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Abstract.

Atmospheric fields exhibit extreme variability over a wide range of spatial and temporal scales;
they are also intermittent, which means that their activity is often concentrated at smaller and
smaller scales. Conventional statistical tools fall short in capturing this and detecting extremes.
However, the characterization of geophysical fields with their underlying complexities and correla-
tions is ever important in prediction, modelling and understanding the weather conditions we live
in, which is even more relevant now in the context of climate change.

The heterogeneous properties of atmospheric fields come form the governing non-linear equa-
tions of turbulence (Navier-Stokes), which still remains an unsolved problem regardless of its ubiq-
uitousness. By using the concept of multiplicative cascades, it is possible to statistically reproduce
the symmetries of said equations for geophysical fields; and multifractal tools expand upon this for
characterizing the variability across scales by assuming same elementary process at each scale. In
this dissertation, the scale invariant framework of UM, and the derived analysis technique of Joint
Multifractals (JMF) are used for studying various fields in a two folded way – by examining the
fields individually, and jointly, in real and controlled situations. The fields are studied in four focus
areas: rainfall and kinetic energy, rainfall and wind, temperature and humidity, and rainfall and
particles.

Using UM, rainfall intensity and rainfall kinetic energy (at TARANIS observatory, ENPC) are
studied and a scale invariant relationship is postulated that doesn’t rely on any assumptions of drop
size distribution. This equation is backed by theoretical formulation and is shown to provide re-
liable estimates on par with commonly used equations in literature. Since kinetic energy requires
relatively complex instrumentation, such a relation allows reliable retrieval of energy indirectly
from commonly available precipitation data. This approach is further tested with rainfall simula-
tions inside sense-city climate chamber using JMF.

The effect of rainfall on available wind power and power extracted by turbine are not well
known. Towards this, high-resolution data from a meteorological mast (at pays d’Othe wind farm,
France) are analysed along with turbine power in the purview of the Rainfall Wind Turbine or
Turbulence (RW-Turb) project. JMF tools were used to study various directly measured and derived
fields in RW-Turb according to rainy and dry conditions, and an overall increasing correlation with
rainfall rate is observed, which is worth exploring in future.

The third focus area of temperature and humidity is explored partly with RW-Turb project
and partly with sense-city climate chamber. A few known days (rainy and dry) were simulated
inside sense-city in Descartes campus where ENPC is, for mimicking temperature and pressure
variation observed in real conditions. Using JMF, the joint correlation between the fields in real
and simulated conditions is evaluated, with efforts to account for the gap in estimation.
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For the fourth focus area, aerosol concentration (nm and µm) from Cherbourg-Octeville, France
was analysed alongside rain measurements for understanding scavenging of atmospheric particles
by rainfall (below cloud scavenging). Preliminary analysis showed multifractal behaviour; this is
of specific interest since the concentrations do not always follow the expected decreasing trend
with rainfall. Along with this, multifractal properties of light attenuation by aerosols and their
implications in atmospheric visibility are also studied using UM framework.

Using the various results obtained, the unifying aspect of atmospheric fields - extreme vari-
ability, intermittency and scale invariance are illustrated. Through analysis of observational and
controlled data, and numerical simulations, the utility of UM in trend detection, simulations and
predictions are also commented on.

keywords: atmospheric variability, multifractals, joint multifractals, precipitation, wind energy
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Résumé

Les champs atmosphériques présentent une variabilité extrême sur une large gamme d’échelles
spatiales et temporelles. Ils sont également intermittents, ce qui signifie que leur activité est souvent
concentrée à des échelles de plus en plus petites. La caractérisation des champs géophysiques
avec leurs complexités et corrélations sous-jacentes est toujours cruciale dans la compréhension, la
modélisation et la prévision des conditions météorologiques dans lesquelles nous vivons, ce qui est
de plus en plus important, notamment dans le contexte du changement climatique.

L’hétérogénéité des champs atmosphériques vient des équations non linéaires qui régissent la
turbulence (Navier-Stokes), et qui reste d’ailleurs un problème non résolu en dépit de son carac-
tère ubiquitaire. En utilisant le concept de cascades multiplicatives, il est possible de reproduire
statistiquement les symétries desdites équations pour des champs géophysiques ; et les outils mul-
tifractals étendent cela pour caractériser la variabilité à travers les échelles en supposant les mêmes
processus élémentaires à chaque échelle. Dans cette thèse, le cadre des Multifractals Universels
UM et les techniques d’analyse multifractales conjointes (JMF) sont utilisés pour étudier divers
champs de manière double - en examinant d’abord les champs individuellement, puis conjointe-
ment pour caractériser leur corrélation à travers les échelles, en situations réelles et contrôlées. Les
champs sont étudiés selon quatre axes : pluie et énergie cinétique, pluie et vent, température et
humidité, pluie et particules.

À l’aide des UM, le taux de pluie et l’énergie cinétique des précipitations sont étudiées, et
une relation invariante d’échelle est établie, qui ne repose sur aucune hypothèse de distribution de
la taille des gouttes. Cette équation est étayée par une formulation théorique et s’avère fournir
des estimations fiables comparables aux équations couramment utilisées dans la littérature. Cette
approche est ensuite testée avec des simulations de précipitations à l’intérieur de sense-city à l’aide
des JMF.

L’effet des précipitations sur la puissance éolienne disponible et la puissance extraite par les
éoliennes n’est pas bien connu. Dans ce but, des données à haute résolution issues d’un mât
météorologique (ferme éolienne des Pays d’Othe, France) ainsi que la puissance produite par les
éoliennes sont analysées dans le cadre du projet Rainfall Wind Turbine ou Turbulence (RW-Turb).
Les outils JMF ont été utilisés pour étudier divers champs directement mesurés ou reconstitués et
une corrélation globale plus forte avec l’accroissement du taux de précipitation est observée.

Le troisième volet de cette thèse est exploré en partie avec le projet RW-Turb et en partie avec
sense-city. Quelques jours connus (pluvieux et secs) ont été simulés à l’intérieur de la chambre
climatique sense-city du campus Descartes où se trouve l’ENPC, pour reproduire les variations de
température et d’humidité observées en conditions réelles. À l’aide de JMF, la corrélation à travers
les échelles entre les champs en conditions réelles et simulées est évaluée, avec des efforts pour
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tenir compte des écarts d’estimation.

Pour le quatrième volet, les données de concentration de particules d’aérosols de Cherbourg-
Octeville, en France, ont été analysées, parallèlement aux mesures de pluie. L’analyse préliminaire
effectuée sur diverses classes de particules (nm et µm) montre comportement multifractal. Les
propriétés multifractales de l’atténuation de la lumière par les aérosols et leurs implications dans la
visibilité atmosphérique sont également été étudiées avec le cadre UM.

A partir des différents résultats obtenus, les aspects unificateurs des champs atmosphériques, à
savoir l’extrême variabilité, l’intermittence et l’invariance d’échelle sont illustrés. Grâce à l’analyse
des données en conditions réelles et contrôlées, et des simulations numériques, l’utilité des UM
dans la détection des tendances, les simulations et les prévisions sont également commentées.

Mots clés: variabilité atmosphérique ; multifractales ; multifractales conjointes ; précipitations ;
l’énergie éolienne
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Introduction.

’Climate is what you expect, weather is what you get’. This famous aphorism, often attributed
to Mark Twain, is losing relevance in the current context of climate change, and we are often left
with a reality far from our long-term as well as short-term expectations. According to the WMO,
the past 8 years are on track to be the eight warmest years on record (WMO et al., 2022). In terms
of extreme events and their occurrence, climate change is constantly found to be the major cause
for aggravated numbers. For example, as per World Weather Attribution’s research, climate change
made the 2019 European heatwave as much as 100 times more likely (WWA, 2019). According to
IPCC AR6, cities are often hotspots for climate extremes due to their concentration of population
and infrastructure in one location (Masson-Delmotte et al., 2021), and globally 68% of people are
projected to be living in urban areas by United Nations (UN, 2019). Understanding climate patterns
and variability has been always important because of its local as well as global impact on our health,
and socio-economic progress (Hansen et al., 2006; Sinha et al., 2015); and with rapid urbanization
and increasing impacts of climate change, it is now all the more critical.

Characterizing climate is difficult because of the complex interactions involved in the atmo-
sphere between various interrelated processes and their extreme spatiotemporal variability over
a wide range of scales. Geophysical fields also exhibit strong intermittency, which means that
their activity is often concentrated at smaller and smaller scales. Analysis of climate trends can
only reveal overall variation within a specific period of time and doesn’t fully capture the complex
small-scale variability and intermittency, and extremes of the process. Understanding this com-
plexity is important in safely predicting and modelling weather and climate phenomenon, which
has implications for agriculture, water management, air quality and human health, renewable en-
ergy production, sustainable urbanization et cetera (Holleman et al., 2020; Cristiano et al., 2017).
Against this backdrop, in this dissertation, we aim towards characterizing multiple atmospheric
fields and their correlation using long term high-resolution data and numerical simulations. The
studied fields are selected from various application areas of interest, broadly following three UN
Sustainable Development Goals (SDG) - climate action, sustainable cities and communities, and af-
fordable and clean energy (Sachs et al., 2022). The overarching objective is to characterize various
atmospheric fields in a scale invariant way, along with their small scale variability and intermit-
tency, and coupling with other fields they interact with. This information is then used to quantify
the gap between the behaviour of fields in real and controlled environments, and to account for
measurement limitations in statistical analysis.

The heterogeneous properties of atmospheric fields come from the governing non-linear equa-
tions of turbulence (Navier-Stokes), which still remains an unsolved problem regardless of its ubiq-
uitousness. By using the concept of multiplicative cascades, it is possible to statistically reproduce
the symmetries of said equations for geophysical fields and utilize the scaling properties to un-
derstand long range memories. Multifractal tools, and specifically the widely used framework of
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Universal Multifractals (UM) utilize these concepts and enable the characterization of fields by
assigning scale invariant singularities to intensities across various scales. Multifractal analysis is
often performed on various fields individually; here the framework of UM and the derived anal-
ysis technique of Joint Multifractals (JMF) are used for studying various fields individually and
in correlation. This is done in real and controlled conditions with the previously stated objectives
- analyzing the fields individually, and along with the fields they might be correlated with. For
studying controlled environments, simulations inside the climate chamber of sense-city and data
from a functional wind farm are used. The various fields studied here are precipitation or rain rate,
rainfall kinetic energy, extinction coefficient of atmospheric particles, wind velocity, wind power
available, power produced by wind turbines, air density, temperature, humidity and aerosol particle
concentration. These fields are studied in four focus areas:

• rainfall and kinetic energy,

• rainfall and wind,

• temperature and humidity, and

• rainfall and particles.

The thesis is organized into three chapters, and the fields mentioned along with their instru-
mentation overlaps throughout the research. In the first chapter, the details of various data sets
used for research are introduced with details of measurement campaigns and instrumentation. The
tools used for analysis are presented thereafter with their need and context for the application. The
various multifractals tools, notably UM and JMF are also illustrated with various samples from the
data sets.

The second chapter concerns the individual analysis of atmospheric fields, and the first and
fourth focus areas are addressed there specifically. Understanding rainfall as a single parameter
(as usually done in mmh−1) doesn’t capture the complexity of the process as the spatio temporal
spread of drop size distribution and their velocities have far-ranging effects on the kinetic energy of
rain and in turn in various forms of erosion in soil and structures. Using UM, rainfall intensity and
rainfall kinetic energy are studied here from data in Paris region and a scale invariant relationship is
developed which doesn’t rely on the ad hoc assumption of gamma distribution; the relationship is
also shown to provide reliable results on par with commonly used equations in literature. In the sec-
ond part of this chapter, aerosol particles are examined individually in the context of atmospheric
visibility. More precisely, light attenuation by aerosol particles is considered as the objective field
over subjectively measured atmospheric visibility which is often represented as MOR (Meteoro-
logical observable range). Here we argue the usage of the extinction coefficient as the parameter
for simulating visibility since the usage of MOR comes with an inherent statistical bias thanks
to the instrumental and application limits. This is illustrated through observations and numerical
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simulations.

The third chapter deals with joint analysis of all focus areas and is presented in three sub sec-
tions. The first sub section deals with the small scale variations in wind turbulence and its coupling
with rainfall, using data from a meteorological mast in a functional wind farm at pays d’Othe, 110
km southeast of Paris. UM analysis during rain and dry conditions revealed an increasing variability
in wind power during rain; and within rain events, JMF revealed an overall increasing correlation
between wind power available (also for wind velocity and air density) and rainfall rate. Here, the
biases in statistical analysis of actual power production by turbines and the actual sampling resolu-
tion of various instruments relevant for studying variability are identified in the framework of UM
using real data and numerical simulations. The second sub section deals with simulated rainfall and
climatic conditions inside the climate chamber of sense-city; this part also aims to check the effi-
ciency of controlled environments in reproducing the small scale variability of atmospheric fields.
Using simulated rainfall experimentation inside sense-city, the validity of the rainfall - kinetic en-
ergy UM relation developed in chapter 1 is tested for artificial rain. The theoretical framework is
also used to quantify the gap between rainfall simulations inside the chamber (which is known to
underestimate kinetic energy) and real rain outside. Variations in temperature and humidity are
also studied here, with real data and sense-city simulations. Few known days are simulated inside
the chamber and the efficiency of reproduction is examined with JMF framework. The last sub
section deals with rainfall and particles, where size resolved aerosol concentrations (in nm and µm
ranges) are examined alongside rainfall measurements. Preliminary analysis on various particle
classes showed multifractal behaviour; this is of specific interest since the evolution of concentra-
tion during scavenging is influenced by many different processes and not just rainfall, and UM can
be used for analysing the complexity.

Using the framework of UM and JMF, various geophysical fields are studied individually and
jointly here. The biases encountered in statistical analysis and the importance of identifying the
real underlying field are illustrated. The overall results of the dissertation open up discussions on
the need for understanding atmospheric fields in relation to their coupling with related fields.
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1. Data and Methods

In this chapter, all the data-sets used for analysis are introduced along with the methodolo-
gies employed for their analysis. In first part, section 1.1, the make and functioning of various
instruments are introduced and explained in detail. They mainly consist of long-term and ongo-
ing high-resolution measurements from optical disdrometers, meteorological stations and 3D sonic
anemometers at three locations in France, which for brevity, can be grouped into two groups -
observatories inside ENPC campus and campaigns outside the campus. Campus bound instrumen-
tation includes TARANIS (measurement station at the top of University building) and Sense-city
climate chamber. Outside campaigns consists of RW-Turb (on a meteorological mast in an oper-
ational wind farm and aerosol particle measurement by IRSN. The type of instruments overlap at
the two set of locations, and similar data is analyzed towards different campaign objectives.

The intention of this chapter is to compile all the data that was analyzed along the course of
various studies, and use them to illustrate the methodology employed. This is done in second
part, section 1.1. The second part is also aimed at introducing fractals and multifractals, and how
they are used in understanding extremely variable geophysical fields across various scales. The
methodologies are illustrated by using portions of data from section 1.1.

1.1. Data collection and instrumentation

Fig. 1.1 shows the overall location of various observatories and measurement campaigns used
in this thesis; details are expanded in upcoming sub sections. They employ instrumentation towards
high-resolution measurement of size resolved parameters (rain and particles) along with other as-
sociated atmospheric fields (wind, temperature, relative humidity, light attenuation etc.).
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Figure 1.1: Approximate location of data-set/campaigns inside and outside ENPC campus.

1.1.1. Disdrometer data at TARANIS observatory
1.1.1.1 Location and overview

Disdrometers provide real time measurement of rain along with the rain drop size distribution
according to diameter and velocity of falling drops; they are often associated with other meteo-
rological sensors such as visibility, temperature, relative humidity etc. At TARANIS observatory,
three optical disdrometers are continuously monitoring data in natural conditions; this has been
used many times throughout the research presented here. TARANIS observatory (exTreme and
multi-scAle RAiNdrop parIS observatory, Gires et al., 2018) is part of the Fresnel Platform of
École des Ponts ParisTech (https:// hmco.enpc.fr/Page/ Fresnel-Platform/en); and is operated
by Hydrology Meteorology and Complexity laboratory of École des Ponts ParisTech (HM&Co-
ENPC). The intention here is to completely characterize the rain (which is often expressed as a
singular parameter in mmh−1) with its full complexity considering the temporal variability in drop
size distribution (DSD). The location of the observatory and picture of the disdrometers are given
in Fig. 1.2 and Fig. 1.3.
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Figure 1.2: Location of TARANIS observatory with respect to Paris region (basemap from openstreetmap.org); ENPC
shows the permanent location of the disdrometers and EP SIRTA shows the brief time for which they were moved as
part of a national measurement campaign (relevant for section 2.1).

1.1.1.2 Overview of instrument functioning and outputs

The three optical disdrometers available here are two OTT Parsivel2 (see Battaglia et al., 2010
or the device documentation OTT, 2014) and one PWS 100 (see Ellis et al., 2006 or the device
documentation Campbell-Scientific-Ltd, 2012).
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Figure 1.3: Disdrometers devices on TARANIS observatory (https:// hmco.enpc.fr/portf olio-archive/ taranis-
observatory/ ); two OTT Parsivel2 devices can be seen on the same base arranged perpendicular to each other, PWS
100 is in the background (in white colour) and can be identified by its receptors positioned at different angles to
transmitter (pictures: ©Jerry Jose).

The OTT Parsivel2 are occlusion based devices with a transmitter that creates laser sheet and
an intercepting receiver directly aligned with it. The size (equivolumic diameter) and fall velocity
are assessed from changes (decrease in amplitude of intensity and duration of the decrease) in
received laser intensity due to the passing of rainfall drops through a sampling area of 54cm2.
An ellipsoidal shape model with a standard relation between the axis ratio and the equivolumic
diameter are assumed for drops in the process.

The PWS 100 consists of a transmitter that generates four horizontal parallel laser sheets, and
two receptors which are not aligned with the transmitter. The signal received by each receptor
corresponds to the light refracted by drops and contains four consecutive peaks associated with
each laser sheet. From the delay between those peaks, fall velocity and diameter of the drops
are estimated. PWS100 has a sampling area of 40cm2. Computations assuming spherical shape
of droplets are performed here with a later correction for oblateness before final data generation
(Gires et al., 2017a).

Both disdrometers have a collection time step of 30 s and provide main output as a matrix
containing the number of drops (ni, j) recorded during the time step ∆t according to classes of
equivolumic diameter (index i defined by a centre Di and a width ∆Di both expressed in mm)
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and fall velocity (index j and defined by a centre v j and a width ∆v j, both expressed in ms−1).
For Parsivel2 there are 32 classes of ∆Di from 0.062 mm to 24.5mm and ∆v j from 0.05ms−1 to
20.8ms−1. And for PWS the same ranges from 0.05 to 27.2 (∆Di, mm) and 0.05 to 27.2 (∆v j,
ms−1) in 34 classes. Width of diameter and velocity classes are not similar for all classes, as they
are designed to be more and more refined towards smaller values.

From the raw matrix, the drop size distribution (DSD, denoted N(D)) of rainfall can be obtained
(m−3 mm−1) which represents the number of drops per unit volume within each diameter class
(within an equivolumic diameter between Di and Di+1). A binned or discrete DSD is used here
according to the instrument specifications:

N(Di) =
1

Se f f (Di)∆Di∆t ∑
j

ni, j

v j
(1)

where Se f f (Di) is the sampling area of disdrometer in mm2 (which can be slightly adjusted accord-
ing to drop size to account for side effects), ∆t is the time step duration in hr and ρwat is the volumic
mass of water (103 kgm−3). Here N(Di)∆Di gives the number of drops with a diameter in the class
i per unit volume (in m−3). The studied rainfall parameters - rain rate (mmh−1), and time specific
kinetic energy (Jm−2 h−1) were obtained from raw matrix using following expression for each time
step:

R =
π

6∆t ∑
i, j

ni, jD3
i

Se f f (Di)
(2)

KE =
ρwatπ

6∆t ∑
i, j

ni, jD3
i v2

j

Se f f (Di)
(3)

The measured parameters - R, KE, and DSD are discussed in more details in section 2.1. Details
of the devices, their functioning and data collection can be found in Gires et al. (2018). Interested
readers are directed to https:// zenodo.org/record/1240168 (doi:10.5281/zenodo.1125582) where
two month data from TARANIS is made available for public along with the raw files and scripts
required for extracting the data. Daily overall information can be accessed through quicklooks of
observatory page, latest calendar link can be accessed here: https://hmco.enpc.fr/calendars/Calen
dars_Carnot_2/Calendar_Carnot_2.html. Quicklook for a rainy day 27/10/2019 is shown in Fig.
1.4; this day was used as reference to mimic real conditions in sense-city (section 3.2.2). Temporal
evolution of the number of rain drops according to various diameter class (D vs time with logN(D)

in colour bar, middle left), velocity plots of drops (D vs V - renormalized plots as the parameters
do not have the same bin size - with logN(D) in colour bar, middle right; solid line corresponds
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to terminal fall velocity of drops for equivolumic diameter according to Lhermitte 1988), drop size
distribution (N(D)D3 vs D in lower left, here N(D) is multiplied by D3 to illustrate better the total
volume of observed rainfall according to various drop diameters) for all three disdrometers can be
seen alongside the evolution of rainfall (rainfall rate - upper left, cumulative rainfall depth - upper
right) and temperature (bottom left). The temperature sensor for Parsivel2 are very basic and does
not fulfill meteorological standards (as seen in the T plot, bottom left); they are plotted here only for
indication. And if required, temperature sensor from PWS at the same location is recommended;
this is used in section 3.2.2.
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Figure 1.4: Quicklook of the disdrometer data available on 27 October 2019 (description of the plot can be found in
the text)

1.1.1.3 Measurement campaigns

Though the data is being constantly measured at TARANIS (made available to public through
daily quicklooks in the link mentioned before), for the scope of studies presented, Table 2.4 gives
a brief outline of measurement campaign used in section 2.1. From November 2016 to Septem-
ber 2017 the instruments were moved to École Polytechnique (EP) on SIRTA (Site Instrumenté de
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Recherche par Télédétection Atmosphérique) for a joint intensive measurement campaign over the
Ile-de-France region. The aforementioned location is about 38km away from ENPC towards south
west of Paris. To summarise the data used from TARANIS (for section 2.1), the measurement cam-
paigns involved two different types of optical disdrometers and data collected from two different
locations of Paris region.

location start time end time
ENPC (1) 18 Jun 2013 10 Nov 2016
EP SIRTA 14 Nov 2016 20 Sep 2017
ENPC (2) 27 Dec 2017 31 Dec 2019

Table 1.1: Short description of the precipitation measurement campaign selected for section 2.1

Along with this, the data from TARANIS was also used to studying extinction coefficient in
section 2.2, using the visibility sensor in PWS 100. The real condition measurements from the
observatory was also utilized in simulating days inside the climate chamber, sense-city, in section
3.2.2. Same instruments were briefly moved inside sense-city to study the efficiency of simulated
rain showers in the climate chamber; this is discussed in section 3.2.1.

1.1.2. Sense-city climate chamber
Sense-city is a climate chamber, funded by French Research Agency (ANR) and now managed

by University Gustave Eiffel, which is designed for simulating specific weather conditions over
fixed periods (https:// sense-city.ifsttar.f r/ ). It spans over two separate territories of size 400m2

each (called mini-city or mini-ville: MV1 and MV2) with a vast array of micro - nano sensors
and rainfall simulator available; this provides a unique opportunity to study preferred atmospheric
conditions including solar conditions and rainfall. The mini-cities are engineered to monitor and
study air, water, and soil pollution, and to test the performance of facilities and urban materials.
Sense-city is easily visible as the 8 m height blue cube in Cité Descartes, inside ENPC campus
(Fig. 1.5). The chamber was designed by IFSTTAR, L’Institut français des sciences et technologies
de transports (https:// www.if sttar.fr/ ), which is now part of Gustave Eiffel University (https:
//www.univ-gustave-eiffel.fr/ ).
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Figure 1.5: Sense-city chamber as viewed from the base of ENPC radar tower, Coriolis building can be seen in the
background; a closer view of the chamber from parking lot is given in the inset (pictures: ©Jerry Jose). The location of
ENPC is given in Fig. 1.2.

Sense-city houses an array of sensors and facilities for various applications mentioned before.
Within the operational limit of sense-city, it is possible to simulate rainfall in two modes (so called
’light’ ≈ 15-20 mmh−1 and ’heavy’ ≈ 25-45 mmh−1), and to have desired atmospheric conditions
including temperature (T , -10◦C to +40◦C) and relative humidity (RH, 30% to 98%) among other
things. Inside the sense-city, the rainfall simulator covers an area of 25m2, and the two rainfall
modes are achieved (within a variation of 2%) through 12 nozzles each located 8 m above chamber
floor. In addition to these, sense-city also has provisions to simulate sun (with 30 laps of 2000),
regulate the roof temperature of chamber, regulate rain temperature (+ 5◦C and 30◦C), and measure
pollutants such as SO2, CO2 and NO2. These were not used for the analysis presented here, which
mainly consisted on simulation of rain, and T /RH evolution (see joint analysis in section 3.2). The
sense-city facilities and sensors used in this thesis mainly involves the rain showers, temperature
and humidity sensors. The sensors used here can be grouped into three sets according to their
measuring frequency (ref Tab. 1.2). The meteo station at MV1 provides temperature, pressure,
humidity, pressure, wind speed and direction, and rain rate at a measurement time step of 60s.
Along with this, chamber also houses separate sensors for chamber temperature (1 primary and
5 secondary), roof temperature (1 primary and 12 secondary), rain temperature (1 sensor), sun (1
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sensor), and humidity (1 sensor), all at a finer measurement time step of 10 s. It also has 16 more
temperature sensors (on 8 meteorological masts at two different heights - 0.5m and 3m) which
monitors the temperature at 15min frequency. However, not all of these selected sensors were used
in the analysis; this is discussed in section 3.2.2.

No. Sensor name Measured field(s) # sensors unit resolution
1 Rain flow discharge 1 mmh−1 10s
2 Rain Temperature T 5 °C 10s
3 BIA_Humidity (primary) RH 1 % 10s
4 BIA_Temperature Chambre (one 1°,

five 2°)
T 6 °C 10s

5 Roof Temperature (one 1°, twelve 2°) T 13 °C 10s
7 Station-Meteo-MV1 T, P, RH, v 1 Pa, °C, %, ms−1 60s
8 Temperature-pt100 (on mast) T 16 °C 15min

Table 1.2: List of sense-city sensors that were used for simulations in section 3.2. T - temperature, P - pressure, RH -
relative humidity, v - wind velocity, 1° - primary, 2° - secondary.

More information on operation of rain and sense-city’s ability to simulate actual rainfall can
be found in Gires et al. (2020a), where the simulated rain is examined drop size wise using dis-
drometers. For simulating T and RH, there exists a working window (the extend of values chamber
can safely reproduce) which needs to be respected while programming the simulation time steps or
’ramps’. The programmable gradient of T and RH in 24 hours are ± 5◦C and 5% respectively and
while providing parameters to simulate, care should be taken for respecting the previously men-
tioned T /RH operational range. While simulating a known climatic situation, achieving the desired
end values of T /RH in sense-city might take longer time than actual data as the chamber is limited
by its smaller size, programming restrictions as well as the time required by soil and other inside
components to dry/humidify or heat/cool. Hence, selecting the parameters for simulation is a trade
off between time available and parameter values desired; this is discussed in more detail in section
3.2.2.

Three days were simulated inside sense-city following temperature and pressure measured from
TARANIS observatory. The results are discussed in section 3.2.2 where the ability of sense-city to
reproduce real conditions are evaluated using joint multifrctal framework. Previously, Gires et al.
(2020a) used sense-city for measuring the simulated rainfall; this data was examined with intention
for account for under reporting of rain drop kinetic energy in section 3.2.1.

1.1.3. RW - Turb project
1.1.3.1 Positioning and main objectives of the project

The effect of rainfall on wind and then in turn on wind turbine power production is not very
well known; and in the ever growing economical shift towards renewable sources, understanding
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the small scale spatio-temporal interactions between rainfall and wind is important for improving
power production as well as their deployment. Rainfall Wind Turbine or Turbulence project (RW-
Turb), a joint project involving University and industrial collaboration - École des Ponts (ENPC)
and Boralex, a wind power producer, is designed towards tackling this lesser known issue. The
project is funded by the French National Research Agency (ANR in French) and consists of high-
resolution in-situ real time measurement of various hydro meteorological parameters along side
produced power in a operational wind farm (through devices installed on a meteorological mast,
Fig. 1.6 and Fig. 1.7). RW-Turb has a two fold approach - high resolution measurement campaign
and joint multifractal analysis of associated fields (Gires et al., 2022), and numerical simulations of
space time wind and torque using three modelling chains (Gago et al., 2022). Work presented here
deals with the first part. More context on wind production and rainfall interactions, and complexity
in their analysis are provided in section 3.1. The information provided below on instrumentation
and data-set of RW-Turb are adapted from Gires et al. (2022), the data paper (that I co-authored)
that details the project’s measurement campaign along with required tools of analysis and 3 months
of data that has been made publicly accessible.

Figure 1.6: Location of the meteorological mast along with wind turbines at Pays d’Othe wind farm, adapted from
Gires et al. (2022). Turbines managed by Boralex, the ones which were studied, are shown by their numbers - 1, 2, 8
and 9. Location of the wind farm with respect to France in inset.

Figure 1.6 shows the location of the meteorological mast (star in the middle) along with the
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nine wind turbines of the Pays d’Othe wind farm (aligned South-East of it and within a 4km radius,
black vertical crosses). This wind farm is made of 9 wind turbines and is jointly operated by Boralex
(https://www.boralex.com/our-projects-and-sites/ ) and JP Énergie Environnement (https://pays-
othe-89.parc-eolien-jpee.f r/ ). The five turbines of the Molinons wind farm in the North are also
visible within the 5 km radius (grey vertical crosses). It should also be noted that a small grove
is located just South of the mast at roughly 160m; a larger one is on the East at roughly 100m.
Nearby the mast (i.e. within the 1km radius), there is a small slope in the North-South direction.
The wind power data used for studies comes from four turbines by Boralex - 1 and 2 located closest
to the mast, and 8 and 9 located at the farthest end. Fig. 1.6 shows a picture of the meteorological
mast with various devices installed on it, the devices are managed by Hydrology, Meteorology,
and Complexity laboratory of École des Ponts, HM&Co-ENPC). The mast consists of six high-
resolution devices - two sets of 3D sonic anemometers (manufactured by Thies), disdrometers
(OTT Parsivel2, same as those in TARANIS) and two mini stations (manufactured by Thies) - at
approximately 78 m (Location 1) and at 45m (Location 2). Two raspberry pi computers, located
in one of the boxes at roughly 10m, collects data along with the 4G box enabling remote access
(quicklooks made available in HM&Co website - https:// hmco.enpc.fr/calendars/Calendar_RW
_Turb_wind_f arm/Calendar_RW_Turb_wind_farm.html). More photos of the mast and elevation
map can be seen in Gires et al. (2022).
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Figure 1.7: Summary of measurement devices on the meteorological mast, locations of set of devices are approximated
as location 1 and location 2 for ease of discussion ; adapted from Gires et al. (2022). The position of the mast with
respect to the closest turbine (Turbine 1) in inset.

1.1.3.2 Overview of instrument functioning and database

3D sonic anemometers and associated outputs

The 3D sonic anemometers used in this campaign are manufactured by ThiesCLIMA (Thi-
esCLIMA, 2013a). A 3D sonic anemometer is made of three pairs of transducers (acting as both
transmitter and receiver) which measures the travel time of sound pulse between them. If L is the
distance between two transducers, uL the wind velocity along the corresponding axis, and travel
times in either way is t1 and t2; we have t1 = L/(c+uL) and t2 = L/(c−uL), with c being the local
speed of sound in the air; this yields:
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uL =
L
2

(
1
t1
− 1

t2

)
(4)

which does not depend on c. The wind velocity is assessed along the axis between each three
pairs, enabling to reconstruct 3D wind.

It is also possible to estimate c from:

c =
L
2

(
1
t1
+

1
t2

)
(5)

Since c mainly depends on the local temperature T , the latter is derived using standard rela-
tionships assuming a dry air (virtual sonic temperature); with additional corrections, a corrected
temperature accounting for relative humidity and pressure (see ThiesCLIMA, 2013a for more de-
tails) can be retrieved. The 3D anemometers in this campaign provides 3D wind measurement
along with an estimate of temperature at a sampling rate of 100Hz.

Meteorological stations and associated outputs

The two mini meteorological stations used here are from ThiesCLIMA (ThiesCLIMA, 2013b).
They give access to the following meteorological parameters: wind velocity and direction, air
temperature, relative humidity, precipitation and brightness. The wind information is obtained
thanks to a 2D sonic anemometer made of two pairs of transducers positioned perpendicularly in
relation to each other and functions similar to the 3D sonic anemometer explained before.

Built-in sensors are dedicated to measurement of air temperature and relative humidity, and
measurement of pressure relies on a micro-electro-mechanical system; these are protected within a
shelter. It also contains a doppler radar which measures the precipitation intensity; the rain rate is
estimated from the signal reflected back by the hydrometeors while relying on strong assumptions
of the DSD shape and the relation between size and velocity of drops. Station also has four photo
sensors measuring brightness with spectral sensitivity curve tuned to the sensitivity of human eye,
and a GPS sensor. The sampling rate for all the station parameters in this campaign is 1Hz.

Disdrometers and associated outputs

The disdrometers used here are OTT Parsivel2 disdrometers (OTT, 2014) whose functioning is
already discussed with TARANIS dataset (section 1.1.1). The data functioning of OTT Parsivel2

disdrometers and retrieval of data is discussed in more detail in Gires et al. (2018). The disdrome-
ters provide data at a sampling rate of 30s.

It is worth noting here this difference between rain rate provided by meteorological station,
which is a single quantity, and the one obtained from disdrometer which integrated information
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across an array of hydrometeors classes and their fall velocities. The difference in estimation of
rain between disdrometers and station at RW-Turb is examined in detail at Appendix B.1. Among
other comparisons, examples with rain gauges can be found in Miriovsky et al. (2004), Krajewski
et al. (2006), Frasson et al. (2011) or Thurai et al. (2011), and many others.

Wind Turbines and associated outputs

Four Vestas V-90 (marked in Fig.1.6) are available in the framework of RW-Turb project from
the Pays d’Othe wind farm, two are closer to the meteorological mat and two are farther from it (≈
3.5 km from mast). Technical and working information of the turbine can be found in Vestas Wind
Systems A/S (2023).

The turbines have a rated power of 2.0MW which is pitch regulated with variable speed. The
hub height of the turbines is 80m, this is closer to the vertical height of upper set of devices on the
mast (location 1, ≈ 78m). The turbines has a cut-in wind speed of 4ms−1 and a rated wind speed
of 12ms−1; this can be see on power curves in quicklook (Fig. 1.8: last column, second and last
row) where the turbine is seen to register power at cut-in speed and maintain the rated power of
2000kW after rated wind speed. The cut out speed of Turbine is at 25ms−1 (the extreme x axis
point of power curves); this is the speed at which turbine stops registering power. Generally the
turbines register positive values of wind power, however, when the power retrieved from wind is
less than that is required for working of turbine it registers negative power. These can be seen in the
power curves as clusters around 0. Along with the wind power, turbine also provides information
of local velocity which is used for internal regulation; this is used for plotting power curves in Fig.
1.8. In this campaign the turbine data is available at a sampling frequency of 15s.

Interested readers are directed to https:// zenodo.org/record/ 5801900 (doi: 10.5281/zen-
odo.5801900) where three month long data from RW-Turb is made available for public along with
the raw files and scripts required for extracting the data (Gires et al., 2022, refer for detailed descrip-
tion of database). Daily overall information can be accessed through quicklooks at the project’s web
page as mentioned before, https://hmco.enpc.fr/portf olio-archive/rw-turb/ . Quicklook for a rainy
day (08/04/2022) is shown in Fig. 1.8; this day is also used as reference for testing joint multifractal
framework in section 1.2.3). The quicklook here is similar to the one discussed at TARANIS with
added information of wind and relative humidity, and pressure. Temporal evolution of rain rate,
drop size, dropsize - velocity curve, and DSD curve highlighting influence of raindrop volume are
shown in first column (in that order). Except for the first panel (Cumulative rainfall depth vs. time,
as discussed for TARANIS), the second column deals with wind velocity. Total horizontal wind
(
√

u2
x +u2

z vs. time at one min time step) for anemometers and stations are shown in second panel
of this column. The last two panels shows wind rose (using the horizontal wind measurements - ux

and uy) and vertical wind (uz at one min time step) from the anemometers. The missing time steps
for all the devices for the day are shown in third column; the remaining panels of third column
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consists of temporal evolution of temperature, pressure and relative humidity from station (also
temperature from anemometer as discussed). The last column consists of temporal evolution and
power curves (power vs. velocity, theoretical curve in red) for Turbine 1 and Turbine 9 (the closest
and the farthest from the mast shown for illustration). The turbine data is not available in online
quicklook or in datapaper since it is private information owned by Boralex; more on analysis of
turbine data can be seen in section 3.1.

Figure 1.8: Quicklook of the RW-Turb data on 08 April 2022. Turbine power shown in right most column is proprietary
of Boralex, this is not available in the public database of RW-Turb (online quicklook). Description of the plots can be
found in the text.

The data from RW-Turb is used for joint analysis in section 3.1. Even though the instruments
are ideally giving very high resolution data, the actual sampling resolution relevant for studying
their variability seems to be a bit less; this is discussed using the framework of universal multi-
fractals in section 1.2.2.4. As briefly mentioned previously, the data is also used for illustrating
joint multifractal framework in section 1.2.3.1. A comparison study between rain measurement by
disdrometers and stations at RW-Turb was co-supervised during PhD research, results from this
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work is discussed in Appendix B.1.

1.1.4. Aerosol measurement campaign - IRSN database
1.1.4.1 Measurement campaign

Rain scavenging of below-cloud aerosol particles is known to be the most efficient pollutant
sink in atmosphere. Since distribution of various aerosol species is a function of particle size, and
as this interaction depends on particle size of scavenging rain drop, it is important to understand
the microphysical interaction between both. Towards this, data was used from experimental station
at the city of Cherbourg-Octeville, France (49°38.078’N, 1°38.757’W, 70m above sea level) from
01/11/2010 to 12/03/2011. The station is managed by Institut de Radioprotection et de Sûreté
Nucléaire (IRSN) and is part of INOGEV research program funded by French National Research
Agency. The station provides data from simultaneous measurement of rainfall, aerosol particle
concentration and distribution (in nanometer and micrometer size ranges) and wind velocity; this
enables analysis on aerosol concentration variation during rain episodes.

Figure 1.9: a) Location of measurement campaign, b) disdrometer, c) Sonic anemometer and d) Scanning Mobility
Particle Sizer (SMPS); images from (Laguionie et al., 2011)

1.1.4.2 Instruments and data set

The rainfall intensity was measured using OTT parsivel disdrometer and information on wind
velocity and temperature was obtained using a sonic anemometer (Refer section 1.1.1 and section
1.1.3 for information on functioning of these devices). Information on rainfall drop size distribution
was not available for this campaign. For measuring aerosol particle concentration and size distribu-
tion, a Scanning Mobility Particle Sizer (SMPS) coupled with Aerodynamic Particle Sizer (APS)
was used. A general overview of campaign location and instrumentation is given in table 1.3 and
Fig. 1.9. SMPS measures size particle size distribution in the range 1nm to 1µm using differential
mobility analysis where basically particle size is obtained by drifting airborne particles according
to their electrical mobility using an electric field (see brochure TSI-SMPS for more information).
For particles above 1µm, an Aerosol Particle Sizer (APS) was used which provides aerodynamic
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measurements from 0.5µm to 20µm from particle light scattering (see brochure TSI-APS for more
information).

Instruments data used resolution units

Disdrometer Rain rate 1 min mm.h−1

Sonic anemometer Wind velocity (U,V & W ), Temperature 10 Hz ms−1, ◦C
SMPS Size distribution (14.6nm to 478.3nm in 98 gran-

ulometric classes), Total concentration
1 min dN/dlogDp,

#cm−3

APS Size distribution (0.523µm to 19.81µm in 52
granulometric classes), Total concentration

1 min dN/dlogDp,
#cm−3

Table 1.3: Details of instruments and data used for analysis

This simultaneous measurement of aerosol concentration and rain is examined in section 3.3.1,
to understand size resolved scavenging in dry and various rainy conditions.
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1.2. Methodology: theoretical frameworks and illustrations
1.2.1. Need for multifractal framework

Atmospheric fields such as rainfall, wind velocity, temperature, humidity etc. exhibit extreme
variability over a wide range of spatial and temporal scales. To give a quick example, the rainfall
over a region and a time will not be similar to that at another time at the same location, nor to that at
a different location during the same time. Further, the process exhibits strong intermittency; in the
example of rainfall, it can be easily understood as the occurrence and non-occurrence of rain itself
or very sharp local fluctuations. This behaviour is illustrated in Fig. 1.10 using precipitation data
over 6 months recorded at 30 s; timeseries in Fig. 1.10a shows the intermittent behaviour where
extreme rain rates are found to be existing non uniformly among time steps with smaller and no
rain. In framework of UM, intermittency can be understood with a wider meaning, i.e. the idea that
the activity of the field is more and more concentrated. The presence of extreme spatiotemporal
variability and intermittency make the characterization of such fields difficult; this can be seen in
Fig. 1.10b where corresponding Gaussian distribution is unable to capture the extremes in heavy
tail.
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Figure 1.10: Illustration of intermittency and extreme variability in atmospheric fields.
Using precipitation as an example: a) Rain rate (mmh−1) recorded at 30 s, a single day is shown in inset; b) Log-
log plot of exceedance probability of precipitation intensity, Pr(R′ > R), during one day (12 Nov 2020) along with a
gaussian distribution, the heavy tails corresponds to extreme values and shows the inadequacy of normal statistics.
Variability in wind velocity, temperature and humidity: c) Horizontal wind (at 1 Hz, ms−1), d) Temperature (at 15 s,
◦C) and relative humidity (%); all fields from pays d’Othe wind farm
For row 1 and row 2, the data is from pays d’Othe wind farm, France (11 Dec 2020 to 16 June 2021, see section 1.1.3).
Variability in atmospheric aerosols: e) Aerosol particle concentration for particle size range 0.5 µm to 20 µm (1 min
data from October 2010 to March 2011, #cm−1), section 1.1.4; f) light attenuation by particles (extinction coefficient,
km−1) estimated from visibility measurement at TARANIS observatory (15 s) during the year 2019, from section 2.2.

These heterogeneous properties of atmospheric fields come from the governing non-linear
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equations of the atmosphere (Navier-Stokes) and this lets us to exploit a fundamental property
of said non-linear equations - scale invariance.

∂v
∂ t

+(v ·∇)v =−∇p
ρa

+ν∇
2v+ f

∇ ·v = 0
(6)

where v, t, p, ρa, ν , and f are velocity, time, pressure, fluid (air) density, kinematic viscosity, and
body forces respectively (all parameters are non-dimensionalized).

Conservation of momentum and mass are expressed in first and second lines of the equation.
If λ is the scale ratio (outer scale to observational scale) and H an arbitary scaling exponent, then
under isotropic transformation, these equations are scale invariant: x = x/λ , as long as

v → v/λ
H ; t → t/λ

1−H ; ν → ν/λ
1+H ; f → f/λ

2H−1 (7)

This property of scale invariance should be valid for unknown partial differential equations
that governs other atmospheric fields as well (Lovejoy and Schertzer, 1985; Brenier et al., 1991;
Lovejoy and Schertzer, 1991; Tessier et al., 1993). For the rain time series shown above, this means
that the variability in field intensities is statistically same at all scales, i.e. the same phenomenon
is observed at each step of the process (no specific time scale exists for the process). This is in
accordance with the fact that many physical processes in atmosphere are known to exhibit scal-
ing behaviour (characterized by power law) in temporal and spatial domains between intensity and
probability of occurrence despite the vast dynamic range of the process (Franzke et al., 2020). This
includes turbulent eddies in few seconds of dissipation time in millimeter scale as well as cou-
pled atmospheric-ocean systems spanning across the globe with centennial time scales and more
(Mitchell, 1976; Williams et al., 2017). With the help of scaling exponents (introduced later), Love-
joy and Schertzer (2013) broadly classified the atmospheric spectrum into five regimes: weather,
macroweather, climate, macroclimate and megaclimate (Lovejoy, 2015, Fig. 1.11). Granted, the
scaling in atmospheric spectrum is anisotropic (multiple regimes and exponents), it still respect the
causality principle; this corresponds to a cascade of structures at all scales and hence still valid in
stochastic characterization and forecasts (Marsan et al., 1996; Lovejoy and Schertzer, 2007a).

By using multiplicative cascades (introduced later in section 1.2.1.2), it is possible to statisti-
cally reproduce the symmetries of Navier-Stokes equations for geophysical fields; and multifractal
tools (introduced in section 1.2.2) expand upon this for characterizing the variability across scales
by assuming same elementary process at each stage.
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Figure 1.11: Spectral scaling (E(ω)≈ ω−β , indicated in blue lines; same as Eq. 8) of a selection of series illustrating
the various qualitatively different dynamic regimes in atmospheric spectrum, from Lovejoy (2015). The exponent
values are from various sources reviewed in Lovejoy and Schertzer (2013).

1.2.1.1 Spectral analysis

Spectral analysis is a commonly used technique in turbulence (and signal processing) to esti-
mate scaling behaviour using second-order statistics (the spectrum is obtained from Fourier trans-
form of autocorrelation function) by transforming the field from time domain to frequency domain.
In case of scaling behaviour, power spectrum E(k) and frequency are power law related (Mandel-
brot and Mandelbrot, 1982; Schertzer and Lovejoy, 1985):

E(k)≈ k−β (8)

where k is the corresponding frequency or wave number and β is the spectral exponent (slope in
log-log plot, like in Fig. 1.11).

The spectrum is an ensemble statistical quantity which means that longer series are better for
scaling estimation. The presence of a single power law suggests that there is no characteristic
length of time scale to the process (scale invariant) and the presence of breaks shows different
scaling regimes with different values of β . And peaks in the spectrum correspond to periodicities
in the process (large amount of variance in those frequencies). For example, rainfall spectra are
known to break around 2 weeks, which is considered to correspond with the ’synoptic maximum’,
the time scale associated with evolution of planetary scale atmospheric structures (Kolesnikova and
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Monin, 1965; Tessier et al., 1993); and it is possible to observe sharp diurnal spikes in temperature
spectra which corresponds to the day and night periodicity of the field (Lovejoy et al., 2012). This
can be observed in the illustration of spectral analysis in section 1.2.2.4 and also in Fig. 1.11.

For fractal fields (mono-dimensional, introduced in the following section), the spectral slope
with Fourier techniques is enough to characterize the complete scaling information but it falls short
where there are multiple fractal dimensions involved. Also, power spectra being a second-order
statistic doesn’t capture information on higher (and lower) orders.

1.2.1.2 Cascades, fractals and multifractals

Cascade phenomenology

As briefly mentioned above, for fully characterizing the process, statistics at all orders should
be considered and not just the second-order. The single spectral exponent (β ) only corresponds
to the fractal dimension (introduced later in this section) of the set of points exceeding a fixed
threshold. Though, it gives some useful information, this is insufficient since fields in actuality are
’multiscaling’, i.e. different moments of the field have different scaling behaviour with different
characteristic exponents. One way to account for it is by considering the process as a multiplicative
cascade, thereby incorporating intermittency as well (Lovejoy and Schertzer, 2007a).

Developments in cascades have a long history starting from Richardson’s quatrain paraphrasing
Jonathan Swift in 1920 (Richardson, 1920; Tamai, 2016):

"Big whorls have little whorls
That feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity."
– Lewis F. Richardson, 1920

Cascade phenomenology was intensively used to study atmospheric turbulence and has been
extended to other atmospheric fields as well. Proposing local-similarity hypothesis (homogeneous
and statistically isotropic turbulence in inertial range), Kolmogorov (1941) hypothesized that ve-
locity fluctuations between two points rely only on average dissipation rate. In the power spectrum
of wind fluctuations, this corresponds to an energy transfer from larger to smaller scales following
a scaling law (Obukhov, 1941, β = 5/3), which was later verified many times (Gurvich, 1960;
Pond et al., 1963, etc.). Since intermittency was not considered here, small deviations from ’-5/3’
law are expected and observed; leading to non-linear forms of (generalized) structure functions or
moment of order q of fluctuations, ζ (q) (Oboukhov, 1962). The spectral exponent β is related to
the second-order structure function: β = 1+ζ (2).

For quantitatively describing cascade phenomenology with intermittency, various theoretical
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formulations were introduced over the years, the first ones being Yaglom (1966) and Gurvich and
Yaglom (1967). A cascade process can be considered as an ensemble of cells or structures, with a
random variable (positive and independent) associated with each. Fig. 1.12 shows a discrete cas-
cade model (in 1D and 2D) which is commonly used for pedagogical purposes. Its largest structure
has a characteristic scale L(λ = 1) with uniform energy (ε0 = 1). This large structure is broken
into smaller sub-structures of characteristic length defined by an elementary constant scale ratio
λ1 (usually taken as 2). The fraction of energy transferred is determined by the random variable.
For an nth cascade stage, the resolution of the process will be λ = L/λ n and energy εn = µε εn−1.
For this to work, the cascade phenomenology relies on three phenomenological assumptions: i)
scale (the way structures are divided, i.e. probability distribution is the same at all scales), ii)
conservation of flux (i.e. ensemble average is independent of scale, ⟨ε⟩ = 1), and iii) localized
dynamics in Fourier space (the dynamics involve interactions between neighbouring structures).
With these conditions respected, the generation of cascade processes primarily boils down to the
division of substructures and probability distribution of random multiplicative increment. Gurvich
and Yaglom (1967) considered a log-normal distribution for the random variable; some other im-
portant examples of discrete cascades are β -model, the simplest model with only two values for
random variable: dead or ’active’ and alive or ’inactive’ (Frisch et al., 1978; Mandelbrot, 1974;
Novikov and Stewart, 1964), and α-model by Schertzer and Lovejoy (1984) where the dichotomy
in β -model is replaced by more realistic ’less active’ or ’more active’ sub-structures.
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Figure 1.12: Schematic illustration of discrete cascade in 1D and 2D (scales are discretized), illustration from Gires
(2012).

Outside of strictly turbulence studies, cascades are also being used in characterising various
atmospheric fields and non-linear processes such as rain (Schertzer and Lovejoy, 1987), climate
(Lovejoy and Schertzer, 2013), wind power output Calif and Schmitt (2014), astrophysics (Sy-
los Labini and Pietronero, 1996) etc. For reviews on cascades and scaling over the years, see Seu-
ront et al. (2005) and (Schertzer and Tchiguirinskaia, 2020). Here, we use stochastic multiplicative
cascades towards multifractal modelling of atmospheric fields.

Fractals and Multifractals

In multifractal formulation, it is possible to represent multiplicative cascade processes using
the probability of a structure at a given observation scale and resolution exceeding a given scale
invariant singularity using corresponding codimension. To understand this, the notion of fractal
geometry needs to be introduced.

Fractal geometry (Mandelbrot, 1977) is the simplest form of scale invariance where self-similar

41



1. Data and Methods

geometries (same features repeated at every scale) are characterized using their fractal sets. De-
veloping on Richardson’s previous observation in Richardson (1961), in the seminal paper ’How
long is the coast of Britain’, Mandelbrot (1967) illustrated the futility of classical geometry in
characterizing geographical curves (exemplified by the titular coastline paradox which keeps on
increasing as finer features are taken into account), and introduced the need for fractional dimen-
sions for studying self-similar objects. Fractal objects are ubiquitous in nature in geophysical and
non-geophysical senses, with clouds, snowflakes, leaf and tree structures, cauliflower, sponges etc.
being some examples.

Fig. 1.13 illustrates this idea with the famous Sierpiński triangle: starting with an equilateral
triangle and removing the central triangle leaving three (four counting the centre one) smaller con-
gruent equilateral ones and then repeating the process to infinity. If the starting triangle is of area
unity, the first iteration leaves an area of 3/4; at nth step of iterations, the area will be (3/4)n. And re-
peating the process ad infinitum will result in the area approaching zero (and perimeter approaching
infinity!), while the shape remains conserved.

Figure 1.13: Example of fractal geometry: Sierpiński triangle till nth iteration.

In classical geometry, dimensions are integers and refer to the embedding space of the geome-
try; for example, a point is 0 dimension (D), a line is 1D, a plane (a square for ex.) is 2D, and space
is 3D (a cube for ex.). If we consider a cube of size l0, the number of non overlapping smaller

similar structures (cubes of size l) required to fill it can be obtained as N(l) =
[

l0
l

]D
(D = 3 in

this example): defining scale ratio or resolution λ (λ = l0
l ), this can be expressed in power law,

Nλ = λ D. For a fractal object, this scaling relationship doesn’t follow a natural number like the
topological dimension D, but, rather a non-integer value, the fractal dimension D f . One standard
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technique to estimate D f is through box-counting where the number of non overlapping boxes Nλ

(of size l approaching zero or λ →+∞) required to cover the structure at each iteration character-
izes Nλ :

D f = lim
λ→+∞

ln(Nλ ,A)

ln(λ )
= lim

l→0

ln(Nλ ,A)

− ln(l)
. (9)

where A is the bounding set of size l0 (outer scale) in an embedding space of dimension D.

For Sierpiński triangle, where each iteration scaled by a factor of 2 involves 3 copies of previ-
ous one, D f = ln(3)/ ln(2) = 1.585. In physical sense, 1 < D f < 2 here is in accordance with its
properties, i.e. perimeter → +∞ (larger than 1D) and area → 0 (smaller than 2D). Since D f char-
acterizes the sparseness of set A with respect to the embedding space, D f can be estimated through
probability. The probability of smaller structures of size l intersecting A in embedding space D,
Pr = Nλ ,A/Nλ = λ D f /λ D = λ−c f . Here, c f is the fractional codimension of the object:

c f = D−D f (10)

Multifractals and Multiplicative cascades

The notion of fractal geometry can be extended to geophysical fields as well. For example,
sticking to the example of rainfall, the relative occurrence of rain can be expressed as a fractal
field (fractal set embedded in 1D space); and frequency of occurrence can be characterized using
codimension (sparseness of said set in D, see Fig. 1.15). For such a mono fractal field, most
of the scaling information can be obtained from second order moments (spectral analysis and β ).
However, this monofractal approach doesn’t capture the extreme variability of the process over
wide range of scales; this requires multiple set of fractal coefficients (hence multifractal, a term
coined by Parisi et al.,1985).

Fig. 1.14a shows two year long time series of rain rate at ENPC (France) over various time
scales (from measurement frequency of 30 s to 1 month, obtained by taking simple mean). The
clustering of intensities (showing long range correlations) here is analogous to multiplicative cas-
cade introduced before, and by using the notion of fractals and scale invaraiance it is possible to
represent the probability of occurrence of structures at various intensities.
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Figure 1.14: a) Variability in rain rate (mm.h−1) at different time scales, from 30 s to 2 years (from Dec 2017 to Dec
2019), data from a disdrometer (Parsivel 1) at TARANIS observatory, ENPC; it can be seen that the intensities are
clustering like in a multiplicative cascade in Fig. 1.12. b) variability in singularities, γ = logλ (ελ ), where ελ is the
normalized rain rate; while rain rate is varying from 200 mm.h−1 to 0.2 mm.h−1 in intensity while averaging to larger
scales, the singularities are rather stable over all scales. Refer Schertzer et al. (2010) for a cleaner presentation of
singularities with a larger data set.

As mentioned before, for a multifractal process, to capture the variability in intensities, an infi-
nite hierarchy of scaling exponents are required. In multifractal framework, this is done through the
scale invariant concept of singularity (γ). Intensities at various scales can be made non dimensional
by standardizing the process by mean, by averaging the observations at the finest scale before ag-
gregating the densities to larger scales. If ε∗λ is the multifractal process, then ελ = ε∗λ/⟨ελ ⟩ will
be the renormalized field; his leaves ⟨ελ ⟩ = 1 independent of scales (⟨ ⟩ means statistical averaging).
Intensities of this normalized field ελ is approximated with the help if the singularity γ which is
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independent of resolution as (Parisi and Frisch, 1985; Halsey et al., 1986; Schertzer and Lovejoy,
1987):

ελ ≈ λ
γ (11)

With the concept of singularity (γ = logλ (ελ )), information across all scales can be integrated
using only one variable γ . This means that for an intensity in every scale, there exists a single
singularity γ . Fig. 1.15 shows the relation between order of singularities of a multifractal process
and various intensity levels. In simpler terms, the scale dependent intensities (decreasing intensities
with scale in Fig. 1.14a and rather stable singularities with scale in Fig. 1.14b) are now made scale
independent through singularities. This comes from long range correlations in the field; this can be
illustrated easily by shuffling the intensities which cause degradation in singularities (see Lovejoy
and Schertzer, 2013). For a multifractal field, this notion of singularity can be used for describing
probability of the field exceeding a given intensity (or threshold) at every step of cascade (every
scale). Mathematical formulation of this will be presented in next section.

Figure 1.15: Schematic illustration of singularity and codimension at two different intensities (shown by horizontal
line, λ γ ; γ2 > γ1). The shaded area (in a and c) and corresponding fractal set (in b and d) represents the probability
of ελ ≥ the intensity or threshold, which can be estimated from codimension of the fractal set, c(γ). Adapted from
Schertzer and Lovejoy (1993).

This important information is exploited in following sections for introducing multifractal frame-
work and its applications.
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1.2.2. Universal Multifractal (UM) framework
1.2.2.1 Overview of the theoretical framework

The framework of Universal Multifractals (UM) enables to characterize the extreme variability
of geophysical fields across scales, with the help of a limited number of parameters with physical
meaning (Schertzer and Lovejoy, 1987). It relies on the assumption that these fields are generated
through an underlying multiplicative cascade. As discussed before, such behaviour is assumed to
be inherited from the scale invariant features of the Navier-Stokes equations, but has not yet been
formally showed. Consequently, statistical properties of fields are conserved in all scales. Review
by Schertzer and Lovejoy (2011) discusses the techniques and methodologies employed in more
detail. The concepts discussed in previous section is applied here for introducing UM framework.

For analysis in UM framework, the field in consideration is normalized (divided by its mean
value) and its total size in terms of numerical values is restricted to be a power of two. The field
can be one or two dimensional; since current studies involve only time series we will be limiting
our discussion to single dimension. Let us consider a normalized conservative field (an additional
parameter for non-conservative fields is introduced later) ελ at resolution λ . Resolution λ is the
ratio of L, the outer scale, to l, the observational scale. Let us first consider the occurrence pattern
of the field, i.e. the same field with 1 for strictly positive values and 0 otherwise. If the field is
fractal, then the probability p that a segment of length l intersects the field (p is the probability of
occurrence of non zero elements in the total binary field) scales with resolution as follows:

p =
λ D f

λ D = λ
−c f (12)

where c f is the fractal co-dimension of the field (Eq. 10). The fractal dimension D f indicates how
the binary field (rain and no rain if we take rainfall as an example field) fills the available space in
a scale invariant way. As D is constant, in order to fully characterize the field a value of D f for
each threshold (same as intensity used in previous section) is required. This is the intuitive notion
of multifractality. In order to be mathematically consistent, this characterization should actually be
done with the help, not of a direct threshold at the maximum resolution, but with a scale-invariant
threshold called singularity γ , and their corresponding codimension function c(γ) as :

p
(
ελ ≥ λ

γ
)
≈ λ

−c(γ) (13)

where γ is the singularity (γ = logλ (ελ )). c(γ) can be geometrically interpreted as the fractal codi-
mension of the portion of the field exceeding a given singularity γ . ’≈’ shows statistical equivalence
accounting the slowly varying and constant factors over operations across various λ . This relation
implies that statistical moments q of the field scale with resolution (Schertzer and Lovejoy, 1987,
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1988) with moment scaling funciton K(q) as:

⟨ελ
q⟩ ≈ λ

K(q) (14)

K(q) and c(γ) are equivalent functions (via Mellin transformation that relates moment orders
and probability density function) and fully characterize the variability of the process across all
scales. For multifractals, both functions are related by a simple Legendre transform (Parisi and
Frisch, 1985; Schertzer and Lovejoy, 1993):

K(q) = max
γ

[qγ − c(γ)]

c(γ) = max
q

[qγ −K(q)]
(15)

Hence, for every singularity γ , there is a corresponding order of moment q associated with it
and vice versa: q = dc(γ)

dγ
& γ = dK(q)

dq .

Though the determination of K(q) (and c(γ)) ideally requires infinite number of parameters, it
is possible to reduce them to a few parameters from local description of scaling functions around
mean (q = 1) in UM framework. This is made possible by fixing the total range of scales of the
multiplicative cascade processes (λ finite) and by the application of (generalized) central limit
theorem (Schertzer and Lovejoy, 1997), causing all multiplicative processes to converge towards
a universal behaviour. For a conservative field in UM framework, Kc(q) can be fully determined
with only two parameters, multi-fractality index α and mean intermittency codimension C1.

Kc(q) =


C1

α −1
(
qα −q

)
α ̸= 1

C1q lnq α = 1
(16)

C1 measures clustering of average intensity across scales (C1 ∈ [0,1] for 1 dimensional fields);
when C1 = 0 the field is homogeneous with little variability. α measures how this clustering
changes with respect to intensity levels (α ∈ [0,2]); higher the value of α , higher the variabil-
ity, with α = 0 being a monofractal field where intermittency of extreme is same as that of mean.
Larger values of both correspond to stronger extremes. Simulations of such fields can be obtained
by generating a levy noise with parameter α , ’colouring’ it to introduce C1 and then taking the
exponential which yields solely non-negative values.

If the UM parameters are known, co-dimension function of the conservative multifractal field,
cc(γ) can also be obtained as
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cc(γ) =


C1

(
γ

C1α ′ +
1
α

)α ′

α ̸= 1

C1 exp
(

γ

C1
−1

)
α = 1

(17)

where 1
α
+ 1

α ′ = 1. Fig. 1.16 shows the theoretical curves of scaling moment functions around
various values of α and C1..

Figure 1.16: Illustration of the scaling moment functions in UM framework. a) K(q) at various values of α at a fixed
C1; b) K(q) at various values of C1 at a fixed α . q = 1 corresponds to mean; c) & d) c(γ) at similar conditions.

For a non conservative field φλ , i.e. a field whose average (⟨φλ ⟩) changes with scales, a non-
conservative parameter H is used in expression of scaling:

φλ = ελ λ
−H (18)

where ε is a conservative field characterized with C1 and α .
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H characterizes the variation in mean across all the scales (⟨φλ ⟩ = λ−H); for a conservative
field, H =0, in terms of Eq. 18, ⟨ελ ⟩ = 1. Positive H represents a smoother field which needs
to be fractionally differentiated for obtaining a conservative field. Conversely negative H repre-
sents a field in need of fractional integration for retrieving conservative field; which are equivalent
to multiplication with kH in Fourier space. H is related to the spectral slope β (Eq. 8), which
gives a measurement of the correlation range. Larger β means higher contribution of large-scale
phenomenon in variability of data.

β = 1+2H −Kc(2) (19)

this comes from the previously mentioned relation between β and ζ (2) (section 1.2.1.2), and H =

ζ (1).

With H added to moment scaling functions (replacing the conservative left hand side Kc(q)
with K(q)− qH in Eq. 16 and cc(γ) with c(γ +H) in Eq. 17), the model can be used for non-
conservative fields as well.

1.2.2.2 Estimation of scaling behaviour and UM parameters

The scaling behaviour of conservative multifractal fields can be examined using trace moment
(TM) where log-log plot of upscaled fields against resolution λ is taken for each moment q (Eq.
14). For multifractal fields, the plot is a straight line with moment scaling function K(q) as slope.
The quality of scaling is given by the estimate r2 of the linear regression; the value for q = 1.5 is
used as reference. From the K(q) curve, α and C1 are estimated from derivatives at q = 1 since in
UM framework local.

K′(1) =C1

K′′(1) =C1α
(20)

It should be mentioned that, in practise, local approximation of these derivatives are used, i.e.
K′(1)≈ K(1.05)−K(0.95)

0.1 .

Double trace moment (DTM) is a more robust version of TM tailored for UM fields where
the moment scaling function K(q,η) of the field ελ

(η) (ελ
(η) = ελ

η

⟨ελ
η ⟩ , obtained in practice by

raising ε to power η at the maximum resolution and then upscaling it) is expressed as a function of
multifractality index α (Lavallée et al., 1993). For a multifractal field, K(q,η) becomes

K(q,η) = K(ηq)−qK(η) = η
αK(q) (21)
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From this, it is possible to express the DTM relation as

⟨
(
ελ

(η)
)q⟩ ≈ λ

K(q,η) = λ
ηα K(q) (22)

From the above equation, value of α can be obtained as the slope of the linear part when
K(q,η) is represented for a given q as a function of η in log-log plot. And C1 from the intercept
of the linear portion of the graph, using Eq. 16 (K(q,η) = ηα C1

α−1(q
α − q)). Both TM and DTM

techniques give reliable estimates as long as the H < 0.5 for the conservative field analysed.

Figure 1.17: Illustration of DTM analysis (for a simulated field: α = 1.8 & C1 = 0.2): a) log-log plot of Eq. 14 for the
renormalized η-power of the field ελ (ε(η)

λ
) at various values of q and η , slope of which gives K(q,η); b) log-log plot

of Eq. 21 for various q values, slope gives α and C1 is calculated from the intercept.

Though K(q) and c(γ) are continuous convex curves in theory, in practice, the range of mo-
ments under which reliable estimates of UM parameters can be retrieved is limited by phase tran-
sitions (Schertzer and Lovejoy, 1987, 1992) due to the size of the sample analyzed as well as by
the divergence of higher moments. There exists a single maximum value of the scale invariant
threshold and hence of singularity γs (and of corresponding moment order qs) at which the fractal
codimension (c(γ)) becomes equal to the dimension of the embedding space (D). At this maximum
point, the corresponding probability in Eq. 13 becomes 1 (the number of structures at or above the
maximum singularity) divided by the total number of structures (λ D). If the field consists of Ns in-
dependent samples (Ns = λ D

s , where Ds is the sampling dimension), the maximum singularity can
be obtained as c(γs) = (D+Ds) (Pr(ε ≥ λ γs) = λ−c(γS) = λ−Dsλ−D). In practice, the empirical
K(q) curve becomes linear at q > qs, and trails below the theoretical curve (see sections 2.2 and
3.1.2.2 for this effect in practise and their consequences). Since multifractal processes are gener-
ated by cascade processes, the average values can get too concentrated over a certain area leading
to spurious estimates of moments - divergence of moments. At the moment orders greater than
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qD (q above which divergence happens) K(q)≈+∞ giving unreliable estimates of UM parameters
(there is no convergence, i.e. more the samples, greater the value). qD can be estimated from power
law fall off in probability distribution: Pr(ελ ≥ x) ≈ x−qD . For reliable statistical estimates of the
moment scaling function and hence the UM parameters, the moment orders should not be exceeded
beyond qs or qD.

For most fields studied here, positive H values were found; and when H > 0, a conservative
field was obtained by the fractional differentiation implementing the commonly used approximation
by Lavallée et al. (1993). Basically, the field ε at the maximum resolution (ελmax) is estimated
by renormalizing absolute fluctuations of the original field at maximum resolution (φλmax) is then
upscaled at other resolutions λ in the estimation of UM parameters.

ελmax(i) =
|φλmax(i+1)−φλmax(i)|
⟨|φλmax(i+1)−φλmax(i)|⟩

(23)

with i being the time step from 1 to length of the series, N (i = 1, 2, ..., N). UM gives reliable
estimates for H < 0.5.

1.2.2.3 Power law relations in UM framework and practical implementation

If a field is UM, then a power law relation of it is also a UM field with coefficients depending
upon initial UM parameters. The reasoning for power law comes from the DTM analysis in UM
framework (Tessier et al., 1993; Lovejoy et al., 2008).

Consider two multifractal fields (ε1 and ε2) that are power law related by an exponent a and a
prefactor b, as below :

ε1 = bε
a
2 (24)

From exponents in Eq. 22, K(q) of ε1 can be expressed as follows

< (ε1)
q > ≈ < (ε2

(a))q > ≈ λ
Kε2(q,a)

Kε1(q) = Kε2(q,a) = aαε2 Kε2(q)
(25)

Expanding K(q) with UM parameters (as in Eq. 16)

C1,ε1

αε1 −1
(qαε1 −q) = aαε2

C1,ε2

αε2 −1
(qαε2 −q) (26)

From the above equation, we can deduce that, if a power relation exists, the UM parameters
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are related as follow :
αε1 = αε2 = α

C1,ε1 = aαC1,ε2 (27)

1.2.2.4 Illustration of scaling and UM analysis

Here, the relevance and one use case of UM analysis is briefly illustrated with a few real
atmospheric fields, using the already discussed data from RW-Turb project (Section 1.1.3). This
section is adapted from section 5 of the data paper (Gires et al., 2022) and uses framework along
with spectral analysis for determining the quality of data.

It has been previously established that the RW-Turb project includes high-resolution simulta-
neous registration of data from 3D sonic anemometers (100 Hz) and meteorological stations (1
Hz) along with turbine power in a wind farm. While studying the small-scale space-time fluc-
tuations, it is advantageous to use data at the finest available resolution. However, it is possible
that the actual sampling resolution may be different due to quality problems in the series leaving
spurious estimates at finer scales. To understand this, the finest available data from anemometers
and meteorological stations were analysed using spectral analysis and the framework of Universal
Multifractals (UM). A multifractal analysis of collected data is performed to check for the effective
resolution of the data, i.e. to assess if measurements are affected or not by instrumental artifacts at
small scales. Given the stated purpose, only small scales (i.e. from 16 s down to 0.01 s) are studied
here.

Spectral estimates
Spectral analysis which consists of plotting Eq. 8 in log-log and trace moment (TM) analysis

which consists of plotting Eq. 14 in log-log for various moments q enable to confirm scaling
behaviour of studied fields. It is the case if straight lines are retrieved, potentially with several
scaling regimes. The retrieved slopes give β for the spectral analysis and K(q) in the TM analysis.
In Fig. 1.18a, trace moment (TM) analysis, and spectral analysis for 100 Hz anemometer data is
shown (ensemble analysis of 1 month long data - 01/03/2021 to 01/04/2021 - with a sample length
of 40 minutes). If we use the terminology in section 1.2.2: anemometer data is the field, ελ , at
various observational scales (0.01 s to 40 min here) with λ being the corresponding scale ratios (or
resolutions in UM framework). The blue and red lines in TM and spectral plots correspond to two
scaling regimes, both with separate scaling behaviour and estimates of β and UM parameters. In
the spectral plot, a spectral spike is observed at frequency 0.0304 s−1 and spurious fluctuations are
visible for small scales. The spike is due to the fact that at 100 Hz, same data is basically repeated
over three successive time steps (revealed from manual checking). Data from other time periods
were also tested and they yielded similar results.
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UM estimates
Estimates of UM parameters, obtained with the help of DTM analysis (log-log plot of eq. 22)

for the small scale regime (1 Hz - 100 Hz) yielded values of C1 too low (2.80×10−5) to consider any
variation in the field. As the field is too smooth here (high value of β : 2.13 and 1.57), fluctuations
were analysed by differentiating the field (eq. 23). This enables to study a approximation of the
underlying conservative fields (hence the decrease in estimates of β and H). In fluctuations of
same 100 Hz data, nearly 70% of the values are equal to zero, which results in strong bias for
estimates with an artificial decrease of α (= 0.31 here) and an increase in C1 (= 0.21 here), which
is consistent with bias associated with numerous zeros (Gires et al. (2012). This further suggests
the possibility of having instrumental noise in resolutions finer than 1 Hz. It is unclear where
exactly the scaling break is (close to 1 Hz or 10 Hz) to consider instrumental noise, but for being
on the safer side, we decided to take 1 Hz as the limiting value. Analysis of fluctuations of 1 Hz
data (ensemble analysis of 1 month long data - 01/03/2021 to 01/04/2021 - with a sample length
of 16 hours) is shown in fig. 1.18b. For the small scale regime (1 s - 16 s), we find α = 1.49 and
C1 = 0.09 which is more consistent with estimates commonly retrieved for atmospheric fields.

Similar results (extremely small values of C1 or β suggesting instrumental noise) are observed
for other 1 Hz data available at meteorological stations - Temperature (T ), Pressure (P), Humidity
(RH) and air density (ρ , a function of T , P & RH) with 16 s being close to the actual effective
sampling resolution. Fig. 1.18c shows the TM analysis for T ; on the basis of spectra, the second
scaling regime (16 s to 1 Hz) seems to suggest presence of instrumental artifacts (ensemble analysis
of 1 month long data - 01/03/2021 to 01/04/2021 - with a sample length of 16 hours). For the 1 s -
16 s regime, we find α = 1.99 and C1 = 1.61×10−6; the low C1 supports spectral observation. In
1 Hz station data, values of many data points were actually very close to each other resulting again
in the presence of a lot of zeroes in fluctuations of the series (about 75% for T fluctuations). This
in turn gave biased estimates of both α and C1. Averaging data over time reduced this effect and
by considering fluctuations of data at 15 s, realistic values of α and C1 were retrieved (Fig. 1.18d;
α = 1.12 and C1 = 0.14 for 15 s - 4 min scaling regime).
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Figure 1.18: TM analysis (Eq. 14 in log-log plot), and spectral analysis (Eq. 8 in log-log plot) of 1 month long data
(27/01/2021 to 27/02/2021) for a) anemometer data at 100 Hz (sample length of 40 min), b) fluctuations of anemometer
data at 1 Hz (sample length of 16 hours), c) Temperature (T ) at 1 Hz (sample length of 16 hours), d) fluctuations of
Temperature (T ) at 15 s (sample length of 16 hours)

For analysing the fields’ variability, its worthwhile to note that the actual sampling resolution -
resolution from which fields can be studied to obtain consistent UM parameters - is not necessarily
the lowest resolution of instrumental data availability. Indeed, it could be affected by instrumental
artifacts (white noise, repeated values). Here, it is more realistic to study anemometer as well as
station data at a coarser resolution (1 Hz and 16 s respectively) where it is exhibiting clear scaling
variability than at the finest available resolution of data recording (100 Hz and 1 Hz). Multifractal
framework (UM) is thus a powerful tool to study this issue and assess the quality of the data.

1.2.3. Framework of joint multifractal analysis (JMF)
In previous section, UM framework was introduced which enables characterization of all the

fluctuations of a field at all the scales, scaling behaviour with various regimes, degree of non-
conservation, mean intermittency and variability of intermittency. Atmospheric fields are known to
be inter related and understanding the complexity of a field also involve understanding its behaviour
with correlated fields. Here, the framework of Joint Multifractals (JMF) is introduced which is
designed for characterizing the correlation between two multifractal fields, relying on the already
discussed framework of UM.

Though not extensive, various methodologies were suggested and used for studying coupling
(across scales) between two simultaneously measured fields from their joint moments (like mo-
ments of individual fields mentioned before, but by multiplying both fields under consideration).
Meneveau et al. (1990) used joint moment exponents to examine correlation between velocity and
temperature fluctuations in the turbulent wake of a heated cylinder, and also between square of vor-
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ticity fluctuations and dissipation of turbulent velocity component. Seuront and Schmitt (2005a,b)
expanded upon this by introducing a ’generalized correlation function’ (GCF, re-normalizing the
joint moments) and argued the use case in effectively characterizing biological and physical cou-
pling (using data on phytoplankton concentration, through fluorescence, and temperature at various
turbulence intensities). Calif and Schmitt (2014) used GCFs to examine coupling between simul-
taneous data of wind speed and aggregate power output from a wind farm. Both cases used GCFs
on log-normal cascades involving single parameter and linear correlation functions, and explored
only two specific coupling cases between fields - a proportional or a power law relation. Between
two fields, the GCF is symmetrical with respect to the moment between fields; this suggests the
possibility of expressing the two quantities with a simple relation of proportionality. Relying on
this, Gires et al. (2020b) expanded GCFs to UM providing a framework (JMF) where the related
fields can be expressed as multiplicative power law combination of known UM fields. This frame-
work not only retrieves the proportionality constants between fields but also provides an intuitive
indicator that combines most of the information obtained from JMF.

Consider two simultaneously measured multifractal fields ελ and φλ of resolution λ , the corre-
lation between them can be expressed using generalized correlation function (GCF) suggested by
Seuront and Schmitt (2005a) as follows:

⟨ελ
qφλ

h⟩
⟨ελ

q⟩⟨φλ
h⟩

≈ λ
S(q,h)−Kε (q)−Kφ (h) ≈ λ

r(q,h) (28)

where r(q,h) is the generalized scaling exponent (which is symmetrical: r(q,h) = r(h,q)) and
S(q,h) the scaling moment exponent of combined field (ελ

qφλ
h). Kε(q) and Kφ (h) are scaling

moment functions of ελ and φλ at moments q and h. For a log normal field (α = 2), r(q,h) is a
linear function with regards to both h and q; and if the fields are independent, r(q,h) = 0.

In JMF, we can express ελ in terms of φλ and an independent multifractal field Yλ with same
C1 as φλ . Below, both fields are correlated with a and b (relative weight in combination), and Yλ

(can be generated if we know its α and C1). Note that φλ
aYλ

b is a single field expressed as a power
law combination of φ and Y .

ελ =
φλ

aYλ
b

⟨φλ
aYλ

b⟩
(29)

Please note that numerator in Eq. 28 is average of the field and that in Eq. 29 is the field itself.
Before proceeding further, it is important to state the meaning of a and b intuitively on correlation
between fields. When a = 1 and b = 0, ελ is simply equal to φλ (maximum correlation) and during
the converse, ελ is equal to Yλ with no connection to φλ . Intermediate values of a (1 > a > 0) shows
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progressive decorrelation between ελ and φλ .

Empirical technique for retrieving UM parameters of Yλ and exponents a and b from JMF
analysis starts with individual UM analysis of the fields to be correlated, ελ and φλ . For estimation
of a, joint multifractal analysis is required: Eq. 28 is implemented with φλ and ελ (the order of
fields are reversed here to follow the format in Gires et al. (2020b); this doesn’t matter as the GCF
is symmetrical, also in practical estimation in JMF both moment orders are kept same: q = h = 0.7).
This can be reduced by introducing the independent multifractal field Yλ . By substituting ελ (from
Eq. 29) in above equation, and separating average of products to product of averages (as φλ and Yλ

are independent of each others) we are left with

⟨φλ
q
ελ

h⟩
⟨φλ

q⟩⟨ελ
h⟩

=
⟨φλ

q
(

φλ
aYλ

b

⟨φλ
aYλ

b⟩

)h
⟩

⟨φλ
q⟩⟨

(
φλ

aYλ
b

⟨φλ
aYλ

b⟩

)h
⟩

=
⟨φ q+ah

λ
Y bh

λ
⟩

⟨φ q
λ
⟩⟨φ ah

λ
⟩⟨Y bh

λ
⟩

=
⟨φ q+ah

λ
⟩

⟨φ q
λ
⟩⟨φ ah

λ
⟩

(30)

Here the ratio no longer depends on Yλ which makes the joint scaling function r(q,h) solely de-
pendent on φλ . Following the generalized correlation in Eq. 28 and expressing scaling moment
functions in UM framework (Eq. 16):

r(q,h) = Kφ (q+ah)−Kφ (q)−Kφ (ah)

=
C1,φ

αφ −1
((ha+q)αφ − (ha)αφ − (q)αφ )

(31)

Here, r(q,h) is an increasing function of a for a given value of q and h; and this property
is used for computing the values of a. One approach is to set q and h to known values (both at
0.7 for example) and compute the empirical value of remp(q,h), and then find the value of a that
yields this value. This technique works as long as the scaling moment functions remain stable, i.e.
the exponents here (ha+ q, ha, and q) are less than the critical moments (qs and qD) discussed in
section 1.2.2.2.

Now remaining are the values UM parameters and exponent of independent field Yλ : αY (C1,Y

= C1,φ ) and b. They can be obtained by applying generalized correlation to ελ
q following Eq. 29

⟨ελ
q⟩=

⟨φ aq
λ
⟩⟨Y bq

λ
⟩

⟨φλ
a⟩q⟨Yλ

b⟩q = λ
Kε (q) (32)
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Kε(q) can be expanded according to GCF (Eq. 28) and UM framework (Eq. 16) as

Kε(q) = Kφ (qa)−qKφ (a)+KY (qb)−qKY (b)

=
C1,φ

αφ −1
[(qa)αφ −qa)−q(aαφ −a)]+

C1,Y

αY −1
[(qb)αY −qb)−q(bαφ −b)]

= aαφ Kφ (q)+bαY KY (q)

(33)

Assuming ελ as a UM field, C1 and α are obtained from derivatives of K(q) around mean (q = 1)
as per Eq. 20

C1,ε = K′
ε(1) = aαφC1,φ +bαY C1,Y

αε =
K′′

ε (1)
C1,ε

=
C1,φ aαφ αφ +C1,Y bαY αY

C1,ε

(34)

From above equations, both αY and b can be estimated. For αY estimation, replace C1,Y bαY as
C1,ε −aαφC1,φ

αY =

C1,ε
C1,φ

αε −aαφ αφ

C1,ε
C1,φ

−aαφ

(35)

b can be obtained from C1,Y =C1,φ assumption

b =

(
C1,ε

C1,φ
−aαφ

)1/αY

(36)

With a, b and Yλ , it is possible to characterize the correlation between two multifractal fields.
Along with these parameters, JMF framework also introduces a simplified indicator of correlation,
ICεφ (≈ ICφε )

ICεφ =
C1,φ aαφ

C1,ε
(37)

More information on the intuitive indicator and exponents can be found in Gires et al. (2020b)
along with validation of the framework with real and simulated data. IC is reported to be relevant
for values of α , typically greater than 0.8. Here, the usage of JMF is briefly illustrated using two
fields whose correlations are known - available wind power and wind velocity (Pa ∝ v3).
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1.2.3.1 Illustration of JMF analysis

Here, we illustrate for pedagocical purposes the estimation of coupling between two geophys-
ical fields using JMF, using their real data measured simultaneously over a given period from the
same location. The fields under discussion are wind velocity (v) measured by 3D sonic anemometer
and wind power available (Pa = 1

2ρAv3Cp, from Eq. 64 in section 3.1) calculated from it. Here,
Pa corresponds to the maximum power that can be extracted from wind at the point; Cp is Betz
constant and corresponds to this retrievable limit, A is the area swept by turbine rotors, and ρ is
the air density at the region. ρ is generally considered fixed at 1.225 kg.m−3, the sea level value at
15 ◦C; here we use a dynamic value based on temperature, pressure and humidity of the location
(Picard et al. (2008), see section 3.1). Pa is calculated by basing on the specifications of Vestas V90
installed at same location (section 1.1.3), and from horizontal wind (assuming cancellation of the
vertical component by gravity, and predominant wind flow in the horizontal plane perpendicular to
blades).

Figure 1.19: a) Time series of horizontal velocity (v), b) Time series of power available with varying air density (Pa),
and c) Scatter plot of Pa and v (this is following the proportionality of Pa ∝ v3).

For estimating the coupling between two fields, it is important that the fields studied have
physical significance to be correlated; and to study it in the framework of JMF, the fields should
be multifractal. Fig. 1.20 shows the UM plots of Paλ and vλ for the day 08 April 2022, from
3D anemometer on the meteorological mast (80m height, Location 1) at Pays d’Othe wind farm
(quicklook of the day is shown in Fig. 1.8). An observational scale time step of 15 s (same as data
obtained from Vestas V90) was used here for ease of illustration (see Fig. 1.19).
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1. Data and Methods

Figure 1.20: TM analysis (Eq. 14 in log-log plot), DTM analysis (Eq. 22 in log-log plot), DTM curve (Eq. 21 in
log-log plot) and spectral analysis (Eq. 8 in log-log plot) of 1 day data (08/04/2022) for a) horizontal wind at 15 s, and
b) available power (Pa) at 15 s (both as ensemble at a sample length of 30 min). K(q) vs. q plots are shown in next
figure.

Both of the fields show good scaling with UM values within the required limits and values of
non-conservation parameter H below 0.5. Now, the framework of JMF is imposed for seeing the
correlation between the fields; here, we are looking to confirm the known proportionality (Pa ∝ v3)
with the value of JM exponent a when the fields are expressed as a mathematical combination of
one another: Paλ = vλ

aYλ
b

(vλ
aYλ

b)
(as in Eq. 29).

Figure 1.21: a) K(q) plots for Paλ and vλ , (b) JTM plot for the joint field (Eq. 28 in log-log; the slope gives get
r(0.7,0.7), and c) Estimation of JMF parameter a (Eq. 31). Samples are prepared as an ensemble of size 128 (30
minutes), for day 08/04/2022.

Fig. 1.21a shows the theoretical and empirical K(q) of both fields (from individual UM) which
are in good correspondence with each other; this shows that the UM estimates are good enough for
being applied in JMF calculations. Fig. 1.21b shows the trace moment of joint multifractal field
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1. Data and Methods

(obtained from joint moments as in Eq. 28 for every resolution λ ). From Fig. 1.21c, it can be seen
that the value of a is estimated from q = h = 0.7 as mentioned previously. The retrieved value of
2.98 is in good agreement with the expected value of 3. The quality of scaling of the joint field is
given by r2

JMF , which is 0.989. It is also worth noting that the values of critical order of moments
qs and qD here are well within the limits required for reliable estimation of JMF (qs, qD > ha+q,
ha, and q).

1.3. Presentation of research outputs

As explained in this chapter, atmospheric fields inherit the scale invariant properties of gov-
erning Navier-Stokes equations and using the framework of universal multifractals, it is possible
to quantify the small scale variability and intermittency across the scales using few parameters of
physical meaning. The datasets introduced in this chapter are analysed in this line with the method-
ologies discussed. The results are presented in upcoming chapters, in two parts - individual UM
analysis of various atmospheric multifractals and JMF analysis between various fields. Results
presented involve statistical characterization of various stochastic fields across scales, and hence
further validation of the scale invariant methodologies presented.

Chapter 2 deals with individual analysis of rainfall, kinetic energy and indirect analysis of
particle concentration through extinction coefficient. In chapter 3, the fields are analysed jointly
with emphasis on correlations between them. This chapter also includes the experimentation inside
sense-city, and analysis of the scavenging coefficient of aerosol particles. Specifics of the result
presentation in each chapter are briefly provided in corresponding introductions.
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2. Independent multifractal analysis of atmospheric fields

In this chapter, various atmospheric fields are studied individually using UM analysis and ex-
amined for their small-scale variability, with the intention of understanding their scaling behaviour
and characterizing it using UM parameters. This understanding is then applied to real-world appli-
cations and specific use cases are proposed. Section 2.1 is adapted from Jose et al. (2022) where a
scale invariant relationship between rainfall intensity (often directly available) and rainfall kinetic
energy (direct measurements are scarce), which has strong consequences on erosion in the soil as
well as external structures such as wind turbine blades. For this purpose, directly measured data
from three different disdrometers for around 7 years (at TARANIS observatory) were used (refer
section 1.1.1). The results from UM analysis enabled development of a power law relationship
between both fields (reinforced by previous results in literature and theoretical equations) without
relying on any assumptions of drop size distributions.

In section 2.2, the parameter extinction coefficient which characterizes the light attenuation in
the atmosphere is analyzed using UM framework. This coefficient is used in defining atmospheric
visibility; here, we propose it as the actual field to be studied for characterizing the variability in
visibility. Visibility is a subjective measurement whose values are adjusted to follow application-
specific ranges. This notably results in the implementation of an upper threshold, which causes
limitations in statistical analysis of the objectively measured extinction coefficient. This is identi-
fied and discussed in the framework of UM using real data and numerical simulations as well as
theoretical computations.

2.1. Scale invariant relationship between kinetic energy (KE) and rainfall intensity (R)
2.1.1. Introduction

The importance of studying rainfall with its drop size distribution (DSD) and kinetic energy is
examined here with its practical implications. And various commonly used formalisms of KE in
literature are reviewed in the context of the current study.

2.1.1.1 On the importance of rainfall and kinetic energy

Understanding the relation between rainfall rate (R) and kinetic energy (KE) is essential for
accurate determination of various rainfall parameters and understanding their after effects on sur-
rounding ecosystem (Karlen et al., 2003). It has been well established that onsite erosion of soil -
splash and runoff - depends on DSD and fall velocity of the spectrum (Ellison, 1944; Fernández-
Raga et al., 2017). Hence, KE and R are primarily used to quantify rainfall erosivity and to estimate
erosion rates in universal models towards sustainable land use planning (Angulo-Martínez et al.,
2012; Shojaei et al., 2020; Mohamadi and Kavian, 2015). Erosion heavily affects agricultural sec-
tor: On on-site level, it impoverishes the top soil off nutrients and organic matter along with their
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water holding capacity; this in turn increases the use of fertilizers and hence causes pollution at
the recipient end of off-site erosion. Further, on off-site level, soil transport by erosion can trigger
flood events through silting up of basins and rivers (Pimentel, 2006; Enne et al., 2000). Rainfall
erosivity is a key parameter in various erosion models such as US based Universal Soil Loss Equa-
tion (USLE, Smith and Wischmeier, 1962) and its revised version (RUSLE, Renard et al., 1997),
South Korean based SEMMA models for calculating soil loss (Deog Park et al., 2012), and in Eu-
ropean models such as EUROSEM, WaTEM etc. that account for sediment transportation along
soil loss (Morgan et al., 1998; Van Oost et al., 2000; Kirkby et al., 2008, an advance on USLE).
Most of these frameworks use KE as the major quantifying factor for estimating erosivity at spatial
scales as rainfall KE represents the total energy available for detachment and transport of soil on
surface of impact. As direct measurement of KE is limited to specific geographical locations pos-
sessing required instrumental capabilities, understanding the relationship between KE and the more
commonly available rainfall parameter, R, is important in estimating the former in more places.

Accurate estimation of rainfall KE is also important in understanding and mitigating leading-
edge erosion (LEE) on wind turbine blades. Erosion damage reduces aerodynamic performance
of blades resulting in reduced annual energy production and increased downtime (Keegan et al.,
2013). Though LEE involves a multitude of atmospheric factors, impact velocity and amount of
precipitation have been established as some of the major external factors in erosion (Herring et al.,
2019). As in soil erosion, larger drops with greater mass and vertical terminal velocity causes a dis-
proportionate amount of erosion in LEE also. Rainfall KE helps to quantify the impact of droplets
hitting perpendicular to the surface and hence rainfall erosion on blades which is the accumulated
aggregate of multiple impacts stochastically distributed over the surface of the coated laminate
(Bech et al., 2018). In Whirling arm rain erosion test (WA-RET) (ASTM-G73-10, 2017; Liersch
and Michael, 2014; DNVGL-RP-0171, 2014), the industrial standard for measuring durability of
leading-edge structures, specimens are subjected in controlled velocity and rain conditions to as-
sess the damage caused by droplet impacts (Bech et al., 2018). Considering the rapid growth of
offshore wind industry as sustainable clean energy solution in the Americas and Asia with monsoon
seasons, proper representation of KE and R is important in quantifying LEE in wind turbines.

2.1.1.2 Review of existing relations and need for a scale invariant representation

Application of erosion frameworks such as USLE or RUSLE poses uncertainties because of
their empirical basis which has single or limited measurement locations and specific methods of
data collection. These frameworks take KE as the major quantifying factor for erosivity, and em-
ploy various corrections to mitigate overestimation at low intensity rainfall as smaller droplets are
less effective in soil detachment (van Dijk et al., 2002). Another commonly used erosivity index is
rainfall momentum, but it has been shown that for natural rainfall they exhibit similar relationship
with rainfall intensity (Hudson, 1971). These models are based on traditional two parameter expo-
nential rain drop size distribution models developed from smaller sample collection methods such
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as flour pellets or stain paper (Laws and Parsons, 1943; Marshall and Palmer, 1948). Later studies
using multi parameter radiometry and disdrometers have shown improvements in measurement if
DSD is assumed to be a three parameter gamma distribution (Ulbrich, 1983). Gamma distribution
assumes fewer large drops in rain and represents a narrower DSD than the exponential one, and
thereby reduces the overestimation of KE by the latter. For recording DSD and in turn obtaining
empirical KE, disdrometers are commonly used in meteorological campaigns, where fall velocity
is either directly measured or estimated from empirical relations (Gunn and Kinzer, 1949; Atlas
et al., 1973).

There has been various studies towards accurate representation of KE −R relationship. Fox
(2004) demonstrates the impact of formulation of DSD in calculation of KE and hence on erosion.
Smith and Wischmeier (1962) proposed a logarithmic function based on DSD formulation by Laws
and Parsons (1943) and terminal velocity by Gunn and Kinzer (1949). It was used in modelling
erosion in USLE, which was later replaced by continuous exponential functions in revised USLE
approach (Renard et al., 1997; Brown and Foster, 1987). Other proposed forms of KE−R equations
were linear (Kinnell, 1981; Sempere-Torres et al., 1998), polynomial (Carter, 1979) and power-
law (Park et al., 1982). Critical literature appraisal by van Dijk et al. (2002) on various KE −R
relations lists measurement techniques and procedures, sampling biases, interpretation methods
and storm types as reasons for discrepancies and suggests another exponential based predictive
equation. More recent reviews such as Angulo-Martínez and Barros (2015), Wilken et al. (2018),
Mineo et al. (2019) shows lack of universality among various KE −R relationships (logarithmic,
linear, power law and exponential) using disdrometer measurements and modelling at different
geographic stations, meteorologic conditions and time aggregation used for calibration.

Most of the empirical formulations express KE as volume specific - kinetic energy per unit area
and mm of rainfall or KEmm (Jm−2 mm−1) due to prevalence of non automated measurements and
lack of accuracy in determining exposure time. But expression of volume specific kinetic energy
creates a statistical artefact (spurious ratio correlation) in KE −R relationship due to the inclusion
of R (mmh−1) in the KEmm expression. Salles et al. (2002) suggests usage of more consistent
time specific KE or KEtime (Jm−2 h−1) that has been shown to produce less heteroscedasticity than
corresponding KEmm −R scatter plots. For representing erosion, KEtime has been expressed as the
rate of expenditure of rainfall kinetic energy (Kinnell, 1981), rainfall or kinetic power (Smith and
De Veaux, 1992) and rainfall kinetic energy flux density (Steiner and Smith, 2000). The two expres-
sions are related to each other through rain intensity and hydrological studies usually harmonize
KE −R relationships with KEtime.

KEtime = R×KEmm (38)

In this section the expressions for KE are derived and analyzed in the form of KEtime unless other-
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wise specified.

Due to variations in methodologies used and DSD characteristics during measurement, dif-
ferent functional forms show different behaviour towards KE −R estimation. Though commonly
preferred, exponential relations have been shown to underestimate KEtime for lower intensities of
rainfall (Carollo and Ferro, 2015). Power-laws that predict kinetic energy well at lower intensities
tend to overestimate the same for higher intensities. Logarithmic curves are limited in their usage
though they fit low and high intensity KE rather decently (van Dijk et al., 2002). Further due to the
empirical formulation, when it comes to expressing KEtime vs R, most of these mathematical equa-
tions fail to have much physical justification. Using generalized scaling formulation that expresses
various existing DSD models as it’s special cases (Torres et al., 1994; Sempere-Torres et al., 1998),
Salles et al. (2002) found that power law is the most suitable function to relate KEtime and R from
a microphysical point of view. The parameters (prefactor and exponent) of power law are related
to rain type, geographical location and measuring technique. Shin et al. (2016) has proposed a
representative power law based on the ideal assumption that the drop-size is uniformly distributed
under the constant rainfall intensity.

2.1.1.3 Purpose of the study

Current literature on KE and R lacks a common consensus on the usage of expression that
is valid across various scales of measurement, hydro-meteorological regimes or observation tech-
niques. There is an increased focus on research characterizing rainfall microphysics at local and
regional scales (Petan et al., 2010). Here we examine the variation of KE and R for over 7 years
in Paris region using continuous data from three disdrometers from two different manufacturers.
Using the framework of Universal Multifractal (UM) (Schertzer and Lovejoy, 1987), efforts were
made to characterize the variability of KEtime and R on event based and year based analysis, and
to formulate a scale invariant relation based on power law relationships. Multifractals allow char-
acterization of complex geophysical fields with a limited number of scale invariant exponents (see
Schertzer and Tchiguirinskaia, 2020, for a recent review). Multifractal behaviour of measured rain-
fall has been abundantly studied previously (see Gupta and Waymire, 1990; Kumar and Foufoula-
Georgiou, 1993; Deidda et al., 1999; Olsson and Niemczynowicz, 1996; García-Marín et al., 2008;
Langousis et al., 2009; Emmanouil et al., 2020, for some examples among others). Fractal tools and
UM framework are used extensively in hydrology for modeling and analysis (Gires et al., 2017b).
Wolfensberger et al. (2017) & Schertzer and Lovejoy (2011) used UM in climatological analysis
of precipitation - modelled and actual - in relation to external geographical and meteorological de-
scriptors. Checking the validity of UM framework on KE, which was never done to the knowledge
of the authors, is a first goal of the section. The main goal of this section is to explore the possibility
of establishing a physically based scale invariant power law relationship between KE and R using
the UM framework, without having to rely on strong assumptions on DSD shape; and compare its
performance with more classical approach.
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This study is structured as follows. In section 2.1.2 the methodology used is detailed. First,
the commonly used framework of gamma distributed DSD which yields a power-law relation is re-
minded along with the associated parameters’ estimation techniques. Then, the process to identify
power-law relation in the UM framework is explained after a required reminder on the theoreti-
cal underlying basis. Similarly, the associated parameters’ estimation techniques, which will be
implemented, are described. section 2.1.3 includes details of data collection and quality control.
Results are discussed in section 2.1.4 where validity of formulated relation is tested and contrasted
over different types of rain events. The final sub section, section 2.1.5, concludes the study and
summarizes the main observations.

2.1.2. Methodology: Theoretical relation assuming gamma distributed DSD
2.1.2.1 Rainfall microstructure and commonly used gamma distribution

Rainfall is measured and represented as distribution of raindrops in different diameter classes
or drop size distribution (DSD) and their corresponding terminal fall velocity in stable air. For me-
teorological purposes, size distribution of raindrops is represented as mean number of drops per unit
volume in a particular diameter (more precisely equivolumic diameter, i.e. the diameter of a drop
with the same volume but a spherical shape) range between D and D+ dD, Nv(D) (m−3 mm−1).
However, in hydrological studies, DSD measured by ground based devices such as disdrometers or
optical spectrometers are represented as mean number of raindrops in a particular diameter range
arriving at a surface per unit area per unit time, NA(D) (m−2 mm−1 s−1). If effects of wind, turbu-
lence and raindrop interactions are neglected, Nv(D) and NA(D) are related as follows (Uijlenhoet
and Stricker, 1999) :

NA(D) = v(D)Nv(D) (39)

where v(D) represents the terminal fall velocity (ms−1) as a function of the equivalent spherical
diameter of raindrop D (mm).

Traditional mathematical expressions describing Nv(D) such as exponential (Marshall and
Palmer, 1948), weibull (Best, 1950), gamma (Ulbrich, 1983) and lognormal (Feingold and Levin,
1986) can be expressed as particular case of general formulation proposed by Sempere-Torres et al.
(1998). For the scope of this section, gamma distribution of DSD, which has been recognized to
better represent natural rain, will be considered (Ulbrich, 1983). In this framework :

Nv(D) = N0Dµe−(ΛD) (40)

where Nv(D) is in m−3 mm−1, D in mm, N0 (in m−3 mm−1−µ), µ and Λ (in mm−1) are distribution
parameters measuring raindrop concentration, mean size and shape of spectrum respectively. Λ is
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usually expressed with the help of the median volume diameter D0 as Λ = (3.67+µ)/D0.

2.1.2.2 Theoretical power law relation between R and KE

Rainfall intensity or rain rate (R, in mmh−1) can be calculated from NA(D) using following
expression (Steiner and Smith, 2000) :

R = 3.6×10−3 π

6

∫
∞

0
D3NA(D)dD (41)

Kinetic energy per unit area per unit time (KEtime in Jm−2 h−1) of falling drops can also be
expressed in terms of measured NA(D) as follows (Steiner and Smith, 2000) :

KE = 3.6×10−6 πρ

12

∫
∞

0
D3v2(D)NA(D)dD (42)

where ρ is density of water in standard conditions in (kgm−3).

Though there are more sophisticated equations proposed in the literature for v(D), for sim-
plicity in calculation, here we are following the widely used power law formulation by Atlas and
Ulbrich (1977). Uijlenhoet (2001) demonstrated it has the only functional form consistent with
power law relationship between rainfall related parameters :

v(D) = cDg (43)

c = 3.78ms−1mm−g and g = 0.67 (with v in ms−1 and D in mm).

Most of the rainfall parameters can be approximated as moments of the DSD; and when DSD
follows gamma model, the nth moment, Mn can be computed as (Atlas and Ulbrich, 1977) :

Mn =
∫

∞

0
DnN(D)d(D) = N0Λ

−(µ+n+1)
Γ(µ +n+1) (44)

where Γ(α) is the complete gamma function

Γ(α) =
∫

∞

0
xα−1e−xdx, where α > 0. (45)

Substituting equations 39, 40, 43 and 44, and solving the integral gives reduced expressions for
KE and R in terms of gamma function;
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R = 6×10−4
πcN0

Γ(4+g+µ)

Λ(4+g+µ)
(46)

KE = 3.6×10−6 ρπc3

12
N0

Γ(4+3g+µ)

Λ(4+3g+µ)
(47)

This reduction using gamma function enables representation of KE and R in the form of a
power law as follows :

KE = bRa (48)

where

a =
4+3g+µ

4+g+µ

b = 5×10−4
ρc2 [6πcN0 ×10−4]1−a Γ(4+3g+µ)

(Γ(4+g+µ))a

(49)

The final expression follows the same pattern as that by Salles et al. (2002) based on generalized
DSD and that of Uijlenhoet and Stricker (1999) based on exponential DSD. When µ = 0 gamma
distribution for DSD becomes a simple Marshall and Palmer negative exponential parameteriza-
tion representation of DSD (Marshall and Palmer, 1948) with Eq. 48 becoming KE = 8.539R1.287.
Same values were obtained for exponent ’a’ and pre-factor ’b’ using the general function proposed
by Salles et al. (2002) for Marshall and Palmer approximation. Closer value of exponential co-
efficient were also reported by Uijlenhoet and Stricker (1999) in a power law formulation based
on Marshall and Palmer (1948) approximation of DSD and power law dependence of rain drop
terminal velocity, Eq. 43 (Atlas and Ulbrich, 1977).

Many simplifications were followed in this formulation of KE-R relation as a power law (Eq.
48). Gamma DSD is notably assumed as well as a power law form for terminal fall velocity as
function of diameter. This approximation shows limitations at higher values of diameter (D > 5
mm) and doesn’t account for atmospheric turbulence or updrafts and downdrafts (Adirosi et al.,
2016). Effect of truncation errors in measurement is not considered. The formulation also ignores
the effect of horizontal wind velocity and surface impact angle of rain drops. Some authors tend
to consider normalized spectra of DSD (Testud, 2001) that requires only two parameters to de-
scribe the DSD; it was also not considered here for the sake of simplicity in deriving a theoretical
relation between KE and R. It should be noted that although widely accepted as the best represen-
tation of natural DSD, gamma function also has associated errors that exists outside experimental
methodology and sampling (Adirosi et al., 2014).
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2.1.2.3 Estimation of power law coefficients from gamma DSD parameters

As mentioned before, most rainfall parameters can be expressed as moments of the DSD ac-
cording to Eq. 44. The right hand side of the equation is specific to the non normalized three
parameter gamma distribution considered here, as shown in Eq. 40. In practice DSD is not mea-
sured continuously but for discrete diameters Di. As a consequence, the estimated moments M̂n of
order n are computed thanks to the following discrete sum rather than previous integral :

M̂n =
Nclass

∑
i=1

Dn
i Ni(Di)∆Di [mmnm−3] (50)

where Di is the diameter of droplet in class i, Ni(Di) is the drop size distribution (estimation dis-
cussed in section 1.1.1), ∆Di is the width of diameter class i and Nclass the total number of diameter
classes.

Investigation of various DSD parameter estimating methods by Cao and Zhang (2009) high-
lighted the risk in usage of maximum likelihood and L-moment estimators for processing data with
truncation in lower end of DSD spectra. As all disdrometers are limited by some minimum value of
measurable diameter Dmin (> 0), it is advisable to use traditional method of moments (Brawn and
Upton, 2008). Although the choice of moments for proper parameters estimation with the method
of moments is a relevant topic, it is outside the scope of this analysis. Hence, authors relied on the
existing literature. More precisely, although higher DSD moments are considered to be associated
with higher errors, the tendency of lower errors with middle order moments was shown later in
Smith et al. (2009) (using radar measurements) and Cao et al. (2008) (using joint disdrometer-radar
observations). Cao and Zhang (2009) evaluated the performance of various moment estimators us-
ing simulations of gamma DSD (with a more realistic estimation of errors) and found that second,
third and fourth moments (M234) as the best overall performer for estimating R. Konwar et al.
(2014) (M234) and Huang et al. (2021) (even higher order moments - 2, 3 and 6) are some recent
examples of using middle order moments while analysing data from same disdrometer make as the
one in current study (OTT Parsivel2). Hence, it was chosen to employ these moments for comput-
ing gamma DSD parameters: µ , N0 and Λ (refer Eq. 44). Specific moment equations are provided
in the appendix (Appendix A.1). These parameters are then introduced in Eq. 49 to derive the
expected power law parameters assuming a gamma DSD.

Variation of a and b with DSD parameters is examined with the available data set in section
2.1.4 for different type of rainfall events.

In this study, both KE and R time series were analysed using UM framework introduced in sec-
tion 1.2.2. An overview of the framework, estimation of scaling behaviour and UM parameters, and
practical implementation of power law relationship between two multifractal fields are discussed
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in detail there. As the UM model discussed here is solely non negative, it removes all possibility of
having non-negative values for both fields in analysis. Using their UM parameters in Eq. 27, it is
possible to formulate power law relationship in the format of Eq. 24. It has the same shape as the
theoretical power law obtained using moments of the DSD in section 2.1.2, in Eq. 48. Details of
disdrometer data collection and subsequent multifractal analysis are covered in upcoming sections.

2.1.3. Data collection and instrumentation
Details about the measurement campaigns, data and instrumentation are addressed in detail

in section 1.1.1. To briefly recapitulate, continuously monitored data in natural conditions was
obtained from three optical disdrometers operating with two different principles. The devices are
part of the TARANIS observatory (exTreme and multi-scAle RAiNdrop parIS observatory, Gires
et al., 2018) of the Fresnel Platform of École des Ponts ParisTech (https://hmco.enpc.fr/Page/Fres
nel-Platform/en); and are operated on its campus by the Hydrology Meteorology and Complexity
laboratory of École des Ponts ParisTech (HM&Co-ENPC) from 18 June 2013 to 27 Dec 2019,
except during a national measurement campaign from November 2016 to September 2017 when
the devices were located at École Polytechnique, EP, which is roughly 30km South-East.

2.1.3.1 Data quality and filtering

For the data used in this part, filters suggested by various authors (Kruger and Krajewski, 2002;
Thurai and Bringi, 2005; Jaffrain and Berne, 2012; Gires et al., 2018) were used to remove possible
non-meteorological measurements (from environmental factors such as splashing, horizontal wind
etc.) on the basis of size and velocity of drops. Using the disdrometer data set, two series of
Multifractal analysis were performed - event based and year based. For event based analysis,
individual rainfall events were identified with following criteria in rain intensity time series - rainfall
events with a cumulative depth greater than 0.7mm and separated by at least 15 minutes of dry
weather before and after. From all measured events with this condition, rain rate (R), drop size
distribution (DSD) and kinetic energy (KE) were calculated for the three disdrometers (denoted
Pars 1, Pars 2 and PWS hereafter). From the results further filtering was done to remove events
having a percentage of nan values (not a number - blank /missing data) > 1% and R2 value <

0.9, for both KE and R. Remaining nans were then replaced with 0. In year based methodology,
continuous time series from Jan 2016 to Dec 2019 - including rain and no rain conditions - were
used for multifractal analysis, and results were compiled according to the year of measurement.

There were minor lapses in continuity of data measurement from Jun 2013 to Dec 2015; for that
reason those time periods were not considered in continuous year based analysis to avoid possible
measurement biases. However, since selection of individual events are not affected by that, event
based analysis involves data from Jun 2013 to Dec 2019. Lesser number of events can be observed
in the excluded years for year based analysis in Table 2.1. Between 2016 and 2019, there were also
a few days of maintenance where data was not recorded - 27 Sep 2017 to 26 Dec 2017, 01 to 07
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Jan 2018 and 12 to 14 Apr 2019. After quality control for each disdrometer, a total of 214,665 time
steps were analysed in 556 rain events (total 1610 events counting all three disdrometers; data was
not always available for all the disdrometers, hence the lesser number) from 2013 to 2019 for event
based analysis. In year based analysis, a total of 3,919,680 time steps were considered from 2016
to 2019; percentages of rainy time steps were about 7%, 6.6% and 5.7% for Pars 1, Pars 2 and
PWS respectively.

2.1.4. Results and discussions
2.1.4.1 Overview of analysis

For analysing the KE and R time series using UM framework, as explained in previous sections,
two strategies were followed - event based analysis and year based analysis. For event based
analysis, we identified a total of 556 rainfall events between 28 Sep 2013 and 31 Dec 2019 of which
493 events were common among all three disdrometers. For UM analysis, each time series was
resized to the highest power of two in such a way that the trimmed series accommodated maximum
rainfall cumulative depth and then the field was normalized. After resizing for UM analysis, length
of individual events ranged from 64 to 2048 time steps, where each time step corresponds to 30 s,
i.e. the recording time step of disdrometers used. KE and R from each events were analyzed as
separate fields in UM framework. For year based methodology, similar procedure was followed for
UM analysis on year long continuous time series, for the years from 2016 to 2019.

In coming subsections, estimation of UM parameters and power law relations are illustrated
using one event data for event based analysis and one year data for year based analysis. Power law
coefficients were also estimated using theoretical framework with DSD parameters as mentioned
in section 2.1.2. Variation and correspondence among coefficients determined by UM and DSD
parameters are discussed thereafter and validated with data.

2.1.4.2 Multifractal analysis of events

For illustration of the analysis carried out, one event from 2017 for Pars 1 disdrometer, that
occurred on 16 September between 11:35:00 and 13:00:00 (local time) is presented here. Fig. 2.1a
displays the time series of R and KE for this event, as well as KE vs. R plots. The latter also shows
power law fits with coefficients from UM analysis and DSD parameters (explained later in this
section). For this event, 171 time steps were trimmed to 128 time steps along region of maximum
rain occurrence of which 124 were rainy data points. Trimmed and normalized KE and R were then
subjected to analysis using UM framework discussed in section 1.2.2. Initial analysis indicated
values of non-conservative parameter H greater than 0.5 among many events. Hence to retrieve a
conservative field on which the UM analysis can be implemented without bias, fluctuations of KE
and R time series were used (Lavallée et al. 1993). Characterization of variability in KE field for the
event considered here can be seen in Fig. 2.1b with TM (Eq. 14 in log-log plot), DTM graphs (Eq.
22 in log-log plot) and UM parameter values. As shown in TM and DTM graphs, the field exhibits
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a very good multifractal behaviour with a single scaling regime from 30s to 64min. For example,
TM coefficient of determination r2 for q = 1.5 was greater than 0.99. Values of UM parameters α ,
C1, and H for KE of this particular event were 1.820, 0.311 and 0.547 respectively. It should be
mentioned that H computed on the fluctuations of KE was found to be equal to 0.189, meaning the
taking the fluctuations indeed enabled retrieval of a conservative field from the original smoother
field. R also exhibited excellent scaling behavior and corresponding values of UM parameters α ,
C1, and H for this event were 1.655, 0.229, and 0.100 respectively.

Figure 2.1: a) Time series of R, time series of KE, KE vs R graph b) and c) MF analysis graphs with KE and R (log-log
plot of Eq. ?? and Eq. 22 for TM and DTM analysis respectively and log-log plot of exponents in Eq. 22 for UM
parameters) for Pars 1 event 16 September 2017 11:35:00 to 13:00:00

KE and R analyzed from every event exhibited similar multifractal characteristics with a unique
scaling regime. The quality of scaling was examined using coefficient of determination, R2 for
q = 1.5 in TM analysis, and as previously mentioned events with values < 0.9 were discarded. 9.8
% percentage of total events were rejected on this basis. For the events with good scaling behaviour,
robust retrieval of multifractal parameters α , C1, β and H was possible. For example, the assessed
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values of α and C1 for both KE and R time series, exhibited a maximum standard deviation (using
various values of q in DTM analysis) of 0.0584 and 0.0670 for measurement at EP-SIRTA and
0.0446 and 0.0443 for measurements at ENPC.

Figure 2.2 displays the values of multifractality index α and mean intermittency C1 for all the
studied events for both fields. It appears that the values of α for KE and R are rather well distributed
along the bisector. This pattern suggests a power law relation between these two quantities as
discussed in section 2.1.2 (Eq. 24) where ε1 and ε2 are KE and R respectively (i.e. KE = bRa as
in Eq. 48). The exponent of the power law a was deduced from corresponding α and C1 values
of UM fields (KE and R) for every event subjected to UM analysis, using the expected relations
for power law related UM fields, i.e. Eq. 27. The α used is the average of αKE and αR (which
were anyway similar). Value of prefactor b was estimated by fitting Eq. 48 at maximum resolution
with estimated values of a on event’s KE −R graph. For the event used as illustration, we found
a = 1.083 and b = 11.493. This power law fit from UM parameters is displayed in Figure. 2.1a as
KEUM in the KE vs. R graph.

Variation of computed power law exponent a and prefactor b are also shown in Fig. 2.2 as time
series of events for each year. Graphs of remaining years are provided in Appendix A.2. For 3.5%
of total events filtered, estimates of α was found to be greater than the theoretical maximum (> 2);
however a values for those events were found to be consistent with the overall average. Despite
appreciable variability in UM parameters across events, values of a and b showed overall stability
in the short range of values specified in graphs, suggesting robustness of the estimates. Year wise
average values over the events for a and b, and number of events for all three disdrometers are
given in Table 2.1. Average values of power law parameters from the events that were common
between the three disdrometers are also shown in the same table. Comparable values of a and b
were observed in both cases. A clear range of variation can be observed between the two types of
disdrometers. For both Parsivel2 the average a and b were similar and around 1.22 and 8.17 respec-
tively, while for PWS100 a values were consistently lower than that of Parsivel2 at around 1.17 and
b values greater at 13.02. PWS generally registered slightly higher intensities than Pars 1 and Pars
2. It should be mentioned that a and b seem to show a very rough correlation where values of b
decreases with increase in values of a. But between make of instruments, irrespective of the type
and number of events, values of a remains rather constant. Differences in values obtained between
Parsivel2 and PWS is expected due to operational differences between disdrometers. Such effects
are also reported in Johannsen et al. (2020) who showed biases in measurement and subsequent
R−KE relation due to difference in type of sensors used (three optical disdrometer were used).
Angulo-Martínez and Barros (2015) also highlighted some differences among various Parsivel2.
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Figure 2.2: Year wise α and C1 variation on event based analysis from 2016 to 2019 (remaining years are provided in
Appendix A.2)
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total events common events
year location disdrometer # events avg a avg b # events avg a avg b

2013 ENPC
Pars 1 29 1.248 9.224

11
1.246 9.224

Pars 2 11 1.254 9.093 1.254 9.093
PWS 29 1.186 11.912 1.193 11.748

2014 ENPC
Pars 1 84 1.207 11.548

84
1.207 11.548

Pars 2 84 1.186 11.065 1.186 11.065
PWS 84 1.159 14.065 1.159 14.065

2015 ENPC
Pars 1 38 1.235 9.459

38
1.235 9.459

Pars 2 38 1.207 8.532 1.207 8.532
PWS 38 1.190 11.712 1.190 11.712

2016 ENPC
Pars 1 87 1.238 8.802

87
1.238 8.802

Pars 2 87 1.253 8.069 1.253 8.069
PWS 87 1.180 11.939 1.180 11.939

2017 EP-SIRTA*
Pars 1 102 1.197 10.126

65
1.193 10.013

Pars 2 65 1.202 8.944 1.202 8.944
PWS 104 1.176 13.238 1.151 15.282

2018 ENPC
Pars 1 78 1.221 10.832

78
1.221 10.832

Pars 2 78 1.205 10.647 1.205 10.647
PWS 78 1.151 15.282 1.151 15.282

2019 ENPC
Pars 1 138 1.231 9.254

130
1.238 8.913

Pars 2 130 1.231 8.550 1.231 8.55
PWS 141 1.165 13.024 1.649 12.960

Table 2.1: a, b and no. of events analysed between 2013 and 2019 according to location of measurement and disdrom-
eter used.
* From Nov 2016 to Sep 2017 as shown in Table 2.4; preceding and succeeding years are adjusted accordingly, refer
Table 2.4.

2.1.4.3 Multifractal analysis of continuous data (year based analysis)

To illustrate year based analysis, continuous time series and UM analysis for Pars 1 disdrometer
for the year 2017 is shown in Fig. 2.3. Both KE and R fields showed similar multifractal features.
Scaling behaviour of KE is shown in Fig. 2.3b. A unique scaling regime from 30s to 311days was
considered.
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Figure 2.3: a) Time series of R, time series of KE, KE vs R graph b) and c) Multifractal analysis graphs with KE and
R (log-log plot of Eq. 14 and Eq. 22 for TM and DTM analysis respectively and log-log plot of exponents in Eq. 22
for UM parameters) using the year based analysis, for Pars 1, for 2017

Variation of UM parameters α and C1 between KE and R fields as well as values of power law
exponent a and prefactor b (computed by fitting the relation at maximum resolution) are displayed
in Fig. 2.4. Precise values of a and b according to the year of measurement are given in Table 2.2
in annexes. The curve KEUM in the KE vs R graph of Fig. 2.3a, shows the power law fit using
UM parameters for continuous data of 2016, for Pars 1. Values and trend of variation are similar
to that observed for the event based analysis. This confirms the robustness of the discussed power
law, which is valid and retrieved not only at the event scale, but also at the year scale.
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Figure 2.4: a) Results from multifractal analysis on continuous year wise data set: a) α and C1 (DTM); b) a and b
values

Disdrometer coefficient 2016 2017* 2018 2019

Pars 1
a 1.229 1.356 1.273 1.278
b 10.232 6.102 8.033 8.247

Pars 2
a 1.303 1.290 1.286 1.273
b 7.605 8.338 7.463 7.695

PWS
a 1.171 1.164 1.190 1.190
b 12.616 13.614 12.792 14.981

Table 2.2: a and b from year based analysis, from 2014 to 2019 according to disdrometer used for measurement.
* From Nov 2016 to Sep 2017 as shown in Table 2.4; preceding and succeeding years are adjusted accordingly

2.1.4.4 Power law coefficients from DSD parameters

To understand previous findings further, values of a and b were computed from theoretical
framework discussed in section 2.1.2. Rainfall DSD was assumed to follow gamma distribution
(Eq. 40) and theoretical values of a and b (denoted as aDSD and bDSD from here on for clarity) were
computed as per Eq. 49 after estimating values of gamma DSD parameters (µ , N0 and Λ) with the
help of method of moments. The variation of rain rate R was accurately reproduced using M234
moment estimators (Fig. 2.7d for example). Theoretical power law relation (KEDSD = bDSDRaDSD)
was then compared with the one estimated using UM analysis (represented from here on as KEUM
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with coefficients aUM and bUM for clarity) for every events. Average values of DSD parameters,
estimation error and corresponding aDSD and bDSD for Pars 1 events are given in Tab. 2.3 according
to event’s rain type (definition introduced later). RMSEDSD is the root mean square error (RMSE)
between empirical DSD and theoretical gamma DSD with fitted parameters (using the value for the
center of each diameter class Di). It is used here as an indicator of the quality of fit of the assumed
gamma DSD distribution and the empirical one. For RMSE estimation only the portion of DSD
above 0.5mm diameter class was considered as smaller drops have lesser contribution in overall
KE and R, and are associated with greater uncertainties in measurement. Also, higher size drops
(above 9 mm diameter class) were not observed during the events and are hence not shown in DSD
figures discussed after (Fig. 2.5 and Fig. 2.7).

Figure 2.5: a) 2019 Pars 1 event where empirical DSD corresponds with gamma distribution and b) where it doesn’t
follow gamma distribution (DSD displayed only till diameter class around 9 mm as higher drops were not observed
during the events)

Figure 2.5 represents two extremes cases among events from year 2019 for Pars 1: one event
(Fig. 2.5a) where empirical DSD corresponds with a gamma distribution and one event (Fig. 2.5b)
where it does not. The DSD fitting as well as the KE vs. R plots (fitted with power law relation
from UM analysis and DSD extraction) are also displayed. For the event with empirical DSD closer
to estimated gamma DSD, both power law relations (KEUM & KEDSD) are similar and show good
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fit. For the other event, power law relation from DSD approach shows a considerable deviation
from actual values of KE, with a strong overestimation. Power law from UM analysis on the other
hand still provides a close fit. To see if there is such a trend through all the events, coefficient
of determination of both KE −R fits were plotted against each other (r2

UM vs r2
DSD) and compared

using corresponding values of RMSEDSD (Fig. 2.6a). Negative value of coefficient of determination
for DSD (r2

DSD)) is due to the high difference between KEDSD and empirical KE in certain events.
From the plot it is evident that a generalized conclusion - theoretical values of a and b (aDSD &
bDSD) works well in cases where empirical DSD coincides with gamma DSD - is not possible.
However, there were many events with good DSD correspondence with gamma, where KEDSD

fitted data better.

Figure 2.6: a) r2 values between KEUM and KEDSD for Pars1, 2019; b) r2 values between KEUM and KEDSD f it (b from
fitting of data) for Pars1, 2019 (RMSE calculated by considering only parts of DSD where drop diameter > 0.5 mm)

To investigate further this issue and given that the DSD is available for all time steps, aDSD and
bDSD were computed for each time step to study their variations within a rainfall event. Figure 2.7
displays their temporal evolution for the event in Fig. 2.1. Values of parameters, especially bDSD,
shows considerable variation within an event. These variations basically come from variations in
DSD parameters µ an N0 as it can be seen on Fig. 2.7c and 2.7f (also evident from Eq. 49), which
are reflecting physical variations in the rainfall process. It should be mentioned that during this
event (and other events), gamma DSD parameters were able to properly reproduce observed rain
rate (Fig. 2.7d), meaning that the assumption of gamma DSD distribution and the M234 moment
estimator approach remains valid throughout the event(s). This suggests that the variability of aDSD

and bDSD observed at event scale is also valid within events at much smaller scales. This could
explain some of the bias previously observed with DSD approach developed in this analysis.

As there were still considerable variation in r2 values of r2
KEDSD

(Fig. 2.6a), especially if we
compare with KEUM which shows better r2

KEUM
regardless the type of event, a question of possible
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bias arises due to difference in methods of estimation of power law coefficients. Unlike KEDSD for
which both coefficients are obtained from theoretical relation involving DSD parameters, for KEUM

only coefficient a is fully estimated from UM analysis. Prefactor bUM is obtained by fitting the data
at highest available resolution (30s) using UM estimated aUM. Such discrepency may introduce
a bias in the comparison between DSD and UM approach to retrieving a power law. Hence, to
understand this further and to make a fair comparison, a new power law was considered where
only aDSD is obtained using Eq. 49 while bDSD is calculated from fitting of data (denoted hereafter
bDSD f it) - KEDSD f it . Figure 2.6b shows r2 between KEDSD f it and KEUM; and it can be seen that
comparable fits are obtained between UM and DSD power laws regardless the nature of DSD, thus
illustrating the presence of bias. This can also be observed in previous KE −R plots - Fig. 2.1a,
Fig. 2.3a, Fig. 2.5a and Fig. 2.5b.

Figure 2.7: Variation of aDSD and bDSD for each time steps in an event (same event discussed in Fig. 2.1)
a) Correspondence between empirical DSD (red) and calculated DSD (blue); d) Correspondence between empirical
rainfall rate (Remp) and that calculated from DSD moments (RDSD)
b) & e) Variation of aDSD and bDSD within the event
c) & f) Variation of aDSD and bDSD with DSD parameters N0 and µ

2.1.4.5 Comparison between KE −R relations

Though the power law obtained is similar from UM and DSD analysis, they fit the data differ-
ently due to difference in values of corresponding parameters. KEDSD in KE vs. R graph of Fig.
2.1a and Fig. 2.3a shows the power law fit using theoretical a and b (aDSD & bDSD), from DSD
parameters for illustrated examples in event based and year based analysis analysis. The difference
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in fit between two calculations of power law, KEUM and KEDSD can be observed there. It can be
seen from Fig. 2.6a that KEUM gives rather good fit regardless the event specific DSD shape, while
r2 value of KEDSD fluctuates. However, there is a limited tendency for good fit towards empirical
DSD following gamma distribution (for few events like Fig. 2.5). Figure 2.8 shows variation of a
and b estimates from DSD and UM for Pars 1, Pars 2 and PWS for all events in year 2019. Values
of aUM and aDSD are mostly clustered around the approx. 1.2 for all three disdrometers with no
clear relation between them. On the other hand, values of bUM and bDSD are more spread out, rang-
ing approximately from 2 to 25. Such spreading for bDSD is not caused by the computation issues
previously mentioned since it is visible on both bDSD and bDSD f it . This observed scattering, which
is comparable regardless the estimation techniques and device, suggests that even if the power re-
lation between KE and R remains relevant for all events, its parameters exhibit strong variability
between events.

Figure 2.8: Variation of power law coefficients from UM and DSD calculation, for events in year 2019 (similar variation
for other years also)

The constants of the power law relations (in literature) between KE and R are not universal in
application and need tweaking as per the rainfall type, measurement location as well as techniques.
Based on assumed dependence between DSD parameters and rain rate in formulation exponents;
Salles et al. (2002) suggest four range of values for exponent values of the universal power law,
and Uijlenhoet and Stricker (1999) propose six different relationships in their research. Hence,
in order to refine the analysis of this observed variability between events and to examine possible
dependence of a and b on type of rain, events were sorted according to rain types. Table 2.3 shows,
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for Pars 1, averaged values of gamma DSD parameters, indicator of the quality of the fitting, and
power law coefficients from both DSD and UM estimations across events sorted according to type
of rainfall. Tables for Pars 2 and PWS are given in Appendix A.2 - (Table A1). For defining
types of rainfall from light to extreme, a classification based on intensity (Tokay and Short, 1996)
was employed. µ , λ and N0 tend to decrease with heavier events, with a stronger trend for N0.
It should be mentioned that an opposite trend is reported in reference used; this could be due to
instrumental bias in DSD measurement as the impact disdrometer used in reference is known to
under-represents smaller drops in intense rainfall. It should also be noticed that the capacity of the
gamma distribution to model observed DSD diminishes with heavier rainfall (this is more visible
on RMSE estimation over whole range of DSD and less prominent in displayed estimate here
involving only higher drop sizes), suggesting a limit in validity for gamma distribution assumption.
Also, an increase in mean diameter is noticed (not shown here). These findings are in agreement
with previous studies reported in literature (Carollo and Ferro, 2015). When it comes to power
law coefficients, both aDSD and bDSD show increase with increasing rain rate, and this is more
pronounced for bDSD. Given the observed decrease in validity of gamma distribution of DSD, these
trends should be taken carefully because they are likely to be mere artifacts and not representative of
the actual process at stake. In the case of UM estimated parameters, bUM follows similar trend with
stronger magnitude (going from 8 to 33) while aUM shows slight reduction in value with increasing
rain rate (from 1.25 to 1.05). Since the average rainfall criteria used for classification here is a
somehow arbitrary and more biased towards lesser rainfalls, another classification relying on the
maximum of 10 minute moving average was also employed. The results are tabulated in Table A2
(Appendix A.2). With this criteria which is more biased towards larger rainfall events, consistent
and similar results are retrieved when it comes to values and variation of power law coefficients a
and b, from DSD as well as UM, suggesting robustness of obtained trends.

from DSD moments from UM

# events µ N0 Λ RMSEDSD aDSD bDSD aUM bUM

(m−3mm−1−µ ) (mm−1) (m−3mm−1) (Jm−2mm−aha−1) (Jm−2mm−aha−1)

very light R < 1 188 2.53 1.05 ×107 6.34 19.32 1.196 11.056 1.253 8.554
light 1 ≤ R < 2 173 1.75 1.71 ×109 4.81 24.53 1.222 12.694 1.224 9.334
moderate 2 ≤ R < 5 141 1.01 2.51 ×107 3.42 21.25 1.256 15.580 1.214 10.216
heavy 5 ≤ R < 10 36 0.44 1.40 ×104 2.25 20.45 1.275 17.259 1.210 11.336
very heavy 10 ≤ R < 20 14 -0.05 1.17 ×103 1.63 21.14 1.300 18.419 1.119 19.670
extreme R ≥ 20 4 -0.85 5.48 ×102 1.04 44.82 1.353 44.82 1.052 33.250

Table 2.3: Variation of DSD parameters and power law coefficients according to the type of rainfall for Pars 1 (R =
average rain rate for rainy time steps)

To evaluate the performance of established power law relationship across scales of measure-
ment, KE was calculated from empirical R using KE = bRa with average values of a and b and
compared with existing relations in literature. For this purpose, exponential equation used in
RUSLE (KEBF = 29[1− 0.72exp(−0.05R)], Brown and Foster, 1987), exponential equation used
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in RUSLE2 (KEMG = 29[1−0.72exp(−0.082R)], C. McGregor et al., 1995), universal exponential
law proposed by van Dijk et al. (2002) (KEV D = 28.3[1− 0.52exp(−0.0421R)]) and ideal power
law proposed by Shin et al. (2016) (KEShin = 10.3R11/9) were used alongside KEUM and KEDSD

derived here (power law where fitted values of b were used -KEDSD f it- is also included). For UM
and DSD power laws in this section, average values among all calculated events were used for
representation according to make of disdrometers. Average values of coefficient a and prefactor
b were close for both Pars 1 and Pars 2 disdrometers and were taken common for the Parsivel2

make (for both UM and DSD). It is also logical to keep values of power law coefficients separate
between different disdrometers as varying KE and R estimation has been reported across types of
disdrometers used (Angulo-Martínez and Barros, 2015; Angulo-Martínez et al., 2018; Johannsen
et al., 2020). Figure 2.9 shows KE and R variation fitted with above mentioned equations for max-
imum resolution, 30s. As expected KEUM provides better fit than KEDSD (and KEDSD f it shows
closer fits). With respect to empirical data, UM power laws exhibit - for all three devices - slightly
better or comparable coefficient of determination (r2) with regards to commonly used relations.
The exponential equations from literature appear very close to each other. The relatively lower
values of coefficient of determination than that during event based fits are likely to be due to the
effect of using average values instead of event specific values of a and b.

Figure 2.9: Fitting of empirical KE −R using power laws from UM and DSD, and popular expressions from literature
for a) and b) Parsivel2, and c) PWS

To understand the performance of various equations further, r2 was examined across various
time periods and also across different type of rains. Results are displayed in Fig. 2.10. It appears
that regardless of the duration as well as type of rainfall considered, tuned relations KEDSD f it and
KEUM perform significantly better than the other fixed ones, yielding r2 values greater than 0.9.
In most cases, KEUM exhibits slightly better performances with a difference not significant. The
analysis also confirmed the poor performance of KEDSD, i.e. the inability of the DSD approach to
properly fit the prefactor ’b’. It should be stated that the power law obtained using UM analysis is
not providing significant performance enhancement compared to that obtained from gamma DSD
while the prefactor b is estimated from fitting of the data (KEDSD f it). However, with UM analysis,
it is possible to discard all assumptions of DSD following a gamma distribution thus eliminating the
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known inadequacy of gamma model and its sensitivity to sampling resolution (Adirosi et al., 2013,
2014; Ignaccolo and De Michele, 2014; Adirosi et al., 2016; Gatidis et al., 2020). The inadequacy
was observed in current analysis as well, as previously discussed and illustrated in Fig. 2.5 and Fig.
2.6.

Figure 2.10: r2 values of various KE-R relations discussed for a) events analysed in 2017, 2018 and 2019 (for Pars 1),
b) all events grouped according to type of rain - light, moderate and heavy
Average value for each year is given in legends, with KEUM and KEDSD f it displayed in dotted lines

2.1.5. Main outcomes from UM analysis of KE and R
We examined the relationship between rainfall intensity R and time specific kinetic energy

KE using high resolution (30 s) optical disdrometer data from the past 7 years in Paris region.
The variability across scales of both parameters was characterized using the framework of Uni-
versal Multifractals. Analyzed KE and R times series were found to convey excellent multifractal
behaviour (which is novel for KE), with multifractality index α and mean intermittency C1 suggest-
ing power law relation between them; it can be written as KE = bRa. Such power law was found
to be valid across analyzed data, i.e. independent of the event, on whether they are computed on
event or yearly basis, and of the underlying corresponding drop size distribution. Some variability
in the value of the exponent a and prefactor b is reported according the event and disdrometer type.

As shown by previous results, similar power-law can be theoretically obtained when relying on
the common assumption of a gamma distribution for the DSD, and a power-law relation between
fall velocity and equivolumic drop diameter. KE-R relation obtained through UM analysis was
compared with results found using this common framework and biases were acknowledged. De-
spite some exceptions, in most cases when a gamma DSD approximation was relevant, estimations
of power law parameters from the two approaches were found to be consistent. When not, UM
approach provided slightly better fit in general but not in a significant manner, keeping in mind that
the pre-factor needs to fitted to data in both cases to ensure a fair comparison. Thus, the newly
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discussed power law relationship between KE and R retrieved with the help of UM framework
generalizes previous results and theoretical formulations without having to rely on the ad-hoc as-
sumption of a gamma DSD. The main underlying assumption of UM framework, i.e. that there
is an underlying multiplicative process, is actually physically based in the sense that comes from
the scale invariance features of the Navier-Stokes equations. Here, a UM analysis confirmed the
validity of this assumption. Deriving the power-law relation in a multifractal framework opens the
path to new approaches for simulating KE from simple R measurements. Given that complete KE
measurement is much less available than R one, this impact will be investigated further in future
work.

For the future, it would hence be interesting to expand the data set across geographical and
meteorological conditions to reduce the biases that might have accumulated from region of mea-
surement.
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2.2. Multifractal analysis of extinction coefficient and its consequences in characterizing atmo-
spheric visibility

2.2.1. Introduction
Visibility can be defined as a "a complex psycho-physical phenomenon, governed mainly by

the atmospheric extinction coefficient associated with solid and liquid particles held in suspension
in the atmosphere’ (WMO-No. 8 (2018)). An accurate representation of visibility is required for
safe functioning of transportation especially aviation (ICAO (2007)), free-space optic communi-
cations (Willebrand and Ghuman (2002)) as well as in understanding variations in air quality and
climate (Hyslop (2009)). In meteorological context, visibility is a measurement of transparency
of the atmosphere, which in turn is dependent on light attenuation property of gases and aerosols.
Instrumental methods mainly involve measurement of extinction coefficient, σe from atmospheric
attenuation and its conversion into a visual range as per requirement of application.

Most of the presently used instruments measure extinction coefficient, σe through either trans-
mission factor or scattering coefficient using a light beam and an electronic detection mechanism.
The instrument used in this study, forward scatter sensor, works on the assumption that scatter-
ing in forward direction is linearly related to the extinction coefficient at instrument angle and
that the absorption factor is negligible for deducing visibility (Malm (2016), WMO-No. 8 (2018),
Campbell-Scientific-Ltd (2012)). As extinction coefficient, σe directly corresponds to scattering
and absorption by atmospheric particles, it is a more physically suited quantity over direct values
of MOR for analysing visibility as a field. Mei et al. (2017) demonstrated good agreement between
variation trends of averaged extinction coefficients retrieved from the Scheimpflug lidar technique
and the PM10/PM2.5 concentrations with a correlation coefficient of 0.85. Since the governing
non linear equations of atmosphere such as Navier-Stokes posses scale invariance, it is assumed
that light attenuating particles should inherit scaling properties and exhibit associated features. To-
wards this, we extract σe from forward scattering visibility measurement of PWS 100 disdrometer
(see Ellis et al. (2006) or device documentation, Campbell-Scientific-Ltd (2012)) at École des Ponts
ParisTech and analyze its behaviour across various scales of measurements using the framework
of Universal Multifractals (UM). Such framework has been widely used to characterize and simu-
late geophysical fields exhibiting extreme variability over wide range of scales ((see Schertzer and
Tchiguirinskaia (2020) for a recent review). Meteorological Observable Range (MOR) values from
Paris-Charles de Gaulle (CDG) airport METAR (METeorological Aerodrome Reports) data for the
same time period was used for comparison purpose, and corresponding σe field was subjected to
similar multifractal analysis. Direct statistical analysis of σe was found to be not as straightforward
as expected as the MOR data (and in turn σe) are affected by the instrumental or operational mea-
surement range of visibility. This means that, in visibility measurements, majority of the values
are capped by an upper threshold (equal to the maximum range of measurement) which introduces
bias in implemented statistical analysis.

Here we try to mimic the measured extinction coefficient fields using multifractal simulations
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and imposed thresholds to illustrate the biases introduced by nature of actual data in multifractal
analysis. Details about nature and extraction of data, as well as devices are presented in Sect. 2. The
framework of UM is briefly discussed in Sect. 3 along with initial analysis of data which exhibits
strong biases. Sect. 4 follows with discussion on the effect of biases with respect to the underlying
theory in UM framework and validation of same through numerical simulations. Finally, section 5
discusses how to reduce bias in the analysis.

2.2.2. Data and instrumentation
2.2.2.1 Measurement of visibility and extraction of σe

World Meteorological Organization (WMO) formally recognizes Meteorological Observable
Range (MOR) as the measure of visibility for aeronautical as well as general purpose uses. Com-
mission for Instruments and Methods of Observation (CIMO) guide defines MOR (in km) as fol-
lows - MOR is defined as the length of path in the atmosphere required to reduce the luminous flux
in a collimated beam from an incandescent lamp at a color temperature of 2700 K, to 5 percent
of its original value (WMO-No. 8 (2018)). For measurement of visibility or transparency of air,
light attenuation by particles in ambient air is first estimated using Bouguer-Lambert law; and then
converted to visual range using Koschmieder’s theory assuming homogeneous atmosphere with
negligible multiple scattering (Koschmieder (1924)). For MOR calculation, WMO definition uses
contrast threshold of 0.05 instead of 0.02 in Koschmieder’s relationship.

MOR =− ln(0.05)
σe

(51)

where σe is extinction coefficient, usually represented in km−1.

By definition, ’the extinction coefficient σe is the proportion of luminous flux lost by a colli-
mated beam, emitted by an incandescent source at a colour temperature of 2700K, while travelling
the length of a unit distance in the atmosphere. MOR is defined relative to 550nm (green light)
as human eye has maximum sensitivity to green light. When σe measured by instruments is an
objective property of air, visibility is subjective according to the defining models and intended
applications (Horvath and Noll (1969), Lee and Shang (2016), Kim (2018)) which adjusts the mea-
sured value in application specified ranges. Assuming spherical particle size, extinction coefficient
can be derived from size distribution according to Mie theory as follows (Bohren and Huffman
(2008))

σe =
Dmax

∑
Dmin

πD2

4
∆n(D)Qext(m,D) (52)

where Qext(m,D) is the Mie extinction efficiency factor (a function of particle size D and refractive
index m) and n(D) is the aerosol number size distribution.
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Though light attenuation involves both scattering and absorption, it is possible to approximate
extinction coefficient to scatter coefficient due to the negligible contribution of latter to total at-
tenuation in the laser transmission window (Weichel (1990)). In such cases, reduction in visibility
from scattering is compensated by assuming some constant ratio between absorption and scattering
or constant scattering albedo (fraction of total extinction that is due to scattering: ω = εscat

εscat+εabs
).

σe also depends on internal or instrumental factors such as wavelength of light source, forward
scattering angle, location of measurement, sampling volume, spherical size assumption for particle
etc. (Sheng-Jie and Da-Ren, Kim et al. (2001), Shah et al. (2015), Charlson (1969)) and on external
factors such as density of sampled medium, meteorology, influence from regional sources, particle
size distribution and species specific properties etc (Loveland and Lindberg (1988), Duthon et al.
(2019), Grabner and Kvicera (2011), Nebuloni (2005), Tang (1996), Majewski et al. (2015), Uh-
lig and von Hoyningen-Huene (1993), Elias et al. (2009), Zieger et al. (2013), Sabetghadam et al.
(2017)).

2.2.2.2 Available instruments

PWS100 (Campbell-Scientific-Ltd (2012)) is an optical present weather sensor which mea-
sures visibility using forward scatter technique (0 to 20km with an accuracy of ± 10%) with a
laser diode of wavelength 830nm. Visibility data for the year 2019, from Jan 01 to Dec 31, was
taken from instrument operated by Hydrology Meteorology and Complexity laboratory of École
des Ponts ParisTech (HM&Co-ENPC) at TARANIS observatory (exTreme and multi-scAle RAiN-
drop parIS observatory (Gires et al. (2018)) of the Fresnel Platform of École des Ponts ParisTech
(HM&Co, ENPC). The instrument provides an estimate of MOR from the amount of scatter gener-
ated particles in its sampling volume (projected area of approx. 40cm2). ICAO (International Civil
Aviation Organization) and field tests recommends forward scatter sensors as a less expensive, less
maintenance technically capable alternative to transmissiometers, which measures both absorption
and scattering, for measuring MOR (ICAO (2007), Waas (2008)). For the purpose of this analysis,
the value of σe was obtained from visibility data of PWS100 (referred to as ENPC after location of
measurement) using Eq. 51. For simplicity same relation was used for the whole data set, regard-
less day and night. As the instrument follows WMO guidelines, σe estimated at near IR (830nm)
is assumed to be corrected for 550nm as per MOR definitions. PWS100 reduces some of the pre-
viously mentioned uncertainties with visibility range correction (by calibrating amount of particle
scatter against obscuring type for drizzle, snow and other large particles) and through averaging of
visibility measurements to reduce noise levels (Campbell-Scientific-Ltd (2012)).
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Figure 2.11: Variation of MOR and σe for the year 2019 at locations ENPC (a & b) and CDG (c & d), e) location of
measurements (from google maps) f) zoomed version of Fig. 1c and fig. 1d to show the presence of lower threshold in
σe.

location data collection time resolution data range
ENPC Jan 2019 – Dec 2019 30 s 0- 20 km
CDG Jan 2019 – Dec 2019 30 min 0.1 - 10 km

Table 2.4: location and time of data collection

Paris Charles-de-Gaulle Airport (CDG) is 32km away from ENPC, the site of present weather
sensor, and is at the north east of Paris (Figure 2.11e). Visibility data was obtained from METAR
data archive of Iowa Environmental Mesonet (IEM) for the same time period as forward scatter
meter data under discussion. Extinction coefficient was extracted using equation 51 for CDG with
same assumptions as that for ENPC.

2.2.2.3 Data and treatment

Table. 2.4 gives a brief outline of data collected and measurement period. It should be noted
that the data used here corresponds to an average visibility and does not enable to distinguish the
nuances of involved atmospheric particles and notably their species, time evolution, or seasonal
variation etc. External factors such as relative humidity, scavenging by rainfall, wind, fog/haze
episodes etc. are also not specifically accounted for in the analysis. Time series of MOR and
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corresponding σe are shown in Fig. 2.11 for both data sets used along with a zoom during a short
period.

Before extraction of σe, missing values of visibility (1.8% for ENPC and 0% for CDG) were
set to maximum value of respective data sets (20km for ENPC and 10km for CDG) since majority
of data points had values at upper instrumental threshold (83% for ENPC and 89% for CDG;
see Fig. 2.11a and Fig. 2.11b). This decision was made on the basis of some preliminary UM
analysis on direct MOR data; largest continuous portion of MOR provided similar results as that
of data set where missing data points were replaced with upper threshold. Hence, it was decided
to use the whole data set with substituted missing data for current analysis. However, it should be
noted that the upper threshold translates to lower threshold while analysing σe (see Fig. 2.11f) and
that replacing missing data with zeroes and lower threshold yielded similar results there. Unless
explicitly stated, in order to limit bias in comparison of the field, ENPC data was set to same
conditions as that of CDG (30min resolution and 10km upper MOR limit) before UM analysis.

2.2.3. Analysis: Direct Multifractal analysis of σe

2.2.3.1 Theoretical framework

Here we use the framework of Universal Multifractals (UM) to examine variations across scales
of extinction coefficient, which has been covered in detail in section 1.2.2. The scaling of σe

is explored using spectral analysis and UM analysis, and results are discussed in following sub
sections.

2.2.3.2 Direct analysis of raw σe field

σe extracted from both location were subjected to UM analysis. Details of TM analysis, spec-
tral exponent β , K(q) and DTM curves are shown in Fig. 2.12 and Table 2.5 for both data sets at
similar conditions (at the 30 min resolution and data range of CDG, effect of using a coarser resolu-
tion for ENPC is discussed in next paragraph). It can be observed that the σe extracted from MOR
gives non realistic values of α and C1 despite an acceptable scaling. Indeed, estimates of α greater
than 3 are found. As σe measures extinction from atmospheric particles, and is related to the con-
centration of particles, it is expected to inherit scale invariant features of Navier-Stokes equations
that governs atmospheric flow, and therefore to exhibit appropriate multifractal behaviour. There
is hence a need to explore this unusual behaviour and determine, if possible, the real underlying
multifractal properties. As mentioned before, this might have to do with the fact that majority of
points (83% for ENPC and 89% for CDG) in the data analysed are set to lower threshold in σe

(from upper threshold of 10km in MOR).
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Figure 2.12: Direct UM analysis of raw σe yielding non realistic values. a) spectral slope (Eq. 19 in log-log), b) TM
analysis (log-log plot of Eq. 14), c) scaling coefficient function K(q) (Eq. 16) and d) DTM curve of σe (log-log plot of
Eq. 22) at ENPC; similar results at CDG are shown in e, f, g and h. Both data set are studied at 30min resolution with
10km upper limit in MOR data.

UM parameters

Location % at threshold R2
T M αDT M C1,DT M β H∗

ENPC 83% 0.990 3.402 0.076 1.782 0.391
CDG 89% 0.986 3.368 0.059 1.430 0.214

Table 2.5: Values of UM parameters for σe for ENPC and CDG (at 30 min resolution and 10 km upper threshold in
MOR).
* Values of H presented here do not account for the correction with K(2) in Eq. 18 as UM estimates are heavily biased
already, hence H is simply estimated as = (β−1)

2 .

To check possible influence of wavelength of measurement on estimation of σe, available MOR
values were taken as reference and sensitivity analysis was performed at multiple wavelengths at
visible and near IR range (from 350 - 1550nm) with wavelength correction factor (Kim et al.
(2001)). σe was found to preserve similar scaling behaviour for the various tested wavelengths for
both visibility data sets; however, there was a slight reduction in value of α and slight increase in
value of C1 with increase in wavelength. As forward scatter meter sample obscurants over a small
range, time averaging of data is recommended to avoid variable output (Campbell-Scientific-Ltd
(2012)). Towards this, analysis was done by averaging ENPC data for a range of resolutions from
30s to 1hr. In general, sensitivity analysis on various resolution showed a small reduction in value
of α (by 19%) and very slight increase in C1 (by 7%) till 1 min resolution, from where on the values
seemed to be saturating with lower resolutions. As can been see in Tab. 2.5, at 30min resolution,
the values of α and C1 from ENPC were roughly corresponding with those from CDG.
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Averaging values of ENPC data to lower resolution (30min) also reduced the poor scaling
observed at finer scales through flattening of TM curves (figures 2.12b and 2.12f). This is consistent
with the recommendation to smooth values of visibility over time periods to avoid dispersion in
measurement due to rapid and random fluctuation of the volume of the atmosphere over where
forward scattering measurement is based on (WMO-No. 8 (2018)).

2.2.4. Quantification of biases on UM estimates due to lower threshold
2.2.4.1 Effect of lower threshold in the theoretical framework of UM

In this section we examine what are the expected effects in UM framework of setting the fields
values below a lower threshold to that threshold, in order to explain the observed behaviour of σe

with lower thresholds in Fig. 2.12 (notably the sharp increase of α). Before going on, it should
be reminded that the related issue of setting the values below a threshold to zeros has been widely
studied and triggers a multifractal phase transition with a bias in UM parameter estimates (decrease
in α and increase in C1). This effect is detailed in Gires et al. (2012) and references therein.

As established earlier upper threshold in measuring instrument (MOR) becomes lower thresh-
old in extinction coefficient (σe). We aim at exploring the theoretical consequences of implement-
ing such threshold. Let us consider ελ a UM field. the field with lower threshold.

Let’s take lower threshold T and consider its corresponding singularity γT , with Λ the maxi-
mum possible resolution

T = Λ
γT (53)

Imposing the threshold corresponds to setting all values below singularity γT to zero. It means
that Pr(ελ ≥ λ γ) = 1 for any singularity γ ≤ γT . From Eq. 13, this makes the value of c(γ) zero
for singularities below γT (for −∞ < γ < γT , c(γ) = 0). Hence, here c(γT ) is the limiting non-zero
value below which c(γ) becomes zero. c(γ) becoming constant (zero in our case) below a particular
c(γT ) due to threshold is very similar to the already known influence due to the presence of zero
on assessment of multifractal parameters mentioned before. If we set values of the field below the
threshold to zero (imposition of threshold is notated as following in the section {ελ}ελ≤T = 0), then
codimension function becomes bounded by a minimum value Cmin corresponding to the singularity
associated with the threshold γmin. In our case, this minimum singularity γmin = γT and Cmin =

c(γT ).

When we set values below a threshold to zero in data ({ελ}ελ≤T = 0), c(γ) (notated c0(γ) for
clarity) is known to vary as below

c0(γ) =

{
Cmin f or γ ≤ γmin

c(γ) f or γ > γmin

}
(54)

In the case under study, when we set values below a threshold to threshold in data ({ελ}ελ≤T =
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T ), c(γ) (notated cT (γ) for clarity) will vary as

cT (γ) =

{
0 f or γ < γT

c(γ) f or γ ≥ γT

}
(55)

In both cases, c(γ) reaches the limiting value (c(γT ) = Cmin) at γ = γT . But when values below
threshold are set to threshold, c(γ) becomes zero for γ < γT . This behaviour can be observed more
clearly on figure 2.13a. When {ελ}ελ≤T = T , c(γ) drops to zero at γT immediately after reaching
the limiting value Cmin. The limit case value of γ (γT = γmin) can be obtained from equation 17 in
terms of Cmin

γT = γmin =
C1α

α −1

(
Cmin

C1

)α−1
α

−
(

C1

α −1

)
(56)

Now we consider the behaviour of scaling moment function, K(q) when lower threshold is
present. Figure 2.13b illustrates K(q) behaviour during lower threshold alongside the known influ-
ence due to the presence of zeroes.

In the case of zeroes, when {ελ}ελ≤T = 0, K(q) (notated K0(q)) becomes linear for moments
q ≤ qmin where qmin is the critical order of statistical moment corresponding to γmin (derived from
Legendre transform)

K0(q) =
{

qγmin −Cmin f or q ≤ qmin

K(q) f or q > qmin

}
(57)

For the case under study, i.e. where {ελ}ελ≤T = T , computing the Lengendre transform of
cT (γ) enable to show that K(q) (notated KT (q)) becomes linear before qmin at an earlier value of
moment, qT .

KT (q) =
{

qγT f or q ≤ qT

K(q) f or q > qT

}
(58)

It should be noted that corresponding critical order of statistical moments (from Legendre
transform), qT is not the same as qmin (which is why T and min indices are used)

qmin = c′(γmin) =

(
Cmin

C1

) 1
α

̸= qT (59)

Value of qT can be derived from the limiting value of KT (q) at qT below which K(q) is linear.
From Eq. 16 and Eq. 58 at q = qT

KT (qT ) = qT γT =
C1

α −1
(qα

T −qT )

qT =

(
α −1

C1
γT +1

) 1
α−1

(60)
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Figure 2.13: Influence of threshold on estimation of UM parameters: a) on codimension function c(γ), b) on moment
scaling function K(q), c) on DTM curve. Figures were plotted with α = 1.8 and C1 = 0.2.

This behaviour of K(q) is reflected in Double Trace Moment (DTM), the technique used for
estimating values of UM parameters (illustrated in Fig. 2.13c). For a given q: K(q,η) = K(ηq)−
qK(η), which for multifractal fields = ηαK(q). The known behaviour due to presence of zeroes in
data ({ελ}ελ≤T = 0) in K(q,η) is as follows

K0(η ,q) =


(q−1)Cmin f or η ≤ η−(q)

ηαK(q) f or η−(q)< η+(q)
(q−1)(d +ds) f or η ≥ η+(q)

 (61)

where η−(q) and η+(q) corresponds to values of η where DTM curve becomes plateau like.
Lower plateau starts at η−(q) = qmin and corresponds to presence of zeroes in the data and upper
plateau starts at η+(q) is equal to the moment above which K(q) becomes linear due to sampling
limitation (Schertzer and Lovejoy (1989)), Hubert et al. (1993), Lovejoy and Schertzer (2007b)).
qs = ((D+Ds)/C1)

1/α where D is the dimension of space (D = 1 for a one dimensional sample)
and Ds is the sampling dimension (fractal dimension corresponding to the number of samples,
Ds = 0 for a single sample).

Influence of threshold on DTM for the case under study ({ελ}ελ≤T = T ) is as follows:

KT (η ,q) =


0 f or η ≤ qT/q

K(ηq)−qηγT f or qT/q < η ≤ qT

ηαK(q) f or η > qT

(q−1)(d +ds) f or η ≥ η+(q)

 (62)

above equation is on the assumption that both qT and q are greater than 1. When q < 1

KT (η ,q) =


0 f or η ≤ qT

qηγT −qK(η) f or qT < η ≤ qT/q
ηαK(q) f or η > qT

(q−1)(d +ds) f or η ≥ η+(q)

 (63)
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To understand this behavior more clearly, efforts were also done to simulate conservative multi-
fractal fields with the intention of retrieving obtained values of α and C1 for σe through application
of thresholds (in next section).

2.2.4.2 Analysis: Numerical simulations

To retrieve the underlying multifractal estimates found in the direct analysis of raw σe and
to understand the influence of lower threshold, conservative fields (H = 0) were simulated with
various values of α and C1. These simulated fields were subjected to progressive application of
lower thresholds where values ≤ lower threshold were set to lower threshold. As percentage of
values ≤ lower threshold is increased, the values of α are increasing and C1 decreasing along with
a decreasing quality of scaling (table 2.6). This process was repeated for various values of α and C1

and at values of 1.8 for α and 0.2 for C1 (Fig. 2.14), estimates similar to that of raw σe (Tab. 2.5)
were obtained for similar thresholds. These values of UM parameters are particularly interesting
as they correspond to the typical values for atmospheric fields.

DTM curves of raw σe at Fig. 2.12 and simulated fields in 2.14 are showing similar behaviour,
with sharp slopes as theoretically illustrated in Fig. 2.13c. Simulated behaviour is consistent with
the biases induced by lower threshold on estimation of UM parameters as discussed in previous
section. This numerically confirms theoretical expectations. It also illustrates that σe is indeed the
underlying multifractal field of the studied process.

It should be noted that for both the simulations and the real data, the threshold is implemented
only at the maximum resolution while in the theoretical analysis, it is done at all scales through a
direct "truncation" of c(γ). This explains why DTM diverges with strong slope with simulations
while it goes to −∞ theoretically. In real data (Tab. 2.5), the values of spectral slope β and
correspondingly, value of H are greater that 0 while simulated fields are conservative. However,
considering the value of H being less than 0.5 in real fields, TM and DTM are not much affected
by this. Also the upper plateau in TM graph of real data is not visible in the simulations (more
prominent on finer resolutions).
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Figure 2.14: UM analysis of simulated MF fields at α = 1.8 and C1 = 0.2 at a) 0% of values at lower threshold, b)
82.2% of values at threshold, c) 89.6% of values at threshold d) 93.5% of values at threshold

UM parameters

% at threshold R2T M αDT M C1DT M β H

0% 0.997 1.801 0.191 0.777 0.065
70.5% 0.999 2.833 0.127 0.774 0.065
82.2% 0.995 3.270 0.080 0.770 0.020
89.6% 0.981 3.78 0.043 0.763 -0.028
93.5% 0.963 4.267 0.022 0.754 -0.065

Table 2.6: Values of UM parameters for simulated fields with artificial imposition of lower thresholds.

2.2.4.3 Reducing the biases from lower threshold on σe

As illustrated through theoretical framework and numerical simulation, when values below a
given lower threshold is set to lower threshold itself, K(q) becomes zero below a value of η as
defined by equation 62 or 63. This causes divergence in the logarithmic curve (Fig. 2.13c) leaving
lesser space for accurate estimation of α (slope of the linear portion of the curve unaffected by
threshold), even lesser than that available during presence of zeroes. This means that the estimate
of α is highly biased by the presence of thresholds. This divergence in DTM curve can be observed
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for σe (real and simulated) in Fig. 2.11 and 2.14 when data is imposed with lower threshold.
Though not a solution, if data has a lower threshold, it is better to set values below threshold to zero
than threshold itself. In Fig. 2.15 the reduction in bias can be seen when values {ελ}ελ≤T = 0 with
respect to the case where {ελ}ελ≤T = T (figure 2.12). The DTM curves (Fig. 2.15d and 2.15h)
shows the presence of lower plateau due to presence of zeroes reducing the slope thereby giving a
slightly better estimate of α . It should be noted that these estimates are still biased; Tab. 2.7 shows
the effect of both thresholds on real as well as simulated σe data. Simulating fields will still require
additional fractional integration to reproduce σe as the values of H employed are different from
that in real data. For exact analysis, new approaches are needed that can account for the missing
values that are replaced with lower threshold.

Figure 2.15: UM estimates of σe after setting values less than threshold to zero ({ελ}ελ≤T = 0); ENPC (a-d) and CDG
(e-h) respectively.

σe α = 1.8; C1 = 0.2

threshold {ελ}ελ≤T = T {ελ}ελ≤T = 0 {ελ}ελ≤T = T {ελ}ελ≤T = 0

% at threshold 83.2 89.07 85.8 83.17 0 82.2 89.6 82.2 89.6

R2T M 0,971 0,957 0.971 0.98 0,997 0,995 0,981 0,995 0.9941
αDT M 3,402 3,368 0,627 0.752 1,801 3,27 3,78 1.232 1.055
C1DT M 0,076 0,059 0,344 0.305 0,191 0,08 0,043 1.243 0.263
β 1,782 1,43 1,778 1.437 0,777 0,77 0,763 0.783 0,78
H 0,527 0,32 0.599 0.413 0,065 0,02 -0,028 0.07 0.077

Table 2.7: Values of UM parameters for various threshold conditions for real and simulated data of σe.

Since atmospheric extinction depends on the presence of particles (ref equation 52), average
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concentration of particulate matter (PM10) from the nearest available station (location: Lognes,
data in µgm−3 at 1hr resolution by Airparif) was subjected to UM analysis. Good statistical corre-
lation between extinction coefficients retrieved form lidar systems and conventional PM10/PM25
concentration was reported in Mei et al. (2017). Its worth noting that except for α , the values
of UM parameters are comparable with that of σe (0.021, 1.674, 0.354 for C1, β and H respec-
tively). And that the value of α (1.811) is close to that of simulated σe (1.8) before application of
threshold. This suggests that the expected correlation between particle concentration and scattering
coefficient is masked by the presence of threshold in data set. However this is also a reduced take
as concentration of aerosols are more complex than what one can infer from only PM10 values.

2.2.5. Main outcomes from UM analysis of σe

Temporal variation of σe values were extracted from MOR data from a present weather sensor
and airport data here, and analysed in a Universal Multifractal framework. While the fields exhib-
ited scaling behaviour, unrealistically elevated values of α and reduced values of C1 were obtained
from raw data. The bias is more visible in shape of K(q,η), in DTM curve, the slope of which is
used for calculating α . This behaviour was found to arise from the presence of a lower threshold in
data due to artificially set measurement range in MOR as per application requirements. Using UM
analysis, the influence of instrumental threshold in statistical estimates is illustrated here (with σe

as the field) relying on both theoretical formulation and numerical simulations that confirm them.
Basically imposing a lower thresholds sets c(γ) to zero below a critical singularity. This in turns
results in a linear portion for K(q) below a critical moments which yields a divergence for K(q,η)

in log-log plot. As thresholds imposed by instruments or application exists in many geophysical
measurements, these understanding will help in retrieving the actual underlying field as well as in
modelling them.

Characterizing visibility poses a challenge as the field is inherently biased by the measurement
range used for defining it from the objective measurements made in the atmosphere. Using mul-
tifractal analysis, we propose here the suitability of extinction coefficient for studying visibility or
MOR because of its direct physical connection with atmospheric particles that acts as obscurants
for visibility, and which should hence inherit scale invariant properties of Navier-Stokes equation.
Analysis and simulation confirms this. However, the estimation of extinction coefficient can also
create some biases from instrument corrections and varying interactions of different particle types
with atmospheric parameters. This section only aim to account for the bias by virtue of range of
measurement. In the specific analysis of σe, if computed with instrumental measurement thresh-
olds, it is better suited to replace lower threshold with zero than value at lower threshold itself.
There is a need to further examine σe using simulations involving fractional integration (to account
for non conservative fields) and to link the same with associated atmospheric fields (pollutant con-
centration for example). This could further open new paths for more accurate numerical simulation
and forecast of atmospheric visibility and tailoring it as per application requirements.
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2.3. Towards joint multifractal analyses

In this chapter, individual multifractal analyses of various atmospheric fields were discussed,
namely, R, KE and σe. The intention here, as illustrated in respective sections, is mainly to un-
derstand various fields in their real conditions so that this can be used for future simulations as
well as experiments. Using the UM parameters, the fluctuations and intermittency across all scales
were analyzed. Though not directly through the framework, the coupling between two fields (KE
and R) was examined in line with existing understanding and theoretical backing. The correlation
between the same fields (along with some others) are discussed in the next chapter. The need for
selecting the appropriate field (the field with physical meaning and encompassing the variability in
the process) was emphasised along with the need to be vigilant about the biases in data and their
effect on statistical estimates. Specific conclusions and perspectives of the two studies on this topic
are mentioned in their respective sessions.

In chapter 3, we continue the discussions with more emphasis on the coupling between various
fields (RW-Turb and sense-city, sections 3.1 and ??) in real as well as controlled environments.
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The major focus of this chapter is the joint analysis of various fields for finding out the relative
correlation between them in JMF. Towards this, the fields are first analysed individually using UM
and based on the scaling behaviour observed they are subjected to joint analysis. The chapter is
presented in three sub sections; data analysis from pays d’Othe windfarm, data analysis inside
sense-city climate chamber, and analysis of rainfall and particles.

In section 3.1, various fields from the meteorological mast in section 1.1.3 are analysed along-
side the turbine wind power following the sampling resolutions identified in section 1.2.2.4. Direct
analysis of turbine power comes with a bias since the rated power acts as an upper threshold in
time series. This is identified through comparison with total available power, and explained in the
framework of UM. Using JMF, the correlations between the power available, wind velocity, and air
density among each other and also with temperature, pressure, and relative humidity are explored
during rain and dry conditions, and at various rain rates. Section 3.2 deals with two set of ex-
periments performed inside sense-city for assessing its ability to reproduce small scale variability
of rain and temperature - humidity. Using JMF tools, and the power law in section 2.1, the un-
derreporting of rainfall kinetic energy by sense-city is identified and partially accounted for. This
section also includes a joint analysis of temperature and humidity during a few real and simulated
days inside sense-city. In the last section, 3.3.1, the scavenging efficiency of rain is examined using
simultaneously measured aerosol particle concentration and precipitation. The biases encountered
in JMF when the fields are non-conservative is also identified and commented on.

3.1. RW-Turb and fields studied

Modern wind turbines extract power from wind in the atmosphere and convert it into electricity
that can be stored as well as distributed to locations of use via power grids. Popularly known term
’wind mill’ refers to the historic usage where wind power was converted to mechanical energy at
the location of usage (Manwell et al., 2010). In increasing global transition towards renewable and
carbon neutral energy, wind power is extremely attractive as they have some of the lowest carbon
emission in life cycle assessment (Li et al., 2020; Guezuraga et al., 2012; Wiser et al., 2011).
The levelized cost of energy (LCOE, cost including building and operation) has also decreased
drastically in past decades for both offshore and onshore wind power (80% since early 1980, and
further 30% in past 5 years) giving it better economic value (Beiter et al., 2021).

Wind power production also plays an important role in achieving UN’s (United nations) Sus-
tainable development goal (SDG) 7 - affordable and clean energy for all. According to the IEA
2020 wind overview, global wind power capacity has increased by 14%, with annual installations
increasing by 54% or 60 GW (IEA, 2020). This is projected to increase as UN high-level dialogue
on Energy in 2021 (UN, 2022) has called for global doubling of annual investment in renewable
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energy and energy efficiency by 2025 (triple by 2030 creating 60 million jobs worldwide). Accord-
ing to WindEurope (EWEA previously), an average offshore wind turbine (of capacity 2.5-3MW,
Vestas V90 used in this study falls under this category) can produce more than 6 million kWh a
year which is enough for 1,500 average EU households. As per their estimation, by 2050, wind
power production is expected to meet 50% of EU’s energy demands (EWEA, 2012). In the context
of France, wind alone accounts for one third of total renewable power production in 2021 (Jør-
gensen and Holttinen, 2022) which is set to increase as the country targets to have 50 offshore wind
farms by 2050 through simplified legislation (Engie, 2022). One of the results from Cai and Bréon
(2021)’s evaluation of wind power potential in France is that climate change will not significantly
impact the statistical properties of mean load factor, thus making wind a reliable energy source in
these changing times.

3.1.1. Importance of RW-Turb campaign and need for UM
Wind is a fluctuating field and owes its generation mainly to uneven heating of earth’s surface

by solar radiation and the pressure gradients generated from it. There are various other factors
involved such as earth’s gravitational and rotational forces, inertia of air, frictional forces on sur-
face etc. resulting in atmospheric turbulence which makes characterization of the field a difficult
task (with governing Navier-Stokes equations still remaining unsolvable, see section 1.2.1). This
complexity is in turn transferred into extracted energy from the field - wind energy, as well as
torque available at the turbine end, is proportional to the power of the instantaneous wind speed
(introduced later in Eq. 64).

When it comes to power production by wind turbines, another complex effect is the influence
of rainfall, which only a limited number of studies have tried to address so far. An earlier study by
Corrigan and Demiglio (1985) reported a reduction in power production (20% to 30%, using a 38m
diameter two-blade turbine); this was later confirmed experimentally (Al et al., 1986). Cohan and
Arastoopour (2016) (improving upon Cai et al. (2013)) examined the effect of rain on wind turbine
blade aerofoil using multiphase (air as volatile and rain as liquid) computational fluid dynamics
(CFD) and reported high sensitivity to performance in lower rain rates till rain rate is high enough
to immerse most of the aerofoil surface underwater. Some positive influence of rain was also
reported such as cleaning of blades (Corten and Veldkamp, 2001) increasing power production.
Rain can also have long-term effects (mentioned previously in section 2.1) as the kinetic energy
of impacting raindrops can cause leading-edge erosion (LEE) on turbine blades reducing their
aerodynamic performance; this in turn results in lower annual energy and increased downtime
(Keegan et al., 2013).

3.1.1.1 Importance of RW-Turb project

Understanding the long-term and short-term effect of rainfall on wind power production is
hence important and the Rainfall Wind Turbine or Turbulence project (RW-Turb, https:// hmco
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.enpc.fr/portf olio-archive/ rw-turb/ ), supported by Agence Nationale de la Recherche (ANR,
French National research agency in English) is designed towards addressing this with simultaneous
real-time in-situ measurement of rain and wind at turbine location. Details about the location and
instrumentation of the meteorological mast and wind farm were already discussed in section 1.1.3.
The main interest of the project as well as this section is twofold - the effect of rainfall on available
energy and the effect on power extracted at turbine end. Towards this, like TARANIS observatory
of section 1.1.1, RW-Turb is also equipped with measurement of drop sizes distribution (DSD)
along with commonly examined rainfall rate (mmh−1). As mentioned before, the small-scale fluc-
tuations in wind are transferred to power produced; this is further complicated by the fact that wind
turbine hubs are located in the atmospheric boundary layer. In addition, improved understanding of
turbulence is identified as one of the leading challenges in the field of wind power by experts (van
Kuik et al., 2016). Towards this, RW-Turb provides high-resolution (100Hz) measurement of 3D
wind velocity along with other atmospheric fields at the turbine location (see Fig. 1.7).

3.1.1.2 Need for UM analysis

When it comes to the working of modern turbines, one way to account for wind variations
is through variable speed turbines and adaptive torque control enabling maximum power capture.
However, the commonly used parameter for control, ’turbulence intensity’ (standard deviation of
wind speed divided by mean wind speed over 10min) cannot fully capture the behaviour (see non-
Gaussian behaviour of wind velocity in in Fig. 3.1), and is too coarse to represent the variability
(active torque controls should responsive down to a few seconds). Further, this doesn’t consider
any effect of rain that could get transferred to loads on turbine (Johnson, 2004). To understand the
complex effect of rain and turbulence on power production, with given access to high-resolution
data, an appropriate theoretical framework is required to characterize intermittency at all scales
of measurement. As introduced in section 1.2.1 and illustrated throughout this thesis, multifractal
tools (UM and JMF) can be used for characterizing this complexity. Using the framework of UM,
Fitton et al. (2011, 2014) studied scaling behaviour and multifractal properties of wind velocity
and torque fluctuations in wind farm test sites (in Germany and Corsica), and made a case for
multifractal modelling of atmospheric turbulence. Calif and Schmitt (2014) also illustrated the
intermittent and multifractal nature of turbulent wind speed and aggregate power from a wind farm
over a wide range of scales and showed a coupling between using generalized correlation function
(GCF) based joint multifractal description.
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Figure 3.1: Log-log plot of exceedance probability, Pr(∆v > s), of positive horizontal velocity increments, ∆v(τ) =
v(t + τ)− v(t), in Fig. 1.10b (Dec 2020 to July 2021, at 1Hz from location 1 of RW-Turb meteorological mast) along
with a Gaussian distribution to illustrate latter’s inadequacy. s is a threshold of intensity and τ here is 15 s.

In light of the scientific perspectives (and opportunities) mentioned so far, the main objectives
of this subsection are - to characterize the small-scale fluctuations in wind and associated fields
(using UM, refer section 1.2.2), and to explore correlations between them in various meteorological
conditions (using JMF, refer section 1.2.3).

3.1.2. Data and availability
An overview of the campaign with data and instrumentation is provided in section 1.1.3. To

recap, RW-Turb measurement campaign (Pay d’Othe, 110km southeast of Paris, France) consists of
a meteorological mast in a wind farm (jointly operated by Boralex and JP Énergie Environnement)
with two sets of optical disdrometers (OTT Parsivel2), 3D sonic anemometers (ThiesCLIMA) and
mini meteorological station at heights roughly 45m and 80m. The finest time-step of measurement
available are 30s, 0.01s, and 1s respectively. 3 months of continuous data from RW-Turb is made
available for open access in Gires et al. (2022); for more details on campaign and instrumentation,
readers are directed to the paper and section 3.1.

3.1.2.1 Wind power available and air density

Power production from turbines are analyzed at the lowest available time-step, 15s, here (4
Vestas V90 - 2MW managed by Boralex, see Fig. 1.7 for location from the meteorological mast).
Power available at the turbine for extraction is given by

Pa =
1
2

ρAv3Cp (64)

where ρ is the air density at wind turbine height (hhub)., A is the swept area of turbine rotor
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, v the wind velocity (ms−1) approximated at turbine height and Cp the power coefficient or Betz
coefficient (for Vestas-90 examined here, hhub = 80m; A = 6,362 m2, and rated power is 2MW).

Aerodynamic losses prevent the turbine from extracting the maximum available wind power
and this limiting factor is given by Betz coefficient (CP,Betz =

16
27 ). The value of air density is of-

ten approximated as 1.255kgm−3 (standard value at sea level, 15◦C). However, it is known to
show fluctuations and reported to have an effect on power generation in varying levels (Jung and
Schindler, 2019; Ulazia et al., 2018). It is possible to calculate air density by extrapolating ideal gas
law: ρ = Ph/G.Th, where Ph and Th are the pressure and temperature at hhub, and G the atmospheric
gas constant (287.058Jkg−1K for dry air). For the purpose of this analysis, air density was con-
sidered as a varying quantity and estimated using the current official formula of the International
Committee for Weights and Measures (CIPM), referred to as CIPM-2007 equation which accounts
for humidity (Picard et al., 2008):

ρ(T,P,Hr) =
PMa

Z(T,P,Hr)RT (K)

{
1− xv(T,P,Hr)

[
1− Mv

Ma

]}
(65)

where T (◦C), P (Pa) and Hr (0 ≤ Hr ≤ 1) are temperature, pressure and humidity from Mete-
orological station at hhub. Other derived parameters are
T (K), air temperature (in K; from T )
Z, compressibility factor (a function of T and P)
R, molar gas constant (Jmol−1.K−1)
xv, mole fraction of water vapour
Ma, molar mass of dry air (gmol−1)
Mv, molar mass of water (gmol−1)

3.1.2.2 Turbine power and associated issues in data analysis

For Vestas V-90, the rated power is 2MW; this means that the maximum power turbine can
produce is 2000kW. However, if we calculate the available power as per Eq. 64, there are many
instances where it can go beyond the rated value. While analysing the variability of field using sta-
tistical methods, the presence of instrumental limits (here an upper limit) can introduce biases. For
example, the effect of instrumental lower threshold was discussed in section 2.2 within the frame-
work of UM analysis using extinction coefficient (σe) as the field. In addition to this, sometimes
power "produced" was reported with negative values. This indicates that the turbine failed to pro-
duce any power during that time period and that energy was consumed in its basic operation. Fig
3.2 shows the real and theoretical turbine power state curve along with the bias it poses in statistical
analysis.
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Figure 3.2: Illustration upper threshold (by virtue of rated power of 2000kW) in power produced by turbine: a)
Empirical and theoretical power state curve of turbine 1 with wind velocity from the turbine and b) Wind velocity from
location 1 on the mast, c) Power produced by the turbine (Pt ) and actual wind power available Pa, and d) Effect of rated
power as threshold in time series and effect of negative values in Pt for 1 week long data - 20 May 2021 to 26 May
2021

Along with power produced, turbine data also provides wind velocity at the location (from a
basic sensor installed on the hub), which is used for its internal monitoring; this also gave less
scatter in the empirical state curve of turbine (Fig. 3.2a). But, for research purposes, 3D anemome-
ter at the mast offers more reliable measurement (on almost same horizontal plane as turbine hub)
and only this was data considered for analysis purposes (Fig. 3.2b). However, it should be noted
that turbines are not in the exact location of mast (Turbine 8 and 9 are ≈ 3.5km away) and hence
approximation of wind velocity from mast comes with some biases. From Fig. 3.2c and Fig. 3.2d,
it can be clearly seen that the rated power imposes an upper threshold on turbine power (Pt) while
power available (Pa) is the actual field. For this week long series of Pt , 21.7% of data was at upper
threshold and 2.9% were either zero or negative (taken as zeroes in analysis); this percentage was
found to change according to data selected. Effect of these limits in UM analysis is shown in Fig.
3.3 where the data in Fig. 3.2 is treated as an ensemble of 32 minutes. UM analysis was performed
on direct fields as values of H were within the acceptable limits (H < 0.3). Presence of rated power
clips the values of field, and results in a reduced value of α for Pt (Fig. 3.3a: α = 1.36, C1 =
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0.00715) from that of Pa (Fig. 3.3b: α = 1.93, C1 = 0.01753). Imposition of a similar threshold
(Pa <= 200 = 200) on Pa was found to artificially reducing the estimates (α from 1.93 to 1.39, C1

from 0.10753 to 0.0076) in Fig. 3.3c, bringing them closer to that of biased turbine power, Pt (Fig.
3.3a).

Figure 3.3: Spectral analysis (Eq. 8), TM analysis (Eq. 14), DTM curve (Eq. 21) and K(q) for a) power produced by
turbine (Pt ) which has intrinsic threshold because to rated power, b) power available (Pa) which is the actual field, and
c) Pa where upper threshold is imposed at rated power of turbine. Data used: time series from 20 May 2021 to 26 May
2021 with lowest time step of 15s.

It should be noted that the effect of threshold could be different according to size of sample
and scaling regimes studied; for example for the same data, the difference in α was found to be
greater (αPa = 1.59, αPt = 0.92 on fluctuations) when analyzed for scales greater than 4min. In the
same spirit as σe in section 2.2, the effect of rated power as upper threshold in Pt is explored here
in the theoretical framework of UM. For simplicity, effect on different scaling regimes as well as
the additional complexity from the known effect of zeroes (Gires et al., 2012) are not considered.

3.1.2.3 Testing the effect of upper threshold on UM analysis

Let’s take the upper threshold (rated power in this case) at the largest possible scale ratio as

105



3. Joint multifractal analysis of different atmospheric fields

T = Λ
γT (66)

where γT is the singularity corresponding to threshold T , and Λ the maximum resolution (length
of time series).

For multifractal fields, the probabilities of exceeding scale independent thresholds, λ γ , scale
with resolution, λ (see Eq. 13). At the upper threshold T

Pr(ελ ≥ T )≈ λ
−c(γT ) (67)

If we set the upper threshold i.e. setting all the values of the field greater than T equal to T
(represented here by this expression: ελ ≥ T = T ), the probability of having values greater than
T , Pr(ελ > T ), becomes 0 reducing the above relation into Pr(ελ = T )≈ λ−c(γT ). This leaves the
value of c(γ) equal to +∞ for singularities above γT (for γ > γT , c(γ) = +∞). Here c(γT ) is the
limiting non-zero value above which c(γ) becomes +∞. This effect of upper threshold (c(γ)→+∞

for γ > γT ) is similar to the effect of sampling dimension (Ds) in UM framework. The maximum
observable singularity can be defined by taking probability at corresponding threshold as in eq.67.

Pr(ελ ≥ λ
γS)≈ 1

Nsλ D (68)

where Ns = λ Ds (Ds being the sampling dimension: fractal dimension corresponding to the
number of independent samples with resolution λ in a D dimensional space). λ D is the number of
values per sample. Using the notions of Ds and D, γ corresponding to sampling resolution, γs can
be estimated from c(γs), c(γs) = (D+Ds)

To recap, in the framework of UM, codimension function c(γ) and scaling moment function
K(q) are (refer section 1.2.2, Eqs. 17 qnd 16)

c(γ) =C1

(
γ

C1α ′ +
1
α

)α ′

K(q) =
C1

α −1
(qα −q)

(69)

When γ > γs, c(γ) = +∞; by Legendre transform K(q) becomes linear from q > qs = c′(γs)
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γs = α
′C1

(
D+Ds

C1

) 1
α ′
− C1

α −1

qs =

(
D+Ds

C1

) 1
α

(70)

In the case of sampling dimension, c(γ) varies as follows

c(γ) =


+∞ f or γ > γs

D+Ds f or γ = γs

c(γ) f or γ < γs

 (71)

Similarly, at the presence of upper threshold here (ελ ≥ T = T ), c(γ) reaches +∞ at an earlier
limiting value value c(γT ) where γT < γs (Fig. 3.4a)

cT (γ) =


+∞ f or γ > γT

c(γT ) f or γ = γT

c(γ) f or γ < γT

 (72)

In UM framework, the limit case γT = γmin can be obtained as eq.70 from eq.69

γT = α
′C1

(
c(γT )

C1

) 1
α ′
− C1

α −1

qT =

(
c(γT )

C1

) 1
α

(73)

To summarize, in normal data analysis, c(γ) is bounded by a maximum value c(γs) above
which it becomes infinite. K(q) which is connected to c(γ) through Legendre transform (K(q) =
maxγ{qγ − c(γ)}) becomes linear beyond this q (q ≥ qs) value (K(q) = (q−qs)γs +K(qs)). When
an upper threshold is imposed (ελ ≥ T = T ), K(q) becomes linear at an earlier value of q (qT < qs)
defined by γT (γT < γs) at c(γT ) (Fig. 3.4b).

KT (q) =


γT (q−qT )+K(qT ) f or q > qT

K(qT ) = qT γT − c(γT ) f or q = qT

K(q) f or q < qT

 (74)

In Double Trace Moment (DTM) technique, for a given q: K(q,η) = K(qη)−qK(η), which
for UM fields = ηαK(q). When no thresholds are applied K(q,η) varies as
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K(q,η) =

{
(q−1)(D+Ds) f or η ≥ η+(q) = qs

ηαK(q) f or η < η+(q) = qs

}
(75)

where η+(q) corresponds to values of η where upper portion of DTM curve becomes plateau
due to sampling limitation (qs = c′(γs) = ((D+Ds)/C1)

1/α ). It starts at η+(q), the moment above
which K(q) becomes linear (which is qs). In the presence of an upper threshold (ελ ≥ T = T ),
DTM curve will be (Fig. 3.4c)

KT (q,η) =

{
(q−1)c(γT ) f or η ≥ η+(q) = qT

ηαK(q) f or < η+(q) = qT

}
(76)

Figure 3.4: Influence of threshold on a) c(γ) vs γ curve: c(γ) reaching +∞ at γT than γs, b) on DTM curve: K(q)
becoming linear at qT than qs), and c) on K(q) vs q curve: K(q,η) reaching upper plateau early. Arbitrary values were
used for γs and γT ; UM parameter values of fields were taken as α = 1.8 and C1 = 0.2.

It is important to note here that the value of K(q,η) doesn’t reach the upper plateau abruptly at
qT or qs, rather, it flattens gradually starting from a value of η = qs/q or qT/q (as per value of qη in
K(q,η)). Presence of upper threshold shifts this starting point and decreases the range of possible
values for estimation of α (slope of DTM curve), hence, presence of plateau will result in biased
(reduced) estimates.

Under estimation in values of α due to application of upper threshold was already observed Fig.
3.3c. To understand this further, numerical simulations (α = 1.2; C1 = 0.2 - ensemble of sample size
128 and number of samples 100) are shown in Fig. 3.5 with gradual application of upper threshold
(effect of zeroes not considered). K(q) becoming linear at earlier and earlier values of q (after
respective qT ) with threshold can be seen in third column (like in Fig. 3.4b). The DTM curve in
second column shows that both α and C1 are decreasing with progressive application of thresholds
(From 0 to 30%, α decreased from 1.8 to 1.56 while C1 decreased from 0.17 to 0.05). While
explaining this bias in framework before, the upper threshold was introduced at the maximum
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resolution (Eq. 66, ΛγT ). Since in practice, the lower scales in UM are obtained from averaging
the outer scale (at maximum resolution), the threshold values (and hence γT ) at each stage doesn’t
exactly correspond to the originally defined one. Effect of this is the reason for increased ’transition
part’ (straight line slope to upper plateau) of the curve in simulations here (more than that in Fig.
3.4c). When the slope calculation was forced at η = 1 (so that TM and DTM estimates are same),
the bias in values of α increased (for example the already biased value of α at 30% threshold, 1.58,
got further reduced to 0.95; C1 remained moreover similar at all thresholds) as the slope estimation
moved to ’transition part’. It is interesting to note that the trend here (only for α) is the opposite
of what was observed during numerical simulations with lower threshold in section 2.2 (refer Fig.
2.14). However, unlike σe which only had a lower threshold, Pt (Fig. 3.3a), has a combination of
upper threshold from rated power and lower threshold (zeroes) from negative power. This further
reduces the range of available η for estimation of α by imposing a lower plateau as well (see Fig.
3.3, third column). There could also be additional complexity from the fact that conservative part
of fields Pt and Pa were retrieved by fluctuations while the simulated fields are conservative by
default.
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Figure 3.5: Effect of upper threshold illustrated using numerical simulations - discrete cascades of size 128 with 100
samples: α = 1.8 and C1 = 0.2. Decrease in α and increase in C1 with threshold can be seen from sub figures a to d.

Actual sampling resolution and filtering of data
Other than this bias from rated power in turbine, there were few more concerns regarding the

quality of remaining data. On the basis of data presented in Gires et al. (2022), UM analysis of the
fields revealed that even though data is recorded at finer resolution, the actual sampling resolution
for studying variability may be coarser. The analysis is reproduced in the section 1.2.2.4 and the
potential of UM in detecting instrumental white noise is commented on. Based on this insight,
the fields are analyzed here at lower resolutions than manufacturer claims (which are still high-
resolution as far as data is concerned). Table 3.1 summarizes the fields studied and their actual
sampling resolution. This is applicable for instruments at location 1 as well as location 2 on the
mast (refer Fig. 1.7).
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Field Data source measured/derived recording
resoltion

actual sampling res-
olution

Temperature (T )

Meteorological
station

measured 1 Hz 15 s
Pressure (P) measured 1Hz 15s
RH (RH) measured 1Hz 15s
Air density (ρ) derived, CIPM-2007 1Hz 15s
Power available (Pa) derived (ρ,v) 1Hz 15s
Wind velocity (v) 3D sonic

anemometer
measured 100Hz 1Hz

Power produced (Pt) Wind turbine
measured 15s 15s

wind velocity (vt) measured 15s 15s
rainfall(R) Disdrometer measured 30s 30s

Table 3.1: Details of fields studied, their source and actual sampling resolution at which they were studied (based on
results from UM analysis in 1.2.2.4). Station parameters were taken at 15s (instead of 16s) to match wind turbine
power measurements.

Before proceeding to analysis, the whole data set was validated (Nov 2020 to May 2022) by
checking for unusual entries and instrument downtimes at both locations on the mast as well as 4
turbines. Time steps were not considered for all fields if any one of the devices was not working.
This included 5 months when Anemometer (17 June 2021 to 29 Nov 2021) and Station (17 June
2021 to 11 Nov 2021) at location 1 on the mast were struck by lightning and had to be replaced,
and some time steps of turbine downtime (which were given as interpolation in unfiltered data)
during March and June 2021. There were few time steps where abnormal values were recorded for
T , P and RH; these were removed by a simple filter that replaced values of station parameters with
’nan’ (not a number) whenever pressure was shown below 800hPa. If ’nan’ were isolated, they
were replaced by the average of preceding and succeeding entries.

For studying the effect of rain specifically, dry and rain events were selected from 9 months of
RW-Turb data (12 Nov 2020 to 16 Sep 2021). An event was considered strictly rain, if there was a
cumulative depth greater than 0.5mm and separated by at least 15 minutes of dry condition before
and after. The converse of this criteria was employed for getting dry events; events smaller than 5
min were discarded as well as events where any of the devices (including turbines) are giving more
than 30% ’nan’ or 50% zeroes. This methodology identified a total of 431 rain events (and 592
dry events); further removal of events was performed in subsequent UM analyses to accommodate
event size to the closest power of 2.

3.1.3. Joint analysis of RW-Turb fields
The primary interest in having a campaign where simultaneous measurement of wind and rain

is to study the correlations between them. In this section, the results obtained from this endeavor
are presented; previously discussed framework of joint multifractals (JMF) was used in joint char-
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acterization (see section 1.2.3).

3.1.3.1 Dry and rain events

Before performing joint analysis, the fields were individually studied for possible differences
in behaviour during rain and dry conditions using UM analysis. Rain and dry events were selected
following the criteria mentioned in previous section, and each of the fields in Tab. 3.1 were sub-
jected to multifractal analysis for the selected events separately as well as as an ensemble (rain
ensemble and dry ensemble). After data filtering, a total of 213 rain (and 393 dry) events were
identified from 6 month-long data (12 Dec 2020 to 03 June 2021). For UM analysis, a sample size
(Nsam) of 128 (32min) was used for fields at 15s and 2048 (≈ 32min) for fields at 1 Hz. If an
event was larger than the sample size (powers of 2 greater than Nsam), it was split into ensembles of
length Nsam. For example, it the length of event is 300 (75min), it was trimmed to nearest power of
2 (256, 64min) and made into an ensemble of size 128 (32min) with 2 columns. To maximize the
number of events included in the analysis events with length greater ≥ 80% of Nsam (or powers of
2 > Nsam) were included in the analysis by extending the event length in data set to Nsam (or powers
of 2 > Nsam).

Results of an ensemble analysis of all rain events are shown in Fig. 3.6 (fields at 15s) and Fig.
3.7 (fields at 1Hz). Wind velocity (v) was estimated as the horizontal resultant from Ux and Uy

provided by 3D sonic anemometer; Power available Pa was derived from this using Eq. 64. Both
quantities were initially estimated at an instrument resolution of 1Hz (Fig.3.6) and also averaged
to 15 s (Fig. 3.7). Since air density (ρ) involves station parameters (at 15s), the finest time step
was limited by them to 15s. For illustration purposes only Turbine 1 (turbine closest to the mast,
Fig. 1.6) is shown; other turbines gave similar estimates. The rest of the fields were taken from
instruments at location 1 of the mast (≈ 80m height) which is on a similar horizontal plane as
turbines.
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Figure 3.6: UM plots of rain events from 11 Dec 2020 to 03 June 2021 (6 months) for all fields studied at the lowest
instrumental resolution of 15 s (except for Rain rate at 30s). Ensemble of 213 events at a sample size of 128 (32min),
fluctuations of the field were used for station fields while direct field for rest; spectral plots here are from direct data.
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Figure 3.7: UM plots of rain events from 11 Dec 2020 to 03 June 2021 (6 months) for a) wind velocity and b) power
available studied at the lowest instrumental resolution of 1 Hz. Ensemble of 213 events at a sample size of 2048 (≈
32min); α was estimated from the slope of DTM curve at η = 0. FIF of the field was used; spectral plots here are from
direct data.

UM plots for each field as an ensemble of all rain events are given in Fig. 3.6 and Fig. 3.7
for the time period considered. The value of the non-conservation parameter H was too high for
UM analysis of station fields directly - T , P, RH, and ρ - (H ∼ 0.9 and β ∼ 2.8); this was reduced
along with spectral slope to conservative values by fluctuations (H ∼ 0 and β < 1). They all gave
similar C1 values (∼ 0.06); T and RH gave similar α values (∼ 1.75) as well while P and ρ gave
values of 1.3 and 1.95. For Pa and v, the 1Hz data, two scaling regimes were observed with a break
closer to 15s (16 s in actuality, Fig. 3.7). Direct data gave estimates of H acceptable (H < 0.5)
for performing UM analysis when 15 s was used as the finest time step (Fig. 3.6: H ∼ 0.2 and β

∼ 1.4), while the smaller scale (1Hz to 15s) gave very non-conservative values (H ∼ 0.6 and β

∼ 0.6). For Pa and v at 1 Hz (1Hz to 15s), taking the fluctuations reduced H too much (∼ -0.4).
In examining these smaller scale variations, fractionally integrated flux (FIF) is recommended for
retrieving the conservative part, this gave H ∼ 0 (Fitton, 2013; Gago et al., 2022). For Pa and v, the
values of α & C1 were 2.04 & 0.014, and 1.95 and 0.0017 for larger scales (from 15s); for finer
scales (1 Hz to 15 s) α values were smaller while C1 larger : 1.40 & 0.09, and 1.38 & 0.05. The
possibility of 2 scaling regimes for 15s fields is not considered here (Fig. 3.7) as it was convenient
to compare rain and dry conditions in a single regime.
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Figure 3.8: Comparison between UM parameters of rain and dry events ensemble: a) α , b) C1, and c) H.
Mean and standard deviation of d) α , e) C1, and f) H for individual rain events. All fields were analyzed at 15s
resolution except those with ′ (Pa and v, ′ for 1 Hz to 15s) at the end. Data from 12 Dec 2020 to 03 June 2021, the
subscript of Pt shows the turbine number. The uncertainty range is different among fields, with v and Pa giving similar
parameters for all events while the values are much fluctuating between events for rest.

From ensemble analysis, slightly increased values of α were observed for the rain ensemble in
comparison to the dry ensemble (plots shown in Appendix A.3) for all fields. Since C1 is rather
similar, it can be inferred that the fields exhibit more variability when rain is present (Fig. 3.8a and
Fig. 3.8b). With this insight, rain events are analyzed in detail individually. Mean and std dev of
UM parameters considering all individual rain events used in the ensemble are given in Fig. 3.8.

3.1.3.2 Joint analysis of fields according to rain

The scaling and multifractal properties of fields were examined for rain (and dry) events indi-
vidually and as an ensemble previously. The inter influence of some of these fields are obvious by
virtue of definition: available wind (and hence power extracted by turbines, Pt) and air density (ρ)
are derived from wind velocity (v) and station fields (T , P, and RH) respectively. For understanding
the influence of rain on wind power, it is essential to understand its natural correlation with wind
(and hence power available, Pa). Using the previously defined framework of joint multifractals
(JMF, section 1.2.3), it is possible to analyze two conservative fields together and to estimate the
correlation exponent between each other when one is expressed as a multiplicative combination of
the other with an independent multifractal field. For example, the correlation of Pa with v can be
explored by expressing them as Paλ = vλ

aYλ
b

(vλ
aYλ

b)
, where λ is the resolution of the field„ Yλ another

UM field and a and b are the exponents of correlation between them. (Gires et al., 2020b).
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Figure 3.9: a) TM plots of Pa , b) TM plots of v (log - log plots of Eq. 14), c) K(q) plots for both fields, d) TM plot for
the joint field (log - log plots of Eq. 28), e) estimation of JMF parameter a (Eq. 31); for an ensemble of all moderate
rain events at location 1. Rain events were analyzed as an ensemble of size 128, from 12 Nov 2020 to 16 Sep 2021 (9
months).

With this framework, the correlation of Pt , Pa, v, and ρ with each other (and with station fields)
are explored here according to rain rates. For this purpose, the rain events from 9 months (12 Nov
2020 to 16 Sep 2021) were classified into 6 groups based on the rain rate (same as in section 2.1 but
with 5min moving average for increasing number of events in higher rain rate groups) and analyzed
as an ensemble of Nsam 128 or 32 minutes. Since JMF involves expressing fields as a combination
of each other, the finest resolution of fields were limited by the highest actual sampling resolution
(15s, Table 3.1). JMF plots of Pa and v for an ensemble of all moderate rain events at location 1 are
shown in Fig. 3.9 as a sample. Value of a closer to 3 was obtained (as expected from Eq. 64) and
good scaling was observed with r2

JMF value of 0.98. The variation of JMF parameters a and IC are
given in Fig. 3.10 for location 1; similar estimates were obtained for location 2 as well. Overall, a
very small increase in values of IC and a were observed with an increase in rain rate (5 min moving
average) when correlations of Pa against v and station fields were considered (Fig. 3.10a). A similar
trend was observed when v was analyzed against Pa and station fields (Fig. 3.10b), and also when
ρ was analyzed against the rest of the station fields (Fig. 3.10c). Quality of scaling r2

JMF didn’t
show any trend like the values of a or IC. The effect of the previously mentioned upper threshold
in turbine power (due to rated power) seems to have a stronger bias in JMF; JMF of Pt with every
field across various rain types gave estimates of a close to 0 (not shown in figure). Pt also gave
inconsistent values of r2

JMF with values going lower than 0.1 in some cases. This behaviour was
consistent across all four turbines.
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Figure 3.10: Variation of JMF parameters a and indicator of correlation IC between a) Pa, b) v, and c) ρ and other fields
according to type of rain (on the basis of 5 min moving average of rain rate with criteria in Tokay and Short, 1996).
The second column of a) and b) are zooms of first column removing the direct field for visual clarity. Rain events of
each class were analyzed as an ensemble of size 128, from 12 Nov 2020 to 16 Sep 2021 (9 months).

From early UM analysis, it was decided that for fields at 15s resolution, all station fields need
to be analyzed as fluctuations while wind (v) and wind-derived fields (Pa and Pt) can be studied
directly. Though the desired conservative field is retrieved by this choice, this could cause issues
in JMF as it could be a combination of a direct field and an indirect field (fluctuations or FIF). For
example, in Fig. 3.10a, Pa is a direct field while the fields its correlations are analyzed (ρ , T , P,
and RH) are fluctuations. Consider a non conservative field ελ

′ (i.e. ⟨ελ
′⟩ ̸= 1); in UM, this can be

expressed with the underlying conservative field as (ελ retrieved through fluctuations or FIF, ⟨ελ ⟩
= 1) as

ελ
′ ≈ ελ λ

−Hε (77)

where Hε is the non-conservation parameter that characterizes the variation of mean across
resolutions λ and ελ . The conservative part that is characterized by UM parameters (see section
1.2.2). When two fields ελ

′ and φλ
′ are analyzed as a multiplicative combination in JMF, only their
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respective conservative parts can be used (ελ = φλ
aYλ

b

(φλ
aYλ

b)
). Hence, the estimated JMF parameter a

doesn’t correspond to the full field. If one field is direct and the other is a retrieved conservative part
(fluctuations or FIF), values of a could be be biased as underlying H (Hε and Hφ ) is not considered
in its estimation.

To assess the possible influences of this, a sensitivity analysis was performed using two known
fields: Pa (ελ ) and the field it is derived from v (φλ ): Pa ∝ v3 (Eq. 64). The previously used dataset
- respective ensembles of rain events from 12 Dec 2020 to 03 June 2021 (6 months, with Nsam

128) - was used for this purpose; the results are displayed in Table. 3.2. While using Pa and v as
direct fields, a in JMF analysis retrieved the exponent value in Eq.64 (Table.3.2) with good joint
scaling (r2

JMF ) and indicator value (IC). Though H isn’t non-zero for either of the fields, they being
similar gave a difference close to zero (Hε - Hφ ). Similarly, a closer value of a (a = 2.75) was
obtained when both fields were taken as FIF. From the samples in Fig. 3.11a and Fig. 3.11b, it
can be seen that the fields follow the same pattern when both fields are direct or FIF (Fig. 3.11b
follows the same pattern as direct field in Fig. 3.11a while fluctuations in Fig. 3.11c does not)
with the difference in amplitude from the mean line following the proportionality exponent in Eq.
64. When both fields were taken as fluctuations, values of a closer to 1 were obtained. This is
rather consistent as fluctuations take the difference between time steps and are expected to show
a proportional relationship as the fields are already related. However, this also puts the analysis
at an apparent disadvantage as using JMF on fluctuations only retains the proportionality but not
its order. This can be observed in the sample in Fig. 3.11c, where both fields appear moreover
similar (following P ∝ v than the original P ∝ v3). In the remaining cases, - when both fields were
not having similar values of H - the estimates of a are decreased except when Hε was significantly
lesser than Hφ (FIF - Pa and direct - v). This might have to do with ελ (Pa) being the field estimated

based on φλ or v (Pa =
vaYλ

b

(vaYλ
b)

) while the JMF analysis is trying to express it in terms of fluctuations
of φλ which doesn’t follow the same time step pattern as direct data or FIF (Fig. 3.11c).
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ελ φλ Hε Hφ Hε - Hφ a b IC r2
JMF

direct
direct 0,210 0,256 -0,045 2,98 0,823 0,993 0,994
FIF 0,210 -0,026 0,237 1,62 0,696 0,895 0,953
fluc 0,210 -0,253 0,464 0,02 0,537 0,012 0,430

FIF
direct -0,004 0,256 -0,259 4,57 0,843 0,934 0,960
FIF -0,004 -0,026 0,022 2,75 1,179 0,990 0,888
fluc -0,004 -0,253 0,250 0,01 0,806 0,002 0,043

fluc
direct -0,182 0,256 -0,438 1,7 9,965 0,082 0,956
FIF -0,182 -0,026 -0,156 0,73 4,729 0,049 0,973
fluc -0,182 -0,253 0,071 1,01 0,397 0,892 0,779

Table 3.2: Sensitivity analysis using power available, Pa, (ελ ) and wind velocity, v (φλ ) where JMF parameters are
estimated for different combinations of data - direct (dir), fluctuations (fluc), and FIF (fractionally integrated flux).
Data from 12 Dec 2020 to 03 June 2021 at 15s, fields were renormalized for comparison.

Figure 3.11: a) direct data of Pa and v b) FIF of Pa and v, and c) fluctuations of Pa and v for one sample (Nsam = 128)
of the data analyzed (from 12 Dec 2020 to 03 June 2021 at 15s, fields renormalized for comparison). Between plots, it
can be seen that direct and FIF are following similar data pattern while fluctuations does not.

Though the biases from the analysis of JMF are acknowledged here, there is no correction
available at this point. Among the results presented in Fig. 3.10, all JMF analysis except for Pa -
v combinations are affected by this. More research is needed to account for this in the framework
when accurate retrieval of correlation parameters is of interest. Even with biases, the values of a
and IC are still strong indicators for comparing two multifractal fields, through various atmospheric
conditions as illustrated in Fig. 3.11. The possibility of using JMF for retrieving an average field
from a correlated known field using JMF is further explored in section 2.1 using KE and R.

3.1.3.3 Rain and power production - Possible influence from convective and stratiform rain

The yearly average cumulative depth of rain at the wind farm was found to be ∼ 600 mm
and among the 6 months of rain events (213) studied, only 20 could be classified as heavier rain-
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fall events (heavy, very heavy, and extreme). Because of this, it was speculated that the lack of a
very strong correlation between rain and power produced could be due to rainfall events being not
strong enough (apart from the known bias from threshold due to rated power). To test this hypoth-
esis, efforts were made to identify the rain events as convective and stratiform. While convective
rains have highly concentrated intensities, stratiform rains are more horizontally spread with lower
intensities (Houze Jr, 2014; Marzano et al., 2010). Several criteria have been used for detecting
this indirectly in literature; simple ones are the classification on the basis of rain rate exceeding a
particular value. Popularly used criteria using rain rate is by Bringi et al. (2003) where convective
rain samples are considered as those with rain rate, R, ≥ 5mmh−1 and standard deviation (std dev)
over 5 consecutive 2-minute samples > 1.5mmh−1 (mentioned as BR03 from here on). Tokay and
Short (1996) proposed an empirical classification based on DSD parameters by identifying the shift
from spectra dominated by small to medium drops (stratiform) to spectra dominated by large drops
(convective) for similar rain rate (mentioned as TS96 from here on). Attributing temporal shift in
DSD parameters (shape parameter Λ) to shifts in rainfall size distribution, they suggested a value
of Λ = 17R−0.37 above which precipitation can be considered as convective (stratiform if below).

To explore this, DSD parameters of rain events at the wind farm were estimated assuming a
gamma distribution (following the method of moments in section 2.1). From the 6-month long data
set in Fig. 3.8, about 32 events were found to be mostly convective using TS96 (out of 213, the
rest being mostly stratiform). However, while using BR03 criteria, only 12 were found convective.
Extending the data set to 9 months also didn’t increase the number of convective events (42 - TS96
and 14 - BR03 from 12 Dec 2020 to 16 Sep 2021). 20 events were selected from both convective
and stratifrom sides where at least 70% of the time steps followed TS96 criteria. Two turbines
were examined for these events - Turbine 1 and 8 (closest and farthest to the mast): any possible
difference in turbine power between convective and stratiform events is not obvious from mean
- std dev nor state curves (Fig. 3.12). This obviously comes with the disclaimer that it was a
simple test using limited events without considering other complexities. However, considering the
predominant stratiform nature of rain at the location studied, the hypothesis of needing stronger
rainfall to see the proper correlation between power produced and rainfall is still worth exploring
in the future.
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Figure 3.12: Mean and std dev of Power produced, Pt , for a) Turbine 1 (closest to the mast), and b) Turbine 8 (farthest
from the mast). Power state curve during selected convective and stratifrom events for c) Turbine 1 (closest to the
mast), and d) Turbine 8 (farthest from the mast).

3.1.3.4 Rain and power production - possible influence from wind direction

The turbines are aligned south east within a 4 km radius, and at the south of the mast a small
groove is located at roughly 160m, and a larger one in the east at around 100m (Fig. 1.7). To see
the effect of these topographical features and spread of vegetation around the mast, wind directions
were identified as shown in Fig. 3.13 with mast as the centre. Based on this, average wind direction
was calculated for all events (6-month events in Fig. 3.8 using Ux and Uy from 3D anemometer at
location 1. Based on the position of immediate vegetation around the mast, the wind zones were
grouped into three - least influenced (69), most influenced (60) and turbine direction (7 events).
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Figure 3.13: a) Location of wind farm and the wind directions identified, b) No. of events corresponding to the direction
(colours show the direction classes, length of the black arcs corresponds to number of events while thickness to average
magnitude) and the three groups considered

Figure 3.14: Variation of α and C1 according to wind direction for a) rain events b) dry events. Values of ensemble and
average value of individual events are shown using red and blue lines.

Variations of UM parameters of turbine power closest to the mast (Power turbine 1) according
to wind classes are shown in Fig. 3.14 for rain and dry events. No obvious difference was observed,
similar results were observed for rest of the turbines as well. Due to the previously identified bias
from rated power in UM analysis, it is not possible to say exactly if this is the exact behaviour

122



3. Joint multifractal analysis of different atmospheric fields

or not. This was not explored further in this thesis. Factors known to affect power production at
turbine wake, such as mixing of moist air Obligado et al. (2021), dynamic effects from inertial
particles (Smith et al., 2021) etc. were also not considered here.

3.1.4. Main outcomes from UM and JMF analysis of RW-Turb data
From section 1.2.2.4, it was identified that the actual sampling resolution relevant for studying

the variability of meteorological fields measured with the help of mini-station (temperature T ,
pressure P, humidity RH, and air density ρ = f (T,P,RH)) and that for 3D anemometer fields (wind
velocity v, power available Pa) were 15s and 1s respectively (instead of 1s and 0.01s). Using the
data averaged to these reliable frequencies, the main objective of this section is to analyze turbine
power, Pt , as a temporal field and to gain insights into its correlation with rainfall, which is poorly
understood, and also with other meteorological fields. However, the direct analysis of turbine power
was found to be difficult since the output from wind turbines are limited by a maximum or rated
power; in time series analysis this acts as an upper threshold resulting in reduced estimates of UM
parameters. This bias is identified in section 3.1.2.2 in the theoretical framework of UM and is
also illustrated using discrete cascades numerical simulations of conservative multifractal fields.
Basically, the presence of an upper threshold introduces an upper plateau in DTM curve, similarly
to the one due to the sampling dimension, but it begins at a lower value of η . This reduces the range
of available η for estimation of the slope, and hence results in a biased value of α (reduced α and
C1). Since, UM in its usual form is not designed to handle negative values (time steps where power
produced by turbine < energy consumed for its running), based on how these values are managed
(taken as zero here), the values of α will be further biased due to the effect of lower threshold
discussed in 2.2 (zeroes here, as negative values were set to zeroes). Due to the presence of these
biases in Pt , the actual wind power available at the turbine hub for extraction (Pa = f (v,ρ)) was
primarily used instead as the main field for joint analysis.

For UM analysis, fluctuations of the fields were required for station fields, for retrieving con-
servative fields so that estimates of TM and DTM are not biased. For anemometer fields, direct
fields analysis were acceptable in large scale regimes (from 15s) while small scales (0.01s to 15s)
required retrieval of conservative fields through FIF. From UM analysis of rain and dry events as
ensembles, it was found that almost all fields are showing a slight increase in variability with rain
(larger α and similar C1) in the scale range from 15s to 32min. An opposite trend was observed
for finer scales of Pa and v (0.01s to 15s). Joint analysis of Pa, v and ρ against each other and
with station meteorological fields (all fields at 15s) revealed an increasing trend in the value of
JMF correlation exponent a and IC with rain rate. However, this is not without biases since station
fields were fluctuations while anemometer fields were direct in the analyzed scaling regime. The
influence of this bias is identified and commented on. Also, detailed sensitivity analysis were made
to identify the possible effects of wind direction and rainfall type on power production in turbines.
No clear trends in the results were identified.
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Future methodological developments in JMF framework are proposed here for handling the
biases in analyzing direct and non direct fields. Though the effect of the upper threshold is identified
in the framework, further work is required for precisely quantifying the bias. Also, considering the
predominant stratiform nature of rain at the measurement location, studying the correlations under
convective conditions is encouraged, for the future, for expanding the understanding on correlations
between rainfall and wind power production.
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3.2. Joint analysis using climate chamber (sense-city) data

For the joint analysis presented here, experimentation set up at sense-city (with the help of IF-
STTAR, L’Institut français des sciences et technologies de transports, which is now part of Gustave
Eiffel University) was used for studying kinetic energy (KE) and rainfall (R) as well as T and RH.
Information on location, working and facilities inside sense-city are mentioned in section 1.1.2.
For studying KE and R, data from a previous campaign inside sense-city (Gires et al., 2020a) in-
volving two disdrometers was used. For joint analysis of T and RH, separate experiments were
performed with IFSTTAR for recreating climatic conditions of a few selected days (see upcoming
section 3.2.2 for a description of the designed measurement campaign).

3.2.1. Kinetic energy and rainfall
The importance of kinetic energy (KE) in understanding soil erosion, leading edge corrosion

of wind turbine blade etc. are already discussed in section 2.1 along with the scale-invariant frame-
work developed for estimating the same (Jose et al., 2022). The usability of sense-city as a rainfall
simulator is already examined in Gires et al. (2020a) using disdrometers. Comparison with real rain
revealed that even though the rainfall remain steady inside sense-city, the rain generated is thinner
and centered on smaller drops (figure 3.16a). Further, the height of sprinklers (8m) is not enough
for larger drops (> 1mm) to reach terminal velocity resulting in serious underestimation in KE.

In current analysis, disdrometer data set presented in Gires et al. (2020a) is used alongside
real data for jointly analysing KE and R so that this under estimation can be accounted for. More
information on the working of the disdrometers can be found in section 1.1.1 and in Gires et al.
(2018). Figure 3.15 shows an overview of the campaign, along with positioning of devices inside
the chamber. One rain event was recorded for each type of rain at 5 locations inside the simulator;
Tab. 3.3 compiles the information about simulated events along with their gamma DSD parameters
(using similar moment combination as in section 2.1, M234). As UM analysis requires the length
of time series in powers of 2, only the portion of event that confirms to this (largest power of 2 <
length of event) was used for current analysis. This also removed artefacts at the start and at the
end of sense-city events since the sprinklers starts and stop abruptly unlike gradual progression in
natural rain.
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Figure 3.15: a) Overview of campaign highlighting sprinkler position and disdrometer positioning, b) Schematic rep-
resentation of sense-city locations where rainfall was measured; figures reproduced from Gires et al. (2020a)

3.2.1.1 DSD analysis of sense-city rain

From Fig. 3.16a and Tab. 3.3, it can be seen that the drop size distribution (DSD) of sense-
city events doesn’t follow gamma distribution (higher values of root mean square error (RMSEND)
between empirical DSD and gamma DSD). To compare sense-city events with real rain episodes,
few similar rain events were selected (five for each rain types) from the data used in section 2.1
(Jose et al., 2022) following the classification in Tokay and Short (1996) (mentioned as sample-
event(s) from here on). It was found that, while using this criterion (mainly average rain rate),
the sense-city events fit into very heavy and extreme than the default so-called ’light’ and ’heavy’
classification of the chamber. It was also observed that though sense-city events didn’t follow
gamma distribution, the retrieved DSD parameters (N0, µ , Λ) were closer to the reported values
in Tokay and Short (1996); this was not the case for real events analysed in section 2.1 (Jose
et al., 2022). Regardless, sense-city produced a lesser rain rate than that is expected from gamma
distribution (further confirming the inappropriateness of gamma DSD here), and DSD was found
to be thinner than gamma. Furthermore, a very less percentage of drops greater than 1mm reached
terminal velocity (Fig. 3.16a, second and third graphs). Resulting under reporting in KE can be
seen in KE vs R graph, where real data (right extreme, Fig. 3.16b) shows good correlation with
commonly used equations in literature as well as those obtained from UM and theoretical DSD
while sense-city events fail to reach expected values (right extreme, Fig. 3.16a). Few other obvious
differences were also observed: simulated rain events were smaller in length, more continuous and
didn’t have any zeroes in the data-set. They also produced poor scaling in comparison, with biased
α and C1; this in turn resulted in very low value of exponent a in both double trace moment (DTM)
and joint multifractal (JMF) analysis (discussed in upcoming sections).
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Figure 3.16: First column: Empirical rain rate vs. rain rate calculated from DSD moments with assumption of gamma
distribution; Second column: DSD and % of drops reaching terminal velocity in each diameter class of disdrometer,
velocity; Third column: diameter plot of rain drops, KE vs. R plot illustrating underestimation of KE (similar to plots
in section 2.1, Fig. 2.9) for a) a heavy rain event in sense-city 26 September 2017 14:27:00 to 15:05:00 b) a sample-
event from real conditions at ENPC location 20 October 2013 18:22:30 to 19:05:30; for Parsivel 1.

event time location length rain type RMSEND D0 µg N0 Dm Λ

28 Sept 2017 13:22:00 to 14:07:00 1 64

light

1,84E+03 0,687 9,426 3,75E+10 0,844 15,91
28 Sept 2017 14:12:00 to 14:33:00 2 16 2,26E+03 0,562 5,89 6,03E+08 0,799 12,37
28 Sept 2017 14:34:00 to 14:54:00 3 16 1,07E+03 0,687 18,76 8,92E+15 0,796 28,605
28 Sept 2017 14:55:00 to 15:15:00 4 16 2,13E+03 0,562 11,92 2,34E+13 0,655 24,29
28 Sept 2017 15:16:00 to 15:34:00 5 16 5,09E+03 0,562 2,197 1,98E+06 0,915 6,773
26 Sept 2017 14:27:00 to 15:05:00 1 32

heavy

4,71E+03 0,562 2,663 4,49E+06 0,917 7,265
27 Sept 2017 15:10:00 to 15:43:00 2 32 1,87E+03 0,687 5,882 1,24E+08 0,998 9,893
26 Sept 2017 15:49:00 to 16:26:00 3 64 1,65E+03 0,687 4,725 2,57E+07 1,045 8,35
26 Sept 2017 08:21:00 to 09:05:00 4 32 2,34E+03 0,687 2,887 2,61E+06 1,068 6,451
27 Sept 2017 09:07:00 to 09:40:00 5 32 3,56E+03 0,562 4,394 5,05E+07 0,851 9,864

Table 3.3: Overview of rain events in sense-city along with their DSD parameters, for Parsivel 1

In terms of DSD parameters as well as UM values (discussed later) of sense-city events, no
significant difference was found between the devices (Parsivel 1 or Parsivel 2) or location beneath
the rain simulator (Tab. 3.3 and Fig. 3.17). Hence, it was decided to analyse them as an ensemble;
this also increased the number of data points available for analysis. In the upcoming subsections,
KE and R (sense-city as well as real data) are subjected to UM analysis using two approaches - the
previously discussed DTM methodology discussed in section 1.2.2 and JMF discussed in section
1.2.3. Since the produced rainfall cannot be changed for sense-city, efforts were made to retrieve
realistic values of KE using the measured rain data.
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3.2.1.2 DTM methodology

It has already been established through gamma DSD and from DTM relations in UM analysis
that KE and R follow a power law relation between each other, KE = bRa (KEUM). The exponent
a and pre-factor b were determined individually for each sense-city events through UM analysis
(refer section 1.2.2). The differences in values of α , C1, quality of scaling (r2

T M) and also between
the exponent a and pre-factor b of power-law estimated from UM methodology can be seen in Fig.
3.17; classification of rain mentioned here is on the basis of rain rates in Tokay and Short (1996)
for sample-events. Variation of parameters for sense-city is also plotted along with; here sense-city
events are still following the nomenclature defined from chamber modes (’light’ and ’heavy’, Tab.
3.3). For the real events selected here (sample-events: very heavy and extreme), the values of α and
C1 are on the extreme sides in section 2.1 (Fig. 2.2) than it is usually for rain events, but, the decent
scaling (Fig. 3.17a, third column) shows that they are relevant for comparison. The difference
in UM parameters and hence, the values of a and b are reflected in the r2 values in Fig. 3.17b,
where sense-city events have considerably bad scaling. However, within the events, no trends were
observed for UM parameters according to the rain type. It should be noted that a variation in b was
observed with rain rate while analyzing larger data-set (refer Fig. 2.2 and Tab. 2.3 from section
2.1), however, since the rain type distinction was found to be not valid in the case of sense-city
(albeit the number of events is limited) and also for simplicity of analysis, distinction in rain types
is ignored in upcoming analysis.

Figure 3.17: a) Variation of α , C1, quality of scaling (r2
T M for q = 1.5) between KE and R for sense-city rain events and

similar real events (sample-events). b) Variation of exponent a, pre-factor b, and quality of fit between KE and R (r2);
both for fluctuations of the corresponding fields measured by Parsivel 1.
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For convenience of analysis, all sense-city events were considered as an ensemble and were
subjected to UM analysis for estimating the power law relation (KEss). While taking the ensemble,
the event 27 September 2017 08:21:00 to 09:05:00 was not considered to avoid probable bias, as
it provided unusual UM values compared to rest of the events. The sample size for sense-city was
limited by the shortest event to 16 (8min); the smaller size is justified to some extend by the fact
that there are only two fixed modes of rain in chamber, and hence not possible to create variability
in rain by design. For ensemble analysis of real events (all events from data-set used in section
2.1), the sample size was fixed at 64 (32min) to be more consistent with real world conditions
in characterizing variability (KErd). The performance was similar to the one obtained earlier in
section 2.1 while using the power-law derived by averaging a values of individual events (KEUM

for Parsivel 1); to distinguish from the ensemble of same events (KErd), the averaged equation
is mentioned from here on as KErd). The under reporting of KE in sense-city can be seen more
clearly in Fig. 3.18a, where except KEUM (which corresponds to KEss here), every other equations
(most commonly used ones in literature, see section 2.1.4.5 ) predicted an estimate higher than that
detected by disdrometers in sense-city. The r2

ss from KEUM here is biased as b was estimated from
fitting the already under estimated data.

KEss = 2.601Rss
1.172 ; r2

ss = 0.896

KErd = 14.595R1.132
rd ; r2

rd = 0.966

KErd = 9.583R1.223
rd ; r2

rd = 0.970

(78)

Using KErd or KErd as the target, it is possible to devise a generalized form of correction for
underestimation of KE in sense-city (KEss = bRa

ss).

Rss =

[
KEss

b

] 1
a

KErd/rd = dRc
rd/rd

KEexp = d
[

KEss

b

] c
a

(79)

where KEexp is the ’corrected’ value that corresponds to those expected from rain rate measured
inside the chamber.

Fig. 3.18a and 3.18b shows the KE vs. R plots for all events in sense-city and sample-events;
the under reporting of KE can be seen more clearly here as we get to compare performance of
similar events side by side (similar plot involving all events from 6 years can be seen in Fig. 2.8,
section 2.1). The corrections applied are shown in Fig. 3.18c and 3.18d with KErd as target (since
sense-city events were also analysed as an ensemble). The r2 values for both KErd and KErd in KE
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vs. R graphs appear higher here since they were obtained from Rss. In KEUM vs. KEemp graph,
it can be observed that the applied correction elevates the values of KE to a more realistic KEexp

which is consistent with the rainfall rate.

Figure 3.18: Illustration of under reporting of KE in sense-city: Fitting of empirical KE - R using power law from
UM (KEUM , on ensemble of all events) and popular expressions from literature for a) sense-city events, and b) sample-
events.
Correction of KEemp to KEexp using KErd as target: a) KE vs R plot for empirical values alongside KErd and KErd
(r2 between KEemp and fitted KE −R equations), b) KEUM vs KEemp plot with correction (r2 between KEemp and KE
from Eq. 78).

3.2.1.3 JMF approach

As multifractal and scaling properties of KE and R are known at this point, it is worth explor-
ing the use case of joint multifractal analysis (JMF, section 1.2.3) for first quantifying correlations
between these two fields and then explore the possibility to address the already known under re-
porting of KE in sense-city. Towards this, fluctuations of KE (fluctuations to retrieve conservative
fields) was expressed as combination of fluctuation of R and an independent multifractal field Yλ

with exponents a and b characterizing their relative weight - KEλ = Rλ
aYλ

b

(Rλ
aYλ

b)
, where λ is the reso-

lution of the field (Gires et al., 2020b). Here, Yλ is an independent multifractal field with same C1

assumed as KEλ ; value of a quantifies the correlation between KEλ and Rλ .
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Like in DTM methodology, KE and R were subjected to JMF for each individual events as
well as for an ensemble, for sense-city events, sample-events and all real events used in section
2.1. The variation of JMF parameters (a, b, indicator of correlation IC, quality of joint scaling
(r2

JT M) among sense-city and sample-events are shown in Fig. 3.19a. As it could be expected from
previous analysis, Sense-city events exhibited very bad scaling and reduced estimates of exponent
a (to be taken with caution given the bad scaling), suggesting a much lower correlation accross
scales. Similar to the previous case, the events didn’t show any notable difference according to the
position of disdrometer or rain rate. Since, the behaviour of JMF parameters according to rain type
is not known, all real events previously studied were subjected to JMF individually. Using the rain
criteria in Tokay and Short (1996), no discernible behaviour changes were observed across types of
rain events (Fig. 3.19b). With this reassurance, and also with the intention to improve statistics, en-
semble analysis was performed like before - with sense-city at a sample size of 16 (8min, KEλ ,ss),
and real data at a sample size of 64 (32min, KEλ ,rd) excluding the anomaly event 27 September
2017 08:21:00 to 09:05:00. In the framework of JMF, estimation of a can be obtained by using dif-
ferent values of the exponent h and q in the analysis (see section 1.2.3, Gires et al. (2020b)). Here,
values were estimated at q = h = 0.7 based on sensitivity analysis around various q/h options (for
both individual and ensemble analysis). Values of qs and qd (moment corresponding to sampling
limitation and divergence respectively) were above ha+q, ha and q for all the cases analyzed here
as desired, this is required for obtaining reliant values in JMF.

Figure 3.19: a) Variation of JMF parameters a, b, indicator of correlation IC, quality of joint scaling (r2
JT M) between

KE and R for sense-city rain events and sample-events b) same for all events; both for fluctuations of the corresponding
fields measured by Parsivel 1 as an ensemble

Fig. 3.20 shows the TM, K(q) and joint TM (JTM) plots for ensemble analysis of KE and
R in JMF framework for sense-city and sample-events. The value of exponent a is much lower
for sense-city (KEλ ,ss) in comparison with sample-events (KEλ ,se) - 0.4 vs 1.05. Values of a, b,
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IC and r2
JT M were 0.4, 0.955, 0.242 and 0.89 for sense-city and 1.05, 0.3740, 0.944 and 0.983 for

sample-events. Ensemble of all events from section 2.1 were also considered at a sample size of 64
(KEλ ,rd). This suggests that the renormalized fields can be written as:

KEλ ,ss ≈
Rλ ,ss

0.4Yλ ,ss
0.955

(Rλ ,ss
0.4Yλ ,ss

0.955)
; r2

JT M,ss = 0.890

KEλ ,se ≈
Rλ ,se

1.05Y 0.374
λ ,se

(Rλ ,se
1.05Yλ ,se

0.374)
; r2

JT M,se = 0.983

KEλ ,rd ≈
Rλ ,rd

1.01Y 0.232
λ ,rd

(Rλ ,rd
1.01Yλ ,rd

0.232)
; r2

JT M,rd = 0.983

(80)

This opens the path to simulating KE fields from R ones and a Yλ generated as a 1D discrete
cascade fields (having same size as corresponding Rλ /KEλ )

Figure 3.20: TM plots of KE, TM plots of R, K(q) of both fields, Joint TM of KE and R, and estimation of JMF
parameter a for a) ensemble of sense-city events; and b) ensemble of sample-events.

The increased correlation with Rλ (higher a) and hence, the reduced correlation with Yλ (low b)
in Eq. 80 for real rain estimates is obvious while comparing it with sense-city events (figure 3.20).
However, unlike the DTM methodology, JMF approach isn’t deterministic. Though the average
properties are conserved in this approach, it falls short when the interest is in estimating exact
values. In our specific use case, the estimates of KEλ is dependent on a deterministic field Rλ and a
stochastic field Yλ . The exact values of KEλ need not correspond to those of Rλ as the simulation of
Yλ is bound to slightly change every time. As a result, depending on the distribution of values inside
Yλ , estimated KEλ could have values higher or lower than Rλ ; and the position of this changes
according to the Yλ simulated as well. This behaviour can be seen clearly in Fig. 3.21 where,
unlike DTM methodology (Fig. 3.18), the estimated KE (KEJMF ) doesn’t follow the behaviour
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of corresponding R (Remp) values. Here, Yλ of same shape was simulated using discrete cascades
specifying α and C1 (C1,R = C1,φ ); to account for the stochastic nature of actual UM estimates, a
loop of 100 simulations were run and the field with lowest percentage error between values used
for simulation and actual values was selected for this figure. Another caveat in this approach is the
fact that the estimated UM field (KEλ ) is a normalized field and needs to be multiplied by average
value of KEemp for retrieving the expected field. It should also be mentioned that even though
direct fields were used in estimating KE, JMF parameters were estimated by considering only their
conservative portions (fluctuations of the field). Since one-to-one correspondence is mandatory
in current study (KE being a field derived from R), it is not possible to suggest JMF approach
for quantifying the under-reporting of KE in sense-city. As commented in previous section while
discussing RW-Turb fields (section 3.1), further development of methodology is also needed to
properly handle non-conservative fields.

Figure 3.21: a) Estimate of KE alongside empirical values for sense-city (using parameters in KEλ ,ss) and for sample-
events (using parameters in KEλ ,rd ; eq. 80); Yλ was simulated using discrete cascades

To illustrate the possibilities of JMF approach in estimating average properties, a sensitivity
analysis was performed using a known rain event measured at ENPC (22 Nov 2016 23:02:30 to 23
Nov 2016 06:59:30, Fig. 3.22a). 100 realizations of 512 long 1D discrete cascades (Yλ ) were used
and corresponding KEλ were estimated. Fig. 3.22b shows the 10 and 90 percentile fields along
with the empirical field. Despite having variations in amplitude, estimated KEJMF seems to follow
the actual field and reproduce the properties on average. The percentage error in α and C1 of each
realization of Yλ is shown in Fig. 3.22c along with r2

JT M values of JMF analysis for KE and R.
Despite having a greater variation in percentage error of UM parameters, good joint multifractal
scaling (r2

JT M) was observed in most cases.
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Figure 3.22: a) R and KE for the event 22 Nov 2016 23:02:30 to 23 Nov 2016 06:59:30, b) empirical KE estimated
using JMF approach (100 realizations of Yλ ) shown alongside empirical values, from overall KEJMF obtained 10 and
90 percentile are shown, c) percentage error of αYλ

and C1,Yλ
with colour plot of r2

JT M

JMF methodology suffers from the obvious handicap of being a statistical approach and hence
cannot be recommended for obtaining deterministic values like DTM process. However, as illus-
trated in Fig. 3.22b, JMF provides reliable statistical estimates in estimating average properties of
a field if the correlated multifractal field is known.
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3.2.2. Temperature and Humidity
Ariza-Villaverde et al. (2019) used joint multifractal algorithms (not JMF) to see the influence

of T and RH on evapotranspiration by grouping cases according to fractal dimension values. In the
previous section, JMF was used to study the already-known correlation between KE and R with
the intention of quantifying discrepancies in KE produced by simulated rain in a climate chamber
(sense-city). The under reporting of KE in simulated rain of sense-city is already noticed by Gires
et al. (2020a) and referred. In a similar spirit, efforts were made to reproduce climatic conditions
of a few days inside sense-city by focusing on mimicking T and RH of real measurements as well
as their correlation. Such analysis could help understand the correlation between both fields and
its expected impact on various domains such as the thermal balance of buildings, human comfort
(Bensafi et al., 2021), agricultural yield (Chairani, 2022), air pollutants (Elminir, 2005) etc. Others
have studied correlations between two fields using various approaches: such as detrended cross-
correlation analysis or DCCA (Vassoler and Zebende, 2012; Zebende et al., 2018) which found
positive as well as negative correlations depending on location and scale, Gao et al. (2018) explores
the influence of wind on temperature-humidity similarity etc.

The main objective here is to evaluate the ability of sense-city in reproducing climatic condi-
tions using scale invariant tools (UM and JMF). For this, a pilot study was done for simulating four
days (one summer with rain, same day ignoring rain and two autumn days) inside sense-city cham-
ber in ENPC campus. Information about location and working of chamber are already discussed
in section 1.1.2; to quickly recap, sense-city is a climate chamber designed for simulating specific
weather conditions for fixed time. Tab. 3.4 summarizes the days selected for mimicking the data
inside sense-city, along with their UM parameters. Fig. 3.23 shows the variation of T , RH, and R
for the selected days; data from the PWS100 (by Campbell Scientific) disdrometer located on the
roof of École des Ponts building and part of the TARANIS observatory was used. It belongs to the
same set of instruments that were used in studying rainfall throughout this thesis (along with OTT
Parsivel2). In addition to rainfall measurements, this device also has precise T and RH sensors
within a dedicated shelter. For the rainy day in autumn in Fig. 3.23a, a decrease in T during rainfall
and slight increase afterwards can be observed. The summer days shows a more classical diurnal
evolution of temperature with day 4 being extremely hot (Fig. 3.23d), and were selected for their
difference in humidity.

No. Day to mimic season rain condition Fields
day 1 27/10/19 autumn rain T , RH, R
day 2 27/10/19 autumn no rain T , RH
day 3 27/06/19 summer no rain T , RH
day 4 25/07/19 summer no rain T , RH

Table 3.4: Days and conditions selected to mimic inside sense-city
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Figure 3.23: Real day conditions used for simulating conditions in sense-city: a) T and RH variation during the
autumn day with rain - 27/10/2019, b) R during the autumn day with rain - 27/10/2019, c) T and RH variation during
the summer day - 27/06/2019, d) T and RH variation during the summer day - 25/07/2019. Data from PWS disdrometer
at TARANIS observatory, ENPC.

3.2.2.1 Experimentation inside sense-city

As briefly mentioned in section 1.1.2, selecting the values of parameters (T and RH here) for
simulation is a trade off between time available and chamber limitation (T : -10◦C to +400◦C,
gradient of ± 5◦C in 240hr; RH: 300% to 98%, gradient ± 50% in 24hr). To respect the pro-
grammable gradients and operational ranges of chamber, the values of T and RH (at 30s instru-
mental resolution of disdrometer sensors) were discretized into various ramps ranging from 45min
to 10hrs (from Fig. 3.24a to Fig. 3.24b) following directions of sense-city management at IF-
STTAR (L’Institut français des sciences et technologies de transports, Gustave Eiffel University).
Sense-city programming is to be designed for fixed time periods or ramps (can be set as per simula-
tion requirements) during which the chamber is instructed to transition from initial to target values
over a gradient; the length of ramps inside a cycle can be different. This involved cycle prepara-
tion time (for reaching initial conditions) as well as change over time while shifting between days.
Since the duration of programmable test cycles were to be set fixed by design, the lengths were

136



3. Joint multifractal analysis of different atmospheric fields

selected manually to accommodate variations in both T and RH (Fig. 3.24b). In current experi-
mentation, cycle preparation time and change over time between the 4 simulated days were 3, 3.5,
7 and 4 hours respectively (grey regions in Fig. 3.24b and c). It should be noted that sense-city
might not always reach the targets in specified time (due to its limited size and inside components).
As reproduction of real days was the focus here, fixed times of ramps were strictly followed re-
gardless chamber achieving target values (Fig. 3.24c). The final program for four days included a
total of 30 ramps including the change over time. Before starting the simulation, relevant sensors
were selected beforehand and were calibrated by the operators; this mainly included various tem-
perature, humidity and rain sensors inside the mini village (mini-ville 1, mv1) of sense-city. For
rain, sense-city only has two modes (light and heavy) and the sprinklers do not cover whole area
of the chamber; efficacy of this is already covered in section 3.2.1. For the simulations, rain was
considered only for one day with both modes alternating during actual rain time (Fig. 3.24d-f).
From Fig. 3.24c, it can be seen that sense-city reproduced conditions better at lower T and higher
RH (day 27/10/19: rain and no rain) but not during days of higher T (days 27/06/19 & 25/07/19).
For day 3, RH values did not start at required point (temperature as well to a lower extend) and for
day 4, temperature failed to reach required targets. Since there were some operational issues with
roof temperature during this period, it is not easy to comment whether last two days not reaching
target curve being an intrinsic result of sense-city.

Figure 3.24: a) T and RH variation of all days as obtained from TARANIS observatory, b) discretized version of field
as input to sense-city simulation, c) variation of simulated fields inside the chamber during experimentation; d), e) and
f) are similar plots for rain.

Tab. 3.5 shows the list of sensors inside sense-city that were used for this study. Sensors deal-
ing with air quality, discharge, roof temperature, rain temperature, wind, chamber position etc. are
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No. Sensor name field no. of sensors resolution
1 BIA_Humidity (primary) RH 1 10s
2 BIA_Temperature Chambre (primary) T 1 10s
3 BIA_Temperature Chambre (secondary) T 5 10s
4 Station-Meteo-MV1 T , RH 1 60s
6 Temperature-pt100 (on mast) T 16 15min

Table 3.5: List of sensors in sense-city that were used for this study

not considered. Studied sensors included two primary sensors measuring T and RH variation inside
the chamber at 10s time-step and two meteorological stations measuring at 60s. Other secondary
sensors included temperature sensors on masts (a set of two sensors on 7 masts at 0.5m and 3m
height) at various locations inside the chamber; and also two sensors near roof height. Among the
listed sensors, the higher resolution primary sensors were the ones used for comparing simulations
inside sense-city with real data. For comparison purposes, UM analysis were performed by aver-
aging the primary sensor data to 30 s, the lowest time-step at which real fields were measured at
TARANIS. The issues encountered while using station data and temperature sensors on masts are
discussed later.

3.2.2.2 UM analysis of sensor outputs and results

Primary sensor outputs

Figure 3.25 shows the UM plots for ensemble analysis of real and simulated data (using primary
sensors) for day 1 with a sample size of 64 (32min) for T and RH. For this day, sense-city basically
reproduces the values at large scale (see Fig. 3.24c), but it is only able to partially mimic the scaling
features. Indeed quality of scaling is is different between real fields and simulations (degraded for
T and improved for RH, second column in Fig. 3.25, and Fig. 3.26c) and there are some noticeable
differences for α (with different shape for DTM curves, third column of Fig. 3.25), while similar
C1 values are retrieved. Though the low values of r2 suggest (Fig. 3.26c) the possibility of scale
break, given the length of studied samples, it is not explored here.

Figure 3.26 shows the variation of UM parameters for real conditions and simulated fields
inside sense-city. For real data, day 1 and day 2 are same since day 2 was designed to mimic day 1
in sense-city without the precondition of rain. For real as well as simulated fields, fluctuations were
required for retrieving conservative fields (β value being higher than encompassing dimension (D
= 1 for time series here) in spectral plots, hence higher value of H: H > 0.5) for both real and
simulated fields. For example, T on day 1 gave an H value of 1.06 while β being 3.13; taking
fluctuations reduced these to 0.03 and 0.912 respectively, meaning that TM and DTM are not
expected to be biased. As seen in Fig. 3.26a and 3.26b, α shows differences in values while
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C1 remains more or less comparable. For T , α of simulations gave higher values (with a maximum
difference of 0.43 for day 2) except for day 4; for RH, the trend was opposite (with a maximum
difference of 0.507 for day 1) with real data giving higher estimates except for day 4. Secondary
temperature sensors also gave similar results. It is interesting to note that for day 2 (same as day
1 but without rain), both T and RH simulations gave higher α suggesting increased variability
in the field when rain showers are not operated. Given that rainfall is only "falling" on a very
limited portion of the area in sense-city, it is difficult to interpret this any further. As seen from
the behaviour of fields in Fig. 3.23, only day 1 and day 2 are reproducing the expected values; this
further limits the interpretation of results.

Figure 3.25: Spectral analysis (Eq. 8 in log-log form), DTM analysis (Eq. 22 in log-log form), DTM curve (Eq. 21 in
log-log form) and K(q) for day 1 (27/10/2019) a) real temperature (T ), b) simulated T inside sense-city, c) real relative
humidity (RH), and d) simulated RH inside sense-city. Fluctuations of data were analysed as an ensemble of size 64,
corresponding to 32 minutes with 30 s being the lowest time step; spectral plots shown are on direct data.
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Figure 3.26: variation of UM parameters and quality of scaling for day 1 as an ensemble of 32min, for both T and RH:
a) α , b) C1, and c) quality of scaling (r2

T M).

Meteorological station and secondary sensor outputs

The meteorological station (Station-Meteo-MV1) gave measurements of T and RH at 60s time-
step inside the chamber. As established previously, both fields required fluctuations for retrieving
conservative fields for UM analysis. However, fluctuations gave very low estimates of α (α =
0.0041, C1 = 0.49 for an ensemble of 32min for day 1) with a clear lower plateau on the DTM
curve suggesting the presence of zeroes in the field. Indeed, 88% of fluctuation data was zero sug-
gesting repetition of data in direct field at 60s. To identify the actual sampling resolution relevant
for studying variability, a sensitivity analysis was performed by gradually increasing the initial ob-
servation scale of data by a factor of 1 (from 1min resolution to 15min resolution by averaging the
data for each day as a single series). Using primary sensors as a reference, the differences in α

and C1 were examined for each case along with the presence of zeroes. As it could be expected,
the percentage of zeroes was found to be decreasing on taking averaging, however, it was diffi-
cult to indentify a time-step below 15min for which T started to exhibit a similar behaviour to the
one found on the primary sensor. Except for day 3, T from the station was found to be giving
reliable estimates from 6min with the percentage of zeroes falling below 10%. For RH, the field
gave reliable estimates of UM from averaged data at 6min (with % of zeroes ∼ 1%). As 15min
is too coarse for studying small-scale variations (in which we are interested here), station data are
not presented here. Among the secondary sensors on the masts, two sensors (9 and 13) were not
working properly. Further, due to the coarser measuring resolution of 15 min, it was not possible to
do any ensemble analysis. Analysing mast temperature as a series for individual days also seemed
difficult since the retrieval of conservative fields was difficult with the available data. For example,
direct analysis on the sensor (Temperature-pt100-bas-1) for day 1 gave H value of 0.76 (β = 2.5)
suggesting a non-conservative field; and, taking fluctuations of the field only lowered this value to
0.5 (β = 1.94). Though acceptable values of α (α < 2) and C1 ∼ 0.05) were obtained for all sec-
ondary temperature sensors, the data wasn’t pursued further as higher values of H and β suggested
a remaining bias in TM and DTM analysis.
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Due to the issues explained above, the UM analysis here is limited to only primary sensors.
These results are used below in JMF framework to see the extend to which the coupling between T
and RH are retained in sense-city.

3.2.2.3 JMF and results

To understand the extent of coupled reproduction of T and RH inside the sense-city simulation,
the framework of joint multifractal analysis (JMF) was used to quantify in a scale invariant way
the correlation between both fields inside and outside the sense-city (Gires et al., 2020b). The
framework of JMF was previously explored in sections 3.1 and 3.2.1 along with its associated
biases. For this joint analysis, the underlying idea is to express mathematically the fluctuations of
T as a combination of corresponding RH (conservative part of the field from fluctuations) and an
independent multifractal field (Yλ , λ being the resolution) with similar C1: Tλ = RHλ

aYλ
b

(RHλ
aYλ

b)
. Values

of a and b quantify the correlation between Tλ and RHλ .

Figure 3.27a shows the joint TM plots and estimation of parameter a for real data in day 1,
while the results of JMF for simulated fields inside chamber for the day are shown in Fig. 3.27b.
The variation of JMF parameters (a, indicator of correlation IC, quality of joint scaling (r2

JT M)
between T and RH at real conditions and sense-city simulations are shown in Fig. 3.28. As seen in
JMF plots (Fig. 3.27), correlation is stronger for real days than sense-city for all the days. From the
limited real data, it appears that T and RH have a stronger correlation during rainy days than dry
ones in sense-city; this need to be explored in detail along with the increased variability observed
in dry days in UM analysis. In all the simulations, sense-city simulations gave reduced estimates
of exponent a, correspondingly showing poor scaling and correlation. This seems consistent with
the difference observed between α estimates of both fields in real and mimicked data.
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Figure 3.27: K(q) plots for Tλ and RHλ (fluctuations of the field), TM plot for the joint field, and estimation of JMF
parameter a for an ensemble of size 64 (32 minutes), for day 1: a) for real data, b) for sense-city simulation

Figure 3.28: Variation of JMF parameters a, indicator of correlation IC and quality of scaling r2
JT M between T and RH

for real data and sense-city.

Regardless the differences observed and handicaps with inside sensors, from the results on
days 1 and 2, it can be said that the sense-city was able to mimic the fields at larger scales more
efficiently than finer scales (and partially recover the scaling properties) even when simulations
were programmed in fixed time spans. However, the correlations between T and RH was not
exactly reproduced within the chamber. As discussed in previous section (3.2.2, sense-city was
also able to reproduce rain (albeit with under reporting of KE and limitations of only two modes)
with similar DSD parameters observed in literature. It also goes without saying that more detailed
and longer experimentation are required for properly assessing the chamber efficiency since the
few days examined here are not sufficient.
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3.2.3. Main outcomes from sense-city experiments’ analyses
In this section, UM and JMF analysis are performed on simulations inside sense-city to see the

extent of the chamber’s ability to reproduce scaling and variability of geophysical fields.

In the first sub section, the DSD properties of artificial rain from the sprinklers at various
locations were examined using disdrometer measurements (instruments moved from TARANIS
observatory). As discussed in section 1.1.2, rain inside sense-city has only two modes - ’light’ and
’heavy’. Though the rain, as expected, didn’t have any variability within these modes, it managed
to provide DSD values commonly observed for similar rain rates in the literature (Tokay and Short,
1996). However, if we follow that criterion, the sense-city rain rates are ’very heavy’ and ’extreme’
than the predefined modes. The under-reporting of KE by sense-city was previously detected by
Gires et al. (2020a) during the experimentation using disdrometers. Here, efforts were made to
quantify the same using similar real events from section 2.1 (sample-events). UM analysis of rain
events in sense-city showed considerably bad scaling with widely different values of α and C1 from
those of the sample events. The power law exponents between KE and R were also obtained for
sense-city and sample-events using the DTM methodology in section 2.1; values obtained illus-
trated the under reporting in KE even more. Since no obvious trends were observed in values of
power law exponents nor UM parameters within events or among locations of disdrometer posi-
tioning inside sense-city, sense-city events were taken as an ensemble for improving the data. With
this ensemble, corrections were proposed to the sense-city KE using the power law in section2.1
(obtained by averaging the value of exponents from individual rain events, KErd) and also using
power law corresponding to the ensemble of all rain events in section 2.1 (KErd); and the correction
were made using KErd as target. The use case of JMF analysis for correcting KE is also explored
in this section. Towards this, the possibility of variation in JMF exponent a across rain events was
examined first using all rain events in section 2.1. With the reassurance of a lack of trend, JMF was
used for extracting sense-city KE as a multiplication of R and an independent field. Though JMF
retrieved average properties of the field, being a statistical approach, it cannot be used for obtaining
a single deterministic values like DTM methodology. The effectiveness of JMF in the retrieving
average field was further explored through a sensitivity analysis of one rain event using 100 real-
izations. Despite having a variation in percentage error of UM parameters, the analysis gave good
joint multifractal scaling (r2

JT M) and managed to retrieve a KE field that followed the properties of
the average.

In the second sub section, UM and JMF tools were used to study temperature, T , and relative
humidity, RH, of three real days (one day in autumn with, same day without rain, two dry days from
summer) and their corresponding simulations inside sense-city. Programming of days inside the
chamber consisted of fixed time ramps where a sets of T and RH were defined at the start and end of
the ramp, as initial and targets values. The total program for four days included a total of 30 ramps.
Though sense-city housed a wide array of temperature sensors and a meteorological station, only
primary sensors (at 10s, averaged to 30s for comparing with real data of disdrometers) were used
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here since the others were found to be too coarse to study variability. For UM analysis, fluctuations
were required for both real and simulated fields as they were conservative by default similar to
what was observed in section 3.1. From the average variation of values as well as UM analysis,
sense-city was found to be able to reproduce only the first 2 days (autumn day with and without
rain) properly. Those were also the days with larger number of ramps in programming. However,
the data is not sufficient to make any comments on correlation between number of programming
steps and output; there were issues with roof temperature during experimentation of later days.
For the two days in sense-city, while comparing with real data, a general increase in values of α

was observed for T with reduced scaling while RH showed an opposite trend. This result does
not induce confidence in using RH as the actual underlying field to study humidity, this needs to
be explored in future. Also, from UM values, day 2 (same as day 1 but without rain) seemed to
have increased variability of T and RH during the absence of rain. However, it is not possible to
make any conclusions due to lack of data and also due to the fact that ’falling rain’ is not uniform
and limited to specific areas of the chamber according to sprinkler position. JMF analysis of T
and RH inside sense-city for days 1 and 2 revealed a considerable reduction in values of JMF
coefficient a with those in real conditions. A larger correlation was also observed during dry days
than rainy days; since higher variability was also observed for dry days in UM analysis, this is
worth exploring in future with more data. From these limited results, sense-city seems to be able
to reproduce the large scales more efficiently than smaller scales and recover some of the scaling
properties of the field. Further experiments are required for deriving proper conclusions, and UM
and JMF are strong tools for understanding this. The results here are also encouraging towards
future exploration of atmospheric correlation between T and RH in UM framework.
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3.3. Rainfall and particles
3.3.1. Below cloud scavenging of aerosol particles by rainfall

Atmospheric aerosol particles, both anthropogenic and natural, exhibit extreme spatio-temporal
variability (McMurry, 2000). They also possess a wide range of lifetime from minutes to several
months according to their size range and climatic conditions (Pruppacher and Klett, 1996). Un-
derstanding their source and sink is important due to their strong influence on climate, air quality
and human health (Pöschl, 2005). One of the main removal mechanisms of aerosols in nature is
precipitation-driven ’wet scavenging’. Understanding micro-physical interactions between rainfall
and atmospheric particles is hence important to analyse this sink (Hou et al., 2018). This also has
implications for atmospheric visibility and the safe functioning of various domains associated with
it (see section 2.2).

Depending upon the relative position where aerosols enter the cloud or precipitation particles,
the process of ’wet scavenging’ can be in-cloud scavenging (ICS, also known as ’wash-out’) and
below-cloud scavenging (BCS, also known as ’rain-out’). In ICS, aerosols serve as cloud conden-
sation nuclei and are incorporated in the drops, while in BCS, the particles between cloud base and
ground are washed out by precipitation (Seinfeld and Pandis, 2016). The overall wet scavenging
flux is the sum of the transfer of species from cloud to rain and BCS and both processes have differ-
ent transfer rates (wash-out rate and rain-out rate). Though ICS is considered to be the main reason
for finding aerosol particles in cloud, for scavenging process itself, these drops need to be removed
from atmosphere to the ground. When it comes to pollution and air quality, BCS is of specific
interest as it acts as a sink of pollution and source for ground ecosystem (Duhanyan and Roustan,
2011). It is important in long term issues such as chemical composition of precipitation and atmo-
sphere (Celle-Jeanton et al., 2009; Roy et al., 2019; Connan et al., 2013; Laguionie et al., 2014) as
well as in short term pollution events (Duhanyan and Roustan, 2011). The BCS part of the wet flux
is known to be dependent on the aerosol and raindrop distribution (Andronache, 2003), and here
we are studying BCS at various particle size ranges and rain conditions. While studying aerosol
removal by raindrops, size-resolved analysis is necessary since different mechanisms are involved
at different ranges: brownian diffusion and interception dominate sizes below 0.1µm, while for
particles larger than 2µm, scavenging is through inertial impaction. Between 0.1 and 2µm, the
collection efficiency of aerosol particles are found to be rather minimum, and the size range is of-
ten termed as ’scavenging gap’ or ’Greenfield gap’ (Greenfield, 1957; Chate and Pranesha, 2004).
Assuming a homogeneous below-cloud atmosphere before and during precipitation, and by assum-
ing that the aerosol species is non-reacting during the process, it is possible to define BCS using a
scavenging coefficient, λ ∗. The evolution of aerosol concentration or fraction of aerosols collected
by hydrometeors relative to initial concentration during BCS can be represented using as (Seinfeld
and Pandis, 2016):
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dc(dp)

dt

∣∣∣∣
BCS

=−λ
∗(dp)c(dp) (81)

Here λ ∗ (s−1) is the scavenging coefficient, c(dp) (in cm−3) is the particle concentration for particle
diameter dp, and dc(dp) is its change during the time dt (in s). The scavenging coefficient λ ∗ is size
specific and depends on interaction between the particles and raindrops, as evident in theoretical
expression below :

λ
∗(dp) =

∫
∞

0

π

4
Dp

2v(Dp)E(Dp,dp)N(Dp)dDp (82)

Here Dp and dp are drop and particle diameters, E(Dp,dp) is the collision efficiency between them,
v(Dp) is the terminal velocity of drop of size Dp, and N(Dp) is the drop size distribution of rain
(DSD). The approximations made for terminal velocity (van Dijk et al., 2002), as well as DSD (see
section 2.1), can influence the estimation of λ ∗; complexity of microphysical interactions further
complicates the chances of having a common consensus. Hence, a more empirical derivation of
the scavenging coefficient is relevant for better analysing the process. However, this is also not
without biases since dynamic effects often dominate when scavenging coefficients are obtained
from pollution concentration alone (Quérel et al., 2014). λ ∗(dp) is commonly calculated from
particle concentration between two timesteps (1 and 2) (Laakso et al., 2003):

λ
∗(dp) =− 1

t2 − t1
ln
(

c(dp)2

c(dp)1

)
(83)

See Duhanyan and Roustan (2011) and Zhang et al. (2013) for a comprehensive review on
BCS of aerosols and gases by rain and the associated uncertainties. Further, BCS can be expressed
in terms of rainfall intensity as λ ∗ = nRm where n and m are coefficients that depend on aerosol
characteristics; various variants of this relation have been reported in the literature on the basis of
aerosol and rain type (Andronache, 2003; Duhanyan and Roustan, 2011).

Another commonly used parameter for characterizing BCS is scavenging efficiency where
change in particle concentration before (index 1 in Eq. 84) and after (index 2 in Eq. 84) rain
(30 min) is represented in percentage (Laakso et al., 2003):

%∆C =−c2 − c1

c1
·100 (84)

A positive value of λ ∗ and %∆C suggests reducing concentration with rain, and hence positive
scavenging. For current study, simultaneously measured data of particle number concentration and
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rainfall were used to study their variability. The assumptions used at section 2.2 for analysing σe

in a scale invariant framework is valid here as particle number concentration follows the similar
governing non-linear equations, and is hence also expected to inherit the scale invariance features
of the Navier-Stokes equations that governs atmospheric behaviour. This hypothesis is tested in
coming sections and some preliminary results from multifractal analysis of particle concentration
is presented with its implications for future research.

3.3.2. Measurement campaign and data filtering.
Details of the location and duration of the measurement campaign, instruments used and pa-

rameters measured are already discussed in section 1.1.4. To quickly recap, the data was ob-
tained from the experimental station of IRSN in the city of Cherbourg-Octeville, France. The cam-
paign involved simultaneous measurement of rain (disdrometer; mmh−1), wind (sonic anemome-
ter; ms−1), and aerosol particle concentration (SMPS - 14.6nm to 478.3nm in 98 granulometric
classes APS (0.523µm to 19.81µm in 52 granulometric classes; cm−1) for a duration of about
3 months (01/11/2010 to 12/03/2011). Except for sonic anemometer (10Hz), every instrument
recorded data at a measurement frequency of 1min.

Since, the intention of this study was to analyse aerosol particle concentration alongside rain,
filtering was done in the data-set to obtain only those time steps that are common among the four
instruments; this provided 77503 common data points in 1min resolution (50.97% of time steps
were discarded using this). To select the rain events, the criteria followed in Blanco-Alegre et al.
(2021) was adopted - in rain intensity time series, rain events were counted when mean intensity
exceeded 0.2mmh−1, cumulative rainfall depth was greater than 0.4mm and when there was a
minimum dry weather of 60min before and after. In order to make sure that rainfall is the main
meteorological parameter affecting aerosols, only those events were considered where variation
in temperature (T ) and wind velocity (Uxy) were within ±3.5 ◦C and 2ms−1 respectively. Due
to limitations in available data, the remaining restrictions in Blanco-Alegre et al. (2021) were not
employed, namely relative humidity variation (RH) variation, New Particle Formation (NPF) bursts
and mode based pollution burden. A total of 26 rain events were obtained this way, corresponding
to a total duration of 149.76hours.

3.3.3. Analysis of total aerosol concentration during rain and dry conditions
To see the overall behaviour of aerosol number concentration during rain and during dry con-

ditions, ensemble UM analysis (see section 1.2.2) was performed on total particle concentration
(cm−3) of the identified events, for both SMPS and APS. For this purpose, choice was made to
analyse the rain events as a single ensemble at a sample length of 64 (approximately 1hr). From
the previously identified 26 events, 17 were selected based on this size selection; and resulting en-
semble contained 132 samples. A total of 81 dry events were also subjected to UM analysis with
same size; ensemble of dry events contained 541 samples. Detailed information on how the data is
prepared for ensemble analysis is given in section 1.2.3.
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Total aerosol concentration showed similar good scaling behaviour over the range of scales
studied (1min to 64min) for ensemble analysis of both rain and dry data-sets (for both SMPS
and APS). Since the estimates of spectral slope exceeded field’s embedding dimension (dimension
= 1 for time series), conservative part of the fields were subject to TM and DTM analysis. As
commonly done (see section 1.2.2 for more details), it was approximated by taking absolute values
of the fluctuations. This reduced the values of non-conservation parameter H and spectral slope β

(keeping under 1) while retaining the scaling properties (for SMPS, H was reduced from 0.64 to
0.08 for rain data, and from 0.58 to 0.05 for dry data; for APS, H was reduced from 0.82 to 0.02
for rain data, and from 0.83 to 0.04 for dry data). This means that TM and DTM will not be biased.
Fig. 3.29 shows the TM, DTM (both on fluctuations) and spectral graphs (on direct data) for rain
and dry events for both instruments. The high coefficient of determination for the linear regression
illustrate the good scaling behaviour initially mentioned. It can be observed that, both rain and dry
ensemble gave similar estimates of α and C1 (α , C1 for SMPS-dry: 1.96, 0.09; APS-dry: 1.83, 0.08;
SMPS-rain: 1.96, 0.09; APS-rain: 1.72, 0.07) across respective devices. Values α and C1 obtained
here were consistent with the values commonly found for fields under the influence of atmospheric
turbulence (α = 1.8 and C1 = 0.2). Much like the ensemble analysis, no discernible differences
were observed between UM parameters of individual events during rain and dry conditions as well.
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Figure 3.29: Multifractal and spectral graphs of total aerosol concentration as an ensemble for a) SMPS rain events, b)
SMPS dry events, c) APS rain events and d) APS dry events. The graphs from left to right: Trace moment analysis (TM,
Eq. 14 in log-log plot), Double trace moment analysis (DTM, Eq. 22 in log-log plot), DTM curve, Scaling moment
function K(q) for 0 ≤ q ≤ 3 and power spectra (Eq. 8). The spectra shown here is in direct data while multifractal
graphs are using fluctuations

For understanding the behaviour of total aerosol concentration in rain, the events were catego-
rized into 4 classes on the basis of 5 min moving average rain rate following the criteria in (Tokay
and Short, 1996). In terms of UM parameters, it seems that in general more variability is found in
nm range (SMPS) than µm range (APS) as the former exhibits higher α and C1 (Fig. 3.30b). No
obvious tendency with rain rate is noticed. In terms of scavenging efficiency, total concentration in
nm range also showed relatively larger %∆C (Eq. 84) in those events (Fig. 3.30a); they exhibited
higher scavenging in moderate rain while lower in heavier events analyzed. Total concentration in
µm range exhibited higher scavenging mostly in heavier rain events; this confirms to the known
theory that bigger particles are scavenged more efficiently by larger drops. As the number of events
available for study were limited, it is not possible to make any overarching conclusions from these
results. Further, the value of mean scavenging coefficient being negative suggests that the filtering
of rain events used here for isolating scavenging is not ideal as well. No matter how carefully
selected the rain events are, it is difficult to avoid the other processes influencing the concentra-
tion change, such as advection, turbulent diffusion, coagulation, hygroscopic behaviour of various
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aerosol species etc. (Laakso et al., 2003).

Figure 3.30: a) Mean and standard deviation of scavenging efficiency for all events in a particular rain class (Eq. 84),
and scavenging efficiency of all events plotted against their length (Y axis is limited to a lower limit of -100 here for
visibility) ; b) Variation of α and C1 among rain events studied.

3.3.4. Analysis of individual aerosol concentration inside one rain event
To understand the variation of size resolved aerosol concentration, a single event was consid-

ered which exhibited positive scavenging (a moderate rain event from 18 Feb 2011 22:35:00 to 19
Feb 2011 07:00:00 with positive %∆C for total concentration). Number concentration for individ-
ual classes were calculated from size distribution available using width of particle bins - values of
dN from dN/dlogDp (normalized concentration value independent of bin width) provided by instru-
ments. From the Fig. 3.31a, consistent scavenging can be observed with rain for total concentration
as well as in changes of particle size distribution before and after rain. It can be observed that most
particle classes in nm range shows positive scavenging efficiency (%∆C) during the event with an
increasing trend in lower end (<100 nm roughly); for µm range, positive scavenging is limited only
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around 1 µm with a decreasing trend (Fig. 3.31b). Median BCS coefficient λ ∗ (Eq. 83) on the
other hand shows variation around 0 for both nm and µm range particles. This difference from
overly positive %∆C is from variations in particle concentration at lower frequencies since λ ∗ was
computed between consecutive time steps (1min), while the former used concentration difference
30min before and after rain. This limits the use case of λ ∗ here as a UM field which is strictly
positive in conventional analysis. As mentioned before, λ ∗ is known to follow a power law relation
with rainfall rate (λ ∗ = nRm) for a given size range. Such relation does not seem to remain valid at
the high resolutions available in this study. Given these reported negative values, it’s not possible to
subject λ ∗ to UM analysis as a time series; hence, in this current form, possibility of obtaining the
power law relation in a scale invariant manner (using DTM methodology covered in section 1.2.2)
is also not possible. Presence of median zeroes in λ ∗ plot (Fig. 3.31.b, last column) corresponds to
the size distribution, with larger drops having lesser presence in the rain event.

Time series of individual particle class concentration were subjected to UM analysis to un-
derstand aerosol variability across various sizes inside the event considered. Overall, they showed
similar scaling behaviour as total concentration discussed before, with higher β and H suggesting
the need for performing TM and DTM analysis on the fluctuations of the fields. Variation of UM
parameters across particle sizes are given in Fig. 3.31 for both SMPS and APS. Values of fractal
dimension (DF ) of the field is also plotted alongside to illustrate biases from presence of zeroes (DF

= 1 implies occurrence of particle in every time steps). For SMPS, till 23.2nm and from 346nm,
α and C1 are influenced by presence of zeroes in data (decrease in α and increase in C1); for APS,
this bias can be observed after 2.28µm (Gires et al., 2012). This corresponds to mean particle size
distribution in Fig. 3.31. Within the non biased regions, UM parameters appear stable providing
reliable estimates of α and C1; and meaning the consistent behaviour across particle size.

Figure 3.31: In column order: Total concentration variation and rain rate, mean particle size distribution,
size resolved scavenging efficiency and median scavenging coefficient for rain event 2011_02_18_22_35_00 to
2011_02_9_7_00_00: a) for particles in nm range (SMPS), b) same information for particles in µm range (APS)
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Figure 3.32: Variation of α and C1 for a) for particles in nm range (SMPS), b) same information for particles in µm
range (APS)

3.3.5. Analysis of individual aerosol concentration variation according to type of rain
The analysis in previous section was extended to every rain event studied in ensemble analysis.

Efforts were done to organize the results to see if there is any observable difference between types
of rain. Using the scavenging efficiency of total concentration (%∆C) in Fig. 3.30a, events were
classified into those with positive and negative scavenging. Similar trend was observed as that has
been seen during the analysis of single event (Fig. 3.32). Outside the region of bias, UM parameters
showed consistent estimates; values and pattern of estimates remained similar across positive and
negative %∆C. The results were also plotted according to the rain type in Fig. 3.33. Across all the
rain types, a slight reduction in α is observed as size increases. However, as mentioned previously,
since the number of rain events available in each class is limited here (only one each for heavy and
extreme, and none for very light criteria), extended analysis over larger data set is recommended
for making conclusive results. It is worth mentioning that this mild trend was observed while
consolidating events on the basis of ±%∆C as well as while considering all the events available.
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Figure 3.33: Mean and standard deviation of UM parameters of events according to rain type, for every particle class
in nm (SMPS) and µm (APS) range

3.3.6. Recommendations for future research
It has been observed that various particles exhibit different scavenging behaviour in rain based

on their size. Except for the tail ends, reliable estimates of UM parameters were obtained which
suggests the possibility of using multifractal tools for studying particle size groups. This is of
specific interest since evolution of concentration during scavenging is influenced by many different
processes, and hence rather complex to analyse. The complexity is reflected in current analysis as
well, where only considering rain wasn’t enough to understand the process.

Since λ ∗ of various sizes are known to follow a power law with rain rate, simultaneous analysis
of particles and raindrops is of interest in understanding the scavenging process better. The limita-
tion in using λ ∗ as a UM field was briefly mentioned before. If enough data can be amassed from
rain episodes long enough to have positive values of λ ∗, this is a potential future research area for
understanding scale invariant behaviour between aerosol concentration and rain rate. It will also
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be interesting to expand this understanding using raindrop size distribution as aerosols of various
sizes interact differently with raindrops of different sizes in the atmosphere in BCS.

3.4. Main outcomes of joint analyses

The scale invariant analyses in the previous chapter are continued here, but with a major fo-
cus on correlations between the fields in the framework of JMF. As in the previous chapter, the
need for identifying the actual underlying field and detecting the resolution relevant for studying
the variability of the process is encountered here as well. Similar was the case for instrumental
threshold affecting UM analysis. The use case of JMF as a powerful tool for studying correlations
between various fields is illustrated here while acknowledging the associated biases. The ability of
controlled environments in reproducing real fields (sense-city and wind farm) is also investigated
here with efforts to quantify the differences using UM and JMF parameters. Complementing the
UM analysis on atmospheric particles in the previous chapter, here the size-resolved evolution of
concentration, as well as their scavenging, are explored with comments on the future prospectus.
Specific conclusions and perspectives of the studies are mentioned in their respective sessions

In the next chapter, the overall conclusions and future perspectives of the thesis are discussed.

154



Conclusions and perspectives.

The importance of studying small scale variability of atmospheric fields is illustrated through-
out this thesis using various geophysical fields. Here, the results and perspectives are briefly sum-
marized with respect to the SDG goals identified in the introduction (Sachs et al., 2022).

Towards climate action, the importance of studying rainfall with its full complexity involving
drop size distribution is emphasized. Using UM, the microstructure of rain is studied through the
commonly examined field, rainfall intensity R and also through the seldom explored, at least using
multifractals, time specific kinetic energy KE (section 2.1). The newly postulated scale invariant
power law relation between them is devoid of any assumptions of drop size distribution (DSD)
and has the backing of theoretical relationships; it also provides comparable performance with
existing relationships that are based on DSD assumptions. Considering the easy availability of rain
measurement all over the world, such a relationship enables realistic retrieval of rainfall kinetic
energy, which otherwise requires complex and expensive instrumentation. A better knowledge on
kinetic energy space-time variability is needed to better understand and manage diseases spread
in crop fields, erosion in rural and urban areas (including buildings and structures) or removal of
pollutants deposited on the ground in urban areas. Since, DSD is known to be varying across
the globe, in the future, the relationship and developed methodology needs to be expanded across
geographical and meteorological conditions through its implementation on other data sets.

Towards sustainable cities and communities, the correlations between various geophysical
fields were studied in real and controlled environments, notably temperature and humidity, and
rainfall (section 3.2). Such understanding of correlations across scales is actually a much needed
step for the large scale deployment of nature based solutions. Indeed it is required to properly eval-
uate their functioning which remains a challenge for the community. Efforts were made to simulate
real-world conditions inside the climate chamber of sense-city. The efficiency of the chamber in
reproducing small scale variability was examined using multifractal tools and efforts were made to
quantify the differences. Since sense-city houses scaled models of urban areas with their features
such as roads, houses, plants etc. reducing the uncertainties between real and simulated fields is
important for future research in the development of sustainable urban environments. The analysis
of aerosols here, through extinction coefficient and aerosol particle concentration, is also important
since the proper functioning of urban communities needs proper knowledge of air quality (section
2.2 and 3.3.1). The scaling behaviour observed in the extinction coefficient as well as particle
number concentration opens new pathways for studying aerosol distribution in the atmosphere and
their scavenging using multifractal tools. More precisely, a clearer understanding of the correlation
between rainfall and scavenging will enable a new kind of modelling for particle concentration in
the atmosphere, opening up the path for innovative approaches for forecasting.

Towards the goal of clean and sustainable energy, the small scale variability in turbulent wind
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power and their coupling with various atmospheric fields were examined using UM framework
(section 3.1). Reported correlations between wind power available and rain open up new discus-
sions on the effect of precipitation on wind turbulence and ultimately power production, which is
not well understood in the scientific community. The use of multifractal tools enabled quantification
of these correlations across scales and not only at a unique (usually low) resolution as commonly
done. This enables to better account for the underlying complexity of the involved processes. The
analysis also revealed various potential biases in joint analysis posed by the conservative and non
conservative nature of different fields at various scaling regimes, and by the fact that actual power
production is rated. The biases were studied and their basic effect was quantified. Further inves-
tigations to fully account for them in the JMF are needed. In future, joint analysis between wind
power available and wind velocity, the effect of air density, wind direction, orography, location etc.
which were not fully captured here, needs to be included and accounted for.

In addition to these goals, the dissertation also illustrates the use case of UM as a powerful tool
for analysing the quality of data. Indeed, even though the instruments are providing high-resolution
data, it is important to identify the sampling resolution valid for considering the variability in
the field studied (section 1.2.2.4). The influence of upper and lower thresholds in recorded data,
which is often encountered in analysis, and their consequences in UM analysis are also explored
theoretically, and empirically with the help of wind turbine power and atmospheric visibility data
as well as numerical simulations. Though these biases are explained using a theoretical framework,
as of now, there is no solution to completely account for them. The same is the case for biases
identified in JMF of various fields; future research is needed to improve reliable estimates of scaling
regimes and UM parameters despite these effects. In addition to the relevant sampling resolution,
the need for selecting the actual field relevant for characterizing variability, i.e. the one which
exhibits the expected multifractal behaviour is also emphasized (section 2.2).

Thus, this research enabled to better understand the variability of various atmospheric fields
in a scale invariant framework and to study their correlation across scales. This is seldom done
and constitutes an innovative first step towards significant improvement in the understanding of
the atmosphere as a complex system. Various hints for potential theoretical developments, notably
with regards to inherent biases in data collection, have been identified and initial solutions are
provided. Stochastic analysis and biases identified here provide new information in the application
fields of SDG goals identified above as well as for future analysis in scaling and modelling of the
atmosphere.

156



References

Adirosi, E., Baldini, L., Lombardo, F., Russo, F., Napolitano, F., 2013. Comparison of dif-
ferent fittings of experimental dsd. AIP Conference Proceedings 1558, 1669–1672. URL: h t
t p s : / / a i p . s c i t a t i o n . o r g / d o i / a b s / 1 0 . 1 0 6 3 / 1 . 4 8 2 5 8 5 0, doi:10.1063/1.4825850,
arXiv:https://aip.scitation.org/doi/pdf/10.1063/1.4825850.

Adirosi, E., Gorgucci, E., Baldini, L., Tokay, A., 2014. Evaluation of Gamma Raindrop Size Distribution
Assumption through Comparison of Rain Rates of Measured and Radar-Equivalent Gamma DSD. Journal
of Applied Meteorology and Climatology 53, 1618–1635. URL: http:// journals.ametsoc.org/doi/10.11
75/JAMC-D-13-0150.1, doi:10.1175/JAMC-D-13-0150.1.

Adirosi, E., Volpi, E., Lombardo, F., Baldini, L., 2016. Raindrop size distribution: Fitting performance of
common theoretical models. Advances in Water Resources 96, 290–305. URL: http://www.sciencedirec
t.com/science/article/pii/S0309170816302639, doi:10.1016/j.advwatres.2016.07.010.

Al, B., C., C.K., Hann, D., 1986. Effect of rain on vertical axis wind turbines, proceedings of the international
conference on renewable energies and power quality, las palmas de gran canaria (spain), 13th to 15th april
2011. .

Andronache, C., 2003. Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol
size distributions. Atmospheric Chemistry and Physics 3, 131–143. URL: https://acp.copernicus.org/art
icles/3/131/2003/ , doi:10.5194/acp-3-131-2003.

Angulo-Martínez, M., Beguería, S., Latorre, B., Fernández-Raga, M., 2018. Comparison of precipitation
measurements by ott parsivel2 and thies lpm optical disdrometers. Hydrology and Earth System Sciences
22, 2811–2837. URL: https://www.hydrol-earth-syst-sci.net/22/2811/2018/ , doi:10.5194/hess-22-
2811-2018.

Angulo-Martínez, M., Barros, A., 2015. Measurement uncertainty in rainfall kinetic energy and intensity
relationships for soil erosion studies: An evaluation using PARSIVEL disdrometers in the Southern Ap-
palachian Mountains. Geomorphology 228, 28–40. URL: https:// linkinghub.elsevier.com/retrieve/pii/S
0169555X14004140, doi:10.1016/j.geomorph.2014.07.036.

Angulo-Martínez, M., Beguería, S., Navas, A., Machín, J., 2012. Splash erosion under natural rainfall on
three soil types in NE Spain. Geomorphology 175-176, 38–44. URL: http://www.sciencedirect.com/scie
nce/article/pii/S0169555X12003005, doi:10.1016/j.geomorph.2012.06.016.

Ariza-Villaverde, A., Pavón-Domínguez, P., Carmona-Cabezas, R., de Ravé, E.G., Jiménez-Hornero, F.,
2019. Joint multifractal analysis of air temperature, relative humidity and reference evapotranspiration in
the middle zone of the guadalquivir river valley. Agricultural and Forest Meteorology 278, 107657. URL:
https://www.sciencedirect.com/science/article/pii/S0168192319302655, doi:https://doi.org/10.1
016/j.agrformet.2019.107657.

ASTM-G73-10, 2017. Standard test method for liquid impingement erosion using rotating apparatus. Astm
, 1 – 19doi:https://doi.org/10.1520/G0073-10R17.

https://aip.scitation.org/doi/abs/10.1063/1.4825850
https://aip.scitation.org/doi/abs/10.1063/1.4825850
http://dx.doi.org/10.1063/1.4825850
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.4825850
http://journals.ametsoc.org/doi/10.1175/JAMC-D-13-0150.1
http://journals.ametsoc.org/doi/10.1175/JAMC-D-13-0150.1
http://dx.doi.org/10.1175/JAMC-D-13-0150.1
http://www.sciencedirect.com/science/article/pii/S0309170816302639
http://www.sciencedirect.com/science/article/pii/S0309170816302639
http://dx.doi.org/10.1016/j.advwatres.2016.07.010
https://acp.copernicus.org/articles/3/131/2003/
https://acp.copernicus.org/articles/3/131/2003/
http://dx.doi.org/10.5194/acp-3-131-2003
https://www.hydrol-earth-syst-sci.net/22/2811/2018/
http://dx.doi.org/10.5194/hess-22-2811-2018
http://dx.doi.org/10.5194/hess-22-2811-2018
https://linkinghub.elsevier.com/retrieve/pii/S0169555X14004140
https://linkinghub.elsevier.com/retrieve/pii/S0169555X14004140
http://dx.doi.org/10.1016/j.geomorph.2014.07.036
http://www.sciencedirect.com/science/article/pii/S0169555X12003005
http://www.sciencedirect.com/science/article/pii/S0169555X12003005
http://dx.doi.org/10.1016/j.geomorph.2012.06.016
https://www.sciencedirect.com/science/article/pii/S0168192319302655
http://dx.doi.org/https://doi.org/10.1016/j.agrformet.2019.107657
http://dx.doi.org/https://doi.org/10.1016/j.agrformet.2019.107657
http://dx.doi.org/https://doi.org/10.1520/G0073-10R17


References

Atlas, D., Srivastava, R.C., Sekhon, R.S., 1973. Doppler radar characteristics of precipitation at vertical
incidence. Reviews of Geophysics 11, 1. URL: http:// doi.wiley.com/ 10.1029/ RG011i001p00001,
doi:10.1029/RG011i001p00001.

Atlas, D., Ulbrich, C.W., 1977. Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation
in the 1–3 cm Band. Journal of Applied Meteorology 16, 1322–1331. URL: https:// journals.ame
tsoc.org/doi/abs/10.1175/1520-0450%281977%29016%3C1322%3APAAIRM%3E2.0.CO%3B2,
doi:10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2.

Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U., Simmer, C., 2010. PARSIVEL Snow Observations:
A Critical Assessment. Journal of Atmospheric and Oceanic Technology 27, 333–344. URL: https:
// journals.ametsoc.org/doi/10.1175/2009JTECHA1332.1, doi:10.1175/2009JTECHA1332.1.

Bech, J.I., Hasager, C.B., Bak, C., 2018. Extending the life of wind turbine blade leading edges by reducing
the tip speed during extreme precipitation events. Wind Energy Science 3, 729–748. URL: https://www.
wind-energ-sci.net/3/729/2018/ , doi:10.5194/wes-3-729-2018.

Beiter, P., Cooperman, A., Lantz, E., Stehly, T., Shields, M., Wiser, R., Telsnig, T., Kitzing, L., Berkhout,
V., Kikuchi, Y., 2021. Wind power costs driven by innovation and experience with further reduc-
tions on the horizon. WIREs Energy and Environment 10, e398. URL: https:// wires.onlineli
brary.wiley.com/ doi/ abs/ 10.1002/ wene.398, doi:https://doi.org/10.1002/wene.398,
arXiv:https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wene.398.

Bensafi, M., Ameur, H., Kaid, N., Hoseinzadeh, S., Memon, S., Garcia, D.A., 2021. Thermophysics analysis
of office buildings with a temperature–humidity coupling strategy under hot-arid climatic conditions.
International Journal of Thermophysics 42, 1–20.

Best, A.C., 1950. The size distribution of raindrops. Quarterly Journal of the Royal Meteorological Society
76, 16–36. URL: https:// rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49707632704, doi:10.100
2/qj.49707632704.

Blanco-Alegre, C., Calvo, A., Castro, A., Oduber, F., Alonso-Blanco, E., Fraile, R., 2021. Scavenging of
submicron aerosol particles in a suburban atmosphere: The raindrop size factor. Environmental Pollution
285, 117371. URL: https://www.sciencedirect.com/science/article/pii/S0269749121009532, doi:http
s://doi.org/10.1016/j.envpol.2021.117371.

Bohren, C.F., Huffman, D.R., 2008. Absorption and scattering of light by small particles. John Wiley &
Sons.

Brawn, D., Upton, G., 2008. Estimation of an atmospheric gamma drop size distribution using disdrometer
data. Atmospheric Research 87, 66–79. URL: https:// linkinghub.elsevier.com/retrieve/pii/S0169809507
001238, doi:10.1016/j.atmosres.2007.07.006.

Brenier, P., Schertzer, D., Davis, A., Lavalle, D., Lovejoy, S., Wilson, J., 1991. Multifractal dynamics. Video
distributed by World Scientific, Singapore .

Bringi, V.N., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W.L., Schoenhuber, M., 2003. Raindrop
size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. Journal
of the Atmospheric Sciences 60, 354 – 365. URL: https:// journals.ametsoc.org/view/ journals/atsc/

158

http://doi.wiley.com/10.1029/RG011i001p00001
http://dx.doi.org/10.1029/RG011i001p00001
https://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281977%29016%3C1322%3APAAIRM%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281977%29016%3C1322%3APAAIRM%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2
https://journals.ametsoc.org/doi/10.1175/2009JTECHA1332.1
https://journals.ametsoc.org/doi/10.1175/2009JTECHA1332.1
http://dx.doi.org/10.1175/2009JTECHA1332.1
https://www.wind-energ-sci.net/3/729/2018/
https://www.wind-energ-sci.net/3/729/2018/
http://dx.doi.org/10.5194/wes-3-729-2018
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wene.398
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wene.398
http://dx.doi.org/https://doi.org/10.1002/wene.398
http://arxiv.org/abs/https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wene.398
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49707632704
http://dx.doi.org/10.1002/qj.49707632704
http://dx.doi.org/10.1002/qj.49707632704
https://www.sciencedirect.com/science/article/pii/S0269749121009532
http://dx.doi.org/https://doi.org/10.1016/j.envpol.2021.117371
http://dx.doi.org/https://doi.org/10.1016/j.envpol.2021.117371
https://linkinghub.elsevier.com/retrieve/pii/S0169809507001238
https://linkinghub.elsevier.com/retrieve/pii/S0169809507001238
http://dx.doi.org/10.1016/j.atmosres.2007.07.006
https://journals.ametsoc.org/view/journals/atsc/60/2/1520-0469_2003_060_0354_rsdidc_2.0.co_2.xml
https://journals.ametsoc.org/view/journals/atsc/60/2/1520-0469_2003_060_0354_rsdidc_2.0.co_2.xml
https://journals.ametsoc.org/view/journals/atsc/60/2/1520-0469_2003_060_0354_rsdidc_2.0.co_2.xml


References

60/2/1520-0469_2003_060_0354_rsdidc_2.0.co_2.xml, doi:10.1175/1520-0469(2003)060<0354:
RSDIDC>2.0.CO;2.

Brown, L., Foster, G., 1987. storm Erosivity Using Idealized Intensity Distributions. Transactions of the
ASAE 30, 0379–0386. URL: http://elibrary.asabe.org/abstract.asp??JID=3&AID=31957&CID=t1987
&v=30&i=2&T=1, doi:10.13031/2013.31957.

C. McGregor, K., L. Bingner, R., J. Bowie, A., R. Foster, G., 1995. Erosivity Index Values for Northern
Mississippi. Transactions of the ASAE 38, 1039–1047. URL: http:// elibrary.asabe.org/abstract.asp?ai
d=27921&t=3, doi:10.13031/2013.27921. place: St. Joseph, MI Publisher: ASAE.

Cai, M., Abbasi, E., Arastoopour, H., 2013. Analysis of the Performance of a Wind-Turbine Airfoil un-
der Heavy-Rain Conditions Using a Multiphase Computational Fluid Dynamics Approach. Industrial
& Engineering Chemistry Research 52, 3266–3275. URL: http:// dx.doi.org/10.1021/ie300877t,
doi:10.1021/ie300877t.

Cai, Y., Bréon, F.M., 2021. Wind power potential and intermittency issues in the context of climate change.
Energy Conversion and Management 240, 114276. URL: https://www.sciencedirect.com/science/articl
e/pii/S0196890421004520, doi:https://doi.org/10.1016/j.enconman.2021.114276.

Calif, R., Schmitt, F.G., 2014. Multiscaling and joint multiscaling description of the atmospheric wind speed
and the aggregate power output from a wind farm. Nonlinear Processes in Geophysics 21, 379–392. URL:
https://npg.copernicus.org/articles/21/379/2014/ , doi:10.5194/npg-21-379-2014.

Campbell-Scientific-Ltd, 2012. Pws100 present weather sensor, user guide, 2012.

Cao, Q., Zhang, G., 2009. Errors in Estimating Raindrop Size Distribution Parameters Employing Disdrom-
eter and Simulated Raindrop Spectra. Journal of Applied Meteorology and Climatology 48, 406–425.
URL: http:// journals.ametsoc.org/doi/10.1175/2008JAMC2026.1, doi:10.1175/2008JAMC2026.1.

Cao, Q., Zhang, G., Brandes, E., Schuur, T., Ryzhkov, A., Ikeda, K., 2008. Analysis of video disdrometer and
polarimetric radar data to characterize rain microphysics in oklahoma. Journal of Applied Meteorology
and Climatology 47, 2238 – 2255. URL: https:// journals.ametsoc.org/view/ journals/apme/47/8/2008j
amc1732.1.xml, doi:10.1175/2008JAMC1732.1.

Carollo, F.G., Ferro, V., 2015. Modeling Rainfall Erosivity by Measured Drop-Size Distributions. Journal
of Hydrologic Engineering 20. URL: http:// ascelibrary.org/ doi/ 10.1061/ %28ASCE%29HE.1943-
5584.0001077, doi:10.1061/(ASCE)HE.1943-5584.0001077.

Carter, C.A., 1979. Activation of reovirion-associated poly(A) polymerase and oligomer methylase by
cofactor-dependent cleavage of polypeptides. Virology 94, 417–429. URL: http:// www.sciencedir
ect.com/science/article/pii/0042682279904720, doi:10.1016/0042-6822(79)90472-0.

Celle-Jeanton, H., Travi, Y., LoÃ¿e-Pilot, M.D., Huneau, F., Bertrand, G., 2009. Rainwater chemistry at a
mediterranean inland station (avignon, france): Local contribution versus long-range supply. Atmospheric
Research 91, 118–126. URL: https://www.sciencedirect.com/science/article/pii/S0169809508001634,
doi:https://doi.org/10.1016/j.atmosres.2008.06.003.

159

https://journals.ametsoc.org/view/journals/atsc/60/2/1520-0469_2003_060_0354_rsdidc_2.0.co_2.xml
https://journals.ametsoc.org/view/journals/atsc/60/2/1520-0469_2003_060_0354_rsdidc_2.0.co_2.xml
https://journals.ametsoc.org/view/journals/atsc/60/2/1520-0469_2003_060_0354_rsdidc_2.0.co_2.xml
http://dx.doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
http://elibrary.asabe.org/abstract.asp??JID=3&AID=31957&CID=t1987&v=30&i=2&T=1
http://elibrary.asabe.org/abstract.asp??JID=3&AID=31957&CID=t1987&v=30&i=2&T=1
http://dx.doi.org/10.13031/2013.31957
http://elibrary.asabe.org/abstract.asp?aid=27921&t=3
http://elibrary.asabe.org/abstract.asp?aid=27921&t=3
http://dx.doi.org/10.13031/2013.27921
http://dx.doi.org/10.1021/ie300877t
http://dx.doi.org/10.1021/ie300877t
https://www.sciencedirect.com/science/article/pii/S0196890421004520
https://www.sciencedirect.com/science/article/pii/S0196890421004520
http://dx.doi.org/https://doi.org/10.1016/j.enconman.2021.114276
https://npg.copernicus.org/articles/21/379/2014/
http://dx.doi.org/10.5194/npg-21-379-2014
http://journals.ametsoc.org/doi/10.1175/2008JAMC2026.1
http://dx.doi.org/10.1175/2008JAMC2026.1
https://journals.ametsoc.org/view/journals/apme/47/8/2008jamc1732.1.xml
https://journals.ametsoc.org/view/journals/apme/47/8/2008jamc1732.1.xml
http://dx.doi.org/10.1175/2008JAMC1732.1
http://ascelibrary.org/doi/10.1061/%28ASCE%29HE.1943-5584.0001077
http://ascelibrary.org/doi/10.1061/%28ASCE%29HE.1943-5584.0001077
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001077
http://www.sciencedirect.com/science/article/pii/0042682279904720
http://www.sciencedirect.com/science/article/pii/0042682279904720
http://dx.doi.org/10.1016/0042-6822(79)90472-0
https://www.sciencedirect.com/science/article/pii/S0169809508001634
http://dx.doi.org/https://doi.org/10.1016/j.atmosres.2008.06.003


References

Chairani, S., 2022. The correlation between rainfall, temperature, relative humidity, and rice field produc-
tivity in aceh besar. IOP Conference Series: Earth and Environmental Science 1071, 012030. URL:
https://dx.doi.org/10.1088/1755-1315/1071/1/012030, doi:10.1088/1755-1315/1071/1/012030.

Charlson, J., 1969. Atmospheric Visibility Related to Aerosol Mass Concentration A Review , 6.

Chate, D., Pranesha, T., 2004. Field studies of scavenging of aerosols by rain events. Journal of Aerosol
Science 35, 695–706. URL: https://www.sciencedirect.com/science/article/pii/ S002185020300483X,
doi:https://doi.org/10.1016/j.jaerosci.2003.09.007.

Cohan, A.C., Arastoopour, H., 2016. Numerical simulation and analysis of the effect of rain and surface
property on wind-turbine airfoil performance. International Journal of Multiphase Flow 81, 46–53. URL:
http://www.sciencedirect.com/science/article/pii/S0301932216000069, doi:10.1016/j.ijmultipha
seflow.2016.01.006.

Connan, O., Maro, D., HÃ©bert, D., Roupsard, P., Goujon, R., Letellier, B., Le Cavelier, S., 2013. Wet and
dry deposition of particles associated metals (cd, pb, zn, ni, hg) in a rural wetland site, marais vernier,
france. Atmospheric Environment 67, 394–403. URL: https://www.sciencedirect.com/science/article/pi
i/S1352231012010916, doi:https://doi.org/10.1016/j.atmosenv.2012.11.029.

Corrigan, R., Demiglio, R., 1985. Effect of precipitation on wind turbine performance. nasa tm-86986 .

Corten, G.P., Veldkamp, H.F., 2001. Insects can halve wind-turbine power. Nature 412, 41–42. URL:
https://doi.org/10.1038/35083698, doi:10.1038/35083698.

Cristiano, E., ten Veldhuis, M.c., Van De Giesen, N., 2017. Spatial and temporal variability of rainfall and
their effects on hydrological response in urban areas–a review. Hydrology and Earth System Sciences 21,
3859–3878.

Deidda, R., Benzi, R., Siccardi, F., 1999. Multifractal modeling of anomalous scaling laws in rainfall. Water
Resources Research 35, 1853–1867. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/19
99WR900036, doi:10.1029/1999WR900036.

Deog Park, S., Song Lee, K., Sook Shin, S., 2012. Statistical Soil Erosion Model for Burnt Mountain Areas in
Korea—RUSLE Approach. Journal of Hydrologic Engineering 17, 292–304. URL: http://ascelibrary.or
g/doi/10.1061/%28ASCE%29HE.1943-5584.0000441, doi:10.1061/(ASCE)HE.1943-5584.0000441.

van Dijk, A., Bruijnzeel, L., Rosewell, C., 2002. Rainfall intensity–kinetic energy relationships: a critical
literature appraisal. Journal of Hydrology 261, 1–23. URL: https:// linkinghub.elsevier.com/retrieve/pii/S
0022169402000203, doi:10.1016/S0022-1694(02)00020-3.

DNVGL-RP-0171, 2014. Recommended practice, testing of rotor blade erosion protection systems, edition
2018-02 URL: http://www.dnvgl.com.

Duhanyan, N., Roustan, Y., 2011. Below-cloud scavenging by rain of atmospheric gases and particulates.
Atmospheric Environment 45, 7201–7217. URL: https://www.sciencedirect.com/science/article/pii/S1
352231011009344, doi:https://doi.org/10.1016/j.atmosenv.2011.09.002.

160

https://dx.doi.org/10.1088/1755-1315/1071/1/012030
http://dx.doi.org/10.1088/1755-1315/1071/1/012030
https://www.sciencedirect.com/science/article/pii/S002185020300483X
http://dx.doi.org/https://doi.org/10.1016/j.jaerosci.2003.09.007
http://www.sciencedirect.com/science/article/pii/S0301932216000069
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.01.006
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.01.006
https://www.sciencedirect.com/science/article/pii/S1352231012010916
https://www.sciencedirect.com/science/article/pii/S1352231012010916
http://dx.doi.org/https://doi.org/10.1016/j.atmosenv.2012.11.029
https://doi.org/10.1038/35083698
http://dx.doi.org/10.1038/35083698
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1999WR900036
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1999WR900036
http://dx.doi.org/10.1029/1999WR900036
http://ascelibrary.org/doi/10.1061/%28ASCE%29HE.1943-5584.0000441
http://ascelibrary.org/doi/10.1061/%28ASCE%29HE.1943-5584.0000441
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000441
https://linkinghub.elsevier.com/retrieve/pii/S0022169402000203
https://linkinghub.elsevier.com/retrieve/pii/S0022169402000203
http://dx.doi.org/10.1016/S0022-1694(02)00020-3
http://www.dnvgl.com
https://www.sciencedirect.com/science/article/pii/S1352231011009344
https://www.sciencedirect.com/science/article/pii/S1352231011009344
http://dx.doi.org/https://doi.org/10.1016/j.atmosenv.2011.09.002


References

Duthon, P., Colomb, M., Bernardin, F., 2019. Light Transmission in Fog: The Influence of Wavelength on the
Extinction Coefficient. Applied Sciences 9, 2843. URL: https://www.mdpi.com/2076-3417/9/14/2843,
doi:10.3390/app9142843.

Elias, T., Haeffelin, M., Drobinski, P., Gomes, L., Rangognio, J., Bergot, T., Chazette, P., Raut, J.C., Colomb,
M., 2009. Particulate contribution to extinction of visible radiation: Pollution, haze, and fog. Atmospheric
Research 92, 443–454. URL: https:// linkinghub.elsevier.com/ retrieve/pii/S0169809509000192,
doi:10.1016/j.atmosres.2009.01.006.

Ellis, R.A., Sandford, A.P., Jones, G.E., Richards, J., Petzing, J., Coupland, J., 2006. New laser technology
to determine present weather parameters URL: https:// repository.lboro.ac.uk/articles/New_laser_techno
logy_to_determine_present_weather_parameters/9574658.

Ellison, W.D., 1944. Ellison: Studies of raindrop erosion - Google Scholar. URL: https:// scholar.google.c
om/scholar_lookup?title=Studies%20of %20raindrop%20erosion&publication_year=1944&author=W
.D.%20Ellison.

Elminir, H.K., 2005. Dependence of urban air pollutants on meteorology. Science of The Total Environment
350, 225–237. URL: https:// www.sciencedirect.com/ science/ article/ pii/ S0048969705000732,
doi:https://doi.org/10.1016/j.scitotenv.2005.01.043.

Emmanouil, S., Langousis, A., Nikolopoulos, E.I., Anagnostou, E.N., 2020. Quantitative assessment of
annual maxima, peaks-over-threshold and multifractal parametric approaches in estimating intensity-
duration-frequency curves from short rainfall records. Journal of Hydrology 589, 125151. URL:
https:// www.sciencedirect.com/ science/ article/ pii/ S0022169420306119, doi:https://doi.org/
10.1016/j.jhydrol.2020.125151.

Engie, S., 2022. Offshore wind power is on the rise in france. https://www.engie.com/en/news/of fshore-
wind-france. Accessed: 2023-02-14.

Enne, G., Zanolla, C., Peter, D., 2000. Desertification in europe: Mitigation strategies, land-use planning .

EWEA, 2012. Wind energy’s frequently asked questions (faq). URL: https://www.ewea.org/wind-energy-
basics/f aq/ .

Feingold, G., Levin, Z., 1986. The Lognormal Fit to Raindrop Spectra from Frontal Convective Clouds in
Israel. Journal of Applied Meteorology 25, 1346–1364. URL: http://adsabs.harvard.edu/abs/1986JAp
Me..25.1346F, doi:10.1175/1520-0450(1986)025<1346:TLFTRS>2.0.CO;2.

Fernández-Raga, M., Palencia, C., Keesstra, S., Jordán, A., Fraile, R., Angulo-Martínez, M., Cerdà, A.,
2017. Splash erosion: A review with unanswered questions. Earth-Science Reviews 171, 463–477. URL:
http://www.sciencedirect.com/science/article/pii/S0012825217301150, doi:10.1016/j.earscirev.
2017.06.009.

Fitton, G., 2013. Multifractal analysis and simulation of wind energy fluctuations. Theses. Université Paris-
Est. URL: https://pastel.archives-ouvertes.f r/ tel-00962318.

Fitton, G., Tchiguirinskaia, I., Schertzer, D., Lovejoy, S., 2011. Scaling of turbulence in the atmospheric
surface-layer: Which anisotropy? Journal of Physics: Conference Series 318, 072008. URL: https:
//doi.org/10.1088/1742-6596/318/7/072008, doi:10.1088/1742-6596/318/7/072008.

161

https://www.mdpi.com/2076-3417/9/14/2843
http://dx.doi.org/10.3390/app9142843
https://linkinghub.elsevier.com/retrieve/pii/S0169809509000192
http://dx.doi.org/10.1016/j.atmosres.2009.01.006
https://repository.lboro.ac.uk/articles/New_laser_technology_to_determine_present_weather_parameters/9574658
https://repository.lboro.ac.uk/articles/New_laser_technology_to_determine_present_weather_parameters/9574658
https://scholar.google.com/scholar_lookup?title=Studies%20of%20raindrop%20erosion&publication_year=1944&author=W.D.%20Ellison
https://scholar.google.com/scholar_lookup?title=Studies%20of%20raindrop%20erosion&publication_year=1944&author=W.D.%20Ellison
https://scholar.google.com/scholar_lookup?title=Studies%20of%20raindrop%20erosion&publication_year=1944&author=W.D.%20Ellison
https://www.sciencedirect.com/science/article/pii/S0048969705000732
http://dx.doi.org/https://doi.org/10.1016/j.scitotenv.2005.01.043
https://www.sciencedirect.com/science/article/pii/S0022169420306119
http://dx.doi.org/https://doi.org/10.1016/j.jhydrol.2020.125151
http://dx.doi.org/https://doi.org/10.1016/j.jhydrol.2020.125151
https://www.engie.com/en/news/offshore-wind-france
https://www.engie.com/en/news/offshore-wind-france
https://www.ewea.org/wind-energy-basics/faq/
https://www.ewea.org/wind-energy-basics/faq/
http://adsabs.harvard.edu/abs/1986JApMe..25.1346F
http://adsabs.harvard.edu/abs/1986JApMe..25.1346F
http://dx.doi.org/10.1175/1520-0450(1986)025<1346:TLFTRS>2.0.CO;2
http://www.sciencedirect.com/science/article/pii/S0012825217301150
http://dx.doi.org/10.1016/j.earscirev.2017.06.009
http://dx.doi.org/10.1016/j.earscirev.2017.06.009
https://pastel.archives-ouvertes.fr/tel-00962318
https://doi.org/10.1088/1742-6596/318/7/072008
https://doi.org/10.1088/1742-6596/318/7/072008
http://dx.doi.org/10.1088/1742-6596/318/7/072008


References

Fitton, G., Tchiguirinskaia, I., Schertzer, D., Lovejoy, S., 2014. Torque fluctuations in the framework of
a multifractal 23/9-dimensional turbulence model. Journal of Physics: Conference Series 555, 012038.
URL: https://doi.org/10.1088/1742-6596/555/1/012038, doi:10.1088/1742-6596/555/1/012038.

Fox, N.I., 2004. TECHNICAL NOTE: The representation of rainfall drop-size distribution and kinetic
energy. Hydrology and Earth System Sciences 8, 1001–1007. URL: http:// www.hydrol-earth-syst-
sci.net/8/1001/2004/ , doi:10.5194/hess-8-1001-2004.

Franzke, C.L., Barbosa, S., Blender, R., Fredriksen, H.B., Laepple, T., Lambert, F., Nilsen, T., Rypdal, K.,
Rypdal, M., Scotto, M.G., et al., 2020. The structure of climate variability across scales. Reviews of
Geophysics 58, e2019RG000657.

Frasson, R.P.d.M., da Cunha, L.K., Krajewski, W.F., 2011. Assessment of the Thies optical disdrometer
performance. Atmospheric Research 101, 237–255. URL: http://www.sciencedirect.com/science/articl
e/pii/S0169809511000639.

Frisch, U., Sulem, P.L., Nelkin, M., 1978. A simple dynamical model of intermittent fully developed turbu-
lence. Journal of Fluid Mechanics 87, 719–736.

Gago, Á.G., Gires, A., Veers, P., Schertzer, D., Tchiguirinskaia, I., 2022. Transfer of small scales space-time
fluctuations of wind fields to wind turbines torque computation. Technical Report. Copernicus Meetings.

Gao, Z., Liu, H., Li, D., Katul, G.G., Blanken, P.D., 2018. Enhanced temperature-humidity sim-
ilarity caused by entrainment processes with increased wind shear. Journal of Geophysical Re-
search: Atmospheres 123, 4110–4121. URL: h t tps : / / agupubs .on l ine l ibr ar y.w i l ey. com/
do i / abs / 10 .1029 / 2017 JD028195, doi:https://doi.org/10.1029/2017JD028195,
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2017JD028195.

García-Marín, A.P., Jiménez-Hornero, F.J., Ayuso-Muñoz, J.L., 2008. Universal multifractal description
of an hourly rainfall time series from a location in southern Spain. Atmósfera 21, 347–355. URL:
http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0187-62362008000400003&lng=es&n
rm=iso&tlng=en.

Gatidis, C., Schleiss, M., Unal, C., Russchenberg, H., 2020. A critical evaluation of the adequacy of the
gamma model for representing raindrop size distributions. Journal of Atmospheric and Oceanic Technol-
ogy 37, 1765 – 1779. URL: https:// journals.ametsoc.org/view/ journals/atot/37/10/ jtechD190106.xml,
doi:10.1175/JTECH-D-19-0106.1.

Gires, A., 2012. Analyses et simulations multifractales pour une meilleure gestion des eaux pluviales en
milieu urbain et péri-urbain. Ph.D. thesis. Université Paris-Est.

Gires, A., Bruley, P., Ruas, A., Schertzer, D., Tchiguirinskaia, I., 2020a. Disdrometer measurements under
sense-city rainfall simulator. Earth System Science Data 12, 835–845. URL: https:// essd.copernicus.or
g/articles/12/835/2020/ , doi:10.5194/essd-12-835-2020.

Gires, A., Jose, J., Tchiguirinskaia, I., Schertzer, D., 2022. Combined high-resolution rainfall and wind data
collected for 3 months on a wind farm 110 km southeast of paris (france). Earth System Science Data 14,
3807–3819. URL: https:// essd.copernicus.org/articles/14/3807/2022/ , doi:10.5194/essd-14-3807-
2022.

162

https://doi.org/10.1088/1742-6596/555/1/012038
http://dx.doi.org/10.1088/1742-6596/555/1/012038
http://www.hydrol-earth-syst-sci.net/8/1001/2004/
http://www.hydrol-earth-syst-sci.net/8/1001/2004/
http://dx.doi.org/10.5194/hess-8-1001-2004
http://www.sciencedirect.com/science/article/pii/S0169809511000639
http://www.sciencedirect.com/science/article/pii/S0169809511000639
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017JD028195
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017JD028195
http://dx.doi.org/https://doi.org/10.1029/2017JD028195
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2017JD028195
http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0187-62362008000400003&lng=es&nrm=iso&tlng=en
http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0187-62362008000400003&lng=es&nrm=iso&tlng=en
https://journals.ametsoc.org/view/journals/atot/37/10/jtechD190106.xml
http://dx.doi.org/10.1175/JTECH-D-19-0106.1
https://essd.copernicus.org/articles/12/835/2020/
https://essd.copernicus.org/articles/12/835/2020/
http://dx.doi.org/10.5194/essd-12-835-2020
https://essd.copernicus.org/articles/14/3807/2022/
http://dx.doi.org/10.5194/essd-14-3807-2022
http://dx.doi.org/10.5194/essd-14-3807-2022


References

Gires, A., Tchiguirinskaia, I., Schertzer, D., 2017a. Method and device for measuring the equivalent diameter
of a water drop. European Patent Office (Application nb. EP3246692) .

Gires, A., Tchiguirinskaia, I., Schertzer, D., 2018. Two months of disdrometer data in the paris area. Earth
System Science Data 10, 941–950. URL: https://www.earth-syst-sci-data.net/10/941/2018/ , doi:10.5
194/essd-10-941-2018.

Gires, A., Tchiguirinskaia, I., Schertzer, D., 2020b. Approximate multifractal correlation and products of
universal multifractal fields, with application to rainfall data. Nonlinear Processes in Geophysics 27,
133–145. URL: https://npg.copernicus.org/articles/27/133/2020/ , doi:10.5194/npg-27-133-2020.

Gires, A., Tchiguirinskaia, I., Schertzer, D., Lovejoy, S., 2012. Influence of the zero-rainfall on the
assessment of the multifractal parameters. Advances in Water Resources 45, 13–25. URL: https:
// www.sciencedirect.com/ science/ article/ pii/ S0309170812000814, doi:https://doi.org/10.1
016/j.advwatres.2012.03.026. space-Time Precipitation from Urban Scale to Global Change.

Gires, A., Tchiguirinskaia, I., Schertzer, D., Ochoa-Rodriguez, S., Willems, P., Ichiba, A., Wang, L.P., Pina,
R., Van Assel, J., Bruni, G., et al., 2017b. Fractal analysis of urban catchments and their representation
in semi-distributed models: imperviousness and sewer system. Hydrology and Earth System Sciences 21,
2361–2375.

Grabner, M., Kvicera, V., 2011. The wavelength dependent model of extinction in fog and haze for free
space optical communication. Optics Express 19, 3379. URL: https://www.osapublishing.org/oe/abstr
act.cf m?uri=oe-19-4-3379, doi:10.1364/OE.19.003379.

Greenfield, S.M., 1957. Rain scavenging of radioactive particulate matter from the atmosphere. Journal of
Atmospheric Sciences 14, 115–125.

Guezuraga, B., Zauner, R., PÃ¶lz, W., 2012. Life cycle assessment of two different 2Â mw class wind
turbines. Renewable Energy 37, 37–44. URL: https://www.sciencedirect.com/science/article/pii/S096
0148111002254, doi:https://doi.org/10.1016/j.renene.2011.05.008.

Gunn, R., Kinzer, G.D., 1949. THE TERMINAL VELOCITY OF FALL FOR WATER DROPLETS IN
STAGNANT AIR. Journal of Meteorology 6, 243–248. URL: https://doi.org/10.1175/1520-0469(1949
)006<0243:TTVOFF>2.0.CO;2, doi:10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

Gupta, V.K., Waymire, E., 1990. Multiscaling properties of spatial rainfall and river flow distributions.
Journal of Geophysical Research: Atmospheres 95, 1999–2009. URL: https://agupubs.onlinelibrary.wi
ley.com/doi/abs/10.1029/JD095iD03p01999, doi:10.1029/JD095iD03p01999.

Gurvich, A., Yaglom, A., 1967. Breakdown of eddies and probability distributions for small-scale turbulence.
The Physics of Fluids 10, S59–S65.

Gurvich, A.S., 1960. Measurement of the skewness coefficient for the velocity difference distribution in
the bottom layer of the atmosphere, in: Doklady Akademii Nauk, Russian Academy of Sciences. pp.
1073–1075.

Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I., 1986. Fractal measures and their
singularities: The characterization of strange sets. Physical review A 33, 1141.

163

https://www.earth-syst-sci-data.net/10/941/2018/
http://dx.doi.org/10.5194/essd-10-941-2018
http://dx.doi.org/10.5194/essd-10-941-2018
https://npg.copernicus.org/articles/27/133/2020/
http://dx.doi.org/10.5194/npg-27-133-2020
https://www.sciencedirect.com/science/article/pii/S0309170812000814
https://www.sciencedirect.com/science/article/pii/S0309170812000814
http://dx.doi.org/https://doi.org/10.1016/j.advwatres.2012.03.026
http://dx.doi.org/https://doi.org/10.1016/j.advwatres.2012.03.026
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-19-4-3379
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-19-4-3379
http://dx.doi.org/10.1364/OE.19.003379
https://www.sciencedirect.com/science/article/pii/S0960148111002254
https://www.sciencedirect.com/science/article/pii/S0960148111002254
http://dx.doi.org/https://doi.org/10.1016/j.renene.2011.05.008
https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD095iD03p01999
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD095iD03p01999
http://dx.doi.org/10.1029/JD095iD03p01999


References

Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D.W., Medina-Elizade, M., 2006. Global tempera-
ture change. Proceedings of the National Academy of Sciences 103, 14288–14293. URL: https:
/ / www.pnas .org/d oi /abs/10.1073/pnas .06 06291103, doi:10.1073/pnas.0606291103,
arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.0606291103.

Herring, R., Dyer, K., Martin, F., Ward, C., 2019. The increasing importance of leading edge erosion and a
review of existing protection solutions. Renewable and Sustainable Energy Reviews 115, 109382. URL:
http://www.sciencedirect.com/science/article/pii/S1364032119305908, doi:10.1016/j.rser.2019.
109382.

Holleman, C., Rembold, F., Crespo, O., Conti, V., 2020. The impact of climate variability and extremes on
agriculture and food security-An analysis of the evidence and case studies. Technical Report.

Horvath, H., Noll, K.E., 1969. The relationship between atmospheric light scattering coefficient and visibil-
ity. Atmospheric Environment 3, 543–550. doi:10.1016/0004-6981(69)90044-4.

Hou, P., Wu, S., McCarty, J.L., Gao, Y., 2018. Sensitivity of atmospheric aerosol scavenging to precipitation
intensity and frequency in the context of global climate change. Atmospheric Chemistry and Physics 18,
8173–8182. URL: https:// acp.copernicus.org/articles/ 18/8173/ 2018/ , doi:10.5194/acp-18-8173-
2018.

Houze Jr, R.A., 2014. Cloud dynamics. Academic press.

Huang, C., Chen, S., Zhang, A., Pang, Y., 2021. Statistical characteristics of raindrop size distribution
in monsoon season over south china sea. Remote Sensing 13. URL: https:// www.mdpi.com/2072-
4292/13/15/2878, doi:10.3390/rs13152878.

Hubert, P., Tessier, Y., Lovejoy, S., Schertzer, D., Schmitt, F., Ladoy, P., Carbonnel, J., Violette, S.,
Desurosne, I., 1993. Multifractals and extreme rainfall events. Geophysical Research Letters 20, 931–934.
URL: https://hal.inrae.fr/hal-02592049.

Hudson, N.W., 1971. Soil conservation. Batsford, London.

Hyslop, N.P., 2009. Impaired visibility: the air pollution people see. Atmospheric Environment 43, 182–195.
URL: https:// linkinghub.elsevier.com/retrieve/pii/S1352231008009217, doi:10.1016/j.atmosenv.200
8.09.067.

ICAO, 2007. Annex 3 - Meteorological Service for International Air Navigation. URL: https:// store.icao.i
nt/en/annex-3-meteorological-service-for-international-air-navigation.

IEA, P., 2020. Global energy review 2020. https://www.iea.org/reports/global-energy-review-2020, License:
CC BY 4.0 .

Ignaccolo, M., De Michele, C., 2014. Phase space parameterization of rain: The inadequacy of gamma
distribution. Journal of Applied Meteorology and Climatology 53, 548–562.

Jaffrain, J., Berne, A., 2012. Quantification of the Small-Scale Spatial Structure of the Raindrop Size Distri-
bution from a Network of Disdrometers. Journal of Applied Meteorology and Climatology 51, 941–953.
URL: https:// journals.ametsoc.org/doi/10.1175/JAMC-D-11-0136.1, doi:10.1175/JAMC-D-11-
0136.1.

164

https://www.pnas.org/doi/abs/10.1073/pnas.0606291103
https://www.pnas.org/doi/abs/10.1073/pnas.0606291103
http://dx.doi.org/10.1073/pnas.0606291103
http://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.0606291103
http://www.sciencedirect.com/science/article/pii/S1364032119305908
http://dx.doi.org/10.1016/j.rser.2019.109382
http://dx.doi.org/10.1016/j.rser.2019.109382
http://dx.doi.org/10.1016/0004-6981(69)90044-4
https://acp.copernicus.org/articles/18/8173/2018/
http://dx.doi.org/10.5194/acp-18-8173-2018
http://dx.doi.org/10.5194/acp-18-8173-2018
https://www.mdpi.com/2072-4292/13/15/2878
https://www.mdpi.com/2072-4292/13/15/2878
http://dx.doi.org/10.3390/rs13152878
https://hal.inrae.fr/hal-02592049
https://linkinghub.elsevier.com/retrieve/pii/S1352231008009217
http://dx.doi.org/10.1016/j.atmosenv.2008.09.067
http://dx.doi.org/10.1016/j.atmosenv.2008.09.067
https://store.icao.int/en/annex-3-meteorological-service-for-international-air-navigation
https://store.icao.int/en/annex-3-meteorological-service-for-international-air-navigation
https://journals.ametsoc.org/doi/10.1175/JAMC-D-11-0136.1
http://dx.doi.org/10.1175/JAMC-D-11-0136.1
http://dx.doi.org/10.1175/JAMC-D-11-0136.1


References

Johannsen, L.L., Zambon, N., Strauss, P., Dostal, T., Neumann, M., Zumr, D., Cochrane, T.A.,
BlÃ¶schl, G., Klik, A., 2020. Comparison of three types of laser optical disdrometers un-
der natural rainfall conditions. Hydrological Sciences Journal 65, 524–535. URL: ht tps: / / do
i . o r g / 1 0 . 1 0 8 0 / 0 2 6 2 6 6 6 7 . 2 0 1 9 . 1 7 0 9 6 4 1, doi:10.1080/02626667.2019.1709641,
arXiv:https://doi.org/10.1080/02626667.2019.1709641. pMID: 32257534.

Johnson, K.E., 2004. Adaptive torque control of variable speed wind turbines. NREL/TP-500-36265 .

Jørgensen, B.H., Holttinen, H., 2022. Iea wind tcp annual report 2021, IEA.

Jose, J., Gires, A., Tchiguirinskaia, I., Roustan, Y., Schertzer, D., 2022. Scale invariant relationship between
rainfall kinetic energy and intensity in paris region: An evaluation using universal multifractal framework.
Journal of Hydrology 609, 127715. URL: https://www.sciencedirect.com/science/article/pii/S0022169
422002906, doi:https://doi.org/10.1016/j.jhydrol.2022.127715.

Jung, C., Schindler, D., 2019. The role of air density in wind energy assessment â a case study from germany.
Energy 171, 385–392. URL: https://www.sciencedirect.com/science/article/pii/S036054421930043X,
doi:https://doi.org/10.1016/j.energy.2019.01.041.

Karlen, D., Andrews, S., Weinhold, B., Doran, J., 2003. Soil quality: Humankind’s foundation for survival.
Journal of Soil and Water Conservation 58, 171–179.

Keegan, M.H., Nash, D.H., Stack, M.M., 2013. On erosion issues associated with the leading edge of wind
turbine blades. Journal of Physics D: Applied Physics 46, 383001. URL: http:// stacks.iop.org/0022-
3727/46/ i=38/a=383001?key=crossref .b21f1d8515962c024d50ce37171c3281, doi:10.1088/0022-
3727/46/38/383001.

Kim, I.I., McArthur, B., Korevaar, E.J., 2001. Comparison of laser beam propagation at 785 nm and 1550
nm in fog and haze for optical wireless communications, Boston, MA. pp. 26–37. URL: http://proceedi
ngs.spiedigitallibrary.org/proceeding.aspx?articleid=895905, doi:10.1117/12.417512.

Kim, K.W., 2018. The comparison of visibility measurement between image-based visual range, human eye-
based visual range, and meteorological optical range. Atmospheric Environment 190, 74–86. URL: https:
// linkinghub.elsevier.com/retrieve/pii/S1352231018304679, doi:10.1016/j.atmosenv.2018.07.020.

Kinnell, P., 1981. Rainfall Intensity-Kinetic Energy Relationships for Soil Loss Prediction1. Soil Science
Society of America Journal 45, 153. URL: https://www.soils.org/publications/sssaj/abstracts/45/1/SS04
50010153, doi:10.2136/sssaj1981.03615995004500010033x.

Kirkby, M.J., Irvine, B.J., Jones, R.J.A., Govers, G., team, P., 2008. The pesera coarse scale ero-
sion model for europe. i. â model rationale and implementation. European Journal of Soil Sci-
ence 59, 1293–1306. URL: ht tps : / / on l ine l ibr ar y.wi ley.com/ doi / abs / 10 .1111/ j .1365-
2389.2008.0107 2.x, doi:https://doi.org/10.1111/j.1365-2389.2008.01072.x,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2389.2008.01072.x.

Kolesnikova, V., Monin, A., 1965. Spectra of meteorological field fluctuations(time-space spectral analysis
of meteorological fields based on time-dependent spectra of wind velocity, temperature, pressure and
turbulent pulse and heat fluxes). ACADEMY OF SCIENCES, USSR, IZVESTIYA, ATMOSPHERIC
AND OCEANIC PHYSICS 1, 377–386.

165

https://doi.org/10.1080/02626667.2019.1709641
https://doi.org/10.1080/02626667.2019.1709641
http://dx.doi.org/10.1080/02626667.2019.1709641
http://arxiv.org/abs/https://doi.org/10.1080/02626667.2019.1709641
https://www.sciencedirect.com/science/article/pii/S0022169422002906
https://www.sciencedirect.com/science/article/pii/S0022169422002906
http://dx.doi.org/https://doi.org/10.1016/j.jhydrol.2022.127715
https://www.sciencedirect.com/science/article/pii/S036054421930043X
http://dx.doi.org/https://doi.org/10.1016/j.energy.2019.01.041
http://stacks.iop.org/0022-3727/46/i=38/a=383001?key=crossref.b21f1d8515962c024d50ce37171c3281
http://stacks.iop.org/0022-3727/46/i=38/a=383001?key=crossref.b21f1d8515962c024d50ce37171c3281
http://dx.doi.org/10.1088/0022-3727/46/38/383001
http://dx.doi.org/10.1088/0022-3727/46/38/383001
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=895905
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=895905
http://dx.doi.org/10.1117/12.417512
https://linkinghub.elsevier.com/retrieve/pii/S1352231018304679
https://linkinghub.elsevier.com/retrieve/pii/S1352231018304679
http://dx.doi.org/10.1016/j.atmosenv.2018.07.020
https://www.soils.org/publications/sssaj/abstracts/45/1/SS0450010153
https://www.soils.org/publications/sssaj/abstracts/45/1/SS0450010153
http://dx.doi.org/10.2136/sssaj1981.03615995004500010033x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2389.2008.01072.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2389.2008.01072.x
http://dx.doi.org/https://doi.org/10.1111/j.1365-2389.2008.01072.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2389.2008.01072.x


References

Kolmogorov, A.N., 1941. The local structure of turbulence in incompressible viscous fluid for very large
reynolds number, in: Dokl. Akad. Nauk. SSSR, pp. 301–303.

Konwar, M., Das, S.K., Deshpande, S.M., Chakravarty, K., Goswami, B.N., 2014. Micro-
physics of clouds and rain over the western ghat. Journal of Geophysical Research: At-
mospheres 119, 6140–6159. URL: h t t p s : / / a g u p u b s . o n l i n e l i b r a r y . w i l e y . c o m / d o i /
a b s / 1 0 . 1 0 0 2 / 2 0 1 4 J D 0 2 1 6 06, doi:h t t p s : / / d o i . o r g / 1 0 . 1 0 0 2 / 2 0 1 4 J D 0 2 1 6 06,
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014JD021606.

Koschmieder, H., 1924. Theorie der horizontalen sichtweite. Beitrage zur Physik der freien Atmosphare ,
33–53.

Krajewski, W.F., Kruger, A., Caracciolo, C., GolÃ©, P., Barthes, L., Creutin, J.D., Delahaye, J.Y.,
Nikolopoulos, E.I., Ogden, F., Vinson, J.P., 2006. DEVEX-disdrometer evaluation experiment: Ba-
sic results and implications for hydrologic studies. Advances in Water Resources 29, 311–325. URL:
http://www.sciencedirect.com/science/article/pii/S0309170805001272.

Kruger, A., Krajewski, W.F., 2002. Two-Dimensional Video Disdrometer: A Description. Journal of At-
mospheric and Oceanic Technology 19, 602–617. URL: https:// journals.ametsoc.org/doi/f ull/ 10.1
175/ 1520-0426%282002%29019%3C0602%3ATDVDAD%3E2.0.CO%3B2, doi:10.1175/1520-
0426(2002)019<0602:TDVDAD>2.0.CO;2.

van Kuik, G.A.M., Peinke, J., Nijssen, R., Lekou, D., Mann, J., Sørensen, J.N., Ferreira, C., van Wingerden,
J.W., Schlipf, D., Gebraad, P., Polinder, H., Abrahamsen, A., van Bussel, G.J.W., Sørensen, J.D., Tavner,
P., Bottasso, C.L., Muskulus, M., Matha, D., Lindeboom, H.J., Degraer, S., Kramer, O., Lehnhoff, S.,
Sonnenschein, M., Sørensen, P.E., Künneke, R.W., Morthorst, P.E., Skytte, K., 2016. Long-term research
challenges in wind energy – a research agenda by the European Academy of Wind Energy. Wind Energ.
Sci. 1, 1–39. URL: http://www.wind-energ-sci.net/1/1/2016/ , doi:10.5194/wes-1-1-2016.

Kumar, P., Foufoula-Georgiou, E., 1993. A multicomponent decomposition of spatial rainfall fields: 2. Self-
similarity in fluctuations. Water Resources Research 29, 2533–2544. URL: https://agupubs.onlinelibrar
y.wiley.com/doi/abs/10.1029/93WR00549, doi:10.1029/93WR00549.

Laakso, L., GrÃ¶nholm, T., Ãllar Rannik, Kosmale, M., Fiedler, V., VehkamÃCki, H., Kulmala, M., 2003.
Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmospheric Envi-
ronment 37, 3605–3613. URL: https://www.sciencedirect.com/science/article/pii/S1352231003003261,
doi:https://doi.org/10.1016/S1352-2310(03)00326-1.

Laguionie, P., Maro, D., Letellier, B., Cavelier, S., 2011. Rain scavenging of below-cloud aerosol particles:
field measurements using disdrometer and smps; european aerosol conference, eac 2011.

Laguionie, P., Roupsard, P., Maro, D., Solier, L., Rozet, M., HÃ©bert, D., Connan, O., 2014. Simultaneous
quantification of the contributions of dry, washout and rainout deposition to the total deposition of particle-
bound 7be and 210pb on an urban catchment area on a monthly scale. Journal of Aerosol Science 77,
67–84. URL: https:// www.sciencedirect.com/ science/ article/ pii/ S0021850214001165, doi:https:
//doi.org/10.1016/j.jaerosci.2014.07.008.

166

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JD021606
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JD021606
http://dx.doi.org/https://doi.org/10.1002/2014JD021606
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014JD021606
http://www.sciencedirect.com/science/article/pii/S0309170805001272
https://journals.ametsoc.org/doi/full/10.1175/1520-0426%282002%29019%3C0602%3ATDVDAD%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/full/10.1175/1520-0426%282002%29019%3C0602%3ATDVDAD%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
http://www.wind-energ-sci.net/1/1/2016/
http://dx.doi.org/10.5194/wes-1-1-2016
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/93WR00549
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/93WR00549
http://dx.doi.org/10.1029/93WR00549
https://www.sciencedirect.com/science/article/pii/S1352231003003261
http://dx.doi.org/https://doi.org/10.1016/S1352-2310(03)00326-1
https://www.sciencedirect.com/science/article/pii/S0021850214001165
http://dx.doi.org/https://doi.org/10.1016/j.jaerosci.2014.07.008
http://dx.doi.org/https://doi.org/10.1016/j.jaerosci.2014.07.008


References

Langousis, A., Veneziano, D., Furcolo, P., Lepore, C., 2009. Multifractal rainfall extremes: Theoretical
analysis and practical estimation. Chaos, Solitons Fractals 39, 1182–1194. URL: https://www.scienced
irect.com/science/article/pii/S0960077907003700, doi:https://doi.org/10.1016/j.chaos.2007
.06.004.

Lavallée, D., Lovejoy, S., Schertzer, D., Ladoy, P., 1993. Nonlinear variability and landscape topography:
analysis and simulation. Fractals in geography , 158–192.

Laws, J.O., Parsons, D.A., 1943. The relation of raindrop-size to intensity. Eos, Transactions American
Geophysical Union 24, 452–460. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/TR02
4i002p00452, doi:10.1029/TR024i002p00452.

Lee, Z., Shang, S., 2016. Visibility: How Applicable is the Century-Old Koschmieder Model? Journal of
the Atmospheric Sciences 73, 4573–4581. URL: https:// journals.ametsoc.org/jas/article/73/11/4573/42
768/Visibility-How-Applicable-is-the-CenturyOld, doi:10.1175/JAS-D-16-0102.1.

Lhermitte, R.M., 1988. Cloud and precipitation remote sensing at 94 ghz. IEEE transactions on geoscience
and remote sensing 26, 207–216.

Li, J., Li, S., Wu, F., 2020. Research on carbon emission reduction benefit of wind power project based on
life cycle assessment theory. Renewable Energy 155, 456–468. URL: https://www.sciencedirect.com/sc
ience/article/pii/S0960148120304651, doi:https://doi.org/10.1016/j.renene.2020.03.133.

Liersch, J., Michael, J., 2014. Investigation of the impact of rain and particle erosion on rotor blade aerody-
namics with an erosion test facility to enhancing the rotor blade performance and durability. Journal of
Physics: Conference Series 524, 012023. URL: http:// stacks.iop.org/1742-6596/524/i=1/a=012023?ke
y=crossref .010c71a204a1e683cb616b2c527d4c05, doi:10.1088/1742-6596/524/1/012023.

Lovejoy, S., 2015. A voyage through scales, a missing quadrillion and why the climate is not what you
expect. Climate Dynamics 44, 3187–3210. URL: https://doi.org/10.1007/s00382-014-2324-0, doi:10.1
007/s00382-014-2324-0.

Lovejoy, S., Pinel, J., Schertzer, D., 2012. The global space–time cascade structure of precipitation:
Satellites, gridded gauges and reanalyses. Advances in Water Resources 45, 37–50. URL: https:
// www.sciencedirect.com/ science/ article/ pii/ S0309170812000796, doi:https://doi.org/10.1
016/j.advwatres.2012.03.024. space-Time Precipitation from Urban Scale to Global Change.

Lovejoy, S., Schertzer, D., 1985. Generalized scale invariance in the atmosphere and fractal models of
rain. Water Resources Research 21, 1233–1250. URL: https:// agupubs.onlinelibrary.wiley.co
m/ doi/ abs/ 10.1029/ WR021i008p01233, doi:https://doi.org/10.1029/WR021i008p01233,
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/WR021i008p01233.

Lovejoy, S., Schertzer, D., 1991. Multifractal Analysis Techniques and the Rain and Cloud Fields from 10â3
to 106m. Springer Netherlands, Dordrecht. pp. 111–144. URL: https:// doi.org/ 10.1007/ 978-94-009-
2147-4_8, doi:10.1007/978-94-009-2147-4_8.

Lovejoy, S., Schertzer, D., 2007a. Scale, scaling and multifractals in geophysics: twenty years on. Nonlinear
dynamics in geosciences , 311–337.

167

https://www.sciencedirect.com/science/article/pii/S0960077907003700
https://www.sciencedirect.com/science/article/pii/S0960077907003700
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2007.06.004
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2007.06.004
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/TR024i002p00452
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/TR024i002p00452
http://dx.doi.org/10.1029/TR024i002p00452
https://journals.ametsoc.org/jas/article/73/11/4573/42768/Visibility-How-Applicable-is-the-CenturyOld
https://journals.ametsoc.org/jas/article/73/11/4573/42768/Visibility-How-Applicable-is-the-CenturyOld
http://dx.doi.org/10.1175/JAS-D-16-0102.1
https://www.sciencedirect.com/science/article/pii/S0960148120304651
https://www.sciencedirect.com/science/article/pii/S0960148120304651
http://dx.doi.org/https://doi.org/10.1016/j.renene.2020.03.133
http://stacks.iop.org/1742-6596/524/i=1/a=012023?key=crossref.010c71a204a1e683cb616b2c527d4c05
http://stacks.iop.org/1742-6596/524/i=1/a=012023?key=crossref.010c71a204a1e683cb616b2c527d4c05
http://dx.doi.org/10.1088/1742-6596/524/1/012023
https://doi.org/10.1007/s00382-014-2324-0
http://dx.doi.org/10.1007/s00382-014-2324-0
http://dx.doi.org/10.1007/s00382-014-2324-0
https://www.sciencedirect.com/science/article/pii/S0309170812000796
https://www.sciencedirect.com/science/article/pii/S0309170812000796
http://dx.doi.org/https://doi.org/10.1016/j.advwatres.2012.03.024
http://dx.doi.org/https://doi.org/10.1016/j.advwatres.2012.03.024
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/WR021i008p01233
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/WR021i008p01233
http://dx.doi.org/https://doi.org/10.1029/WR021i008p01233
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/WR021i008p01233
https://doi.org/10.1007/978-94-009-2147-4_8
https://doi.org/10.1007/978-94-009-2147-4_8
http://dx.doi.org/10.1007/978-94-009-2147-4_8


References

Lovejoy, S., Schertzer, D., 2007b. Scaling and multifractal fields in the solid earth and topography. Nonlinear
Processes in Geophysics 14, 465–502. URL: https:// npg.copernicus.org/articles/ 14/465/2007/ ,
doi:10.5194/npg-14-465-2007.

Lovejoy, S., Schertzer, D., 2013. The Weather and Climate: Emergent Laws and Multifractal Cascades.
Cambridge University Press. doi:10.1017/CBO9781139093811.

Lovejoy, S., Schertzer, D., Allaire, V.C., 2008. The remarkable wide range spatial scaling of TRMM precip-
itation. Atmospheric Research 90, 10–32. URL: https:// hal-enpc.archives-ouvertes.f r/ hal-00711539,
doi:10.1016/j.atmosres.2008.02.016.

Loveland, R.B., Lindberg, J.D., 1988. Problems in comparing particulate spectrometer and visibility meter
data. Applied Optics 27, 4318. URL: https://www.osapublishing.org/abstract.cfm?URI=ao-27-20-4318,
doi:10.1364/AO.27.004318.

Majewski, G., Rogula-Kozłowska, W., Czechowski, P., Badyda, A., Brandyk, A., 2015. The Impact of
Selected Parameters on Visibility: First Results from a Long-Term Campaign in Warsaw, Poland. Atmo-
sphere 6, 1154–1174. URL: http://www.mdpi.com/2073-4433/6/8/1154, doi:10.3390/atmos6081154.

Malm, W.C., 2016. Chapter 2 - On the Nature of Light and Its Interaction with Atmospheric Particles, in:
Malm, W.C. (Ed.), Visibility. Elsevier, pp. 29 – 72. URL: http://www.sciencedirect.com/science/article/
pii/B9780128044506000024, doi:10.1016/B978-0-12-804450-6.00002-4.

Mandelbrot, B., 1967. How long is the coast of britain? statistical self-similarity and fractional dimension.
science 156, 636–638.

Mandelbrot, B., 1977. Fractals: Form, Chance, and Dimension. W. H. Freeman, 1977.

Mandelbrot, B.B., 1974. Intermittent turbulence in self-similar cascades: divergence of high moments and
dimension of the carrier. Journal of fluid Mechanics 62, 331–358.

Mandelbrot, B.B., Mandelbrot, B.B., 1982. The fractal geometry of nature. volume 1. WH freeman New
York.

Manwell, J.F., McGowan, J.G., Rogers, A.L., 2010. Wind energy explained: theory, design and application.
John Wiley & Sons.

Marsan, D., Schertzer, D., Lovejoy, S., 1996. Causal space-time multifractal processes: Predictability and
forecasting of rain fields. Journal of Geophysical Research: Atmospheres 101, 26333–26346. URL: https:
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/96JD01840, doi:https://doi.org/10.1029/96
JD01840, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/96JD01840.

Marshall, J.S., Palmer, W.M.K., 1948. The distribution of raindrops with size. Journal of Meteorology 5,
165–166. URL: https:// journals.ametsoc.org/doi/abs/10.1175/1520-0469%281948%29005%3C0165%3
ATDORWS%3E2.0.CO%3B2, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

Marzano, F.S., Cimini, D., Montopoli, M., 2010. Investigating precipitation microphysics using ground-
based microwave remote sensors and disdrometer data. Atmospheric Research 97, 583–600. URL: https:
//www.sciencedirect.com/science/article/pii/S0169809510000682, doi:https://doi.org/10.1016/

168

https://npg.copernicus.org/articles/14/465/2007/
http://dx.doi.org/10.5194/npg-14-465-2007
http://dx.doi.org/10.1017/CBO9781139093811
https://hal-enpc.archives-ouvertes.fr/hal-00711539
http://dx.doi.org/10.1016/j.atmosres.2008.02.016
https://www.osapublishing.org/abstract.cfm?URI=ao-27-20-4318
http://dx.doi.org/10.1364/AO.27.004318
http://www.mdpi.com/2073-4433/6/8/1154
http://dx.doi.org/10.3390/atmos6081154
http://www.sciencedirect.com/science/article/pii/B9780128044506000024
http://www.sciencedirect.com/science/article/pii/B9780128044506000024
http://dx.doi.org/10.1016/B978-0-12-804450-6.00002-4
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/96JD01840
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/96JD01840
http://dx.doi.org/https://doi.org/10.1029/96JD01840
http://dx.doi.org/https://doi.org/10.1029/96JD01840
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/96JD01840
https://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281948%29005%3C0165%3ATDORWS%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281948%29005%3C0165%3ATDORWS%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
https://www.sciencedirect.com/science/article/pii/S0169809510000682
https://www.sciencedirect.com/science/article/pii/S0169809510000682
http://dx.doi.org/https://doi.org/10.1016/j.atmosres.2010.03.019
http://dx.doi.org/https://doi.org/10.1016/j.atmosres.2010.03.019
http://dx.doi.org/https://doi.org/10.1016/j.atmosres.2010.03.019


References

j.atmosres.2010.03.019. from the Lab to Models and Global Observations: Hans R. Pruppacher and
Cloud Physics.

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb,
L., Gomis, M., et al., 2021. Climate change 2021: the physical science basis. Contribution of working
group I to the sixth assessment report of the intergovernmental panel on climate change 2.

McMurry, P.H., 2000. A review of atmospheric aerosol measurements. Atmospheric Environment 34,
1959–1999. URL: https://www.sciencedirect.com/science/article/pii/S1352231099004550, doi:https:
//doi.org/10.1016/S1352-2310(99)00455-0.

Mei, L., Guan, P., Yang, Y., Kong, Z., 2017. Atmospheric extinction coefficient retrieval and validation
for the single-band Mie-scattering Scheimpflug lidar technique. Optics Express 25, A628. URL: https:
//www.osapublishing.org/abstract.cfm?URI=oe-25-16-A628, doi:10.1364/OE.25.00A628.

Meneveau, C., Sreenivasan, K.R., Kailasnath, P., Fan, M.S., 1990. Joint multifractal measures: Theory and
applications to turbulence. Phys. Rev. A 41, 894–913. URL: https:// link.aps.org/doi/10.1103/PhysRevA.
41.894, doi:10.1103/PhysRevA.41.894.

Mineo, C., Ridolfi, E., Moccia, B., Russo, F., Napolitano, F., 2019. Assessment of Rainfall Kinetic-
Energy–Intensity Relationships. Water 11, 1994. URL: https://www.mdpi.com/2073-4441/11/10/1994,
doi:10.3390/w11101994.

Miriovsky, B.J., Bradley, A.A., Eichinger, W.E., Krajewski, W.F., Kruger, A., Nelson, B.R., Creutin, J.D.,
Lapetite, J.M., Lee, G.W., Zawadzki, I., Ogden, F.L., 2004. An Experimental Study of Small-Scale
Variability of Radar Reflectivity Using Disdrometer Observations. Journal of Applied Meteorology 43,
106–118. URL: http://dx.doi.org/10.1175/1520-0450(2004)043<0106:AESOSV>2.0.CO;2.

Mitchell, J., 1976. An overview of climatic variability and its causal mechanisms. Quaternary Research 6,
481–493. URL: https:// www.sciencedirect.com/ science/ article/ pii/ 0033589476900211, doi:https:
//doi.org/10.1016/0033-5894(76)90021-1.

Mohamadi, M.A., Kavian, A., 2015. Effects of rainfall patterns on runoff and soil erosion in field plots.
International Soil and Water Conservation Research 3, 273–281. URL: https://www.sciencedirect.com/
science/article/pii/S209563391530071X, doi:https://doi.org/10.1016/j.iswcr.2015.10.001.

Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald, K., Chisci, G., Torri, D.,
Styczen, M.E., 1998. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting
sediment transport from fields and small catchments. Earth Surface Processes and Landforms 23, 527–
544. URL: https:// onlinelibrary.wiley.com/ doi/ abs/ 10.1002/ %28SICI%291096-9837%28199
806%2923%3A6%3C527%3A%3AAID-ESP868%3E3.0.CO%3B2-5, doi:10.1002/(SICI)1096-
9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5.

Nebuloni, R., 2005. Empirical relationships between extinction coefficient and visibility in fog. Applied
Optics 44, 3795. URL: https://www.osapublishing.org/abstract.cfm?URI=ao-44-18-3795, doi:10.136
4/AO.44.003795.

Novikov, E., Stewart, R., 1964. The intermittency of turbulence and the spectrum of energy dissipation
fluctuations. Izv. Geophys. Ser 3, 408–413.

169

http://dx.doi.org/https://doi.org/10.1016/j.atmosres.2010.03.019
http://dx.doi.org/https://doi.org/10.1016/j.atmosres.2010.03.019
http://dx.doi.org/https://doi.org/10.1016/j.atmosres.2010.03.019
https://www.sciencedirect.com/science/article/pii/S1352231099004550
http://dx.doi.org/https://doi.org/10.1016/S1352-2310(99)00455-0
http://dx.doi.org/https://doi.org/10.1016/S1352-2310(99)00455-0
https://www.osapublishing.org/abstract.cfm?URI=oe-25-16-A628
https://www.osapublishing.org/abstract.cfm?URI=oe-25-16-A628
http://dx.doi.org/10.1364/OE.25.00A628
https://link.aps.org/doi/10.1103/PhysRevA.41.894
https://link.aps.org/doi/10.1103/PhysRevA.41.894
http://dx.doi.org/10.1103/PhysRevA.41.894
https://www.mdpi.com/2073-4441/11/10/1994
http://dx.doi.org/10.3390/w11101994
http://dx.doi.org/10.1175/1520-0450(2004)043<0106:AESOSV>2.0.CO;2
https://www.sciencedirect.com/science/article/pii/0033589476900211
http://dx.doi.org/https://doi.org/10.1016/0033-5894(76)90021-1
http://dx.doi.org/https://doi.org/10.1016/0033-5894(76)90021-1
https://www.sciencedirect.com/science/article/pii/S209563391530071X
https://www.sciencedirect.com/science/article/pii/S209563391530071X
http://dx.doi.org/https://doi.org/10.1016/j.iswcr.2015.10.001
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9837%28199806%2923%3A6%3C527%3A%3AAID-ESP868%3E3.0.CO%3B2-5
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9837%28199806%2923%3A6%3C527%3A%3AAID-ESP868%3E3.0.CO%3B2-5
http://dx.doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
https://www.osapublishing.org/abstract.cfm?URI=ao-44-18-3795
http://dx.doi.org/10.1364/AO.44.003795
http://dx.doi.org/10.1364/AO.44.003795


References

Obligado, M., Cal, R.B., Brun, C., 2021. Wind turbine wake influence on the mixing of relative humidity
quantified through wind tunnel experiments. Journal of Renewable and Sustainable Energy 13, 023308.

Oboukhov, A.M., 1962. Some specific features of atmospheric tubulence. Journal of Fluid Mechanics 13,
77–81.

Obukhov, A., 1941. Spectral energy distribution in a turbulent flow. Izv. Akad. Nauk. SSSR. Ser. Geogr. i.
Geofiz 5, 453–466.

Olsson, J., Niemczynowicz, J., 1996. Multifractal analysis of daily spatial rainfall distributions. Journal of
Hydrology 187, 29–43. URL: http://www.sciencedirect.com/science/article/pii/S0022169496030855,
doi:10.1016/S0022-1694(96)03085-5.

OTT, 2014. Operating instructions, Present Weather Sensor OTT Parsivel2 .

Parisi, G., Frisch, U., 1985. On the singularity structure of fully developed turbulence in Turbulence and
predictability in geophysical fluid dynamics and climate dynamics. Turbulence and Predictability of Geo-
physical Flows and Climate Dynamics 88.

Parisi, G., Frisch, U., et al., 1985. A multifractal model of intermittency. Turbulence and predictability in
geophysical fluid dynamics and climate dynamics , 84–88.

Park, S., Mitchell, J., Bubenzer, G., 1982. Splash erosion modelling: physical analyses [Impact of water
drops on soil]. Transactions of the ASAE [American Society of Agricultural Engineers] URL: http:
//agris.fao.org/agris-search/search.do?recordID=US19830881711.

Petan, S., Rusjan, S., Vidmar, A., Mikoš, M., 2010. The rainfall kinetic energy–intensity relationship for
rainfall erosivity estimation in the mediterranean part of Slovenia. Journal of Hydrology 391, 314 –
321. URL: http:// www.sciencedirect.com/ science/ article/ pii/ S0022169410004695, doi:https:
//doi.org/10.1016/j.jhydrol.2010.07.031.

Picard, A., Davis, R.S., GlÃCser, M., Fujii, K., 2008. Revised formula for the density of moist air (cipm-
2007). Metrologia 45, 149. URL: https://dx.doi.org/10.1088/0026-1394/45/2/004, doi:10.1088/0026-
1394/45/2/004.

Pimentel, D., 2006. Soil Erosion: A Food and Environmental Threat. Environment, Development and
Sustainability 8, 119–137. URL: https://doi.org/10.1007/ s10668-005-1262-8, doi:10.1007/s10668-
005-1262-8.

Pond, S., Stewart, R., Burling, R., 1963. Turbulence spectra in the wind over waves. Journal of the Atmo-
spheric Sciences 20, 319–324.

Pruppacher, H., Klett, J., 1996. Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic
Sciences Library, Springer Netherlands. URL: https://books.google.f r/books?id=1mXN_qZ5sNUC.

Pöschl, U., 2005. Atmospheric aerosols: Composition, transformation, climate and health effects. Ange-
wandte Chemie International Edition 44, 7520–7540. URL: ht tps:// onlinelibrary.wiley.com/
doi/ abs/ 10.1002/ anie.200501122, doi:https://doi.org/10.1002/anie.200501122,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.200501122.

170

http://www.sciencedirect.com/science/article/pii/S0022169496030855
http://dx.doi.org/10.1016/S0022-1694(96)03085-5
http://agris.fao.org/agris-search/search.do?recordID=US19830881711
http://agris.fao.org/agris-search/search.do?recordID=US19830881711
http://www.sciencedirect.com/science/article/pii/S0022169410004695
http://dx.doi.org/https://doi.org/10.1016/j.jhydrol.2010.07.031
http://dx.doi.org/https://doi.org/10.1016/j.jhydrol.2010.07.031
https://dx.doi.org/10.1088/0026-1394/45/2/004
http://dx.doi.org/10.1088/0026-1394/45/2/004
http://dx.doi.org/10.1088/0026-1394/45/2/004
https://doi.org/10.1007/s10668-005-1262-8
http://dx.doi.org/10.1007/s10668-005-1262-8
http://dx.doi.org/10.1007/s10668-005-1262-8
https://books.google.fr/books?id=1mXN_qZ5sNUC
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200501122
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200501122
http://dx.doi.org/https://doi.org/10.1002/anie.200501122
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.200501122


References

Quérel, A., Monier, M., Flossmann, A.I., Lemaitre, P., Porcheron, E., 2014. The importance of new col-
lection efficiency values including the effect of rear capture for the below-cloud scavenging of aerosol
particles. Atmospheric Research 142, 57–66. URL: https:// www.sciencedirect.com/ science/ article/
pii/ S0169809513001877, doi:https://doi.org/10.1016/j.atmosres.2013.06.008. the 16th
International Conference on Clouds and Precipitation.

Renard, K.G., Agricultural Research Service, W., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C.,
1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil
Loss Equation (RUSLE) URL: http://agris.fao.org/agris-search/search.do?recordID=XF2015047686.

Richardson, L.F., 1920. The supply of energy from and to atmospheric eddies. Proceedings of the Royal
Society of London. Series A, Containing Papers of a Mathematical and Physical Character 97, 354–373.

Richardson, L.F., 1961. The problem of contiguity: an appendix to statistics of deadly quarrels. General
systems yearbook 6, 139–187.

Roy, A., Chatterjee, A., Ghosh, A., Das, S.K., Ghosh, S.K., Raha, S., 2019. Below-cloud scavenging of size-
segregated aerosols and its effect on rainwater acidity and nutrient deposition: A long-term (2009â2018)
and real-time observation over eastern himalaya. Science of The Total Environment 674, 223–233. URL:
https://www.sciencedirect.com/science/article/pii/S0048969719316948, doi:https://doi.org/10.1
016/j.scitotenv.2019.04.165.

Sabetghadam, S., Khoshsima, M., Ahmadi-Givi, F., 2017. Effects of cloud and humidity on atmospheric
extinction coefficient derived from visual range observations in Iranian major airports: EFFECTS OF
CLOUD AND HUMIDITY ON ATMOSPHERIC EXTINCTION COEFFICIENT. International Journal
of Climatology 37, 1474–1482. URL: http://doi.wiley.com/10.1002/ joc.4791, doi:10.1002/joc.4791.

Sachs, J., Kroll, C., Lafortune, G., Fuller, G., Woelm, F., 2022. Sustainable development report 2022.
Cambridge University Press.

Salles, C., Poesen, J., Sempere-Torres, D., 2002. Kinetic energy of rain and its functional relationship with
intensity. Journal of Hydrology 257, 256–270. URL: https:// linkinghub.elsevier.com/retrieve/pii/S0022
169401005558, doi:10.1016/S0022-1694(01)00555-8.

Schertzer, D., Lovejoy, S., 1984. On the dimension of atmospheric motions. volume 505. Elsevier, North-
Holland, Amsterdam.

Schertzer, D., Lovejoy, S., 1985. The dimension and intermittency of atmospheric dynamics, in: Turbulent
Shear Flows 4: Selected Papers from the Fourth International Symposium on Turbulent Shear Flows,
University of Karlsruhe, Karlsruhe, FRG, September 12–14, 1983, Springer. pp. 7–33.

Schertzer, D., Lovejoy, S., 1987. Physical modeling and analysis of rain and clouds by anisotropic scaling
multiplicative processes. Journal of Geophysical Research: Atmospheres 92, 9693–9714. URL: https://ag
upubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD092iD08p09693, doi:10.1029/JD092iD08p09693.

Schertzer, D., Lovejoy, S., 1988. Multifractal simulations and analysis of clouds by multiplicative processes.
Atmospheric Research 21, 337–361. URL: http://www.sciencedirect.com/science/article/pii/01698095
8890035X, doi:10.1016/0169-8095(88)90035-X.

171

https://www.sciencedirect.com/science/article/pii/S0169809513001877
https://www.sciencedirect.com/science/article/pii/S0169809513001877
http://dx.doi.org/https://doi.org/10.1016/j.atmosres.2013.06.008
http://agris.fao.org/agris-search/search.do?recordID=XF2015047686
https://www.sciencedirect.com/science/article/pii/S0048969719316948
http://dx.doi.org/https://doi.org/10.1016/j.scitotenv.2019.04.165
http://dx.doi.org/https://doi.org/10.1016/j.scitotenv.2019.04.165
http://doi.wiley.com/10.1002/joc.4791
http://dx.doi.org/10.1002/joc.4791
https://linkinghub.elsevier.com/retrieve/pii/S0022169401005558
https://linkinghub.elsevier.com/retrieve/pii/S0022169401005558
http://dx.doi.org/10.1016/S0022-1694(01)00555-8
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD092iD08p09693
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD092iD08p09693
http://dx.doi.org/10.1029/JD092iD08p09693
http://www.sciencedirect.com/science/article/pii/016980958890035X
http://www.sciencedirect.com/science/article/pii/016980958890035X
http://dx.doi.org/10.1016/0169-8095(88)90035-X


References

Schertzer, D., Lovejoy, S., 1989. Nonlinear Variability in Geophysics: Multifractal Simulations and Anal-
ysis. Springer US, Boston, MA. pp. 49–79. URL: https:// doi.org/ 10.1007/ 978-1-4899-3499-4_3,
doi:10.1007/978-1-4899-3499-4_3.

Schertzer, D., Lovejoy, S., 1992. Hard and soft multifractal processes. Physica A: Statistical Mechanics and
its Applications 185, 187–194. URL: https://www.sciencedirect.com/science/article/pii/037843719290
455Y , doi:https://doi.org/10.1016/0378-4371(92)90455-Y.

Schertzer, D., Lovejoy, S., 1993. Nonlinear Variability in Geophysics 3 (NVAG3): Scaling and Multifractal
Processes, Institut D’études Scientifiques de Cargèse, September 10-17, 1993. Institut d’études scien-
tifiques de Cargèse.

Schertzer, D., Lovejoy, S., 1997. Universal multifractals do exist!: Comments on âa statistical analysis of
mesoscale rainfall as a random cascadeâ. Journal of Applied Meteorology 36, 1296 – 1303. URL: https:
// journals.ametsoc.org/view/ journals/apme/36/9/1520-0450_1997_036_1296_umdeco_2.0.co_2.xml,
doi:10.1175/1520-0450(1997)036<1296:UMDECO>2.0.CO;2.

Schertzer, D., Lovejoy, S., 2011. MULTIFRACTALS, GENERALIZED SCALE INVARIANCE AND
COMPLEXITY IN GEOPHYSICS. International Journal of Bifurcation and Chaos 21, 3417–3456. URL:
https://www.worldscientific.com/doi/abs/10.1142/S0218127411030647, doi:10.1142/S0218127411030
647.

Schertzer, D., Tchiguirinskaia, I., 2020. A century of turbulent cascades and the emergence of
multifractal operators. Earth and Space Science 7, e2019EA000608. URL: h t tps : / / agupub
s .on l ine l ibr ar y.wi ley.com/ doi / abs / 10 .1029/ 2019EA0006 08, doi:10.1029/2019EA00
0 6 08, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019EA000608.
e2019EA000608 10.1029/2019EA000608.

Schertzer, D., Tchiguirinskaia, I., Lovejoy, S., Hubert, P., 2010. No monsters, no miracles: in nonlinear
sciences hydrology is not an outlier! Hydrological Sciences Journal–Journal des Sciences Hydrologiques
55, 965–979.

Seinfeld, J.H., Pandis, S.N., 2016. Atmospheric chemistry and physics: from air pollution to climate change.
John Wiley & Sons.

Sempere-Torres, D., Porrà, J.M., Creutin, J.D., 1998. Experimental evidence of a general description for
raindrop size distribution properties. Journal of Geophysical Research: Atmospheres 103, 1785–1797.
URL: http://doi.wiley.com/10.1029/97JD02065, doi:10.1029/97JD02065.

Seuront, L., Schmitt, F.G., 2005a. Multiscaling statistical procedures for the exploration of biophysical cou-
plings in intermittent turbulence. part i. theory. Deep Sea Research Part II: Topical Studies in Oceanog-
raphy 52, 1308–1324. URL: https://www.sciencedirect.com/science/article/pii/ S0967064505000470,
doi:https://doi.org/10.1016/j.dsr2.2005.01.006. observations and modelling of mixed layer
turbulence: Do they represent the same statistical quantities?

Seuront, L., Schmitt, F.G., 2005b. Multiscaling statistical procedures for the exploration of biophysical
couplings in intermittent turbulence. part ii. applications. Deep Sea Research Part II: Topical Studies in
Oceanography 52, 1325–1343. URL: https://www.sciencedirect.com/science/article/pii/S09670645050

172

https://doi.org/10.1007/978-1-4899-3499-4_3
http://dx.doi.org/10.1007/978-1-4899-3499-4_3
https://www.sciencedirect.com/science/article/pii/037843719290455Y
https://www.sciencedirect.com/science/article/pii/037843719290455Y
http://dx.doi.org/https://doi.org/10.1016/0378-4371(92)90455-Y
https://journals.ametsoc.org/view/journals/apme/36/9/1520-0450_1997_036_1296_umdeco_2.0.co_2.xml
https://journals.ametsoc.org/view/journals/apme/36/9/1520-0450_1997_036_1296_umdeco_2.0.co_2.xml
http://dx.doi.org/10.1175/1520-0450(1997)036<1296:UMDECO>2.0.CO;2
https://www.worldscientific.com/doi/abs/10.1142/S0218127411030647
http://dx.doi.org/10.1142/S0218127411030647
http://dx.doi.org/10.1142/S0218127411030647
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019EA000608
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019EA000608
http://dx.doi.org/10.1029/2019EA000608
http://dx.doi.org/10.1029/2019EA000608
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019EA000608
http://doi.wiley.com/10.1029/97JD02065
http://dx.doi.org/10.1029/97JD02065
https://www.sciencedirect.com/science/article/pii/S0967064505000470
http://dx.doi.org/https://doi.org/10.1016/j.dsr2.2005.01.006
https://www.sciencedirect.com/science/article/pii/S0967064505000482
https://www.sciencedirect.com/science/article/pii/S0967064505000482
https://www.sciencedirect.com/science/article/pii/S0967064505000482


References

00482, doi:https://doi.org/10.1016/j.dsr2.2005.01.005. observations and modelling of mixed
layer turbulence: Do they represent the same statistical quantities?

Seuront, L., Yamazaki, H., Schmitt, F., 2005. Intermittency. Marine turbulence: Theories, observations and
models , 66–78.

Shah, S., Mughal, S., Memon, S., 2015. Theoretical and empirical based extinction coefficients for fog
attenuation in terms of visibility at 850 nm, in: 2015 International Conference on Emerging Technologies
(ICET), IEEE, Peshawar, Pakistan. pp. 1–4. URL: http:// ieeexplore.ieee.org/ document/7389190/ ,
doi:10.1109/ICET.2015.7389190.

Sheng-Jie, J., Da-Ren, L., . Optimal Forward-Scattering Angles of Atmospheric Aerosols in North China ,
8.

Shin, S.S., Park, S.D., Choi, B.K., 2016. Universal Power Law for Relationship between Rainfall Kinetic
Energy and Rainfall Intensity. URL: https:// www.hindawi.com/ journals/amete/2016/ 2494681/ ,
doi:https://doi.org/10.1155/2016/2494681.

Shojaei, S., Kalantari, Z., Rodrigo-Comino, J., 2020. Prediction of factors affecting activation of soil erosion
by mathematical modeling at pedon scale under laboratory conditions. Scientific Reports 10, 20163. URL:
https://doi.org/10.1038/s41598-020-76926-1, doi:10.1038/s41598-020-76926-1.

Sinha, A., Kathayat, G., Cheng, H., Breitenbach, S.F., Berkelhammer, M., Mudelsee, M., Biswas, J., Ed-
wards, R., 2015. Trends and oscillations in the indian summer monsoon rainfall over the last two millennia.
Nature communications 6, 6309.

Smith, D.D., Wischmeier, W.H., 1962. Rainfall Erosion, in: Norman, A.G. (Ed.), Advances in Agronomy.
Academic Press. volume 14, pp. 109–148. URL: http://www.sciencedirect.com/science/article/pii/S006
521130860437X, doi:10.1016/S0065-2113(08)60437-X.

Smith, J.A., De Veaux, R.D., 1992. The temporal and spatial variability of rainfall power. Environmetrics 3,
29–53. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/env.3170030103, doi:10.1002/env.31
70030103, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/env.3170030103.

Smith, P.L., Kliche, D.V., Johnson, R.W., 2009. The Bias and Error in Moment Estimators for Parameters of
Drop Size Distribution Functions: Sampling from Gamma Distributions. Journal of Applied Meteorology
and Climatology 48, 2118–2126. URL: http:// journals.ametsoc.org/doi/10.1175/2009JAMC2114.1,
doi:10.1175/2009JAMC2114.1.

Smith, S.E., Travis, K.N., Djeridi, H., Obligado, M., Cal, R.B., 2021. Dynamic effects of inertial particles
on the wake recovery of a model wind turbine. Renewable Energy 164, 346–361. URL: https://www.scie
ncedirect.com/science/article/pii/ S0960148120314579, doi:https://doi.org/10.1016/j.renene
.2020.09.037.

Steiner, M., Smith, J.A., 2000. Reflectivity, Rain Rate, and Kinetic Energy Flux Relationships Based on
Raindrop Spectra. JOURNAL OF APPLIED METEOROLOGY 39, 18.

Sylos Labini, F., Pietronero, L., 1996. Statistical properties of galaxy distributions. Nonlinear Processes in
Geophysics 3, 274–283. URL: https://npg.copernicus.org/articles/3/274/1996/ , doi:10.5194/npg-3-
274-1996.

173

https://www.sciencedirect.com/science/article/pii/S0967064505000482
https://www.sciencedirect.com/science/article/pii/S0967064505000482
https://www.sciencedirect.com/science/article/pii/S0967064505000482
http://dx.doi.org/https://doi.org/10.1016/j.dsr2.2005.01.005
http://ieeexplore.ieee.org/document/7389190/
http://dx.doi.org/10.1109/ICET.2015.7389190
https://www.hindawi.com/journals/amete/2016/2494681/
http://dx.doi.org/https://doi.org/10.1155/2016/2494681
https://doi.org/10.1038/s41598-020-76926-1
http://dx.doi.org/10.1038/s41598-020-76926-1
http://www.sciencedirect.com/science/article/pii/S006521130860437X
http://www.sciencedirect.com/science/article/pii/S006521130860437X
http://dx.doi.org/10.1016/S0065-2113(08)60437-X
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.3170030103
http://dx.doi.org/10.1002/env.3170030103
http://dx.doi.org/10.1002/env.3170030103
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/env.3170030103
http://journals.ametsoc.org/doi/10.1175/2009JAMC2114.1
http://dx.doi.org/10.1175/2009JAMC2114.1
https://www.sciencedirect.com/science/article/pii/S0960148120314579
https://www.sciencedirect.com/science/article/pii/S0960148120314579
http://dx.doi.org/https://doi.org/10.1016/j.renene.2020.09.037
http://dx.doi.org/https://doi.org/10.1016/j.renene.2020.09.037
https://npg.copernicus.org/articles/3/274/1996/
http://dx.doi.org/10.5194/npg-3-274-1996
http://dx.doi.org/10.5194/npg-3-274-1996


References

Tamai, K., 2016. Big whorls, little whorls. Nature Physics 12, 197–197. URL: https://doi.org/10.1038/np
hys3697, doi:10.1038/nphys3697.

Tang, I.N., 1996. Chemical and size effects of hygroscopic aerosols on light scattering coefficients. Journal
of Geophysical Research: Atmospheres 101, 19245–19250. URL: http://doi.wiley.com/10.1029/96JD03
003, doi:10.1029/96JD03003.

Tessier, Y., Lovejoy, S., Schertzer, D., 1993. Universal multifractals: Theory and observations for rain
and clouds. Journal of Applied Meteorology and Climatology 32, 223 – 250. URL: https:// journa
ls.ametsoc.org/view/ journals/apme/ 32/2/1520-0450_1993_032_0223_umtaof_2_0_co_2.xml,
doi:10.1175/1520-0450(1993)032<0223:UMTAOF>2.0.CO;2.

Testud, J., 2001. The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud
Physics and Cloud Remote Sensing. JOURNAL OF APPLIED METEOROLOGY 40, 23.

ThiesCLIMA, 2013a. 3d ultrasonic anemometer, instructions for use .

ThiesCLIMA, 2013b. Clima sensor us, instructions for use .

Thurai, M., Bringi, V.N., 2005. Drop Axis Ratios from a 2D Video Disdrometer. Journal of Atmospheric and
Oceanic Technology 22, 966–978. URL: https:// journals.ametsoc.org/doi/f ull/10.1175/JTECH1767.1,
doi:10.1175/JTECH1767.1.

Thurai, M., Peterson, W.A., Tokay, A., Schutz, C., Gatlin, P., 2011. Drop size distribution comparisons
between Parsivel and 2-D video disdrometers. Advances in Geosciences 30, 3–9.

Tokay, A., Short, D.A., 1996. Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform
versus Convective Clouds. Journal of Applied Meteorology 35, 355–371. URL: https:// journals.ame
tsoc.org/doi/abs/10.1175/1520-0450%281996%29035%3C0355%3AEFTRSO%3E2.0.CO%3B2,
doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

Torres, D.S., Porrà, J.M., Creutin, J.D., 1994. A General Formulation for Raindrop Size Distribution. Journal
of Applied Meteorology 33, 1494–1502. URL: https:// journals.ametsoc.org/doi/abs/10.1175/1520-
0450%281994%29033%3C1494%3AAGFFRS%3E2.0.CO%3B2, doi:10.1175/1520-0450(1994)033
<1494:AGFFRS>2.0.CO;2.

Uhlig, E.M., von Hoyningen-Huene, W., 1993. Correlation of the atmospheric extinction coefficient with the
concentration of particulate matter for measurements in a polluted urban area. Atmospheric Research 30,
181–195. URL: https:// linkinghub.elsevier.com/retrieve/pii/016980959390022G, doi:10.1016/0169-
8095(93)90022-G.

Uijlenhoet, R., 2001. Raindrop size distributions and radar reflectivity–rain rate relationships for radar
hydrology. Hydrology and Earth System Sciences 5, 615–628. URL: https:// www.hydrol-earth-syst-
sci.net/5/615/2001/ , doi:https://doi.org/10.5194/hess-5-615-2001.

Uijlenhoet, R., Stricker, J., 1999. A consistent rainfall parameterization based on the exponential raindrop
size distribution. Journal of Hydrology 218, 101–127. URL: https:// linkinghub.elsevier.com/retrieve/pii
/S0022169499000323, doi:10.1016/S0022-1694(99)00032-3.

174

https://doi.org/10.1038/nphys3697
https://doi.org/10.1038/nphys3697
http://dx.doi.org/10.1038/nphys3697
http://doi.wiley.com/10.1029/96JD03003
http://doi.wiley.com/10.1029/96JD03003
http://dx.doi.org/10.1029/96JD03003
https://journals.ametsoc.org/view/journals/apme/32/2/1520-0450_1993_032_0223_umtaof_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/apme/32/2/1520-0450_1993_032_0223_umtaof_2_0_co_2.xml
http://dx.doi.org/10.1175/1520-0450(1993)032<0223:UMTAOF>2.0.CO;2
https://journals.ametsoc.org/doi/full/10.1175/JTECH1767.1
http://dx.doi.org/10.1175/JTECH1767.1
https://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281996%29035%3C0355%3AEFTRSO%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281996%29035%3C0355%3AEFTRSO%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281994%29033%3C1494%3AAGFFRS%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281994%29033%3C1494%3AAGFFRS%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0450(1994)033<1494:AGFFRS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1994)033<1494:AGFFRS>2.0.CO;2
https://linkinghub.elsevier.com/retrieve/pii/016980959390022G
http://dx.doi.org/10.1016/0169-8095(93)90022-G
http://dx.doi.org/10.1016/0169-8095(93)90022-G
https://www.hydrol-earth-syst-sci.net/5/615/2001/
https://www.hydrol-earth-syst-sci.net/5/615/2001/
http://dx.doi.org/https://doi.org/10.5194/hess-5-615-2001
https://linkinghub.elsevier.com/retrieve/pii/S0022169499000323
https://linkinghub.elsevier.com/retrieve/pii/S0022169499000323
http://dx.doi.org/10.1016/S0022-1694(99)00032-3


References

Ulazia, A., Gonzalez-Rojí, S.J., Ibarra-Berastegi, G., Carreno-Madinabeitia, S., Sáenz, J., Nafarrate, A.,
2018. Seasonal air density variations over the east of scotland and the consequences for offshore wind en-
ergy, in: 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA),
pp. 261–265. doi:10.1109/ICRERA.2018.8566716.

Ulbrich, C.W., 1983. Natural Variations in the Analytical Form of the Raindrop Size Distribution. Journal
of Climate and Applied Meteorology 22, 1764–1775. URL: https:// journals.ametsoc.org/doi/abs/1
0.1175/1520-0450%281983%29022%3C1764%3ANVITAF%3E2.0.CO%3B2, doi:10.1175/1520-
0450(1983)022<1764:NVITAF>2.0.CO;2.

UN, 2019. World urbanization prospects: The 2018 Revision (ST/ESA/SER.A/420). United Nations and
Department of Economic and Social Affairs and Population Division, United Nations New York.

UN, 2022. Un-energy plan of action towards 2025. https://un-energy.org/wp-content/uploads/2022/05/UN-
Energy-Plan-of-Action-towards-2025-2May2022.pdf .

Van Oost, K., Govers, G., Desmet, P., 2000. Evaluating the effects of changes in landscape structure on
soil erosion by water and tillage. Landscape Ecology 15, 577–589. URL: https:// doi.org/ 10.1023/ A:
1008198215674, doi:10.1023/A:1008198215674.

Vassoler, R., Zebende, G., 2012. Dcca cross-correlation coefficient apply in time series of air temperature
and air relative humidity. Physica A: Statistical Mechanics and its Applications 391, 2438–2443. URL:
https://www.sciencedirect.com/science/article/pii/S0378437111009125, doi:https://doi.org/10.1
016/j.physa.2011.12.015.

Vestas Wind Systems A/S, V., 2023. V90-2.0 mw™ iec iia/iec s turbines. URL: https://www.vestas.com/e
n/products/2-mw-platform/V90-2-0-MW.

Waas, S., 2008. Field test of forward scatter visibility sensors at german airports, in: WMO Technical
Conference on Instruments and Methods of Observation (TECO-2006), pp. 1–17.

Weichel, H., 1990. Laser Beam Propagation in the Atmosphere | (1990) | Weichel | Publications | Spie.
volume TT03. SPIE, Bellingham WA. URL: https:// spie.org/Publications/Book/3993?print=2&SSO=1.

Wilken, F., Baur, M., Sommer, M., Deumlich, D., Bens, O., Fiener, P., 2018. Uncertainties in rainfall
kinetic energy-intensity relations for soil erosion modelling. CATENA 171, 234–244. URL: https:
// linkinghub.elsevier.com/retrieve/pii/S034181621830273X, doi:10.1016/j.catena.2018.07.002.

Willebrand, H., Ghuman, B.S., 2002. Free space optics: enabling optical connectivity in today’s networks.
SAMS publishing.

Williams, P.D., Alexander, M.J., Barnes, E.A., Butler, A.H., Davies, H.C., Garfinkel, C.I., Kush-
nir, Y., Lane, T.P., Lundquist, J.K., Martius, O., Maue, R.N., Peltier, W.R., Sato, K., Scaife,
A.A., Zhang, C., 2017. A census of atmospheric variability from seconds to decades. Geo-
physical Research Letters 44, 11,201–11,211. URL: ht tps:/ / agupubs.onlinelibrary.wiley.co
m/ doi / abs/ 10.1002/ 2017 GL07 5483, doi:https://doi.org/10.1002/2017GL075483,
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017GL075483.

175

http://dx.doi.org/10.1109/ICRERA.2018.8566716
https://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281983%29022%3C1764%3ANVITAF%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281983%29022%3C1764%3ANVITAF%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
https://doi.org/10.1023/A:1008198215674
https://doi.org/10.1023/A:1008198215674
http://dx.doi.org/10.1023/A:1008198215674
https://www.sciencedirect.com/science/article/pii/S0378437111009125
http://dx.doi.org/https://doi.org/10.1016/j.physa.2011.12.015
http://dx.doi.org/https://doi.org/10.1016/j.physa.2011.12.015
https://www.vestas.com/en/products/2-mw-platform/V90-2-0-MW
https://www.vestas.com/en/products/2-mw-platform/V90-2-0-MW
https://spie.org/Publications/Book/3993?print=2&SSO=1
https://linkinghub.elsevier.com/retrieve/pii/S034181621830273X
https://linkinghub.elsevier.com/retrieve/pii/S034181621830273X
http://dx.doi.org/10.1016/j.catena.2018.07.002
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL075483
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL075483
http://dx.doi.org/https://doi.org/10.1002/2017GL075483
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017GL075483


References

Wiser, R., Yang, Z., Hand, M., Hohmeyer, O., Infield, D., Jensen, P., Nikolaev, V., O’Malley, M., Zervos,
G., 2011. Ipcc special report on renewable energy sources and climate change mitigation: Wind energy.
IPCC, Cambridge, UK and New York, NY, USA, Tech. Rep .

WMO, et al., 2022. Provisional state of the global climate in 2022 .

WMO-No. 8, t.C.G., 2018. Guide to Instruments and Methods of Observation. WMO, World Meteorological
Organization, Geneva.

Wolfensberger, D., Gires, A., Tchiguirinskaia, I., Schertzer, D., Berne, A., 2017. Multifractal evaluation of
simulated precipitation intensities from the COSMO NWP model. Atmospheric Chemistry and Physics
17, 14253–14273. URL: https://www.atmos-chem-phys.net/17/ 14253/2017/ , doi:10.5194/acp-17-
14253-2017.

WWA, 2019. Human contribution to record-breaking June 2019 heatwave in France, howpublished = https:
//www.worldweatherattribution.org/human-contribution-to-record-breaking-june-2019-heatwave-in-
france/ , note = Accessed: 2023-02-20.

Yaglom, A., 1966. The influence of fluctuations in energy dissipation on the shape of turbulence character-
istics in the inertial interval, in: Sov. Phys. Dokl., pp. 26–29.

Zebende, G., Brito, A., Silva Filho, A., Castro, A., 2018. dcca applied between air temperature and relative
humidity: An hour/hour view. Physica A: Statistical Mechanics and its Applications 494, 17–26. URL:
https://www.sciencedirect.com/science/article/pii/S0378437117312748, doi:https://doi.org/10.1
016/j.physa.2017.12.023.

Zhang, L., Wang, X., Moran, M.D., Feng, J., 2013. Review and uncertainty assessment of size-resolved scav-
enging coefficient formulations for below-cloud snow scavenging of atmospheric aerosols. Atmospheric
Chemistry and Physics 13, 10005–10025. URL: https:// acp.copernicus.org/articles/ 13/10005/2013/ ,
doi:10.5194/acp-13-10005-2013.

Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., Baltensperger, U., 2013. Effects of relative humidity
on aerosol light scattering: results from different European sites. Atmospheric Chemistry and Physics
13, 10609–10631. URL: https:// acp.copernicus.org/articles/13/10609/2013/ , doi:10.5194/acp-13-
10609-2013.

176

https://www.atmos-chem-phys.net/17/14253/2017/
http://dx.doi.org/10.5194/acp-17-14253-2017
http://dx.doi.org/10.5194/acp-17-14253-2017
https://www.worldweatherattribution.org/human-contribution-to-record-breaking-june-2019-heatwave-in-france/
https://www.worldweatherattribution.org/human-contribution-to-record-breaking-june-2019-heatwave-in-france/
https://www.worldweatherattribution.org/human-contribution-to-record-breaking-june-2019-heatwave-in-france/
https://www.sciencedirect.com/science/article/pii/S0378437117312748
http://dx.doi.org/https://doi.org/10.1016/j.physa.2017.12.023
http://dx.doi.org/https://doi.org/10.1016/j.physa.2017.12.023
https://acp.copernicus.org/articles/13/10005/2013/
http://dx.doi.org/10.5194/acp-13-10005-2013
https://acp.copernicus.org/articles/13/10609/2013/
http://dx.doi.org/10.5194/acp-13-10609-2013
http://dx.doi.org/10.5194/acp-13-10609-2013


Appendix A.

Appendix A.1. Method of moments (formulation of moment estimators)

Gamma distribution parameters were estimated from second, fourth and sixth moments using fol-
lowing relations:

M234:

Dm = M4/M3 (A.1)

η =
(M2

3)

(M2M4)
(A.2)

µ =
1

(1−η −1)
−4 (A.3)

Λ =
M2

M3
(µ +3) (A.4)

N0 =
M2Λ(µ+3)

Γ(µ +4)
(A.5)
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Appendix A.2. Multifractal and DSD parameters

UM parameters: event based analysis from 2013 to 2015 (in section 2.1)

Figure A1: Year wise α and C1 variation on event based analysis 2013 to 2015.

DSD parameters and power-law coefficients (in section 2.1)

from DSD moments from UM

# events µ N0 Λ RMSEDSD aDSD bDSD aUM bUM

(m−3mm−1−µ ) (mm−1) (m−3mm−1) (Jm−2mm−aha−1) (Jm−2mm−aha−1)

Pa
rs

2

very light R < 1 190 2.53 1.36 ×107 6.59 19.78 1.196 10.180 1.246 8.097
light 1 ≤ R < 2 160 1.61 1.20 ×108 4.70 24.81 1.229 12.630 1.202 9.262
moderate 2 ≤ R < 5 101 0.82 1.66 ×106 3.19 20.93 1.260 15.026 1.208 9.911
heavy 5 ≤ R < 10 28 0.26 2.72 ×104 2.14 23.85 1.281 17.171 1.247 10.140
very heavy 10 ≤ R < 20 8 -0.38 5.81 ×102 1.36 21.20 1.317 19.951 1.098 19.997
extreme R ≥ 20 6 -0.94 6.16 ×102 1.07 57.99 1.363 15.593 1.180 19.040

PW
S

very light R < 1 163 2.79 7.82 ×106 4.73 10.95 1.187 10.95 1.194 12.070
light 1 ≤ R < 2 176 2.65 2.64 ×107 4.15 14.30 1.195 14.30 1.154 12.703
moderate 2 ≤ R < 5 152 1.87 4.73 ×103 2.85 14.98 1.216 20.024 1.169 13.136
heavy 5 ≤ R < 10 46 1.16 2.82 ×103 1.96 18.90 1.253 24.439 1.193 13.933
very heavy 10 ≤ R < 20 18 0.59 7.07 ×102 1.51 19.24 1.266 20.834 1.133 18.983
extreme R ≥ 20 6 0.53 4.09 ×102 1.28 20.63 1.26 21.031 1.165 18.016

Table A1: Variation of DSD parameters and power law coefficients according to the type of rainfall (R = average of
rainy data points)
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from DSD moments from UM

# events µ N0 Λ RMSEDSD aDSD bDSD aUM bUM

(m−3mm−1−µ ) (mm−1) (m−3mm−1) (Jm−2mm−aha−1) (Jm−2mm−aha−1)

Pa
rs

1

very light R < 1 13 3.82 1.30 ×107 8.19 8.19 1.161 9.471 1.245 8.396
light 1 ≤ R < 2 82 2.63 7.76 ×106 6.39 15.96 1.191 10.962 1.271 8.747
moderate 2 ≤ R < 5 235 2.04 1.10 ×105 5.32 21.77 1.213 12.528 1.227 9.119
heavy 5 ≤ R < 10 134 1.44 2.22 ×107 4.19 24.79 1.235 13.826 1.225 9.369
very heavy 10 ≤ R < 20 54 0.51 4.55 ×103 2.67 20.75 1.269 16.214 1.197 11.697
extreme R ≥ 20 38 -0.22 1.77 ×103 1.67 26.84 1.314 26.84 1.147 16.642

Pa
rs

2

very light R < 1 13 4.27 2.02×107 8.94 6.75 1.154 9.097 1.217 7.833
light 1 ≤ R < 2 82 2.97 2.96×106 7.04 15.74 1.183 10.165 1.253 8.245
moderate 2 ≤ R < 5 215 1.99 9.38×107 5.43 22.15 1.214 11.857 1.212 8.810
heavy 5 ≤ R < 10 112 1.17 3.20×106 3.94 24.33 1.239 12.969 1.222 9.280
very heavy 10 ≤ R < 20 42 0.39 5.92×103 2.74 25.49 1.276 15.369 1.196 10.696
extreme R ≥ 20 29 -0.63 1.78×103 1.55 35.88 1.343 18.133 1.192 13.445

PW
S

very light R < 1 6 3.84 3.39×104 6.15 6.78 1.16 13.92 1.223 13.322
light 1 ≤ R < 2 61 3.26 5.29×104 5.27 10.13 1.175 14.687 1.187 11.997
moderate 2 ≤ R < 5 201 2.59 1.91×107 4.20 12.56 1.195 17.258 1.176 12.602
heavy 5 ≤ R < 10 168 2.32 2.78×106 3.50 14.65 1.202 19.013 1.168 12.702
very heavy 10 ≤ R < 20 75 1.72 3.31×103 2.65 16.90 1.223 20.846 1.155 14.401
extreme R ≥ 20 50 0.67 1.11×103 1.69 19.48 1.264 20.879 1.156 15.430

Table A2: Variation of DSD parameters and power law coefficients according to the type of rainfall (R = maximum
value of 10 minute moving average)
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Appendix A.3. UM plots of dry event as an ensemble for all fields

UM plots of dry events at RW-Turb mast, location 1: all fields at resolution of 15s (in section 3.1)

Figure A2: UM plots of rain events from 11 Dec 2020 to 03 June 2021 (6 months) for all fields studied at the lowest
instrumental resolution of 15 s (except for Rain rate at 30s). Ensemble of 213 events at a sample size of 128 (32min),
fluctuations of the field were used for station fields while direct field for rest; spectral plots here are from direct data.
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Figure A3: UM plots of dry events from 11 Dec 2020 to 03 June 2021 (6 months) for a) wind velocity and b) power
available studied at the lowest instrumental resolution of 1 Hz. Ensemble of 213 events at a sample size of 2048 (≈
32min); α was estimated from the slope of DTM curve at η = 0. FIF of the field was used; spectral plots here are from
direct data.
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Appendix B.1. Internship co-supervision during PhD

During PhD research, I co-supervised internship projects of Mateus Seppe Silva and Rodrigo
Vieira Casanova Monteiro at HM&Co laboratory. Dr. Auguste Gires was the main supervisor of
the projects.

The objective was to compare rain measurements from disdrometers and mini doppler radar
(from meteorological station) using multifractal tools. The data from meteorological mast at pays
d’Othe wind farm, from RW-Turb project (section 1.1.3) was used for this purpose. Using UM
framework, the devices were compared between individual rain events and as an ensemble. The
analysis considered the measurement differences between devices at two vertical locations along
with the influence Dm and wind has on it. Below is the abstract accepted at EGU General Assembly
2023 (https://egu23.eu, session HS7.1) from this work.

EGU23-706 : Multi-scale comparison of rainfall measurement with the help of a disdrom-
eter and a mini vertically pointing Doppler radar

Mateus Seppe Silva2, Rodrigo Vieira Casanova Monteiro2, Jerry Jose1, Auguste Gires1, Ioulia
Tchiguirinskaia1, Daniel Schertzer1

1HM&Co, École des Ponts ParisTech, 77455 Champs-sur-Marne, France
2Military Institute of Engineering (IME), Rio de Janeiro, Brazil

Local rainfall measurements can be done in a significant range of methods which rely on very
different underlying measurement concepts and assumption. As an illustration, mechanical rain
gauges collect small rainfall amounts, optical disdrometers assess size and velocity of each drop
passing through a sampling area while Doppler sensors derive a rain rate from estimated average
fall velocity. Hence, the quality of the measurements can vary a lot, depending on factors such as
rain drop drop size, wind velocity, rain rate etc. Understanding the differences between various
technologies enables to determine the most reliable device depending on each raining condition.
This research aims to compare the performance of two of those devices: the optical disdrometer
Parsivel2 (manufactured by OTT) and a mini Doppler radar part of a mini Meteorological Station
(manufactured by Thies). The comparison was done with two research focuses: by evaluating the
scaling features of the fields measured by both instruments utilizing the framework of Universal
Multifractals (UM) to have a performance assessment valid across scales and not only a separated
scales, and by analyzing the influence of physical parameters namely drop size, wind velocity and
rainfall rate in the performance of the devices.

https://egu23.eu
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The data used was collected on a meteorological mast located in the Pays d’Othe wind farm,
110km southeast of Paris. This measurement campaign is part of the RW-Turb project (https:
// hmco.enpc.fr/portf olio-archive/ rw-turb/ ; supported by the French National Research Agency
(ANR-19-CE05-0022). The mast is operated with two sets of devices, one around 75m of height
and the other around 45m. The observation time steps of the Parsivel2 is of 30 seconds and it mea-
sures full binned drop size and velocity distribution, while the mini station provides data (rainfall,
2D wind, temperature, pressure, humidity) with 1 second time step. In general the mini-doppler
radar is found to measure smaller amount of rain with regards to the Parsivel2. More precisely,
we found that the mini doppler radar returned very low rain measurements when subjected to rain
conditions with bigger mean drop size (Dm), and that heavy wind was related to a non-detection
of the field in situations with light rain. Scaling analysis enabled to show that mini Doppler radar
exhibited white noise from observation scale smaller than 4s. Hence, it was used only with large
time steps. UM analysis also revealed different scaling behaviour for mini Doppler radar rain data
at finer temporal resolution than that of Parsivel (30 s).

keywords: rainfall; wind; disdrometer; Doppler radar; multifractal; drop size

Session HS7.1 – Precipitation variability from drop scale to catchment scale : measurement, pro-
cesses and hydrological applications (https://meetingorganizer.copernicus.org/EGU23/session/
45359)
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