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We theoretically study the antiferromagnetic phase of the multi-orbital Hubbard model and analyse its impact on the low-energy physics of iron-based superconductors, within the slave-spin method. Through a variational approach, we generalize the slave-spin mean-field formalism and we derive the self-consistent field capable of stabilizing broken symmetry phases. With this correction, we prove that all the slave-spin flavours are actually the same method and they give identical result to Kotliar-Ruckenstein slave bosons and thus to the Gutzwiller approximation. We apply our generalized formalism to the Néel antiferromagnetic state and investigate it in multi-orbital Hubbard models, both as a function of number of orbitals and Hund's coupling, providing phase diagrams in the interaction-doping plane. We show that the doped antiferromagnet in proximity of half-filling is typically unstable towards insulator-metal and magnetic-non magnetic phase separation. Hund's coupling is found to extend the range of the antiferromagnetic solution and to favor its phase separation. We apply our formalism to investigate the Cr-doped iron-based superconductor CsFe 2 As 2 , both in the paramagnetic and antiferromagnetic phase. We provide an analytical argument to justify the theoretically predicted -and then experimentally found at 3% Cr doping -record-breaking enhancement of the Sommerfeld specific-heat coefficient.

We ascribe it to the inter-orbital hopping driven frustration of the tendency towards an orbital-selective Mott transition. Consequently, the system is left with a subset of very heavy electrons. We promote this mechanism to a general paradigm to search for heavy-fermion materials, without relying on f -electron elements. We also show that, by further doping the system towards half-filling, an antiferromagnetic zone is encountered. We provide phase diagrams in the interaction-doping plane for several values of Hund's coupling. Finally, we further generalize our formalism to include the ligand's orbital contribution (pd model), in the context of 122-family iron-based superconductors. Thanks to the agility of slave-spin mean field we critically revise the issue of the double counting of the interaction energy when combining density functional theory with many-body theory, providing a paramagnetic study of both BaFe 2 As 2 and CsFe 2 As 2 as a function of interaction. We then extend our study to antiferromagnetic phases, providing phase Résumé la théorie de la fonctionnelle de la densité avec les théories multi-corps, en fournissant une étude paramagnétique de BaFe 2 As 2 et CsFe 2 As 2 en fonction de l'interaction. Nous étendons ensuite notre étude aux phases antiferromagnétiques, en calculant des diagrammes de phase dans le plan interaction-dopage. Nos résultats montrent que la prise en compte de la contribution des orbitales pse traduit par une magnétisation décalée plus faible. v in Italy, and to those who moved to Germany. In particular, my greatest thanks goes to Marta, who reminds me that the beauty of the rain is in the gentle knocking on the roofs and the fragrance rising when the sun comes back. Finally, the greatest of the thanks goes to my mother and my sister, that in these years of thesis has always supported me, without doubting that everything had a greater purpose, too often I was blind to. Thanks to who, now, is a whisper in the wind, unbindable by the earth. vestigate strongly-correlated systems. We then focus on the slave-spin formalism we use throughout the work. It belongs to a wide class of approaches to solve interacting many-body problems, namely the slave-particle methods. To better understand and contextualise slave-spin formalism, we first introduce its logical root: the slave-boson method. We then overview the slave-spin formalisms, the so called Z2 and U(1) representations. In the last part of the Chapter, we show how all these slave-particle methods give identical results, at mean-field level, in the half-filled single-band Hubbard model. In Chap. 3 we show how this equivalence is not limited to the special half-filled case. We generalize the Z2 slave-spin approach through a variational principle. This proves that all the slave-spin mean-field flavours are actually the same method, regardless the electronic occupation. The variational approach also allows for generalization to broken-symmetry phases, among which we focus our attention on antiferromagnetism. In particular, in the last part of the Chapter, we apply our formalism to Néel antiferromagnetic phase.

In Chap. 4 we specialise the results of Chap. 3 to the multi-orbital Hubbard model and its Néel-antiferromagnetic phase at zero temperature. We tackle the problem on the une large classe d'approches pour résoudre les problèmes de nombreux corps en interaction, à savoir les méthodes de particules esclaves. Pour mieux comprendre et contextualiser le formalisme de spin esclave, nous présentons d'abord sa racine logique: la méthode du boson esclave. Nous passons ensuite en revue les formalismes de spinesclave, les représentations dites Z2 et U(1). Dans la derniére partie du Chapitre, nous montrons comment toutes ces méthodes de particules esclaves donnent des résultats identiques, au niveau du champ moyen, dans le modéle de Hubbard à une bande semirempli. Au Chap. 3, nous montrons que cette équivalence n'est pas limitée au cas particulier du demi-remplissage. Nous généralisons l'approche du spin esclave Z2 par le biais d'un principe variationnel. Cela prouve que toutes les versions de spins esclaves sont en fait la même méthode, quelle que soit l'occupation électronique. L'approche variationnelle permet également une généralisation aux phases à symétrie brisée, parmi Dans le Chap. 4, nous spécialisons les résultats du Chap. 3 au modèle de Hubbard multiorbitales et à sa phase antiferromagnétique de Néel à température nulle. Nous abordons le problème dans le cas très instructif du réseau de Bethe. Nous commençons par présenter le modèle à bande unique à la fois au demi-remplissage et au dopage. Notre principal résultat est l'apparition d'une zone de séparation de phases dans laquelle coexistent une phase antiferromagnétique et une phase paramagnétique. Nous fournissons une explication pour l'apparition de l'instabilité que nous attribuons à une compétition entre le dopage et la fermeture du gap antiferromagnétique. Nous étudions ensuite le modèle de Hubbard à deux et trois bandes pour lequel nous confirmons notre résultat principal: le dopage du système à partir du demi-remplissage provoque une transition d'une phase antiferromagnétique à une phase paramagnétique. Nous fournissons des diagrammes de phase dans le plan interaction-dopage pour plusieurs valeurs du couplage de Hund, et montrons que le système est généralement instable vers une séparation de phase proche du demi-remplissage. La nature exacte des phases impliquées dépend du modèle. Parmi les points saillants, dans le modèle de Hubbard à trois orbitales, nous trouvons une transition d'un spin faible à un spin élevé à la moitié du remplissage, en l'absence de couplage de Hund, et un point triple dans le diagramme de phase pour J = 0.25U. En général, le couplage de Hund étend la gamme de l'antiferromagnétisme et favorise la séparation des phases. Dans le Chap. 5, nous appliquons notre formalisme à la simulation ab-initio des supraconducteurs à base de fer. En particulier, nous étudions comment le dopage au Cr du CsFe 2 As 2 affecte la physique des fermions lourds de ce composé. Nous fournissons un argument analytique pour justifier l'amélioration record du coefficient de Sommerfeld de la chaleur spécifique, prédite par la théorie et confirmée par l'expérience. Nous l'attribuons à la réalisation d'une phase de Mott sélective par orbite frustrée, entraînée par les sauts inter-orbitaux, qui laisse le systéme avec un sous-ensemble d'électrons trés lourds. Nous considérons ce mécanisme comme un paradigme général pour la recherche d'un comportement de fermion lourd sans dépendre de matériaux à électrons f . Comme exemple le plus simple de comportement orbital-sélectif frustré, nous rapportons la solution du modèle de Hubbard à deux bandes non dégénéré en présence d'hybridation. Dans le cadre de simulations de spin esclave, nous montrons qu'une transition de Mott sélective en orbitale n'est jamais réalisée tant que l'hybridation est présente. Nous suggérons également qu'un dopage supplémentaire du système vers le demi-remplissage pousse le composé dans une zone antiferromagnétique. Pour déterminer quel ordre magnétique prévaut près du demi remplissage, nous partons xvi Contents Slave spin and broken-symmetry phases 33 3.1 Variational approach to slave-spin Hamiltonian . . . . . . . . . . . . . . 33 3.1.1 Variational ansatz I: fermion and slave

diagrams in the interaction-doping plane. Our results show that considering the contribution of porbitals result in a lower staggered magnetization.

Résumé

Nous étudions théoriquement la phase antiferromagnétique du modéle de Hubbard multi-orbitales et analysons son impact sur la physique à basse énergie des supraconducteurs à base de fer, dans le cadre de la méthode du spin esclave. Par une approche variationnelle, nous généralisons le formalisme du champ moyen des spins-esclaves et nous dérivons le champ auto-cohérent capable de stabiliser les phases á symétrie brisée. Avec cette correction, nous prouvons que toutes les différentes versions de spins -esclaves sont en fait la même méthode et qu'elles donnent des résultats identiques aux bosons-esclaves de Kotliar-Ruckenstein et donc á l'approximation de Gutzwiller. Nous appliquons notre formalisme généralisé à l'état antiferromagnétique de Néel et l'étudions dans des modéles de Hubbard multi-orbitales, à la fois en fonction du nombre d'orbitales et du couplage de Hund, en fournissant des diagrammes de phase dans le plan interaction-dopage. Nous montrons que l'antiferromagnétique dopé à proximité du demi-remplissage est typiquement instable vers une séparation de phase isolant-métal et magnétique-non magnétique. Le couplage de Hund étende la portée de la solution antiferromagnétique et favorise la séparation des phases. Nous appliquons notre formalisme pour étudier le supraconducteur à base de fer CsFe 2 As 2 dopé au Cr, à la fois dans la phase paramagnétique et antiferromagnétique.
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Introduction

The strongly-correlated materials are one of the most active and challenging fields of condensed matter physics, showing a wide range of intriguing phenomena from magnetism to superconductivity and unconventional states of matter like heavy fermions. In the last years, particular interest has been cast over the Hund metals and their connection with iron-based superconductors. The properties of the latter are believed to be influenced by magnetic order, but the debate is still open. In this thesis, we aim at investigating how antiferromagnetism of iron-based superconductors is influenced by the Hund coupling and its interplay with heavy-fermion physics. In Chap. 1 we introduce the physical background we explore throughout the thesis. First we summarise the main features of heavy fermions and how their paradigmatic phase diagram, the Doniach phase diagram, is built. We then overview iron-based superconductors, in particular the so called 122-family, and conclude the Chapter by reviewing the principal characteristics of Hund metals. Chap. 2 is dedicated to the model and methods used in the thesis. We introduce the Hubbard model which has proven to be one of the most successful approaches to in-very instructive case of Bethe lattice. We begin reporting the single-band model both at half filling and in doping. Our main result is the onset of a zone of phase separation in which an antiferromagnetic and a paramagnetic phase coexist. We provide an explanation for the arising of the instability that we trace back to a competition between the doping and the closure of the antiferromagnetic gap. We then study the two-and the three-band Hubbard model for which we confirm our main result: doping the system away from half filling causes a transition from an antiferromagnetic to a paramagnetic phase. We provide phase diagrams in the interaction(U)-doping plane for several values of Hund coupling J, and show that the system is usually unstable towards phase separation close to half filling. The exact nature of the phases involved depends on the model. Among the highlights, in the three-orbital Hubbard model we find a lowto-high spin transition at half filling, in absence of Hund coupling, and a triple point in the phase diagram for J = 0.25U. In general, Hund coupling extends the range of antiferromagnetism and favors phase separation. In Chap. 5 we apply or formalism to the ab-initio simulation of iron-based superconductors. In particular, we investigate how Cr-doping CsFe 2 As 2 affects the heavy-fermion physics of this compound. We provide an analytical argument to justify the theoretical predicted, and then experimentally confirmed, record-breaking enhancement of specific heat Sommerfeld coefficient. We ascribe it to the realization of a frustrated orbitalselective Mott phase, driven by the inter-orbital hopping, which leaves the system with a subset of very heavy electrons. We promote this mechanism to a general paradigm to search for heavy-fermion behaviour without relying on f -electron materials. As the simplest example of frustrated orbital-selective behaviour, we report the solution of the non-degenerate two-band Hubbard model in presence of hybridisation. Within slavespin simulations we show how an orbital-selective Mott transition is never realised as long as the hybridisation is present. We also suggest that further doping the system towards half filling pushes the compound in an antiferromagnetic zone. To determine which magnetic order prevails close to half filling, we start from paramagnetic density functional theory simulations and impose in the slave-spin mean field the single-stripe and g-type antiferromagnetic phase in BaFe 2 As 2 . Our numerical simulation are in line with the experimental observation of a transition from single-stripe to g-type order if the compound is doped towards half filling. We thus impose the g-type antiferromagnetic order for CsFe 2 As 2 and we provide phase diagrams in the interaction-doping plane for several values of Hund coupling, showing that the compounds realise such ordered phase whose extension is influenced by Hund coupling. We show clues of phase separation, as well. Finally, in Chap. 6, we report preliminary results of an ongoing project. We further generalise our formalism to take into account the ligand's contribution (pd-model) in the 122-family of the iron-based superconductors. We first introduce the issue of double counting(DC) of the interaction energy when combining density functional theory and many-body theory and overview several approaches to solve this drawback. We preliminary certify the accuracy of the slave-spin formalism in the pd-model by relying on a comparison with dynamical mean-field theory. Then thanks to the computational agility of the slave-spin method, we critically revise this problem and investigate the paramagnetic phase of CsFe 2 As 2 and BaFe 2 As 2 at their respective nominal correlated occupancy, providing study as a function of interaction. We suggest that the choice of double-counting prescription has to be taken with caution in order to properly describe the Hund-metal physics of these compounds. We then extend our study the the antiferromagnetic phase. We provide phase diagrams in the interaction-doping plane for several double countings, regardless the choice of which we find an overall reduction of the staggered magnetization due to the ligand's contribution.

We conclude the thesis with the Appendices. In Appendix A and Appendix B we report a detailed derivation of the slave-boson and U(1) slave-spin mean-field equations, respectively. To validate the accuracy of our method, in Appendix C we report some benchmarks between slave-spin mean field and dynamical mean-field theory. In Appendix D, we deal in greater detail some points of the antiferromagnetic phase of the three-orbital Hubbard model. Finally, in Appendix E we present the generalisation of the slave-spin formalism to the pd-model and in Appendix F we show how to obtain around mean-field double-counting correction for the density-density Coulomb interaction.

Introduction

Les matériaux fortement corrélés constituent l'un des domaines les plus actifs et les plus stimulants de la physique de la matière condensée, présentant un large éventail de phénomènes intrigants allant du magnétisme à la supraconductivité et à des états non conventionnels de la matière tels que les fermions lourds. Ces dernières années, les métaux de Hund et leurs liens avec les supraconducteurs à base de fer ont suscité un intérêt particulier. Les propriétés de ces derniers seraient influencées par l'ordre magnétique, mais le débat reste ouvert. Dans cette thèse, nous voulons étudier comment l'antiferromagnétisme des supraconducteurs à base de fer est influencé par le couplage de Hund et son interaction avec la physique des fermions lourds. Au Chap. 1, nous présentons le contexte physique que nous explorons tout au long de la thèse. Nous résumons d'abord les principales caractéristiques des fermions lourds et la façon dont leur diagramme de phase paradigmatique, le diagramme de phase de Doniach, est construit. Nous passons ensuite en revue les supraconducteurs à base de fer, en particulier ceux appelés 122-famille, et concluons le Chapitre en passant en revue les principales caractéristiques des métaux de Hund. Le Chap. 2 est consacré au modèle et aux méthodes utilisés dans la thèse. Nous introduisons le modèle de Hubbard qui s'est avéré être l'une des approches les plus efficaces pour étudier les systèmes fortement corrélés. Nous nous concentrons ensuite sur le formalisme du spin esclave que nous utilisons tout au long du travail. Il appartient à lesquelles nous concentrons notre attention sur l'antiferromagnétisme. En particulier, dans la dernière partie du Chapitre, nous appliquons notre formalisme à la phase antiferromagnétique de Néel.

Introduction xiii de simulations paramagnétiques de la théorie de la fonctionnelle de la densité et imposons dans le champ moyen du spin esclave la phase antiferromagnétique de bande unique et de g-type dans BaFe 2 As 2 . Nos simulations numériques sont en accord avec l'observation expérimentale d'une transition de l'ordre bande unique à l'ordre de gtype si le composé est dopé jusqu'à la moitié du remplissage. Nous imposons donc l'ordre antiferromagnétique de g-type pour CsFe 2 As 2 et nous fournissons des diagrammes de phase dans le plan interaction-dopage pour plusieurs valeurs du couplage de Hund, montrant que les composés réalisent une telle phase ordonnée dont l'extension est influencée par le couplage de Hund. Nous montrons également des indices de séparation de phase. Enfin, au Chap. 6, nous présentons les résultats préliminaires de notre projet en cours. Nous généralisons notre formalisme pour prendre en compte la contribution du ligand (modèle pd) dans les supraconducteurs à base de fer de la famille 122. Nous introduisons tout d'abord la question de le double comptage(DC) de l'énergie d'interaction lorsque nous combinons la théorie de la fonctionnelle de la densité et la théorie des nombreux corps et présente plusieurs approches pour résoudre cet inconvénient. Nous certifions de manière préliminaire l'exactitude du formalisme du spin esclave dans le modèle pd en nous appuyant sur une comparaison avec la théorie du champ moyen dynamique. Ensuite, grâce à l'agilité de calcul de la méthode du spin esclave, nous révisons de manière critique ce problème et nous étudions d'abord la phase paramagnétique de CsFe 2 As 2 et BaFe 2 As 2 à leur occupation corrélée nominale respective, en fournissant une étude en fonction de l'interaction. Nous suggérons que le choix de la prescription de double comptage doit être pris avec précaution afin de décrire correctement la physique des métaux de Hund de ces composés. Nous étendons ensuite notre étude à la phase antiferromagnétique. Nous fournissons des diagrammes de phase dans le plan interaction-dopage pour plusieurs doubles comptages, quel que soit le choix, nous trouvons une réduction globale de la magnétisation décalée due à la contribution du ligand. Nous concluons la thèse par les Annexes. Dans l'Annexe A et l'Annexe B, nous présentons une dérivation détaillée des équations du champ moyen du boson esclave et du spin esclave U(1), respectivement. Pour valider la précision de notre méthode, nous présentons dans l'Annexe C quelques comparaisons entre la théorie du champ moyen du spin esclave et la théorie du champ moyen dynamique. Dans l'Annexe D, nous traitons plus en détail certains points de la phase antiferromagnétique du modèle de Hubbard à trois orbitales. Enfin, dans l'Annexe E nous présentons la généralisation de le formalism de les spin esclave à le model pd et dans l'Annexe F, nous montrons comment obtenir autour du champ moyen une correction de double comptage pour l'interaction de Coulomb densité-densité.

Chapter 1

Heavy fermions, iron-based superconductivity and Hund metals

In this Chapter, we aim at contextualizing the thesis work. We hence introduce the main topics we elaborate and study in the next Chapters. In Sec. 1.1, we introduce and overview the main features of heavy-fermion materials. We introduce the Anderson impurity model and discuss its Kondo limit, as well as its lattice generalization, and present the paradigmatic example of phase diagram for heavy-fermion materials (the Doniach diagram). We then introduce in Sec. 1.2 the iron-based superconductors, and focus on the socalled 122-family and its phase diagram. We establish a comparison between theory and experiment and conclude the section by summing up the magnetic orders of these materials. Finally, in Sec. 1.3, we overview the characteristics of Hund metals and link them with the subjects of the previous sections.

Heavy fermions

The first experimental evidence of materials showing extremely enhanced Pauli susceptibility and linear specific heat capacity with respect conventional metals dates back to the work of Andres, Graebner and Ott [START_REF] Andres | 4 f -virtual-bound-state formation in ceal 3 at low temperatures[END_REF]. Soon after, Steglich and collaborators [START_REF] Steglich | Superconductivity in the presence of strong pauli paramagnetism: Cecu 2 si 2[END_REF] coined the term heavy fermion(HF) to describe the electronic excitation arising in intermetallic compounds showing a density of states three order of magnitude larger than copper. From that moment, the condensed matter community has performed intensive studies of HF materials (see Refs. [START_REF] Coleman | Heavy fermions: Electrons at the edge of magnetism[END_REF][START_REF] Wirth | Exploring heavy fermions from macroscopic to microscopic length scales[END_REF] and references within, as well as Chap. [START_REF] Villar | Heavy fermions and Hund's metals in iron-based superconductors[END_REF] and Chap.17 of Ref. [START_REF] Coleman | Introduction to Many-Body Physics[END_REF]): on one hand, they represent an intellectual challenge to our understanding of fundamental physics; on the other, they suggest a wide range of study in novel materials, in particular unconventional superconductivity. In this section, we provide an overview of the main features of HFs. We also report a brief discussion, a more detailed version of which can be found in Ref. [START_REF] Coleman | Heavy fermions: Electrons at the edge of magnetism[END_REF], of the physical origin of the main HF characteristics that converges in the Doniach phase diagram we expose in Subsec. 1.1.3.

General properties of heavy fermions

Heavy-fermions materials are usually rare-earth or actinide compounds, whose f -shells are found very close to the core. Electrons in such shells form a localized moment and the main features of HFs arise from the interplay between such a localization and the surrounding sea of itinerant electrons. This behaviour echoes the Kondo effect [START_REF] Kondo | g-Shift and Anomalous Hall Effect in Gadolinium Metals[END_REF][START_REF] Kondo | Resistance minimum in dilute magnetic alloys[END_REF], namely the the process by which a magnetic ion in a metallic matrix evolves, upon lowering the temperature, towards a spinless scattering center for the conduction sea, as a consequence of the screening by the delocalised electrons. The temperature at which this happens is called Kondo temperature (T K ). Usually, the free magnetic ion involved in Kondo effect shows a Curie-law magnetic susceptibility (χ ∼ T -1 ). Heavy-fermion materials show this feature at room temperature and behave as a system of localized moments. However, for temperature below a characteristic scale set by the Kondo temperature 1 , the localized magnetic moment becomes part of the conduction sea and the system shows a Fermi-liquid state. As the Kondo effect begins, the spin entropy is rapidly lost from the material, since the localized moments melts in the conduction sea. Since the entropy is linked to the specific heat (at constant volume):

S(T) = T 0 C V T ′ dT ′ , (1.1)
as soon as the entropy decreases in temperature, the specific heat shows an abrupt increasing. Once the Fermi liquid regime is reached, this reflects in a huge enhancement of Sommerfeld coefficient:

γ = lim T → 0 C V T = π 2 k 2 B 3 ρ * (1.2)
where k B is the Boltzmann constant and ρ * is the quasiparticle density of states (DOS) at the Fermi level. In a system with quadratic dispersion, ρ * is proportional to the effective mass of quasiparticles m * . The increased Sommerfeld coefficient2 is one of the signature of heavy-fermionic physics and is a signal of an enhanced quasiparticle DOS and thus of a the quasiparticle mass (hence the name heavy fermions).

Anderson model and its Kondo limit

The formation and screening of local moments in solids can be interpreted with the Anderson model (AM) [START_REF] Anderson | Localized magnetic states in metals[END_REF] that describes the physics of a localised impurity, the ion providing f electrons, embedded in a bath of delocalised electronic charges:

ĤAM = ∑ k,σ ϵ kσ nkσ + ∑ k,σ V(k) ĉ † kσ fσ + h.c. + E f n f + U n f ↑ n f ↓ , (1.3) 
where f ( †) σ and ĉ( †) kσ represent the destruction (creation) of an electron on the localised atom, interacting with Coulomb repulsion U, and in the conduction sea, respectively. The energy of the former is E f , while the energy of the latter is ϵ kσ . The first two terms of Eq. 1.3 represents the hybridization (V(k)) of the localized f -electrons with the delocalised ones forming the conduction sea. The last two terms, instead, capture the atomic limit of the ion once the surrounding atoms forming the bath are taken infinitely away. The Anderson model can be analysed in two complementary, but at first sight contradictory, scenarios. On one hand, one starts from a non-interacting ground state U = 0 and then the interaction is "slowly" switched on. This is the so-called adiabatic limit, whose ground state is well described by a Fermi liquid. On the other hand, one can consider the problem in absence of hybridization (V(k) = 0) and the model reduces to an isolated, interacting atom. By introducing the hybridization again, the localised electrons of the ion interacts with the Bloch states of the itinerant electrons. This scenario is called atomic limit and corresponds to the formation of a local magnetic moment. These apparently incompatible scenarios are linked by quantum spin fluctuations between two states of different spin orientation, which generate the Kondo effect. Indeed, the local moment can switch between these two spin configurations and, from the uncertainty principle, the rate of this process is of the order of the thermal excitation energy set by the Kondo temperature. In this regime, below T K , the localized moment melts into a paramagnetic Fermi liquid. Schrieffer and Wolf [START_REF] Schrieffer | Relation between the anderson and kondo hamiltonians[END_REF] and Coqblin and Schrieffer [START_REF] Coqblin | Exchange interaction in alloys with cerium impurities[END_REF] proved that there exist a canonical transformation which eliminates the charge fluctuations. The obtained model describes the antiferromagnetic interaction between the local moment and the delocalised electrons. The origin of this antiferromagnetic interaction lies in the superexchange (J), namely a virtual process in which the localised electron "jumps" into the conduction sea, but it is immediately replaced by an electron with different spin coming from the bath. If the Kondo scale is lower than RKKY's one, the system realizes an antiferromagnet. By tuning the antiferromagnetic interaction, it is possible to drive the system towards a heavy-fermion behaviour. Picture from Ref. [START_REF] Coleman | Introduction to Many-Body Physics[END_REF].

Kondo lattice and Doniach phase diagram

The Kondo model captures the physics of the interaction of a single interacting magnetic ion embedded in a sea of itinerant electrons.If this description is extended to all the lattice, one faces the Kondo lattice model [START_REF] Kasuya | A Theory of Metallic Ferro-and Antiferromagnetism on Zener's Model[END_REF], which is a favorable candidate to describe the physics of heavy fermions, as proposed by Doniach in Ref. [START_REF] Doniach | The kondo lattice and weak antiferromagnetism[END_REF]. At low temperature, antiferromagnetic order is established for systems of local moments perturbing the density of the surrounding Fermi liquid. These perturbations are called "Friedel oscillations". If another localised moment is set in a different position of the solid, it is affected by the perturbations: the resulting magnetic interaction is called RKKY [START_REF] Ruderman | Indirect exchange coupling of nuclear magnetic moments by conduction electrons[END_REF][START_REF] Kasuya | A Theory of Metallic Ferro-and Antiferromagnetism on Zener's Model[END_REF][START_REF] Yosida | Magnetic properties of cu-mn alloys[END_REF]. In dense systems like the Kondo lattice, RKKY can generate an antiferromagnet with Néel temperature T N . The basic of Doniach reasoning is that the Kondo lattice is characterized by two energy scales, namely the Kondo and Néel temperature, both of them depending only on the antiferromagnetic coupling J and the conduction electron density of states ρ:

T K ∼ e -1 2Jρ T N = J 2 ρ. (1.4)
The comparison of these two energy scale draws the Doniach phase diagram of Fig. 1.1

The physics is determined by the antiferromagnetic coupling. For small values of Jρ, Picture adapted from Ref. [START_REF] Villar | Heavy fermions and Hund's metals in iron-based superconductors[END_REF].

the Kondo temperature decays faster than the RKKY scale, and an antiferromagnet is realized. On the contrary, if Jρ is large, the Kondo behaviour prevails: a paramagnetic Fermi-liquid state is realized and each magnetic impurity coherently scatters the electrons, realizing a band of bandwidth comparable with T K . The Doniach insight, however, simply provides a connection between two features of the heavy fermions. It is simply based on energy comparison and do not give a detailed mechanism explaining the connection between the antiferromagnetic and the Fermi-liquid phase.

Iron-based superconductors

The term iron-based superconductors (FeSCs) denominates a broad class of materials formed by stacked planes made of tetrahedrons of iron (Fe) bounded with pnictogen (e.g. arsenic As) or chalcogen (e.g. selenium Se or tellurium Te) anions. Hightemperature superconductivity in this class of material was first observed in Ref. [START_REF] Kamihara | Ironbased layered superconductor la[o1-xfx]feas (x= 0.05-0.12) with tc = 26 k[END_REF]. Among FeSCs, several structures, or "families", are encountered. In this thesis we mainly focus on the so-called 122-family, whose crystal structure is reported in Fig. 1.2.

In this section, we aim at giving a brief introduction of this class of materials, focusing on the main concepts we face and study in the thesis work. For this reason, we first present the phase diagram for the 122-FeSC family. We then highlight some aspects indicating that FeSCs show heavy-fermionic behaviour. We close the section with a brief overview of the possible magnetic orders of these compounds. A more detailed treatment of FeSCs can be found in Refs. [START_REF] Peter D Johnson | Iron-based superconductivity[END_REF][START_REF] Hosono | Recent advances in iron-based superconductors toward applications[END_REF][START_REF] Paglione | High-temperature superconductivity in iron-based materials[END_REF]. The shaded yellow region marks the isovalent substitution of potassiumrubidium-cesium (K-Rb-Cs). Picture adapted from Ref. [START_REF] Hardy | Strong correlations, strong coupling, and s-wave superconductivity in hole-doped bafe 2 as 2 single crystals[END_REF].

Phase diagram of FeSCs

The main parent compound of the 122-FeSCs is BaFe 2 As 2 , whose phase diagram as a function of the most explored chemical substitutions is reported in Fig. 1.3. The nominal occupancy of the 3d-shell of iron is 6 electron in 5 orbitals for BaFe 2 As 2 .

Around it and for high temperature, the compound is found in a paramagnetic (PM) phase, which develops around T = 140K an antiferromagnetic (AF) order upon cooling. The PM-to-AF transition is accompanied by a tetragonal-to-orthorhombic structural transition [START_REF] Avci | Phase diagram of ba 1-x k x fe 2 as 2[END_REF]. Once in the magnetic region, electron (with K to Ba substitution) or hole 3 (with cobalt Co to iron substitution) doping results in the destruction of the magnetic order. However, for lower temperature, the compound enters a superconducting phase, whose extension is asymmetric in electron or hole doping. The highest value of T c ∼ 38K for hole doping is realized for Ba Green dots correspond to measurements in superconductive samples (data from Ref. [START_REF] Hardy | Doping evolution of superconducting gaps and electronic densities of states in ba (fe1-xcox) 2as2 iron pnictides[END_REF]). Black dots and red stars stand respectively for the theoretical simulation within DFT and DFT+SSMF, in the paramagnetic tetragonal phase. Magenta and yellow area depict the DOS loss in the spin-density wave phase and the region of isovalent substitution K, Rb, Cs. Picture adapted from Ref. [START_REF] Hardy | Strong correlations, strong coupling, and s-wave superconductivity in hole-doped bafe 2 as 2 single crystals[END_REF].

Clues of heavy-fermion physics in FeSCs

Iron-based superconductor physics is very rich and embraces different phases and regimes under doping and temperatures. Besides magnetic-non magnetic and structural transition, nematicity and superconductivity, another striking feature of 122-FeSCs is that they indeed show some characteristic of heavy-fermion materials. For example, in Fig. 1.4, we report the Sommerfeld coefficient (see Eq. 1.2) measured for the same compounds of the phase diagram of Fig. 1.3. It appears clear that hole doping BaFe 2 As 2 results in a pronounced enhancement of the Sommerfeld coefficient, one of the main feature of heavy-fermion materials. In particular, the isovalent substitution of barium with Cs, with 5.5 nominal occupancy of iron orbitals, establish the highest value of γ ∼ 180mJ/(molK 2 ). Furthermore, we underline that including correlations within density functional theory (DFT)+slave-spin mean-field (SSMF) formalism [START_REF] De'medici | Orbital-selective mott transition in multiband systems: Slave-spin representation and dynamical mean-field theory[END_REF] (see Chap. 2 and Chap. 3) provides a much better experimental agreement with respect the standard DFT. A detailed study of the evidences of heavy-fermion behaviours in FeSCs can be found in Ref. [START_REF] Villar | Heavy fermions and Hund's metals in iron-based superconductors[END_REF]. The phase diagram of FeSC represented by Fig. 1.3 indicates the presence of an antiferromagnetic (AF) dome close to the superconductive zones, and suggest a connection between these two states of matter. Several magnetic states are realized in FeSCs. We recognize three main orders:

Antiferromagnetic orders in FeSCs

• g-type antiferromagnetism, where the iron atoms in the unit cell displays a in-plane Néel antiferromagnetism. The same ordering is maintained along the z direction, as well. The unit cell hosts two iron atoms, organized to display a staggered magnetization;

• single stripe antiferromagnetism. Four iron atoms build up the unit cell (green square in Fig. 1.5). They are organized to order ferromagnetically along one FIGURE 1.6: Hund's rule for the aufbau of the 3d elements. The electrons occupy the orbitals to possibly align the spin. Picture from Ref. [START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF] line, but antiferromagnetically along the other, giving rise to a spin density wave (SDW) state.

• double-stripe antiferromagnetism where a couple of stripes forms an antiferromagnet along one direction and a ferromagnet along the other. The unit cell hosts 8 iron atoms, as reported in Fig. 1.5. An example [START_REF] Li | First-order magnetic and structural phase transitions in fe 1+y se x te 1-x[END_REF][START_REF] Misawa | Ab initio evidence for strong correlation associated with mott proximity in iron-based superconductors[END_REF] of double-stripe order within the FeSCs is given by FeTe.

Concerning the 122-family of FeSCs, it is known [START_REF] Peter D Johnson | Iron-based superconductivity[END_REF][START_REF] Huang | Neutron-diffraction measurements of magnetic order and a structural transition in the parent bafe 2 as 2 compound of feas-based hightemperature superconductors[END_REF] that BeFe2As2 shows a singlestripe SDW order around the stochiometric occupancy n d = 6. However, there are evidences [START_REF] Misawa | Ab initio evidence for strong correlation associated with mott proximity in iron-based superconductors[END_REF][START_REF] Marty | Competing magnetic ground states in nonsuperconducting ba(fe 1-x cr x ) 2 as 2 as seen via neutron diffraction[END_REF][START_REF] Calderón | Magnetic interactions in iron superconductors studied with a five-orbital model within the hartree-fock and heisenberg approximations[END_REF][START_REF] Bascones | Orbital differentiation and the role of orbital ordering in the magnetic state of fe superconductors[END_REF] that hole doping towards half filling eventually causes a structural magnetic transition favoring a g-type ordering.

Hund metals

In multi-orbital systems, the Hund coupling is the interaction determining the alignment of electrons' spin in different orbitals. In an isolated atom, it is responsible of the spin-arrangement of the electrons in the orbitals and generates the Hund's rule [START_REF] Hoyt | Review: Linienspektren und periodisches system der elemente, by Friedrich Hund[END_REF] for the aufbau (German word for "construction", see Fig. 1.6) of the atom. In the past years, metals whose properties are strongly influenced by Hund coupling, commonly named Hund metals 4 , have attracted the attention of the condensed matter physics community, both theoretically and experimentally. Although a unique agreement on the exact definition of Hund metals still lacks, some hallmarks are:

• a considerable quasiparticle mass enhancement;

• high local magnetic moments, dominating the quantum fluctuations;

• a tendency to an orbital-selective behaviour.

In this section, we overview the Hund metal landscape and present some known result recurring in this thesis work. A more exhaustive treatment of the subject can be found in Refs. [START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF][START_REF] De'medici | Hund's metals explained[END_REF][START_REF] Georges | Strong correlations from hund's coupling[END_REF][START_REF] Chatzieleftheriou | Charge instabilities, Mott transition and transport in Hund metals[END_REF].

Mott transition

In strongly-correlated electron systems, in which the independent electron picture fails in describing the physical properties of the system, the Coulomb repulsion between electrons plays a major role. One of the main outcome of the interaction is the Mott transition [START_REF] Mott | The basis of the electron theory of metals, with special reference to the transition metals[END_REF], namely the transition from a metallic to an insulating state driven by the Coulomb repulsion itself. The easiest example of Mott transition is found in a single-band half-filled model, in which the number of electrons equals the one of lattice's site. In such a system, there exist a competition between itinerant and localised behaviour of the electrons. Indeed the delocalisation of electrons results in a higher kinetic energy gain, which is however frustrated by the cost of double occupation set by the Coulomb repulsion. When the interactions are strong enough, double occupancy becomes too energetically expensive: the electrons localise and the system becomes an insulator. Such insulating state is called Mott insulator. It is a consequence of the strong correlation between electrons and it is strictly realized only for an integer number of electrons per site. In multi-orbital systems, it is a well established knowledge that Hund's coupling affects the Mott transition. In Fig. 1.7 we report the quasiparticle weight (which is the inverse of quasiparticle mass renormalization if only local correlations are present) for the two-and three-band Hubbard model. The simulation is done in SSMF with density-density interaction among the electrons (see Chap. 2) and the orbitals are degenerate. By regarding the half-filled case, two deductions are possible. First, an increasing Hund coupling results in a lower value of critical interaction for the Mott transition. Second, the onset of Hund coupling changes the order of the transition to second to first order. If we move away from half-filling in the three-orbital case, the model shows an interesting behaviour called Janus effect5 : on the one hand, for high values of Hund coupling, a Mott transition is still realised, but for much higher values of critical interaction with respect to the half-filled case; on the other hand, an overall The quasiparticle weights are calculated within SSMF, for different values of Hund coupling (J). Pictures adapted from Ref. [START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF] reduction of the quasiparticle weight is registered for a sizeable zone of interaction parameters. As we argue in the following sections, the Mott transition at half filling plays a key role in the Hund-metal physics.

Mass enhancement

The quasiparticle mass enhancement of Hund metals is well illustrated in Fig. 1.4. By comparing the result obtained within density functional theory with the prediction of slave-spin mean field, it is easy to see that considering the effect of interaction and thus Hund coupling results in a much better agreement with experiments. Doping the system towards half filling leads to an enhanced many-body interaction which corresponds to a narrowing of the electronic band structure [START_REF] De' Medici | Hund's coupling and its key role in tuning multiorbital correlations[END_REF][START_REF] Gunnarsson | Mott transition in degenerate hubbard models: Application to doped fullerenes[END_REF][START_REF] Gunnarsson | Mott-hubbard insulators for systems with orbital degeneracy[END_REF]. This eventually ends up to an increased density of states, and thus to a higher Sommerfeld coefficient in agreement with Eq. 1.2.

High local magnetic moments

Hund metals are also found to show significant high local magnetic moments, fluctuating in the paramagnetic phase, that have been observed in FeSCs [START_REF] Gretarsson | Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using x-ray emission spectroscopy[END_REF][START_REF] Lafuerza | Evidence of mott physics in iron pnictides from x-ray spectroscopy[END_REF][START_REF] Pelliciari | Magnetic moment evolution and spin freezing in doped bafe2as2[END_REF] through X-ray emission spectroscopy (XES). If a FeSC is probed with high energy photons, indeed in the range of X-rays, the electrons in the internal shells can be excited up to valence orbitals. The hole left behind can be filled by an electron from outer shells: this hole can have either spin up or down and the two configurations are different in energy due to the open 3d shell of the iron. By integrated absolute difference (IAD) measurements the emitted line magnitude is proportional to the local magnetic moment. We report in Fig. 1.8 some results for the 122-family, specifically again for BaFe 2 As 2 . It is shown that hole-doping the compound give rise to a sizeable increase in magnetic moments. The behaviour is the same both for in-plane iron doping, i.e. Ba(Fe 1-x Cr x ) 2 As 2 , and by substituting K to Ba. The presence of high magnetic moments can be explained by the proximity to a Hundinduced Mott-insulating state. The nominal occupancy of Ba is 6. By doping it towards half filling, electrons increasingly localise. In the limit case of Mott insulator, Hund coupling induces a high-spin state that maximises the total local spin. In the doped metallic phase, these spin do not arrange in long-range magnetic order and a local fluctuation takes place. This is also confirmed by theoretical investigation: in the inset of Fig. 1.8, we report the DFT+SSMF prediction for BaFe 2 As 2 and KFe 2 As 2 of the spin-spin correlation function, proportional to the total local spin. If the interaction is increased, both the compound tend to saturate but the higher value is reached for KFe 2 As 2 , whose nominal occupancy (5.5) is closer to half filling. 

Orbital selectivity and orbital-selective Mott transition

There are several evidences [START_REF] De'medici | Orbital-selective mott transition in multiband systems: Slave-spin representation and dynamical mean-field theory[END_REF][START_REF] Zp Yin | Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides[END_REF][START_REF] Backes | Microscopic nature of correlations in multiorbital afe 2 as 2 (a = K, Rb, Cs): Hund's coupling versus coulomb repulsion[END_REF][START_REF] Bascones | Magnetic interactions in iron superconductors: A review[END_REF][START_REF] Luca De'medici | Selective mott physics as a key to iron superconductors[END_REF][START_REF] Misawa | Ab initio evidence for strong correlation associated with mott proximity in iron-based superconductors[END_REF][START_REF] Si | High-temperature superconductivity in iron pnictides and chalcogenides[END_REF][START_REF] De'medici | Hund's metals explained[END_REF] that Hund coupling favors orbital selectivity. In simulating realistic materials like FeSCs, one is forced to abandon the degenerate model picture of Subsec. 1.3.1. For example, one considers different hopping amplitudes between orbitals, effects of crystal-field splitting and hybridization between orbitals, that can all lead to an orbital selective behaviour. The first outcome of orbital differentiation is the orbital selective Mott transition. It is analogous of the Mott transition introduced in Subsec. 1.3.1, but involves only a subset of orbitals of the system that Hund coupling decouples: these separately undergo a Mott transition and more in general give rise to a coexistence of heavy and "light" fermions.

The situation for a two-orbital Hubbard model is depicted in Fig. 1.9. Analogous reasoning is applicable to a realistic simulation of FeSCs. Once again, we rely on the example of BaFe 2 As 2 . In Fig. 1.10, the mass enhancement for this compound is reported, as a function of doping. In the upper panel, experimental results from specific heat, optical conductivity, ARPES and quantum oscillation measurements are shown. The reported values from the different probes agree in the electron-doped region. However, hole doping the system towards half filling gives inconsistent results between experimental methods. This inconsistency can be traced back to orbital selectivity, since mass enhancements renormalise differently the Sommerfeld coefficient and optical conductivity [START_REF] Luca De'medici | Selective mott physics as a key to iron superconductors[END_REF]. The scenario is confirmed in the lower panel of Fig. 1.10, where theoretical prediction within DFT+SSMF are reported. It appears clear that doping the compound towards half filling increases the correlations, but differently among the orbitals. The rationale behind the orbital selective behaviour of 122 FeSCs lies in the different occupation of iron orbitals. Due to hybridization and crystal field, the five orbitals of Fe are unequally occupied. The orbital-decoupling mechanism [START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF] leads to a correlation strength in each orbital dependent mainly on its individual occupation. In particular, the d xy orbital has filling closer to unity, with respect to the others, and its quasiparticle mass enhancement is correspondingly larger. This effect is further boosted if holes are introduced in the system. This is a purely correlation-driven effect, and indeed the DFT band structure differs a lot compared to ARPES data.

Chapter 2

Slave-particle methods for strongly-correlated electron systems

In this Chapter, we introduce a class of method used to deal with strongly-correlated electron systems: the slave particles methods. The main idea behind them is to simplify the many-body Hamiltonian of interacting electrons by introducing a set of constrained auxiliary variables, from which the "slave" label, that take care of the interaction in a simplified way. As a drawback, the kinetic contribution is renormalized, but it turns out that this is way more manageable, under some approximations (typically a local mean field on the auxiliary variables), to deal with. The Chapter is structured as follow: first, in Sec. 2.1, we introduce the Hubbard Hamiltonian, the paradigmatic model to study strongly-correlated electron systems. Following this, we introduce the slave-particle methods, whose main logic is described by the slave-boson approach of Sec. 2.2. Finally, we introduce the main formalism used throughout this thesis, the slave-spin method, which we present in two formalisations: the so-called Z2-formalism of Sec. 2.3 and the U(1)-formalism of Sec. 2.4.

In the last section, we show how slave-spin formalisms give identical result to slaveboson method in the special case of half-filled one-band Hubbard model.

Hubbard model

A very common choice to go beyond independent-electron approximation, and then to take into account the correlation effects, is the Hubbard Hamiltonian [START_REF] Hubbard | Electron correlations in narrow energy bands iii. an improved solution[END_REF]. In this section, we give a general overview of the model, by focusing on its multi-orbital formulation.

In the end of the section, we introduce the single-band Hubbard model and briefly cite the particle-hole symmetric form of the interaction Hamiltonian.

If we consider a lattice in which the ionic dynamics is so much slower than the electronic one to result being ineffective (Born-Oppenheimer approximation), then the problem is restricted to the electronic dynamics only. The corresponding Hamiltonian is:

Ĥ = ∑ ij,mm ′ ,σ t mm ′ ij ĉ † imσ ĉjm ′ σ + 1 2 ∑ ijkl ∑ mm ′ nn ′ ∑ σσ ′ V mm ′ nn ′ ijkl ĉ † imσ ĉ † jm ′ σ ′ ĉkn ′ σ ′ ĉlnσ , (2.1) 
where ĉ( †) imσ is the destruction (creation) operator of an electron with spin σ at the i-th site of the lattice, in orbital m. t mm ′ ij in the first term of Eq. 2.1 is named hopping integral, since it mimics the hopping of an electron with spin σ destroyed at site j and orbital m ′ and created at site i and orbital m, and it reads as:

t mm ′ ij = drw * m (r -R i ) - h∇ 2 2m e + V(r) w m ′ (r -R j ) (2.2)
which takes into account the electron-ion interaction via

V(r) = ∑ α Z α e 2
|R α -r| . The second term of Eq. 2.1 deals with the interaction among electrons, in terms of the interaction parameters:

V mm ′ nn ′ ijkl = drdr'w * m (r -R i )w * m ′ (r' -R j ) e 2 |r -r'| w n (r -R k )w n ′ (r' -R l ) (2.3)
In Eq. 2.2 and Eq. 2.3, w m (r -R i ) is the m-th Wannier orbital [START_REF] Gregory | The structure of electronic excitation levels in insulating crystals[END_REF]. Since strong correlations tend to localize the electrons in the atomic orbitals, it is more physical meaningful to choose a complete, orthonormal basis of localized functions, like a set of Wannier orbitals, instead of the delocalised Bloch functions (ϕ km (r)). The former are for example (but not uniquely, see. e.g. Ref. [START_REF] Marzari | Maximally localized wannier functions: Theory and applications[END_REF]) the Fourier transform of the latter:

w m (r -R) = 1 √ N ∑ k∈B.Z e -ik•R ϕ km (r), (2.4) 
where N is the number of lattice unit cell and the sum runs over all the Brillouin zone. The choice of the Wannier basis well portrays the correlation induced localization, since the hopping integral decays rapidly as sites i and j are further apart. The interaction term behaves similarly, since Coulomb interaction decreases with distance. However, it still retains all the complexity of the many-body problem and to proceed some physical considerations are in order. Indeed, bands relative to shells deep below the Fermi level are completely full and thus inert to weak experimental probes, as well as empty bands above Fermi energy do not give any contribution. Hence, only a subset of bands near the Fermi level is relevant to study the many-body effects. Moreover, screening effects reduce the range of electronic interactions. The Coulomb interaction in Eq. 2.3 is then replaced with a screened one, e.g. in its simplest form (Yukawa potential):

W(|r -r'|) = e 2 |r -r'| e -λ|r-r'| (2.5)
which exponentially decays with distance, modulated by the screening length λ. With this, the interactions on the same site are much more relevant than the ones on different sites and it is possible to restrict the interaction parameters to a minimal, purely local form:

V mm ′ nn ′ ijkl = U mm ′ nn ′ iiii δ ij δ ik δ il . (2.6)
In what follows, the subscripts will be omitted to lighten the notation. For strongly correlated materials, the relevant valence bands usually arises from 3d orbitals lifted in energy by a crystal field, which often shows a cubic symmetry. The five orbitals of the 3d shells are split in a pair of e g and a triplet t 2g . In these conditions, it is possible to further simplify the interaction [START_REF] Georges | Strong correlations from hund's coupling[END_REF] and to consider, for each site i, the following three independent integrals, while all the others are zero by symmetry:

U mmmm ≡ U = drdr'|w m (r)| 2 W(r, r')|w m (r')| 2 U mm ′ m ′ m ≡ U ′ = drdr'|w m (r)| 2 W(r, r')|w m ′ (r')| 2 U mm ′ mm ′ ≡ J = drdr'w * m (r)w * m ′ (r')W(r, r')w m (r)w m ′ (r'), (2.7) 
It should be noted that this form of interaction parameters presents some subtleties. First, it is only approximated in symmetries other than cubic or if more orbitals are involved; second, it implies the rotational invariance of the screened interaction W(r, r'), which is guaranteed in free space, but necessarily approximated in realistic solids. With this particular symmetry choice, we can write Ĥint in the multi-orbital Hubbard Hamiltonian (Eq. 2.1) as the Kanamori interaction [START_REF] Kanamori | Electron Correlation and Ferromagnetism of Transition Metals[END_REF]:

Ĥint = U ∑ m nm↑ nm↓ + U ′ ∑ m̸ =m ′ nm↑ nm ′ ↓ + (U ′ -J) ∑ m<m ′ ,σ nmσ nm ′ σ -J ∑ m̸ =m ′ ĉ † m↑ ĉm↓ ĉ † m ′ ↓ ĉm ′ ↑ + J ∑ m̸ =m ′ ĉ † m↑ ĉ † m↓ ĉm ′ ↓ ĉm ′ ↑ (2.8)
where nmσ = ĉ † mσ ĉmσ . The first and second term in Eq. 2.8 represent the Coulomb interaction between two electrons in the same orbital, with different spins in agreement with Pauli principle, and the Coulomb interaction between electrons with opposite spin in different orbitals, respectively. Due to the geometry of the orbitals, electrons in different orbitals are further apart than those on the same orbitals and it results U ′ < U. The third term represents, instead, the interaction of two electrons with aligned spin in different orbitals; its coupling (U ′ -J) is the lowest and, in an isolated atom, it leads to the Hund's rule for which electrons occupy the same shell with parallel spin, if possible, before starting double occupation. The last two terms describe spin-flip and pair-hopping processes 1 .

In this thesis, we use a simplified version of Kanamori interaction; without considering the last two terms, we reduce to a density-density interaction:

Ĥint = U ∑ m nm↑ nm↓ + U ′ ∑ m̸ =m ′ nm↑ nm ′ ↓ + (U ′ -J) ∑ m<m ′ ,σ nmσ nm ′ σ .
(2.9)

With this choice of interaction, the multi-orbital Hubbard Hamiltonian is rewritten as:

Ĥ = ∑ ij,mm ′ ,σ t mm ′ ij ĉ † imσ ĉjm ′ σ + U ∑ i,m nim↑ nim↓ + U ′ ∑ i,m̸ =m ′ nim↑ nim ′ ↓ + (U ′ -J) ∑ i,m<m ′ ,σ nimσ nim ′ σ . (2.10) 
In the particular simple case of one orbital only, U ′ = J = 0 and Eq. 2.10 reduces to the single-band Hubbard model:

Ĥ = ∑ ij,σ t ij ĉ † iσ ĉjσ + U ∑ i ni↑ ni↓ . (2.11)
For practical purposes of the following, it is very useful to introduce a particle-hole symmetric form of the density-density multi-orbital interaction. We define the shifted operator nimσ = nimσ -1/2 to obtain [START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF][START_REF] Chatzieleftheriou | Charge instabilities, Mott transition and transport in Hund metals[END_REF]:

Ĥint = U ∑ m nm↑ nm↓ + U ′ ∑ m̸ =m ′ nm↑ nm ′ ↓ + (U ′ -J) ∑ m<m ′ ,σ nmσ nm ′ σ .
(2.12)

where the particle-hole condition is satisfied by the chemical potential µ ph = U+(M-1)(2U ′ -J)

2 . Even if the interaction has been simplified, the problem is still unsolvable, due to the two-body term of the interaction. In the next sections, some methods to manage the many-body problem are shown.

Slave bosons

The idea of using auxiliary variables to deal with strong correlations is currently well established in the solving-methods landscape. The first successful attempt, indeed, is due [START_REF] Barnes | New method for the anderson model[END_REF][START_REF] Barnes | New method for the anderson model. ii. the u=0 limit[END_REF], who introduced auxiliary bosons to solve the Anderson model [START_REF] Barnes | New method for the anderson model[END_REF][START_REF] Barnes | New method for the anderson model. ii. the u=0 limit[END_REF]. Further developments, in the context of mixed-valence problem for rare earth, were made by Coleman [START_REF] Coleman | New approach to the mixed-valence problem[END_REF] as well as Read (for infinite-U Anderson model) and News [START_REF] Read | On the solution of the coqblin-schreiffer hamiltonian by the large-n expansion technique[END_REF][START_REF] Read | Role of infrared divergences in the 1/n expansion of the u=∞ anderson model[END_REF]. However, these results were restricted only to some limit of interaction. The generalization of the fundamental idea to any value of interaction, as well as an unified approach for both magnetic and non-magnetic phases, was performed by Kotliar and Ruckenstein in Ref. [START_REF] Kotliar | New functional integral approach to strongly correlated fermi systems: The gutzwiller approximation as a saddle point[END_REF].In this section, we report the main points of their approach while the formal analysis is exposed in Appendix A.

The starting point is the consideration that, by taking as reference the single-band Hubbard Hamiltonian of Eq. 2.11, each site of the lattice can be in one of these states: empty |0⟩; singly occupied in "up" | ↑⟩ or "down" | ↓⟩ spin configuration; doubly occupied | ↑↓⟩. Then, to each site, we introduce four fictitious, or slave, boson operators, labelling the possible states: ê, for empty states; ŝ↑ and ŝ↓ , for singly occupied states, respectively; d, for doubly occupied states. Each physical electron (i.e. created by ĉiσ ) is followed by a given boson, so that the "original" physical Fock space is enlarged into an extended one, taking into account the new bosonic degrees of freedom alongside with the fermionic ones. We label the latter as fiσ in the enlarged space. If we define the vacuum of the enlarged space as | 0⟩, the correspondence follows:

|0⟩ ⇔ ê † | 0⟩ ĉ † ↑ |0⟩ = | ↑⟩ ⇔ f † ↑ ŝ † ↑ | 0⟩ ĉ † ↓ |0⟩ = | ↓⟩ ⇔ f † ↓ ŝ † ↓ | 0⟩ ĉ † ↑ ĉ † ↓ |0⟩ = | ↑↓⟩ ⇔ f † ↑ f † ↓ d † | 0⟩, ∀i.
(2.13)

The enlarged space contains unphysical states, namely the ones in which the bosonic degree of freedom does not follow exactly the fermionic one as in Eq. 2.13. To avoid such unphysical states, we enforce for each site the following set of constraints:

∑ σ ŝ † iσ ŝiσ + ê † i êi + d † i di = 1 f † iσ fiσ = ŝ † iσ ŝiσ + d † i di , with σ =↑, ↓ . (2.14)
The first condition in Eq. 2.14 can be seen as a completeness relation of the bosonic subspace and formalizes the requirement that no more or less than one boson can occupy a given state 2 . The second constraint enforce that the fermionic occupancy can be equivalently counted by fermionic or bosonic degrees of freedom. Up to this point, the usefulness of this procedure does not seem so obvious, since the only effect is to enlarge the Hilbert space and to increase the number of degrees of freedom. Nevertheless, if we define the operator:

ôiσ = (1 -d † i di -ŝ † iσ ŝiσ ) -1 2 ( ê † i ŝiσ + ŝ † i σ di )(1 -ê † i êi -ŝ † i σ ŝiσ ) -1 2 , ( 2.15) 
then the matrix elements of the Hamiltonian:

Ĥ = ∑ ij,σ t ij f † iσ fjσ ô † iσ ôjσ + U ∑ i d † i di (2.16)
are identical, in the physical subspace defined by Eq. 2.14, to those of Eq. 2.11 in the original Hilbert space. We specify that the choice of the bosonic operator in Eq. 2.15 is not unique 3 . There are several possible equivalent options with identical results, when acting on the physical subspace, as long as the constraints in Eq. 2.14 are enforced exactly.

The effect of enlarging the Hilbert space appears clear: the interaction term which makes the problem unsolvable is now simplified in a one-body term of the bosonic variables only. On the other hand, the full many-body complexity of the problem is now embodied in the hopping term.

The problem is tackled within a functional integral approach, in which the partition function Z, written as an integral over coherent fermionic and bosonic states, is calculated in a saddle-point approximation to obtain physical observables. For a more detailed introduction to the formalism, we refer to Appendix A as well as Refs. [START_REF] Altland | Condensed Matter Field Theory[END_REF][START_REF] Coleman | Introduction to Many-Body Physics[END_REF][START_REF] John | Quantum many-particle systems[END_REF], for a more pedagogical treatment.

The relevant object emerging from this procedure is the free energy density; in the energy space, it reads:

f = Ud 2 + λ (1) ∑ σ s 2 σ + e 2 + d 2 -1 -∑ σ λ (2) σ s 2 σ + d 2 -k B T ∑ σ +∞ -∞ dερ(ε) ln 1 + e -β q σ ε-µ+λ (2) σ .
(2.17)

2 Bosons that satisfy this condition are often called hard-core bosons. It mimics the impossibility of fermions to occupy a state with same quantum numbers, without imposing an antisymmetric algebra. 3 For example, the operator ôiσ = ê † i ŝiσ + ŝ † i σ di gives identical eigenvalues and eigenvectors of Eq. 2.15, when acting on the physical subspace. However, it is easy to show that this expression of ôiσ leads to a wrong result in the non-interacting limit. Precisely, ⟨ ô † iσ ôjσ ⟩ = 1 4 rather than unity. Indeed, this discrepancy is the basis of the logical chain presented in Ref. [START_REF] Kotliar | New functional integral approach to strongly correlated fermi systems: The gutzwiller approximation as a saddle point[END_REF] and motivates the choice in Eq. 2. [START_REF] Kamihara | Ironbased layered superconductor la[o1-xfx]feas (x= 0.05-0.12) with tc = 26 k[END_REF] where

ρ(ε) = 1 N ∑ k δ (ε -ε k )
is the density of states. The problem is now reduced to an effective system of interacting bosons, with hopping renormalized by q σ = ⟨o * iσ o jσ ⟩. Here, d 2 marks the electronic double occupancy. It is easy to show [START_REF] Kotliar | New functional integral approach to strongly correlated fermi systems: The gutzwiller approximation as a saddle point[END_REF] that, in the paramagnetic half-filled case at zero temperature where there is on average one electron per site, Eq. 2.17 is minimized by:

d 2 = 1 4 1 - U U c , (2.18) 
where U c = 16

+∞ 0 dερ(ε)ε is called critical interaction for the metal-insulator (Mott)
transition. Indeed, when U = U c , there are no double occupations and the electrons localize on lattice sites. This results was originally obtained by Brinkman and Rice [START_REF] William | Application of gutzwiller's variational method to the metal-insulator transition[END_REF] in the context of the variational Gutzwiller approach [62]. This establish the main physical achievement of the slave-boson method: it gives identical result to the Gutzwiller approximation which, however, becomes exact in the large spatial dimensions limit [START_REF] Frésard | Slave bosons in radial gauge: the correct functional integral representation and inclusion of non-local interactions[END_REF][START_REF] Metzner | Correlated lattice fermions in d = ∞ dimensions[END_REF][START_REF] Metzner | Variational theory for correlated lattice fermions in high dimensions[END_REF][START_REF] Metzner | Analytic calculation of ground-state properties of correlated fermions with the gutzwiller wave function[END_REF].

On the same line it is possible to determine the hopping renormalization factor, i.e. the quasiparticle weight, in the paramagnetic half-filled phase. The constraints in Eq. 2.14 allow indeed to express q as a function of d 2 alone so that:

q = 8d 2 (1 -2d 2 ) = 1 - U U c 2 (2.19)
where we have dropped the spin subscript since we are working in the paramagnetic case and we have enforced Eq. 2.18 in order to make explicit the relation with the critical interaction for the Mott transition. We further underline that Eq. 2.19 is zero if U = U c implying that the metal-insulator transition is equivalently signalled either by the absence of double occupation or for vanishing quasiparticle weight. The renormalized hoppings go to zero and the system localises the electrons preventing double occupation.

Slave Spins: Z 2 representation

The slave-spin formalism, first introduced in Ref. [START_REF] De'medici | Orbital-selective mott transition in multiband systems: Slave-spin representation and dynamical mean-field theory[END_REF], is very close in spirit to the slaveboson method of the previous section. Nevertheless, slave-spin approach might be preferable in multi-orbital environments since the number of auxiliary variables scales as 2M, where M is the number of orbitals, instead of 4 M for the slave-boson case. Hence, slave-spin representation was shown to be a very agile and computationally not expensive method to solve multi-orbital strongly-correlated problems. Here, we present the original formulation of slave spins, for which an overview of the main results is shown, but not limited to, in [START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF][START_REF] Luca De' Medici | Janus-faced influence of hund's rule coupling in strongly correlated materials[END_REF][START_REF] Hardy | Strong correlations, strong coupling, and s-wave superconductivity in hole-doped bafe 2 as 2 single crystals[END_REF][START_REF] Chatzieleftheriou | Enhancement of charge instabilities in hund's metals by breaking of rotational symmetry[END_REF][START_REF] Chatzieleftheriou | Mott quantum critical points at finite doping[END_REF]. In Chap. 3, we instead present a more recent development, which cures some drawbacks of the method. As in the slave-boson formalism, we enlarge the original Fock space, such that to each physical fermionic degrees of freedom ( ĉimσ ), we link a (pseudo-)fermionic fimσ and a slave spin-1/2 variable. The latter do not have any physical meaning: they are just auxiliary variables which follows the commutation relation of the spin algebra and they should not be confused with the physical spin of the original fermion. Indeed, at each site, orbital and for each spin species, we introduce the corresponding slave spin, which keeps trace whether the state is occupied or not: we arbitrarily choose that, in the former case, the spin is "up" and vice versa is "down" in the latter. Thus, to each state in the original Fock space corresponds a state in the enlarged one, namely:

|n c imσ = 1⟩ ⇔ |n f imσ = 1, S z imσ = + 1 2 ⟩ |n c imσ = 0⟩ ⇔ |n f imσ = 0, S z imσ = - 1 2 ⟩. (2.20)
Again, we are in presence of unphysical states:

|n c imσ = 1⟩ ⇔ |n f imσ = 0, S z imσ = + 1 2 ⟩ |n c imσ = 0⟩ ⇔ |n f imσ = 1, S z imσ = - 1 2 ⟩. (2.21)
that are avoided if the constraint:

f † imσ fimσ = Ŝz imσ + 1 2 (2.22)
is exactly enforced for each site and for each spin σ, which specify that we can equivalently count the number of physical electrons both with the pseudo-fermionic and slave-spin variables. More formally, this means that the number operator nc imσ = ĉ † imσ ĉimσ can be mapped both as n f imσ = f † imσ fimσ and Ŝz imσ + 1 2 in the physical subspace of the enlarged Fock space. This highlights immediately an advantage of the method, since we can express the (particle-hole symmetric) density-density interaction Hamiltonian in Eq. 2.12 in terms of the spin variables only:

Ĥint [ Ŝz ] = U ∑ i,m Ŝz im↑ Ŝz im↓ + U ′ ∑ i,m̸ =m ′ Ŝz im↑ Ŝz im ′ ↓ + (U ′ -J) ∑ i,m<m ′ ,σ Ŝz imσ Ŝz im ′ σ .
(2.23)

We note that Eq. 2.23 resembles the form of an Ising interaction, on-site. The hopping term gives some freedom of choice, since several combinations of f and spin operators act in the same way on the physical space. For example, the choices f † imσ Ŝ+ imσ and f † imσ 2 Ŝx imσ give identical results if applied to the physical subspace. The most general mapping is established by considering:

ĉimσ → fimσ Ôimσ ĉ † imσ → f † imσ Ô † imσ , (2.24) 
where Ôimσ is a generic spin operator, namely a 2x2 matrix, whose most general expression is given by:

Ôimσ = 0 c imσ 1 0 ≡ Ŝ- imσ + c imσ Ŝ+ imσ , (2.25) 
where c imσ is an arbitrary complex number. With Eq. 2.24 and Eq. 2.23, the Hubbard Hamiltonian of Eq. 2.10 is mapped to:

Ĥ -µ N = ∑ ij,mm ′ ,σ t mm ′ ij f † imσ fjm ′ σ Ô † imσ Ôjm ′ σ + ∑ imσ (ϵ m -µ) n f imσ + Ĥint [ Ŝz ], (2.26) 
where µ is the chemical potential; ϵ m ≡ t mm ii are the onsite orbital energies; N = ∑ imσ n f imσ . In the first sum, we implicitly assume i ̸ = j. As in the slave-boson approach, the interaction term has been simplified by our slavespin procedure, but the many-body nature of the problem has been moved to the hopping term. However, this is way more manageable and can be treated by implementing the following steps:

1. decoupling of the auxiliary fermionic and spin degrees of freedom; 2. averaging of the constraint, via a Lagrangian multiplier approach;

3. mean field approximation on the resulting slave-spin Hamiltonian.

Decoupling fermions from spins

The first approximation we perform is to decouple the auxiliary fermionic and spin degrees of freedom, which is equivalent to a Weiss-like mean field where the auxiliary fermions experience a field of all the slave-spin subsystem and vice versa. The hopping term in Eq. 2.26 reads:

f † imσ fjm ′ σ Ô † imσ Ôjm ′ σ ≃ f † imσ fjm ′ σ ⟨ Ô † imσ Ôjm ′ σ ⟩ + ⟨ f † imσ fjm ′ σ ⟩ Ô † imσ Ôjm ′ σ (2.27)
for each im, jm ′ and σ. Eq. 2.27 is approximated since we ignore quadratic term in the deviation from the average values 4 . In what follows, it must be intended in this sense. This procedure also generates the average ⟨ f † imσ fjm ′ σ Ô † imσ Ôjm ′ σ ⟩, which we omit. Although it does not affect the action of the Hamiltonian operator, it results in a shift of the ground state energy.

Averaging the constraint

We consider the gran-canonical partition function:

Z = Tr e -β( Ĥ-µ N) ∏ imσ δ Ŝz imσ + 1 2 -f † imσ fimσ (2.28)
where, by virtue of the approximation above:

Ĥ -µ N = ∑ ijmm ′ σ t mm ′ ij f † imσ fjm ′ σ ⟨ Ô † imσ Ôjm ′ σ ⟩ + ⟨ f † imσ fjm ′ σ ⟩ Ô † imσ Ôjm ′ σ + ∑ imσ (ϵ m -µ) n f imσ + Ĥint [ Ŝz ]. (2.29) 
The delta function in Eq. 2.28 exactly enforces, at each site and orbital, the constraint Eq. 2.22. However, because of this, the two auxiliary subspaces are still entangled and the sum over the enlarged Fock space cannot be expressed as the sum over decoupled auxiliary degrees of freedom. To achieve this, we have to resort to a relaxation of the constraint, by substituting the delta function with an exponential form:

δ Ŝz imσ + 1 2 -f † imσ fimσ → e -β ∑ imσ λ imσ ( Ŝz imσ + 1 2 -f † imσ fimσ ) , (2.30) 
where λ imσ can be adjusted in order to respect the constraint Eq. 2.22 on average (see Eq. 2.33). We can now solve a constrained minimum problem for the grand-canonical potential Ω = -k B T ln Z, where the constraint is enforced via the Lagrange multiplier λ imσ , by determining which λ imσ satisfies the minimum condition ∂Ω ∂λ = 0. This reads:

∂Ω ∂λ = -k B T ∂ ∂λ ln Z =   Tr e -β Ĥ-µ N ∑ imσ Ŝz imσ + 1 2 -f † imσ fimσ Z   = 0 (2.31)
where we have defined the new Hamiltonian:

Ĥ -µ N = ∑ ijmm ′ σ t mm ′ ij f † imσ fjm ′ σ ⟨ Ô † imσ Ôjm ′ σ ⟩ + ⟨ f † imσ fjm ′ σ ⟩ Ô † imσ Ôjm ′ σ + ∑ imσ (ϵ m -µ) n f imσ + ∑ imσ λ imσ Ŝz imσ + 1 2 -f † imσ fimσ + Ĥint [ Ŝz ]. (2.32)
and we have introduced the associated partition function Z = Tr e -β( Ĥ-µ N) with Hamiltonian of Eq. 2.32. From the property of the trace, it follows that the constraint is treated only on average:

∑ imσ ⟨ f † imσ fimσ ⟩ = ∑ imσ ⟨ Ŝz imσ ⟩ + 1 2 (2.33)
as expected. We are now in presence of a fully decoupled Hamiltonian problem 5 for the auxiliary variables in which we can identify a fermionic and a spin Hamiltonian that reads:

Ĥf = ∑ ijmm ′ σ t mm ′ ij ⟨ Ô † imσ Ôjm ′ σ ⟩ f † imσ fjm ′ σ + ∑ imσ (ϵ m -µ -λ imσ ) n f imσ Ĥs = ∑ ijmm ′ σ t mm ′ ij ⟨ f † imσ fjm ′ σ ⟩ Ô † imσ Ôjm ′ σ + ∑ imσ λ imσ Ŝz imσ + 1 2 + Ĥint [ Ŝz ], (2.34) 
where the enlargement of the original physical Fock space is reflected in the selfconsistent nature of the fermionic and spin Hamiltonian both in the slave-spin exchange constant

J mm ′ ijσ ≡ t mm ′ ij ⟨ f † imσ fjm ′ σ ⟩ and in the hopping renormalization factor Q mm ′ ijσ ≡ ⟨ Ô † imσ Ôjm ′ σ ⟩,
which is in close analogy with the hopping renormalization of the slave bosons, being both Q mm ′ ijσ and q σ average values of auxiliary operators.

Single-site mean-field approximation for the spin Hamiltonian

Up to now, we have rewritten the many-body problem in an articulate way which has the advantage to split the problem in two self-consistent Hamiltonians: one, for the auxiliary fermions, describes a system of independent electrons, the effect of the interaction embedded in the hopping renormalization; the other, for the slave-spin variables, retains all the many-body complexity of the problem and it is still unsolvable.

To treat the latter, we further perform a single-site mean-field approximation on the slavespin system, for which we consider the slave spin of one site as interacting in a field created by all the others. For the auxiliary operators Ôimσ , this is formally equivalent to the approximation in Eq. 2.27, i.e. Ô †

imσ Ôjm ′ σ ≃ Ô † imσ ⟨ Ôjm ′ σ ⟩ + ⟨ Ô † imσ ⟩ Ôjm ′ σ
, from which we obtain for the slave-spin Hamiltonian 6 :

Ĥs = ∑ imσ h imσ Ô † imσ + h.c. + ∑ imσ λ imσ Ŝz imσ + 1 2 + Ĥint [ Ŝz ], (2.35) 
where we have defined:

h imσ = ∑ j(̸ =i)m ′ t mm ′ ij ⟨ f † imσ fjm ′ σ ⟩⟨ Ôjm ′ σ ⟩ (2.36)
which is essentially the kinetic energy of pseudo-fermions.

We underline that the slave-spin Hamiltonian in Eq. 2.35 can be expressed as the sum of single site problems, independent from each other. Hence, our procedure leads to the following set of coupled equation:

Ĥf = ∑ ijmm ′ σ t mm ′ ij ⟨ Ô † imσ ⟩⟨ Ôjm ′ σ ⟩ f † imσ fjm ′ σ + ∑ imσ (ϵ m -µ -λ imσ ) n f imσ Ĥs = ∑ i Ĥi s ≡ ∑ i ∑ mσ h imσ Ô † imσ + h.c. + ∑ mσ λ imσ Ŝz imσ + 1 2 + Ĥint [ Ŝz ] (2.37)
self-consistently solvable under the constraint in Eq. 2.33. The last step is to define the expression for the gauge c imσ . In order to retrieve the correct non-interacting limit [START_REF] Hassan | Slave spins away from half filling: Cluster mean-field theory of the hubbard and extended hubbard models[END_REF], we choose the gauge to be:

c imσ = 1 ⟨ n f imσ ⟩ 1 -⟨ n f imσ ⟩ -1. (2.38)
We need to specify that the presence of the gauge in Eq. 2.25 is a building block of the slave-spin formalism and it makes the enlarged-space Hamiltonian Eq. 2.26 self consistent in nature from the beginning. It turns out, by using a a more recent elaboration of the formalism [START_REF] Crispino | Slave-spin mean field for broken-symmetry states: Néel antiferromagnetism and its phase separation in multiorbital hubbard models[END_REF] (subject of Chap. 3), that the gauge itself generates the proper field capable of stabilize broken-symmetry phases solutions. We conclude this section by reporting that, if a crystal field splitting is present, the slave-spin Z2 representation gives non-zero Lagrange multiplier in the non-interacting 6 Due to the translational invariance of the lattice, ⟨ Ôimσ ⟩ = ⟨ Ôjmσ ⟩ limit, where the constraint is automatically satisfied. This inconsistency can be cured by redefining the local energies so that ϵ m = εmλ 0 imσ ({U, J} = 0, { εm }). In the present formulation, the shifting term λ 0 imσ is fixed to the numerical values of λ imσ , as calculated in the non-interacting limit, i.e. U = J = 0, and kept fixed for any values of interaction [START_REF] Chatzieleftheriou | Enhancement of charge instabilities in hund's metals by breaking of rotational symmetry[END_REF]. However, this drawback is fixed in the new variational approach exposed in Chap. 3.

Slave Spins: U(1) representation

In this section, we present the U(1)-representation of slave spins, originally elaborated in Ref. [START_REF] Yu | u(1) slave-spin theory and its application to mott transition in a multiorbital model for iron pnictides[END_REF] (see also Ref. [START_REF] Yu | Orbital-selective mott phase in multiorbital models for iron pnictides and chalcogenides[END_REF]). We focus on the simplified case of density-density interaction. The procedure follows the path of the previous section, but, instead of the most general expression for the spin operator Eq. 2.25, the slave-spin correspondence involves only Ŝ± imσ operators:

ĉimσ → fimσ Ŝ- imσ ĉ † imσ → f † imσ Ŝ+ imσ , (2.39) 
which clearly results in the absence of the gauge c imσ . The original Hilbert space is enlarged as before and the physical, such as the unphysical, states follows Eq. 2.20 and Eq. 2.21, respectively. The form of the constraint is the same Eq. 2.22, as well. Now, the first difference of the methods emerges: the slave-spin operators are expressed in terms of Schwinger bosons, which transform spin operators as combination of bosonic ones [START_REF] Auerbach | Interacting Electrons and Quantum Magnetism[END_REF]:

Ŝ+ imσ = Ŝx imσ + i Ŝy imσ ≡ â † imσ bimσ Ŝ- imσ = Ŝx imσ -i Ŝy imσ ≡ b † imσ âimσ Ŝz imσ = 1 2 â † imσ âimσ -b † imσ bimσ , (2.40) 
where â and b are bosonic operators, satisfying the canonical commutation relations. This procedure itself represent a second enlargement of the Hilbert space, whose physical subspace is defined by the spin magnitude, under the constraint that the total bosonic occupancy equals 2S:

H physical ≡ {|n a , n b ⟩ : n a + n b = 2S} (2.41)
For 1 2 -spin this implies that the Schwinger bosons are hard-core bosons, with the constraint:

â † imσ âimσ + b † imσ bimσ = 1 (2.42)
enforced for each site, orbital and spin σ. This reflects immediately also in the slavespin constraint Eq. 2.22, which transforms as:

â † imσ âimσ -b † imσ bimσ = 2 f † imσ fimσ -1. (2.43)
With the Schwinger boson transformation, the slave-spin equivalence reads as:

ĉimσ → fimσ b † imσ âimσ ≡ fimσ ôimσ ĉ † imσ → f † imσ â † imσ bimσ ≡ f † imσ ô † imσ , (2.44) 
where, close to the slave-boson idea, we introduce the dressed operators:

ô † imσ ≡ P+ imσ â † imσ bimσ P- imσ . (2.45) 
It is easy to show that, on the physical space, the actions of ô † imσ and â † imσ bimσ coincide. The P± imσ operators act as projectors operators on the physical subspace and they are defined as:

P± imσ ≡ 1 1 2 + δ ± ( â † imσ âimσ -b † imσ bimσ ) 2 , (2.46) 
where δ is an arbitrarily chosen infinitesimal number which ensures their regularity. By following step by step the mean-field decoupling of the previous section, we write the decoupled Hamiltonians in the single-site mean-field approximation for the (dressed) slave-Schwinger bosons:

Ĥf = ∑ ijmm ′ σ t mm ′ ij ⟨ ô † imσ ⟩⟨ ôjm ′ σ ⟩ f † imσ fjm ′ σ + ∑ imσ (ϵ m -µ -λ imσ ) n f imσ Ĥs = ∑ ijmm ′ σ ⟨ f † imσ fjm ′ σ ⟩ ⟨ ôjm ′ σ ⟩ ô † imσ + ⟨ ô † imσ ⟩ ôjm ′ σ + 1 2 ∑ imσ λ imσ na imσ -nb imσ + Ĥint [ na , nb ], (2.47) 
where λ imσ enforces the constraint and the (particle-hole symmetric) density-density interaction is written in terms of the Schwinger boson occupancies only:

Ĥint [ na , nb ] = U 4 ∑ m na m↑ -nb m↑ na m↓ -nb m↓ + U ′ 4 ∑ m̸ =m ′ na m↑ -nb m↑ na m ′ ↓ -nb m ′ ↓ + (U ′ -J) 4 ∑ m<m ′ ,σ na mσ -nb mσ na m ′ σ -nb m ′ σ . (2.48)
Then, we Taylor expand the ô † operators with respect to Ô -⟨ Ô⟩ where Ô can be na , nb or â † b. Mean-field solutions already give acceptable results with a first order expansion [START_REF] Yu | u(1) slave-spin theory and its application to mott transition in a multiorbital model for iron pnictides[END_REF], so that we can stop the expansion at linear term in Eq. 2.46 to obtain:

P+ imσ ≈ ⟨ P+ imσ ⟩   1 - ∆ n 4 ⟨ n f imσ ⟩ + δ   (2.49) 
where

∆ n ≡ na imσ -nb imσ -⟨ na imσ ⟩ -⟨ nb imσ ⟩
. Moreover, we resort another meanfield decoupling on the ô operator, for which we obtain:

ô † imσ ≈ ⟨ P+ imσ ⟩ â † imσ bimσ ⟨ P- imσ ⟩ + ⟨ P+ imσ ⟩⟨ â † imσ bimσ ⟩⟨ P- imσ ⟩η imσ ∆ n (2.50)
by implementing the first order expansion Eq. 2.49. In Eq. 2.50 we have introduced

η imσ ≡ 2⟨ n f imσ ⟩-1 4 1-⟨ n f imσ ⟩ ⟨ n f imσ ⟩
. We underline that the denominator of η imσ strongly echoes the projectors of slave-boson theory 7 as well as the gauge (c imσ + 1) 2 of slave-spin Z2-representation Eq. 2.38. As a consequence, all these methods hide an ill defined behaviour of the operators, since the aforementioned factors diverge for fully polarized states.

To compact the notation, we define:

ô † imσ ≡ ⟨ P+ imσ ⟩ â † imσ bimσ ⟨ P- imσ ⟩, (2.51) 
from which, via the constraint Eq. 2.43, we get:

ô † imσ ≈ ô † imσ + ⟨ ô † imσ ⟩η imσ na imσ -na imσ -2⟨ n f imσ ⟩ -1 .
(2.52) 7 From the slave-boson constraints, one can deduce that, at the saddle point for the paramagnetic phase, the square roots of Eq. 2.15 give (1

-d 2 -s 2 σ ) -1 2 (1 -e 2 -s 2 σ ) -1 2 = 1 -⟨ n f imσ ⟩ -1 2 ⟨ n f imσ ⟩ -1 2 .
Due to Eq. 2.43, on average, ⟨ na imσnb imσ -2 f † imσ fimσ -1 ⟩ = 0, which implies ⟨ ô † ⟩ = ⟨ ô † ⟩, even if the (linear) approximation on ô † imσ in Eq. 2.52 causes its action on the physical subspace to be different with respect to the one of the unapproximated operator. After some mathematical manipulations (see Appendix B), Eq. 2.47 reads as:

Ĥf = ∑ ijmm ′ σ t mm ′ ij ⟨ ô † imσ ⟩⟨ ôjm ′ σ ⟩ f † imσ fjm ′ σ + ∑ imσ ϵ m -µ -λ imσ + λ 0 imσ n f imσ Ĥs = ∑ imσ h imσ ô † imσ + h.c. + 1 2 ∑ imσ λ imσ na imσ -nb imσ + Ĥint [ na , nb ], (2.53) 
where

h imσ = ∑ m ′ j(̸ =i) t mm ′ ij ⟨ ôjm ′ σ ⟩⟨ f † imσ fjm ′ σ ⟩
and the translational invariance of the problem, i.e. ⟨ ôimσ ⟩ = ⟨ ôjmσ ⟩, is used. We underline the presence of the additional term ∑ imσ λ 0 imσ n f imσ in the fermionic Hamiltonian, where:

λ 0 imσ = 2 h imσ ⟨ ô † imσ ⟩ + c.c. η imσ (2.54)
This arises from the Taylor expansion of the projector operators and represent at U = 0 the extra field numerically added in the Z2-representation.

Quasiparticle weight in slave-spin formalisms

By comparing Eq. 2.53 and Eq. 2.37, it is clear that the two slave-spin representations give equations identical in their form: they separate the original many-body Hamiltonian in a free-particle component for the pseudo-fermions and an interacting one for slave spins, in Z2representation, and dressed Schwinger bosons intimately linked to slave-spin variables, in U(1)-representation. In the special case of a half-filled model, λ imσ = λ 0 imσ = 0 so that the formalisms exactly coincide. In the next Chapter, we further generalize the Z2-representation to show that this is true regardless the occupation. However it is very intriguing that in the half-filled one-band case, it is possible to analytical determine the quasiparticle weight Z. In this model,

Ô( †) iσ = ô( †) iσ = 2 Ŝx
iσ so that the mean-field slave-spin Hamiltonian reads as:

ĤS = ∑ iσ 2 hiσ Ŝx iσ + U 2 ∑ i Ŝz iσ (2.55)
where we express the interaction in a manifestly particle-hole symmetric form and hiσ ≡ h iσ + h * iσ , with h iσ defined in Eq. 2.37. The slave-spin Hamiltonian is factorized as the sum of single-site problems, so that in what follows we focus on one site only and drop the i subscript. Furthermore, we limit the attention to the paramagnetic phase and thus we get rid of the σ subscript as well. The slave-spin Hamiltonian is easily written in the basis: 56) to obtain the matrix expression:

| ↑↓⟩ + | ↓↑⟩ √ 2 , | ↑↓⟩ -| ↓↑⟩ √ 2 , | ↑↑⟩ + | ↓↓⟩ √ 2 , | ↑↑⟩ -| ↓↓⟩ √ 2 ≡ {ξ 1 , ξ 2 , ξ 3 , ξ 4 } (2.
ĤS =       -U 4 0 2 h 0 0 -U 4 0 0 2 h 0 U 4 0 0 0 0 U 4       + U 4 (2.

57)

. Once diagonalised, the ground state is:

|GS⟩ = 2 h 2E GS E GS -U 4 |ξ 1 ⟩ + E GS + U 4 2E GS E GS -U 4 |ξ 3 ⟩ (2.58)
corresponding to the ground-state energy E GS = -U 2 16 + 4 h. The ground state depends on h which is defined trough the self-consistent equation h = 2 ε⟨2 Ŝx ⟩ |GS⟩ , where ε ≡ ∑ k ⟨ f † kσ fkσ ⟩. By calculating the action of Ŝx on the ground state and after some algebra, it results

⟨2 Ŝx ⟩ = -1 -U 16 ε 2 from which Z = |⟨2 Ŝx ⟩| 2 = 1 -U 16 ε
2 . The critical interaction strength at which the Mott transition occurs is defined by imposing Z = 0 so that U c = -16 ε and in conclusion:

Z = 1 - U U c 2 (2.59)
which is exactly the same result obtained within slave-boson formalism in Eq. 2.19, making all the slave-particle methods here considered the same in the one-band halffilled model.

In the following Chapters, we generalized the slave-spin Z2representation through a variational approach and prove that this makes it equal at mean-field level to the U(1)-representation. We further show how slave-spin and slave-boson formalisms coincide not only in the one-band half-filled case but also in multi-orbital model and in phases other than paramagnetic.

Chapter 3

Slave spin and broken-symmetry phases

In this Chapter, we present the variational approach for the Z2 slave-spin formalism. This generalization allows to determine the correct single-particle energy shift in the mean-field equations capable of stabilizing broken-symmetry phases. With this correction, we also show that the Z2 and U(1) representations of the slave-spin formalism are actually the same method.

Based on the logical introduction of the previous Chapter, we present the general variational treatment of the slave-spin method. This is the subject of Sec. 

Variational approach to slave-spin Hamiltonian

We start again considering the multi-orbital Hubbard Hamiltonian expressed in the slave-spin Z2-representation, before the two main field decoupling of subsections Subsec. 2.3.1 and Subsec. 2.3.3, namely Eq. 2.26. For the purpose of this Chapter, we want to study the problem at zero temperature and in absence of local hybridization

t mm ′ ii = 0 : Ĥ -µ N = ∑ ij,mm ′ ,σ t mm ′ ij f † imσ fjm ′ σ Ô † imσ Ôjm ′ σ + ∑ imσ (ϵ m -µ) n f imσ + Ĥint [ Ŝz ] (3.1)
and we focus again on density-density interaction only, that in the slave-spin representation takes the form1 :

Ĥint [ Ŝz ] = U ∑ i,m Ŝz im↑ Ŝz im↓ + U ′ ∑ i,m̸ =m ′ Ŝz im↑ Ŝz im ′ ↓ + (U ′ -J) ∑ i,m<m ′ ,σ Ŝz imσ Ŝz im ′ σ . (3.2)
We recall that f ( †) imσ is the destruction (creation) operator of a pseudo-fermion at site i, orbital m, with spin σ; t mm ′ ij measure the hopping of a particle between different orbitals and sites; ϵ m and µ are the on-site energy and the chemical potential respectively, while n f imσ = f † imσ fimσ . The interaction Ĥint , by virtue of the slave-spin formalism, is expressed in terms of slave spin only. We also recall that the general form of the slave-spin operator Ôimσ is Eq. 2.25 and it requires the choice of the gauge c imσ . Here we assume that c imσ is a function of the average value of a fermionic operator, labelled Fimσ , so that:

c imσ ≡ c imσ ⟨ Fimσ ⟩ . (3.3)
This point is crucial: within our variational approach, the contribution of the gauge for the search of the minimum determines the correct form of the field stabilizing broken symmetry phases. We deal with this point in detail in the following subsections.

Variational ansatz I: fermion and slave-spin factorization

We start the variational approach with the ansatz that the total ground state of Hamiltonian in Eq. 3.1 can be factorized as the product of a (pseudo-)fermion and slave-spin wave function:

|Ψ tot ⟩ = |Ψ f ⟩|Φ s ⟩. (3.4)
This parallels the mean-field approximation which decouples fermions from spins, i.e. the factorization of the Hilbert space in the corresponding wave functions, as reported in Subsec. 2.3.1. The evaluation of the average value of the Hamiltonian in Eq. 3.1 then reads:

⟨ Ĥ -µ N⟩ Ψ tot = ∑ ij,mm ′ ,σ t mm ′ ij ⟨ f † imσ fjm ′ σ ⟩ f ⟨ Ô † imσ Ôjm ′ σ ⟩ s + ∑ imσ (ϵ m -µ)⟨Φ s |Φ s ⟩⟨ n f imσ ⟩ f + ⟨ Ĥint [ Ŝz ]⟩. (3.5)
where the subscripts, f for (pseudo-)fermions and s for slave-spins, explicitly report the dependence of the averages with respect to the corresponding subspaces, since the operators acts either on |Ψ f ⟩ or |Φ s ⟩. The term ⟨Φ s |Φ s ⟩ arises since, at this stage, the normalization of the wave functions is formally still not required. Hence, analogously, the interaction term presents a multiplicative factor ⟨Ψ f |Ψ f ⟩ alongside all the spin averages.

As a second step, we define the energy functional to be minimized:

E |Ψ f ⟩, |Φ s ⟩, {λ imσ }, E f , E s = ⟨ Ĥ -µ N⟩ Ψ tot + ∑ imσ λ imσ (⟨ Ŝz imσ ⟩ s + 1 2 -⟨ n f imσ ⟩ f ) -E f [⟨Ψ f |Ψ f ⟩ -1] -E s [⟨Φ s |Φ s ⟩ -1], (3.6) 
where λ imσ , E f and E s are Lagrange multipliers enforcing, respectively, the slave-spin constraint in Eq. 2.22 and the normalization of the wave functions |Ψ f ⟩ and |Φ s ⟩. We underline that, due to the factorization of the total wave function, Eq. 2.22 can be enforced only on average, as obtained in Eq. 2.33. The energy functional in Eq. 3.6 depends on the variational parameters |Ψ f ⟩, |Φ s ⟩, {λ imσ }, E f and E s ; in its minimum, where the constraints are fulfilled, it coincides with the total energy of the system, namely Eq. 3.5, calculated in the approximated, due to the variational ansatz in Eq. 3.4, ground state |Ψ tot ⟩.

We now minimise E with respect to the variational parameters. We start with the Lagrange multipliers that return the constraint equations:

⟨ f † imσ fimσ ⟩ f = ⟨ Ŝz imσ ⟩ s + 1 2 ∀i, m, σ ⟨Ψ f |Ψ f ⟩ = 1 ⟨Φ s |Φ s ⟩ = 1 (3.7)
where the first equation recovers Eq. 2.33. When deriving with respect the wave functions, the terms arising from ⟨Φ s |Φ s ⟩ and ⟨Ψ f |Ψ f ⟩, hidden in Ĥint [ Ŝz ], in Eq. 3.6 are simply absorbed in the Lagrange multipliers E s and E f , respectively. However, the gauge c imσ does depend on the average value of a generic fermionic operator. At this stage, ⟨ Fimσ ⟩ Ψ tot = ⟨ Fimσ ⟩ f due to the factorization and the normalization of slave-spin wave function, but the derivative of c imσ reads:

∂c imσ ∂⟨Ψ f | = ∂c imσ ∂⟨ Fimσ ⟩ f Fimσ |Ψ f ⟩. (3.8)
We do not wish to specify here the choice of Fimσ , but

∂ ⟨ Fimσ ⟩ f c imσ must be considering in deriving ⟨ Ô † imσ Ôjm ′ σ ⟩ s with respect to ⟨Ψ f |.
Indeed, the minimum conditions for ⟨Φ s | i.e. δE δ⟨Φ s | = 0 and ⟨Ψ f | i.e. δE δ⟨Ψ f | = 0 define two eigenvalue problems:

∑ ij,mm ′ ,σ t mm ′ ij ⟨ f † imσ fjm ′ σ ⟩ f Ô † imσ Ôjm ′ σ + ∑ imσ λ imσ Ŝz imσ + Ĥint [ Ŝz imσ ] |Φ s ⟩ = E s |Φ s ⟩, (3.9)
where Ĥint is the density-density interaction of Eq. 3.2, and

∑ ij,mm ′ ,σ t mm ′ ij ⟨ Ô † imσ Ôjm ′ σ ⟩ s f † imσ fjm ′ σ + ∑ ij,mm ′ ,σ t mm ′ ij ⟨ f † imσ fjm ′ σ ⟩ f ⟨ Ŝ- imσ Ŝ- jm ′ σ ⟩ + c jm ′ σ ⟨ Ŝ- imσ Ŝ+ jm ′ σ ⟩ ∂c * imσ ∂⟨ F † imσ ⟩ f F † imσ + h.c. + ∑ imσ (ϵ m -µ -λ imσ ) n f imσ |Ψ f ⟩ = E f |Ψ f ⟩ (3.10)
respectively. We thus obtain two distinct problems on a lattice, i.e. one of non-interacting fermions and one of interacting spins2 , recovering Eq. 2.34, except for the term in square brackets in Eq. 3.10, descending from Eq. 3.8. At the end of the present approach, we show how this term generates the extra field numerically implemented at U = 0 in the original Z2-representation (see the discussion at the end of Sec. 2.3). We treat this point in more detail in the following subsections.

Variational ansatz II: single-site mean-field approximation

In order to deal with more manageable form of the eigenvalue problems Eq. 3.9 and Eq. 3.10, we resort to our second variational ansatz: we further factorize the slave-spin wave function as the product of single-site states:

|Φ s ⟩ = ∏ i |ϕ i s ⟩. (3.11)
This parallels the single-site (Weiss-like) mean field of Subsec. 2.3.3 and consequently

⟨ Ô † imσ Ôjm ′ σ ⟩ = ⟨ Ô † imσ ⟩⟨ Ôjm ′ σ ⟩, for i ̸ = j.
This additional approximation does not affect the intrinsic many-body nature of the problem, since the slave-spin on-site interaction is still present. We now minimize the energy functional in Eq. 3.6. By deriving with respect to the Lagrange multipliers, we again recover the constraint equations Eq. 3.7, while the derivatives with respect to ⟨Φ s | and ⟨Ψ f | lead to two eigenvalue problems, namely

Ĥs |Φ s ⟩ = E s |Φ s ⟩ where: Ĥs = ∑ imσ (h imσ Ô † imσ + h.c.) + ∑ imσ λ imσ Ŝz imσ + Ĥint [ Ŝz ], (3.12) 
by having defined the transverse field for the slave spins

h imσ = ∑ jm ′ t mm ′ ij ⟨ Ôjm ′ σ ⟩⟨ f † imσ fjm ′ σ ⟩ ,and Ĥf |Ψ f ⟩ = E f |Ψ f ⟩ with: Ĥf = ∑ ij,mm ′ ,σ t mm ′ ij ⟨ Ô † imσ ⟩ s ⟨ Ôjm ′ σ ⟩ s f † imσ fjm ′ σ + ∑ imσ h imσ ⟨ Ŝ- imσ ⟩ s ∂c imσ ∂⟨ Fimσ ⟩ f Fimσ + h.c. + ∑ imσ (ϵ imσ -µ -λ imσ ) n f imσ . (3.13)
The terms arising form the functional derivatives of the normes in Eq. 3. Again, we are in presence of two Hamiltonian problems: the first, for a system of noninteracting fermions (Eq. 3.13), with renormalized hopping due to the presence of the auxiliary variables; the second describes a system of locally interacting (slave-)spin (Eq. 3.12), experiencing a transverse field due to the hopping energy of the pseudofermions.

Before closing this subsection, we want to stress two considerations. First, as customarily done for variational approaches, we use ⟨Φ s | and ⟨Ψ f | as variational parameters.

Instead, if we had chosen to minimize with respect to |Φ s ⟩ and |Ψ f ⟩, we would have obtained the adjoint equations of Eq. 3.12 and Eq. 3.13, since a wave function is univocally determined by its real and imaginary part or, equivalently, by the knowledge of its complex conjugate. Second, our formulation in terms of a single-site mean-field approximation for the slave-spin state is not the only way to deal with the Hamiltonian problems in of Eq. 3.9 and Eq. 3.10. Indeed, our formulation at the previous stage of variational ansatz, in principle, allows for cluster generalizations, in the spirit of [START_REF] Hassan | Slave spins away from half filling: Cluster mean-field theory of the hubbard and extended hubbard models[END_REF][START_REF] Lee | Antiferromagnetism in the hubbard model using a cluster slave-spin method[END_REF], that are beyond the scope of this thesis.

Choice of the gauge c imσ

In our formulation, we have essentially recovered the Hamiltonian problem of Subsec. 2.3.3, but the position of the gauge being function of ⟨ Fimσ ⟩ alone generates an extra term in Eq. 3.13.

We now aim at determining the gauge explicitly. To do that, we require that our approximated treatment correctly recovers the non-interacting limit, where, in absence of interaction Ĥint , all the hopping of Eq. 3.13 are unrenormalised, i.e. ⟨ Ô † imσ ⟩ s ⟨ Ôjm ′ σ ⟩ s = 1. In this limit, Eq. 3.12 is analytically diagonalisable, as reported in the Appendix of [START_REF] Hassan | Slave spins away from half filling: Cluster mean-field theory of the hubbard and extended hubbard models[END_REF], since operators with different orbital and spin subscripts decouple. As reported in Eq. 2.38, the value for each gauge which ensures this condition depends on the corresponding fermionic density, only; i.e. Fimσ = n f imσ :

c imσ = 1 ⟨ n f imσ ⟩ f (1 -⟨ n f imσ ⟩ f ) -1, (3.15) 
which derived with respect to ⟨ nimσ ⟩ gives:

∂c imσ ∂⟨ n f imσ ⟩ f = 2⟨ n f imσ ⟩ f -1 2⟨ n f imσ ⟩ f 1 -⟨ n f imσ ⟩ f (c imσ + 1) = 2η imσ (c imσ + 1) (3.16) 
where we have defined

η imσ = 2⟨ n f imσ ⟩ f -1 4⟨ n f imσ ⟩ f 1-⟨ n f imσ ⟩ f
. The fermionic Hamiltonian in Eq. 3.13 is then rewritten as:

Ĥf = ∑ ij,mm ′ ,σ t mm ′ ij ⟨ Ô † imσ ⟩ s ⟨ Ôjm ′ σ ⟩ s f † imσ fjm ′ σ + ∑ imσ (ϵ imσ -µ -λ imσ + λ 0 imσ ) n f imσ (3.17)
where the derivative of the gauge generates the additional field:

λ 0 imσ = 2(h imσ ⟨ Ŝ- imσ ⟩ s + c.c.)η imσ (c imσ + 1). (3.18)
For the phases studied in the following Chapters, we always find a real self-consistent slave-spin Hamiltonian, i.e. h imσ ∈ R, and real eigenvectors. Consequently,

⟨ Ŝ- imσ ⟩ s = ⟨ Ŝ+ imσ ⟩ s ∈ R and ⟨ Ô † imσ ⟩ s = ⟨ Ôimσ ⟩ s = (c imσ + 1)⟨ Ŝ- imσ ⟩ s ∈ R.
This compacts the expression of Eq. 3.18:

λ 0 imσ = 4h imσ ⟨ Ôimσ ⟩ s η imσ . (3.19)
Two considerations are in order. First, in the non-interacting limit, namely ⟨ Ôimσ ⟩ s = 1, Eq. 3.19 equals the expression for the Lagrange multiplier used to enforce the slavespin constraint, i.e. λ imσ = 4h imσ η imσ (this can be deduced from the appendix of Ref. [START_REF] Hassan | Slave spins away from half filling: Cluster mean-field theory of the hubbard and extended hubbard models[END_REF]). Hence, λ 0 imσλ imσ in Eq. 3.17 vanishes in the non-interacting limit, which recovers the correct chemical potential and crystal-field splitting in this regime. Second, we could have obtained the same result by expressing the occupancy in c imσ through the slave-spin equivalent ⟨ Ŝz imσ ⟩ s + 1 2 , by virtue of Eq. 2.22, which would have given a contribution to Ĥs analogous to λ 0 imσ , namely an orbital-resolved self-consistent field conjugated to Ŝz imσ . This would lead to a shifted converged values of λ imσ , but the physical results are unchanged. Concluding, within the variational approach, we recovered the results of Subsec. 2.3.3, but the value of λ 0 imσ , previously numerically fixed to the non-interacting value (see, for example, the discussion in Appendix A of Ref. [START_REF] Chatzieleftheriou | Enhancement of charge instabilities in hund's metals by breaking of rotational symmetry[END_REF]), now formally descends from the functional minimisation: it is, thus, valid for a fully interacting Hamiltonian, regardless the values of U and J, and it depends on both the Coulomb interaction and the Hund coupling. Algorithmically, we solve the coupled equations Eq. 3.17 and Eq. 3.12 and c imσ and λ 0 imσ are updated at each step. Alongside the formal generalization of the method, our approach shows that Eq. 3.19 coincide with the analogous energy shift of the U(1)-formalism (see Sec. 2.4 , as well as Refs. [START_REF] Yu | u(1) slave-spin theory and its application to mott transition in a multiorbital model for iron pnictides[END_REF][START_REF] Yu | Orbital-selective mott phase in multiorbital models for iron pnictides and chalcogenides[END_REF], where it is marked as μα ). We conclude that the two representations of the slave-spin formalism are identical (see also Ref. [START_REF] Maria | Electronic correlations in multiorbital systems[END_REF]) and the final results are expected to be identical.

Slave spin and Néel antiferromagnetism

The formalism presented in the previous section is general enough to deal with both uniform and symmetry-broken normal Fermi-liquid phases. However, as in any meanfield theory, as the one presented here due to our variational ansatz, the allowed brokensymmetry solution must be chosen a priori; the actual ground state of the system is then determinable by comparison of the ground state energy of the stable solutions with different symmetry. Throughout this thesis, we deal with antiferromagnetic phases and to study them we allow for translational symmetry breaking. To this aim, we define a larger unit cell of the lattice, to which we refer, as is usually done, as supercell. The supercell contains the sites made inequivalent by the broken symmetry; the lattice of supercells preserves the translational invariance. Within the supercell, the singlesite slave-spin wave functions introduced in Eq. 3.11 are allowed to differ from site to site, which means that a separate (single-site) slave-spin problem is solved for each of the representative sites. Under the condition that there is not any on-site hybridization between the orbitals, Eq. 3.12 and Eq. 3.17 still hold, but we need to keep in mind that: a) the site indices now run over the supercells; b) we have to label the atoms inside the supercell. In what follows, we keep trace of this with an additional subscripts ν, which accompanies the orbital index. Without loss of generality and for the purpose of the next Chapter, we restrict here our attention to the Néel antiferromagnetism 3 , where a net magnetic polarization is realized at each site and replicated in a staggered fashion from site to site. As customarily done, we consider a bipartite lattice, whose sublattices are labelled as A and B, and assume periodicity for each sublattice. Equivalently, we are defining a supercell containing two sites, one belonging to each sublattice. To diagonalize the fermionic Hamiltonian in Eq. 3.17, which describes a system of non-interacting fermions, we define the Fourier transform of the creation and destruction operators for each inequivalent site belonging to the sublattices; we label them as ν = A, B and define:

f † kνmσ = 1 √ N ∑ i e ik•R i f † iνmσ , (3.20) 
with N indicating the number of unit cells of the lattice; R i points the position of the i-th unit cell 4 .

In defining the supercell containing two sites of the sublattices, we double the unit cell in real space; it causes the "magnetic" Brillouin zone (MBZ) to be half the size of the original "non-magnetic" one (NMBZ) and the anti-Fourier transform reads:

f † iνmσ = 1 √ N ∑ k∈MBZ e -ik•R i f † kνmσ . ( 3.21) 
Then, Eq. 3.17 gives:

Ĥf = ∑ kmm ′ σ Z A mσ Z B m ′ σ ε mm ′ k ( f † kAmσ fkBm ′ σ + h.c.) + ∑ kmσ (ϵ m -µ-λA mσ + Z A mσ Z A m ′ σ γ mm ′ k ) f † kAmσ fkAmσ + ∑ kmσ (ϵ m -µ-λB mσ + Z B mσ Z B m ′ σ γ mm ′ k ) f † kBmσ fkBmσ . (3.22)
In Eq. 3.22, we have defined the quasiparticle weights Z ν mσ = |⟨ Ô † iνmσ ⟩ s | 2 , acting as renormalization factors for the hoppings; furthermore, λν mσ = λ νmσλ 0 νmσ and

ε mm ′ k = ∑ i t AmBm ′ ij e -ik•(R i -R j ) γ mm ′ k = ∑ i t AmAm ′ ij e -ik•(R i -R j ) = ∑ i t BmBm ′ ij e -ik•(R i -R j ) (3.23)
are, respectively, the Fourier transform of nearest neighbor, i.e. intra-supercell, and next nearest neighbor 5 , i.e. between sublattices, hoppings.

The considered supercell is capable to host several symmetry breaking, e.g both Néel antiferromagnetism and two-site ferrimagnetism, so that we can enforce the symmetry of the broken state we want to study. For Néel antiferromagnetism, this means considering that all nearest-neighbor sites have the same magnetization, but in opposite direction from site to site. This reflects in the single-site slave-spin wave functions being equal under spin exchange in the sublattices, i.e. |ϕ A σ ⟩ and |ϕ B σ ⟩ are equal by exchanging their σ =↑ and σ =↓ component. The same applies for the coupling, i.e. h imσ , appearing in the self-consistent slave-spin Hamiltonians ĤA s and ĤB s . From an algorithmic point of view, we can solve only one single-site slave-spin eigenvalue problem, calculate the averages involved in Eq. 3.22, namely ⟨ Ôimσ ⟩ s and ⟨ Ŝz imσ ⟩ s for both spin species σ =↑, ↓, for the A site and exchange them to deal with site B.

Chapter 4 SSMF results on Néel antiferromagnetism

In this Chapter, we apply the variational slave-spin mean-field (SSMF) formalism to the specific problem of Néel antiferromagnetism (AF). First, we study the multi-orbital Hubbard model on a Bethe lattice, which we introduce in Sec. 4.1. We report results for the single-band case (Sec. 4.2) and a multi-orbital model (two orbital in Sec. 4.3 and three orbital in Sec. 4.4). We prove that our results are identical to those from Kotliar-Ruckenstein slave-boson mean-field (SBMF) and thus to the Gutzwiller approximation. We find that, in proximity of half-filling, the doped antiferromagnet is usually unstable towards phase separation. We provide an explanation about the insurgence of this instability and investigate the nature of it as a function of Hund's coupling, which we found to favor the phase separation. Notably, in the three-orbital case, we observe a interaction-driven low-to-high spin transition at half filling and the realization of a triple point of phase coexisting in the doped model. We also study the relation between AF and correlations (Sec. 4.5) as well as the itinerantto-localized magnetism transition (Sec. 4.6). We conclude the Chapter with an ab-initio simulation of BaCr 2 As 2 and compare our results with dynamical mean-field theory (DMFT) in Sec. 4.7.

Slave-spin mean field for broken-symmetry states: Néel antiferromagnetism and its phase separation in multiorbital Hubbard models Matteo Crispino, Maria Chatzieleftheriou, Tommaso Gorni, and Luca de'Medici, Physical Review B, 107 [START_REF] Kamihara | Ironbased layered superconductor la[o1-xfx]feas (x= 0.05-0.12) with tc = 26 k[END_REF]:155149, 2023 [START_REF] Crispino | Slave-spin mean field for broken-symmetry states: Néel antiferromagnetism and its phase separation in multiorbital hubbard models[END_REF] 

Néel antiferromagnetism on Bethe lattice

In this section, we want to specialize the formalism introduced in the previous Chapter to a specific model, whose results are the subject of following sections. Specifically, we study the multi-orbital Hubbard model with M non-hybridising t mm ′ ij = 0, ∀m ̸ = m ′ ) degenerate orbitals. Furthermore, we rescale the energy in order to have ϵ m = 0, ∀m. We restrict or analysis to nearest-neighbour hoppings only, i.e t mm ij = t, for i n.n. j and zero otherwise. In the bipartite lattice, this means that we allow hoppings only between one sublattice to the other; hence, γ k mm ′ = 0 and

ϵ mm ′ k ̸ = 0 only if m = m ′ .
In this model, the fermionic Hamiltonian in Eq. 3.22 decouples in the orbital space; it is possible to analytically diagonalize it to obtain the quasiparticle bands in the sublattice space:

Λ ± k = λA + λB 2 ± 1 2 ( λA -λB ) 2 + Z A Z B ε 2 k , ( 4.1) 
which are 2M times (for spin and orbital) degenerate. In Eq. 4.1, we have dropped the spin and site subscripts to lighten the notation; we have also defined ∆ = | λA -λB |, which is the gap opened in this band structure due to the antiferromagnetic order.

In absence of antiferromagnetic order, λA = λB = λ and Z A = Z B = Z; the gap vanishes and the 2M degenerate bands collapse to a unique spin-and orbital-degenerate renormalized band, for which ε k represents the dispersion of the non-interacting system, i.e. Z = 1 and λ = 0. The non-interacting limit dispersion bares all the k-dependence of the model: this allows to define a density of states (DOS):

D(ε) = 1 2N ∑ k∈NMBZ δ(ε -ε k ), (4.2) 
where 2N is the total number of lattice sites, due to the two-sublattices division.

The choice of the lattice is now completely embedded in the form of the DOS. In the following sections, we focus on the simple yet instructive case of the Bethe lattice [START_REF] Georges | Strong correlations from hund's coupling[END_REF], which leads to a semicircular density of states of half-width D = 2t:

D(ε) = 2 πD 1 -ε 2 /D 2 . (4.3)
Furthermore, as customarily done [START_REF] Georges | Strong correlations from hund's coupling[END_REF], we choose1 :

U ′ = U -2J (4.4)
in Eq. 3.2. This implies the particle-hole chemical potential to be µ ph = U(2M-1)-5J(M-1) interaction reads:

Ĥint [ Ŝz ] = U ∑ i,m Ŝz im↑ Ŝz im↓ + (U -2J) ∑ i,m̸ =m ′ Ŝz im↑ Ŝz im ′ ↓ + (U -3J) ∑ i,m<m ′ ,σ Ŝz imσ Ŝz im ′ σ . (4.5)

Single-band Hubbard model

As first study, we begin considering the simpler case of the single-band Hubbard model. We start studying the problem at half-filling. In Fig. 4.1, we report the on-site staggered magnetization

m = n A↑ -n A↓ = n A↓ -n A↑ , (4.6) 
as a function of interaction strength U. As soon as U is finite, the system enters an antiferromagnetic insulating (AFI) state. In this case, the chemical potential is free to move inside the antiferromagnetic gap, renormalized by the interaction through the quasiparticle weight in Eq. 3.22.

Increasing the interaction strength results in the tendency of the magnetization to saturate, up to a fully polarized state corresponding to m = 1. Our result qualitatively reproduce the one obtained with slave-boson mean-field by Korbel et al. [START_REF] Korbel | Antiferromagnetism of almost localized fermions: Evolution from slater-type to mott-hubbard gap[END_REF] for a constant density of state. Upon doping, the antiferromagnetic state becomes metallic (AFM): the magnetization decrease until vanishing, as well as the antiferromagnetic gap starts closing. In Fig. 4.2, we show both the behaviour of the magnetization and of the antiferromagnetic gap, as a function of doping (δ), for U = 1.0D. The δ values for which m vanishes draw the red line in Fig. 4.3: in these points, the paramagnetic metallic solution develops an infinite susceptibility to a staggered magnetic field. All the physical quantities, and consequently the phase diagram, coincide with the ones obtainable within the slave-boson mean-field (SBMF) method of Sec. 2.2. We report the SBMF solutions as red dots in Fig. 4.3; as one can see, SSMF's solutions perfectly match the ones of SBMF. Moreover, the trend of the vanishing magnetization frontier for increasing U strongly resembles the one obtained for the antiferromagnetic phase by Kotliar and Ruckenstein in [START_REF] Kotliar | New functional integral approach to strongly correlated fermi systems: The gutzwiller approximation as a saddle point[END_REF], albeit calculated there with a constant DOS. In all the comparison we have made (also in the paramagnetic phase; see e.g. Fig. C.4), our method coincides with SBMF approach and, as a consequence, with Gutzwiller approximation, leading us to the conclusion that they are equivalent methods. We also find that the metallic antiferromagnetic phase is unstable in this model, for all the studied values of U/D. Indeed, AFM phase shows negative (charge) compressibility κ = dn/dµ in most of the phase diagram. The paradigmatic behaviour of n(µ) is reported in Fig. 4.4, where we show the result for U = 1.0D. Including the flat plateau, which corresponds to the moving of chemical potential inside the antiferromagnetic gap, and the paramagnetic metallic branch, the n(µ) curve shows a sigmoidal shape, i.e. the insurgence of a zone of phase separation in the phase diagram 2 . This zone is determined by a Maxwell construction, where the chemical potential μ at which the phases coexist is found drawing the vertical line µ = μ cutting the sigmoid into two 

n(µ) = - 1 V ∂(E -µN) ∂µ , (4.7) 
as soon as we start (hole-) doping the system the total occupancy starts decreasing, the system enters the instability zone, and as a consequence the free energy increase; eventually, we reach the paramagnetic phase and the system becomes stable again. The chemical potential μ of the phase separated mixture corresponds to the crossing point of the stable (AFI and then PM) branches (see Ref. [START_REF] Herbert B Callen | Thermodynamics and an introduction to thermostatistics[END_REF] for a detailed discussion.). The average density imposed by the electrons physically present in the system, which is 0.7 0.8 0.9 indeed the experimental-controlled parameter, constrains the proportions of the coexisting phases. At the mean-field level, we cannot determine how the constituents are arranged (e.g. domains, puddles and so on), but we indeed know the physical nature of them: they will be, in the analysed case, an half-filled antiferromagnetic insulator and a paramagnetic metal of known occupancy (i.e. the blue diamonds in Fig. 4.4). At all the interaction values we have studied, the two endpoints of the µ = μ line are on the paramagnetic metallic and antiferromagnetic insulting branches, respectively. Hence, we can conclude that, in the single-band Hubbard model on a Bethe lattice, the system separates into these two phases (all marked by blue triangles in the phase diagram of Fig. 4.3); the corresponding transition is always first-order. The two spinodal points (i.e. the sharp angles of the bow in energy, see Fig. 4.4), where the compressibility is infinite and changes sign, mark the boundaries of the strictly unstable part of the homogeneous solution. Regardless of the value of interaction, they are always inside the actual zone of phase separation. Between the spinodal and the endpoints of the Maxwell construction, there exist the metastable branches of the homogeneous solution 3 . These points do not always coincide with the border of the antiferromagnetic phase (the "corners" of n(µ) in Fig. 4.4). Indeed, we find other behaviours of n(µ) in this and other models, defining a more complex phase diagram. For example, in Fig. 4.5, we report our results for several values of interaction. As we can see, increasing U reflects in a rounding of the n(µ) curves and into the arising of a stretch of slightly positive compressibility at large doping. This explains why, in Fig. 4.3, the spinodal (dashed) line departs from the vanishing-magnetization one, since these two does not coincide for increasing U/D. However, the endpoints pointing out the coexisting phases are always on the antiferromagnetic insulating and paramagnetic metallic branch, respectively; hence, the possible stable antiferromagnetic solution is always cut away from the phase separation and it is never realized. The counterintuitive behaviour of increasing chemical potential with decreasing total population can be explained as follow. Without loss of generality, we limit the discussion to hole doping 4 and refer to Fig. 4.6. In the half-filled antiferromagnetic insulator, the chemical potential lies inside the gap. Upon hole doping, it enters the lower band and, at the same time, the gap starts closing, owing to a decreasing magnetization (see Fig. 4.2). If the gap closes faster than the band empties, then the chemical potential is higher, in the hole-doped antiferromagnet, than its counterpart at half-filling. This mechanism is robust, whereas the outcome quantitatively depends on several factors. First, it is determined by the choice of density of states, i.e. the geometry of the lattice. Second, it depends on the detailed doping dependence of the position and width of the bands, both taking into account the renormalization due to the interaction. Both SBMF and its rotational-invariant generalization pointed out [START_REF] Camjayi | Electronic state of a doped motthubbard insulator at finite temperatures studied using the dynamical mean-field theory[END_REF][START_REF] Riegler | Slave-boson analysis of the two-dimensional hubbard model[END_REF][START_REF] Seufert | Breakdown of charge homogeneity in the two-dimensional hubbard model: Slave-boson study of magnetic order[END_REF] the tendency of the antiferromagnetic state in the single-band Hubbard model to be unstable towards phase separation and charge instabilities. More accurate DMFT calculations validate this physical picture, as well; in Ref. [START_REF] Van Dongen | Phase diagram of the extended hubbard model at weak coupling[END_REF] and [START_REF] Zitzler | Magnetism and phase separation in the ground state of the hubbard model[END_REF], phase separation is found in the single-band Hubbard model on a hypercubic lattice, while for the Bethe lattice [START_REF] Koch | Sum rules and bath parametrization for quantum cluster theories[END_REF], only a strong increase of the compressibility, which however remains finite, is registered. We have repeated this calculations (see Subsec. C.1) and confirmed our results within SSMF. The discrepancy is probably an outcome of numerical accuracy in a zone of the phase diagram where DMFT solutions are particularly tough to converge. However, albeit quantitative considerations depend on the studied case, the tendency towards phase separation instability is confirmed.

Two-band Hubbard model

We now consider the two-orbital case (M = 2); we study this model for three values of Hund's coupling strength: J = 0, J = 0.1U and J = 0.25U. In Fig. 4.7, we report the magnetization at half filling (top right) as well as the phase diagrams in the interaction doping planes for the considered values of J/U (the magnetizations as a function of doping follows the same trend of Fig. 4.2). We start the analysis at half-filling. As a function of U, the magnetization increases until the saturation value of m ≃ 2.0. Like in the single-band case, we reproduce the expected behaviour. Our results also resembles the ones obtained by H. Hasegawa [START_REF] Hasegawa | Slave-boson mean-field theory of the antiferromagnetic state in the doubly degenerate hubbard model: The half-filled case[END_REF] within the slave-boson framework for the simple cubic lattice. It is clear that Hund's coupling increases the magnetization, by favoring high-spin configurations (see Eq. 4.5). In absence of Hund's coupling, the saturation is reached in a slower fashion. Upon doping, the shape of the phase diagram strongly depends on the value of Hund's coupling, but our main result is robust independently of the value of J/U: away from half filling, the antiferromagnet transits into a paramagnetic metal for a certain value of doping. The value of δ at which this happens depends on the interaction in a very similar fashion in all the cases: it starts from zero in absence of interaction and reaches a maximum, i.e. the "belly" shape in Fig. 4.7, when U is a few times the bandwidth; then, it decreases again for increasing interaction strength. However, the system does this in different ways, all characterisable by the behaviour of n(µ) dependence. In Fig. 4.8, we present the representative behaviour of the density as a function of the chemical potential. The evolution of n(µ) determines the stability of the system and hence both the order The results are presented both in absence of Hund's coupling and for a finite J/U (J = 0.1U and J = 0.25U). In the top-right panel, we show the on-site magnetization of the half-filled antiferromagnetic insulator. In the remaining ones, we report the phase diagrams for three choices of Hund's coupling relative strength. The light-grey areas represent the phase separation zones, the coexisting phases of which are reported in blue triangles; the red dots mark a second order transition; the dashed line is the spinodal, where the compressibility diverges.

of the transition and the observable phases, as well as the coexistence of them. We start considering the case in absence of Hund's coupling: at low interaction (U ≲ 1.9D), the compressibility is positive (see n(µ) curve in Fig. 4.8a) and thus we find a stable antiferromagnetic metal, until the point in which m vanishes and the system becomes paramagnetic; this marks a second-order antiferromagnetic-to-paramagnetic transition. By further increasing U, n(µ) starts flexing into a sigmoidal form (see, e.g., Fig. 4.8b), as certified by the spinodal point (dashed line in the top-left phase diagram in Fig. 4.7); this marks the appearance of the phase separation. Initially, the Maxwell construction encompasses only a small range of doping; for 1.9 ≲ U/D ≲ 2.4 the inhomogeneous state at low doping is a mixture of antiferromagnetic-insulating and antiferromagneticmetallic phases. Further increase of doping results in the system exiting the region of phase separation and recovering a stable antiferromagnetic phase which then undergoes a second-order transition analogous to the case of lower U. i.e. it continuously evolves to a paramagnet. For U ≳ 2.4D, the sigmoidal shape in n(µ) is so pronounced that the Maxwell construction connects directly the antiferromagnetic insulator and the paramagnetic metal; the phase separation is then realized between these two phases. This latter case is never realized for J = 0.1U, where the antiferromagnet-to-paramagnet transition is always second order (apart from a very small of low interaction, i.e. U ≲ 0.5D, in which n(µ) is like Fig. 4.8c), because with J the antiferromagnetic region expands more than the phase-separated one. Apart for a small window (0.60D ≲ U ≲ 1.15D) in which the system exhibits a pure second order transition, as soon as U/D is comparable with the bandwidth, we find the situation depicted in Fig. 4.8b: after a zone of phase separation between an antiferromagnetic insulator an antiferromagnetic metal, further increasing the doping results in a second order transition to a paramagnetic metal. For a larger J = 0.25U, the phase separation zone catches up: it covers a very wide range of doping and embeds entirely the antiferromagnetic metal. Indeed, the n(µ) curve takes again a roughly straightened trend as in Fig. 4.4 and, as a consequence, the phase diagram becomes very similar to the one-band scenario.

We have compared our results with the ones obtained within DMFT by Hoshino and Werner (see Appendix C), by comparing our line of vanishing magnetization with the results in Fig. 3 of Ref. [START_REF] Hoshino | Electronic orders in multiorbital hubbard models with lifted orbital degeneracy[END_REF]. The agreement is quite good, albeit the extent of the antiferromagnetic phase is overestimated in our case. We ascribe this both to finite-T effects and to the more approximated nature of SSMF compared to DMFT. Indeed, the latter deals with the fluctuations more accurately than the former, and this is likely to matter particularly for low magnetization, i.e. near the transition frontier, where dynamical fluctuations are more relevant. Moreover, these are likely to be enhanced in degenerate model, like the present one, with respect to more realistic models, e.g. crystal field splitting. Finally, SSMF is known to perform better when the number of orbitals gets larger [START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF]. This description is coherent with our results on the realistic ab-initio study of Sec. 4.7, where the comparison with DMFT is excellent.

Three-band Hubbard model

We now consider the three-orbital model (M = 3). We report the magnetization at half-filling as a function of U/D in the top-right panel of Fig. 4.9. We show again the result in absence of Hund's coupling and both for J = 0.1U and J = 0.25U. While at intermediate-to-large J/U the physics is essentially the same of the two-orbital scenario, i.e. the saturation of the magnetization is favored by Hund's coupling, a remarkable feature emerges if J = 0. Indeed, the system undergoes a low-to-high spin transition at U ≈ 4.0D and a coexistence zone in U is visible in the magnetization. The two stable solution are connected by an unstable branch, signalled by empty symbols. This might seem surprising, in absence of the drive of J which favors high-spin states. However, the competition between low-and high-spin state has a physical explanation, since the high-spin phase maximizes the non-local antiferromagnetic exchange, while the low-spin phase has a larger kineticenergy gain, due to orbital fluctuations [START_REF] Chatzieleftheriou | Enhancement of charge instabilities in hund's metals by breaking of rotational symmetry[END_REF][START_REF] Gunnarsson | Mott-hubbard insulators for systems with orbital degeneracy[END_REF][START_REF] Florens | Mott transition at large orbital degeneracy: dynamical mean-field theory[END_REF]. This unexpected behaviour shows up in the phase diagram as well (see Fig. 4.9 topleft panel). The general trend is very similar to the one encountered in the two-orbital equivalent model, albeit shifted towards larger values of interaction. However, in the three-orbital case, the spinodal begins at larger U, corresponding to the end of the coexistence at half-filling, compared to the beginning of the phase separated zone, which connects smoothly with the discontinuous jump between the low-and high-spin solutions at half-filling. Likewise, the phase diagram for J = 0.1U (bottom-left panel in Fig. 4.9) is qualitatively very similar to the two-orbital case, albeit with a quantitative difference, since the antiferromagnetic metal covers a wider zone of doping for the same value of Hund's coupling.

The same situation is detectable for further increasing of Hund's coupling, but the physics becomes indeed richer. In the bottom-right panel of Fig. 4.9, we report our result for J = 0.25U. For small interaction strengths, we find a phase separation between the half-filled antiferromagnetic insulator and the paramagnetic metal, analogous situation to the single-band and two-orbital models. Increasing the interaction results into a modification of the n(µ) curve which develops the shape of a double sigmoid, as reported in Fig. 4.8c. Accordingly, the free energy has a double-bow structure and two crossing points that identify the two Maxwell construction in the n vs µ plane. If the Maxwell construction at lower density singles out a smaller chemical potential with respect to the construction at higher n, the system exhibits two distinct zone of phase separation. This is graphically realized, and it is the scenario we report in Fig. 4.8c, when the lower dashed line is on the left of the upper one. In the phase diagram reported in the right-bottom panel of Fig. 4.9, we mark the endpoints, i.e. the phases composing the mixture, as the usual blue triangles for the first Maxwell construction and as green diamond for the second one: they correspond, respectively, to a phase separation between an antiferromagnetic insulator and metal, and between the latter and a paramagnetic metal.

If we imagine to start in the drop-shaped region (AFM) of Fig. 4.9 (bottom right panel), i.e. we are in the middle of the two phase separation, for decreasing interaction the two endpoints of the stable antiferromagnetic branch get closer and closer: the two Maxwell construction merge into one and the system realizes a triple point, in the U vs µ plane, where the paramagnet, the antiferromagnetic metal and the half-filled antiferromagnetic insulator all coexist. This is realized for U ≈ 1.66D and the triple point traces a line of coexistence that we report as the solid-black line in Fig. 4.9. We deal with this point more in detail in Appendix D. The tendency of Hund's coupling to favor phase separation instability can be explained resorting to the same mechanism of the single-band model. Indeed, at larger J, the magnetization is enhanced (see, for example, Fig. D.2) and so is the gap. This affects the competition between the closure of the gap and the band population and the scenario in which the chemical potential increases with decreasing n can more easily occur, realizing a charge instability. We close the section underlining that, for J = 0.25U, we also compared our results with the ones obtained within DMFT by Hoshino and Werner [START_REF] Hoshino | Superconductivity from emerging magnetic moments[END_REF]. We report the result in Appendix C. As in the two orbital case, the agreement is good and actually even better, as expected due to the better performance of SSMF with an higher number of orbitals. However, also in this case the results do not perfectly match and we ascribe this to the same reasons of the two orbital model (see the discussion at the end of Sec. 4.3)

Electronic correlations in Néel antiferromagnetism

The SSMF captures band renormalization, which can be sizeable in magnetic phases, as well. However, strongly polarized phases reduce quantum fluctuations and this reflects in reducing correlations. It is known [START_REF] Korbel | Antiferromagnetism of almost localized fermions: Evolution from slater-type to mott-hubbard gap[END_REF], that the antiferromagnetic phase of the single-band Hubbard model shows quasiparticle weights Z quite close to unity. This happens not only for low-interaction regime, where clearly the small interaction results in a small correlation, but also for higher values of U/D, as a consequence of saturating magnetization. In Fig. 4.10, we report the quasiparticle weight's behaviour 5 both at half-filling, for all the model studied in the previous sections, and for the paradigmatic case of out-ofhalf-filling 2-band model. In the half-filing case, Z decreases with increasing number of orbitals and the effect is even more pronounced in absence of Hund's coupling, since both this conditions favor the quantum fluctuations. In particular, in the 3-orbital Hubbard model, Z is very close to the paramagnetic value; it approaches 0.5 before undergoing the firstorder low-to-high spin transition (see Fig. 4.9, top-right panel), in correspondence of which Z rapidly increases again to unity. We report this behaviour in Fig. 4.10 (left panel), where it is also shown that the onset of Hund's coupling immediately brings back the quasiparticles weights close to the non-interacting values. Indeed, J quenches the fluctuations and favors the saturation of the magnetization, entailing very small correlation strengths. The peak of the magnetization at half-filling causes the quasiparticle weights to be the highest in the antiferromagnetic insulator. Indeed, doping the system result in a decreasing of Z, up to the connection with the paramagnetic phase in which Z starts increasing again. The typical behaviour for several values of interaction strengths is reported in Fig. 4.10 (right panel), for the 2-orbital model at J = 0.1U. We find an analogous trend for different values of Hund's coupling and for the three-orbital model. A larger number of orbitals and smaller value of J/U allow for more fluctuations between the local configurations and typically lead, in a magnetic phase, to more correlated states (e.g. the 3-orbital model at half-filling and J = 0).

From itinerant to localized magnetism

Another non-trivial effect of dynamical correlations detectable within SSMF is the evolution from itinerant to localized magnetism, although this is hardly visible in the mean-field ground-state solution [START_REF] Sangiovanni | Static versus dynamical mean-field theory of mott antiferromagnets[END_REF]. Nevertheless, the transition from itinerant to localized magnetism can be highlighted by comparing the paramagnetic and antiferromagnetic solutions. Indeed, the DMFT study of Taranto et al. reports (see Fig. 3 in Ref. [START_REF] Taranto | Signature of antiferromagnetic long-range order in the optical spectrum of strongly correlated electron systems[END_REF]), as a function of U/D, the difference in kinetic and potential energy of the two phases, in the single-band Hubbard model. The antiferromagnet is the stable solution for all the values of interaction, since the difference in energy with the paramagnetic solution is always negative. However, for small values of interaction, the antiferromagnet has lower potential energy with respect to the paramagnet. The difference in potential energy overcompensates the raise in kinetic energy difference in the same range of parameters, thus stabilizing the antiferromagnetic solution. On the -0. 

(∆E k = E AF k -E PM k ) and potential (∆E p = E AF p - E PM
p ) energy differences between AF and PM phase. The total energy difference ∆E tot = ∆E k + ∆E p < 0, hence AF is always the stable phase. Data are plotted for J = 0 (dots) and J = 0.25U (triangles) in the three-orbital Hubbard model. The dashed line marks the first-order low-high spin transition of the J = 0 case, as reported in Fig. 4.9.

contrary, at large interactions, the paramagnet shows a lower potential energy; the kinetic energy overcomes the potential contribution to energy and the antiferromagnetic solution is stabilized by the kinetic energy.

Our method perfectly reproduces this behaviour in the single-band Hubbard model Appendix C and also confirms the analysis in the multi-orbital scenario, as we report in Fig. 4.11 for the three-orbital half-filled case; the behaviour for all the values of Hund's coupling in the two-orbital case and for J = 0.1U in the three-orbital one are qualitatively equivalent to the curves reported for J = 0.25U in Fig. 4.11. Moreover, it is worth underlining some model-dependent features. Indeed, Fig. 4.11 shows the energy differences for the three-orbital model both for zero and finite (J = 0.25U) Hund's coupling. At strong coupling and in absence of Hund's coupling, we find the aforementioned energy balance: the difference in potential energy ∆E p = E AF p -E PM p is positive but rather insensitive to changes in U/D, due to the saturated antiferromagnet and the Mott-insulating paramagnet showing the same behaviour. The Mott transition in the paramagnetic solution, which is continuous if J = 0 [START_REF] Klejnberg | Simple treatment of the metal-insulator transition: Effects of degeneracy, temperature, and applied magnetic field[END_REF][START_REF] Florens | Mott transition at large orbital degeneracy: dynamical mean-field theory[END_REF][START_REF] Lechermann | Rotationally invariant slave-boson formalism and momentum dependence of the quasiparticle weight[END_REF][START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF], appears ad a "kink" in the energy differences. Hence, interestingly, the expected crossing of the kinetic energy difference

∆E k = E AF k -E PM k and ∆E p (U ≈ 6D)
happens indeed in the metallic phase, before the metal-to-insulator transition of the paramagnetic solution. Furthermore, the fingerprint of the J = 0 three-band half-filled model, i.e. the lowto-high spin transition reported as dashed lines in the heart-shaped figure in Fig. 4.11, manifests itself well within the weak-coupling regime ∆E p < 0 and it is associated to a large potential energy difference between the AF and PM solutions. For increasing J/U, two considerations are in order: first, besides the expected absence of low-to-high spin transition (see Fig. 4.9, top-right panel), all the action happens for lower values of U/D, as a consequence of the faster saturating magnetization; second, due to the order of the paramagnetic Mott transition, which is first order (see e.g.

Ref. [START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF]) for finite J/U, the crossing between weak-and strong-coupling regimes is not continuous, but it happens as an abrupt jump at the transition point.

Ab-initio description of g-type antiferromagnetism in

BaCr 2 As 2

The last result we report in this Chapter is the ab-initio simulation of BaCr 2 As 2 , whose g-type antiferromagnetic phase was investigated in Ref. [START_REF] Edelmann | Chromium analogs of iron-based superconductors[END_REF].

We study the magnetization both as a function of the interaction strength and of doping. We report the result in Fig. 4.12, where the comparison between SSMF and DMFT is shown, as well. The agreement is indeed excellent; we ascribe it both to the better performance of SSMF with larger number of orbitals [START_REF] Fanfarillo | Electronic correlations in hund metals[END_REF][START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF] and to the reduced amount of quantum fluctuations in this realistic ordered phase. However, SSMF is considerably less computationally expensive than DMFT6 : in this specific example, a complete iteration of SSMF takes O(seconds) on 1 processor, against the O(hours) on O(1k) processors of DMFT [START_REF] Wallerberger | w2dynamics: Local one-and two-particle quantities from dynamical mean field theory[END_REF]. DMFT data from [START_REF] Edelmann | Chromium analogs of iron-based superconductors[END_REF], where all the DFT details are reported in Sec.II. In both methods the same parameters are used: J = 0.153U; n = 4 for the U-scan, and U = 2.8eV for doping scan (inset).

Chapter 5

d-electron heavy fermions

In this Chapter, we define a general strategy to search for heavy fermions (HF) without resorting to f -electron materials: doping towards half filling a Hund metal with pronounced orbital-selective correlations. We argue that in a general band structure a possible, local-correlation driven, orbitalselective Mott transition is frustrated by inter-orbital hoppings, leaving the system in a coexistence of itinerant and almost localised electrons that strongly echoes HF compounds. We investigate the behaviour of doped iron-based superconductors and apply this general paradigm to obtain HF physics on this class of compounds. More specifically, we focus our attention on chromium-doped CsFe 2 As 2 . We show experimental results indicating that Cr-doping CsFe 2 As 2 lead to an increased Sommerfeld coefficient, signalling strong quasiparticle mass enhancement, corroborated by linear thermal expansion measures. We also show that this enhancement is not indefinite with hole doping, since it exists a value of Cr concentration that causes an abrupt reduction in Sommerfeld coefficient.

The HF phase of light and heavy coexisting electrons is ultimately destroyed due to magnetic correlations, like in a standard Doniach phase diagram. To corroborate this scenario, we provide phase diagrams for the g-type antiferromagnetic phase of Cs(Fe 1-x Cr x ) 2 As 2 in the interaction-occupation plane within density functional theory(DFT) + slave-spin mean-field(SSMF) calculations.

This work is the content of an article in preparation:

Paradigm for the search of d-electron heavy fermions: the case of Cr-doped CsFe 2 As 2 Matteo Crispino, Pablo Villar Arribi, Anmol Shukla, Frédéric Hardy, Amir-Abbas Haghighirad, Thomas Wolf, Rolf Heid, Christoph Meingast, Tommaso Gorni, Adolfo Avella, and Luca de' Medici (2023)

Heavy-fermion physics in d-electron FeSCs and orbital selectivity

Since their discovery, heavy-fermion materials have attracted the attention of the community to explore the interplay between electric and magnetic properties and to investigate exotic phase of matter realised due to correlations. Most HF compounds involve f -electron elements, such as Rare-Earths and Actinides. The radioactivity, the complexity of extraction and purification processes, as well as commercial and strategical issues [START_REF] Bradley S Van Gosen | The rare-earth elements: vital to modern technologies and lifestyles[END_REF], are some reasons making these materials difficult to obtain. However, discoveries of HF behaviour in d-electron compounds, signalled e.g. by the large Sommerfeld coefficient of LiV 2 O 4 [START_REF] Kondo | liv 2 O 4 : A heavy fermion transition metal oxide[END_REF] or YMn 2 Zn 2 0[99] and Ca 1.5 Sr 0.5 RuO 4 [START_REF] Nakatsuji | Heavy-mass fermi liquid near a ferromagnetic instability in layered ruthenates[END_REF], open to realization of HF compounds free from f -electron materials. Nevertheless, there is not a complete agreement regarding the physical origin of HF physics in d-electron compounds [START_REF] Urano | liv 2 O 4 spinel as a heavy-mass fermi liquid: Anomalous transport and role of geometrical frustration[END_REF][START_REF] Arita | Doped mott insulator as the origin of heavy-fermion behavior in liv 2 o 4[END_REF][START_REF] Miyazaki | Quest for the origin of heavy fermion behavior in d-electron systems[END_REF].

In what follows, we provide a general strategy to search for heavy-fermionic behaviour in d-electron compounds, among which we are particularly interested in iron-based superconductors (FeSCs), specifically in the 122-family members.

It is known that the main stoichiometric iron-pnicitide superconductors (e.g. BaFe 2 As 2 for 122 FeSCs) behave as moderately correlated metals, showing an effective mass 2-3 times the band mass [START_REF] Hardy | Doping evolution of superconducting gaps and electronic densities of states in ba (fe1-xcox) 2as2 iron pnictides[END_REF][START_REF] Mm Qazilbash | Electronic correlations in the iron pnictides[END_REF][START_REF] Yi | Electronic structure of the bafe 2 as 2 family of iron-pnictide superconductors[END_REF] in the normal paramagnetic phase. Nevertheless, the mass enhancement depends on the orbital character of the bands crossing the Fermi level, so that orbital selectivity of the correlation strength [START_REF] Luca De' Medici | Orbital-selective mott transition out of band degeneracy lifting[END_REF] is crucial in determining the effective physics of the compounds. Several theoretical studies [START_REF] Luca De'medici | Selective mott physics as a key to iron superconductors[END_REF][START_REF] Yu | u(1) slave-spin theory and its application to mott transition in a multiorbital model for iron pnictides[END_REF][START_REF] Haule | Coherence-incoherence crossover in the normal state of iron oxypnictides and importance of hund's rule coupling[END_REF][START_REF] Lanatà | Orbital selectivity in hund's metals: The iron chalcogenides[END_REF][START_REF] Aichhorn | Theoretical evidence for strong correlations and incoherent metallic state in fese[END_REF][START_REF] Ferber | Lda + dmft study of the effects of correlation in lifeas[END_REF] confirm this scenario and point out as one of the main actors in determining the orbital properties the inter-orbital local exchange interaction represented by Hund coupling, whose main effect is to favor high-spin states [START_REF] Zp Yin | Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides[END_REF]. As a consequence, the extremely constrained local configurations hardly develop coherence: even if a Fermi-liquid state is realized in the low temperature regime, it shows a low coherence temperature and an enhanced effective mass. On the same line of reasoning, the metallicity is strongly influenced by the filling of the conduction bands [START_REF] De' Medici | Hund's coupling and its key role in tuning multiorbital correlations[END_REF][START_REF] Luca De' Medici | Janus-faced influence of hund's rule coupling in strongly correlated materials[END_REF], that come mainly from the five d-orbitals provided by transition metal atoms. In BaFe 2 As 2 the five conduction bands of Fe atom are occupied by 6 electrons, while in the end members of the family the barium cation is replaced by potassium or the isovalent substitution of Rb or Cs. The alcali-atom replacement introduces half a hole per each iron atom, reducing the nominal d-orbital occupancy to 5.5.

Further doping towards half filling can be realized by introducing different atoms in the unit cell, e.g. replacing iron with chromium, until the half-filled regime is reached with 5 electrons in the five d-bands: none of the orbital is either empty or doubly occupied and thus the quenched orbital degrees of freedom cannot participate to the delocalisation of the quasiparticle excitations. In this scenario, metallicity is minimal and a metal-to-Mott insulator transition is typically realised [START_REF] Jiming An | Electronic structure and magnetism in bamn 2 as 2 and bamn 2 sb 2[END_REF][START_REF] Mcnally | From hund's insulator to fermi liquid: Optical spectroscopy study of k doping in bamn 2 as 2[END_REF]. We thus expect a strong enhancement of the correlation by moving towards half-filling [START_REF] Hardy | Strong correlations, strong coupling, and s-wave superconductivity in hole-doped bafe 2 as 2 single crystals[END_REF][START_REF] De'medici | Hund's metals explained[END_REF][START_REF] Backes | Microscopic nature of correlations in multiorbital afe 2 as 2 (a = K, Rb, Cs): Hund's coupling versus coulomb repulsion[END_REF]. DFT+SSMF calculations [START_REF] Hardy | Strong correlations, strong coupling, and s-wave superconductivity in hole-doped bafe 2 as 2 single crystals[END_REF] predict that hole doping by the substitution of K to Ba in the 122-parent compound BaFe 2 As 2 leads to increasing correlations and strong orbital-dependent quasiparticle mass enhancement. This behaviour is indeed experimentally confirmed [START_REF] Hardy | Strong correlations, strong coupling, and s-wave superconductivity in hole-doped bafe 2 as 2 single crystals[END_REF][START_REF] Luca De'medici | Selective mott physics as a key to iron superconductors[END_REF].

Moreover, for single crystals with isovalent substitution in 122-family end members AFe 2 As 2 , with A = K, Rb, Cs, the correlations and their selectivity are further increased (see Fig. 1.4). Indeed, in Ref. [START_REF] Hardy | Strong correlations, strong coupling, and s-wave superconductivity in hole-doped bafe 2 as 2 single crystals[END_REF] specific-heat, magnetic susceptibility, and linear thermal expansion measurements show evidences of heavy-fermion physics.

Particularly striking is the Sommerfeld coefficient (γ) for CsFe 2 As 2 at nominal occupancy of n d = 5.5 electrons per iron atoms experimentally measured to be γ ≃

180mJmol -1 K -2 (DFT+SSMF calculations predict γ ≃ 160mJmol -1 K -2 ).
Already in Ref. [START_REF] Villar | Heavy fermions and Hund's metals in iron-based superconductors[END_REF] it was pointed out that hole-doping towards half filling the end members of the 122-family of FeSCs would result in a further increasing of Sommerfeld coefficient. Precisely, it was reported that Cr-doping CsFe 2 As 2 could potentially result in an enhancement of γ up to ∼ 1000mJmol -1 K -2 for a highly hole-doped compound. Experimentally, the trend of increasing Sommerfeld coefficient is confirmed, since γ ∼ 270mJmol -1 K -2 for a 3% Cr concentration, as we report in Sec. 5.3.

Although strongly enhanced the electronic masses do not actually diverge, which would imply the realization of an orbital-selective Mott transition (OSMT). After such a transition, which was the object of several model studies [START_REF] Luca De' Medici | Orbital-selective mott transition out of band degeneracy lifting[END_REF][START_REF] Anisimov | Orbitalselective Mott-insulator transition in Ca 2 -x Sr x RuO 4[END_REF][START_REF] Koga | Orbitalselective mott transitions in the degenerate hubbard model[END_REF][START_REF] De'medici | Orbital-selective mott transition in multiband systems: Slave-spin representation and dynamical mean-field theory[END_REF], the heaviest electrons are localized due to local interactions, but a fraction of electronic charge remains itinerant. Nevertheless, it is also shown [START_REF] De'medici | Orbital-selective mott transition in multiband systems: Slave-spin representation and dynamical mean-field theory[END_REF][START_REF] De | Mott transition and kondo screening in f-electron metals[END_REF][START_REF] Koga | Spin, charge, and orbital fluctuations in a multiorbital mott insulator[END_REF][START_REF] Fabian | Is the orbital-selective mott phase stable against interorbital hopping?[END_REF] that an hopping amplitude hybridizing the orbitals succeeds in suppressing orbital-selective localization, leaving the the actual scenario debated.

In the next section, we provide a general analytic argument to prove that an orbitalselective Mott phase (OSMP) is never realized by local correlations in the zero temperature limit. This is one of the main cornerstone of our general paradigm to search for d-electron heavy fermions.

Frustrated orbital selective Mott transition

We start our reasoning by assuming the system to be in a Fermi liquid state, with a generic band structure so that the electrons of one particular band are considerably closer to a Mott localisation than those of the other bands. Their quasiparticle weight Z is thus very small compared to the latter. If this quasiparticle weights could reach zero, it would result in a vanishing of both the intra-orbital and inter-orbital hoppings of the electrons within that band. This leads to the flattening and the de-hybridisation of the band from all the band structure. However, we are now going to show that the hybridised band structure entails a singular contribution in the kinetic energy of the system which vanishes proportionally to Z ln Z, as Z → 0. Then, in a variational description of the Fermi liquid (such as Gutzwiller approximation, slave-boson mean field, SSMF) the logarithmic singularity prevents the system's energy1 to realize a minimum in Z = 0 where the kinetic energy slope is infinite, and frustrates the de-hybridisation and the realization of an orbital selective Mott phase. We refer to this impossibility of OSMT to occur as frustrated orbital-selective Mott transition(FOSMT). 2Let us then consider M renormalized and hybridizing bands at zero temperature, and explicitly signal only the renormalization of the most correlated band Z. We also set the latter to be half filled, which is ultimately a necessary condition for developing an OSMT. This implies that this band coincides with the Fermi level in the Z → 0 limit. Considering at first precisely the limiting situation Z = 0, we are left with a subset of M -1 bands that can be diagonalised, in order to obtain the Z = 0 band structure. This Z = 0 bandstructure has a Fermi surface, which is also obviously the locus K 0 of intersection of all the bands with the narrow band in this limit. We denote the density of states at the Fermi level of this bandstructure as D Z=0 (E F ).

For finite Z in the new basis, the hopping matrix in k-space reads:

      ϵ 1 (k) 0 . . . √ ZV 1M (k) 0 ϵ 2 (k) . . . √ ZV 2M (k) . . . . . . . . . . . . √ ZV M1 (k) √ ZV M2 (k) . . . Ze M (k)       (5.1) 
where ϵ m (k) and V mM (k), for m = 1, . . . , M -1 indicate the dispersions of the M -1 bands and their hybridisation3 with the heavy one (labeled M), respectively. These parameters implicitly take into account all the renormalization effects other than Z, and tend non-singularly to a finite value even if Z vanishes.
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.1: Simplified one-dimensional sketch of a two-band system. Green and purple dashed lines represent two bare, unhybridised bands with dispersion ϵ l (k) and e M (k), respectively. We assume the M-th band to be very narrow (renormalised by a small Z), and half-filled. For Z=0 the e M (k) band flattens on the Fermi level ϵ F (black dot-dashed line) while the ϵ l (k) band crosses it at cross-marked points. Red and blue solid lines depict the bands in presence of hybridization (also renormalised by √ Z), crossing the ϵ F at the open circles.

Diagonalizing this matrix one gets the final structure of the bands Λ νk at any Z, determining the kinetic energy of the system:

E kin = 2 ∑ νk Λ νk n F (Λ νk ) , (5.2) 
This integral is summed over the bands and over the whole Brillouin zone. We argue however that under quite large hypotheses the locus of points K 0 are responsible for the mentioned logarithmic singularity so that we can divide it arbitrarily into:

E kin = E reg kin + E sing kin . (5.3) 
where E sing kin comes from a slice of k-space including K 0 (i.e. a slice around each Fermi surface sheet of the Z=0 system) and the regular part from the rest of the integral. This is more easily illustrated by a particular two-band example 4 , graphically shown in Fig. 5.1. In this case the matrix Eq. 5.1 becomes:

ϵ l (k) √ ZV lM (k) √ ZV Ml (k) Ze M (k) . ( 5.4) 
If Z = 0 the flat half-filled band (dot-dashed line) marks the Fermi level and its point cutting ϵ l (k) is marked by a black cross, in the uni-dimensional representation of the figure. In three dimensions it will be indeed a (Fermi) surface. At finite Z one can easily diagonalise the problem to obtain the bands:

Λ ± k = ϵ l (k) + Ze M (k) 2 ± ϵ l (k) -Ze M (k) 2 2 + ZV 2 lM (k) ≡R(k) (5.5) 
represented by the solid lines in Fig. 5.1. The main role of V lM (k) is to open a gap between the hybridised bands positioning Λ + k and Λ - k respectively always above and below the bare bands. This implies that their crossing points with the Fermi level (circles in Fig. 5.1) define a region of k-space, which we can call

∆K 0 ≡ k : n F (Λ + k ) -n F (Λ - k ) ̸ = 0 encompassing the Z=0 Fermi surface K 0 .
Now applied to the two bands in Eq. 5.5, the integral in Eq. 5.2 is naturally splitted in two: the part where both bands are occupied or empty at the same time which is regular for Z → 0 because the cancellation of the radicals R(k), and the complementary one:

E sing kin = ∑ k R(k) n F (Λ + k ) -n F (Λ - k ) = ∑ k∈∆K 0 R(k) → I(k) ≡ k∈∆K 0 dk (2π) 3 R(k), (5.6) 
which we now show is singular. At each point k 0 ∈ K 0 we can define locally the components of k parallel (k plane (k 0 )) and perpendicular (k 0,⊥ (k 0,plane )) to the surface K 0 , and we expand the dispersion in the integrand along the latter direction:

R(k) = ∇ k ⊥ ϵ l -Z∇ k ⊥ e M 2 2 (k ⊥ -k 0,⊥ ) 2 + Z V 0 + V 1 ∇ k ⊥ V lM (k ⊥ -k 0,⊥ ) 2 
(5.7) where to lighten the notation we define

∇ k ⊥ ϵ l ≡ ∇ k ⊥ ϵ l (k) k ⊥ =k 0,⊥
, and equivalently for ∇ k ⊥ e M and ∇ k ⊥ V lM . The integral in Eq. 5.6 integrates in the radical a polynomial expression in the form

a k2 + b k + c, where k ≡ k ⊥ -k 0,⊥ , a = ∇ k ⊥ ϵ l -Z∇ k ⊥ e M 2 2 + Z (V 1 ∇V lM ) 2 , b = 2ZV 0 V 1 ∇V l M
and c = ZV 2 0 . The boundaries of integration (χ ± , the circles in Fig. 5.1) are defined by the nullification condition for the bands in Eq. 5.5 (Λ ± k = 0) that shows a crucial property: it is determined by the condition 4ϵ l (k)e M (k) = V lM (k) which is independent of Z. Thus, χ ± remain fixed for Z going to zero. Vice versa, a(Z) → ∇ k ⊥ ϵ l 2 2 and b(Z), c(Z) → 0 as Z → 0. We now integrate Eq. 5.7 along the perpendicular direction and then expand for small Z. As long as the boundaries of integration are opposite in sign, in the Z → 0 limit we are left with:

I(k) ∼ Z x x 2 + 1 + ln x + x 2 + 1 2aχ + +b √ 4ac-b 2 2aχ -+b √ 4ac-b 2 D(ϵ l ) (5.8) 
where the integral along the in-plane surface corresponds to the density of states of the bare ϵ l dispersion:

D Z=0 (E F ) ≡ dk plane (2π) 3 ( 1 ∇ k ⊥ ϵ l ).
In the Z → 0 limit, the first term of Eq. 5.8 is finite so that E sing kin in Eq. 5.3 reads as:

E sing kin = const. + 2D Z=0 (E F ) V2 0 Z ln(Z) (Q.E.D.). (5.9) 
where V2 0 is the average of V 2 0 over K 0 . The simplest result that corroborates numerically the existence of a FOSMT [START_REF] De'medici | Orbital-selective mott transition in multiband systems: Slave-spin representation and dynamical mean-field theory[END_REF][START_REF] De | Mott transition and kondo screening in f-electron metals[END_REF][START_REF] Koga | Spin, charge, and orbital fluctuations in a multiorbital mott insulator[END_REF][START_REF] Fabian | Is the orbital-selective mott phase stable against interorbital hopping?[END_REF] is a system of two hybridised orbitals (m = 1, 2). We study it in the twoorbital Hubbard model and we adopt the model hopping matrix [START_REF] Poteryaev | Effect of crystal-field splitting and interband hybridization on the metalinsulator transitions of strongly correlated systems[END_REF]:

e m (k) = 2t m (cos k z + cos k y + cos k z ) V 12 (k) = 2 √ 3V nl (cos k x -cos k y ) cos k z (5.10)
which mimics the dispersion of an e g doublet in a cubic symmetrical environment. Unlike Ref. [START_REF] Poteryaev | Effect of crystal-field splitting and interband hybridization on the metalinsulator transitions of strongly correlated systems[END_REF] where t 1 = t 2 , we here assume orbital-dependent hopping amplitudes and impose t2 = 0.1t 1 so that the orbital-selective Mott transition would be triggered by the difference in the bandwidths (W m = 12t m ) at V nl = 0. We solve the model within slave-spin mean field by assuming a density-density form of the interaction. We fix J = 0.25U and vary the value of hybridisation. Our results are summarised in Fig. 5.2 where we report the quasiparticle weights for the two orbital as a function of the interaction strength. In absence of hybridisation (V nl = 0) an OSMP is realized as Z 2 = 0 for U c (Z 2 )/2t 1 ≃ 0.85 for the narrower band, while the wider remain metallic up to U c (Z 1 )/2t 1 ≃ 3.67. However, as soon as the hybridisation differs from zero, the orbital-selective Mott transition is frustrated. It is clearly visible in the right panel of Fig. 5.2 where the results are reported in logarithmic scale. For low values of hybridisation, Z 2 shows a tail with a small but finite value. Eventually, the two bands undergo a common Mott transition. When V nl reaches high values, the frustration becomes more and more evident, as reported in the left panel of Fig. 5.2 for V nl /2t 1 = 0.25. 

Specific heat and thermal expansion measurements in

Cs(Fe 1-x Cr x ) 2 As 2
The frustrated orbital selective Mott transition is a favorable situation to realize heavyfermionic features. It indeed creates a framework where a fraction of the d-electrons is sensibly heavier than, but still hybridised to, the rest. This mimics the role of f -electrons in the usual HF compounds. The same d-electrons are not completely localised and thus there exist a wide region of parameters where the quasiparticle weight is small but finite, without requiring fine tuning of the compositions or of external thermodynamic parameters (e.g. pressure, magnetic field). As already stated in Chap. 1, there exist multiple evidences [START_REF] Hardy | Strong correlations, strong coupling, and s-wave superconductivity in hole-doped bafe 2 as 2 single crystals[END_REF][START_REF] Hardy | Evidence of strong correlations and coherence-incoherence crossover in the iron pnictide superconductor kfe 2 as 2[END_REF][START_REF] Villar | Heavy fermions and Hund's metals in iron-based superconductors[END_REF] that iron-based superconductors (FeSCs) belonging to the hole-doped end members of the 122-family are indeed Hund metals presenting heavy-fermion behaviour. Specific heat, magnetic susceptibilities and linear thermal expansion coefficient measurements indeed point in this direction.

In order to exploit the resistance to localisation in these compounds, we simulate holedoping of CsFe 2 As 2 by substituting Cr to Fe. It is known [START_REF] Sefat | Absence of superconductivity in hole-doped bafe 2-x cr x as 2 single crystals[END_REF] that this substitution does not alter the lattice parameters, so that it is a suitable candidate to enhance correlations by approaching half filling, but leaving the rest of the electronic structure virtually unchanged. Since each Cr substitution introduce two extra holes, a little percentage of chromium doping is expecting to strongly increase the Sommerfeld coefficient. We indeed find this behaviour within ab-initio simulation of hole-doped isovalent compounds AFe 2 As 2 where A = K, Rb, Cs. In Fig. 5. cient calculated for the three isovalent end members of the 122-family of FeSCs as a function of the electronic occupation of iron. By starting with the nominal occupancy of n d = 5.5, hole doping the compounds towards half filling increases the Sommerfeld coefficient approaching the Jmol -1 K -2 regime. In our simulation, the Coulomb interaction is adjusted to start with a γ closest to the experimental values. Choosing the same U for all the three compounds does not change the order of magnitude of the Sommerfeld coefficient. For example, if we start from constrained random-phase approximation (cRPA) [START_REF] Miyake | Comparison of ab initio low-energy models for lafepo, lafeaso, bafe2as2, lifeas, fese, and fete: electron correlation and covalency[END_REF] value of U = 2.8eV at n d = 5.5 we calculate

γ K = 109mJmol -1 K -2 , γ Rb = 118mJmol -1 K -2 and γ Cs = 145mJmol -1 K -2
, respectively. This behaviour is experimentally 5 confirmed by electronic specific-heat (C e ) measure- b

C e / T ( J m o l -1 K -2 ) C s ( F e 1 -x C r x ) 2 A s 2 a T ( K ) α/ T ( 1 0 -6 K -2
)

χ( T ) / χ( 3 0 0 K ) H = 1 4 T ⊥ c γ ( J m o l -1 K -2 ) x ρ a ( m Ω c m ) T 2 ( K 2 ) T ( K ) ρ a ( m Ω c m ) FIGURE 5
.4: Experimentally measured thermodynamic and transport properties of Cs(Fe 1-x Cr x ) 2 As 2 for different Cr concentration x, as a function of temperature. a) Electronic specific heat 6 . The inset reports the evolution of the Sommerfeld coefficient (see also Fig. 5.3); b) coefficient of volume thermal expansion α(T) = 2α a (T) + α c (T) (see text). c) magnetic susceptibility, measured at a constant magnetic field perpendicular to the c-axis (H = 14T); d) zero field a-axis resistivity. The inset shows the T 2 dependence of the resistivity, signalling a heavy Fermi-liquid behaviour for x ≤ 0.03.

ment 6 and it is corroborated by analysing the thermal expansion coefficient (α(T)). In the top-left panel of Fig. 5.4 we report how Cr-doping CsFe 2 As 2 affects the electronic correlations revealing the heavy-fermionic nature of the compounds. For Cs(Fe 1-x Cr x ) 2 As 2 samples at x = 0.03, i.e. 6% hole doping/Fe with respect to the stoichiometric CsFe 2 As 2 , the compound exhibits a remarkable enhancement of the specific heat at low temperature. The Sommerfeld coefficient, which is estimated as the extrapolation of C e /T vs T in the limit of T → 0, is about 270mJmol -1 K -2 , recording one of the largest value for d-electron compounds and the highest for FeSCs.

The heavy-fermionic picture of Cs(Fe 1-x Cr x ) 2 As 2 is also reinforced by the analysis of the coefficient of thermal expansion (bottom left panel of Fig. 5.4), i.e. α(T) = 2α a (T) + α c (T) where α i (T) is the coefficient of linear thermal expansion defined as the variation of linear dimension along the i-th direction with temperature at constant pressure p i :

α i (T) ≡ 1 L i ∂L i ∂T p i . ( 5.11) 
As already observed in all the three AFe 2 As 2 [START_REF] Hardy | Strong correlations, strong coupling, and s-wave superconductivity in hole-doped bafe 2 as 2 single crystals[END_REF], experimental measures show a peak at T = T * both in C e /T and α(T), typically signalling a coherence-incoherence crossover also observed in the magnetic susceptibilities which acquire a Curie-Weiss form (see top right panel of Fig. 5.4). Indeed T * is found to diminish when correlations increase in the series K → Rb, Cs 122 and so does here upon hole doping, confirming the further increase of correlations. However, further doping the compound results in a drastic change of the physics. For x = 0.075 the specific heat drops abruptly to a much lower value (C e /T ∼ 75mJmol -1 K -2 ) compared to the smaller doping. At the same time, the thermal expansion coefficient becomes negative. The negative thermal expansion (NTE) gives an interesting physical insight on the effect of the correlations. Indeed, thanks to a Maxwell relation, it is possible to show that α i (T) measures the change of entropy under uniaxial pressure p i and by virtue of Eq. 1.1 this is linked to the specific heat and thus to the Sommerfeld coefficient as long as we remain in a Fermi-liquid regime 7 :

α i T = - 1 T ∂S ∂p i = - ∂γ ∂p i (5.12) 
and then α(T)/T = -∂γ ∂p , where p is the hydrostatic pressure. By applying pressure, the system is expected to decorrelate and thus a positive α is foreseen. In our compound, this situation is realized for Crconcentrations 0 ≤ x ≤ 0.03. Remarkably, for a higher chromium concentration x = 0.075, the coefficient of volume thermal expansion is negative. This counterintuitive situation can be conceptually simplified by saying that the system is correlated due to an applied hydrostatic pressure. Our calculations give us an insight into the possible nature of this change of behaviour as shown in what follows. 

Antiferromagnetic frontier in d-electron heavy fermions

The main result of the previous sections is the impossibility of a multi-orbital system to undergo an orbital selective Mott transition due to local correlations, as long as temperature is zero and the hybridisation between the bands is finite. The frustration of the orbital-selective Mott state is at the origin of the heavy-fermion behaviour of Cr-doped CsFe 2 As 2 shown in Sec. 5.3.

Doping towards half filling leads the system to be affected by the Mott transition but our mechanism prevents it to actually realize an OSMP. Some orbitals can show strongly enhanced quasiparticle mass, that result in the higher Sommerfeld coefficient experimentally measured. Experimentally, further doping towards half filling result in an abrupt change in the physical properties of the compound, pushing the Sommerfeld coefficient to a much lower value and showing an overall negative thermal expansion. We suggest that this is caused by the insurgence of an antiferromagnetic (AF) zone close to half filling. It is known [START_REF] Marty | Competing magnetic ground states in nonsuperconducting ba(fe 1-x cr x ) 2 as 2 as seen via neutron diffraction[END_REF] that the parent 122-FeSCs compound BaFe 2 As 2 undergoes a structuralmagnetic transition if hole-doped towards half filling. With the most common Ba → K substitution of the cation, it passes from a single-stripe antiferromagnetic phase to a paramagnetic one, but with the substitution of the transition metal ion Fe → Cr, 0.5 hole-doping happens without changing the lattice parameters brought by the K-to-Ba substitution [START_REF] Eilers | Strain-driven approach to quantum criticality in afe 2 as 2 with a = K, rb, and cs[END_REF]. Moreover, it can be further doped towards half filling and enters a g-type antiferromagnetic zone (see the phase diagram in the left panel of Fig. 5.5 as well as Refs. [START_REF] Misawa | Ab initio evidence for strong correlation associated with mott proximity in iron-based superconductors[END_REF][START_REF] Marty | Competing magnetic ground states in nonsuperconducting ba(fe 1-x cr x ) 2 as 2 as seen via neutron diffraction[END_REF]). This is well reproduced by zero-temperature simulations within DFT+SSMF of the doped BaFe 2 As 2 , as we show in the right panel of Fig. 5.5.

Once the slave-spin mean-field solution is stabilized we can compare the energy of the broken-symmetry phases to detect the actual state of the system. As we show, we indeed find the same trend as experiments: as we move towards half filling, the singlestripe AF is substituted by a g-type antiferromagnetic order. We thus investigate such a broken-symmetry phase in our mean-field approach and study the behaviour of doped CsFe 2 As 2 close to half filling, for several values of Hund coupling. Our results are summarised in in Fig. 5.6, where we report the phase diagram in the interaction-occupation plane.

The presence of the antiferromagnetic g-type dome close to half filling is robust inde-pendently on the values of Hund coupling. As already stated in Chap. 4, SSMF tends to overestimate the extension of the AF zone so that it covers also a zone in which the compound is expected to be paramagnetic, namely close to the nominal occupancy of 5.5 electrons in the iron d-orbitals. Hund coupling tends to align spin, favoring AF orbitals and reducing the energy, so that the antiferromagnetic region shrinks for lower J/U.

Interestingly, there are clues of phase separation in the low interaction regime, independently on the values of Hund coupling. The detailed analysis of this zone of instability is beyond the aim of this thesis, but it is worth underling it since it can open to exotic phases in this compound.

The emergence of antiferromagnetic order in proximity of half filling is a possible explanation of the experimental data of Sec. 5.3 and the realization of a NTE of Fig. 5.4. Once in the AF phase the magnetization increase monotonically, both by doping towards half filling or by increasing the interaction strength (see Fig. 5.7). The magnetic state reduces the quantum fluctuations and the correlations as a consequence, which means one can encounter the rather counterintuitive situation in which the latter decrease with increasing U [START_REF] Edelmann | Chromium analogs of iron-based superconductors[END_REF]. As we specify better in Chap. 6, increasing the local interaction in a realistic simulation while keeping all the other parameters fixed is an effective way to mimic a negative hydrostatic pressure, i.e. a reduction of all the hoppings. As a consequence in the AF state there are zones where γ increases with increasing pressure, which implies a negative linear thermal expansion coefficient accordingly to Eq. 5.12. We thus interpret the NTE as the entrance in the antiferromagnetic phase, as experimentally confirmed in Refs. [START_REF] Kimber | Magnetic ordering and negative thermal expansion in prfeaso[END_REF][START_REF] Klimczuk | Negative thermal expansion and antiferromagnetism in the actinide oxypnictide npfeaso[END_REF][START_REF] Hu | Giant negative thermal expansion in antiferromagnetic CrAs-based compounds[END_REF].

The same reasoning explains the abrupt lowering of Sommerfeld coefficient found experimentally. As long as the system realises a frustrated orbital-selective Mott phase (FOSMP) an orbital selectivity is present but none of the bands is allowed to be completely flat. The resulting quasiparticle mass is enhanced and the Sommerfeld coefficient increases. However, further hole doping pushes the compound into the antiferromagnetic zone: the system decorelates and the quasiparticle mass enhancement is reduced. Moreover, the opening of an AF gap can contribute to the reduction of the density of states [START_REF] Valenzuela | Optical conductivity and raman scattering of iron superconductors[END_REF]. This draws a Doniach-like phase diagram, in which the heavy Fermi liquid is cut off by a zone of AF order. This analogy requires some contextualisation. As already stated in Chap. 1, for f -electron materials the Kondo coupling rules both the Fermi-liquid coherence scale and the magnetic coupling that in the context of f -electrons is usually of the RKKY type. The transition between a Fermi-liquid and a magnetic phase is inevitable due to the functional dependence of the energy scales on the Kondo coupling DFT+SSMF simulation of the paramagneticantiferromagnetic transition of CsFe 2 As 2 . Top panels: Orbital-resolved quasiparticle weights as a function of the interaction strength (top left panel) and of the iron electronic occupancy (top right panel). Once in the antiferromagnetic phase, Z increases with the magnetization and the system is gradually less correlated. Bottom panels: Total staggered magnetization as a function of U and n d (bottom left and right panel, respectively). The decorrelation is more pronounced the closer the staggered magnetization is to saturation. For the U-scan n d = 6.0, while for the doping scan U = 3.0eV. In both simulation, J = 0.15U, in agreement with cRPA value [START_REF] Miyake | Comparison of ab initio low-energy models for lafepo, lafeaso, bafe2as2, lifeas, fese, and fete: electron correlation and covalency[END_REF]. Z increasing with U is a possible source of NTE.

(see Fig. 1.1). However, in d-electron compounds different magnetic couplings compete, and most likely the antiferromagnetic superexchange dominates in our picture. Nevertheless, this also guarantees a transition since with decreasing doping the Fermiliquid scale is reduced while the superexchange coupling remains roughly constant.

As a consequence, it will always overcome the Fermi liquid close to half-filling [START_REF] Misawa | Ab initio evidence for strong correlation associated with mott proximity in iron-based superconductors[END_REF].

We want to underline that the mechanism presented in this Chapter is relevant for standard heavy fermions, as well. The hybridisation-driven FOSMP prevents local correlations from bringing the system in an orbital-selective Mott phase, but non-local correlations(NLC) can eventually realise this state [START_REF] Paul | Kondo breakdown and hybridization fluctuations in the kondo-heisenberg lattice[END_REF][START_REF] Pépin | Kondo breakdown as a selective mott transition in the anderson lattice[END_REF][START_REF] De | t = 0 heavy-fermion quantum critical point as an orbital-selective mott transition[END_REF] and cause Z to vanish before the mass diverges since these two quantities are not the same if NLC are present. Nevertheless, local correlations are dominant in many d-electron materials so that the FOSMP will still persist enough to allow heavy-electron behaviour.

Chapter 6

pd-model in slave spins: analysis of the double-counting problem

In this Chapter, we report on the ongoing project of generalising the slave-spin formalism to include the contribution of an uncorrelated-orbital subspace to the ab-initio simulation of a compound. In the case of iron-based superconductors we are mainly interested in, this means to include the ligand (pnictogen or chalcogen, specifically arsenic in the 122 family) p-orbital contribution. We start from a tight-binding simulation obtained by expanding on a basis of local Wannier functions the density functional theory (DFT) Kohn-Sham orbitals and modeling the interaction among electrons with a Hubbard-Kanamori Hamiltonian. To solve the interacting many-body problem we resort to slave-spin mean-field (SSMF) formalism, while we use the Perdew-Burke-Ernzerhof (PBE) GGA functional [START_REF] Perdew | Generalized gradient approximation made simple[END_REF] within the DFT framework. We take advantage of the SSMF agility to critically revise the problem of the double counting of Coulomb interaction when combining DFT with many-body theory.

We thus first introduce this problem and present results in the paramagnetic phase for two iron based superconductors, namely CsFe 2 As 2 and the parent compound BaFe 2 As 2 , as a function of the interaction. We conclude that different double-counting prescriptions lead to different results, regarding the description of the atomic limit and of the Hund physics.

We then extend our study to the g-type antiferromagnetic phase of chromium doped CsFe 2 As 2 , for which we provide phase diagrams in the interaction-occupancy plane as a comparative study of double counting. We find that considering the ligand's contribution results in a lower magnetization and in a less extended antiferromagnetic zone close to half filling, in better agreement with experiments.

The double-counting problem

The double-counting(DC) problem emerges when one combines a density-functional theory (DFT) calculation with a many-body method. The issue arises since DFT embeds the interaction in an self-consistently determined effective potential. The actual contribution is unknown, but present. On the other hand, methods dealing with strong interaction, e.g. slave-particle methods or dynamical mean-field theory (DMFT), treat the interaction in their own way, specifically bringing in the effects due to local dynamical correlations. This inevitably leads to counting the Coulomb interaction contribution twice.

The first attempts [START_REF] Anisimov | Band theory and mott insulators: Hubbard u instead of stoner i[END_REF][START_REF] Czy | Local-density functional and on-site correlations: The electronic structure of la 2 cuo 4 and lacuo 3[END_REF][START_REF] Vlasdimir I Anisimov | Density-functional theory and nio photoemission spectra[END_REF][START_REF] Vladimir I Anisimov | First-principles calculations of the electronic structure and spectra of strongly correlated systems: the lda+ u method[END_REF] to resolve the double-counting problem were performed in the context of local-density approximation (LDA)+U. Later on, intensive studies were carried on with DMFT [START_REF] Kotliar | Electronic structure calculations with dynamical meanfield theory[END_REF][START_REF] Aichhorn | Dynamical mean-field theory within an augmented plane-wave framework: Assessing electronic correlations in the iron pnictide lafeaso[END_REF][START_REF] Aichhorn | Theoretical evidence for strong correlations and incoherent metallic state in fese[END_REF] also introducing new prescriptions to avoid double-counting problems, both analytically [START_REF] Haule | Dynamical mean-field theory within the full-potential methods: Electronic structure of ceirin 5 , cecoin 5 , and cerhin 5[END_REF][START_REF] Held | Electronic structure calculations using dynamical mean field theory[END_REF] and numerically (see, e.g. Ref. [START_REF] Wang | Covalency, double-counting, and the metal-insulator phase diagram in transition metal oxides[END_REF] and the "exact double-counting" introduced in Ref. [START_REF] Haule | Exact double counting in combining the dynamical mean field theory and the density functional theory[END_REF]). Here, we are particularly interested in studying iron-based superconductors (FeSCs), already investigated in Refs. [START_REF] Backes | Electronic structure and de haas-van alphen frequencies in kfe2as2 within lda+dmft[END_REF][START_REF] Backes | Microscopic nature of correlations in multiorbital afe 2 as 2 (a = K, Rb, Cs): Hund's coupling versus coulomb repulsion[END_REF][START_REF] Zp Yin | Magnetism and charge dynamics in iron pnictides[END_REF][START_REF] Zp Yin | Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides[END_REF]. However, although some comparative studies of the different DC prescriptions can be found in Ref.s [START_REF] Held | Electronic structure calculations using dynamical mean field theory[END_REF][START_REF] Haule | Covalency in transition-metal oxides within all-electron dynamical mean-field theory[END_REF][START_REF] Karolak | Double counting in lda+dmft-the example of nio[END_REF][START_REF] Petukhov | Correlated metals and the LDA + u method[END_REF][START_REF] Hausoel | Local magnetic moments in iron and nickel at ambient and earth's core conditions[END_REF], an extensive treatment of it still lacks (to the best of our knowledge) in the 122-family of FeSCs context. We here aim at providing such a study. Nevertheless, two premises are in order. First, through this Chapter, we do not consider spin-resolved double-counting corrections. It is justified in our approach since our initial DFT simulation deals the exchange-correlation functional in the LDA approximation. This is intrinsically built to treat paramagnetic phases. Saying differently, we allow for broken-symmetry solutions as an effect of interactions, starting from a paramagnetic simulation of the Hamiltonian. Then, we have to specify a subtle point about the notation. Customarily [START_REF] Aichhorn | Dynamical mean-field theory within an augmented plane-wave framework: Assessing electronic correlations in the iron pnictide lafeaso[END_REF], the Coulomb interaction (see Sec. 2.1) is written as a matrix MxM, where M is the number of orbitals:

U mm ′ =       U 11 U 12 . . . U 1M U 21 U 22 . . . U 2M . . . . . . . . . . . . U M1 U M2 . . . U MM       . (6.1)
Analogously, the Hund's coupling matrix reads:

J mm ′ =       0 J 12 . . . J 1M J 21 0 . . . J 2M . . . . . . . . . . . . J M1 J M2 . . . 0       , ( 6.2) 
where the diagonal elements are zero by virtue of Pauli principle. However, in the multi-orbital Hubbard model we deal with in this thesis, we assume that the interaction, as well as the Hund's coupling, has the same value independently by the couple of orbital considered:

U mm ′ =       U U ′ . . . U ′ U ′ U . . . U ′ . . . . . . . . . . . . U ′ U ′ . . . U       J mm ′ =       0 J . . . J J 0 . . . J . . . . . . . . . . . . J J . . . 0       . (6.3)
For the purpose of this Chapter, it is useful to define the following quantities:

Ū = 1 M 2 ∑ mm ′ U mm ′ J = Ū - 1 M(M -1) ∑ mm ′ (m̸ =m ′ ) U mm ′ -J mm ′ (6.4)
that are essentially an averaged form of the local Coulomb interaction and the Hund's coupling, respectively. Under the assumption that U ′ = U -2J, which we adopt in our study, and by implementing Eq. 6.3, it is easy to show that the following relations hold:

Ū = U + (M -1)(U -2J) M J = M + 2 M J. (6.5) 
from which we can also derive Ū -J = U -3J. In the following sections, these have to be taken in mind once we specialize the known prescriptions of double counting to our model.

Around mean-field double-counting correction

The first proposal to deal with the double-counting problem was presented by V.I. Anisimov, J. Zaanen and O. K. Andersen [START_REF] Anisimov | Band theory and mott insulators: Hubbard u instead of stoner i[END_REF], in the context of Mott transition for 3d-transition-metal monoxides. We refer to this prescription as AZA (from the names of the authors) around mean-field (AMF) double counting, to distinguish it to the improved version proposed by M. T. Czy żyk and G. A. Sawatzky in Ref. [START_REF] Czy | Local-density functional and on-site correlations: The electronic structure of la 2 cuo 4 and lacuo 3[END_REF].

It is based on the assumption that a reasonable treatment of the Coulomb interaction is given by adding to the usual LDA energy functional the mean-field approximation of the Hubbard interaction. This leads inevitably to count the interaction twice, since it is already considered by the exchange-correlation terms in DFT. To deal with this drawback, Anisimov and collaborators postulate the total energy functional to be:

E = E LDA + 1 2 ∑ mm ′ ,σ U(⟨ nimσ ⟩ -n)(⟨ nim ′ ,-σ ⟩ -n) + 1 2 ∑ mm ′ ,σ (m̸ =m ′ ) (U -J)(⟨ nimσ ⟩ -n)(⟨ nim ′ σ ⟩ -n), (6.6) 
where E LDA is the energy functional obtained within DFT in the local-density approximation and:

n = 1 2M ∑ mσ ⟨ nmσ ⟩ (6.7)
is the average occupancy of each of the M correlated orbitals. Customarily, the double-counting correction can be interpreted as a shift in the chemical potential for the correlated electrons only, i.e. the subset on which the multi-orbital Hubbard interaction is applied:

E DC = µ DC ∑ mσ nimσ , (6.8) 
where we have introduced the double-counting chemical potential µ DC . In the framework of Ref. [START_REF] Anisimov | Band theory and mott insulators: Hubbard u instead of stoner i[END_REF], this takes the following expression:

µ AMF;AZA DC = [MU + (M -1)(U -J)] n. (6.9)
The correction proposed by Anisimov et al. forces two considerations. On the one hand, it does not consider the possibility of spin-independent averages in Eq. 6.7 and, on the other hand, limits the treatment to scalar values of U and J only. These simplifications were overcome by Czy żyk and Sawatzky in Ref. [START_REF] Czy | Local-density functional and on-site correlations: The electronic structure of la 2 cuo 4 and lacuo 3[END_REF], where they considered nσ = 1 M ∑ m ⟨ nmσ ⟩, instead of Eq. 6.7, to consider spin averages independently 1 and used the matrices Eq. 6.1 and Eq. 6.2 to get the around mean-field (AMF) doublecounting chemical potential:

µ AMF;CS DC = ∑ m ′ U mm ′ n-σ + ∑ m ′ ,m ′ ̸ =m (U mm ′ -J mm ′ ) nσ . (6.10)
To avoid confusion, we have labelled the prescription in Eq. 6.10 with CS (from the name of the authors in Ref. [START_REF] Czy | Local-density functional and on-site correlations: The electronic structure of la 2 cuo 4 and lacuo 3[END_REF]); this is what is typically referred as "around mean field" DC. Nevertheless, for the purpose of this thesis, we have to specialize it to the model used, placing our simulation in an intermediate situation between Eq. 6.9 and Eq. 6.10. Indeed, we approach DFT in the LDA: we then consider a paramagnetic solution for our DFT model and we aim at considering a spin-species differentiation (e.g. antiferromagnetism) as a correlation-induced effect. Thus, we should express our AMF DC correction in terms of n, rather than in terms of the spin-resolved counterpart nσ . Moreover, we simplify the interaction matrices as in Eq. 6.3, i.e. we consider U mm = U ∀m, U mm ′ = U ′ and J mm ′ = J ∀m ̸ = m ′ in Eq. 6.10. We impose U ′ = U -2J, as well.

Hence, the around mean-field double-counting chemical potential we use in this thesis reads:

µ AMF DC = [(2M -1)U -5(M -1)J] n. (6.11) 
In Appendix. F, we give an explicit derivation of Eq. 6.11 starting from the interaction Hamiltonian in the density-density form.

Fully localized limit double-counting correction

The second and very often used double-counting correction was first proposed in Ref. [START_REF] Czy | Local-density functional and on-site correlations: The electronic structure of la 2 cuo 4 and lacuo 3[END_REF] and it is called fully-localized limit (FLL). It takes a different logical path with respect to the AMF correction. Since the aim is to deal with localized electrons, embedded in a delocalised electron sea (supplied by the ligands), a suitable correction to the DFT description of the interaction is provided by the energy functional in the atomic limit, rather than the mean-field of the interacting electrons. Thus, an improved approximation is to add to the local spin density approximation DFT energy functional the interaction and then subtract the atomic-limit contribution.

The FLL double-counting chemical potential then reads [START_REF] Czy | Local-density functional and on-site correlations: The electronic structure of la 2 cuo 4 and lacuo 3[END_REF][START_REF] Vlasdimir I Anisimov | Density-functional theory and nio photoemission spectra[END_REF][START_REF] Vladimir I Anisimov | First-principles calculations of the electronic structure and spectra of strongly correlated systems: the lda+ u method[END_REF]:

µ FLL;CS DC = µ AMF;CS DC + ( Ū -J) nσ - 1 2 = Ū n d - 1 2 -J n d σ - 1 2 (6.12) 
where n d = ∑ σ n d σ = ∑ mσ ⟨ nmσ ⟩ is the total correlated occupancy. Note that n d = 2M n. To avoid confusion, it is worth noting that Ū and J are expressed in Ref. [START_REF] Czy | Local-density functional and on-site correlations: The electronic structure of la 2 cuo 4 and lacuo 3[END_REF] in terms of the Slater integrals [START_REF] Georges | Strong correlations from hund's coupling[END_REF][START_REF] Vaugier | Hubbard u and hund exchange j in transition metal oxides: Screening versus localization trends from constrained random phase approximation[END_REF][START_REF] Ambroise Van Roekeghem | Hubbard interactions in iron-based pnictides and chalcogenides: Slater parametrization, screening channels, and frequency dependence[END_REF]] and Gaunt's numbers [START_REF] Gaunt | Iv. the triplets of helium[END_REF]:

U l mm ′ = 2l ∑ k=0 a lk mm ′ F k J l mm ′ = 2l ∑ k=0 b lk mm ′ F k (6.13)
where l = 2 for d-electrons, like the correlated ones studied in this thesis, and F k are Slater integrals for a given nl; a lk mm ′ and b lk mm ′ are coefficients expressed in terms of Gaunt's numbers [START_REF] Czy | Local-density functional and on-site correlations: The electronic structure of la 2 cuo 4 and lacuo 3[END_REF]. The detailed analysis of this is beyond the scope of this thesis and we express Ū and J as in Eq. 6.5 to obtain the FLL prescription used throughout this work:

µ FLL DC = µ AMF DC + (U -3J)( n - 1 2 ) = U + (M -1)(U -2J) M n d - 1 2 - M + 2 2M J n d -1 , (6.14) 
where µ AMF DC is given by Eq. 6.11 and we use n to be consistent with our LDA starting point2 .

Nominal double-counting correction

The nominal double-counting prescription [START_REF] Haule | Dynamical mean-field theory within the full-potential methods: Electronic structure of ceirin 5 , cecoin 5 , and cerhin 5[END_REF][START_REF] Haule | Covalency in transition-metal oxides within all-electron dynamical mean-field theory[END_REF] adopts a chemical point of view and starts from the assumption that, in order to stabilize the compound, the occupation of the correlated manifold equals the valence of the isolated atom, i.e. the number of electrons in the external shells once the compound is formed. It is very similar in spirit to the fully localized limit, but it substitutes the total correlated occupancy (n d ) in Eq. 6.12 with the nominal valence n val . mass enhancement [START_REF] De'medici | Hund's metals explained[END_REF], and compare with the d-model description. This mimics the experimental environment of varying the applied pressure on the compound and the resulting effect on the Hund-metal behaviour. However, in absence of applied chemical or hydrostatic pressure, we expect the total number of electrons and the interaction among them to be fixed to a given value. We thus need to specify a subtle point about the values of U and J used in the slave-spin formalism. As already stated in Sec. 6.1, we take an averaged version of Coulomb interaction and Hund coupling, namely Eq. 6.3. We furthermore impose that U ′ = U -2J, leaving us with only two parameters: U and J. The reference values are obtained by using constrained random-phase approximation (cRPA) as a starting point. In particular, we refer to Ref. [START_REF] Miyake | Comparison of ab initio low-energy models for lafepo, lafeaso, bafe2as2, lifeas, fese, and fete: electron correlation and covalency[END_REF], where the orbital resolved interactions are reported for several FeSCs. We average the results obtained for the 122-parent compound BaFe 2 As 2 so that we choose U = 5.24eV and J = 0.622 (J/U ≃ 0.12) as realistic values of interaction in our simulation. We limit the interaction to a density-density form, which involves the iron d-electrons only.

Comparison between SSMF and DMFT

As already stated in Chap. 4, in order to obtain a good agreement between SSMF and DMFT in the paramagnetic phase it is necessary to rescale the ratio J/U3 . Previous works within SSMF on d-model, which following Ref. [START_REF] Miyake | Comparison of ab initio low-energy models for lafepo, lafeaso, bafe2as2, lifeas, fese, and fete: electron correlation and covalency[END_REF] used as interaction values for the paramagnetic phase U = 2.8eV and J = 0.43eV so that J/U = 0.15, show that a good agreement with DMFT results can be obtained by setting J/U = 0.25 within SSMF. Analogously, if the ratio used in DMFT is J = 0.12U, then J = 0.20U is used with slave-spin formalism. Here our goal is to preliminarily establish the same kind of correspondence between SSMF and DMFT in the pd-model as well (for a generalisation of the slave-spin meanfield formalism to the pd-model, see Appendix. E). To this aim we report in Fig. 6.1 the comparative study of slave-spin formalism and DMFT 4 for CsFe 2 As 2 as a function of J/U. Both methods use a density-density form of the interaction. For DMFT β = 50eV -1 and the ratio J/U = 0.12 is fixed, while SSMF calculation are performed at zero temperature and for several values of Hund coupling. We consider a unit cell hosting two iron and two arsenic atoms, so that the total number of valence electrons is 23 (for CsFe 2 As 2 , each iron contributes with 5.5 electrons and we assume 6 electrons per
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Nominal DC U(ev) arsenic) and proceed with a U-scan. We choose two double counting prescriptions, namely the self-consistent fully-localized limit and the nominal double counting. For DMFT analysis we select three representative values of U for low U = 3.0eV, intermediate U = 5.2eV and high U = 7.0eV Coulomb interaction. Our comparison leads to two main considerations for the following results. Methodologically, a unique value of the ratio J/U is not capable of giving perfect agreement for all the studied values of the interaction. Still, some choice give quite satisfactory comparison. More physically, the results change depending on the double counting prescription.

In Fig. 6.1 we can see that, within the self-consistent fully-localized limit (SC FLL) DC, all the values of J/U give appreciable agreement with DMFT results in the low interaction regime. However, as soon as the interaction is increased they start diverging: there is a surprisingly good match for J = 0.18U at U = 5.24eV and a fair agreement for a value 0.16U < J < 0.14 for U = 7.0eV. It is however clear that both the cRPA value (J = 0.12U) and the one obtainable with the prescription valid for the d-model (J = 0.20U) give results quite far from the DMFT ones. By considering the nominal double counting, we can draw the same conclusions: the results within SSMF for all the values of J/U reasonably agree with DMFT in the Nominal DC U(ev) Comparison of SSMF (lines and symbols) and DMFT (symbols in agreement with SSMF) for CsFe 2 As 2 . We report the results for the SC FLL DC and Nominal DC in the right and left column, respectively. For SSMF calculations J = 0.16U. For DMFT J = 0.12U and β = 50eV -1 . low interaction regime. Interestingly, the comparison is good at the crossover for 0.16U < J < 0.18U and very good for U = 7.0eV if J/U = 0.12 in SSMF.

Based on this comparison, we fix J = 0.16U, which gives a quite satisfactory agreement in both the double-counting prescriptions. In Fig. 6.2, we report the correlated-orbital resolved occupancies (n d m ) and quasiparticle weights (Z m ). Concerning n d m the agreement is quite satisfactory for each orbitalresolved correlated occupancy. The only discrepancy is represented by n d

x 2 -y 2 in the Nominal DC scheme, where the DMFT result shows a more rapid ascent. However, SSMF is capable of correctly catch the crossing between n d z 2 and n d x 2 -y 2 at U ∼ 6.0eV for SC FLL DC and U ∼ 4.2eV for Nominal DC, as well as the rising of n d

x 2 -y 2 with increasing interaction. This is valid for both DCs and further strengthens the validity of our method 5 . 5 We have to mention that our DMFT results slightly differs from the one obtained by Backes and collaborators in Ref. [START_REF] Backes | Microscopic nature of correlations in multiorbital afe 2 as 2 (a = K, Rb, Cs): Hund's coupling versus coulomb repulsion[END_REF], where the orbital-resolved correlated occupancy is calculated within LDA+DMFT. The calculations are performed at β = 80eV -1 and within a charge self-consistent scheme. We checked our DMFT simulation for other types of interaction (Kanamori, full Coulomb) and for lower temperature, but the main features remain. We thus ascribe the discrepancies with Ref. [START_REF] Backes | Microscopic nature of correlations in multiorbital afe 2 as 2 (a = K, Rb, Cs): Hund's coupling versus coulomb repulsion[END_REF] to the use of charge self consistency. The same considerations apply to Z m . Again, the comparison is good since SSMF successfully reproduce the trend of the crossover. Nevertheless, it seems that SSMF tends to underestimate the effect of correlation and to provide slightly higher quasiparticle weights in the low interaction regime. This is however not surprising since the same behaviour is observed in the dmodel (see the discussion in Appendix C regarding the Mott transition or Ref. [START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF].). Either way we again recover the signatures of Hund physics. We identify a crossover to Hund metal behaviour, where correlations and orbital selectivity are enhanced like in the d-model (see Chap. 1 and Fig. 6.3), at U ∼ 6.7eV and U ∼ 5.4eV for SC FLL DC and Nominal DC, respectively 6 . As can be seen by comparing Fig. 6.2 and Fig. 6.3, the Hund-metal crossover happens for higher values of the interaction in the pd-model, with respect to the d-model where the d-electron wave function spreads over the ligand's atoms and is less localized on the correlated atoms. This results on a lower value of interaction [START_REF] Miyake | Comparison of ab initio low-energy models for lafepo, lafeaso, bafe2as2, lifeas, fese, and fete: electron correlation and covalency[END_REF]. On the contrary, if the p-contribution is explicitly taken into account, the d-electron basis wave function is more peaked on the correlated atoms and the Coulomb interaction is correspondingly higher. Once in the Hund-metal regime, a pronounced tendency to orbital differentiation is observed. Indeed xy and degenerate orbitals xz/yz tend to become more correlated, since their quasiparticle weight diminishes, and the respective occupations are pushed towards half filling.

Comparative study of DC and atomic limit

Once the robustness of our method is established thanks to the comparison with DMFT, we want to discuss more carefully the meaning of varying the value of the Coulomb interaction in a realistic DFT+SSMF simulation and how this can mimic the application of pressure on the compound.

To fix the ideas we consider the case of positive pressure applied to the sample. In our simulation, we do not take into account temperature effects and we work in the zero temperature limit. From a DFT perspective each new atomic position, i.e. pressure, should be treated in a new simulation making the process quite long. However, the effect of pressure can also be roughly investigated by varying the Coulomb interaction, as we do in our study. We indeed calculate once and for all the DFT Hamiltonian and keep fixed the hoppings and the crystal field splitting. We start our analysis in the d-model. Once we fix U ′ = U -2J in the multi-orbital Hubbard model, we are left with four energy scales: the Coulomb repulsion U, the Hund coupling J, the hoppings and the crystal field splitting acting on the 3d-electrons of the iron atom. They can easily be reduced to three if, as we do, the ratio J/U is kept constant. Among the energy scales the hoppings and the crystal field splitting keep memory of the relative distance between electrons and ions. On the other hand, U and J are purely local effect. Their calculated values will change due to changes in screening effects. In particular, the values of U will be more affected by screening with respect to Hund coupling. As a first approximation, we neglect these effects. Since we are applying positive pressure, the atoms are getting closer and closer and in turn the hoppings, i.e. the bandwidth, and crystal field splitting are increased. The ratios between U and the hoppings, as well as the ratio between U and the crystal field, decrease as a consequence. Since fixing the ratio J/U leaves us with only one free parameter (U), the same effect of applied increasing pressure can be obtained by decreasing U, since the ratio between U and the hoppings behaves as the hoppings increase. On the same line of reasoning, a negative applied pressure can be mimicked simulating a greater interaction. The atomic limit, in which the electrons can no longer jump between atoms either because the hoppings are zero or because the Coulomb interaction is so strong to prevent the hopping process, can be thus intended as the application of an infinite negative pressure.

In the pd-model there exist another energy scale, namely the difference between the ligand's and correlated atoms energies (∆ = ε pε d ), that in the atomic limit tends to the isolated-atom value. This is exactly where the DC comes into play, since it influences ε d and hence the occupancy of the correlated atoms. In Fig. 6.4 we take advance of the flexibility of slave-spin formalism over DMFT to investigate the effect of using different double-counting schemes on this physical picture. We select six prescriptions: around-mean field and fully-localized limit DC, both fixing the total correlated occupancy to the DFT value (AMF n DFT and FLL n DFT , Eq. 6.16) and self-consistently adjusting n (SC AMF Eq. 6.11 and SC FLL Eq. 6.14); Nominal DC (Eq. 6.15) and the purely numerical result obtained by imposing Eq. 6.17. We show the double-counting chemical potential and the total correlated occupancy in the left and right panel, respectively. For the studied values of interaction the main result is that not all the DC schemes are capable of correctly reproduce the atomic limit, that by construction is represented by the Nominal DC in which n d is replaced by the nominal valence. All the recipes start from the non-interacting DFT value (n d ≈ 7.0), but only the Nominal and self-consistent prescriptions are capable to catch the nominal occupancy in the atomic limit. The dot-dashed lines defines a problematic zone of numerical convergence, probably ascribable to the occurrence of Mott transition. In the total correlated occupancy, we also report the DMFT results (black triangles and diamonds) for J = 0.12U.

the interaction in all DCs, but it fails to reproduce correctly the isolated-atom limit if the occupancy involved in µ DC does not take into account the correlations in a proper manner. This is achieved either by fixing it to the nominal-valence value or by allowing a self-consistent adjustment. We can clearly identify two slopes in the µ DC vsU plot: one is defined by the Nominal DC, to which SC FLL and AMF prescription tends for increasing U, and a second one defined by the purely numerical prescription Eq. 6.17, to which the non self-consistent procedure are more close. Furthermore, only Nominal and self-consistent DC schemes are capable to describe the Hund-metal crossover. As already stated in Subsec. 6.2.1 this consideration holds regardless the value of J/U and indeed n d tends to n val as U increases for all the values of Hund coupling we study (see Fig. 6.1). The same conclusions hold for the parent compound BaFe 2 As 2 , as we show in Fig. 6.5. The total correlated occupancy starts from the DFT value (n DFT ∼ 7.4) and tends to the nominal value n val = 6.0 as U increases while µ DC typically grows monotonically with the interaction. Interestingly, around U ∼ 8eV we encounter a zone in which the numerical convergence becomes difficult (dot-dashed lines in Fig. 6.5). We ascribe this behaviour to the proximity of Mott transition, which is expected for an integer filling [START_REF] De'medici | Hund's metals explained[END_REF]. 

g-type antiferromagnetic phase of CsFe 2 As 2 in the pd-model

We now move to the ab-initio simulation of the antiferromagnetic (AF) phase of CsFe 2 As 2 .

As already stated in Chap. 5, our ab-initio simulation in the d-model corroborates the experimental finding [START_REF] Marty | Competing magnetic ground states in nonsuperconducting ba(fe 1-x cr x ) 2 as 2 as seen via neutron diffraction[END_REF] that doping towards half filling the parent compound BaFe 2 As 2 results in a transition to a g-type antiferromagnetic state. We again impose this magnetic order in our mean-field calculation, but we here consider the arsenic p-orbital contribution as well. We rely on the discussion of the previous section and choose three DC counting prescription: self-consistent around mean field, SC fully localized limit and Nominal DC. There are indications [START_REF] Schickling | Antiferromagnetic order in multiband hubbard models for iron pnictides[END_REF][START_REF] Schickling | Gutzwiller theory of band magnetism in laofeas[END_REF], that including explicitly the p-orbital contribution in the model lowers the total magnetization. We are here interested in see how this affects the extension of the g-type antiferromagnetic zone in our simulation.

Our results are summarized in Fig. 6.6, where we also report the comparison with the d-model result in the plane of interaction against the correlated occupancy of a single iron atom. Although also in the pd-model SSMF overestimates the range of the magnetic zone, covering also a zone in which the compound is expected to be paramagnetic (PM) 7 , considering the p-orbital contribution results indeed in a reduction of the AF zone. Furthermore, the choice of double-counting seems crucial since it heavily affects this reduction. Among the chosen scheme, SC FLL DC shows the most effective lowering in the magnetization, while Nominal double counting gives a more similar result to the d-model. This suggest that the self consistency, i.e. the effect of the correlation, is crucial to determine some physical properties and the choice of double-counting prescription should be adapted to the physical model of interest.

In conclusion, our simulation opens several perspectives among which there are:

• detecting the proper form of double-counting to predict magnetic behaviour of compounds;

• investigating the competition of magnetic orders, e.g. single-stripe and g-type antiferromagnetism, in the 122-FeSCs;

• extending the study to other magnetic phases (ferromagnetism, ferrimagnetism, altermagnetism);

• generalizing the formalism to include incommensurate antiferromagnetic orders. 7 CsFe 2 As 2 shows a paramagnetic phase at its nominal occupancy n d = 5.5.

Chapter 7

Conclusions and perspectives

In this thesis, we have generalised the slave-spin formalism to broken-symmetry phases and studied the relation between antiferromagnetism, Hund physics and heavy-fermionic behaviour in iron-based superconductors (FeSCs). Thanks to a new variational formulation, we have proved that the different flavours of slave-spin method are indeed the same method, giving identical results to Kotliar and Ruckenstein slave-boson mean field, and thus to the Gutzwiller approximation.

Our approach further generalise the formalism to broken symmetry phases, among which we have investigated the Néel antiferromagnetism in the multi-orbital Hubbard model. We have exposed how, in the doped model close to half-filled, there exist a tendency towards phase separation. The exact nature of the phases involved in the phase separation strongly depends on the model studied and on Hund coupling, but we can conclude that Hund coupling favors the phase separation and enhances the antiferromagnetic solution.

Further developments involve investigation of other broken-symmetry phases (e.g. ferromagnetism, ferrimagnetism) as well as simulations on different lattice other than the Bethe lattice used in this thesis. In particular, we are interested in how frustration can affect the phase separation. Moreover, a rotational invariance generalization of the method is strongly desired, since it can allow to study non-collinear and incommensurate orders. We also studied the realistic case of CsFe 2 As 2 , for which we provide a Doniach-like phase diagram in the interaction-doping plane. We provided an analytical argument which proves the impossibility, in presence of local correlations only, of the system to realise an orbital-selective Mott phase as long as the hybridisation between the orbitals is present. This frustrated orbital-selective Mott transition regime, in which a coexistence of light and heavy electrons is expected, and the insurgence of an antiferromagnetic region close to half filling suggest a paradigm to search for d-electron heavy fermions. To corroborate the presence of the antiferromagnetic region, we simulated hole-doped CsFe 2 As 2 within DFT+SSMF. First, we studied the antiferromagnetic phase of BaFe 2 As 2 and CsFe 2 As 2 and we correctly reproduce the experimental result for which Cr-doping BaFe 2 As 2 causes a magnetic transition from single-stripe to gtype order, which suggest the existence of such a phase close to half filling. We then drawn phase diagrams in the interaction-occupancy plane and find a zone of antiferromagnetism, whose extension depends on Hund coupling, close to half filling. Perspectives on this subject involve the effect of non-local correlation on our paradigm. In this case, the system is expected to undergo an orbital-selective Mott transition, but the interplay between non-local correlations and the frustrated orbital-selective Mott transition in materials is an unexplored territory.

Nevertheless, d-model simulations within DFT+SSMF overestimate the actual extension of antiferromagnetic zone. For this reason, we generalised the formalism to take into considerations the ligand's orbital contribution, as well. This naturally raises the so called double-counting problem, since the Coulomb interaction contribution is counted both by DFT simulations and many-body approaches. We first established the accuracy of SSMF pd-model simulations with respect to DMFT, and then critically revised the double-counting problem in the paramagnetic phase of CsFe 2 As 2 and BaFe 2 As 2 . We suggest that double counting prescription affects the Hund-metal and atomic-limit physics, so that it should be treated with care. Once the accuracy of the method has been established, we studied the the antiferromagnetic phase of CsFe 2 As 2 of which we investigated the g-type antiferromagnetic phase close to half filling. We provided phase diagram in the interaction-correlated occupancy for several values of Hund coupling and we indeed found a reduction of the antiferromagnetic zone. Further developments in this subject involve on the one hand an optimisation of the double-counting problem, such as orbital-dependent double counting, as well as charge self-consistency procedures in the DFT+SSMF simulations, and on the other hand an investigation of other broken-symmetry phases, e.g. ferrimagnetism or altermagnetism.

and we consider the discrete representation [START_REF] John | Quantum many-particle systems[END_REF] of the mixed partition function:

Z b f = lim M→∞ ∏ ν ∏ iσ 1 N d f * iσν d f iσν exp -ϵ M ∑ ν=1 ( ∑ iσ f * iσ,ν f iσ,ν -f iσ,ν-1 ϵ + ∑ ijσ t ij q σ f * iσ,ν f jσ,ν-1 + ∑ iσ f * iσ,ν λ (2)
σµ f iσ,ν-1 ) . (A.8)

Our aim is to put the exponent in a quadratic form of the f variables, in order to perform a Gaussian integration and to get rid of the fermionic degrees of freedom. To do this, we use a series a unitary transformations [START_REF] Coleman | Introduction to Many-Body Physics[END_REF] for which, since the Jacobian linking the two basis is unity, the change in the integral measure is trivial. First, we move to k-space:

Z b f = lim M→∞ ∏ ν ∏ kσ 1 N d f * kσν d f kσν exp - M ∑ ν=1 ( ∑ kσ f * kσ,ν ( f kσ,ν -f kσ,ν-1 ) +ϵ ∑ kσ f * kσ,ν ε k q σ + λ (2)
σµ f kσ,ν-1 ) , (A.9)

where:

ε k = ∑ j̸ =i
t ij e -ik•(R i -R j ) . (A.10)

Then, we Fourier transform Eq. A.9. It is possible to prove [START_REF] Coleman | Introduction to Many-Body Physics[END_REF] that, as M → ∞, the first term in the exponent gives -iω n and thus we obtain the diagonal form:

Z b f = +∞ ∏ n=-∞ ∏ kσ 1 N d f * kσν d f kσν exp ∑ nkσ f * nkσ -iω n + ε k q σ + λ (2)
σµ f nkσ . (A.11) This is exactly in the Gaussian integral over Grassmann variables form. We integrate to obtain:

Z b f = ∏ nkσ -iω n + ε k q σ + λ (2) σ -µ (A.12)
which is independent on the fermionic degrees of freedom. Essentially, we are in presence of a free-particle problem where the hoppings, i.e. ε k , are renormalized by the interaction which is now taken into account by the condensed bosons. This kind of problem is way more manageable and we can determine physical properties via the saddle-point free energy, which reads as the sum of the two subsystem energies:

f = - k B T N ln Z = - k B T N ln Z b - k B T N ln Z b f = Ud 2 + λ (1) ∑ σ s 2 σ + e 2 + d 2 -1 -∑ σ λ (2) σ s 2 σ + d 2 - k B T N ∑ nkσ ln -iω n + ε k q σ + λ (2) σ -µ . (A.13)
where we have written the logarithm of the product as the sum of logarithms and N is the number of sites of the lattice. We underline that the bosonic variables are considered real. This is customarily done in the so called radial gauge [START_REF] Frésard | Slave bosons in radial gauge: the correct functional integral representation and inclusion of non-local interactions[END_REF][START_REF] Frésard | Slave bosons in radial gauge: A bridge between path integral and hamiltonian language[END_REF]. Indeed, the first constraint in Eq. 2.14 define a pseudo charge, which is a conserved quantity. This implies the local U(1) gauge invariance of the action, i.e. the bosonic fields can be written as b i (τ) → b i (τ)e iφ i (τ) , in the trajectory notation. When the constraint becomes a field in the functional approach, the phase can be chose to be real and thus we can assume b i (τ) = b * i (τ) ≡ b, in the saddle point approximation. The last term in Eq. A.13 is the free energy of a free-particle system. It can be written in a more familiar form if we substitute the sum over Matsubara frequencies with a contour integral [START_REF] Coleman | Introduction to Many-Body Physics[END_REF][START_REF] Altland | Condensed Matter Field Theory[END_REF]:

∑ n ln -iω n + ε k q σ + λ (2) σ -µ = dz 2πi g(z) ln ε k q σ + λ (2) σ -µ -z (A.14)
where g(z) is chosen to be the Fermi function whose poles are at z = iω n . Then, by integrating by part the last term, Eq. A.13 reduces to:

f = Ud 2 + λ (1) ∑ σ s 2 σ + e 2 + d 2 -1 -∑ σ λ (2) σ s 2 σ + d 2 - k B T N ∑ kσ ln 1 + e -β q σ ε k -µ+λ (2) σ . (A.15)
We can introduce a density of states ρ(ε) = 1 N ∑ k δ (εε k ) to pass to the energy space:

f = Ud 2 + λ (1) ∑ σ s 2 σ + e 2 + d 2 -1 -∑ σ λ (2) σ s 2 σ + d 2 -k B T ∑ σ +∞ -∞
dερ(ε) ln 1 + e -β q σ ε-µ+λ Algorithmically [START_REF] Chatzieleftheriou | Mott quantum critical points at finite doping[END_REF], we fix the target density and continuously adjust the chemical potential µ in order to reach it.

In the paramagnetic phase, it is known [START_REF] Fanfarillo | Electronic correlations in hund metals[END_REF][START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF] that the agreement between SSMF and DMFT improves substantially with an increasing number of orbitals1 . For this reason, and we indeed find this in our results in the ab-initio simulation of BaCr 2 As 2 (see Sec. 4.7), we expect that the satisfactory agreement between the two methods gets better with increasing number of orbitals. Finally, we conclude the section by investigating the transition from itinerant to localized magnetism in the single-band Hubbard model. By following Ref. [START_REF] Taranto | Signature of antiferromagnetic long-range order in the optical spectrum of strongly correlated electron systems[END_REF], in and potential ∆E tot = E AF p -E PM p energy of the two phases. Our results reproduce the ones obtained in Ref. [START_REF] Taranto | Signature of antiferromagnetic long-range order in the optical spectrum of strongly correlated electron systems[END_REF]: the antiferromagnetic phase is always stable and the stabilizing contribution is driven by potential energy in the low interaction regime and by kinetic energy for higher interaction. Indeed, with respect to the PM solution, the AF kinetic contribution to the energy for low U overcompensate the higher potential factor; the antiferromagnetic phase is then stabilized by the latter. Vice versa, for increasing U, the potential energy due to interaction increases and eventually overcome the kinetic gain of delocalizing electrons; thus the AF ordering is stabilized by the kinetic contribution the the total energy. It marks the transition between itinerant and localized magnetism. The crossover between this two behaviours, signalled by the crossing of ∆E k and ∆E p , happens inside the region of metallic solutions, before the appearance of the Mott transition marked by the "kink" (U ≃ 3.39D) in the kinetic and potential energy differences. The physical scenario depicted here by SSMF reproduces the considerations of DMFT [START_REF] Taranto | Signature of antiferromagnetic long-range order in the optical spectrum of strongly correlated electron systems[END_REF]; the only quantitative difference is the point of crossover that in DMFT happens for lower interaction strength (U ≃ 2.5D) than our SSMF calculation. However, this is not surprising since it is known [START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF] that SSMF overestimate the critical interaction strength for the Mott transition, with respect to DMFT. Thus, we can expect that all the physics is somehow "postponed" to higher U, when comparing SSMF and DMFT in this case.

C.2 SSMF vs DMFT in the multi-orbital Hubbard model

We now aim at validating our results in the multi-orbital Hubbard model as well. One of the main achievement of our variational method exposed in Chap. 4 is proving that SSMF gives identical results to Kotliar-Ruckenstein slave-boson formalism [START_REF] Kotliar | New functional integral approach to strongly correlated fermi systems: The gutzwiller approximation as a saddle point[END_REF] and hence to Gutzwiller approximation [62]. We have provided a signature of this equivalence in Fig. 4.3 for the Néel-antiferromagnetic phase of single-band Hubbard model, but this holds for the multi-orbital case, as well. For example, in clear that the two method give the same results also in this context; this further validates the robustness of our method. However, SSMF and SBMF are very close in spirit and actually both reduce to a (static) mean-field resolutive approach. We thus want to certify the validity of SSMF in the antiferromagnetic phase of the multi-orbital Hubbard model by comparing it with the more accurate DMFT approach, likewise we did in the previous section. To this aim, in Fig. C.5, we explicitly report the comparison with the results obtained by Hoshino and Werner in the two-orbital [START_REF] Hoshino | Electronic orders in multiorbital hubbard models with lifted orbital degeneracy[END_REF](left panel) and three-orbital [START_REF] Hoshino | Superconductivity from emerging magnetic moments[END_REF](right panel) Hubbard model. We plot the lines of vanishing magnetization (i.e. diverging magnetic susceptibility) and the agreement is quite good and actually improves for the three-orbital case. We ascribe it to the well established tendency [START_REF] Fanfarillo | Electronic correlations in hund metals[END_REF][START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF] of SSMF to perform better with a larger number of orbitals. As already stated in Chap. 4, the discrepancies are probably related both to finite temperature effect and to the more approximated treatment of the fluctuations performed by SSMF. We think this outcome of the method becomes even more pronounced in a degenerate model like the one we present here, but it turns out to be less and less prominent for high magnetization regimes, where the fluctuations are less relevant, and for a larger number of orbitals (like in Sec. 4.7). . By further increasing the interaction, the low-spin solution "departs" from half-filling, resulting in the sigmoidal shape reported for U = 4.2D and U = 5.0D; this feature survives for all to the values of interaction we have analysed. Surprisingly, the sigmoidal shape of m(n) is present in the finite J = 0.25U case, as well. For sufficiently high values of interaction (U ≳ 3.50D), the trend is the one reported in the right panel of Fig. D.2, which establish the existence of a high-to-low spin transition in doping, as well. However, since there is no low-to-high spin transition in the half-filled J = 0.25U magnetization, the sigmoidal shape cannot be traced back to it like in the J = 0 scenario. We speculate it to be more likely an outcome of the almost fully-polarized half-filled case, in combination with the higher values of J/U which tends to favor high-spin configuration. The system tends to prefer high-spin states but the balance between the closure of the antiferromagnetic gap and doping could lead to the transition (see Fig. 4.6). Since the gap shows an analogous behaviour, it suddenly shrinks upon doping, resulting in the jump of the magnetization.

system indeed realizes this particular condition.

where the slave-spin formalism allows to express the interacting Hamiltonian as dependent of slave-spin degrees of freedom only. Following the variational approach presented in Chap. 3, we assume a factorized ground state 2 (|Ψ tot ⟩ = |Ψ f p ⟩|Φ S ⟩) and perform a single-site approximation for the slave-spin wave function |Φ S ⟩ = ∏ i |ϕ i S ⟩. We define the energy functional E ≡ E |Ψ f ⟩, |Φ S ⟩, {λ iMσ } , E f , E s :

E = ∑ iMσ (ϵ iM -µ) ⟨Φ S |Φ S ⟩⟨ n f iMσ ⟩ f p -µ ∑ iLσ ⟨Φ S |Φ S ⟩⟨ np iLσ ⟩ f p + ′ ∑ ijMM ′ σ t MM ′ ij ⟨ f † iMσ fjM ′ σ ⟩ f p ⟨ Ô † iMσ ⟩ S ⟨ ÔjM ′ σ ⟩ S + ∑ ijLL ′ σ w LL ′ ij ⟨Φ S |Φ S ⟩⟨ p † iLσ piL ′ σ ⟩ f p + ∑ ijMLσ v ML ij ⟨ f † iMσ p jLσ ⟩ f p ⟨ Ô † iMσ ⟩ S + h.c. + ⟨ Ĥint Ŝz ⟩ S + ∑ iMσ λ iMσ ⟨ Ŝz iMσ ⟩ S + 1 2 -⟨ n f iMσ ⟩ f p -E f p ⟨Ψ f p |Ψ f p ⟩ -1 -E S [⟨Φ S |Φ S ⟩ -1] (E.3)
and follow the same minimisation procedure of Chap. 3. By minimising with respect to the Lagrange multipliers {λ iMσ }, E f p and E S we recover Eq.3.7 namely the aver- aged slave-spin constraint and the normalization of the factorised wave functions. By minimising with respect to the fermionic and spin wave functions 

Ĥf p = ′ ∑ ijMM ′ σ t MM ′ ij ⟨ Ô † iMσ ⟩ S ⟨ ÔjM ′ σ ⟩ S f † iMσ fjM ′ σ + ∑ ijMLσ v ML ij ⟨ Ô † iMσ ⟩ S fiMσ pjLσ + h.c. + ∑ ijLL ′ σ w LL ′ ij p † iLσ pjL ′ σ + ∑ iMσ ϵ iM -µ -λ iMσ + λ 0 iMσ n f iMσ -µ ∑ iLσ np iLσ (E.5)
where:

h iMσ = ′ ∑ jM ′ t MM ′ ij ⟨ ÔjM ′ σ ⟩ S ⟨ f † iMσ fiM ′ σ ⟩ f p + ∑ jL v ML ij ⟨ f † iMσ pjLσ ⟩ f p . (E.6)
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 11 FIGURE 1.1: Doniach phase diagram.If the Kondo scale is lower than RKKY's one, the system realizes an antiferromagnet. By tuning the antiferromagnetic interaction, it is possible to drive the system towards a heavy-fermion behaviour. Picture from Ref.[START_REF] Coleman | Introduction to Many-Body Physics[END_REF].

FIGURE 1 . 2 :

 12 FIGURE 1.2: Crystal structure of 122-(left panel) and 11-(right panel) family of iron-based superconductor. Red and yellow spheres represent iron and the tetrahedrally coordinated ligand atoms, respectively. The blue spheres for 122-FeSCs are interplanes alkaline atoms, like Ba or Cs.Picture adapted from Ref.[START_REF] Villar | Heavy fermions and Hund's metals in iron-based superconductors[END_REF].

FIGURE 1 . 3 :

 13 FIGURE 1.3: Phase diagram of 122-family of iron-based superconductors in the temperature-doping plane. T c and T N represent the critical and Néel temperature for superconducting and antiferromagnetic phase, respectively. T 1 and T 2 indicate magnetic transition[START_REF] Lorenzana | Competing orders in feas layers[END_REF][START_REF] Ae Böhmer | Superconductivity-induced re-entrance of the orthorhombic distortion in ba1x k x fe2as2[END_REF] between spindensity waves of different symmetry. T s marks a structural transition. The shaded yellow region marks the isovalent substitution of potassiumrubidium-cesium (K-Rb-Cs). Picture adapted from Ref.[START_REF] Hardy | Strong correlations, strong coupling, and s-wave superconductivity in hole-doped bafe 2 as 2 single crystals[END_REF].
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 15 FIGURE 1.5: Magnetic orders in iron-based superconductors: paramagnetic unit cell (top left); g-type antiferromagnetism (top right), analogous of in-plane Néel antiferromagnetism; stripe and double-stripe antiferromagnetism, bottom left and right respectively. For magnetic phases, red and blue dots represent up and down majority spin, respectively. Ligands are depicted in grey. The author sincerely acknowledges Dr. TommasoGorni for the realization of this scheme.
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 17 FIGURE 1.7: Quasiparticle weight as a function of the interaction for the half filled two-orbital (top panel) and three-orbital (bottom right panel) Hubbard model. The bottom left and bottom center panel depict the three orbital model with one and two electrons in three orbitals, respectively. The quasiparticle weights are calculated within SSMF, for different valuesof Hund coupling (J). Pictures adapted from Ref.[START_REF] De | Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund's Physics in Fe-Superconductors[END_REF] 
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 18 FIGURE 1.8: Local magnetic moments for hole-doped BaFe 2 As 2 . The inset shows the result obtained as a function of the interaction within DFT+SSMF. The saturation is influenced by the Mott transition at halffilling. Picture from Ref.[42]
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 19 FIGURE 1.9: Phase diagram of the two-orbital Hubbard model in the interaction vs bandwidth ratio, depicted for several values of Hund coupling. The onset of different bandwidth results in the zone of an orbital selective Mott transition. Picture from Ref.[32].
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 110 FIGURE 1.10: Mass enhancement vs doping for BaFe 2 As 2 . Top panel) experimental results of Sommerfeld coefficient, optical conductivity, ARPES and quantum oscillation. Bottom panel) Theoretical simulation within DFT+SSMF, where also the results for KFe 2 As 2 are reported. Doping the system towards half filling leads to enhanced, and increasingly selective, correlations. Picture from Ref.[47].
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 241 FIGURE 4.1: Total staggered magnetization of the half-filled single-band Hubbard model on a Bethe lattice (half bandwidth D).The system becomes an antiferromagnetic insulator, developing a finite magnetization m, as soon as the interaction strength U differs from zero.
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 42 FIGURE 4.2: Total staggered magnetization (top panel) and antiferromagnetic gap (bottom panel) for the doped single-band Hubbard model on a Bethe lattice; U = 1.0D. The system moves from an antiferromagnetic to a paramagnetic state, as the gap closes.
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 43 FIGURE 4.3: Phase diagram of the single-band Hubbard model, in the interaction-doping plane. The red line traces the points of vanishing magnetization: we report the solution within SSMF as solid line, while the correspondent solutions within SBMF are marked as red dots. In these points, the paramagnetic metal has a diverging susceptibility to a staggered magnetic field. The dashed line is the spinodal, where the charge compressibility κ = dn/dµ diverges. The light-grey zone draws the zone of phase separation between the paramagnetic metal and the half-filled antiferromagnetic insulator.
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 44 FIGURE 4.4: Density (top panel) and total energy (bottom panel) vs chemical potential, at U = 1.0D.
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 46 FIGURE 4.6: Mechanism behind the instability of the antiferromagnetic metal. Upon (hole-)doping the chemical potential enters the lower band while the gap shrinks; the competition of these behaviours eventually leads to a higher value of µ at lower density.
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 47 FIGURE 4.7: Two-orbital Hubbard model. The results are presented both in absence of Hund's coupling and for a finite J/U (J = 0.1U and J = 0.25U). In the top-right panel, we show the on-site magnetization of the half-filled antiferromagnetic insulator. In the remaining ones, we report the phase diagrams for three choices of Hund's coupling relative strength. The light-grey areas represent the phase separation zones, the coexisting phases of which are reported in blue triangles; the red dots mark a second order transition; the dashed line is the spinodal, where the compressibility diverges.
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 48 FIGURE 4.8: Prototypical dependencies of the density (top panels) and corresponding free energy (bottom panels) as function of the chemical potential. Red and blue dots represent the antiferromagnetic and the paramagnetic phase, respectively. The blue dot-dashed line shows the constrained paramagnetic solution obtained without allowing for the symmetry breaking. a) Gives a second-order transition between an AF metal and a PM metal (representative of J = 0, U/D ≲ 1.9; J = 0.1U, 0.60 ≲ U/D ≲ 1.15 in the 2-orbital model and J = 0, for all U ≲ 4.0; J = 0.1U, U/D ≲ 1.5 in the 3-orbital model). b) Gives rise to a zone of phase separation between AF insulator and AF metal at low doping, and a 2nd-order transition at larger doping between an AF metal and a PM metal (representative of J = 0, 1.9 ≲ U/D ≲ 2.5; J = 0.1U, U/D ≳ 1.15 in the two-orbital model and J = 0.1U, U/D ≳ 1.5 in the three-orbital Hubbard model). If the sigmoid is much more pronounced the lower endpoint of the Maxwell construction can end up on the PM branch (representative of large U/D in the 1-orbital model and in the multi-orbital cases at J/U = 0.25, J = 0, U/D ≳ 2.5 in the 2-orbital model J = 0, U/D ≳ 4.0 in the 3-orbital model). As in Fig.4.3 the coexisting phases are marked by blue triangles. c) Gives two successive zones of phase separation (AFI-AFM, green diamonds) and (AFM-PM, blue triangles) with a zone of stable AFM in between (representative of J = 0.25U and with U/D ≳ 1.66 in the three orbital Hubbard model) as long as the upper red dashed line is on the right of the lower red dashed line. When they align, the two zones of phase separation touch and a coexistence of three phases is realized (a triple point, at U/D ≃ 1.66); for U/D ≲ 1.66 a unique Maxwell construction and phase separation zone (AFI-PM) remain.
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 49 FIGURE 4.9: Three-orbital Hubbard model. On-site magnetization (topright panel) for the AF insulator at half-filling and phase diagrams for three choices of Hund's coupling relative strength: J = 0; J = 0.1U; J = 0.25U. The light-grey zones represent the phase separation zones; the red dots indicate a second order transition; the dashed lines is the spinodal, where the compressibility diverges; for J = 0.25U, the solid black line indicates the region in the phase diagram equivalent to the triple point.
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 410 FIGURE 4.10: Quasiparticle weight Z as a function of interaction strength at half-filling for all the models analyzed in this work (left panel), and as a function of doping for several values of U/D for the two-orbital model at J/U = 0.1. The kink in doping signals where the AF and PM metals connect and typically marks the lowest Z reached for each value of U/D.A larger number of orbitals and smaller value of J/U allow for more fluctuations between the local configurations and typically lead, in a magnetic phase, to more correlated states (e.g. the 3-orbital model at half-filling and J = 0).

FIGURE 4 .

 4 FIGURE 4.11: Kinetic(∆E k = E AF k -E PM k ) and potential (∆E p = E AF p -E PMp ) energy differences between AF and PM phase. The total energy difference ∆E tot = ∆E k + ∆E p < 0, hence AF is always the stable phase. Data are plotted for J = 0 (dots) and J = 0.25U (triangles) in the three-orbital Hubbard model. The dashed line marks the first-order low-high spin transition of the J = 0 case, as reported in Fig.4.9.
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 412 FIGURE 4.12: Comparison between DFT+SSMF and DFT+DMFT for the G-type AF metallic phase of BaCr 2 As 2 . DMFT data from[START_REF] Edelmann | Chromium analogs of iron-based superconductors[END_REF], where all the DFT details are reported in Sec.II. In both methods the same parameters are used: J = 0.153U; n = 4 for the U-scan, and U = 2.8eV for doping scan (inset).

FIGURE 5 . 2 :

 52 FIGURE 5.2: Quasiparticle weights vs interaction strength (in unit of 2t 1 ) for the two-band Hubbard model. The model is solved within SSMF for several values of inter-band hybridisation V nl /2t 1 = 0, 0.1, 0.18, 0.25. J = 0.25U and t2 = 0.1t 1 are fixed. Full and empty dots point the quasiparticle weight of the narrower and wider band, respectively. As soon as V nl ̸ = 0 a frustrated orbital-selective Mott phase occurs. Picture from Ref.[119]
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 53 FIGURE 5.3: Sommerfeld coefficient γ as a function of the Fe filling and Cr percentage, for the 122-family end members. Solid lines with small points represent the DFT+SSMF solutions, while the larger points stand for the experimental measurements. The red, empty circle for CsFe 2 As 2 indicates the change in the behaviour of the compound (see text).

FIGURE 5 . 5 :

 55 FIGURE 5.5: Cr-doped BaFe 2 As 2 phase diagram (left panel, picture from Ref.[29]) and ab-initio simulation within DFT+SSMF (right panel) as a function of the chromium concentration. For DFT+SSMF U = 2.8eV and J = 0.15U [122].
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 56 FIGURE 5.6: Phase diagram of Cr-doped CsFe 2 As 2 in the interactionoccupation plane, obtained within DFT+SSMF simulation. The solid lines represent the frontier of vanishing magnetization for the compound, where a second-order antiferromagnetic(AF)-paramagnetic(PM) transition occurs. The dashed zones indicate regions of phase separation.

  FIGURE 5.7: DFT+SSMF simulation of the paramagneticantiferromagnetic transition of CsFe 2 As 2 . Top panels: Orbital-resolved quasiparticle weights as a function of the interaction strength (top left panel) and of the iron electronic occupancy (top right panel). Once in the antiferromagnetic phase, Z increases with the magnetization and the system is gradually less correlated. Bottom panels: Total staggered magnetization as a function of U and n d (bottom left and right panel, respectively). The decorrelation is more pronounced the closer the staggered magnetization is to saturation. For the U-scan n d = 6.0, while for the doping scan U = 3.0eV. In both simulation, J = 0.15U, in agreement with cRPA value[START_REF] Miyake | Comparison of ab initio low-energy models for lafepo, lafeaso, bafe2as2, lifeas, fese, and fete: electron correlation and covalency[END_REF]. Z increasing with U is a possible source of NTE.
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 63 FIGURE 6.3: Orbital-resolved quasiparticles weights for the d-model DFT+SSMF simulation of CsFe 2 As 2 . We fix J = 0.16U and n d = 5.5.
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 64 FIGURE 6.4: Double-counting chemical potential (left panel) and total correlated occupancy (right panel) for different recipes of DC (see text). The results are obtained within slave-spin formalism. The total occupancy is n tot = 23 and we fix J = 0.16U.
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 65 FIGURE 6.5: Double-counting chemical potential (left panel) and total correlated occupancy (right panel) for BaFe 2 As 2 , within SSMF (J = 0.16U). The dot-dashed lines defines a problematic zone of numerical convergence, probably ascribable to the occurrence of Mott transition. In the total correlated occupancy, we also report the DMFT results (black triangles and diamonds) for J = 0.12U.
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 66 FIGURE 6.6: Phase diagram of CsFe 2 As 2 in the interaction-(correlated)occupancy plane. Close to half-filling there exist a zone of g-type antiferromagnetism. The lines represent the points of vanishing magnetization, where the compound becomes a paramagnet.
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 1 FIGURE C.1: SSMF vs DMFT staggered magnetization in the one-band Hubbard model at half-filling.

  Fig. C.3 we study the relative energy behaviour of the paramagnetic (PM) and antiferromagnetic phases (AF). Precisely, we report the comparison of the total∆E tot = E AF tot -E PM tot , kinetic ∆E tot = E AF k -E PM k

FIGURE C. 2 :

 2 FIGURE C.2: DMFT in the one-band Hubbard model: AF insulator -PM metal transition in doping. The range of chemical potential for which the AFI and PM coexist implies a first-order transition between them, and an unstable branch with negative compressibility joining them, which we could converge for a range of doping.

  FIGURE C.3: Energy differences between the antiferromagnetic (AF) and paramagnetic (PM) phases of the single-band Hubbard model within DMFT (left panel, picture from Ref.[91]) and SSMF (right panel). Red dots, blue triangle and purple diamond represent kinetic∆E tot = E AF k -E PM k , potential ∆E tot = E AF p -E PM pand total ∆E tot = E AF tot -E PM tot energy differences, respectively. The "kink" marks the Mott transition of the paramagnetic solution.
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 41 FIGURE C.4: Total occupancy as a function of chemical potential of the paramagnetic solution of the two-orbital Hubbard model on a Bethe lattice (half-bandwidth D); the results are calculated for several values of interaction strength (U = 2.10D, U = 3.0D and U = 4.0D) and for J = 0.25U. Solid red lines draw slave-boson mean-field (SBMF) solutions; red dots indicate the slave-spin mean-field (SSMF) results. It is clear that the two methods give identical outcomes.

  

  1-x K x Fe 2 As 2 with x = 0.4, while for the electron-doped region it is T c ∼ 23K for Ba(Fe 0.93 Co 0.07 )As 2 . Further doping the compound towards half-filling leads to the end member of the family, KFe 2 As 2 , whose critical temperature is ∼ 3K and a nominal iron occupancy of 5.5 electrons in 5 orbitals. Isovalent substitution of K with Rb or Cs, i.e. chemical pressure, increases the distance between iron atoms.

FIGURE 1.4: Experimental Sommerfeld coefficient (blue dots) as a function of doping for Ba 1-x K x Fe 2 As 2 , Ba(Fe 1-x Co x ) 2 As 2 and AFe 2 As 2 , with A = Rb, Cs.

  Density vs chemical potential, for several values of interaction strength. MC stands for Maxwell construction; the endpoints marking the coexisting phases are depicted in triangles, with colors in agreement with the lines. The system separates in an AFI and PM metallic (dash-dotted lines) mixture and the possible stable antiferromagnet is cut away from the phase separation.
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  FIGURE 6.2: Orbital-resolved occupancies (top panels) and quasiparticles weights (bottom panels) for the 3d correlated iron orbitals of CsFe 2 As 2 .
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by construction. Apart from the latter, the double-counting chemical potential is a function of U and of a certain occupancy. Typically, it grows monotonically with

  3 , we are left with two eigenvalues problems, whose Hamiltonians are:

	ĤS = ∑	h iMσ	Ô †	λ iMσ	Ŝz iMσ + Ĥint	Ŝz	(E.4)
	iMσ		iMσ				
	and:						

iMσ + h.c. + ∑

Appendix B Mathematical comments on U(1)-formalism

The temperature scale has a different physical meaning for the lattice description of heavy fermions, since the Kondo temperature is defined in the context of a single magnetic impurity.

A striking example of the enhanced Sommerfeld coefficient of heavy fermions with respect to normal metal is shown by CeCu 6 , for which γ = 1600mJ/mol -1 K -2 , while the value for the face-centered cubic copper is 0.695 in the same unit.

Same qualitative results are found if arsenic is substituted by phosphorus[START_REF] Paglione | High-temperature superconductivity in iron-based materials[END_REF].

The term has been introduced for the first time in the context of FeSCs in Ref.[START_REF] Zp Yin | Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides[END_REF] 

The name comes form the two-faced ancient-Roman god Ianus.

J is the coefficient of pair-hopping processes only if the basis functions are chosen to be real.

Given two generic operator A and B, the mean-field approximation reads: AB = ⟨A⟩⟨B⟩ + ⟨A⟩δB + δA⟨B⟩ + δAδB where δA (and δB) is an operator representing the deviation from the average value.

Formally, the decoupling factorize the Hilbert space in the product of a pseudo-fermionic and slavespin subspaces, so that the averages of a fermionic operator, as well as a slave-spin one, should be intended as restricted to these subspaces. This point will be made explicit in Chap. 3. Here, we avoid it to lighten the notation.

The choice of adopting the particle-hole symmetric form of the interaction or not is irrelevant for the present discussion, since not choosing it simply results in a shift of the chemical potential and of the total energy.

The interaction is both local, due to the density-density Hubbard interaction, and non-local, due to the hopping terms which generate inter-site interactions among the slave-spins.

The formalism is easily extended to other commensurate broken-symmetry phases, by defining a suitable supercell.

At this stage, the relative positions of the inequivalent sites within the unit supercell are irrelevant, since they can be reabsorbed in the definition of the Fourier transform.

Note that the i = j term is included here and that γ mm ′ k does not depend on j due to the translational invariance of the sublattices.

This condition holds for t

2g if one assumes cubic symmetry for e g and the invariance of Hamiltonians under orbital and spin rotations as well as charge gauge symmetry. However, this agrees with the hypothesis leading to Eq. 2.7 and it is usually adopted in practice.

This situation is physically analogous to the liquid-gas isotherm transition (see e.g.[START_REF] Van Dongen | Phase diagram of the extended hubbard model at weak coupling[END_REF][START_REF] Herbert B Callen | Thermodynamics and an introduction to thermostatistics[END_REF])

In the language of the first-order isothermal liquid-gas transition, they are called overheated and undercooled branches.

In our particle-hole symmetric model, the reasoning is perfectly specular for electron doping.

In our degenerate model, Z m = Z, ∀m = 1, . . . , M, with M number of orbitals.

We want to specify that the agreement here is excellent regarding static quantities, like the staggered magnetization. Dynamical physical observables could differ more, especially in strong quantumfluctuation regimes, where DMFT is expected to perform better.

The system's energy also contains an interaction term that we reasonably suppose to be regular.

We generalize here the model result of Ref.[START_REF] De | Mott transition and kondo screening in f-electron metals[END_REF]. Evidences of this behaviour can be found in Refs.[START_REF] De'medici | Orbital-selective mott transition in multiband systems: Slave-spin representation and dynamical mean-field theory[END_REF][START_REF] Koga | Orbitalselective mott transitions in the degenerate hubbard model[END_REF][START_REF] Fabian | Is the orbital-selective mott phase stable against interorbital hopping?[END_REF] 

In what follows we require that the hybridisation is nonzero almost everywhere, or at least it nullifies in a set of integrable points. The presence of hybridisation is indeed the physical fundamental ground of the present problem.

We ignore here the points where more than two bands intersect.

The specific heat and linear thermal expansion coefficient measurements shown in Fig.5.4 have been done by Anmol Shukla, Frédéric Hardy, Amir-Abbas Haghighirad, Thomas Wolf, Rolf Heid and Christoph Meingast at the Karlsruhe Institute of Technology.

It is important to underline that here and in other 122-FeSCs such as (Ba 1-x K x )Fe 2 As 2 the heat capacity is dominated by lattice (i.e. phonon) contribution so that electronic measurement has to be properly taken into account in the experiments by subtracting the phonon background. The details can be found in Refs.[START_REF] Hardy | Strong correlations, strong coupling, and s-wave superconductivity in hole-doped bafe 2 as 2 single crystals[END_REF][START_REF] Hardy | Evidence of strong correlations and coherence-incoherence crossover in the iron pnictide superconductor kfe 2 as 2[END_REF].

For x ≤ 0.03 this is exactly the case, as confirmed in the bottom right panel of Fig.5.4 by the quadratic dependence of the resistivity upon the temperature.

To be consistent with it, the DFT starting point is obtained in local spin density approximation (LSDA) rather than in LDA.

The ab-initio paramagnetic simulation implies that the double-counting correction has to be expressed in terms of the total correlated occupancy only. Thus, we impose n d σ = n d /2.

The conversion is established trying to match the quasiparticle weight behaviour in the multi-orbital Hubbard model with density-density (SSMF) and Kanamori (DMFT) form of the interaction

DMFT simulations have been performed by Alexander Kowalski and Giorgio Sangiovanni at the University of Wurzburg, with continuous-time quantum Monte Carlo as impurity solver.

We underline that Nominal double-counting calculations show a crossover happening very close to the cRPA estimated value of interaction U ∼ 5.2eV.

In the paramagnetic phase, this requires an adjustment of the J/U value.

The actual convergence of the connecting branch is a hard task; the dashed line reported in Fig.D.2 is artificial and added to better explain the reasoning. It does not correspond to any converged solution.

We remark here that since the local interaction affects the d-manifold correlation only, the slavespin correspondence, i.e. d( †) iMσ → f ( †) iMσ Ô( †) iMσ , does not involve p electrons.

We note that the Hilbert space is properly enlarged to take into consideration the p contribution as well, so that the fermionic wave function is describes both the d and p electrons.

All the terms descending from the derivative of ⟨Φ S |Φ S ⟩ and ⟨Ψ f p |Ψ f p ⟩, hidden in ⟨ Ĥint ŜZ ⟩, are absorbed in the Lagrange multipliers E f p and E S
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Appendix C SSMF and Néel antiferromagnetism: benchmarks with DMFT Appendix D Magnetization and triple point of the three-orbital Hubbard model115

Appendix E Slave-spin formalism in pd-model

Appendix F Derivation of around mean-field double counting correction

With the usual conversion Eq. 6.5, the nominal double-counting correction reads:

J (n val -1) . (6.15)

Non self-consistent double-counting corrections

All the double-counting corrections introduced so far depend on two factors: the interaction, via U and J, and some occupancy of the correlated orbitals ( n or n d for AMF and FLL, and n val for nominal DC). The main difference between them lies in the selfconsistency of the procedure. Indeed, Eq. 6.11 and Eq. 6.14 involve the average occupancy of the correlated orbitals, i.e. n = 1 2M ∑ mσ ⟨ nmσ ⟩, a quantity that is numerically updated at each step of convergence. Conversely, the nominal double counting fixes the occupancy to the nominal value. Following this path, another possibility to deal with DC is to slightly modify the AMF and FLL corrections, by substituting n with the total occupancy of the correlated orbitals as derived from DFT (n DFT ). These corrections start from the assumption that DFT already gives an appreciable estimation of the occupancy of the correlated orbitals. In this perspective, Eq. 6.11 and Eq. 6.14 read:

), (6.16) respectively. Fixing n to its DFT value makes Eq. 6.16 a non self-consistent procedure. This is the main difference with Eq. 6.11 and Eq. 6.14 that, in turn, take care of the numerical adjustment of n d in searching for solution. To distinguish them from Eq. 6.16, we sometimes refer to Eq. 6.10 and Eq. 6.12 as self-consistent (SC) AMF and FLL doublecounting prescription, respectively. Along the same line of reasoning of Eq. 6.16, one can imagine to fix the total correlated occupancy to the DFT value, and to obtain the correct µ DC by numerically imposing the equality of the calculated n d to it [START_REF] Karolak | Electronic correlation effects in transition metalsystems: From bulk crystals to nanostructures[END_REF]:

.17)

Paramagnetic phase of 122-family FeSCs in pd-model

We now want to investigate the paramagnetic phase of 122 iron-based superconductors. We are particularly interested in the effect of Coulomb interaction on FeSC compounds and to study Hund physics, namely orbital differentiation and quasiparticle

Appendices

Appendix A

Saddle point approximation for the slave-boson method

In this Appendix, we report in the detail the functional integral representation of the slave-boson method and its saddle point approximation presented in Sec. 2.2. For a consistent introduction about the mathematical background of functional integral we refer to Refs. [START_REF] Coleman | Introduction to Many-Body Physics[END_REF][START_REF] Phillips | Space-time approach to non-relativistic quantum mechanics[END_REF][START_REF] Greiner | Field quantization[END_REF][START_REF] John | Quantum many-particle systems[END_REF][START_REF] Das | Field Theory: A Path Integral Approach[END_REF].

The slave-boson formalism leads the single-band Hubbard Hamiltonian of Eq. 2.11 to the equivalent constrained Hamiltonian problem Eq. 2.16:

where the bosonic species { êi , ŝi,↑ ŝi,↓ di } are introduced and:

We are in presence of a constrained-minimum problem, whose constraints are

in which the physical properties of the system can be obtained by minimising the free energy. In order to do that, we preliminarily need to calculate the partition function.

The coherent-state functional representation [START_REF] John | Quantum many-particle systems[END_REF] of this is:

i dλ

iσ ]e -S[e i ,s iσ ,s i σ,d i , f iσ ] , (A.4) where {e

iσ are the coherent components of the bosonic and fermionic operators, respectively; the former are ordinary complex numbers, while the latter are Grassmann variables. We prefer a more compact notation for which D[e i ] ≡ D[e * i (τ)e i (τ)] (and similarly for all the other bosonic and fermionic fields) and the action is a functional of all the bosonic and fermionic degrees of freedom. The action can be expressed as the sum of a purely bosonic (S b ) and a mixed (bosonic and fermionic S b f ) part, which depends on the bosonic variables via the operator in Eq. A.2:

where µ is the chemical potential fixing the number of electrons, whereby it appears for the fermionic variables only. From Eq. A.5, we obtain that the partition function in Eq. A.4 can be factorized as the product:

i dλ [START_REF] Steglich | Superconductivity in the presence of strong pauli paramagnetism: Cecu 2 si 2[END_REF] iσ ]e -S b [e i ,s iσ ,s i σ,d i ]

In what follows, we focus on the mixed partition function Z b f . Thanks to the rules of functional integration and Grassmann Gaussian integrals [START_REF] John | Quantum many-particle systems[END_REF][START_REF] Greiner | Field quantization[END_REF][START_REF] Das | Field Theory: A Path Integral Approach[END_REF], it is possible to integrate out the fermionic degrees of freedom and treat a more manageable form of the hopping term. The simplest approach [START_REF] Kotliar | New functional integral approach to strongly correlated fermi systems: The gutzwiller approximation as a saddle point[END_REF] is to perform a saddle-point approximation in which all the bosonic degrees of freedom, such as the Lagrange multiplier, are assumed to be site and time independent 1 . This is analogous of performing a mean field of the bosonic variables. As a consequence, the constraints in Eq. A.3 are no longer enforced exactly and thus the choice of the operator as in Eq. A.2 is now binding.

In this approximation, we define the quantity:

1 Physically, this is equivalent to assume that the slave-boson variables condensate [START_REF] Pines | The Theory Of Quantum Liquids (volume Ii). Advanced book classics[END_REF].

Appendix B

Mathematical comments on U(1)-formalism

In this Appendix, we report the formal derivation of the mean-field equations for the slave-spin U(1)-representation. The aim is to better clarify the origin of the extra field in the fermionic Hamiltonian, i.e. λ 0 , which represents the main difference between the original (non variational) Z2-representation and the U(1) formalism. With our new formalism exposed in Chap. 3, the λ 0 of Z2and U(1)slave-spin representations coincide.

We begin considering Eq. 2.47, namely the slave-spin self-consistent Hamiltonians in terms of Schwinger bosons:

As already anticipated in Sec. 2.4, the next step is to expand

with respect to Ô -⟨ Ô⟩, with Ô = na,b , â † b. We first consider the projector operators, that can be expressed as follow:

by having defined:

In Eq. B.3, the presence of δ ensures the factorizability of 1 + 2δ ± ⟨ na imσ ⟩ -⟨ nb imσ ⟩ since it is possible to adjust δ in order to avoid divergences. We Taylor expand the second root around the deviation of na imσnb imσ from its average value to obtain:

from which we deduce the expansion for the projectors:

Since by the constraint Eq. 2.43 follows that

since, by virtue of Eq. 2.43, it is easy to recognize in the first factor the average values of the projectors.

We then expand the dressed operator of Eq. B.2 up to the linear order in the deviation operator δO, where O = P± imσ , â † imσ bimσ . In the usual mean-field approximation, we get:

or, by Taylor expanding the projectors as Eq. B.7:

In Eq. B.9, we have resorted Eq. B.4. Furthermore, we have defined

and we have taken δ → 0. Moreover, we omit the constant term 2⟨ P+ imσ ⟩⟨ â † imσ bimσ ⟩⟨ P- imσ ⟩, since it does not give any operatorial contribution. In agreement with Eq. 2.51, we compact the notation and enforce the constraint Eq. 2.43 to write:

In what follows, we mainly focus on the slave-spin Hamiltonian, rewritten in terms of Schwinger bosons. We start substituting Eq. B.11 in the hopping term of Ĥs in Eq. B.1:

ji by symmetry and with some simple algebra, we write as:

As in the Z2-representation, we introduce the transverse field for the spin Hamiltonian:

and, since the constraint Eq. 2.43 ensures that ⟨ ôimσ ⟩ = ⟨ ôimσ ⟩, we express Eq. B.1 as

The second line in the Schwinger-boson Hamiltonian is responsible of the natural appearance of λ 0 imσ in the U(1)-representation. Indeed, we enforce Eq. 2.43 to move this term into the pseudo-fermionic Hamiltonian:

where we shift the energies by -2

We finally introduce:

and thus we recover the expression in Eq. 2.53.

Appendix C

SSMF and Néel antiferromagnetism: benchmarks with DMFT

In this Appendix, we explicitly present some benchmarks of the method introduced in Chap. 3 and Chap. 4.

In the first section, we provide comparisons with dynamical mean-field theory for the single-band Hubbard model, both at half-filling and out of half-filling, for which we confirm the robustness of the conclusions made in Chap. 4. We report the detailed study of the itinerant-to-localized magnetism, as well.

In the second section, we extend our benchmarks to the multi-orbital model, providing comparison of phase diagrams for the two-and three-orbital case.

C.1 SSMF vs DMFT in the single-band Hubbard model

Preliminarily, we want to test the accuracy of slave-spin mean-field (SSMF) with the more accurate and well established dynamical mean-field theory (DMFT). As impurity solver, we use Exact Diagonalization [START_REF] Caffarel | Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity[END_REF] at T = 0 with a total N s = 6 orbitals (5 sites in the bath and 1 on the impurity).

The staggered magnetization as a function of the interaction strength (in unity of halfbandwidth) is reported in Fig. C.1: the agreement between the two methods is very good, especially in the high magnetization regime, where the quantum fluctuations are supposed to be strongly reduced in the ordered phase. We also want to investigate the robustness of our negative-compressibility result, which implies the phase separation in the doped antiferromagnetic (AF) metal near halffilling. In Fig. C.2, we report DMFT calculations for the Bethe lattice, at zero temperature. We fix the interaction value to U = 2.0D. Our result proves that does exist a range of chemical potential in which the system shows a coexistence of two phases: an antiferromagnetic insulator (AFI) at half filling, i.e. n = 1, and a paramagnetic (PM) metal for finite doping. It is not easy to stabilize the unstable branch connecting the two stable solutions. Appendix D

Magnetization and triple point of the three-orbital Hubbard model

In this Appendix, we want to complete the analysis, presented in Chap. 4 of the Néel antiferromagnetism in the three-orbital Hubbard model, within slave-spin mean-field (SSMF) approach. We preliminarily focus on the case in absence of Hund's coupling. We show the behaviour of the magnetization as a function of doping for several values of interaction strengths to analyse the effect of the low-to-high spin transition we register for this model at half-filling. Contextually, we also draw the magnetization for finite J = 0.25U to highlight some features of the model. We then discuss the evolution of the system towards the triple point we find in the phase diagram, and provide the n(µ) curves to explain this point.

D.1 Magnetization in the three-orbital Hubbard model

Our analysis of the Néel antiferromagnetism in the three-orbital Hubbard model pointed out that, in the half-filled case (see Fig. 

D.2 Triple point analysis

We now want to deal with the triple point of If we now decrease the interaction, the zone of stability is reduced. Indeed, as we show for U = 1.70D in Fig. D.3, the two points of coexistence of the AFM come closer and closer; the system still realizes the double phase separation, but the extension of the stable antiferromagnetic solution is consistently reduced. Further decreasing of the interaction results in the situation depicted for U = 1.66D, orange line in Fig. D.3: the system directly undergoes a phase separation between an AFI and a PM metal, without passing for the stable AFM solution (even if it exist); the corresponding double bowshaped feature of the energy (see Fig. 4.8c) is still present, but the second bow is cut away from the first one. The equal area construction still holds [START_REF] Herbert B Callen | Thermodynamics and an introduction to thermostatistics[END_REF] and sum up all the shaded areas reported in Fig. D.3. It is very hard to find the exact value of interaction that realizes the triple point, but the reasoning here presented clearly shows that the Appendix E

Slave-spin formalism in pd-model

In this Appendix, we generalise the Z2 slave-spin formalism to the pd-model introduced in Chap. 6. Through the same variational approach of Chap. 3, we derive the mean-field equation and correct λ 0 to properly consider the p-orbital contribution.

We start considering the Hamiltonian of a pd-model. We explicitly treat local correlation only within the d-manifold and limit the discussion to a density-density form of the interaction. The total Hamiltonian is the sum of a kinetic contribution H 0 , dealing with all the hoppings (dd, pp, pd), and an interaction term, namely:

where nd iMσ = d † iMσ diMσ -1 2 . The composite index M = (mν) labels the orbital and the intra-cell lattice site with a Latin and a Greek letter, respectively. The lattice positions are given by R iν = R i + ρ ν , the Bravais-lattice points being R i . The primed summation excludes all the onsite contributions, i.e (iM) = (iM ′ ), so that all onsite hoppings within the correlated manifold are zero. In the Z2 slave-spin representation (see Chap. 2 and Chap. 3), the Hamiltonian in Eq. E.1 reads 1 :

We underline that λ 0 iMσ has the same expression as Eq. 3.18

, but h iMσ is given by Eq. E.6 which correctly takes into account the pd hopping contribution.

Appendix F

Derivation of around mean-field double counting correction

In this Appendix, we explicitly derive the around mean-field (AMF) double-counting (DC) chemical potential introduced in Chap. 6. We limit our attention to the densitydensity interaction and prove that it is possible to deduce the proper DC correction in a mean-field approximation.

In order to obtain a more manageable form, it is useful to rewrite the densitydensity interaction of Eq. 2.9 as:

We then apply the mean-field approximation introduced in Subsec. 2.3.1:

where H const int takes into account all the products of average values. A more compact expression of Eq. F.2 is:

We now substitute to each ⟨ nmσ ⟩ the value averaged over all orbitals and spins n = 1 2M ∑ mσ ⟨ nmσ ⟩ defined in Eq. 6.7. Thanks to this, we recognize a double-counting correction in the form of Eq. 6.8, where we have introduced the double-counting chemical potential:

With the usual substitution U ′ = U -2J, it equals the around mean-field correction of Eq. 6.11.
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ABSTRACT

We theoretically study the antiferromagnetic phase of the multi-orbital Hubbard model and analyse its impact on the low-energy physics of iron-based superconductors, within the slave-spin method. Through a variational approach, we generalize the slave-spin mean-field formalism and we derive the self-consistent field capable of stabilizing broken symmetry phases and proving that all the slave-spin flavours are actually the same method and they are identical to Kotliar-Ruckenstein slave bosons, i.e. Gutzwiller approximation. We apply our formalism to the Néel antiferromagnetic state and investigate it in multi-orbital Hubbard models. We provide phase diagrams in the interaction-doping plane, showing that the doped antiferromagnet in proximity of half-filling is typically unstable towards phase separation, that is favored by Hund's coupling. We then investigate the Cr-doped iron-based superconductor CsFe 2 As 2 . We provide an analytical argument to justify the record-breaking enhancement of the Sommerfeld specific-heat coefficient at 3%Cr doping. We ascribe it to the inter-orbital hopping driven frustration of the tendency towards an orbital-selective Mott transition, leaving the system with a subset of very heavy electrons. We also show that, by further doping the system towards half-filling, an antiferromagnetic zone is encountered. We further generalize our formalism to include the ligand's orbital contribution (pd model). We revise the issue of the double counting of the interaction energy when combining DFT with many-body theory and provide a paramagnetic study of 122 iron-based superconductors. We then extend our study to antiferromagnetic phases, providing phase diagrams in the interaction-doping plane. The contribution of p-orbitals result in a lower staggered magnetization.
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