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Abstract

To mitigate the adverse effects of climate change, the power sector is rapidly transitioning
towards decarbonization through the integration of renewable energy sources, such as wind
and solar. In this context, advanced data-driven methods, leveraging tools from machine
learning and operations research, hold significant potential as key enablers to deal with
the uncertainty and variability of weather-dependent renewable energy sources. This thesis
takes a holistic approach by examining the model chain that goes from data to uncertainty
modeling and then to decisions and developing data-driven methods that enable improved
and resilient decision-making in modern power systems, focusing on a short-term operational
time frame.

First, we develop methods to enable improved decisions from data. Particularly, we
examine the interaction between forecasting and optimization, which comprise two integral
parts of data-driven decision-making processes. To maximize forecast value and simplify
complex model chains, we propose a method that integrates forecasting and optimization
and directly learns decisions conditioned on some contextual information, such as weather
and market conditions. To speed up traditional works and foster the adoption of advanced
data-driven methods, we further develop an interpretable learning method to forecast the
solutions to constrained optimization problems, thus bypassing the need for an optimization
solver.

Next, we examine methods that address challenges associated with the deployment of
data-driven methods in real-world applications. To enable the resilience of data-driven
decision-making processes, we propose a principled approach to handle missing data in an
operational setting using the task of day-ahead forecasting as a guiding example. To address
the potential scarcity of training data, we further develop an optimization-based approach
to pool data across a number of contextually-dependent problems, thereby improving the
overall performance and robustness of decisions.

The proposed methods are validated in comprehensive numerical experiments related
to power system operations and participation of renewable energy sources in competitive
electricity markets. Overall, the methods and tools developed in this thesis contribute to
the transition toward a decarbonized and sustainable electricity grid.
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Chapter 1

Introduction

Résumé en Français
Augmenter la part des sources d’énergie renouvelables dans le mix énergétique est crucial pour

atténuer les risques liés au changement climatique. Cependant, la nature intermittente et variable
des sources d’énergie renouvelables dépendantes des conditions météorologiques, telles que l’énergie
éolienne et solaire, pose des défis importants dans le fonctionnement des systèmes électriques mod-
ernes. Parallèlement, la numérisation en cours des systèmes électriques, combinée à la libéralisation
des marchés de l’électricité, a conduit à une disponibilité accrue des données. Les méthodes avancées
basées sur les données, combinant des outils d’apprentissage automatique, de recherche opérationnelle
et de science des données, offrent un potentiel important pour soutenir la prise de décision en ex-
ploitant les données disponibles et permettre la transition vers un réseau électrique décarboné, ex-
ploité de manière rentable et fiable. Dans ce chapitre, nous présentons d’abord la châıne de modèles
génériques qui passe des données à la modélisation de l’incertitude, puis aux décisions, qui sous-
tend la plupart des applications de systèmes électriques et de gestion de l’énergie. L’accent est
mis principalement sur le calendrier opérationnel, allant de quelques minutes à plusieurs jours à
l’avance. Ensuite, nous identifions plusieurs défis associés au déploiement et au développement de
méthodes avancées basées sur les données dans les systèmes électriques modernes. Ces défis inclu-
ent, entre autres, l’écart potentiel entre les méthodes de modélisation de l’incertitude et le problème
d’optimisation en aval, la nécessité d’accélérer les flux de travail et les processus traditionnels pour
faire face à une incertitude et une variabilité accrue, gérer la nature de bôıte noire des algorithmes
basés sur les données et gérer les risques liés aux données, tels que les données manquantes ou rares.
En adoptant une approche holistique qui examine conjointement la châıne de modèles allant des
données aux décisions, cette thèse vise à relever ces défis grâce à des méthodes avancées basées
sur les données pour les opérations des systèmes électriques qui permettent de meilleures décisions,
améliorent l’interprétabilité, simplifient les châınes de modèles complexes et sont résilientes aux
risques liés aux données. Par la suite, les contributions techniques de la thèse par rapport aux défis
mentionnés ci-dessus sont résumées. Enfin, ce chapitre se termine par un aperçu de la structure de
ce document et une liste de publications pertinentes.

1



Context

1.1 Context

Climate change poses significant dangers to human well-being, necessitating the implemen-
tation of mitigation strategies aimed at reducing greenhouse gas emissions. In this context,
the power and energy sector plays a critical role, first as a contributor of approximately
a quarter of global emissions and second as an enabler through the electrification of other
sectors, such as transportation. Consequently, the transition towards a decarbonized elec-
tricity grid is a pressing issue. Achieving this goal requires diversifying electricity generation
sources and reducing dependence on fossil fuels, such as natural gas and coal, and renewable
energy sources, such as wind and solar, offer an effective solution. The established targets
for emission reduction in the power sector are highly ambitious. For instance, the European
Union raised the overall target for the integration of renewable energy sources for 2030 to
approximately 40% [1]. Overall, the share of renewable energy sources in the generation mix
is rapidly increasing and they are expected to become the largest source of global electricity
generation by 2027 [2].

While the integration of renewable energy sources is a crucial step in the direction of
mitigating climate change risks, their intermittent and variable nature raises some important
challenges. Indeed, the integration of weather-dependent production from wind and solar
results in significant uncertainty and variability in the power supply. For many years, the
main sources of uncertainty in power systems were potential equipment failures, such as
generator or line outages, and uncertain demand, while variability was primarily driven by
demand fluctuations and did not affect the supply side. The integration of large shares of
renewable production presents a shift in the traditional mode of operation, necessitating the
development of advanced tools to mitigate uncertainty and operating power systems at a
higher speed and scale, which challenges traditional workflows.

In recent years, data-driven decision-making methods have been making advancements
and transforming various industries, such as manufacturing, finance, and healthcare, lever-
aging tools from optimization, machine learning, and statistics [4]. At the same time,
electricity grids and power systems are becoming increasingly data-centric [5], through ad-
vanced monitoring, control, and communications capabilities. This leads to an increase in
data availability, coming from several sources such as sensors, smart meters, and market
information. The convergence of large data sets, improved computational resources, and the
development of data-driven methods, such as machine learning, has resulted in the growth
of energy analytics, i.e., a specialized field of data analytics tools geared towards the energy
and power sector. Energy analytics tools are designed to utilize available data and operate
within the function layer of modern power systems [3]— see Fig. 1.1 for an illustration— and
hold significant potential as key enablers towards a decarbonized and sustainable electricity
grid [6].

Data analytics provide value to stakeholders by delivering insights and interpretations of
historical data, offering informed predictions of future events, and suggesting an appropriate

2



Figure 1.1: The Smart Grid Architecture Model (SGAM) [3].

set of actions to optimize outcomes [7]. In the context of the power sector, energy analytics
provide forecasting, optimization, and control tools to support power systems with a high
share of renewable production [8]. For instance, accurate forecasts of future production from
renewable energy sources are important inputs in the operational management of modern
power systems, enabling system operators to make informed decisions on balancing supply
and demand, and reducing the risk of power outages. Additionally, accurate forecasts en-
able renewable energy sources to become financially competitive in deregulated electricity
markets, by informing trading decisions and managing financial risks. By leveraging inter-
disciplinary methods from machine learning, operations research, and data science, energy
analytics offer a comprehensive approach to mitigate the uncertainty and variability associ-
ated with the integration of renewable energy sources, having the potential to improve the
efficiency and reliability of modern power systems.

A wide range of analytics tools are applied in modern power systems. In this thesis,
we focus primarily on the operational and medium-term planning time frame, ranging from
several minutes to several days ahead. In this context, predictive analytics and mathematical
optimization are the main tools used within decision-making processes. Predictive analytics
mostly concern forecasting applications in power systems. These include, among others, load
forecasting, electricity price forecasting, wind production, and solar production forecasting,
which, throughout this thesis, will be referred to as energy forecasting [9]. The goal is to
leverage available contextual information, such as weather or historical production data,
to provide an estimation of an uncertain parameter in a future time interval. Machine
learning methods are becoming increasingly popular and are considered a relatively mature
technology that can readily be used today for energy forecasting applications.

Conversely, mathematical optimization (hereafter, optimization) [10] aims to identify
a set of actions that optimize a particular cost criterion while satisfying a set of physical

3



Challenges, Gaps, and Contributions

constraints. Common power system applications that leverage optimization tools in an
operational time frame include, among others, determining the optimal dispatch schedule,
estimating the appropriate system reserves, participating in competitive electricity markets,
and managing controllable assets, e.g., storage devices [11]. Typically, the majority of opti-
mization tools used in practice adopt a deterministic formulation. However, as the reliance
on weather-dependent renewable energy sources grows, advanced optimization tools that in-
corporate uncertainty [12], such as stochastic, robust, and chance-constrained optimization,
are becoming more widespread [13].

Predictive analytics and optimization comprise two integral parts of the sequential, two-
step process that spans the model chain from data to decisions, which is illustrated in
Fig. 1.2. In the first step, predictive analytics tools provide accurate estimations, i.e.,
forecasts, of future uncertain quantities, such as renewable production or market quantities.
In the next step, these forecasts are used as inputs in an optimization problem to find a set
of actions that optimize an objective function, subject to a number of physical constraints.

Naturally, the model chain presented in Fig. 1.2 may vary depending on the stakehold-
ers and business cases. For instance, a forecast provider focuses on developing predictive
analytics methods to determine the statistics of uncertain variables, while a trader uses
forecasts to participate in electricity markets and hedge financial risks. Conversely, a grid
operator assessing system security may have to solve an optimization problem repeatedly for
a large number of uncertainty scenarios, while an aggregator operating a large portfolio of
assets may have to deal with several independent model chains that define similar problems
in parallel. Analytics tools and data-driven methods offer a variety of avenues to improve
these processes, including improving forecasting, streamlining traditional workflows, and
enabling improved and more resilient decisions.

The next step towards increasing the maturity of analytics tools in power systems is to
take a holistic approach and examine the entire model chain of Fig. 1.2 under a prescriptive
analytics framework. Prescriptive analytics methods transform the available contextual
information, such as weather forecasts, into implementable decisions, enhancing decision
quality and maximizing stakeholder value. Prescriptive analytics, as defined in the context
of this thesis, explicitly depend on data provided by some external sources and integrate
both uncertainty modeling (i.e., forecasting) and optimization components. In fact, both
forecasting and optimization tasks can be considered special cases of prescriptive analytics.

1.2 Challenges, Gaps, and Contributions

There are several challenges associated with the effective development and deployment of
prescriptive analytics tools and, in general, data-driven methods for power systems. These
challenges relate to the interactions between the different components in Fig. 1.2, practical
considerations about the deployment of complex model chains, the black-box nature of data-
driven tools, and risks associated with external factors, such as data-related challenges.
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Figure 1.2: A generic model chain going from data to decisions.

The first challenge concerns the interaction between forecasting and optimization. While
optimization tools typically offer strong guarantees and provably optimal decisions, they
may rely on a deterministic setting that ignores uncertainty. In practice, the decision quality
depends heavily on the forecast quality. However, forecasting models are typically trained to
maximize statistical accuracy, independent from the downstream optimization problem. As
a result, forecasting models do not account for the impact of forecasting errors on the decision
costs, i.e., forecast value. For instance, [14] examines the economic impact of electricity price
forecasting errors and finds that increased accuracy does not always translate into economic
benefits; in fact, in some cases, improving forecast accuracy might be counterproductive
[15]. Consequently, the transition from prediction to prescription (equivalently, decision)
is not always straightforward. To maximize forecast value, it is necessary to develop novel
approaches that are cognizant of the downstream optimization problem and embed its cost
function and physical constraints within the learning process.

From a practical standpoint, the model chain presented in Fig. 1.2 can involve significant
modeling effort, as it requires forecasting multiple uncertain quantities separately. For
instance, an aggregator managing a portfolio of renewable power plants participating in
short-term electricity markets must forecast a large number of unknown parameters in order
to effectively hedge against financial losses [16]. Developing and maintaining a large number
of forecasting models can be a labor-intensive task, highlighting the need for innovative
methods that simplify complex model chains in real-world applications.

Moreover, deploying multiple analytics tools within a decision-making process can in-
troduce additional complexity and obscure the impact of data on decisions. Furthermore,
data-driven methods, especially those based on machine learning, are often characterized by
their black-box nature, which can hinder their adoption in industrial applications. This is
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Challenges, Gaps, and Contributions

especially true for critical infrastructure industries such as power systems, where stakehold-
ers are highly risk-averse. To facilitate the adoption of advanced data-driven methods, it
is crucial to provide stakeholders with explainable and interpretable decisions and provide
performance guarantees [17].

In addition, the effective deployment of analytics tools for power systems is also subject
to external risks associated with data quality and availability. Models deployed in industrial
settings must address several data-management challenges that can emerge only after the
system is online [18]. For instance, network latency, equipment failures, or cyberattacks may
render input data unavailable and compromise model performance. Moreover, future power
systems will integrate a multitude of heterogeneous assets, such as small-scale renewable
energy sources and flexible loads. While the aggregate volume of data is large, decision-
makers may encounter data scarcity on an individual asset level, which can negatively affect
the performance of machine learning-based models. To ensure the reliability and consistency
of data-driven decision-making processes, it is crucial to develop novel approaches that
instill resilience against data-related risks and effectively leverage available data from various
sources.

In this thesis, we take an interdisciplinary approach that leverages tools from machine
learning, operations research, and data science, to address challenges associated with the
development and deployment of prescriptive analytics tools in modern power systems, largely
focusing on the operational time frame. Specifically, our overarching goal is:

To develop data analytics tools for power systems operations that enhance decision-
making processes by improving techno-economic benefits, simplifying complex model
chains, increasing transparency and explainability, and enabling resilience against data-
related risks.

Our contributions are summarized as follows:

1. To maximize forecast value and reduce modeling effort, we propose an approach that
integrates forecasting and optimization and provides a generic framework to evaluate
the impact of data on decisions, thus also improving explainability. The proposed
method is validated in several real-world case studies related to electricity market
participation.

2. To foster the adoption of advanced data-driven methods and speed up traditional work-
flows, we develop an interpretable learning approach to directly forecast the decisions
of a constrained optimization problem, thus bypassing the need for an optimization
solver. To ensure interpretability, we employ a two-step approach that incorporates
domain knowledge into model development. We demonstrate the effectiveness of our
approach on a critical operations task for power systems and electricity markets.

3. To improve the resilience of data-driven decision-making processes, we propose a prin-
cipled approach to handle missing data in an operational setting. Unlike ad hoc
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solutions commonly deployed in practice, our method leads to consistent performance
and effective hedging against worst-case scenarios while maintaining practicality. We
demonstrate the efficacy of our approach in several prevalent energy forecasting ap-
plications and subsequently apply it in the context of integrated forecasting and opti-
mization.

4. To deal with the potential data scarcity, we propose an optimization-based method
to pool data across a number of independent problems, thereby improving the overall
performance and robustness of energy analytics tools.

1.3 Structure of the Thesis

Each chapter of this thesis contributes to a different aspect of the model chain described in
Fig. 1.2 and is intended to be comprehensible when read separately. A detailed description
of the chapters is as follows.

In Chapter 2, we examine the complete model chain presented in Fig. 1.2, that is, we
examine decision-making problems under uncertainty, where the uncertainty is associated
with some contextual information. To maximize forecast value and enable improved de-
cisions, we propose an integrated forecasting-optimization method and further establish a
generic framework to evaluate the impact of data on decision performance. Specifically,
we formulate a tree-based algorithm trained to minimize decision costs and adapt feature
importance metrics in a prescriptive context. For validation, we examine various problems
related to the participation of renewable energy sources in competitive electricity markets.
A series of numerical experiments with real-world data illustrate that the proposed approach
outperforms the standard modeling approach, while also reducing the associated modeling
effort.

In Chapter 3, we consider a setting that involves solving an optimization problem re-
peatedly for different realizations of uncertainty, which can be considered as a special case
of the problem examined in Chapter 2 assuming a one-to-one mapping between contextual
information and uncertainty. Rather than looking for improved decisions, our goal in this
chapter is to examine methods that speed up traditional workflows. As a guiding example,
we use the DC Optimal Power Flow (DC-OPF) problem, which is pivotal in the operation of
power systems and electricity markets. We develop an interpretable method to forecast the
solutions of a constrained optimization problem with feasibility guarantees, extending the
method developed in Chapter 2. Particularly, we propose a tree-based algorithm that learns
a piecewise affine mapping from data to decisions, thus eliminating the need for an optimiza-
tion solver at test time, using robust optimization to ensure that decisions are feasible. To
enhance both model performance and interpretability, we encode domain knowledge during
model development. We provide extensive empirical validation, under different types of un-
certainty and operating conditions, with our results demonstrating that interpretable trees
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perform comparably to state-of-the-art methods that do not offer performance guarantees.
In Chapter 4, we examine the issue of missing data in an operational setting, i.e., after

a model has been deployed in production. We present a robust optimization approach to
enable model resilience, using the task of energy forecasting in a day-ahead horizon as a guid-
ing example. Specifically, we formulate a robust regression model that is optimally resilient
against missing data at test time, considering both point and probabilistic forecasting, and
develop three solution methods, with varying degrees of tractability and conservativeness.
We provide an extensive empirical validation of the proposed methods in prevalent fore-
casting applications in power systems, against well-established benchmarks and methods
of dealing with missing features. Next, we apply the proposed approach in an integrated
forecasting and optimization framework, whereby we directly forecast the decisions of a re-
newable producer participating in a day-ahead market. The results show that the proposed
approach enables model resilience, while also maintaining practicality.

Chapter 5 further examines data-related issues, specifically dealing with scarce training
data. We consider dealing with multiple stochastic optimization problems, each associated
with some contextual information, as in Chapter 2, and investigate data pooling methods to
address data scarcity on an individual problem level. We propose two methods to leverage
data across a number of problems and further develop an optimization-based data pool-
ing algorithm that determines when and how much data to pool, effectively interpolating
between a local and a pooled distribution. We validate our approach in two pivotal ap-
plications related to the integration of renewable energy sources, namely power production
forecasting and trading in a day-ahead electricity market. Our empirical results show that
data pooling mitigates the solution instability when data are scarce, thereby leading to
improved predictive and prescriptive performance.

Finally, in Chapter 6, we summarize the work presented and offer perspectives on future
developments.

1.4 List of Publications

The following publications were prepared in the context of my Ph.D.:

Journal Publications

[J1] A. Stratigakos, P. Andrianesis, A. Michiorri and G. Kariniotakis,“Towards Resilient
Energy Forecasting Against Missing Features: a Robust Optimization Approach,”
in IEEE Transactions on Smart Grid, pp. 1-1, May 2023. Preprint available at:
https://hal.science/hal-03792191/.

[J2] A. Stratigakos, S. Camal, A. Michiorri and G. Kariniotakis, “Prescriptive Trees for
Integrated Forecasting and Optimization Applied in Trading of Renewable Energy,”
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in IEEE Transactions on Power Systems, vol. 37, no. 6, pp. 4696-4708, Nov. 2022.
Preprint available at: https://hal.science/hal-03330017v3.

Working Papers/Under Review

[J3] A. Stratigakos, S. Pineda, J. M. Morales and G. Kariniotakis, “Interpretable Ma-
chine Learning for DC Optimal Power Flow with Feasibility Guarantees,” in IEEE
Transactions on Power Systems (3rd round of review). Preprint available at: https:

//hal.science/hal-04038380.

[J4] A. Stratigakos, S. Pineda, J. M. Morales and G. Kariniotakis, “Optimization-based
Data Pooling for Contextual Stochastic Optimization,” in preparation for submission
in European Journal of Operational Research.

Conference Publications (Peer Reviewed)

[C1] M. Kühnau, A. Stratigakos, S. Camal, S. Chevalier and G. Kariniotakis, “Resilient
Feature-driven Trading of Renewable Energy with Missing Data,” 2023 IEEE Inno-
vative Smart Grid Technologies - Europe, Grenoble, France, 2023.

[C2] A. Stratigakos, D. van der Meer, S. Camal and G. Kariniotakis, “End-to-end Learn-
ing for Hierarchical Forecasting of Renewable Energy Production with Missing Val-
ues,” 2022 17th International Conference on Probabilistic Methods Applied to Power
Systems (PMAPS), Manchester, United Kingdom, 2022, pp. 1-6. Preprint available
at: https://hal.science/hal-03527644.

[C3] A. Stratigakos, A. Michiorri and G. Kariniotakis, “A Value-Oriented Price Fore-
casting Approach to Optimize Trading of Renewable Generation,” 2021 IEEE Madrid
PowerTech, Madrid, Spain, 2021, pp. 1-6. Preprint available at: https://hal.

science/hal-03208575v1.

Conference Presentations

• A. Stratigakos, P. Andrianesis, A. Michiorri and G. Kariniotakis, “Making Energy
Forecasting Resilient to Missing Features: a Robust Optimization Approach,” 42nd
International Symposium on Forecasting, 2022 (Best Student Presentation & Travel
Grant Award).

• A. Stratigakos, S. Camal, A. Michiorri and G. Kariniotakis, “An Integrated Fore-
casting and Optimization Approach Applied in Trading Renewable Energy,” 41st In-
ternational Symposium on Forecasting, June 27-30, 2021.

• A. Stratigakos, S. Camal, T. Blondel and G. Kariniotakis, “Short-term Trading of
Wind Energy Production Using Data-driven Prescriptive Optimization,” Wind Energy
Science Conference, May 2021, Hannover, Germany.
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Notation

The main contributions of the thesis appear in the journal publications [J1]-[J4], while
the conference publications ([C1]-[C3]) do not explicitly appear in the remainder of the
thesis.

The following publications are the result of my participation in the “IEEE-CIS Techni-
cal Challenge on Predict+Optimize for Renewable Energy Scheduling,” where some of the
methods developed in my Ph.D. were tested, and do not explicitly appear in the remainder
of the thesis:

• C. Bergmeir, F. de Nijs, A. Sriramulu, M. Abolghasemi, R. Bean, J. Betts, Q. Bui,
N. T. Dinh, N. Einecke, R. Esmaeilbeigi, S. Ferraro, P. Galketiya, E. Genov, R.
Glasgow, R. Godahewa, Y. Kang, S. Limmer, L. Magdalena, P. Montero-Manso,
D. Peralta, Y. P. S. Kumar, A. Rosales-Pérez, J. Ruddick, A. Stratigakos, P.
Stuckey, G. Tack, I. Triguero and R. Yuan, “Comparison and Evaluation of Meth-
ods for a Predict+Optimize Problem in Renewable Energy,” in IEEE Transactions
on Neural Networks and Learning Systems (under review). Preprint available at
:https://arxiv.org/abs/2212.10723.

• A. Stratigakos, “A Robust Fix-and-Optimize Matheuristic for Timetabling Problems
with Uncertain Renewable Energy Production,” IEEE Symposium Series on Compu-
tational Intelligence (invited) 2021, IEEE, Dec 2021, Orlando, United States. Preprint
available at: https://hal.science/hal-03449920v1.

During my Ph.D. I also co-authored the following publications which are outside of the
scope of the thesis and do not appear in the remainder:

• A. Stratigakos, A. Bachoumis, V. Vita and E. Zafiropoulos, “Short-Term Net Load
Forecasting with Singular Spectrum Analysis and LSTM Neural Networks,” in Ener-
gies, 14(14), 4107, 2021.

• K. Krommydas, A. Stratigakos, C. Dikaiakos, G. Papaioannou, M. Jones and G.
McLoughlin, “A Novel Modular Mobile Power Flow Controller for Real-Time Conges-
tion Management Tested on a 150kV Transmission System,” in IEEE Access, vol. 10,
pp. 96414-96426, 2022.

• K. Krommydas, C. Dikaiakos, G. Papaioannou and A. Stratigakos, “Flexibility
Study of the Greek Power System Using a Stochastic Programming Approach for Es-
timating Reserve Requirements,” in Electric Power Systems Research, 213, p.108620,
2022.

1.5 Notation

Throughout the thesis, boldfaced lowercase letters, e.g., x, denote vectors, and boldfaced
uppercase letters, e.g., X, denote matrices. Sets are denoted with calligraphic font, e.g., S,
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and scalars with ordinary letters, either lowercase or uppercase, e.g., n or N . The notation
[n] is used as a shorthand for {1, . . . , n} and |S| denotes the cardinality (i.e., number of
elements) of a set S.
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Chapter 2

Integrating Forecasting and
Optimization to Improve Decision
Performance

Résumé en Français
Déduire des décisions à partir de données implique généralement un processus séquentiel en deux

étapes avec deux composants. Dans la première étape, un modèle de prévision est déployé pour
prédire les paramètres incertains du problème. Dans la deuxième étape, ces prévisions sont utilisées
comme données d’entrée dans un problème d’optimisation qui en déduit un ensemble d’actions ap-
propriées. Les modèles de prévision apprennent généralement en minimisant une fonction de perte
qui se présente comme une approximation des coûts spécifiques à une tâche (par exemple, le com-
merce, la planification) sans tenir compte du problème d’optimisation en aval. En pratique, cela crée
un goulot d’étranglement des performances et masque l’impact des données sur les décisions. Pour
relever ces défis, nous proposons un module unique basé sur les données qui exploite la structure du
composant d’optimisation et apprend directement une politique conditionnée par des informations
contextuelles. Nous développons un algorithme pour former des ensembles d’arbres de décision en
minimisant directement les coûts spécifiques à la tâche, et prescrivons des décisions via une approx-
imation pondérée de la moyenne d’échantillon du problème d’origine. Pour évaluer l’impact des
informations contextuelles sur la performance décisionnelle, nous adaptons davantage les métriques
d’importance des fonctionnalités dans un contexte normatif. La méthode proposée est validée dans
diverses études de cas liées à la commercialisation de la production d’énergie renouvelable et à la par-
ticipation aux marchés de l’électricité. Nous considérons le problème de l’arbitrage des prix avec un
dispositif de stockage, suivi du problème de l’échange de production renouvelable sur un marché jour-
nalier sous différents mécanismes d’équilibrage, et nous proposons des stratégies qui équilibrent les
décisions de trading optimales et la précision des previsions. Enfin, nous considérons une agrégation
de centrales renouvelables et de stockage, et optimisons à la fois la stratégie de trading day-ahead
et la politique de contrôle opérationnel du stockage, sur la base d’une approximation traitable util-
isant l’approche de la règle de décision linéaire. Les résultats empiriques démontrent que le cadre de
modélisation prescriptif proposé surpasse constamment le cadre de modélisation standard.

The work in this chapter extends the work previously published in [J2].
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Introduction

2.1 Introduction

Data play an increasingly important role in decision-making processes in modern power
systems. Moving from data to decisions usually involves a two-step, sequential process. The
first step involves modeling uncertainty stemming from multiple sources, such as stochastic
renewable production and unknown market quantities. To this end, forecasting models are
typically deployed to predict uncertain parameters at a future time interval conditioned
on some associated contextual information, such as weather or market conditions. In the
second step, the output of the forecasting models is used as input in an optimization problem,
which finds the set of actions (equivalently, decisions or prescriptions) that minimize a cost
function while considering a set of physical constraints.

Forecasting models, usually based on machine learning or statistical methods, are trained
by minimizing a loss function over a training data set. This loss function optimizes a statis-
tical criterion, such as accuracy, and is agnostic to the downstream optimization problem,
thus, it serves only as a proxy for the true decision cost. However, increased forecast ac-
curacy does not always lead to better decisions. For instance, [14] examines the economic
impact of electricity price forecasting errors and shows that increased accuracy does not
always translate into increased economic value. Recently, there has been a growing trend
of moving beyond the simple statistical evaluation of forecasting errors to assessing the in-
curred decision cost associated with these errors. For instance, [19] proposes a multivariate
probabilistic forecasting model and considers the economic benefits for an electricity retailer
as a means of assessing its benefits. Indeed, assessing the impact of forecasts on decision
costs, i.e., forecast value, is considered to be one of the key challenges in energy forecasting
in the coming years [9]. Further, directly optimizing towards forecast value rather than
accuracy is identified as a high-leverage objective to employ machine learning as means of
enabling the decarbonization of power systems [6]. To maximize forecast value, therefore,
we need to embed knowledge about the downstream task in the learning process of the
forecasting model.

2.1.1 Aim and Contribution

In this chapter, we jointly examine forecasting and optimization for decision-making in
power systems and electricity markets. Inspired by the framework established in [20], we
integrate forecasting and optimization by formulating ensembles of decision trees trained to
directly learn decisions from data and maximize forecast value. The proposed integrated
approach allows for directly considering multiple sources of uncertainty, thus reducing the
associated modeling effort, and provides decisions that satisfy possible physical constraints.
To evaluate the impact of data on decisions and enhance model explainability, we further
adapt well-known metrics from the machine learning literature in a prescriptive context. We
validate the proposed approach on several real-world case studies related to the integration
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of renewable energy sources in competitive electricity markets and demonstrate improved
decision performance compared to the standard modeling approach.

Our contributions are summarized as follows:

• We propose and validate an integrated forecasting-optimization modeling approach
for power system applications that leverages contextual information to directly learn
decisions from data. The proposed approach (i) improves prescriptive performance,
(ii) reduces the modeling effort, (iii) handles multiple sources of uncertainty, and (iv)
guarantees the feasibility of decisions.

• Methodologically, we propose tree-based ensembles trained to minimize decision costs
and adapt well-known feature importance metrics from the machine learning literature
to a prescriptive context.

• We illustrate the efficacy of the proposed approach in various case studies of increas-
ing complexity related to participation in electricity markets. First, we examine the
problem of price arbitrage with a storage device. Then, we examine trading renewable
production in a day-ahead market under different pricing mechanisms and propose
strategies that balance trading cost and predictive accuracy. Finally, we consider a
combination of renewable plants and a storage system and jointly optimize the day-
ahead offering strategy and operational control policy; for the latter, we employ the
linear decision rule approach [21] to provide a tractable approximation.

2.1.2 Chapter Outline

The rest of the chapter is organized as follows. Section 2.2 presents the mathematical
background and reviews related work. Section 2.3 develops the proposed methodology.
Section 2.4 formulates relevant power system applications to apply the proposed methodol-
ogy. Section 2.5 presents the numerical experiments. Section 2.6 provides a summary and
conclusions.

2.2 Mathematical Background and Related Work

This section presents the mathematical framework and related work (in Subsection 2.2.1)
and reviews related applications in power systems (in Subsection 2.2.2).

2.2.1 Mathematical Framework and Related Work

We examine decision-making problems under uncertainty where y ∈ Y ⊆ Rdy denotes
some unknown problem parameters, such as renewable production or market prices, and
x ∈ X ⊆ Rdx denotes associated contextual information (also known as features), such
as weather or market conditions. The uncertain problem parameters and the associated
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Mathematical Background and Related Work

contextual information follow a joint probability distribution (x, y) ∼ Q. Our goal is to
solve the following contextual stochastic optimization (or prescriptive analytics) problem

v = min
z∈Z

EQ[c(z; y)|x = x0] = min
z∈Z

Ey∼Qx0
[c(z; y)], (2.1)

where v is the objective value, z ∈ Rdz is the decision vector, Z is a convex set of feasible
solutions, c(·) is a convex cost function, x0 is a realization of x, and Qx0 is the marginal
distribution of y conditioned on x = x0. In words, our goal is to solve a stochastic op-
timization problem conditioned on an out-of-sample realization of some features that are
associated with the target uncertainty.

Classical stochastic optimization [12] examines problems with uncertain parameters as-
suming known distributions of uncertainty. In practice, however, the true distributions
are unknown. Instead, we assume to have access to a training data set {(yi, xi)}ni=1 of n

observations, which we can use to approximate (2.1).
The fundamental method of approximating (2.1) given a set of observations {yi}ni=1

(either empirical or sampled from an estimated distribution) is with Sample Average Ap-
proximation (SAA) [22]

min
z∈Z

1
n

n∑︂
i=1

c(z; yi). (2.2)

Although SAA enjoys several nice theoretical properties, such as consistency and asymptotic
optimality, (2.2) does not leverage the available contextual information {xi}ni=1.

The standard modeling approach to leverage the available contextual information is to
first employ a forecasting model f ∈ F : X → Y that maps observations of x to y, where
F is a hypothesis space, and then solve a deterministic optimization problem. We term
this two-step approach forecast-then-optimize. Typically, f belongs in the class of machine
learning or statistical models and is trained by minimizing a surrogate loss l(yi, f(xi)) over
the training data set {(yi, xi)}ni=1, such as the Mean Squared Error (MSE),

min
f∈F

1
n

n∑︂
i=1

l(yi, f(xi)) = min
f∈F

1
n

n∑︂
i=1
∥yi − f(xi)∥22. (2.3)

Thus, f approximates E[y|x = x0], i.e., the conditional expectation of y given an observation
of x. The original problem (2.1) is then approximated by

min
z∈Z

c(z;E[y|x = x0]) ≈ min
z∈Z

c(z; f(x0)), (2.4)

which is a deterministic problem and thus easier to solve. However, replacing the uncertainty
with its conditional expectation is not equivalent to solving (2.1). Furthermore, (2.4) ignores
the uncertainty due to potential forecast errors, which, in turn, may lead to significant out-
of-sample disappointment.

In the forecast-then-optimize modeling framework, the process of training f and the
subsequent optimization problem are treated separately. Recently, there has been significant
effort in tackling the prescriptive analytics problem described in (2.1) in a holistic way [23].
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Broadly, relevant research can be classified in three directions: (i) forecast-then-optimize
under an alternative loss function, (ii) directly forecasting the solutions of the optimization
problem, and (iii) approximating the conditional distribution Qx0 .

The first approach proposes learning under alternative loss functions to derive forecasts
that are cognizant of the downstream problem and explicitly minimize the decision cost. Let
z∗(y) ∈ arg minz∈Z c(z; y) be an optimal solution of (2.1) for a realization of uncertainty
y. Instead of the true uncertainty y, we use an estimation ˆ︁y derived from a forecasting
model f . The goal is to develop a training model that minimizes the decision cost induced
by erroneous predictions, which can be formulated as

min
f∈F

1
n

n∑︂
i=1

c(z∗(f(xi)); yi)− c(z∗(yi); yi). (2.5)

Training f by minimizing (2.5) might lead to predictions that differ significantly from those
derived under the MSE loss function (2.3), e.g., they could be biased. We term this approach
value-oriented forecasting. The challenge here is to embed the optimization problem within
the learning process. Gradient-based methods usually assume a smooth objective function,
as in an earlier work [24] that employs a specialized financial criterion as the loss func-
tion. An important milestone in this area is the introduction of differentiable optimization
layers [25] that compute exact gradients for backpropagation by differentiating the opti-
mality conditions of a Quadratic Programming (QP) problem; differentiable optimization
layers are subsequently leveraged in [26] to develop a task-based learning approach with
applications in energy storage arbitrage and grid scheduling. Concurrently, [27] investigates
Linear Programming (LP) problems with unknown cost vectors and proposes the Smart
Predict-then-Optimize (SPO) loss function that minimizes the true decision cost; a convex
and differentiable surrogate of the SPO loss is further derived. Conversely, [28] directly
trains decision trees to minimize the SPO loss. An alternative approach based on bilevel
programming is presented in [29], where the lower problem computes the best decision given
a forecast and the upper problem estimates the linear coefficients of a forecasting model that
lead to minimum costs. In any case, training a value-oriented forecasting model might be
challenging, as the loss function could be non-convex and discontinuous. Further, it is un-
clear how this approach would perform when y comprises uncertainty from different sources,
which may be associated with a different set of features.

The second approach proposes forecasting models that directly predict the solutions of a
(constrained) optimization problem. Formally, we consider a forecasting model f : X → Z
that maps contextual information x to decisions z, using the cost function as loss, given by

min
f∈F

1
n

n∑︂
i=1

c(f(xi); yi), (2.6)

where z is replaced by a decision rule f(x). For an out-of-sample observation x0 the optimal
solution is computed directly from z0 = f(x0), which is highly efficient and reduces inference
time, as it bypasses the optimization solver. For instance, [30] proposes linear decision rules
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Mathematical Background and Related Work

to solve the newsvendor problem with contextual information, which effectively results in
high-dimensional quantile regression. A significant drawback of this approach, however, is
the lack of guarantees for the feasibility of decisions for out-of-sample observations.

The third approach follows a non-parametric approach based on SAA [22]. In this case,
we first estimate a conditional probability distribution ˆ︁Qx0 which approximates Qx0 . Then,
we sample a number of scenarios from ˆ︁Qx0 , and apply SAA. Here, contextual information
is leveraged during the estimation step, which is commonly referred to as probabilistic
forecasting in the energy forecasting literature. Along this line of work, [20] introduced
the framework of predictive prescriptions that leverages a function that weights training
observations and then solves a weighted SAA, given by

min
z∈Z

n∑︂
i=1

ωn,i(x0)c(z; yi), (2.7)

where ωn,i(x0) denotes weights, such that ∑︁n
i=1 ωn,i(x0) = 1 and ωn,i(x0) ≥ 0, derived from

local-learning, non-parametric algorithms. This class of algorithms includes, among others,
nearest neighbors, decision trees, and kernel-based methods. The framework of [20] has
found several extensions, e.g., adding robustness to deal with small data sets [31], dealing
with multi-stage problems [32], and considering multi-stage problems with adjustable robust
optimization [33]. In [34] the residuals induced by the SAA solution are used to infer decision
uncertainty. Conversely, [35] directly works with observations of the joint distribution Q to
derive an ambiguity set conditioned on contextual information, thereby bypassing the need
for a learning model altogether.

In the framework of [20], weights ωn,i(x0) are derived by training local learning meth-
ods in a standard way that minimizes prediction error, thus still ignoring the downstream
problem. Subsequent work investigates integrating forecasting and optimization directly
within this framework. Specifically, [36] and [37] leverage tree-based methods to combine
the framework of [20] with learning under an alternative loss function, effectively using trees
to learn a policy from data to decisions. Conversely, [38] takes an intermediate approach
and proposes a validation method to select model hyperparameters that minimize the down-
stream decision cost. Nevertheless, such approaches still do not offer insight regarding the
importance of each feature on the decision quality, thus largely remain a black box.

2.2.2 Power System Applications and Related Work

Jointly examining forecasting and optimization has also become a popular research area in
power systems. Several works have considered the day-ahead unit commitment problem.
An earlier work develops an asymmetric loss function to improve the value of day-ahead load
forecasts [39]. In [40], a closed-loop forecast-and-optimize module is described for the same
problem, employing the loss function introduced in [27], while [41] presents a bilevel model
to jointly tune the forecasting model and solve the unit commitment and economic dispatch
problem. Conversely, [42] examines the stochastic unit commitment problem with contextual
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information and further proposes a task-based approach to tune model hyperparameters.
A task-based load forecasting model that combines deep learning with stochastic economic
dispatch is proposed in [43], following the work of [26]. In [44], an electricity price forecasting
model is optimized to directly maximize economic benefits for a storage system performing
arbitrage in electricity markets. In [45], a contextually-dependent distributionally robust
formulation of the Optimal Power Flow (OPF) problem is developed, leveraging the fact that
wind production forecasting errors depend on the magnitude of the forecast. Additionally,
[46] considers wind forecasting for short-term trading applications and [47] examines load
forecasting for dispatch scheduling, both relying on two-step approaches that involve first
inferring a convex loss from data, then training the forecasting model. Conversely, [48]
integrates the DC-OPF problem within a neural network model to derive adversarial load
scenarios that are statistically credible and improve system resilience. In [49], a decision
rule approach is presented for value-oriented demand forecasts to clear a day-ahead market,
by considering the downstream balancing costs during learning. In [50], a value-oriented
model that forecasts electricity market quantities is developed by employing a risk-averse
trading strategy as an alternative loss function, with the subsequent forecasts leading to
improved trading profit. However, this approach does not reduce the modeling effort and
cannot handle multiple uncertainties, e.g., when both renewable production and market
prices are uncertain. In [51], the framework put forward in [30] is extended by proposing
linear decision rules to improve both the forecasting and trading performance of a Wind
Power Plant (WPP) participating in a day-ahead market. In [52], the linear decision rule
approach for trading wind production is further extended in an online learning setting. For
a similar case study with Photovoltaic (PV) plants, [53] utilizes neural networks to directly
forecast trading decisions. Nonetheless, these works deal with variations of the newsvendor
problem and the proposed solutions cannot guarantee feasibility for problems with complex
physical constraints. This issue can be circumvented by considering a discrete set of actions
that approximate continuous decisions. For instance, [54] examines the control of a storage
device formulated as a multi-label classification problem.

2.3 Methodology

This section formulates the problem of integrating forecasting and optimization (in Subsec-
tion 2.3.1), presents the proposed prescriptive trees method (in Subsection 2.3.2), adapts
feature importance metrics in a prescriptive analytics context (in Subsection 2.3.3), and
provides an illustrative example (in Subsection 2.3.4).

2.3.1 Embedding the Decision Cost in Learning

In this work, we focus on methods that estimate the distribution of uncertainty conditioned
on some contextual information. Specifically, we focus on the framework established in
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Figure 2.1: The standard two-step approach (top) and the proposed integrated approach
(bottom).

[20], which proposes using weights ωn,i(x0) derived by training a local learning method
in a standard way, i.e., by minimizing a surrogate loss. In many relevant power system
applications, we deal with uncertainty stemming from different sources, such as renewable
production and market quantities. In turn, each uncertain parameter may be associated
with a different set of features. A local learning algorithm would be agnostic to the impact of
each source of uncertainty on the downstream decision cost and, thus, the standard training
process would inevitably lead to suboptimal decision performance. To this end, we propose
an optimization-aware training method that assesses the relative impact of each uncertain
parameter and associated contextual information on the downstream costs during learning,
while also exploiting possible cross-dependencies across variables.

Formally, we define the problem of searching over functions f : X → Y that improve
prescriptive performance in the context of a weighted SAA of the form (2.7), given by

min
f∈F ,z(f,xi)∈Z

n∑︂
i=1

c(z(f, xi); yi), (2.8a)

s.t. z(f, xi) = arg min
z∈Z

n∑︂
j=1

ωf
n,j(xi)c(z; yj), i = 1, . . . , n, (2.8b)

where z(f, xi) is the decision implemented for xi under model f . In words, (2.8) finds a
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forecasting model f that directly optimizes the decision cost for a contextual stochastic opti-
mization problem approximated using a weighted SAA. Several non-parametric approaches
have been adapted to approximate (2.8), e.g., k-nearest neighbors, kernel regression, and
decision trees — see [37] for an overview. In the following, we focus exclusively on tree-based
ensemble methods. The reason for this choice is twofold. First, tree-based ensemble meth-
ods perform exceptionally well in predictive tasks and have found success in several energy
forecasting applications. Second, contrary to other local learning approaches, tree-based
ensembles are fairly robust to noisy inputs of large dimensions. A conceptual overview of
the different modeling approaches using decision trees is presented in Fig. 2.1.

2.3.2 Prescriptive Trees

Decision tree learning [55] is a popular machine learning algorithm, employed both for
classification and regression tasks. Let τ : Rdx → {1, . . . , L} be a map that corresponds to
a disjoint partition of Rdx into L leaves, so that τ(x) is the identity of the leaf that x falls
into. In this work, we consider partitions created by following the popular Classification
and Regression Trees (CART) [55] method, that recursively applies greedy binary splits
to separate a region R ⊆ Rdx at feature j ∈ [dx] and point s into two disjoint partitions
R = R1 ∪ R2, such that R1 = {i ∈ [n] |xij < s} and R2 = {i ∈ [n] |xij ≥ s}, where scalar
xij denotes the i-th observation of the j-th feature. Each partition defines a tree node and
observations that satisfy xij < s fall to the left of the node, while the rest fall to the right1.

To train decision trees in an optimization-aware way, at each node that we aim to split,
we are searching for the pair (j, s) that minimizes

min
(j,s)

(︂
min
z1∈Z

∑︂
i∈R1

c(z1; yi) + min
z2∈Z

∑︂
i∈R2

c(z2; yi)
)︂
, (2.9)

where the inner minimization problems correspond to the SAA solution of each partition,
with z1, z2 being the locally constant decisions of the left and right child nodes. Thus, we
search for a split that minimizes the decision cost function c(·), rather than the prediction
error. We refer to a single tree trained by minimizing the split criterion in (2.9) as a
presrciptive tree.

Note that problem (2.9) is of discrete nature and must be solved once per each candidate
split for each node. The standard approach, following the CART method, is to order all
observations per selected feature j, evaluate each candidate split point, and select the one
that leads to the greatest error reduction. This approach benefits from the existence of
an analytical solution to the internal minimization problems. In the regression setting, for
instance, the SAA solutions in (2.9) equal the within leaf average, which can be updated
recursively for all candidate splits. Furthermore, in the special case where c(z; y) = y⊺z, i.e.,
we have a linear cost function with uncertain cost coefficients, then (2.9) can be equivalently

1For ease of exposition, we focus exclusively on quantitative features. Note, however, that also including
categorical features is straightforward.
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written as

min
(j,s)

(︂ ∑︂
i∈R1

c(z(y1); yi) +
∑︂

i∈R2

c(z(y2); yi)
)︂
,

where y1, y2 denote the average of observations yi that fall into leaves R1,R2, respectively,
and z(y0) ∈ arg minz∈Z c(z; y0). That is, we estimate the average cost coefficients per leaf,
solve a simpler, deterministic problem, and evaluate the cost function over all the obser-
vations in the leaf. This result follows from the linearity of the expectation operator and
significantly simplifies the training process. For the general case, we need to call an opti-
mization solver for each of the two SAA problems per each candidate split, and, depending
on the structure of the underlying problem, this process might lead to a significant increase
in computation time.

Overall, decision trees are prone to overfitting, i.e., they suffer from high variance, which
significantly hinders their predictive capacity. Randomization-based ensemble methods ad-
dress the overfitting issue and lead to impressive predictive performance. Popular methods
include bootstrap aggregation (bagging), Random Forests [56], and Extremely Randomized
Trees (ExtraTrees) [57]. Evidently, we can leverage these popular methods to train ensem-
bles of prescriptive trees, which we refer to as prescriptive forests. However, if training a
single prescriptive tree is computationally costly, training an ensemble is even costlier. To
this end, we propose training ensembles that employ a randomized split criterion, following
the paradigm of the ExtraTrees algorithm [57], which significantly decreases the number of
candidate splits evaluated per node.

For a single prescriptive tree, we start from the top with a full training data set and
recursively partition the feature space until no further improvements are possible or a stop-
ping criterion is met. Typical stopping criteria include the maximum tree depth δmax and
the minimum number of observations nmin that fall at each leaf. At each node of each
tree, we randomly select a subset of K features from x and for each feature randomly select
a candidate split point within its range. Next, we estimate the aggregated cost of (2.9)
for each candidate split and compare it with the cost at its root node, updating the tree
structure accordingly. The process is repeated recursively until no further improvement is
possible—see Algorithm 2.1 for a detailed description.

To derive prescriptions from a single tree, we can first estimate the corresponding weights
ωn,i(x0) for a new query x0 from

ωn,i(x0) = I [τ(xi) = τ(x0)]∑︁n
i′=1 I [τ(xi′) = τ(x0)] , (2.10)

where τ(x0) returns the identity of the leaf that x0 falls into, and I[·] is an indicator func-
tion. Then, we can use the estimated weights to solve (2.7). Nonetheless, the constant
prescriptions for each leaf are already estimated when evaluating candidate splits — see
(2.9). Therefore, a single prescriptive tree is fully compiled and provides a direct, piecewise
constant mapping from features to decisions, while also ensuring feasibility.
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Algorithm 2.1 PrescriptiveTree
Input: data D = {(xi, yi)}ni=1, current node R, current depth δ, hyperparameters
{nmin, K, δmax}
Output: prescriptive tree τ

1: determine cost at current node v0 = min
z∈Z

∑︁
i∈R c(z; yi)

2: set v∗ ←− v0, split←− False, j∗ ←− empty, s∗ ←− empty
3: if δ < δmax and n ≥ 2nmin then
4: for κ = 1, . . . , K do
5: sample a feature j ∈ [dx] without replacement
6: sample a split point s from the range of feature xj

7: left child node: R1 = {i ∈ [n] |xij < s}
8: right child node: R2 = {i ∈ [n] |xij ≥ s}
9: if |R1| ≥ nmin and |R2| ≥ nmin then

10: v =
(︂

min
z1∈Z

∑︁
i∈R1 c(z1; yi) + min

z2∈Z

∑︁
i∈R2 c(z2; yi)

)︂
11: if v < v∗ then
12: update v∗ ←− v, split←− True, j∗ ←− j, s∗ ←− s

13: end if
14: end if
15: end for
16: if split == True then
17: D1 = {(xi, yi) | i ∈ R1}
18: D2 = {(xi, yi) | i ∈ R2}
19: τ1 = PrescriptiveTree(D1,R1, δ + 1)
20: τ2 = PrescriptiveTree(D2,R2, δ + 1)
21: update tree structure τ

22: end if
23: end if
24: return τ
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For an ensemble {τ1, . . . , τB} of B trees, we first estimate the weights from

ωn,i(x0) = 1
B

B∑︂
b=1

I [τb(xi) = τb(x0)]∑︁n
i′=1 I [τb(xi′) = τb(x0)] , (2.11)

which effectively is the average weight of all the trees in the ensemble. Next, the estimated
weights ωn,i(x0) are used to solve (2.7).

For the special case c(z; y) = y⊺z, instead of (2.7), we can replace y with its point
forecast ˆ︁y0 =

n∑︂
i=1

ωn,i(x0)yi, (2.12)

and solve a simpler, deterministic problem. As the weights ωn,i(x0) are derived by minimiz-
ing the optimization cost, (2.12) effectively determines a value-oriented forecast of y, which
may differ considerably from the one derived from a standard tree-based method. Therefore,
our proposed framework bridges two research directions on prescriptive analytics, namely
value-oriented forecasting and directly learning decisions from data.

We further elaborate on our motivation behind selecting the random split criterion when
training an ensemble of prescriptive trees. As discussed, the main computational cost of
Algorithm 2.1 occurs during the evaluation of candidate splits. The motivating factor be-
hind selecting the random split criterion lies in the expected reduction in computation time,
as only a small number of splits are evaluated at each node. Computational experiments
between the ExtraTrees and the Random Forest algorithm [57] suggest an average reduction
in training time by a factor of 3 for K =

√
dx, which can rise up to a factor of 10 for wider

data sets (larger dx). Regarding the ensemble size B, the generalization error is expected
to monotonically decrease as B increases, thus the computation time is the main consider-
ation for its selection. Note that the task of training an ensemble is trivially parallelizable.
Similarly, the rest of the hyperparameters K, nmin represent an inherent trade-off between
model capacity and computational costs (single trees are maximally grown, thus δmax is set
at infinity). The number of candidate splits K controls how strong individual splits are (for
K = 1 splits are completely random), while larger values of nmin result in shallower trees
(and reduced computations), with higher bias and lower variance.

2.3.3 Measuring the Impact of Data on Decisions

Explainability is pivotal to disseminating the results to industry stakeholders and enabling
large-scale adoption of analytics tools in real-world applications. Here, our goal is to eval-
uate the impact of the various features on the efficacy of decisions, which is termed pre-
scriptiveness. This evaluation is especially important in cases where obtaining contextual
information incurs in and of itself additional costs, e.g., acquiring weather forecasts for
multiple locations.

To this end, we adapt the well-known Mean Decrease Impurity (MDI) metric in a pre-
scriptive analytics context. Provided a scoring rule that decides whether a node is split,
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MDI measures the total decrease in node impurity (dissimilarity) weighted by the probabil-
ity of reaching a specific node, averaged over the ensemble [58]. Considering a prescriptive
tree node R0 partitioned at (j, s) into R1,R2, the decrease in aggregated cost is given by

∆v(j, s) = v(R0)− v(R1)− v(R2). (2.13)

For an ensemble of B trees, the importance of feature j in terms of prescriptiveness, Imp(j),
is measured as the aggregated cost decrease over all the nodes that j defines the split
variable, over all trees B in the ensemble:

Imp(j) = 1
B

B∑︂
b=1

∑︂
ℓ∈R1:L | jℓ=j

p(b)∆v(jℓ, s), (2.14)

with p(b) = |Rb
ℓ|

n being the proportion of observations reaching node Rℓ in tree b and jℓ the
feature used for splitting that node. The MDI metric is estimated internally during training,
therefore it can be obtained without additional computational cost.

We also consider measuring prescriptiveness by adapting the permutation importance
technique proposed in [56]. First, we estimate aggregated costs with respect to the selected
objective function over a hold-out set, which determines a base score. Next, we iterate over
all the features, permutate (re-shuffle) each one, and derive new prescriptions, repeating the
process a number of times. The permutation importance is then defined as the expected cost
increase compared to the base score. In some cases, this approach may lead to a significant
increase in computational costs, as prescriptions need to be re-optimized at each query.
Therefore, we omit it from our experimental setup but note that it presents an attractive
alternative if our model consists of a single prescriptive tree.

2.3.4 An Illustrative Example

To illustrate the proposed method, we examine a toy newsvendor problem [30]. Consider
an uncertain demand y generated from

y = 10 + 10I[x > 0.5] + 10I[x > 0.8] + ϵ,

where x is a single feature that is uniformly distributed in the interval [0, 1] and ϵ is a
random noise component that follows a normal distribution N(0, 2). Further, assume that
the cost function is given by

c(z; y) = 2(y − z)+ + 10(z − y)+,

where (·)+ = max(0, ·). For a realization x0 of x, the optimal solution is given by the ana-
lytical formula z∗ = F −1

x0 ( 10
10+2), where F −1

x0 is the inverse cumulative distribution function
of y given x = x0.

We sample 1 000 observations and train a single prescriptive tree with δmax = 2, con-
sidering splitting a node at 99 equally spaced quantiles of the empirical distribution of
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Figure 2.2: Illustrative example.

x. Fig. 2.2a presents a scatterplot with the in-sample fit, and Fig. 2.2b presents the tree
structure. Indeed, both plots illustrate that the prescriptive tree learns a policy that is a
piecewise constant function of x, with the tree nodes being split at the threshold where the
indicator functions are activated. In turn, this leads to a learned policy that is a very good
approximation of the true optimal decision, as highlighted in Fig. 2.2a.

2.4 Motivating Power System Applications

In this section, we describe a series of motivating power system applications that serve
to validate the proposed methodology, primarily focused on participation in competitive
electricity markets. First, we examine a storage arbitrage task with price uncertainty (in
Subsection 2.4.1). Next, we consider the problem of deriving offers for a renewable producer
participating in a day-ahead market with uncertain production and market quantities (in
Subsection 2.4.2). Finally, we consider a more complex scenario that involves the aggregation
of renewable plants and storage, where we jointly optimize the trading strategy and storage
operation (in Subsection 2.4.3).

2.4.1 Price Arbitrage with Storage

We first examine the problem of scheduling a generic battery storage device to perform
price arbitrage in a day-ahead market, inspired by [26]. The operator of a grid-scale storage
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device decides the charging, pch
t , and discharging, pdis

t , actions for each period t of the day-
ahead horizon T = 24. The goal is to maximize profits while also accounting for battery
degradation costs and penalizing excessive deviations from a reference state of charge. Both
degradation costs and excessive deviations are modeled as quadratic regularization terms,
controlled by design parameters γ and ϵ. The problem is given by

min
pch

t ,pdis
t ,psoc

t

E
[︄

T∑︂
t=1

πda
t (pch

t − pdis
t ) + γ ∥psoc

t − p0∥22 +

ϵ
⃦⃦⃦
pch

t

⃦⃦⃦2

2
+ ϵ

⃦⃦⃦
pdis

t

⃦⃦⃦2

2

]︄
, (2.15a)

s.t. psoc
t+1 = psoc

t + ηchpch
t −

1
ηdis pdis

t , t ∈ [T − 1], (2.15b)

0 ≤ pch
t ≤ cch, t ∈ [T ], (2.15c)

0 ≤ pdis
t ≤ cdis, t ∈ [T ], (2.15d)

0 ≤ psoc
t ≤ Bmax, t ∈ [T ], (2.15e)

psoc
1 = psoc

T = Bmax

2 , (2.15f)

where the expectation is taken with respect to the stochastic market prices πda
t , psoc

t denotes
the induced state of charge, ηdis/ch denotes the discharging/charging efficiency, cdis/ch de-
notes the discharging/charging limits, and Bmax denotes the storage capacity. The problem
constraints include the transition function for the induced state of charge (2.15b), technical
limits on charging (2.15c), discharging (2.15d), and state of charge (2.15e), and constraints
on the initial and final state of charge (2.15f). To approximate (2.15a), the storage operator
uses a training data set {(πda

i , xmarket
i )}ni=1 of n observations, where πda

i ∈ RT denotes a
sample path observation of length T and xmarket

i denotes associated features. The standard
modeling approach dictates first training a forecasting model, deriving point predictions for
the day-ahead prices, and then optimizing the storage actions. In our proposed framework,
we directly embed (2.15) in a tree-based ensemble, which is trained considering the impact
of forecasts on decision cost.

2.4.2 Trading Renewable Production

In this section, we consider the problem of deriving optimal energy offers for an aggregation
of renewable plants, namely wind and solar power plants, participating in a day-ahead
market, and examine different market designs. This problem is more complex than the
previous one in the sense that it involves two sources of uncertainty, namely the stochastic
renewable production and unknown market quantities, and has been studied extensively over
recent years. Earlier works consider deriving optimal offers based on probabilistic production
forecasts [59–61]. Participation in adjustment markets and developing risk-averse strategies
are examined in [62]. Jointly participating in energy and reserve capacity markets is studied
in [16], while hedging against uncertainty by strategic reserve purchases is discussed in [63].
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Trading using probabilistic forecasts of both renewable production and market quantities is
investigated in [64]. The problem of trading in markets that feature a single-price balancing
mechanism is studied in [65]. Finally, [66] examines coordinated trading with a generic
energy system storage and renewable production plants.

Problem Description

We consider a renewable producer participating in a day-ahead market as a price-taker
under different balancing mechanisms. Prior to market closure, the producer submits an
energy offer poffer

t for each clearing period t of the day-ahead market. During real-time
operation, the system operator activates balancing reserves to maintain the demand-supply
equilibrium and stabilize the system frequency. The system assumes two states, namely
short, i.e., demand exceeds supply and upward regulation is required, and long, i.e., supply
exceeds demand and downward regulation is required. Based on real-time production, the
producer buys back (sells) the amount of energy shortage (surplus) in order to balance its
individual position. In the following, we two present problem formulations that pertain to
different balancing market designs. For simplicity, as temporal constraints do not apply,
subscript t is dropped from the formulation.

Let pE denote the renewable production, πda the clearing price of the day-ahead market,
and π↑/↓ the marginal cost of activating upward/downward regulation services. Evidently,
both the renewable production and the market quantities are unknown to the producer at
the time of submitting offers in the market. Assuming market participants behave rationally,
a shortage of supply leads to increased real-time marginal costs. In other words, we assume
that if the system is short, it holds that π↑ ≥ πda and π↓ = πda; while if the system is
long, then π↓ ≤ πda and π↑ = πda. Let us further define λ↑ = max(0, π↑ − πda) and λ↓ =
max(0, πda − π↓) as the respective upward and downward unit regulation costs. Evidently,
it holds that λ↑ · λ↓ = 0, i.e., only one of them (at most) assumes a value greater than zero
for a given settlement period.

Single-price Balancing Mechanism

If the electricity market operates under a single-price balancing mechanism, then the un-
certain trading profit, ρsingle, for each settlement period is given by

ρsingle = πdapoffer + π↑(pE − poffer) + π↓(pE − poffer)

= πdapE −
[︂
−λ↑(pE − poffer) + λ↓(pE − poffer)

]︂
⏞ ⏟⏟ ⏞

imbalance cost

, (2.16)

which decomposes into the revenue from the day-ahead market and the imbalance cost. Note
that the first term, i.e., the revenue from participating in the day-ahead market, does not
depend on the producer’s actions; thus, maximizing the trading profit ρsingle is equivalent
to minimizing the imbalance cost term. The problem of minimizing the imbalance cost is
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given by

min
poffer

E
[︂
−λ↑(pE − poffer) + λ↓(pE − poffer)

]︂
, (2.17a)

s.t. pmin ≤ poffer ≤ pmax, (2.17b)

where the expectation is taken with respect to the joint distribution of uncertainty y =
(pE, λ↑, λ↓), following the generic notation of Section 2.2.1. Since (2.17) is affine with respect
to the decision variable poffer, the optimal energy offer is derived analytically from

poffer∗ =

⎧⎪⎨⎪⎩pmin, if − ˆ︁λ↑ + ˆ︁λ↓ ≤ 0,

pmax, if − ˆ︁λ↑ + ˆ︁λ↓ > 0,
(2.18)

where ˆ︁· denotes expected (forecast) values—see [60, Section II] for a proof. We interpret
(2.18) as follows: the optimal offer equals zero if the system is expected to be short (note
that typically pmin = 0) and the nominal capacity if the system is expected to be long. Note
that if the unit regulation costs are zero, then any energy offer is optimal; thus, without
loss of generality, this case is merged with the case of the system being short. Therefore,
to participate in the day-ahead market, the producer leverages point forecasts of the unit
regulation costs, while renewable production does not affect the trading offer. However,
following this trading strategy incurs great risks and could constitute market abuse; this
motivates the design of a trading strategy that does not lead to excessive imbalances.

Dual-price Balancing Mechanism

Conversely, if the balancing market operates under a dual-price balancing mechanism, the
profit equation (2.16) is modified to impose a non-arbitrage condition between the day-ahead
and the balancing market. The single-period profit for a dual-price balancing mechanism is
given by

ρdual = πdapE −
[︂
−λ↑(pE − poffer)− + λ↓(pE − poffer)+

]︂
⏞ ⏟⏟ ⏞

imbalance cost

, (2.19)

where (·)− = min(·, 0). Similarly to the case of a single-price balancing mechanism, the
trading profit ρdual decomposes into the revenue from the day-ahead market, which does
not depend on the producer’s actions, and the imbalance cost. The key difference from the
single-price case is that the imbalance cost term in (2.19) is always non-negative, which,
in turn, means that no additional profit can be attained in the balancing market (i.e., no
arbitrage). In contrast, under a single-price market design, deviations that help restore the
system frequency result in negative imbalance costs, i.e., additional profit. The problem of
minimizing the imbalance cost under a dual-price balancing mechanism is given by

min
poffer

E
[︂
−λ↑(pE − poffer)− + λ↓(pE − poffer)+

]︂
, (2.20a)

s.t. pmin ≤ poffer ≤ pmax, (2.20b)
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where, again, the expectation is taken with respect to y = (pE, λ↑, λ↓). Problem (2.20) is
an instance of the well-known newsvendor problem [30], where the objective costs are also
unknown. If the conditional probability distribution of pE is known, or approximated via a
probabilistic forecasting model, the optimal offer is derived analytically from

poffer∗ = ˆ︁F −1(
ˆ︁λ↓ˆ︁λ↓ + ˆ︁λ↑

), (2.21)

where ˆ︁F −1 is the predicted inverse cumulative distribution function of pE, and ˆ︁λ↓, ˆ︁λ↑ are the
point forecasts of the downward and upward unit regulation cost, respectively. Note that
(2.21) holds without assuming independence between energy production and unit regulation
costs— see [60, Section III] for a proof. Thus, a producer trading in a market with a dual-
price balancing mechanism leverages probabilistic forecasts of renewable production and
point forecasts of unit regulation costs.

Balancing between Prescriptive and Predictive Performance

For both market design paradigms, the optimal offering strategy might incur a significant
risk of excessive losses. Thus, producers may be willing to reduce their expected profit in
order to hedge the financial risk [62]. To this end, we propose a hybrid trading strategy that
balances the prescriptive cost and and the MSE, i.e., balances trading profit maximization
and renewable production forecast accuracy. The proposed hybrid trading strategy is given
by

min
poffer

E
[︃
(1− k)(−ρsingle/dual) + k

⃦⃦⃦
pE − poffer

⃦⃦⃦2

2

]︃
, (2.22a)

s.t. pmin ≤ poffer ≤ pmax, (2.22b)

where the objective function (2.22a) minimizes a convex combination of (normalized) trad-
ing cost, which depends on the market design, and prediction error. In our numerical
experiments, we directly embed (2.22) within the proposed tree algorithm, using a training
data set {(pE

i , λ↓
i , λ↑

i , xE
i , xmarket

i )}ni=1 of n observations, where xE, xmarket denote features
associated with the renewable production and the unit regulation costs, respectively. This
trading strategy is interpreted as adding a regularization term that penalizes excessive devi-
ations from the expected energy production, which we believe provides an intuitive trade-off,
unlike other risk-averse formulations. This trade-off is controlled by design parameter k;
specifically, for k = 0 we retrieve a purely prescriptive task (maximize trading profit), while
for k = 1 we obtain a purely predictive task (minimize forecast error) with the standard
MSE loss function.

2.4.3 Trading and Operating a Renewable-Storage System

Battery storage systems present a promising avenue to support the participation of re-
newable power plants in electricity markets and enhance their profitability [66], offering
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functions such as arbitraging in day-ahead markets and compensating for deviations from
the submitted schedule during real-time operation. Here, we consider an extension of the
previous case studies by appending a generic storage device to the aggregation of renew-
able plants and jointly optimize the day-ahead offers, considering a closed system, and the
operational control policy of the storage. We maintain a similar setting as before, i.e., the
aggregation participates in a day-ahead market subject to imbalance penalties, considering
a dual-price balancing mechanism. While participating in additional markets, such as in-
traday or offering balancing services, is not examined, the extension is straightforward. To
optimize the operational control policy of the storage, we allow recourse (i.e., corrective)
actions based on the realization of uncertainty. However, this leads to a multi-stage dynamic
optimization problem; a tractable reformulation is provided by applying the linear decision
rule approach [21], modeling real-time control actions as an affine function of uncertainty,
in this case the renewable production forecasting error. For the rest of this section, index t

is used to define a specific time period (scalar), while the absence of t defines a vector over
the day-ahead horizon of length T = 24.

Let ξ ∈ Ξ ⊆ RT define the renewable production forecasting error for the day-ahead
horizon, i.e., a sample path of length T , taking values in the uncertainty set Ξ. The uncertain
renewable production is defined as pE = ˆ︁pE + ξ, i.e., the expected value (forecast) ˆ︁pE ∈ RT

plus the error term ξ. The storage recourse actions are defined as an affine function of
uncertainty. For instance, the decision vector for the charging actions is given by

pch(ξ) = ˆ︁pch + Dchξ,

where ˆ︁pch ∈ RT denotes the scheduled day-ahead charging decisions for the whole horizon
T and Dch ∈ RT ×T is a linear coefficient matrix that maps realizations of uncertainty ξ to
recourse actions and, thus, determines the operational policy of the storage. Note that Dch

considers the whole history of errors over the period; to retain non-anticipativity we require
Dch to be lower-triangular. Similarly, the decision vector for the discharging actions is given
by

pdis(ξ) = ˆ︁pdis + Ddisξ,

with Ddis ∈ RT ×T also being lower-triangular.

We consider a modified version of [66] and design a control policy that aims at minimizing
the imbalance volume. For simplicity, we do not consider the balancing mechanism in the
objective function. Nonetheless, the results presented in Section 2.5 will show that this
presents a realistic application for a dual-price balancing mechanism. Following our previous
formulation, we minimize a convex combination of trading performance and deviations from
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the day-ahead offer. The problem is given by

min
P

E
[︄

T∑︂
t=1
−(1− k)πda

t poffer
t + k

⃦⃦⃦
pout

t − poffer
t

⃦⃦⃦2

2

]︄
, (2.23a)

s.t. pmin ≤ poffer
t ≤ pmax, t ∈ [T ], (2.23b)

ˆ︁psoc
t+1 = ˆ︁psoc

t + ηch ˆ︁pch
t −

1
ηdis ˆ︁pdis

t , t ∈ [T − 1], (2.23c)

psoc
1 = psoc

T = p0, (2.23d)

pout
t = pE

t + ξt + pdis
t (ξ)− pch

t (ξ), t ∈ [T ], (2.23e)

0 ≤ pch(ξ) ≤ cch, ∀ξ ∈ Ξ, (2.23f)

0 ≤ pdis(ξ) ≤ cdis, ∀ξ ∈ Ξ, (2.23g)

0 ≤ psoc(ξ) ≤ Bmax, ∀ξ ∈ Ξ, (2.23h)

Dch
ij = 0, i ∈ [T ], j ∈ [i + 1, T ], (2.23i)

Ddis
ij = 0, i ∈ [T ], j ∈ [i + 1, T ], (2.23j)

where P = {poffer, ˆ︁pch, ˆ︁pdis, Dch, Ddis} is the set of decision variables, and psoc, pout are
auxiliary variables for the induced state of charge in the storage and the actual output of
the plant-storage system. The expectation is taken with respect to y = (πda, pE), i.e., the
joint distribution of day-ahead prices and renewable production over the day-ahead horizon.
The storage parameters are defined as in Section 2.4.1. The objective (2.23a) minimizes a
convex combination of trading profit from the day-ahead market and deviations between
actual output and the contracted energy. The trade-off is controlled with parameter k. For
k = 0 the primary function of the storage is to arbitrage in the day-ahead market, while for
k = 1 the focus is placed on compensating deviations from the schedule during real-time
operation. The problem constraints include the limits for contracted energy (2.23b), the
state transition equation of the storage (2.23c), initial and terminal conditions for the state
of charge (2.23d), the definition of the total output of the system (2.23e), technical limits
of the storage (2.23f)-(2.23h), and the non-anticipativity constraints (2.23i)-(2.23j).

To approximate (2.23), we use a training data set {(πda
i , pE

i )}ni=1, alongside associated
features; recall that the i-th observation denotes a sample path of length T . After sub-
tracting the expected production ˆ︁pE from {pE

i }ni=1, we can express the uncertainty with
respect to renewable production in terms of forecasting error ξ ∈ Ξ = {ξi}ni=1. Note that
(2.23f)-(2.23h) are robust constraints; to reformulate them, we employ duality theory and
techniques from robust optimization [67].

For illustration, constraint (2.23f) is reformulated as follows. First, we define a poly-
hedral uncertainty set Ξ′ = {ξ |Hξ ≤ h}, where H = [I,−I]⊺ ∈ R2T ×T , with I being an
identity matrix of appropriate size, and h ∈ R2T being a vector that contains the largest
and smallest observed forecasting error for each period t. Constraint (2.23f) is equivalently
written as

max
ξ

{︂ˆ︁pch + Dchξ | Hξ ≤ h
}︂
≤ cch,
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which is linear in ξ. From duality, we equivalently write

min
µ

{︂
h⊺µ |H⊺µ = Dch,µ ≥ 0

}︂
≤ cch − ˆ︁pch,

where µ is a vector of dual variables of appropriate size. Evidently, the min operator
becomes redundant, which finally leads to

∃µ, with h⊺µ ≤ cch − ˆ︁pch, H⊺µ = Dch,µ ≥ 0, (2.24)

which replaces the original constraint. The rest of the constraints are reformulated in a
similar fashion. Under the standard modeling approach, the producer first generates tem-
porally correlated scenarios for renewable production over the whole day-ahead horizon and
expected values for day-ahead prices [68], then solves (2.23), after constraint reformulation.
Conversely, in our proposed approach, we directly embed (2.23), after constraint reformu-
lation, in a tree-based ensemble.

Note that if the uncertainty set Ξ′ is too wide, no control will take place during real-
time operation, while if it is too tight, it is possible to get infeasible actions. The robust
formulation ensures control actions are feasible only for uncertainty realizations within the
data-driven uncertainty set Ξ′. Evidently, during real-time operation, it is possible that a
realization of uncertainty falls outside of Ξ′, which may lead to infeasible recourse actions.
To ensure that recourse actions are feasible in out-of-sample scenarios, we incorporate an
additional saturation block. Specifically, the maximum charge is set as min(cin, Bmax−psoc

ηch ),
while the maximum discharge is min(cout, psocηdis). Also, note that Ξ′ varies on an hourly
basis, based on the underlying samples ξi; we illustrate this effect in the next section.

2.5 Numerical Experiments

This section presents our numerical experiments. First, we present our experimental setup
(in Subsection 2.5.1) and discuss hyperparameter tuning (in Subsection 2.5.2). Next, we
present the results for the price arbitrage problem (in Subsection 2.5.3), followed by the
results for the problem of trading renewable production (in Subsection 2.5.4), and for the
problem of jointly optimizing the trading of renewable production and the storage operation
(in Subsection 2.5.5).

2.5.1 Experimental Setup, Input Data, and Forecasting Models

Experimental Setup

We first describe a common experimental setup that applies in all case studies. For all the
problems considered, the following methods are compared:

• FO: The standard forecast-then-optimize sequential modeling approach. This involves
training a separate forecasting model for each uncertain parameter and solving a
stochastic optimization problem given appropriate forecasts.
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• PF: The weighted SAA method (2.7) using a prescriptive forest with random splits,
trained to minimize decision costs.

• SAA: The naive SAA solution (2.2) that ignores contextual information.

• Oracle: The perfect-foresight solution.

The specific forecasting models required for FO depend on the particular problem [68]. The
problem of price arbitrage with storage (2.15) requires point forecasts of day-ahead prices;
the trading problem (2.22) requires probabilistic forecasts of renewable production and point
forecasts of unit regulation costs; the problem of jointly optimizing trading decisions and the
operational control of storage the (2.23) requires trajectory (scenario) forecasts of renewable
production over the whole day-ahead horizon and point forecasts of day-ahead prices.

In contrast, PF always uses a single model that takes as input the concatenation of avail-
able features from the individual forecasting models. The specific details of the forecasting
models implemented are discussed in the following subsection.

During our experiments, we vary the different design parameters that appear in the
objective functions, resulting in different optimization problems. For PF, we train a separate
model for each value of the design parameters considered. Conversely, the forecasting models
incorporated in FO are independent of the downstream problem, therefore they are trained
once for all values of design parameters.

Moreover, we use SAA and Oracle to estimate a unitless metric that measures the rela-
tive prescriptive performance. Specifically, for each method i in {FO, PF}, we estimate the
coefficient of prescriptiveness P [20] given by:

Pi = 1−
ˆ︁vi − ˆ︁v∗ˆ︁vSAA − ˆ︁v∗ , (2.25)

where ˆ︁vi, ˆ︁vSAA, ˆ︁v∗ are the aggregated cost over the test set under methods i, SAA, and Oracle,
respectively. The coefficient of prescriptiveness P is bounded above by one, while negative
values indicate a failure to outperform SAA. Additional evaluation metrics are introduced in
the respective results sections.

Input Data

For the numerical experiments, we consider data from the French electricity market, down-
loaded from [69], and production data from an aggregation of renewable plants consisting
of 3 WPPs and 1 PV plant, with a total capacity of 49 MW (16% PV share), respectively
located in northern and southern France. Both data sets span the same period, from Jan-
uary 2019 to April 2020. We use data from 2019 for training and validation, while data
from 2020 is used for testing, assuming a half-hour settlement for the balancing market.

For the two case studies that include storage, we use a typical set of parameters, pre-
sented in Table 2.1.

34



Table 2.1: Storage device parameters, normalized by the nominal capacity of the renewable
plants.

Parameter Value

Bmax 0.5
cch 0.5Bmax

cdis 0.2Bmax

ηch 0.8
ηdis 0.9

Forecasting Models

To address the forecasting requirements of the different optimization problems of FO, we
construct two sets of features: one related to renewable production and one related to
market quantities. For renewable production, we construct a feature vector xE that includes
weather forecasts from a Numerical Weather Prediction (NWP) model, namely wind speed,
wind direction, temperature, cloud coverage, and solar radiation forecasts for each plant
location, resulting in a total of 10 features. The NWP model forecasts are issued at 00:00
on the day D − 1 spanning a horizon of 24 to 48 hours ahead. We also check whether
to include historical production lags as features by examining the Partial Autocorrelation
Function (PACF). Since the PACF does not reveal any important lags, we do not include
any in xE; this result is standard when the forecast horizon is larger than a couple of hours
ahead.

For market-related quantities, we construct feature vector xmarket, which includes histor-
ical lags for the day-ahead electricity prices indicated by the PACF (one day and one week
prior), historical lags for system imbalance volumes (two days prior), and day-ahead fore-
casts for available thermal generation, electricity demand, and renewable generation at the
transmission level. The system-wide forecasts issued by the system operator are processed
to determine a net load series, by subtracting the expected renewable production from the
expected electricity demand, and a system margin series, defined as the ratio of net load
to available thermal generation. Additionally, we include categorical variables to model the
calendar effect, namely the day of the week and the hour of the day, resulting in a total of
7 features.

In all experiments, we consider a forecast horizon of 12 to 36 hours ahead as is standard in
market-related applications. For FO, we always train univariate forecasting models, i.e., each
model outputs a prediction for a single time period t of the day-ahead horizon. Conversely,
if the optimization problem involves the full day-ahead horizon, we reshape data accordingly
in sample paths of length T and feed it into the PF model. In the following, we discuss the
forecasting models implemented for each case study.
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Price arbitrage with storage (2.15) For FO, point forecasts of day-ahead prices πda
t are

required for each period t of the forecast horizon. To this end, we use the ExtraTrees [57]
method and features xmarket. For PF, we train a model with vector output of length T ,
reshaping features xmarket accordingly.

Trading renewable production (2.22) For FO, probabilistic forecasts of renewable pro-
duction and point forecasts of the unit regulation costs are required for each period t of
the forecast horizon. To generate probabilistic forecasts of renewable production, we use
features xE and train a Quantile Regression Forests (QRF) [70] model, which is an exten-
sion of the Random Forest [56] method that achieves state-of-the-art performance [71] in
probabilistic forecasting.

To forecast the unit regulation costs, the standard practice is to partition the problem
into three forecasting tasks, namely forecasting the magnitude of the upward unit regulation
cost, forecasting the magnitude of the downward unit regulation cost, and forecasting the
probability of the system being short or long. The individual forecasts are then combined
accordingly to the requirements of the specific market design. Formally, the three forecasts
are given by

ˆ︁ϕ = P(λ↑ > 0), (2.26a)ˆ︁λ↑ = ˆ︁ϕE [︂
λ↑|λ↑ > 0

]︂
, (2.26b)

ˆ︁λ↓ = (1− ˆ︁ϕ)E
[︂
λ↓|λ↓ > 0

]︂
, (2.26c)

where ˆ︁ϕ denotes the estimated probability of the system being short. Therefore, the pre-
diction for the upward unit regulation cost λ↑ equals the expectation of a regression model
trained conditionally on the system being short, weighted by probability ˆ︁ϕ. Following [72],
we apply exponential smoothing to model each of the individual components. For PF, we
concatenate feature vectors xmarket and xE and train a single prescriptive forest.

Trading and operating a renewable-storage system (2.22) For FO, multivariate prob-
abilistic forecasts of renewable production over the day-ahead horizon, i.e., trajectory or
scenario forecasts, and point forecasts of day-ahead prices are required. To generate sce-
nario forecasts, we implement a two-step process. First, we use the QRF model to derive
marginal predictive densities for each period t of the day-ahead horizon. Then, we estimate
the in-sample correlation across periods and employ a Gaussian copula function to gener-
ate correlated scenarios of length T , following the procedure detailed in [73]. For PF, we
concatenate feature vectors xmarket and xE and reshape them accordingly to create sample
paths of length T .

For illustration, Fig. 2.3 plots the different types of renewable production forecasts uti-
lized in the experiments, namely point forecasts, probabilistic forecasts (in the form of
prediction intervals), and temporally correlated scenario forecasts. Fig. 2.3 also illustrates
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Figure 2.3: Example of day-ahead renewable production forecasts: point forecasts, proba-
bilistic forecasts (prediction intervals or PI), and scenarios.

how the uncertainty set Ξ′ varies for the combined renewable-storage case study, based on
the underlying scenario forecasts. At 00:00, the scenarios exhibit small dispersion, which
results in tighter upper and lower bounds. In contrast, at 12:00, the derived bounds are
wider due to the larger dispersion of the underlying scenarios.

For all tree-based forecasting models, we train a large number of trees (300) and use
default hyperparameter settings. For PF, we discuss the impact of hyperparameters selection
in detail in the next section.

2.5.2 Effect of Hyperparameters and Split Algorithm

Before presenting the results for each case study, we first examine the performance of the
proposed tree-based method with respect to hyperparameters {B, K, nmin} in a controlled
setting. Specifically, we consider the problem of trading in a day-ahead market under a
single-price balancing mechanism (2.22) as a test bed and examine prescriptive performance
for values of k = {0, 0.5, 1} by randomly sampling 1 000 training and test observations and
estimating the coefficient of prescriptiveness P for each value of k. The process is repeated
10 times.

Fig. 2.4 presents the prescriptive performance as a function of the model hyperparame-
ters. Specifically, Fig. 2.4a (top) plots the performance versus the ensemble size B for the
different values of k, indicating that the decision performance is rather insensitive to the
number of trees within the ensemble, as results are similar across the different tasks. A large
discrepancy across the values P for the different values of k is observed, which is attributed
to the relative difficulty of each underlying problem. For k = 1, i.e., a standard regression
task, P is over typically over 0.80, while for k = 0, i.e., focusing solely on trading cost, P

is less than 0.30. In other words, the regression task is relatively “easier”, as it achieves
performance closer to the one derived from the perfect foresight solution. Next, we examine
the effect of the number of splits evaluated per node K, which controls the model’s capacity.
For K = 1 node splits are completely random (requiring minimum computations), while for
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(a) Ensemble size B (K = dx/2, nmin = 5).
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(b) Number of splits K (B = 25, nmin = 5).
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Figure 2.4: Effect of hyperparameters B, K, and nmin.
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K = dx all features are considered when splitting a node. From Fig. 2.4b (middle), it is
evident that the impact of K on model performance is significant. The impact of K is more
pronounced for the predictive task (k = 1), with the coefficient P ranging from below 0.20
(for K = 1) to over 0.80 (for K = dx). The effect is similar, although less pronounced,
for the rest of the tasks, with higher values of K leading to consistently improved prescrip-
tive performance. Next, we examine the impact of the minimum leaf size nmin. Generally,
smaller values of nmin result in lower bias, while larger values provide a smoothing effect.
Fig. 2.4c (bottom) indicates a decrease in performance for values of leaf size greater than
10, with the effect being more pronounced for the predictive task (k = 1). For the rest of
the experiments, all results are obtained with hyperparameters K = 3dx/4, B = 50, and
nmin = 10.

The selection of the tree-learning algorithm can also be viewed as a hyperparameter. To
examine its effect on model performance and computational cost, we repeat the above exper-
iment for k = 0.5 and examine three methods. Namely, we consider ordering observations
and evaluating all candidate splits as in Random Forests (RF), evaluating candidate splits on
10 equally spaced quantiles of the empirical distribution of each feature (RF-Q), and random
splits as in ExtraTrees (ET). Note that the effect of the hyperparameters {B, K, nmin} may
vary for the different algorithms. Hence, we are not primarily interested in an exhaustive
comparison in terms of prescriptive performance but rather want to highlight the effect of
the selected algorithm on computational costs for a specific set of hyperparameters.

Table 2.2 presents results in terms of prescriptive performance and average CPU time
to train a single tree over 10 iterations using a standard machine with an Intel Core i7 CPU
with a 2.3GHz clock rate and 32GB of RAM. We observe that the random split criterion
shows a significant reduction in computation time, both against RF and RF-Q, without
compromising prescriptive performance. Evidently, the computational cost is associated
with the underlying optimization problem. In this experiment, the problem is relatively
simple; for larger problems (e.g., including storage) RF might become intractable.

2.5.3 Results for Price Arbitrage with Storage

This section presents results on the problem of price arbitrage with storage (2.15). Table 2.3
presents the results obtained for different values of the design parameters γ, ϵ that control the
regularization penalties. We compare FO, PF in terms of prescriptive performance, measured
by the coefficient of prescriptiveness P , and predictive performance for electricity price
forecasting, measured in terms of Mean Absolute Error (MAE). Recall that the forecasting
model incorporated in FO does not depend on the downstream optimization problem, hence
the constant MAE values in Table 2.3.

From Table 2.3, we observe that improved predictive performance does not translate to
improved decisions with respect to the decision cost defined in the objective function (2.15a).
Indeed, while FO leads to an approximately 43% lower MAE on average, PF significantly

39



Numerical Experiments

Table 2.2: Average performance (±one standard deviation) for sample size n = 1 000.

RF RF-Q ET

Coefficient P 0.16 ±0.08 0.18 ±0.05 0.16 ±0.04
Single tree CPU time (sec) 650.58 ±103.84 26.43 ±1.80 2.15 ±0.24

Table 2.3: Results for storage arbitrage.

γ, ϵ = 0.01 γ, ϵ = 0.1 γ, ϵ = 1

FO PF FO PF FO PF

MAE (Eur/MWh) 8.07 11.58 8.07 11.77 8.07 11.31
Coefficient P 0.25 0.25 0.23 0.34 0.37 0.49

outperforms FO in the true task as indicated by the coefficient of prescriptiveness P , with
the effect being more pronounced for higher values of γ and ϵ. Therefore, the forecasts
derived from PF are oriented towards maximizing forecast value, leading to an expected
reduction in the decision cost of approximately 10%.

2.5.4 Results for Trading Renewable Production

This section presents our results on the problem of trading renewable production in a day-
ahead market (2.22), considering both a single-price and dual-price balancing mechanism.
To evaluate trading performance, in addition to the coefficient of prescriptiveness P , we
further estimate the aggregated trading profit and trading risk. For the latter, we use the
conditional value at risk at 5% level (CVaR5%) as a proxy, defined as the expected profit
over the 5% worst-case returns.

Single-price Balancing Mechanism

First, we examine results for a single-price balancing market. Regarding the effect of the
hybrid trading strategy, we observe that larger values of k lead to more conservative offers
and thus to a higher CVaR5%. This result is expected, as the minimization of the imbalance
volume is weighted more heavily in the objective function as k increases. Fig. 2.5 illustrates
this effect, with trading offers showing larger deviations from actual production as k de-
creases. Table 2.4 presents aggregated trading results for k = {0, 0.25, 0.5, 0.75, 1}, with PF

leading to an expected profit increase of 3.82% across all values of k, with a maximum of
profit increase of 7.44% for k = 0.25. Fig. 2.6 further highlights the improved risk-reward
trade-off of PF compared to FO, as it sets the efficient frontier, i.e., leads to higher revenue
for a given level of risk and vice versa.

These results are further validated by examining the coefficient of prescriptiveness P ,
which compares PF and FO to a benchmark without features (SAA) and the perfect-foresight
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Table 2.4: Results for renewable trading, single-price market.

k = 0 k = 0.25 k = 0.50 k = 0.75 k = 1

FO PF FO PF FO PF FO PF FO PF

Total Profit (103 EUR) 1 191 1 250 1 170 1 257 1 170 1 225 1 182 1 212 1 184 1 178
CVaR5% (EUR) -442.44 -353.51 -403.50 -281.84 -243.29 -228.68 -119.56 -132.32 -92.45 -105.12
Coefficient P 0.06 0.15 -0.01 0.13 -0.01 0.08 0.11 0.17 0.85 0.85
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Figure 2.5: Illustration of actual production and different day-ahead offers for a single day.
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Figure 2.6: Risk versus reward for trading in a single-price market. Marker size is analogous
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solution (Oracle). Overall, PF outperforms SAA consistently, as P is larger than 0 for all
values of k. In contrast, FO fails to outperform SAA for lower values of k, with the respective P

being close to 0 or even negative. Both PF and FO converge to similar performance for k = 1;
this result is expected, as the prescriptive forest algorithm converges to a standard tree-based
method for a regression task. Regarding relative performance against Oracle, we observe
that P is significantly lower than 1 for all tasks except the standard regression. This result
highlights that trading in the day-ahead market under a single-price balancing mechanism
is a relatively more demanding task than standard renewable production forecasting, as the
relative distance from Oracle is larger. We attribute this result to the fact that maximizing
trading profit requires forecasting the unit regulation costs in a 12 to 36 hours ahead horizon,
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which, in practice, is known to be extremely difficult. Nonetheless, our results manage to
quantify this empirical knowledge, which we believe to be of use to both researchers and
other stakeholders.

Dual-price Balancing Mechanism

Next, we examine trading performance under a dual-price balancing mechanism, with Ta-
ble 2.5 presenting aggregated results. Overall, we observe that trading performance is rather
insensitive to the choice of design parameter k, which contrasts the previous results for the
single-price balancing mechanism. Indeed, trading profit is similar regardless if we con-
sider an optimal trading strategy (k = 0) or we just offer the expected energy production
(k = 1). This is attributed to two reasons, namely the non-arbitrage condition imposed by
the market design, and the fact that the upward and downward regulation costs do not differ
significantly for the specific data set. Nonetheless, PF leads to an expected profit increase
of 0.62% compared to FO, which is also associated with a reduced modeling effort, as with
PF we employ a single data-driven model and avoid multiple forecasting models. Both PF

and FO consistently outperform SAA, as the lowest value of the prescriptive coefficient P is
0.62. Moreover, the values of P for k = 0 are significantly larger than the ones achieved
under a single-price balancing mechanism, which indicates that trading under a dual-price
balancing mechanism is a relatively “easier” task.

Prescriptive Feature Importance

Next, we investigate how the different features affect the prescriptive performance of PF,
as measured by the adapted MDI method. To this end, a subset of the most important
features is plotted in Fig. 2.7, with the aggregated feature importance normalized to add up
to one. Considering a single-price balancing mechanism, we observe that for lower values
of k, market-related features that associate with the estimation of the unit regulation costs
achieve higher importance. This is attributed to PF placing more weight on the trading cost
term in the objective function. Specifically, adding the individual feature importance of
the expected system margin (Margin), expected net load (Net Load Forecast), the expected
temperature at the WPP site (Temp WPP), and the lagged observations for system imbal-
ance volume (Volume lag96), leads to approximately 65% of the total feature importance for
k = {0, 0.25, 0.5}. Note that the WPPs are located in close proximity to large metropolitan
areas and interconnections with neighboring countries, thus Temp WPP effectively serves
as a proxy for electricity demand. As k increases, the importance of features related to
renewable production forecasting gradually increases, with the expected wind speed at the
WPP site (WindSpeed WPP) reaching approximately 75% of the total feature importance
for k = 1.

Under a dual-price balancing mechanism, we observe significantly fewer variations in
feature importance across the different values of k, which qualitatively resembles the re-
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Table 2.5: Results for renewable trading, dual-price market.

k = 0 k = 0.25 k = 0.50 k = 0.75 k = 1

FO PF FO PF FO PF FO PF FO PF

Total Profit (103 EUR) 1 130 1 137 1 130 1 140 1 130 1 140 1 130 1 141 1 141 1 138
CVaR5% (EUR) -97.29 -106.30 -97.30 -99.98 -97.27 -104.14 -97.30 -104.98 -99.94 -107.46
Coefficient P 0.62 0.66 0.63 0.68 0.64 0.69 0.66 0.72 0.86 0.86
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Figure 2.7: Normalized prescriptive feature importance for a subset of features.

sults presented in Table 2.5. Specifically, the expected wind speed at the WPP location
(WindSpeed WPP) is consistently the most important variable, with its feature importance
ranging from 60% to 78%. Previous works on similar case studies mention that renewable
forecasting is relatively more important than price forecasting when trading under a dual-
price balancing mechanism [51]. The results presented in Table 2.5 and Fig. 2.7 provide
quantitative evidence for these assertions by jointly considering the two sources of uncer-
tainty in the problem formulation and measuring the impact of different features.

Finally, comparing feature importance across the two market designs indicates that fore-
casting market-related quantities, i.e., the unit regulation costs, is relatively more important
under a single-price balancing mechanism. Conversely, renewable production forecasting
should be the primary focus for producers participating in markets with a dual-price bal-
ancing mechanism.

43



Conclusions

2.5.5 Results for Trading and Operating a Renewable-Storage System

This subsection presents results for the problem of adding a storage device in an aggregation
of renewable plants. Recall that we assume participation in a market with a dual-price bal-
ancing mechanism. As illustrated by the results presented in Section 2.5.4, in practice there
is no significant difference between the optimal offering strategy and offering the expected
energy production under such a market design. Therefore, the implemented operational
control policy, i.e., using the storage device to minimize deviations from the submitted
schedule, also makes sense from an economic perspective. Fig. 2.8 plots the estimated co-
efficient matrix Dch for the PF model, which illustrates the potential corrective charging
actions based on realized forecast error, for each hour of the day. For instance, if the actual
production is underestimated at 05:00, a corrective charging action is implemented — see
Fig. 2.9 for an illustration of how the implemented control policy mitigates the total imbal-
ance volume, by taking corrective actions given the realization of uncertainty. Note that our
goal in this section is not to evaluate the performance of the specific control policy; rather,
given a specific control policy imposed, our goal is to evaluate the relative effect of different
modeling approaches.

Table 2.6 presents the overall results for k = 0.75. Specifically, PF leads to an expected
profit increase of 3.07% compared to FO, accompanied by an additional improvement in
terms of CVaR5%. Moreover, both PF and FO perform significantly better than SAA and
close to Oracle, with an average coefficient of prescriptiveness P of approximately 0.91.
Compared to trading without storage—see Table 2.5— we observe that trading profits are
significantly higher, namely 47% for PF and 44% for FO for k = 0.75. This result highlights
the ability of the storage device to support renewable energy sources in market applications
and further validates the applicability of the proposed control policy.

2.6 Conclusions

This chapter presented an integrated forecasting and optimization approach to maximize
forecast value and enable improved decision-making, with a view toward applications in
power systems and electricity markets. We developed tree-based algorithms that minimize
task-specific costs for contextual stochastic optimization problems, employing a random
split criterion to reduce computational costs. Further, we formulated a generic framework
to measure the importance of features on decision efficacy under different objective functions.

The proposed approach was validated in different applications related to participation
in electricity markets. In a price arbitrage problem with a storage device, the proposed
approach led to a 10% improvement in terms of decision cost, even though it showcased
worse forecast accuracy. In a problem of short-term trading of renewable production under
different balancing mechanisms, the proposed approach led to an average increase in aggre-
gate profit of 3.82% and 0.62% compared to the standard forecast-then-optimize modeling
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Figure 2.9: Example of trading offer and actual output of the aggregation for a single day.

Table 2.6: Results for trading and operating a storage device.

k = 0.75

FO PF

Total Profit (103 EUR) 1 628 1 678
CVaR5% (EUR) -8.88 -6.12
Coefficient P 0.89 0.92

approach, considering a market under a single- and dual-price balancing mechanism, respec-
tively. In a more complex problem, we combined renewable plants with a generic storage
system and coordinated the storage operation and the renewable trading problem. In this
case, the proposed approach led to a 3.07% profit increase compared to the standard mod-
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Conclusions

eling approach. Overall, we observed consistently better or similar prescriptive performance
against the current state of the art, which was also associated with a significant reduction in
modeling effort. Moreover, we examined feature importance under different objectives and
across different market designs, demonstrating the capability of the proposed solution to
evaluate the impact of feature data on decision quality, and provided insights on the trading
of renewable production under different regulatory frameworks.

Future work could focus on extending the proposed methodology in an online learning
setting, enabling adaptation to potential distribution shifts. Moreover, it is interesting to
consider a setting where the model adapts to changes in the underlying problem structure,
such as a different objective function or adding new constraints.
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Chapter 3

An Interpretable Machine Learning
Approach to Forecast Optimization
Solutions

Résumé en Français
L’incertitude accrue due à l’intégration des sources d’énergie renouvelables stochastiques nécessite

de résoudre les problèmes de flux de puissance optimal (OPF) à plusieurs reprises et pour un grand
nombre de scénarios. Les méthodes d’apprentissage automatique ont un potentiel important pour
réduire le temps de calcul des problèmes OPF en apprenant un mappage des charges d’entrée vari-
ables aux décisions, contournant ainsi le besoin d’un solveur d’optimisation lors de l’inférence. Cepen-
dant, les méthodes actuelles d’apprentissage automatique pour l’OPF manquent d’interprétabilité
et peuvent produire des décisions irréalisables, ce qui entrave leur adoption par les parties prenantes
de l’industrie. Pour cela, nous proposons une nouvelle approche d’apprentissage interprétable des
solutions OPF avec des garanties de faisabilité. Plus précisément, nous développons des arbres
de décision prescriptifs qui apprennent la relation entre les données d’entrée et les solutions d’un
problème d’optimisation sous contraintes, en utilisant une optimisation robuste pour garantir que
les décisions sont réalisables de manière raisonnée. Une contribution importante de notre travail est le
développement d’une méthode d’apprentissage basée sur des arbres qui utilise des divisions avancées
de l’espace des données d’entrée en utilisant une connaissance experte du domaine, y compris la con-
gestion du réseau et la courbe d’ordre de mérite. En incorporant ces informations, notre approche
est capable d’améliorer à la fois l’interprétabilité et les performances du modèle. Nous présentons
en outre un algorithme d’apprentissage de substitution pour gérer des problèmes à grande échelle.
L’approche proposée est évaluée sur plusieurs réseaux de test, jusqu’à 300 bus, sous différents types
d’incertitude et de conditions de fonctionnement, et est comparée à des modèles basés sur des réseaux
de neurones, qui ne garantissent pas la faisabilité. Notamment, nos résultats démontrent que les ar-
bres prescriptifs interprétables et peu profonds fonctionnent de manière comparable aux modèles
basés sur les réseaux de neurones, qui sont considérés comme l’état actuel de l’art. À notre connais-
sance, ce travail est le premier à introduire une approche d’apprentissage automatique interprétable
pour apprendre directement des solutions OPF avec une faisabilité garantie.

The work presented in this chapter appears in [J3] which is under review.
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3.1 Introduction

The integration of renewable energy sources in the generation mix necessitates operating
modern power systems at a higher speed and scale, to deal with the increased variability
and uncertainty. In many cases, traditional workflows may struggle to cope with these
requirements, and advanced data-driven methods, such as machine learning, hold significant
potential to streamline decision-making processes.

The OPF problem plays a crucial role in power system operation and planning and
in electricity markets. It belongs to the class of network flow problems and its objective
is to minimize the overall cost of power generation subject to power flow equations and
operational constraints, e.g., transmission line limits. In its original form, the OPF problem
is a non-convex problem that is difficult to solve. In various important use cases, a linearized
version of the OPF that considers only active power, referred to as DC-OPF [74], is utilized.
The DC-OPF is especially popular in market clearing, contingency analysis, and techno-
economic studies. In particular, the DC-OPF is the cornerstone of deregulated electricity
markets as it is widely adopted to determine locational marginal prices which are influenced
by network congestion. Further, the DC-OPF is also important for ensuring a reliable
operation by considering variants that incorporate steady-state security constraints, such as
the Security Constrained DC-OPF. The DC-OPF problem is especially appealing as it can
be expressed as an LP problem that can be solved efficiently.

Although general-purpose optimization solvers have made solving LP problems efficient,
certain settings can present computational challenges. Specifically, the increasing integra-
tion of renewable energy sources introduces significant uncertainty and variability in both
power supply and demand, resulting in the need to solve DC-OPF problems repeatedly and
at a higher speed and scale. To cope with the uncertainty of renewable production, future
electricity markets are expected to move closer to real-time, e.g., operating on a 5-minute
ahead basis [75]. Further, it is often assumed that the generation adjusts to real-time vari-
ability with an affine control policy, which resembles the widely used Automatic Generation
Control (AGC). However, an affine control policy may be restrictive and suboptimal, which
motivates resolving the DC-OPF problem in even more granular time scales. In this setting,
traditional LP solvers, which have a worst-case complexity that scales polynomially with
the size of the grid, may create a computational bottleneck.

Machine learning has been rapidly evolving in recent years, revolutionizing many in-
dustries, including power systems [76]. Due to their fast inference times, machine learning
models have been proposed as an alternative to traditional optimization solvers for power
system problems, such as the DC-OPF. However, power systems are critical infrastructure
and stakeholders are naturally risk averse, which presents obstacles to the adoption of these
tools [17]. Transparency, interpretability, and performance guarantees are necessary for
the practical implementation of machine learning-based solutions for problems such as the
DC-OPF. For instance, European Union legislation establishes the need for the so-called
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“right to explanation” [77], i.e., the requirement of automated systems to provide informa-
tion about their internal logic, which necessitates interpretable and transparent methods.
Furthermore, interpretability should not compromise model performance but rather should
be used to guide domain-agnostic methods with domain knowledge.

3.1.1 Related Work

Leveraging machine learning to accelerate the solution of the DC-OPF problem has attracted
significant attention in recent years. This work can be divided into two main research
directions. The first focuses on end-to-end learning methods that directly predict the DC-
OPF decisions, effectively emulating the LP solver. The second direction explores methods
to find a reduced, and therefore easier to solve, DC-OPF problem.

The majority of research on end-to-end learning for DC-OPF focuses on utilizing Neu-
ral Network (NN) models to map varying load profiles to problem decisions [78–82]. For
instance, [78] proposes an NN model with a constraint violation penalty to predict the DC-
OPF solutions; a similar model is developed in [79] for Security Constrained DC-OPF. To
ensure the feasibility of decisions, both models require a post hoc projection step. This
projection onto the feasible set is itself an optimization problem that needs to be solved,
which might be of the same complexity as the original problem, and may potentially negate
any computational benefits. In [80], worst-case constraint violations and suboptimality gap
are estimated to verify the NN performance; a heuristic method to improve these worst-case
guarantees by reducing the input domain is also proposed. In [81], physics-informed NNs
demonstrate improved guarantees over standard NNs. However, ensuring that predicted
decisions satisfy the problem constraints remains a challenge for end-to-end learning meth-
ods as prediction errors are inevitable. To address this issue, [82] develops a preventive
learning framework to systematically calibrate inequality constraints to ensure feasibility;
however, it relies on estimating the worst-case NN prediction error, which could be chal-
lenging. Overall, NN-based models have the modeling capacity to approximate the optimal
function that maps load profiles to problem decisions. Nevertheless, even with feasible so-
lutions guaranteed, NN models still lack the interpretability of other ML methods, such
as decision trees [83], which is critical for adoption in real-world applications, especially in
critical infrastructure. Decision trees are inherently interpretable and have been used in
power systems for decades — see, e.g., [84] for an early and [85] for a recent contribution to
decision trees for dynamic security assessment.

Predicting the set of problem constraints that are binding at the optimal solution (ac-
tive set) is generally simpler than directly predicting the optimal solutions. Motivated by
this observation, the second research direction of leveraging machine learning for DC-OPF
focuses on identifying the most probable active sets of constraints to find a reduced ver-
sion of the original problem [86–90]. Specifically, [86] and [87] utilize statistical learning to
identify the most probable critical regions, i.e., parameter regions where the active set of
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constraints remains unchanged, which then inform an ensemble policy. In [88], the problem
of finding the active sets of constraints is formulated as a multiclass classification task. A
neural decoding strategy is developed in [89] to first learn the active set of constraints,
mapping uncertain load to the problem objective value, and then find solutions that satisfy
the constraints. In the same line of work, [90] proposes a two-step process that combines
the prediction of active sets of constraints with an iterative method to recover feasible so-
lutions. While approaches based on learning the active sets of constraints are typically
more interpretable and, in many cases, guarantee feasibility, they lack the inference speed
of end-to-end learning. Nevertheless, this line of research offers a key insight: while the
total number of active constraint sets is exponentially large, only a small number of them
are relevant in practice. For instance, [87] finds that the number of critical regions observed
for various networks is less than 10 and that this number is not correlated with the network
size but rather depends on the load distribution and other network characteristics.

In this chapter, we aim to reconcile these two research directions by proposing an end-
to-end learning approach that combines the strengths of both methods and addresses their
limitations. Drawing inspiration from recent progress in explainable prescriptive analytics
[91], we leverage the insight that only a small number of active constraint sets are practically
relevant to enhance both the performance and interpretability of our method. As such,
rather than seeking a reduced DC-OPF problem, we develop an end-to-end learning method
that is simpler in complexity.

It is worth noting that multiparametric programming [92] is another research area rel-
evant to leveraging machine learning for DC-OPF. Multiparametric programming aims to
solve constrained optimization problems as a function of uncertain parameters by identify-
ing critical regions and explicitly constructing a parameter-dependent solution for the whole
parameter space. The key difference from our work is that we do not aim to explore the
whole parameter space but rather derive an interpretable policy that encodes a few key rules
selected in a data-driven manner, starting from available data, and ensuring feasibility for
the whole (unobserved) parameter space.

3.1.2 Aim and Contribution

In this chapter, we present a novel method for affine prescriptive trees, i.e., decision trees that
learn a piecewise affine mapping from varying input data to the solutions of a constrained
optimization problem, namely the DC-OPF problem. We develop a new learning algorithm
that combines axis-parallel and domain-informed, non-orthogonal splits that encode net-
work information, namely the merit order curve and network congestion. We formulate the
expectation of network congestion, conditioned on load, as a classification task and model it
with Support Vector Machine (SVM) classifiers. The separating hyperplanes derived from
the SVM models are then used as input in the tree learning algorithm, simultaneously im-
proving model performance and interpretability. We also use robust optimization to ensure
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the feasibility of the predicted decisions for the whole parameter space in a principled man-
ner. A surrogate learning algorithm is also developed to address the case of potentially
prohibitive training time for large-scale problem instances. We provide comprehensive nu-
merical experiments for several test cases ranging from 5 to 300 bus systems, under different
assumptions for the distribution of uncertainty and operating conditions. The results show
that our method achieves similar performance with state-of-the-art end-to-end learning ap-
proaches, namely neural network-based models, while also maintaining interpretability and
ensuring the feasibility of decisions.

In summary, our main contribution is twofold. Firstly, we propose an interpretable
end-to-end learning method for DC-OPF that offers fast solutions during inference, is com-
putationally tractable, and provides feasibility guarantees. Secondly, we propose a two-step
process to learn decision trees with non-orthogonal splits that encode domain-specific infor-
mation, thereby improving performance and retaining interpretability. To the best of our
knowledge, our work is the first to develop interpretable end-to-end machine learning for
the DC-OPF problem with feasibility guarantees.

3.1.3 Chapter Outline

The remainder of this chapter is organized as follows. Section 3.2 formulates the problem of
learning DC-OPF solutions. Section 3.3 develops the tree-based methodology. Section 3.4
illustrates the proposed methodology in a small test case. Section 3.5 presents our numerical
experiments. Section 3.6 concludes and provides directions for future work.

3.2 DC-OPF and Learning Problem Formulation

This section introduces the DC-OPF problem (in Subsection 3.2.1), describes the proposed
learning problem (in Subsection 3.2.2), and illustrates how to reformulate it into a tractable
problem (in Subsection 3.2.3).

3.2.1 The DC-OPF Problem

This section formulates the DC-OPF problem. We consider a transmission network where
V is the set of buses, E is the set of lines, and G is the set of generators. The deterministic
DC-OPF problem writes

min
p

c⊺p, (3.1a)

s.t. 1⊺p− 1⊺d = 0, (3.1b)

− f ≤M(Ap− d) ≤ f , (3.1c)

0 ≤ p ≤ p, (3.1d)

where p ∈ R|G| denotes the active power of dispatchable generators, d ∈ R|V| is the stochas-
tic net demand (load demand minus renewable generation) at each bus, M ∈ R|E|×|V| is the

51



DC-OPF and Learning Problem Formulation

Power Transfer Distribution Factors (PTDF) matrix, A ∈ R|G|×|V| is an incidence matrix
mapping generators to buses, and 1(0) is a vector of ones (zeros) with appropriate size.
Further, c, p, and f are known positive parameters that define the generation cost, the
generator capacity, and the line capacity, respectively. The problem objective (3.1a) mini-
mizes the total generation cost, (3.1b) ensures balance of demand and supply, while (3.1c)
and (3.1d) denote the generation and transmission line limits, respectively. Without loss of
generality, we assume a linear cost function in the objective; quadratic cost functions can
always be approximated by a piecewise linear function. Note that the DC-OPF problem
(3.1) can be straightforwardly reformulated as a problem of adjusting generation output
to the realization of forecast errors in real-time operations by subtracting realized forecast
errors from the expected net load.

Also, note that relaxing (3.1b) into a ≥ inequality maintains an equivalent solution
at optimality. To see this, note that the dual variable of (3.1b) is equal to the negative
marginal cost of energy at the slack bus [93]. As the cost vector c is non-negative, the dual
variable of (3.1b) is upper bounded by zero. By performing a sensitivity analysis, we see
that adding a positive parameter at the righthand side of (3.1b) would lead to an increase
in total generation cost. Therefore, if (3.1b) is relaxed into a ≥ inequality, it will be tight
at the optimal solution.

Next, we present some assumptions that apply in this work regarding the DC-OPF
problem (3.1).

Assumption 3.1 (Bounded uncertainty) The net load d is restricted in the polyhedron

U = {d ∈ R|V| |Hd ≤ h}. (3.2)

This is a standard assumption. In practice, the net load at each bus may vary within a
pre-specified range. Formally, this is defined as

A = {d ∈ R|V| |d ≤ d ≤ d}, (3.3)

where d (d) denotes the minimum (maximum) values, with renewable production being
defined with negative values. Observe that (3.3) is a special case of (3.2), where H = [I,−I]⊺

and h = [d, d]⊺, where I denotes an identity matrix of appropriate size.

Assumption 3.2 (Feasibility) Problem (3.1) is feasible ∀d ∈ U .

Note that if the deterministic formulation of the DC-OPF problem is infeasible, then
slack variables need to be included in (3.1). For simplicity, we assume that (3.1) is always
feasible; however, our proposed method can be straightforwardly extended to address the
case when slack variables are required.

Assumption 3.3 (Uniqueness) Problem (3.1) admits a unique solution ∀d ∈ U .

This is also a standard assumption, which holds almost surely for appropriate cost vectors
[94].
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3.2.2 Data-driven Piecewise Affine Policy

This section presents the proposed data-driven piecewise affine policy for end-to-end learning
of the DC-OPF problem.

Instead of solving (3.1), our goal is to learn a function (policy) that maps realizations
of net load injections d to generator setpoints p. From the theory of multiparametric
programming [92], we know that the optimal dispatch p∗ with respect to d takes the form
of a piecewise affine function defined over a polyhedral partition of the feasible space. First,
we define a polyhedral partition of the feasible space U .

Definition 3.1 (Polyhedral partition [95]) A collection of L polyhedra {Uℓ}Lℓ=1 is a
polyhedral partition of a set U if U = ∪L

ℓ=1Uℓ and (Ui \ ∂Ui) ∩ (Uj \ ∂Uj) = ∅, ∀i ̸= j,
where ∂Ui denotes the boundary of Ui and \ denotes the set difference operator. In other
words, the union of the individual polyhedra Uℓ covers the feasible space of the net load, and
the interiors of the polyhedra do not overlap.

If the polyhedral partition {Uℓ}Lℓ=1 recovers the critical regions of the parameter space,
i.e., the regions where the active set of constraints at the optimal solution remains constant,
then learning a piecewise affine function over {Uℓ}Lℓ=1 is optimal. An explicit solution for
finding the optimal piecewise policy can be derived by recasting the problem as a multi-
parametric LP problem, but it might be intractable as the number of critical regions grows
exponentially with the number of problem constraints in the worst case. In practice, how-
ever, only a small number of critical regions are relevant — see, e.g., [87].

Since it is established that a piecewise affine policy is optimal, in this work, we propose
learning a simpler, data-driven piecewise affine policy, which retains good performance and
interpretability. We assume that a data set D = {(di, p∗

i )}Ni=1 of N training observations
is available, where di denotes the net load and p∗

i denotes the vector of optimal decisions
derived from solving (3.1) for the i-th sample. In a data-driven setting, a polyhedral partition
{Uℓ}Lℓ=1 also implies a respective partition of training data {Dℓ}Lℓ=1, i.e., subsets of data that
fall in each polyhedron. Formally, we define

Dℓ = {(di, p∗
i ), i ∈ [N ] |di ∈ Uℓ} ⊆ D, (3.4)

where [N ] is shorthand for {1, . . . , N}.
In the following, we present the proposed data-driven piecewise affine policy that maps

net load observations to decisions. First, we particularize Definition 3.1 to the current
data-driven setting.

Definition 3.2 (Nmin-admissible polyhedral partition) Consider a scalar Nmin > 0,
a polyhedral partition {Uℓ}Lℓ=1, and a corresponding data partition {Dℓ}Lℓ=1. We say that
{Uℓ}Lℓ=1 is Nmin-admissible, if |Dℓ| ≥ Nmin, ∀ℓ ∈ [L].
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Therefore, Definition 3.2 only considers polyhedral partitions where each polyhedron
includes a minimum number of data observations; here is also where our approach differen-
tiates from multiparametric programming [92]. As shown in previous works [87], the number
of critical regions populated with data observations is small in practice. The tree-learning
algorithm developed in the next section effectively learns a partition of the form of Defini-
tion 3.2 that is as close as possible to the critical regions of the parameter space with data
observations. In that case, Nmin, which is a user-defined hyperparameter, corresponds to
the minimum number of observations per each tree leaf and controls the complexity of the
learned policy.

The proposed data-driven piecewise affine policy is defined as follows.

Definition 3.3 (Data-driven piecewise affine policy) We consider a data-driven piece-
wise affine policy f : U → R|G| that maps net load d to generator setpoints p, given by
f(d) = Wℓd + bℓ, d ∈ Uℓ, ℓ = 1, . . . , L, where Wℓ ∈ R|G|×|V| is a matrix of linear decision
rules, bℓ is the intercept vector, and {Uℓ}Lℓ=1 is an Nmin-admissible polyhedral partition of
U , defined over a data set D.

Given an Nmin-admissible polyhedral partition {Uℓ}Lℓ=1, the problem of finding the op-
timal decision rules, for each ℓ ∈ [L], is given by

min
Wℓ,bℓ

1
|Dℓ|

∑︂
i∈Dℓ

c⊺(Wℓdi + bℓ), (3.5a)

s.t. 1⊺(Wℓd + bℓ)− 1⊺d ≥ 0, ∀d ∈ Uℓ, (3.5b)

− f ≤M(A(Wℓd + bℓ)− d) ≤ f , ∀d ∈ Uℓ, (3.5c)

0 ≤Wℓd + bℓ ≤ p, ∀d ∈ Uℓ, (3.5d)

where the decision vector p has been replaced by the affine policy Wℓd + bℓ. Problem (3.5)
finds the affine decision rules that minimize the in-sample dispatch cost (3.5a) for the given
partition. Effectively, by solving problem (3.5) for each Uℓ we learn the parameters of the
proposed data-driven policy, which is of the form of Definition 3.3. Note that each row of
Wℓ defines a vector of coefficients that maps net load to a specific generator. The robust
constraints (3.5b)-(3.5d) further ensure a feasible policy, i.e., decisions are feasible for all
realizations of the uncertainty within Uℓ. At test time, for an out-of-sample observation
d0, we first locate the respective partition Uℓ it falls into, and then derive the generator
production from f(d0) = Wℓd0 + bℓ.

Note that in the robust formulation, we replaced the equality constraint (3.1b) with
an inequality constraint (3.5b); thus, problem (3.5) ensures that the total net load is al-
ways covered by the aggregated production. The reason for this is twofold. First, equality
constraints with uncertain parameters drastically reduce the feasible set, leading to over-
conservative solutions or even infeasibility [67, Ch. 12]. Working with an inequality allows
us to “free” the parameters of the affine decision rules and attain higher performance. In
the end, as (3.5a) minimizes the total production cost, the forecast decisions obtained from
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the affine policy will try to be as close as possible to 1⊺d. Second, in reality, generation
must always be larger than demand due to line losses. Moreover, there are always small de-
viations between aggregated production and net load, which results in frequency variations;
as it is easier to provide downward frequency regulation via, e.g., curtailment of renewable
production, we ensure that the policy never underestimates the total demand.

Formally, given an Nmin-admissible polyhedral partition {Uℓ}Lℓ=1 that covers the whole
feasible space U and robust constraints (3.5b) − (3.5d) that ensure forecast decisions are
feasible ∀d ∈ Uℓ, it follows that the forecast decisions will always satisfy the constraints
of (3.1), where (3.1b) has been relaxed into an inequality constraint. Thus, we obtain
guarantees about the feasibility of decisions for any realization of d ∈ U .

Remark 3.1 If Assumption 3.2 does not hold, then (3.1) requires additional slack variables.
In this case, we introduce additional rules in (3.5) that map realizations of d to each slack
variable.

The objective (3.5a) minimizes the prescriptive cost, i.e., the expected in-sample dispatch
cost. Alternatively, the MSE between the optimal and forecast decisions can be minimized,
given by

1
|Dℓ|

∑︂
i∈Dℓ

∥Wℓdi + bℓ − p∗
i )∥22, (3.6)

as is the case in many relevant works — see, e.g., [80]. The MSE measures the predictive
error of forecast decisions. However, here we focus primarily on the prescriptive cost, as the
ultimate goal is to minimize the total dispatch cost.

3.2.3 Robust Constraint Reformulation

Problem (3.5) involves semi-infinite robust constraints. As we deal with an LP problem and
polyhedral uncertainty sets, we apply techniques from robust optimization [67] to reformu-
late (3.5) into a deterministic LP problem.

For illustration purposes, consider the upper generation limit at the left-hand side of
(3.5d). Considering that the inequality holds ∀d ∈ Uℓ, i.e., the worst-case of d, we write
equivalently

max
d
{Wℓd |Hℓd ≤ hℓ} ≤ p− bℓ.

As the max problem is linear in d, it can be replaced by its dual

min
λ

{︁
h⊺

ℓλ |H
⊺
ℓλ = Wℓ,λ ≥ 0

}︁
≤ p− bℓ,

where λ is a dual variable of appropriate size. Evidently, the min operator becomes redun-
dant. Hence, the upper generation limit constraint in the left-hand side of (3.5d) is replaced
by the following constraints

h⊺
ℓλ ≤ p− bℓ, H⊺

ℓλ = Wℓ, λ ≥ 0.

The rest of the constraints are reformulated in a similar fashion, leading to a deterministic
LP problem that can be solved with off-the-shelf solvers.
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3.3 Tree-based Learning Methodology

This section develops the proposed tree-based method to learn an interpretable policy for
the DC-OPF problem. First, we describe the tree-learning algorithm (Section 3.3.1). Next,
we detail the process of finding domain-informed splits (Section 3.3.2). Finally, we describe
a surrogate learning method to deal with large problem instances (Section 3.3.3). The
two-step process to train the proposed tree-based model is illustrated in Fig. 3.1.

3.3.1 Affine Prescriptive Trees

In this section, we present our decision tree algorithm for learning a piecewise affine policy.
Decision trees use available data to partition the feature space into L leaves by mini-

mizing a predefined loss criterion, e.g., minimizing the variance of each leaf. The resulting
partition also provides information about the joint distribution of the target variable and
associated features and, therefore, can be used to predict instances of the target variable
given out-of-sample feature observations. Here, our primary goal is to use a tree-based
algorithm to learn a polyhedral partition of the form of Definition 3.2 that is as close as
possible to the critical regions of the parameter space, using data set D.

Our proposed algorithm combines axis-parallel and non-orthogonal splits during the
tree-learning process. To clarify, axis-parallel splits refer to splits that only consider a sin-
gle feature, while non-orthogonal splits refer to splits that consider a linear combination of
different features. Mathematically, both axis-parallel and non-orthogonal splits are repre-
sented as a set of hyperplanes. Using this combination of splits is a departure from most
state-of-the-art tree algorithms that focus solely on binary trees with axis-parallel splits—
see, e.g., [55] for single trees and [56] for tree-based ensembles. Oblique decision trees [96]
allow for non-orthogonal splits and have been shown to lead to significant performance im-
provements; however, they can be computationally challenging and less interpretable [83].
To address this challenge, we construct a set of domain-informed non-orthogonal splits prior
to the learning phase; the process of identifying these splits is detailed in Section 3.3.2.

Algorithm 3.1 describes our decision tree algorithm in detail. Consider a root node
(equivalently, partition) U0 = {d |H0d ≤ h0}, a corresponding data set D0, and a set of
K candidate hyperplanes to split on {(αk, βk)}, parameterized by vectors αk and scalars
βk. These hyperplanes model both non-orthogonal and axis-parallel splits as a special case,
e.g., if we want to split in value s of feature d1, then αk = [1, 0]⊺, and βk = s.

A node split partitions a parent node into two child nodes U0 = Ul ∪ Ur, such that
Ul = {d |α⊺

kd ≤ βk, d ∈ U0} and Ur = {d |α⊺
kd > βk, d ∈ U0}. The training algorithm

starts at root node U0 and sets the current depth δ = 0. Next, it iterates over the K

candidate splits and solves (3.5) for each child partition; note that, to deal with the strict
inequality induced by the node split, the right child node is evaluated at its closure cl(Ur).
Embedding (3.5) within the tree-learning algorithm ensures that node splits are selected
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Step 1: Create candidate splits (Section 3.3.2)

Non-orthogonal splits
- Network congestion (SVMs)
- Merit order
Axis-parallel splits
- Net load observations

Step 2: Decision tree algorithm (Section 3.3.1)

Affine policy (3.5)

: Uncertainty set Uℓ

: Data observation

TRUEFALSE IF Condition

Figure 3.1: Flowchart of the proposed two-step training process. Step 1 creates a set of
candidate node splits. Step 2 uses the candidate node splits as input to grow a decision
tree. The tree graph at the bottom visualizes a non-orthogonal node split.
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based on their impact on the true decision cost of the DC-OPF problem. Specifically, the
split that minimizes the prescriptive cost of the piecewise affine policy is selected and the
corresponding polyhedral partition is added to the tree, updating the tree structure accord-
ingly. For reference, Fig. (3.1) visualizes splitting a tree node using a non-orthogonal split.
At each iteration, the current tree leaves define an Nmin-admissible polyhedral partition
{Uℓ}Lℓ=1 and an equivalent data partition {Dℓ}Lℓ=1. The process is repeated recursively in
a top-down fashion until a stopping criterion is met. Typical stopping criteria include a
minimum number of observations per leaf Nmin and the maximum tree depth δmax.

The proposed tree-learning algorithm grows trees that minimize decision costs and map
data to prescriptions. We take an intermediate approach to split selection, avoiding the
well-known shortcoming of CART-like methods [55], which is determining each split with-
out considering the possible impact on future splits1. Specifically, we apply a semi-greedy
split selection, which prioritizes non-orthogonal splits over axis-parallel ones, as the former
encode domain knowledge. To implement the semi-greedy split selection, we use an auxiliary
function called ispar, which takes a vector αk as input and returns a logical value of True

if αk is parallel and False otherwise. In the tree-learning algorithm, if the current best
split is non-orthogonal, we only evaluate the remaining non-orthogonal splits. If the current
best split is axis-parallel, then we evaluate all the remaining splits, including the rest of the
axis-parallel ones. This is described in Steps 4-5 of Algorithm 3.1, where ¬,∧ denote the
logical negation and conjunction (and) operators, and the continue statement interrupts
the current step of a loop and continues with the next iteration. This approach prioritizes
domain-informed non-orthogonal splits while still allowing for data-driven axis-parallel splits
to be considered if the former are insufficient.

The hyperparameters of the decision tree include the minimum number of observations
Nmin per leaf and the maximum tree depth δmax, both controlling the complexity of the
learned policy. Namely, Nmin controls the bias-variance trade-off, with smaller values in-
creasing the risk of overfitting, and ensures that the final polyhedral partition is admissible
as per Definition 3.2. Conversely, larger values of δmax lead to improved performance,
but may also result in overfitting and reduced interpretability. The maximum number of
partitions that can be recovered is 2δmax and is independent of the size of the underlying
network. For a sufficiently complex policy, i.e., one with small Nmin and large δmax, we ex-
pect that the number of partitions recovered scales with the number of critical regions that
are populated with data observations. Thus, we avoid the shortcoming of multiparametric
LP, where the number of partitions scales exponentially with the problem constraints. To
promote interpretability and avoid potential overfitting, we suggest using larger values of
Nmin and smaller values of δmax.

1Note that globally optimal trees [83] address this shortcoming using a mixed-integer LP formulation, at
the expense, however, of increased computational cost.
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Algorithm 3.1 AffinePrescrTree
Input: current partition U0, current data set D0, current depth δ, hyperparameters
{Nmin, δmax}, set of candidate splits {(αk, βk)}Kk=1, auxiliary function ispar

Output: tree τ

1: find v0 = min
d∈U0

(3.5), set vmin ← |D0| · v0, split←False, k∗ ← empty
2: if δ < δmax and N0 ≥ 2Nmin then
3: for k = 1, . . . , K do
4: if ¬ispar(αk∗) ∧ ispar(αk) == True then
5: continue
6: else
7: find left and right child nodes Ul,Ur, and corresponding data partitions Dl,Dr

8: if |Dl| ≥ Nmin and |Dr| ≥ Nmin then
9: vk = |Dl| · min

d∈Ul

(3.5) + |Dr| · min
d∈cl(Ur)

(3.5)
10: if vk < vmin then
11: update vmin ← vk, split← True, k∗ ← k

12: end if
13: end if
14: end if
15: end for
16: if split == True then
17: append (αk∗ , βk∗) to H0, h0 for each new partition Ul,Ur, find Dl,Dr

18: τl = AffinePrescrTree(Ul,Dl, δ + 1)
19: τr = AffinePrescrTree(Ur,Dr, δ + 1)
20: update tree structure τ

21: end if
22: end if
23: return τ
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3.3.2 Domain-Informed, Non-Orthogonal Splits

This section describes how to identify the set of K candidate splits.
Axis-parallel splits only check whether an entry of d exceeds a threshold value; they

are purely data-driven and the standard approach to growing binary trees, e.g., CART. In
this work, the set of axis-parallel splits comprises a number of equally spaced quantiles of
the empirical net load distribution over data set D; i.e., for each net load at each node, we
estimate a set of quantiles from its marginal distribution and evaluate the splitting criterion
there.

A key contribution of this work is proposing domain-informed, non-orthogonal splits
that are potentially more effective than data-driven axis-parallel splits. The proposed splits
are derived from hyperplanes that encode information about the active set of constraints
conditioned on the load profile, namely the merit order curve and network congestion.

Merit Order Splits

For ease of discussion, further assume the generators in G are ordered in ascending order
based on their cost, i.e., for i, j ∈ G, if i < j, then ci < cj . Hence, for an optimal solution p∗,
assuming no line congestion, we have pi = pi whenever pj > 0. This means that generator
j will be dispatched only if the total net load is larger than the aggregated production of
the generators that rank lower in terms of cost.

To encode this information, we construct a set of hyperplanes {1⊺d ≥
∑︁j

i=1 pi} for
j ∈ G. That is, each hyperplane corresponds to a supply curve that renders the respective
generator as the marginal one, and checks whether the aggregated demand exceeds the total
generation capacity.

Network Congestion Splits

Here, we propose non-orthogonal splits that encode information about expected network
congestion conditioned on input net load profiles. To this end, we train a set of classifiers,
namely SVMs [97] with a linear kernel to predict whether a line gets congested. However,
we do not use the SVMs for out-of-sample prediction; instead, we retrieve the maximum
margin hyperplane learned for each SVM and use it as a candidate split in the tree learning
process.

The process of creating non-orthogonal splits that model network congestion is described
as follows. First, we inspect the full training data set D for line congestions. For each
congested line, we formulate a binary classification problem with the line status as the target
variable and the net load observations di as features. We then train an SVM model with
a linear kernel for each classification task, which effectively learns a separating hyperplane,
parameterized by linear coefficients w and the intercept b. These separating hyperplanes
are subsequently used as candidate splits during the decision tree learning process, as shown
in Fig. 3.1 and detailed in Algorithm 3.1.
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3.3.3 Dealing with Large-scale Problems

Training the proposed affine prescriptive trees requires solving (3.5) repeatedly during train-
ing. Specifically, for a tree of depth δ, assuming K candidate splits at root node, problem
(3.5) need to be solved up to ∑︁δmax

δ=0 2δ(K− δ) times during the offline training phase. How-
ever, the training process might become computationally prohibitive for larger networks.
To mitigate this issue, we explore two directions to reduce the offline computational cost,
namely, to speed up the solution of (3.5) and to reduce the time to find the polyhedral
partition.

Firstly, we use an iterative algorithm to speed up the solution of (3.5). Section 3.2.3 uses
duality theory to reformulate (3.5) into a deterministic optimization problem. Depending
on the problem size, however, iterative cutting-plane methods may be faster [98]. Here,
we propose an intermediate approach that leverages the fact that only a small number of
line constraints are binding at the optimal solution. We initialize our master problem by
reformulating (3.5b) and (3.5d) using duality, ignoring all line constraints (3.5c). Next, we
solve the master problem and retrieve W∗

ℓ , b∗
ℓ . We then iterate over all the lines, fix the affine

decision rules, and estimate the worst-case constraint violation, which is a maximization
problem over d. The line that leads to the highest violation is selected, and the respective
row of (3.5c) is reformulated via duality and added to the master problem. The algorithm
terminates when there is no violation. The training data set D can also inform us of which
lines might lead to violations; thus, we can warm-start the iterative algorithm by adding
these lines to the initial master problem. In this case, the algorithm typically terminates
after a small number of iterations.

Secondly, we propose a surrogate tree-learning algorithm that “relaxes” the training
process, thus reducing the time to find the polyhedral partition. Instead of training the tree
in a fully prescriptive fashion as detailed in Algorithm 3.1, we take a sequential approach.
First, we grow a decision tree minimizing the MSE (3.6) criterion with no constraints, for
which a closed-form solution exists, and maintain the semi-greedy split selection. After
retrieving an Nmin-admissible polyhedral partition, we iterate over each leaf and estimate
the affine decision rules that minimize the within-leaf dispatch cost by solving (3.5). Note
that the original algorithm jointly estimates the polyhedral partition and the policy, i.e.,
the affine decision rules, in a semi-greedy, top-down fashion. The “relaxed” version, on the
other hand, takes a sequential approach: first, we find the polyhedral partition, then we
learn the affine decision rules. The surrogate learning algorithm could also be utilized with
more computationally demanding variants of the DC-OPF problem.

These approaches can significantly reduce the offline computational cost, making the
proposed tree-based method computationally tractable for larger networks.
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Illustrative Example

d3

1 2

3

d2d1 p2p1

Gen. Cost ($/MWh) p (MW) Line From Bus To Bus X f (MW)

p1 5 1000 1 1 3 0.62 9000
p2 1.2 270 2 3 2 0.75 90

3 1 2 0.9 9000

Figure 3.2: Modified 3-bus system.
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Figure 3.3: Top: Tree with axis-parallel splits. Middle: Tree with non-orthogonal splits.
Bottom: Tree with non-orthogonal splits, trained with the surrogate method. Colored
subregions indicate critical regions and red points indicate training observations. Solid lines
show the load domain, Ui represents the i-th leaf.
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Congestion at line 2

d3 > 75.05 (high net demand at node 3)

p1 = d2 − 0.2d3 − 72.1
p2 = 1.2d3 + 182.1

p1 = d2 + d3 − 160
p2 = 270

FALSE

...

TRUE

Figure 3.4: Visualization of piecewise affine policy.

3.4 Illustrative Example

We illustrate the most salient features of our approach using the 3-bus system from the
PGLib-OPF library [99], which we modify by setting the maximum capacity of the cheapest
generator at p2 = 270 MW, and the capacity of the line connecting buses 2 and 3 at f2 =
90 MW —see Fig. 3.2 for details. If neither of these limits is reached, then at the optimal
solution p∗

1 = 0 and p∗
2 = 1⊺d; else, p∗

1 > 0. We further assume that d1 = 110 MW and that
d2, d3 follow a multivariate normal distribution N(µ,Σ), where

µ = (99, 81) MW, Σ =

⎡⎣30.25 15.75
15.75 22.65

⎤⎦ MW2,

are the mean vector and covariance matrix, respectively, and lie within intervals d2 ∈
[88, 110] MW and d3 ∈ [57, 95] MW.

We generate 1 000 random observations and apply a 50/50 training/test split to examine
the performance of prescriptive trees with respect to hyperplane splits, setting δmax = 2
and Nmin = 25. Performance is evaluated by estimating the mean increase in decision
cost over the test set compared to a traditional LP solver. Three models are trained: one
using only axis-parallel splits, one using both axis-parallel and non-orthogonal splits, and
one using both splits but trained with the surrogate method developed in Section 3.3.3.
For axis-parallel splits, we examine 9 equally spaced quantiles estimated from the training
observations. For non-orthogonal splits, we consider a merit order split that checks whether
1⊺d ≥ p2 and a network congestion split derived from an SVM that predicts when line 2
gets congested.

Fig. 3.3 plots the tree splits as a function of d2, d3, where the colored subregions indicate
the load profiles for which the set of active constraints does not change. Specifically, the
green subregion indicates line 2 is congested, the blue subregion indicates that the maximum
capacity of the cheapest generator is reached (p∗

2 = p2), and the white subregion indicates
that no upper limit is reached (p∗

1 = 0, p∗
2 = 1⊺d). Evidently, the optimal policy is piecewise

linear with respect to each subregion, and a tree that recovers this partition would yield an
optimal policy.

Considering only axis-parallel splits cannot recover a near-optimal partition and leads
to an out-of-sample mean cost increase of 3.19%—see top of Fig. 3.3. Conversely, non-
orthogonal splits lead to significantly better decisions with an out-of-sample mean cost
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increase of 0.37%, as the root node is split at the hyperplane provided by the SVM —
see the middle of Fig. 3.3. A small decision error persists as the critical regions are not
recovered exactly by the polyhedral partition; thus, leaves that extend to more than one
subregion, i.e., U3,U1, lead to slightly suboptimal decisions. Specifically, perfectly separating
between instances of line congestion (green subregion) and the rest requires a piecewise affine
function. The hyperplane learned from the SVM model cannot provide a perfect separation.
Nonetheless, its combination with the subsequent axis-parallel splits leads to a very good
approximation of the optimal solution. The surrogate method leads to a mean cost increase
of 1.72%, which ranks in between the other models. Compared to the fully prescriptive
method, the increased cost of the surrogate algorithm is attributed to the selection of axis-
parallel splits. First, the split on d2 > 100.36 creates two partitions that extend over two
critical regions — see U1,U2 in the bottom of Fig. 3.3. Second, the split that separates
U3,U4 (d3 > 81.78) leads to a similar number of observations at each leaf. Conversely, the
respective split at the middle of Fig. 3.3 (d3 > 75.75) explicitly maximizes the coverage
of each critical region, i.e., maximizes the area of U4. Interestingly, the merit order split
is not selected in either case. Even though it perfectly separates the white from the blue
subregion, there are too few observations within the white region to merit splitting a node
there. If d2 and d3 were, in contrast, uniformly distributed within their respective intervals,
the merit order split would become highly prescriptive and, thus, selected by Algorithm 3.1.

Fig. 3.4 provides an interpretable visualization of the piecewise affine policy of the pre-
scriptive tree with hyperplanes (middle of Fig. 3.3), focusing on U1,U2. Intuitively, the root
node examines if congestion in line 2 is expected; if not, then we evaluate d3. If d3 > 75.05,
i.e., we reach U2, then p2 = p2 and p1 covers the excess demand (recall that d1 = 110MW).
Conversely, when d3 <= 75.05, we reach U1, which extends to the white and blue subregions;
here, both p1, p2 linearly depend on the varying demands.

3.5 Numerical Experiments

In this section, we describe our experimental setup (in Subsection 3.5.1), present our main
results (in Subsection 3.5.2), and provide additional results under challenging operating
conditions (in Subsection 3.5.3). The code to reproduce the results is made available in
[100].

3.5.1 Experimental Setup

The proposed methodology is demonstrated on a range of PGLib-OPF networks v21.07 [99]
of up to 300 buses. The net load domain is defined as U = {d− 0.4|d| ≤ d ≤ d}, where d
denotes the nominal load values from the base case specified in [99]. Thus, positive loads
vary within 60% and 100% of their nominal value. Two settings with respect to uncertainty
are considered. First, each net load is independently and uniformly distributed within U .
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Second, the net loads follow a multivariate normal distribution. For each net load dj , the
mean value is set at µj = 0.8dj and its standard deviation at σj = 0.05dj . We further
sample correlations across net loads uniformly from [0, 1] and use it to create the covariance
matrix. In both cases, we generate 20 000 samples, and apply a 50/50 training/test split.

The following models are examined:

• APT: an affine prescriptive tree using only axis-parallel splits.

• APTH: an affine prescriptive tree using both axis-parallel and non-orthogonal splits.

• APTH-rlx: an affine prescriptive tree using both axis-parallel and non-orthogonal splits
and trained with the surrogate algorithm of Section 3.3.3.

• NN-prj: an NN-based end-to-end learning model, coupled with an additional projec-
tion step.

For the tree-based models, namely APT, APTH, APTH-rlx, we set Nmin = 25 and δmax = 3,
which are values that enable interpretability and avoid overfitting. Axis-parallel splits are
evaluated at 19 equally spaced quantiles estimated from the training observations. We
further consider a hard time-limit constraint of 10 000 seconds; that is, if the time limit is
reached, we stop growing the tree and each node becomes a leaf. For the larger networks,
i.e., case118, case300, we use the iterative algorithm described in Section 3.3.3 to solve
(3.5). For NN-prj, we consider a multi-layer feed-forward structure with 4 hidden layers
and 100 nodes per layer, using the MSE loss and the ReLU activation function in the
hidden layers. Following [78, 79, 82], we apply a sigmoid activation function in the output
layer, thus ensuring that the predicted decisions satisfy the generation capacity constraints.
We further add a regularization term in the objective that penalizes excessive line flows,
following [79]. The rest of the hyperparameters are also set according to [79] and the NN
model is trained with early stopping to avoid overfitting. An ℓ1-projection step is applied
post hoc to ensure feasible decisions. For the ground truth solution of the DC-OPF problem,
we use the Gurobi solver [101] with default settings. All experiments are run on a standard
PC featuring an Intel Core i7 CPU with a clock rate of 2.7 GHz and 16GB of RAM.

For performance evaluation, we measure the suboptimality of predicted decisions by
estimating the percentage of Mean Cost Increase (MCI) over a test set of Ntest observations,
given by

100 1
Ntest

∑︂
i∈[Ntest]

c⊺(p̂i − p∗
i )

c⊺p∗
i

,

where p∗
i is the optimal solution derived from Gurobi and p̂i the predicted solution for the

i-th test sample.Evidently, MCI is non-negative.

3.5.2 Results

Table 3.1 summarizes the results of the SVM classifiers, namely the number of lines that
face congestion at least once, the number of SVM classifiers trained, and the average and
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Table 3.1: Number of congested lines, number of SVM models trained, and classifier accu-
racy (%).

Uniform Normal

No. lines/models mean/min acc. (%) No. lines/models mean/min acc. (%)

case5 1 / 1 99.97 1 / 1 99.99
case30 1 / 1 99.79 1 / 1 99.91
case39 2 / 1 99.83 2 / 1 99.60
case57 0 / 0 - 0 / 0 -
case118 5 / 3 93.10 / 80.96 5 / 4 95.72 / 84.60
case300 13 / 8 97.59 / 93.36 17 / 8 96.83 / 89.92

Table 3.2: Percentage (%) of MCI, δmax = 3. Parentheses show the rate of infeasibility (%).

Uniform Normal

APT APTH APTH-rlx NN-prj APT APTH APTH-rlx NN-prj

case5 1.62 0.40 0.46 0.96 (5.35) 0.30 0.33 1.39 0.86 (1.61)
case30 4.20 0.76 0.85 0.52 (5.12) 1.88 1.19 1.58 0.60 (14.18)
case39 2.07 0.22 0.23 0.21 (3.37) 1.54 0.16 0.48 0.35 (1.17)
case57 0.00 0.00 0.00 0.18 (0.11) 0.00 0.00 0.00 0.18 (0.27)
case118 1.17 0.42 0.28 0.19 (7.73) 1.17 1.14 0.37 0.16 (21.85)
case300 3.10 2.81 2.44 1.80 (43.29) 3.12 3.12 2.43 1.20 (59.48)

minimum classifier accuracy (%) per test case. Note that to train an SVM classifier we
require at least Nmin observations per class label; that is, if a line is almost always or
almost never congested, we do not train a model— see, e.g., case39, case118, and case300.
Overall, the SVM classifiers, even though they only utilize a linear kernel, provide very
good out-of-sample performance. For the small and medium-sized cases, the SVM models
provide almost perfect separation with close to 100% accuracy. For the larger cases, i.e.,
case118 and case300, the average accuracy still exceeds 93% for both uniform and normal
distribution. However, there is increased variability in individual models, as indicated by
the worst-case performance. This is more pronounced for case118, where the worst-case
performance is below 85% for both types of uncertainty distribution.

Table 3.2 presents the out-of-sample MCI for the examined test cases. For NN-prj,
we also report the percentage of infeasible solutions, i.e., the percentage of solutions that
require a post hoc projection step to recover feasibility. Clearly, tree-based solutions are
feasible by design and their infeasibility rate is always zero, thus we omit it from Table 3.2.
In almost all cases, the lowest MCI is smaller than 1%, which is on par with previous works.
The worst performance is observed for case300, which is probably attributed to the large
number of lines facing congestion.

Overall, considering non-orthogonal splits significantly improves the prescriptive perfor-
mance of the tree-based method. Specifically, the average (maximum) improvement of APTH

compared to APT is 53% (89%) for uniform distribution and 20% (90%) for normal distribu-
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Figure 3.5: MCI versus maximum tree depth δmax (uniform uncertainty).
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Figure 3.6: Mean CPU time to solve a single problem instance. NN denotes the inference
time of the NN-based model without projection. The y-axis is in logarithmic scale.

tion, respectively. The only exception is for case5 and normal distribution, where APT is 10%
better than APTH. Evidently, the effect of non-orthogonal splits using hyperplanes is more
pronounced when net loads are uniformly distributed, as we observe that APT performs, on
average, much better under a normal distribution. This could be attributed to the training
data extending to a smaller number of critical regions when loads are normally distributed,
which, in turn, nullifies the impact of a number of candidate splits.

We further observe that prescriptive trees perform competitively with NN-prj in terms
of decision performance, resulting in a lower MCI in 5/12 cases examined. However, a
significant percentage of NN-prj solutions may be infeasible and require a projection step.
The rate of infeasibility seems to be increasing with the size of the network, with the worst-
case being observed for case118 and case300, for both types of uncertainty.

We now discuss the efficacy of the surrogate learning algorithm proposed in Section 3.3.3.
When APTH is fully grown, i.e., the algorithm terminates before the imposed time limit is
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reached, it outperforms APTH-rlx, with the differences being small in general, except for
case57, where both are optimal. For case188 and case300, the time limit is reached before
APTH is fully grown, which leads to APTH-rlx outperforming APTH. Moreover, APTH-rlx

outperforms APT, which considers only axis-parallel, in all cases but one, and is on par with
NN-prj. Notably, APTH-rlx reduces the training time by over 95% in all cases compared
to APTH; thus, APTH-rlx achieves a good trade-off between computational efficiency and
prescriptive performance.

The results presented in Table 3.2 concern shallow trees (δmax = 3). Evidently, increas-
ing the tree depth is expected to improve decision performance. We investigate this claim by
evaluating the sensitivity of decision quality with respect to the maximum tree depth δmax.
Fig. 3.5 plots the out-of-sample MCI of APTH and APTH-rlx as a function of δmax for three
test cases and uniform uncertainty; the performance of NN-prj is also plotted for reference.
In all examined cases, increasing δmax leads to significant gains in performance for APTH

and APTH-rlx, with the relative improvement being more pronounced for smaller values of
δmax. Moreover, APTH converges to better performance than NN-prj as δmax increases, with
a relatively small depth of δmax = 5 being sufficient for adequate performance.

We further investigate whether end-to-end learning improves over Gurobi in terms of
inference speed. Fig. 3.6 plots the mean CPU time to solve or predict a single problem
instance for a selection of models for uniform uncertainty (y-axis is in logarithmic scale). We
denote NN as the NN-based model prior to projection. For NN-prj, we sum the inference time
of NN and the time to solve the projection step, weighted by the probability of infeasibility.
For Gurobi, we only consider CPU time to solve the problem and not the time to formulate
it. As all tree-based models exhibit similar inference time, we only plot APTH-rlx.

Overall, APTH-rlx consistently leads to smaller CPU time compared to both Gurobi and
NN-prj, and even outperforms NN. As expected, the mean CPU time of Gurobi increases with
the size of the network. The NN-prj performance varies with its out-of-sample infeasibility
rate. For medium to large-sized cases, when the infeasibility rate of NN-prj is below 10%
and a post hoc projection is rarely required, e.g., case30 through case118, the inference time
of NN-prj is smaller than that of Gurobi. However, in case300, when the infeasibility rate of
NN-prj reaches over 40%, the required projection step to recover a feasible solution negates
any improvement in inference speed and leads to higher CPU time than Gurobi. Thus a
high infeasibility rate may nullify the intended purpose of applying end-to-end learning in
the first place.

3.5.3 Results for more Challenging Test Cases

To evaluate the sensitivity with respect to the number of lines that face congestion, we
repeat the previous experiment on more challenging test cases. Specifically, we examine
performance on the active power increase (api) test cases [99], where the nominal d is
increased.
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Table 3.3: Number of congested lines, number of SVM models trained, and classifier accu-
racy (%), API test cases.

Uniform Normal

No. lines/models mean/min acc. (%) No. lines/models mean/min acc. (%)

case5 api 3/3 99.83/99.59 2/1 99.95
case30 api 0/0 - 0/0 -
case39 api 10/4 97.59/92.92 7/4 99.46/98.81
case57 api 0/0 - 0/0 -
case118 api 16/11 95.52/85.54 15/12 94.56/78.81
case300 api 16/10 94.47/72.07 14/13 95.11/65.66

Table 3.4: Percentage (%) of MCI, δmax = 3, API test cases. Parentheses show the rate of
infeasibility (%).

Uniform Normal

APT APTH APTH-rlx NN-prj APT APTH APTH-rlx NN-prj

case5 api 0.05 0.01 0.02 0.85 (0.68) 0.02 0.01 0.13 0.71 (0.71)
case30 api 0.00 0.00 0.00 0.73 (3.03) 0.00 0.00 0.00 0.49 (3.01)
case39 api 0.93 0.65 0.75 0.47 (13.11) 0.57 0.52 0.40 0.68 (17.19)
case57 api 0.49 0.00 0.00 0.05 (0.03) 0.34 0.00 0.00 0.03 (0.02)
case118 api 22.07 17.65 16.04 3.19 (86.91) 19.27 18.74 18.36 4.03 (93.08)
case300 api 3.36 2.68 1.87 1.52 (71.95) 3.43 2.67 2.08 1.75 (74.15)

Table 3.3 presents the performance of the SVM classifiers on the more challenging test
cases. Compared to Table 3.1, it is evident that the api test cases face congestion more fre-
quently. For the smaller cases, the SVMs still perform quite well, with an average accuracy
of over 97%. For case188 api and case300 api, the average accuracy remains around 95%
for both types of uncertainty. However, we observe large variability based on the worst-case
SVM performance, which is more pronounced for case300 api, where the worst-case perfor-
mance is approximately 72% and 66% for uniform and normal distributions, respectively.

Table 3.4 presents the out-of-sample MCI under the more challenging operating condi-
tions, alongside the infeasibility rate for NN-prj. Compared to Table 3.2, we observe an
increase in MCI for larger networks, which is attributed to the more challenging nature of
the underlying problems. This is especially pronounced for case118 api where the number of
lines that face congestion is three times larger than case118. Furthermore, the infeasibility
rate of NN-prj increases significantly for the larger cases, with an average infeasibility rate
of approximately 90% for case118 api and 74% for case300 api, indicating the difficulty in
predicting feasible decisions.

In terms of relative performance, the results are consistent with the previous experi-
ments. Specifically, APTH consistently outperforms APT, while APTH-rlx performs similarly
to APTH and outperforms APT. Interestingly, APTH-rlx even outperforms APTH for case39 api
and normally distributed net loads. When comparing the tree-based models with NN-prj,
we observe that NN-prj performs better only when its infeasibility rate is high. Notably,
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Conclusions

NN-prj leads to significantly lower MCI for case118 api and case300 api for both types of
uncertainty but has a high infeasibility rate in both cases. However, as previously shown
in Fig. 3.6, a high infeasibility rate negates the respective gains of end-to-end learning over
the traditional LP solver in terms of inference speed, making the choice of NN-prj counter-
productive.

3.6 Conclusions

This chapter presented an interpretable approach for end-to-end learning of the solutions to
a constrained optimization problem with feasibility guarantees, with an application to the
DC-OPF problem. We developed prescriptive decision trees that learn a piecewise affine
mapping from varying load data to DC-OPF solutions, using robust optimization to ensure
the feasibility of decisions. We proposed domain-informed, non-orthogonal splits, using a
set of hyperplanes to model the merit order curve and network congestion; for the latter,
we utilized SVM classifiers that model expected line congestion as a function of varying
load data. A comprehensive evaluation was conducted considering a number of test cases,
different types of uncertainty, and various operating conditions. The results highlighted the
efficacy of the proposed domain-informed, non-orthogonal splits, which led to an average
performance increase of 36% compared to tree models using only axis-parallel splits. Further,
shallow prescriptive trees with non-orthogonal splits of maximum depth of 3 outperformed
NN-based benchmarks in approximately 46% of the experiments; a sensitivity analysis with
respect to model complexity illustrated that the performance of prescriptive trees further
improved as their depth increased. The proposed approach was also significantly faster than
a state-of-the-art LP solver. Additional experiments under challenging operating conditions
further validated the efficacy of the proposed approach. Overall, this study highlighted
the benefits of encoding domain knowledge during model development, which not only
achieves comparable performance to black-box, state-of-the-art benchmarks but also enables
interpretability.

Future work may explore mapping contextual information, e.g., calendar variables or
temperature forecasts, to OPF decisions. Another direction to explore is to use non-linear
classifiers that also retain the computational tractability of the proposed policy, e.g., SVMs
with a piecewise linear feature mapping. Finally, we aim to extend the proposed method
to other variations of the DC-OPF problem, e.g., Security Constrained DC-OPF, as well
as other linearized power flow formulations that also consider reactive power and voltage
constraints.
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Chapter 4

Resilient Energy Forecasting
Against Missing Features

Résumé en Français
Les modèles de prévision énergétique déployés dans les applications industrielles sont confrontés

à des incertitudes quant à la disponibilité des données, en raison de la latence du réseau, de dys-
fonctionnements des équipements ou d’attaques contre l’intégrité des données. En particulier, le cas
où un sous-ensemble de données d’entrée qui a été utilisé pour l’apprentissage du modèle devient
indisponible lorsque le modèle est utilisé de manière opérationnelle pose un défi majeur aux perfor-
mances de prévision. Les solutions ad hoc, par exemple, l’apprentissage du modèle en considérant les
données manquantes, peuvent fonctionner pour un petit nombre de données manquantes, mais elles
deviennent rapidement impraticables, car le nombre de modèles augmente de façon exponentielle
avec le nombre de données manquantes. Dans ce travail, nous présentons une approche fondée sur
des principes pour introduire la résilience contre les données manquantes dans les applications de
prévision énergétique via une optimisation robuste. Plus précisément, nous formulons un modèle de
régression robuste qui résiste de manière optimale aux données manquantes au moment du test, en
tenant compte à la fois des prévisions ponctuelles et probabilistes. Nous développons trois méthodes
de solution pour la formulation robuste proposée, toutes conduisant à des problèmes de programma-
tion linéaire, avec des degrés variables de maniabilité et de prudence. Nous fournissons une validation
empirique approfondie des méthodes proposées dans les applications de prévision courantes, à savoir
le prix de l’électricité, la charge, la production éolienne et la production solaire, la prévision, et
nous comparons en outre avec des modèles de référence bien établis et des méthodes de traite-
ment des caractéristiques manquantes, c’est-à-dire, imputation et réapprentissage. Ensuite, nous
appliquons l’approche proposée dans un cadre intégré de prévision-optimisation, dans lequel nous
prévoyons directement les décisions d’un agrégateur d’énergies renouvelables participant aux marchés
de l’électricité. Nos résultats démontrent que l’approche d’optimisation robuste proposée surpasse
les méthodes d’“imputation puis régression” et présente des performances similaires à l’approche de
réapprentissage sans les données manquantes, tout en conservant un cout computationnel faible. À
notre connaissance, il s’agit du premier travail qui introduit la résilience contre les données man-
quantes dans les prévisions énergétiques.

The work in this chapter extends the work previously published in [J1].
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Introduction

4.1 Introduction

Over the last decades, power systems have become increasingly data-centric [5], with short-
term forecasting applications, in particular, being heavily reliant on available data. Short-
term forecasting, ranging from a few minutes to a few days ahead, is key to ensuring the
safe, reliable, and economic operation of modern power systems. It pertains to several
applications, such as load [102], electricity price [103], wind production [104], and solar
production [105], forecasting, which we refer to as energy forecasting [9]. The overarching
goal in all applications is to estimate some characteristics of a target variable, such as the
mean or a set of quantiles, at a future time interval as a function of associated features, which
is subsequently used as input in a decision-making process. For instance, wind production
is associated with wind speed, load is associated with temperature, and so forth.

Arguably, most research on energy forecasting focuses on improving predictive perfor-
mance, which largely depends on data quality and availability. During the development of
the forecasting model, i.e., at training time, potential missing data have either been recov-
ered from a data retrieval mechanism or are treated in a preprocessing step. The implicit
assumption is that input data would be complete and always available during the deploy-
ment of the forecasting model, i.e., at test time. However, real-world industrial applications
may face several operational data management challenges that would emerge only after the
model is deployed [18]. Undoubtedly, missing features in an operational setting, i.e., when
a subset of features used for model training becomes unavailable at test time, may severely
affect forecasting performance and lead to suboptimal decisions. Ideally, models deployed
in industrial applications should be resilient [106], i.e., they should maintain consistent per-
formance, without requiring excessive manual tuning or relying on empirical solutions, in
case data are not available when needed.

There are several reasons that could lead to missing features (or feature deletion), e.g.,
malicious data-integrity attacks, network latency, and sensor failures. In Europe, for in-
stance, system operators must publish, at specific times of day, various day-ahead pre-
dictions and system data, which are subsequently used by stakeholders as input to, e.g.,
electricity price forecasting models. However, a European Commission survey [107] that
assesses the timeliness of data published on the ENTSO-E transparency platform finds that
“for every data domain, fewer than 40% of users reported that data were always there when
needed.” Similarly, a survey by the European Centre for Medium-Range Weather Forecasts
(ECMWF) [108] identifies user dissatisfaction regarding data turnaround of NWP model
forecasts that are used as input to short-term renewable production forecasting. But even if
data are typically provided in a timely fashion, data availability is not 100% guaranteed, and
a robust fallback solution is always desirable if not necessary. Notably, however, uncertainty
with respect to data availability is largely overlooked in the energy forecasting literature.
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4.1.1 Related Work

Missing data at test time is a subject that receives scarce attention, contrary to missing
data for model estimation which has been studied extensively in statistics [109]. For model
estimation, there are several ways to deal with missing data depending on the missingness
mechanism. If data entries are Missing Completely at Random (MCAR), i.e., the probability
of a feature observation missing is independent of the rest of the variables, then observations
with partial information can be ignored (complete case analysis); however, MCAR is a very
strong assumption and complete case analysis does not apply to out-of-sample prediction.
Conversely, data entries might be Missing at Random (MAR), i.e., the fact that a feature
is missing and its (unobserved) value is independent, conditional on the observed features.
Note that MAR still remains a strong assumption that is difficult to verify in practice. In
this case, a valid methodology is to apply an imputation method such as mean imputation
or Multiple Imputation [110] and then proceed with the regression (impute-then-regress),
which, however, may incur a significant computational cost. Alternatively, missing data
can be directly embedded within the learning model [111–113]. Allowing the model to
directly learn from the patterns of missing data is also valid when data are Missing Not
at Random (MNAR), i.e., the fact that a feature is missing depends on its (unobserved)
value; note that imputation methods typically become invalid under MNAR. Nonetheless,
to properly model the missingness mechanism, adaptive models — see, e.g., [111, 113] —
require access to a training data set with missing data. In several applications of interest in
power systems, missing data are retrieved ex-post, and thus training sets are complete, while
the possibility of missing data at test time still remains. For instance, delays in publishing
data on the ENTSO-E transparency platform [107] lead to missing data during prediction;
however, missing data are eventually uploaded and thus the missingness mechanism cannot
be modeled ex-post. Therefore, there is a need to develop energy forecasting models that
are completely agnostic to the missingness mechanism.

In wind power forecasting, [114] examines two methods to handle missing features opera-
tionally, namely retraining without the missing features and impute-then-regress. Retraining
consistently outperforms impute-then-regress and the difference is more pronounced when
data are missing in batches. However, the number of additional models required is the com-
bination of all features, which renders retraining impractical. In contrast, [115] proposes an
iterative approach to jointly impute missing values and derive forecasts for wind power fore-
casting. Similarly to retraining, [116] develops several models to forecast electricity demand
at a household level; given data availability at test time, the appropriate model is selected
from a decision tree. The same approach, i.e., training several models to deal with uncertain
data availability, is also considered in [51] to directly forecast the trading decisions of a re-
newable producer participating in a day-ahead market. An integrated imputation procedure
to replace missing features within a long short-term memory network for solar production
forecasting is presented in [117]; the performance, however, deteriorates as the percentage
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of missing values increases, and no comparison against retraining is provided.

A related stream of research examines energy forecasting under data-integrity attacks,
mostly dealing with uncertainty in the target variable and focusing on training data. Sev-
eral load forecasting models are evaluated in [118] against attacks that affect the training
process by permutating historical observations; none of the models considered provides ad-
equate performance under large-scale attacks. A subsequent work [119] leverages robust
statistics and shows that selecting the ℓ1 norm as the loss function proves resilient even
under large-scale attacks. Similarly, [120] studies the robustness of short-term wind pro-
duction forecasting models under false-data injection attacks, considering both point and
probabilistic forecasts. Conversely, [121] formulates a poison attack methodology to exploit
load forecasting models. Tangentially related to data-integrity attacks on load forecast-
ing are works on outlier detection [122–124], which focus on identifying attacks that have
occurred and replacing any corrupt data. On the other hand, [125] and [126] consider
adversarial attacks at test time applied to load forecasting. Specifically, [125] shows that
manipulating temperature values at test time leads to a significant decrease in accuracy
and increased operational costs, whereas [126] employs Bayesian learning to enhance the
robustness of deep-learning-based models under several adversarial attacks.

One way to view data-integrity attacks is as processes that introduce feature uncertainty;
the same also applies to the case of missing features. Indeed, advanced forecasting models
are typically cognizant of some form of feature uncertainty, even if this is unknown to the
forecaster, and address it with regularization, e.g., ℓ1-regularized (lasso) regression [127]
or ℓ2-regularized (ridge) regression. Introducing randomness during training also enhances
model robustness; popular methods include bagging and sampling a subset of features,
as in randomized ensembles such as Random Forests [56], using dropout layers in deep
learning models, and generative adversarial networks, among others. In fact, [126] shows
that regularization and treating model parameters as random variables increase robustness
in load forecasting applications. Interestingly, a big part of the success of regularization
methods is their “hidden” robustness. For example, both the ℓ1-regularized [128] and the
ℓ2-regularized [129] regressions are equivalent to the solution of robust optimization problems
[130]. Beyond regularized regression, several applications of robust optimization in different
machine learning areas exist [131], such as classification [132] and deep learning [133]. We
highlight [134], which describes a robust learning support vector machine algorithm for
classification where a different set of features might be missing at each observation, as a
core foundation of our current work. Uniform feature deletion, i.e., the same features missing
across all observations, is considered as an alternate setting in [134], which is deemed as not
efficiently solvable, except for a small number of features through enumeration. Notably,
the connection between feature uncertainty, robust optimization, and regularization is rarely
discussed in the context of energy forecasting.
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4.1.2 Aim and Contribution

In this chapter, we present a robust optimization approach to design energy forecasting
models that are optimally resilient when a subset of features used for model training be-
comes unavailable at test time. We formulate a robust regression model, readily applicable
to point and probabilistic forecasting, which minimizes the worst-case loss when a subset of
features is missing. We present three solution methods for the resulting robust optimization
formulation considering the quantile loss, all leading to LP problems: (i) a method based
on enumeration, which is practical for a small number of features; (ii) a deterministic refor-
mulation, which, although tractable, provides conservative results thus being more suitable
for the main setting of [134] with different features missing across observations, and (iii)
an affinely adjustable reformulation [135], which offers an efficient solution method to the
uniform feature deletion setting of [134], remains tractable, and is less conservative than the
previous method. We further consider extensions to piecewise linear loss functions, which
can be used to approximate quadratic, and in general convex, loss functions, and to the
setting of integrated forecasting and optimization. We first evaluate the proposed methods
in prevalent energy forecasting applications, namely electricity price, load, wind production,
and solar production, forecasting, considering a day-ahead horizon. Next, we provide further
validation in two additional case studies: wind production forecasting in an intra-hour hori-
zon and directly forecasting the trading decisions of a renewable producer participating in a
day-ahead market [51]. We compare the proposed approach against established benchmark
models, including regularization and randomization-based training, coupled with different
methods of handling missing data, i.e., imputation and retraining. We demonstrate that
the proposed approach outperforms impute-then-regress models and exhibits similar per-
formance to retraining without the missing features, while preserving practicality. Notably,
by evenly distributing coefficient weights across features during training, it hedges against
missing the most important feature at test time.

Our main contribution is two-fold. Firstly, we propose a robust regression model that is,
by design, resilient against missing features at test time, with the following key advantages:
(i) leads to consistent performance and lower model degradation when features are missing,
including the worst-case scenario of missing the most important feature, (ii) is agnostic to
the missingness mechanism, and (iii) offers computational tractability through LP reformu-
lations, which can also be applied to approximations of quadratic, and in general convex,
loss functions. Secondly, we benchmark against current state-of-the-art forecasting models
and methods to handle feature uncertainty for both point and probabilistic forecasting, and
quantify the aforementioned advantages in several prevalent energy forecasting applications,
as well as, an application on trading renewable production in electricity markets. To the
best of our knowledge, this is the first work that introduces resilient energy forecasting and
benchmarks against missing features at test time, a situation that may emerge in industrial
applications after the forecasting model is deployed.
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Preliminaries and Proposed Model

4.1.3 Chapter Outline

The remainder of this chapter is organized as follows. Section 4.2 presents the mathemat-
ical background and the proposed model. Section 4.3 develops the solution methodology.
Section 4.4 presents the experimental setup and the input data and discusses the numerical
results for the energy forecasting case study. Section 4.5 presents additional numerical ex-
periments in two case studies, namely feature-driven trading of renewable production in a
day-ahead market and wind production forecasting in a very short-term horizon. Section 4.6
concludes and provides directions for future work.

4.2 Preliminaries and Proposed Model

In this section, we present preliminaries on linear regression (in Subsection 4.2.1), describe
the process of modeling feature uncertainty (in Subsection 4.2.2), and present the proposed
robust formulation (in Subsection 4.2.3).

4.2.1 Preliminaries

Let yi ∈ R be the target variable (e.g., electricity prices, load, wind/solar production) and
xi ∈ Rp be a p-size vector of associated features from a set P = {1, . . . , p} (e.g., weather
data, historical data), with subscript i denoting an observation from a training data set
{(yi, xi)}ni=1 of n observations. Throughout, the term [n] is used as shorthand for {1, . . . , n}.
A regression model is defined as a mapping function f ∈ F : x ∈ Rp −→ y ∈ R, where F
is a hypothesis space. Here, we focus exclusively on linear models parameterized by a set
of coefficients w ∈ Rp. To ease the notation, we assume that the bias term is modeled by
appending a constant vector of ones to x. The problem of estimating the parameters of a
linear regression model is given by:

min
w

∑︂
i∈[n]

l(yi −w⊺xi), (4.1)

where l is the selected loss function to be minimized 1. Typical choices are the quadratic
loss l(·) = (·)2, which leads to a Least Squares (LS) model, and the ℓ1 norm l(·) = | · |, which
leads to a Least Absolute Deviations (LAD) model.

Both the LS and the LAD models are employed to derive point estimates of the target
variable. Dealing, however, with uncertainty necessitates the usage of probabilistic forecasts
as an input in many decision-making processes. Quantile Regression (QR) [136] is a general
approach to derive probabilistic forecasts in the form of predictive quantiles. A QR model

1Note that the linear regression model can straightforwardly accommodate nonlinear dependencies by
considering polynomial terms, local weights, etc.
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minimizes the quantile (pinball) loss for a specific quantile τ , defined as:

l(yi −w⊺xi; τ) = τ(yi −w⊺xi)+ + (1− τ)(w⊺xi − yi)+

= max (τ(yi −w⊺xi), (τ − 1)(yi −w⊺xi)) , (4.2)

where (t)+ = max(0, t). In fact, the ℓ1 loss can be viewed as a special case of the quantile
loss estimating the 50-th quantile (median). This is straightforward to show considering
that |x| = max(x,−x), τ = 0.5, and that scaling the objective does not affect the solution.

4.2.2 Modeling Feature Uncertainty

Our goal is to formulate a robust regression model, which accounts for missing features after
model deployment (i.e., at test time) and maintains consistent performance. To this end,
we introduce binary variables α ∈ {0,1}p and model the availability of the i-th feature
observation as xi ⊙ (1−α), where ⊙ is the element-wise multiplication, and αj equals 1 if
the j-th feature is missing (i.e., missing features are set to zero).

At this point, there are two issues that relate to energy forecasting applications that
warrant a discussion.

First, in practice, some features cannot be deleted at test time. It makes little sense
to delete, e.g., calendar variables, which are regularly employed in energy forecasting. Let
J ⊆ P denote the subset of features that can be deleted at test time, and C = P−J denote
the set of features that cannot be deleted. It is straightforward to account for this case by
setting αj = 0 ∀j ∈ C, therefore features in C cannot go missing.

Second, a standard technique to model nonlinear relationships within a linear regression
is to include polynomial and interaction terms of associated features. A classic example in
energy forecasting is to add quadratic and cubic terms of temperature in load forecasting
models [137]. It follows that all features derived from the same variable should be treated
as a group of features (i.e., if missing, they are all missing).

We address both the aforementioned issues by enforcing a set of equality constraints,
Mα = 0, where M ∈ Rm×p. Namely, if the first feature cannot be deleted (i.e., α1 = 0),
then the row vector [1,0] is appended to M . Similarly, if α1 = α2, i.e., they represent a
group of features, then [−1, 1,0] is appended to M .

Following the above, we consider the discrete uncertainty set:

U = {α
⃓⃓
α ∈ {0,1}p,

∑︂
j∈[p]

αj = Γ,Ma = 0}, (4.3)

that models the representation of feature availability, where Γ (integer) is the budget of
robustness (for Γ = 0, all features are present, whereas for Γ = p all features are missing).

4.2.3 Proposed Robust Formulation

The proposed robust formulation employs the representation of the availability of the i-th
feature observation xi⊙ (1−α), and builds a robust regression model using the uncertainty
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set (4.3), as follows:
min

w
max
α∈U

∑︂
i∈[n]

l
(︁
yi −w⊺(xi ⊙ (1−α))

)︁
. (4.4)

Inspired by [134], we refer to model (4.4) as Feature-Deletion Robust Regression (FDRR).
The problem objective is to minimize the worst-case loss when Γ features are missing,
assuming that the same features are missing across all observations2, while also respecting
additional constraints arising from the fact that a subset of features could not be deleted or
that different features might be grouped. In the latter case, Γ is selected appropriately to
account for feature groups.

Interestingly, minimizing the worst-case loss when a subset of features is missing (4.4)
shares many similarities with feature selection and feature importance. On one hand, fea-
ture selection concerns methods to improve out-of-sample predictive accuracy by optimally
selecting a feature vector. Usually, this involves gradually adding features to the model.
Intuitively, a feature that improves performance will also have a significant impact when
deleted; however, the problems are not equivalent. Feature importance, on the other hand,
concerns post-hoc methods to assess the individual feature contribution to model perfor-
mance, with the goal to improve explainability — see, e.g., the permutation importance
metric proposed in [56]. Notably, our proposal effectively optimizes the model based on
feature importance by design.

Next, we consider (4.4), using the quantile loss, which, along with its special case —
the ℓ1 loss — are of particular interest in energy forecasting applications. Hence, using
the quantile loss representation (4.2) in (4.4), we obtain the following robust optimization
problem:

min
w

max
α∈U

∑︂
i∈[n]

max
(︂
τ(yi −w⊺(xi ⊙ (1−α))),

(τ − 1)(yi −w⊺(xi ⊙ (1−α)))
)︂
. (4.5)

Note that setting τ = 0.5 and scaling the objective would yield the robust formulation for
the ℓ1 regression:

min
w

max
α∈U

∑︂
i∈[n]

⃓⃓
yi −w⊺(xi ⊙ (1−α))

⃓⃓
.

For practical reasons, we can recast (4.5) using a robust constraint, introducing auxiliary
t ∈ R, as follows:

min
w,t

t, (4.6a)

s.t.
∑︂
i∈[n]

max
(︂
τ(yi −w⊺(xi ⊙ (1−α))),

(τ − 1)(yi −w⊺(xi ⊙ (1−α)))
)︂
≤ t, ∀α ∈ U , (4.6b)

2Note that [134] considers the case where different features are missing across observations, which leads
to a more conservative problem.
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which involves an inequality that contains the sum of maxima of linear functions. Indeed,
in a deterministic setting, i.e., in the absence of ∀α ∈ U , constraint (4.6b) could be straight-
forwardly and, most importantly exactly, reformulated using auxiliary variables. Consider
a specific instance of α, say αk. Then, the deterministic reformulation of (4.6b) would be:

min
w,t,ξ

t, (4.7a)

s.t.
∑︂
i∈[n]

ξi ≤ t, (4.7b)

τ(yi −w⊺(xi ⊙ (1−αk))) ≤ ξi, i ∈ [n], (4.7c)

(τ − 1)(yi −w⊺(xi ⊙ (1−αk))) ≤ ξi, i ∈ [n], (4.7d)

where ξi ∈ R is an auxiliary variable, and ξ an appropriate vector. However, care must be
given when applying deterministic reformulations in a robust setting, as they could lead to
over-conservative solutions [135]. It is interesting to note that (4.7) is essentially equivalent
to “retraining” for a specific combination of missing features. In fact, repeating (4.7) for all
elements of all sets U constructed by the admissible values of Γ = {0, . . . , |J |} retrieves the
solution proposed in [51, 114, 116], i.e., retraining without the missing features.

Before proceeding to the solution methods of (4.6), let us revisit the uncertainty set, U ,
and consider its convex hull, represented by the polyhedral uncertainty set, A,

A = {α
⃓⃓
0 ≤ α ≤ 1,

∑︂
j∈[p]

αj = Γ,Ma = 0}. (4.8)

Note that M is unimodular, as all of its entries are 0, 1 or −1, and at most two entries per
column are non-zero, at which case the column-wise sum is zero. Since Γ is also an integer,
all vertices ofA occur at integer values, therefore the LP relaxation of the inner max problem
over α in (4.5) is exact. Evidently, replacing U by its convex hull A in constraint (4.6b)
also yields equivalent solutions [138, Ch. 10].

4.3 Solution Methods

In this section, we present three methods to solve the robust optimization problem (4.6),
namely, we describe a method suitable for a small number of features (in Subsection 4.3.1),
we present two reformulation methods that lead to tractable problems (in Subsections 4.3.2
and 4.3.3), and we discuss extensions to piecewise linear loss functions and an integrated
forecasting and optimization setting (in Subsections 4.3.4 and 4.3.5).

4.3.1 Vertex Enumeration of FDRR (FDRR-V)

Typically, most energy forecasting problems have relatively large sample sizes (e.g., n is
in the order of 104 for series with hourly resolution) compared to the number of features,
i.e., n >> p. Hence, if the number of features is small, problem (4.6) could be solved by
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vertex enumeration of the uncertainty set A. In fact, since all vertices of A are contained
in the original finite set U , vertex enumeration of A is equivalent to an enumeration of the
elements of U .

Let V denote the number of elements of U , equivalently the number of vertices of A;
assuming no grouping constraints, V =

(︁|J |
Γ

)︁
(grouping constraints would further reduce V ).

Let ξk
i be an auxiliary variable, for each i ∈ [n] and each vertex k ∈ [V ]. Constraint (4.6b)

is equivalently written as:∑︂
i∈[n]

ξk
i ≤ t, k ∈ [V ], (4.9a)

yi −w⊺(xi ⊙ (1−αk)) ≤ 1
τ ξk

i , i ∈ [n], k ∈ [V ], (4.9b)

− yi + w⊺(xi ⊙ (1−αk)) ≤ 1
1−τ ξk

i , i ∈ [n], k ∈ [V ], (4.9c)

where constraints (4.9a)–(4.9c) essentially enumerate the deterministic reformulation (4.7b)–
(4.7d) for all vertices. Hence, the solution of FDDR by vertex enumeration, referred to as
FDRR-V, is given by the following deterministic LP problem:

FDRR-V: min
w,t,ξ

t, s.t. (4.9a)− (4.9c), (4.10)

where ξ is an appropriate vector that represents variables ξk
i . FDRR-V ensures that the

worst-case α remains the same across all observations and leads to an exact solution of
(4.6). Evidently, for a specific realization of uncertainty, say αk, retraining — see (4.7) —
sets a lower bound to the in-sample error of FDRR-V, which subsumes all individual cases.
However, if the number of features is not small enough, unavoidably V gets large enough to
render both retraining and FDRR-V at least impractical, in terms of models to be trained
and LP problems to be solved, respectively.

4.3.2 Reformulation of FDRR (FDRR-R)

An alternative approach is to first apply deterministic reformulation to the maxima terms
in (4.6b), leading to:∑︂

i∈[n]
ξi ≤ t, (4.11a)

yi −w⊺(xi ⊙ (1−α)) ≤ 1
τ ξi, i ∈ [n], ∀α ∈ A, (4.11b)

− yi + w⊺(xi ⊙ (1−α)) ≤ 1
1−τ ξi, i ∈ [n], ∀α ∈ A. (4.11c)

In turn, (4.11b)-(4.11c) are further reformulated to deterministic constraints. Since both
constraints are similar, we illustrate the reformulation for (4.11b).

Changing the order of multiplication in the left-hand side of (4.11b), and considering
that the inequality holds ∀α ∈ A, i.e., the worst-case of α, constraint (4.11b) is equivalent
to:

yi −w⊺xi + max
α∈A

(w⊙ xi)⊺α ≤ 1
τ ξi, i ∈ [n]. (4.12)
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The inner max in (4.12) can be written with explicit constraints, for the i-th observation,
as follows:

max
α

(w⊙ xi)⊺α, (4.13a)

s.t. α ≤ 1 : µ+
i ≥ 0, (4.13b)∑︂

j∈[p]
α = Γ : ζ+

i , (4.13c)

Mα = 0 : π+
i , (4.13d)

α ≥ 0, (4.13e)

where µ+
i , ζ+

i ,π+
i are dual variables of appropriate size. Since problem (4.13a) is linear in

α, it can be replaced by its dual:

min
µ+

i ≥0,ζ+
i ,π+

i

∑︂
j∈[p]

µ+
ij + Γζ+

i , (4.14a)

s.t. µ+
i + ζ+

i + M⊺π+
i ≥ xi ⊙w, (4.14b)

and hence, the inner max in (4.12) can be replaced by (4.14). Evidently, the min operator
becomes redundant. Hence, constraint (4.11b) is replaced by the following inequalities:

yi −w⊺xi +
∑︂
j∈[p]

µ+
ij + Γζ+

i ≤ 1
τ ξi, i ∈ [n], (4.15a)

µ+
i + ζ+

i + M⊺π+
i ≥ xi ⊙w, i ∈ [n], (4.15b)

µ+
i ≥ 0, i ∈ [n]. (4.15c)

Similarly, constraint (4.11c) is replaced by:

− yi + w⊺xi +
∑︂
j∈[p]

µ−
ij + Γζ−

i ≤ 1
1−τ ξi, i ∈ [n], (4.15d)

µ−
i + ζ−

i + M⊺π−
i ≥ −xi ⊙w, i ∈ [n], (4.15e)

µ−
i ≥ 0, i ∈ [n]. (4.15f)

Summarizing, the reformulation of the FDRR, referred to as FDRR-R, yields the fol-
lowing deterministic LP problem:

FDRR-R: min
w,t,ξ,

µ+,µ−,ζ+,ζ−,π+,π−

t, s.t. (4.15a)− (4.15f). (4.16)

Note, however, that the uncertainty is now spread over several constraints, separately
optimizing the worst-case loss of each observation. This worst-case loss may occur for dif-
ferent α per observation, i.e., different features might be missing at each observation, which
leads to the representation of uncertainty considered in [134]. When modeling feature uncer-
tainty in Section 4.2.2, however, we assumed the same α across all observations. Evidently,
FDRR-R considers a more general case and thus provides a conservative approximation of
(4.6), which is more pessimistic.

81



Solution Methods

4.3.3 Affinely Adjustable Reformulation of FDRR (FDRR-AAR)

The conservativeness introduced by the reformulation of the maxima terms is reduced using
adjustable auxiliary variables [135]. As ξi is not a true decision variable, it may be adjusted
to the realization of α as long as inequalities (4.11b) and (4.11c) hold. To this end, we
introduce linear decision rules vi ∈ R,ui ∈ Rp, and substitute ξi = vi + u⊺

i α, i.e., ξi is an
affine function of uncertainty. Constraint (4.6b) is written as:∑︂

i∈[n]
(vi + u⊺

i α) ≤ t, ∀α ∈ A, (4.17a)

yi −w⊺(xi ⊙ (1−α)) ≤ 1
τ (vi + u⊺

i α), i ∈ [n], ∀α ∈ A, (4.17b)

− yi + w⊺(xi ⊙ (1−α)) ≤ 1
1−τ (vi + u⊺

i α), i ∈ [n], ∀α ∈ A, (4.17c)

Similarly to (4.12), constraint (4.17a) is equivalent to:∑︂
i∈[n]

vi + max
α∈A

∑︂
i∈[n]

u⊺
i α ≤ t,

and introducing dual variables µ, ζ, and π (similarly to (4.13b), (4.13c), and (4.13d),
respectively), constraint (4.17a) is replaced by:∑︂

i∈[n]
vi +

∑︂
j∈[p]

µj + Γζ ≤ t, (4.18a)

µ + ζ + M⊺π ≥
∑︂
i∈[n]

ui, (4.18b)

µ ≥ 0. (4.18c)

Constraint (4.17b) is equivalent to:

yi −w⊺xi + max
α∈A

(xi ⊙w− 1
τ ui)⊺α ≤ 1

τ vi, i ∈ [n],

and similarly to (4.12), constraint (4.17b) is replaced by:

yi −w⊺xi +
∑︂
j∈[p]

µ+
ij + Γζ+

i ≤ 1
τ vi, i ∈ [n], (4.19a)

µ+
i + ζ+

i + M⊺π+
i ≥ xi ⊙w− 1

τ ui, i ∈ [n], (4.19b)

µ+
i ≥ 0, i ∈ [n], (4.19c)

whereas constraint (4.17c) is replaced by:

− yi + w⊺xi +
∑︂
j∈[p]

µ−
ij + Γζ−

i ≤ 1
1−τ vi, i ∈ [n], (4.20a)

µ−
i + ζ−

i + M⊺π−
i ≥ −xi ⊙w− 1

1−τ ui, i ∈ [n], (4.20b)

µ−
i ≥ 0, i ∈ [n]. (4.20c)

Lastly, the affinely adjustable reformulation of the FDRR (FDRR-AAR) is equivalent
to the following deterministic LP problem:
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FDRR-AAR: min
w,t,v,u,µ,µ+,µ−,
ζ,ζ+,ζ−,π,π+,π−

t, s.t. (4.18a)− (4.20c). (4.21)

Note that we are still optimizing over the worst-case loss per observation, hence FDRR-
AAR is a conservative approximation of (4.6). However, allowing for adjustable auxiliary
variables reduces the induced conservativeness compared to FDRR-R. On the other hand,
FDRR-AAR leads to a tractable LP problem, contrary to FDRR-V which leads to an LP
problem whose size grows combinatorially. This trade-off between tractability and conser-
vativeness places FDRR-AAR as an intermediate solution between FDRR-V and FDRR-R.

4.3.4 Extension to Piecewise Linear Loss Functions

In what follows, we discuss an extension of our proposal to piecewise linear loss functions.
Consider a piecewise linear loss function

l(y −w⊺x; c, b) = max
j=1,...,m

(cj(y −w⊺x + bj)), (4.22)

parameterized by the m-size vectors c, b. Note that the quantile loss is a special case of
(4.22), where m = 2, c = [τ, τ − 1]⊺, and b = 0. Using the piecewise linear loss function
(4.22), the FDRR model (4.6) becomes

min
w,t

t,

s.t.
∑︂
i∈[n]

max
j∈[m]

(︂
cj(yi −w⊺(xi ⊙ (1−α)) + bj)

)︂
≤ t, ∀α ∈ U ,

which can be solved with any of the proposed solution methods. For the solution with vertex
enumeration, FDRR-V, we enumerate the deterministic reformulation for all vertices and
all m vectors; hence, (4.9b)-(4.9c) are replaced by

cj(yi −w⊺(xi ⊙ (1−αk)) + bj) ≤ ξk
i , i ∈ [n], k ∈ [V ], j ∈ [m].

For FDRR-R, (4.11b)-(4.11c) are replaced by

cj(yi −w⊺(xi ⊙ (1−α)) + bj) ≤ ξi, i ∈ [n], j ∈ [m],∀α ∈ A,

which are further reformulated to deterministic constraints similarly to (4.11b)-(4.11c) —
see (4.15). For FDRR-AAR, (4.17b)-(4.17c) are replaced by

cj(yi −w⊺(xi ⊙ (1−α)) + bj) ≤ (vi + u⊺
i α), i ∈ [n], j ∈ [m], ∀α ∈ A,

which are further reformulated similarly to (4.11b)-(4.11c) — see (4.19) and (4.20).
The piecewise linear loss functions can be used to approximate quadratic, and in general

convex, loss functions. Consider for example an FDRR model with a quadratic loss (LS).
It is straightforward to solve the robust regression model with vertex enumeration, but this
approach is only practical for a small number of features. For a larger number of features,
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it is not straightforward to reformulate the robust problem, as the quadratic loss leads
to robust constraints that are quadratic in α and thus more challenging to handle — see
[67, Ch. 16]. Hence, a reasonable approach would be to use a piecewise linear function to
approximate the quadratic loss and solve the resulting robust problem as described above.
In general, the piecewise linearization becomes relevant in first-order approximations of the
loss function, e.g., in the context of adversarial training [139].

4.3.5 Extension to Integrated Forecasting-Optimization

We further discuss an extension of our proposal to the case of directly forecasting the
decisions of an optimization problem.

From Chapter 2, recall the definition of a contextual stochastic optimization problem
given by

min
z∈Z

Ey[c(z; y)|x = x0], (4.26)

where z ∈ Rdz denotes the decision vector, Z is a convex set of feasible solutions, c(·) is a
convex cost function, y denotes the uncertain problem parameter3, x denotes associated con-
textual information (features), and the expectation is taken with respect to the distribution
of y conditioned on x = x0.

Given a training data set {(yi, xi)}ni=1 of n observations, we consider a feature-driven
policy function f that maps contextual information x to decisions z, i.e., directly forecasting
the problem solutions. If f belongs to the class of linear models, one approach to find the
set of linear coefficients w that minimize the in-sample decision cost is given by

min
w

∑︂
i∈[n]

c(w⊺xi; yi), (4.27a)

s.t. w⊺xi ∈ Z, i ∈ [n], (4.27b)

where z is replaced with a linear decision rule and (4.27b) ensures that in-sample decisions
are feasible. An alternative approach would be to include constraint violation penalties
in the objective function, as proposed in [140]. For an out-of-sample observation, say x0,
the optimal solution is computed directly from z0 = w⊺x0, which is highly efficient and
effectively bypasses the need for an optimization solver. However, as there is no guarantee
that z0 will be feasible, an additional projection step onto the feasible set Z might be
required.

Evidently, if a subset of features is unavailable at test time, the decision quality of (4.27)
will also be affected. We consider an extension of the proposed FDRR (4.6) to the case where

3For simplicity, we assume y is scalar here.
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we directly forecast decisions, given by

min
w,t

t, (4.28a)

s.t.
∑︂
i∈[n]

c(w⊺(xi ⊙ (1−α)); yi) ≤ t, ∀α ∈ U , (4.28b)

w⊺(xi ⊙ (1−α)) ∈ Z, i ∈ [n],∀α ∈ U . (4.28c)

Effectively, we are searching for a feature-driven policy that minimizes the worst-case de-
cision cost when Γ features are missing. Constraint (4.28c) ensures that the in-sample
decisions are feasible for all realizations of α. In practice, as the feasibility of a forecast
decision depends on x, we propose relaxing (4.28c) during training. Then, as discussed in
Section 4.3.4, we can use a piecewise linear function to approximate the convex loss c(·) and
subsequently solve the resulting problem using the proposed solution methods.

We further consider the special case of the newsvendor problem [51] where the cost
function and feasible set are given by

c(z; y) = p(y − z)+ + q(z − y)+, Z = {z | 0 ≤ z ≤ 1},

respectively, and p, q denote the respective costs of under/over-estimating y. In the con-
text of electricity markets, the newsvendor problem can be used to model the problem of
offering renewable production in a day-ahead electricity market with a dual-price balanc-
ing mechanism, assuming offers are normalized by the nominal capacity. In this case, p, q

corresponds to the absolute values of the (expected) upward and downward unit regulation
costs, respectively.

Given a set of associated features x, we can derive a feature-driven policy for the
newsvendor problem by replacing z with w⊺x. Observe that the cost function of the
newsvendor problem is equivalent to a quantile loss (4.2) with τ = p

p+q . Therefore, we
can further robustify this feature-driven policy against missing features at test time and
directly apply the proposed solution methods.

4.4 Energy Forecasting with Missing Data

In this section, we present the experimental setup and list the input data for several energy
forecasting applications (in Subsection 4.4.1) and discuss the numeral results (in Subsection
4.4.2).

4.4.1 Problem Description, Experimental Setup, and Input Data

We examine four prevalent energy forecasting applications, namely (i) electricity price, (ii)
load, (iii) wind production, and (iv) solar production, forecasting in a day-ahead horizon.
We assume that data arrive in batches once per day and our objective is to generate forecasts
12 to 36 hours ahead. This setting is typical in applications related to electricity market
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participation and operational management in power systems, such as clearing the day-ahead
market.

For the numerical experiments, we first select a set of features that lead to good perfor-
mance in a linear regression model following known best practices. We then train several
benchmarks with the same set of features, including both linear regression models and ma-
chine learning models with randomization-based training (e.g., Random Forest),4 which are
known to perform well in energy forecasting applications. We compare their out-of-sample
performance under feature deletion to the proposed FDRR and retraining without the miss-
ing features. Evidently, our goal is not to search for improved forecast accuracy, but rather
for resilient energy forecasting, i.e., to examine the robustness of the models.

For point forecasting, we test the following models:

• LS: an LS regression.

• LAD: an LAD regression.

• LS-ℓ1\ℓ2: an LS regression with ℓ1 (lasso) or ℓ2 (ridge) regularization penalties.

• RF: a Random Forest model.

• RETRAIN [114]: an LAD regression is retrained for each combination of missing features,
in total ∑︁|J |

k=0
(︁|J |

k

)︁
times. To facilitate comparisons with the proposed approach, we

use LAD instead of LS models to derive equivalent performance when Γ is 0 or |J |.

• FDRR(Γ): a robust regression with ℓ1 loss, and robustness budget Γ.

For probabilistic forecasting, we test the following models:

• QR: a quantile regression.

• QR-ℓ1: a quantile regression with ℓ1 regularization.

• QRF: a QRF [70] model, a generalization of Random Forests.

• FDRR(Γ): a robust regression with quantile loss, and robustness budget Γ.

For the models that cannot handle missing values directly, i.e., LS-type, LAD, RF, QR-
type, and QRF, we follow the impute-then-regress approach with mean imputation, setting
missing features at their in-sample mean. We purposefully choose mean imputation as a
simple method that is suitable for an operational setting, 5 thus avoiding complicated and

4We opt for tree-based ensembles over other machine learning models (e.g., neural networks) as they
showcase exceptionally good performance in regression settings with minimal tuning effort, which makes
them ideal benchmarks [141].

5In practice, missing data might be replaced by correlated features (which may have been removed during
feature selection), if such are available, e.g., data from nearby locations. Practitioners may also apply
imputation methods that rely on their experience, whose performance is assessed empirically for a specific
forecasting application.
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computationally costly methods, which may not add in terms of predictive performance —
see e.g., [113] for a discussion in a similar context with missing data. For LS-ℓ1\ℓ2 and RF,
we use 5-fold cross-validation on the training data for hyperparameter tuning. We select
the hyperparameters with the lowest cross-validation error via grid search, and we retrain
each model using the full train set. The same hyperparameter values are subsequently used
in the probabilistic case for QR-ℓ1 and QRF, respectively. For FDRR(Γ), missing values are set
to zero, and a different model is trained for each value of Γ. To ease the notation, FDRR

refers to the group of models trained over all Γ. Clearly, as the number of missing features is
known prior to derive out-of-sample forecasts, we use FDRR with Γ set at the exact number of
missing features. By definition, FDRR(0) is equivalent to an LAD model. In addition, FDRR

and RETRAIN are equivalent for Γ = 0 and Γ = |J |. In all cases, data are scaled between
[0, 1] prior to training. Lastly, to derive probabilistic forecasts a different model is trained
per quantile τ in all cases except for QRF.

To evaluate performance we use standard error metrics. For point forecasting, we use
the MAE for electricity price and wind/solar production (both normalized with respect
to nominal capacity), and the Mean Absolute Percentage Error (MAPE) for load. For
probabilistic forecasting, we use the average pinball loss on 9 equally spaced quantiles, i.e.,
τ ∈ {0.1, . . . , 0.9}.

Table 4.1: Overview of the data sets.

Data set (# series) Source n |P| |J |

Electricity Prices (1) [69] 13140 9 5
Load (21) [142] 16200 625 4×111
Wind (10) [143] 8807 13 2×4
Solar (3) [143] 8784 13 12

Regarding the input data, Table 4.1 provides an overview of the selected data sets. For
each energy forecasting application, it shows the number of series, the source, the training
sample size, n, and the sizes of the sets P and J . Note that the bias (intercept) term
is included in P and cannot be deleted. Further, all cases involve features that capture
seasonality and cannot be deleted. Thus, when Γ = |J |, FDRR leads to a model that
captures the seasonal component of each series.

• Electricity prices: We use hourly data from the French electricity market, spanning
the period 2017-2019, with a 50/50 training/test split. Features include calendar
variables (cannot be deleted), historical price lags, and published data from the system
operator, namely net load forecast (demand minus renewable production) and system
margin (ratio of net load and available thermal generation). For historical lags, we
examine the PACF and select lags that are significant at the 5% level.

87



Energy Forecasting with Missing Data

• Load: We use data from GEFCom 2012 [142], comprising 4.5 years of hourly load and
temperature data from a US utility with 21 zones. Following [118, 119], 3 full years of
data are used with a 75/25 training/test split. We construct the input feature vector
according to the vanilla model [137], which includes a linear trend, calendar variables
(one-hot encoded), polynomial terms of temperature, and interaction terms of the
above, with a total of 292 features. We consider 4 distinct groups of features based on
temperatures from different stations and examine performance under group deletion;
this leads to 625 features in total and 111 features per group. Clearly, the subset of
features that cannot be deleted (trend and calendar variables) is included only once.
The results presented concern zone 21 (aggregate demand) using temperatures from
stations 1-3 and a fictitious station with the average temperature across all stations.

• Wind production: We use data from GEFCom2014 [143], comprising 2 years of
hourly production data from 10 wind farms, and apply a 50/50 training/test split.
Following [120], the selected features include wind speed forecasts, with quadratic and
cubic terms, wind direction forecasts (both at 10m and 100m), and Fourier terms to
model the diurnal patterns (these cannot be deleted). Forecasts of both wind speed
and direction are derived from forecasts of the U- and V-speed components for each
height level; thus, if either is missing, all derivative features will be missing. We
consider two groups of features that include wind speed and wind direction at 10m
and 100m and assume that these can be missing independently. The results presented
concern zone 1 of the data set.

• Solar production: We use data from GEFCom2014 [143], comprising 2 years of
hourly production data from 3 PV plants located in Australia and 12 NWP variables,
including precipitation, solar radiation, and temperature — see [143] for detail, and
apply a 50/50 training/test split. We train a separate model for each hour of the day
(except for RF, QRF) using the respective NWP model forecasts as input features, and
assume that each NWP variable could be missing independently. Only hours with
non-zero solar radiation are considered. The results presented concern zone 1 of the
data set.

4.4.2 Numerical Results

In this section, we evaluate the FDRR solution methods, we compare FDRR with various
benchmarks, and we perform a sensitivity analysis with respect to the number of observa-
tions with missing features. All FDRR solutions are solved with GUROBI using the Python
API.

88



1 2 3 4

8

10

12

 (E
U

R
/M

W
h)

V = 5

V = 10
V = 10

V = 5Electricity Prices

1 2 3

6

7

8

PE
 (%

)

V = 4

V = 6

V = 4Load

1 3 5 7 9 11

4

5

6

7

E 
(%

)

V = 12

V = 220 V = 792 V = 792 V = 220 V = 12Solar

1

14

15

16

E 
(%

) V = 4

Wind

FDRR-V FDRR-R FDRR-AAR

Figure 4.1: Average point forecasting error for all combinations of missing features. Bars
indicate the range and V indicates the number of vertices per Γ.

Evaluation of FDRR Solution Methods

In this subsection, we assess the solution methods presented in Section 4.3, namely FDRR-V,
FDRR-R, and FDRR-AAR, by iterating over all eligible combinations of missing features and
deleting the respective feature observations from the test set.

Fig. 4.1 plots the average value (per Γ) and range of the point forecast error metrics,
for each solution method, in the four energy forecasting applications. Note that for each
value of Γ, we evaluate the methods for the same number of features missing at test time.
To avoid cluttering, we only show the odd (and omit the even) values of Γ in the solar
production forecasting plot. Unsurprisingly, we observe that the accuracy for each solution
method decreases on average as Γ increases, i.e., as more features are missing. Recall that
for Γ = 0, FDRR is a standard LAD, whereas for Γ = |J | all features in J are ignored,
i.e., coefficients are set to zero; hence the three methods are equivalent in these cases (not
shown in the plots).

The results in Fig. 4.1 indicate a similar performance on average for the three methods,
with the exception of FDRR-R in electricity price forecasting — see top for Γ = 4 — and solar
production forecasting — see bottom. As the number of eligible combinations increases,
FDRR-R becomes overly conservative, setting all coefficients in J to zero, which in turn
decreases the accuracy. For example, in solar production forecasting, FDRR(3)-R becomes
equivalent to FDRR(|J |)-R, which explains the plateau as Γ increases further. Notably,
FDRR-V and FDRR-AAR provide similar performance in terms of average value and range in
all applications. Overall, FDRR-V ranks higher in solar production forecasting (in about 90%
of the combinations) but the differences are very small. FDRR-AAR yields slightly better
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results compared to FDRR-V, in electricity price and load forecasting, whereas the results are
the same in wind production forecasting.

We further evaluate the three solution methods in terms of computational cost, by
comparing the required CPU time on an Intel Core i7 at 2.7 GHz with 16GB of RAM,
using default solver settings. Our results indicate that when the number of vertices V is
relatively small, all methods incur a similar cost. However, as V increases, FDRR-V incurs
a computational cost that is several orders of magnitude larger than the other methods.
For example, in solar production forecasting, for Γ = 6, the CPU time ranges from around
200 to over 27 × 103 seconds for FDRR(6)-V, whereas the worst case is less than 1 second
and 3.5 seconds, for FDRR(6)-R and FDRR(6)-AAR, respectively. Clearly, FDRR-V incurs a
much higher computational cost, which renders this method at least impractical, even for a
modest number of features.

We also evaluated the performance on probabilistic forecasts, by repeating the above
experiment and training a separate model for each quantile. The obtained results and
remarks were very similar to the point forecasts. Pinball loss values increased with Γ,
FDRR-R yielded high pinball loss values, similarly to the errors in Fig. 4.1, whereas FDRR-V

and FDRR-AAR yielded quite similar performance.
Henceforth, we shall further consider only FDRR-AAR, which stands out as the best FDRR

representative with good out-of-sample performance and low computational cost.

Comparison of FDRR with Benchmark Models

In this subsection, we compare FDRR with the benchmark models presented in Section 4.3.
For all applications, we iterate over each day of the test set, sample a subset of features,
and delete it, repeating the process 10 times.

Fig. 4.2 presents the average error metrics for point forecasting as a function of the num-
ber of missing features. In the nominal case, i.e., without missing features, performance is
on par with previous works. Specifically, for each application, the best-performing model is:
LAD, for electricity price forecasting, with MAE 6.79 EUR/MWh; LS-ℓ2, for load forecasting,
with MAPE 5.07%; LAD, for wind production forecasting, with MAE 13.55%, and LS, LS-ℓ2,
for solar production forecasting, with MAE 6.47%.

Overall, RETRAIN yields the best results in terms of accuracy when features are missing,
followed by FDRR, which is clearly the second best. The relative average (maximum) error
increase of FDRR compared to RETRAIN is 4.7% (10%) for electricity price, 1.6% (4%) for
load, 0.4% (1.7%) for wind production, and 21% (38%) for solar production forecasting.
The underlying trend suggests that the gap between FDRR and RETRAIN increases as the
number of eligible combinations increases, with its worst case observed for solar production
forecasting with 6 missing features, i.e.,

(︁12
6

)︁
= 924 combinations. FDRR outperforms impute-

then-regress benchmarks, namely LS-type, LAD, and RF, in almost all cases, with an average
error reduction of 2% for electricity price, 37% for load, 9% for wind production, and 5% for
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Figure 4.2: Point forecasting error metrics versus the number of missing features.

solar production forecasting. A few exceptions appear, although the differences are small
— see top left plot for Γ = 1 (7% worse than LAD) and bottom left plot for Γ = {2, 3} (5%
worse than LS-ℓ2).

Taking a closer look at the impute-then-regress benchmarks, we observe that LS and
LAD exhibit a similar performance, in all applications. Note that for load forecasting (top
right plot), although both LS and LAD perform on par with [118] in the nominal case, they
suffer from bad conditioning, which leads to very large coefficients, and, in turn, to bad
performance when features are missing (not shown in the plot). The regularized models
LS-ℓ1/ℓ2, in general, improve the performance of the LS model — see, e.g., LS-ℓ1/ℓ2 for
load (top right) and solar production (bottom left) forecasting. Lastly, RF exhibits the
worst performance on average amongst the benchmarks, with the exception of the load
forecasting case.
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Figure 4.3: FDRR(Γ) coefficients for point forecasting of electricity prices.
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To gain further insight, we focus on point forecasting of electricity prices and examine
the effect of Γ. Fig. 4.3 presents the learned coefficients for Γ = {0, 1, 2}. Considering
FDRR(0), i.e., LAD, the plot suggests that the price at lag 24 (DA Price 24 or F.3), i.e., the
same hour of the previous day, is the most important feature, followed by the Net Load
Forecast (F.1); therefore, if any of them is missing, the impact on performance is expected
to be significant. On the other hand, the coefficients for prices at lag 144 (F.4), and lag 168
(F.5) are small, therefore their deletion has a smaller impact. Intuitively, F.3, F.4, and F.5
carry similar information pertaining to the autoregressive and seasonal nature of electricity
prices. For Γ = 0, these three coefficients vary significantly, with a standard deviation of
approximately 17%. For Γ = 1 we observe that the values of the coefficients come closer, and
their standard deviation decreases to 3.5%, while for Γ = 2 their standard deviation further
decreases to 0.09%. Effectively, FDRR(Γ) hedges against feature uncertainty by assigning
similar coefficients to these features, which, in turn, mitigates the adverse effect of deleting
F.3 from the test set. Moreover, we observe that the total weight of the coefficients increases
with Γ to compensate for the larger number of features set to zero during training. Similar
results are also observed for the other applications but omitted due to space limitations.
For solar production, e.g., FDRR(1) hedges against the deletion of the surface solar radiation
down forecast, which is arguably the most important feature.

We further examine performance for probabilistic forecasting and illustrate in Fig. 4.4 the
average pinball loss for all applications. Note that we do not examine RETRAIN in this case,
as applying it for each quantile becomes prohibitive. Indeed, the results closely resemble the
ones presented in Fig. 4.2. The ranking of the models is generally maintained, with FDRR

outperforming the benchmarks in all cases except for electricity price forecasting for Γ = 1
(7% worse than QRF), with an average pinball loss reduction of 5% for electricity price, 46%
for load, 15% for wind production, and 21% for solar production forecasting. Moreover, as
the number of missing features increases, the pinball loss increases in a qualitatively similar
fashion to the respective error metrics for point forecasts. Lastly, as Γ increases, the values
of the coefficients for all quantiles come closer — see, e.g., Fig. 4.5 for an illustration of
probabilistic forecasting of electricity prices, for Γ = {0, 1, 2}.

Sensitivity Analysis

In this subsection, we perform sensitivity analysis with respect to the number of observations
with missing features. Specifically, we sample a percentage of test observations that have
missing features, we draw the number of missing features for each observation from a uniform
distribution, and we subsequently sample the feature subset that is missing.

Table 4.2 presents the average point forecasting errors over 10 runs. The parentheses
indicate the difference from the lowest nominal error, which is used to measure performance
degradation. The best model is underlined in bold and the second best is in bold. As
expected, RETRAIN leads to the smallest error when features are missing and is also the

92



0 1 2 3 4 5
# of missing features

3

4

5

Pi
nb

al
l l

os
s

Electricity Prices

0 1 2
# of missing groups

6

8

10

12

Pi
nb

al
l l

os
s

Wind

0 2 4 6 8 10 12
# of missing features

2

4

6

8
Pi

nb
al

l l
os

s
Solar

0 1 2 3 4
# of missing groups

0

200

400

600

Pi
nb

al
l l

os
s

Load

QR QR- 1 QRF FDRR

Figure 4.4: Pinball loss versus the number of missing features.

0.00

0.25
= 0

0.00

0.25
= 1

F1 F2 F3 F4 F5
0.00

0.25
= 2

Figure 4.5: FDRR(Γ) coefficients for probabilistic forecasting of electricity prices. Higher
transparency indicates lower quantiles (a 10% step is considered).

most consistent, i.e., it has the smallest degradation. FDRR typically ranks second both
in terms of expected error and performance degradation, with generally small differences
from RETRAIN (with the exception of solar production forecasting, where the performance
degradation of FDRR is about twice higher compared to RETRAIN). Compared to impute-
then-regress benchmarks, FDRR leads to both smaller error and smaller degradation in all
cases except for the lower percentages in solar production forecasting, where it is worse
than LS-ℓ2 but only for up to 0.04%. Further, the relative improvement of FDRR over the
benchmarks increases with the percentage of observations with missing features. Considering
only impute-then-regress benchmarks, all models exhibit similar performance for electricity
price and wind production forecasting, whereas LS-ℓ1 and LS-ℓ2 are significantly better than
the rest for load and solar production forecasting.

We further investigate how FDRR performs with an approximation of the quadratic

93



Additional Numerical Experiments

loss function for solar production forecasting, which is the only application where LS ranks
first without missing features. We use a piecewise linear function with 20 equally spaced
breakpoints within [−1, 1] — recall that the production is normalized between [0, 1] — to
approximate the quadratic loss and solve the robust problem using the affinely adjustable
reformulation. Results are shown in the last row of Table 4.2 (FDRR-PWL). Without missing
features, FDRR-PWL and LS have the same error, indicating that the piecewise linearization
approximates the quadratic loss well. However, when features are missing, FDRR-PWL sig-
nificantly outperforms LS (similarly to the way FDRR outperforms LAD). Furthermore, we
note that for the lowest percentage (5%) of observations with missing features, where LS

performs better than LAD, FDRR-PWL slightly outperforms FDRR.

4.5 Additional Numerical Experiments

In this section, we complement our work with additional numerical experiments from two
relevant applications that are affected by missing data. Specifically, we consider the case
of dealing with missing data in an integrated forecasting-optimization framework, using the
problem of short-term trading of renewable energy production as a guiding example (in
Subsection 4.5.1). Next, we examine the problem of forecasting wind power production in
a very short-term, intra-hour horizon (in Subsection 4.5.2).

4.5.1 Feature-driven Trading of Renewable Energy Production

Problem Description, Experimental Setup, and Input Data

We consider a producer managing an aggregation of renewable plants participating in a
day-ahead electricity market. The producer submits an energy offer for each clearing period
and incurs a financial penalty if the realized production deviates from the submitted offer.
We assume that the producer is a price-taker and the balancing market operates with a
dual-price mechanism—a detailed description of this problem is provided in Chapter 2.4.2.
Similar to the day-ahead energy forecasting problem, the forecast horizon is set at 12 to 36
hours ahead, and data are assumed to arrive in batches once per day.

Following our previous experimental setup, we first select a set of features that lead to
a good trading performance in a feature-driven setting, i.e., the case where the producer
leverages contextual information to directly forecast the trading decisions. Next, we train
several benchmarks with the same set of features. Specifically, we evaluate the following
approaches:

• SAA: the sample average approximation solution that does not consider any features—
see Chapter 2.2.1 for details.

• FeatD: a feature-driven model that directly predicts the trading decisions with a linear
decision rule approach [51].
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Table 4.2: Point forecasting error versus percentage (%) of observations with missing fea-
tures.

% of obs. 0 % 5 % 10 % 25% 50 %

El. Prices LS 7.25 (0.46) 7.39 (0.60) 7.52 (0.73) 7.91 (1.12) 8.57 (1.78)
LS-ℓ2 7.71 (0.92) 7.83 (1.04) 7.95 (1.16) 8.29 (1.50) 8.87 (2.08)
LS-ℓ1 7.33 (0.54) 7.47 (0.68) 7.60 (0.81) 7.99 (1.19) 8.65 (1.86)
LAD 6.79 (0.00) 6.95 (0.16) 7.10 (0.31) 7.56 (0.77) 8.33 (1.54)
RF 6.90 (0.10) 7.07 (0.28) 7.23 (0.44) 7.73 (0.94) 8.58 (1.79)
RETRAIN 6.79 (0.00) 6.92 (0.12) 7.03 (0.24) 7.38 (0.59) 7.97 (1.18)
FDRR 6.79 (0.00) 6.94 (0.15) 7.08 (0.28) 7.48 (0.69) 8.20 (1.41)

Load LS 5.22 (0.14) 13.65 (8.58) 22.35 (17.28) 46.87 (41.79) 89.07 (84.0)
LS-ℓ2 5.07 (0.00) 5.74 (0.67) 6.38 (1.31) 8.39 (3.32) 11.69 (6.62)
LS-ℓ1 5.09 (0.02) 5.60 (0.53) 6.10 (1.03) 7.58 (2.51) 10.03 (4.96)
LAD 5.18 (0.10) 10.60 (5.53) 15.90 (10.83) 31.58 (26.51) 56.79 (51.72)
RF 5.72 (0.65) 6.13 (1.06) 6.55 (1.48) 7.81 (2.74) 9.88 (4.81)
RETRAIN 5.18 (0.10) 5.27 (0.20) 5.38 (0.31) 5.66 (0.58) 6.13 (1.06)
FDRR 5.18 (0.10) 5.28 (0.21) 5.39 (0.31) 5.69 (0.62) 6.18 (1.11)

Wind LS 13.90 (0.36) 14.29 (0.75) 14.65 (1.11) 15.85 (2.31) 17.78 (4.24)
LS-ℓ2 13.90 (0.36) 14.29 (0.75) 14.65 (1.11) 15.85 (2.31) 17.78 (4.24)
LS-ℓ1 13.95 (0.41) 14.32 (0.79) 14.67 (1.14) 15.83 (2.29) 17.71 (4.18)
LAD 13.55 (0.00) 13.92 (0.39) 14.29 (0.75) 15.46 (1.92) 17.36 (3.82)
RF 13.56 (0.01) 13.95 (0.41) 14.34 (0.80) 15.64 (2.11) 17.66 (4.12)
RETRAIN 13.55 (0.00) 13.84 (0.30) 14.06 (0.52) 14.78 (1.24) 16.09 (2.55)
FDRR 13.55 (0.00) 13.85 (0.31) 14.07 (0.53) 14.80 (1.26) 16.15 (2.61)

Solar LS 6.47 (0.00) 6.79 (0.32) 7.10 (0.63) 8.04 (1.57) 9.65 (3.18)
LS-ℓ2 6.47 (0.00) 6.71 (0.23) 6.92 (0.45) 7.58 (1.11) 8.73 (2.26)
LS-ℓ1 6.51 (0.04) 6.74 (0.27) 6.95 (0.48) 7.58 (1.11) 8.70 (2.23)
LAD 6.54 (0.07) 6.91 (0.44) 7.29 (0.82) 8.42 (1.95) 10.35 (3.88)
RF 7.71 (1.24) 8.20 (1.72) 8.62 (2.15) 10.03 (3.56) 12.38 (5.91)
RETRAIN 6.54 (0.07) 6.62 (0.15) 6.71 (0.24) 6.94 (0.47) 7.37 (0.90)
FDRR 6.54 (0.07) 6.74 (0.27) 6.95 (0.48) 7.53 (1.06) 8.51 (2.04)

FDRR-PWL 6.47 (0.00) 6.69 (0.22) 6.94 (0.47) 7.64 (1.17) 8.83 (2.36)

95



Additional Numerical Experiments

• RF: a Random Forest model that approximates the distribution of renewable produc-
tion, following the method described in Chapter 2.3.

• FDRR(Γ): a robust version of FeatD with robustness budget Γ, trained with the affinely
adjustable reformulation method.

Similarly to the previous experiments, for the models that cannot handle missing values
directly, i.e., FeatD and RF, we follow the impute-then-regress approach with mean impu-
tation. For FDRR(Γ), missing values are set to zero, and a different model is trained for
each value of Γ. Note that when Γ = 0, FDRR and FeatD are equivalent; further, SAA is not
affected by missing data as it does not include any features.

To evaluate trading performance, we estimate the mean imbalance cost (equivalently,
trading cost) normalized per the nominal plant capacity, measured in EUR/MWh. Recall
that under a dual-price market, the imbalance cost is always non-negative and a perfect fore-
sight model leads to zero imbalance costs. The unit regulation costs p, q are also stochastic
and need to be forecast. After preliminary experimentation, we found that the best trad-
ing performance is obtained by using the in-sample mean of the regulation costs as the
out-of-sample forecast.

Regarding input data, we consider an aggregation of 3 WPPs and 1 PV plant, with a
total capacity of 49 MW (16% PV share), respectively located in northern and southern
France, same as in Chapter 2.5.1. The selected features include NWP model forecasts for
each plant location, namely wind speed, wind direction, temperature, cloud coverage, and
solar radiation forecasts, which leads to a total of 4 groups of NWP variables. For each
group of variables, we further include quadratic and cubic terms of wind speed; we also
include Fourier terms to model the diurnal patterns, which cannot be deleted. Each group
of NWP variables is assumed to go missing independently.

Results

Fig. 4.6 presents the mean trading cost as a function of the number of missing feature groups.
In the nominal case, i.e., without missing features, RF has the lowest mean imbalance cost
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Figure 4.6: Trading cost (EUR/MWh) versus the number of missing features.
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Table 4.3: Trading cost versus percentage (%) of observations with missing features.

% of obs. 0 % 5 % 10 % 25 % 50 %

SAA 2.77 (1.96) 2.77 (1.96) 2.77 (1.96) 2.77 (1.96) 2.77 (1.96)
FeatD 0.82 (0.01) 0.94 (0.13) 1.04 (0.24) 1.41 (0.60) 2.01 (1.20)
RF 0.80 (0.00) 0.86 (0.06) 0.93 (0.12) 1.10 (0.30) 1.39 (0.58)
RETRAIN 0.82 (0.01) 0.84 (0.03) 0.86 (0.05) 0.92 (0.12) 1.03 (0.23)
FDRR 0.82 (0.01) 0.88 (0.08) 0.94 (0.14) 1.12 (0.31) 1.34 (0.54)

(0.80 EUR/MWh), closely followed by FeatD and FDRR (0.82 EUR/MWh). As expected,
SAA is the worst-performing model with a mean imbalance cost of 2.77 EUR/MWh. When
features are missing, FDRR always leads to the lowest cost, with an average cost reduction of
29.28% compared to the second-best model in each case. Regarding the rest of the methods,
we observe that RF is fairly robust to a small number of missing features, contrary to FeatD

which significantly worsens when a single feature group is missing. Moreover, SAA improves
upon FeatD and RF when the number of missing groups grows large; however, it remains
worse than FDRR even when Γ = 4. Overall, the trading performance closely resembles the
accuracy results obtained in the energy forecasting case study.

We further perform a sensitivity analysis with respect to the percentage of observations
with missing data. Similarly to the energy forecasting case, we sample a percentage of test
observations that have missing features, we draw the number of missing features for each
observation from a uniform distribution, and we subsequently sample the feature subset
that is missing.

Table 4.3 presents the average trading cost over 10 runs, with the parentheses indicating
the difference from the lowest nominal error. The best model is underlined in bold and the
second best is in bold. Interestingly, RF leads to the smallest trading cost for up to 25% of
observations with missing features, while FDRR ranks second with small differences. When
the percentage of observations with missing features reaches 50% FDRR starts to outperform
RF. Conversely, FeatD performs notably worse compared to FDRR even for small percentages,
while SAA always ranks worse with significantly higher trading cost in all examined cases.

4.5.2 Intra-hour Wind Production Forecasting with Missing Data

Problem Description, Experimental Setup, and Input Data

We consider the problem of generating point forecasts for the production of a wind power
farm in a 30-minute ahead horizon, assuming that new data arrives every 30 minutes. The
producer uses spatiotemporal production data, namely previous production values from their
own as well as adjacent wind farms to improve forecasting performance. Typically, autore-
gressive models with regularization achieve state-of-the-art performance in this forecasting
task [144].

Following our previous experimental setup, we first select a set of features that lead
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Figure 4.7: Map of the wind power turbines. The red square indicates the target wind farm.

to good forecasting performance. Next, we train several benchmarks with the same set of
features. Specifically, we evaluate the following:

• PERS: a persistence forecasting model using the current value as forecast.

• CLIM: a climatology forecasting model using the in-sample mean as forecast.

• LS: an autoregressive LS model with production lags from all the farms.

• LSℓ1 : an autoregressive LS model with additional ℓ1 (lasso) regularization penalty.

• LAD: an autoregressive LAD model with production lags from all farms.

• FDRR(Γ): a robust regression with ℓ1 loss, and robustness budget Γ.

For models that cannot handle missing values directly, i.e., PERS, LS-based, LAD-based,
we follow the impute-then-regress approach with imputation by persistence. That is, if the
current production value of a wind farm is missing, we replace it with its last known value.
For FDRR(Γ), missing values are set to zero, and a different model is trained for each value
of Γ. As before, when Γ = 0, FDRR and LAD are equivalent. Further, CLIM is not affected by
missing data, as it is a constant value that depends on the training data set. To evaluate
forecast performance we estimate the MAE (%) of normalized capacity.

For input data, we use power measurements from 60 wind power turbines located in
mid-west France, with a nominal aggregated capacity of 120 MW, clustered in 13 wind
farms. The selected features comprise the last two production lags from all the wind farms
(26 in total)6. The available data sets span the period from December 2018 to September
2020 with a 30-min resolution. We use 5 months of data for training and tuning, with the
last 5 months used for testing the performance. We evaluate performance on forecasting
the production of a single wind farm—see Fig. 4.7 for details.

6We considered increasing the production lags but it did not lead to improved accuracy in the nominal
case.
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Generating Blocks of Missing Data

The examined forecasting application considers a constant stream of data, with new pro-
duction measurements arriving every 30 minutes. Network latency, cyberattacks, or equip-
ment failures can disrupt this stream of data, leading to missing input data that propagates
through time [114]. This context significantly differs from the one considered in the previous
two case studies, where data are assumed to arrive in batches once per day.

To generate blocks of missing data that propagate through time, we model the missing-
ness mechanism as a Markov Chain and use a transition probability matrix. The matrix
comprises two states, namely, the current observation is missing (State 1) or it is not missing
(State 0), given by

P =

⎡⎣P0,0 P0,1

P1,0 P1,1

⎤⎦ ,

where Pi,j indicates the transition probability from the i-th to the j-th state and the row-
wise sum is equal to 1. That is, P0,1 is the probability of the next value going missing when
the current value is available. We assume that the starting state is P0,0 and use historical
data to estimate the transition probabilities P1,1, P1,0, while we vary P0,1 to examine the
sensitivity with respect to the probability of having a failure that leads to missing data.

Results

This section presents results for estimated values P1,1 = 0.95, P1,0 = 0.05, which translates
to blocks of missing values with an average length of 10 hours. Fig. 4.8 presents the average
MAE for point forecasting as a function of transition probability P0,1, i.e., the probability of
a failure that generates missing data occurring. For the nominal case (no missing data), the
best performing models are LAD and FDRR with MAE 4.99%, followed by LSℓ1 and LS, with
MAE 5.08% and 5.09% respectively. All of the models that consider features outperform
both PERS, which has MAE 5.32%, and CLIM, which is significantly worse with MAE 24.92%
and thus omitted from Fig. 4.8. When data are missing, i.e., as P0,1 increases, Fig. 4.8 shows
that FDRR leads to significantly better performance compared to the rest of the benchmarks.
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Figure 4.8: MAE (%) versus the transition probability (P0,1).
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Conclusions

The only exception is for P0,1 = 0.01, where FDRR is 8% worse than the best-performing
benchmark, which is LAD. Conversely, for P0,1 = 0.05 and P0,1 = 0.10 FDRR is approximately
32% and 44% better than the best performing benchmark. Overall, the average improvement
of FDRR against the impute-then-regress benchmarks is around 23% when data are missing.

4.6 Conclusions

This work provided a principled approach to enhance resilience against missing features
in energy forecasting via robust optimization. We formulated a robust regression model
that is optimally resilient against missing features at test time, considering both point and
probabilistic forecasting, and we developed three solution methods for the resulting robust
formulation, leading to LP problems. The numerical results indicated that the affinely
adjustable reformulation method provides the best trade-off between accuracy and com-
putational cost. In a comprehensive evaluation against several benchmarks coupled with
imputation, the proposed approach improved point (probabilistic) forecasting performance
in the presence of missing features by 2% (5%) for electricity price, 37% (46%) for load, 9%
(15%) for wind production, and 5% (21%) for solar production. Moreover, the proposed
approach performed comparable to retraining without the missing features, while avoiding
a large number of additional models, and provided resilience in the adverse scenario where
the most important feature is missing in an operational setting. A sensitivity analysis with
respect to the number of observations with missing features further validated the practical
applicability of the proposed approach. Additional case studies further validated the pro-
posed approach. Considering the case of intra-hour wind power production forecasting, the
proposed approach improved point forecasting performance by 23% against impute-then-
regress benchmarks. Considering the case of a renewable producer directly forecasting the
trading decisions for participating in a day-ahead electricity market, the proposed approach
improved the average trading performance by approximately 6%. Overall, our results high-
light the importance of moving beyond standard accuracy metrics to also consider resilience
in adverse scenarios, prior to model deployment.

Future work can focus on extending this approach to non-linear models, such as neural
networks. Jointly addressing resilience against missing features and corrupted data due to
factors such as cyberattacks, also provides an interesting research direction.
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Chapter 5

Data Pooling for Contextual
Stochastic Optimization

Résumé en Français
Les méthodes basées sur les données sont très prometteuses pour faire face aux défis associés

à la prise de décisions sous incertitude. Cependant, les systèmes complexes du monde réel doivent
faire face à un grand nombre d’incertitudes et de problèmes correspondants, et chaque problème
peut avoir des données limitées. La rareté des données pose un risque important qui entrave le
déploiement de méthodes avancées basées sur les données, nécessitant de nouvelles méthodes qui
peuvent pleinement exploiter les données d’instances de problèmes similaires, potentiellement sans
lien entre elles. À cette fin, nous proposons deux méthodes pour regrouper les données lorsqu’il
s’agit de problèmes d’optimisation stochastique multiples dépendants du contexte. La première
consiste à regrouper näıvement des données et à former un modèle global pour dériver des prescrip-
tions sur tous les problèmes, tandis que la seconde s’appuie sur la théorie du transport optimal
pour estimer des distributions représentatives sur différents problèmes conditionnés par des infor-
mations contextuelles. Une contribution clé est le développement d’un algorithme prescriptif de
mise en commun des données pour déterminer quand et combien de données mettre en commun.
L’algorithme proposé exploite des outils d’apprentissage d’ensemble pour estimer le coût de décision
hors échantillon attendu sans sacrifier les données de formation, et interpole efficacement entre une
distribution locale et une distribution groupée. Pour la validation, nous examinons deux applications
intégrales liées à l’intégration des sources d’énergie renouvelables dans les systèmes électriques : la
prévision de la production d’électricité et la participation sur un marché de l’électricité day-ahead.
Les résultats démontrent que la mise en commun des données améliore la prise de décision globale
lorsque les données sont rares. Notamment, l’algorithme de mise en commun des données prescrip-
tives proposé surpasse systématiquement les méthodes locales et les méthodes de mise en commun,
avec une amélioration des performances attendue de plus de 2% par rapport à l’approche standard
découplée.

The work in this chapter appears in [J4] that will be submitted soon.
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Introduction

5.1 Introduction

In real-world systems, such as modern power systems, decision-makers deal with a large
number of uncertainties, which are also associated with some contextual information. In
turn, these uncertainties can create thousands of potentially unrelated stochastic optimiza-
tion problems. For instance, power producers manage portfolios of thousands of renewable
energy sources, such as wind and solar power plants, whose production depends on the
weather at each spatial location. Future power systems and smart grids that integrate a
large number of heterogeneous assets, such as small-scale renewable energy sources, flexible
loads, storage systems, and electric vehicles, further exacerbate this issue.

In this context, decision-makers often encounter a “large-scale, small-data” regime. That
is, while the aggregate volume of data across all problems is large, data at an individual
(local) problem level might be scarce or contaminated, which hinders the deployment of
data-driven methods. Fully utilizing the benefits of available data-driven methods, thus
necessitates developing effective tools for pooling the available data from different problems.

5.1.1 Aim and Contribution

In this chapter, we propose two methods for data pooling to improve decision performance
when dealing with multiple contextually-dependent stochastic optimization problems. The
first involves naively pooling all data and training a global model to estimate a conditional
distribution of uncertainty as a function of contextual information, which is subsequently
used to derive prescriptions across all problems. The second approach is based on Opti-
mal Transport (OT) [145], which is a mathematical framework that studies similarities of
probability distributions. Specifically, we use OT to generate representative distributions
across different problems conditioned on contextual information. To determine when and
how much data to pool, we further develop a prescriptive data pooling algorithm that in-
terpolates between a local and a pooled distribution. The proposed algorithm leverages
techniques from ensemble learning, namely the Out-of-Bag (OOB) method [146], to provide
an estimation of the expected out-of-sample decision cost without sacrificing training data
and avoiding model retraining. We evaluate the effectiveness of the proposed data pooling
methods in two critical applications related to the integration of renewable energy sources in
power systems: power production forecasting and trading in a day-ahead electricity market.
Our results show that data pooling leads to better decisions when data are scarce, with the
proposed prescriptive data pooling algorithm consistently leading to better decisions, even
as the number of local training observations increases.

5.1.2 Related Work

In recent years, there has been a growing interest in solving stochastic optimization prob-
lems where the uncertain parameters are associated with some contextual information. In
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Chapter 2, we provide a comprehensive review of related work and discuss several methods
that leverage data of joint observations of uncertainty and some associated contextual in-
formation. Relevant methods include estimating the probability distribution of uncertainty
conditioned on contextual information [20] or directly forecasting the problem decisions [30].
Nonetheless, the majority of relevant work deals with a single problem and the setting of
multiple contextually-dependent optimization problems simultaneously remains largely un-
explored. In this regard, [147] examines data pooling for multiple stochastic optimization
problems without contextual information and shows that it leads to better decisions owing
to the so-called instability versus suboptimality trade-off. Intuitively, data pooling is most
useful when data are scarce and the respective local solution, i.e., the solution that leverages
only local problem data, is unstable. To determine when and how much data to pool across
problems, [147] further develops an algorithm based on cross-validation that exploits the
structure of the optimization problem, which, nonetheless, does not account for contextual
information.

Conversely, in the area of time series forecasting, there is a growing interest in developing
global forecasting models. The term global forecasting model refers to a single univariate
model trained across a large number of time series, while a local forecasting model is a
univariate model trained for a specific time series. Global forecasting models are considered
an effective method of simultaneously reducing modeling effort and enabling cross-learning
across tasks. For instance, [148] proposes a global deep learning model for probabilistic
demand forecasting, while [149] shows that global models can perform on par with local
models for time series forecasting, but may have a lower representational capacity for re-
gression tasks. In power systems applications, global models have been used to forecast the
uncertain renewable production of multiple plants or the individual consumption at a house-
hold level [150]. For instance, [151] examines centralized and federated learning frameworks
to forecast the temperature of thermostatically controlled loads using domain-informed data
augmentation. Conversely, [152] proposes a global model for load forecasting in the distri-
bution grid and proposes a clustering-based localization method to improve performance
under data heterogeneity. To cold-start the forecasting problem for a residential solar panel
without historical data, [153] trains a generic cross-learning model across several series.
Nonetheless, the problem of interpolating between a local and global model as a function
of the volume of available data and the degree of data heterogeneity has not received much
attention.

Our proposed approach to using OT for data pooling also shares similarities with the
areas of ensemble learning, model aggregation, and forecast combination, with [154–156]
being most closely related to our work. Particularly, [154, 155] leverage OT to combine
experts’ opinions (e.g., forecasts) of a reference probability distribution, via means of a
weighted Wasserstein barycenter. This approach is further extended in [156] to the linear
aggregation of point predictions for wind speed by aggregating forecasts in adjacent spatial
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locations. Our work differs in several key aspects. First, rather than combining probabilis-
tic forecasts, we are interested in approximating the conditional distribution of multiple,
independent uncertain problem parameters. Second, we account for the downstream deci-
sion cost when aggregating individual models. Third, we do not have access to the true
underlying distribution, i.e., the true conditional marginal, but rather leverage tools from
bootstrapping and cross-validation [146, Ch. 8] to estimate the out-of-sample performance.
Conversely, the above-mentioned works only consider in-sample performance which might
not be a good indicator of out-of-sample performance, especially in a setting of scarce data.

5.1.3 Chapter Outline

The remainder of this chapter is organized as follows. Section 5.2 presents a short back-
ground on OT, while Section 5.3 introduces the main problem. Section 5.4 develops two data
pooling methods and Section 5.5 develops the prescriptive algorithm that decides when and
how much data to pool. Finally, Section 5.6 discusses the numerical results and Section 5.7
concludes and provides directions for future work.

5.2 Preliminaries on Optimal Transport

This section provides preliminaries on OT, namely, introduces the OT problem (in Subec-
tion 5.2.1) and the Wasserstein barycenter (in Subection 5.2.2).

5.2.1 Optimal Transport Problem

We consider a histogram a ∈ Σn of n values, where

Σn = {a ∈ Rn
+ |a⊺1n = 1}

is the standard (n− 1)-dimensional probability simplex and 1n is an n-size vector of ones.
The terms histogram and probability vector are used interchangeably throughout.

A discrete measure with weights a and locations ξ1, . . . , ξn ∈ Ξ reads

α =
n∑︂

i=1
aiδξi

, (5.1)

where δξi
is the Dirac delta distribution at position ξi, intuitively a unit of mass that is

concentrated at location ξi. Such a measure is a probability measure if, additionally, a ∈ Σn.
The OT problem seeks to find the best way to transport a given number of goods from

a set of sources to a set of destinations, where the cost of transporting each unit of goods
from each source to each destination is known. Formally, consider two discrete measures α, β

of the form (5.1) with corresponding histograms a ∈ Σn, b ∈ Σm and respective support
locations ξi, i = 1, . . . , n, and ξ′

j , j = 1, . . . , m. Let C ∈ Rn×m
+ be a known cost matrix,
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where ci,j stores the cost of transporting a unit of goods from ξi to ξ′
j . Further, let the

polytope of admissible couplings between a, b be

U(a, b) def= {Γ ∈ Rn×m
+ |Γ1m = a, Γ⊺1n = b}. (5.2)

The OT problem between a, b is given by

W (a, b) def= min
Γ∈U(a,b)

< Γ, C > . (5.3)

where < Γ, C >= ∑︁n
i=1

∑︁m
j=1 γi,jci,j . The decision matrix Γ is the so-called transportation

plan, with γi,j representing the probability mass transported from the i-th source to the
j-th destination, with (5.2) ensuring that the total amount of mass moved satisfies both
each source supply and each demand destination and the non-negativity constraints.

If we further assume that ci,j = ∥ξi−ξ′
j∥r, for some r ≥ 1, where ∥·∥ is an arbitrary norm,

then the optimal value of (5.3) is equal to the r-Wasserstein distance between measures α, β,
raised to the r-th power. The Wasserstein distance is a distance metric between probability
distributions that measures the minimum cost of transforming one distribution into the
other. The Wasserstein distance has many applications in different fields, such as computer
vision, machine learning, and uncertainty quantification in mathematical programming.

The OT problem (5.3) is an LP problem, which can be solved using off-the-shelf solvers.
If α, β are defined on the real line, then a closed-form solution also exists [155]. To deal
with the computational challenges associated with large-scale problems that arise in ma-
chine learning applications, several specialized algorithms have also been developed, such
as entropic regularization schemes [157, 158] — for a comprehensive overview of numerical
methods for computational optimal transport, see [145].

5.2.2 Wasserstein Barycenter

We further consider S histograms {bs}Ss=1, where bs ∈ Σns , and our goal is to estimate an
“average histogram” over a grid of n fixed support locations. The Wasserstein barycenter
[159], i.e., the generalized mean, is the histogram a ∈ Σn that minimizes the weighted sum
of the Wasserstein distances from {bs}Ss=1. The Wasserstein barycenter q∗ is given by

q∗ = arg min
q∈Σn

S∑︂
s=1

λsW (q, ps), (5.4)

and is parameterized by a probability vector of λ ∈ ΣS of known weights, termed barycentric
coordinates; a typical choice is to set λs = ns∑︁S

s=1 ns
. Note that each Wasserstein distance

itself denotes a minimization problem. Evidently, problem (5.4) is also an LP problem,
although its size is much larger than the OT problem (5.3). The Wasserstein barycenter is
a generalization of the Euclidean mean in higher dimensions and can be used to compute a
representative distribution for a set of distributions, and has found many applications in clus-
tering, classification, model aggregation [155], and variational data assimilation problems
[160]. For measures defined on the real line, the Wasserstein barycenter can be estimated
efficiently with a closed-form solution.
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Problem Formulation

5.3 Problem Formulation

In this section, we first revisit the problem of contextual stochastic optimization (in Sub-
section 5.3.1). Then, we consider a setting of multiple problems each associated with some
contextual information (in Subsection 5.3.2), and describe the standard solution approach
(in Subsection 5.3.3).

5.3.1 Preliminaries on Contextual Stochastic Optimization

We consider a contextual stochastic optimization, or prescriptive analytics, problem given
by

min
z∈Z

Ey[c(z; y)|x = x0], (5.5)

where y ∈ Y denotes the uncertain problem parameters (e.g., renewable production), x ∈ X
denotes some associated contextual features (e.g., the weather), x0 denotes a realization of x,
z denotes the decision variables, Z denotes the set of feasible solutions, c(·) denotes a convex
cost function, and the expectation is taken with respect to the conditional distribution of y
given x = x0.

We assume that the uncertain parameter y is a discrete random variable with finite
support denoted by Y def= {ỹ1, . . . , ỹK}, where K is the number of support locations. For
any x ∈ X , the true conditional distribution of y is given by a probability vector p(x) ∈ ΣK ,
where ΣK is the (K − 1)-dimensional probability simplex. The k-th component of p(x) is
defined as pk(x) = P(y = ỹk|x), i.e., the probability of y = ỹk conditioned on contextual
information x. Thus, problem (5.5) can be equivalently written as

min
z∈Z

Ey[c(z; y)|x = x0] = min
z∈Z

K∑︂
k=1

pk(x0)c(z; ỹk). (5.6)

In practice, instead of the true probability vector p(x0), we have access to a training
data set D = {(yi, xi)}Ni=1 of N observations, which we can use to approximate (5.6) —
Chapter 2 reviews different data-driven methods to approximate (5.6). Here, we focus on
the case where we use a function to estimate the true conditional distribution p(x) for
all x ∈ X , that is, we employ a probabilistic forecasting model. Specifically, assume a
hypothesis class H of functions f : X → ΣK that map contextual information x to the
conditional distribution of uncertainty y. Note that since f(x) ∈ ΣK , the output of the
learning model needs to satisfy a set of constraints. To keep the notation consistent, we refer
to ˆ︁p : X → ΣK as the model trained on available data and to ˆ︁p(x) ∈ ΣK as the estimated
conditional distribution (probability vector) for any x ∈ X .

To measure the prescriptive quality of a model ˆ︁p : X → ΣK , we further define a function
that measures the excess cost incurred by using ˆ︁p to approximate a problem of the form of
(5.6) compared to the perfect foresight solution. To streamline notation, for any q ∈ ΣK ,
we define z(q) = arg minz∈Z

∑︁K
k=1 qkc(z; ỹk). Let

D(ˆ︁p(x0), y0 | c,Z) = c(z(ˆ︁p(x0)); y0)− c(z∗; y0), (5.7)
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denote the excess cost incurred using ˆ︁p estimated with respect to the cost function c and the
feasible set Z, where z∗ = arg minz∈Z c(z; y0). Evidently, the prescriptive cost estimated
from D is always non-negative.

Remark 5.1 In the special case where c(z; y) = y⊺z, i.e., we deal with a linear objective
function with unknown cost coefficients, then, for any x ∈ X , (5.6) becomes

min
z∈Z

K∑︂
k=1

pk(x0)z⊺ỹk = min
z∈Z

z⊺E[y|x = x0].

Thus, we can replace p(x0) with the conditional expectation of y given x using a determin-
istic forecasting model.

A variety of methods can be employed to generate probabilistic forecasts, including para-
metric models, non-parametric models [20], conformal prediction [161], or multi-label classi-
fication. The training process of the forecasting model can also incorporate the downstream
optimization cost D — see, e.g., the methods proposed [26, 36, 162], and in Chapter 2.3.

Non-parametric machine learning methods For instance, consider the case of non-
parametric machine learning models, such as neighbor-based or tree-based models. These
models infer a function that assigns weights ω(x) ∈ ΣN to training observations yi based
on contextual information x. Then, the original problem (5.6) is approximated by

min
z∈Z

N∑︂
i=1

ωi(x0)c(z; yi). (5.8)

A specific example that we revisit throughout this chapter is the case of an ensemble of
T decision trees {τ1, . . . , τT } grown with the random forest method [56], where τj : X →
{1, . . . , Lj} is a map that corresponds to a disjoint partition of X into Lj tree leaves and
τj(x) is the leaf identity—see Chapter 2.3 for details. In this case, the respective weights
are given by

ωi(x0) = 1
T

T∑︂
j=1

I [τj(xi) = τj(x0)]∑︁N
i′=1 I [τj(xi′) = τj(x0)]

, (5.9)

where is I [·] is the indicator function. Evidently, as y has finite support, we can count the
number of times ỹk appears in D and aggregate the respective weights ωi(x0) to equiv-
alently write (5.8) with a probability vector that weighs each support location. That
is, the estimated probability of y = ỹk conditioned on x = x0 is given by ˆ︁pk(x) =∑︁N

i=1 I [yi = ỹk] ωi(x).

5.3.2 Dealing with Multiple, Contextually-Dependent Problems

In this setting, we are interested in solving a collection of S potentially independent stochas-
tic optimization problems, where each uncertainty is associated with some contextual infor-
mation, specified by

1
S

S∑︂
s=1

min
zs∈Zs

Eys [cs(zs; ys)|xs = xs,0] = 1
S

S∑︂
s=1

min
zs∈Zs

Ks∑︂
k=1

ps,k(xs,0)cs(zs; ỹs,k), (5.10)
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where ys represents the uncertain parameters, Zs is the set of feasible solutions, xs,0 is a
realization of the context xs, and ps(xs) ∈ ΣKs denotes the true conditional distribution of
ys given xs. Throughout, subscript s is used to indicate that we are referring to the s-th
subproblem1.

In this work, we are interested in the case where the uncertainty ys and the contextual
information xs represent the same variables across all problems; for example, they may rep-
resent a pair of renewable energy production and associated weather forecast observations.
Thus, we assume that ỹs,k = ỹk, Ks = K, and Xs = X . To further simplify the notation,
we assume, without loss of generality, that cs(z; y) = c(z; y) and Zs = Z. Thus, problem
(5.10) can be equivalently written as

1
S

S∑︂
s=1

min
zs∈Z

K∑︂
k=1

ps,k(xs,0)c(zs; ỹk). (5.11)

Note that the true conditional distributions ps(x) may differ across problems and are,
naturally, unknown. Instead, for each subproblem s, we have access to a local training data
set Ds = {(ys,i, xs,i)}Ns

i=1 of Ns observations, with subscript s being used to highlight that
training observations differ across problems; the same also holds true for the out-of-sample
realizations xs,0. Similar to the case of the single problem, our goal is to use the available
data sets to approximate (5.11).

5.3.3 The Standard Local Solution Approach

In the absence of coupling constraints or variables across the S subproblems in (5.11), the
standard approach would be to decouple them and solve them separately using the local
data sets. Consider a probabilistic forecasting model ˆ︁ps : X → ΣK trained on the local data
set Ds. The decoupled solution of (5.11) is then given by{︄

min
z∈Z

K∑︂
k=1

ˆ︁ps,k(xs,0)c(z; ỹk)
}︄

s=1,...,S

, (5.12)

where ˆ︁ps(xs,0) ∈ ΣK is an estimated probability vector. We consider (5.12) to be the
standard benchmark of solving (5.11) and refer to it as the local approach, as it relies solely
on the local data set Ds when solving the s-th subproblem.

However, if the local training data sets are scarce, the learned models may incur a
high degree of misspecification and lead to poor out-of-sample performance. Therefore, we
investigate whether pooling data across the S subproblems can be beneficial.

5.4 Data Pooling Methods

In this section, we describe different approaches to leverage data across problems to improve
prescriptive performance. Specifically, we first describe a method based on naive data
pooling (in Subsection 5.4.1), followed by an OT-based method (in Subsection 5.4.2).

1For simplicity, we assume that all problems are weighted equally in the objective.
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5.4.1 Global Model with Naive Data Pooling

A straightforward approach for data pooling is to combine all local data sets {Ds}Ss=1 and
train a single, centralized, global probabilistic forecasting model. Let Dpool = (D1, . . . ,DS)
be the concatenation of all data sets, and let ˆ︁ppool : X → ΣK be a global model. Then,
problem (5.11) can be approximated by solving S decoupled problems given by{︄

min
z∈Z

K∑︂
k=1

ˆ︁ppool
k (xs,0)c(z; ỹk)

}︄
s=1,...,S

, (5.13)

i.e., the decoupled problems are solved using a common, global forecasting model.
Revisiting the case of non-parametric machine learning algorithms (5.8), to apply the

proposed global approach, we first train a single model using data set Dpool. Then, for each
problem, we estimate the respective weights ωpool(xs,0) ∈ ΣNpool , where Npool = |Dpool|.

We refer to this approach as a global method with naive data pooling, following the
global forecasting terminology [148]. In practice, this approach requires a centralized entity
that collects all the data and trains the global model, which may create issues regarding
data leakage and raise privacy concerns. Considering a federated learning framework where
the global model is trained without sharing data across the S subproblems can ameliorate
such privacy concerns.

Besides the concerns about privacy and data leakage, a potential shortcoming associated
with the naive data pooling approach is model misspecification due to data heterogeneity. A
global model may not generalize well to all subproblems due to differences in the underlying
problem structure or the distribution of uncertain parameters. Specifically, concept drift,
i.e., the case when the true joint distribution between y and x differs across the subproblems,
poses a major challenge to training a global model. Therefore, alternative approaches that
address these shortcomings may be necessary.

5.4.2 Optimal Transport-based Data Pooling

In this section, we propose an OT-based data pooling method that does not require central-
ized collection of data. Following the standard local approach described in Section 5.3.2, we
assume S local models ˆ︁ps : X → ΣK that map contextual information to probability vectorsˆ︁ps(x) ∈ ΣK . Our goal is, for each x ∈ X , to combine knowledge across the S problems by
estimating representative conditional distributions. Let g : X → ΣK be defined as

g(x) = arg min
q

S∑︂
s=1

λsW (q, ps(x)). (5.14)

In words, g is a composite function that, given some context x, aggregates the S local models
by evaluating the Wasserstein barycenter of their output, parameterized by coordinates
λ ∈ ΣS . Then, problem (5.11) can be approximated by solving S decoupled problems given
by {︄

min
z∈Z

K∑︂
k=1

gk(xs,0)c(z; ỹk)
}︄

s=1,...,S

. (5.15)
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As in the previous case, all problems leverage the same function (model) to derive
conditional distributions. However, unlike the naive data pooling approach, we do not
require centralized access to the local training data sets and do not affect model training.
Rather, we only require access to the trained local models ˆ︁ps.

For the case of non-parametric machine learning algorithms (5.8), the OT-based data
pooling involves, for each x ∈ X , first assigning weights ωs(x) ∈ ΣNs to historical observa-
tions in Ds, transforming them into probability vectors that weight each support location
ỹk, and then estimating the respective Wasserstein barycenter.

There are some limitations associated with the Wasserstein barycenter approach that
warrant discussion. Firstly, the estimation of the Wasserstein barycenter is generally com-
putationally expensive. As the dimension of x is typically large compared to y, we chose to
estimate barycenters of conditional marginals, instead of barycenters of the joint distribu-
tion between y and x, thus decoupling the estimation problem from the size of x. Secondly,
this approach assumes that all local models have the same level of expertise and that their
respective data sets are equally informative. This assumption may not hold in practice,
as some subproblems may have more informative data sets than others, and therefore the
respective local models should be given more weight in the barycenter computation; this
can be addressed by tuning the barycentric coordinates λ.

5.5 Prescriptive Data Pooling

In the previous section, we discussed two approaches for pooling data across multiple sub-
problems: naive data pooling and the Wasserstein barycenter. Here, we propose a prescrip-
tive data pooling algorithm that interpolates between the local and the global approaches
based on the expected out-of-sample decision cost of the downstream optimization problem.

First, we introduce a method to estimate the expected prescriptive cost using the OOB
method, which sets the foundation for our method (in Subsection 5.5.1). Next, we present
our prescriptive data pooling algorithm (in Subsection 5.5.2).

5.5.1 OOB Estimation of the Prescriptive Cost

This section describes how to estimate the out-of-sample prescriptive cost of a trained
model building on the OOB error method, which is a technique used in ensemble learning
to estimate model performance. The reason for building our proposed approach on the OOB
method is twofold. First, it allows us to jointly train and test a model, which is considerably
less computationally costly than cross-validation. Second, it leverages the full training data
set and does not require a separate validation set, making it advantageous when training
data are scarce.

We consider an ensemble model of weak base learners trained using bootstrap aggrega-
tion (bagging), e.g., a random forest model. That is, during the training process, each base

110



learner is trained on a new data set created by subsampling with replacement (bootstrap-
ping) from the original training data set. The predictions of the models inferred by the base
learners are then aggregated via, e.g., averaging— see [146, Ch. 8] for details. By evaluating
predictions on observations not used in the training of a specific model, bagging allows for
evaluating the so-called OOB error, which provides an estimate of the out-of-sample pre-
diction error. As the number of training observations increases, the OOB error converges
to the leave-one-out cross-validation error [163].

We now describe a novel approach to evaluating the expected out-of-sample decision
cost, by adapting the OOB method to a prescriptive context. For simplicity, we consider
the case of a single model and drop subscript s. Consider a problem of the form of (5.6)
approximated using an ensemble model ˆ︁p : X → ΣK composed of weak base learners,
trained either to minimize prediction error or the downstream decision cost. The process is
described as follows. For i = 1, . . . , N , we find all the models inferred by the base learners
for which the i-th observation was not used for training. These models can be considered a
new ensemble model, which we use to derive a conditional distribution ˆ︁pOOB

i (xi). The OOB
estimate of the prescriptive cost is the average difference between the incurred decision cost
and the perfect foresight solution, given by

1
N

N∑︂
i=1

D(ˆ︁pOOB
i (xi), yi | c,Z). (5.16)

Notably, the key distinction from the OOB estimation of the prediction error method
is that the OOB estimation of the prescriptive cost solves a weighted SAA of a stochastic
optimization problem for each OOB observation and measures the incurred decision cost.
In contrast, the standard OOB method involves averaging the base learner predictions
and measuring the prediction error 2. The prescriptive OOB method has also potential
applications in searching for model hyperparameters that lead to the smallest decision cost,
similar to [38].

We next describe in detail how to estimate ˆ︁pOOB
i (x) for the specific case when ˆ︁p is a

random forest model. Consider a random forest composed of T trees {τ1, . . . , τT } that
outputs weights ω(x) ∈ ΣN of the form (5.9) for any x ∈ X , where τj is trained using a
bootstrapped version of D. For the i-th training observation, let T ⊆ [T ] be the subset of
trees that did not use the i-th observation for training. Further, let D′ = D \ {(yi, xi)} be
a surrogate data set that excludes the i-th training observation from the original data set
D. For each observation in D′, indexed by subscript ℓ, we estimate weights

ωOOB
l (xi) = 1

|T |
∑︂
j∈T

I [τj(xl) = τj(xi)]∑︁N−1
l′=1 I [τj(xl′) = τj(xi)]

,

which are of the form of (5.9) but only consider a subset of trees. Note that the i-th
observation is removed from the original data set to avoid potential bias. Finally, for k =
1, . . . , K, we estimate ˆ︁pOOB

i,k (xi) = ∑︁N−1
l=1 I [yl = ỹk] ωOOB

l (xi).
2For simplicity, we assume a regression setting where the target variable is real-valued.
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Prescriptive Data Pooling

5.5.2 Prescriptive Barycentric Interpolation

Algorithm 5.1 PrescrInterp
Input: training data sets {Ds}Ss=1, local models {ˆ︁ps}Ss=1, anchor probability vector panch(x)
Output: hyperparameters {αs}Ss=1

1: fix a grid of values, e.g., A = {0.0, 0.1, . . . , 1.0}
2: for s = 1, . . . , S do
3: for α ∈ A, i = 1, . . . , Ns do
4: find ˆ︁pOOB

s,i (xs,i) {OOB histogram}
5: qOOB

s,i,α = arg min
q

αW (q, ˆ︁pOOB
s,i,k(xs,i))+(1−α)W (q, panch(xs,i)) {barycentric interpo-

lation}
6: end for
7: find α∗

s = arg minα∈A
1

Ns

∑︁Ns
i=1 D(qOOB

s,i,α, ys,i) {minimizes the OOB prescriptive cost}
8: end for

return {α∗
s}Ss=1

In this section, we propose an optimization-based approach that combines the prescrip-
tive OOB method and data pooling for a collection of S problems with contextual informa-
tion.

We assume access to local data sets Ds and models ˆ︁ps, as well as an anchor distribution
panch(x) estimated from a data pooling procedure, e.g., the output of a global model with
naive data pooling or an aggregation of ˆ︁ps of the form of (5.14). Note that it is also possible
to consider distributions that are not data-driven, e.g., a distribution provided by a domain
expert given the context. Our goal is to determine when and how much data to pool in
order to minimize the expected out-of-sample prescriptive cost. To achieve this, once again,
we utilize the notion of the Wasserstein barycenter to interpolate between a local and an
anchor distribution, allowing for a flexible combination of information from local data sets
and the aggregated anchor distribution.

Let α ∈ [0, 1] be a hyperparameter that controls the amount of data pooling. The
optimization-based interpolation algorithm is detailed in Algorithm 5.1. The algorithm
begins by fixing a grid point of values for hyperparameter α. For each subproblem s,
the algorithm iterates over the values of α and training observations i = 1, . . . , Ns, and
estimates a conditional distribution using the prescriptive OOB method. The algorithm
then interpolates between the locally estimated and anchor distributions by estimating a
barycenter whose coordinates are given by α — see Step 5 in Algorithm 5.1. For clarity,ˆ︁pOOB

s,i (xs,i) is the OOB probability vector given x = xs,i, estimated from a subset of base
learners from the ensemble model ˆ︁ps which did not use the i-th observation for training
(hence the superscript OOB). Further, qOOB

s,i,α is the α-weighted average distribution, in the
sense of the Wasserstein distance, between ˆ︁pOOB

s,i (xs,i) and panchor(xs,i). Evidently, α = 1
retrieves the local solution, while α = 0 maximizes the amount of data pooling. Finally, the
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algorithm finds the value of α that minimizes the OOB estimate of the prescriptive cost.
For an out-of-sample realization of uncertainty, xs,0, we first estimate the α-weighted

Wasserstein barycenter of the local and the anchor models, and then solve the respective
problem. Note that a different hyperparameter α is selected for each problem. This way,
problems with high-quality local data sets and, by extension, high-quality forecasting models
will converge to the local approach faster, while the rest of the problems may still benefit
from data pooling.

Alternatively, we propose interpolating between the local and the anchor distribution
by minimizing the ℓ2 distance, instead of the Wasserstein distance, by replacing Step 5 of
Algorithm 5.1 with

qOOB
s,i,α = αˆ︁pOOB

s,i,k(xs,i) + (1− α)panch(xs,i),

effectively creating a convex combination between the local and the anchor distribution.
The barycentric interpolation using the ℓ2 distance has the benefit of reducing the compu-
tational cost both for the offline training phase and the model deployment. Nonetheless, it
creates a mixture of distributions that do not maintain the geometric structure and is less
interpretable.

5.6 Numerical Experiments

In this section, we empirically validate data pooling for power system applications. First,
we present various motivating applications (in Subsection 5.6.1). Then, we discuss our
experimental setup and input data (in Subsection 5.6.2), and present the numerical results
(in Subsections 5.6.3 and 5.6.4).

5.6.1 Motivating Power System Applications

In this section, we present the two motivating examples related to the integration of stochas-
tic renewable energy sources in power systems and electricity markets, which we study in
the numerical experiments.

Prediction In the prediction setting, our goal is to forecast the power production of a
number of wind turbines in the day-ahead horizon given a set of weather forecasts derived
from an NWP model. The cost function is given by

c(z; y) = (z − y)2,

i.e., the standard MSE loss, and the feasible set is given by Z = {z | 0 ≤ z ≤ 1}, i.e., forecast
values are normalized by the nominal capacity.

Trading In the trading setting, we consider a renewable producer participating as a price-
taker in a day-ahead market subject to imbalance penalties, assuming a dual-price balancing
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Numerical Experiments

mechanism. As before, the producer derives trading decisions given a set of weather forecasts
from an NWP model. As previously discussed in Chapter 2.4.2, this problem is an instance
of the well-known newsvendor problem [51], which aims to find the optimal replenishment
quantity for a perishable product. The cost function is given by

c(z; y) = max( τ

1− τ
(y − z), (z − y)),

which is known as the pinball loss, with 0 < τ < 1 being the critical fractile. The full-
information solution is the τ -th quantile of the distribution of y, i.e., the wind production.
Similarly to the prediction problem, the feasible set is given by Z = {z | 0 ≤ z ≤ 1}.

5.6.2 Experimental Setup and Input Data

In the numerical experiments, we investigate the performance of different data pooling
methods in terms of the expected cost. Specifically, we examine the impact of the number
of training observations, Ns, which are either fixed or randomly distributed across problems,
and the effect of the number of problems S. The following methods are compared:

• Local: a standard approach where each subproblem is solved independently without
any data pooling.

• Pool-Naive: naive data pooling with a global model.

• Pool-OT: OT-based data pooling.

• Interp: barycentric interpolation between Local and Pool-OT using the proposed
prescriptive data pooling algorithm.

In all cases, we use random forest models to estimate the conditional distributions. For
the prediction problem, we train a random forest model with 100 trees for each subproblem
using default hyperparameters. For the trading problem, we use random forests trained to
minimize the prescriptive cost criterion described in Chapter 2.3 and the same hyperpa-
rameters. For Pool-Naive, we consider the same model and hyperparameters as Local but
trained on the concatenated data sets. For Pool-OT, we use the 1-Wasserstein metric to
compute the barycenters and set λs = ns∑︁S

s=1 ns
.

For input data, we use power measurements from S = 50 wind turbines located in mid-
west France, with an aggregated nominal capacity of 100 MW. The available data sets span
the period from January 2019 to April 2020 with an hourly resolution. We use the data
from 2019 to sample training data sets and the remaining 5 months for testing. For both
applications considered, i.e., prediction and trading in a day-ahead market, we consider a
horizon of 12 to 36 hours ahead.

For contextual information, we use wind speed forecasts from an NWP model, issued
daily at 00:00 UTC with a spatial resolution of 0.1o × 0.1o and a forecast horizon of 96
hours ahead. For the s-th subproblem, xs comprises the NWP model forecasts from the
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closest grid point in terms of Euclidean distance. Wind production series are normalized
and assumed to take values on the fixed grid {0.00, 0.01, . . . , 1.00}.

5.6.3 Prediction Results

First, we consider a scenario where the number of training observations Ns is fixed across
all problems and investigate the performance of the different methods as a function of
Ns, as well as the number of problems (i.e., number of wind turbines) S. To obtain our
results, we first sample S wind turbines and Ns training observations for each turbine, train
both the local and global models, estimate the Wasserstein barycenters for each x, and
run Algorithm 5.1 for the combination method. We then evaluate the performance of each
method on the test set. The process is repeated 10 times.

Fig. 5.1 presents the average MSE over the S subproblems and all the iterations. Overall,
the results suggest that data pooling can be beneficial when data are scarce, but as the
amount of data increases, the local approach, Local, becomes more reliable and outperforms
data pooling for all values of S. This result is intuitive and corroborates the findings of
previous works — see, e.g., [147]. Specifically, Pool-Naive is always the best-performing
method for Ns = 50, followed by closely Pool-OT, while Pool-OT converges to slightly better
performance for larger values of Ns. Further, we observe that the number of problems S

has an effect on the performance of both Pool-Naive and Pool-OT, as both perform better
for larger values of S, with the effect being more pronounced for smaller values of Ns, which
indicates that data pooling benefits from the presence of multiple problems.

Note that Fig. 5.1 may also indicate that increasing the number of problems S is asso-
ciated with improved performance for Local, which, however, is by design independent of
S. Indeed, examining the performance for each local problem confirms that this effect is
spurious and is attributed to the variability of the experiments.

Notably, the prescriptive data pooling performs consistently well, outperforming both
Local and Pool-OT. When Ns is moderate to small, Interp is considerably better than
Local, while when Ns is larger, Interp converges to similar or better performance than
Local. This result indicates that the prescriptive data pooling algorithm does a good job
of identifying how much data to pool given the size of the training sample, and that a small
degree of data pooling offers benefits even for larger training samples.

Next, we repeat the previous experiment but randomly sample the number of training
observations, Ns, for each subproblem from a normal distribution with a of mean 100 and
standard deviation of 25. Table (5.1) summarizes the expected improvement in terms of MSE
and the standard error of each method. Both Pool-Naive and Pool-OT perform, on average,
better than Local, although, in several cases, the result is not statistically significant.
Conversely, Interp leads to a considerable improvement over Local of approximately 4.71%
over all the values of S. This further highlights the fact that a convex combination of the
local and pooled methods can outperform both approaches. Moreover, the prescriptive data
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Figure 5.1: Average MSE versus sample size Ns (same for all subproblems). Error bars show
±1 standard error.

Table 5.1: Average percentage (%) of MSE improvement over Local. Parentheses show the
standard error.

Pool-Naive Pool-OT Interp

S = 5 0.31 (1.87) 1.56 (1.73) 3.79 (1.27)
S = 10 3.55 (1.77) 3.48 (1.74) 5.99 (1.23)
S = 20 0.40 (0.44) 0.99 (0.43) 4.03 (0.34)
S = 50 1.40 (0.32) 2.26 (0.31) 5.02 (0.16)

pooling algorithm performs consistently well even when sample sizes vary across problems.

5.6.4 Trading Results

In this subsection, we consider the setting of trading renewable production in a day-ahead
market. We present results for a fixed value of τ = 0.80, i.e., the optimal trading offer equals
the 80-th quantile of the wind production distribution, and measure performance in terms
of expected pinball loss.

Similarly to the prediction problem, we first consider the scenario where the number
of training observations Ns is fixed across all problems and investigate the performance of
the different methods as a function of Ns, as well as the number of problems S, repeating
the process 10 times. Fig. 5.2 presents the average pinball loss over the S subproblems and
all the iterations. Overall, the results closely resemble the ones presented in the prediction
problem. Specifically, data pooling outperforms the local approach when data are scarce,
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Figure 5.2: Average pinball loss for τ = 0.80 versus sample size Ns (same for all subprob-
lems). Error bars show ±1 standard deviation.

Table 5.2: Average percentage (%) of pinball loss improvement over Local. Parentheses
show the standard error.

Pool-Naive Pool-OT Interp

S = 5 2.46 (1.11) 1.96 (0.88) 3.40 (0.57)
S = 10 4.31 (0.80) 3.18 (0.60) 4.89 (0.30)
S = 20 4.56 (0.67) 4.09 (0.66) 5.49 (0.54)
S = 50 4.69 (0.29) 4.55 (0.24) 5.71 (0.30)

the local approach converges to better performance as Ns increases, and the prescriptive
data pooling algorithm combines the best of both worlds. The effect of S is also similar to
the prediction problem.

We further examine the performance of the methods when the number of training ob-
servations for each problem is randomly sampled from a normal distribution, similar to the
previous experiment. Table 5.2 summarizes the expected improvement in terms of pinball
loss and the associated standard error of each method. Contrary to the previous problem
examined, both data pooling methods, namely, Pool-Naive and Pool-OT, significantly out-
perform the local approach. Specifically, the expected improvement over Local is 4.01% for
Pool-Naive and 3.45% for Pool-OT, respectively. Conversely, Interp leads to an expected
improvement of 4.87% and is consistently the best-performing method for all values of S,
which closely resembles the results presented in Table 5.1.
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Conclusions

5.7 Conclusions

In this chapter, we investigated data pooling methods to address data scarcity when dealing
with multiple contextually-dependent problems. Two approaches were examined, namely
training a global model with naive data pooling and an OT-based method for combining
estimated conditional distributions. We further developed a prescriptive data pooling al-
gorithm that interpolates between a local and a pooled distribution based on the expected
decision cost of the downstream optimization problem. For validation, we examined two
pivotal applications related to the integration of renewable energy sources in power systems,
namely renewable production forecasting and trading in a day-ahead market. Our empirical
results illustrated that data pooling improves overall performance when data are scarce and,
perhaps more importantly, our prescriptive data pooling algorithm correctly identifies when
and how much data to pool, leading to consistently better performance than standalone and
pooled methods.

Future work could focus on the case of both scarce and contaminated data, and develop-
ing data pooling methods that are robust to local outliers. Moreover, it is worth exploring
adding entropic regularization to the estimation of the Wasserstein barycenter, which in-
duces a smoothing effect and, potentially, could improve performance for smaller sample
sizes.
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Chapter 6

Conclusions and Future Directions

Résumé en Français
Les méthodes basées sur les données sont très prometteuses en tant que catalyseurs clés de

la transition vers un réseau électrique décarboné et durable avec une part importante de sources
d’énergie renouvelables. Dans cette thèse, nous avons exploré diverses directions de recherche pour
développer des méthodes basées sur les données qui améliorent la prise de décision dans les systèmes
électriques, en nous concentrant principalement sur un calendrier opérationnel. En particulier, cette
thèse a contribué à permettre de meilleures décisions grâce à la prévision et à l’optimisation intégrées,
à favoriser l’adoption d’outils d’analyse avancés grâce à des méthodes intrinsèquement interprétables
et à permettre la résilience aux défis liés aux données, tels que les données manquantes dans un
environnement opérationnel ou les données de formation rares. Dans l’ensemble, les méthodes et les
résultats présentés soulignent l’importance d’aller au-delà des mesures de précision statistique et de se
concentrer sur l’obtention d’une valeur de prévision plus élevée, ainsi que sur l’anticipation des défis
potentiels liés au déploiement de méthodes basées sur les données dans des contextes réels, tels que
les données manquantes, pour assurer la cohérence de leur production. Les méthodes et algorithmes
proposés peuvent également être étendus dans plusieurs directions intéressantes. Par exemple, le
cadre intégré de prévision et d’optimisation développé dans le Chapitre 2 pourrait être étendu au
cas où le problème d’optimisation en aval change, par exemple avec l’ajout de nouvelles contraintes,
tandis que la méthodologie du Chapitre 3 pourrait être étendu à d’autres tâches opérationnelles
critiques telles que le flux d’énergie optimal soumis à des contraintes de sécurité. De plus, le cadre
de régression robuste proposé au Chapitre 4 pourrait être étendu aux modèles non linéaires, tels
que les modèles de réseaux neuronaux, tandis que la méthodologie de regroupement de données du
Chapitre 5 pourrait être étendue à un cadre d’estimation décentralisé pour améliorer les problèmes
de confidentialité des données. Dans l’ensemble, cette thèse contribue à améliorer l’efficacité et
la fiabilité des systèmes électriques modernes en développant des méthodes avancées basées sur les
données ainsi qu’en relevant les défis associés à leur déploiement dans un environnement opérationnel
réel.
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Conclusions and Future Directions

To mitigate the adverse effects of climate change, the electricity power sector is rapidly
transitioning towards decarbonization through the integration of renewable energy sources,
such as wind and solar. Nonetheless, the highly variable and uncertain nature of weather-
dependent renewable energy sources poses major challenges in the current mode of operation.
In this context, advanced data-driven methods, leveraging tools from machine learning, op-
erations research, and data science, hold significant promise as key enablers in the transition
towards a decarbonized and sustainable electricity grid.

In this thesis, we explored various research directions to develop data-driven methods
that lead to better decisions and address challenges related to their deployment in real-
world power systems, focusing on a short-term operational time frame. We took a holis-
tic approach by examining the model chain that goes from data to uncertainty modeling
and then to decisions, and contributed towards improving different aspects of data-driven
decision-making processes. Specifically, this thesis contributed to enabling better decisions
through integrated forecasting and optimization, fostering the adoption of advanced analyt-
ics tools through intrinsically interpretable methods, and enabling resilience to data-related
challenges, such as missing data in an operational setting or scarce training data.

In Chapter 2, we investigated the interaction between forecasting and optimization,
which are two integral components of data-driven decision-making. To maximize the value
of forecasts and enable better decisions, we developed an integrated method that embeds the
downstream decision problem within the forecasting model. Additionally, we proposed var-
ious metrics to evaluate the impact of data on decision performance. Through comprehen-
sive numerical experiments concerning participation in electricity markets, we demonstrated
that the proposed approach performs similarly or better than the current state-of-the-art
methods, while also reducing the associated modeling effort. A key takeaway from Chap-
ter 2 is that moving beyond standard statistical accuracy and embedding knowledge about
the downstream optimization problem within forecasting models can significantly improve
decisions and mitigate uncertainty.

Chapter 3 explored the use of machine learning to accelerate traditional power system
workflows and further improve decision-making processes. We proposed an interpretable
learning method to directly forecast the solutions of a constrained optimization problem
with feasibility guarantees, using the DC-OPF problem as a guiding example. Comprehen-
sive numerical experiments demonstrated that our proposed method performs comparably
to state-of-the-art black-box methods while also offering interpretable insights. Overall,
Chapter 3 highlights that interpretability does not have to come at the expense of perfor-
mance and illustrates the importance of developing methods that can provide transparency
to facilitate decision-making in complex and critical domains such as power systems.

The implicit assumption underpinning most data-driven methods is that data will al-
ways be available when needed in an operational setting, such as when a model is deployed
in production. In Chapter 4, we addressed the challenge of missing data in an opera-
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tional setting that can compromise model performance, and developed a practical approach
to enable model resilience, using a forecasting task as a guiding example. Importantly,
the proposed method is agnostic to the mechanism that generates missing data, hedging
against the worst-case scenario, and maintains practicality compared to ad hoc solutions.
A series of numerical experiments highlighted its efficacy in enabling resilience and consis-
tent performance. A key takeaway from Chapter 4 is that model performance is contingent
on data availability and quality. Hence, fully leveraging available data-driven methods re-
quires ensuring reliable and consistent performance under challenges that frequently arise
in real-world applications, such as missing data.

Chapter 5 further contributed to enabling resilience against data-related issues by ad-
dressing the challenge of scarce training data in complex, real-world systems, such as power
systems, where a large number of decision problems are solved under uncertainty. In this
context, the aggregate volume of data is typically large, but data on an individual problem
level can be scarce, creating a “large-scale, small-data” regime that hinders the deployment
of advanced methods, such as those presented in Chapter 2. To address this, we formulated
various methods for pooling data across problems and further developed an optimization-
based algorithm to tune the amount of data pooling. Through numerical experiments,
we illustrated that data pooling enhances performance in the case of scarce data, and the
proposed algorithm can be beneficial even as the amount of local data increases. A key
takeaway from Chapter 5 is that effectively utilizing advanced data-driven methods requires
novel tools that can exploit available data from various sources.

This thesis has explored several promising research directions and there are still several
interesting challenges and avenues for future work.

For the integrated forecasting and optimization framework developed in Chapter 2, fu-
ture work could focus on extending the proposed framework to an online setting that readily
adapts to shifts in the underlying distributions of uncertainty, as well as changes in the down-
stream optimization problem, such as the addition of new constraints. Another interesting
challenge is reducing the computational cost of the integrated tree-based method through
improved splitting heuristics. Furthermore, future work could consider cases where the pre-
scribed decisions also affect the uncertain parameters, such as the case of a price-maker
participating in wholesale electricity markets.

In Chapter 3, future work could explore the application of the proposed methodology to
other critical tasks, such as Security Constrained DC-OPF or AC-OPF problems. From a
methodology standpoint, the proposed framework to encode domain knowledge could also
be adapted to other generic algorithms.

Regarding the robust regression framework developed in Chapter 4, future work could
focus on extending the method to nonlinear models, such as neural network models, and
jointly considering resilience against missing and corrupted data, from factors such as cy-
berattacks. Lastly, to minimize data leakage and ameliorate privacy concerns, future work
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Conclusions and Future Directions

could adapt the data pooling methods developed in Chapter 5 in a decentralized estimation
framework.

This thesis contributes to a diverse range of aspects of analytics tools for power systems.
Our overarching goal is for the methods and tools developed in this thesis to complement
each other, enabling better utilization of analytics tools for power systems. In future power
systems that integrate a large number of heterogeneous assets, we envision a setting where
streams of data such as updated weather predictions, production measurements, and mar-
ket information are translated into value-maximizing decisions in a reliable, fast, and un-
derstandable manner. We believe that the methods and tools developed in this thesis will
contribute towards this vision, improving the efficiency and reliability of power systems, and
ultimately leading to a more sustainable future.
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MOTS CLÉS

Prévision énergétique, science de la donnée, apprentissage automatique, optimisation, système électrique,

analyse prescriptive, sources d’énergie renouvelables.

RÉSUMÉ

Pour atténuer les effets néfastes du changement climatique, le secteur de l’électricité passe rapidement à la

décarbonation grâce à l’intégration de sources d’énergie renouvelables, telles que l’éolien et le solaire. Dans ce contexte,

les méthodes avancées basées sur les données, tirant parti des outils de l’apprentissage automatique et de la recherche

opérationnelle, sont très prometteuses en tant que catalyseurs clés pour faire face à l’incertitude et à la variabilité des

sources d’énergie renouvelables dépendantes des conditions météorologiques. Dans cette thèse, nous adoptons une

approche holistique en examinant la chaı̂ne de modèles qui va des données à la modélisation de l’incertitude, puis

aux décisions et développons des méthodes basées sur les données qui permettent une prise de décision améliorée

et résiliente dans les systèmes électriques modernes. Pour maximiser la valeur des prévisions, nous développons

une méthode qui intègre la prévision et l’optimisation et proposons un cadre pour évaluer l’impact des données sur

les décisions. Pour favoriser l’adoption de méthodes avancées basées sur les données et accélérer les flux de travail

traditionnels, nous développons une méthode interprétable pour prévoir les solutions aux problèmes d’optimisation sous

contraintes. Pour renforcer la résilience des modèles face aux données problématiques nous proposons une approche qui

permet de gérer les données manquantes dans un cadre opérationnel. Nous proposons également une méthode basée

sur l’optimisation pour regrouper les données sur un certain nombre de problèmes indépendants, améliorant ainsi les per-

formances globales et la robustesse des décisions. Les méthodes proposées sont validées dans diverses expériences

liées à l’exploitation du système électrique et à la participation aux marchés de l’électricité.

ABSTRACT

To mitigate the adverse effects of climate change, the power sector is rapidly transitioning towards decarbonization through

the integration of renewable energy sources, such as wind and solar. In this context, advanced data-driven methods,

leveraging tools from machine learning and operations research, hold significant promise as key enablers to deal with the

uncertainty and variability of weather-dependent renewable energy sources. In this thesis, we take a holistic approach

by examining the model chain that goes from data to uncertainty modeling and then to decisions and develop data-

driven methods that enable improved and resilient decision-making in modern power systems. To maximize forecast

value, we develop a method that integrates forecasting and optimization and propose a framework to evaluate the impact

of data on decisions. To foster the adoption of advanced data-driven methods and speed up traditional workflows, we

develop an interpretable method to forecast the solutions to constrained optimization problems. To enhance resilience

against data-related challenges, we propose a principled approach to handle missing data in an operational setting and

develop an optimization-based method to pool data across a number of independent problems, thereby improving the

overall performance and robustness of decisions. The proposed methods are validated in various experiments related to

power system operations and participation in electricity markets. Overall, the methods and tools developed in this thesis

contribute to the transition towards a decarbonized and sustainable electricity grid.

KEYWORDS

Energy forecasting, data science, machine learning, optimization, power system, prescriptive analytics, re-

newable energy sources.
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