional ultrasound (figure 1.3). Hence, ultrafast ultrasound combined with coherent compounding goes beyond conventional anatomical ultrasound imaging, enabling the imaging of bi-Chapter 1 ological events in the human body which are faster than the eye can follow [START_REF] Montaldo | Coherent plane-wave compounding for very high frame rate ultrasonography and Bibliography transient elastography[END_REF]. Among others, ultrafast ultrasound is used for shear wave elastography, which allows a quantification of organs and tissue stiffness [START_REF] Tanter | Quantitative Assessment of Breast Lesion Viscoelasticity: Initial Clinical Results Using Supersonic Shear Imaging[END_REF], [START_REF] Shinohara | Real-time visualization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction: Short Reports[END_REF]. Shear wave elastography has been used for the diagnosis of malignant tumors [START_REF] Bercoff | In vivo breast tumor detection using transient elastography[END_REF], [START_REF] Chamming's | Shear wave elastography of tumour growth in a human breast cancer model with pathological correlation[END_REF]. Ultrafast ultrasound also revolutionized vascular imaging, enabling the detection of blood flows and its variations with unprecedented sensitivity, with a technique called ultrafast Doppler imaging. Plane-wave imaging allows very high frame rate (18000 Hz) at the cost of lower contrast in the image. c. Plane-wave compounding with 17 angles enables both high frame rate (1000 Hz) and contrast levels comparable to conventional ultrasound. Adapted from [START_REF] Tanter | Ultrafast imaging in biomedical ultrasound[END_REF] 1.3 Ultrafast Doppler imaging 7

Ultrafast Doppler imaging 1.3.1 Basics of Doppler imaging

When a source, moving at a speed v relative to a fixed observer, produces a wave with frequency f 0 and propagation speed c, then the observer receives a signal with a shifted frequency f 0 + f d where f d is the Doppler frequency given by:

f d = 2vf 0 c (1.2)
In medical ultrasound, the Doppler effect is used for vascular imaging and blood flow quantification within a single cardiac cycle, where blood flows are considered to be stationary. Indeed, circulating red blood cells in vessels produce an echo, or Doppler signal, with a frequency f 0 + f d , when sonicated by focused ultrasound with the frequency f 0 . Spectral analysis of the Doppler signal reveals the speed of red blood cells, which correlates with blood flow velocity. Yet, because of conventional ultrasound frame rate limitations, vessels with high blood velocity cannot be accurately measured without aliasing.

To overcome this issue, three Doppler imaging modes have emerged for clinical use. One mode, called spectral Doppler analysis or pulse-wave Doppler (PW Doppler), is based on local spectral analysis of the Doppler signal, with regards to a continuous excitation (figure 1.4.a). This offers excellent temporal resolution with a large number of time samples, providing in-depth quantification of blood flows. Yet, PW Doppler is limited to local quantification. Another mode is called color flow imaging (CFI). CFI allows the mapping of blood flow velocity in larger areas [START_REF] Evans | Ultrasonic colour Doppler imaging[END_REF]. It extends the Doppler imaging field of view by spreading the local filtering of the ultrasound signal over 2D regions of interest (figure 1.4.b). This is done by reducing the observation time of PW Doppler at each location in the imaging field of view, which sacrifices the quantitative capabilities of CFI. Doppler signal analysis can also estimate blood flow intensity (figure 1.4.c), with a mode called power Doppler imaging. Indeed, the echogenicity in blood vessels, which correlates to the number of circulating sources (red blood cells) being imaged, can be approximated by integrating the amplitude of the Doppler signal over time. Thus, the values I of a pixel in a power Doppler image, resulting from Chapter 1 the accumulation of n time samples, is given by :

I = 1 n n ÿ i=1 |s d (t i )| 2 (1.3)
where s d (t i ) is the Doppler signal sampled at time t i .

Power Doppler demonstrates higher sensitivity to flow, even in small vessels where blood flow velocity decreases, as well as better edge definition and depiction of continuity of flow. This makes power Doppler an excellent solution for ultrasound vascular imaging. Yet, similar to CFI, power Doppler quantification remains limited by conventional ultrasound frame rates. Ultrafast ultrasound brings a technologically disruptive solution to the incompatible time resolution and spatial extent issues of focused ultrasound acquisitions. Indeed, with plane-wave transmissions, the entire vascular target is sonicated at once. This allows for the acquisition of a large field of view with a large number of temporal samples, at a high frame rate, enabling both vascular mapping of entire vascular structures and blood flow quantification, with high sensitivity , in the entire field of view, with techniques such as ultrafast Doppler (uDoppler) imaging [START_REF] Bercoff | Ultrafast compound doppler imaging: providing full blood flow characterization[END_REF].

SVD filtering

As explained in section 3.1, uDoppler allows for the mapping and quantification of blood flows in vascular structures through Doppler signal analysis of moving sources in blood vessels. Notably, ultrafast power Doppler is used to detect the amount of red blood cells circulating in blood vessels, measuring blood flow intensity with high sensitivity. Yet, biological tissues are also moving. As tissues usually move slower than blood, temporal high pass filtering could remove the Doppler signal from the tissues. For this, temporal samples are sacrificed, which is acceptable with uDoppler frame rates.

However, blood speed in smaller vessels and tissue velocity are comparable. To avoid small vessel exclusion when filtering uDoppler signal, a spatio-temporal clutter filter, using singular value decomposition (SVD) was proposed [START_REF] Demene | Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity[END_REF]. SVD filtering allows for a better separation of tissues and blood vessels based on spatiotemporal coherence, improving both vascular visualization and characterization of blood vessels at the microscopic scale. Therefore, uDoppler can be applied to high sensitivity vascular imaging of the brain (figure 1.5). In particular, cerebral ultrafast power Doppler images are used to estimate cerebral blood volume (CBV).

Functional Ultrasound

Neurovascular coupling

Although the brain represents only 2% of the total mass of the human body, it consumes approximately 20% of its energy and oxygen. As the brain is not capable of storing energy over a long period of time, it needs a constant supply of nutrients and oxygen, provided by the intricate cerebral vascular network, which allows blood to circulate in the entire brain. When activated, brain cells consume more energy. This induces changes in cerebral hemodynamics, in response to functional activity, as first described by Angelo Mosso in the mid 19th century [START_REF] Raichle | Angelo Mosso's circulation of blood in the human brain[END_REF]. This biological phenomenon by which the blood flows to the brain are modulated in response to changes in neuronal activity, through interaction between neurons and blood vessels, is called the neurovascular coupling [START_REF] Hosford | What is the key mediator of the neurovascular coupling response?[END_REF]. When neural activity increases, for instance in response to sensory stimuli, the neurons require more energy to support their increased metabolic activity. This increases blood flow to Adapted from [START_REF] Mace | Functional ultrasound imaging of the brain: theory and basic principles[END_REF] the activated regions of the brain [START_REF] Sheth | Linear and Nonlinear Relationships between Neuronal Activity, Oxygen Metabolism, and Hemodynamic Responses[END_REF], [START_REF] Hillman | Depthresolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation[END_REF]. On the contrary, when neural activity decreases, such as during periods of rest or in response to sensory deprivation, the demand for oxygen and nutrients diminishes, inducing a local decrease in blood flow to the brain. Thus, the detection of hemodynamic variations in terms of oxygenation, cerebral blood velocity (cerebral blood flow CBF) or cerebral blood volume (CBV) allows for the indirect measurement of cerebral activity.

Measuring neuronal activity with functional ultrasound

Ultrafast power Doppler can be used to detect the amount of circulating red blood cells in vessels [START_REF] Shung | Scattering of Ultrasound by Blood[END_REF]. Hence, the power Doppler signal can approximate the CBV in the vascular structures being imaged. Furthermore, CBV variations in the brain indicate changes in neuronal activity through the neurovascular coupling. Thus, time series of uDoppler images allow for the indirect observation of cerebral activity. Functional ultrasound (fUS) was introduced in 2011 by Macé et al. [START_REF] Macé | Functional ultrasound imaging of the brain[END_REF], who demonstrated the capacity of uDoppler to both visualize intricate vascular structures in the rat brain, with a spatial resolution of 100 µm, and time track functional activity in response to stimuli. In this work, each fUS frame is computed from a block of 200 uDoppler images acquired at 1000 Hz. This results in an accumulation time of 200 ms, corresponding to 1 cardiac cycle (in small rodents), to both avoid pulsatility and increase sensitivity.
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Since then, a large number of preclinical studies have been published, from small [START_REF] Osmanski | Functional ultrasound imaging reveals different odor-evoked patterns of vascular activity in the main olfactory bulb and the anterior piriform cortex[END_REF], [START_REF] Gesnik | 3D functional ultrasound imaging of the cerebral visual system in rodents[END_REF], to large animal models [START_REF] Bimbard | Multi-scale mapping along the auditory hierarchy using high-resolution functional UltraSound in the awake ferret[END_REF], [START_REF] Dizeux | Functional ultrasound imaging of the brain reveals propagation of task-related brain activity in behaving primates[END_REF], [START_REF] Blaize | Functional ultrasound imaging of deep visual cortex in awake nonhuman primates[END_REF] demonstrating the potential of fUS for medical neuroimaging. Notably, fUS can be used to detect changes in neuronal activity with regards to external stimuli in specific cerebral regions. Figure 1.6.a clearly shows that CBV variations in the cortex of a rat correlates with whiskers stimulation. As such, fUS allows for the mapping of functional regions in the brain. In figure 1.6.b, the time correlation between pixels in the uDoppler image and the stimulation pattern reveals which cerebral regions are activated during the experiment. fUS is also able to expose brief cerebral events, such as epileptic seizure (figure 1.6.c). Finally, fUS can highlight spontaneous CBV fluctuations, in the resting state or in different phases of sleep [START_REF] Bergel | L ocal hippocampal fast gamma rhythms precede brain-wide hyperemic patterns during spontaneous rodent REM sleep[END_REF] for instance, enabling the study of cerebral connectivity.

Towards 3D functional ultrasound

Initially implemented for 2D imaging, fUS is now being developed for 3D functional imaging of the whole brain. In recent years, various approaches have emerged. Volumetric fUS acquisitions, using ultrasound probes made out of 2D matrix arrays of transducers, have already been successfully demonstrated in rats and confirmed in mice. Techniques include fully populated matrix arrays of thousands of transducers [START_REF] Rabut | 4D functional ultrasound imaging of whole-brain activity in rodents[END_REF], which come at an unprecedented technological cost as they require complex electronics. Alternative probe designs have also been proposed, with fewer elements such as sparse under-sampled arrays or row-column configuration [START_REF] Sauvage | A large aperture row column addressed probe for in vivo 4D ultrafast doppler ultrasound imaging[END_REF], [START_REF] Sauvage | 4D Functional Imaging of the Rat Brain Using a Large Aperture Row-Column Array[END_REF]. However, 2D ultrasound probes currently lack sensitivity and require full craniotomy and long acquisition time to detect functional activity.

Alternatively, standard linear probes can be mounted on a motorized setup, allowing it to be stepped across multiple positions to cover the whole brain and perform functional imaging, with high sensitivity, plane by plane [START_REF] Bertolo | Whole-Brain 3D Activation and Functional Connectivity Mapping in Mice using Transcranial Functional Ultrasound Imaging[END_REF]. This PhD thesis focuses on this scanning method for fUS imaging.

Challenges of functional ultrasound

So far, we showed that uDoppler can be used to carry out functional imaging in the brain, both in 2D and 3D. Each fUS recording consists of thousands of vascular images, carrying both structural and functional information, and constitutes a very 5) Ultrasound gel placed on the animal's head, providing acoustic coupling with (6) the ultrasound probe. (7) Iconeus One neuroimaging device, driving the motors and recording fUS data. Adapted form [START_REF] Bertolo | Whole-Brain 3D Activation and Functional Connectivity Mapping in Mice using Transcranial Functional Ultrasound Imaging[END_REF] large amount of data to be analyzed. However, standardization of fUS experiments is limited by the lack of automated tools to analyze and compare data robustly. For instance, positioning the ultrasound probe over a desired functional region of interest (ROI) prior to the acquisition is not trivial. Neuronavigation within complex vascular structures is also difficult. In addition, longitudinal fUS studies and inter-subject comparison of cerebral activation pattern call for the alignment of uDoppler images or volumes, which can be imprecise and extremely time consuming when done manually [START_REF] Nouhoum | A functional ultrasound brain GPS for automatic vascular-based neuronavigation[END_REF]. Thus, powerful algorithms are required to supplement Chapter 1 manual processing.

The main objective of this PhD thesis is to develop tools for automated processing of fUS data based on machine learning (ML) algorithms, leveraging the large amount of data generated during fUS imaging sessions. In the following sections, we will discuss the benefits of using ML algorithms for medical image processing. In particular, we will detail key notions about a specific type of ML algorithms called artificial neural networks.

Iconeus

This PhD thesis is co-funded by the Region Île-de-France and Iconeus (Iconeus, Paris, France) which has the ambition to meet the current challenges of fUS. Since 2016, Iconeus has developed commercially available disruptive neuroimaging systems for preclinical fUS studies, with the intention of helping neuroscientists to uncover new insights into brain function and diseases. In particular, Iconeus is committed to providing the resources to make fUS available to a global audience. Hence, Iconeus proposes easy to use neuroinformatics softwares, such as neuronavigation tools or functional analysis pipelines, integrated in the Iconeus One neuroimaging device.

What is machine learning?

Basics of artificial intelligence and machine learning

Artificial intelligence (AI) refers to the ability of machines to perform tasks that typically require human intelligence. AI algorithms are capable of processing complex information at very high speed, which makes them appealing to solve various complicated problems. Yet, contrary to the human intellect which can make relevant deductions from a few examples, a machine needs a large amount of data to learn a specific task.

Machine learning is a subfield of AI that involves the use of algorithms and statistical models to enable computers to learn and make decisions based on data, without being explicitly programmed (figure 1.8). In 1997, Tom Michell described ML as follows: "A computer program is said to learn from experience E with respect to task T, and some performance measure P, if its performance on T, as measured by P, improves with experience E". Hence, the general idea of ML is to train robust, automated algorithms, with data, consisting of numerous examples, by minimizing specific rules called cost (or loss) functions. Then, once trained, ML algorithms are used to analyze new data samples.

There are several types of ML, including supervised learning, which uses manually labeled data in the training process, unsupervised learning, in which the algorithm must discover patterns in the data without being provided a ground truth, and reinforcement learning, where the algorithm learns through trial and error as it interacts with its environment.

When provided with the right training data, ML algorithms can be powerful tools for a variety of applications, including image and speech recognition [START_REF] Graves | Speech recognition with deep recurrent neural networks[END_REF], natural language processing [START_REF] Otter | A Survey of the Usages of Deep Learning in Natural Language Processing[END_REF], and robotics [START_REF] Lechner | Designing Worm-inspired Neural Networks for Interpretable Robotic Control[END_REF], [START_REF] Hasani | Closed-form continuous-time neural networks[END_REF].

Why use machine learning?

We mentioned that ML algorithms, if trained properly with the right data, can learn to resolve complex problems that need automated solutions. Advantages of ML are numerous. Contrary to traditional programming techniques, which often rely on lists of manually written rules to solve problems (figure 1.8), the ML approach (figure 1.9) depends on data to learn complex tasks.

One of the main assets of ML algorithms is its capacity to automatically adapt to the data. This allows for programs that are much shorter, easier to maintain and often more accurate, with the potential to solve problems whose existing solutions require a lot of manual optimization. Also, ML algorithms shine for tasks that have no known algorithms. Finally, contrary to the popular belief that ML is a "black box" solution, ML algorithms can be inspected to better understand how they behave for specific tasks. Sometimes, this can reveal new trends or unsuspected patterns that were not immediately apparent in the data being processed [START_REF] Smilkov | Embedding Projector: Interactive Visualization and Interpretation of Embeddings[END_REF], thereby helping humans to learn new concepts. Among others, ML was successfully applied to the object detection task, with programs such as the YOLO algorithm [START_REF] Redmon | You Only Look Once: Unified, Real-Time Object Detection[END_REF], as well as for instance and semantic image segmentation [START_REF] Long | Fully Convolutional Networks for Semantic Segmentation[END_REF], [START_REF] Chen | DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[END_REF], [START_REF] He | Mask R-CNN[END_REF]. ML is also used to find answers to problems for which traditional algorithms yield no effective solution, such as object recognition and classification. The LeNet-5 algorithm is perhaps the most widely known ML The traditional programming approach illustrated. Studying the problem allows for understanding the task to be processed. Subsequently, a program consisting in a list of hand-written rules, such as numerical or logical operations, is developed to solve the problem. Then, the capacity of the solution to solve the problem is evaluated. If the program produces errors, therefore fails in solving the problem, it should be revised, often with a new set of rules. Manual optimization is repeated until the program is good enough to be deployed.

algorithm. It was created by Yann LeCun in 1998 for handwritten digits recognition [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] and paved the way for other automated classifiers, such as ImageNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF], GoogLeNet [START_REF] Szegedy | Going deeper with convolutions[END_REF], or ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. Now, ML is even capable of randomly generating new data, with programs called generative models [START_REF] Goodfellow | Generative adversarial networks[END_REF].

For instance, StyleGAN [START_REF] Karras | A Style-Based Generator Architecture for Generative Adversarial Networks[END_REF] is able to generate convincing images of human faces that do not exist. These generative models are presently used for image transformation tasks like superresolution [START_REF] Ledig | Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[END_REF], powerful image editing, with techniques such as colorization or style transfer [START_REF] Gatys | Image Style Transfer Using Convolutional Neural Networks[END_REF], [START_REF] Dumoulin | A Learned Representation For Artistic Style[END_REF]. In addition, generative models are also able to generate other types of data in the form of text or audio recording, and can be used for data augmentation to train other ML alorithms.

Finally, ML can benefit data visualization, with tools such as clustering algorithms [START_REF] Kanungo | An efficient k-means clustering algorithm: analysis and implementation[END_REF], combined with dimensionality reduction techniques like t-SNE [START_REF] Va N D E R M A At E N | Visualizing data using t-SNE[END_REF], which learn dense representation of data from high dimensional space. This makes ML a promising solution for a large variety of applications, including the automated analysis of medical images. Applied to medical imaging, ML could Figure 1.9 The ML approach illustrated. For a specific task, the choice of a ML model often depends on the data available. The selected model is trained automatically, from iterative trial and error on data samples. Once trained, the model can be deployed and should easily adapt to new data. If the model is not good enough to be deployed, it can be either changed or fine-tuned to better fit the data.

provide some help for diagnosis. It could also be used for better understanding the structure and function of organs in the human body. Presently, ML algorithms are already used for both 2D and 3D medical image segmentation with models derived from the U-net [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] and V-net [START_REF] Milletari | V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation[END_REF] algorithms. More recently, several studies focused on learning-based medical image registration solutions for better standardization of medical image analysis [START_REF] Fu | Deep learning in medical image registration: a review[END_REF], [START_REF] Haskins | Deep learning in medical image registration: a survey[END_REF].

Most of these innovative solutions use learning-based algorithms inspired by biological neurons, called artificial neural networks (ANNs). Presently, ANNs are the gold-standard for learning-based image analysis tasks. In the following we explain how ANNs work, and how to use them for image analysis. The connections between artificial neurons in ANNs are made of weighted linear and nonlinear operations. ANNs are able to learn the weight of these operations, looking at a large number of examples, in order to perform complex tasks.

The perceptron is one of the first ANN architectures, invented by Frank Rosenblatt in 1957 [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF]. It comprises a single layer of artificial neural units, called threshold logic units (TLUs), which are capable of recombining numerical input data into an output signal. The TLU works by computing a weighted sum of the input, then applies a mathematical nonlinear function, known as the activation function, to the sum and outputs the results. An example of a perceptron with two inputs, a bias unit, which has a fixed constant value, and three outputs is illustrated in figure 1.10. Given a matrix X of input features, W a weight matrix containing all the connection weights between the inputs neurons and the TLUs, a vector b containing the connection weights between the bias unit and the TLUs, and f the activation function, the outputs Y of the perceptron is:

Y = f (XW + b) (1.4)
This simple ANN can learn to classify input data into multiple categories. For this it needs to look at a lot of examples consisting of pairs of input samples X and ground truth Y . The perceptron is trained by minimizing the error between the output ' Y associated with sample X, and the ground truth Y . The perceptron learning rule, shown in equation 1.5, reinforces connections that help reduce the error between ' Y and Y , one training sample at the time.

w (new) i,j = w (old) i,j + η(y j ≠ " y j )x i (1.5)
In equation 1.5, w i,j represents the connection between the i th input of value x i and j th output of value " y j , while y j is the target value (ground truth) for the j th output and µ is the learning rate. The learning rate controls how much the weights have to change in response to the estimated error. The learning rule for perceptron training is linear. Hence, this ANN is incapable of solving complex problems. However, this limitation can be eliminated by stacking multiple layers of TLUs in more complex architectures.

The early success of ANNs led many to believe that intelligent machines were soon to be created. Yet, technological resources at the time did not meet the require-Chapter 1 ment for ANNs to work at their full potential. However, the exponential increase of computing power since the late 80s has made possible to train large ANNs of millions of layered artificial neurons, in a reasonable amount of time. Furthermore, a large quantity of data is currently available to train the new generation of ANNs on a variety of complex problems, outperforming standard algorithms. Until the late 80s, researchers struggled to train ANNs with complicated architectures, such as multilayer perceptrons, which are composed of several layers of fully connected TLUs stacked together to supposedly increase the computing power of the network (figure 1.11). Yet, in 1986 David Rumelhart, Goeffrey Hinton and Ronald Williams proposed a new training algorithm for large ANNs, called backpropagation [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF], which is still used today.

Multilayer perceptron & backpropagation

During training, backpropagation is used to calculate the error in each layer in the ANN, before adjusting the weights to reduce that error. Backpropagation is an optimization algorithm, integrating an efficient solution for computing the gradient of the error with regard to all connection weights in the network. It can find, in only two passes (one forward, one backward), how every connection weight should be tweaked in order to reduce the error. In more details, for each training iteration, the backpropagation algorithm starts by making a prediction (forward pass) and measures the network error with regard to a target. Then, it passes through the network in reverse (backward pass) to measure the error contribution of every connection layer by layer. Finally, it tweaks the connection weights to reduce the error with an optimization algorithm [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF].

The backpropagation algorithm revolutionized ANN training, allowing researchers to build networks with deep stacks of computations. The new generation of ANNs, known as deep neural networks (DNNs), first succeeded in automated image classification tasks, allowing for a deep computer vision revolution powered by convolutional neural networks (CNNs).

Convolutional Neural Networks for image processing

Following the success of backpropagation, CNNs were invented to solve complex visual problems, starting with image recognition and classification. In the last few years, they became more and more popular as they managed to achieve extraordinary performances on a variety of visual tasks. Now, they power self-driving cars, brain-computer interfaces or medical image analysis systems.

Contrary to the multilayer perceptron, for which each neuron in a layer is connected to all neurons in the next layer, CNNs rely on convolutional layers inspired by the structure of the visual cortex [START_REF] Hubel | Receptive fields of single neurones in the cat's striate cortex[END_REF], [START_REF] Hubel | Receptive fields and functional architecture of monkey striate cortex[END_REF]. Similar to neurons in the visual cortex, convolutional layers use small filters to scan images. Typically, filters are pictured as small matrices of size 3 x 3 or 5 x 5, associated with a step size, known as "strides", with which the filter is moved across the image during the convolution operation. The spatial dimensions of a filter and the way it is applied to an image define its receptive fields, which refers to the portion of the image that the filter looks at.

In figure 1.12 we illustrate how a simple CNN works. First, a filter of size 3 x 3 with stride 1 x 1 looks at small portions of the input image to generate a new image in the first convolutional layer one step at the time. In turn, a second filter only sees Figure 1. [START_REF] Linden | The Challenges and Promise of Neuroimaging in Psychiatry[END_REF] An illustration of a convolutional layer with multiple feature maps. Here the input is a gray scale image of a handwritten digit (0). There are 8 feature maps in the convolutional layer. Each feature map is associated with a filter of size 3 x 3 focusing on specific visual characteristics. For instance filter 3 concentrates on horizontal lines while filter 4 focuses on vertical lines.

a small portion of the image in the first layer to reconstruct the final image. This stacked architecture allows the CNN to concentrate on lower-level features, such as horizontal or vertical lines, in the first layer, then assemble them into higher-level Chapter 1 features, such as edges and corners, in the next layers, thus encoding the visual information contained in the input image. Like neurons in the visual cortex, filters are able to learn to encode for specific spatial features. Hence, training a CNN consists of tweaking the filters to enable specific visual tasks.

For simplicity, figure 1.12. represents each convolutional layer as a 2D image, generated with a single filter. Yet, CNNs usually use multiple filters in each layer, resulting in stacks of features maps (figure 1.13). This makes CNNs capable of detecting multiple features from coarse-to high-level anywhere in the input image, which is one of the reasons why CNNs work so well for visual tasks. In practice, for complicated tasks, deeper layers need to represent more abstract ideas and require more filters. On the other hand, less complicated tasks or shallow layers need fewer filters. Initially implemented for 2D images, CNNs can also be applied to the processing of 3D images or volumes. 3D-CNNs use 3D convolutional layers, with 3D filters and small volumic receptive fields, which are able to handle volumic features.

In summary, CNNs can extract visual features from images or volumes, using numerous filters. These filters can be trained to focus on specific spatial features in the input, then organize hierarchically in layered feature maps, enabling feature based automatic image processing.

Conclusion & Objectives

In this chapter we discussed how ultrafast ultrasound imaging, derived from classical focused ultrasound, allows for microscopic vascular imaging at high frame rate, with ultrafast Doppler imaging, used to carry out functional ultrasound. fUS offers vast opportunities to the field of neurosciences, thanks to its low cost, portability, minimum invasiveness and excellent sensitivity to hemodynamic changes in the brain, allowing for the indirect observation of cerebral activity through the neurovascular coupling. Indeed, a number of preclinical studies have already confirmed the potential of fUS for neurosciences, with various applications from the characterization of cerebrovascular pathologies to the study of neuropsychiatric diseases, pharmacologically-induced changes in brain connectivity, or behavior.

Initially implemented for 2D cerebral imaging, fUS is now being developed for 3D imaging of the whole brain. Resulting in a tremendous amount of data to analyze.
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Yet, fUS recordings, both in 2D and 3D, are presently manually processed, and there is no automated tool to analyze and compare data robustly. This operator dependency, which limits the standardization of fUS analysis, needs to be arrested. ML algorithms, in particular convolutional neural networks which have demonstrated the capacity to perform complex visual tasks, could yield a disruptive solution for the automated characterization of vascular structures and functional states in fUS experiments.

Hence, the main objective of this PhD thesis is to develop powerful learningbased tools for automated processing of fUS data. Notably, we hypothesized that the ML approach could benefit real-time image visualization and neuronavigation. For this, we proposed an automated enhancement strategy for transcranial recording of the small rodent brain, in the hope to improve blood vessel perception in vascular images of variable quality. Then, we suggested adapting an existing registration pipeline for volumic vascular network alignment, with a learning based key point detection strategy, to make it more robust and fully automatic. Finally, we explored the potential of CNNs to classify functional states in the behaving non-human primate in the hope to to better understand the biological mechanisms involved in voluntary movement. With high frame rates, ultrafast Doppler imaging (uDoppler) has the potential to reveal cerebral vascular structures in real-time, making it a precious tool for neurosciences. Its applications are plentiful, from increasing our perception of vascular network organization in the brain, uncovering the correspondence between blood vessels and functional areas, to monitoring pathological vascular deformations such as aneurysms, strokes or tumor growth. Yet, the quality of a uDoppler image strongly depends on experimental conditions and is easily subject to artifacts and deterioration. This is especially true for transcranial imaging, which often leads to higher noise and lower sensitivity to small blood vessels. A common solution to better visualize brain vasculatures is to accumulate more information, integrating the images over several seconds. Yet, this comes at the cost of more experimental resources. In this chapter, we propose to combine the standard uDoppler accumulation process with a real-time uDoppler image enhancement strategy, powered by a machine learning algorithm. Our approach to the uDoppler image enhancement task is based on human visual perception. Hence, we called our algorithm: PerceptFlow.

Introduction

The capacity of uDoppler imaging to expose cerebral vascular networks, with a temporal resolution in the millisecond range, makes it extremely valuable for neurosciences. In a typical neuroimaging session, the neurobiologist usually looks for specific brain regions of interests (ROIs). Hence, the operator starts by positioning the ultrasound probe above the ROI to study. For this critical operation, accuracy is key. Yet, the neurobiologist can only rely on uDoppler images, for instance a succession of coronal slices, to manually identify familiar vascular landmarks such as large vessels or bifurcations. While experts in the field can be accustomed to uDoppler images, cerebral vasculatures remain difficult to interpret compared to familiar anatomical images of the brain. Furthermore, the accuracy of manually positioning the probe over the desired vascular structures strongly depends on the uDoppler image quality. Yet, the quality of a uDoppler image, which is typically computed from a block of 200 ultrafast frames, corresponding to an accumulation time in the range of hundreds of milliseconds, can vary. In preclinical research, with transcranial imaging of small animals, such as mice, the skull attenuates the ultra-sonic waves, spoiling invaluable information and hiding small details as the contrast between background and blood vessels decreases. This makes uDoppler image visualization, vessel characterization and ROI localization more difficult. Image post processing also suffers from uDoppler images of poor visual quality. For instance, both vascular registration and vessel segmentation, which are common processing operations for uDoppler images, require clean data in which blood vessel perception is high. Finally, monitoring the evolution of vascular pathology in the brain also requires high image quality.

A solution to retrieve high quality uDoppler images can be to increase the accumulation time, for example to several seconds. However, this comes at the cost of much more experimental resources. Alternatively, enhancement filters can be used to recover clean data from noisy inputs without changing the acquisition parameters. Applied to uDoppler imaging they could restore high visual quality in the image, allowing for better perception of small blood vessels. Standard enhancement techniques vary [START_REF] Fa N | Brief review of image denoising techniques[END_REF] from the standard Gaussian filter (GF) to more advanced and more effective approaches, such as block-matching and 3D filtering (BM3D). Also, manual contrast adjustments are common practices for better visualization of uDoppler images. Yet, these techniques are too slow to be integrated into ultrafast imaging procedures and often require manually setting parameters to be operational.

The recent breakthrough of deep neural networks (DNNs) for image transformation tasks, where an input image is transformed into an output image, suggests a new approach to the medical image enhancement problem [START_REF] Tian | Deep Learning on Image Denoising: An overview[END_REF]. Thanks to their deep architecture, DNNs proved able to capture and preserve high level features and details, while carrying-out image transformation, at high speed, making them a good candidate for real-time Doppler enhancement. Indeed, automated transformation tasks typically rely on deep convolutional neural networks (DCNNs), which are trained using a pixel-wise loss function.

In recent work, researchers introduced a new approach to image transformation problems where the objective is perceptual [START_REF] Johnson | Perceptual Losses for Real-Time Style Transfer and Super-Resolution[END_REF]. They proposed using a perceptual loss function based on image features, such as the style or the content of the image, to train DCNNs. For this approach, a second neural network (the auxiliary or loss network), integrating human visual perception rules, is utilized to compute the perceptual loss needed to train the main transformer. Among other applications, Chapter 2 they were interested in style transfer [START_REF] Gatys | Image Style Transfer Using Convolutional Neural Networks[END_REF], [START_REF] Luan | Deep Photo Style Transfer[END_REF], for which an image is modified to adopt the style of another image, while retaining its original content. In this case the perceptual approach allows for a visually pleasing transformed output image, while no ground-truth is available. Since then, perceptual training has made its way to the medical imaging processing field [START_REF] Yang | DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction[END_REF], [START_REF] Yang | Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss[END_REF], [START_REF] Yi | Sharpness-aware Low dose CT denoising using conditional generative adversarial network[END_REF], helping to better preserve the geometric features of target images after transformation. Thus, we hypothesized that perceptual loss could be adequate for real-time uDoppler image enhancement.

As we want to emphasize eye-catching features in the output image, we could design a perceptual loss function that captures the content (ie: blood vessels) of our uDoppler images rather than non-informative structures (ie: background). Combined with intensity regularizers, the perceptual loss could be used to train a DCNN, pushing the network into selectively decreasing pixel intensity in the background, thus making blood vessels and small details more distinguishable. Hence, the perceptual approach could be valuable for increasing contrast in uDoppler images while preserving high resolution for small vessels. Also, one of the main advantages of the perceptual training is that no ground-truth images of high contrast are needed to teach the enhancement task. In this chapter we introduce PerceptFlow: a deep convolutional neural network trained to enhance transcranial uDoppler images of the mouse brain in real-time.

Materials & methods

Transcranial uDoppler imaging of mouse brain 2.2.1.1 Data acquisition

In previous works, uDoppler images were generated by transcranial ultrafast tomography of the mouse brain [START_REF] Demené | 4D microvascular imaging based on ultrafast Doppler tomography[END_REF], [START_REF] Nouhoum | A functional ultrasound brain GPS for automatic vascular-based neuronavigation[END_REF]. For this study, we obtained data from 6 different animals imaged at different times. Transcranial ultrafast acquisitions were conducted using an Iconeus One scanner driving a 15 MHz acoustic probe with 128 elements and 0.11 mm pitch to enable a 100 x 100 µm 2 resolution in the imaging plane. The probe was mounted on a motorized setup, granting three degrees of translation and one degree of rotation, allowing for the acquisition of any vertical imaging plane. With this standard imaging approach, uDoppler images of size 14.08 x 9.1 mm 2 were recorded with various angular orientations of the probe, resulting in a variety of vascular structures we could use for training.

Data preparation

Data consisted of 16000 uDoppler images. Each image results from the integration of 200 ultrafast frames, acquired at 500 Hz, which corresponds to an accumulation time of 400 ms of acquisition per image. Singular value decomposition (SVD) clutter filtering [START_REF] Demene | Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity[END_REF] was performed to remove tissue signal from blood flow. Before training, all images were upsampled by spatial linear interpolation in both directions so as to obtain images of size 512 x 512 pixels. Then, image intensity was normalized between -1 and 1.

Learning to enhance 2D uDoppler images 2.2.2.1 Brief overview of the perceptual enhancement approach

PerceptFlow was designed with the intention to produce uDoppler images with high contrast and well-defined vascular structures. The first step for training Percept-Flow was to define the optimization task, i.e. choose the loss function that could drive PerceptFlow into enhancing uDoppler images. We chose a loss function that has two distinct components. The second component of the loss function consists in an image intensity regularizer, which controls the image contrast during the optimization process. Indeed, we hypothesized that penalizing the intensity of pixels in the background should enable PerceptFlow to learn to increase contrast in uDoppler images without clashing with the perceptual loss, thus preserving blood vessels.

We already mentioned that training PerceptFlow into enhancing uDoppler images with the perceptual loss did not require "high quality" ground-truth images. Indeed, the particular optimization strategy used in this study only needs vascular content references to work. Hence, for training PerceptFlow, we directly used the standard uDoppler images, generated by the integration of 200 ultrafast frames, as content references. Meanwhile, we created synthetically deteriorated uDoppler images to serve as "low-quality" inputs. In the input image, we wanted to make blood vessels more difficult to identify, without losing the entire vasculature, increasing noise and lowering the contrast. Each input was made by randomly extracting 20 frames out of the entire imaging block. By doing so, we access downgraded vascular images without losing too many vessels. Nevertheless, our final goal here is not to reduce the acquisition time from 200 to 20 frames, rather going past the visual quality of uDoppler images after the standard accumulation process. Thus, these "low-quality" uDoppler inputs were used only during training.

Thereby, a typical training iteration for PerceptFlow consists of the following steps. First, we generate a "low quality" input associated with a content reference. Then, PerceptFlow transforms the "low-quality" input, so as to enhance blood vessel perception. In particular, the intensity regularizer should push PerceptFlow to increase the contrast in the output image. After that, VGG evaluates the vascular content of the output image, with regard to the content reference, in order to guarantee that PerceptFlow preserves the vasculature. Figure 2.1 illustrates our strategy for the uDoppler image enhancement task. Once trained, PerceptFlow should be able to enhance the content reference in real-time.

The enhancement network

The architecture of PerceptFlow is illustrated in figure 2.2. It consists of a typical encoder-decoder inspired by the U-Net architecture [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF], taking as inputs uDoppler images of size 512 x 512 pixels.

The encoder extracts and compresses visual information from the input image. It comprises a succession of 2D convolutional layers with 8, 16, 32, 64, 128, 256 and 512 filters and a small 3 x 3 receptive field, followed by batch normalization and the LeakyReLu activation function to stabilize the training. Batch normalization is the normalization of the feature maps in each layer. This is common practice for training DCNNs. In particular, it has been proved able to reduce the dependence of DCNNs' performances on the initialization of the weights [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF]. Also, LeakyReLU is a popular activation function, allowing a small non-zero gradient for negative input values, thus stabilizing the training [START_REF] Maas | Rectifier Nonlinearities Improve Neural Network Acoustic Models[END_REF]. In the encoder, we used strided convolutions to reduce the spatial resolution of the input image while increasing the depth of the feature maps, allowing for the representation of high-level, lowresolution feature maps that contain rich information about the content of the input image.

Chapter 2

The decoder generates the output image from the feature maps produced by the encoder. Similar to the encoder, it consists of a succession of up-sampling operations, used to resize the feature maps to the original input image dimensions, convolutional layers, batch normalization and LeakyReLU activation. A final convolutional layer with a single filter, and a 1 x 1 receptive field, is used to reconstruct the output image from previous feature maps. The last convolutional layer is followed by a hyperbolic tangent activation, which scales the output intensity between -1 and 1, in order to match the intensity of the content reference. Skip connections are used to enable information to flow directly from the encoder to the decoder, avoiding information loss and preventing vanishing gradients. It should also help to preserve the spatial resolution in the final image [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. A contracting convolutional block from the encoder, where the convolutional layer is followed by a batch normalization layer, before LeakyReLU activation and compression. c. An expanding block from the decoder, ending with an upsampling layer used to resize the feature maps. The h-w-c-size (height, weight and channel) indicates the size of the feature map, while f is the number of filters for each block.

Perceptual loss and enhancement optimization

The perceptual loss is computed by VGG. VGG extracts features from both Per-ceptFlow's output image P (x), and the content reference y. The perceptual loss is
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derived from these features as the square difference between P (x) and y in feature space. It should encourage the PerceptFlow to focus on informative vascular features in order to preserve vessel geometry and fine edges when enhancing the input x. Perceptual loss is defined as follows:

L perceptual = 1 h * w * ÿ i ÿ j (VGG(P (x ij )) ≠ VGG(y ij )) 2 (2.1)
where P represents PerceptFlow, VGG is the auxiliary perceptual network, x and y respectively the "low quality" input and the content reference, and h * and w * are the dimensions of P (x) and y in feature space. For each training iteration, the perceptual loss is averaged on a small sample batch with multiple pairs of images (x, y).

As we wanted to impose high contrast in the enhanced Doppler image, we combined the perceptual loss with intensity regularizers to constrain the training process. Hence, we penalized low contrast by adding the intensity value of the third quartile pixel in P (x), which we considered as a good threshold approximating the background noise upper bound, to the perceptual loss. To maintain high intensity in blood vessels we also penalized a large deviation of the maximum intensity output pixels from their counterparts in the content reference. The total loss becomes:

L total = L perceptual + P (x) min +(P (x) max ≠ y max ) 2 (2.2)
The first term in equation 2.2 corresponds to the perceptual loss, followed by the first intensity regularizer, which is the intensity value of the third quartile pixel in the output image P (x). This first intensity regularizer should impose low intensity in the background. Then, a second intensity regularizer is used to minimize the potential drop of intensity in blood vessels.

Training routine, validation and testing

PerceptFlow was implemented using the Tensorflow framework and Keras machine learning library. Training, validation and testing were conducted on an GPU (Nvidia GeForce RTX 2080 Ti). For training and validation, we randomly selected 15000 pairs of "low-quality" input images and content references. We kept 1000 images for testing. PerceptFlow was trained for 10000 iterations. We used
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Adam optimizer, which is recommended in the literature [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] with a 10 -4 learning rate, chosen empirically, which dropped to 10 -5 for the last 1000 iterations to avoid training instability. We performed 5 complete training runs with a sample batch of size 16 images and different random initial seeds, and reported the average results.

Each training run lasted approximately 12 hours. To diagnose any problems during training, we evaluate the current state of our network at each iteration step, on both training and validation data. In particular, to prevent overfitting, we checked that the perceptual loss did not increase on the validation data.

Quantification metrics for evaluating blood vessel perception 2.2.3.1 Contrast

For quantitative analysis, the performance of PerceptFlow was asserted in terms of contrast, which is defined as:

C =10ú log 10 ( PW blood PW bg ) (2.3) 
In equation 2.3, the numerator represents the uDoppler signal in blood vessels. It is computed as the mean value of pixel intensity in an ROI inside a blood vessel.

A typical blood ROI counts 400 pixels. The denominator corresponds to the signal of the background. It is computed as the mean value of pixel intensity in an ROI in the background near the vessel. A typical background ROI counts 1000 pixels.

In the following, for each image, contrast value was normalized by the contrast in the content reference prior to enhancement. As mentioned in [START_REF] Tiran | Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging[END_REF], the contrast corresponds to the ability to detect small blood vessels in the image. High contrast generally means high vessel perception.

Contrast-to-noise ratio

We also evaluated the contrast-to-noise ratio (CNR) to further quantify the ability of our network to extract vascular information from the background. The classic formulation of CNR is:

CNR = PW blood ≠ PW bg std(PW bg ) (2.4)
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where PW stands for the mean value of the uDoppler signal (in a blood vessel or in the background) and std represents the standard deviation. The presence of the standard deviation term in equation 2.4 allows for the appreciation of background smoothness in the output image. As for the contrast, CNR was normalized by the CNR in the content reference.

Spatial resolution

Lastly, we wanted to assess the impact of PerceptFlow on spatial resolution. The resolution is assessed as the minimum distance at which two neighboring blood vessels can be separated. This distance was evaluated on Doppler images in which we could find a small vessel bifurcation. The resolution was set as the distance between two intensity peaks, P 1 and P 2 , respectively, in the center of each branch of the bifurcation, when the minimum intensity value measured in the valley V between the two branches is half of the average of the peaks.

Results

In this section we confront PerceptFlow with state-of-the-art enhancement filters, such as the Gaussian filter (GF) or the block-matching and 3D filtering (BM3D) approach, in terms of enhancement capability, using a variety of image quality metrics.

Qualitative results

After training, we used PerceptFlow to enhance a number of test images. Per-cepFlow was applied directly on the content reference, in the hope to demonstrate its capacity to increase the visual quality of standard uDoppler images. Figure 2.3 illustrates the effect of PerceptFlow on transcranial uDoppler images of mouse brains. Two examples of enhanced images are shown, with different orientations of the ultrasound probe, with both linear and logarithmic scales. We chose to use shared axis limits to highlight the difference in background intensity between the input and output images as well as the apparent increase in contrast after enhancement. We can appreciate that PerceptFlow automatically produces images with higher contrast and sharp details, preserving the integrity of small blood vessels. Indeed, PerceptFlow selectively reduces the intensity of pixels in the background, thus producing uDoppler images of higher contrast, while retaining the spatial resolution in the output.

In modern ultrasounds, it is common to use intensity stretching techniques to optimize image display [START_REF] Rindal | The Effect of Dynamic Range Alterations in the Estimation of Contrast[END_REF]. Yet, it often tends toward high contrast at the expense of small detail detectability. With PerceptFlow, we tried to bridge the gap between high contrast and detail preservation, making it easier both to detect small blood vessels and to identify larger vascular clues in highly contrasted images.

To demonstrate the efficacy of our learning based approach, we confronted Per-ceptFlow with an intensity stretching approach. Figure 2.4 shows the differences between linear contrast stretching and PerceptFlow in terms of small blood vessels perception. Compared with PerceptFlow, the linear intensity stretching approach loses low-intensity vessels for the benefit of high contrast. The effects of PerceptFlow on small blood vessel perception are further depicted in figure 2.5, where we focused on two regions with a high density of small vessels. PerceptFlow produces images with sharper details as opposed to standard filters (GF and BM3D) which seem to introduce strong blurring artifacts and fail to preserve small blood vessels.

As they over smooth the uDoppler image to clear noise, small blood vessels vanish from the image with both GF and BM3D, resulting in information loss. This is clearly noticeable on the intensity profiles provided in figure 2.5. With Percept-Flow, the difference in intensity between blood vessels and background increases at the very edge of vascular structures, indicated by larger peak-to-peak heights between consecutive vessels. We believe that this local increase in contrast makes small blood vessels more distinguishable.

Figure 2.5

Effect of different enhancement strategies on small blood vessel perception. We select two ROIs in the image containing small blood vessels. The green line represents an intensity profile sampled from the standard uDoppler image. Under each uDoppler image is the corresponding intensity profile normalized between its maximum and minimum values. The intensity profile tells us how well details are preserved in the output image. Black arrows mark small blood vessels of interest. For a single vessel, a high peak-to-peak amplitude value means higher local contrast, thus high vessel perception.

Quantitative results

First, we assessed the effect of PerceptFlow on spatial resolution. Figure 2.6 illustrates the impact of different enhancement strategies on spatial resolution. On average, we observe that GF generates images with a resolution of 178 ± 40 µm . Meanwhile, BM3D performs slightly better, granting a mean resolution of 163 ± 50 µm mm. PerceptFlow on the other hand allows the separation of close blood vessels with measured resolutions of 141±40 µm. As a control, we measured the spatial resolution in the content reference, which is 148 ± 40 µm. With PerceptFlow, we stay close to both the resolution measured in the content reference and the theoretical resolution of 100 µm.

Figure 2.6

Resolution analysis on a typical vascular bifurcation. Resolution is set as the distance between P 1 and P 2 when V is half the average of P 1 and P 2 . The intensity profile comparison close to the ramification reveals a clear separation of the two branches with PerceptFlow, meaning that the spatial resolution is preserved in the output image.
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Then, we confirmed the capacity of PerceptFlow to increase contrast in the output image. Figure 2.7 illustrates that PerceptFlow produces images with significantly higher contrast. We measure an average gain of 2.8 compared with the content reference, which correlates with the observation made previously. On the other hand, GF causes a slight drop in contrast while BM3D stays true to the reference. PerceptFlow also reaches the highest CNR with a gain of 0.56 with respect to the input, while BM3D matches standard uDoppler images and GF induces a 0.2 decrease in the CNR. 

Discussion

In this chapter, we present a DCNN inspired by the U-Net architecture to enhance transcranial uDoppler images of small animal brains. Our network exhibits a capacity to produce uDoppler images of high visual quality, high contrast and high CNR, retaining sharp details and preserving spatial resolution, thus improving blood vessel perception and detectability. PerceptFlow operates in real time (0.05 s). It is fast enough to be integrated into existing uDoppler live visualization tools, just after standard compounding, facilitating both brain navigation and vascular ROI selection. PerceptFlow should also benefit post acquisition operations such as vascular segmentation and registration, which both call for clean data.

In this work, we investigated the benefit of using a perceptual loss, combined with intensity regularizers, to train PerceptFlow. Contrary to our perceptual approach, conventional feed-forward methods, such as mean-squared-error (MSE) minimization, which is one of the most popular loss functions for image processing, could not have allowed such results in terms of visual quality. Indeed, MSE, as a pixel-wise loss function, directly confronts the output to the reference, pixel by pixel. Hence, with MSE the optimization process pushes the network to retrieve the visual quality of the reference rather than increasing it. Yet, no highly contrasted uDoppler images are available for training the network with a pixel-wise approach for uDoppler image enhancement. Furthermore, pixel-wise loss minimization inevitably takes into account similarities in non-informative structures such as the background. As blood vessels represent a very small fraction of pixels in our images, with a pixel-wise loss the optimization process will be driven mostly by the signal from the background and not by vessel enhancement. In addition, pixel-wise loss minimization and background intensity penalization (with intensity regularizers) are not synergistic and would have driven the optimization process in opposite directions.

For comparison, we confronted PerceptFlow with state-of-the-art filtering techniques. In figures 2.5 and 2.6 we illustrate that standard filters produce strong blurry artifacts resulting in vanishing details and resolution loss. Because GF relies on averaging kernels to enhance the input image, it will effectively reduce noise in flat areas (i.e., background), but inevitably wipe off sharp details in high-frequency regions. BM3D is better at enhancing Doppler images than GF. However, it also fails to preserve small blood vessels, leading to vanishing details. Figures 2.7 and 2.8 illustrate that both GF and BM3D increase neither the contrast nor the CNR as opposed to PerceptFlow.

By coupling perceptual loss with intensity regularization parameters, we managed to improve both the contrast and the CNR in the output image, while retaining the integrity of sharp details, thus improving small blood vessel perception and surpassing the visual quality of transcranial uDoppler. Indeed, PerceptFlow gives the best contrast and the best CNR. We also controlled that PerceptFlow outperforms Chapter 2 a simpler intensity transformation for visualizing uDoppler images. In figure 2.4, we rescaled the intensity of the input image by linear intensity stretching and manually set the axis color limits to clip the background, which is common practice for uDoppler image visualization. We found that, contrary to PerceptFlow, intensity stretching increases the contrast at the cost of vanishing blood vessels. Whereas, with PerceptFlow we do not compromise between high contrast and small vessel preservation. Hence, PerceptFlow could be seen as a turnkey solution that systematically identifies and preserves details in uDoppler images, while increasing the contrast, resulting in higher vessel perception.

With this study, we have demonstrated the benefits of perceptual loss, working in synergy with regularization parameters, to enhance uDoppler images in realtime after a standard acquisition. Consequently, we think that PerceptFlow could benefit live visualization, as well as various post-acquisition operations, such as vascular registration and blood vessel segmentation, which usually call for blood vessel perception enhancement, typically consisting of noise reduction or contrast increase with respect to the background.

Yet, we note that our approach does not reduce the computational time needed to generate one uDoppler image, with high visual quality, since the integration is still done over the entire block of ultrafast frames. However, our goal here was to propose a solution to enhance standard uDoppler images in real-time rather than reconstruct standard images from sparse data.

Although PerceptFlow is capable of enhancing uDoppler images, our perceptual approach has several limitations. First, the regularization parameters in equation 2.2 were chosen empirically. For our data, the value of the third quartile pixel seemed to be a good threshold to approximate the noise upper bound, allowing us to impose low intensity in most of the background, preserving the integrity of the vasculature. Yet, this constraint might be too high for uDoppler images with very dense vascular structures or too low for images with very few blood vessels. Also, shifting the pixel intensity distribution toward small values induces a small intensity decrease in blood vessels, which we partially compensate for during training. Further studies should be conducted to find the best regularization parameters for optimal training. An idea would be to use dynamic constraints to find the best regularization parameters for each training sample.

Ideally, PerceptFlow should not disturb the vasculature, leaving blood vessels untouched. Nonetheless, being a DCNN, PerceptFlow applies nonlinear transformations to the input, which may affect the quantitative measurement of blood flow. Indeed, we witnessed a small decrease in intensity in blood vessels after enhancement. Although this intensity change has very little effect on our perception of the enhanced vasculature, it certainly affect single-image quantitative measurement of blood flow. Nevertheless, we hoped that PerceptFlow, being consistent at enhancing uDoppler images, manages to maintain the proportionality between pixel intensity in vessels and cerebral blood volume (CBV), enabling hemodynamic characterization. The quantification of functional activity in fUS recordings, after perceptual enhancement, is ongoing work.

PerceptFlow also generalizes well to other animal models. Even though it was exclusively trained to enhance mouse brain uDoppler images, we have already managed to obtain clean uDoppler images of rat brains, as illustrated in figure 2.9. In future studies we could further evaluate the effect of PerceptFlow on various noisy uDoppler images, alternating between both different animals and different organs. 

Conclusion

In this chapter we trained a DCNN, inspired by the U-Net architecture, to perform uDoppler image enhancement in real-time. PerceptFlow was trained on transcranial images of the mouse brain. Our work shows the performance of the machine learning approach for real-time Doppler image enhancement, and its applicability to animal models beyond mice.

As the information we want to accentuate, concentrates in blood vessels, we wanted to push the network into enhancing small details, making them more distinguishable, rather than focusing on smoothing the background signal, which mostly corresponds to tissue. Thus, we designed our training strategy to rely on feature comparison rather than on a pixel-wise loss. We trained PerceptFlow with a perceptual loss, which depends on vascular geometry, rather than on pixels in the background, in synergy with intensity regularizers, which impose low intensity in the background without clashing with perceptual measurement.

PerceptFlow was able to increase contrast while preserving sharp details and spatial resolution, thus increasing blood vessel perception. Thereby, we managed to bypass the well-known over-smoothing effect induced by standard filtering techniques, as well as the need for a very long accumulation time to retrieve high visual quality in uDoppler images. This makes PerceptFlow a powerful turnkey solution to facilitate neuronavigation and positioning during fUS studies, as well as for post-acquisition operations such as vascular segmentation and registration, which require clean data. As such it has already been implemented in the Iconeus software pipeline.

Chapter 3 3D cerebral uDoppler image registration based on automatic key point localization. A machine learning solution to improve neuronavigation in fUS studies.

Chapter 3

Previously, we used deep learning techniques to enhance 2D uDoppler images for better visualization of vascular structures, enabling easier inspection of cerebral regions during the imaging session. Yet, manually navigating in volumic vascular networks in the brain still requires hours of intensive training, and remains difficult even for experts. Hence, automatic registration tools are essential to overcome this know-how barrier, as well as to improve standardization and reproducibility in fUS experiments.

In this chapter, we describe and evaluate a new fully automated pre-registration step, adapted to an existing registration pipeline for volumic uDoppler image registration. Our approach combines feature based pre-alignment and iterative affine registration, with the aim of making the existing registration process more robust and fully operator independent. In particular, we show in the first step of our pipeline how deep learning algorithms can learn to locate vascular features in volumic transcranial uDoppler images of the mouse brain, enabling precise misalignment correction.

Introduction

With both high sensitivity and temporal resolution, 3D uDoppler imaging allows for functional ultrasound (fUS) imaging of the whole brain, which is used for the indirect capture of neuronal activity based on neurovascular coupling, making it a powerful tool for neurosciences. fUS, however, is only informative through a high understanding of vascular images. Undoubtedly, being able to appreciate the correspondence between vascular patterns and functional brain areas is crucial for both data acquisition and analysis. Although experts can learn to navigate through complex 3D vascular images of the brain, the identification of cerebral regions of interest (ROI), based solely on volumic vascular clues, remains difficult and often requires extensive training. This limits standardization and reproducibility of fUS studies. A solution to address this challenge is to realign uDoppler volumes spatially with predefined brain maps, such as common anatomical or functional atlases. Doing so, vascular images retrieve a familiar context which allows for easier neuronavigation and quantitative analysis.

The automatic image registration task, which is fundamental in a variety of preclinical studies, has been a topic of active research for decades [START_REF] Hill | Medical image registration[END_REF], [START_REF] Oliveira | Medical image registration: a review[END_REF] and has led to the development of powerful registration tools, either based on image intensity correspondence or feature matching. Intensity-based registration methods [START_REF] Klein | elastix: A Toolbox for Intensity-Based Medical Image Registration[END_REF] use the intensity values of voxels to establish the correspondence between 2D or 3D images, while feature-based approaches [START_REF] Wa N G | Image registration method using representative feature detection and iterative coherent spatial mapping for infrared medical images with flat regions[END_REF] rely on distinctive spatial features, to align the images.

Recently, a semi-automatic registration algorithm for vascular images was developed by Iconeus, in collaboration with the Physics for Medicine laboratory. This algorithm, based on iterative mutual information (MI) maximization [START_REF] Mattes | Nonrigid multimodality image registration[END_REF], is designed for cerebral imaging in small rodents. After validation, this algorithm was integrated in a whole-brain neuronavigation system called the brain positioning system (BPS) with the intention of facilitating fUS experiments [START_REF] Nouhoum | A functional ultrasound brain GPS for automatic vascular-based neuronavigation[END_REF]. The BPS relies on a affine registration strategy to align moving uDoppler volumes on a vascular atlas of reference.

The BPS works as follows. If the affine registration algorithm converges without failure, it produces an optimal affine transformation, used to overlay the moving volume and the reference. The vascular reference, being pre-aligned to a functional coordinate framework, delivers a well-known context to the moving volume. Among others, the BPS allows for automatic ultrasound probe positioning and volume alignment of multiple subjects taken at different times. This enables the rapid identification of brain ROIs. Also, the BPS benefits standardized connectivity measurement [START_REF] Rabut | Pharmaco-fUS: Quantification of pharmacologically-induced dynamic changes in brain perfusion and connectivity by functional ultrasound imaging in awake mice[END_REF], [START_REF] Rahal | Ultrafast ultrasound imaging pattern analysis reveals distinctive dynamic brain states and potent subnetwork alterations in arthritic animals[END_REF], [START_REF] Matei | Global dissociation of the posterior amygdala from the rest of the brain during REM sleep[END_REF], facilitating both longitudinal and cross-sectional fUS studies.

Yet, in practice, the BPS is extremely sensitive to the initial misalignment between the moving volume and the reference. On top of that, the BPS often fails to align data that are of poor quality, which can be the case with transcranial imaging, or with volumes that exhibit pathological features. For instance, a lack of blood vessels induced by ischemic stroke will prevent the BPS from converging to the optimal alignment, either resulting in a very large affine transformation which increases the misalignment, or the identity which yields no registration. Thus, the BPS requires initialization in the form of a manual pre-registration step, making it operator dependent. Therefore, it is crucial to improve the BPS registration framework, making neuronavigation for uDoppler volumes less operator dependent and more robust.
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In recent years, machine learning algorithms have gradually migrated from the computer vision field to offer promising solutions to medical image registration problems [START_REF] Haskins | Deep learning in medical image registration: a survey[END_REF], [START_REF] Fu | Deep learning in medical image registration: a review[END_REF]. Predominantly applied to anatomical CT scan or MRI, techniques vary from supervised approaches [START_REF] Fa N | BIRNet: Brain image registration using dual-supervised fully convolutional networks[END_REF] which require a large amount of accurately registered examples, to unsupervised strategies which circumvent the need for prealigned examples with clever optimization processes [START_REF] De Vos | A Deep Learning Framework for Unsupervised Affine and Deformable Image Registration[END_REF], [START_REF] Balakrishnan | An Unsupervised Learning Model for Deformable Medical Image Registration[END_REF], [START_REF] Zhao | Unsupervised 3D End-to-End Medical Image Registration with Volume Tweening Network[END_REF]. While these machine learning solutions are not trivial to implement, once deployed they offer automatic, non iterative and reliable tools to register both 2D and 3D medical images.

Yet, so far end-to-end learning solutions for vascular image registration are rather based on 2D segmentation [START_REF] Wa N G | A Segmentation Based Robust Deep Learning Framework for Multimodal Retinal Image Registration[END_REF] or image classification [START_REF] Lambert | A deep learning classification task for accurate brain navigation dur-Bibliography ing functional ultrasound imaging[END_REF], often neglecting volumic information at the expense of lower accuracy. Going back to the computer vision field, learning-based algorithms can use feature estimators, such as key points detectors, to evaluate the position of 2D and 3D objects with regards to a reference [START_REF] Zhu | Face detection, pose estimation, and landmark localization in the wild[END_REF], [START_REF] Toshev | DeepPose: Human Pose Estimation via Deep Neural Networks[END_REF], [START_REF] Cao | OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields[END_REF]. This idea of learning the position and orientation of a volume through automatic feature detection could be an adequate solution for more accurate and automatic volume registration in the medical imaging field [103]. Also, correctly labeled data for learning based feature detection are easier to generate than accurately pre-aligned examples. Hence, the feature-based registration approach could rapidly be adapted for uDoppler data.

In this chapter, we propose a new strategy for uDoppler volume registration, combining both an automatic feature-based misalignment correction technique and an intensity-based affine registration solution in a new cascaded registration pipeline. Our cascaded pipeline relies on the automatic detection of vascular clues in uDoppler volume. For this, we trained a 3D convolutional neural network (3D-CNN), called BrainKey-net, to identify a set of nine key points in transcranial uDoppler volumes of the mouse brain. Those key points should provide an estimation of a volume position with regards to a reference, allowing for rigid automated pre-alignment, before the final affine registration adapted from the BPS system. In the following, we will first explain how BrainKey-net can learn to detect vascular key point positions within uDoppler volumes. Then, we will assess its localization performances, before evaluating the cascaded pipeline's registration capacity. In particular, we will show that our new solution is fast and avoids registration failures in challenging experimental conditions.
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An overview of the proposed cascaded registration pipeline

Our proposed cascaded registration pipeline (figure 3.1) has three main components: the BrainKey-net algorithm, a least-squares fitting misalignment correction solution, and the affine registration algorithm, adapted from the BPS system. Once trained, BrainKey-net should be able to predict the position of nine key points in uDoppler volumes. Each key point corresponds to a prominent vascular clue. We used a least-squares approach, based on feature correspondence, to correct the initial misalignment between the moving volume and the reference. We hypothesize that a feature-based rigid registration strategy could be more robust than an intensity-based method. Yet, feature-based rigid alignment is likely to yield coarse registration results, and will work better with a subsequent fine registration step.
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Thus, we combined feature-based alignment with an affine registration algorithm adapted from the BPS system, which performs the final registration adjustment. This second registration step is used to refine the alignment between the moving volume and the reference.

In summary, our cascaded approach combines both a feature-based rigid misalignment correction approach, which is robust, and an intensity-based affine registration solution, which is precise, with the intention of improving uDoppler volume registration.

The transcranial mouse brain dataset

Data acquisition

Data consist of a collection of volumic transcranial images of the mouse brain acquired during previous studies, conducted either at the Physics for Medicine laboratory or by collaborators at the Physiopathologie et imagerie des troubles neurologiques laboratory, directed by Denis Vivien. Recordings were performed using an Iconeus One scanner, driving a 15 MHz ultrasound linear probe with 128 elements and a 110 um pitch, mounted on a motorized setup, allowing multi-slice scans (figure 3.2).

During each imaging session, the animal was anesthetized with the head fixed in a stereo-taxic frame. To reconstruct the volumic vascular network, a succession of 2D planes were acquired in coronal view, with a 0.2 mm step. At each position, the image was generated from a block of 200 compounded frames, acquired at 500 Hz to cover at least a full cardiac cycle. Each frame was built using 11 tilted plane-waves between ≠10°and 10°. Singular value decomposition (SVD) clutter filtering was applied to the entire imaging block [START_REF] Demene | Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity[END_REF], with the SVD cut-off set to 50 to remove tissue signal from blood flow. This produced vascular images, with a typical spatial resolution of 100 x 100 µm 2 in the imaging plan, and a slice thickness of 400 µm, imposed by the probe geometry. Scan's length varied from 21 to 31 coronal slices, acquired from head to tail, resulting in volumes of a maximum size of 14.06 x 9.1 x 6.2 mm 3 .

For this work, we gathered samples from two distinct studies. In the first group, 25 young healthy adult mice were imaged without any medical procedure. For the second group 64 mice were imaged two times, by our collaborators.

A first recording was performed in basal condition, then another scan was acquired directly after thromboembolic occlusion of the middle cerebral artery, resulting in volumes with large hypoperfused areas in the cortex [START_REF] Hingot | Early Ultrafast Ultrasound Imaging of Cerebral Perfusion correlates with Ischemic Stroke outcomes and responses to treatment in Mice[END_REF]. This led to a total of 153 samples, with diverse sizes and orientations, including pathological data. 

Key point labeling in uDoppler volumes

Prior to labeling, the 153 raw uDoppler volumes were normalized between 0 and 1, then placed in a standardized field of view of dimension 128 x 128 x 64 voxels, with an isotropic grid size of 100 x 100 x 100 µm 3 . Volumes were manually annotated by two experts in order to generate the ground-truth key point positions. Each expert annotated half of the dataset. Volumes were assigned to each expert at random. Before annotation, experts 1 & 2 made sure to check the orientation of the volume along the coronal direction, to ensure consistent left-right orientation and standardized key point labeling. The positions of the nine key points are illustrated in figure 3.3.
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Learning single voxel positions in uDoppler volumes with millions of voxels can be challenging. Thus, we decided to reformulate the learning problem of predicting key point positions as a semantic segmentation task [START_REF] Xue | Landmark Detection in Cardiac MRI by Using a Convolutional 123 Neural Network[END_REF]. In order to increase the number of voxels to look for, each key point was convolved with a small sphere of radius 500 µm, resulting in nine volumic key regions of 485 voxels. The intensity of voxels within each spherical region was set to the corresponding key point index. These spheres should encapsulate the vascular environment around each key point. By extracting the centers of mass of the spheres we can easily retrieve the original key point positions. volume. It concentrates spatial information in feature maps from coarse-to highlevel. We used strided convolutional layers to reduce the size of feature maps in deeper layers.

Then, a simplified expansive shortcut is used to reconstruct the output from previous feature maps. We simplified the architecture of BrainKey-net to limit the number of operations needed during training in the hope to gain computational efficiency. Contrary to the classical V-net architecture, the extensive path of BrainKey-net only comprises three transpose convolutional layers, used to resize the feature maps to the original input spatial dimensions, followed by a concatenation layer which puts together spatial features from different levels. A final convolution delivers the output.

Optimization problem

For the semantic segmentation task, let us designate the dataset S as follows:

S = {(D i ,C i ),i =1,...,N} (3.1) 
D i = {d i j ,j =1,...,n} (3.2) 
C i = {{x i ,y i ,z i } k ,k oe{1,...,9}} (3.3) 
Y i k = {{y i j ,j =1,...,n} k ,k =0,...,9} with y i j oe [0,1] (3.4)
where N is the number of samples in S, D i denotes the volumic uDoppler image n°io fn voxels, and C i refers to the position coordinates of the nine key points in volume D i . For the sample D i , the associated ground-truth Y i k is composed of ten binary segmentation maps {y i j } k (one map for each sphere and one background map).

Considering all trainable parameters W in BrainKey-net, we want to solve the following optimization problem:

W * = argmin W (W | CE(Y i k , " Y i k ). (3.5) 
where W * corresponds to the final optimized parameters, " Y i k refers to the prediction made by Brainkey-net and CE is the categorical cross entropy loss defined as follows, Chapter 3 in every direction, so as to keep most of the vascular network in frame. We purposely chose to normally distribute both the rotation and translation amplitudes, as small deformations are more likely to occur experimentally. Figure 3.5 shows the distribution of both rotation and translation parameters used to train BrainKeynet. Finally, input volumes were flipped along the z axis, to simulate a left-right permutation. Neither rescaling nor shearing were used.

Training routine, validation and testing

After empirical evaluation, we chose to train BrainKey-net with the following parameters: out of the 153 volumes at our disposal, 119 were randomly chosen for training, 12 for validation and 22 were kept for testing. Training, validation and testing were done on a GPU (Nvidia Geforce RTX 2080 Ti). Each training run lasted 500 epochs, with a sample batch of size 4 volumes, resulting in 15000 optimization steps. We used Adam stochastic gradient descent [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] with a 10 -4 learning rate, which was dropped to 10 -5 for the last 50 epochs. Training lasted approximately 14 hours.

In order to diagnose any training flaws, such as overfitting, we evaluate the current state of our network at each training iteration step, on both training and validation data, using a point-to-point localization error metric and Dice score measurement (more details about these evaluation metrics are provided in section 3.3.1.1).

After training, for an unseen uDoppler volume D i , taken in the test dataset, BrainKey-net predicts the segmentation " K i :

" K i = { ' k i j ,j =1,...,n} with ' k i j oe{1,...,9} (3.7) 
given by:

" K i = argmax k ‰ (Y i k ) (3.8)
It should be noted that the output of BrainKey-net does not necessarily consists of perfect spheres, but rather clusters of voxels. Each predicted key point positions " C i for the volume D i corresponds to the coordinate in " K i of the centers of mass of clusters of same voxel intensity.
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Least-squares fitting of two point sets

Key points corresponding to prominent vascular features in cerebral networks can be used to determine the relative position of a moving volume, with respect to a reference. To do so, we search for the best geometric transformation to overlay pairs of moving and fix reference key points. Thereby, we encountered the following mathematical problem.

Considering a set of moving points {p i } and a set of reference points {q i }, with i = {1,...,9}. We want to find the best combination (R, T ) * of rotation matrix R and translation vector T that minimize the euclidean distance between each pair of points {p i ,q i }. In other words we want to solve:

(R, T ) * = argmin R,T ( ÿ i Îq i ≠ (Rp i + T )Î 2 ) with i oe{1,...,9} (3.9) 
Various algorithms are described in the literature for finding the solution to this mathematical problem. In this study we chose to use the popular non-iterative point correspondence method proposed by Arun, Huang, and Bolstein [START_REF] Arun | Least-Squares Fitting of Two 3-D Point Sets[END_REF], which has the advantage of being fast and easily implemented.

Let us consider:

p i = p i ≠ 1 N ÿ i
p i where N=9 (3.10)

q i = q i ≠ 1 N ÿ i q i where N=9 (3.11)
and the 3 x 3 matrix H :

H = ÿ i qi pt i (3.12)
where t is the transpose operation.

The SVD decomposition of H provides the optimal rotation R * , which is used to estimate the optimal translation T * .

H = USV t (3.13) R * = VU t (3.14) T * = 1 N ÿ i p i ≠ 1 N ÿ i Rq i (3.15) Chapter 3
With this, we disposed of a quick solution to align two or more volumic point sets as long as they share at least 3 key points. Otherwise, with 2 or less pairs of key points, the alignment is reduced to a simple translation between the center of mass of each point set.

Results

In this section we cover the experiments carried out to evaluate, both quantitatively and qualitatively, the performances of our cascaded registration strategy, in contrast with standard intensity-based affine registration without manual initialization. First, we assessed the localization capability of BrainKey-net, which corresponds to its capacity to estimate the relative position and orientation of a given moving volume with regards to a fixed reference. Then, we show how automatic misalignment correction, based on key point correspondence, can be used to improve the existing affine registration algorithm implemented in the BPS system.

The localization capability of BrainKey-net

Key point localization on unseen uDoppler volumes

As we reformulated the key point localization problem as a semantic segmentation task, it appeared natural to start by evaluating the segmentation capacity of BrainKey-net. For this, we used the 22 volumes we kept for testing. These volumes were acquired in different animals, and included 10 pathological samples (with hypoperfused cerebral regions). Segmentation performances were assessed, using the popular Dice score [START_REF] Minaee | Image Segmentation Using Deep Learning: A Survey[END_REF]. It is defined as twice the overlap area of the output clusters and spherical ground-truths, divided by the total number of voxels in the volume. For binary segmentation maps, using the classical definition of true positive (TP), false positive (FP), and false negative (FN), Dice score is identical to the F1 score defined as :

Dice = 2TP 2TP + FP + FN (3.16)
On average, we found a Dice score of 0.65 ± 0.02, which is lower than typical values described in the literature. However, as long as the output cluster, associated with a specific key point position, is centered on said key point, BrainKey-net should be able to correctly localize the corresponding vascular clue. average localization error of 166 ± 8 µm, which corresponds to a maximal gap of 2 voxels between the prediction and the reference. This demonstrates the localization capacity of BrainKey-net.

Yet, we noted that localization error increases with key points 2, 3 and 7. Contrary to key points 4, 5, 6, 8 and 9, which situate in the center of the vascular network key points 2, 3 and 7 are placed at the outskirts of the volume. This could make them more difficult to be localized by BrainKey-net. Table 3 

Challenging BrainKey-net with large deformations

So far, we demonstrated that BrainKey-net is able to localize key points in unseen uDoppler volumes with a voxel size precision. Since previous evaluation of BrainKey-net performances focused exclusively on simpler cases (standard anteroposterior orientation), we have yet to demonstrate the robustness of our learningbased key point localization strategy. To do so, we decided to challenge the BrainKeynet algorithm with large volume deformations.
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In order to alter the natural orientation of each test volume, we used randomly generated geometric deformations. For each volume in the test dataset, ten rigid transformation matrices were generated, then applied simultaneously to the volume and its corresponding ground-truth, resulting in an augmented dataset of 220 synthetic pairs with new orientations. We hypothesized that deformations of high amplitude should be more challenging for BrainKey-net. Alghout in practice large misalignments should be less frequent, we decided to equally use small and larger deformations for testing the robustness of BrainKey-net. error values of less than 300 µm, indicates a high localization capacity for BrainKeynet, therefore showing its potential to find vascular clues in uDoppler volumes with complex orientations. Similar to previous results, we observed that BrainKey-net has difficulty precisely localizing key points 2, 3, and 7.

Despite substandard segmentation performances, BrainKey-net has proved able to localize vascular key points with a high enough accuracy. Hence, we think that BrainKey-net will enable robust misalignment correction and feature-based registration.

Impact of misalignment correction on the existing affine registration pipeline

The cascaded registration pipeline performances

In order to assess the registration performances of our cascaded strategy, in contrast with the affine registration approach alone, we decided on conducting the following experiments.

First, we used the affine registration algorithm without initialization, to align each test volume on all the others, one pair of volumes at the time. Doing this, we estimated the registration performances of the affine registration algorithm in basal conditions, on 231 pairs of volumes, including pathological data. After registration, we measured the normalized cross correlation (NCC) between each pair of aligned volumes at the zero lag position (x = 0 mm, z = 0 mm and y = 0 mm). The NCC between a moving volume M (x, z, y) and a fixed reference F (x, z, y) of same size is given by:

NCC(x, z, y)= 1 n ÿ i,j,k 1 σ M σ F (M (i, j, k) ≠ µ M )(F (i ≠ x, j ≠ z, k ≠ y) ≠ µ F ) (3.17)
where, n is the total number of voxels in both volumes, µ and σ are respectively the mean and standard deviation of the intensity distributions in M and F. For every position (x, z, y), NCC is between -1 and 1. A NCC value of 1 at the zero lag position indicates optimal alignment.

The same procedure was repeated with the cascaded pipeline. This time, we used BrainKey-net to initialize the affine registration algorithm. Figure 3.9, shows
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the cumulative NCC values at the zero lag position against the fraction of aligned pairs of volumes. As can be seen, the curve for the affine registration without initialization (in red) is less stacked toward high correlation values, indicating inconsistent registration performances. On the other hand, registration performances increase with the cascaded pipeline (in blue). Indeed, after both misalignment correction and affine registration, 89% of pairs show high correlation scores of more than 0.8. In contrast, after affine registration without initialization, only 67% of pairs yield correlation scores of more than 0.8. of the cascaded pipeline over affine registration without initialization. In particular, the affine registration strategy alone seems to have difficulty aligning volumes that are flipped in depth (rotation of ±180°around the z axis). This is visible in figure 3.9 where more than 10% of pairs still have a negative NCC after affine registration without initilalization.

Mutual information maximization after misalignment correction

From previous results, we noted that the misalignment correction step, used to initialize the affine registration algorithms, yields high registration performances even though it is limited to rigid alignment. To better understand how automated initialization impacts the affine registration, we measured the MI at each iteration step in the affine registration algorithm,
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with and without initialization. We keep in mind that the affine registration algorithm works by iterative maximization of the MI, in order to align a moving volume and a fixed reference. Figure 3.10 illustrates how the average MI score evolves during the alignment process (800 iteration steps). Combined with an accurate rigid initialization, affine registration allows for higher MI (blue curve), suggesting a better final alignment in less time. This confirms the benefits of the automated rigid initialization step for uDoppler registration. To estimate the time needed to reach 95% of the final MI value, we fitted each curve with the exponential function f given by:

f (t)=A * (1 ≠ e -t τ )+B (3.18)
where τ correspond to the reaction time for each registration strategy. On average the cascaded pipeline converges to the optimal solution in 279 iteration steps (3τ ).

In contrast, the affine registration alone needs 363 iteration steps (3τ )t oc o n v e r g e . This corresponds to a gain in time of a few seconds.

Examples of moving volume and fixed reference overlay

One of the easiest ways to judge the alignment of two volumes is to display an overlay image of said volumes with complementary colors such as green and magenta. This section illustrates the registration quality of our proposed cascaded pipeline with three examples.

Figure 3.11.a shows two coronal slices at bregma -1.7 mm and bregma -0.9 mm extracted from the same animal brain, acquired at two different times t 0 and t 1 , corresponding to two distinct imaging sessions. Due to the singularity of animal and probe positioning during each recording, an obvious misalignment is visible between the moving volume (in magenta) and the fixed reference (in green). After registration, with the cascaded pipeline, the moving volume is aligned with the reference. We found a strong match between the aligned vascular networks, made visible by the emergence of white pixels in the overlaid images. this misalignment. In particular, we can appreciate the correspondence in the cerebral cortex envelope between the two volumes after registration.

Finally, figure 3.11.c. illustrates the capacity of the cascaded pipeline to work on pathological data. Here, the magenta volume has suffered a stroke incident. Large portions of the cortex are missing. Yet, the cascaded pipeline is able to find the optimal transformation to overlay the pathological volume with the healthy reference. 
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Cross Correlation measurement on three examples

As a quantitative evaluation of our cascaded pipeline registration capacity, we performed a NCC measurement on the three examples given in the previous section. Figure 3.12.a displays the NCC measured between moving volumes and fixed references before registration. Figure 3.12.b shows the NCC after the feature-based misalignment correction step, while figure 3.12.c displays the final NCC after the affine registration step initialized. For each subfigure, we display the ideal case (in blue) of the autocorrelation between the reference and itself (NCC = 1, at position x = 0 mm, z = 0 mm and y = 0 mm, with full widths at half maximum dx = 0.45 mm, dz = 0.62 mm, dy = 1.30 mm).

The purple curves correspond to the intra-animal case study (one animal imaged at two different times). Before registration, the maximum of correlation is clearly shifted in the x axis direction. After misalignment correction, NCC at the zero lag position increases. Finally, the affine registration step corrects the small persisting shift in the y axis direction. At the end of the cascaded pipeline, we measured a maximum NCC value of 0.59, between the moving volume and the reference, at the position x = 0 mm, z = 0 mm, y = 0 mm. This correlates with the observation made in section 3.3.2.3. The correlation peak is slightly larger, compared to the autocorrelation gold-standard, with full widths at half maximum dx = 0.79 mm, dz = 0.82 mm, dy = 1.48 mm, which is understandable regarding the difference in vasculature between imaging times t 0 and t 1 .

With different animals (yellow curves), the initialization is still efficient. In this case, the cascaded registration gives a final maximum NCC value of 0.45 measured at the position x = 0 mm, z = 0 mm, y = 0mm. This time, the correlation peak is even wider. We measured full widths at half maximum of dx = 1.23 mm, dz = 1.23 mm, dy = 2.03 mm. This was expected due to the increased difference in cerebral vasculature structures between the two animals.

Finally, with a pathological volume (red curves), because of the extreme dissimilarity between the moving volume and the reference, NCC stays low even after registration. We measured a maximum NCC value of 0.27 at the position x = -0.06 mm, z = 0 mm, y = -0.41 mm, indicating that alignment is not optimal. In this case, full widths at half maximum are dx = 1.48 mm, dz = 0.98 mm, dy = 2.11 mm. Nonetheless, the correlation between the pathological volume and the healthy reference has increased, demonstrating the potential of the cascaded registration pipeline to work on pathological data with substantial vascular deformations.

These representative examples support the quantitative evaluations made in sections 3.3.2.1 and 3.3.2.2, underlining the potential of our cascaded strategy for automated uDoppler volumic registration, in a variety of experimental conditions, for both intra-and inter-animal studies, including pathological data.

Discussion

With this project, we proposed to revisit the existing intensity-based registration strategy for uDoppler volume alignment, provided by the BPS system. The BPS utilizes an iterative affine registration algorithm, based on MI maximization to align a moving volume on a fixed reference. This algorithm is very sensitive to both large initial misalignment or pronounced vascular dissimilarities between volumes. Hence, it often requires manual initialization to avoid failure, which is time consuming and sometimes suboptimal. To solve the uDoppler registration issue, we developed an automated misalignment correction algorithm, powered by machine learning, with the intention of improving uDoppler registration for better standardization of fUS experiments.

First, we demonstrated that our 3D-CNN: BrainKey-net was able to detect vascular clues, in volumic uDoppler images. Our approach to the vascular clue localization task was based on semantic segmentation. Indeed, BrainKey-net was trained to look for small spheres of hundreds of voxels, centered on key points in the vascular network of the mouse brain. Yet, we found that, rather than generating clean spheres, BrainKey-net often predicts small clusters of voxels, resulting in an average Dice score of 0.65 which indicates low segmentation performances. BrainKey-net was trained by CE minimization, therefore Dice score was not directly optimized during training. This can be one explanation for the low Dice score measured during evaluation. A solution to increase BrainKey-net segmentation capability could be to find the best loss function for optimal training. Yet, many strategies are available and no loss seems to consistently achieve the best performance for 3D medical image segmentation [START_REF] Ma | Loss odyssey in medical image segmentation[END_REF]. Hence, large-scale analysis of general loss functions needs to be done to find the best one for BrainKey-net Although BrainKey-net's segmentation ability is not optimal, it is still able to localize key point positions in uDoppler volumes with high accuracy. Indeed, as long as the output cluster, corresponding to a specific key point, is centered around said key point, the localization capacity of BrainKey-net is guaranteed. In this project, we demonstrated that BrainKey-net produces small point-to-point localization errors of less than 200 um on standard data and 300 um with large deformations. Also, we observed that key points located in the center of the brain (4, 5, 6, 8 and 9) are easily localized, as opposed to key points at the outskirt of the volumes (1, 2, 3 and 7). This may indicate that some vascular clues are more informative than others. In particular, key points associated with large vessels at the center of the vascular network are to be preferred (4, 5, 6, 8, and 9), rather than key points in the cortex (1, 2, 3 and 7). To further quantify BrainKey-net's localization ability, we will evaluate inter-user variability of key point manual annotation, in order to verify if our automated approach produces less variability in predictions relative to variability among human experts. Overall, BrainKey-net has succeeded in the automated vascular clues localization task. This underlines the potential of machine learning for the identification of vascular features in uDoppler volumes. Similar to the approach presented in this study, we could consider training another network for the localization of pathological structures associated with neurovascular diseases, such as aneurysms.

With its capacity to localize vascular clues in uDoppler volumes, BrainKeynet has proved able to allow for feature-based misalignment correction between uDoppler volumes, prior to intensity-based affine registration. In particular, we found that initializing the affine registration algorithm, implemented in the BPS system, on key points results in better and more robust registration. We found two reasons for this observation. First, the key points we chose effectively reflect the underlying orientation, and position of the moving volume with regard to the reference, enabling efficient misalignment correction. Second, computing a rigid transformation in order to align pairs of key points is a problem with a unique solution. Hence, a feature-based registration step yields very robust initialization for subsequent affine registration. Consequently, we suggest a new registration strategy for uDoppler volumic registration softwares.

Our proposed cascaded registration pipeline consists of three steps. First, BrainKeynet is used to detect vascular clues in the volumes we wish to align, then the initial misalignment between volumes is automatically rectified, before a final intensitybased affine registration step adapted from the BPS system. Compared to the affine registration strategy alone, our cascaded approach, powered by machine learning, is faster and generates both higher correlation and higher mutual information on 231 pairs of volumes, including pathological data. This highlights the benefit of combining both a robust feature-based pre-alignment strategy and a fine intensity-based registration solution, which work in synergy to yield better registration capacity in less time. In an upcoming study, we will compare the cascaded registration pipeline to manually initialized affine registration. Still, we already demonstrate the potential of the cascaded approach to circumvent the well-known operator dependency issue of the BPS system. Hence, our cascaded registration strategy was subsequently implemented in the Iconeus One platform.

Finally, we realized that the feature-based misalignment correction alone generates satisfactory registration in less than one second (0.8 s), and could be used as it is for saving time and computation resources. Yet, rigid misalignment correction requires at least 3 key points to work. Hence, whenever BrainKey-net is only capable of detecting 2 or less vascular clues, feature-based misalignment correction is limited to a simple translation, resulting in coarse alignment. Therefore, to secure feature-based registration, we could increase the number of key points to look for.

Conclusion

In this chapter we introduce a new automated cascaded pipeline for uDoppler volumic registration, showing improvement on the existing affine registration approach used by the BPS system.

We trained a 3D-CNN, called BrainKey-net, to automatically detect vascular clues in uDoppler volumes, enabling feature-based misalignment correction and robust initialization of the intensity-based affine registration algorithms implemented in the BPS. We demonstrated that our proposed fully-automated cascaded strategy outperforms the present solution for cerebral network registration, resulting in a better alignment in less time. In particular, the cascaded pipeline circumvents the operator dependency of the BPS framework. Also, our approach avoids registration Chapter 3 failure in presence of significant initial misalignment between the moving volume and the reference as well as with major vascular dissimilarities induced by brain lesions. Hence, we believe that this new registration method has a great potential for the standardization of longitudinal and cross-sectional preclinical studies with fUS.
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Understanding volition with machine learning classification of functional ultrasound images of the non-human primate brain 75 Chapter 4

In chapter 1 we introduced the functional ultrasound (fUS) imaging mode, derived from uDoppler imaging, which allows for the detection of blood flow variations related to neuronal activity. fUS makes it possible to monitor the hemodynamics of the brain for behavioral studies of the awake animal, at rest or in motion. Indeed, fUS recordings have proved able to provide extensive information on cerebral connectivity, and neuronal response to stimuli. Previously, in chapter 2 and 3 we showed that learning based algorithms can be applied for automated structural characterization of 2D and 3D uDoppler images. In particular, convolutional neural networks (CNN) can be used to circumvent the need for manually processing vascular data in order to compare fUS acquisitions from different imaging sessions. In this chapter, we try to go further than structural analysis of uDoppler images by introducing an automated solution for the identification of functional cerebral states in behaving non-human primates. We propose a machine learning approach to automatically classify 2D uDoppler images corresponding to specific behavior. Notably, we analyze a novel oculomotor task involving voluntary movements in the hope to better understand the volition mechanisms involved in intentionality, as well as the notion of auto-initiated action.

Introduction

Neurosciences study how the brain works in association with other structures in the nervous systems, such as the spinal cord and nerves. Among others, neuroscientists aspire to understand the biological mechanisms involved in volition and intentionality, providing insight on how we make decisions and take actions. Volition is considered to be a fundamental aspect of human experience and is closely related to concepts such as auto-initiated action or moral responsibility. Yet, volition has been the topic of numerous scientific and philosophical debates. Some philosophers, such as Descartes (Meditations métaphysiques, IV) and Kant, have stated that volition is specific to human nature, allowing us to make free choice governed by reason and exercise control over our actions, resulting in the production of a voluntary act. Other philosophers, such as Schopenhauer (Le Monde comme Volonté et comme Représentation, XXVIII), have argued that volition is rather a universal product of mental processes and desires to bring about certain outcomes, which animals also experience. This mental process of willing or deciding to do something is associ-ated with the notion of intentionality. Indeed, an important part of intentionality is the ability to freely initiate an action, such as a movement, relying on inner motivation, rather than to respond to external stimuli by reflex. In neurosciences, intentionality refers to a sequence of events that are organized hierarchically. This sequence of events determine the "what", "when" and "whether" components of intention [START_REF] Haggard | Human volition: towards a neuroscience of will[END_REF], [START_REF] Zapparoli | The What, the When, and the Whether of Intentional Action in the Brain: A Meta-Analytical Review[END_REF]. First, an individual decides on "what" specific movement he intends to perform. Then, he chooses "when" this movement should be executed, maintaining the possibility to "whether" continue with the movement or withdraw from the decision. Free movement initiation occurs when the "what", "when" and "whether" components are congruent, giving the signal to execute the movement. Hence, similar to externally induced movements, free motion initiation is preceded by recordable changes in cerebral activity associated with the signal to move [START_REF] Libet | TO ACT IN RELATION TO ONSET OF CEREBRAL ACTIVITY (READINESS-POTENTIAL): THE UNCON-SCIOUS INITIATION OF A FREELY VOLUNTARY ACT[END_REF], [START_REF] Houdayer | Cerebral preparation of spontaneous movements: An EEG study[END_REF]. Yet, cerebral regions from which voluntary action arises, as well as the timing of brain activity leading to free movement are still to be precisely characterized.

Conventional neuroimaging techniques, such as electroencephalogram and fMRI, have been used to investigate brain networks involved in intentional behavior. Notably, a number of studies in non-human primates and humans have pointed out the role of the midcingulate cortex (MCC) and supplementary motor area (SMA) for the preparation of intentional movements [START_REF] Lau | Attention to Intention[END_REF], [START_REF] Pesaran | Free choice activates a decision circuit between frontal and parietal cortex[END_REF], [START_REF] Maurer | Impaired self-agency in functional movement disorders: A resting-state fMRI study[END_REF], [START_REF] Pelliccia | 70 Years of Human Cingulate Cortex Stimulation. Functions and Dysfunctions Through the Lens of Electrical Stimulation[END_REF]. Recently, fUS also demonstrated the potential to observe task-related cerebral activity in the prefrontal cortex of behaving non-human primates [START_REF] Dizeux | Functional ultrasound imaging of the brain reveals propagation of task-related brain activity in behaving primates[END_REF], and could be a promising solution to study the mechanisms involved in the initiation of voluntary action. Indeed, fUS has proved able to detect the dynamic propagation of local CBV changes in the supplementary eye field (SEF), which is part of the pre-SMA, and in the MCC, during oculomotor tasks, for example when the animal was asked to fix its gaze on a cue object after a 60 s resting phase. However, at the time, eye movements were mostly triggered by rule changes, leaving no time for voluntary break, which limited the study of intentionality. To overcome this issue, a novel oculomotor task, allowing for free movement and voluntary break, was designed by collaborators to study intentionality in non-human primate with fUS. This task derived from the experimental protocol detailed in [START_REF] Claron | Covariations between pupil diameter and supplementary eye field activity suggest a role in cognitive effort implementation[END_REF]. However, unlike the initial experiment, they eliminated reward modulations from this novel task, asking the animals either to follow a specific eye movement plan or not [START_REF] Claron | Imagerie fonctionnelle ultrasonore du système nerveux central: des entrées dans le SNC jusqu'aux fonctions cognitives complexes chez le rat et chez le primate non humain[END_REF]. During a typical imaging session, they witness the animal freely alternating between active and passive be-
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havior over the course of an hour. This resulted in thousands of single fUS images to analyze. Most notably, they were interested in the correspondence between local CVB changes in the MCC and SEF, and animal behavior. Hence, they manually segmented these regions, in an effort to investigate their role in the preparation of free movement.

In this chapter, we propose to review the potential of the machine learning approach for the in-depth inspection of these fUS data. In particular, we attempted to automatically classify both the active and passive cerebral states of the behaving animal using a convolutional neural network (CNN) trained on the fUS recordings from [START_REF] Claron | Covariations between pupil diameter and supplementary eye field activity suggest a role in cognitive effort implementation[END_REF]. Indeed, CNNs have proved to be remarkably successful in solving a wide range of visual tasks, including image classification, making them good candidates for the fUS image classification problem. Furthermore, there has been a significant recent interest in understanding what CNNs learn for making predictions, in the hope to discover interesting patterns in data. In particular, saliency maps appear to be successful in identifying which regions of the input image are most important for classification tasks. Many techniques exist for generating saliency maps, including occlusion-based methods [START_REF] Zeiler | Visualizing and Understanding Convolutional Networks[END_REF], gradient-based methods [START_REF] Simonyan | Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps[END_REF], [START_REF] Zhou | Learning Deep Features for Discriminative Localization[END_REF], and perturbation-based methods [START_REF] Petsiuk | Black-box Explanation of Object Detectors via Saliency Maps[END_REF], [START_REF] Fong | Understanding Deep Networks via Extremal Perturbations and Smooth Masks[END_REF]. In the context of fUS image classification, saliency maps might highlight areas in the animal brain that are important for predicting a given cerebral state (active or passive). By exploring these analysis techniques, we tried to further demonstrate the potential of the machine learning approach for the investigation of volition mechanisms, spatially and sequentially.

Material & methods

fUS imaging in behaving non-human primate 4.2.1.1 Data acquisition for the study of intentionality with fUS

As specified in the introduction, the data used for this project had been acquired by collaborators in a study of intentionality and free movement in the non-human primate [START_REF] Claron | Covariations between pupil diameter and supplementary eye field activity suggest a role in cognitive effort implementation[END_REF]. An Iconeus One scanner with a 15 MHz linear probe was used to perform plane-wave imaging through an implanted recording chamber, with 11 tilted angles, enabling a pixel size of 100 x 100 µm 2 and an image thickness of 400 µm. SVD filtering was used to isolate blood vessels from tissues. fUS images of the animal brain were generated continuously at a rate of 2.5 Hz, from blocks of 200 compounded ultrasonic frames (0.4 s per image).

Recording was done on a captive-born macaque (Macaca mulatta), named S, trained to perform various kinds of visual tasks. After a baseline in the range of 200 s, during which the animal was resting, S was asked to perform two visual tasks in a randomized pattern: a saccade and an antisaccade, for approximately one hour. Ten recording sessions were performed by collaborators over the course of three months. As reward modulation, initially used to manipulate the animal volition, was eliminated from the experiment, S could decide to stop the visual task at any time during the recording, take a break, then resume the activity. A break event was defined as a prolonged absence of task completion, during at least 20 s with little or no isolated trials, followed by a clear return to the task. During the recording session the behavior of S (active or passive) was evaluated based on eye tracking information, and fUS images during the active and passive states were respectively labeled 0 and 1. The SEF and MCC were manually segmented by our collaborators for subsequent analysis.

Data preparation for the classification task

In this work, we intended on training a CNN, which is the gold-standard for image classification, to classify fUS images of the behaving non-human primate brain based on its cerebral state. For each recording, data consisted of a temporal succession of fUS images, associated with a label (0 or 1), corresponding to the mental state of the animal (active or passive). We decided to train the CNN with delta CBV images, rather than directly on fUS images. Delta CBV images are expressed as the relative increase in CBV (in % of baseline) with regards to the baseline. Delta CBV signal was generated by subtracting from the image the average baseline CBV (calculated during the resting period, at the beginning of the acquisition), and normalizing it by the baseline CBV.

Before training, we also manually masked out the conjunctive tissue located on top of the cortex to eliminate potential high intensity artifacts which could disturb the training. From one recording session to the other, the balance between active and passive image varies. A typical recording has an average ratio passive/active state of 0.35. However, one recording was excluded from this study as its ratio passive/active state was ten times lower than the average, which leaves less than 180 images, associated with the label 1, which we judged insufficient for training.

Learning to classify delta CBV images

The CNN for the classification task

For the automated classification of cerebral states in the behaving animal, based on delta CBV images, our network was implemented using the Tensorflow framework and Keras machine learning library. The network has two main components: a feature extractor which looks at important spatial features spread out across the input image, and a classifier which predicts the cerebral state of the animal based on said features.

First, a stack of four convolutional layers is used in the feature extractor to collect information from the input delta CBV image from coarse-to high-level. The convolutional layers use respectively 16, 32, 64 and 128 filters of size 3 x 3. Each filter should focus on a distinct feature in the input, such as bright regions (high pixel intensity) with specific orientation. Following each convolutional layer, we used a LeakyReLU activation layer. Contrary to the ReLU activation, which returns 0 for any negative input and keeps positive inputs unchanged, LeakyReLU allows a small, non-zero gradient for negative input values to ensure training stability, helping the network to learn more effectively [START_REF] Maas | Rectifier Nonlinearities Improve Neural Network Acoustic Models[END_REF], [START_REF] Xu | Empirical Evaluation of Rectified Activations in Convolutional Network[END_REF]. Then, we used max pooling layers to reduce the dimensionality of feature maps in deeper layers, while retaining the most important information.

After the last convolution and LeakyReLU activation, global average pooling was performed resulting in a fixed-length vector of 128 units, representing 128 high-level spatial features. The feature vector is sent to the classifier which comprises a fully connected hidden layer of 32 artificial neural units, and an output layer with 2 neurons. The neurons in the output respectively represent the active and passive cerebral states. Once trained, the network can predict the cerebral state of the animal, based on single delta CBV image features, extracted by the convolutional layers, in the form of a probability of belonging to the active or passive states. The sum of probabilities to either be active or passive is equal to 1. The network consists of a stack of convolutional layers and LeakyReLU activation layers, followed by pooling layers, which draw out high-level spatial features from the input. Then, a fully connected classifier uses these features to predict the cerebral state of the animal, in the form of a probability of being either active or passive.

Training routine, validation and testing

We decided to start by training the network on each recording independently. For each recording, the number of break events varies, resulting in inconstant proportions of active and passive frames. Thus, the network was trained with a variable amount of images depending on the recording session.

As we intended to specifically investigate voluntary transitions from passive to active state, we decided on not using images collected when the animal voluntarily stops the visual task, or tries to resume the activity. This was done with the intention of only training the network with images for which there was no ambiguity in terms of the animal's cerebral state. Indeed, delta CBV images seconds before movement starts should be passive (label 1), yet they might share similarities with active images (label 0) as the animal is voluntarily preparing to resume the visual task. Hence, delta CBV images within the range of [-20, 20] s around the end of break events were not used for training. Likewise, images in the range [-20, 20] s around the beginnings of break events were excluded from training, and kept for subsequent analysis.

Among the images which were still available, we selected at random an equal number of samples during the active and passive states to train the network with balanced data. Data were divided into three groups respectively for training, validation and testing in the following proportions: 70/10/20 %. For each imaging session, we trained 5 instances of the network with different initial seeds and samples. The average performances of the network were assessed in terms of accuracy, defined as the number of correct predictions made by the network divided by the total number of predictions. Table 4.1 summarizes the number of images in each recording, as well as the corresponding network accuracy.

Training was done on an GPU (Nvidia GeForce RTX 2080 Ti) by categorical cross entropy minimization, which is a standard loss function used for classification tasks. We used a batch size of 32 images. Training was automatically stopped when the accuracy on validation images ceased to improve for more than 50 epochs, with the intention to prevent overfitting. We used Adam stochastic gradient descent, which has proved extremely effective for image classification tasks [START_REF] Reddi | On the Convergence of Adam and Beyond[END_REF], with an empirically chosen initial learning rate of 10 -4 . The learning rate was reduced automatically when optimization (also measured in validation accuracy) plateaued for more than 10 epochs to avoid training instability. Each training run lasted at most 200 epochs. On average each training run lasted for one minute.

From image classification to image analysis

As mentioned in the introduction, recents techniques were developed to explain the internal functioning of neural networks. In particular, saliency maps are used for visualizing the decision-making process of CNNs in the hope to understand how they are able to perform particular tasks. GradCAM++ [126] is an extension of the popular GradCAM method [127] capable of producing detailed heatmaps, highlighting regions in an image that are most important for a given classification or prediction task (figure 4.3).

To generate saliency maps, explaining the preparation mechanism to intentional movement, we proceed as follows. First, a delta CBV image passes through the trained network. Prediction is made in the form of a probability of belonging to Chapter 4 the active or passive state. Then, we compute the gradient of the output neuron corresponding to the active state, with respect to the feature maps of the last convolutional layer, representing high-level spatial features. The gradient and its derivatives are used to compute a collection of weight coefficients, indicating which feature maps (in the last convolutional layer) are most important for the prediction. The saliency map is computed as the weighted sum of said feature maps. After summation, we applied the ReLU activation to the sum in order to clip negative values because we were only interested in the features that have a positive influence on the active state, i.e. regions in the input whose intensity should be increased in order to increase the probability of being in the active state. Finally, the saliency map was scaled to the input original spatial dimensions (height and width). 
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Applied to delta CBV images, saliency maps may reveal static representations of the relative importance of cerebral regions for the prediction of the active state. Hence, we hypothesized that saliency maps could be used to localize cerebral regions involved in intentionality and voluntary action. However, they appear to be limited to a spatial description of the cerebral network responsible for free movement initiation.

In order to better understand the timing of cerebral mechanisms leading to free movement, we attempted to track the maximum value of saliency maps in time sequences, seconds before the animal resumes the visual task. Our intuition is that the propagation of pixels of maximum importance in the brain correlates with the sequence of neuronal activity associated with the inner preparation of free eye movements.

Results

Classification performances on test data

First, we verified the convergence of every instance of the network, on every recording. We witnessed no sign of overfitting. In particular the validation accuracy did not drop at the end of the training. For each recording, the average test accuracy, defined as the number of correct predictions made by the network on test data, divided by the total number of predictions, is given in table 4.1. For each recording, except for recording n°8, the network achieves high accuracy of more than 0.9, which demonstrates a satisfactory capability to distinguish between the active and passive states.

Classification performances before activity starts

In the previous section we verified that the network was indeed able to classify cerebral state (active or passive) based on delta CBV images. Here, we focus on events during which the animal voluntarily resumes the visual task. At the end of a break, we hypothesized that the cerebral state of S indicates its intention to resume the task. During this preparation phase, S switches from passive to active state. Hence, delta CBV images seconds before the activity starts should increasingly resemble images recorded during the active state. In order to detect the timing of this intentional preparation to free movement, we intended to analyze the performances of the network at the end of break events, when S switches from passive to active state. From the nine recordings, we gathered 54 blocks of 100 images (40 s of acquisition), centered on the image when activity starts (label goes from 1 to 0). Each block corresponds to a single "end of break" event.

Figure 4.4 illustrates the predictions made by the network on each block. It appears that around ≠4 s before the end of the break, the network classifies images in the active state, indicating a possible change in mental state for the animal, prior to the beginning of free movement.

When S has the intention to restart the task, after a break, cerebral regions involved in intentionality and voluntary movement may be activated, resulting in this significant change in the network prediction. This supports the idea that cerebral activity related to intentionality increases in anticipation of free movement. In particular, the prediction is in agreement with the mean delta CBV values in both the SEF and MCC, which start rising before the end of the break. Yet, the network makes predictions based on the entire input image rather than focusing only on the mean delta CBV value in the SEF or MCC. Hence, looking at important regions in the input for the prediction of the active state, could unravel new trends associated with voluntary preparation to resume the task. This could be valuable to better understand the cerebral mechanisms involved in intentionality and free movement. We will discuss this matter in the following section. 

Discussion

In this chapter, we have shown that the simple CNN architecture we chose for our network is capable of classifying functional states in two categories: an active state, corresponding to moments when the animal is actively performing a visual task, and a passive state related to voluntary break events. This confirms that the difference in delta CBV, obtained by single fUS frames between active and passive states, is large enough to allow for an easy classification. Indeed, deep networks for complicated image classification often comprise a much larger number of layers and filters that the one used here.
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Our network was trained on nine independent recordings, systematically converging to a highly accurate predictor of active and passive states, showing the robustness of the machine learning approach on fUS images for which there is no ambiguity of cerebral state. Thus, the network could be used in combination with the eye tracking information to diagnose labeling mistakes.

Given the data shown in figure 4.4, the network has also the potential to expose changes in cerebral state, prior to voluntary movement initiation. Indeed, we demonstrated that around ≠4 s to the end of single break events, the network consistently favors the active state over the passive state. We think this observation correlates with the animal's intention to freely resume the visual task. This result supports the recent hypothesis presented in [START_REF] Claron | Imagerie fonctionnelle ultrasonore du système nerveux central: des entrées dans le SNC jusqu'aux fonctions cognitives complexes chez le rat et chez le primate non humain[END_REF], which introduced the idea of a potential vascular preparation before free movement, similar to the preparatory cerebral processes measured in electroencephalography [START_REF] Libet | TO ACT IN RELATION TO ONSET OF CEREBRAL ACTIVITY (READINESS-POTENTIAL): THE UNCON-SCIOUS INITIATION OF A FREELY VOLUNTARY ACT[END_REF].

Furthermore, the classification seemed highly correlated with changes in CBV measured in the SEF and MCC, confirming that the fUS information is being accurately used by the network. However, we can hypothesize that the network yields more in-depth classification. For comparison, the study of the accuracy of a model based solely on these two cerebral regions is ongoing work to confirm this.

Beyond the absence of ROI selection for the fully automated classification of cerebral states during voluntary preparation to resume free movement, the additional advantage of our machine learning approach is that it allows for the analysis of the whole images, in terms of how each of the brain regions pictured are involved in the prediction, therefore in volition mechanisms. This is provided by saliency maps (figure 4.5), generated with images at the end of break events, when the animal prepares to resume the task. For each recording, figure 4.5 shows the average saliency map for the active state, captured within [≠10, 0] s before voluntary start of free movement. These maps emphasize the importance of cerebral regions for the prediction of the active state in the preparation phase. Interestingly, these maps highlight very similar cortical regions across recordings. In recordings: 1, 2, 4, 5, 6, 8 and 9 the SEF is clearly visible. In recording 1, 3, 4, 5, 6 and 9 deeper cortical regions, corresponding to the MCC, have high importance scores. We note that both the SEF and MCC are not systematically highlighted in both hemispheres simultaneously. This is likely related to the positioning of the ultrasound probe. Also, regions corresponding to the MCC appear to be less important than the SEF for predicting the active state, especially in recording 2, 8 and 9 indicating that the network may focus on regions of maximum CBV changes. With recordings 3 and 7, we could not find clear regions of importance. This can either result from a lack of robustness of the GradCAM++ technique, or reveal network optimization flaws. Indeed, looking at recordings 3 and 7, we noticed that training was done on few images (table 4.1), which could compromise the network performances. Nevertheless, other methodologies are being investigated, such as the LIFT-CAM approach [128], so as to confirm the maps obtained here, and determine whether these maps provide relevant neurological information.

Additionally, we propose an original application of saliency maps for studying the propagation of neuronal activity in the course of free movements initiation. To do so, we track the position of regions of maximum importance, 10 s prior to Chapter 4 voluntary start of activity (figure 4.6), with the intention to investigate the sequence of cerebral mechanisms involved in intentionality. From this exploratory approach, it looks like important CBV changes start in lower cortical regions, in the area of the MCC, and occur just before the task resumes in more superficial areas such as SEF. This is particularly visible on recordings 1, 2, 5, 6, 8 and 9. Yet, no conclusion concerning the cerebral mechanism for intentionality could be drawn from these very preliminary results, which are rather given as potential clues to better understand volition. The main limitation of our machine learning approach lies in the modest amount of images we used for training the network on each recording independently. To avoid potential bias, we decided on training the network on an equal number of images acquired during the active and passive states. Yet, some recordings contain few breaks, resulting in less images to be used. Also, we purposely omitted images at the beginning and at the end of break events, further decreasing data quantity. A solution to this issue could have been to train a unique network using all the recordings gathered together. However, the imbalance between recordings could bring out new training biases. Also, we did not consider aligning the recordings spatially, using 2D registration algorithms, because the ultrasound probe position was too inconsistent from an imaging session to the others. Hence, extensive efforts are needed to upgrade the training data, so as to subsequently improve the network reliability. A promising solution could be to record the whole animal brain in 3D, enabling precise volumic registration for the comparison of different time points.

Yet, for the time being, we aspire to apply our preliminary solution on data acquired in other animals, trained to perform a second motor task. Then, to further confirm the potential of the machine learning approach we will aim to apply the classification trained on one recording to others recording, using ROIs mean values as inputs. In addition, we will explore emerging analysis methods to evaluate the faithfulness of saliency maps [START_REF] Poppi | Revisiting The Evaluation of Class Activation Mapping for Explainability: A Novel Metric and Experimental Analysis[END_REF], [START_REF] Gomez | Metrics for saliency map evaluation of deep learning explanation methods[END_REF] in the intention to further demonstrate their potential for studying the cerebral mechanisms leading to free movements as well as diagnosing weaknesses in the network.

Conclusion

In this chapter we demonstrated that a simple CNN is able to classify single 2D fUS images, with regard to functional states of the behaving non-human primate in a study of volition. In particular, our network automatically indicates changes in the inner state of the animal prior to voluntary eye movements, which we believe to correlate with cerebral mechanisms involved in intentionality, without the need for manual intervention, such as segmentation of cerebral regions of interest. This supports the idea of a potential vascular preparation in anticipation of free movement.

We tried to confirm this hypothesis with the study of saliency maps, which enables the identification of important regions spatially for the prediction of the active state. In this way, we were able to confirm the already established role of the SEF and MCC in intentionality.

Finally, we proposed an original method, utilizing a succession of saliency maps in time, in an attempt to characterize the sequence of cerebral events leading to Chapter 4 free movement. Despite these results being very experimental, we noticed that the deeper cortical regions seem to be activated prior to the SEF when the animal prepares to resume the visual task. Hence, CNNs, which have proved able to generate explanatory maps for the classification task, despite not being explicitly trained to do so, could have the potential to help better understand the cerebral mechanisms involved in intentionality, allowing for the automated and precise analysis of fUS images spatially and sequentially.

General conclusions and perspectives

This PhD thesis is a continuation of the research work conducted by the Physics for Medicine laboratory in Paris, which develops high end technologies and analysis techniques based on ultrasound imaging. In particular, this work focuses on cerebral imaging with ultrafast Doppler (uDoppler) used to carry out functional ultrasound (fUS), which is becoming one of the key tools in neurosciences. The objective of this thesis was to develop powerful learning based tools applied to fUS data, with the aim to facilitate the image acquisition and data analysis processes. In particular we explored the potential of convolutional neural networks (CNNs) to enhance uDoppler images, adapt existing vascular network registration strategies and classify functional cerebral states.

First, we developed and validated an automated enhancement strategy for transcranial vascular images of the mouse brain, in an effort to facilitate vascular visualization and characterization. To this end, we built a custom artificial neural network designed to enhance vascular images by mimicking the human visual perception process. We hypothesized that the use of a perceptual loss function focusing on image features attractive to the human eye would increase the image quality without having to compromise between contrast and resolution or sensitivity. After optimizing our network, in particular with some regularizers reducing the intensity of the background pixels, we demonstrated that our approach produces visually pleasing images, quantitatively outperforming standard enhancement strategies in terms of contrast, sensitivity and resolution. This new algorithm can display high quality images in real time (50 ms) during an acquisition, allowing for easier neuronavigation and positioning. Additionally, our learning based enhancement algorithm could benefit common post-processing operations which often call for high vessel perception, such as segmentation of functional regions of interest as well as hypoperfused regions.

In a second part, we focused on vascular volume registration, which is essential for longitudinal or cross-sectional fUS experiments, and often requires the input of an experimented operator. Indeed, this work aimed to improve and automate the Iconeus One software for functional imaging of small rodents, which uses an affine registration pipeline with a manual pre-registration step. Hence, we proposed to replace this manual step with a CNN capable of detecting vascular key points in 3D uDoppler volumes, enabling excellent alignment between a moving volume and a fixed reference. As our network demonstrated high registration accuracy in a negligible amount of time (800 ms), as well as high robustness to large initial misalignment, it was subsequently implemented in the Iconeus One platform. With this work, operator dependence, which is a recurring know-how barrier for fUS studies was removed from the registration process.

Finally, we studied the potential of CNNs to classify functional states of the behaving animal. Notably, we explored the transition from passive to active cerebral states in the non-human primate voluntarily resuming an oculomotor task, in the hope to to better understand the mechanisms involved in voluntary movement. We showed that a simple artificial neural network can successfully classify single 2D fUS images into the correct cerebral state, demonstrating that the content of fUS images is rich enough to include relevant information for this task. Our learning approach helped confirm the results obtained by manual ROI-based analysis in a more exhaustive and systematic way. In addition to this, we showed that the use of CNNs could allow for an in depth analysis of the precise regions involved in the volition process, as well as the temporal sequence in which they activate. Although this work is very preliminary, our first results show great promise for the use of artificial neural networks in the analysis of fUS data for behavioral tasks. CNNs capable of decoding fUS signals for the characterization of cerebral states could even be adapted to disruptive technologies for interfacing with the brain [START_REF] Norman | Single-trial decoding of movement intentions using functional ultrasound neuroimaging[END_REF].

The different algorithms presented in this work were developed and validated with the intention to enhance the potential of fUS for neurosciences. These require further optimization and will benefit from new data to work at their full potential. For instance, we consider transposing our uDoppler enhancement strategy to 3D volumes, rather than stacked 2D images, in the hope to retrieve better enhancement consistency in depth. Also, we aspire to investigate the potential of an end-to-end learning based registration algorithm for 3D uDoppler images, as it was already

Résumé substantiel en français

Contexte

Le cerveau est un organe complexe, responsable du contrôle de nos pensées et de nos actions, qui n'a de cesse de fasciner philosophes et scientifiques depuis des siècles. Les neurosciences, qui se situent au carrefour de nombreuses disciplines scientifiques, telles que la biologie, la physiologie, la physique, la chimie ou encore l'ingénierie, cherchent depuis longtemps à déceler les mystères du cerveau et plus généralement du système nerveux dans son ensemble.

Parallèlement au développement des neurosciences modernes, de nouveaux outils d'imagerie médicale ont vu le jour, permettant d'approfondir l'étude et la compréhension du cerveau. Notamment, les ultrasons biomédicaux proposent une solution portable, peu invasive et à moindre coût pour l'exploration du système nerveux avec une très bonne résolution spatiale. En particulier, l'échographie ultrarapide, utilisant des ondes planes à très haute cadence, permet d'imager le cerveau avec une résolution temporelle exceptionnelle. Appliquée à l'imagerie Doppler, elle permet l'observation et la caractérisation des flux sanguins cérébraux et leurs variations avec une très grande sensibilité.

Or, les variations hémodynamiques dans le cerveau sont liées aux changements d'activité cérébrale. En effet, le cerveau, qui est incapable de stocker de l'énergie, à besoin d'un apport constant en nutriments et oxygène pour fonctionner. Lorsqu'une zone cérébrale est activée, elle réclame davantage d'énergie, ce qui conditionne les variations locales des flux sanguins cérébraux en réponse à cette demande. Ainsi, l'imagerie Doppler ultrarapide (uDoppler) peut être utilisée pour mesurer indirectement l'activité cérébrale via le couplage neurovasculaire, c'est l'imagerie fonctionnelle par ultrasons (fUS).

Initialement appliquée à l'imagerie cérébrale 2D, l'imagerie fUS se développe maintenant en 3D, ce qui engendre une quantité phénoménale de données à analyser. Cependant, l'imagerie fUS reste limitée par la qualité variable des images produites, conduisant à des difficultés de positionnement, ce qui complexifie l'analyse et la comparaison des données. Il est donc crucial de développer des outils puissants d'analyse automatique pour aider à la standardisation des expériences d'imagerie fUS et à la diffusion de cette technique au sein de la communauté des neurosciences. L'apprentissage machine, qui est l'un des principaux domaines de recherche en intelligence artificielle, pourrait apporter une solution à ce problème. En effet, les algorithmes d'apprentissage machine, s'ils sont correctement entraînés, sont aujourd'hui capables de résoudre des problèmes complexes de façon autonome. Contrairement aux techniques de programmation traditionnelles (figure 1.8), les algorithmes d'apprentissage machine apprennent à réaliser une tâche en minimisant l'erreur qu'ils produisent, appelée fonction de coût, sur des données d'entraînement (figure 1.9). Ainsi les algorithmes d'apprentissage machine ont la capacité de s'adapter automatiquement aux données, ce qui autorise des programmes plus courts, et souvent plus précis, pour résoudre des problèmes dont les solutions existantes nécessitent beaucoup d'optimisation manuelle. En outre, les algorithmes d'apprentissage automatique sont particulièrement performants dans l'exécution de tâches pour lesquelles il n'existe pas d'algorithmes connus. En particulier, les réseaux de neurones convolutifs (CNNs) sont capables de réaliser des tâches visuelles complexes, à une vitesse surhumaine et pourraient nous permettre d'améliorer et d'automatiser l'analyse des données fUS.

Ainsi, durant cette thèse nous avons développé et validé des algorithmes d'apprentissage automatique dans l'objectif de faciliter l'examen des données fUS. Nous avons abordé trois points clefs, pour lesquels l'utilisation de l'apprentissage machine a été plus que bénéfique. Dans un premier temps, nous avons montré comment améliorer des images vasculaires de mauvaise qualité, dans le but d'accentuer notre perception des vaisseaux sanguins. Puis, nous avons étudié l'efficacité d'un algorithme de détection automatique de points de repère pour le recalage vasculaire de volumes cérébraux. Enfin, nous avons appliqué les méthodes d'apprentissage automatique à l'identification d'états cérébraux chez le primate non-humain, dans l'espoir de comprendre quelles structures cérébrales sont liées à la reprise volontaire d'une tâche après une pause.

Amélioration d'images uDoppler en temps réel Problématique

Avec l'imagerie uDoppler on a accès, en temps réel, au réseau vasculaire cérébral, ce qui fait de cette technique un outil précieux pour les neurosciences. Les applications de l'imagerie uDoppler sont nombreuses. Entre autres, elles permetent d'augmenter notre perception de l'organisation des structures vasculaires dans le cerveau, dévoilant par la même occasion les correspondances entre vaisseaux sanguins et zones fonctionnelles. L'imagerie uDoppler est aussi utile pour la surveillance de pathologies vasculaires, telles que les anévrismes, les accidents vasculaires cérébraux ou la croissance des tumeurs. Cependant, la qualité de l'imagerie uDoppler est conditionnée par expérience. Elle est facilement détériorée, notamment dans le cas de l'imagerie transcrânienne, qui entraîne souvent une perte de sensibilité aux petits vaisseaux.

Pour mieux visualiser la vascularisation cérébrale, on pourrait accumuler plus d'informations, en intégrant les images uDoppler plus longtemps. Cependant, cela a un coût en termes de ressources expérimentales. Une autre solution pourrait être l'utilisation de filtres permettant l'élimination du bruit de fond. Toutefois, les filtres standard pour l'amélioration d'image sont souvent inadaptés aux images uDoppler. Ici, nous proposons une stratégie d'amélioration d'image uDoppler en temps réel, basée sur un algorithme d'apprentissage automatique, intégrant la notion de perception visuelle humaine. Cette solution consiste en un réseau de neurones convolutifs profond baptisé PerceptFlow.

Principes et méthodes

Pour entraîner PerceptFlow nous disposions de 16000 images uDoppler transcrânienne du cerveau de la souris. Nous avons conçu PerceptFlow dans l'intention de produire des images uDoppler avec un contraste élevé tout en préservant la résolution spatiale et l'intégrité des structures vasculaires cérébrales. Tout d'abord nous avons dû définir le processus d'optimisation de notre algorithme (figure 2.1). Pour entraîner PerceptFlow, nous avons choisi une fonction de coût avec deux composants aux rôles bien distincts.

Le premier composant de la fonction de coût, que nous avons appelé la perte perceptuelle, est basé sur des caractéristiques géométriques de l'image, telles que la forme des vaisseaux, ou encore la présence d'embranchements et de bifurcations dans le réseau vasculaire cérébral. Cette perte perceptuelle permet de comparer les images en entrée et à la sortie de notre algorithme en termes de contenu vasculaire. Elle est générée à l'aide d'un réseau de neurones convolutifs auxiliaire appelé VGG. VGG est généralement utilisé pour classer des images RGB en fonction de leur contenu, imitant ainsi le système visuel humain. Ainsi, minimiser la perte perceptuelle durant l'entraînement devrait permettre à PerceptFlow de préserver l'intégrité des vaisseaux sanguins.

Le second composant de la fonction de coût consiste en un régulateur d'intensité. Il contrôle le contraste de l'image lors du processus d'optimisation en pénalisant l'intensité des pixels à l'arrière-plan. Ceci devrait permettre à PerceptFlow d'apprendre à augmenter automatiquement le contraste dans les images uDoppler.

Résultats principaux

Une fois entraîné, PerceptFlow produit, en temps réel (0.05 s) des images uDoppler avec un fort contraste tout en préservant l'intégrité des plus petits vaisseaux (figure 2.3). En effet PerceptFlow corrige, de façon sélective, l'intensité des pixels de l'arrière-plan en l'abaissant grandement. Après amélioration, nous avons mesuré, dans plus de 100 images uDoppler, une gain en contrat de 2.8 par rapport aux images d'entrée, ainsi qu'un gain en rapport contraste à bruit de 0.56 toujours par rapport aux image d'entrée (figure 2.7). Bien plus, nous avons constaté que ce gain en contraste était localisé au bord des vaisseaux sanguins, ce qui améliore leur visibilité.

Nous avons également mesuré la résolution spatiale dans les images uDoppler à la sortie de notre algorithme. Une fois améliorées, les images uDoppler conservent une excellente résolution (141±40µm) comparées aux images d'entrée (148±40µm). Ainsi, contrairement aux filtres classiques, qui ont tendance à lisser les détails au profit d'une diminution du bruit de fond, notre approche, basée sur l'apprentissage machine, épargne la sensibilité de l'imagerie uDoppler tout en augmentant notre perception du réseau vasculaire cérébral.

PerceptFlow devrait alors faciliter la neuronavigation, la caractérisation de struc-tures vasculaires et même certaines opérations de traitement d'images, telles que la segmentation ou le recalage vasculaire.

Recalage automatique de volumes vasculaires cérébraux à partir de points de repère Problématique Dans la première partie de cette thèse, nous avons utilisé des techniques d'apprentissage machine pour améliorer des images uDoppler 2D et permettre une meilleure visualisation des structures vasculaires en temps réel, facilitant ainsi l'inspection des régions cérébrales. Cependant, la neuronavigation manuelle en 3D dans le réseau vasculaire du cerveau nécessite toujours de longues heures de formation et reste difficile même pour un expert. Par conséquent, le développement d'outils de recalage automatique est essentiel pour améliorer la standardisation et la reproductibilité des expériences fUS. C'est pourquoi un système de neuronavigation 3D semi-automatique, basé sur l'analyse de l'empreinte vasculaire uDoppler, a été mis en place par la société Iconeus. C'est le BPS (brain GPS). Cette solution permet de fournir rapidement un contexte anatomique ou fonctionnel à de nouvelles données expérimentales, en les recalant sur un atlas vasculaire de référence lui-même aligné, au préalable, sur des atlas anatomiques ou fonctionnels familiers. Cependant, cette solution reste très sensible au désalignement initial qui existe entre les données expérimentales et la référence vasculaire et nécessite bien souvent l'intervention d'un opérateur, pour aligner à la main les deux volumes vasculaires. Cette solution peut aussi être mise en échec lorsque les données expérimentales sont de mauvaise qualité, comme dans le cas de l'imagerie transcrânienne, ou si les réseaux vasculaires présentent des caractéristiques pathologiques. Ainsi, il semble indispensable de compléter cette solution de neuronavigation pour la rendre complètement automatique, plus précise et plus robuste.

Dans cette partie, nous allons décrire une nouvelle stratégie de pré-alignement, adaptée au BPS, pour le recalage automatique de volumes vasculaires cérébraux. Notre approche combine une solution automatique de correction du désalignement entre volumes, basée sur la détection et l'alignement de points de repère cérébraux et le système de recalage affine du BPS, qui fonctionne de manière itérative par maximisation de l'information mutuelle. Ainsi, avec cette nouvelle approche en cascade, nous souhaitons rendre le processus de recalage de volumes vasculaires cérébraux plus robuste et entièrement automatique.

Principes et méthodes

La solution de recalage en cascade que avons proposé fonctionne en trois temps (figure 3.1) et permet d'aligner avec précision et de façon automatique un volume mobile sur une référence fixe. Premièrement, un algorithme d'apprentissage machine, basé sur un réseau de neurones convolutifs 3D, baptisé BrainKey-net, prédit la position de neuf points de repère dans le volume mobile. Ces points de repère, que nous retrouvons aussi dans la référence, correspondent à des structures vasculaires facilement identifiables.

Ensuite, une approche des moindres carrés est utilisée pour aligner les points de repères du volume mobile sur ceux de la référence, corrigeant ainsi le décalage initial entre les deux volumes. Ce premier recalage en deux temps, basé sur la détection d'indices vasculaires, devrait être plus robuste qu'une méthode basée sur l'intensité des deux volumes. Cependant, il est limité à un alignement rigide, susceptible de conduire à un recalage grossier.

Ainsi, nous avons décidé de combiner ce pré-alignement avec un algorithme de recalage affine adapté du système BPS. Cette dernière étape de recalage est utilisée pour affiner l'alignement entre le volume mobile et la référence.

Le bon fonctionnement de notre solution de recalage en cascade étant conditionné par la capacité de BrainKey-net à localiser correctement les points de repère dans les volumes uDoppler, nous avons pris soin d'entraîner cet algorithme autonome à l'aide d'une grande variété de volumes vasculaires cérébraux. Ainsi, nous avons utilisé 153 volumes de cerveau de souris, annotés à la main (figure 3.3), provenant de différents animaux, incluant des données pathologiques et de larges déformations. Pour faciliter l'apprentissage des positions des points de repères, nous avons reformulé le processus d'optimisation de BrainKey-net. Au lieu de chercher des positions uniques, BrainKey-net est capable de détecter des groupes de voxels centrés sur autour de chaque point de repère. Notre problème de localisation, com-plexe au premier abord, s'apparente donc à un problème de segmentation plus simple.

Résultats principaux

Une fois entraîné, BrainKey-net est capable de retrouver la position des neuf points de repères dans de nouveaux volumes (figure 3.6). En moyenne, pour l'ensemble des points de repère, nous avons mesuré une erreur de positionnement (distance entre la prédiction et la position attendue) de 166 ± 8µm dans les conditions standard d'une expérience fUS (figure 3.7). En présence de grande déformations, BrainKey-net est toujours efficace même si l'erreur moyenne augmente jusqu'à atteindre 300µm dans les cas les plus complexes (figure 3.8). Par conséquent, BrainKey-net devrait autoriser une correction efficace du désalignement entre volumes, basée sur la correspondance des points de repères, pour notre solution de recalage en cascade.

En effet, une fois recalés à l'aide de notre nouvelle stratégie, la corrélation et l'information mutuelle entre volumes mobiles et références fixes augmente, même avec des données pathologiques, indiquant une plus grande similarité entre les volumes. Nous avons confirmé ces résultats sur 231 paires de volumes (figure 3.9), démontrant ainsi la supériorité de notre approche en cascade par rapport à un simple alignement affiné sans pré-recalage. En effet, notre approche est plus précise, plus robuste et plus rapide pour le recalage de volumes vasculaires cérébraux. Bien plus, l'utilisation de BrainKey-net la rend totalement automatique. C'est pourquoi cette solution est aujourd'hui implémentée dans le BPS. En particulier, nous avons essayé de classifier automatiquement deux états cérébraux (un état actif et un état passif) chez le primate non-humain à partir de données fUS, en utilisant un réseau de neurones convolutifs. Ainsi nous espérons mieux comprendre les mécanismes cérébraux impliqués dans la prise de décision, conduisant à l'exécution ou à l'arrêt de mouvements volontaires.

Comprendre les mécanismes cérébraux

Principes et méthodes

Pour cette étude nous disposions d'enregistrements fUS réalisés chez le primate nonhumain actif (figure 4.1). Au cours de la session d'imagerie l'animal devait réaliser plusieurs tâches visuelles, mais pouvait décider à tout moment de prendre une pause avant de recommencer à travailler.

Au cours de ces enregistrements, les images fUS associées aux états actif et passif sont bien distinctes. Bien plus, elles sont labellisées : 0 pour l'état actif et 1 pour l'état passif. Ainsi nous avons pu entraîner un réseau de neurones convolutifs peu profond pour classifier automatiquement ces deux état cérébraux.

Un fois entraîné sur des images pour lesquelles il n'y avait aucune ambiguïté quant à l'état cérébral de l'animal, nous avons essayé de classifier des images fUS juste avant la reprise volontaire de la tâche, après une pause soutenue. A l'aide d'une technique d'analyse spécifiquement développée pour l'étude du fonctionnement des CNNs (GradCAM++), nous avons ensuite cherché à comprendre quelles régions cérébrales étaient impliquées dans la préparation mentale de l'animal.

Résultats principaux

A l'aide de notre réseau de neurones, nous avons pu confirmer l'existence d'une étape de préparation vasculaire avant la reprise volontaire de la tâche motrice. En effet, environ 4 secondes avant la reprise de la tâche, le réseau privilégie l'état cérébral actif au détriment de l'état passif (figure 4.4). Ce qui indique bien qu'un changement hémodynamique, mesurable avec l'imagerie fUS, intervient lors de la préparation mentale de l'animal.

De plus, en étudiant le fonctionnement de notre réseau de neurones, nous avons pu identifier, sur les images fUS, les zones impliquées dans cette préparation (figure 4.5). Nous avons confirmé, à l'aide de notre approche automatique, que les zones cérébrales les plus importantes pour la prédiction de l'état actif, juste avant la reprise de l'activité, correspondent aux champs oculomoteurs supplémentaires (COS) et au cortex cingulaire antérieur (CCA).

Conclusion générale et perspectives

Ces travaux de thèse, réalisés au laboratoire Physique for Medicine Paris, ont conduit au développement d'outils puissants et robustes, basés sur l'apprentissage machine, pour l'analyse automatique des données fUS. En particulier, nous avons démontré le potentiel des réseaux de neurones convolutifs pour la caractérisation vasculaire et fonctionnelle du cerveau.

Nous avons utilisé ces algorithmes automatiques pour améliorer la qualité visuelle d'images uDoppler 2D, recaler des volumes vasculaires cérébraux entre eux à partir de point de repères et classifier différents état fonctionnels. Suite à ces résultats, nous pouvons envisager d'aller encore plus loin dans l'application des techniques d'apprentissage machine à l'imagerie fUS. Par exemple, en adaptant notre stratégie d'amélioration d'image à l'imagerie 3D, en développant un algorithme de recalage non supervisé, ou encore en intégrant la classification automatique d'état cérébraux dans une interface cerveaux machine. 
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  2D: two dimensions • 3D: three dimensions • CT: computed tomography • MRI: magnetic resonance imaging • PET: positron emission tomography • US: ultrasound • uDoppler: ultrafast Doppler imaging • PW Doppler: pulse-wave Doppler • CFI: color flow imaging • SVD: singular value decomposition • CBV: cerebral blood volume • CBF: cerebral blood flow • AI: artificial intelligence • ML: machine learning • ANN: artificial neural network • TLU: threshold logic unit • DNN: deep neural network ix x List of Abbreviations • CNN: convolutional neural network • DCNN: deep convolutional neural network • 3D-CNN: 3D convolutional neural network • GF: Gaussian filter • BM3D: block matching and 3D filtering • CNR: contrast-to-noise ratio • MSE: mean-squared-error • CE: categorical cross-entropy • TP: true positive • FP: false positive • FN: false negative • NCC: normalized cross correlation • MI: mutual information • BPS: brain positioning system • ROI: region of interest • S1: primary somatosensory barrel cortex • VPM: ventral posterior medial nucleus • MCC: midcingulate cortex • SMA: supplementary motor area • SEF: supplementary eye field

Figure 1 . 1

 11 Figure 1.1 Conventional focused ultrasound. a. Focalization in emission using parabolic time delays. b. Reception of the echo. c. Focalization in reception and summation. d. A single "line" is generated in the image. e. The entire image is generated one "line" after the other.
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 12 Figure 1.2 Plane-wave ultrasound imaging. a. Emission of a tilted planewave, which sonicates the entire imaging medium. b. Reception of all echoes from the sonicated medium. c. Focalization in reception for every pixel. d. A low contrast image is generated. e. Emission and reception steps are repeated with different orientations of the plane-wave, before coherent plane-wave compounding to retrieve high contrast in the image.
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 13 Figure 1.3 Comparison between conventional focused ultrasound and plane-wave imaging, with differing numbers of angles, on an acoustic phantom, in terms of frame rate and image quality. a. Conventional ultrasound imaging with 128 focused beams and 4 focal depths leads to 25 Hz. b.Plane-wave imaging allows very high frame rate (18000 Hz) at the cost of lower contrast in the image. c. Plane-wave compounding with 17 angles enables both high frame rate (1000 Hz) and contrast levels comparable to conventional ultrasound. Adapted from[START_REF] Tanter | Ultrafast imaging in biomedical ultrasound[END_REF] 
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 14 Figure 1.4 Three Doppler modes. a. Spectral Doppler analysis. Blood flow characterization is done in a small field of view inside the carotid. b. Color flow imaging in a larger field of view. Blood flow velocity is estimated over an extended section of carotid. c. Power Doppler measures the intensity of blood flow in the carotid. Adapted from[START_REF] Rabut | Neuroimagerie fonctionnelle ultrasonore 4D et connectivité fonctionnelle cérébrale chez l'animal éveillé[END_REF] 
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 115 Figure 1.5 Time-equivalent comparison between conventional power Doppler imaging (top row) and ultrafast power Doppler imaging (bottom row) of the rat brain. a. Conventional power Doppler produces fewer temporal samples per pixel, resulting in less efficient filtering, unable to isolate small blood vessels from tissues. b. Ultrafast power Doppler, combined with SVD filtering enables vascular imaging with exceptional sensitivity.Adapted from[START_REF] Mace | Functional ultrasound imaging of the brain: theory and basic principles[END_REF] 
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 16 Figure 1.6 Functional ultrasound imaging of the rat brain. a. Evolution of the CBV in the cortex in response to whisker stimulation. b. Representative example of an activation map obtained when stimulating the left whiskers. Doppler signals in the primary somatosensory barrel cortex (S1) and in the ventral posterior medial nucleus (VPM) correlate with the stimulus pattern. c. Spatiotemporal spreading of an epileptic seizure. Adapted from[START_REF] Macé | Functional ultrasound imaging of the brain[END_REF] 

Figure 1 . 7

 17 Figure 1.7 Experimental motorized setup for volumic fUS acquisition, using a linear ultrasound probe. (1) Physiological monitoring system for temperature, respiratory and cardiac frequencies. (2) Four-axis motor module (three translations and one rotation). (3) Servo-Motor driving the whisker stimulation. (4) Syringe pump controller. (5) Ultrasound gel placed on the animal's head, providing acoustic coupling with (6) the ultrasound probe. (7) Iconeus One neuroimaging device, driving the motors and recording fUS data. Adapted form[START_REF] Bertolo | Whole-Brain 3D Activation and Functional Connectivity Mapping in Mice using Transcranial Functional Ultrasound Imaging[END_REF] 
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 118 Figure 1.[START_REF] Rilling | The Neuroscience of Social Decision-Making[END_REF] The traditional programming approach illustrated. Studying the problem allows for understanding the task to be processed. Subsequently, a program consisting in a list of hand-written rules, such as numerical or logical operations, is developed to solve the problem. Then, the capacity of the solution to solve the problem is evaluated. If the program produces errors, therefore fails in solving the problem, it should be revised, often with a new set of rules. Manual optimization is repeated until the program is good enough to be deployed.
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 1 From biological to artificial neuronsANNs were first introduced back in 1943, by the neurophysiologist Warren McCulloch and the mathematician Walter Pitts, as a simplified computational model of how biological neurons perform computation in the brain. Much like individual biological neurons are organized in vast networks of billions to process information, ANNs consist of interconnected single computational units, known as artificial neurons, trained together to perform highly complex computations.
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 1 Figure 1.10 A perceptron with one bias unit, which has a fixed value, two input neurons, which forward the input values x1 and x2 towards three output neurons consisting of TLUs. TLUs compute a weighted sum of 1, x1, x2 then apply an activation function to the sum and output the results y1, y2, y3.
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 1 Figure 1.11 A fully connected multilayer perceptron with one input layer, one hidden layer and one output layer. The input layer comprises two neurons and one bias unit. The hidden layer has three TLUs and one bias. The output layer has two TLUs.
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 11 Figure 1.12 A simplified CNN with one input layer and two convolutional layers. Each convolutional layer has one filter with a small 3 x 3 receptive field.
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 221 Figure 2.1 Perceptual uDoppler enhancement illustrated. After SVD filtering, a "low-quality" input image is made by randomly extracting 20 frames from the accumulation block, resulting in a uDoppler image with less contrast and higher noise. During training this "low-quality" input is fed to PerceptFlow. The standard uDoppler image, resulting from the accumulation of the entire block (200 frames), is used as a content reference. VGG computes the perceptual loss needed to train PerceptFlow in combination with the intensity regularizer. After training, PerceptFlow is used to enhance the content reference.

Figure 2 . 2

 22 Figure 2.2 PerceptFlow illustrated. a. The architecture of PerceptFlow consists of a typical encoder-decoder. The number of filters is denoted at the top of each convolutional block. b. A contracting convolutional block from the encoder, where the convolutional layer is followed by a batch normalization layer, before LeakyReLU activation and compression. c. An expanding block from the decoder, ending with an upsampling layer used to resize the feature maps. The h-w-c-size (height, weight and channel) indicates the size of the feature map, while f is the number of filters for each block.
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 223 Figure 2.3 The effect of PerceptFlow on transcranial uDoppler images of mouse brains. Two imaging planes are shown with different orientations of the acoustic probe. a. Linear scale. Each image is normalized by its maximum value. The axis limits are set between ≠0.1 and 1 to fully visualize the background noise dynamic. b. Logarithmic scale. The axis limits are set between ≠40 and 0 dB to appreciate the difference in background intensity between the input and output images.

Figure 2 . 4

 24 Figure 2.4 Intensity stretching illustrated. Right columns show an enlarged ROI of the image containing small blood vessels. a. The input image intensity is stretched to increase contrast (lower 5% of pixels are set to the minimum intensity value, higher 0.5% to the maximum). b. The effect of PerceptFlow on small blood vessel perception indicated with white arrows.

Figure 2 .

 2 Figure 2.7 a. Boxplot comparison of different enhancement strategies for the gain in contrast. b. Boxplot comparison of different enhancement strategies for the gain in CNR. (N = 100 images, **p-value < 0.01).

Figure 2 . 8

 28 Figure 2.8 Effect of PerceptFlow on uDoppler images of rat brains. Rat brain imaging was performed following the same experimental procedure described in section 2.2. Two imaging planes are illustrated, with different orientations of the acoustic probe. a. Linear scale. b. Logarithmic scale.

Figure 3 . 1

 31 Figure 3.1 The cascaded registration pipeline illustrated. The first step of the cascaded pipeline is to detect the key points (c) in the moving volume (a). The vascular reference (b) is pre-aligned with a functional atlas of the mouse brain. Key points of reference (d) are manually placed. Then, the moving volume (a) and the reference (b) are aligned based on key point correspondence (e). Finally, the affine registration algorithm, adapted from the BPS system, fine-tunes the registration process, allowing the moving volume to overlay the functional atlas (f).

Figure 3 . 2

 32 Figure 3.2 Angiographic 3D scan of the mouse brain using a linear ultrasound probe with a 0.2 mm step between planes in the coronal axis y. a. An example of uDoppler volume for a healthy mouse. b. An example of uDoppler volume after induced stroke. Areas circled in red are hypoperfused.

Figure 3 . 3

 33 Figure 3.3 An example of uDoppler volume and the associated groundtruth. First 9 key points are manually placed in the vascular network. Key points correspond to prominent vascular clues chosen in 3 coronal slices at (a) bregma -0.7 mm (b) bregma -1.9 mm and (c) bregma -3.5 mm. The original uDoppler volume (d) and the superimposed key points are shown in (e). Finally, key points are convolved with a small sphere of radius 500 µm to generate the ground-truth (f) for the semantic segmentation task. Voxel intensity values in the ground-truth are set to an integer between 1 and 9 corresponding to the key point index.

3. 3 61 Figure 3

 3613 Figure 3.6.c. exemplifies how the predicted key point positions match the groundtruth.
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 3637 Figure 3.6 BrainKet-net prediction on a test sample. a. The output clusters of same intensity voxels, corresponding to each key point, are overlaid on the input uDoppler volume. b. The predicted key point positions (in red) are the centers of mass of each output cluster. c. Superimposed ground-truth key point positions (in green) and prediction (in red)
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 38 Figure 3.8 Cumulative localization error distribution for each key point on the synthetic test data which include large deformations.

Figure 3 .

 3 Figure 3.8 illustrates how BrainKey-net generalizes to more complicated cases, showing the cumulative localization error distribution for each key point on the augmented test dataset. For instance, key point 5 is localized with an error of less than 200 µm, 80% of the time. The curve, being stacked towards small localization

Figure 3 . 9

 39 Figure 3.9 Cumulative NCC at the zero lag position (x = 0, z = 0, y = 0) on 231 pairs of moving volume and fixed reference, for different registration strategies: affine registration without initialization (in red), misalignment correction alone (in yellow), and the cascaded pipeline (in blue).

Figure 3 .

 3 Figure 3.9 also demonstrates that the feature-based misalignment correction alone (in yellow), is sufficient to reach satisfactory alignment. This underlines the accuracy of our feature-based rigid registration solution, as well as the superiority

Figure 3 .

 3 Figure 3.10 MI measurement during the iterative affine registration process for the cascaded pipeline with automated initialization (in blue) and the standard approach without initialization (in orange). An exponential fit (in red) is used to evaluate the reaction time of each registration method.

Figure 3 .

 3 Figure 3.11.b illustrates the same registration experiment with inter-animal data. In this case a large vertical initial misalignment between volumes, from two different animals, is visible before registration. The cascaded pipeline has corrected

Figure 3 . 11

 311 Figure 3.11 Moving volume and fixed reference overlaid, before and after registration with the cascaded pipeline. The bottom row shows 2D joint histograms before and after registration with normalized mutual information scores (nMI). a. Same animal at two different times registered. b. Inter-animal comparison. c. Inter-animal comparison after stroke.

Figure 3 . 12

 312 Figure 3.12 Quantitative evaluation of registration performances on three examples. NCC is displayed against the spatial lag in every axis direction (x, z, y). a. NCC before registration. b. NCC after misalignment correction. c. NCC at the end of the cascaded pipeline.

Figure 4 .

 4 Figure 4.1 a. Timeline of the oculomotor task. During the baseline, the animal is at rest. After around 200 s, the oculomotor task starts. The animal alternates between saccade and antisaccade. b. Mean delta CBV evolution during the task in both the SEF (in green) and MCC (in blue). c. Active state illustrated. The average delta CBV (in % of baseline) is superimposed on the uDoppler image of the animal brain. fUS images during the active state are labeled 0. d. Passive state illustrated. fUS images during the passive state are labeled 1. Adapted from[START_REF] Claron | Covariations between pupil diameter and supplementary eye field activity suggest a role in cognitive effort implementation[END_REF] 
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 42 Figure 4.2 The CNN for cerebral state classification illustrated. The network takes as input a single delta CBV image of size 128 x 112 pixels.The network consists of a stack of convolutional layers and LeakyReLU activation layers, followed by pooling layers, which draw out high-level spatial features from the input. Then, a fully connected classifier uses these features to predict the cerebral state of the animal, in the form of a probability of being either active or passive.

Figure 4 . 3

 43 Figure 4.3 GradCAM++ simplified. The input delta CBV image (a) passes through the convolutional layers of the trained network (b). A vector of spatial features (c) is generated by global average pooling of high-level feature maps in the last convolutional layer. A prediction (d) is made.We compute the gradient of the output neuron corresponding to the active state (e), with respect to the last convolutional layer. The gradient and its derivatives are used to compute the weight associated with each feature map. The weighted summation of the feature maps (f) followed by ReLU activation (to clip negative values) and upsampling result in the saliency map (g). Adapted from[127] 

Figure 4 .

 4 Figure 4.4 a. Evolution of the median prediction (in black) during preparation (before end of break), with regards to the mean delta CBV in both the SEF (in blue) and the MCC (in red). A significant change in prediction manifests around ≠4 s before activity start (Wicoxon signed-rank test: t 1 = ≠5.6 s; p-value = 0.05 and t 2 = ≠3.2 s; p-value = 0.001). b. Illustration of the network prediction for every single "end of break" event. Each row represents the prediction made in a succession of 100 images in the range [-20, 20] s around the end of isolated break events. N = 54 breaks.

Figure 4 . 5

 45 Figure 4.5 The GradCAM++ method applied to each recording. The average saliency maps, captured within [-10, 0] s prior to the end of break events, and the average uDoppler images are overlaid to highlight important regions for the prediction of the active cerebral state. In white: the SEF. In red: the MCC.
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 46 Figure 4.6 The average time delay of importance score (>0.2) propagation between cerebral regions during voluntary preparation to initiate free movement. The colored maps represent the time of maximum importance for specific cerebral regions. In white: the SEF. In red: the MCC.
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Table 3 .1 BrainKey

 3 .1, summarizes the performance of BrainKey-net in terms of Dice score measurement and localization error quantification.

	BrainKey-net performance evaluation
	Key point index	Dice score	Localization error [µm]
	1	0.75 ± 0.02	133 ± 5
	2	0.54 ± 0.03	263 ± 10
	3	0.63 ± 0.03	171 ± 9
	4	0.75 ± 0.02	118 ± 4
	5	0.55 ± 0.07	120 ± 4
	6	0.52 ± 0.07	134 ± 4
	7	0.58 ± 0.06	190 ± 12
	8	0.60 ± 0.06	173 ± 8
	9	0.60 ± 0.06	175 ± 6

-net performance evaluation on test data. The first column shows key point index. The second column corresponds to the average Dice score for each key point. The third column gives the localization error for each key point.

Table 4 . 1

 41 Accuracy of the network on test data with regards to the number of images (active and passive) used during training. From left to right: the recording tag, the test accuracy, the total number of images recorded during the active state, the total number of image recorded during the passive state, the number of images used for training (with an equal proportion of active and passive images)

	Chapter 4

The first component, known as the perceptual loss, is generated using an pretrained, auxiliary convolutional neural network, called the perceptual network. Here, the perceptual network derives from the VGGclassifier[START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF]. VGGis usually used to classify RGB pictures, thus emulating human vision. It consists of a stack of convolutional layers, integrating visual features attractive to the human eye, such as bright regions or edges, before a typical fully connected classifier. For our needs, we resize the input layers of VGG to match with our data, then cut off the fully connected part of the model, which is only needed for classification purposes, leaving the convolutional part. We had to freeze all weights in VGG as we did not want to update it during training. This auxiliary network is used to compute the perceptual loss, based on image content. During training VGGassumes the role of a critic that quantifies how well PerceptFlow preserves the vessel geometry while learning to enhance uDoppler images. In summary, contrary to pixel-wise loss functions, the perceptual loss is based on high-level features that capture the vascular content of uDoppler images.

proved able to work on CT volumes[START_REF] Balakrishnan | VoxelMorph: A Learning Framework for Deformable Medical Im-127 age Registration[END_REF],[START_REF] Zhao | Recursive Cascaded Networks for Unsupervised Medical Image Registration[END_REF]. Nevertheless, this work already showcases the large benefits and diversity of applicability of the machine learning approach for uDoppler imaging, paving the way for more developments in this field.

Précédemment nous avons montré que l'apprentissage machine pouvait être utile pour la caractérisation vasculaire d'images ou de volumes uDoppler. Dans cette partie nous nous sommes intéressés à une étude fonctionnelle par apprentissage

Learning key point positions

The BrainKey-net algorithm

The BrainKey-net algorithm was implemented using the Tensorflow framework and Keras machine learning library. It was trained to recover key point positions in uDoppler volumes. The architecture of BrainKey-net is presented in figure 3.4. It consists of a modified encoder-decoder inspired by the V-net architecture [START_REF] Milletari | V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation[END_REF], which is the state-of-the-art network architecture for volume processing. In particular, Vnet, which derives from the U-net presented in chapter 2, is often used for volumic segmentation. BrainKey-net has two main parts. The first part of BrainKey-net, known as the compressive path, comprises a succession of 3D convolutional layers with 16, 32, 64 and 128 filters and a 5 x 5 x 5 receptive field, followed by batch normalization [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF] and ReLU activation, which is a standard activation function used in segmentation task. The role of the compressive path is to extract spatial features from the input with the logarithm function taken in base e:

Data augmentation

In the hope to improve the robustness of BrainKey-net for key point detection, we aimed to train our network on a large collection of volumes with various orientations. Yet, data only consisted of angiographic scans acquired in the coronal direction resulting in consistent anteroposterior volume orientation. So, we decided to perform on-the-fly data augmentation to diversify the training dataset.

During training, at each iteration step, we randomly generated a batch of rigid transformation matrices of size 4 x 4, allowing for rotations and translations of volumes, and applied these transformations to each pair of input volume and groundtruth. So as not to drift too far from in vivo experimental conditions, we constrained the amplitude of each random transformation matrix. We chose a maximum rotation amplitude of 20°around the x, z and y axis to avoid unrealistic orientations of the head. Translations were limited to a third of the input field of view length

MOTS CLÉS

Apprentissage machine, Ultrasons, Imagerie fonctionnelle, Traitement d'images. RÉSUMÉ L'échographie ultrarapide est une nouvelle méthode d'imagerie utilisant des ondes planes à très haute cadence, permettant l'observation de tissus biologiques avec une excellente résolution spatiale. Appliquée à l'imagerie Doppler, elle permet l'observation et la caractérisation des flux sanguins avec une très grande sensibilité. Elle est également utilisée pour mesurer indirectement l'activité cérébrale. Initialement appliquée à l'imagerie cérébrale 2D, l'imagerie fonctionnelle par ultrasons (fUS) se développe maintenant en 3D, ce qui engendre une quantité phénoménale de données à analyser. Cependant, l'imagerie fUS reste limitée par la qualité variable des images produites, conduisant à des difficultés de positionnement, ce qui complexifie l'analyse et la comparaison des données. Il est donc crucial de développer des outils puissants d'analyse automatique. L'apprentissage machine pourrait apporter une solution à ce problème. En particulier, les réseaux de neurones artificiels convolutifs, capables de réaliser des tâches visuelles complexes à une vitesse surhumaine, pourraient nous permettre d'améliorer et d'automatiser l'analyse des données fUS. Ainsi, durant cette thèse nous proposons de développer puis de valider des algorithmes d'apprentissage machine dans l'objectif de faciliter l'examen des données fUS. Dans un premier temps nous nous sommes intéressés à l'amélioration d'images vasculaires de mauvaise qualité. Nous avons conçu et entraîné un réseau de neurones convolutifs dans le but d'accentuer notre perception des petits vaisseaux sanguins, initialement peu visibles en imagerie transcrânienne. Notre approche, qui fonctionne en temps réel (0.05 s), surpasse les techniques classiques d'amélioration d'image, en augmentant le contraste tout en préservant les détails les plus fins du réseau vasculaire. Ensuite, nous avons étudié l'efficacité d'un algorithme de détection automatique de points de repère pour le recalage vasculaire de volumes cérébraux. Ainsi, nous avons pu aligner plusieurs volumes vasculaires, même pathologiques ou fortement éloignés, en moins d'une seconde (0.8 s), avec une très grande précision, sans intervention manuelle. Suite à cette étude, nous proposons une nouvelle modalité de recalage automatique en 3D pour faciliter et accélérer la comparaison de différents enregistrements fUS espacés dans le temps. Enfin, nous avons entrepris d'appliquer les méthodes d'apprentissage automatique à l'identification d'états cérébraux chez le primate non humain, durant une tâche oculomotrice cognitive. Nous avons montré qu'un simple réseau de neurones convolutifs permet la classification de deux états de consciences : un état actif et un état passif. De plus, nous nous sommes intéressés aux mécanismes de décision mis en jeu par notre réseau de neurones, pour essayer de comprendre quelles structures cérébrales sont liées à la reprise volontaire d'une tâche après une pause. Cette approche, qui reste encore très expérimentale, pourrait nous aider à mieux concevoir le fonctionnement des procédés cérébraux impliqués dans l'expression de la volonté.

ABSTRACT

Ultrafast ultrasound is a recent imaging modality derived from conventional medical ultrasound. It relies on the coherent compounding of backscattered echoes resulting from successive ultrasonic plane wave emissions, which enables high spatio-temporal resolution. In particular, ultrafast ultrasound is used for ultrafast Doppler imaging (uDoppler), which enables the visualization and characterization of blood flow with an exceptional sensitivity. With a technique known as functional ultrasound (fUS), uDoppler is capable of indirectly measuring neuronal activity in the brain, making it a powerful tool for neurosciences. Initially implemented in 2D, fUS is now being developed for 3D imaging of the whole brain, resulting in a considerable amount of data to be analyzed. Yet, fUS research remains limited by positioning uncertainty and variable image quality, making it difficult to analyze and compare the large volume of data obtained from different recording sessions. Machine learning algorithms, in particular convolutional neural networks (CNNs), which have demonstrated the capacity to perform complex visual tasks, could offer a solution to assist and automate the analysis of fUS data. This PhD thesis focuses on the development and validation of robust tools for automated fUS data processing, based on machine learning techniques. First, we improved image quality for real-time visualization in 2D uDoppler transcranial images of the brain, for which the skull attenuates the ultrasonic waves, increasing noise and lowering the sensitivity to small blood vessels. For this, we proposed and evaluated a turn-key solution based on a CNN specifically designed to improve blood vessel perception in real-time (0.05 s). We showed that this automatic solution outperforms standard image enhancement methods both by increasing contrast and preserving high resolution for small vessels. Then, we adapted an existing operator dependent registration pipeline for vascular network alignment in 3D, with an automatic key point localization strategy based on semantic segmentation. This enables accurate misalignment correction within 0.8 s, removing the operator dependency for registration, as well as improving the robustness to pathological or largely misaligned data. Hence, we suggested a novel registration pipeline for software designed for fUS studies, so as to allow for rapid and accurate comparison of temporal time points. Finally, we attempted to apply the machine learning approach to describe cerebral states of the behaving animal in a study of volition in non-human primates. Our trained CNN was successfully able to classify single 2D fUS frames into two different cerebral states. Additionally, the information learned by the network was used to propose a characterization of the cerebral blood volume change patterns spatially and sequentially during voluntary initiation of free movement. This approach, which is yet to be fully validated, may offer an automatic analysis framework of the cerebral mechanisms involved in intentionality, studied in the whole target field of view, beyond manual ROI-based analysis.
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