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Résumé
Les bits quantiques, plus communément appelés "qubits", subissent encore trop d’erreurs dans
leurs implémentations actuelles pour pouvoir être assemblés en processeur quantique pertinent.
Ces erreurs sont de deux sortes : des erreurs de flips de bits (ou bit-flips), équivalentes aux
erreurs affectant les bits classiques, et des erreurs de flips de phase (ou phase-flips), intrinsèque-
ment dues à la nature quantique du qubit. Une stratégie originale pour contrer les bit-flips
consiste à encoder l’information quantique dans deux états stables d’un oscillateur qui échange
des photons par paires avec son environnement. La lignée de travaux dans laquelle s’inscrit cette
thèse a démontré que ce mécanisme spécifique de dissipation fournit de la stabilité sans induire
de décohérence qui détruirait les superpositions quantiques entre les états.
Ces travaux ont alors conduit à la conception d’un nouveau qubit basé sur ce mécanisme de
dissipation non-linéaire : le qubit de chat, implémenté au sein du champ d’une cavité résonante
réalisée dans un circuit supraconducteur. Augmenter le nombre de photons dans les états de la
cavité accentue la séparation inter-états permettant des temps de bit-flips macroscopiques même
pour un faible nombre de photons dans la cavité. En effet, il est important de rester dans un
régime à faible nombre de photons pour que le système soit compatible avec des superpositions
quantiques d’états, l’augmentation du nombre de photons accroissant par ailleurs la distingua-
bilité entre les états. Pourtant, même si des grands temps de bit-flips pouvaient être en principe
atteints, les réalisations expérimentales précédant cette thèse saturaient à des temps de l’ordre
de la milliseconde.
Le but principal de cette thèse est alors de maximiser le temps de bit-flip atteignable dans un
oscillateur pourvu de la dissipation à deux photons. À partir de la réalisation expérimentale pré-
existante, la démarche a été de retirer du prototype tout ce qui n’était pas essentiel au processus
de stabilisation à deux photons. Tout d’abord, le mécanisme d’échange à deux photons repose
sur un élément non-linéaire fait à base de jonctions de Josephson. Dans cette thèse, nous nous
sommes placés dans un régime à faible non-linéarités afin d’éviter de potentielles instabilités dy-
namiques du système. De plus, nous avons enregistré les trajectoires entre les états de la cavité
de la façon la moins invasive possible, en collectant simplement la fluorescence émanant de la
cavité. Toutefois, ces choix de conception de l’expérience ont abouti à un taux de dissipation à
un photon supérieur au taux de dissipation à deux photons, rendant caduques la préparation et
la mesure de superposition d’états quantiques.
Le résultat central de cette thèse est la démonstration expérimentale d’un temps de bit-flip de
100 secondes pour des états dans un oscillateur à dissipation à deux photons, contenant env-
iron 40 photons. Ainsi, cette expérience démontre que des temps de bit-flips macroscopiques
peuvent être atteints avec un nombre mésoscopique de photons dans la cavité, critère essentiel
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pour préserver la nature quantique de l’information stockée. Ce travail constitue un point de
référence pour les futures implémentations qui pourront revenir progressivement dans un régime
où le taux de dissipation à deux photons dépasse celui des pertes dissipatives à un photon, ce qui
permettra d’exploiter totalement la nature quantique de l’oscillateur à deux photons. Dès lors,
les bit-flips étant corrigés de façon continue et autonome, il restera à utiliser les ressources de la
correction d’erreur quantique pour éradiquer les flips de phase, seul canal d’erreur restant. Les
performances démontrées dans cette thèse permettent ainsi d’envisager une réalisation concrète
de la feuille de route menant à un ordinateur quantique universel à base de qubits de chats.

Mots clés : Correction d’erreur quantique, Circuits supraconducteurs, Jonction Josephson
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Abstract
Current implementations of quantum bits, also commonly called qubits, continue to undergo
too many errors to be scaled into useful quantum machines. An emerging strategy is to encode
quantum information in the two meta-stable pointer states of an oscillator exchanging pairs
of photons with its environment, a mechanism shown to provide stability without inducing
decoherence. This strategy is at the core of a recent qubit, called the cat-qubit, which is
embedded in the cavity field of a superconducting resonator with tailored interaction with its
environment. Adding photons in these states increases their separation, and macroscopic bit-
flip times are expected even for a handful of photons, a range suitable for quantum information
processing. However, the bit-flip time demonstrated in previous experimental realizations have
saturated in the millisecond range.
The primary goal of this thesis work is to maximize the bit-flip time in a two-photon dissipative
oscillator, by stripping the circuit from everything we can afford and noticing how much the
bit-flip time can be increased. First, the two-photon exchange mechanism is based on a non-
linear circuit element made out of Joesphson junctions. In this thesis work, this circuit element is
designed in a low nonlinearity regime in order to circumvent all suspected dynamical instabilities.
Morevover, we employ a minimally invasive fluorescence detection tool to record the individual
oscillator state trajectories. These choices come at the cost of a two-photon exchange rate
dominated by single-photon loss, hence losing our ability to prepare quantum superposition
states and measuring the phase-flip rate.
The main result of this thesis is the experimental demonstration of bit-flip times exceeding
100 seconds for computational states pinned by two-photon dissipation and containing about
40 photons. This experiment demonstrates that macroscopic bit-flip times are attainable with
mesoscopic photon numbers in a two-photon dissipative oscillator. This thesis work is a solid
foundation for future experiments that can gradually enter the regime suitable to implement a
qubit where two-photon loss is the dominant dissipation mechanism. This experimental work
supports the strategy of eradicating bit-flip errors continuously and autonomously at the single
qubit level, and reserving the costly arsenal of measurement based quantum error correction
to address the only significant remaining error: phase-flips. This work paves the way for cat-
qubit based universal set of gates and phase-flip error correction, in line with the roadmap for
a universal quantum computer.

Keywords : Quantum Error Correction, Superconducting circuits, Josephson junction
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Résumé en français

Ce chapitre introductif rappelle tout d’abord des généralités à propos de l’étude des systèmes
dynamiques et plus particulièrement sur la notion de stabilité, notion clef de ce domaine. Dans
ce cadre, ce travail de thèse se focalise sur une classe spécifique de systèmes appelés oscillateurs
paramétriques. L’étude des oscillateurs paramétriques révèle une physique très riche, avec des
comportements drastiquement différents selon les régimes de paramètres. Ce chapitre aborde
alors les conditions de stabilité dans le cas d’oscillateurs paramétriques linéaires et non-linéaires.
Les oscillateurs paramétriques peuvent donc être utilisés pour de nombreuses applications :
l’amplification paramétrique est une des plus connues et est décrite dans la suite.
Ce travail de thèse porte sur un système dynamique non-linéaire présentant deux états stables
spécifiques, pouvant servir de support d’information quantique. L’objectif de cette thèse est de
stocker de manière robuste de l’information quantique dans un oscillateur paramétrique non-
linéaire implémenté dans un circuit supraconducteur. Ainsi, ce chapitre rappelle d’abord le cadre
de l’informatique quantique à base de circuits supraconducteurs. Puis, un mécanisme spécifique
de stabilité compatible avec la nature intrinsèquement fragile de l’information quantique est
exhibé. Ce mécanisme est implémenté au sein de l’oscillateur muni de la dissipation à deux
photons, qui est le système au cœur de ce sujet de thèse. Finalement, ce chapitre expose le
cadre théorique et expérimental des études précédentes sur l’oscillateur muni de la dissipation
à deux photons avant d’annoncer un plan du manuscrit.
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1. Dynamical systems and stability notions

Mechanisms for regulating and adjusting systems are common in nature and are central to
the operation of many technologies and engines. A typical example of such systems is the Watt
governor, invented during the industrial revolution in the 18th century to regulate the operating
speed of a steam-engine. In 1868, the physicist James Clerk Maxwell published a mathematical
analysis of this governor system [1]. This paper is considered as a foundation for mathematical
systems theory, which has gradually evolved over centuries and scientific progress. Dynamical
system study is complex and rich and continue to play a major role in science and engineering
today. A fundamental notion of this theory is stability which predicts whether the system can be
maintained in the vicinity of a predefined state despite the presence of external perturbations.
This thesis work focuses on a system hosting two stable states in order to store quantum infor-
mation. The first challenge is identifying stability mechanisms. Two ingredients are essentials
for stabilizing a system in a relevant state: losses to the environment and a power supply. We
focus here on a subset of systems known as parametric oscillators in which energy is supplied by
modulating a parameter of the oscillator. Thanks to this specificity, parametric oscillators are
hosting rich physics, with many applications, the most well-known of which is parametric am-
plification. Taking nonlinearities into account in those oscillators reveals multiple stable states
suitable for information storage.
The second obstacle lies in the quantum nature of the information we want to store. Indeed,
quantum information is inherently fragile and we must engineer a mechanism that provides
stability without blurring quantum information. This thesis work focuses on a specific dissipa-
tion mechanism that simultaneously stabilizes two states while remaining compatible with their
quantum superpositions.
This thesis work presents an experimental implementation of this mechanism using supercon-
ducting circuits. Performances demonstrated in this thesis provide a solid foundation for using
this mechanism in future quantum computing applications.

1 Dynamical systems and stability notions

First, let us recall some basic notions of mathematical systems theory. These notions can be
found in many textbooks about system dynamics, in the following we refer to [2].
A dynamical system is represented by a vectorial differential equation

d

dt
x̂ = f(x̂, t) (1.1)

where x̂ ∈ Rn stores the states variables and f is a function from Rn × R+ → Rn. If the f

function does not depend on time, the system is said to be stationary.

1.1 Steady states

The notion of equilibrium state, also called steady state, is central in the study of dynamical
states. A state x̄ is a steady state when the differential system (1.1) initialised at this point
x̂(t = 0) = x̄ remains in this state for all times.

3



1. Dynamical systems and stability notions

Stability notion An important notion is the stability of the steady state. An equilibrium
point is stable if a small initial perturbation results in only small deviations for all subsequent
times, that is to say the system stays close around this point. In the contrary case, a steady
state is said to be unstable.
It is also important to study the trajectory of the system around the steady state. Indeed,
there are multiples ways of evolving towards a steady state (fast convergence, cycling around
the steady state,..). Mathematical tools and criteria have been developed in order to easily
characterize the asymptotic evolution given a dynamical equation.

1.2 Example on the driven harmonic oscillator

The harmonic oscillator example lies at the heart of physics since it can represent first-order
simplifications of a system’s behavior around its stable position. Normalized position and mo-
mentum coordinates, x and p are used to parameterize the oscillator state. The harmonic
oscillator has a natural frequency ω0/2π and internal losses due to a finite quality factor Q. We
consider here that it is driven at frequency ωd/2π, with a drive strength of ϵ. The differential
equations of the harmonic oscillator dynamics are

ẋ = p , ṗ = −ω2
0x − ω0Q−1p + ϵ cos(ωdt) . (1.2)

When this system is not driven (ϵ = 0) it has one steady state which is the (x = 0, p = 0)
state. The losses help to bring the oscillator system to this state: they contribute to stabilize
the system. In order to stabilize non-trivial states, we can turn on the drive. Exciting the
oscillator at its natural frequency is the most efficient way to drive it. In the following, we will
only consider the case where: ωd = ω0.

Poincaré maps The Poincaré map is a convenient way to visualize the system’s dynamics
and asymptotic behavior. We are going to introduce the Poincaré maps through the study case
of the driven damped oscillator.
Looking at the system dynamics (1.2) we can see there are three variables (x, p, t). We can con-
sider the time evolution of the system as a 3D trajectory in this coordinates space. Plus, since
ωd = ω0, the dynamical equation is 2π

ω0
periodic in time. In these conditions, it is convenient to

only consider the intersections of the trajectories with a section of phase-space when studying
the dynamics of the system. We choose here the section (x, p, t = 0). We can define the Poincaré
map on this section, which is the application defined from the section to itself, that maps a point
of intersection to the next one in time. This is very useful in studying the existence of stable
periodic orbits: the fixed points of a Poincaré map are periodic orbits of the full dynamics.
Figure 1.1 shows the intersection of the Poincaré section t = 0 with typical trajectories of dy-
namical system (1.2). It has a single limit orbit, and the size of that orbit is determined by the
ratio between the drive strength and the damping rate.
This example brings out the two ingredients we will be experimenting with for systems’ stabi-
lization. The losses are critical for system stability. However, a drive, which is an energy input

4



2. Parametric oscillator
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Figure 1.1: Visualization of the dynamics of a driven damped linear oscillator. Intersection of
typical trajectories of the dynamical system with Poincaré section t = 0. Each trajectory is
represented by a set of 10 points with fading color. The color of the point is darkening as the
time increases: the time is indicated in the color scale in units of period of the system ω0/2π.The
dynamics is numerically simulated using the equation (1.2) and the following parameters: natural
pulsation ω0 = 1 rad.s−1, losses Q−1 = 5 × 10−3, drive pulsation ωd = ω0 and drive amplitude
ϵd = 2.5 × 10−3. We have chosen a regime parameters in order to clearly visualize the dynamics,
especially conditioning the losses rate with respect to the natural frequency. We have chosen to
represent up to 10 periods in order not to overload the plot.

in the system, is required to prevent losses from bringing the system to a trivial steady state. In
the following, we are going to study the interplay between those two elements in various types
of driven oscillators, using the Poincaré section representation.

2 Parametric oscillator

Parametric oscillator is the generic name for an oscillator from which one parameter is modu-
lated during the evolution. A child on a swing is the most common illustration of parametric
oscillator. Indeed, a child swinging can be assimilated to an oscillating pendulum. When the
child periodically stretches and folds their legs, they effectively changes their mass position along
the swing rope. Since the position of the mass along the pendulum rod determines the natural
frequency of this oscillator, the movement of the child periodically modulates the natural fre-
quency of the oscillator.
Parametric oscillator are hosting rich physics, with drastically different behaviors depending on
the parameter regimes. They are used in many areas in physics and in particular for amplifica-
tion as it is discussed it in Section 3. In this case, the energy input is provided in a different
manner than in the previous driven oscillator example. We are going to investigate the condi-
tions that provide stability in such parametric oscillators. These results will be exploited in the
following sections.
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2. Parametric oscillator

2.1 Linear parametric oscillator

First, we study a linear parametric oscillator with damping. We describe an oscillator whose
resonant frequency ω0 is periodically modulated at frequency ωp with driving amplitude ϵ. In
the lossless case, the dynamics of the oscillator is described by the Mathieu equation [3]

ẋ = p , ṗ = −ω2
0
(
1 + ϵ cos(ωdt)

)
x . (1.3)

Taking into account the phenomenon of losses at a rate Q−1 leads to the following equation

ẋ = p , ṗ = −ω2
0
(
1 + ϵ cos(ωdt)

)
x − ω0Q−1p . (1.4)

We refer to [4] for the study of these equations. The equation (1.4) with losses can be reduced
to Mathieu equation (1.3) using an auxiliary function.
Floquet theorem implies that the time dependent solution of equation (1.3) writes for times t

x(t) = exp(ict)g(ωpt) (1.5)

where g is a 2π periodic function and c is the Mathieu exponent that can be solved numerically.
This c exponent determines the stability of the solution, resulting in Figure 1.2 which exhibits
the stable and unstable zones depending on the drive amplitude ϵ and the drive frequency ωp.
Instability lobes appear at ωp = 2ω0/n, n ∈ N and broaden for increasing parametric drive am-
plitude ϵ. The instability lobes are shifted to larger ϵ values when dissipation is added, reducing
the size of the unstable zone. We should highlight that contrary to the driven damped harmonic
oscillator, there are still parameters regions where the system is unstable with exponentially
growing amplitudes.
Going back to the example of the child on a swing, by stretching and folding their legs, the child
parametrically drives the swing. The modulation is being performed spontaneously by the child
at a frequency that is twice the natural frequency of the oscillator. In this regime of modulation
parameters, Figure 1.2 shows that we are in an unstable zone for zero amplitude solution for
small drive amplitude. As a result, the amplitude of swing oscillations increases efficiently under
the child action. Parametric oscillator can be seen as transferring energy of parametric excita-
tion to the resonant mode of the system. Therefore, one of they major application is dedicated
to amplification.
Figure 1.3 brings out the difference on the stable and unstable regions for a parametric oscil-
lator driven at frequency ωp = 2ω0. Depending on the strength of the parametric drive, the
solution either exponentially converges to zero or diverges towards x = ±∞ (the dissipation rate
is staying the same). This behaviour with exponential amplitude greatly differs from the driven
damped oscillator of the previous section.

2.2 Nonlinear parametric oscillator

We keep on focusing our analysis on the first instability lobe with frequency ωp = 2ω0. Our
goal is now to investigate the effect of nonlinearities on parametric oscillators and to study how
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2. Parametric oscillator

Figure 1.2: Stability diagram of the parametric oscillator as a function of inverse driving fre-
quency 2ω0/ωd and driving strength ϵ in the lossless case Q−1 = 0 (light grey) and for Q−1 = 0.2
(dark grey). In the grey region the zero amplitude solution is unstable. Instability lobes appear
at 2 ω0/ωd = n, n ∈ N. The damping shifts the lobes to higher driving amplitudes. This figure
is courtesy of Toni Heugel, extracted from [4].
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(a) Parametric drive amplitude: ϵ = 0.02
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(b) Parametric drive amplitude: ϵ = 0.05

Figure 1.3: Visualization of the dynamics of a lossy linear parametric oscillator driven at twice its
natural frequency, with different parametric drive amplitude. Intersection of typical trajectories
of the dynamical system with Poincaré section t = 0. Each trajectory is represented by a set of
10 points with a darkening color as the time increases. The dynamics is numerically simulated
using the equation (1.4) and the following parameters: natural pulsation ω0 = 1 rad.s−1, losses
Q−1 = 5 × 10−3, parametric drive pulsation ωd = 2ω0.
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2. Parametric oscillator

they can stabilize the system to a finite amplitude. Indeed, the diverging solution of Figure 1.3
is unphysical: in a real system nonlinearities prevent the divergence towards infinite amplitudes
at some point.

Kerr type oscillator A first type of existing nonlinearity consists in the detuning of the
natural frequency with the amplitude of oscillation. When the amplitude increases, the resonator
frequency shifts while the parametric drive frequency remains constant. The parametric driving
is detuned, making it less efficient and preventing oscillations amplitude from diverging. This
nonlinearity is known as Kerr type because it corresponds to the Kerr effect in optics, discovered
in the 19th century by the Scottish physicist John Kerr. The system is described by the following
equation of motion, with α being the amplitude of the nonlinearity [4, 5]

ẋ = p , ṗ = −ω2
0 (1 + ϵ cos(2ω0t)) x + αx3 − ω0Q−1p . (1.6)

Figure 1.4 depicts the system dynamics. The parameters of the losses and the parametric drive
are the same as in the diverging case of Figure 1.3. Here, the nonlinearity implies that the
system will settle to a stable state with an amplitude in between zero and infinity. There are
three fixed points: one is the trivial zero amplitude one and the other two are stabilized by the
natural damping of the oscillator. These two limit cycles are located at the same distance from
the origin (x = 0, p = 0), that is to say, they have the same energy. This location is determined
by the relative strengths of parametric driving, nonlinearity and system losses, as illustrated by
the comparison of the three cases in Figure 1.4 where the steady point position varies with the
α and Q−1 values.
Stability is ensured by regular energy damping and this is the main flaw of this oscillator. When
comparing Figure 1.4a and 1.4c, it is appears that higher losses contribute to higher rate of
convergence. Thus, if we want to boost the convergence rate towards the steady state, we have
to increase the loss rate and thus deteriorate the quality factor of the resonator. This strategy
does not favor encoding quantum information in this oscillator, as we will explain in the Kerr
oscillator paragraph of Section 2.

Nonlinear dissipation A second type of nonlinearity exists when the losses scale with the
amplitude of the oscillation. The nonlinearity amplitude is noted here η and the system dynamics
is [4, 5]

ẋ = p , ṗ = −ω2
0 (1 + ϵ cos(2ω0t)) x − ω0Q−1p + ηp3 . (1.7)

As in the previous case, Figure 1.5 exhibits three limit cycles. We recover the trivial zero
amplitude state and the two limit cycles with the same amplitude. The comparison of the three
parameters regimes reveals that the amplitude of the limit orbits depends on the relative strength
between the nonlinearity factor η, the losses, and the parametric drive amplitude. Contrary to
Figure 1.4, increasing the losses does not contribute to higher rate of convergence towards the
steady states: it simply changes the location in (x, p) space of the limit cycles. Moreover, the
fact that these states are indistinguishable by the drive is an important feature for the quantum
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3. Parametric amplification
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(a) α = 0.02, Q−1 = 5 × 10−3
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(b) α = 0.01, Q−1 = 5×10−3
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(c) α = 0.02, Q−1 = 10−2,

Figure 1.4: Visualization of the dynamics of a lossy Kerr nonlinear parametric oscillator driven
at twice its natural frequency, with different ratios between nonlinearity factor and losses. In-
tersection of typical trajectories of the dynamical system with Poincaré section t = 0. Each
trajectory is represented by a set of 10 points with a darkening color as the time increases. The
dynamics is numerically simulated using the equation (1.6) and the following parameters: nat-
ural pulsation ω0 = 1 rad.s−1, parametric drive pulsation ωd = 2ω0, parametric drive amplitude
λ = 0.02. The losses factor and nonlinearity α are indicated below each plot.

version of the oscillator. This nonlinearity is equivalent in quantum version to a two-photon
dissipation as we are going to discuss in Section 4.
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(a) η = 0.01, Q−1 = 5 × 10−3
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(b) η = 0.02, Q−1 = 5 × 10−3
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(c) η = 0.01, Q−1 = 10−2

Figure 1.5: Visualization of the dynamics of a lossy nonlinear parametric oscillator driven at
twice its natural frequency, with different ratios between nonlinearity factor and losses. Intersec-
tion of typical trajectories of the dynamical system with Poincaré section t = 0. Each trajectory
is represented by a set of 10 points with a darkening color as the time increases. The dynamics is
numerically simulated using the equation (1.7) and the following parameters: natural pulsation
ω0 = 1 rad.s−1, parametric drive pulsation ωd = 2ω0, parametric drive amplitude λ = 0.02. The
losses factor and nonlinearity η are indicated below each plot.

3 Parametric amplification

The rich dynamics of parametric oscillators makes them versatile systems. One of their most
common application is domain of amplification. Indeed, parametric oscillation is a way of trans-
ferring energy from parametric excitation to the resonant mode of the system. This can be used
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3. Parametric amplification

for amplifying signal via parametric amplification. In this section, we first introduce the histor-
ical background of technological development of devices that perform parametric amplification.
The principle of parametric amplification is then presented with emphasis on two applications:
one in optical domain with optical parametric oscillators and the other in Radio Frequency (RF)
domain with superconducting circuits.

3.1 History of parametric amplification

This subsection is based on the historical notes of [6, 7]. Parametric oscillators were first studied
by Faraday, Melde and Rayleigh on mechanical systems in the 19th century [8]. This then led to
early 20th century applications using electronic circuits to amplify and transmit radio signals.
Thus, for instance, before World War I an electrical circuit with a varying inductance was used
in radio telephonic communication between Vienna and Berlin [6]. This paved the way for the
development of electronic parametric amplifiers throughout the twentieth century: parametric
amplifiers based primarily on modulation of the capacitance of varactor diodes were widely
used in RF domain. However, they were competing with other technologies in terms of gain
and noise performance at microwave frequencies. In the 1970s, the transistor technology became
sufficiently advanced to replace the parametric amplifiers for amplification in microwave domain.
Despite this, research on microwave-frequency parametric amplifiers has continued leading to
current superconducting circuits applications. Concomitantly, parametric amplification in the
optical frequency range has been studied and optical parametric amplifiers are used for variety
of optics applications, as described in the dedicated subsection.
The first parametric device based on a tunable inductance out of a Josephson junction has
been created in 1975 [9]. With the development of quantum information, the need for low-noise
amplifiers to enable highly efficient microwave measurements of quantum circuits has shifted the
spotlight on superconducting parametric amplifiers. [10] is the first experimental application of
a parametric amplifier for the dispersive readout of a qubit, observing quantum jumps of the
qubit. Furthermore, numerous experimental results have demonstrated quantum-limited noise
performance for Josephson junction based parametric amplifiers [11, 12, 13, 14].

3.2 General principle of parametric amplification

Parametric oscillators can be used in electronics or mechanical systems for signal amplification
or high-precision sensing and detection. This subsection is mainly based on reviews made in [7,
15, 16].
Going back to Section 2, studying the behavior of parametric oscillators under different param-
eters regime reveals the possibility of amplification in specific parameter regimes. Hereafter, we
introduce the general principles and terms of parametric amplification.
The modulating excitation is called the pump, at frequency fp. This pump couples two modes
called, the signal at frequency fs and the idler at frequency fi. Parametric excitation, in a sense,
stimulates the transfer of energy from the pump to the signal. The remaining energy is routed
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3. Parametric amplification

to another mode known as the idler. The frequency are linked by1

fp = fs + fi . (1.8)

This equation expresses the energy conservation, which is evident when both sides of this equa-
tion are multiplied by the Planck constant h.

Degenerated and non-degenerated amplification When the frequency of the signal and
the idler are the same we call a parametric amplifier degenerated: fs = fi. In this case, the
amplification is phase-sensitive, which means it can only amplify one quadrature. We recall the
most famous classical illustration of parametric amplification: the child on the swing. Whenever
the child reaches the maximum swing excursion, they bend or stretch their legs causing the
natural frequency of the oscillator (composed of the swing and the child) to change. The
signal and idler modes have the same frequency in this case (they correspond to the swinging
movement with opposite phase). This pumping is performed empirically by the child at twice
the natural frequency. They inject energy into the system at precisely the right time, resulting
in amplification. Conversely, if the child moves their legs at the wrong time, energy is drawn
out of the system, resulting in deamplification. Consequently, this example demonstrates the
phase-sensitivity for degenerate parametric amplification. In the quantum limit, degenerated
parametric amplification can be really useful for noiseless amplification. This regime is discussed
in greater detail in the subsection devoted to Josephson parametric amplification (see Subsection
3.4).
Conversely, when the signal and the idler have a different frequency we call a parametric amplifier
non-degenerated: fs ̸= fi. The amplification in this case is phase-preserving: both signal
quadratures are amplified with the same gain. This case will also be discussed in greater detail
in Subsection 3.4.

3.3 Optical parametric oscillators

In optics, the application of parametric amplification is embedded in Optical Parametric Os-
cillators (OPO) devices. They are based on the use of dielectric materials in which nonlinear
optical processes arise from the non-harmonical response of electric dipoles in the media when
submitted to a strong electrical field [17]. Optical parametric oscillators are devices that can
convert the frequency of the light emitted by a laser to another frequency, while preserving
essential light properties such as temporal and spatial coherence. The generated frequencies can
be tuned by adjusting the phase matching condition, which is based on the dependence of the
indices of refraction upon the crystallographic orientation, temperature, light polarization, and
even mechanical strain [18].
As explained in the previous section, when the signal wave is incident together with the pump
on the nonlinear crystal, the signal is amplified while the pump is depleted. At the same time,

1In this case, the amplifier is called a three-wave parametric amplifier. Four-waves parametric amplifier can
exist and the frequencies are linked in this case as: fp + fp = fs + fi.
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3. Parametric amplification

an idler wave is generated at the difference frequency. Their respective frequencies match the
equation (1.8). It can also be interpreted as a pump photon splitting into a signal photon and
an idler photon. An OPO is realized by inserting the nonlinear crystal into an optical cavity.
The signal and idler are amplified further during each round trip in the optical cavity.
There are two types of OPOs: continuous-wave OPOs and pulsed OPOs. Five years after the
invention of laser, the first optical parametric oscillator was demonstrated in 1965 [19]. OPOs
are used as a coherent light source in many applications, such as in spectroscopy where lasers
cannot reach the infrared range. They are also widely used in quantum optics, as a reliable
source of squeezed light and entangled states of light, for a variety of quantum communication
and quantum computing applications.

3.4 Josephson Parametric Amplifier

Parametric amplification is also used in Josephson junction based circuit devices. Based on the
reviews [15, 20, 21, 22], this subsection introduces the Josephson parametric amplifier.

Need of amplification in the quantum limit The development of quantum computing
processing using superconducting circuits goes with a need of low-temperature low-noise am-
plifiers. Since microwave quantum signals typically contain only a few photons, they must be
amplified to achieve acceptable signal-to-noise ratios. Moreover, to protect the qubit from un-
wanted back-action, one way flow of information through the amplification channel must be
ensured: this falls under the property of nonreciprocity. In this frame, parametrically coupled
systems can be used to generate nonreciprocal behavior [23, 24].

Josephson devices for amplification Modern low-noise microwave amplifiers are based on
superconducting Josephson parametric devices and they allow to reach the standard quantum
limit of amplification. A typical example of such a device is the flux-driven Josephson Para-
metric Amplifier (JPA) [25]. In this case, the JPA is composed of a superconducting quantum
interference device (SQUID) combined with a coplanar waveguide resonator. The SQUID is
made up of two Josephson junctions connected in a loop and can be flux-driven by an exter-
nal magnetic field applied to the loop. Thus, it functions as a lossless flux-tunable inductance.
First, a static DC-flux can be used to thread the loop and tune the resonator’s eigenfrequency.
In addition, a strong RF-flux drive at twice the resonant frequency is used to activate parametric
amplification, as previously explained. As a result, weak quantum signals incident at the JPA
are amplified. This example is one of the many designs and modes of operation for Josephson
parametric amplifiers that have been developed to improve the amplification performances (see
for example [26, 27, 28]).
The fact that this device is nonlinear is an important feature. It falls under the results of Section
2 in the nonlinear case analysis. Accordingly, since it is driven at ωp = 2ω0 the drive amplitude
has two regimes. If the drive amplitude is less than a certain threshold, only one steady state
exists, and the JPA is used as an amplifier. On the contrary, if the drive amplitude exceeds
the threshold, there are two steady states with opposite phases that are a precious resource for
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4. Macroscopic bit-flip time in a two-photon dissipative oscillator

amplification or information storage as we will see later. In the amplifier regime, the paramet-
ric amplification can be degenerated or non-degenerated and the JPA can be used for different
purposes.
This parametric amplification mechanism can also be exploited to generate quantum signals in
the form of squeezed vacuum states. More generally, parametrically driven Josephson based
devices can serve as a rich investigation platform to better understand the complex nonlinear
dynamics of Josephson parametric oscillators [16, 29, 30] or even to study the dynamical Casimir
effect [31].

Non degenerate amplification The frequency of the input signal differs from the frequency
of the idler: fs ̸= fi. Both quadratures are amplified equally in this situation and the JPA
serves as a phase-preserving amplifier. Due to the standard quantum limit, phase-preserving
amplifiers must add at least 1/2 of photon of quantum noise in the amplified signal [32]. The
JPA achieves this limit with excellent noise performances and are commonly used as low-noise
amplifiers of microwave signals in the GHz regime (for examples of high-performances JPA, see
[13, 14]).

Degenerate amplification The signal and idler have the same frequency in this case: fs = fi.
The JPA functions as a phase sensitive amplifier, amplifying the two quadratures with different
gains. In this case, JPAs allow for amplification on one quadrature without adding any additional
noise to the signal (since in this case we are only interested in one quadrature, the noise can
be "thrown away" in the other quadrature [32]). Experiments have demonstrated that JPAs
can phase-sensitively amplify weak microwave signals with a noise performance reaching the
standard quantum limit [33].

Amplification thanks to phase detection Above the drive amplitude threshold, the JPA
behaves like a Josephson parametric phase-locked oscillator, with two dynamical coherent states
inside the oscillator [34]. This device can be used as a sensitive phase detector, and switching
between these states has been used for amplification for a long time [35, 36].

4 Macroscopic bit-flip time in a two-photon dissipative oscilla-
tor

The precedent sections have demonstrated that a nonlinear dynamical system that interacts
with its environment in a specific way exhibits a rich dynamical phase space hosting multiple
stable steady states. As stated above, this can be beneficial for the amplification domain in both
the classical and quantum worlds. This section now focuses on a different application. In this
thesis work, we use those properties to store quantum information in a nonlinear parametrically
driven oscillator implemented in a superconducting circuit.
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4. Macroscopic bit-flip time in a two-photon dissipative oscillator

4.1 Quantum information with superconducting qubits

Quantum information is stored on a two-level quantum system, called qubit, that is the quantum
equivalent of a classical bit. The main distinction between a quantum bit and a classical bit,
is that a quantum bit can be in a superposition of its two basis states, |0⟩ and |1⟩ also referred
to as the computational basis. Due to the coupling to its environment the qubit is plagued by
errors that should be corrected. The first type of error is a bit-flip error, which is equivalent to
the classical bit-flip error in that it inverts the |0⟩ and |1⟩ states. The second type of error is
a phase-flip error, which typically swaps the |0⟩ + |1⟩ state to |0⟩ − |1⟩ state. These errors are
inherent in the quantum nature of the qubit and have no classical equivalent.
Quantum Error Correction (QEC) is a protocol developed in the 1990s in order to fight against
those errors. It entails encoding quantum information across large ensembles of qubits rather
than in a single qubit. By periodically detecting and correcting errors, the ensemble, called a
logical qubit, is more stable than each individual part. The hardware overhead which quantifies
the number of physical qubits required to encode a single logical qubit is the key parameter in
QEC. Nowadays, experimental implementations are still on a race to decrease this overhead.

Superconducting qubits The development of quantum information came along with differ-
ent promising physical supports for storing quantum information, such as electronic or nuclear
spins [37], trapped ions [38], ultra-cold atoms [39, 40], or photons [41, 42]. In this thesis, we con-
sider the qubit implementation in superconducting circuits. Quantum information is encoded in
natural microscopic quantum systems in all of the implementations mentioned above. Supercon-
ducting qubits, on the other hand, are macroscopic in size and the superconducting properties
are essential for creating collective motions of the current carriers, leading to quantization of
energy levels of those circuits [43]. The typical electromagnetic modes of superconducting cir-
cuits are in frequency range of GHz and have a naturally excellent quality factor thanks to
superconductivity. The Josephson junction, which functions as a nonlinear inductor compo-
nent, is another essential component of superconducting circuits. This component provides an
easily tunable nonlinearity and brings non-trivial dynamics to the circuits without inducing
dissipation. Superconducting circuits are patterned on typical micrometer dimensions using
lithography techniques and gaining from the expertise of semiconductor industry. Working in
the GHz frequency range also benefits from the RF-industry know-how.

4.2 Nonlinear parametric oscillators as logical circuit elements

Recent experimental advances have rekindled interest in parametric oscillators in both the clas-
sical and quantum regimes. This subsection describes various types of nonlinear parametric
oscillators that are used to store information. The key issue in storing quantum information is
to find a stabilization mechanism that is compatible with quantum coherences.

Nonlinear parametric oscillator for classical information Nonlinear parametric oscil-
lating electronic devices were used to store digital information at the dawn of the digital era.
Indeed, we demonstrated in Section 2 that the nonlinearity of the parametric oscillator generates
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two stable oscillation states with equal amplitude and opposite phase. They can be considered
as elementary information units for computation and data storage, with one phase state labeled
as the "0" state and the other as the "1" state. Thus [44] has invented the "parametron" in the
1950s which is a logic circuit element made of nonlinear inductances of ferrite-core coils. This
device was widely used as a basic element in Japanese electronic computers at the time before
being surpassed by transistor elements [45].
The bistability of nonlinear resonators can also be exploited for ultra-low energy classical logic.
Theoretical proposal [46] suggests to implement photonic sequential logic by using optical Kerr
resonators containing a handful of photons, the binary logic gates being generated by interfer-
ence effects. Based on the same principle, [47] is an experimental realization of a latch2 in a
superconducting circuit for classical logic.

Schrödinger cat states as a quantum information storage resource In the traditional
QEC approach, the physical qubits are implemented in discrete two-level physical systems. Then,
the usual QEC schemes require a large number of ancillary systems and interconnected qubits.
These interconnections are the entry points for errors that are detrimental for the overall device
performance. A more resource-efficient method, on the other hand, is to encode a logical qubit in
the states in the phase-space of a single oscillator. This strategy is at the core of the corrections
codes denoted as bosonic codes [48], which include the binomial codes [49], the GKP codes [50]
or the four-legged Schrödinger cat codes [51]. Here, we focus on the two-legged Schrödinger cat
codes based on the superpositions of coherent states of the oscillator, with equal amplitude and
opposite phase (those states are denoted as the Schrödinger cat states, hence the code name).
If we note down |α⟩, the coherent state in the oscillator of complex amplitude α ∈ C, the qubit
computational basis is

|+⟩α ∝ |+α⟩ + |−α⟩ ; |−⟩α ∝ |+α⟩ − |−α⟩

|0⟩α = |+⟩α + |−⟩α√
2

= |+α⟩ + O(e−2|α|2) ; |1⟩α = |+⟩α − |−⟩α√
2

= |−α⟩ + O(e−2|α|2) .
(1.9)

Note that the amplitude squared of the coherent states corresponds to the number of photons
in the resonator n̄ = |α|2, and thus determines the size of the cat code. One main advantage
of the two-legged cat code is that it is intrinsically resilient to bit-flip errors as we will explain
in next subsection. It is called biased-noise since the other error type (phase-flip error) occurs
with a much higher probability than the bit-flip error. It is beneficial since the next QEC layer
only has to tackle one single type of errors.
Single photon losses are the dominant error for a quantum harmonic oscillator. As a result,
a cat state prepared in an undriven harmonic oscillator will leak out of the code space and
eventually decay to the vacuum state. At the very least, some energy input has to be provided
to maintain the cat state. We recover the two ingredients, losses and additional energy supply, as
we discussed previously. Nonlinearities are essential to implement an autonomous stabilization of

2A latch, or a flip-flop, is an electronic logical circuit. It has two states and it can be flipped from one state to
the other by an external signal.
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the cat states. Moreover this stabilization mechanism has to supply energy and evacuate entropy
from the system in a way that is entirely agnostic to the oscillator state. This autonomous
stabilization can be realized in two ways described in the following paragraphs. The article
[52] compares the strengths and weaknesses of both approaches and suggests a new efficient
confinement scheme inspired by both methods.

Kerr nonlinear oscillator The first strategy to stabilize the cat states relies on engineered
Hamiltonian. It is based on a Kerr nonlinear resonator endowed with two-photon driving [53].
This is the quantum equivalent of the nonlinear parametrically driven oscillator with dynamics
of equation (1.6). The cat states of equation (1.9) are exactly the degenerate states of the
Kerr nonlinear resonator under two-photon driving, even in presence of single photon losses. As
highlighted in Section 2, raising the single photon losses will increase the rate of convergence
towards the steady states. Large single photon loss rate, on the other hand, is detrimental
for the qubit coherences. This is why, this nonlinear oscillator has to be implemented in a
regime where the Kerr nonlinearities dominate over the single photon losses. This autonomous
stabilization scheme was implemented in a superconducting circuit in [54, 55]. This was realized
using a nonlinear superconducting resonator, with a nonlinearity provided by a Josephson based
component. In this experiment, a complete set of single-qubit gates were performed on timescales
faster than the shortest system coherence time. Readout of the qubit state in a quantum non-
destructive way in presence of the stabilization mechanisms was also demonstrated.

Two-photon dissipative oscillator The second strategy to stabilize the cat states is based
on engineered dissipation. Experiments [56, 57] were demonstrations of stabilization of a single
quantum state via a tailored interaction with an auxiliary dissipative system. Here, the challenge
is to stabilize all the superpositions of the computational basis states. It is realized in a nonlinear
resonator that only exchanges pairs of photons with its environment. This specific dissipation
pins down the cavity field on the cat states of (1.9) without affecting their quantum super-
positions. This mechanism is the quantum equivalent of the nonlinear parametrically driven
oscillator (see equation (1.7)). In this frame, the two stabilized states cannot be distinguished
by the parametric drive, which is essential for being compatible with quantum information stor-
age.
Experimental realizations in superconducting circuits of this two-photon dissipation for stabi-
lizing quantum information [58, 59] are based on the use of Josephson junctions as nonlinear
wave-mixing elements. Interestingly, a new approach [60] shows that this dissipative process
could also be engineered via the nonlinear coupling of a microwave mode to a tunnel junction.
The tunnelling process between the two reservoirs on both junction sides creates the dissipation
in the microwave mode, that can be tuned in terms of the number of involved photons.
Finally, this dissipative approach defies the common intuition that a qubit must be well isolated
from its environment. Autonomous stabilization using two-photon dissipation is at the center
of this thesis work and next section focuses on the experimental realizations in superconducting
circuits.
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4. Macroscopic bit-flip time in a two-photon dissipative oscillator

4.3 The two-photon dissipative oscillator experiment

In this thesis work, we aim for the maximum bit-flip time we could achieve in a two-photon
dissipative oscillator implemented in a superconducting circuit. Indeed, thanks to the engineered
interaction with the environment, the two-photon dissipative oscillator is a new architecture for
storing information with macroscopic bit-flip times. The thesis experiment demonstrates bit-flip
times of the order of 100 seconds for states in the resonator pinned by two-photon dissipation and
containing about 40 photons. Accordingly, this work supports the strategy of eradicating bit-
flips continuously and autonomously at the hardware level, thus reducing the overhead required
for a fully protected logical qubit.

Exponential suppression of bit-flip errors As exposed before, the cat qubit is noise-
biased. The parameter setting the bit-flip time in the cat qubit experiment is the number of
photons in the cavity. Increasing the number of photons n̄ = |α|2 in these two steady states has
two opposing effects [59]. On the one hand, their distinguishability by an inevitably coupled
uncontrolled environment increases linearly with n̄. This results in a linear increase of the phase-
flip error rate. Therefore, for this system to be suitable for quantum information processing,
it must operate at low photon number. On the other hand, as soon as the states separation
exceeds their vacuum fluctuations, that is |α−(−α)|2 = 4n̄ > 1, the states wave-function overlap
rapidly decreases, reducing random tunneling between them and hence exponentially increasing
the bit-flip time. It is remarkable that, at least in principle, it is possible to reach macroscopic
bit-flip times with computational states pinned down by two-photon dissipation containing only
a handful of photonic excitations.

Previous experiments with limited bit-flip times Previous experiments have succeeded
in implementing a two-photon exchange mechanism to observe the squeezing of a Schrödinger
cat state out of vacuum [58], the dynamics of a quantum gate [61], the exponential suppression
of bit-flips and linear increase of phase-flips [59]. However, in all these implementations, the
bit-flip time saturated in the millisecond range, limited by errors impinging from the cat-qubit
tomography apparatus [59], and possible dynamical instabilities [62, 63]. Progress towards a cat-
qubit quantum processor [64, 65, 66], with a universal set of gates and phase-flip error correction,
first requires the demonstration of macroscopic bit-flip times for a cavity field containing only a
handful of photons.

Presentation of the experiment In this thesis experiment, we aim for the maximum bit-
flip time we could achieve in a two-photon dissipative oscillator. To reach this goal, we first
design a circuit with the objective of removing all suspected sources of dynamical instabilities
and ancillary systems that could propagate uncorrectable errors. We fabricate a two-photon
exchange dipole element close to the regime where its energy landscape exhibits a single global
minimum at any operating point, a possible requirement for stability [63, 67]. Second, we
entirely remove the tomography apparatus: our design does not contain a transmon and readout
mode. Instead, we directly measure the field radiated by the cavity through a travelling wave
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5. Outline and contributions

parametric amplifier (TWPA), thereby accessing individual oscillator state trajectories. Figure
1.6 summarizes the principle of this experiment.
Our design choices come at the cost of a two-photon exchange rate dominated by single-photon
loss, hence losing our ability to prepare quantum superposition states and hence measuring the
phase-flip rate. Nevertheless, since quantum fluctuations play a central role in this experiment,
a full quantum model is necessary to explain our data. However, in this thesis experiment, we
measure a bit-flip time exceeding 100 seconds for computational states pinned by two-photon
dissipation and containing about 40 photons. Thus, this proves that nothing at the core of the
two-photon exchange mechanism is detrimental for reaching macroscopic bit-flip times. It also
demonstrates the efficiency of the two-photon dissipative oscillator as an information storage
resource. This thesis work is an appropriate benchmark for future experiments that can then
gradually go back to the regime suitable to implement a qubit where two-photon loss is the
dominant dissipation mechanism.

cold bath

� t

I(t)

��

��

�

 |1⟩�

 |0⟩�

aout

Figure 1.6: Principle of the two-photon dissipative oscillator experiment. A cavity is endowed
with a special mechanism (dashed left mirror) that exchanges pairs of photons (blue double
waves) at variable intensity (control knob) with a cold bath. Two meta-stable pointer states
emerge, represented by the blue distributions centered around amplitudes ±α. A fraction of
the cavity field (blue waves) escapes through the weakly transmissive mirror and is collected by
our heterodyne detector. By monitoring the signal over time, we track individual trajectories
undergoing bit-flips (blue time trace).

5 Outline and contributions

My main contributions to this project were the design and fabrication of all the samples described
in this manuscript. Data acquisition was carried out by Anil Murani and Zaki Leghtas, and the
photon number calibration of the two-photon dissipative oscillator experiment was conceived
and implemented by Ulysse Réglade.
The two-photon dissipative oscillator experiment is central to this thesis work, and is described
in Chapter 2 on the basis of [68]. This chapter first focuses on the experimental device, and
on the calibration protocol for activating the two-photon interaction to stabilize the resonator
states. We recall that the calibration of the photon number in the resonator state is a key
feature of this experiment. Thus, this chapter exposes the photon number calibration method
which is then used to investigate the time dynamics of the state in the resonator on short and
long timescales. Statistics on the time trajectories reveal the macroscopic bit-flip times that this
experiment device can achieve.
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5. Outline and contributions

Since the photon number calibration of the resonator states is critical, we independently proceed
to another calibration method in Chapter 3. In the main experiment displayed in Figure 1.6,
there is no in situ component to directly measure the photon number in the cavity. Then, in
order to calibrate the photon number in the resonator, we fabricate a new device composed of
the two-photon dissipative oscillator coupled to a transmon.
The final two chapters of this manuscript are devoted to my principal contributions on the
experiment of [68]. First, the two-photon dissipative oscillator is implemented in a circuit
quantum electrodynamics coplanar waveguide architecture. Then, on-chip RF elements had
to be designed to make the entire circuit operational. Chapter 4 focuses on RF design and
electromagnetic simulations of coplanar structures.
Finally, I fabricated all the devices described in this manuscript. The experiment samples are
composed of coplanar waveguide structures and Josephson junctions. The methods for the
nanofabrication of these elements are presented in Chapter 5.
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Résumé en français

Le travail de cette thèse vise à maximiser le temps de bit-flip atteignable par un oscillateur
pourvu de la dissipation à deux photons (cet oscillateur est aussi appelé dans la suite « cavité »).
Ce chapitre présente l’expérience conduite dans ce but et qui est développée dans l’article [68].
Tout d’abord, la première section décrit les différents éléments composant le circuit de cette
expérience et détaille des choix de conception pour ce prototype. Ensuite, la deuxième section
présente les calibrations nécessaires pour atteindre le régime d’échange à deux photons pour
l’oscillateur. De plus, dans cette expérience, il est crucial de connaitre le nombre de photons
dans les états de la cavité : le procédé de calibration du nombre de photons est alors le sujet
de la troisième section. Une fois les calibrations réalisées, l’état de la cavité peut être mesuré et
son évolution peut être suivie dans le temps. La dernière section révèle alors les dynamiques de
l’évolution temporelle des états de la cavité sur différentes échelles de temps. L’étude statistique
de ces trajectoires temporelles permet de déterminer le temps de bit-flip atteignable au sein de
cet oscillateur à deux photons. Finalement, un temps de bit-flip de plus de 100 secondes a été
mesuré pour des états de la cavité contenant environ 40 photons.
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1. Circuit analysis

In this thesis work, we aim for the maximum bit-flip time we could achieve in a two-photon
dissipative oscillator. To reach this goal, we devise a Josephson circuit in a regime that cir-
cumvents all suspected dynamical instabilities, and we employ a minimally invasive fluorescence
detection tool, at the cost of a two-photon exchange rate dominated by single-photon loss. We
measure a bit-flip time exceeding 100 seconds for computational states pinned by two-photon
dissipation and containing about 40 photons.
This chapter presents the two-photon dissipative oscillator experiment, based on the article [68].
First, the different elements composing the circuit of the experiment are introduced in Section
1. Then, Section 2 details the Direct Current (DC) and Radio Frequency (RF) calibration to
achieve the two-photon exchange regime in the cavity. A crucial feature is the knowledge of
photon number in the cavity states and the photon number calibration is the focus of Section
3. With all those calibrations, we can record and track the evolution of the cavity state: Sec-
tion 4 studies the time dynamics of the memory states on short and long timescales. Statistics
performed on the time trajectories reveal the bit-flip times we can achieve with this device.

1 Circuit analysis

The two-photon dissipative oscillator is embedded in the cavity field of a superconducting res-
onator that exchanges pairs of photons with its environment [51, 58, 69]. The cavity will be
referred in the following as the memory. This interaction relies on the insertion of a circuit
element that mediates a nonlinear coupling between the resonator and its environment. This
circuit element is a nonlinear inductive dipole called Asymmetrically Threaded SQUID (ATS).
It is composed by a SQUID split in its center by an inductance. The ATS can be biased with
DC flux and we have to be at a specific operating flux point in order to activate the two-photon
coupling interaction.
This section presents the different components of the two-photon dissipative oscillator circuit
and demonstrates how the Hamiltonian of the total system can be reduced to a two-photon
coupling dynamics.

1.1 The two-photon dissipative oscillator

An oscillator exchanging pairs of photons with its environment in addition to usual energy
relaxation is modeled by the following Hamiltonian and loss operators

H2/ℏ = iϵ2a†2 − iϵ∗
2a2, L2 = √

κ2a2 , L1 = √
κaa , (2.1)

where a is the annihilation operator of the mode referred to as the memory, ϵ2 is the two-photon
injection rate, κ2 the two-photon loss rate, and κa is the energy damping rate. When the
two-photon injection rate overcomes the damping rate, two meta-stable pointer states emerge

|0⟩α = |+α⟩ + O(e−2|α|2) , |1⟩α = |−α⟩ + O(e−2|α|2) ,
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1. Circuit analysis

where |α⟩ is a coherent state with complex amplitude α, verifying α2 = 2
κ2

(ϵ2 − κa/4) if ϵ2 >

κa/4, and α2 = 0 otherwise.

Importantly, note that the confinement of the computational states |0, 1⟩α is ensured by the two-
photon damping process. The two-photon dissipation mechanism is engineered by implementing
a two-to-one photon exchange interaction with a dissipative mode referred to as the buffer [58],
modeled by the Hamiltonian

Hab/ℏ = g∗
2a2b† + g2a†2b − ϵdb† − ϵ∗

db , (2.2)

where b is the annihilation operator of the buffer, g2 is the two-to-one photon coupling rate and
ϵd the buffer drive amplitude. In the limit where the buffer energy decay rate κb is larger than
|g2|, as explained in [58] we recover eq. (2.1) with the correspondence

κ2 = 4|g2|2/κb

ϵ2 = 2g2ϵd/κb .
(2.3)

1.2 Circuit presentation

Our two-photon dissipative oscillator is implemented in a circuit quantum electrodynamics copla-
nar waveguide architecture. Figure 2.1 displays the circuit chip and Figure 2.2 presents a lumped
element model of the circuit. The wiring setup of the experiment is exposed in Figure 2.3.

The memory The memory mode is the fundamental mode of a λ/2 resonator. We measure
coupling and internal loss rates κc

a/2π = 40 kHz and κi
a/2π = 18 kHz. In order to minimize

dielectric losses [70], we target the relatively low frequency of ωa/2π = 4.0457 GHz. An undesired
side effect of coupling the memory to a lossy mode – the buffer – is to increase the decay rate of
the memory due to the Purcell effect. To prevent this, we designed a stop-band filter centered
at the memory frequency, consisting of three λ/4 sections on both routes linking the memory to
its cold bath. The RF design of those filters is presented in Chapter 4.
A thermal population of about 1% was measured on a twin sample using a transmon: this
measurement is detailed in Chapter 2, Section 3.

Buffer mode The buffer mode consists of a metallic plate of charging energy EC/h = 73 MHz
shunted to ground through an ATS [59]. The ATS is formed by two Josephson junctions in a
loop – each of Josephson energy EJ/h = 37 GHz – split in its center by an inductance made of
five junctions of total inductive energy EL/h = 62 GHz. A picture of the device’s Josephson
junctions is presented in Chapter 5 dedicated to the nanofabrication processes. This layout
defines two loops that can be biased in DC flux φL,R. We can hence independently control
the common and differential flux through the ATS: φΣ = 1

2 (φL + φR) and φ∆ = 1
2 (φL − φR).

Radio-frequency signals are routed to the ATS through a 180° hybrid coupler. The buffer drive
propagates in phase through both arms of the two-photon exchange apparatus. When reaching
the ATS, these waves combine, inducing currents in the inductance and thereby driving the
buffer mode. On the other hand, the pump propagates with opposite phases, inducing common
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1. Circuit analysis
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Figure 2.1: False-color optical micrograph of the experimental superconducting circuit in a
coplanar waveguide geometry. The cavity is a λ/2 resonator (blue) that radiates a field aout
through a weakly coupled 50 Ω port. The cavity also couples to a two-photon exchange device
composed of a buffer mode (red) shunted to ground through an asymmetrically threaded SQUID
(ATS) as emphasized in the insets. DC currents enter through on-chip bias tees (green) and
impose phase biases φL,R. A differential pump (purple arrows) and a common buffer drive (red
arrows) are channeled through filtered transmission lines (orange).

flux in the ATS. At the experiment operating point the buffer resonates at ωb/2π = 6.1273 GHz
with an energy decay rate κb/2π = 16 MHz (see Section 2).
Both RF drives and DC currents are routed to the ATS thanks to on-chip bias tees, whose design
is described in Chapter 4.

Tomography part Previous experiments constructed the Wigner distribution of the memory
field using a nonlinear coupling of the memory resonator to a transmon qubit and its readout
resonator [59]. However, the finite thermal occupation of the transmon was suspected to limit
the bit-flip time to the millisecond range (see Section 1 of Chapter 3). Instead, we monitor
our memory through a minimally invasive detection tool: a weakly coupled transmission line
connected to a TWPA. This added leakage channel slightly decreases the total quality factor
but has the advantage of not inducing any additional nonlinear couplings to a lossy ancillary
system.
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1. Circuit analysis

1.3 Circuit Hamiltonian

The dynamics of the circuit displayed in Figure 2.1 is well captured by a reduced lumped element
model (see Figure 2.2) with the following Hamiltonian [59]

H = ℏωa,0a†a + ℏωb,0b†b − 2EJ cos(φΣ) cos(φ + φ∆) + 2∆EJ sin(φΣ) sin(φ + φ∆) (2.4)

where a, b are the memory and buffer annihilation operators. The buffer’s angular frequency
verifies ωb,0 =

√
8ELEC/ℏ, where EL, EC are the energies associated to the buffer’s inductive

and capacitive shunt respectively. The angular frequency of the memory is denoted ωa,0. We
denote 2EJ the sum of the Josephson energies of the single junctions composing the SQUID
loop, and 2∆EJ their difference.
The ATS is threaded with a common and differential flux φΣ,∆ = 1

2(φL ± φR), where φL,R

is the flux threading the left and right loop of the ATS. The buffer and memory modes hy-
bridize through their capacitive coupling. In the limit where the hybridization factor υ between
the buffer and memory is much smaller than 1, the phase across the ATS denoted φ, veri-
fies φ = φb

(
b + b† + υ(a + a†)

)
, where the zero point phase fluctuations for the buffer reads

φb = (2EC/EL)1/4.

Self-Kerr sources During the fabrication process, we aim for the smallest possible junction
asymmetry. However in practice we are left with ∆EJ/EJ ≈ 0.5% (see Table 2.1) which leads
to spurious Kerr and cross-Kerr effects. Actually, self-Kerr terms on the buffer can come from
two main sources.

• Asymmetry ∆EJ between the two junctions of the ATS creates Kerr term, expressed at
the saddle point of our experiment as: χ∆EJ

bb = −∆EJφ4
b .

• Finite number NJ = 5 of Josephson junctions composing the array of the central induc-
tance leads to Kerr term: χNJ

bb = − EL

2N2
J

φ4
b .

Subsection 4.2 presents a discussion on these self-Kerr estimated values thanks to a comparison
between numerical simulation and recorded experimental data of buffer dynamics.

1.4 The Asymmetrically Threaded SQUID

The Asymmetrically Threaded SQUID (ATS) is the nonlinear inductive dipole that mediates
the exchange of pairs of photons between the memory and its environment. This dipole consists
of a SQUID split in its center by an inductance at a specific DC flux bias and is represented by
the circuit of Figure 2.2.
The inductive energy of the ATS writes (see [59])

UφΣ,φ∆(φ) = 1
2ELφ2 − 2EJ cos(φΣ) cos(φ + φ∆) + 2∆EJ sin(φΣ) sin(φ + φ∆) , (2.5)

where EL is the inductive energy of the shunt inductance, EJ ± ∆EJ are the Josephson energies
of the left and right Josephson junctions respectively, φ is the superconducting phase difference
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1. Circuit analysis
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Memory

EJ+ΔEJ EJ-ΔEJφ

Figure 2.2: Lumped element model of the circuit. The buffer (red) with bare frequency ωb,0/2π is
constituted with an ATS (inductive energy EL, mean Josephson energy EJ , asymmetry ∆EJ),
and a capacitor with charging energy EC . The ATS loops are threaded with fluxes φL, φR

(green). The buffer is connected to the memory (blue), with bare frequency ωa,0/2π. The phase
φ is indicated with an arrow (black).

across the ATS and φΣ,∆ = (φL±φR)/2 are related to the common and differential flux threading
the ATS with φL,R threading the left and right loop of the ATS respectively.

Symmetries The ATS potential has the following translational symmetries

UφΣ,φ∆(φ) = UφΣ+π,φ∆+π(φ) = UφΣ+π,φ∆−π(φ) . (2.6)

and an inversion symmetry center at (φΣ, φ∆) = (π/2, π/2) such that

Uπ/2+φΣ,π/2+φ∆(φ) = Uπ/2−φΣ,π/2−φ∆(−φ) . (2.7)

Combining these three symmetries gives rise to a second inversion symmetry center located at
(φΣ, φ∆) = (π/2, −π/2). Hence, all the information about the system is contained in the region
φΣ ∈ [0, π], φ∆ ∈ [−π/2, π/2]. Note that provided ∆EJ = 0, we have additional symmetry axes
φΣ = 0 and φ∆ = 0 such that

UφΣ,φ∆(φ) = U−φΣ,φ∆(φ) = UφΣ,−φ∆(−φ) . (2.8)

Note that expanding the potential in power series, U(φ) and U(−φ) will have the same even
terms and odd terms that differ by just a sign. Consequently, the effective inductance (second
derivative) and Kerr or cross-Kerr nonlinearities will be the same for U(φ) and U(−φ).
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1. Circuit analysis

Saddle points Let us study the potential around the inversion symmetry points (φΣ, φ∆) =
(π/2 + ϵ, ±π/2 + δ)

U(φ, ϵ, δ) = 1
2ELφ2 ∓ 2EJ sin(ϵ) sin(φ + δ) ± 2∆EJ cos(ϵ) cos(φ + δ) . (2.9)

For small ϵ and δ

U(φ, ϵ, δ) = 1
2ELφ2

∓ (−2∆EJ + 2EJϵδ + ∆EJ(ϵ2 + δ2)) cos(φ)
∓ (2EJϵ + 2∆EJδ) sin(φ) .

(2.10)

For ϵ = δ = 0, the potential reaches its minimum at φmin = 0. At ϵ, δ ̸= 0, we search for a first
order perturbation of φmin. Solving for ∂

∂φ
U(φmin, ϵ, δ) = 0, we get

φmin = ±2EJϵ + 2∆EJδ

EL ∓ 2∆EJ
. (2.11)

Around the minimum φmin, the second derivative of the potential with respect to φ, i.e. the
inductive energy of the ATS writes

∂2

∂φ2 U(φmin, ϵ, δ) = EL ∓ 2∆EJ + ELφ2
min ± 2EJϵδ ∓ ∆EJ(φ2

min − ϵ2 − δ2) . (2.12)

The ATS inductive energy has no linear terms in ϵ or δ so the points (φΣ, φ∆) = (π/2, ±π/2)
are critical points of the inductive map of the ATS as a function of ϵ and δ. Its quadratic
dependence around the critical point has the following matrix representation

M(EL, EJ , ∆EJ) = 4(EL ∓ ∆EJ)
(EL ∓ 2∆EJ)2

[
E2

J EJ∆EJ

EJ∆EJ ∆E2
J

]
±
[
∆EJ EJ

EJ ∆EJ

]
(2.13)

the determinant of which writes

det(M) = E2
L

∆E2
J − E2

J

(EL ∓ 2∆EJ)2 . (2.14)

The determinant is negative (provided ∆EJ < EJ) hence the critical point is a saddle point.
This property is used to tune the DC working point experimentally (see Figure 2.6). When
∆EJ ̸= 0, the two points (φΣ, φ∆) = (π/2, ±π/2) are non equivalent saddle points of the ATS
with inductive energy EL ∓ 2∆EJ .
Since in the experiment we have ∆EJ/EJ ≈ 0.5% (see Table 2.1), we can neglect ∆EJ in the
rest of the following analysis.

Choice of parameters In the process of choosing the ATS parameters, we were guided by the
intuition that dynamical instabilities would be avoided in a system with 2EJ/EL ≲ 1 [63, 67].
However, this criterion needs to be balanced with the requirement of large two-to-one photon
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1. Circuit analysis

coupling rate g2 (see equation (2.17)). In this experiment, we favoured stability over coupling
strength and chose: 2EJ/EL = 1.2, a factor of 3.3 smaller than the previous implementation
[59]. Moreover, we engineered a weak hybridization between the memory and buffer mode in
order to minimize undesired nonlinear couplings such as the Kerr effect, with a rate estimated
below 1 Hz.

1.5 From operating point to two-photon coupling

By flux pumping the ATS around a well chosen DC working point [59]

φΣ = π

2 + ϵp cos(ωpt)

φ∆ = π

2
(2.15)

we engineer a two-to-one photon exchange Hamiltonian between the memory and the buffer,
provided the pump frequency ωp is close to the matching condition ωp = 2ωa − ωb and driving
the buffer mode at ωd = ωb. This two-to-one photon exchange Hamiltonian converts the strong
single photon losses of the buffer into an effective two-photon loss channel for the memory.
Likewise, a microwave drive at frequency ωd close to the buffer frequency, is converted into an
effective two-photon drive of the memory (or squeezing) at frequency (ωd +ωp)/2. By definition,
this frequency is close to the memory frequency.
For the memory, the combination of the two-photon loss and two-photon drive, stabilizes two co-
herent states with frequency (ωp +ωd)/2 of equal amplitude and opposite phase. The heterodyne
demodulation frequency ωdm for the memory is constrained accordingly

ωdm = ωp + ωd

2 . (2.16)

By going in the frame rotating at frequency ωdm for the memory and ωd for the buffer and
performing first order rotating wave approximation (RWA), the Hamiltonian (2.4) writes [59]

H/ℏ = −∆aa†a − ∆bb
†b + g∗

2a2b† + g2a2†
b

with ℏg2 = −1
2EJεpυ2φ3

b

(2.17)

and where ∆a = ωdm − ωa, ∆b = ωd − ωb, and ωa and ωb are respectively the memory and buffer
frequency accounting for the AC-stark shift due to the pump [59]. Incorporating the buffer drive
and the dissipation of the two modes, the dynamics of the system is governed by

H/ℏ = −∆aa†a − ∆bb
†b

+ g∗
2a2b† + g2a†2b − ϵdb† − ϵ∗

db

La = √
κaa

Lb = √
κbb

(2.18)
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where ϵd is the buffer drive strength and κa and κb are the single photon loss rate of the memory
and the buffer respectively.
We gain further insight on the dynamics of the system by performing the adiabatic elimination
of the buffer. This is justified provided g2 ≪ κb. Following the method of [71], we find that the
reduced dynamics of the memory is given by

Ha/ℏ = −∆aa†a + Keff(a2 − ζ2)†(a2 − ζ2)
La2 = √

κ2,eff(a2 − ζ2)
La = √

κaa

(2.19)

with

Keff = κ2η
∆b

κb
, κ2,eff = κ2η, κ2 = 4|g2|2

κb
, ζ2 = ϵd

g2
, η = 1

1 + 4∆2
b/κ2

b

. (2.20)

Equivalently,

Ha/ℏ = −∆aa†a − ϵdγa†2 − ϵdγ∗a2 + ∆b|γ|2a†2a2

La2 =
√

κb|γ|2a2

La = √
κaa

(2.21)

with γ = g2
∆b+iκb/2 . At ∆a = ∆b = 0, we recover eq. (2.1)

H2/ℏ = iϵ2a†2 − iϵ∗
2a2

L2 = √
κ2a2

L1 = √
κaa

(2.22)

with ϵ2 = 2ϵdg2/κb and κ2 = 4|g2|2/κb.
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Figure 2.3: Wiring of the experiment. Measurement apparatus for the memory (blue labels),
buffer (red labels), and TWPA pump (black label) connect to the experiment through RF lines
(black lines). DC voltage sources are used to drive flux lines (green lines). Dashed lines indicate
the different temperature stages of the dilution refrigerator. Additional information is provided
in the legend (grey background), annotations and in the text.
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2 Experiment calibration

The first step in conducting the experiment is to activate the two-photon conversion regime.
For this, we have to calibrate the experiment to meet the conditions so that the total dynamics
of the system is equivalent to a two-photon exchange dynamics for the memory, as explained in
Subsection 1.5. The first condition is to DC bias in flux the ATS in order to reach the oper-
ating point (φΣ, φ∆) = (−π/2, π/2). The second condition is to reach the frequency matching
conditions between the pump frequency, the memory mode frequency and the buffer drive fre-
quency. Moreover, the buffer drive frequency has to be aligned with the buffer mode resonance
frequency. The AC-Stark shift on the modes frequencies when turning on a strong pump com-
plicates this matching condition. This section exposes the calibration procedure to finely align
those frequencies.

2.1 DC calibration and extraction of circuit parameters

We start the experiment by measuring the buffer mode frequency map as a function of the
two DC currents. Conveniently, the desired operating point (φΣ, φ∆) = (−π/2, π/2) is easily
recognisable since it corresponds to a saddle point of this map. Consequently, the buffer and
memory modes are first order insensitive to flux noise.
The first calibration experiment we perform is to extract the buffer and memory frequencies as
a function of the common and differential flux in the ATS loop (see Figure 2.5). From these
maps we identify the circuit parameters and locate the ATS saddle points.

Measurement protocol of frequency flux maps We set a tone at frequency f on the
buffer port and record its reflected amplitude and phase as a function of the DC voltages
VΣ,∆ = (VL ±VR)/2 (see Figure 2.3). The physical controls VΣ,∆ are transformed to the common
and differential flux basis φΣ,∆ to match the symmetries of the circuit Hamiltonian of eq. (2.4).
A variation in the reflected signal is detected at flux points φΣ,∆(f) where the buffer frequency
enters the vicinity of f . This sequence is repeated by scanning f in between 5.2 GHz and 9 GHz
in steps of 100 MHz. Figure 2.4 presents maps at different frequencies values. In Figure 2.5, the
frequency f is encoded in the color of pixels located at φΣ,∆(f), so as to compile all the maps
exposed in Figure 2.4.
We repeat the same protocol on the memory port to extract the memory frequency flux map.

Saddle points localization The theory plots in Fig. 2.5 are obtained for the numerical
diagonalization of the Hamiltonian in eq. (2.4). From the ATS symmetries, we know that there
exist two nonequivalent families of saddle points, those generated from (φ∆, φΣ) = (−π/2, π/2),
and those from (φ∆, φΣ) = (π/2, π/2). The junction asymmetry ∆EJ lifts the degeneracy of the
buffer frequency between these points.
We refine the flux and frequency sweeps around these saddle points in order to precisely pin
down their location. In Figure 2.6, we directly display the reflected amplitude on the buffer
port at different frequencies f . A saddle point is easily identified as the closing of the buffer
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EC/h 72.6 MHz
EL/h 62.40 GHz
EJ/h 37.00 GHz

∆EJ/h 0.207 GHz
ωb,0/2π 6.020 GHz

φb 0.220
ωa,0/2π 4.0457 GHz

υ 3.6%

Table 2.1: Buffer and memory parameters entering the Hamiltonian (2.4). EC and EL are re-
spectively the buffer’s charging and inductive energy. EJ and ∆EJ are the ATS mean Josephson
energy and asymmetry. ωb,0/2π and ωa,0/2π are buffer and memory bear frequencies. φb is the
buffer zero point fluctuations. υ is the hybridization strength. From these numbers, we can
estimate the Kerr nonlinearity of the memory Ka < 1 Hz.

frequency contour line. Note that the saddle point at (−π/2, π/2) appears at fb1 = 6.00 GHz
as shown in the top middle panel. The second one appears at fb2 = 6.04 GHz as shown in the
bottom middle panel.

Extraction of parameters The parameters entering eq. (2.4) are listed in Table 2.1. The
charging energy EC is extracted from 3D finite elements electromagnetic simulations. The
inductive energy EL and the junction asymmetry ∆EJ are computed from the buffer frequencies
at the saddle points that verify, in the weakly hybridized limit

fb1,b2 = 1
h

√
8EC(EL ± 2∆EJ) . (2.23)

The Josephson energy EJ is extracted from the maximum buffer frequency fbmax measured
in the buffer flux map of Figure 2.5. This maximum value fbmax = 8.9 GHz is reached for
(φ∆, φΣ) = (0, 0) and verifies, in the weakly hybridized limit: fbmax = 1

h

√
8EC(EL + 2EJ).

The memory frequency fa is extracted from the memory frequency flux map in Figure 2.5 at the
saddle points. Due to the weak hybridization with the buffer, the memory frequency difference
at the two saddle points is negligible. Finally we numerically find the hybridization factor υ

that produces a memory frequency flux map in agreement with the data in Figure 2.5.

32



2. Experiment calibration

2

0
2

3
4

f=5.60 GHz f=5.80 GHz f=6.00 GHz f=6.20 GHz

9
7
5
3
1

1

2

0
2

3
4

f=6.40 GHz f=6.60 GHz f=6.80 GHz f=7.00 GHz

7

5

3

1

1

2

0
2

3
4

f=7.20 GHz f=7.40 GHz f=7.60 GHz f=7.80 GHz

19
15

10

5

1

|S
| (

dB
)

2 0 2

2

0
2

3
4

f=8.00 GHz

2 0 2

f=8.20 GHz

2 0 2

f=8.40 GHz

2 0 2

f=8.80 GHz

35

25

15

5
1

2

0
2

3
4

f=5.60 GHz f=5.80 GHz f=6.00 GHz f=6.20 GHz

0.15

0.07

0

0.07

0.15

2

0
2

3
4

f=6.40 GHz f=6.60 GHz f=6.80 GHz f=7.00 GHz

0.13

0.06

0

0.06

0.13

2

0
2

3
4

f=7.20 GHz f=7.40 GHz f=7.60 GHz f=7.80 GHz

0.8

0.4

0

0.4

0.8

ar
g(

S
) (

ra
d)

2 0 2

2

0
2

3
4

f=8.00 GHz

2 0 2

f=8.20 GHz

2 0 2

f=8.40 GHz

2 0 2

f=8.80 GHz

0.5

0

0.5

2

0
2

3
4

f=4.0441 GHz f=4.0443 GHz f=4.0445 GHz f=4.0447 GHz

12

9

6

3

1

2

0
2

3
4

f=4.0449 GHz f=4.0451 GHz f=4.0453 GHz f=4.0455 GHz

15

10

5

1

2

0
2

3
4

f=4.0457 GHz f=4.0459 GHz f=4.0461 GHz f=4.0463 GHz

18

12

6

1

|S
11

| (
dB

)

2 0 2

2

0
2

3
4

f=4.0465 GHz

2 0 2

f=4.0467 GHz

2 0 2

f=4.0469 GHz

2 0 2

f=4.0470 GHz

28
22
16
10
4

1

2

0
2

3
4

f=4.0441 GHz

2

1

0

1

f=4.0443 GHz

2

1

0

1

2

f=4.0445 GHz

2

0

2
f=4.0447 GHz

2

0

2

0.8

0.4

0

0.4

0.8

2

0
2

3
4

f=4.0449 GHz

2

0

2

f=4.0451 GHz

2

0

2

f=4.0453 GHz

2

0

2

f=4.0455 GHz

2

0

2

0.5

0

0.5

2

0
2

3
4

f=4.0457 GHz

2

0

2

f=4.0459 GHz

2

0

2

f=4.0461 GHz

2

0

2

f=4.0463 GHz

2

0

2

0.5

0

0.5

ar
g(

S 1
1)

 (r
ad

)

2 0 2

2

0
2

3
4

f=4.0465 GHz

2

0

2

2 0 2

f=4.0467 GHz

2

0

2

2 0 2

f=4.0469 GHz

2

0

2

2 0 2

f=4.0470 GHz

2

0

2

0.5

0

0.5

Figure 2.4: Flux maps of the buffer (top) and the memory (bottom) displayed with the mea-
sured relative amplitude (left plots) and phase (right plots) of the reflected signal of the buffer,
respectively memory, port. Each panel encodes in the color scale the measured relative ampli-
tude, respectively phase, of the signal sent at the frequency f (specified in each label box) as a
function of the differential (x-axis) and common (y-axis) flux biases.
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2.2 Turning on RF pumping

Once the DC biases are tuned at one saddle point and the memory and buffer resonance fre-
quencies are determined by direct spectroscopy in reflection on their respective ports, we turn
on the RF pump and the buffer drive.

Phase locking In the following paragraphs, we are going to study the energy radiated out
from the memory while driving and pumping the buffer to activate the two-photon conversion.
In this process, the frequencies of the waves in the buffer and the memory channels are connected
with the phase matching condition. Therefore, in order to observe two-photon pumping, there
is a phase locking requirement to meet in the measurement channels of the buffer and memory.
In the laboratory frame, at any point in time, the phase of the pointer states resulting from the
junction mixing process is given by

θa = (θp + θd)/2 (2.24)

where θp and θd are respectively the pump and drive tone phase. The pump tone is directly
generated by the microwave signal generator and pulsed via a microwave switch whereas the
drive tone is pulsed via an IQ-mixer (Figure 2.3).The resulting phases of the tones are

θp = θLO
p , θd = θLO

d + θIF
d (2.25)

where θLO
p and θLO

d are the Local Oscillator (LO) phases of the microwave generator and θIF
d is

the Intermediate Frequency (IF) signal phase delivered by the Arbitrary Waveform Generator
(AWG) channel to pulse the drive tone. The radiated signal from the memory is demodulated
in a frame with phase

θdm = θLO
dm + θIF

dm (2.26)

where θLO
dm is the phase of the demodulation LO and θIF

dm is the phase of the Analog-Digital
Converter (ADC). In order to phase-lock the pointer states with the demodulation frame, we
should ensure

θa − θdm = cst . (2.27)

The three LOs are generated with a single four channel Anapico signal generators, and the two
IFs with a single Quantum Machines OPX. The accuracy of these instruments ensure that all the
LOs share the same time reference and all the IFs share the same time reference. However, given
the high frequencies at stake, the instruments sharing the same 50 MHz clock is not sufficient
for this two time references to be considered identical. The LO time is referred to as t and the
IF time as t′. Hence

θa − θdm = (ωLO
p t + ωLO

d t + ωIF
d t′)/2 + cst − (ωLO

dm t + ωIF
dmt′) + cst

= ((ωLO
p + ωLO

d )/2 − ωLO
dm )t + (ωIF

d /2 − ωIF
dm)t′ .

(2.28)
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and the phase-locking condition imposes the frequency matching conditions

(ωLO
p + ωLO

d )/2 − ωLO
dm = 0

ωIF
d /2 − ωIF

dm = 0 .
(2.29)

Wave mixing processes The ATS is a nonlinear wave mixing component. We can then
activate different wave mixing processes by turning on the RF pump at sufficiently large ampli-
tudes. While scanning the pump frequency and the buffer drive frequency for spectroscopy, we
can recognize nonlinear processes signatures in Figure 2.7. We can identify each wave mixing
process with some arithmetic combination of pump frequency, noted ωp, buffer drive frequency,
ωd, memory mode frequency, ωa, and second harmonic of the memory mode, noted ω2a (see
Figure 2.7).
We are interested in the two-photon conversion process which involves two photons of memory
mode ωa (that is to say of total energy: 2ℏωa). However, the second harmonic of the memory
mode ω2a is by definition such as: ω2a ≈ 2 × ωa. Thus, as shown in Figure 2.7, some conversion
processes involving second harmonic of memory mode are close to the two-photon conversion
process. In order to isolate this specific two-photon process, the next generation of two-photon
dissipative oscillator circuits will have a cavity mode with a different value of the second har-
monic frequency. This can be accomplished by replacing the λ/2 resonator implementing the
memory in the current circuit with a λ/4 resonator. In this case, the second harmonic of memory
will be at ω2a ≈ 3ωa, avoiding the confusion.

2.3 Finely tuning pump and drive frequencies

In the presence of this strong pump, the modes’ frequencies are Stark shifted. Therefore, a precise
calibration of the pump frequency ωp/2π and drive frequency ωd/2π is required to rigorously
verify the frequency matching conditions: ωp = 2ωa − ωd (two-photon conversion) ωd = ωb

(driving the buffer at its resonance frequency).

Method for tuning the pump frequency We pick the largest pump power that does not
deteriorate the buffer and memory modes spectra. We acquire the memory mode fluorescence
as a function of detunings from these matching conditions. The pump frequency is determined
via two-tone spectroscopy: a weak drive tone is used to perform buffer spectroscopy while
sweeping the pump frequency around the frequency matching condition. As this operation is
being performed, we also perform the heterodyne detection of the field radiated by the memory
(Figure 2.8). As the drive amplitude ϵd is increased, the region over which the drive and pump
combine to populate the memory expands around the frequency matching point as it is clearly
visible in the different diagrams of Figure 2.9 and in Figure 2.12 (a).
When the two-to-one photon exchange is resonant, a sharp feature is observed within buffer
resonance, referred to as a diamond, and the memory starts to radiate power. The discrepancy
between the ideal and measured diamond shape is used as a witness for the appearance of higher
order processes. The pump amplitude is set so as to maximize the two-to-one photon coupling
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Figure 2.7: Measured relative amplitude (top, color scale represents amplitude) and phase (bot-
tom, color scale represents phase) of the reflected signal on the buffer as a function of the drive
frequency ωd/2π (x-axis) and the pump frequency ωp/2π (y-axis). We observe a dip in amplitude
and a phase shift in the reflected signal for some combinations of the pump and the buffer drive
frequencies. This means that some conversion processes is activated in the buffer mode. We have
highlighted those processes with coloured crosses. For clarity, the line equations are indicated
next to each line. They are frequency matching conditions between the pump frequency ωp/2π,
the buffer drive frequency ωd/2π, the memory first harmonic mode ωa/2π = 4.045GHz and the
memory second harmonic mode ω2a/2π = 8.083GHz. The red 4-line crosses highlight the two-
photon conversion process at the core of the device: ωp = −ωd +2ωa. The 3-line crosses indicate
other nonlinear processes: ωp = ω2a − ωd (purple), ωp = ωd − ωa (grey), ωp = ωd + ωa − ω2a

(pink), ωp = ωd × 1
3 (light blue), ωp = −ωd + 2ωa × 2

3 + ω2a × 1
3 (green, this last process is a high

order process so it could derive from another frequencies combination). This picture’s data was
collected during a different cooldown than the experiment’s main cooldown.
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rate g2 while mitigating detrimental higher order effects.

Process for data acquisition In order to minimize the amount of data collected and accu-
rately zoom on the diamond feature Figure 2.8a is acquired in the following way:

• at a fixed pump frequency the buffer spectroscopy is done by varying the buffer IF fre-
quency (x-axis of Figure 2.8a ) with a fixed LO frequency. Due to the frequency constraint
of eq. (2.29) the heterodyne detection of the radiated memory field is done by varying the
memory IF frequency with a fixed LO frequency.

• for the demodulation frequency to remain close to the memory frequency while varying
the pump frequency, (y-axis of Figure 2.8a) the pump and drive LO frequencies are varied
in opposite directions. In this way, we have ωp + ωLO

b = 2ωLO
dm = cst.

Change of coordinates We recall that ∆a, respectively ∆b, are the detuning between mem-
ory, respectively buffer, resonant frequency and their respective drives. In the coordinates of
Figure 2.8a (buffer IF frequency for x-axis, pump frequency for y-axis), ∆b and 2∆a are thus
varied along the x-axis and ∆b is varied along the y-axis. If there was no Stark shift, the buffer
resonance would be a diagonal line of slope 1 and the memory line (when the two-photon drive
is tuned with the memory mode) a vertical line. In practice, these two lines are distorted and
we numerically fit the buffer and memory frequencies as a function of the pump frequency to
perform the change of basis leading to the diamond of Figure 2.8d in the ∆a, ∆b coordinate
system.
To perform this change of coordinates, we evaluate the following functions from measurements
by linear interpolation

∆b = f(ωIF
d , ωp) = ωIF

d + ωLO
d − ωb[ωp]

∆a = g(ωIF
d , ωp) = ωIF

b

2 + ωp + ωLO
d

2 − ωa[ωp] = ωIF
dm + ωLO

dm − ωa[ωp] .
(2.30)

For each data point, we can now compute the actual value of ∆a and ∆b. This enables us
to display radiated energy by the memory in the basis of Hamiltonian eq. (2.18): previously
distorted, the diamonds recover their shape.

Center of the diamonds By construction, the diamond center should coincide with the
zero detuning point. By exploiting the diamonds inversion symmetry, we can verify that the
maximum of the auto-correlation function

(∆0
a, ∆0

b) = max
(∆a,∆b)

(∫∫
|α|2(δa, δb)|α|2(∆a − δa, ∆b − δb)δaδb

)
(2.31)

gives back the zero detuning point, up to a slight discrepancy due to the diamond imperfection.
Experimentally, we find the zero detuning point as the convergence point of the diamond feature
at vanishingly small drive amplitude (see Figure 2.8c). All three centers (construction, auto-
correlation, experimental) are shown in Figure 2.9 and lie in a small region at the center of
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Figure 2.8: (a) Relative amplitude (color) of the reflected signal on the buffer port as a function
of the pump frequency ωp (left y-axis), drive local oscillator (LO) frequency ωLO

d (right y-
axis) and drive intermediate frequency ωIF

d (x-axis). The drive frequency is given by ωd =
ωIF

d + ωLO
d . For each pump frequency, the drive LO frequency is set to ωLO

d = (2ωa − ωp) +
200 MHz, such that vertical lines correspond to constant detuning from the frequency matching
condition (∆a = cst). The buffer drive resonance condition ∆b = 0 is determined by fitting
each horizontal cuts of the map (dashed red line). In the vicinity of ∆a = 0 and ∆b = 0, a
sharp feature indicates that the two-to-one photon exchange transition is resonant (dotted green
line). Spurious transitions appear near the frequency matching condition ωp + ωd = ω2a (blue
dashed line), where ω2a is the frequency of the second harmonic of the memory λ/2-resonator
measured independently. (b) Zoom on the two-to-one photon exchange transition for increasing
drive amplitude ϵd. (c) Radiated energy from the memory in units of circulating photon number
(color) as a function the pump frequency ωp (left y-axis) and two-photon drive intermediate
frequency ωIF

dm (x-axis), for increasing drive amplitude. On these panels, the two-photon drive
LO frequency is set to ωLO

dm = ωa +100 MHz. When the two-to-one photon exchange transition is
resonant, the engineered two-photon drive populates the memory. The average occupation of the
memory is determined thanks to an undercoupled port via heterodyne detection. (d) Radiated
energy from the memory in units of circulating photon number (color) as a function of the
pump and drive detuning from the frequency matching condition ∆a (x-axis), and the drive
detuning from the buffer ∆b (y-axis). In these coordinates, the feature takes the shape of a
regular diamond.

the diamond. For the remaining of the experiment, we place ourselves at the center of these
diamonds.
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Figure 2.9: Radiated energy from the memory in units of circulating photon number (color) as
a function of the detuning from the frequency matching condition ∆a (x-axis), and the detuning
from the buffer resonance ∆b (y-axis). Left column displays data, right column displays semi-
classical simulations for the corresponding drive amplitude. Orange cross shows the position of
the maximum of the auto-correlation for the largest drive amplitude. Red cross shows the zero
detuning point given by direct fit of memory and buffer spectroscopy. Red circle is the point at
which well averaged data were taken to perform the fit of g2.



3. Photon number calibration

3 Photon number calibration

Two-photon pumping activation leads to the creation of coherent states in the memory, as ex-
plained in Section 1. Our goal is to measure the macroscopic lifetime of these states. Nonetheless,
it is critical to observe these macroscopic bit-flip times for states containing only a few tens of
photons. As a matter of fact, this system can only function as a coherent qubit in the low photon
number regime. Therefore, a reliable calibration of the number of photons, noted n̄, is essential
to this work. However, contrary to the circuit of [59], we have entirely removed the tomography
apparatus for the memory in order to avoid ancillary systems propagating uncorrectable errors.
Instead, we use a travelling wave parametric amplifier (TWPA) to directly measure the field
radiated by the memory. As a result, there is no direct photon number scaling for the radiated
energy collected out from the memory. This section is dedicated to the photon number calibra-
tion procedure of this experiment.
To begin, we compute the mapping between the cavity field properties and the measured quadra-
tures. Then, to calibrate n̄, we investigate the emergence in the memory of two meta-stable
pointer states from a nonlinear dissipative phase transition. Finally, the measurement of the
quantum detection efficiency performed in Chapter 3 corroborates this calibration.

3.1 Heterodyne detection

We want to measure the radiated field out of the memory: more precisely we want to measure
I2 + Q2 where I and Q are the in-phase and out-of-phase quadratures of the radiated field
acquired over an integration time Tm. This subsection details the procedure to perform this
heterodyne detection.
The heterodyne detection of the field radiated by the memory results in two signals that are
integrated over a integration time Tm to give out (I, Q) pairs time traces

It =
√

G

∫ t+Tm

t

(√
2κc

aηTr
(
ρt′(a + a†)/2

)
dt′ + dWI

)
Qt =

√
G

∫ t+Tm

t

(√
2κc

aηTr
(
ρt′(a − a†)/2i

)
dt′ + dWQ

)
,

(2.32)

where G is the gain of the amplification chain, κc
a is the coupling rate of the memory, η is the

quantum detection efficiency, ρt is the instantaneous state and dWI , dWQ are the noises added
to each quadrature that verify dW 2

I = dW 2
Q = dt. The statistics of the distribution of the (I, Q)

pairs collected over time gives information about the memory state. In particular, we can verify
that in the general case [72, 73] and in the limit of small Tm

I2 + Q2 = 2GTm + 2Gκc
aηT 2

mTr(ρ∞a†a) = 2GTm + 2Gκc
aηT 2

mn̄ (2.33)

where n̄ is the mean photon number, I2 + Q2 is the statistical average over the (I, Q) pairs
collected over time and ρ∞ is the steady-state density operator of the cavity. In our specific
case, we have verified both numerically and experimentally that this limit is practically reached
for Tm = 10 µs. In eq. (2.33), the offset GTm can be calibrated out from the average of I2 + Q2
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3. Photon number calibration

when the cavity is in vacuum which results in the average energy radiated by the cavity over a
period Tm of

I2 + Q2 − I2 + Q2
∣∣∣
vac

= 2Gκc
aηT 2

mn̄ . (2.34)

3.2 Steady state photon number

In this subsection we derive the stationary mean photon number in the memory using a semi-
classical approximation. This will be useful in order to calibrate the acquired quadrature in the
stationary state.
In the interaction picture, the dynamics arising from (2.18), writes

da

dt
=
(

i∆a − κa

2

)
a − 2ig2a†b

db

dt
=
(

i∆b − κb

2

)
b − ig∗

2a2 + iϵd .

(2.35)

We perform a mean-field approximation on mode a and b, and compute the steady-state of
the simplified dynamics. The operators a and b are replaced by their mean value, the complex
numbers α and β. This system always admits a solution in which the memory is in vacuum and
corresponds to

α = 0

β = −ϵd

∆b + iκb/2 .
(2.36)

This solution is stable provided it is the only solution of eq. (2.35) for a given set parameters.
Assuming α ̸= 0, we can write

i
κa

2 + ∆a = 2g2βe−2iθa(
i
κb

2 + ∆b

)
β = g∗

2α2 − ϵd

(2.37)

where θa = arg(α).
Solving for β in the first equation and injecting in the second one, we get

|α|2 = ϵd

g∗
2

e−2iθa + z

with z = (iκa/2 + ∆a)(iκb/2 + ∆b)
2|g2|2

.
(2.38)

Zero-detuning When ∆a = ∆b = 0, eq. (2.38) simplifies into

|α|2 = ϵd

g∗
2

e−2iθa − κaκb

8|g2|2
. (2.39)

leading to
|α|2 = max

[∣∣∣∣ ϵd

g∗
2

∣∣∣∣− κaκb

8|g2|2
, 0
]

= max
[∣∣∣∣ ϵd

g∗
2

∣∣∣∣ (1 − κa

4|ϵ2|

)
, 0
]

. (2.40)

42
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We recover the critical point when the two-photon drive overcomes the cavity dissipation.
In the absence of calibrated input or output lines, the power radiated by the memory is defined
up to a constant, in particular the quantity |g2α|2 writes

|g2α|2 = max
[
|ϵdg2| − κaκb

8 , 0
]

(2.41)

which, as a function of ϵdg2, has a slope 1 and an x-intercept κaκb/8 .

In terms of the single mode effective quantities, eq. (2.40) rewrites for ϵ2 ≥ κa/4

|α|2 = 1
2κ2

(4ϵ2 − κa) (two-photon dissipation) .

If instead of two-photon dissipation, Kerr effect of amplitude Ka was limiting the amplitude of
the pointer states [53, 74], a similar semi-classical analysis predicts a mean photon number for
ϵ2 ≥ κa/4

|α|2 = 1
2Ka

√
(4ϵ2)2 − (κa)2 (dissipative Kerr) ,

which is qualitatively different from what is observed in this experiment.

General case Since θa and α are on separate sides of eq. (2.38), we can geometrically solve
the system in the complex plane. The right-hand side is a circle of radius |ϵd/g∗

2| centered on z.
The left-hand side is the positive real axis. In this picture, there can be 0, 1, or 2 intersections
between this circle and the real positive axis, giving rise to 1, 3 or 5 solutions for the system,
one for vacuum plus two for each intersection since ±α are both valid solutions. Experimentally
observed solutions are the ones that give rise to the largest field in the memory. Hence |α|2, the
mean photon number in steady-state, writes

|α|2 =


max

[
Re(z)+

√∣∣∣ ϵd
g∗

2

∣∣∣2− Im(z)2, 0
]
, if

∣∣∣ ϵd
g∗

2

∣∣∣2> Im(z)2

0 , otherwise.
(2.42)

In the ∆a, ∆b coordinates, the region where α2 is non-zero forms a diamond shape. Hereafter,
we provide the equation for the borders of this feature colloquially referred to as a diamond. The
∆a, ∆b-plane is divided in two domains depending on the sign of the quantity ∆a∆b − κaκb/4 .

The top-right and bottom-left edges of the diamonds are located in the positive domain and are
given by

κa∆b + κb∆a = ±4|ϵdg2| . (2.43)

Note that the slope of this edge is determined by −κb/κa. The bottom-right and top-left edges
are located in the negative domain and are defined by

(κ2
a

4 + ∆2
a)(κ2

b

4 + ∆2
b) = |2ϵdg2|2 . (2.44)
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3. Photon number calibration

Hence the border of the diamond only depends on the product ϵdg2 and does not carry infor-
mation on g2 nor ϵd independently. Moreover, we cannot determine g2 and ϵd even with the
full diamond information (not only the edges). Indeed, from the measurement of the rates κa,
κb and the knowledge of the applied detunings ∆a, ∆b, one has independently access to the
quantity

z′ = 1
2(iκa

2 + ∆a)(iκb

2 + ∆b) . (2.45)

In the absence of photon number calibration, we only learn from eq. (2.42) that the power
radiated by the memory is proportional to

⟨I2⟩ ∝ Re(z′) +
√

|ϵdg2|2 − Im(z′)2 . (2.46)

Thus, we only have access to the product ϵdg2 but not g2 or ϵd independently.

Discussion On the one hand, the top-right and bottom-left edges of the diamond are straight
lines along which the photon number reaches its maximum value and suddenly drops to zero
(see Figure 2.9) when increasing the detunings. One the other hand, the top-left and bottom-
right edges have smoothly vanishing photon number when increasing the detunings. Hence,
when increasing ∆a at finite ∆b > 0, the photon number increases smoothly when ∆a < 0 and
abruptly goes to zero at the ∆a > 0 edge. This qualitative behaviour is reminiscent from the
response of a nonlinear parametric oscillator, whose dynamics is encoded in eq. (2.21).

3.3 Description of calibration steps

For various values of buffer drive amplitude ϵd, we measure the average energy radiated by the
memory for a duration Tm = 10 µs which is proportional to n̄ (see Figure 2.10 and Figure 2.12
(b) ). The following paragraphs will attempt to calibrate this proportionality constant. The
dependency of I2 + Q2 as function of drive amplitude ϵd has some notable features. First, using
semi-classical analysis, we can calibrate the axes so that the only unknown parameter is g2.
Then, a full quantum model is required to capture the curvature of this dependency, from which
we extract the g2 parameter.

3.3.1 Semi-classical analysis

Linear scaling for radiated energy as function of drive amplitude First, as presented
in Figure 2.10 and in Figure 2.12 (b), in the limit of strong drives, the radiated energy scales
linearly with the drive amplitude, a signature of the conversion of 1 buffer photon to 2 memory
photons. This is in stark contrast with the common quadratic scaling for a driven harmonic
oscillator. Moreover, the offset of this asymptote from the origin, that is consistent with the
theoretical analysis of the previous subsection (see Subsection 3.2), excludes the Kerr effect as
the underlying process.

Critical point: nonlinear phase transition The output power is close to zero up until
a critical drive amplitude, reminiscent of a nonlinear dissipative phase transition [75]. This
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3. Photon number calibration

transition occurs when the two-photon injection rate overcomes the memory losses, setting the
scale for the product ϵdg2 to its value at the critical point ϵdg2 = κaκb/8. This critical point
clearly appears in equation (2.40). Using these properties, we calibrate the drive amplitude axis
of Figure 2.10 in units of |ϵdg2|: the x-intercept of the linear dependence at large photon number
(semi-classical regime) is located at κaκb/8. The x-axis being calibrated, we linearly stretch
the y-axis such that the asymptotic slope is 1 in the strong drive regime. According to semi-
classical computation of steady state photon number of the previous subsection (eq. (2.41)), this
transformation enforces the y-axis to |αg2|2 and leads to the scaled data of Figure 2.10.
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Figure 2.10: Two-photon coupling calibration. (a) Radiated energy from the memory (y-axis)
as a function of drive amplitude (x-axis). There are two regimes: when the drive amplitude is
small, single photon losses overcome the two-photon drive, and the memory stays in the vacuum.
Once the critical point has been reached, the memory gets populated by a coherent state with
photon number asymptotically proportional to the drive amplitude. The axes units are chosen
so that the critical point is at κaκb/8 and the asymptotic slope is 1. The data correspond to
an integration time of 10 µs with 10000 averages (crosses). The semi-classical model (green
solid line) captures the position of the critical point but fails to explain the curvature of the
experimental data. A full numerical simulation is used to reproduce the data where the only
fitting parameter is g2 (red lines). (b) Zoom in on the curvature around the critical point (grey
rectangle from (a)), emphasizing the agreement between simulations and experimental data.

Determination of κa and κb values This rescaling crucially depends on the values of κa and
κb which are determined as follows. We measure the reflection coefficient of the memory in the
presence of a pump tone slightly detuned from the frequency matching condition. This enables
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3. Photon number calibration

to capture the shift of parameters (frequency, internal losses, coupling losses) due to nonlinear
effects arising from the pump while disabling the two-photon losses. From this measurement
we numerically fit κi

a/2π ∈ [15, 22] kHz and κc
a/2π ∈ [39, 42] kHz. The same protocol fails to

determine precisely κb due to the background induced by the stop-band filters and the strong
dependence of the buffer parameters on the pump frequency. Instead, we use the diamond
property derived in eq. (2.43) that the top-right and bottom-left edge of the diamond have a
slope of −κb/κa. As shown in Figure 2.11, we find κb/2π in the range [13, 20] MHz. We later
propagate the parameter range found for κa and κb on the rest of the calibration to give a robust
confidence interval for g2 and n̄. We make the approximation that both κa and κb are constant in
our experimental regime. In reality, their effective values vary lightly with the pump frequency.
From measurements described above, we deduce the range among which these variations occur.
We use this range to deduce an upper and lower bound for the experimental parameters obtained
using the described calibration procedure.
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Figure 2.11: Radiated energy from the memory in units of circulating photon number (color)
as a function of the detunings ∆a (x-axis), and ∆b (y-axis) defined in the text, for the drive
amplitude ϵd/2π = 12.1 MHz. The red solid line displays the fitted slope of the top-right and
bottom-left edge, yielding the ratio κb/κa (see eq. (2.43)). The red dashed-dotted lines and the
red dashed lines respectively give the upper and lower bound on this parameter (determined by
graphical reading).

Independent checking of the calibration We can independently check the calibration of
|αg2|2 by studying the excess internal losses arising from the two-photon dissipation. When the
two-photon dissipation becomes resonant, the internal losses of the memory measured by direct
spectroscopy increase drastically and become nonlinear as a function of the probe power. The
effective internal losses of the memory write

κi
a,eff = κi

a + 2κ2|α|2 (2.47)
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where κi
a is the bare internal losses of the cavity and |α|2 is the average circulating photon

number due to the spectroscopy tone. The excess losses rewrite 8|αg2|2/κb and it provides an
independent calibration of |αg2|2 that we find in good agreement with the previous method.

3.3.2 Quantum signature

At the critical point, the semi-classical analysis fails to capture the curvature of the mean
photon number n̄ as a function of the drive amplitude ϵd (see the discrepancy between the plot
from semi-classical analysis and experimental data on Figure 2.10 and Figure 2.12 (b)). This
curvature results from the quantum fluctuations at the dissipative phase transition [75]. A full
quantum model is necessary to capture this third notable feature, from which we extract the
key parameter g2. Instead, we perform a quantum analysis and compute the average photon
number in the steady state ρ∞ of the Lindblad equation generated by (2.21), n̄ = Tr(ρ∞a†a)
using the steadystate function imported from the QuTiP python package [76, 77]. Once we
express |αg2|2 as a function of |ϵdg2| (see Figure 2.10) the only fitting parameter is g2. On Figure
2.10 it appears that the value of g2 that best fits the experimental data is g2/2π = 39 kHz. For
the uncertainty interval, given the range of κa and κb, we estimate g2/2π ∈ [30, 46] kHz. This
value will be independently confirmed by bit-flip times numerical simulations in the next section
(see Subsection 4.1.3).

3.3.3 Recap of the extracted values

As a conclusion, the calibration gives the n̄ reached in the cavity memory for every ϵd. Finally,
with the photon number calibration in hand, the measurement records I and Q are rescaled to
respectively coincide with a measurement of (a + a†)/2 and (a − a†)/2i.
Furthermore, for clarity, Table 2.2 gathers all experimental parameters values at the working
point extracted in the Section 2 and in this current section (Section 3). Figure 2.12 is also recap
of the distinct calibration steps.
From relation (2.3) and g2 value we directly deduce the two-photon decay rate κ2/2π = 370 Hz.
This places our experiment in the regime where κa/κ2 = 150 ≫ 1. In the future the hybridization
factor υ between the buffer and memory will be increased to enter the regime suitable for a qubit
implementation: where the two-photon exchange rate largely dominates the cavity losses.
Eventually, with this method, we can extract the quantum efficiency number η from (2.20): we
find η = 2.8%. Next chapter will focus on measuring this quantity in a twin circuit, in order to
check the order of magnitude of this quantity.
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Figure 2.12: Emergence of two meta-stable pointer states from a nonlinear dissipative phase
transition. (a1-a3) Radiated energy from the memory mode in units of circulating photon
number (color) as a function of the detuning from the frequency matching condition ∆a =
1
2 (ωp − (2ωa − ωd)) (x-axis), and the detuning from the buffer resonance ∆b = ωd − ωb (y-
axis). We denote ωa,b,p,d the memory, buffer, pump and drive angular frequencies respectively.
Both data and semi-classical numerical simulations are shown in different regions of each panel
corresponding to the specified drive amplitude ϵd. (b) Radiated energy from the memory in
units of circulating photon number (y-axis) at ∆a = ∆b = 0 as a function of the drive amplitude
(x-axis). The data correspond to an integration time of 10 µs with single averaging (circles) and
10000 averages (crosses). A semi-classical model (green solid line) captures the appearance of
a critical point around ϵd/2π ≈ 3 MHz above which the vacuum state becomes unstable (green
dashed line). A full quantum model (red solid line) is necessary to capture the curvature at
the critical point, as emphasized by the zoom in the inset panel. (c) Histogram (color) of the
I-quadrature integrated over 1 ms of the field radiated by the memory (y-axis) in units of the
square root of circulating photon number as a function of the drive amplitude (x-axis). Passed
the critical point, the memory field transits from the vacuum into two meta-stable pointer states.
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4. Time dynamics for the two-photon dissipative oscillator states

ωb/2π 6.1273 GHz
ωa/2π 4.0458 GHz
ωp/2π 2.07 GHz

κi
a/2π 18 kHz

κc
a/2π 40 kHz

κb/2π 16 MHz

g2/2π 39 kHz
η 2.8%

κ2/2π 370 Hz

Table 2.2: Parameters at the operating point of the experiment. ωb/2π, ωa/2π, ωp/2π are the
buffer, memory and pump frequencies. κi

a/2π, κc
a/2π are the internal and coupling loss rates of

the memory, κb/2π is the loss rate of the buffer, g2/2π is the two-photon coupling rate, κ2/2π
is the two-photon dissipation rate and n̄sat is the average number of photons at the bit-flip
time saturation. The following parameters are given with confidence intervals: κi

a/2π ∈ [15, 22]
kHz, κc

a/2π ∈ [39, 42] kHz, κb/2π ∈ [13, 20] MHz, g2/2π/2π ∈ [30, 46] MHz, κ2/2π ∈ [270, 410],
nsat ∈ [43, 54].

3.4 Phase transition

At the critical point Figure 2.12 (c) clearly displays a phase transition of the memory internal
state. This observed phase transition corresponds to a spontaneous symmetry breaking, where
the cavity field adopts two opposite phases (or any quantum superposition of the two in the
absence of single photon loss). We observe the emergence of these two phases by continuously
acquiring, for each drive amplitude, 10000 times the I-quadrature of the radiated field integrated
over Tm = 1 ms, for a total measurement duration of 10 s (see Fig. 2.12 (c)). For the lowest
drive amplitudes (ϵd/2π ≲ 2.7 MHz), the cavity state remains in the vacuum, as signaled by the
Gaussian distribution centered at I = 0. This distribution then broadens around the critical
point (2.7 MHz ≲ ϵd/2π ≲ 3.5 MHz), due to the significant overlap of the distributions of states
|±α⟩ at small α and the multiple flips in between during the acquisition time Tm = 1 ms. For
(3.5 MHz ≲ ϵd/2π ≲ 4 MHz), the two states are well resolved, and their approximately equal
weights hint towards a bit-flip time larger than the acquisition time of 1 ms and smaller than
the full experiment duration of 10 s. For ϵd/2π ≳ 4 MHz, the field stays pinned to one of the
two computational states, hinting towards bit-flip times exceeding 10 s.

4 Time dynamics for the two-photon dissipative oscillator states

This section studies the time dynamics of the cavity states pinned by two-photon dissipation as
a function of the time for various drive amplitudes (and thus various sizes of cavity states). For
each cavity state size, we can extract a bit-flip time from the statistics of the time trajectory.
We measure a bit-flip time exceeding 100 seconds for computational states containing about 40
photons.
The last part of this section is dedicated to the short timescale dynamics, that is to say the
evolution of the buffer and memory states towards a stationary state once the two-photon
pumping is turned on. Comparison of experimental data and theoretical behaviour on this
timescale is another method for checking the values of previously derived experiment parameters.
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4. Time dynamics for the two-photon dissipative oscillator states

4.1 Time trajectories and bit-flip times

4.1.1 Time trajectories

Trajectory calibration for different integration times We analyse the bit-flip time scale
over several orders of magnitude, hence we increase the integration time Tm to keep manageable
amount of data in long bit-flip traces. Thanks to the previous calibration, we can readily get
the memory photon number from the (I, Q) statistics of the trace. Indeed, from eq. (2.33), we
have both G from the value of I2 + Q2

∣∣∣
vac

and 2Gκc
aη from the calibration of n̄. When given a

trace with different integration time T ′
m, we determine

n̄ = I2 + Q2 − 2GT ′
m

2Gκc
aηT ′2

m

. (2.48)

This determination of n̄ is more reliable than using the mapping between ϵd and n̄ since this
mapping may vary when the flux drifts.

Time statistics for jumps We access the dynamics of the memory by tracking individual
trajectories over time (see Figure 2.13). For each trajectory, we set the drive amplitude at a fixed
value ϵd, and record the I-quadrature of the radiated field. In order to resolve quantum jumps,
we set the integration time Tm to be simultaneously smaller than the bit-flip time and sufficiently
large to average out the heterodyne detection noise. We denote τjump the interval between two
consecutive jump times, that we locate as the moments where I changes sign. To capture the
statistical properties of each trajectory, we plot the cumulative distribution function of τjump. It
shows approximately an exponential law, revealing an underlying Poisson process. The average
of τjump, that defines the bit-flip time, undergoes a spectacular increase from 1 ms to 0.3 s to
206 s for an increase of photon number n̄ from 11 to 28 to 43. With respect to the bare cavity
lifetime of 2.7 µs, this represents a 108 increase of the bit-flip time, and (although inaccessible
with our measurement scheme) an estimated 2 × 43 = 86 fold decrease of the phase-flip time.

4.1.2 Bit-flip time evolution

We quantify the scaling of the bit-flip time with the photon number by repeating the trajectory
acquisition procedure for multiple drive amplitudes. From each trajectory we extract the bit-flip
time and the corresponding photon number, and display them in Figure 2.14. We observe two
distinct regimes.
Initially, the bit-flip time rises exponentially multiplying by a factor of about 1.4 for every added
photon. In theory, in the limit where κa/κ2 ≪ 1, this factor would approach e2 ∼ 7.4 [51]. In
this experiment we favoured stability over coupling strength, placing ourselves in the opposite
regime κa/κ2 ∼ 150, which is expected to decrease this factor as confirmed by numerical simu-
lations exposed in the next subsection (see 4.1.3).
For n̄ ≳ 40 photons, the bit-flip time saturates in the 100 second range. Although the origin
of this saturation is yet to be established, its timescale is compatible with the measured rate
of highly correlated errors in a large array of qubits [78], possibly due to high energy parti-
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4. Time dynamics for the two-photon dissipative oscillator states

cle impacts [79, 80]. Future experiments could include monitoring oscillator trajectories over
timescales of days or weeks to learn more about the phenomena causing these bit-flip events.
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Figure 2.13: Real-time oscillator dynamics revealed by individual trajectories. For photon
numbers n̄ = 11, 28, 43 (top, middle, bottom), we respectively set the integration time to
Tm = 0.1, 1, 5 ms and the total measurement duration to Ttot = 10, 1000, 5000 s. (Left) His-
togram of the (I, Q) quadratures of the radiated field. (Center) Trajectory of the I-quadrature
as a function of time cropped from the full data-set. (Right) Cumulative distribution function
of the stochastic time interval τjump in between two consecutive jumps. Its average value, that
defines the bit-flip time, is printed on each panel.
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4. Time dynamics for the two-photon dissipative oscillator states

4.1.3 Bit-flip time simulation

We numerically simulate the dynamics of the memory described in eq. (2.1) using the mesolve
function imported from the QuTiP python package [76, 77]. We run the simulation for three
different values of g2 (or equivalently κ2). For each of these values, we sweep ϵ2 in order to
vary n̄ = |α|2 in the range of 4 to 40 photons. We initialize the memory in the coherent state
|α⟩, and fit the expectation value of the annihilation operator a to an exponentially decaying
function. The extracted decay time corresponds to the bit-flip time. In Figure 2.15, we display
the computed bit-flip time as a function of the product n̄ × (g2/2π)2, since it is a well calibrated
quantity in our experiment. The data lie in the vicinity of the simulation results for g2/2π =
39 kHz, thus confirming our calibration of g2.
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Figure 2.15: Numerical simulations (solid lines) of the bit-flip time (y-axis) for three values of
g2 (labels) as a function of the number of photons in the memory n̄ multiplied by (g2/2π)2 (x-
axis). The data (dots) from Figure 2.14 of the main text qualitatively matches the simulations
for g2/2π = 39 kHz, thus confirming our calibration of g2.

4.2 Short timescale dynamics

The previous subsection focuses on the jumps statistics between the two meta-stable states
stabilized by two-photon dissipation. In order to collect enough jumps events, the memory
radiated field is recorded over a long timescale. Experimental data of the previous subsection
lack an appropriate time resolution for analyzing the emergence of the two pointer states.
On the contrary, the goal of this subsection is to investigate the short timescale dynamics of the
field inside the buffer and memory just after two-photon pumping is turned on. Here, we present
experimental data acquired on a short timescale with high time resolution. We compare this
data to simulated dynamics generated by a theoretical model fed with experiment parameters
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4. Time dynamics for the two-photon dissipative oscillator states

extracted in previous sections (Sections 2 and 3). This comparison provides an additional check
on the extracted parameters values.

Input/output theory The input/output theory allows us to connect the field inside the
memory and the buffer to the collected signal out of these resonators. We send a single photon
drive on the buffer port called bin, and collect the signal out of the buffer and the memory via
their respective dedicated ports. The experimentally acquired signal is proportional to aout for
the memory and to bout for the buffer. Noting a the field inside the memory and b in the buffer,
and κc

a, κc
b the respective coupling rates, the input/output theory yields

{
aout = √

κc
aa

bout =
√

κc
bb − bin .

(2.49)

A specific calibration is required to determine the inner field characteristics of the memory and
the buffer modes from the experimental raw acquired field quadrature.

4.2.1 Memory

Data calibration Figure 2.16 shows the time dynamics of the signal amplitude radiated out
of memory. We have to calibrate the y-axis in number of photons as well as the drive amplitude
ϵd value associated with each curve.
On this figure, we can clearly see how the field intensity in the memory evolves towards a
stationary state. Once the stationary regime is reached, we pick the stationary state value for
each drive amplitude, by averaging the reached values along the time axis. This results in a
correlation between the drive amplitudes (in arbitrary units) and the steady state values of the
field intensity (also in arbitrary units). The method previously exposed in Section 3 allows us
to calibrate both the drive amplitude and the field intensity in number of photons at the same
time. Then, we can report this linear scaling in number of photons for all data points (even
before the stationary state) resulting in a complete calibration of Figure 2.16. It is important
to note that this calibration is g2, κa and κb dependent.

Simulation Since κb ≫ g2, adiabatic elimination allows the dynamics of the memory to be
simulated using a one mode model of equation (2.1). We numerically simulate the dynamics
of this equation using the mesolve function from the QuTiP python package [76, 77], with
memory starting in vacuum as initial condition. The values of κ2 and ϵ2 are calculated from the
experiment parameters according to equation (2.3).
As a result, one should keep in mind that both simulation and calibrated data rely on experimen-
tally extracted parameters. They depend on the two-photon coupling rate g2 which is extracted
from calibration (see Section 3), as well as on directly fitted parameters: single photon loss rate
of memory and buffer mode κa, κb and detunning of both modes, ∆a, ∆b.

Testing different g2 values To test the robustness of the g2 value, we plot the calibrated
data and the simulation results in Figure 2.17 for two different values of two-photon coupling
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4. Time dynamics for the two-photon dissipative oscillator states

g2/2π = 39kHz ± 15 kHz. We can see that for g2/2π = 24 kHz the simulation underestimates
the experimental data for small amplitudes and overestimates it for big amplitudes. Conversely,
for g2/2π = 54 kHz the simulation overestimates the data for small amplitudes and is even
further away from the data for large drive amplitudes. This is an additional validation of the
two-photon coupling rate value g2/2π = 39kHz obtained in the previous section (see Section 3).
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Figure 2.16: Real time number of photons dynamics inside the two-photon dissipative oscillator,
from measurement and simulation, for increasing drive amplitudes. Top, respectively bottom,
plot is modulus, respectively argument, of the average value of a2 in the memory mode. Circles
are experimental data points, solid lines stand for the simulated dynamics. The color scale
indicates the single photon drive amplitude ϵd. The data were taken in two distinct data sets.
The first data set contains amplitudes ranging from ϵd/2π = 2.39 MHz to ϵd/2π = 5.98 MHz
with an integration time Tint = 2 µs. The second data set ranges from ϵd/2π = 5.98 MHz
to ϵd/2π = 11.97 MHz with Tint = 1 µs. Each data point is averaged Nav = 10000 in both
data sets. In order to have a meaningful phase average on the Nav repetitions, we plot the
argument of mean value of a2 rather than a. We took out the arbitrary angle due to initial phase
from each data set. The photons numbers and the drive amplitudes were calibrated together
taking g2/2π = 39 kHz. The simulation was run with numerical parameters κa/2π = 58 kHz ;
κb/2π = 16 MHz; g2/2π = 39 kHz.

4.2.2 Buffer

Data calibration Because of the presence of an input drive, calibrating the signal collected
out from the buffer port in terms of number of photons is more complex than for the memory.
Fortunately, the buffer steady state has some properties that we can exploit for this calibration.
A steady state regime is clearly displayed in Figure 2.18 just as it is for the memory: we pick the
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Figure 2.17: Real time number of photons dynamics inside the two-photon dissipative resonator,
from measurement and simulation, for increasing drive amplitudes. Right plot is computed with
g2/2π = 24 KHz. Left plot is computed with g2/2π = 54 KHz. Circles are experimental data
points, solid lines stand for the simulated dynamics. The color scale indicates the single photon
drive amplitude. The data acquisition and calibration procedures are detailed in the caption of
Figure 2.16.

steady state amplitude value by averaging along time once the steady state regime is reached.
Assuming there is no detunning (∆a = ∆b = 0), the two-modes model dynamics are given by
equation (2.18). As performed in Subsection 3.2, in the mean-field approximation at steady
state, the a and b operators can be replaced by their mean value, the complex numbers α and
β. As soon as α ̸= 0, we get from equation (2.37), the value of the steady state in the buffer

β = iκa

4g2
e2i arg(α) . (2.50)

One notable feature is that the angle arg(α) does not depend on how strong we drive the
memory state. This property can be used in equation (2.50) as soon as the memory state is not
anymore in the blurred phase transition out of vacuum state. Consequently, for high enough
drive amplitudes, the steady state of the buffer does not depend on this amplitude and should
be the same for all time traces exposed in Figure 2.18.
Knowing that bin is de facto proportional to the drive amplitude, this property allows us to find
the scaling factor in front of bin in the input-output equation (2.49). Finally, after removing
this input contribution, equation (2.50) returns the actual expected value of β in

√
ph units,

allowing us to get the scaling factor for all time traces in Figure 2.18.

Simulation To simulate the time dynamics of the buffer, we use the Langevin equation on
b operator (equation (2.35)) with zero detuning ∆b = 0. We take b(t = 0) = 0 as the initial
condition. This dynamics includes the value of the memory field. Thus, we numerically solve
this differential equation using: < a2(t) > = Tr(ρsim(t)a2) with ρsim the simulated dynamics
for the memory showed in Figure 2.16. We can see in Figure 2.18 that the numerical solution
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4. Time dynamics for the two-photon dissipative oscillator states

gives the correct dynamics for buffer magnitude, even if the amplitude values do not perfectly
match. On the contrary, this model cannot capture the slightly rotating dynamics of the buffer
state.
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Figure 2.18: Real time dynamics inside the buffer resonator from measurement and simulation
for various drive amplitudes. Top, respectively bottom, plot is modulus, respectively argument,
of average value of b in the buffer mode. Circles are experimental data points, solid lines stand
for the simulated dynamics. The color scale indicates the single photon drive amplitude ϵd. The
data acquisition and calibration procedures are detailed in the caption of Figure 2.16. Moreover,
the buffer data were calibrated referring to the theoretical amplitude of the steady state of the
buffer as explained in main text. For each drive amplitude ϵd, the simulated dynamics is the
numerical solution of the differential equation (2.35) with ∆b = 0 ; κb/2π = 16 MHz and
g2/2π = 39 kHz.

Including Kerr terms on the buffer We can refine the model by including the Kerr term
on the buffer in the dynamics. This introduces an extra term into the Langevin equation (2.35)
which becomes

db

dt
= −κb

2 b − ig∗
2a2 + iϵd + iχbbb

†b2. (2.51)

This term has no effect on the field amplitude but causes the numerical curves to follow
the data dynamics for the field phase. Figure 2.19 presents the simulation results with a tuned
Kerr value in order to match the dynamics of experimental data as closely as possible. We
find χbb/2π = 1.70 MHz. Taking into account the estimated sources of self-Kerr in Subsection
1.3 and feeding them with the values of experimental parameters displayed in Table 2.1, we
get a total estimated self-Kerr term of χest

bb /2π = 2.44 MHz. Even if there are in the same
order of magnitude, this estimation differs from the Kerr value numerically tuned to match
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the experimental dynamics. This could indicate the presence of another nonlinear second order
process modifying the buffer mode Kerr value.
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Figure 2.19: Real time dynamics inside the buffer resonator, from measurement and simulation,
for increasing drive amplitudes. Top, respectively bottom, plot is modulus, respectively argu-
ment, of the average value of b in the buffer mode. Circles are experimental data points, solid
lines stand for the simulated dynamics. The color scale indicates the single photon drive am-
plitude. The data acquisition and calibration procedures are detailed in the captions of Figures
2.16 and 2.18. The model is simulated using the equation (2.51) and takes the Kerr effect on
the buffer mode into account with: χbb/2π = 1.70 MHz and κb/2π = 16 MHz, g2/2π = 39 kHz.
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Résumé en français

L’expérience de l’oscillateur muni de la dissipation à deux photons décrite dans le chapitre précé-
dent a démontré un temps de bit-flip dépassant les 100 secondes. Toutefois, il est absolument
crucial de connaitre le nombre de photons dans les états de la cavité pour lesquels ce temps a été
atteint afin de déterminer si ce prototype pourra être utilisé comme bit quantique performant.
Ainsi, l’objectif de ce chapitre est de contrôler la calibration du nombre de photons du chapitre
précédent en utilisant un circuit de contrôle composé de la cavité couplée à un transmon.
La première section détaille les différents éléments de ce circuit de contrôle. La deuxième sec-
tion présente la méthode de calibration du nombre de photons basée sur la détermination de
l’efficacité quantique de détection de la cavité. La comparaison entre l’efficacité quantique de
détection extraite du chapitre précédent avec celle extraite du circuit de contrôle permet de
corroborer la calibration de l’expérience principale. Enfin, ce circuit de contrôle est aussi utilisé
pour mesurer la population thermique dans le mode de la cavité, comme décrit dans la dernière
section de ce chapitre.
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1. Chip presentation

In the two-photon dissipative oscillator experiment presented in Chapter 2, bit-flip time of
order of magnitude of 100 s was observed. We stress again on the importance of knowing the
number of photons in the memory states realizing this bit-flip time. Indeed, since [59] shows
that phase-flips are going linearly with the size of the memory state, reaching this high bit-flip
time for a macroscopic number of photons in the memory state makes a high-performance qubit
impossible. However, reaching this bit-flip time for a few tens of photons in the memory state
means that we still can operate it as a coherent qubit.
Chapter 2 details the method used to calibrate in situ the photon number in the memory state.
Nevertheless, since the number of photons is definitely a key value, we perform an independent
control experiment to corroborate the calibration. The objective of this chapter is to calibrate
the number of photons in the memory mode thanks to a new device composed of the memory
resonator coupled to a transmon. This device is detailed and characterized in the first section.
The second section is dedicated to the calibration method via the extraction of the quantum
detection efficiency of the memory resonator. Finally, in the last section, we also use the cou-
pling between the transmon and the memory resonator in this device to measure the thermal
population of the memory mode.

1 Chip presentation

1.1 The need for a supplementary device

Bit-flip time saturation due to the tomography apparatus A previous experiment
implementing the two-photon exchange mechanism ([59]) revealed the exponential suppression
of bit-flips and linear increase of phase-flips for Schrödinger cat states stored in the memory
resonator. In this implementation, the memory resonator is coupled to one end to the buffer, and
to the other end to a transmon qubit and a readout resonator followed by a parametric amplifier.
This tomography apparatus enables probing the Wigner function of the state of the memory
resonator. However, in this implementation, the tomography apparatus is the most probable
cause for the bit-flip time saturating in the millisecond range. Indeed, [59] explains that the
transmon qubit has a thermal population of 1%, a lifetime T1 = 5 µs, and is dispersively coupled
to the memory resonator. In the millisecond range, the qubit can get a thermal excitation,
shifting the memory frequency by the dispersive shift value. This causes the cat-qubit state to
rotate during an average time T1, taking it out from the two-photon confinement potential and
thus out from the cat-qubit computational basis. Once the transmon decays to ground state,
the two-photon mechanism brings back the memory state to the computational basis but it can
relapse to a bit-flipped state compared to the initial state. As a result, [59] is recommending
to highly decrease the dispersive shift value between transmon qubit and memory in order to
circumvent the saturation.
In the experiment of this thesis work, we are even more conservative: we decided to completely
get rid of the tomography apparatus. Indeed, in the implementation presented in Chapter 2 the
objective is to strip the cat-qubit circuit from anything we can afford and to probe the highest
limit in bit-flip time we are able to reach thanks to two-photon dissipation mechanism. The
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heavy cost of these choices is that we are in the regime where κ2 ≪ κa, making it impossible
to measure quantum superposition states. However, the results presented Chapter 2 are really
encouraging, proving that there is nothing at the core of the two-photon exchange mechanism
restricts the bit-flip time up to 100 seconds. Future experiments can gradually work the way
back to the regime suitable for qubits with κ2 ≫ κa.

Comparing calibration methods via the quantum detection efficiency Another con-
sequence of the absence of tomography apparatus in the chip device is that calibrating number
of photons in the memory state is not as straightforward as in [59]. Chapter 2 describes the cal-
ibration method of the average photon number n̄ in the memory. This method relies on notable
features of the dependency between the radiated power out of memory and the single-photon
drive amplitude.
The quantum detection efficiency, noted η, quantifies how the signal-to-noise ratio is degraded
with respect to the limit imposed by quantum vacuum fluctuation [81]. In the case of a resonator
with a coupling rate κc

a, for a coherent state measured during the integration time Tm containing
a number of photons n̄, the measured mean I and standard deviation σ(I) of the I-quadrature
verify

n̄ =
(

I

σ(I)

)2 1
2ηκc

aTm
. (3.1)

In the chip of Chapter 2, it was not possible to in situ measure the quantum detection efficiency
of the memory resonator. If we were able to access to this quantity, the average photon number
would have been directly calibrated thanks to (3.1). In this chapter, we present a chip with
the memory resonator coupled to a transmon qubit in order to measure the quantum detection
efficiency value and check if the calibration of Chapter 2 is accurate. The η value is inherently
dependant on all the measurement chain. As a result, the issue is to keep everything as close to
the experiment device from the previous chapter (in particular all the wiring setup around the
memory resonator).

1.2 Chip presentation

We fabricate a new chip in order to evaluate the quantum detection efficiency η (see Section 2)
and the thermal population of the memory mode nth (see Section 3). In this chip, the fabricated
memory resonator is identical to the one described in the main experiment and the entire two-
photon exchange apparatus is replaced with a transmon qubit (see Figure 3.1). The chip was
mounted in a similar sample holder and measured with an identical wiring on the memory port
as in the experiment setup displayed in Figure 2.3.

Memory resonator The memory resonator is identical to device of Figure 2.1 based on a
λ/2 resonator with exactly the same structure than the previous chip. We measure the same
frequency than previously ωa/2π = 4.0457 GHz, and we measure coupling and internal loss rates
κc

a/2π = 38 kHz and κi
a/2π = 17 kHz.
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Figure 3.1: False-color optical micrograph of the detection efficiency chip in Nb (grey) on Si
(dark blue). The memory resonator (blue) is capacitively coupled to a transmon (green).The
inset focuses on the transmon and its Josephson junction in Al (light grey). We can address the
memory and collect the reflected signal (blue waves) via the bottom 50 Ω port. The left 50 Ω
port is dedicated to drive the transmon (green waves).

Transmon qubit The qubit is a transmon qubit, composed of a central shunting capacitance
connected to ground via a Josephson junction, as shown in the inset of Figure 3.1. We aim
for a qubit frequency of ωq/2π ≈ 6 GHz in order to be sufficiently detuned from the memory
resonator.

1.3 Transmon qubit characterization

The goal of this subsection is to present the measurement of the transmon characteristics values
used in next sections. In the following, the memory resonator is also used as a readout resonator
for the qubit.

Qubit characteristic times The relaxation time T1 is an important qubit property. It is
determined by applying a π-pulse and measuring the population of excited state after a waiting
time t. The population is exponentially damped and a fit of the data measurement gives:
T1 = 19 µs (see Figure 3.2 left).
The coherence time T2 is the other relevant characteristic qubit time. It is measured via a Ramsey
sequence: a slightly detuned π/2-pulse is applied to the qubit, which is then left evolving freely
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during a time t, after which a second π/2 pulse is applied, followed by qubit state readout. A
fit of data measurement sets: T2 = 24 µs (see Figure 3.2 right).
Those two characteristic times have associated rates κ1 and κφ used later in this chapter and
defined as

κ1/2π = 1
T1

κφ/2π = 1
2T1

+ 1
T2

.
(3.2)
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Figure 3.2: Left, respectively right, T1, respectively T2, measurement: data (blue circles) and
fit (red solid line). (Left) The data are acquired for a total time of Ttot = 100 µs; time step
of Ts = 250 ns with Nav = 1000 averages per point. The red line is the exponential fit p(t) =
A exp(−t/T1) where A is a scaling constant, giving T1 = 19.3 µs. (Right) The data are acquired
for a total time of Ttot = 60 µs; time step of Ts = 150 ns with Nav = 4000 averages per point.
The red line is the fit by an oscillation with period T2 modulated by an exponential decay due
to T1: p(t) = A cos(2π

T2
t) exp(−t/T1) where A is a scaling constant. The fit procedure gives

T2 = 24.3 µs.

Dispersive shift We have set the coupling strength between the qubit and the cavity to be
sufficiently low in front of their frequency detunning in order to be in the dispersive regime. In
this limit, a relevant quantity is the dispersive shift which quantifies the frequency shift induced
by the qubit state on the cavity. Reversely, it also characterizes the frequency shift of the qubit
induced by the photon number of the cavity. Hence, we can use the transmon to differentiate
the different photon number states of the cavity.
We measure the dispersive shift by comparing the cavity spectroscopy measurement results when
the transmon is initialized in its ground state or when the transmon is in its excited state (a
π pulse is applied on the qubit just before performing the cavity spectroscopy), as displayed in
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2. Evaluation of the quantum detection efficiency

Figure 3.3. We evaluate: χ/2π = 1.75 MHz. For reader convenience, Table 3.1 sums up all the
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Figure 3.3: Dispersive shift measurement. Readout cavity spectroscopy with the qubit in its
ground state (blue dots) and with the qubit in its excited state (red dots). Solid lines are fits of
the resonance peaks. The spacing between the two resonance peaks gives χ/2π = 1.75 MHz.

characteristic values of the memory resonator and the transmon qubit of the device of Figure
3.1.

ωa/2π 4.057 GHz
κc

a/2π 38 kHz
κi

a/2π 17 kHz

T1 19.3 µs
T2 24.3 µs

χ/2π 1.75 MHz

Table 3.1: Parameters of the device used to calibrate the quantum detection efficiency. The
transmon qubit lifetime and coherence times are denoted T1 and T2. The memory coupling and
internal loss rates are denoted κc

a and κi
a, and χ corresponds to the dispersive coupling rate

between the transmon and the memory resonator.

2 Evaluation of the quantum detection efficiency

The goal of this section is to detail the calibration method of the number of photons in the
memory using its dispersive coupling to the transmon qubit. The calibration eventually provides
an evaluation of the quantum detection efficiency η. Our evaluation of η follows three steps.
First, we perform a standard spectroscopy in reflection of the memory mode in order to emulate a
measurement signal that is directly proportional to the intra-cavity field amplitude ⟨a⟩. Second,
for a given amplitude ain, we calibrate the cavity photon number n̄ = ⟨a†a⟩ by resolving the
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2. Evaluation of the quantum detection efficiency

photon number splitting of the qubit. Third, for each calibrated photon number we measure
the fluctuations of the output field aout and we retrieve η by inverting eq. (3.1). We detail each
step of this procedure in subsequent subsections.

2.1 Photon number resolved qubit spectroscopy

Memory spectroscopy For various incoming signal amplitudes Sin, we perform a spec-
troscopy measurement recording the reflected signal Sout. Using the results of the resonance
fit, we can then translate the data in the (I, Q) plane in order to emulate a transmission signal:
St = A ⟨a⟩, where A is an unknown scaling factor to be calibrated.

Theoretical description For various resonant signal amplitudes Sin we activate a drive on
the transmon at a fixed amplitude Sq with a varying detuning ∆q.
We note down a the memory annihilation mode operator and q the qubit annihilation mode
operator. We note Ωa (respectively Ωq) the drive on the memory (respectively on the qubit).
We recall that κ1, κφ are deduced from characteristic qubit times as in (3.2). χ and κa are taken
from Table 3.1. The dynamics is described by

∂tρ = −i [H, ρ] + D [√κaa] ρ + D [√κ1q] ρ + D
[√

κφq†q
]

ρ

H = ∆qq†q − χa†aq†q + Ωa

(
a + a†

)
+ Ωq

(
q + q†

)
.

(3.3)

Numerical simulation and measurement results For each initial input amplitude and
transmon drive amplitude and detunning, we collect the reflected signal amplitude and deduce
the transmitted amplitude St. The data St(∆q, Sin, Sq) are then fitted to the result of a nu-
merical simulation. Using the steadystate function of the QuTiP package [76, 77], we solve
the dynamics of (3.3). From this simulation we extract ⟨a⟩ (∆q, Ωa, Ωq), that is used to fit the
dataset St(∆q, Sin, Sq), where the fit parameters are the proportionality constants relating Sin

to Ωa, Sq to Ωq and St to ⟨a⟩ (see Figure 3.4).

2.2 Output field statistics

For every drive amplitude Sin, the previous fit estimates the intra-cavity field ⟨a⟩, and hence n̄.
By acquiring histograms of the output field St, we now invert eq. (3.1) and retrieve η ≃ 7%.
This is a factor two larger than the previously estimated value in calibration method of the
previous chapter (see Chapter 2, Section 3). This deviation can be attributed to differences
in the RF connections of the two samples. These values may be explained by lossy elements
(two circulators, one Eccosorb filter and two directional couplers) between the sample and the
TWPA.
Yet, this measurement validates the order of magnitude of number of photons in the memory
state for the macroscopic bit-flip times presented in Chapter 2. In conclusion, the experiment
with this new device corroborates the high-efficiency of the implementation of the two photon
dissipative oscillator exposed in this thesis work.
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Figure 3.4: Calibration of the detection efficiency η. (Top) Qubit spectroscopy showing photon
number splitting for various drive amplitudes (colors): data (solid lines) and fit (dashed lines).
(Bottom) Product n̄η computed using equation (3.1) as a function of the square input signal
S2

in in units of photon number. This was performed for various integration times Tm (colors) to
ensure consistency.
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3. Measurement of thermal occupation of the memory resonator

3 Measurement of thermal occupation of the memory resonator

We recall from Chapter 2 that once the two-photon conversion is turned on, we measure the
radiated energy from memory as a function of the drive amplitude. Figure 2.12 (c) depicts the
I-quadrature acquisition result as a function of drive amplitude and clearly exhibits a phase
transition. First, the cavity state remains in vacuum as indicated by the Gaussian distribution
centered at I = 0. This output power is close to zero until the two-photon injection rate
overcomes the memory losses. At this critical point we observe a non-linear dissipative phase
transition [75]. The cavity field broadens and eventually adopts two opposing phases, revealing
two well-resolved states.
This phase transition is triggered by field fluctuations with two contributions. Vacuum field
fluctuations are the first one. Thermal field fluctuations are the second one. Since the memory
mode is around 4 GHz, its thermal occupancy is expected to be very small (less than a percent,
as typically found in similar setups [59]). This thermal occupation is therefore assumed to be
zero in the photon calibration of Chapter 2. In this section, we measure the thermal occupation
using the transmon to ensure that our photon number calibration of Chapter 2 is valid.

3.1 Theoretical model

We note down nth the number of thermal photons in the memory mode at frequency ωa/2π. As
in equation (3.3), a is the annihilation operator of the memory mode. κd and κu are the jump
rates of the memory due to its thermal environment, which are linked to the coupling rate of
memory κa as (see [82])

κd = (1 + nth)κa

κu = nthκa.
(3.4)

The Pauli operators of the qubit are σx,y,z, σ±. ∆q is the detuning of the drive of the qubit.
The Linbladian operators L1, respectively Lφ, stand for relaxation, respectively dephasing, on
the qubit, with associated rates defined in (3.2). We model the interaction of the qubit and the
cavity in the rotating frame as follows

H = −χa†aσ+σ− − ∆qσ+σ−

Ld = √
κda ; Lu = √

κua†

L1 = √
κ1σ− ; Lφ =

√
κφ

2 σz .

(3.5)

Intuitive reasoning We note |Ψ(t)⟩ the state of the qubit as a function of time. We study
the qubit’s dynamics starting from the equatorial state: |Ψ(t = 0)⟩ = 1√

2 (|0⟩ + |1⟩).
First, we evaluate the dynamics in an intuitive manner. In the case with no thermal photons in
the memory mode nth = 0, solving (3.5) yields to the expectation value of σx noted here ⟨σx⟩0(t)

⟨σx⟩0(t) = exp−t/T2 cos
(
∆q × t

)
. (3.6)
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3. Measurement of thermal occupation of the memory resonator

On the contrary, when the cavity has a thermal occupation of nth = 1, the measurement result
of σx operator is noted ⟨σx⟩1(t) and follows the dynamics

⟨σx⟩1(t) = exp−t(1/T2+κa) cos
(
(∆q + χ) × t

)
. (3.7)

We note ρ(t) the density matrix of the cavity as a function of time. The initial state of the
cavity in the generic case is a mixed state: ρ(t = 0) = (1 − nth) |0⟩ ⟨0| + nth |1⟩ ⟨1|. In this case,
an intuitive way of thinking is to assume that the qubit will follow the dynamics of (3.6) with
probability nth, and a dynamics of (3.7) with probability 1 − nth. As a result, measuring the
expectation value of σx as function of time allows us to recover the nth value. This reasoning,
however, is not exact: a numerical simulation of the entire Linblad equation (3.5) is required to
capture all of the subtleties of the combined effects of memory losses, thermal population, and
qubit dephasing.

3.2 Measurement

Experiment description We first apply a π/2 pulse on the qubit detuned by ∆q. Then, we
wait for a time t and we apply a −π/2 pulse on the qubit just before qubit state readout. This
allows us to access to the measurement of σx operator after the evolution during time t. We
extract nth from those measurement results using the different timescales of the dynamics.
Two datasets are acquired and are shown in Figure 3.5. Dataset A has a total duration of a few
T2: the time step is too large to distinguish oscillations due to the dispersive shift. Therefore,
a dataset B is acquired on a shorter time scale with refined discretization in order to see those
oscillations. We call in the following σA,B(t) the qubit measurement results of these two sets.

Estimation of nth We cannot solve the evolution of the qubit dynamics given by (3.5) an-
alytically. Hereafter we use the intuitive model from the previous paragraph to analyze the
experimental data and estimate nth. In this approximate model, we assume that the σx mea-
surement result is

⟨σx⟩(t) ≈ nth⟨σx⟩1(t) + (1 − nth)⟨σx⟩0(t) . (3.8)

The goal is to extract an approximation of nth using the different timescales in the experimental
data. Comparing (3.6) and (3.7) it appears that ⟨σx⟩1(t) has faster damped dynamics than
⟨σx⟩0(t). Since dataset A is taken on a long time scale and with a large time step, we can
assume that it is dominated by dynamics of ⟨σx⟩0(t) and we have

σA(t) ≈ C + K exp−t/T2 cos
(
∆qt

)
(3.9)

where C and K are scaling constants. The agreement of the data and the fit of expression
(3.9) validates the assumption (see Figure 3.5 left). Furthermore, the fitting routine extracts
the constants C and K values, which are then used to rescale the dataset B. This rescaled data
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is denoted as σ̃B(t) and is shown in Figure 3.5 right, in blue

σ̃B(t) = (σB(t) − C)/K . (3.10)

Since dataset B is acquired with an short time step, it should contain both contributions of (3.6)
and (3.7)

σ̃B(t) ≈ ⟨σx⟩0(t) + nth

1 + nth
⟨σx⟩1(t) . (3.11)

Dataset B is taken for times values t ≪ T2 so that the dynamics of ⟨σx⟩0(t) in this data can be
approximated by a linear dynamics. We linearly fit σ̃B(t) and substract this linear contribution
from σ̃B(t) (Figure 3.5 left, in green). As a result, the final data ˜̃σB(t) should be as follows

˜̃σB(t) ≈ nth

1 + nth
⟨σx⟩1(t) . (3.12)

The data ˜̃σB(t) can be fitted using (3.12) and (3.7). The agreement between the fit and the
data (Figure 3.5 right, green and orange) yields nth = 0.013 in the frame of this approximation.

QuTiP simulation Since the extraction of nth value is not exact, we perform a numeric
simulation of the full-model Hamiltonian of (3.5), using the mesolve function of the QuTiP
package [76, 77]. We initialize the system as mentioned above with the qubit in equatorial state
and the cavity in the superposition of states weighted by nth. Figure 3.5 demonstrates that the
simulation results with extracted parameters values correspond to the experimental data. This
simulation validates the value of nth = 0.013.
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Figure 3.5: Measurement of thermal population of the memory resonator nth. (Top part)
Measurement result of σx operator of the qubit for different waiting times between the two
±π/2 pulses. Left and right plots represent different data sets. Left, respectively right, plot has
experimental parameters: Ttot = 120 µs, respectively Ttot = 5 µs, time resolution is Ts = 300
ns, respectively Ts = 12 ns, and Nav = 400000 averages for one data point for both data sets.
Blue circles represent the data. Green circles represent the data calibrated according to (3.10).
The red solid line is a fit according to (3.9) with T2 = 20.7 µs, ∆/2π = 10 kHz. The orange
line is a fit of (3.12) giving nth = 0.013, τ = 2.43 µs, χ/2π = 1.75 MHz. (Bottom part) QuTiP
simulation result of ⟨σx⟩ solving the dynamics of (3.5) as function of waiting time t. Left plot
is the total ⟨σx⟩ dynamics. Right plot is a zoom in time on the short times: the blue line is the
total ⟨σx⟩ dynamics and the green line is the ⟨σx⟩ dynamics from which ⟨σx⟩0 contribution was
subtracted. We have simulated Hamiltonian of (3.5) with parameters: T1 = 19 µs, T2 = 20.7
µs, χ/2π = 1.75 MHz, ∆q/2π = 10 kHz, κa/2π = 50 kHz and nth = 0.013.
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Chapter 4
Circuit design
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Résumé en français

L’oscillateur pourvu de la dissipation à deux photons est réalisé dans le champ électromagnétique
d’un résonateur supraconducteur qui échange les photons par paires avec son environnement.
L’implémentation en architecture de circuit d’électrodynamique quantique des principaux élé-
ments de ce circuit est exposée dans le Chapitre 2. Le chapitre qui suit est dédié la conception
de composants micro-ondes annexes du circuit, mais toutefois indispensables au bon fonction-
nement global du prototype.
Ainsi, la première section traite de la conception d’un filtre coupe-bande centré sur la fréquence
fondamentale de la cavité. La section suivante détaille la conception d’un bias-tee sur puce afin
d’acheminer de façon adéquate des courants continus et micro-ondes dans le circuit. Les deux
sections suivent la même méthode de conception et passent d’un modèle théorique de circuit par
bloc fonctionnel, à des simulations électromagnétiques 3D par éléments finis, jusqu’à la fabrica-
tion de prototypes qui sont testés et finalement validés. Ce chapitre détaille à dessein certaines
techniques et méthodes d’ingénierie micro-ondes afin de pouvoir être une ressource pédagogique
pour la conception de composants micro-ondes similaires.
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1. Designing a stop-band filter

The two-photon dissipative oscillator is embedded in the cavity field of a superconducting
resonator that exchanges pairs of photons with its environment. The two-photon interaction
is based on the buffer mode that mediates a nonlinear coupling between the memory and its
environment. Therefore, the memory and the buffer resonators are the two main parts of the
superconducting circuit presented in Chapter 2 (see Figure 2.1). Their implementation in circuit
quantum electrodynamics coplanar waveguide architecture is detailed in Chapter 2, Section 1.
Yet, other on-chip elements had to be designed to make the whole circuit operational and are
presented in this chapter.
First, the two-photon interaction relies on the coupling of the memory mode to the lossy buffer
mode. An undesired side effect of this coupling is to increase the decay rate of the memory due
to the Purcell effect, which runs counters to the experiment purpose. To prevent this, Section 1
focuses on the design of a stop-band filter centered at the memory frequency, consisting of three
λ/4 sections on both routes linking the memory to its cold bath.
Second, to engineer the two-photon interaction, the ATS has to be threaded with a common
and differential DC flux around a specific working point. Moreover, the buffer has to be driven
and pumped via RF waves. Since both RF drives and DC currents have to be routed to the
ATS, a bias tee component is required. Yet, the left and right loops of the ATS have to be
independently DC-biased. This implies to fully control the path of the DC currents on the chip.
This is why Section 2 explains the design of on-chip bias tees.
Designing and simulating the circuit of the two-photon dissipative oscillator chip was one of
my main contributions to this project. This chapter outlines the process that led me to the
experimental chip exposed in Chapter 2. Each component design process gradually goes from
theoretical lumped models, to 3D finite elements electromagnetic simulations, to eventually
fabricating test devices and probing them. This chapter details some RF design techniques in
order to be useful for readers wishing to design similar on-chip elements.

1 Designing a stop-band filter

1.1 Introduction

This section explains the development of filtering elements to mitigate the direct coupling of
the memory to the input lines of the buffer. In the previous implementation of [59] the buffer
input line was filtered via three λ/4-stubs filters tuned at the memory frequency. We present
the design of more efficient stop-band filters in this section.
We recall that at the experiment operating point the buffer resonates at ωb/2π = 6.1273 GHz
with an energy decay rate κb/2π = 16 MHz. Regarding the memory, we aim for a relatively
low frequency of ωa/2π = 4.0457 GHz and we measure the coupling and internal loss rates
κc

a/2π = 40 kHz and κi
a/2π = 18 kHz. Ideally, the filtering element would block waves at

memory frequency and be transparent for the others frequencies. Thus, we aim for a stop-band
filter with high attenuation at its center frequency and a narrow bandwidth. There are also
dimensional constrains: the filters should fit inside the chip area next to all other coplanar
waveguide structures.
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The first subsection exposes step by step the theoretical construction of a stop-band filtering
lumped circuit element based on [83, 84]. Once we have a lumped model, we should implement
it in a coplanar waveguide version. The second subsection presents the 3D finite elements
electromagnetic simulations to adjust the circuit element design. Finally, as explained in the
last subsection, we fabricate a test version and measure it, before integrating this element to
the chip experiment.

1.2 Designing a lumped model of a stop-band filter

We aim to design a stop-band filter between a power source, standing for the memory mode
leaking via the buffer, and a 50 Ω impedance that models the circuit port plus all the cables
lying behind. Therefore, we want to build a single-terminated filter as shown in Figure 4.1. On
the real chip, since the buffer feedline has two arms (see Figure 2.1), we will have to put the
filtering element between the buffer and each exterior port.

Figure 4.1: Diagram of the stop-band filter between the power source representing the memory
mode radiating through the lossy buffer mode and the 50 Ω load impedance standing for the
external cabling environment.

We note down ∆ω the bandwidth, ω1,2 the -3 dB frequencies on both sides of central fre-
quency. We have: ω1,2 = ω0(1 ± ∆ω

2 ). The target parameters are

ω0/2π = 4 GHz
∆ω/ω0 = 20% .

(4.1)

Designing an RF filter is a topic covered by classical RF engineering textbooks. In the
following, we mainly refer to [83, 84] in order to explain all the steps to build an on-chip filtering
circuit element meeting those requirements.

Low-pass filter prototype The most simple low-pass filter prototype is the default LC filter
with ωc/2π = 1 Hz and Z0 = 1 Ω. First, we have to choose the filter type, conditioning the
attenuation profile as function of frequency. We choose here a Chebyshev filter (also said "equal
ripples") with 3-dB ripples since it provides a sharp rate of cutoff. The drawback is that inside
the central band around ω0 the attenuation will be minimal with ripples of maximum amplitude
of 3dB, but this is acceptable in our case.
We also have to determine the number of reactive elements in the circuit: the more dipoles,
the more efficient is the attenuation in the stop-band zone. However, for implementation, the
more reactive elements are involved the more space on the chip is required. It appears that a
filter with n = 2 reactive elements guarantees acceptable attenuation so we keep this minimal
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number.
Figure 4.2 shows a circuit diagram of the filter. For clarity, we take the notation convention of
[83] and we note g0,1,2,3 for the normalized element values which are defined as:

• g0 = 1 Ω (stands for the normalized 50 Ω impedance)

• g1 is the normalized coil inductance

• g2 is the normalized capacitance value

• g3 = ∞ (stands for the power source)

For a single-terminated Chebyshev filter with n = 2 elements and 3-dB ripples [83] gives

g0 = 1 Ω
L = g1 = 1.5506 H
C = g2 = 0.9109 F

g3 = ∞

(4.2)

with L the inductance value and C the capacitance value.

Figure 4.2: Circuit diagram of lumped element low-pass filter prototype with two reactive ele-
ments. The circuit is composed of the load impedance g0, an inductance of normalized value g1,
a capacitance of normalized value g2, and an ideal power source with infinite impedance g3.

Scaling on target parameters It is really common when engineering filters to refer to a
prototype normalized filter and next, to scale to the requested parameters values. The proto-
type filter parameters are noted: Z̃0 = 1 Ω, ω̃c/2π = 1 Hz, in order to appear in the scaling
formulas. In our case, we must scale the prototype coefficients to get to the desired parameters:
ωc/2π = ω1/2π = 3.2 GHz and Z0 = 50 Ω.
In order to change the filter impedance to Z0, all the individual impedances of the prototype
have to be multiplied by Z0/Z̃0 factor. Noting with a prime symbol the new components value,
this directly gives: L′ = L × Z0/Z̃0 and C ′ = C × Z̃0/Z0.
To change the cut-off frequency from unity to ωc, we have to globally scale the frequency de-
pendence of the filter by the change of variable: ω → ω × ω̃c

ωc
. Taking the individual components

impedance provides the new capacitance and inductance values

jLω → jLω × ω̃c

ωc
= jL′ω, with L′ = L × ω̃c

ωc

1
jCω

→ ωc

jCωω̃c
= 1

jC ′ω
, with C ′ = C × ω̃c

ωc
.

(4.3)
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Impedance and frequency scaling can be combined, resulting in our case in

g′
0 = Z0 = 50 Ω

L1 = g′
1 = g1Z0

1
ωc

= 1.92 nH

C2 = g′
2 = g2

Z0ωc
= 0.453 pF

g′
3 = ∞ .

(4.4)

From low-pass filter to stop-band filter Classic RF engineering textbooks explain how
low-pass filters can be converted into other types of filters (high-pass, stop-band, band-pass) by
rescaling the frequency variable in the frequency dependency of the filter. To get a stop-band
filter from a low-pass filter, we have to perform the transformation ω

ω̃c
→ −∆

(
ω
ω0

− ω0
ω

)−1 with
∆ being the fractional bandwidth of the filter: ∆ = ω1−ω2

ω0
and ω0, ω1, ω2 defined in (4.1). This

change of variables maps the central frequency ω0 to +∞ and is visually represented by the two
attenuation-frequency plots in Figure 4.3.
We can write the expression of individual impedances in this new frame. For instance, in the
case of the capacitance C, we get:

1
jCω

→ − 1
jC∆ω̃c

( ω

ω0
− ω0

ω

)
= 1

C∆ω̃cω0
× jω + ω0

C∆ω̃c
× 1

jω
(4.5)

Consequently, the capacitance has to be replaced by an LC-series with L̃ = 1
C∆ω0ω̃c

and C̃ = C∆ω̃c
ω0

.
Similarly, the inductance has to be replaced by an LC-parallel. Figure 4.3 illustrates this cor-
respondence with the two lumped models of the filters. As a result, the stop-band filter is
composed by two resonators centered around ω0.
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Figure 4.3: Transformation from a low-pass filter to a stop-band filter. Lumped models are
represented at the top. Attenuation characteristic profiles of those prototypes are drawn below.
For the example, here we have taken a Chebyshev 3 dB ripples filter.
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Figure 4.4: Circuit diagram of the stop-band filter composed of a λ/4 short-terminated stub in
series connected to a λ/4 open-terminated stub in parallel.

Implementation with stubs In order to implement the stop-band filter of Figure 4.3 on
our experiment chips with coplanar waveguides, we have to replace the LC-lumped resonator
by waveguide sections. Indeed, to approximate ideal lumped elements, distributed elements
such as open-circuited or short-circuited transmission line stubs1 are frequently used. Moreover,
the physical distance between distinct elements cannot be neglected at microwave frequencies.
Kuroda’s identities are an useful transformation to separate the equivalent components using
transmission lines sections.
First, the Richard’s transformation is used to transform a lumped element to a transmission line
section. The core idea of this conversion is that the input impedance of the transmission line
section must match the impedance of the initial lumped element at the cut-off frequency ω1/2π.
Thus, the LC-parallel resonator can be replaced by a short-circuited series stub λ/4 resonant at
ω0. Its characteristic impedance is noted here Z1. Likewise, the LC-series resonator is replaced
by an open-circuited parallel stub λ/4 resonant at ω0, with characteristic impedance noted Z2.
Our stop-band filter is now represented in Figure 4.4. In order for this stub-based model to be
equivalent to its lumped model, the characteristics impedances are set to

Z0 = 50 Ω

Z1 = ωcL1
tan(π

2
ω1
ω0

) = 25 Ω

Z2 = 1
ω1C2

1
tan(π

2
ω1
ω0

) = 169 Ω

Z3 = ∞ .

(4.6)

Second, we cannot implement a series stub in a coplanar waveguide design, so we have to
transform the series stub into an equivalent component. Kuroda’s identities illustrated in Figure
4.5 make the equivalence between a short-circuited series stub to an open-circuited parallel stub.
Moreover, thanks to this transformation the stubs are physically separated by a transmission
line section with a specific length and characteristic impedance. Thanks to these identities, we

1A stub is a portion of transmission line connected at one end only (in series or in parallel). The other extremity
can be opened or shorted.
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1. Designing a stop-band filter

Figure 4.5: Illustration of two equivalent circuits linked by Kuroda’s identities. All portions of
transmission lines have the same electrical length le.

Figure 4.6: Circuit diagram of the stop-band filter composed of two λ/4 open-terminated stubs
in parallel separated by a piece of transmission line of electrical length λ/4.

convert a line of impedance Z0 connected to a series stub of impedance Z1 into a parallel stub
of impedance Z ′

1 connected to a λ/4 long line of impedance Z12, such as

Z ′
1 = Z0(1 + Z0

Z1
)

Z12 = Z0 + Z1 .

(4.7)

Eventually, the stop-band filter is shown in Figure 4.6, composed by three λ/4 resonators whose
characteristic impedances are

Z0 = 50 Ω and Z3 = ∞

Z ′
1 = 149 Ω

Z12 = 75 Ω
Z ′

2 = Z2 = 169 Ω .

(4.8)

Coplanar waveguide implementation The obstacle for the coplanar waveguides implemen-
tation now lies in the high impedances required by equation (4.8). Indeed, a coplanar waveguide
of high impedance must present a narrow central track and a large gap.
In practice, for reliable nanofabrication with laser lithography we are limited to characteristic
sizes of about ∼ 1 µm. In order to have a safety margin, we fix the minimal track width to 5 µm.
Then, we fix the largest gap width to 100 µm. Indeed, the characteristic impedance increases in
a logarithmic way with the size of the gap so we decide to stop at 100 µm for space optimization
on the chip. Taking into account those dimensions and the dielectric constant of silicon (the
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1. Designing a stop-band filter

material of our chips, ϵr = 11.7), we get a maximal characteristic impedance of Zmax = 120 Ω.
We now want to be convinced about the filter efficiency even if all impedances are limited to
Zmax. Electromagnetic power dissipating in the load impedance is the relevant quantity to
consider for the filter efficiency. In the case of a single-terminated filter, the power flowing in
the load-impedance is proportional to Re(Zin) where Zin is the impedance seen from the port.
Ideally, Re(Zin) should be 50 Ω outside the band and 0 Ω inside.
Hereafter, we detail on purpose the calculation of Zin in order to help newcomers to under-
stand the calculation process. For a λ/4 open-circuited stub of characteristic impedance Z and
resonance frequency ω0 the equivalent impedance is

Z ′(ω) = Z

i tan(π
2

ω
ω0

) . (4.9)

For λ/4 long transmission line with resonance frequency ω0/2π and characteristic impedance Z,
loaded at the end by an impedance Zc the equivalent impedance is

Z ′(ω) = Zc

(Z + iZc tan(π
2

ω
ω0

))
(Zc + iZ tan(π

2
ω
ω0

)) . (4.10)

Then, using equations (4.9) and (4.10), we can gradually calculate Z0
in, Z1

in, Z2
in and Zin as they

are defined in Figure 4.7 

Z0
in = 50 Ω

Z1
in(ω) = 1

Z0
in+i

tan( π
2

ω
ω0

)
Z1

Z2
in(ω) = Z12

(Z1
in+iZ12 tan( π

2
ω

ω0
))

(Z12+iZ1
in tan( π

2
ω

ω0
))

Zin(ω) = 1
Z2

in+i
tan( π

2
ω

ω0
)

Z2

.

(4.11)

Figure 4.7: Circuit diagram of the stop-band filter with λ/4 parallel stubs connected with via
a λ/4 portion of transmission line. This diagram is a calculation guide that corresponds to
equation (4.11). The impedances seen from a circuit point are indicated with a grey arrow.

Figure 4.8 displays the real part of input impedance Zin (see equation (4.11)) as a function
of the frequency ω/2π. It compares the ideal case with the parameters of equation 4.8 to the
case where high impedances have been capped to Zmax value. In the restricted impedance case,
the band is wider and the ripples around the band are less important but it is still an efficient
filter for our requirements. Finally, these stubs define a two-port network and we will track
the scattering parameter of this network along electromagnetic simulations. If we name port 1,
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Figure 4.8: Real part of the impedance Zin of the stop-band filter as a function of the waves
frequencies. Red line is plotted for values: Z0 = 50 Ω, Z1 = 149 Ω, Z12 = 75 Ω, Z2 =
169 Ω (theoretical values for the filter design, see (4.8)). Blue line is plotted for values: Z0 =
50 Ω, Z1 = 120 Ω, Z12 = 75 Ω, Z2 = 120 Ω (the impedances have been restricted to Zmax for
coplanar waveguide implementation).

respectively port 2, the ports on both sides of the stubs, for any pulsation ω we get

S11(ω) = Z0 − Zin(ω)
Z0 + Zin(ω) and |S21|(ω) =

√
1 − |S11(ω)| . (4.12)

Figure 4.11 uses the formula (4.12) to compare the S21 amplitude of the lumped model to the
3D-finite elements simulated model, and to the experimental test.

1.3 Microwave simulations

To tune the filters architecture we use a 3D-electromagnetic finite element simulation tool, High
Frequency Structure Simulator (HFSS), of ANSYS Electromagnetics Suite. We proceed step by
step from the lumped model towards a stub design while taking the chip dimensions constrains
into account. Since simulating the whole 3D structure of a portion of coplanar transmission line
is demanding in terms of memory and computation resources, we focus on the relevant parts of
the chip. This strategy is time-saving and is based on a simulation technique halfway between
a lumped model and a 3D distributed model. We precisely describe all this method in the
Appendix A with a view of being a guideline for interested readers wishing to reproduce this
method.
We converge on the architecture presented in Figure 4.9. Figure 4.11 displays the amplitude of
the scattering parameter S21 extracted from the numerical simulation of the 3D model of Figure
4.9 (ports 1 and 2 are defined in this figure).
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1. Designing a stop-band filter

Figure 4.9: Screenshot of the HFSS 3D model of the stop-band filter architecture designed to
fit inside the real chip. The silicon chip is in blue, the perfect conductor surface modeling
superconducting metal (niobium) is in grey. Bonds are in dark grey. The model is closed on the
top with a box filled with air, whose borders are depicted with black lines. The wave ports are
in red and are named port 1 and port 2.

1.4 Measurement of the filter

Once the design has been validated by numerical simulations, we nanofabricate the filtering
element on a chip in order to measure its scattering parameters. The chip device is shown in
Figure 4.10. The remaining space on the chip is used to test another microwave element (on-chip
bias tee, see Section 2). The chip is mounted in a sample holder "JAWS" [85] and cooled down
in an Helium fridge (we are not interested in probing any quantum effect, we simply need to be
at low enough temperatures for the niobium to be superconducting).
The calculated scattering parameter from the lumped model, the scattering parameter simulated
from the real geometry simulated in HFSS 3D model (Figure 4.9), and the measured scattering
parameter of the fabricated chip are compared in Figure 4.11. The main difference between
the measured and simulated data is the duplication of the central off-peak. Indeed, due to
the fabrication the two parallel stubs cannot be rigorously identical and this is why there is a
small discrepancy on their resonance frequency. Yet, the impact on the filtering performances
is limited and this measurement confirms the adequate filtering by the stubs.
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Filter port 1

Figure 4.10: Graphic presentation of the chip used for testing the stop-band filter. It is based
on the drawing file that was used to pattern the circuit with laser lithography. Blue represents
silicon. Grey represents niobium. Bonds are signaled with black lines. This chip is intended for
testing two distinct on-chip electromagnetic components. The top part of the chip is dedicated
to testing stop-band filter: the red waves signal the two RF-ports. The bottom part is dedicated
to testing on-chip bias tee: the green waves signals the two RF-ports, the green straight line
represents the DC connection.
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Figure 4.11: Comparison of the analytical, simulated, and measured amplitude of scattering pa-
rameter S21 as function of frequency of the two-port network made by the stubs. Blue line is the
analytical amplitude from the lumped diagram (see (4.12)), red dots mark the simulation result
of the chip with HFSS 3D model (see Figure 4.9), orange dots mark the measured scattering
parameter (see chip of Figure 4.10).
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2 Designing an on-chip bias tee

2.1 Introduction and objectives

We recall from Chapter 2 that the ATS has to be biased in flux by DC currents at a specific
operating point to activate the two-photon interaction regime (see Subsection 1.5 of Chapter 2).
Besides, the RF pump tone required for the two-photon conversion propagates with opposite
phase trough the arms on both sides of the buffer: it induces common flux when reaching the
ATS. Finally, the buffer mode is driven by waves propagating in phase trough the arms of the
feedline. Accordingly, a component is required on both arms in order to jointly route the DC
currents and the RF excitations towards the buffer. This section presents the construction of
an on-chip bias tee, a three-port network dedicated to combine DC current and RF waves.
As specified in Figure 2.3, we place the on-chip bias tees on both arms of the buffer and we
collect back the current on the two sides of the chip. This defines two independent paths for
the current on the chip in order to separately address the left and right loops of the ATS.
Then, varying independently common and differential flux (φΣ, φ∆), we can explore the whole
potential landscape of the ATS (see equation (2.5)) as proven by the measured buffer frequency
flux maps in Figure 2.4.
As shown in Figure 4.12, a bias tee can be seen as a capacitor on RF port blocking low-frequency
signal (with C being the capacitance, the dipole impedance is: Z(ω) = 1

jCω → 0 for high ω) and
an inductor blocking high-frequency signal on the DC port (with L being the inductance, the
dipole impedance is: Z(ω) = jLω → 0 for low ω) [86].

Figure 4.12: Lumped model of a bias tee. The Radio-Frequency (RF) port has a capacitor in
order to block continuous signal. The Direct Current (DC) port has an inductance in order to
block RF signal.

Requirements specification We want to drive and probe the buffer via the RF compatible
branches of the bias tee, so we need to minimize the losses of RF signal going through the bias
tee. Thus, the most important criteria is to avoid RF signal coming out from the buffer (that is
to say coming from the RF+DC port) leaking to the DC port. Conversely, in this case it is not
significant if some DC current leaks the towards RF port so we decide not to add a capacitance
on the RF port in this first design.
The ports are named as referred in Figure 4.12. In terms of scattering parameters, we want for
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2. Designing an on-chip bias tee

ω/2π in the usual frequency range (2 to 8 GHz):

SRF+DC, RF(ω) = SRF, RF+DC(ω) = 1,

which directly implies (due to energy conservation)
|SRF+DC, DC(ω)| = |SRF+DC, RF+DC(ω)| = |SRF, RF(ω)| = |SRF, DC(ω)| = 0.

(4.13)

To sum up, the key idea is that our bias tee should allow a way for DC current while being
invisible in terms of RF transmission in the buffer feedline.

2.2 Electromagnetic design and microwave simulations

We start working with the lumped model before implementing it in a 3D on-chip geometry.
Next, we compare the 3D model and the lumped model RF-characteristics using the 3D finite
element electromagnetic simulation tool HFSS.

Lumped model To design the bias tee we start from the lumped model of Figure 4.12. Since
we do not care about possible DC current leaking towards the RF port, we can remove the
capacitor and concentrate our efforts on the DC port branch. An intuitive way of thinking the
design of the bias tee is exposed in Figure 4.13. The goal is to adapt the impedance Z(ω) of the
DC branch in order to get: Z(ω) ≫ 50 Ω for ω/2π in the RF-range and Z(ω) ≪ 50 Ω for ω/2π

in the DC-range.

Figure 4.13: Lumped model of the bias tee we want to design.

Inductance design The first idea is to put an inductive element in the DC branch as in the
prototype of Figure 4.12. The constrain Z(ω) ≫ 50 Ω for ω/2π in the GHz range implies a
target inductance value of about 10 nH.
In order to make an on-chip inductive element with limited spatial extension, we devise a square
spiral inductor with a large central pad to connect it to the rest of the DC branch using an
aluminium bond.
According to [87], the design exposed in Figure 4.16 should give an inductance of L ≈ 1.1 × 10−8 H.
Comparing the scattering parameters extracted from a lumped model and a 3D finite element
simulation confirms the inductive value of the on-chip component (see Figure 4.14). However,
Figure 4.14 also reveals an undesirable remaining attenuation on frequency range 2-8 GHz. To
decrease this unwanted attenuation, we would need a really higher inductance value which would
not be achievable on-chip with coplanar architecture.
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Figure 4.14: Simulation of the bias tee with an inductor. (a) Lumped circuit diagram simulated
in Ansys Electronic Desktop (see Appendix A for more details on lumped element simulation) (b)
On-chip bias tee with an inductor simulated using HFSS 3D model. Grey is the superconducting
metal, blue is the dielectric chip in silicon, red represents the wave ports for the simulation. Note
that our bias tee is symmetrical and RF+DC, RF ports can commute. (c) Results of scattering
parameter SRF+DC,RF+DC as function of frequency, simulated in lumped model and in 3D model.
Blue dots are the result of 3D simulation exposed in (b). Red lines are the results of lumped
simulation displayed in (a) with different values of inductance. The solid line corresponds to
L = 1.1 × 10−8 H, the dashed (respectively dashed-dotted) line gives a confidence interval and
correspond to L = 0.9 × 10−8 H, respectively L = 1.3 × 10−8 H.

Capacitance design To enhance the effect of cutting out high frequencies we add a parallel
capacitor to ground as displayed in Figure 4.15 (a). The lumped model simulations give us an
order of magnitude of the required capacitance value (C ∼ 10−12 F). We now have to implement
such a capacitor in coplanar geometry.
In order to minimize the space required on the chip while maximizing the capacitance, we design
an interdigitated capacitance. The central part of the capacitance should be large enough to be
connected to the inductor via an aluminium bond. We can have a first rough estimation of the
capacitance value using a coplanar capacitance calculator2 and estimating the facing surfaces
dimensions. Figure 4.16 displays the dimensions of the final design on which we have converged
after several trials (Figure 2.1 of Chapter 2 shows an optical micrograph view of this component
fabricated on the experiment device). By comparing the simulated 3D geometry and the lumped
model scattering parameters, we can estimate the capacitance value to C ≈ 2 × 10−12 F (see
4.15). Moreover, Figure 4.15 (c) confirms the reduced attenuation imposed by this design on
the frequency range 2-8 GHz, which validates this approach. In addition, we also compare the
leaking of RF waves travelling in the bias-tee through the DC port in Figure 4.17. We can
observe that the capacitance is also useful to prevent those leaks.

2https://www.emisoftware.com/calculator/coplanar-capacitance
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Figure 4.15: Simulation of the bias tee with an inductor and a parallel capacitor. (a) Lumped
circuit diagram simulated in Ansys Electronic Desktop. (b) On-chip bias tee with an inductor
and the parallel capacitor simulated using a HFSS 3D model. Grey is the superconducting
metal, blue is the dielectric chip in silicon, red represents the wave ports for simulation. (c)
Results of scattering parameter SRF+DC,RF+DC as function of frequency, simulated in lumped
model and in 3D model. Blue dots are the result of 3D simulation exposed in (b). Light blue
dots are the result of 3D simulation with inductance alone to give some comparison. Red lines
are the results of lumped simulation (screenshot in (a)) with different values of capacitance. The
solid line is plotted with C = 2 × 10−12 F, the dashed (respectively dashed-dotted) line gives a
confidence interval and correspond to C = 1 × 10−12 F, respectively C = 3 × 10−12 F.
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Figure 4.16: Dimensions of the coplanar implementation of the bias tee. Grey symbolises the
superconducting metal (niobium in our case), white is the dielectric material (silicon in our
case). Dimensions annotated in black are superconducting tracks dimensions. Dimensions in
blue are related to gaps. In the interdigitated capacitance there are 25 fingers of 20 µm width,
separated by a gap of 5 µm. The inductance is winding 6 times around the central plate with a
5 µm width wire, spaced by gap of 10 µm. An aluminium bond (not represented here) has to
connect the central pad of the coil to the central pad of the capacitance. Figure 2.1 of Chapter
2 presents an optical micrograph view of this component fabricated on the experiment device.
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Figure 4.17: Comparison of simulated scattering parameter SRF,DC of the bias tee with and
without the parallel capacitor. SRF,DC is given as function of frequency simulated in 3D model.
Light blue dots are in the case of bias tee with inductance alone (see Figure 4.14). Dark blue
dots are in the case of bias tee with inductance and parallel capacitance (see Figure 4.15). Since
the bias tee ports RF+DC and RF are symmetric, looking at scattering parameter SRF,DC is
equivalent to looking at SRF+DC,DC.

2.3 Measurement of a test device

Similarly to the previous section (Section 1), we want to test an on-chip design of the bias tee
in order to validate the electromagnetic simulations. The design of the chip for the test is pre-
sented in Figure 4.10. Figure 4.18 exposes the measurement results of the scattering parameter
between the RF and RF+DC port. We can notice the discrepancy between the electromagnetics
simulation and the measurement. This could be explained by the small dimensions of the ele-
ments (coil, capacitance) requiring a lot of meshing points in 3D finite elements simulation to be
more precise but becoming then out of reach for the computer performance. This demonstrates
the importance of keeping a critical thinking on electromagnetic simulation results. Finally, we
can see that in a range of frequencies from 3.5 GHz to 8 GHz the bias tee implies very few
attenuation on the RF line, which validates this on-chip component.
In this first implementation, the possible leaks of DC currents through the RF port were not a
primary requirement. As a result, no capacitance is implemented in the RF port. In the next
implementation, an improvement could consist in integrating a capacitance in this port. This
could simply be a discontinuity in the feedline coplanar waveguide (a thin strip of ground plane
crossing the central track) preventing the remaining DC currents from leaking out through the
RF port.
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Figure 4.18: Measured scattering parameter between the RF and RF+DC ports of the bias
tee as a function of the frequency. Top plot is the amplitude in dB. Bottom plot is the phase
in radians. Circles are data measurement. Solid line is the result of the 3D electromagnetic
simulation.
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Résumé en français

Le circuit présenté dans ce manuscrit de thèse est composé de structures de guides d’ondes
coplanaires et de jonctions de Josephson. La fabrication de ces éléments était partie intégrante
de ce travail de thèse et a été réalisée dans les salles blanches de l’ENS et du Collège de France.
Le circuit de l’expérience de l’oscillateur à deux photons, décrit dans le Chapitre 2, est le fruit
d’itérations successives qui ont intégré les différentes fonctionnalités de manière incrémentale.
Au cours de ces cycles de fabrication, des variations du procédé de fabrication ont été réalisées
dans des buts d’optimisation.
Ce chapitre se concentre sur la nanofabrication et propose une revue de différents procédés
possibles. La première section détaille les techniques et protocoles pour fabriquer un circuit
supraconducteur en salle blanche. La seconde section est axée sur la fabrication des jonctions
de Josephson et sur les différentes difficultés pouvant être rencontrées au cours de la fabrica-
tion de ces éléments. Ce chapitre est détaillé de manière à servir de guide introductif pour la
nanofabrication.
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1. Device fabrication

The sample presented in this manuscript is composed of coplanar wave-guide structures and
Josephson junctions. Their fabrication was part of my thesis work, which was performed in the
clean room at ENS and at Collège de France. The main device of the two-photon dissipative
oscillator is the result of successive iterations implementing the features in an incremental way.
I fabricated various devices during this thesis work: nanofabrication stands for a significant part
of my work during this PhD project. During these consecutive rounds of fabrication, different
variations of fabrication processes were tested for optimization purpose. This chapter focuses on
the nanofabrication of coplanar waveguide structures and Josephson junctions. The first section
details the recipe techniques to fabricate a superconducting chip in the clean room. The second
section discusses about issues I encountered in the Josephson junctions’ fabrication process, and
techniques I developed to circumvent those. This chapter is intended to provide enough detail
to serve as a useful guide for readers interested in beginning nanofabrication.

1 Device fabrication

This section presents the steps of the nanofabrication starting with a bare silicon wafer up to
a mounted chip in a sample holder ready to be cooled down and measured. This recipe was
modified thanks to the investigation of Section 2. Here we present the final recipe that was used
to fabricate both chips presented in Chapter 2 and 3. Appendix B contains a more detailed
recipe.

1.1 Wafer preparation

We start with a 2-inch intrinsic silicon wafer with a 280 µm thickness and a resistivity larger
than 10 kΩcm. We load it into the sputterer to deposit 120 nm of niobium (Nb).
In order to be able to circumvent small variations inherent to nanofabrication process, we fab-
ricate twelve 10 x 11 mm chips on the same wafer. We separate the individual chips at the end
of the process and select the sample that is best suited for the experiment.

Cleanliness of the wafer At the beginning of the fabrication process, caution must be taken
to ensure that the wafer is really clean. Examining the wafer with an optical microscope in dark
field mode is a good practice to spot some potential imperfections.

1.2 Circuit patterning

We pattern the large features of the circuit (> 5 µm) using laser lithography.

Spinning resist We pattern the circuit using positive resist. We spin-coat S1805 resist on the
wafer and bake it for 1 min at 115°C.

Laser lithography We use a laser lithography writing machine to draw the circuit patterns
with a dose of 203mJ/cm2.
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Development We develop the chip in MF319 for 1 min, then rinse it in deionized water for
1 min. In order to solve the exposed resist more homogeneously, we shake the beaker by a soft
rotation. At the end of this step, it is recommended to visually check that lithography was
correct with a yellow light optical microscope1.

Reactive Ion Etching This step is dedicated to take off the niobium located on the unpro-
tected parts of the resist mask. The wafer is etched in a reactive ion etching (RIE) machine
with a SF6 plasma and a 10 s overetch.

Lift-off and final cleaning The remaining resist on the wafer has now to be lifted-off. We
first put the wafer in a beaker of acetone at 50°C with sonication for 5 min. Next, we assume
that the acetone is saturated in dissolved resist, so the wafer is sonicated in a second bath of
acetone at 50°C for 20 min. We finally rinse in IPA and blow dry with N2 gun.
At the end of the process, we perform 20 s of O2 stripping to be sure to remove all residual
organic contaminants.

1.3 Josephson junctions fabrication

Due to issues encountered while attempting to fabricate the two-photon dissipative oscillator
chip, the recipe below results from an investigation based on a literature review and experimental
tests. For clarity purpose, we present here the final recipe that was used for fabricating the chips
of Chapter 2 and 3. Then, the next section is dedicated to the discussion on the various recipe
processes.

Junction patterning Our Josephson junctions are fabricated from Dolan bridges patterned
with electron beam (e-beam) lithography. We spin two layers of resist: first, methacrylic
acid/methyl methacrylate (MAA EL13) baked for 3 min at 185 °C and second, poly(methyl
methacrylate) (PMMA A3) baked for 30 min at 185 °C. The patterning with SEM lithography
is written with a beam aperture of 7.5 µm, a beam voltage of 20 kV and a dose of 283 µAs/cm2.
Once the e-beam patterning completed, we develop in a IPA:H2O (3:1) bath at 6 °C for 2 min,
rinse for 10 s in IPA and blow dry. The development step conditions the exact 3D dimensions of
the resist bridges. Thus, the operator should take care to be really consistent for this step (e.g.
holding and shaking the chip in the developer in the same way every time). Finally, residual
organic contaminants below the bridges are stripped by an O2 plasma for 10 s. This cleaning
step prior to evaporation was investigated (see Section 2).

Junction deposition Secondly, the wafer is introduced in an e-beam evaporator. We start
with a 2 min argon milling step at an angle of ± 30° to prepare for a good electrical contact
with the niobium layer. We deposit two layers of aluminium (35 nm then 70 nm thick) at an

1This step must be done in the resist room with a yellow light microscope in order to avoid to expose the resist
that should stay unexposed.
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angle of ± 30°, separated by a static oxidation in a pure O2 atmosphere at 10 mbar for 10 min.
Before venting to air, the chamber is filled with 300 mbar of O2 for 5 min.

Lift-off and cleaning We lift-off in a 50 °C acetone bath for 1 h. We use a pipette to flow
some acetone on the chip to help the removal of resist and aluminium foil. Then, we transfer
the wafer to a new acetone bath for 5 min and sonicate for 10 s at very low power to ensure that
small aluminium residues are removed without damaging the junction structure. Eventually,
the wafer is rinsed in IPA and blown dry with N2 gun.

1.4 Selecting the chip and mounting the sample

We select the most favorable chip of the wafer and prepare it for the experiment at the end of
the fabrication process.

Selection and verification process First we check at the optical microscope the visual as-
pect of all the coplanar waveguide lines. Second, we should pick the sample with the Josephson
energies values suiting the best for the experiment (see Subsection 2.1). We evaluate the Joseph-
son energy of the test junctions fabricated on each sample. We measure the room temperature
resistance of the Josephson junction at the probe station and deduce the Josephson coupling
energy thanks to the Ambegaokar-Baratof formula [43].

Dicing The samples are protected against dust produced by the dicing thanks to a PMMA
resist layer spun and baked for 1 min at 185°C (the baking time is reduced in order to minimize
junction ageing due to heating, see next section). Then, the wafer is diced face up in an
automated dicing machine.

Cleaning This is the last cleaning step before cooling down of the sample for measurement.
We first clean the protective resist layer by flowing deionized water on the sample, since we
believe it can remove the small dusts due to dicing. We next pour the sample in two successive
bathes of acetone at 50°C. At this step, we do not turn on the sonication in order to avoid
breaking the junctions on the sample. Finally, we rinse in IPA and blow-dry with a N2 gun and
perform a 10 s O2 stripping step in order to be sure to remove all organic residues.

Mounting on the sample holder The chips of this thesis work were measured in the sample
holder developed in the ENS group called "JAWS" [85]. A good practice when renewing the chip
in the sample holder is to clean the holder itself. It is opened, poured in acetone bath at room
temperature, scrubbed with clean room cotton buds, rinsed in IPA and dried. The chip is glued
inside the sample holder, in the center of the dedicated Printed Circuit Board (PCB). Finally,
we have to proceed to microbonding to connect all parts of the ground plane on the chip and to
connect the device electrodes to their respective PCB lines.
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2. Focus on the Josephson junctions fabrication

2 Focus on the Josephson junctions fabrication

This section focuses on the fabrication process of Josephson junctions. We start by presenting
the junctions of the device of the two-photon oscillator experiment device (described in Chapter
2) and the issues in the fabrication process that had to be overcome before fabricating this
chip. We present a bibliographical overview of fabrication protocols of different groups working
with superconducting circuits. Based on this comparative study, we test various fabrication
processes in the ENS and Collège de France clean rooms. Even though we were unable to
draw clear conclusions from this experimental study, it allowed us to step back from the pre-
existing group recipe and to derive a new one. This hindsight can be beneficial for newcomers
in nanofabrication, which is why we chose to detail this investigation in this manuscript.

2.1 Junctions of the ATS

In the two-photon dissipative oscillator experiment, the ATS is the central element to mediate
the two-photon interaction for the memory resonator. The ATS is formed by two Josephson
junctions in a loop split in its center by an inductance made of an array of five junctions.
Figure 5.1 depicts the different junctions composing the ATS. The junctions of the loop have a
Josephson energy of EJ/h = 37 GHz and should be as symmetric as possible. The central array
has an inductive energy of EL/h = 62 GHz. Ideally, all junctions in a junction array inductance
should have the same junction energy and thus the same area. Figure 5.1 shows that this is not
the case in our experiment, and while this could be improved in the next fabrication iteration,
it is not detrimental to the experiment.
We remind from Chapter 2 that EJ value linearly tunes the two-photon coupling factor g2

(equation (2.17)), thereby setting the value of the two-photon exchange rate κ2. We want to
keep g2 as high as possible staying in the limit of g2 ≪ κb. Moreover, the EL value directly tunes
the frequency of the buffer mode (equation (2.23)) which is a constrained parameter. First, the
presence of stop-band filters around the memory frequency (see Chapter 4) results in a lower
bound limit. Second, in order to maintain a decent value of hybridization factor between the
memory and the buffer modes, the buffer frequency should not be too far away from the memory
frequency. As a conclusion, the values of the junction energy are constrained so it is even more
critical to have a good repeatability in junction fabrication.

Critical current density The critical current density is a good number to monitor as a
sanity check for our junctions. It is calculated by dividing the critical current value Ic by the
area of the junction S. Ic is directly related to the Josephson coupling energy [43] which is
obtained by measuring the room temperature resistance with the probe station. The S area is
determined by observing the junction with a Scanning Electron Microscope (SEM) or an Atomic
Force Microscope (AFM).
This value should be a constant for junctions of varying dimensions and for distinct fabrication
batches. In our thesis work, this number is around 450 nA/ µm2.
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(a)

(b) (c) (d)

500 nm 500 nm 500 nm

20  μm

Figure 5.1: (a) Optical micrograph of the asymmetrically threaded SQUID (ATS) made of
aluminium (light grey) deposited on the niobium circuit (grey) over a silicon substrate (dark
grey). (b-d) Scanning electron microscope images of the small single junctions (b,d) forming the
SQUID loop and the five array junctions (c) forming the inductive shunt. The small junctions
are 275 nm × 700 nm. The array junctions, which would ideally all be equal in area, are in
fact composed of three 600 nm × 3.9 µm and two 270 nm × 3.9 µm junctions. This results in a
critical current density of about 450 nA/µm2. For clarity, small arrows point to the location of
each junction.

2.2 Investigation for better repeatability in junctions fabrication process

2.2.1 Unexpected variability with same fabrication process

We encountered issues with Josephson junctions fabrication on a global 2-3 months timescale in
our first attempts to fabricate the chip presented in this thesis work. Junctions had already been
fabricated in previous fabrication cycles with nothing unusual noted. On the contrary, during
this period, the junctions fabricated on tests chips presented unexpectedly high variability for
the same experimental fabrication parameters. Furthermore, the critical current density was
unusually high. We were employing the ENS group’s shared recipe at the time, which is similar
to the recipe described in this manuscript with some differences implemented thanks to the
investigation discussed below.

Observation of irregular junctions Examining the junctions made during this time period
with a Scanning Electronic Microscope revealed that they were unusually dirty. Figure 5.2
compares a previously fabricated junction (with nothing particular to note) to an irregular
junction. Those two junctions were fabricated using the same recipe. Yet, Figure 5.2 displays
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2. Focus on the Josephson junctions fabrication

unexpected sprinkled-like dust on the abnormal junction, which is a marker of fabrication issues.
Moreover, we assumed that this contamination issue was related to the non-repeatability of the
targeted Josephson inductance. As a result, we decided to investigate on the fabrication recipe
in order to get rid of the source of contamination.

200 nm

200 nm

Figure 5.2: Comparison of SEM images of junctions on a test chip made with the same recipe and
parameters. Left: "normal" junction, with no issues made on September 2020. Right: irregular
junction with cleanliness issues made on February 2021. The two junctions are fabricated with a
bridge width of 400 nm. For clarity, blue arrows point to the location of each junction. The red
dashed lines are circling examples of anomalous sprinkled-like dust. The white bar corresponds
to a measurement of the junction width : w = 451 nm on the left, w = 510 nm on the right.

2.2.2 Literature review

We collect the recipe fabrication techniques from groups that work with superconducting qubits.
Table 5.1 summarizes the current state of the art for fabricating Josephson junctions. We
indicate as a reference point in the table the previous ENS group recipe process. This table is
commented in the following paragraphs.

Types of junctions In the review, we encounter various junction styles but the fabrication
principle remains the same: patterning a resist structure in order to evaporate one electrode of
aluminium, oxidize it, and build another electrode of aluminium with an overlay with the first
layer and the oxide barrier. Thus comparing the various recipes is still relevant. The junction
style differs by the configuration of the two aluminium electrodes in space. In the Dolan style, for
instance, the two electrodes are parallel, whereas in the Manhattan style, they are orthogonal.
Some groups are performing Dolan bridges using bandage patches. First, they pattern the resist
structure and evaporate metal only in the limited spot of the junctions. Second, they open
windows in the resist structure and evaporate metal to connect the junctions to the rest of the
circuit. This technique allows the cleaning steps (especially argon milling) to be differentiated
in order to have a clean junction and a good contact with the rest of the circuit. The main
drawback of this technique is that it adds a full cycle of lithography/evaporation and increases
the risk of undesirable nanofabrication errors.

O2 stripping after development A lot of groups perform a O2 stripping cleaning step after
development. This step belongs to the plasma cleaning methods, with a plasma made out of
O2 gas. Due to the nature of the process it is also called O2 ashing. This method is really
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effective at removing organic contaminants from the sample since the high energy of the plasma
is very efficient at breaking chemical bondings in organic contaminants. Plus, oxygen species are
created in the plasma (for instance: O+, O−,...) and they can react with organic contaminants
to form low molecular weight hydrocarbons. Thanks to their high vapor pressure these molecules
are evacuated from the load-lock during the cleaning process [88]. The main drawback of O2

plasma cleaning is due to the material that composes the chip. Indeed, exposing silicon to O2

plasma causes the growth of silicon oxide SiO2 layer on the Si layer, which alters the dielectric’s
electromagnetic properties. A measurement performed in ENS clean room was quite reassuring
about the use of O2 plasma on silicon chips. On a bare silicon wafer, 15 min of exposure to
plasma O2 (which is a quasi-infinite cleaning time) results in the growth of a 3 nm thick SiO2

layer that is still negligible in comparison to the Si thickness (280 µm).

Argon milling This step is performed before evaporation to clean the surface where the
metal will be deposited. It belongs to ion milling cleaning methods. Ion milling is a technique
that involves accelerating ions of an inert gas (typically argon) from a wide beam ion source
into the surface of a substrate in vacuum to remove material from the surface The term "ionic
sandblasting" is a relevant name to describe this technique[89].

Lift-off In the previous ENS group recipe, the lift-off time (few minutes) is extremely short
in comparison to the duration of other groups’ recipes (few hours). Moreover, some groups are
concluding the lift-off with a brief ultrasonic bath. After testing with low power ultrasonication,
it appears that it is not breaking the junctions and we believe that it can help in the dissolution
of any remaining aluminium residues.

Stabilizing the junctions Some groups are performing a final step to stabilize the junction
and to counteract the effect of junction aging. When the junction is left at room temperature in
ambient air, it ages and the Josephson coupling energy decreases over time. This aging is known
to be caused by two phenomena: either the diffusion of oxygen atoms from the oxide barrier to
the aluminium electrodes, or absorption of unwanted atoms or molecules into the barrier [90,
91]. To saturate this ageing process, we can heat the junction for a certain time or perform a
long time O2 stripping. Saturating the ageing process helps to be more systematic so it seems
to be a good sanity process for better repeatability.
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Table 5.1: Comparison of Josephson junctions fabrication recipes of various superconducting
qubits groups. The evaporation steps before and after oxidation step, are marked by double
lines. If the parameters in some boxes are not detailed, it means that we were unable to find
them in the literature.
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2.2.3 Experimental comparison of three different recipes

We remind that the motivation of this investigation is that our junctions get contaminated
during the fabrication process. Hence our goal is to modify the pre-existing recipe in order
to get rid of this contamination. Based on the recipes reviewed above, we test three different
cleaning processes prior to the evaporation step. We image the junctions during fabrication after
each step in order to compare the cleaning efficiency.

Presentation of the three test samples We test three different cleaning processes after
development and before evaporation on three samples, all else being equal.

• Sample 1: "Hard" argon milling This sample is the control sample. It is fabricated
with the usual ENS group recipe (last line of Table 5.1). In comparison to the other
recipes, argon milling is performed with a highly energetic beam (thus called "hard" argon
milling)

– No O2 stripping

– Milling parameters : V = 500 V ; I = 30 mA ; 2 min / angle.

• Sample 2: "Soft" argon milling This sample undergoes a milling with a less ener-
getic beam than sample 1 (thus sample 2 is called "soft" argon milling). Those voltage
and intensity parameters were chosen after consulting an expert at Plassys company (the
manufacturer of the evaporator used during fabrication).

– No O2 stripping

– Milling parameters : V = 250 V ; I = 8 mA ; 2 min / angle.

• Sample 3: O2 stripping and no argon milling

This sample is only cleaned with O2 plasma cleaning before evaporation. The pressure and
power parameters are the same as those used in the ENS clean room machine’s standard
cleaning program. With those parameters, the resist layer is stripped off at a rate of
∼ 1-2 nm/s. Knowing that the resist thickness is ∼ 400nm (see Figure 5.3 top), we can
deduce that t = 40 s is an appropriate upper limit to avoid breaking the resist suspended
structures.

– O2 stripping : P = 0.13 mBar ; Power = 30 W ; t = 40 s.

– No argon milling

Experimental protocol The samples are diced and taken from the same wafer. The fabrica-
tion protocol for tracking and imaging the differences between the samples is (the imaging steps
are highlighted in bold):

• Clean the sample

• Spin resist
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• E-beam lithography

• Development

• Atomic Force Microscope imaging

• O2 stripping / argon milling (depending on the sample)

• AFM imaging

• Evaporation

• Lift-off

• AFM imaging

Results Figure 5.3 displays the result of this comparison for a single junction. Because there
is not a clear optimal solution among the three options, it is difficult to draw positive conclusions
from this investigation. All samples seem to have been contaminated during the evaporation
and lift-off steps.
The surface of the resist appears irregular after hard argon milling, with a lot of cavities due
to the milling (Figure 5.3 in sample 1 middle image). We can imagine that those impacts may
project resist residues into the trenches so a softer argon milling, as performed on sample 2, is
preferable.
Furthermore, in this investigation, the argon milling and the evaporation steps are carried out
in a separate cleanroom from the ENS one (where the rest of the process and AFM imaging are
performed). These back and forth trips in the outside environment are a limitation. On the
contrary, in the real recipe, the argon milling is performed inside the evaporator, which thus
may account for some inaccuracies in this comparative study.
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Sample 1 Sample 2 Sample 3

-746.3 nm

617.2 nm

-964.7 nm

362.8 nm

-798.6 nm

461.7 nm

-179.9 nm

1.1 μm

-1.0 μm

408.8 nm

26.1 nm

1.2 μm

30.2 nm

215.4 nm

-69.4 nm

66.8 nm

-37.5 nm

294.2 nm

Figure 5.3: Comparison of AFM analysis of the 3 samples at different stages of fabrication of a
single junction with a bridge width of 1.4 µm. Top: After development. Middle: After cleaning
process (argon milling / O2 stripping depending on samples). Bottom: After lift-off.
The 2D plots correspond to the tip sensor’s measured relative height in forward motion. They are
visualized using the software Nanoscope Analyis. The color scale indicates the relative heights.
The height extrema are noted on both sides of the color scale box. Grey pixels indicate that no
data was collected. The red line indicates a data cut along one direction. The red box around
the line signals the area where the cut is averaged. The cut section is represented below each
AFM image ; it plots the height as a function of the position along the cut. Insets in the plots
are zoom windows that help to see the surface roughness more clearly.
The images of the bottom column are rotated with respect to the top columns. Indeed, since
there are resist structures on the first two imaging steps, we wanted to scan along the direction
of the resist bridge to avoid damaging it with the AFM’s tip. When the junction is completed, in
the bottom pictures, we wanted to scan perpendicular to the junction in order to have a cutting
profile of the different sections on both sides of the junction.
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2.2.4 Supplementary observation in favour of O2 stripping

The following is another experimental observation that demonstrates O2 stripping efficiency. A
test sample on which we already had patterned niobium structure with laser writing (see process
of Section 1) still presented resists marks after lift-off. These marks were visible with the optical
microscope and long acetone baths at 50°C were useless to remove those residues. A 1 min O2

stripping cleaning was efficient to remove those marks as displayed by Figure 5.4.

200 μm

(a) Before stripping

200 μm

(b) After 1 min of O2 stripping

Figure 5.4: False colors optical micrograph of a sample before (left) and after (right) cleaning
step with 1 min of O2 stripping. Blue is silicon, yellow is the niobium. The right picture
shows cracking lines symptomatic of residual resist. The two pictures do not display the exact
same locations on the sample but their comparison is still relevant since the resist residues were
observed on the entire sample surface before cleaning.

2.2.5 Relevant points in the Josephson junction fabrication process

The investigation results are not conclusive but they allows us to take a step back from the
pre-existing recipe of ENS that we modified to create our recipe, which is presented in Section
1. In particular, the literature review and investigation draw our attention to the cleaning
steps: we added O2 stripping cleaning steps in a more systematic manner, as indicated in the
recipe description in the previous section. The following paragraphs are a summary of the other
aspects of our recipe (see Section 1) that were changed as a result of the literature review and
the experimental investigation.

Spinning resist We took the opportunity of testing the fabrication process to switch from
PMMA A6 (anisole 6 %) resist to slightly lighter PMMA A3 (anisole 3 %) resist. In light of the
literature review (see Table 5.1) we increase the baking time of this last resist layer to 30 min.

Cleaning procedure before evaporation Even though the investigation did not clearly
show the efficiency of O2 stripping prior to evaporation, it proved that it was not detrimental
to the bridge structure. As a result, we include this cleaning step in order to be sure to ensure
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that resist residues are removed after development.
We also have changed the argon milling parameters to perform a softer ion milling on the sample.

Lift-off As found in the literature review, we decided to increase the lift-off duration time and
we also added a final step of low power sonication to ensure that small aluminium residues were
removed. For interested readers, the detailed recipe with clean room machines parameters can
be found in Appendix B.
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Chapter 6
Conclusion and perspectives

Résumé en français

Ce chapitre de conclusion revient sur les résultats principaux du manuscrit et les met en per-
spective dans le cadre des avancées vers la conception d’un ordinateur quantique universel.
Le principal résultat de cette thèse est d’avoir mesuré un temps de bit-flip de l’ordre de 100 sec-
ondes pour des états à environ 40 photons dans un oscillateur pourvu de la dissipation à deux
photons. Afin d’atteindre ces ordre des grandeurs, le circuit précédent de [59] a été réduit au
minimum. Ces choix de design ont alors réduit à néant la possibilité de préparer et de mesurer
des superpositions quantiques d’états dans notre système. Toutefois, notre expérience prouve
qu’il n’y a rien au cœur du mécanisme de la dissipation à deux photons qui est au contraire à des
longs temps de bit-flip. De plus, cette expérience démontre un temps de bit-flip macroscopique
pour des états contenant un nombre mésoscopique de photons. Par la suite, d’autres expériences
pourront progressivement retourner vers un régime plus approprié pour l’implémentation d’un
bit quantique.
De façon plus générale, avec ce système, les flips de bit peuvent être corrigés de façon continue
et autonome : il reste alors à utiliser les ressources de la correction d’erreur quantique pour
éradiquer les flips de phase, seul canal d’erreur restant. Les performances démontrées dans ce
travail de thèse permettent finalement d’envisager une réalisation concrète de la feuille de route
menant à un ordinateur quantique universel.
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This thesis work is in line with the emerging strategy which consists of encoding quantum
information in the two meta-stable pointer states of an oscillator exchanging pairs of photons
with its environment, a mechanism that has been demonstrated to provide stability without
inducing decoherence. This strategy has resulted to a recent qubit, called the cat-qubit [51]
which is embedded in the cavity field of a superconducting resonator that exchanges pairs of
photons with its environment [58]. Adding photons in the cat qubit states has two opposing
effects [59]. On the one hand, their distinguishability increases by an inevitably coupled un-
controlled environment, resulting in a linear increase of the phase-flip error rate. On the other
hand, higher photon number implies a wider state separation resulting in a exponential increase
of the bit-flip time. Therefore, in theory, it is possible to achieve macroscopic bit-flip times with
computational states containing only a handful of photonic excitations, making them suitable
for quantum information processing. However, in the previous experimental realisation, bit-flip
time was saturating in the millisecond range [59].

The main result of this thesis is that we have measured timescales of the order 100 sec-
onds for bit-flips between pointer states of a two-photon dissipative oscillator containing about
40 photons. In order to reach these numbers, we stripped of the previous circuit of [59] from
everything we could afford. First, we devised a circuit with the objective of removing all sus-
pected sources of dynamical instabilities. We fabricate the ATS, a two-photon exchange dipole
element, close to the regime where its energy landscape exhibits a single global minimum at
any operating point, which could be a requirement for stability [63, 67]. Second, we employ a
minimally invasive fluorescence detection tool. Instead of using a transmon and readout mode,
we directly measure the field radiated by the cavity, allowing us to access individual oscillator
state trajectories. These design choices came at the expense of a two-photon exchange rate
dominated by single-photon loss, resulting in the depletion of ability to prepare quantum super-
position states and thus measure the phase-flip rate. Our experiment proves that nothing at the
core of the two-photon dissipation mechanism is detrimental for high bit-flips times and puts a
scale on the bit-flip times that can be achieved. Future experiments can then gradually enter
the regime suitable for implementing a qubit where two-photon loss is the dominant dissipation
mechanism. Moreover, other exploratory work could include monitoring oscillator trajectories
over timescales of days or weeks to uncover the phenomena causing these bit-flip events [79, 80,
101].

The cat-qubit is situated at an intermediate scale, between qubits involving single excitations
which are too prone to errors, and classical bits involving macroscopic numbers of particles
which are incompatible with quantum information processing. This mesoscopic scale, involving
a handful of photonic excitations per computational state, is well suited to eradicate bit-flip
errors continuously and autonomously at the single qubit level, reserving the expensive arsenal
of measurement based quantum error correction for the only significant remaining error: phase-
flips. Indeed, phase flips can be corrected by encoding a logical qubit over a 1D chain of physical
cat-qubits [64, 66]. Recent theoretical proposition for a controlled-not gate with cat qubits with
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achievable experimental parameters is also promising to implement efficient repetition code
with cat qubits [102]. This constitutes the road map for a cat-qubit based universal quantum
computer.
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Appendix A
Electromagnetic simulations

1 Introduction

This appendix is a supplement of Chapter 4. It describes an electromagnetic simulations strategy
using the High Frequency Structure Simulator (HFSS) of ANSYS Electromagnetics Suite. This
method is described step by step on the example of filtering stubs of Chapter 4 (Section 1 of
this chapter). We start from a lumped model simulation (see Figure 4.6) and we gradually
sophisticate the model to a realistic on-chip implementation (see Figure 4.9). We compare the
simulation results of each step in order to demonstrate our strategy consistency. All the steps
are detailed here with a view of being a guideline for interested readers wishing to reproduce
this method.

Simplification of the simulation Simulating the whole 3D structure of a portion of copla-
nar transmission line is demanding in terms of memory and computational resources. Then, an
appropriate strategy is to focus on the relevant parts of the chip and use a simulation halfway
between the lumped model and the 3D distributed model. In the filter example, the behavior
of the electromagnetic field along a coplanar transmission line is consistent with what we can
expect from a lumped model. On the contrary, connections between portions of transmission
line with impedance discontinuities, or extremities of the transmission lines are spots where the
geometry do matter. As a result, in order to optimize the 3D electromagnetic simulation, we
think the circuit we want to simulate as a block-based circuit. We simulate each block with a
3D model, register its scattering matrix, then we connect all those elements in a "Circuit design"
project. This strategy is illustrated in Figure A.1.
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Port1 Port2

stub T stub T stub_endstub_end E

E=75deg
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Z=120
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E
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Figure A.1: Strategy for faster electromagnetic simulations. Left: view of HFSS 3D finite ele-
ment design of the chip. The places of discontinuities for microwaves on the chip are surrounded
in color with dashed lines. Those elements are simulated with a specific HFSS design surrounded
by the matching color (right, top and bottom pictures). Once their S-matrix simulated, we can
integrate those elements as black-box elements in a lumped circuit presented on the right (mid-
dle). In the HFSS design views, the silicon chip is in blue, the perfect conductor surface modeling
superconducting metal is in grey. Bonds are in dark grey. The model is closed on the top with
a box filled with air, whose borders are depicted with black lines. In the lumped circuit design
we can create a network between the microwave components that represent simulated S-matrix
(black rectangles), portions of transmission lines (blue rectangles with parameters specified be-
low) and ports (black diamonds). The parameters of the transmission line are: the length of
the line expressed in phase delay (noted "E"), the frequency (noted "F") and the characteristic
impedance (noted "Z"). The blue wires represent the connection between the different elements
but they do not match to any physical implementation nor layout.
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1. Introduction

Block diagram simulation Simulating a block diagram circuit with lumped elements is the
most elementary step. We use the project "Circuit Design" in ANSYS Electromagnetics Suite.
It is suitable for lumped models since we can connect dipoles and microwave elements (whether
predefined from a data base or user defined from a scattering matrix data). In our case we use
the lumped model of a transmission line which is in the ANSYS Electronic Desktop component
library in the file "Groups", and named "TRL". We also work with the elements "Ports" to
simulate the S-matrix between those distinct ports. We can connect the different ports of the
network elements thanks to cables (those cables do not have any physical layout reality there
are just a way to connect the components in a lumped model). Figure A.2 displays a screenshot
of this circuit design. Note that the microwave analysis is extremely fast, which is the main
interest of this "Circuit design" mode.
Figure A.6 shows the simulation results of this model. The filtering function of this network is
clearly visible, as evidenced by a dip centered around central frequency 4 GHz. Plus, it con-
firms that the scattering parameter simulated through this lumped two-ports network perfectly
matches with the analytical formula of scattering parameters.

Port1 Port2

E

E=90deg
F=4GHz
Z=120

E

E=90deg
F=4GHz
Z=120

E

E=90deg
F=4GHz
Z=75

Figure A.2: Screenshot of the equivalent circuit diagram of the filters made in "Circuit Design"
in ANSYS Electromagnetics Suite. Light blue rectangles are portions of transmission lines, black
diamonds are ports. Blue wires represent the connection between the different elements.

Block diagram simulation with blocks defined from 3D components As we explained,
there can be some mismatch between the lumped model and the real implementations due to
angular shapes and design discontinuities encountered by the microwaves. Thus, the next step
after the lumped circuit block diagram is to include blocks from simulated 3D elements.
We have simulated in "HFSS design" the connection between the three portions of transmission
lines with different characteristic impedances as shown in Figure A.1 (purple color). We have
used the solution type "Driven Modal" where we define wave ports at each extremities of trans-
mission lines. Once we have simulated its S-matrix, this element can be viewed as a three-ports
black-box element. Similarly, we simulate in "HFSS design" in "Driven Modal" the end of the
stubs (orange color in Figure A.1). This element can now be summed up as a one-port element
via its S-matrix.
In the "Circuit design", we can add a user-defined element by going in the component library, in
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Figure A.3: Screenshot of the equivalent circuit diagram of the filters with 3D blocks included
made in "Circuit Design" in ANSYS Electromagnetics Suite. Light blue rectangles are portions
of transmission lines, black diamonds are ports, black rectangles are user-defined microwave
components. Blue wires represent the connection between the different elements.

the file "Models", and select "N-port". Next, we have to indicate the path towards the registered
data file including the simulation results of the 3D element (this is a .s*p file where * is the
ports number). The ports name (1,2,3,..) are in agreement with the port definition set in the
respective HFSS design 3D model.
In the 3D HFSS models standing for the connection and the end of the stubs, a small portion
of cable is included in the model. Therefore, even if we should have λ/4 (that is to say 90◦)
long transmission lines, we should take into account the physical length already included in the
partial 3D models. This gives a reduced effective length of the transmission line portion between
the microwave elements. Figure A.3 shows a screenshot of the circuit diagram.
Simulating the 3D HFSS elements separately is quite fast since there are restricted in spatial
dimensions. This strategy allows us to optimally test different configurations of shapes of con-
nections between the portions of stubs.
Figure A.6 confirms that this semi-lumped simulation gives the same dynamics for S21 parameter
than the full lumped model.

3D finite elements simulation Once we have tuned the shape of the connections between
the stubs, we can validate the semi-lumped simulation thanks to a full 3D simulation. We have
to take care to finely tune the lengths of the transmission lines sections since there are the
ones that set the resonance frequency and thus the central frequency of the filter. Figure A.4
is a screenshot of simulated HFSS model. Figure A.6 demonstrates that the dynamics of S21

parameter stays the same when we go from lumped model to the 3D model.

3D simulation with geometrical constrains Adjusting the stubs to the layout constrains
is the final step before on-chip implementation. Indeed, there are a lot of elements on the chip
of the experiment (see Figure 2.1) so the stubs cannot be straight lines as in Figure A.4. As a
result, we have to find a configuration in order to restrict the required space for the stubs on
the chip. When changing the stubs geometry, we obviously have to take care to keep exactly
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the same section lengths. Finally, using a 3D HFSS simulation ensures that the changes in
geometry have not impacted the RF-behavior of the filters. Figure A.5 is a screenshot of the
simulated HFSS model. S21 amplitude is shown in Figure A.6: it differs slightly from the other
simulated models but it still exhibits the desired dynamics with an attenuation peak centered
on the frequency of 4 GHz.

Figure A.4: Screenshot of HFSS 3D model of stubs filters. The silicon chip is in blue, the
perfect conductor surface modeling superconducting metal is in grey. Bonds are in dark grey.
The model is closed on the top with a box filled with air, whose borders are depicted with black
lines. The wave ports are in red.

Figure A.5: Screenshot of HFSS 3D model of stubs filters revised to fit inside the real chip. The
silicon chip is in blue, the perfect conductor surface modeling superconducting metal is in grey.
Bonds are in dark grey. The model is closed on the top with a box filled with air, whose borders
are depicted with black lines. The wave ports are in red.
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Figure A.6: Comparison of the amplitude of scattering parameter S21 as function of frequency of
the filtering two-port network for different strategies of simulations. Light blue solid line, labelled
as "Theoretical", is plotted from analytical calculations as a reference (see Section 1 of Chapter
4). Simulations results are plotted for the fully lumped circuit diagram simulation results (blue
crosses, labelled as "Fully lumped") ; lumped circuit diagram with S-matrix of 3D elements (green
crosses, labelled as "Mixed lumped / 3D") ; HFSS 3D model with no geometrical constrains
(purple crosses, labelled as "3D straight") ; HFSS 3D model with geometrical constrains and
curved stubs (red crosses, labelled as "3D curved").
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Appendix B
Nanofabrication recipe

This appendix details the nanofabrication recipe of the chips presented in the main manuscript.
It comes as a supplement of Chapter 5.

1 Nanofabrication recipe

1.1 Wafer preparation

We start with a 280 µm, 2-inch intrinsic silicon wafer. We load it into the sputterer and deposit
120 nm of Nb when the pressure in the load is suffiently low.
In order to be able to circumvent small variations inherent to nanofabrication process, we fab-
ricate 12 10 x 11 mm chips on the same wafer. We cut the individual chips at the end of the
process.

Cleanliness of the wafer At the start of the fabrication process, caution must be taken to
ensure the cleanliness of the wafer. Examining with the optical microscope in dark field mode
in order to see the imperfections on the wafer is a good practice.
We tried to clean the wafer before any other process (acetone bath with sonication on, rinsing
in IPA and blow-drying with N2 gun). It appears that this step leaves some traces such as dried
drops on the edge of the wafer so we have decided not to include a pre-cleaning step in the
recipe.

1.2 Circuit patterning

Spinning resist

• Deposit S1805 resist on the wafer. Use a pipet or use a filtered syringe if you have
cleanliness issues with contaminants deposition at this step.

• Spin using the registered recipe "qelec jpc".

• Bake it on a hot plate for 1 min at 115°C with a beaker as a cover on top.
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1. Nanofabrication recipe

• Check at the microscope that there is not any comet or important dust density on the
chip (this must be done in the resist room with a yellow light microscope in order to avoid
exposing resist to light).

Laser lithography

• Load into the laser lithography machine.

• Look for the wafer edges, note down their coordinates and use them to go to the center of
the wafer (this step is done using lens 3).

• Perform the 3-point plane focus (using the lens used for writing step) around the center.

• Do not forget to go back to the center of the wafer before launching the writing process.

• Since the minimal dimensions of our circuit are typically ∼ 5 µm, on the ENS laser-writer
using lens 4 and D-step of 2 is precise enough for writing.

• Launch the lithography with the dose 203 mJ/cm2.

Development

• Develop in MF319 for 1 min in a big beaker. During the development, softly rotate the
beaker in order to solve the exposed resist in a more homogeneous way.

• Rinse in DI water for 1 min shaking in the same way.

• Blow dry.

• Check at the optical microscope that everything seems to be correctly developed (this
must be done in the resist room with a yellow light microscope in order to avoid exposing
remaining resist to light).

Reactive Ion Etching

• Load into the RIE machine.

• Wait for sufficiently low pressure in order to avoid to have some impurities in the load-lock
during the etching (wait for Pload ∼ 9nBar).

• Etch with SF6.

• We monitor in real time the reflectivity of a laser light spot sent on a region of the chip
dedicated to be etched. As long as there is still some niobium, the reflectivity remains
constant. When all niobium has been etched, the light spot reflects now on the silicon
layer which is less reflective than niobium. Thus, we observe a steep decline of reflectivity
plot: this is the end criterion for the etching process.

• To be sure that all niobium has been taken off, we process to an over-etching of 10 s (we
wait for 10 extra seconds as a safety margin after the reflectivity drop before stopping the
process).
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1. Nanofabrication recipe

Lift-off and final cleaning

• Put the wafer in a beaker of hot acetone at 50°C and sonicate for 5min (US 7). Then we
assume that acetone is saturated in resist and has taken the major part so we change the
wafer.

• Put the wafer in a new beaker of hot acetone at 50°C and sonicate for 20-25min (US 7).

• Rinse in IPA and sonicate for 1min.

• Blow dry with N2 gun.

• Load for 20 s of O2 stripping in order to remove all residual organic contaminants. For
this stripping step we wait for the pressure in the load-lock to be low enough (wait to have
Pload ∼ 9 nBar) to avoid impurities. The parameters are: P = 0.13 mBar ; Power = 30 W
; Flow=100 sscm.

1.3 Josephson junctions fabrication

Cleaning It is really important to start spinning resist on a clean sample. In a complete
fabrication process with a previous laser circuit patterning this cleaning step is actually done
with the lift-off of laser writing resist.

• Acetone with US.

• Rinse in IPA.

• Blow dry with N2 gun.

• O2 stripping t = 10 s ; P = 0.13 mBar ; Power = 30 W ; Flow=100 sscm.

Spinning resist To fabricate Dolan-bridge junctions we need two layers of resist.

• Bake the sample 60 s @185°C. During all baking steps we are covering the sample with an
upside down beaker to avoid impurities from falling onto the chip.

• Spin MAA EL 13 - 5 s @500 rpm - 60 s @5000 rpm.

• Bake 1 min @185°C.

• Spin PMAA A31 - 3 s @500 rpm - 60 s @4000 rpm.

• Bake 30 min @185°C.

SEM lithography The pattern of the Dolan bridge is written in the resist with SEM lithog-
raphy. We write with a beam aperture of 7.5 µm, a beam voltage of 20 kV. The reference dose
is 283 µmAs/cm2.

1Noting PMMA Ax, x represents the percentage in anisole which is a solvent for the resist.
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1. Nanofabrication recipe

Development The development is made in a solution of H2O:IPA at temperature of 6.0°C.
When developing, the operator should shake the chip in order to make the development more
homogeneous. The development step is crucial since it controls the 3D dimensions of the bridges.
Then, the operator should take care to be consistent and regular for each fabrication batch, even
in the way they are shaking the chip.

• H2O:IPA 1:3 90 s @6.0°C.

• Rinse in IPA for 10 s.

• Blow dry.

O2 stripping We add this cleaning step in order to be sure to remove resist residues after
development. The parameters are : P=0.13 mBar ; Power = 30 W ; t = 40 s ; Flow = 100 sscm.

Evaporation step This step occurs in a Plassys evaporator and includes multiple sub-steps.
First, argon milling is done for each evaporation angle to clean and to ensure a good connection
between the niobium and the aluminium layer to be deposited. Then, we perform a titanium
cleaning of the load-lock to catch impurities before the evaporation. Next, we proceed to the
two angles evaporation, separated by an oxidation time dedicated to the growth of oxide barrier.
A final oxidation is realized in order to passivate and protect the junction.

• Argon milling with O2: Flow Ar : 4 sscm ; Flow O2 = 1 sscm. U = 250 V ; I = 8 mA. 2
min / angle.

• Titanium cleaning of the chamber.

• Evaporate aluminium at angle +30°. Rate 1 nm/s, total width = 35 nm.

• Oxidation O2 ; P = 20 mbar ; t = 10 min.

• Evaporate aluminium at angle -30°. Rate 1 nm/s, total width = 70 nm.

• Final oxidation O2 ; P = 300 mBar ; t = 3min (static).

Lift-off As found in the literature review, we have increased the lift-off duration time and we
have added a final step of low power sonication in order to be sure to take off small aluminium
residues.

• Acetone @50°C for 1 h.

• Use a pipette to flow some acetone on the chip to help the removal of resist/aluminium
foil.

• New acetone @50°C for 5 min.

• US for 10 s low power.

• Rinse IPA.

• Blow dry with N2 gun.
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1. Nanofabrication recipe

O2 stripping This step is the final cleaning step, performed with the following parameters:
P=0.13 mBar ; Power=30 W ; t = 10 s ; Flow=100 sscm.

Testing the junctions For each sample, we fabricate control junctions on the chip in or-
der to measure their Josephson energy. We measure the room temperature resistance of the
Josephson junction at the probe station and deduce the Josephson coupling energy thanks to
the Ambegaokar-Baratof formula [43].

1.4 Selecting the chip and mounting the sample

The chips are fabricated on a wafer in order to optimize the fabrication process and to be more
robust to small variations of nanofabrication. At the end of the wafer fabrication we select the
most favorable chip for the experiment.
This means that we first check at the optical microscope the visual aspect of all coplanar waveg-
uide lines. Second, we have to select the sample focusing on the Josephson junctions. This is
done by measuring via a probe station the Josephson energy of the test junctions fabricated on
the same sample (see the item above)

Dicing In order to protect the samples against dust produced by the dicing step we first spin
and bake a PMMA resist layer on the wafer. The exact nature of the resist is not important as
long as it can be removed easily after dicing.

• Spin PMMA resist on the sample.

• Bake 1 min @185°C.

Then, we cut the samples on the wafer with the automated dicing machine (the wafer is face up
towards the saw).

Cleaning This step is the last cleaning step before cooling down of the sample and measuring
it.

• Flow DI water on the sample (we believe it can remove the small dusts due to dicing).

• Acetone bath at 50°C, no sonication for 20 min.

• New acetone bath at 50°C no sonication for 20 min.

• Rinse in IPA for 1 min.

• Blow dry.

• Perform a 10 s O2 stripping to remove all organic residues.

• Measure the test junctions on the sample again to check the Josephson energy drift between
the first measurement and just before cooling down.
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Mounting on the sample holder The chips of this thesis work were measured in the sample
holder developed in the laboratory [85] called JAWS. A good practice when renewing the chip
in the sample holder is to clean the sample holder itself.

• Open the sample holder in the three parts (top cover, bottom cover, and middle part
hosting the PCB).

• Pour all the three parts in an acetone bath at room temperature.

• Wipe the PCB with a clean room cotton bud in order to be sure to take off all residues of
bonds.

• Rinse the three parts in IPA.

• Dry with cleanroom paper and use N2 gun for small asperities.

• Reassemble the sample holder.

Then we can mount the sample in the JAWS holder.

• Place a small amount of PMMA on the four corners of the sample location in the sample
holder. The amount of PMMA in each corner should be enough to glue the chip. However,
it should not be excessive to prevent the resist from overflowing and spreading on the
sample.

• Drop the sample on its location.

• Gently press with tweezers on the sample corners for gluing it thanks to resist.

Finally, we have to proceed to microbonding to connect all parts of the ground plane on the
chip and to connect the device DC and RF electrodes to their respective sample holder lines.

2 Useful tips

2.1 How to convert a .gds into a .svg file to create beautiful pictures?

I wanted to share this tip but I did not find a better location in this manuscript, so here it is!
When creating beautiful circuit illustrations for reports, articles or PhD dissertations, it can be
very useful to convert a .gds file (which is the drawing of the chip for laser writer) to a .svg file
(which is a format compatible with a lot of image softwares). The following trick works with
the K-layout software. This tips was obtained from the K-Layout forum:
https://www.klayout.de/forum/discussion/873/working-with-dxfs.
The idea is to use a specific macro code (here in Ruby).

• Open your .gds file with K-Layout software.

• Click on "Macros" → "Macro Development (F5)". The macro window opens.
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• Select the "Ruby" tab.

• Create a new macro by clicking on the cross "new" (you can create and save the macro in
any file you want).

• Select "general" type for macro.

• Copy and paste the following macro code below in the file window (on the right).

• Click on green triangle icon "Run current script".

• A window opens for you to select the location for the .svg file to be created.

• Tadaam ! There is no particular message at the end of the process so you can just go and
check on the desired location that your .svg file has been generated.

• You can save this macro to use it again by clicking on the saving icon.

The macro code in Ruby

class SVGWriter

def initialize(file)
@file = File.open(file, "w")

end

def start(w, h)
@file.puts(<<"END")

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->

<svg
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
width="#{’%.12g’%w}"
height="#{’%.12g’%h}"
version="1.1">

END
end

def finish
@file.puts("</svg>")
@file.close

end

def begin_layer(lp)
@stroke_color = lp.frame_color
@fill_color = lp.fill_color

end

def polygon(p, dbu)

pts = []
p.each_point_hull { |pt| pts << ("%.12g %.12g" % [pt.x * dbu, pt.y * dbu]) }
ctrs = [ "M " + pts.join(" L ") + " z" ]
p.holes.times do |h|
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pts = []
p.each_point_hole(h) { |pt| pts << ("%.12g %.12g" % [pt.x * dbu, pt.y * dbu]) }
ctrs << [ "M " + pts.join(" L ") + " z" ]

end
d = ctrs.join(" ")

@file.puts(" <path style=\"fill:##{’%06x’ % (@fill_color & 0xffffff)}\"")
@file.puts(" d=\"#{d}\"/>")

end

end

lv = RBA::LayoutView::current
lv || raise("No view opened")

cv = RBA::CellView::active
cv || raise("No layout loaded")
ly = cv.layout
cell = cv.cell

out = RBA::FileDialog::ask_save_file_name("Chose SVG file to write", ".", "SVG files (*.svg);;All files (*)")
if out

layers = []

li = lv.begin_layers
while !li.at_end?

if li.current.visible? && !li.current.has_children? && li.current.layer_index >= 0
layers << li.current

end
li.next

end

bbox = cell.bbox
dbu = ly.dbu

writer = SVGWriter::new(out)
writer.start(bbox.width * dbu, bbox.height * dbu)

canvas_tr = RBA::CplxTrans::new(1.0, 0.0, true, RBA::DPoint::new(-bbox.left, bbox.top))

layers.each do |lp|
writer.begin_layer(lp)
si = cell.begin_shapes_rec(lp.layer_index)
while !si.at_end?

s = si.shape
if s.is_path? || s.is_box? || s.is_polygon?

writer.polygon(s.polygon.transformed(canvas_tr * si.trans), dbu)
end
si.next

end
end

writer.finish

end
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MOTS CLÉS

Correction d’erreur quantique, Circuits supraconducteurs, Jonction Josephson

RÉSUMÉ

Les bits quantiques, plus communément appelés "qubits", subissent encore trop d’erreurs dans leurs implémentations

actuelles pour pouvoir être assemblés en processeur quantique pertinent. Une stratégie originale pour contrer les flips

de bits consiste à encoder l’information quantique dans deux états stables d’un oscillateur qui échange des photons

par paires avec son environnement. Ce mécanisme de dissipation non-linéaire est à la base d’un nouveau qubit : le

qubit de chat, implémenté au sein du champ d’une cavité résonante réalisée dans un circuit supraconducteur. Ajouter

des photons dans les états de la cavité accentue la séparation inter-états, ce qui permet en principe d’atteindre des

temps de bit-flips macroscopiques même pour un faible nombre de photons dans la cavité. Pourtant, les réalisations

expérimentales précédant cette thèse saturaient à des temps de l’ordre de la milliseconde.

Le but principal de cette thèse est de maximiser le temps de bit-flip atteignable dans un oscillateur pourvu de la dissipation

à deux photons. À partir des réalisations expérimentales pré-existantes, la démarche a été de retirer du prototype tout

ce qui n’était pas essentiel au processus de stabilisation à deux photons et de se placer dans un régime de paramètres

expérimentaux conservateur. Toutefois, ces choix ont abouti à un taux de dissipation à un photon supérieur au taux de

dissipation à deux photons, rendant caduques la préparation de superposition d’états quantiques dans la cavité, et donc

aussi la mesure de temps de phase-flips.

Le résultat central de cette thèse est la démonstration expérimentale d’un temps de bit-flip de 100 secondes pour des

états dans un oscillateur à dissipation à deux photons, contenant environ 40 photons. Ce travail constitue un point

de référence pour les futures implémentations qui pourront revenir dans un régime pour exploiter pleinement la nature

quantique de l’oscillateur à deux photons. Les performances démontrées dans cette thèse permettent ainsi d’envisager

une réalisation concrète de la feuille de route menant à un ordinateur quantique universel à base de qubits de chats.

ABSTRACT

Current implementations of quantum bits, also commonly called qubits, continue to undergo too many errors to be scaled
into useful quantum machines. An emerging strategy is to encode quantum information in the two meta-stable pointer
states of an oscillator exchanging pairs of photons with its environment, a mechanism shown to provide stability without
inducing decoherence. This strategy is at the core of a recent qubit, called the cat-qubit, which is embedded in the
cavity field of a superconducting resonator with tailored interaction with its environment. Adding photons in these states
increases their separation, and macroscopic bit-flip times are expected even for a handful of photons, a range suitable
for quantum information processing. However, the bit-flip time demonstrated in previous experimental realizations have
saturated in the millisecond range.
The primary goal of this thesis work is to maximize the bit-flip time in a two-photon dissipative oscillator. To that end,
we strip the prototype circuit of everything we can afford, select a parameters regime to avoid dynamical instabilities,
and notice how much the bit-flip time can be increased. These choices come at the cost of a two-photon exchange rate
dominated by single-photon loss, hence losing our ability to prepare quantum superposition states and measuring the
phase-flip rate.
The main result of this thesis is the experimental demonstration of bit-flip times exceeding 100 seconds for computational
states pinned by two-photon dissipation and containing about 40 photons. This thesis work is a solid foundation for future
experiments that can gradually enter the regime suitable to implement a qubit where two-photon loss is the dominant
dissipation mechanism. This experimental work supports the strategy of eradicating bit-flip errors continuously and au-
tonomously at the single qubit level, and reserving the costly arsenal of measurement based quantum error correction
to address the only significant remaining error: phase-flips. This work paves the way for cat-qubit based universal set of
gates and phase-flip error correction, in line with the roadmap for a universal quantum computer.

KEYWORDS

Quantum Error Correction, Superconducting circuits, Josephson junction


	Résumé
	Abstract
	Contents
	Acronyms
	Introduction
	Dynamical systems and stability notions
	Steady states
	Example on the driven harmonic oscillator

	Parametric oscillator
	Linear parametric oscillator
	Nonlinear parametric oscillator

	Parametric amplification
	History of parametric amplification
	General principle of parametric amplification
	Optical parametric oscillators
	Josephson Parametric Amplifier

	Macroscopic bit-flip time in a two-photon dissipative oscillator
	Quantum information with superconducting qubits
	Nonlinear parametric oscillators as logical circuit elements
	The two-photon dissipative oscillator experiment

	Outline and contributions

	Two-photon dissipative oscillator experiment
	Circuit analysis
	The two-photon dissipative oscillator
	Circuit presentation
	Circuit Hamiltonian
	The Asymmetrically Threaded SQUID
	From operating point to two-photon coupling

	Experiment calibration
	DC calibration and extraction of circuit parameters
	Turning on RF pumping
	Finely tuning pump and drive frequencies

	Photon number calibration
	Heterodyne detection
	Steady state photon number
	Description of calibration steps
	Semi-classical analysis
	Quantum signature
	Recap of the extracted values

	Phase transition

	Time dynamics for the two-photon dissipative oscillator states
	Time trajectories and bit-flip times
	Time trajectories
	Bit-flip time evolution
	Bit-flip time simulation

	Short timescale dynamics
	Memory
	Buffer



	Control experiment
	Chip presentation
	The need for a supplementary device
	Chip presentation
	Transmon qubit characterization

	Evaluation of the quantum detection efficiency
	Photon number resolved qubit spectroscopy
	Output field statistics

	Measurement of thermal occupation of the memory resonator
	Theoretical model
	Measurement


	Circuit design
	Designing a stop-band filter
	Introduction
	Designing a lumped model of a stop-band filter 
	Microwave simulations
	Measurement of the filter

	Designing an on-chip bias tee
	Introduction and objectives
	Electromagnetic design and microwave simulations
	Measurement of a test device


	Nanofabrication
	Device fabrication
	Wafer preparation
	Circuit patterning
	Josephson junctions fabrication
	Selecting the chip and mounting the sample

	Focus on the Josephson junctions fabrication
	Junctions of the ATS
	Investigation for better repeatability in junctions fabrication process
	Unexpected variability with same fabrication process
	Literature review
	Experimental comparison of three different recipes
	Supplementary observation in favour of O2 stripping 
	Relevant points in the Josephson junction fabrication process



	Conclusion and perspectives
	Electromagnetic simulations
	Introduction

	Nanofabrication recipe
	Nanofabrication recipe
	Wafer preparation
	Circuit patterning
	Josephson junctions fabrication
	Selecting the chip and mounting the sample

	Useful tips
	How to convert a .gds into a .svg file to create beautiful pictures?


	Bibliography

