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THÈSE DE DOCTORAT
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Résumé
Les aérosols organiques secondaires (AOS) affectent la qualité de l’air, le climat et la santé
humaine. Dans la troposphère, les composés organiques volatils (COV) peuvent subir une
chimie multigénérationnelle, et leurs produits d’oxydation se condenser sur les particules
existantes pour former des AOS. Ainsi, leur formation implique de nombreuses réactions
et espèces, et dépend des conditions environnementales.

Notre compréhension actuelle de la formation des AOS peut être décrite par des mé-
canismes chimiques détaillés (par exemple, le Master Chemical Mechanism (MCM) et le
Peroxy Radical Autoxidation Mechanism (PRAM)). Cependant, en raison de limitations
en temps de calcul, les modèles de chimie-transport (MCT) ne peuvent pas les utiliser di-
rectement. Ils utilisent plutôt des mécanismes implicites avec seulement quelques espèces
modèles et réactions. Ces mécanismes implicites sont généralement construits à partir de
mesures en chambre et peuvent ne pas avoir la complexité nécessaire pour simuler avec
précision les concentrations en aérosols organiques.

Généralement, on estime que les concentrations d’AOS diminueront en raison des
réglementations sur les émissions, en particulier dans les zones rurales et périurbaines où
les concentrations d’oxydants devraient diminuer. Cependant, certaines études suggèrent
que la réduction des émissions anthropiques, en particulier des oxydes d’azote (NOx), peut
ne pas conduire à une diminution efficace des concentrations d’AOS mais peut même les
augmenter. Avec des mécanismes implicites d’AOS hautement simplifiés, cette interaction
complexe entre la réduction des émissions et la formation d’AOS pourrait ne pas être
simulée de manière fiable dans les MTC.

Pour améliorer la formation des AOS dans les MTC, le GENerator of Reduced Organic
Aerosol Mechanisms (GENOA) a été développé. GENOA réduit les mécanismes chim-
iques détaillés en mécanismes d’AOS semi-explicites qui sont suffisamment petits pour
être utilisés dans les MCT. Les mécanismes obtenus peuvent être personnalisés par les
utilisateurs selon la précision souhaitée, et préservent les propriétés physico-chimiques des
AOS. GENOA v1.0 a été appliqué au mécanisme de formation des AOS de sesquiterpène
(SQT) à partir de MCM, résultant en un mécanisme dont la taille est réduite à moins de
2 % de celle du MCM avec une erreur moyenne inférieure à 3 %.

Pour améliorer l’efficacité de la réduction et traiter les mécanismes de plusieurs précurseurs
d’AOS simultanément, une approche de réduction parallèle est utilisée dans GENOA v2.0.
Pour les mécanismes (MCM + PRAM) de trois monoterpènes (MTs), le mécanisme global
est ainsi réduit de 93 % avec une erreur inférieure à 3 %.

Le mécanisme d’AOS biogénique généré par GENOA v2.0 (GBM), comprenant les
schémas d’AOS pour MT et SQT, a ensuite été implémenté dans le MCT CHIMERE. Les
concentrations simulées avec GBM sur l’Europe pendant l’été (juin-août, 2018) sont plus
élevées que celles simulées avec le mécanisme implicite Hydrophilic/Hydrophobic Organics
(H2O), et les AOS sont plus oxydés. Le mécanisme GBM améliore les comparaisons
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modèle/mesures pour les concentrations en aérosol organique.
Avec une réduction de 50 % des émissions anthropiques de NOx, le mécanisme GBM

prédit une augmentation des AOS (6,5 %) due à une augmentation des AOS provenant
de MT (15 %). Les réductions de NOx favorisent la formation de molécules hautement
oxygénées (HOM) par auto-oxydation, entraînant une augmentation de la concentration
en AOS provenant de MT. La diminution des concentrations de NOx favorise également
les voies chimiques entraînant une augmentation des concentrations d’AOS non-HOM
provenant de MT.

Dans l’ensemble, ce travail montre que les mécanismes détaillés d’AOS sont nécessaires
aux MCT pour simuler les variations des concentrations d’AOS selon l’environnement
physico-chimique, et pour évaluer avec précision l’impact de scénarios de réduction des
émissions.

Influence des émissions anthropiques sur la formation d’aérosol
organique en fonction des caractéristiques physico-chimiques de
l’environnement

Mots clés: Modélisation, Aérosols Organiques Secondaires, Qualité de l’Air
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Abstract
Secondary organic aerosols (SOAs) affect air quality, climate, and human health. In the
troposphere, volatile organic compounds (VOCs) can undergo multi-generation chem-
istry, and their oxidation products can condense onto existing particles to form SOAs.
Consequently, SOA formation involves numerous reactions and species, depending on
environmental conditions. Our up-to-date understanding of SOA formation can be de-
scribed by detailed VOC mechanisms (e.g., the Master Chemical Mechanism (MCM) and
the Peroxy Radical Autoxidation Mechanism (PRAM)). However, due to computational
limitations, chemistry-transport models (CTMs) are unable to directly employ detailed
SOA mechanisms but use rather implicit mechanisms with only a few model species and
reactions. These implicit mechanisms are usually built from chamber measurements and
may lack the necessary complexity to accurately represent the concentrations of organic
particles.

Typically, SOA concentrations are predicted to decrease due to emission regulations,
particularly in rural and peri-urban areas where oxidant concentrations are expected to
decrease. However, some studies suggest that reducing anthropogenic emissions, especially
nitrogen oxides (NOx), may not lead to an efficient decrease in SOA concentration but
may even increase it.

With highly simplified implicit SOA mechanisms, this complex interaction between
emission reduction and SOA formations may not be reliably simulated in CTMs. There-
fore, there is a need to improve the representation of SOA formation in CTMs, especially
for emission regulation evaluation.

To address this issue, the GENerator of Reduced Organic Aerosol Mechanisms (GENOA)
has been developed. GENOA reduces detailed chemical mechanisms into semi-explicit
SOA mechanisms that are small enough to be used for regional CTM simulations. The ob-
tained SOA mechanisms can be customized by users to the desired accuracy, and preserve
the physicochemical properties of SOA. GENOA v1.0 was applied to the sesquiterpene
(SQT) SOA formation mechanism from MCM, resulting in a reduced SOA mechanism
within 2 % of the MCM size and introducing an average error of less than 3 %. To
improve the reduction efficiency and to process mechanisms of multiple SOA precursors
simultaneously, a parallel reduction approach is employed in GENOA v2.0 GENOA v2.0
was applied to the mechanisms (MCM + PRAM) of three monoterpenes (MTs), where
the mechanism is reduced up to 93 % with an error of less than 3 %.

The GENOA-generated biogenic SOA mechanism (GBM), including MT and SQT
SOA schemes trained with GENOA v2.0, was then implemented in the CTM model
CHIMERE. Simulations with GBM over Europe during summer (June-August, 2018)
estimate more oxidized OAs with higher concentration than those simulated with the im-
plicit Hydrophilic/Hydrophobic Organics (H2O) mechanism. The GBM mechanism leads
to an improvement of the model to measurement comparisons for organic aerosol concen-

iv



trations. With a 50 % reduction in NOx anthropogenic emissions, the GBM mechanism
predicts an increase in total SOA (6.5 %) due to an increase in MT SOA (15 %). When
NOx is reduced, the formation of highly oxygenated molecules (HOMs) by auto-oxidation
is enhanced, leading to an increase in MT SOA concentration. The decrease of NOx
concentrations also favors chemical pathways resulting in an increase of MT non-HOM
concentrations.

Overall, this work shows that detailed SOA mechanisms are necessary for CTMs to
preserve the variations in the physical-chemical environment of the SOA concentrations,
and to accurately evaluate the impact of emission reduction scenarios.

Influence of anthropogenic emissions on organic aerosol for-
mation depending on the physicochemical characteristics of the
environment
Keywords: Modeling, Secondary Organic Aerosols, Air Quality

v



Contents

Remerciements i

Résumé ii

Abstract iv

Table of Contents vi

List of Figures x

List of Tables xiv

1 Introduction 1
1 Air pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Anthropogenic emission . . . . . . . . . . . . . . . . . . . 3
1.1.2 Biogenic emission . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Gaseous pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Nitrogen oxides . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Volatile organic compounds . . . . . . . . . . . . . . . . . 5
1.2.3 Ground-level ozone . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Particulate Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Size distribution . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Chemical composition . . . . . . . . . . . . . . . . . . . . 6

1.4 Health and Environmental and health impacts . . . . . . . . . . . . 8
1.4.1 Environmental effects . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Health impacts . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Guideline and regulation . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.1 WHO guideline . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.2 EU regulation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Formation of organic aerosols . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Gas-phase chemistry: Low-volatile organic formation . . . . . . . . 14

2.1.1 VOC oxidation . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 HOM formation . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Gas-particle thermodynamic . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Aerosol dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



Contents

2.3.1 Condensation/evaporation . . . . . . . . . . . . . . . . . . 19
2.3.2 Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Coagulation . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Interaction between anthropogenic emission and aerosol formation . . . . . 20
3.1 Gas-phase chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Gas-particle partitioning . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Effects of anthropogenic emission mitigation . . . . . . . . . . . . . 21

4 Modeling of organic aerosol formation . . . . . . . . . . . . . . . . . . . . . 21
4.1 Gas-phase chemical mechanism . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Simplified chemical mechanism . . . . . . . . . . . . . . . 22
4.1.2 Explicit chemical mechanism . . . . . . . . . . . . . . . . 23

4.2 SOA mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 VOC mechanism reduction for SOA modeling . . . . . . . . . . . . 25

5 Numerical models employed in this work . . . . . . . . . . . . . . . . . . . 26
5.1 Chemical transport model . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Aerosol box model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Objectives and the plan of the work . . . . . . . . . . . . . . . . . . . . . . 28

2 Development of GENOA v1.0 and its application to sesquiterpene SOAs 30
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1 Prereduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Reduction strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Removal strategy . . . . . . . . . . . . . . . . . . . . . . 35
2.2.2 Jumping strategy . . . . . . . . . . . . . . . . . . . . . . 36
2.2.3 Lumping strategy . . . . . . . . . . . . . . . . . . . . . . 37
2.2.4 Replacement strategy . . . . . . . . . . . . . . . . . . . . 39

2.3 Datasets of atmospheric conditions applied to reduction . . . . . . 39
2.3.1 Training dataset . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.2 Pre-testing dataset . . . . . . . . . . . . . . . . . . . . . 40
2.3.3 Testing dataset . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Settings for SOA simulations . . . . . . . . . . . . . . . . . . . . . 42
2.5 Settings for evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Settings for aerosol-oriented treatments . . . . . . . . . . . . . . . 43

3 Application to the β-caryophyllene mechanism . . . . . . . . . . . . . . . 43
3.1 Building of the reduced SOA mechanism . . . . . . . . . . . . . . . 43
3.2 Evaluation of the reduced SOA mechanism . . . . . . . . . . . . . 45

3.2.1 Reproduction of the SOA concentrations . . . . . . . . . 45
3.2.2 Reproduction of the SOA composition . . . . . . . . . . . 45
3.2.3 Sensitivity on environmental parameters . . . . . . . . . . 47

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Parallel reduction algorithm in GENOA v2.0: application to monoter-
pene SOAs 58
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.1 Presentation of GENOA v1.0 . . . . . . . . . . . . . . . . . . . . . 63
2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3 New features in GENOA v2.0 . . . . . . . . . . . . . . . . . . . . . 65

2.3.1 Parallel reduction . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.2 Reduction search order . . . . . . . . . . . . . . . . . . . . 66
2.3.3 Reduction strategy . . . . . . . . . . . . . . . . . . . . . . 67
2.3.4 Reduction score . . . . . . . . . . . . . . . . . . . . . . . . 68

2.4 Application to monoterpene SOA reduction . . . . . . . . . . . . . 69
2.4.1 Reference mechanism . . . . . . . . . . . . . . . . . . . . . 69
2.4.2 Evaluation dataset . . . . . . . . . . . . . . . . . . . . . . 71
2.4.3 Initial condition . . . . . . . . . . . . . . . . . . . . . . . . 73
2.4.4 Training stages . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1 Mechanism evolution during reduction . . . . . . . . . . . . . . . . 76
3.2 Description of the reduced mechanism . . . . . . . . . . . . . . . . 80
3.3 Mechanism performance during testing . . . . . . . . . . . . . . . . 82
3.4 Reduction sensitivity to prescribed error tolerances . . . . . . . . . 84
3.5 Mechanism sensitivity to environmental parameters . . . . . . . . . 87

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Code and data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Supplemental materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 3-D modeling biogenic organic aerosol formation to anthropogenic
NOx emission reduction 102
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.1 Model overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2.2 SOA mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2.3 Configuration of simulations . . . . . . . . . . . . . . . . . . . . . . 112
2.4 Computation of biogenic emissions . . . . . . . . . . . . . . . . . . 112
2.5 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.1 Comparison between simulation results and measurements . . . . . 113
3.2 Comparison between the implicit and detailed SOA mechanisms . . 115

3.2.1 Comparison of organic aerosol concentrations . . . . . . . 115
3.2.2 Comparison of OM/OC ratios . . . . . . . . . . . . . . . . 117
3.2.3 Comparison of MT and SQT SOA . . . . . . . . . . . . . 118
3.2.4 Comparison of HOM and non-HOM concentrations . . . . 118

3.3 Response of biogenic SOA concentrations to NOx emission reduction123
3.3.1 Effect of NOx reduction on concentrations of oxidants and

radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.3.2 Comparison of total organic aerosols and OC:OM ratio . . 126
3.3.3 Comparison of MT SOAs . . . . . . . . . . . . . . . . . . 127

viii



Contents

3.3.4 Comparison of SQT SOAs . . . . . . . . . . . . . . . . . . 130
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Conclusions and perspectives 137
1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

2.1 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.2 Model application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

References 141

ix



List of Figures

1.1 The chemical composition and concentrations of PM1 in the Northern
Hemisphere. Source: [Zhang, 2007] . . . . . . . . . . . . . . . . . . . . . . 7

1.2 PM10 aerosol size distribution and chemical composition simulated in Paris
streets. The analyzed aerosols include ammonium (NH4), nitrate (NO3),
sulfate (SO4), sodium (Na), chlorine (Cl), black carbon (BC), dust (DU),
and organic aerosols. Organic aerosols contain biogenic emissions (Bio),
anthropogenic emissions (Ant), and oxidant products of both biogenic and
anthropogenic sources (ISV). Source: [Lugon, 2021]. . . . . . . . . . . . . . 8

1.3 Photos taken in Beijing, China, compare the visibility on a "haze" day (left,
June 19th, 2009) and on a clear day (right, June 22nd, 2009). Courtesy of
China Air Daily. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Processes related to the climatic impacts of SOAs, illustrating the com-
plex interactions between aerosol formation and climate change. Source:
[Shrivastava, 2017]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 A visualization of health impacts of different air pollutants. Source: Euro-
pean Environment Agency (EEA). . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Comparison of PM2.5 with WHO 2021 AQG, suggesting that current aerosol
pollution is still severe to human life. Source: [Goshua, 2022]. . . . . . . . 12

1.7 General gas-phase chemical pathways involved in VOC degradation. Source:
[Atkinson, 2003]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Processes of multi-generation degradation by [Aumont, 2005]. . . . . . . . 15
1.9 Autoxidation involved in the OH-initiated oxidation of a ketone. Copyright

2013 American Chemical Society. See more details in [Bianchi, 2019]. . . . 16
1.10 Processes involved in aerosol dynamic. Source: [Raes, 2000]. . . . . . . . . 19
1.11 Schematic representations of ozone chemistry in a low-NOx regime (a) and

a high-NOx regime (b) by [Seigneur, 2019]. VOC: volatile organic com-
pound, OVOC: oxidized volatile organic compound. NO, NO2, and O3 are
involved in the Leighton photostationary-state reactions, and the directions
of the arrows indicate the main effect of the change in NOx emissions on
the O3 concentration for each regime. . . . . . . . . . . . . . . . . . . . . . 20

1.12 Structure of n-butane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.13 General principle of the CHIMERE model. Source: Chimere documenta-

tion v2020r3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.14 Framework of the SSH-aerosol model. . . . . . . . . . . . . . . . . . . . . . 27

x



List of Figures

3.1 Schematic diagram showing the main processes of the GENOA algorithm. . 63
3.2 Schematic diagram that shows the reduction frameworks in series (a) and

in parallel (b) used for GENOA v1.0 and v2.0, respectively. . . . . . . . . . 66
3.3 Schematic diagram illustrating the different reduction strategies with ex-

amples of candidate reductions related to species “A", including (a) removal
(of species, reactions, and gas-particle partitioning), (b) jumping (types I
and II), (c) lumping, and (d) replacement. . . . . . . . . . . . . . . . . . . 67

3.4 Locations of conditions in the training (8 “TC" conditions, detailed in Ta-
ble 3.2), pre-testing (100 conditions, navy dots), and testing datasets (9 818
conditions, white dots) for the monoterpene mechanism reduction. . . . . . 72

3.5 Evolution of the size (measured as a percentage reduction in the num-
ber of reactions, species, and condensables) and accuracy (measured as
ϵpre−testing

ave ) of the reduced mechanisms during training compared to the
reference mechanism. Vertical gray and white intervals indicate reduction
cycles. Vertical yellow, orange, and red bars indicate the end of training
stages I, II, and III, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Reaction pathways of the MT-rdc mechanism. The VOC oxidation reac-
tions with OH radical, Ozone, and NO3 radical are depicted by red, blue,
and green lines, respectively, with different arrowhead symbols pointing to
reaction products: empty diamond, filled “V"-type, and empty triangle.
Reactions with HO2, NO, RO2, O2, H2O, and photolysis reactions are rep-
resented by cyan, orange, yellow, gray, black, and orchid lines, respectively,
with different arrowhead symbols: empty dot, filled dot, filled square, filled
diamond, filled triangle, tee, empty square. The shapes of species nodes
indicate the species types: radicals with no outline, VOCs with ellipses,
semi-volatile organic compounds with boxes (SVOCs: Psat lower than 10−9

atm), low-volatile organic compounds with hexagons (LVOCs: Psat be-
tween 10−9 atm and 10−13 atm), and ELVOCs with octagons (ELVOCs:
Psat lower than 10−13 atm). All Psat values are at 298 K. . . . . . . . . . . 81

3.7 Reaction pathway in the MT-rdc mechanism corresponding to the forma-
tion of HOMs trained from the PRAM mechanism. Refer to Fig. 3.6 for a
more detailed description of the legend. . . . . . . . . . . . . . . . . . . . . 82

3.8 Monthly distribution of errors over testing conditions (box plot) generated
by the MT-rdc mechanism (compared to the reference mechanism) simu-
lated with different initial SOA precursor conditions. The bars represent
the number of testing conditions adopted for testing. . . . . . . . . . . . . 83

3.9 Map distributions of MT-rdc testing errors (left panels) and SOA yields
(right panels) simulated with the different initial precursor conditions un-
der testing conditions between May to September (8 509 conditions, corre-
sponding 86 % of total testing conditions). The maps of all testing condi-
tions are in Fig. S3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.10 Evolution of the size (measured as the number of condensables) and accu-
racy (measured as ϵpre−testing

ave ) of reduced mechanisms during training stage
III with increasing error tolerances. The final reduced mechanisms after
stage IV reduction, trained from three stage III mechanisms marked in the
figure, can be found in Table 3.8. . . . . . . . . . . . . . . . . . . . . . . . 86

xi



List of Figures

3.11 Dependence of average SOA yields simulated under the pre-testing dataset
with the reference mechanism (Ref., solid line) and the final reduced SOA
mechanism (MT-rdc, dotted line) on (a) temperature, (b) relative humidity,
and (c) SOA mass at 1 h (red point), 8 h (blue triangle) and 72 h (green
square). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Reaction pathways of the MT SOA scheme illustrating HOM formation in
the GBM mechanism trained from the PRAM mechanism. . . . . . . . . . 108

4.2 Reaction pathways of the monoterpene SOA scheme in the H2O mechanism
regarding the formation of non-HOM species. . . . . . . . . . . . . . . . . 109

4.3 Reaction pathways of the monoterpene SOA scheme in the H2O mechanism
regarding the formation of HOM species, i.e., Monomer and Dimer. Species
tRO2, RpO2, RppO2, RpppO2, RelvocO2 are peroxy radicals derived from
monoterpene oxidation with Ozone, while "Air" indicates the destruction
of tRO2 and RpO2 concentrations. . . . . . . . . . . . . . . . . . . . . . . 109

4.4 Reaction pathways of the sesquiterpene SOA scheme in the GBM mecha-
nism illustrating the SOA formation. Degradation pathways that do not
form SOA are not shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 MFE and MFB of the different investigated simulations compared to mea-
surements for concentrations of PM2.5, PM10, OCP M2.5 , OCP M1 , and OMP M1 .114

4.6 Average organic aerosol concentrations simulated with the GBM mecha-
nism (a) and differences with the H2O mechanism (b) during June-August
2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.7 Average organic mass to organic carbon (OM:OC) ratios simulated with
GBM (a) and H2O mechanisms (b) during June-August 2018. . . . . . . . 117

4.8 Maps of SOA concentrations derived from monoterpene, sesquiterpene, and
other SOA precursors simulated with the GBM (left panels) and differences
with the H2O mechanism (right panels). . . . . . . . . . . . . . . . . . . . 119

4.9 Average concentrations of non-HOM (top panels) and HOM MT SOAs
(bottom panels) simulated with the GBM mechanism (left panels) and
concentration differences with the H2O mechanism (right panels) during
June-August 2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.10 Composition of non-HOM (a) and HOM (b) MT SOAs simulated with
the GBM mechanism during June-August 2018. The fraction "Others"
represents the sum of SOA species with a concentration contribution of
less than 5 %. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.11 Distribution of mC10H16O11 concentration in HOM MT SOA concentra-
tions (%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.12 Composition of SQT SOAs simulated with the GBM mechanism. . . . . . 122
4.13 Distribution of dominant SQT SOA species in total SQT SOA concentra-

tions simulated with the GBM mechanism. Their contributions to SQT
SOA can be found in the GBM SQT scheme in Fig. 4.4. . . . . . . . . . . 123

4.14 Relative differences in NO (a) and HO2 (b) concentrations between the
NOx50 and REF scenarios. Simulations are performed with the GBM
mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xii



List of Figures

4.15 Relative differences in oxidant concentration, i.e., Ozone (a), OH radical
(b), and NO3 radical (c) between the NOx50 and REF scenarios, as well as
the chemical regime ratio of NOx50 scenario. Simulations are performed
using the GBM mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.16 Absolute concentration differences in total OA (top panels) and OAs be-
sides MT and SQT SOAs (noted as "Other OAs", shown in the bottom
panels) between NOx50 and REF scenarios simulated with the GBM (left
panels) and H2O (right panels) mechanisms. . . . . . . . . . . . . . . . . . 126

4.17 Absolute differences in organic mass to organic carbon (OM:OC) ratios
between NOx50 and REF scenarios simulated with the GBM (a) and H2O
(b) mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.18 Absolute differences in MT SOA concentrations (top), HOM MT SOA
(middle), and non-HOM MT SOA (bottom) between NOx50 and REF
scenarios, simulated with the GBM (left panels) and H2O (right panels)
mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.19 Effect on NOx reduction by 50% on SQT SOA concentrations simulated
with the GBM (a) and H2O (b) mechanisms. . . . . . . . . . . . . . . . . . 130

4.20 Composition of SQT SOAs simulated with the GBM mechanism and NOx50
emission reduction scenario during June-August 2018. . . . . . . . . . . . . 131

4.21 MFE (a) and MFB (b) between simulations and measurements on different
inorganic pollutants. From left to right, measurements of O3, NO2, partic-
ulate nitrate, ammonium, chloride, sodium, and sulfate are compared. The
numbers of stations and measurements compared with are listed in Table 4.3.133

4.22 Reaction pathways that lead to monoterpene SOA formation in GBM
mechanism. The reactions are shown by lines, where different colors in-
dicate different types of reactions. The oxidation reactions of VOCs with
various oxidants are displayed in different colors: red for Ozone, blue for
OH radical, and green for NO3 radical. Reactions with NO, HO2, RO2 pool,
H2O, O2, and photolysis are depicted in orange, cyan, gray, brown, black,
and orchid colors, respectively. The species are illustrated with distinct
shadow colors: no color, light gray, and deep gray, representing the num-
ber of SOA precursors it can be derived from (one, two, or three precursors).
Additionally, species with light and dark gray shadows are distinguished
by different shapes, including no shape, ellipse, box, hexagon, and oc-
tagon, which signify their properties, such as radicals, VOCs, semi-volatile
organic compounds (SVOCs with Psat lower than 10−9 atm), low-volatile
organic compounds (LVOCs with Psat between 10−9 atm and 10−13 atm),
and ELVOCs with Psat lower than 10−13 atm at 298 K, respectively. The
same legends are applied to Fig. 4.1. . . . . . . . . . . . . . . . . . . . . . 134

4.23 Composition of non-HOM (a) and HOM (b) MT SOAs simulated with
the GBM mechanism and NOx50 emission reduction scenario during June-
August 2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xiii



List of Tables

1.1 Gaseous air pollutants and their typical origins. Source:[Turner, 2020] . . . 4
1.2 The chemical composition of aerosols and annual production estimation

(with range if available). Source: [McNeill, 2017] . . . . . . . . . . . . . . . 6
1.3 AQG guidelines for six critical air pollutants. Source: [Goshua, 2022]. . . . 13
1.4 EU air quality standards. Directive 2008/50/EC. Source: [Seigneur, 2019] . 13

3.1 Size of the different detailed monoterpene chemical mechanisms in terms
of the numbers of reactions, species, and condensables. a . . . . . . . . . . 70

3.2 Geographic and meteorological characteristics of the training dataset for
the monoterpene mechanism reduction. . . . . . . . . . . . . . . . . . . . . 72

3.3 Initial concentrations of SOA precursor used for the monoterpene mecha-
nism reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Reduction configurations and results for different training stages of the
monoterpene mechanism reduction. . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Percentage and number of approved reductions per reduction strategy in
different training stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Percentage and number of organic species derived from different combina-
tions of monoterpene precursors per reduced SOA mechanisms. a . . . . . 79

3.7 Errors generated by the MT-rdc mechanism (compared to the reference
mechanism) simulated over testing conditions with different initial SOA
precursor conditions and two simulation starting times (i.e., 0 h and 12 h). 82

3.8 Size and accuracy of the reduced mechanisms trained with different error
tolerances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Abbreviations for organic species mentioned in this work. . . . . . . . . . . 107
4.2 Number of components in the SOA mechanisms H2O and GBM for MT

and SQT oxidations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3 Statistics analysis for comparing with measurements the simulated daily

concentrations of simulations with GBM-bio3 and H2O-bio3. . . . . . . . . 116
4.4 Monoterpene aerosol properties related to the GBM and H2O mechanisms. a135
4.5 Sesquiterpene SOA properties related to the GBM and H2O mechanisms.

The explanation for "HPHO" sees 4.4. . . . . . . . . . . . . . . . . . . . . . 136

xiv



Chapter 1
Introduction

Air quality concerns everybody’s life. Although air quality seems much improved
compared to twenty years ago, it is still estimated that exposure to air pollution
is responsible for millions of deaths and loss of healthy lifespan each year. Or-
ganic aerosols (OA) are crucial atmospheric pollutants and have various sources,
including biogenic and anthropogenic emissions. They can be formed in the at-
mosphere through physical-chemical transformations, known as secondary organic
aerosols (SOAs), which substantially affect air quality, climate, and human health.

This chapter provides a brief overview of air pollution, highlighting the gas-to-
particle processes that lead to the formation of secondary organic aerosols (SOAs),
as well as the current state of SOA modeling. Furthermore, the interaction between
anthropogenic emissions and SOA formation is explored, underlining the highly non-
linear effects caused by the complexity of gas-phase chemistry on SOA formation and
aging. To better understand the formation of organic aerosols, it is important to inves-
tigate how anthropogenic emissions interact with the physicochemical characteristics
of the environment.

Contents
1 Air pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Gaseous pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Particulate Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Health and Environmental and health impacts . . . . . . . . . . . . . . . . . . 8
1.5 Guideline and regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Formation of organic aerosols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Gas-phase chemistry: Low-volatile organic formation . . . . . . . . . . . . . . 14
2.2 Gas-particle thermodynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Aerosol dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Interaction between anthropogenic emission and aerosol formation . . . . . . . . . . . 20
3.1 Gas-phase chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Gas-particle partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Effects of anthropogenic emission mitigation . . . . . . . . . . . . . . . . . . . 21

1



Chapter 1. Introduction

4 Modeling of organic aerosol formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Gas-phase chemical mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 SOA mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 VOC mechanism reduction for SOA modeling . . . . . . . . . . . . . . . . . . 25

5 Numerical models employed in this work . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1 Chemical transport model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Aerosol box model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Objectives and the plan of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2



1. Air pollution

1 Air pollution
Air pollution is driven by chemical, physical, and biological gaseous and particulate pol-
lutants emitted or formed in the atmosphere, contaminating both the indoor and outdoor
environment and the atmosphere’s natural characteristics to a level that affects vegeta-
tion, climate, and human health. In this thesis, the discussion on air pollution focus on
outdoor air pollution and its long-term impacts (independent of pollution source).

1.1 Sources
Air pollution mainly comes from anthropogenic emissions as side effects of human ac-
tivities; biogenic emissions related to vegetation’s natural growth and decay; and other
sources such as biomass burning and sea salt activities.

1.1.1 Anthropogenic emission

A variety of human activities contribute to anthropogenic emissions, notably transporta-
tion, industry, power generation, agriculture, and construction. As an example, poor air
quality is typically found in urban areas with high levels of traffic congestion, coastal
areas near shipping routes, as well as the surrounding areas of industrial plants.

There are three major chemical and physical processes that drive anthropogenic emis-
sions, including combustion, volatilization, and mechanical processes:

Combustion The combustion of fossil fuels (e.g., petroleum, coal, wood, and natural
gas), such as those used to power transportation and generate electricity, contributes
primarily to anthropogenic emissions. Presently, most combustion processes do not com-
pletely oxidize carbonaceous compounds. This results in a large amount of gaseous and
particulate pollutants, including carbon monoxide (CO), anthropogenic volatile organic
compounds (AnVOCs), and black carbon ([André, 2020]). Even when combustion is
considered completed, carbonates still produce greenhouse gases (e.g., carbon dioxide -
CO2). Depending on the quality of the fuel, the combustion equipment, and the com-
bustion technology used, various pollutants can be released from both incomplete and
completed combustion, including nitrogen oxides (NOx) and sulfur dioxide (SO2). There
are also natural processes that cause air pollution through combustion, such as biomass
burning.

Volatilization Various human activities (e.g., industrial processes, construction and
demolition, shipping, and using household products) involve the application of solvents,
chemicals, and other materials that can evaporate easily at room temperature. Those
activities, therefore, release volatile organic compounds (VOCs) along with other pol-
lutants (e.g., SO2 from sulfur-containing products, Formaldehyde (HCHO) from certain
building materials). Agricultural runoff is another typical source of air pollution caused
by volatilization. As a result of the decomposition of animal manure, fertilizers, and
other organic matter from livestock, pollutants such as ammonia (NH3) and VOCs can
be released into the atmosphere.
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Mechanical Processes Mechanical processes are involved in many human activities
(e.g., transportation, construction, and manufacturing), which cause material abrasion
and particle fugitives, leading to particulate pollutants being released into the atmosphere.
During transportation, abrasions, such as wear and tear on brakes, tires, and road surfaces,
can release metals and particles into the atmosphere. Construction activities, unpaved
roads, and open storage piles can aggravate dust pollution. Aside from anthropogenic
pollution, natural mechanical activities, such as sea salt emissions, also contribute to air
pollution ([Xu, 2021a]).

1.1.2 Biogenic emission

Biogenic emissions constitute one of the natural sources of air pollution. Plants and other
living organisms can emit biogenic volatile organic compounds (BVOCs) through their
metabolic processes. BVOCs, dominated by isoprenoids (isoprene and monoterpenes),
are responsible for a significant fraction of atmospheric VOCs, especially in rural areas
with high vegetation cover. Although biogenic sources of air pollution are natural and
occur without human intervention, they still have a profound impact on air quality by
interacting with anthropogenic pollutants and participating in tropospheric chemistry.
Among all types of BVOCs, isoprene and terpenes (i.e., monoterpenes and sesquiterpenes)
are particularly reactive under atmospheric conditions, contributing to ground-level ozone
and secondary aerosol formation ([Kesselmeier, 1999; Sartelet, 2012]).

1.2 Gaseous pollutants
[Turner, 2020] summarized important gaseous air pollutants and their typical sources:

Gaseous pollutants Typical sources
Nitrogen oxides (NOx) Fossil fuel combustion (e.g., diesel vehicle)

Volatile organic compounds (VOCs)
Petrochemical solvents, evaporated fuels,
biogenics, incomplete combustion,
chemical processing

Ground-level Ozone (O3)
Formed via photochemical reactions in
the atmosphere from NOx and VOCs

Sulfur dioxide (SO2) Fuel combustion, smelters

Carbon monoxide (CO) Fuel combustion, biomass burning
wildfires

Ammonia (NH3) Livestock yards, agricultural activities

Table 1.1: Gaseous air pollutants and their typical origins. Source:[Turner, 2020]

Among them, NOx, VOCs, and O3 are the key pollutants that have a substantial im-
pact on severe air pollution such as photochemical smog and particle pollution. A concise
introduction to these pollutants and their roles in tropospheric chemistry is, therefore,
presented in this section.
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1. Air pollution

1.2.1 Nitrogen oxides

Nitrogen oxides (NOx), commonly representing nitric oxide (NO) and nitrogen dioxide
(NO2), are typically released as exhaust from combustion processes, making significant
contributions to air pollution. NOx are highly reactive gases that play a crucial role in
the formation and destruction of many pollutants and oxidants in the atmosphere. They
are, therefore, the precursors to many secondary pollutants, including ground-level ozone,
nitric acid, and organic nitrates. Nitric acid and organic nitrates can further condense and
form secondary aerosols. Additionally, the oxidation of NOx in the atmosphere results in
the formation of free radicals such as hydroxyl (OH) and nitrate (NO3) radicals, which
are two of the most common atmospheric oxidants alongside ozone.

1.2.2 Volatile organic compounds

Anthropogenic and biogenic organic gases emitted into the atmosphere are known as
volatile organic compounds (VOCs). They can undergo complex gas-phase oxidation in
the troposphere, with oxidation products being less volatile and/or more soluble. These
products can condense on existing particles, leading to the formation or reshaping of
secondary organic aerosols (SOAs). Meanwhile, the degradation of VOCs consumes at-
mospheric oxidants and influences ground-level ozone and NOx concentrations. As a
result, the ratio of NOx to VOC is frequently used to define the chemical regimes, where
favorable ozone formation and VOC degradation pathways differ. ([Atkinson, 2000]).

1.2.3 Ground-level ozone

Ground-level ozone is formed through a series of chemical reactions involving NOx and
VOCs in the presence of sunlight ([Atkinson, 2003]). Unlike the protective ozone in the up-
per atmosphere, which shields the Earth from harmful ultraviolet radiation, ground-level
ozone is a major component of photochemical smog. For the purpose of this discussion
on air pollution, ground-level ozone will be referred to as ozone or O3, without further
specification.

During sunny afternoons with high traffic volumes and industrial activity, ozone levels
can often accumulate to unhealthy levels in urban areas. Even in colder weather or
rural areas, ozone can still reach high concentrations due to tropospheric chemistry and
long-range transportation ([Seigneur, 2019]). Additionally, it serves as one of the most
abundant atmospheric oxidants, alongside NO3 and OH radicals, actively participating in
the degradation of various pollutants, such as VOCs.

1.3 Particulate Pollutants
Atmospheric aerosols, also known as particulate matter (PMs), are complex mixtures of
tiny particles (solid or liquid) suspended in the air. The size distribution and chemical
composition of these particles vary considerably depending on the emission source and
the atmospheric conditions in which they are suspended.
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1.3.1 Size distribution

Aerosols range widely in size, with aerodynamic diameters from a few nanometers (nm)
to tens of micrometers (µm). Depending on their size, aerosols are typically classified as
coarse, fine, and ultrafine particles.

Coarse particle Coarse particles have a large aerodynamic diameter between 2.5 µm
and 10 µm, including particles such as dust and pollen, which are emitted directly into
the air as primary pollutants. The term PM10 refers to aerosols with a diameter smaller
than 10 µm, thus including coarse particles.

Fine particles or PM2.5 Fine particles have an aerodynamic diameter of 2.5 µm or
less. They are mainly formed in the atmosphere via chemical-physical processes from gas-
phase species rather than being emitted directly. Fine particles encompass PM1 (particles
with a diameter of 1 µm or less), which is one of the commonly used terms in aerosol
pollution monitoring and research, alongside PM10 and PM2.5.

Ultrafine particles Ultrafine particles have an aerodynamic diameter of 0.1 µm or
less. Due to their tiny sizes, ultrafine particles have unique properties and atmospheric
behaviors. For instance, their large surface areas relative to their mass enable them to
carry a substantial load of chemicals.

1.3.2 Chemical composition

Aside from liquid water, aerosols can contain a variety of organic, inorganic, and insert
compounds, including primary fractions directly emitted from sources and secondary frac-
tions formed in the atmosphere. As displayed in Fig. 1.1, the chemical composition and
concentration of aerosols vary from location to location.

[McNeill, 2017] summarized the chemical composition of atmospheric aerosols at all
sizes and the estimated annual production rates as presented in Table 1.2. It suggests that
sea salts (e.g., chloride and sodium) and mineral dust from natural sources have much
larger emissions than other compounds. They are the main natural sources of primary
aerosols. The secondary compounds also have a noticeable production, which can be
further classified into secondary organic and inorganic aerosols.

Composition Production (Tg/yr)
Secondary inorganics 69.9

Mineral dust (natural) 103

Sea salt 1 - 3 × 104

Black carbon 7.5 (2 - 29)
Primary organics 33.9 (17 - 77)

Secondary organics 140 (50 - 380)

Table 1.2: The chemical composition of aerosols and annual production estimation (with
range if available). Source: [McNeill, 2017]
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1. Air pollution

Figure 1.1: The chemical composition and concentrations of PM1 in the Northern Hemi-
sphere. Source: [Zhang, 2007]

Secondary inorganic aerosols Secondary inorganic aerosols (SIAs) includes nitrate,
ammonium, sulfate, and chloride salts, which are formed through atmospheric chemi-
cal physical activities. Sulfate is formed through the oxidation of SO2 into sulfuric acid
(H2SO4), while nitrate is formed through the oxidation of NO2 into nitric acid (HNO3).
Meanwhile, ammonium mainly originates from NH3, and chlorides are formed due to
marine activities. The formation of ammonium is associated with sulfate and nitrate
concentrations ([Seigneur, 2019]), while in sea salt aerosol, a negative correlation is pro-
nounced between chloride and nitrate ([Wu, 1994]).

Secondary organic aerosols Secondary organic aerosols (SOAs) result from the gas-
particle mass transfer of numerous gas-phase organic compounds with low volatility that
are either formed or emitted into the air. Due to the large amount and the difficulty in
measurements, a large fraction of organic compounds is still unspeciated [Donahue, 2006].

As previously mentioned, the chemical compositions of aerosols vary significantly with
size. Figure 1.2 presents an example of the concentration and chemical composition of
urban PM10 at different sizes. It is observed that dust is the dominant component in coarse
particles, while inorganics are mostly found in fine particles, and organics concentrate in
ultrafine particles.

In the Northern Hemisphere, organic fractions contribute an average of 45 % total
PM1 (ranging from 18 % to 70 %), while inorganic fractions contribute the rest (sulfate
with an average of 32 %, nitrate with 10 %, ammonium with 13 %, and chloride with
0.6 %) ([Zhang, 2007]).
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Figure 1.2: PM10 aerosol size distribution and chemical composition simulated in Paris
streets. The analyzed aerosols include ammonium (NH4), nitrate (NO3), sulfate (SO4),
sodium (Na), chlorine (Cl), black carbon (BC), dust (DU), and organic aerosols. Organic
aerosols contain biogenic emissions (Bio), anthropogenic emissions (Ant), and oxidant
products of both biogenic and anthropogenic sources (ISV). Source: [Lugon, 2021].

1.4 Health and Environmental and health impacts
1.4.1 Environmental effects

Air pollution poses negative effects on all components of the environment, including
groundwater, soil, and air. Severe environmental issues triggered by air pollution include
haze, acid rain, and global warming.

Haze Haze is a type of air pollution that reduces the transparency of the atmosphere
by dispersing fine particles in the air. Figure 1.3 shows one type of haze called photo-
chemical "smog", which is often visible as a fog-like haze near urban areas during warm
weather. Under favorable atmospheric conditions, sunlight triggers chemical reactions
between gases and gas-to-particle transformation, leading to the formation of many pol-
lutants that cause haze with reduced visibility. Fine particles are the main cause of haze
formation in metropolitan areas, with ozone a byproduct involved in gas-phase chemistry.
Haze is a harmful outdoor condition, while both ozone and fine particles are causing more
serious health effects.

Acid rain Acid rain, also known as acid deposition, is precipitation that contains acidic
compounds from the atmosphere. In the atmosphere, gases such as SO2 and NO2 can
react and form acidic compounds such as sulfuric and nitric acids that eventually deposit
as acid rain. The acidity of acid rain can alter nutrient balances in aquatic ecosystems,
damage vegetation, and contaminate waterways. Constructions, outdoor sculptures, and
buildings may also be damaged by acid rain. As a result of contaminated drinking water
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Figure 1.3: Photos taken in Beijing, China, compare the visibility on a "haze" day (left,
June 19th, 2009) and on a clear day (right, June 22nd, 2009). Courtesy of China Air Daily.

sources and the inhalation of acid aerosols, acid rain can also have a detrimental effect on
human health.

Global warming Global warming is the result of the increase in the Earth’s surface
temperature caused by human activities. As greenhouse gases (e.g., CO2) accumulate in
the atmosphere, they absorb infrared radiation from the Earth’s surface that has been
heated by the sun, warming the atmosphere. This increase in temperature is a reflection
of the disturbance of the balance between incoming and outgoing radiation energy. As a
result of global warming, the melting ice caps and rising sea levels are contributing to a
heightened risk of flooding and the spread of vector-borne diseases. It is also evident that
in recent years, there has been a noticeable increase in the frequency of extreme weather
conditions that may be due to global warming, including continuous heat waves and
rainstorms. Without decisive action on global warming, there is no doubt that humans
will continue to suffer its consequences.

Notably, aerosols have a significant impact on the climate, as illustrated in Fig. 1.4.
Their chemical lifetime, optical and hygroscopic properties impact the cloud–aerosol–radiation
interactions ([Seinfeld, 2016]), further affecting climate systems and contributing to cli-
mate change. One key effect is the influence of aerosols on cloud formation. Particles
can serve as nuclei around which water droplets or ice crystals can form, altering the size,
brightness, and lifespan of clouds, as well as affecting precipitation patterns. Additionally,
by scattering and absorbing sunlight, aerosols can influence cloud brightness while also
impacting the coalescence and growth of cloud droplets. Due to their small size, aerosols
have an extended half-life in the atmosphere, which can result in prolonged suspension
and possibly spread to distant areas where people and the environment might be exposed
to the same level of pollution ([Manisalidis, 2020]).

9



Chapter 1. Introduction

Figure 1.4: Processes related to the climatic impacts of SOAs, illustrating the complex
interactions between aerosol formation and climate change. Source: [Shrivastava, 2017].
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1.4.2 Health impacts

In addition to the environmental consequences, air pollution poses a severe threat to living
organisms. Numerous studies, such as those conducted by [Kampa, 2008; Breysse, 2013;
Schraufnagel, 2019], have demonstrated that air pollution poses numerous negative effects
on human health. According to the World Health Organization (WHO), almost all people
worldwide (99 %) breathe air containing high levels of pollutants exceeding guideline
limits, with countries of lower and moderate economic conditions being disproportionately
affected ([Goshua, 2022]). As a result of its adverse impacts, air pollution is a leading
environmental health risk worldwide, causing numerous diseases.

Figure 1.5: A visualization of health impacts of different air pollutants. Source: European
Environment Agency (EEA).

Human bodies are vulnerable to the damaging effects of air pollution when inhaled or
simply exposed to it. As illustrated in Fig. 1.5, numerous pollutants can trigger adverse
health problems and diseases affecting multiple organs in the body, such as the head,
lungs, and cardiovascular system. Exposure to unhealthy pollutants for a short period
can result in headaches, dizziness, and respiratory problems, while long-term exposure
even to low levels of pollutants can lead to irreversible damage to the nervous and liver
systems ([Schraufnagel, 2019]).

A particular concern is the inhalation of atmospheric aerosols, as aerosols can carry
various pollutants to the human body, such as heavy metals that can be extremely harm-
ful. Upon inhalation, coarse particles are mostly deposited in the upper respiratory tract.
Fine particles can penetrate profoundly into the lungs, while ultrafine particles may reach
even deeper, entering the bloodstream and spreading into other organs. Consequently,
pollutants transported through aerosols may penetrate the respiratory system and cause
respiratory, cardiovascular, and central nervous system disorders, reproductive problems,
and possibly cancer ([Manisalidis, 2020]).
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Figure 1.6: Comparison of PM2.5 with WHO 2021 AQG, suggesting that current aerosol
pollution is still severe to human life. Source: [Goshua, 2022].

1.5 Guideline and regulation
In response to the growing awareness of the harmful effects of air pollution, guidelines and
regulations have been developed to help control and address the problem. This section
includes an example of the World Health Organization (WHO) guidelines and European
Union (EU) regulations on air quality.

1.5.1 WHO guideline

In 2021, WHO has updated its quantitative air quality guidelines (AQGs) and the corre-
sponding interim target levels for six key pollutants: PM2.5, PM10, SO2, NO2 (indicator
for NOx), O3, and CO. These guidelines are summarized in Table 1.3, providing the rec-
ommended or lowest level of exposure known to cause health problems. Among all six
pollutants, fine particle levels are the ones that currently exceed the AQGs the most. As
evident from Fig. 1.6, a significant number of people reside in regions with high PM2.5
exposure that greatly exceeds the WHO-recommended levels. This highlights the urgent
need for further actions to regulate aerosol concentration.

1.5.2 EU regulation

EU has a comprehensive regulatory framework for air pollution, including publishing air
quality stands (e.g., 2008/50/EC Directive shown in Table 1.4), developing real-time air
quality monitoring tools (e.g., CAMs monitor [Granier, 2019]), and setting regulation
targets for air pollutants and greenhouse gases (e.g., European Green Deal [Wolf, 2021]).
Similar regulations and standards are also established in other countries and regions (e.g.,
US’s NAAQS, China’s GB 3095—2012 for ambient air quality standards).
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Table 1.3: AQG guidelines for six critical air pollutants. Source: [Goshua, 2022].

Table 1.4: EU air quality standards. Directive 2008/50/EC. Source: [Seigneur, 2019]
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2 Formation of organic aerosols
As mentioned in the previous section, organic aerosols (OAs) are significant air particulate
pollutants. While some are emitted directly (e.g., biogenic particles like pollen and spores
or anthropogenic particles from combustion), the majority of atmospheric OAs are SOAs,
formed through the oxidation of VOCs and subsequent aerosol dynamic processes (e.g.,
condensation).

The SOA formation from VOC oxidation in the troposphere is a complex process. Af-
ter being emitted, VOCs undergo multi-generation oxidation in the troposphere, forming
oxidation products with low volatility. Those low-volatile gas-phase organic may condense
on existing particles via gas-particle partitioning and form SOA. This section summarizes
three processes involved in SOA formation: the gas-phase chemistry that leads to the for-
mation of gas-phase low-volatile compounds (Sect. 2.1), the gas-particle thermodynamics
that drives the distribution of organics on both gas and particle phases depending on
their volatility (Sect. 2.2), and the aerosol dynamics that form aerosols physical activities
(Sect. 2.3).

2.1 Gas-phase chemistry: Low-volatile organic formation
2.1.1 VOC oxidation

The degradation of the emitted VOCs is initiated by atmospheric oxidants (i.e., Ozone,
OH radical, and NO3 radical) or triggered by photolysis. Reactions by photolysis and
oxidation with OH are favorable during the daytime, with NO3 during the nighttime and
O3 throughout the entire day.

Figure 1.7: General gas-phase chemical pathways involved in VOC degradation. Source:
[Atkinson, 2003].

As illustrated in Fig. 1.7, the degradation of VOCs results in the formation of alkyl
or substituted alkyl radicals (R·), which then rapidly become key degradation intermedi-
ates: organic peroxy (RO2

· or RO2) and alkoxy (RO· or RO) radicals. Subsequently, the
radicals resulting from the initial VOC degradation undergo reactions with NOx, HO2, or
other RO2s, leading to the formation of stable oxidation products such as carbonyl com-
pounds, nitrates (RONO2), and peroxides (ROOH) ([Atkinson, 2003]). Typically, VOC
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degradation follows either fragmentation or functionalization pathways. Fragmentation
breaks carbon chains, leading to the formation of more volatile products and ultimately
CO2. Conversely, functionalization adds functional groups to the molecules, resulting in
compounds with lower volatility and/or higher solubility that tend condense and form
SOAs. Depending on the structure of the parent VOCs, competitive oxidation processes
occurs between different degradation pathways. Meanwhile, there is also competition be-
tween different pathways for RO2 reactions. The fate of RO2 radicals is dependent on
NOx and HO2 concentration. Under high NOx conditions (RO2 + NO is the dominant
reaction), RO2 further undergoes transformation to RONO2 and other compounds, while
RO2 leads to ROOH with low NOx conditions (RO2 + HO2 is the dominant reaction).

The oxidation products formed from the VOC initial degradation can further un-
dergo oxidation with atmospheric oxidants. These successive reactions are also referred
to as multi-generation reactions, where one generation stands for an ensemble of reactions
leading to the formation of stable products. Figure 1.8 summarizes the multi-generation
reactions into a cycle of three types of reactions ([Aumont, 2005]). The initial oxidation
of a VOC with atmospheric oxidants or photolysis by sunlight promotes RO2 formation.
Afterward, reactions with RO2 either lead to stable species participating in SOA forma-
tion or RO radicals. RO radicals react rapidly with O2, monomolecular decomposition, or
isomerization, resulting in the formation of the next generation of stable species and/or
new RO2 radicals that continue to oxidize. The fate of the multi-generation is terminated
by fragmentation to CO2.

The evolution of SOA concentrations due to the second or higher-generation reactions
is referred to as SOA aging ([Donahue, 2006]).

Figure 1.8: Processes of multi-generation degradation by [Aumont, 2005].

2.1.2 HOM formation

Due to SOA aging, some VOCs, such as monoterpenes, can rapidly form large amounts of
oxidant products, including highly oxygenated organic molecules (HOMs) that contributes
considerably to SOA production (up to 50 % of the total mass of SOA reported by [Roldin,
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2019]). HOMs are commonly defined as molecules containing at least six oxygen atoms
([Bianchi, 2019]). Recent research on the mechanism of HOM formation has revealed that
HOMs can be formed from autoxidation involving RO2 reactions.

Autoxidation Autoxidation is a process that rapidly forms oxidized RO2 with a large
number of attached molecular oxygen. In this process, RO2 can have one or several
intramolecular hydrogen-atom shifts, each of which shifts the position of an unpaired
electron and adds oxygen atoms.

An example is illustrated in Fig. 1.9 for a ketone molecule. After being initiated by
the OH radical (C1 to C2), the ketone molecule undergoes a hydrogen-atom shift, leading
to the formation of a molecule with ROOH and RO radical functional groups (C3). The
C3 molecule then rapidly undergoes a rapid addition of O2, resulting in the formation of
a new and more oxidized RO2, ultimately producing a stable dicarbonyl ROOH species.

Figure 1.9: Autoxidation involved in the OH-initiated oxidation of a ketone. Copyright
2013 American Chemical Society. See more details in [Bianchi, 2019].

Reactions between organic peroxy radicals Reactions between RO2, referred to
as RO2 - RO2 reactions, also contribute to HOM formation. While RO2-RO2 reactions
generally form two separate molecules (formation of two RO compounds in Eq. 1.1 or a
carbonyl and an alcohol in Eq. 1.2), RO2-RO2 can in some cases lead to the formation of
a ROOR dimer (Eq. 1.3).

RO2 + RO2 → RO + RO + O2 (1.1)

RO2 + RO2 → R−HO + ROH + O2 (1.2)

RO2 + RO2 → ROOR + O2 (1.3)

2.2 Gas-particle thermodynamic
Whether organics with low volatility can condense on existing particles depends on the
gas-particle equilibrium, which is the equilibrium of concentrations between the gas and
particle phases. Aqueous or organic liquids can absorb low-volatility organic compounds,
leading to the formation of organic aerosols. The volatility of a compound is related to
its saturation vapor pressure (Psat), which signifies the pressure at which a gas becomes
saturated and attempts to condense at a given condition. The gas-particle partitioning
of a condensable organic compound is described by Raoult’s law, which can be further
extended under different assumptions to Pankow’s law and Henry’s law.
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Raoult’s law The amount of a compound in an aerosol can be calculated using Raoult’s
law, which relates the concentrations in the liquid phase to the concentrations in the gas
phase at equilibrium. In general, Raoult’s law can be written as Eq. 1.4, with the key
parameter Psat. This intrinsic parameter varies with temperature, with the compound
becoming less volatile as the temperature decreases.

γg,iPi = γl,ixiPsat,i (1.4)
where Pi represents the partial pressure of compound i in the gas phase, Psat,i represents
the Psat of compound i, and xi is the mole fraction of compound i in the liquid phase.

γg,i and γl,i are the activity coefficients of the compound i in the gas and liquid phases,
respectively. Those activity coefficients characterize the non-ideality between compounds.
For a compound i at the ideal state, it interacts with another compound in the same way
as it interacts with itself. The activity coefficients are equal to 1 for an ideal mixture (γg,i

= 1 for ideal gas and γl,i = 1 for ideal liquid).
In practice, in the atmosphere, the aqueous or organic solution of aerosols is rarely

ideal because it results from the partitioning of many compounds of different origins and
varied molecular structures. However, under atmospheric conditions, the gas mixture
is ideal because the interactions between different gas molecules are very weak, unlike
in a condensed liquid phase. The concept of non-ideality (solution deviating from ideal
behavior) only applies to the particulate phase in atmospheric chemistry. Assuming ideal
gas and non-ideal liquid phases, Raoult’s law (Eq. 1.4) can be written as Eq. 1.5.

Pi = γixiPsat,i (1.5)
A lower Psat value indicates that the organic compound is less volatile and has the

potential to form a higher amount of SOAs. As for the non-ideality, the lower the γi, the
more stable the compound is in the liquid phase and the more affinity it has with the
other compounds in the liquid phase. Conversely, the higher the γi value, the less stable
the compound is and the less affinity it has with the other compounds.

Pankow’s law [Pankow, 1994] developed the first aerosol model by rewriting Raoult’s
law (Eq. 1.5) to calculate the partitioning of an atmospheric organic compound between
the gas phase and an organic aerosol phase. This model assumes that particulate organic
matter is made up of a single phase, although it is possible that particulate organic matter
is made up of multiple phases in a complex mixture of molecules with little affinity between
them. [Pankow, 1994] defines a gas-particle partition coefficient Kp,i (in unit m3/µg) as
Eq. 1.6

Kp,iMo = Ap,i

Ag,i

(1.6)

where Mo is the total organic aerosol concentration (µg/m3), Ag,i and Ap,i are the
concentrations of compound i in the gas and organic aerosol phase, respectively. Using
Raoult’s law and the ideal gas law, the partitioning constant of compound i can be
calculated by Eq. 1.7:
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Kp,i = 760 × 8.202 × 10−5 × T

MomγiPsat,i × 106 (1.7)

where Mom is the average molar mass of the organic phase (in g/mol), T is the tem-
perature (in Kelvin), and Psat,i is in torr.

Henry’s law Henry’s law is used to describe the partitioning of soluble organic com-
pounds between the gas and aqueous phases (Eq. 1.8). It applies to compounds that
are infinitely dilute in water, assuming that compound i is surrounded only by water
molecules and interacts only with water.

Ci = Hi × Pi (1.8)
where Ci is the concentration (in M: mol/L) of compound i in the aqueous phase and

Hi is Henry’s law constant (M/atm).
Similar to Pankow’s law, a partition constant Kaq,i of compound i in the aqueous phase

can then be defined as Eq. 1.9.
Kaq,iAQ = Aaq,i

Ag,i

(1.9)

where AQ is the total mass in the aqueous phase (in µg/m3) and Aaq,i is the con-
centration of i in the aqueous phase. The partition constant Kaq,i can be written as
Eq. 1.10.

Kaq,i = 18 × HiRT

Maqργaq,i × 1.013 × 1011 (1.10)

where Maq and ρ are the molar mass (g/mol) and density (Kg/L) of the aqueous
phase. These values may differ from those for water due to absorbed compounds. γaq,i is
the activity coefficient of compound i at infinite dilution and R is the gas constant (8.314
J/(mol·K)). For a further explanation of SOA formation at equilibrium, see [Couvidat,
2015].

2.3 Aerosol dynamics
Along with meteorological process changes, aerosols grow or decay in size, mass, and
composition. Aerosol dynamics refers to the study of how aerosols, which are tiny particles
suspended in the air, are formed, evolve, and eventually removed within the general
circulation of the atmosphere.

As shown in Fig. 1.10, aerosols can be formed through the nucleation and condensation
processes of gas molecules. The formed or emitted particles can grow in size by coagulation
or undergo reshaping due to the condensation/evaporation processes. Additionally, par-
ticles can be removed from the atmosphere by dry and wet deposition processes. Among
all major aerosol dynamic processes, condensation is the most important aerosol dynamic
contributing to SOA formation.
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Figure 1.10: Processes involved in aerosol dynamic. Source: [Raes, 2000].

2.3.1 Condensation/evaporation

Condensation/evaporation occurs when a compound undergoes a phase change between
gas and particles. As a result, these processes do not alter the number of particles in the
air, but they can significantly affect particle size and chemical composition. The size of
existing particles can either increase due to condensation, or decrease due to evaporation.

The driving force behind condensation/evaporation is the thermodynamic equilibrium
shifts. When the gas’s vapor pressure exceeds the surface vapor pressure, gas molecules
tend to transfer to the particle phase, resulting in particle growth via condensation. Con-
versely, when the gas’s vapor pressure falls below the surface vapor pressure, molecules
from the particle phase transfer to the gas phase, causing particle shrinkage through evap-
oration. The calculation of the gas-to-particle thermodynamic is explained in Sect. 2.2.

2.3.2 Nucleation

Nucleation is the process that forms new particles. It occurs when gas molecules of aerosol
precursors form clusters that are eventually large enough to become stable aerosols. The
new particles produced from nucleation are typically very small in size (a few nanometers
in diameter). After being formed, they may grow to sizes greater than about 0.1 µm in a
few days to a few weeks by coagulation and condensation ([Raes, 2000]).

2.3.3 Coagulation

Coagulation occurs when two particles collide with each other due to Brownian motion
and turbulence, resulting in aerosol growth into larger particles. During this process,
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the total aerosol mass is conserved while the particle number is reduced. Meanwhile,
coagulation leads to the formation of larger particles that can more easily settle out of
the air (e.g., by wet deposition).

3 Interaction between anthropogenic emission and
aerosol formation

The interaction between anthropogenic emissions and SOA formation is complex. Anthro-
pogenic emissions contain primary aerosols that can contribute to SOA formation (e.g., by
acting as a condensation base), and emitted AnVOCs are also precursors to SOAs. Other
anthropogenic emissions, such as NOx, can indirectly affect SOA formation by influencing
gas-phase chemistry and gas-particle partitioning, as described below.

3.1 Gas-phase chemistry
Anthropogenic emissions, such as NOx, can impact SOA formation by altering the oxi-
dation pathways of VOCs. This may result in a complex SOA composition with different
hydrocarbon precursors having different sensitivities to NOx levels. Furthermore, the fact
that NOx and VOCs are both producers and destructors of ozone and oxidants, thereby
creating a dilemma in developing effective reduction strategies to control air pollution.

High/low-NOx regime There is competition between the different oxidation pathways
and two main chemical regimes can be distinguished: a regime where the peroxy radicals
(i.e., HO2 and RO2) concentrations are not limited compared to NO (or more generally
NOx) concentrations; and another regime where the peroxy radicals concentrations are
limited compared to NO (or more generally, NOx) concentrations.

(a) Low NOx regime (b) High NOx regime

Figure 1.11: Schematic representations of ozone chemistry in a low-NOx regime (a) and
a high-NOx regime (b) by [Seigneur, 2019]. VOC: volatile organic compound, OVOC:
oxidized volatile organic compound. NO, NO2, and O3 are involved in the Leighton
photostationary-state reactions, and the directions of the arrows indicate the main effect
of the change in NOx emissions on the O3 concentration for each regime.
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Under the different regimes, SOA formation is different. In a low-NOx regime, the
formation of peroxides governs the termination reactions, therefore, O3 formation is pro-
portional to the concentration of NO and to the square root of the production of HOx
radicals. Organic peroxide formation is favored. In a high-NOx regime, nitric acid for-
mation governs the termination reactions, implying that the rate of propagation of the
radicals is much greater than that of their termination. Organic nitrate formation is
favored.

3.2 Gas-particle partitioning
The gas-to-particle process is very complex because accurate parameterization may need
to take into account many of the phenomena involved in physicochemical transformations.
For example, the viscosity of the aerosol, the interaction between gaseous chemistry and
aqueous chemistry, the hydrophilicity and hydrophobicity of the aerosol, and oligomeriza-
tion all affect the formation of SOAs from VOC oxidation products.

Anthropogenic aerosols can also play a role in SOA formation by acting as interme-
diates for gas-particle partitioning and particle-phase activities. They can alter various
properties of the aerosol, including acidity, phase stage, and liquid water content, which
can further affect the formation and aging of biogenic SOAs.

3.3 Effects of anthropogenic emission mitigation
Efforts to regulate air pollution are expected to lead to a reduction in anthropogenic
emissions. Consequently, the impact of reducing anthropogenic emissions on biological
SOA formation is of concern.

Anthropogenic-biogenic interaction arises when air masses enriched with anthropogenic
emissions mix with regions having significant BVOC emissions. This mixing perturbs
BVOC oxidation and the following processes linked to SOA formation. Implementing
regulations and strategies to reduce emissions of key anthropogenic pollutants like NOx,
SO2, and primary parties may help mitigate negative impacts on biogenic SOA formation
([Sartelet, 2012]).

According to current estimates, biogenic organic aerosol concentrations may decrease
in the future, particularly in rural or peri-urban areas where oxidant concentrations are
expected to decrease. This estimate may be inaccurate due to simplifications made in
the simulation of the SOA formation process. As a result, the reduction of anthropogenic
emissions could potentially result in more or less significant reductions in biogenic organic
aerosol concentrations or even an increase. For this reason, AQM and therefore aerosol
models should improve the representation of the non-linear evolution of VOC oxidation
leading to aerosol growth ([Huang, 2020]).

4 Modeling of organic aerosol formation
To achieve accurate SOA modeling, it is essential to consider both the gas-phase mech-
anism describing VOC degradation and formation of condensable species, as well as the
SOA mechanism involved in transferring these condensables from the gas phase to the
particulate phase.
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4.1 Gas-phase chemical mechanism
As detailed in Sect. 2, the gas-phase chemical mechanism plays a crucial role in the
formation of SOA by producing low-volatility organics that participate in SOA formation,
and hence, it is an essential component of SOA modeling. The simplified and explicit
chemical mechanisms are presented here.

4.1.1 Simplified chemical mechanism

Simplified chemical mechanisms contain inorganic reactions related and a limited number
of organic reactions describing VOC degradation. Those mechanisms are generally built
by two approaches, namely lumped-species and lumped-structure approaches.

Lumped-species approach The lumped-species approach uses surrogate molecules
that are representative of groups of similar organic compounds with similar chemical
properties. The approach is applied in simplified chemical mechanisms such as SAPRC-
07 Carter [Carter, 2010] and RACM2 Goliff et al. [Goliff, 2013].

Lumped-structure approach The lumped-structure or the carbon-bond approach,
breaks a molecule down into its functional groups and assumes that its chemical behavior
is equivalent to the chemical behaviors of its constituent functional groups. This approach
is used in "carbon-bond" mechanisms like CB05 ([Sarwar, 2008]).

Figure 1.12: Structure of n-butane.

Here is an example illustrating the differences between the two approaches: In the
RACM2 mechanism with the "lumped-species" approach), n-butane (structure see Fig. 1.12)
is represented by a molecule "HC3", which is also the surrogate for alkanes, alcohols, esters,
and alkynes with rate constants with OH less than 3.4 × 10−12 cm3 s−1. Alternatively, in
the CB05 mechanism with the "lumped-structure" approach), n-butane is denoted by "4
PAR", indicating the reactivity of n-butane is represented by four groups containing one
carbon atom with a single bond.

It is noteworthy that the lumped-structure approach may not be able to effectively
track the oxidation of SVOC because the carbon number in the initial molecule can be
lost during the decomposition into functional groups. Therefore, for SOA modeling, the
lumped-species approach is considered more straightforward. To accurately represent the
chemical reactions specific to SOA formation, additional reactions must be incorporated
into a carbon-bond mechanism.
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4.1.2 Explicit chemical mechanism

Explicit gas-phase chemical mechanisms reflect our understanding of VOC chemistry, de-
scribing detailed tropospheric reactions and species involved in the degradation of VOCs.

Master Chemical Mechanism The Master Chemical Mechanism (MCM) developed
by [Jenkin, 1997] is a near-explicit chemical mechanism, containing the gas-phase degra-
dation of a list of VOC species (142 non-methane VOCs) that are found in tropospheric
chemistry. For each VOC, MCM contains hundreds to thousands of reactions and species.

Generator for Explicit Chemistry and Kinetics of Organics in the Atmo-
sphere The Generator for Explicit Chemistry and Kinetics of Organics in the Atmo-
sphere (GECKO-A) is a fully explicit SOA mechanism generator developed by [Aumont,
2005], which follows protocols to identify possible reactive pathways and organic proper-
ties based on the molecular structure of the species. It can generate millions to tens of
millions of reactions from a VOC.

SAPRC Mechanism Generation system Similar to GECKO-A, the SAPRC Mecha-
nism Generation System (MechGen) is also a generator that can produce fully explicit tro-
pospheric degradation pathways for emitted VOCs and their oxidation products ([Carter,
2020]). While GECKO-A can generate all the reactions of a selected compound and
its oxidation products (until terminated by the formation of CO or CO2), MechGen fo-
cuses on generating reactions related to stable oxidation products and subsequent radical
intermediates.

When comparing the near-explicit mechanism MCM to the fully-explicit mechanisms
GECKO-A and MechGen, similarities emerge as they all provide detailed representa-
tions of VOC chemistry, including reaction pathways, kinetics data, and molecular struc-
tures. However, a major difference stands out: the fully explicit mechanism is generated
through automated methods and can capture all reactions in several generations, while
the near-explicit MCM mechanism is manually written, resulting in a much smaller size.
Mechanisms generated by GECKO-A and MechGen are with more order of magnitude
complexity than those in MCM, where reactions and species in MCM are highly lumped
after the first two generations ([Mouchel-Vallon, 2020]).

4.2 SOA mechanism
Due to computational limitations and an incomplete understanding of physicochemical
processes, simplified parameterizations derived from laboratory chamber data are em-
ployed first in air quality models (AQMs) for SOA formation. The two-product approach,
volatility basis set, and surrogate approach are three major approaches to developing SOA
mechanisms.

Two-product approach The first SOA model was proposed by [Odum, 1996], which
determines the SOA yield (Y) formed from one VOC by a total of n semi-volatile products,
as described in Eq. 1.11.
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Y =
n∑
i

αiKp,iM

1 + MKp,i

(1.11)

where α and Kp,i are the stoichiometric coefficient and the partitioning coefficient of
each product i (out of n), respectively. M is the total organic aerosol mass. Y is a ratio
defined as the mass of SOA produced divided by the mass of reacted VOC. Since both
values of α and Kp,i are fitted from chamber experiments, the so-called products are not
necessarily to be related to actual oxidation compounds. As [Odum, 1996] sets the number
of products n to 2, this SOA mechanism is also known as the "2-product" approach.

Volatility basis set The volatility basis set (VBS) method developed by [Donahue,
2006] is also a widely used method for SOA modeling. Condensable organic compounds
are grouped into a series of predefined log-spaced "bins" based on their volatility. These
volatility bins are spaced at exponential intervals with a constant ratio of 10 (e.g., 10−2,
10−1, 1, 10, ...) in terms of effective saturation concentration (C∗ in unit µg/m3), which
is the reciprocal of Kp.

As the compounds have been grouped into bins, they are assumed to share the same
properties and aging processes, evolving into bins of compounds with less volatility. This
assumption, however, indicates that the VBS approach only models the functionalization
process, leading to an overestimation of organic aerosol concentrations and the inability to
capture the formation of compounds with higher volatility. To solve this issue, [Donahue,
2011] upgraded the VBS approach to a two-dimensional (2-D) VBS, whose parameters
include, in addition to volatility, the atomic ratio of oxygen to carbon (O:C) or the average
oxidation state. By incorporating the degree of oxygenation as a second VBS indicator,
the 2-D VBS approach can be applied to explore SOA aging by both functionalization
and fragmentation implicitly.

Surrogate approach The surrogate approach selects a few model species to represent
the total SOA products from the oxidation of a specific VOC (e.g., [Pun, 2006; Pun,
2007]). The surrogates are chosen based on the species that are observed experimentally
and that share the properties (volatility) determined using the 2-product approach. An
example is the hydrophilic/hydrophobic organic (H2O) mechanism developed by [Cou-
vidat, 2012], which uses hydrophilic and hydrophobic surrogates to take into account
different partitioning of SOAs on aqueous and organic aerosol phases.

One of the advantages of the surrogate approach is that the selected surrogates can be
associated with molecular structures. By attaching a molecular structure to the surrogate,
it can be used to study more complex aerosol phenomena (e.g., non-ideality and absorption
into the aqueous phase). Since the choice of molecular structure can introduce large
uncertainties in SOA modeling, the selection of a suitable molecular structure is critical
and requires an accurate estimation of the surrogate.

It is important to emphasize the importance of molecular structure in SOA model-
ing. In gas-phase chemistry, the molecular structure of VOC determines their oxidation
pathway, which is required in order to track the SOA aging and the interaction with
other compounds (e.g., oxidants, inorganics, and other compounds) explicitly. Mean-
while, to calculate the thermodynamic properties of aerosols in SOA mechanisms (e.g.,
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hydrophilicity, hydrophobicity, viscosity), it is necessary to know their molecular struc-
ture in order to consider important phenomena such as hygroscopicity and non-ideality.
A number of atmospherically relevant physicochemical parameters can be estimated using
organic molecular structure, including saturation vapor pressure, Henry’s law constants,
and activity coefficients ([Isaacman-VanWertz, 2021]).

4.3 VOC mechanism reduction for SOA modeling
Explicit mechanisms are powerful tools for modeling the complex chemical processes in-
volved in SOA formation. However, because they are computationally intensive, they are
typically used in box models or small regions to simulate SOA formation and aging. Their
use for routine 3D air quality forecasting or modeling is currently not achievable. To use
explicit mechanisms in 3D large-scale modeling, the complexity of explicit mechanisms
must be reduced. Reducing explicit VOC mechanisms is one way to address the prob-
lems of long computational times required for explicit mechanisms and the inability of
simplified mechanisms to accurately represent complex chemical phenomena.

Below are three condensed mechanisms reduced from explicit VOC mechanisms, all of
which can be applied to SOA modeling.

Common Representative Intermediates mechanism for MCM The Common
Representative Intermediates (CRI) mechanism is a series of condensed mechanisms re-
duced from the MCM mechanism with varying degrees of reduction ([Jenkin, 2008; Wat-
son, 2008]). They were first developed focusing on accurate ozone formation by merging
MCM species to new surrogates based on the number of carbon-carbon (C-C) and carbon-
hydrogen (C-H) bonds active in the NO-to-NO2 conversions concerning ozone formation.

Although the CRI mechanism is primarily designed to preserve ozone formation capac-
ity, it still has good overall performance in characterizing VOC degradation. Therefore,
CRI is also used in SOA modeling (e.g., [Utembe, 2009; Utembe, 2011; Khan, 2017;
Weber, 2020]).

Volatility basis set for GECKO-A The volatility basis set – Generator for Explicit
Chemistry and Kinetics of Organics in the Atmosphere (VBS-GECKO) developed by
[Lannuque, 2018] is a VBS-type parameterization developed on the basis of GECKO-
A, with a focus on SOA formation and aging. It has been optimized to simulate SOA
variations in a box model using GECKO-A and has also been integrated and evaluated
in a 3-D air quality model ([Lannuque, 2020]).

Neural network emulators for GECKO-A Recently, machine learning techniques
have been explored in the context of mechanism reduction for SOA modeling. [Schreck,
2022] delved into the application of neural network methods in GECKO-A reduction
and developed models that simulate SOA formation with an error range between 2 %
– 8 %. This suggests that neural network models hold potential as promising tools for
implementing the complexity of explicit VOC mechanisms in 3-D modeling. However, it
is important to note that these models may have limitations and are constrained by the
range of environmental conditions considered in training.
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5 Numerical models employed in this work
This section describes the numerical model used in this study, including the chemical
transport model CHIMERE and the aerosol box model SSH-aerosol.

5.1 Chemical transport model
The three-dimensional (3-D) chemical transport model (CTM) refers to Eulerian grid
models that utilize a to simulate and forecast the evolution of concentrations and compo-
sition of air pollutants over a predefined 3-D grid at the street, regional, or global scale.
With 3-D modeling, a detailed representation of the spatial and temporal distribution of
pollutants in the atmosphere can be simulated by considering the influences due to emis-
sions, meteorology, transportation, and other physical-chemical processes. As a result,
complex variations in air quality can be captured, such as the dispersion of pollutants
and the formation of secondary pollutants. When modeling large areas or extended time
periods, 3-D modeling demands significant computational resources and is computation-
ally intensive. Meanwhile, its accuracy can be affected by uncertainties in input data,
such as emission inventories and meteorological data. Nonetheless, it is a powerful tool
that has been widely used in air quality modeling.

CHIMERE The CHIMERE chemistry-transport model has been continuously devel-
oped and distributed since 1999, with the latest version v2020r1 ([Menut, 2021]). It follows
the principle of using validated and up-to-date parameters to calculate concentrations of
major pollutants with optimal accuracy. As illustrated in Fig. 1.13, The CHIMERE
model requires meteorological data, emission information, as well as boundary and initial
conditions to accurately simulate atmospheric concentrations of numerous gas-phase and
aerosol species from local to continental scales. CHIMERE incorporates key processes
(e.g., transport, emissions, chemistry, and deposition) and can be run in offline or online
mode using various meteorological models. The CHIMERE model has been used in a
wide variety of atmospheric research and operational forecasting for regional and national
air quality networks.

5.2 Aerosol box model
Aerosol box models simulate variations in SOA concentration and composition due to
physical and/or chemical processes in a fixed volume of an atmospheric multiphase mix-
ture. They are zero-dimensional (0-D) models that can be integrated into 3-D CTMs to
simulate aerosol evolution within a 3-D grid cell.

SSH-aerosol SSH-aerosol is a modular, multi-phase, plug-and-play aerosol box model
([Sartelet, 2020]). It combines start-of-the-art models and mechanisms including SCRAM
(Size-Composition Resolved Aerosol Model by [Zhu, 2015]), SOAP (Secondary Organic
Aerosol Processor model by [Couvidat, 2015], as well as H2O (Hydrophobic/Hydrophilic
Organic by [Couvidat, 2012]).

As illustrated in Fig. 1.14, SSH-aerosol can simulate the formation and evolution of
aerosols, taking into account the effects of emissions, gas-phase chemistry, as well as
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Figure 1.13: General principle of the CHIMERE model. Source: Chimere documentation
v2020r3

Figure 1.14: Framework of the SSH-aerosol model.
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aerosol dynamics. Thanks to the embedded SCRAM model, SSH-aerosol is able to sim-
ulate aerosol dynamics processes and aerosol mixing states, which classifies aerosols by
both chemical compositions and the mass fraction of the different species. The partition-
ing between the gas and particle phases is simulated with the thermodynamic module
SOAP [Couvidat, 2015] for organic species. This thermodynamic module accounts for
hygroscopicity, absorption into the aqueous phase, aerosol non-ideality (effect of molec-
ular interactions on species partitioning), and phase separation. As for the gas-phase
chemistry, it is simulated in SSH-aerosol by employing the SOA mechanism H2O for the
formation of condensable organic compounds with other gas-phase chemical mechanisms
(e.g., CB05 by [Sarwar, 2008] and RACM2 by [Goliff, 2013]) to simulate the formation of
ozone, radicals and the degradation of VOCs.

6 Objectives and the plan of the work
The formation of organic aerosols involves complex physical and chemical processes. It
is influenced by anthropogenic emissions through emissions of organic compounds of var-
ious volatilities that may be SOA precursors, but also through emissions of NOx. There
are highly non-linear interactions between anthropogenic emissions and aerosol forma-
tion, and these interactions may not be fully represented in simplified SOA mechanisms
used in regional air quality modeling. Simplified SOA mechanisms are built on chamber
measurements, and they do not represent the whole complexity of the chemical pathways
involved in SOA formation. Therefore, the objectives of this study are to improve the
representations of SOA mechanisms in regional air-quality models and to investigate the
aerosol formation variation in response to anthropogenic emissions regulations with the
revised SOA mechanisms.

In Chapter 2, the preliminary development of a mechanism reduction algorithm, the
GENerator of Reduced Organic Aerosol Mechanisms (GENOA v1.0), is described. The al-
gorithm is designed to generate condensed SOA mechanisms from reducing detailed VOC
mechanisms (e.g., MCM) using a series of predefined strategies and evaluation criteria.
The obtained SOA mechanisms are expected to preserve the complexity of gas-phase
chemistry in SOA formation, with a number of reactions and species that are manageable
and practical for regional modeling. The application of GENOA v1.0 to the degradation
scheme of sesquiterpenes from MCM is investigated with the 0-D aerosol model SSH-
aerosol.

Although GENOA v1.0 is tested to be effective for sesquiterpene SOA mechanism
reduction, it may not have enough accuracy and generality required to reduce more com-
plex mechanisms. In Chapter 3, the further development of the GENOA algorithm,
i.e., the second version of GENOA (GENOA v2.0) is presented. Compared to GENOA
v1.0, the new version implements a parallel reduction structure that allows more compre-
hensive and systematic reductions from more complex chemical mechanisms of multiple
SOA precursors. The ability of GENOA v2.0 on SOA mechanism reduction is evaluated
with reductions of two monoterpene chemical mechanisms (MCM+PRAM) from three
monoterpene SOA precursors.

Subsequently, in Chapter 4, the condensed biogenic SOA mechanism generated by
GENOA v2.0 is incorporated into the 3-D regional CTM model CHIMERE. The organic
aerosol concentrations and compositions over Europe in 2018 summer (June-August) are
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investigated using this detailed GENOA-generated Biogenic SOA Mechanism (GBM) and
the simplified Hydrophilic/Hydrophobic Organics (H2O) mechanism. Furthermore, the
regional biogenic SOA formation in response to NOx emission regulations is explored
using the GBM and H2O mechanisms in CHIMERE.

Finally, in Chapter 5, I summarize and conclude my Ph.D. work, with a discussion of
the perspectives on the application and development of GENOA algorithms.
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Chapter 2
Development of GENOA v1.0 and its
application to sesquiterpene SOAs

When coupling aerosol formation with other atmospheric processes (e.g., transport),
air quality models, particularly three-dimensional (3-D) Chemical Transport Models
(CTMs), are faced with the dilemma of spending an overwhelming computational ca-
pacity on the entire complexity of gas-phase chemistry to the formation of secondary
organic aerosols (SOAs) or utilizing highly simplified parameterizations. To improve
the efficiency and accuracy of the modeling of SOA formation and aging, the GEN-
erator of reduced Organic Aerosol mechanisms (GENOA v1.0) algorithm has been
developed.

A detailed presentation of GENOA v1.0 is described in this chapter. GENOA
v1.0 is a reduction algorithm that produces semi-explicit mechanisms for simulat-
ing the formation and evolution of secondary organic aerosol (SOA) in regional-scale
CTMs. GENOA uses a series of predefined reduction strategies and evaluation cri-
teria to train and reduce SOA mechanisms from near-explicit chemical mechanisms
(e.g., the Master Chemical Mechanism (MCM)) under representative atmospheric
conditions. The reduction strategies, including removal, jumping, lumping, and re-
placement, are adopted to locate the potential reduction in the mechanism. Once
found, the reduction attempt is evaluated against predefined criteria under selected
evaluation conditions. Upon meeting the criteria, this reduction can be accepted and
the mechanism with this change is used for the new search of reductions with the
strategies. In this way, the semi-explicit mechanisms derived by GENOA retain the
accuracy of explicit mechanisms for SOA formation with significantly fewer reactions
and species, making them more computationally efficient than explicit mechanisms
and appropriate for large-scale air-quality modeling.

The application of GENOA v1.0 to the degradation mechanism of the sesquiter-
pene (SQT) in MCM is also presented in this chapter. The obtained SQT SOA
mechanism consists of 23 reactions and 15 species, with 6 of them being condens-
able. This mechanism is only 2 % of the size of the original MCM mechanism, which
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includes 1626 reactions and 579 species with 356 of them being condensable. Com-
pared with MCM, the reduced SOA mechanism presents a high level of accuracy and
efficiency by inducing an average error of 2.66 % in a testing process under 12 159
conditions over Europe, and taking approximately 2 % of CPU time compared to the
original MCM).

This paper has been published: Wang, Z., Couvidat, F., and Sartelet, K.:
GENerator of reduced Organic Aerosol mechanism (GENOA v1.0): an auto-
matic generation tool of semi-explicit mechanisms, Geosci. Model Dev., 15,
8957–8982, https://doi.org/10.5194/gmd-15-8957-2022,2022.
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Abstract. This paper describes the GENerator of reduced
Organic Aerosol mechanism (GENOA) that produces semi-
explicit mechanisms for simulating the formation and evolu-
tion of secondary organic aerosol (SOA) in air quality mod-
els. Using a series of predefined reduction strategies and eval-
uation criteria, GENOA trains and reduces SOA mechanisms
from near-explicit chemical mechanisms (e.g., the Master
Chemical Mechanism – MCM) under representative atmo-
spheric conditions. As a consequence, these trained SOA
mechanisms can preserve the accuracy of detailed gas-phase
chemical mechanisms on SOA formation (e.g., molecular
structures of crucial organic compounds, the effect of “non-
ideality”, and the hydrophilic/hydrophobic partitioning of
aerosols), with a size (in terms of reaction and species num-
bers) that is manageable for three-dimensional (3-D) aerosol
modeling (e.g., regional chemical transport models). Applied
to the degradation of sesquiterpenes (as �-caryophyllene)
from MCM, GENOA builds a concise SOA mechanism (2 %
of the MCM size) that consists of 23 reactions and 15 species,
with 6 of them being condensable. The generated SOA mech-
anism has been evaluated regarding its ability to reproduce
SOA concentrations under the varying atmospheric condi-
tions encountered over Europe, with an average error lower
than 3 %.

1 Introduction

Atmospheric aerosols have attracted attention due to their
effects on climate and human health: they change the
Earth’s radiation balance and cloud formation processes (Ra-

manathan et al., 2001; McNeill, 2017), and they trigger a
wide variety of acute and chronic diseases (Breysse et al.,
2013). Because the effects of aerosols on health depend on
their size and composition (Schwarze et al., 2006), adequate
representations of aerosol composition, mass, and number
concentrations are required in air quality models (AQMs).

Besides being directly emitted, aerosols can be secondary,
i.e., formed in the atmosphere through chemical reactions
and gas–particle mass transfer. Based on their chemical com-
position, they can be further divided into secondary inorganic
aerosol (SIA) and secondary organic aerosol (SOA). SOA,
which represents a significant fraction of aerosols (e.g., Ge-
lencsér et al., 2007), is largely formed by the condensation
of the oxidation products from the degradation of volatile or-
ganic compounds (VOCs). As SOA formation involves mul-
tiple processes such as the emission of SOA precursor gases,
VOC gas-phase chemistry, and gas-to-particle partitioning
(Kanakidou et al., 2005; Hallquist et al., 2009), great com-
plexity and uncertainty are involved in accurately predicting
SOA formation with the simplified representations currently
used in air quality models (Porter et al., 2021).

The state of knowledge on VOC chemistry can be re-
flected by explicit gas-phase chemical mechanisms that con-
tain all known essential reaction pathways of VOC degrada-
tion. For instance, Jenkin et al. (1997) and Saunders et al.
(2003) developed the near-explicit Master Chemical Mech-
anism (MCM), which describes detailed gas-phase chemi-
cal processes related to VOC oxidation. Another example is
the Generator for Explicit Chemistry and Kinetics of Organ-
ics in the Atmosphere (GECKO-A) (Aumont et al., 2005),
which uses a prescribed protocol to assign complete reac-
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tion pathways and kinetic data to the degradation of VOCs.
Explicit mechanisms represent the current understanding of
atmospheric chemistry, including information about reac-
tion pathways, kinetics data, and chemical structures (which
may be used to deduce thermodynamic properties based on
structure–activity relationships).

The MCM mechanism has been used by two-dimensional
(2-D) Lagrangian models to simulate the chemical evolution
of major air pollutants and some SOAs in plumes (e.g., Ev-
tyugina et al., 2007; Sommariva et al., 2008; Zhang et al.,
2021). Moreover, it has been used for simulating the for-
mation of more complex SOAs at a regional level in three-
dimensional (3-D) models over a few weeks (e.g., modified
MCM with 4642 species and 13 566 reactions in the sim-
ulations of Ying and Li, 2011, and with 5727 species and
16 930 reactions in the simulations of Li et al., 2015). Even
so, explicit mechanisms of that size are too computationally
intensive to be widely employed in 3-D AQMs for SOA for-
mation.

For computational efficiency, AQMs generally use implicit
gas-phase chemical mechanisms. Two major approaches are
frequently adopted to build implicit chemical mechanisms:

– the lumped-species approach, which gathers com-
pounds with analogous formulas and properties into one
surrogate (e.g., SAPRC-07, Carter, 2010; RACM2, Go-
liff et al., 2013);

– the carbon-bond or lumped-structure approach, which
assumes that organic molecules have chemical behav-
iors equivalent to those of their decomposed functional
groups (e.g., CB05, Sarwar et al., 2008).

Implicit gas-phase mechanisms have been developed and val-
idated to simulate the concentrations of oxidants and other
conventional air pollutants such as ozone and NO2. In these
mechanisms, VOCs have been grouped into a limited number
of model species because of computational considerations,
and the SOA formation is usually not considered.

To complete implicit gas-phase mechanisms, implicit SOA
mechanisms have been developed (Kim et al., 2011) that
model the SOA formation specifically without modifying
ozone and radical concentrations. In 3-D modeling, implicit
SOA mechanisms or parameterizations are usually added
to implicit gas-phase mechanisms, conserving the oxidant
chemistry of the implicit gas-phase mechanism.

Implicit SOA mechanisms are often established based on
experimental data from smog chamber experiments to repre-
sent the formation and evolution of SOA, such as the two-
product empirical SOA model (Odum et al., 1996) and the
volatility basis set (VBS) that splits VOC oxidation products
into a uniform set of volatility “bins” (Donahue et al., 2006).
In the VBS approach, the successive evolution of oxidation
products by aging is determined regardless of the chemical
composition and structure of the species. Another approach
is based on the molecular surrogate approach (e.g., Griffin

et al., 2003; Pun et al., 2006; Couvidat et al., 2012). Sim-
ilarly to the gas-phase chemistry lumped-species approach,
the VOC oxidation products are represented via the forma-
tion of a few SOA surrogates that are attached to a molecular
structure (assumed to be representative of a myriad of semi-
volatile compounds). By attaching a molecular structure to
the surrogate, several processes otherwise not accounted for
(like “non-ideality”, hygroscopicity, and condensation on the
aqueous phase of particles) can be represented in this ap-
proach. However, the choice of adequate molecular struc-
tures, which could be highly uncertain, is crucial and requires
a precise estimation.

Moreover, the computation of thermodynamic properties
of aerosol (e.g., hydrophilicity, hydrophobicity, and viscos-
ity) requires knowing the molecular composition to take the
whole complexity of the gas–particle partitioning into ac-
count (Kim et al., 2019). Therefore, tracking the whole com-
plexity of the formation and aging of SOA with implicit SOA
mechanisms can be problematic as it may not account for
(or may oversimplify) some processes, such as non-ideality.
These processes may be particularly important for explain-
ing the non-linear relationship between the emissions of pol-
lutants and the formation of aerosols (Huang et al., 2020).

As the current SOA representations in AQMs are im-
plicit and may not accurately reflect the true SOA forma-
tion process, there is a need for improvement. This has led
to the development of semi-explicit mechanisms of con-
densed sizes. The development of semi-explicit mechanisms
is a compromise between the high computational time of ex-
plicit mechanisms and the lack of accuracy in the represen-
tation of chemical phenomena in the implicit SOA mech-
anisms. They are generated by reducing explicit mecha-
nisms to a level of complexity suitable for the computa-
tional constraints of AQMs. Recent developments of reduced
mechanisms include the Common Representative Intermedi-
ates (CRI) mechanism (Jenkin et al., 2008; Watson et al.,
2008; Khan et al., 2017) from the MCM reduction (Szopa
et al., 2005) and the volatility basis set – Generator for Ex-
plicit Chemistry and Kinetics of Organics in the Atmosphere
(VBS-GECKO) (Lannuque et al., 2018) from a GECKO-
A reduction. However, the reduced mechanisms mentioned
above do not track the detailed molecular structure of surro-
gates, rather only considering some of their specific proper-
ties:

– CRI characterizes surrogates by their number of carbon-
carbon and carbon–hydrogen bonds, which are reactive
in the NO-to-NO2 conversions concerning ozone forma-
tion.

– VBS-GECKO groups organic surrogates by their
volatility, as in the VBS approach (Donahue et al.,
2006).

This study presents the development of the first version
of the GENerator of reduced Organic Aerosol mechanism

Geosci. Model Dev., 15, 8957–8982, 2022 https://doi.org/10.5194/gmd-15-8957-2022
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(GENOA) that generates customized semi-explicit chemi-
cal mechanisms appropriate for AQMs from explicit mecha-
nisms, using surrogates assigned to molecular structures. As
described in Sect. 2, the new reduced mechanisms can effec-
tively and efficiently reproduce the complexity of gas-phase
oxidation, by training under various atmospheric conditions,
and the non-ideality of gas–particle partitioning, using a
molecular-structure-preserving approach. GENOA also pro-
vides practical user-defined options, enabling users to spec-
ify the required reduction scale or accuracy. For gas–particle
partitioning, a 0-D box model “SSH-aerosol” (Sartelet et al.,
2020) is modified and coupled with GENOA to simulate
aerosol concentrations. With SSH-aerosol, the effects of
mass transfer between the gas-phase and the organic/aque-
ous phases, hygroscopicity, and non-ideality are taken into
account in the reduction.

The application of GENOA to the MCM degradation
scheme of �-caryophyllene (BCARY) (Jenkin et al., 2012)
is described in Sect. 3. �-Caryophyllene is selected to
demonstrate the GENOA algorithm because it is one of
the most abundant and representative sesquiterpenes (SQTs).
Sesquiterpenes are a well-known source of SOAs (Hellén
et al., 2020; Tasoglou and Pandis, 2015), and their degrada-
tion mechanism (as BCARY) is well documented in the near-
explicit MCM mechanism (Jenkin et al., 2012). Studies have
also compared SOA yields simulated using the MCM mech-
anism to chamber data for sesquiterpenes (e.g., Xavier et al.,
2019). BCARY is, therefore, an ideal candidate for model
development and demonstration of the reduction methodol-
ogy. In this paper, the near-explicit MCM BCARY degrada-
tion scheme serves as a reliable benchmark for GENOA. The
experiment data from Tasoglou and Pandis (2015) and Chen
et al. (2012) are also compared to the newly developed re-
duced mechanism in Appendix A. Finally, conclusions are
drawn in Sect. 4.

2 Model development

The GENerator of reduced Organic Aerosol mechanism
(GENOA) is an algorithm that generates semi-explicit chem-
ical mechanisms focusing on SOA formation. The generated
semi-explicit mechanisms are designed to preserve the accu-
racy of explicit mechanisms for SOA formation while also
keeping the number of reactions/species low enough to be
suitable for large-scale modeling, particularly in 3-D AQMs.
The focus of the semi-explicit mechanism is solely on the
accurate modeling of SOA. Because ozone, major radicals,
and other inorganics are also affected by inorganic and other
VOC chemistry, their concentrations are not tracked with the
semi-explicit mechanism. Instead, they are simulated using
existing implicit gas-phase chemical mechanisms.

As illustrated in Fig. 1, the processes in GENOA can be di-
vided into two main sections: training and testing. The train-

ing section, as detailed in Fig. 1, can be divided into two
parts:

– parameter selection, where the parameters to be used
in the reduction cycle are selected automatically by
GENOA from user-defined or preset values;

– reduction cycle, where the actual reduction of the mech-
anism occurs.

In the parameter selection, GENOA first assigns the error
tolerance, defined as the largest acceptable error induced by
each change in the mechanism (see Sect. 2.5), and then em-
ploys one of the reduction strategies along with its required
parameters (see Sect. 2.2).

Afterward, in the reduction cycle, GENOA searches for
potential reductions according to the selected reduction strat-
egy. The new mechanism with the first found reduction is
then simulated over the conditions from the training dataset
(a limited set of conditions used through all of the reduc-
tion processes; see Sect. 2.3.1) or from the pre-testing dataset
(a more extensive set of conditions used only at the end of
the reduction process; see Sect. 2.3.2). The simulated to-
tal SOA concentrations are then compared with those sim-
ulated with the reference mechanism, where the differences
are used to evaluate the potential reduction (see Sect. 2.5).
If the SOA differences are under the predefined error toler-
ances, the mechanism with the current reduction is accepted
and serves as the basis for the next search for reduction. If the
reduction is refused, the following reduction attempt starts
with the previously validated mechanism. Once no further re-
duction is found, the current reduction cycle ends. The next
step is either selecting the subsequent error tolerance and/or
reduction strategy in the next parameter selection or termi-
nating the GENOA training section. Finally, the performance
of the final reduced mechanism is evaluated under a variety
of environmental conditions, denoted as the testing dataset
(see Sect. 2.3.3). The 0-D aerosol model SSH-aerosol is used
to simulate the SOA concentration and composition, which is
required in all of the GENOA sections (e.g., the initialization
of reduction parameters and the evaluation of the reduced
mechanism).

2.1 Prereduction

A prereduction process is conducted on the original MCM
mechanism before it is used as the reference mechanism for
the reduction. This process skips extremely fast unimolecu-
lar reactions (i.e., the reaction rate constant of 106 s�1 corre-
sponding to a lifetime of 1 µs) to avoid numerical problems.
For computational efficiency, the process also combines el-
ementary reactions with the same reactants into combined
reactions with non-integer stoichiometric coefficients.

An example is shown in Table 1, where the original MCM
reaction nos. 1 to 7 have first been merged into the combined
reaction nos. 8 to 10. The prereduction compacts the reaction
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Figure 1. Flow chart indicating the three major procedures in GENOA and illustrating the main execution of the training section. a GENOA
uses the first value of the targeted variables for initialization and then passes to the next values for subsequent parameter updates. b Simulation
with the pre-testing dataset is only activated under certain circumstances.

list (from 1 626 to 1 242 reactions), improving the reduction
efficiency. The prereduction also skips two biradicals (i.e.,
BCALOOA and CH2OOF) that are extremely reactive and
disintegrate instantaneously with a kinetic rate coefficient of
106 s�1. As a result, reaction nos. 8 to 10 can then be re-
pented by one reaction, reaction no. 11, whose kinetic rate
coefficient corresponds to that of the reaction producing the
skipped species (in this case, the ozonolysis of BCAL, reac-
tion no. 9).

2.2 Reduction strategies

GENOA supports four types of reduction strategies:

– removal – reactions, species, or gas–particle partition-
ing with negligible effects on SOA formation are re-
moved from the mechanism;

– jumping – one compound is substituted by its oxidation
product, as if the compound had been “jumped over” in
the reaction pathway;

– lumping – compounds with similar properties are com-
bined to form a new compound;

– replacement – one compound is replaced by another ex-
isting compound with similar properties.

The reduction strategies are illustrated with examples from
the BCARY reduction in Sect. 2.2.1 to 2.2.4. A detailed list
of all of the options and parameters controlling the BCARY
reduction is summarized in the Supplement.

For the BCARY reduction, the reduction strategies are em-
ployed in the following order: removing reactions, jumping,
lumping, replacement, removing species, and finally remov-
ing gas–particle partitioning. The reduction strategies are or-

dered based on their potential influences on the mechanism.
The first applied strategies, removing reactions and jump-
ing, trim trivial reactions and species without altering the
properties of the species. They are followed by lumping and
replacement (as an extension to lumping), which refine the
mechanisms considerably by merging the species and reac-
tions involved. Afterward, the removing species strategy at-
tempts to delete all merged and unmerged species. Finally,
the strategy of removing gas–particle partitioning is applied
in order to remove the partitioning of condensable species,
which cannot be removed by removing species. This cur-
rent order has been tested and found to be efficient for the
BCARY mechanism, but it can be changed by the user along
with other user-defined parameters.

2.2.1 Removal strategy

The removal strategy assumes that chemical reactions and/or
species with a low probability of contributing to the forma-
tion and evolution of SOA can be eliminated from the mech-
anism. In general, three types of removal are applied depend-
ing on the removed subject:

– removing reactions;

– removing compounds in both the gaseous and parti-
cle phases (completely removing a species from the
scheme);

– removing the gas–particle partitioning of semi-volatile
compounds (consider the semi-volatile compounds as
VOCs that do not condense to the particle phase but re-
tain their gas-phase chemistry).

There is no particular restriction to exclude species from the
reduction attempt via the strategy of removing species or re-
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Table 1. Reactions before and after prereduction, where the MCM (v3.3.1) species BCALOOA and CH2OOF are skipped over by their
degradation products. The molecular structures of all mentioned MCM species can be found in Fig. C1.

No. Reaction Kinetic rate coefficienta

1 BCAL + O3 ! BCALOOA + HCHO 1.1 ⇥ 10�16 ⇥ 0.670
2 BCAL + O3 ! BCLKET + CH2OOF 1.1 ⇥ 10�16 ⇥ 0.330
3 BCALOOA ! BCALOO 1.0 ⇥ 106 ⇥ 0.500
4 BCALOOA ! C146O2 + OH 1.0 ⇥ 106 ⇥ 0.500
5 CH2OOF ! CH2OO 1.0 ⇥ 106 ⇥ 0.370
6 CH2OOF ! CO 1.0 ⇥ 106 ⇥ 0.500
7 CH2OOF ! HO2 + CO + OH 1.0 ⇥ 106 ⇥ 0.130

8
BCAL + O3 ! 0.67 BCALOOA + 0.33 BCLKET

1.1 ⇥ 10�16
+ 0.33 CH2OOF + 0.67 HCHO

9 BCALOOA ! 0.5 BCALOO + 0.5 C146O2 + 0.5 OH 1.0 ⇥ 106

10 CH2OOF ! 0.37 CH2OO + 0.63 CO + 0.13 HO2 + 0.13 OH 1.0 ⇥ 106

11
BCAL + O3 ! 0.5 BCALOO + 0.5 C146O2 + 0.37 CH2OO

1.1 ⇥ 10�16+ BCLKET + HCHO + 0.13 HO2
+ 0.63 CO + 1.13 OH

a The kinetic rate coefficients are given in units of per second (s�1) for unimolecular reactions and in units of cubic centimeters
per molecule per second (cm3 molec.�1 s�1) for bimolecular reactions.

moving gas–particle partitioning. However, for removing re-
actions, a threshold on the branching ratio of the reaction is
applied to the reduction. The branching ratio is defined as the
ratio of the destruction rate of one reaction to the sum of the
destruction rates of all reactions of the targeted species. In
the BCARY reduction, a maximum branching ratio (Brm) is
defined as a restriction criterion. All reactions with an hourly
branching ratio (averaged over the training conditions) under
this value (reactions that are likely to have a minimal effect
on SOA formation) are considered candidates for removal.

To avoid over-reduction, a small Brm is applied at the be-
ginning of reduction. After going through the reductions for
all reduction strategies, the value of Brm is then incremented.
In the reduction of BCARY, an ascending list of Brm values
equal to 5 %, 10 %, and 50 % is employed, which is changed
to 10 %, 50 %, and 100 % at the late stage (explained in
Sect. 2.5). When Brm equals 100 %, GENOA evaluates the
removal of each reaction.

2.2.2 Jumping strategy

The jumping strategy relies on the assumption that com-
pounds can be skipped in successive reactions, as long as
they do not adversely impact the SOA concentration. In other
words, the predecessor of an organic compound may directly
form its destruction products. The jumping strategy is per-
fectly suited to intermediate compounds whose fast degrada-
tion may cause numerical stiffness, commonly including rad-
icals, such as oxy radicals (RO) or alkoxy radicals (ROO), as
well as Criegee intermediates.

As shown in Table 2, the Criegee intermediate BCALOO,
formed during the ozonolysis of BCAL (reaction no. 11

in Table 1), is jumped over to its only destruction product
BCLKET. Consequently, reaction nos. 12 to 16 are removed,
and reaction no. 11 is updated to Reaction (R1) (“R” for re-
action after reduction strategy).

There are similarities between reduction by jumping and
prereduction in the sense that both can jump reactions with-
out affecting organic compounds. However, the two pro-
cesses serve different purposes, as prereduction is intended to
provide a reliable reference mechanism for training, whereas
jumping is used in training to search for possible reductions.
On the one hand, the current prereduction only reduces very
fast degraded radicals that undergo a single unimolecular re-
action with a constant kinetic rate coefficient (e.g., no tem-
perature effect). In this case, one species may lead to sev-
eral degradation products. As these reactions are extremely
fast and independent of atmospheric conditions, they only
cause numerical issues in simulation and should be removed
from the reference mechanism. On the other hand, jumping
may be relatively slow or affected by environmental condi-
tions; therefore, an evaluation is necessary. Jumping is cur-
rently limited from one species to another at a time. The
difference in carbon numbers between reduced species can
not exceed three in order to prevent significant differences
in organic mass before and after jumping. As shown in Ta-
ble 2, the degradation of BCALOO into BCLKET involves
five bimolecular reactions, which may affect SOA formation
under different atmospheric conditions (e.g., with different
inorganic concentrations and relative humidity, RH).
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Table 2. Reactions before and after the jumping strategy, where the MCM species BCALOO is jumped over by its degradation product
BCLKET.

No. Reaction Kinetic rate coefficienta

12 BCALOO + CO ! BCLKET 1.2 ⇥ 10�15

13 BCALOO + NO ! BCLKET + NO2 1.0 ⇥ 10�14

14 BCALOO + NO2 ! BCLKET + NO3 1.0 ⇥ 10�15

15 BCALOO + SO2 ! BCLKET + SO3 7.0 ⇥ 10�14

16 BCALOO ! BCLKET + H2O2 1.4 ⇥ 10�17⇥[H2O]

R1b
BCAL + O3 ! 1.5 BCLKET + 0.5 C146O2

1.1 ⇥ 10�16+ 0.37 CH2OO + HCHO
+ 0.13 HO2 + 0.63 CO + 1.13 OH

a [H2O] is the concentration of H2O. b Reaction (R1) is updated from reaction no. 11 in Table 1.

Table 3. Explicit reactions of the MCM species BCAO2, BCBO2, and BCCO2 in the degradation scheme of �-caryophyllene (BCARY).

No. Reaction a Kinetic rate coefficientb

17c BCARY + OH ! 0.408 BCAO2 + 0.222 BCBO2 + 0.37 BCCO2 1.97 ⇥ 10�10

18 BCAO2 + HO2 ! BCAOOH KAHO2 = KRO2HO2 ⇥ 0.975
19 BCAO2 + NO ! 0.753 BCAO + 0.753 NO2 + 0.247 BCANO3 KANO = KRO2NO
20 BCAO2 + NO3 ! BCAO + NO2 KANO3 = KRO2NO3
21 BCAO2 + RO2 ! 0.7 BCAO + 0.3 BCAOH KARO2 = 9.2 ⇥ 10�14

22 BCBO2 + HO2 ! BCBOOH KBHO2 = KRO2HO2 ⇥ 0.975
23 BCBO2 + NO ! 0.753 BCBO + 0.753 NO2 + 0.247 BCBNO3 KBNO = KRO2NO
24 BCBO2 + NO3 ! BCBO + NO2 KBNO3 = KRO2NO3
25 BCBO2 + RO2 ! 0.6 BCBO + 0.2 BCAOH + 0.2 BCBCO KBRO2 = 8.8 ⇥ 10�13

26 BCCO2 + HO2 ! BCCOOH KCHO2 = KRO2HO2 ⇥ 0.975
27 BCCO2 + NO ! 0.753 BCCO + 0.753 NO2 + 0.247 BCCNO3 KCNO = KRO2NO
28 BCCO2 + NO3 ! BCCO + NO2 KCNO3 = KRO2NO3
29 BCCO2 + RO2 ! 0.7 BCCO + 0.3 BCCOH KCRO2 = 9.2 ⇥ 10�14

a Species RO2 represents the sum of all peroxy radicals. b The same symbols are used to demonstrate the reduction strategies shown in
Tables 4 and 5. The precise values of kinetic rate coefficients (i.e., KRO2HO2, KRO2NO, and KRO2NO3) can be found on the MCM website
(v3.3.1, http://mcm.york.ac.uk/home.htt, last access: 25 April 2022) (in cm3 molec.�1 s�1). c Reaction no. 17 shows the production of
BCAO2, BCBO2, and BCCO2, whereas the other reactions (nos. 18 to 29) depict their destruction processes.

2.2.3 Lumping strategy

The lumping strategy (i.e., lumping different compounds into
a single surrogate compound) assumes that organic com-
pounds with similar chemical structures may exhibit similar
properties and undergo similar physicochemical processes
and may, therefore, be lumped together. With lumping, both
the number of species and reactions decrease.

The lumping strategy is illustrated by the comparison of
Table 3 (reactions before lumping) and Table 4 (reactions af-
ter lumping). In this example, a total of 13 chemical reac-
tions (nos. 17 to 29) involving three organic compounds are
reduced to five reactions (a production reaction, Reaction R2,
and four destruction reactions , Reactions (R3) to (R6), of the
new surrogate).

As demonstrated in the tables, the organic compounds
BCAO2, BCBO2, and BCCO2 from the original MCM

scheme are the peroxy radicals formed from the OH-initiated
oxidation of �-caryophyllene (Table 3). It is evident from
their structures (shown in Fig. C1) that they are isomers and
may share similar chemical properties. When applying the
lumping strategy, BCAO2, BCBO2, and BCCO2 are merged
into a new surrogate named “mBCAO2” (Table 4). Addi-
tional lumping examples are provided in Appendix C1, de-
scribing the lumping of compounds with differing structural
groups derived from different oxidation reactions.

The key parameter that drives the reduction accuracy is
the “weighting ratio” of lumping (fw), corresponding to the
weight of the original species in the new surrogate com-
pound. As detailed in Table 4, fw is computed as a function
of the chemical lifetime ⌧ following the computation of Se-
infeld and Pandis (2016), and the reference concentrations Cr
that are the arithmetic mean concentrations calculated from
0-D simulations using the reference mechanism. Both ⌧ and
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Table 4. Reduced reactions of Table 3 via the lumping strategy, in the case of lumping BCAO2, BCBO2, and BCCO2 into a new surrogate
mBCAO2. The name of the new surrogate contains the letter “m” for “merged” and the name of the relatively dominant lumped species. This
notation of lumping is used hereafter.

No.a Lumpedb Reaction Kinetic rate coefficient

R2 17 BCARY + OH ! mBCAO2 1.97 ⇥ 10�10

R3 18, 22, 26 mBCAO2 + HO2 ! fw,a BCAOOH + fw,b BCBOOH + fw,c BCCOOH fw,a KAHO2 + fw,b KBHO2 + fw,c KCHO2

R4 19, 23, 27 mBCAO2 + NO ! 0.753 ⇥ (fw,a BCAO + fw,b BCBO + fw,c BCCO) fw,a KANO + fw,b KBNO + fw,c KCNO
+ 0.247 ⇥ (fw,a BCANO3 + fw,b BCBNO3
+ fw,c BCCNO3) + 0.753 ⇥ (fw,a + fw,b + fw,c) NO2

R5 20, 24, 28 mBCAO2 + NO3 ! fw,a BCAO + fw,b BCBO + fw,c BCCO fw,a KANO3 + fw,b KBNO3 + fw,cKCNO3
+ (fw,a+ fw,b+ fw,c) NO2

R6 21, 25, 29 mBCAO2 + RO2 ! 0.7 ⇥fw,a BCAO + 0.8 ⇥fw,b BCBO + 0.7⇥fw,c BCCO fw,a KARO2 + fw,b KBRO2 + fw,cKCRO2
+ 0.2 ⇥fw,b BCBCO + (0.3 ⇥fw,a + 0.2 ⇥fw,b) BCAOH
+ 0.3⇥fw,c BCCOH

Symbolc Meaning Computation

Cr,a Reference concentration of BCAO2d Average BCAO2 concentrations from 5 d 0-D simulations under the training dataset
Cr,b Reference concentration of BCBO2 Average BCBO2 concentrations from 5 d 0-D simulations under the training dataset
Cr,c Reference concentration of BCCO2 Average BCCO2 concentrations from 5 d 0-D simulations under the training dataset
⌧a Chemical lifetime of BCAO2e 1/(KAHO2 [HO2] + KANO [NO] + KANO3 [NO3] + KARO2 [RO2])
⌧b Chemical lifetime of BCBO2 1/(KBHO2 [HO2] + KBNO [NO] + KBNO3 [NO3] + KBRO2 [RO2])
⌧c Chemical lifetime of BCCO2 1/(KCHO2 [HO2] + KCNO [NO] + KCNO3 [NO3] + KCRO2 [RO2])
fw,a Weighting ratio of BCAO2 ⌧aCr,a/(⌧aCr,a +⌧bCr,b +⌧cCr,c)
fw,b Weighting ratio of BCBO2 ⌧bCr,b/(⌧aCr,a + ⌧bCr,b + ⌧cCr,c)

fw,c Weighting ratio of BCCO2 ⌧cCr,c/(⌧aCr,a + ⌧bCr,b + ⌧cCr,c)

a The reaction number after lumping, where Reactions (R3) to (R6) preserve the destruction of BCAO2, BCBO2, and BCBO2, and Reaction (R2) presents the production. b The reaction numbers before
lumping as presented in Table 3. c The subscript letters a, b, and c stand for BCAO2, BCBO2, and BCCO2, respectively. d The calculation method also applies to other BCARY-derived organics. e [X] in
the calculations is the reference concentration of radical and other inorganic species, where X is HO2, NO, NO3, or RO2 in this case. For radicals derived from the SOA precursor, the reference
concentration is the produced concentration without considering their rapid destruction.

Cr are based on the averages of simulations across all training
conditions. The properties of the new surrogate compound
(e.g., molecular structure, saturation vapor pressure, molar
mass, and degradation kinetics) are estimated by weighing
the properties of the initial compounds, whereas the stoichio-
metric coefficients and the kinetic rate coefficient of the new
reaction are obtained by weighing those of the initial reac-
tions.

Chemical lifetimes and reference concentrations may be
close for species that share similar structures and undergo
analogous reactions. In cases where these species origi-
nate from the same reaction, they can be lumped directly,
with the branching ratios of the formation reaction serving
as weighting ratios. As an example, BCAO2, BCBO2, and
BCCO2 undergo equivalent reactions, with the exception of
the RO2 reaction of BCBO2. As the BCARY degradation is
not very sensitive to RO2, BCAO2, BCBO2, and BCCO2 can
be lumped together with fw,a, fw,b, and fw,c equal to the
branching ratios of reaction no. 17, i.e., 0.408, 0.222, and
0.37, respectively.

Most lumping involves species that are not isomers and
undergo different reactions, which makes lumping multiple
species at the same time highly uncertain. Therefore, in prac-
tice, GENOA attempts to lump only two species in a single
reduction in order to ensure the effectiveness of computation.
A lumping of multiple species can be achieved by combining

several reductions (e.g., first lumping BCAO2 with BCCO2
to form mBCAO2 and then lumping BCBO2 into mBCAO2).

In BCARY reduction, lumping is subject to certain restric-
tions:

– There should be no lumping between a compound and
its oxidation products.

– Compounds with specific structural groups sharing
common chemical behavior may be more appropriately
merged together. Thus, compounds containing peroxy-
acetyl nitrate (PAN), organic nitrate (RONO2), organic
radical (R), oxy radical (RO), peroxy radical (RO2),
carboxylic acid (RC(O)OH), and peroxycarboxylic acid
(RC(O)OOH) functional groups can only be lumped
with compounds containing the same groups.

– The difference in the molecular weight should be negli-
gible (i.e., smaller than 100 g mol�1).

– The difference in the carbon number should be no more
than two.

– The difference in the chemical lifetime should be less
than 10-fold.

– Lumping is not considered for biradicals (ROO) that de-
grade rapidly into closed-shell molecules, as jumping is
considered to be more appropriate for these compounds.
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The difference in saturation vapor pressure between
“lumpable” condensables is not explicitly restricted in
BCARY reduction. However, it is implicitly considered, as
GENOA searches and attempts to lump species with sim-
ilar saturation vapor pressures first. Nonetheless, the user
can activate the option to limit the range of saturated vapor
pressure differentials between lumpable condensables, along
with other user-defined reduction options listed in the Sup-
plement.

2.2.4 Replacement strategy

The replacement strategy assumes that a compound with a
negligible contribution to SOA formation can be substituted
by a compound with a similar structure or undergoing the
same reactions. In comparison to lumping, the replacement
strategy reduces the number of reactions/species without cre-
ating new surrogate species.

Table 5 illustrates a reduction occurring via the replace-
ment strategy (to be compared to the original mechanism
in Table 3), assuming that BCAO2 is predominant in SOA
formation. By substituting both BCBO2 and BCCO2 with
BCAO2, the OH reaction of BCARY only leads to the pro-
duction of BCAO2. The MCM reaction nos. 17 to 29 can
then be reduced to Reactions (R20) to (R60) via replacement.

The replacement strategy (Table 5) is expected to reduce
the computational time more than the lumping strategy (Ta-
ble 4), as all reactions originating from the replaced species
are removed from the mechanism. Hence, it does not re-
quire the computation of weighting ratios and new surro-
gates. However, as a compromise, replacement could be less
accurate than lumping, as replacement may discard some
compounds and part of the mechanism, thereby leading to
more error.

Thus, in an effort to prioritize the accuracy of reduction,
GENOA currently employs replacement only after lumping
and exclusively on species from the same reaction. In this
way, species that were not lumped (because lumping was re-
jected or because they do not respect the lumping restric-
tion) can be reduced by replacement. During the training of
BCARY reduction, a restriction is applied on small organic
compounds with a molar mass of less than 100 g mol�1,
which are excluded from replacement. The difference in car-
bon number is no more than three.

Overall, the searches for viable reductions are conducted
in reverse order of the reaction/species list. For removal,
GENOA attempts to remove reactions from the bottom of the
list and moves to the previous reactions. The same reverse
sequence is followed for other strategies. When applied to
the jumping strategy, for instance, GENOA tries to jump the
species that has the highest generation and then move down
to the species that has the lowest generation. Among all re-
duction strategies, only lumping alters the saturation vapor
pressure of condensable species. Therefore, a rank of satura-
tion vapor pressure is used exclusively in lumping to deter-

mine the most appropriate lumpable species. At each reduc-
tion, GENOA attempts to reduce only one species/reaction
via removal or one pair of compounds via lumping/replac-
ing/jumping. This restriction allows exhaustive tracking of
every detailed modification and its effect on SOA concentra-
tions.

2.3 Datasets of atmospheric conditions applied to
reduction

All of the atmospheric conditions applied to the reduction
are extracted from a 3-D simulation spanning the latitudes
from 32 to 79� N and the longitudes from 17� W to 39.8� E
over continental Europe in a 1-year period (2015) using
the CHIMERE chemistry transport model. The CHIMERE
model and the configuration used for the simulation are de-
scribed in Lanzafame et al. (2022). The 3-D CHIMERE sim-
ulation was conducted with the implicit gas-phase MEL-
CHIOR2 mechanism (Derognat et al., 2003), which contains
120 reactions and less than 80 lumped species. The MEL-
CHIOR2 mechanism describes the degradation of sesquiter-
penes by three oxidant-initiated reactions (HUMULE reacts
with OH, O3, and NO3, respectively), where the species HU-
MULE represents the lumped class of all sesquiterpenes.

The monthly diurnal profiles of hourly meteorological data
(e.g., temperature and RH) as well as the hourly concentra-
tions of oxidant, radical, and other inorganic species were
extracted from each location. This information is required in
the 0-D simulations with SSH-aerosol (see Sect. 2.4) to re-
produce SOA concentrations and compositions under near-
realistic conditions. As the reduced SOA mechanism focuses
only on SOA formation, the meteorological data and the con-
centrations of oxidants, radicals, and inorganics are assumed
to remain intact during the 0-D SOA simulation. The coordi-
nates and time of each condition are also provided to calcu-
late the solar zenith angle. The concentration of HUMULE
(denoted CSQT as the CHIMERE surrogate for sesquiter-
pene) is used to estimate the SQT concentration. For the pur-
pose of calculating reduction parameters (e.g., the weighting
ratio fw and the branching ratio B) and evaluating the re-
duced mechanisms, a dataset of representative physiochem-
ical conditions extracted from CHIMERE simulation results
is employed in GENOA. Depending on their usage, three
groups of conditions are defined: the training dataset, the pre-
testing dataset, and the testing dataset.

2.3.1 Training dataset

The training dataset is the set of conditions used to initialize
the reduction parameters, estimate the reference concentra-
tions, and evaluate the reduced mechanisms. For a mecha-
nism containing over 1000 reactions and 500 species, a com-
plete reduction may require more than 10 000 SOA simula-
tions to evaluate all of the reduction attempts. To reduce the
number of simulations and the computational cost, a limited
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Table 5. Reduced reactions of Table 3 via the replacement strategy, in the case of replacing BCBO2 and BCCO2 with one existing species –
BCAO2.

No.a Replaced Reaction Kinetic rate coefficient

R20 17 BCARY + OH ! BCAO2 1.97 ⇥ 10�10

R30 18, 22, 26 BCAO2 + HO2 ! BCAOOH KAHO2
R40 19, 23, 27 BCAO2 + NO ! 0.753 BCAO + 0.753 NO2 + 0.247 BCANO3 KANO
R50 20, 24, 28 BCAO2 + NO3 ! BCAO + NO2 KANO3
R60 21, 25, 29 BCAO2 + RO2 ! 0.7 BCAO + 0.3 BCAOH KARO2

a The symbol 0 is used to distinguish the reactions in this table from the corresponding number of lumping reactions in Table 4.

number of conditions can be evaluated at each reduction at-
tempt.

For the reduction of BCARY degradation, a training
dataset of eight conditions is selected, which contains six
chemistry-relevant conditions and two additional meteoro-
logical conditions. The geographic and meteorological infor-
mation of each condition is described in Table 6, where the
conditions cover a broad range in time (summer and win-
ter conditions), temperatures ranging from 260 to 302 K, and
RH values from 39 % to 89 %.

The six chemistry-relevant conditions, which are named
after the dominant oxidants (OH, O3, and NO3), focus on the
influences of chemical regimes on SOA formation under ei-
ther a high-NOx regime (represented by high NO concentra-
tions) or a low-NOx regime (represented by high HO2 con-
centrations). The two additional conditions included in the
training dataset to improve the reduction are referred to as
ADD1 and ADD2.

The chemical regimes of the different conditions can be
illustrated by seven competitive reaction ratios (equations are
listed in Appendix Table C1):

– The reaction ratios of the precursor with the oxidants O3
(RO3), OH (ROH), and NO3 (RNO3), whose sum equals
1, indicate the relative reactivity of the first-generation
oxidation pathways that lead to the formation of distinct
kinds of RO2 species.

– The reaction ratios of RO2 species with NO (RRO2�NO),
HO2 (RRO2�HO2), NO3 (RRO2�NO3), and other RO2
species (RRO2�RO2), whose sum equals 1, indicate the
relative reactivity of successive reactions with RO2
species.

These ratios indicate the competition between autoxidation
and bimolecular reactions that result in different SOA types.
A combination of these seven reaction ratios determines the
chemical regime and favorable reaction pathways under a
given atmospheric condition.

Figure 2 describes the reaction ratios at midnight (00:00 h)
and noon (12:00 h) for the training conditions. Under the
majority of atmospheric conditions, O3 is the dominant ox-
idant of BCARY due to the carbon–carbon double bonds
that are subject to ozonolysis. The high-O3 training condi-

tions have a RO3 ratio exceeding 98 % at both noon and mid-
night. The bimolecular reactions with NO and HO2 domi-
nate RO2 reactions in the MCM mechanism. Due to the low
kinetic rate constants and low concentrations, the ratios of
OH and NO3 reacting with BCARY are relatively low (un-
der 40 %). The high-OH conditions are determined by the
OH ratio at noon, whereas the high-NO3 conditions are de-
termined by RRO2�NO3 at midnight. One specific exception
is the additional condition ADD2, which is located in the
northern part of Italy, within the Alpine arch, close to the
metropolitan city of Milan. This condition is in the extremely
high NOx regime, as high concentrations of NO are trans-
ported from polluted areas. These high NO concentrations
consume O3 and NO3, causing low concentrations of O3 and
NO3. At night, ADD2 has a high ROH ratio of 95 % at mid-
night that is not due to an abundance of OH but rather to ex-
tremely low concentrations of O3 (2.9 ⇥ 10�4 ppb) and NO3
(1.1 ⇥ 10�9 ppb) which lead to an absence of nighttime reac-
tivity.

2.3.2 Pre-testing dataset

The pre-testing dataset contains a greater number of con-
ditions than the training dataset, covering the major atmo-
spheric conditions encountered across the domain. After the
mechanism has been significantly reduced, the pre-testing
dataset is included along with the training dataset in order to
evaluate the reduction attempts at the late-stage reduction. At
this point of reduction, a slight change in the mechanism sig-
nificantly impacts the SOA concentrations; therefore, merely
evaluating reduction based on the training dataset may not
be adequate. Meanwhile, the size of the mechanism has al-
ready been significantly reduced, which makes the evaluation
of each reduction attempt on the pre-testing dataset less com-
putationally expensive.

In principle, the pre-testing dataset should be able to pro-
vide a fairly accurate representation of the testing dataset.
However, this may not always be the case, as the pre-testing
dataset is selected almost randomly from the testing dataset.
Therefore, an adjustment may be required to increase the rep-
resentativeness of the pre-testing dataset by adding or remov-
ing a few conditions. For the application to BCARY, a pre-
testing dataset with 150 atmospheric conditions is selected
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Table 6. Geographic and meteorological conditions of the training dataset. The table headings, from left to right, indicate the name, latitude,
longitude, time period, average temperature, average RH, average daily NO reaction ratio, and simulated total SOA concentration of the
training conditions.

Condition name
Lat Long Time Temp. RH RRO2�NO

a SOAb

(� N) (� E) (month) (K) (%) (%) (µgm�3)

OH NO 36.0 15.4 Jul 299 79 60 4.1
OH HO2 32.0 �9.4 Jul 296 77 20 6.1
NO3 NO 40.25 �3.4 Jul 302 28 69 4.4
NO3 HO2 32.0 36.6 Aug 302 38 29 5.7
O3 NO 69.0 33.8 Jan 261 84 99 5.2
O3 HO2 68.0 18.2 Dec 266 89 25 4.6
ADD1 41.5 �14.2 Dec 289 76 20 5.5
ADD2 45.75 9.0 Dec 279 85 100. 4.4

a The average daily NO reaction ratio is calculated using the RO2 reactivity of NO, HO2, NO3, and RO2. Conditions
with a high RNO ratio are considered in the high-NOx regime. b SOA is simulated with an initial BCARY concentration
of 5 µg m�3.

Figure 2. A bar plot showing the occupancy of seven reaction ratios in the BCARY initiation reactions and RO2 reactions, under the training
conditions at midnight (00:00 GMT+1, top bar) and noon (12:00 GMT+1, bottom bar with hatching). From left to right, six ratios are
presented on each bar in the following order: RO3 , ROH, RNO3 , RRO2�NO, RRO2�HO2 , RRO2�NO3 , and RRO2�RO2 (no display if ratio is
zero). Table C1 provides the equations for calculating the reaction ratios.

from the testing dataset. The pre-testing dataset consists of
50 conditions for each level (low, medium, and high) of SQT
emissions (see Sect. 2.3.3). The locations of the training and
pre-testing conditions are presented in Fig. 3.

2.3.3 Testing dataset

The final reduced mechanism, obtained from training, is
eventually evaluated with a large number of atmospheric con-
ditions in the testing section. This set of conditions for the
final evaluation is referred to as the testing dataset. Among
all datasets, the results on the testing dataset are most likely
to reflect the actual performance of the reduced mechanism
for 3-D modeling.

In the BCARY reduction, the testing dataset is selected
based on the concentrations of the CHIMERE sesquiterpene

surrogate. Its maximum hourly concentration CSQT in parts
per billion (ppb) is used to exclude conditions with a neg-
ligible SQT concentration. A testing dataset within a to-
tal of 12 159 conditions is applied (see Sect. 3.2), includ-
ing all conditions (2159 conditions) with a high SQT con-
centration (CSQT � 0.1 ppb), 5000 random select conditions
with a medium SQT concentration (CSQT✏ between 0.01 and
0.1 ppb), and 5000 random select conditions with a low SQT
concentration (CSQT✏ (0.001, 0.01]). The conditions with an
extremely low SQT concentration (CSQT < 0.001 ppb) are
not included in the testing dataset. Figure B1 indicates the
locations of the testing dataset as well as the testing results
for BCARY reduction.
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Figure 3. Simulation domain and locations of training (see the fig-
ure legend) and pre-testing (blue scattered dots) datasets applied to
the reduction.

2.4 Settings for SOA simulations

The chemical composition and temporal variation in SOA
due to gas-phase chemistry and condensation/evaporation
are simulated using the 0-D aerosol module SSH-aerosol
(Sartelet et al., 2020). As detailed in Couvidat and Sartelet
(2015), the gas–particle partitioning is estimated with
Raoult’s law (for the partitioning between the gas phase and
the organic phase) and Henry’s law (for the partitioning be-
tween the gas phase and the aqueous phase). Therefore, some
properties of condensable compounds, such as the saturation
vapor pressure Psat and the decomposition into functional
groups, are crucial for modeling. For BCARY-derived organ-
ics, Psat is calculated using UManSysProp (Topping et al.,
2016). The vapor pressure is computed using the method
of Nannoolal et al. (2008) and the boiling point estimation
from Joback and Reid (1987). These methods were selected
because they provide the best performance when compared
with the chamber experiment data of Chen et al. (2012) and
Tasoglou and Pandis (2015), as discussed in Appendix A.
Furthermore, the activity coefficient � is calculated with
the UNIQUAC Functional-group Activity Coefficients (UNI-
FAC) thermodynamic model (Fredenslund et al., 1975) for
short-range interactions and the Aerosol Inorganic–Organic
Mixtures Functional groups Activity Coefficients (AIOM-
FAC) model for medium-range and long-range interactions
(Zuend et al., 2008).

Unless stated otherwise, two simulations are performed
for each condition starting at midnight (00:00 h) and noon
(12:00 h), considering both the daytime and nighttime chem-
istry. All 0-D simulations are run for 5 d in order to ade-
quately consider SOA formation and aging processes. The
initial BCARY concentration is set to 5 µg m�3 in order to
ensure high SOA production (the SOA concentration is al-
ways greater than 1 µg m�3 under all evaluated conditions).

For optimal computational efficiency, the gas–particle parti-
tioning is assumed to be at thermodynamic equilibrium.

2.5 Settings for evaluation

For the different datasets, the performance of the reduced
mechanism on SOA concentrations is evaluated using the
fractional mean error (FME) computed with Eq. (1), where
Cval,i and Cref,i denote the SOA mass concentration at time
step i simulated with the reduced and the reference mecha-
nisms, respectively.

The error of one simulation is defined as the larger of the
FME on day 1 and the FME on days 2 to 5, in order to ad-
dress the difference in the performance of the reduced mech-
anisms in the early stage of the simulations (SOA formation
dominates) and in the later stage (SOA aging dominates).
This error is used to evaluate reduction by comparing it to
the error tolerance specified in training. For the evaluation
on the training dataset, two errors are estimated compared to
the previously verified reduced mechanism with a tolerance
denoted ✏pre and to the reference mechanism with a tolerance
denoted ✏ref. The error tolerances are used to restrict both the
maximum and the average (half of the tolerance) errors of the
training conditions. As for the evaluation on the pre-testing
dataset, the error compared to the reference mechanism is
calculated. The error tolerances ✏ave

pre�testing and ✏max
pre�testing are

set to the average and maximum errors, respectively.

FME = 2
Pi=1

n abs(Cval,i � Cref,i )

n
Pi=1

n (Cval,i + Cref,i )
(1)

In order to begin with a conservative BCARY reduction, the
initial values of ✏pre and ✏ref are both set to 1 %. The values of
these error tolerances are then increased to larger values, re-
flecting the looser criteria used throughout the reduction. ✏ref
is used to track the performance of the reduction, while ✏pre
is used to avoid large errors introduced by one reduction at-
tempt. Therefore, ✏pre is lower than or equal to ✏ref. For every
1 % increase in ✏ref, ✏pre is stepped up by 1 % from 1 % to the
value of ✏ref. By doing this, GENOA first accepts reductions
that introduce small errors compared with the previously val-
idated mechanism and then accepts reductions that introduce
larger errors up to ✏ref.

The maximum values for both ✏ref and ✏pre are set to 10 %.
When ✏ref reaches 3 %, the mechanism is expected to be
largely reduced. From then, the evaluation under the pre-
testing dataset is considered to be added to the reduction.
This means that all subsequent reductions are evaluated using
both the training and pre-testing datasets. The average and
maximum errors (✏ave

pre�testing and ✏max
pre�testing) are restricted

to be lower than 3 % and 20 %, respectively. As a result of
the above error tolerances, a reduced SQT SOA mechanism
with an average inaccuracy on SOA formation lower than
3 % (maximum 20 %) is expected.

Additionally, another error factor noted as the fractional
bias (FB, computed as detailed in Eq. 2) is used to visualize
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the temporal performance of the reduced mechanism at each
simulation time step. As examples, Figs. 8 and 10 show the
average FB at each time step for the pre-testing conditions.

FBi = 2
Cval,i � Cref,i

Cval,i + Cref,i
(2)

When trying to remove reactions, GENOA first removes re-
actions with low hourly branching ratios (Brm  5 %), as the
removal of reactions with Brm is likely to have a minimal ef-
fect on SOA formation. After no reduction is accepted by all
applied reduction strategies under the defined error tolerance,
the value of Brm is increased to 10 % and then 50 %.

2.6 Settings for aerosol-oriented treatments

In late-stage training, an intense competition between differ-
ent potential reductions is observed, and a minor modifica-
tion may induce significant uncertainty in the mechanism and
prevent further reduction. Moreover, because the formation
of aerosols costs more CPU time than gas-phase chemistry,
specific treatments are employed in the late stage of training
to reduce the number of condensable species preferentially.
These treatments, which reduce species rather than reactions,
are done when the size of the mechanism is below a cer-
tain threshold. For BCARY reduction, the treatments are acti-
vated once the number of condensable species has decreased
to 20. Consequently, late-stage treatments encourage reduc-
tion via the removal of condensable species and are referred
to as aerosol-oriented treatments. The treatments consist of
the following:

– Restriction of the reduction of the number of reac-
tions is applied; thus, strategies that reduce the number
of aerosols are favored to result in fewer condensable
species.

– The evaluation of aerosol-oriented reductions on the
training dataset is bypassed when applied to jumping,
lumping, and replacement. As a result, the aerosol-
oriented reduction is evaluated only on the pre-testing
dataset to avoid being rejected under some of the ex-
treme conditions in the training dataset (which are less
representative of average atmospheric conditions than
the conditions of the pre-testing dataset).

– An additional type of removal is applied – removing
elementary-like reactions.

The additional reduction strategy of removing elementary-
like reactions is targeted at reactions with multiple products.
After rewriting the reaction into a set of elementary-like reac-
tions, each with one oxidation product and integer stoichio-
metric coefficient, GENOA investigates the possibility of re-
moving the elementary-like reactions one by one. In practice,
removing elementary-like reactions is inserted after the strat-
egy of removing reactions and before jumping, when no fur-
ther reduction that reduces condensable species can be found
with the current parameters.

3 Application to the �-caryophyllene mechanism

GENOA is applied to the SQT degradation mechanism of
v3.3.1 of the Master Chemical Mechanism (Jenkin et al.,
2012). Here, �-caryophyllene (BCARY) is considered a
surrogate for SQT primary VOCs. The degradation of �-
caryophyllene in the original MCM mechanism consists of
1626 reactions and 579 species (223 radicals and 356 sta-
ble species). After prereduction, the mechanism contains
1241 reactions and 493 species (137 radicals and 356 sta-
ble species); this is employed as the starting point and the
reference for the reduction (hereafter referred to as MCM).

Moreover, at the beginning of the GENOA training, all of
the stable species are assumed to be condensable (referred to
as condensables), and their saturation vapor pressures and
activity coefficients are calculated based on their molecu-
lar structures (as detailed in Sect. 2). Applying the effective
partitioning coefficients (Kp at 298 K) described by Seinfeld
and Pandis (2016), condensables can be classified into semi-
volatile organic compounds (SVOCs; Kp between 10�2 and
10 m3 µg�1), low-volatility organic compounds (LVOCs; Kp
between 10 and 104 m3 µg�1), and extremely low volatility
organic compounds (ELVOCs; Kp larger than 104 m3 µg�1).

The semi-explicit SQT SOA mechanism “Rdc.” presented
in this section is trained from MCM with GENOA. Detailed
descriptions of the building process and its chemical scheme
are provided in Sect. 3.1. By the end of the training, Rdc.
is reduced from MCM to only 23 reactions and 15 species
(see Appendix B for the reaction and species lists). The size
of the Rdc. mechanism is of the same order of magnitude
as the BCARY degradation scheme of Khan et al. (2017)
(28 reactions and 15 species) used for global modeling. As
presented in Sect. 3.2, the Rdc. mechanism accurately re-
produces the SOA concentration and composition simulated
by MCM with only six condensables. Table B3 summarizes
the new surrogates and the lumped MCM species that are in-
cluded in the final Rdc. mechanism.

3.1 Building of the reduced SOA mechanism

As shown in Fig. 4, the Rdc. mechanism is built from 113
validated reduction steps. In GENOA, a reduction step refers
to all reduction attempts based on the performed reduction
strategy and reduction parameters, while a validated reduc-
tion step indicates at least one reduction attempt has been ac-
cepted at this step. The entire building process can be divided
into three stages:

– Early stage refers to the period from the 1st to the 74th
reduction step. By the end of the 74th reduction step,
the mechanism is reduced to 68 reactions and 41 species
(including 20 condensables). The early-stage reduction
is trained only on the training dataset with the seven pre-
described reduction strategies. After ✏ref reaches 3 %,
the list of Brm is changed from [5 %, 10 %, 50 %] to
[10 %, 50 %, 100 %].
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Figure 4. Reduction process of the Rdc. mechanism showing the
decrease in the number of reactions, species, and condensables; the
evolution of the average error on the pre-testing dataset (✏pre�testing,
with an error tolerance ✏ave

pre�testing of 3 %); and the error tolerance
compared with MCM (✏ref).

– Late stage I spans from the 75th to the 107th reduction
step. By the end of the 107th reduction step, the reduced
mechanism consists of 38 reactions and 19 species (in-
cluding seven condensables), and no further reduction
can be found within ✏ref  10 % and ✏pre  10 %. In this
stage, the reduction is trained on the pre-testing dataset
if condensables are removed with jumping, lumping, or
replacement. For reduction with other types of reduc-
tion strategies, it is first trained on the training dataset
and then on the pre-testing datasets. From all of the re-
duced mechanisms with seven condensables, GENOA
selects the one with the minimum average errors on the
pre-testing dataset (2.44 %) to start the next stage.

– Late stage II refers to the period from the 108th to the
113th reduction step. At this stage, the reduction strat-
egy of removing elementary-like reactions is applied to
the training. All reductions that reduce the condensables
are evaluated exclusively on the pre-testing dataset. The
size of the reduced mechanism was reduced to 23 re-
actions and 15 species, among which the number of
condensables is reduced to 6. The average (maximum)
error of the final reduced mechanism Rdc. is 2.65 %
(17.00 %) under the pre-testing dataset compared with
MCM.

The extent of the reduction due to each strategy is sum-
marized in Table 7. Compared with MCM, up to 98 % of
reactions and 97 % of species are reduced in Rdc. As ex-
pected, the reduction strategy of removing reactions con-
tributes the most to the decrease in the number of reactions
(48 %), followed by the strategy of removing species (with
a contribution of 37 %). Meanwhile, both lumping and re-
moving species are significant in the reduction of species (by

Table 7. Reduction accomplished per each reduction strategy dur-
ing the building process of the Rdc. mechanism.

Strategy
No. (fractiona, %)

Reactionb Species Condensables

Removing reactions 594 (48) 38 (8) 26 (7)
Removing elementary-

8 (1) 0 (0) 0 (0)
like reactionsc

Jumping 138 (11) 79 (16) 43 (12)
Lumping 0 (0) 171 (35) 110 (31)
Replacement 25 (2) 39 (8) 31 (9)
Removing species 453 (37) 151 (31) 108 (30)
Removing partitioning 0 (0) 0 (0) 32 (9)

Removed in total 1 218 (98) 478 (97) 350 (98)

a The fraction of the original number (of reactions or species) that is reduced by the
strategy. b The columns, from left to right, are the number (and fraction) of reduced
chemical reactions, reduced total gas-phase species, and reduced gas-phase species that
can condense on the particle phase, compared with MCM with 1241 reactions and 493
species (356 condensables). c This step is only applied in the reduction at late stage II.

35 % and 31 %, respectively). The number of condensables
decreases in proportion to the number of species, except for
the strategy of removing partitioning. In that case, the gas–
particle partitioning is removed and the species remains in
the gas phase with no changes in the chemical mechanism.

As shown in Fig. 5, which describes the chemical scheme
of the Rdc. mechanism, the three oxidants (i.e., O3, OH,
and NO3) initiated reactions, leading to common oxidation
products (e.g., mBCSOZ and mBCALO2) that dominate the
successive oxidations. The different reaction pathways un-
der high- or low-NOx regimes are presented in Rdc. with
reactions with NO or HO2, respectively, which results in the
formation of different types of SOAs: mBCKSOZ, mC133O,
and C131PAN (in the presence of NO2) under high-NOx con-
ditions and mC132OOH under low-NOx conditions. Other
pathways, such as the bimolecular reactions of the Criegee
intermediate BCBOO with water vapor and the RO2 reaction
of mBCALO2, are also preserved in the Rdc. mechanism.
The six condensables in Rdc. can be categorized into one
SVOC, four LVOCs, and one ELVOC, according to the ef-
fective partitioning coefficient calculated on the pre-testing
dataset. The SOA concentration per volatility class is dis-
cussed in Sect. 3.2.

Compared with MCM, Rdc. simplifies a considerable
number of reactions that have small impacts on SOA for-
mation (e.g., photolysis reactions) under the majority of at-
mospheric conditions, and it merges a large number of com-
pounds with similar chemical properties. The main oxida-
tion products from the first two generations of MCM oxida-
tion pathways are preserved mainly through the Rdc. species
mBCSOZ, which is a lumped surrogate of several MCM-
representative BCARY-derived oxidation products: BSCOZ
(the major secondary ozonize with a molar yield of � 65 %,
reported by Jenkin et al., 2012), BCAL (the primary prod-
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Figure 5. Representation of the chemical scheme of the Rdc. mech-
anism. VOCs, LVOCs, and ELVOCs are presented in ellipse, square,
and diamond boxes, respectively. Radicals are written in plain text,
without boxes. Reactions with OH, O3, NO3, NO, HO2, and H2O
are shown using arrows with different colors and heads (see the fig-
ure legend). Other reactants (if any) are labeled near the edges. The
complete species and reaction lists of the Rdc. mechanism are given
in Appendix Tables B1 and B2, respectively.

uct formed from both OH- and O3-initiated chemistry), and
BCKET (from OH-initiated reactions).

3.2 Evaluation of the reduced SOA mechanism

3.2.1 Reproduction of the SOA concentrations

During the testing procedure, the Rdc. mechanism is eval-
uated at 12 159 locations, with two different starting times
(00:00 and 12:00 h). The testing for Rdc. took approximately
2 % of the CPU time consumed for MCM.

Compared with MCM, Rdc. presents a high level of accu-
racy with an average error of 2.66 % and a maximum error
of 17.29 %. The monthly distribution of the number of the
testing conditions as well as the testing errors are described
in Fig. 6. The error is lower than 10 % for more than 99 % of
the simulations. The summer conditions, between June and

Figure 6. Monthly distribution of the testing results (errors com-
pared with MCM) of the Rdc. mechanism in the box plot as well as
the number of testing conditions in the histogram.

September, covering more than half of the testing conditions
(63 %, 7647 conditions), result in an average error of 2.37 %
and a 3rd quartile error of 2.85 %. Compared with the sum-
mer conditions, testing results under winter conditions, from
October to January (19 % of the testing dataset, 2285 con-
ditions), display slightly higher uncertainty, with an average
error of 3.79 % and a 3rd quartile error of 5.36 %.

An error map of testing conditions in July and August is
displayed in Fig. 7. It indicates the locations of testing condi-
tions and the errors of each condition, especially highlighting
outliers during this period. Detailed error maps of all test-
ing conditions can be found in Appendix B. It shows that
the Rdc. mechanism induces low errors (lower than 6 %) for
most of the testing conditions. The conditions with errors
over 6 % are mainly concentrated in northern Africa near
the Atlas Mountains and in the eastern Mediterranean, where
the conditions most likely correspond to a dry Mediterranean
climate with low RH and high temperature. Other conditions
with errors above 6 % are dispersed in the Po Valley of north-
ern Italy and along the coasts of southern Spain. More ac-
curate results could be obtained with stricter parameters for
reduction (e.g., lower error tolerance) or by updating the con-
ditions (e.g., training and pre-testing datasets) covering more
extreme conditions in the training process.

3.2.2 Reproduction of the SOA composition

The SOA concentrations and chemical composition simu-
lated with the Rdc. mechanism and with MCM are compared
in this section. The temporal profiles of the total SOA con-
centrations on an average of the pre-testing dataset and non-
ideal conditions are displayed in Fig. 8. Throughout the en-
tire 5 d simulation period, there is excellent agreement be-
tween hourly SOA concentrations simulated with MCM and
those obtained from the Rdc. mechanism. The SOA concen-
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Figure 7. Geographic distributions of the (a) error and (b) average
SOA concentration of the testing results in July and August sim-
ulated using the Rdc. mechanism. The total number of conditions
displayed is 4717 out of the 12 159 that were tested. The results of
all testing conditions are shown in Appendix B for reference.

tration builds up rapidly in the first few hours, where the re-
sults of the Rdc. mechanism present relatively larger fluctu-
ations (the maximum FB of 3.74 % is observed at 1 h on the
average pre-testing results).

The average SOA concentrations per volatility class on the
pre-testing dataset at two simulation times (8 and 72 h) are
listed in Table 8. At both 8 and 72 h, the Rdc. mechanism ac-
curately reproduces the total SOA mass with a relative differ-
ence lower than 0.1 % compared to MCM. An accumulation
of the SOA mass into the ELVOC class is observed (51 %
of the total SOA mass at 8 h and 66 % at 72 h) with both
the MCM and the Rdc. mechanisms. The aging of SOA pro-
duces compounds of low and extremely low volatility. Re-
garding the volatility classes, the Rdc. mechanism tends to
slightly overestimate the SOA resulting from ELVOCs and
underestimate the SOA resulting from LVOCs, especially at
72 h. This suggests that aging leads to Rdc. condensables of

Figure 8. Temporal variation in the total SOA concentration simu-
lated with the pre-testing dataset using the MCM (red dashed line)
and Rdc. (solid black line) mechanisms under nonideal conditions.
The average (solid blue line) and maximum (blue shading) FB val-
ues between the MCM and the Rdc. mechanisms are also presented.

Table 8. Average SOA concentrations per volatility class simulated
with the MCM and the Rdc. mechanisms on the pre-testing dataset
at 8 and 72 h (in µgm�3).

Conditions SVOCs LVOCs ELVOCs Total

MCM at 8 h 0.18 1.91 2.17 4.26
Rdc. at 8 h 0.13 1.80 2.31 4.24

MCM at 72 h 0.02 1.90 3.69 5.61
Rdc. at 72 h 0.02 1.51 4.12 5.65

slightly lower volatility than the MCM ones; however, the
differences are low (up to 0.4 µgm�3 difference (10 %) at
72 h).

The average SOA composition per functional group simu-
lated on the pre-testing dataset at 72 h is displayed in Fig. 9.
No significant change in the functional group distributions
is found between 8 and 72 h of oxidation. The alkyl (C) and
carbonyl groups (RCO) contribute the most to the SOA mass,
by more than 1 µgm�3, whereas the other functional groups
contribute by less than 1 µgm�3. Overall, the Rdc. mecha-
nism satisfactorily reproduces the composition of the MCM-
simulated SOA composition for most functional groups, ex-
cept for nitrogen-containing groups. In comparison to MCM,
only two condensables containing nitrogen are retained in the
Rdc. mechanism – NBCOOH and C131PAN – leading to an
underestimation of the organic nitrate group (0.31 µgm�3 in
MCM and 0.04 µgm�3 in Rdc.) and an overestimation of the
nitrate mass of the peroxyacetyl nitrate group (0.10 µgm�3

in MCM and 0.30 µgm�3 in Rdc.). To obtain better results
on the reproduction of nitrogen groups, GENOA may be fur-
ther restricted to distinguish nitrogen compounds in training.
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Figure 9. Average SOA mass per functional group simulated with the pre-testing dataset using the MCM (blue bar) and Rdc. mechanisms
(white bar) at 72 h. The figure is divided into two panels, (a) and (b), due to the large gap in mass between the groups. The labels of the
functional groups, from left to right, are as follows: C – carbon bond, RCO – carbonyls (ketone and aldehyde), CO–OH – hydroxy peroxide,
NO3 – organic nitrates, OH – alcohol, COOH – carbonyl acid, CO–OC – peroxide, PAN – peroxyacyl nitrates, C=C – carbon double bond,
COC – ether, RCOO – ester, and COOOH – peroxyacetyl acid.

Additionally, the peroxyacetyl acid group results in an ex-
tremely low SOA mass in MCM (less than 0.01 %); there-
fore, it is not retained in the Rdc. mechanism.

Moreover, the temporal profiles of the organic mass to or-
ganic carbon mass (OM/OC) ratio as well as the H/C, O/C,
and N/C atomic ratios are presented in Fig. 10. Compara-
ble patterns are observed in the OM/OC (1.65 in MCM and
1.63 in Rdc. on average), the O/C (0.37 in MCM and 0.36 in
Rdc.), and the H/C (1.62 in MCM and 1.60 in Rdc.) ratios.
During the first 8 h of simulation, Rdc. tends to slightly over-
estimate the OM/OC and O/C ratios, while the H/C ratio
remains fairly stable throughout the entire simulation with
a negligible difference (0.02) between MCM and Rdc. The
N/C ratio, however, is underestimated by the Rdc. mecha-
nism by 37 % on average (ratio equal to 0.019 in MCM and
to 0.012 in Rdc.), indicating the over-reduction of organic
nitrites in Rdc. A total of three nitrogen-containing organics
(NBCO2, NBCOOH, and C131PAN) are preserved in Rdc.,
two of which (NBCO2 and NBCOOH) are first-generation
products. Therefore, during the first 10 h, the N/C ratio curve
simulated by Rdc. drops, whereas it increases in MCM as
higher-generation nitrates are produced.

3.2.3 Sensitivity on environmental parameters

The sensitivities of the Rdc. mechanism to temperature, RH,
and SOA mass conditions are investigated with the pre-
testing dataset. The default value of the BCARY concen-
tration is 5 µgm�3, and the default RH and temperature are
set to constant values of 50 % and 298 K, respectively. As
presented in Fig. 11, the SOA yields simulated by the Rdc.
mechanism with different environmental parameters show
a remarkable resemblance to the SOA yields simulated by
MCM.

Under 10 µg m�3, the simulated SOA yields are not af-
fected by the SOA mass loading. This result is consistent
with the large contribution of ELVOCs reported in Table 8. A

discrepancy of 25 % in the average SOA yield at 1 h with an
SOA mass loading of 103 µgm�3 at 1 h and a discrepancy of
8 % at 72 h with an SOA mass loading of 10�3 µgm�3 are ob-
served. The result indicates that the Rdc. mechanism may in-
troduce relatively large uncertainty with extreme SOA load-
ing (larger than 500 µgm�3), which was outside the range
of conditions used for the construction of the Rdc. mech-
anism. SOA formation is affected by RH, due to both the
gas-phase chemistry (reaction with H2O vapors) and the gas–
particle transfer (condensation of hydrophilic SOA precur-
sors on aqueous aerosols). The sensitivity tests show that
the Rdc. mechanism reproduces (differences lower than 2 %)
the SOA yields of MCM well with RH values ranging from
5 % to 95 %. For temperature, the Rdc. mechanism repro-
duces the SOA aging at 72 h very well, but larger discrep-
ancies are observed in the earlier period, when the oxidation
products are more volatile. However, the discrepancies in the
SOA yield stay low: differences up to 7 % (at 1 and 72 h)
and 10 % (at 8 h) are observed for temperatures of 263 and
323 K, respectively. This finding is consistent with the test-
ing results. In summary, the discrepancies suggest that the
reduced mechanism performs quite well, although larger dis-
crepancies with MCM are observed under conditions that are
outside the range of conditions used during training.

4 Conclusions

The development and application of the GENerator of re-
duced Organic Aerosol mechanism (GENOA v1.0) have
been presented in this study. GENOA generates semi-explicit
SOA mechanisms designed for large-scale air quality model-
ing by reducing explicit VOC mechanisms with a series of
automatic training and testing processes. During the training
procedure of GENOA, four types of reduction strategies (re-
moval, jumping, lumping, and replacement) are adopted to
locate the potential reduction in the mechanism. Each reduc-

Geosci. Model Dev., 15, 8957–8982, 2022 https://doi.org/10.5194/gmd-15-8957-2022
47



Z. Wang et al.: GENerator of reduced Organic Aerosol mechanism (GENOA v1.0) 8973

Figure 10. Temporal variations in the (a) average organic mass to organic carbon mass (OM/OC) ratio, (b) hydrogen to carbon (H/C) atomic
ratio, (c) oxygen to carbon (O/C) atomic ratio, and (d) nitrogen to carbon (N/C) atomic ratio, simulated with MCM (solid black curves)
and the Rdc. mechanism (dotted red curves) on the pre-testing dataset. The average FB (solid blue line) and the 90 % range of the FB (blue
shading) are also presented.

Figure 11. Dependence of the average SOA yield simulated by the pre-testing dataset with MCM (solid line) and the Rdc. mechanism
(dashed line) on (a) BCARY SOA mass; (b) relative humidity (RH); and (c) temperature at 1 h (red points), 8 h (blue triangles), and 72 h
(green squares).

tion attempt is evaluated against the explicit mechanism un-
der a sequence of near-realistic atmospheric conditions (the
training dataset, and/or the pre-testing dataset at the late stage
of reduction). Finally, the reduced mechanism is evaluated
under various conditions of a testing dataset. Under each con-
dition, two 5 d 0-D simulations starting at midnight and noon
are conducted with the SSH-aerosol model to simulate SOA
concentrations and compositions for reduction evaluation.

GENOA successfully generated semi-explicit SOA chem-
ical mechanisms for the degradation of sesquiterpene, for
which the explicit �-caryophyllene mechanism of the Mas-
ter Chemical Mechanism serves as the reference mechanism
and the starting point. The final reduced SQT SOA mech-

anism contains 23 reactions (down from 1626 reactions in
MCM), 15 gas-phase species (down from 579 gases), and 6
aerosol species (down from 356 aerosols). It reproduces the
SOA formation and aging by introducing an average error
of 2.7 % under conditions over Europe with only 2 % of the
size of MCM. The SOA volatility is well reproduced with
the reduced mechanism, as well as the decomposition into
functional groups, and the OM/OC (1.55 in the Rdc. mech-
anism and 1.60 in MCM), H/C, and O/C ratios. Nitrogen-
containing SOA, which contributes to only 7 % of the to-
tal mass, is not as well represented as other groups, and the
N/C ratio is slightly underestimated in the Rdc. mechanism
(0.016 compared with 0.021 in MCM). The similarity of the
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representation of the functional group decomposition allows
for the similar reproduction of the non-ideality of SOA in
the Rdc. mechanism and in MCM. Additionally, the sensi-
tivity tests on RH, temperature, and organic mass loading
show that the SOA simulated with the Rdc. mechanism is
in good agreement with MCM results under most conditions
(except for conditions with extremely high temperature or
with massive organic aerosol loading where discrepancies in
the SOA yields may reach 8 % (temperature) and 25 % (mas-
sive mass loading)). This indicates that the reduced mecha-
nism performs well for conditions in the training range, but
its performance may deteriorate for conditions outside of this
range. To improve the performance of the semi-explicit SOA
mechanism under conditions outside of the training range,
two methods can be employed: the first is to include the out-
lier conditions in the training procedure if they are consid-
ered influential to SOA formation, and the second is to adopt
strict error tolerance to restrict the reduction.

Appendix A: The computation of saturation vapor
pressure of BCARY SVOCs

The ozonolysis experimental data reported in Tasoglou and
Pandis (2015) and Chen et al. (2012) are used to evalu-
ate the performance of different computation methods for
the saturation vapor pressure of BCARY oxidation prod-
ucts. In our simulations, the saturation vapor pressure is
computed by UManSysProp with the SMILES (Simplified
Molecular Input Line Entry System) structures of organic
compounds. Eight methods are provided in UManSysProp,
including SIMPOL.1 (“sim”) of Pankow and Asher (2008),
EVAPORATION (“evp”) of Compernolle et al. (2011), and
six methods out of the combination of two methods to com-
pute the vapor pressure (“v0”, Myrdal and Yalkowsky, 1997;
and “v1”, Nannoolal et al., 2008) and three methods to com-
pute the boiling point (“b0”, Nannoolal et al., 2004; “b1”,
Stein and Brown, 1994; and “b2”, Joback and Reid, 1987).
As shown in Fig. A1, the SOA distribution simulated with
“v1b2” (thin yellow diamonds) agrees best with the experi-
mental data. Therefore, this method with the vapor pressure
computed by Nannoolal et al. (2008) and the boiling point
computed by Joback and Reid (1987) is used in the BCARY
reduction. The results simulated with the final reduced mech-
anism Rdc. (purple diamonds) is also presented in Fig. A1,
which has a great resemblance to the experimental data.

Figure A1. The SOA yields versus the total SOA mass from the
experimental data reported by Chen et al. (2012) and Tasoglou and
Pandis (2015), simulated in SSH-aerosol with the MCM mechanism
and different saturation vapor pressures methods (see the figure leg-
end) and simulated with the Rdc. mechanism (purple diamonds).
The Rdc. mechanism is trained from the MCM mechanism with the
v1b2 method.
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Appendix B: An overview of the Rdc. mechanism

Table B1. Species list of the Rdc. mechanism. Notice that the species in the reduced case may be different from the MCM species with
identical names.

Surrogatea Typeb Molecular formula MWc P d
sat 1H e

vap H f � g

BCARY VOC C15H24 204.4
NBCO2 Radical C15H24NO5 298.4
BCBOO Radical C15H24O3 252.3
mBCALO2 Radical C14.68H24.08O4.87 278.5
mBCSOZ VOC C15H24O2.74 248.2
NBCOOH LVOC C15H25NO5 299.4 4.04 ⇥ 10�12 119 7.63 ⇥ 106 1.8 ⇥ 106

mC141CO2H LVOC C14.94H23.85O3.06 252.4 4.43 ⇥ 10�11 114 2.53 ⇥ 104 4.95 ⇥ 107

mBCKSOZ SVOC C14H22O3.9 252.7 2.02 ⇥ 10�8 91.2 1.89 ⇥ 105 1.45 ⇥ 104

mC131CO3 Radical C14.09H21.28O4.91 269.1
mC131O2 Radical C13.14H21.22O4.14 245.5
mC133CO ELVOC C13.42H20.83O4.59 255.6 1.62 ⇥ 10�12 125 245 1.4 ⇥ 1011

mC132OOH ELVOC C13.97H23.92O4.59 279.5 4.13 ⇥ 10�14 136 5.70 ⇥ 103 2.36 ⇥ 1011

C131PAN LVOC C14H21NO7 315.3 4.39 ⇥ 10�11 113 2.07 ⇥ 104 6.09 ⇥ 107

mC133O2 Radical C13H21O5.97 272.8
C133O Radical C13H21O5 257.3

a Species with “m” are the new surrogates that merged multiple MCM BCARY species. b VOCs (stable gas-phase species) and radicals (unstable
gas-phase species) are assumed not to undergo gas–particle partitioning. The volatility classes of condensable species are defined in Sect. 3. c Molar
weight (g mol�1). The properties calculated for condensable substances only are as follows: d saturation vapor pressure at 298 K (atm), e enthalpy of
vaporization (kJ mol�1), f Henry’s law constant (mol L�1 atm�1), and g activity coefficient at infinite dilution in water.

Table B2. Reaction list of the Rdc. mechanism.

No. Reactions Kinetic rate constanta

1 BCARY + NO3 ! NBCO2 + NO3 1.9 ⇥ 10�11

2 BCARY + O3 ! 0.874 BCBOO + 0.111 mBCALO2 + O3 1.19 ⇥ 10�14

3 BCARY + OH ! mBCSOZ + OH 1.97 ⇥ 10�10

4 NBCO2 + HO2 ! NBCOOH + HO2 2.837 ⇥ 10�13 ⇥ exp( 1300
T )

5 NBCO2 + NO ! mBCSOZ + NO 2.7 ⇥ 10�12 ⇥ exp( 360
T )

6 NBCO2 + NO3 ! mBCSOZ + NO3 2.3 ⇥ 10�12

7 BCBOO ! 0.5 mC141CO2H + 0.5 mBCSOZ [H2O] ⇥ 4 ⇥ 10�16

8 BCBOO ! mBCSOZ 2 ⇥ 102

9 mBCSOZ + O3 ! 0.915 mBCKSOZ + 0.085 mBCALO2 + O3 1.1 ⇥ 10�16

10 mBCSOZ + OH ! 0.92 mBCALO2 + 0.08 mC131CO3 + OH 7.6 ⇥ 10�11

11 mC141CO2H + OH ! mC131O2 + OH 6.494 ⇥ 10�11

12 mBCALO2 + NO ! 0.505 mBCKSOZ + 0.353 mC131CO3 + 0.099 mC133CO + NO 6.56 ⇥ 10�12 ⇥ exp( 360
T )

13 mBCALO2 ! 0.6 mC131CO3 [RO2] ⇥ 1.711 ⇥ 10�12

14 mBCALO2 + HO2 ! mC132OOH + HO2 1.939 ⇥ 10�13 ⇥ exp( 1300
T )

15 mBCKSOZ + OH ! mC131O2 + OH 3.28 ⇥ 10�11

16 mC131CO3 + NO ! mC131O2 + NO 6.377 ⇥ 10�12 ⇥ exp( 290
T )

17 mC131CO3 + NO2 ! C131PAN + NO2 0.8502 ⇥ KFPAN
18 mC131O2 + HO2 ! mC132OOH + HO2 2.288 ⇥ 10�13 ⇥ exp( 1300

T )
19 mC131O2 + NO ! mC133O2 + NO 2.213 ⇥ 10�12 ⇥ exp( 360

T )
20 mC133O2 + HO2 ! mC132OOH + HO2 2.695 ⇥ 10�13 ⇥ exp( 1300

T )
21 mC133O2 + NO ! 0.757 C133O + 0.243 mC133CO + NO 2.61 ⇥ 10�12 ⇥ exp( 360

T )
22 C133O ! mC133CO [O2] ⇥ 2.5 ⇥ 10�14 ⇥ exp( �300

T )
23 C133O ! 2.7 ⇥ 1014 ⇥ exp( �6643

T )

a [H2O] is the concentration of H2O, [RO2] is the total concentration of the RO2 species pool, [O2] is the concentration of O2, and KFPAN is one of the complex rate
coefficients from the MCM mechanism.
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Table B3. The new surrogates in the Rdc. mechanism and the corresponding lumped species in the original MCM mechanism. Notice that the
Rdc. surrogates may also go through other reductions (i.e., jumping, replacement, and removal) that do not affect their molecular structures.

Rdc. surrogate Lumped MCM species

mBCSOZ BCSOZ, BCAL, BCKET

mC141CO2H C141CO2H, C143CO, C1310CO, BCALCCO, C143OH, BCCOH, BCAOH

mBCALO2 BCALO2, C146O2, C142O2, BCKAO2, C147O2

mBCKSOZ BCKSOZ, BCLKET, BCALOH, BCKBCO, BCKAOH, BCSOZOH

mC131CO3 C131CO3, C141CO3, C1211CO3, C137CO3

mC131O2 C131O2, C144O2, C143O2, BCLKAO2, C152O2, BCLKCO2

mC132OOH C132OOH, BCSOZOOH, C133OOH, C146OOH, C147OOH
C1313OOH, BCLKBOOH, BCLKAOOH, C152OOH, C145OOH
C148OOH, C144OOH, BCALOOH, BCKBOOH, C151OOH

mC133O2 C133O2, C1313O2

mC133CO C133CO, C131CO2H, C148CO, C145OH, C1313OH, BCLKBOH, BCLKAOH
C152OH, C151OH, C147OH, BCLKACO, C148OH, C1211CO2H

Figure B1. Maps of the (a) error and (b) average SOA concentration
of the testing results simulated using the Rdc. mechanism on all
(i.e., 12 159) testing conditions.
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Appendix C: Information related to the reduction

C1 Additional examples of lumping

Besides the example shown in Sect. 2.2.3, two additional ex-
amples have been added from the BCARY reduction: one
illustrates the lumping of two similar compounds formed by
different reactions, and the other illustrates the lumping of
two more distinct compounds. The first example is the MCM
species C1313NO3 and C152NO3 (see Table C2). These
two species come from different reactions. The molecular
structures of both compounds are similar (they contain or-
ganic nitrates, aldehydes, and alcohols), but C152NO3 con-
tains an additional carboxylic acid where C1313NO3 con-
tains an aldehyde. The corresponding reactions before and
after lumping are summarized in Table C2, where the new
surrogate “mC1313NO3” is built from C1313NO3 with a
weighting ratio of 83 % and C152NO3 with a weighting ra-
tio of 17 %. As a result of this lumping, the average error
increase under training conditions is 0.001 % (the tolerance
is 0.01 %).

Table C1. The computation of estimating chemical activity ratios used to display training dataset in Fig. 2.

Namea Reactantb Computationc Kinetic rate coefficientd

ROH OH kOH[OH] / (kOH[OH] + kO3 [O3] + kNO3 [NO3]) kOH = 1.97 ⇥ 10�10

RO3 O3 kO3 [O3] / (kOH[OH] + kO3 [O3] + kNO3 [NO3]) kO3 = 1.20 ⇥ 10�14

RNO3 NO3 kNO3 [NO3] / (kOH[OH] + kO3 [O3] + kNO3 [NO3]) kNO3 = 1.90 ⇥ 10�11

RRO2�NO NO kNO [NO] / (kNO [NO] + kHO2 [HO2] + kRNO3 [NO3] + kRO2 [RO2]) kNO = 2.70 ⇥ 10�12 ⇥ exp( 360
T )

RRO2�HO2 HO2 kHO2 [HO2] / (kNO [NO] + kHO2 [HO2] + kRNO3 [NO3] + kRO2 [RO2]) kHO2 = 2.91 ⇥ 10�13 ⇥ exp( 1300
T )

RRO2�RO2 RO2 kRO2 [RO2] / (kNO [NO] + kHO2 [HO2] + kRNO3 [NO3] + kRO2 [RO2]) kRO2 = 9.20 ⇥ 10�14

RRO2�NO3 NO3 + RO2 kNO3 [NO3] / (kNO [NO] + kHO2 [HO2] + kRNO3 [NO3] + kRO2 [RO2]) kRNO3 = 2.30 ⇥ 10�12

a Names of the reacting ratio of OH radical, O3, and NO3 radical reacted with BCARY (ROH + RO3 + RNO3 = 1) and of the reacting ratio of NO, HO2 radical, RO2 radical, and NO3

radical (in the presence of RO2) reacted with RO2 species (RRO2�NO + RRO2�HO2 + RRO2�RO2 + RRO2�NO3 = 1). b Reactions with those compounds are preferred when the

corresponding reaction ratios are high. c [species_name] (e.g.,[OH]) is the monthly average concentration of oxidant concentrations extracted from CHIMERE. d Kinetic rate coefficients
are provided by MCM, where kOH, kO3 , and kNO3 are the kinetic rate coefficient of first-generation BCARY reaction with OH, O3, and NO3, respectively; kNO, kHO2 , and kRNO3 are
the simple rate coefficients KRO2NO, KRO2HO2, and KRO2NO3, respectively; and kRO2 represents the self-reaction rate coefficients for the tertiary peroxy radicals (e.g., BCAO2 and
BCCO2). T is temperature (K).

Another example of lumping is the MCM species BCAL-
BOC and C1310OH (see Table C3). Unlike the previ-
ous example, these two species are more distinct. Accord-
ing to MCM, BCALBOC is generated through O3-initiated
reactions, whereas C1310OH is generated through high-
generation oxidations. There is less similarity in the struc-
tures or chemical reactions of the two molecules. MCM con-
tains the OH reaction of BCALBOC as well as the O3 and
OH reactions of C1310OH. However, this reduction was ac-
cepted because lumping them only increased the average er-
ror by 0.01 % under training conditions (the tolerance was
1 %). The new surrogate “mBCALBOC” is constructed from
BCALBOC with a weighting ratio of 98 % and C1310OH
with a weighting ratio of 2 %.

As C1310OH has a low weighting ratio, the lumping
would be substituted by replacement (a special case of lump-
ing), where the weighting ratio of BCALBOC is set to 100 %
and the weighting ratio of C1310OH is set to 0 %. In this
case, instead of forming a new surrogate, C1310OH is re-
placed by BCALBOC. In BCARY reduction, this type of re-
placement was not used, but it can be activated by the user
by setting the weighting ratio threshold.
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Figure C1. Molecular structures of the MCM species that are mentioned in the paper. For more information, please visit the MCM website.
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Table C2. Reactions related to the reduction of the MCM species C1313NO3 and C152NO3 via lumping. The exact weighting ratio of
C1313NO3 is 0.82945, and the exact weighting ratio of C152NO3 is 0.17055.

Reactions before lumping Kinetic coefficient

Production

C1313O2 + NO ! C1313NO3 KRO2NO ⇥ 0.134
C152O2 + NO ! C152NO3 KRO2NO ⇥ 0.136

Destruction

C1313NO3 + OH ! C116CHO + HCHO + NO2 5.59 ⇥ 10�11

C152NO3 + OH ! BCLKBOC + HCHO + NO2 1.58 ⇥ 10�11

Reactions after lumping

Production

C1313O2 + NO ! 0.134 mC1313NO3 + 0.866 C1313O + 0.866 NO2 KRO2NO
C152O2 + NO ! 0.136 mC1313NO3 + 0.864 C152O + 0.864 NO2 KRO2NO

Destruction

mC1313NO3 + OH ! C116CHO + HCHO + NO2 5.59⇥10�11 ⇥ 0.82945
mC1313NO3 + OH ! BCLKBOC + HCHO + NO2 5.59⇥10�11 ⇥ 0.17055

Table C3. Reactions related to the reduction of the MCM species BCALBOC and C1310OH via lumping. The exact weighting ratio of
BCALBOC is 0.97675, and the exact weighting ratio of C1310OH is 0.023251.

Reactions before lumping Kinetic coefficient

Production

BCOOA ! BCALBOC 1.0⇥ 106⇥0.15
C1310O2 ! C1310OH 2.5 ⇥ 10�13 ⇥ [RO2] ⇥ 0.2

Destruction

BCALBOC + O3! BCBOOA + HCHO 1.1 ⇥ 10�16 ⇥ 0.670
BCALBOC + O3! BCLKBOC + CH2OOF 1.1 ⇥ 10�16 ⇥ 0.330
BCALBOC + OH! C152O2 6.98 ⇥ 10�11

C1310OH + OH ! C1310CO + HO2 6.2 ⇥ 10�11

Reactions after lumping

Production

BCOOA ! mBCALBOC 1.0 ⇥ 106 ⇥ 0.15
C1310O2 ! mBCALBOC 2.5 ⇥ 10�13 ⇥ [RO2] ⇥ 0.2

Destruction

mBCALBOC + O3 ! BCBOOA + HCHO 1.10⇥10�16 ⇥ 0.670 ⇥ 0.97675
mBCALBOC + O3 ! BCLKBOC + CH2OOF 1.10⇥10�16 ⇥ 0.330 ⇥ 0.97675
mBCALBOC + OH ! C1310CO + HO2 6.20⇥10�11 ⇥ 0.97675
mBCALBOC + OH ! C152O2 6.98⇥10�11 ⇥ 0.023251
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Code and data availability. The source code for GENOA v1.0 is
hosted on GitHub at https://github.com/tool-genoa/GENOA/tree/
v1.0 (last access: 25 April 2022). The associated Zenodo DOI is
https://doi.org/10.5281/zenodo.6482978 (Wang, 2022). The dataset
that we used to run the BCARY MCM reduction is publicly avail-
able online on Zenodo: https://doi.org/10.5281/zenodo.6483088
(Wang et al., 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-8957-2022-supplement.
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Chapter 3
Parallel reduction algorithm in GENOA v2.0:
application to monoterpene SOAs

While the GENerator of reduced Organic Aerosol mechanisms (GENOA v1.0) has
been applied to reduce mechanisms describing SOA formation from SQT oxidation, it
may not be able to reduce more complex chemical mechanisms from multiple precur-
sors of secondary organic aerosols (SOAs) with the necessary accuracy and efficiency.
To address this issue, the second version of the GENOA algorithm (GENOA v2.0)
has been developed, with a focus on enhancing reduction efficiency and allowing the
simultaneous reduction of mechanisms from several SOA precursors.

The new features in GENOA v2.0 are presented in this chapter. Compared to
GENOA v1.0, GENOA v2.0 adopts a novel parallel reduction structure, which lo-
cates and evaluates multiple competitive reductions simultaneously. Also included
are updates on the reduction search order, the SOA precursor concentration, the re-
duction strategy, and the evaluation method.

GENOA v2.0 is applied to reducing monoterpene (MT) SOA mechanisms from
the Master Chemical Mechanism (MCM) and the Peroxy Radical Autoxidation Mech-
anism (PRAM), containing 3 001 reactions and 1 227 species, with 738 of them being
condensable. The original MCM + PRAM mechanism consists of the individual
and common degradation pathways of three MT precursors (i.e., α-pinene, β-pinene,
limonene), taking into account the Highly Oxygenated organic Molecules (HOMs)
formation which may contribute to up to 50 % of the total MT SOA mass. After
reduction, a reduced MT SOA mechanism with 197 reactions and 110 species (23 of
them being condensables) is obtained with GENOA v2.0. The obtained mechanism
induces an average error of less than 3 % under 9 818 testing conditions over Europe,
preserving higher accuracy (2.5 %) under warm conditions (May-to-September) that
are likely with higher MT emissions. Furthermore, by increasing the average error
tolerance to 20 %, the mechanism can be further reduced to 40 reactions and 24
species (including 5 condensables).
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Chapter 3. Development of GENOA v2.0

Implementation of a parallel reduction algorithm in the Generator of re-
duced Organic Aerosol Mechanisms (GENOA v2.0): application to SOA from
multiple monoterpene precursors

Abstract
Explicit gas-phase chemical mechanisms represent the state of knowledge regarding the
chemistry of volatile organic compounds (VOCs), which are crucial in the formation of
secondary organic aerosols (SOAs). However, these chemical mechanisms are computa-
tionally expensive, which limits their practical use in large-scale air quality modeling.
Mechanism reduction is therefore required for computational efficiency while preserving
the accuracy of the detailed gas-phase chemical mechanisms.

This paper presents a new version of the Generator of Reduced Organic Aerosol Mech-
anisms (GENOA v2.0), which reduces mechanisms at a size suitable for three-dimensional
(3-D) modeling while preserving the accuracy of detailed chemical mechanisms for sim-
ulating aerosol concentrations. GENOA v2.0 adopts a parallel reduction framework to
identify the most optimal reductions from competitive candidates, and can reduce chemi-
cal mechanisms from multiple aerosol precursors. To demonstrate the reduction efficiency,
GENOA v2.0 is applied to the reduction of monoterpene chemistry from the Master
Chemical Mechanism (MCM) combined with the Peroxy Radical Autoxidation Mecha-
nism (PRAM) mechanism. The original mechanism, consisting of 3 001 reactions and
1 227 species (including 738 condensable species), is reduced by 93 % to 197 reactions
and 110 species (including 23 condensable species), inducing an average error of only 3 %
in aerosol concentrations. Sensitivity tests showed that this reduced mechanism behaved
similarly to the original mechanism in response to changes in environmental conditions
such as temperature, relative humidity, and SOA mass loading. Moreover, if the error
tolerance is increased to 20 % — which can still be acceptable for 3-D air quality model-
ing — the mechanism can be further simplified to 40 reactions and 24 species (including
5 condensable species). Consequently, the GENOA-generated aerosol mechanism pre-
serves the complexity of the detailed gas-phase chemical mechanisms on SOA formation
while increasing computational efficiency, which makes it suitable for most environmental
conditions encountered in the atmosphere.

1 Introduction
Organic aerosols affect air quality, climate change, and human health ([Kanakidou, 2005;
Hallquist, 2009]). Some organic aerosols are emitted in the atmosphere as primary
aerosols, while the majority are secondary organic aerosols (SOA) formed in the atmo-
sphere by the oxidation of volatile organic compounds (VOCs) ([Atkinson, 2003; Ge-
lencsér, 2007]). VOC global emissions are about 1 300 tons of carbon dioxide per year
(Tg C/yr) ([Goldstein, 2007]). A large amount of VOCs (approximately 1 000 Tg C/yr)
originates from biogenic emissions (about 50 % from isoprene, 15 % from monoterpenes,
and 3 % from sesquiterpenes estimated by [Guenther, 2012]), while the remaining is de-
rived from anthropogenic sources and biomass burning. When exposed to atmospheric ox-
idants (e.g., ozone, OH radical, and NO3 radical), VOCs may undergo multi-generational
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oxidation affected by the chemical regime of the atmosphere ([Fry, 2009; Han, 2023]). The
low-volatility oxidation products from VOC degradation may further condense on existing
particles, forming SOA ([Hallquist, 2009]). Depending on the NOx concentrations, the
chemical regime can be divided into high- and low-NOx regimes, which may favor different
SOA formation pathways ([Atkinson, 2000]). Consequently, aerosol formation is highly
influenced by VOCs, atmospheric oxidants, NOx concentrations, as well as other environ-
mental parameters (e.g., temperature) that affect gas-phase chemistry and gas-particle
partitioning ([Porter, 2021]).

Due to the complexity of the phenomena involved in SOA formation, chemical trans-
port models (CTMs) typically adopt simplified representations of organic aerosols. This is
achieved by utilizing implicit mechanisms, such as the two-product empirical approach of
[Odum, 1996], the molecular surrogate approach (e.g., [Griffin, 2003; Pun, 2006; Couvidat,
2012]) or the volatility basis set (VBS) approach ([Donahue, 2006; Stolzenburg, 2022]).
In the molecular surrogate approach, SOA formation is represented by only a few model
species for each major SOA precursor, whereas in the VBS approaches, organic compounds
are grouped according to volatility or, in the case of the VBS two-dimensional approach,
based on volatility and the oxygen content (e.g., [Donahue, 2011]). However, the actual
gas-phase chemistry governing SOA formation is highly complex and involves numerous
reactions and organics interacting with one another. Hence, CTM models struggle to
capture the non-linear interactions between gas-phase chemistry and SOA formation with
current SOA mechanisms ([Shrivastava, 2017]).

Many theoretical and experimental studies have been conducted to understand VOC
degradation and its influence on atmospheric oxidants and other pollutants, including
aerosols (e.g., [Ehn, 2014; Chen, 2022]). Accordingly, the development of detailed state-
of-the-art gas-phase chemical mechanisms, also known as explicit VOC mechanisms, has
progressed rapidly based on our current knowledge of VOC chemistry ([Stockwell, 2020]).
Explicit mechanisms are either written manually, such as the Master Chemical Mechanism
(MCM, [Jenkin, 1997; Saunders, 2003]), or generated automatically based on predefined
protocols, such as the Generator for Explicit Chemistry and Kinetics of Organics in the
Atmosphere (GECKO-A, [Aumont, 2005; Camredon, 2007]). As our understanding of
VOC chemistry advances, the development of explicit mechanisms is still ongoing (e.g.,
[Jenkin, 2012; Coggon, 2019; Jenkin, 2020; Newland, 2022]). For example, as a follow-
up to the latest research on Highly Oxygenated organic Molecules (HOMs) chemistry
and its significant contribution to SOA formation (e.g., [Ehn, 2014; McFiggans, 2019;
Bianchi, 2019]), [Roldin, 2019] has developed the Peroxy Radical Autoxidation Mechanism
(PRAM). Designed as a complement to MCM, PRAM contains reactions of autoxidation
and dimerization, leading to the formation of extremely low-volatility organic compounds
(ELVOCs) from monoterpenes that are missing in MCM.

Several studies have demonstrated the reliability of explicit chemical mechanisms to
simulate major atmospheric oxidant and pollutant concentrations (e.g., [Ying, 2011; Li,
2015; Mouchel-Vallon, 2020; Li, 2022]). However, the direct use of explicit mechanisms
in three-dimensional (3-D) air quality models such as regional CTMs is impractical from
a numerical perspective. As explicit mechanisms contain thousands of gas-phase species
with varying lifetimes, simulating the evolution of all those species is computationally
expensive. Furthermore, to accurately simulate SOA formation, the gas-particle parti-
tioning needs to be resolved for each condensable species (i.e., species that can condense
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into particles) and particle size bin. This process involves not only aerosol dynamics but
also other atmospheric processes (e.g., transport and deposition), resulting in an over-
whelming computational expense for aerosol modeling with explicit mechanisms.

The development of mechanisms reduction algorithms is therefore essential ([Kaduwela,
2015]) to reduce explicit VOC mechanisms to sizes suitable for use in CTMs while still en-
suring reliable simulations of pollutant concentrations. Several methods to reduce explicit
VOC mechanisms have been investigated alongside the development of explicit mecha-
nisms (e.g., [Whitehouse, 2004a; Whitehouse, 2004b; Szopa, 2005; Xia, 2009]). Regardless
of the varying effectiveness of these reduction methods, reduced VOC mechanisms have
been developed for simulating ozone concentrations, semi-volatile organic compounds,
and other secondary gas-phase compounds (e.g., hydroperoxyl, formaldehyde). Notable
examples include the Common Representative Intermediates (CRI) mechanisms ([Jenkin,
2008; Watson, 2008; Weber, 2020]) and recently AMORE mechanism ([Wiser, 2023]).
Additionally, emerging data-driven approaches have been developed to enhance the com-
putational efficiency of key processes involved in 3-D CTM modeling, including chemical
integration ([Shen, 2022; Kelp, 2022]) and transport ([Sturm, 2023]).

Particularly addressing aerosol formation, [Lannuque, 2018] developed VBS-GECKO
(a volatility basis set-type parameterization based on the GECKO-A mechanism) and
integrated it into the 3-D CTM model CHIMERE ([Lannuque, 2018]). Recent inves-
tigations have also been underway to explore the application of machine learning ap-
proaches in training SOA parameterizations from GECKO-A organic aerosol chemistry
(e.g., [Schreck, 2022; Mouchel-Vallon, 2022]). Furthermore, [Wang, 2022] developed the
GENerator of Reduced Organic Aerosol Mechanisms (GENOA v1.0), which generates con-
densed SOA mechanisms from MCM following a predefined reduction protocol. Compared
to VBS-GECKO and neural network training, the GENOA algorithm has the advantage
of preserving the major chemical pathways related to SOA formation, as well as SOA
properties. Although GENOA v1.0 was capable of reducing SOA mechanisms from the
oxidation of sesquiterpenes, it could not efficiently reduce mechanisms from multiple SOA
precursors simultaneously. To address this issue, a new version of GENOA, GENOA v2.0,
has been developed, focusing on enhancing reduction efficiency.

This paper presents the second version of GENOA (GENOA v2.0), which enables
the simultaneous reduction of mechanisms from several SOA precursors with a parallel
reduction framework. The GENOA v2.0 algorithm and its configuration used to reduce
monoterpene SOA mechanisms are described in Sect. 2. The resulting reduced monoter-
pene SOA mechanism is presented and discussed in Sect. 3, along with a sensitivity
analysis. Finally, the conclusion is drawn in Sect. 4.

2 Methods
This section begins with an overview of GENOA v1.0 in Sect. 2.1, along with a discussion
of its limitations in Sect. 2.2. The major updates of GENOA v2.0 are summarized in
Sect. 2.3, followed by the configuration setups for its application to monoterpene mech-
anism reduction in Sect. 2.4. For simplicity, we refer to GENOA without mentioning its
version number when describing the common features shared by v1.0 and v2.0.
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2.1 Presentation of GENOA v1.0
GENOA is a reduction algorithm that generates concise SOA mechanisms based on de-
tailed VOC mechanisms under representative atmospheric conditions. Since a detailed
description of the first version of the GENOA algorithm (GENOA v1.0) is available in
[Wang, 2022], only the main concepts are reviewed here.

Figure 3.1: Schematic diagram showing the main processes of the GENOA algorithm.

As illustrated in Fig. 3.1, three major processes are involved in GENOA:
• Initialization - the process of initializing reduction parameters and performing the

prereduction. In practice, some minor reductions in the explicit mechanism may be
necessary to ensure numerical stability (see Sect. 2.4.1). The mechanism after this
prereduction is referred to as the reference mechanism and serves as a benchmark
and a starting point for the main reduction.

• Training - the main process of reduction. During training, reductions are performed
in loops (referred to hereafter as reduction cycles) over species and reactions. A
reduction cycle consists of successive reduction steps, each step representing one
evaluation of a set of candidate reductions. At each step, GENOA searches for
candidate reductions based on targeted species or reactions using the predefined
protocol and evaluates them under selected near-realistic atmospheric conditions.
Candidate reductions that meet the evaluation criteria are referred to as “approved
reductions". These approved reductions are accepted in the reduced mechanism and
serve as the basis for the next reduction step. When no candidate reduction meets
the criteria, the next step is to search for new candidates based on other species
or reactions. The search-evaluation process continues until all species and reactions
have been explored and no further reductions can be approved. Afterward, the
training may be stopped or moved to a new cycle.
In GENOA v1.0, each reduction cycle uses a single reduction strategy, which means
that only one candidate reduction is evaluated for each reduction step. The eval-
uation is conducted by comparing an error indicating the differences in total SOA
concentrations due to the candidate reduction against predefined user-chosen error
tolerances.

• Testing - the process of evaluating the performance of the final reduced SOA mech-
anism under various conditions, encompassing all potential situations in which the
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mechanism may be employed. Meanwhile, as the entire training process is traceable,
all mechanisms obtained during training can be evaluated in the testing process.

In GENOA, SOA concentration and composition are simulated using the box model
SSH-aerosol v1.3 ([Sartelet, 2020]). After the training and testing processes, the reduced
SOA mechanisms can provide an accurate simulation of SOA concentration and composi-
tion compared to explicit mechanisms, within a specified tolerance and under the tested
environmental conditions. As the main purpose of the GENOA algorithm is to preserve
reliable SOA concentrations from specific SOA precursors, the influences of VOC mech-
anisms on other compounds (i.e., O3, OH, NO, NO3, HO2, SO2, CO, inorganic aerosols)
are currently not tracked. Their concentrations are based on the diurnal profiles derived
from 3-D CTM simulations and remain unchanged during the reduction. Therefore, for
3-D applications, it is necessary to combine the reduced SOA mechanism with implicit
gas-phase mechanisms (e.g., CB05 [Sarwar, 2008] and RACM2 [Goliff, 2013]) for accurate
estimation of inorganic concentrations.

GENOA is also a user-parameterized algorithm, allowing users to design their own re-
ductions by adjusting reduction parameters and options. One example of customization
is the selection of evaluation datasets. An evaluation dataset is a set of atmospheric con-
ditions for evaluating candidate reductions (see Sect. 2.4.2). By selecting the appropriate
evaluation dataset, users can train mechanisms for specific purposes, such as focusing on
SOA modeling in urban areas. Mechanisms trained under specific conditions are expected
to be more compact than those trained under general atmospheric conditions with the
same level of accuracy. To facilitate customization, the training process can be divided
into several sequential stages, referred to as training stages. For each stage, the users can
select a set of appropriate reduction parameters and options for all reduction cycles inside
the stage.

GENOA v1.0 was applied to the sesquiterpene degradation scheme (as beta-caryophyllene)
in MCM v3.3.1 ([Jenkin, 2012]), resulting in a reduction from 1 625 reactions and 579
species to 23 reactions and 15 species (2 % of the original size) with less than 3 % error
on average on SOA mass ([Wang, 2022]).

2.2 Limitations
Two main limitations of GENOA v1.0 are identified, which may prevent its application
to more complex VOC mechanisms.

The primary limitation of GENOA v1.0 is its incapability to evaluate competitive
reductions (i.e., to evaluate the best reduction among several possibilities). At each step
of the reduction cycle, GENOA v1.0 examines one candidate reduction with the same
reduction strategy (one strategy per cycle). Due to the lack of exploration of other
options, this reduction may not be the optimal choice. As the reduction is performed
in series (Fig. 3.2 (a)), the competitive reductions acting on the same reaction/species
with other reduction strategies cannot be investigated in GENOA v1.0. Since other
possible reductions have not been assessed, the approved reduction may not be optimal,
even though it satisfies the evaluation criteria. Due to this single find-select approach,
the reduction choice in GENOA v1.0 is strongly influenced by the order in which the
reduction strategies are employed. Each reduction strategy may also require a specific
search order based on its features. Therefore, reduction outcomes may vary significantly
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depending on the order in which reduction strategy and searching are applied, requiring
investigation for each application of GENOA v1.0.

The second limitation of GENOA v1.0 is its inability to reduce mechanisms with
multiple SOA precursors simultaneously, whereas some precursors may share common or
similar chemical pathways. As presented in [Wang, 2022], only one initial SOA precursor
(i.e., β-caryophyllene) is considered in the sesquiterpene mechanism adopted in GENOA
v1.0. The reduction was performed with a single initial concentration of sesquiterpene
of 10 µg/m3 for all conditions. Despite training with one precursor initial concentration
condition, sensitivity tests showed that the reduced mechanism was efficient when initial
SOA precursor mass loading varied from 10−3 µg/m3 to 1 000 µg/m3. However, when
dealing with mechanisms involving multiple SOA precursors, a single set of initial concen-
trations is not sufficient. The algorithm needs, therefore, to account for different initial
SOA precursor sets when reducing mechanisms of several SOA precursors simultaneously.

For the above reasons, the use of GENOA v1.0 may be problematic when applied to
more complex and extensive VOC mechanisms involving multiple SOA precursors. For
example, for the reduction of the SOA mechanism from a single monoterpene precursor,
α-pinene, the reduced mechanism generated by GENOA v1.0 has less reduction and larger
errors (size of the mechanism reduced by 86 % with an error of 4 %) compared to the
reduced sesquiterpene mechanisms (size reduced by 98 % with an error of 3 %). With
such a reduction, the final reduced SOA mechanism for all monoterpenes would probably
contain more than 100 condensable species, which may not be acceptable for regional-scale
CTM modeling.

Two possible reasons can explain the suboptimal performance of the monoterpene
mechanism reduction with GENOA v1.0. One reason is related to the properties of prod-
ucts formed by the oxidation of monoterpenes. As monoterpene oxidation products are
dominated by semi-volatile species that tend to exist in both gas and particle phases, its
mechanism is more difficult to reduce than the mechanism of sesquiterpene, whose oxida-
tion products are mainly low-volatile and preferably remain in one phase (gas or particle).
Another reason may be due to bias introduced by the order of reduction strategies and
searching, which are arbitrarily defined in GENOA v1.0, as previously detailed.

2.3 New features in GENOA v2.0
Based on GENOA v1.0, the second version of GENOA (GENOA v2.0) has been developed
for the reduction of detailed gas-phase mechanisms of multiple SOA precursors. The
training process in GENOA v2.0 has been improved in several ways. A novel parallel
reduction structure is adopted in GENOA v2.0 to locate and evaluate multiple competitive
reductions with all reduction strategies at each reduction step, as described in Sect. 2.3.1.
Along with the parallel structure, the reduction search order (Sect. 2.3.2), the reduction
strategy (Sect. 2.3.3), and the evaluation method (Sect. 2.3.4) are also updated in GENOA
v2.0.

2.3.1 Parallel reduction

Figure 3.2 illustrates the series reduction adopted in GENOA v1.0 and the parallel re-
duction in GENOA v2.0. In contrast to the series reduction, which tests one candidate
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Figure 3.2: Schematic diagram that shows the reduction frameworks in series (a) and in
parallel (b) used for GENOA v1.0 and v2.0, respectively.

reduction per step and accepts it if the accuracy criteria are met, GENOA v2.0 investi-
gates multiple candidate reductions simultaneously and selects the one with the highest
reduction score (see Sect. 2.3.4). With this parallel reduction framework, GENOA v2.0
searches all competing candidate reductions related to the targeted species or reactions
using all reduction strategies at each reduction step. Afterward, the candidate reductions
are examined under the applied evaluation dataset and different sets of initial SOA pre-
cursor concentrations. The best reduction is then selected as the starting point for the
next reduction.

Due to the large number of candidate reductions that need to be examined, paral-
lel reductions can incur considerable computational costs. To improve computational
efficiency, parallelization is implemented in the code. This allows for the simultaneous
investigations of candidate reductions by multiple processors per reduction step, thereby
maximizing the utilization of the processing power available on a given machine.

2.3.2 Reduction search order

The search for candidate reductions is based on the reduction search order. As accepted
reductions affect subsequent reductions, the reduction search order directly affects the
mechanism reduction. The search orders of GENOA v1.0 are determined based on the
reduction strategy. For example, a reduction cycle using the removal of reaction strat-
egy searches for candidate reductions based on the reaction list, from those involved in
higher-generation oxidation to those of lower-generation. Meanwhile, a reduction cycle
via removing species is from the species with the smallest molar mass to the species with
the largest molar mass.

To align with the parallel reduction approach, GENOA v2.0 features a revised search
order that is based on the impact of species on SOA concentrations. The search prioritizes
species that have minimal influence on SOA formation and proceeds to more influential
species. Prior to training, all organic species are ranked according to their contribution
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to SOA formation, based on the difference in total SOA concentration caused by their
removal. Upon accepting one reduction, this species list is adjusted accordingly. For
example, if one reduction merges species, those species are replaced by the new surrogate,
located in the list at the place of the merged species that had the greatest influence.

For each species, the candidate reductions include all potential reductions associated
with that species, as well as reactions in which the target species is a product (or a
reactant if there is no product in that reaction). An example of the searching related
to a species with all reduction strategies is presented in Sect. 2.3.3. Once all potential
reductions for the current species have been examined, the search moves on to the next
species on the list. This new species-based search order suits the parallel reduction and
requires initializing the species list only once. Furthermore, it is more efficient than the
reaction-based search order in which all strategies related to one reaction are investigated
at one reduction step.

2.3.3 Reduction strategy

Reduction strategies are protocols used to lead the reduction searching. Four basic re-
duction strategies are available in GENOA v2.0: removal, jumping, lumping, and replace-
ment. As shown in Fig. 3.3, each strategy offers several candidates for reductions related
to the species “A":

Figure 3.3: Schematic diagram illustrating the different reduction strategies with exam-
ples of candidate reductions related to species “A", including (a) removal (of species,
reactions, and gas-particle partitioning), (b) jumping (types I and II), (c) lumping, and
(d) replacement.

• Removal - an element of the mechanism (a species, a reaction, or the formation of
particle species) is removed from the current mechanism. A reduction via removal
(Fig. 3.3 (a)) can either remove a species (e.g., species “A"), one or several reactions
related to that species (e.g., the reaction that “A" forms “B"), or the gas-particle
partitioning of the species (e.g., condensation of species “A").

• Jumping - a species is jumped over and replaced by its oxidation products. Jumping
can happen when an intermediate is formed but can be replaced directly by its
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oxidation products without affecting the performance of the mechanism. As an
example shown in Fig. 3.3 (b), when a species “A" is destroyed and a species “D"
is formed with intermediate species “B" and “C", jumping can combine several
reactions involving the formation of “D" from “A" (i.e., reactions of “A" to “B", “A"
to “C", “B" to “D", and “C" to “D") into one reaction (i.e., the reaction of “A" to “D"),
thereby removing middle reactions. The jumping strategy can be separated into two
types. The first-type jumping (type I in Fig. 3.3 (a)) removes more intermediates
(species “B" and “C") than products (species “D"), while the second type of jumping
(type II in Fig. 3.3 (b)) involves more products than intermediates.

• Lumping - a species is merged with other species to form a new surrogate. In the
reduction via lumping illustrated in Fig. 3.3 (c), species “A" and “B" merge into
a new surrogate “C", where reactions with species “A" and “C" are combined, and
rewritten to reactions with only species “C".

• Replacement - a species is replaced by another species with similar properties. A
reduction via replacement (Fig. 3.3 (d)) can replace a species “B" with a species
“C" if both of them are formed from the same species “A". In this case, the species
“B" is eliminated from the scheme, and all its reactions are rewritten as those of the
species “C".

Overall, GENOA v2.0 adopts similar reduction strategies as GENOA v1.0, except for
jumping strategies, which are revised based on the relationships between species involved
in successive reactions. In GENOA v1.0, jumping can only skip over one species if it
directly forms another species. Therefore, one species that forms several species cannot
be reduced via jumping, even if its products are highly unstable and naturally appropriate
for jumping. This is now achievable with the two-type jumping strategy in GENOA v2.0,
where the number of jumped species is no longer limited.

In addition to the restrictions for the sesquiterpene reduction of GENOA v1.0 (detailed
in [Wang, 2022]), more stringent restrictions are used for the monoterpene mechanism
reduction of GENOA v2.0. Lumping is now restricted according to the saturation vapor
pressure (Psat) and oxygen atom numbers (indicating the oxidation state) of the species.
Species that differ in Psat by more than a factor of 100 or in oxygen atoms by more
than three cannot be merged by lumping. As for jumping and replacement, the relative
difference in molar masses is restricted and should not exceed 50 %.

2.3.4 Reduction score

Total SOA concentrations are simulated to evaluate the performance of the candidate
reductions under the applied evaluation dataset. Simulations are conducted for five days,
starting at midnight and noon, in order to account for both daytime and nighttime chem-
istry. To estimate the uncertainty induced in the current mechanism by the candidate
reduction, a reduction error (ϵ) is computed based on the total SOA mass. This error
is defined as the larger value of the fractional mean error (FME) between the day 1 and
day 2-5 simulation results. The FME is computed according to Eq. 3.1, where Cval,i

and Ccmp,i are the SOA mass concentrations at time step i simulated with the current
mechanism and the mechanism used for comparison, respectively. Here, this compari-
son mechanism is either the original mechanism after prereduction (see Sect. 2.4.1) or
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the mechanism with the latest approved candidate reduction (noted as the previously re-
duced mechanism). Reduction errors are classified as ϵref and ϵpre, where the comparison
mechanisms considered are the mechanism after prereduction and the previously reduced
mechanism, respectively. The reduction error (ϵ) is restricted by the predefined error
tolerance (ε). During the training process, the average and maximum reduction errors
(ϵref and ϵpre), as well as the differences of ϵref induced between current and previously
reduced reductions (δϵ) are restricted for each candidate reduction. For clarity, errors (ϵ)
with subscripts “ave" and “max" represents the average and maximum values under the
evaluation dataset, while the superscripts “ref" and “pre" detail the mechanism used to
compute the error (original reference after prereduction or previously reduced). A vari-
ety of error tolerances may be used to evaluate training at different stages. The error
tolerance setting employed in this study for each stage can be found in Sect. 2.4.4 and
Table 3.4.

FME = 2 ∑i=1
n abs(Cval,i − Ccmp,i)

n
∑i=1

n (Cval,i + Ccmp,i)
. (3.1)

With the parallel reduction, several candidate reductions can respect the prescribed
error tolerances. Therefore, to determine the most appropriate reduction, a reduction
score (Srdc) is calculated in GENOA v2.0 using Eq. 3.2. The terms Nnow and Npre denote
the numbers in the current and previously reduced mechanisms, and the subscripts “rcn",
“sps", and “aero" represent reaction, species, and condensables respectively. The reduction
score provides a measure of the effectiveness of the candidate reduction in decreasing
the number of reactions (N rcn), species (N sps), and condensables (Naero). In order to
emphasize the importance of reducing aerosols, which impose the greatest computational
burden in 3-D modeling, the term Naero in Srdc is multiplied by ten (i.e., the typical
number of aerosol size bins used in CHIMERE). The reduction candidate that satisfies
the error tolerances and achieves the highest reduction score is deemed the best reduction
and is accepted for further training.

Srdc = (Nnow
rcn − Npre

rcn) + (Nnow
sps − Npre

sps ) + (Nnow
aero − Npre

aero) × 10 (3.2)

2.4 Application to monoterpene SOA reduction
GENOA v2.0 is applied to the reduction of the monoterpene SOA mechanisms. The refer-
ence mechanism that serves as a starting point and benchmark for reduction is described
in Sect. 2.4.1. Details on the evaluation dataset, which includes the atmospheric condi-
tions used for reduction evaluation, can be found in Sect. 2.4.2, while Sect. 2.4.3 covers
the initial SOA precursor conditions. Finally, the reduction parameters and options used
in each training stage are outlined in Sect. 2.4.4.

2.4.1 Reference mechanism

The reference mechanism (MCM + PRAM) for the monoterpene mechanism reduction
combined the Master Chemical Mechanism (MCM v3.3.1) for the oxidant-initiated chem-
istry and the Peroxy Radical Autoxidation Mechanism (PRAM) ([Roldin, 2019]) for

69



Chapter 3. Development of GENOA v2.0

HOMs formation, involving the degradation of three of the most abundant and represen-
tative monoterpene SOA precursors (i.e., α-pinene, β-pinene, limonene; hereafter referred
to as “API", “BPI", and “LIM" respectively). The term “MT" is used when all three
monoterpene species are involved.

Table 3.1: Size of the different detailed monoterpene chemical mechanisms in terms of
the numbers of reactions, species, and condensables. a

Mechanism Reaction Species Condensable
MCM - API 894 293 171
MCM - BPI 1 190 382 248
MCM - LIM 1 576 519 433
MCM - MT 3 454 1 143 738
Full PRAM 1 773 307 176

Reduced PRAM 192 107 69
MCM + PRAM 3 001 1 227 738
Ref. mechanism 2 608 975 643

a Mechanisms with elementary reactions from top to bottom are API, BPI, LIM, and MT
degradation schemes in MCM v3.3.1, the full and reduced PRAM. Mechanisms with combined

elementary reactions are the reference mechanism used for the reduction before
(MCM + PRAM) and after (Ref.) prereduction.

Table 3.1 summarized the sizes of the detailed mechanisms associated with the refer-
ence mechanism. The MCM and PRAM reactions mentioned in the table are elementary
reactions with a single product and an integer stoichiometric coefficient, and the species
contain both gas-phase organic radicals and stable species. Since all stable gas-phase
species might partition on particles, they are initially assumed to be condensable. The
MCM mechanism for LIM (MCM - LIM) exhibits higher complexity compared to the
MCM mechanisms for API (MCM - API) and BPI (MCM - BPI), with a size that is
comparable to the sum of these two MCM mechanisms. Despite these differences, the
degradation of all three monoterpenes (MCM - MT) shares common pathways in MCM
due to the similarity of their chemical structures and properties. However, upon com-
paring the total number of reactions for the three MCM mechanisms (i.e., MCM - API,
MCM - BPI, and MCM - LIM) to MCM - MT, a small difference is observed in the num-
ber of reactions (3 660 versus 3 454), suggesting that the majority of MCM pathways may
be specific to one monoterpene only. Hence, an efficient reduction that merges unique
pathways of each monoterpene into common reaction pathways is necessary to reduce the
size of the MCM mechanism.

PRAM mechanisms that contribute to the formation of HOMs are also presented
in Table 3.1. The reduced PRAM contains the same reactions and species as the full
PRAM, with the exception of HOM dimerization. The full PRAM undergoes thousands
of autooxidation reactions between the PRAM organic peroxy radical (RO2) and MCM
RO2 species, resulting in the formation of HOM dimers. However, in the reduced PRAM,
the dimerization is simplified by several reactions between PRAM RO2 and a so-call
MCM “RO2 pool", which is the sum of MCM RO2 species. Notably, this pool is also used
in the MCM mechanism to describe autoxidation reactions between MCM RO2 species.
By introducing the MCM RO2 pool to PRAM, the size of the PRAM mechanism is
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significantly decreased from 1 773 reactions to 192, while the SOA production remains
similar to that of the full PRAM ([Roldin, 2019]).

Consequently, the reference mechanism adopted for the reduction is constructed by
combining the reduced PRAM and the MCM - MT mechanisms, followed by a prere-
duction process. For simplicity, the reduced PRAM is hereafter referred to as “PRAM".
To build a numerically stable and faster reference mechanism, a prereduction process is
carried out as follows:

• Combine elementary reactions from the original MCM and PRAM with the same
reactants and kinetic constants into reactions with non-integer stoichiometric coeffi-
cients. After combining MCM and PRAM, the reference mechanism (MCM + PRAM
in Table 3.1) contains 3 001 reactions, 1 227 species, and 738 condensables.

• Jump rapidly-degraded species with a chemical lifetime of less than 1 second under
the training dataset (see Sect. 2.4.2) or a kinetic rate constant greater than 106 s−1.
As a result, 194 species are removed from the reference mechanism.

• Assume organic compounds with saturation vapor pressure larger than 10−3 atm
are completely in the gas phase and do not condense. A total of 45 species with
high volatility are then set as fully volatile species.

• Remove very high-generation reactions and species (generation order higher than
13) that have a negligible impact on SOA formation. This removal excludes 144
reactions and 58 species, amongst which 50 are condensables.

After the prereduction, the reference mechanism, hereafter referred to as the “Ref."
mechanism, contains 2 608 reactions and 975 species (332 radicals and 643 stable species).
The saturation vapor pressure (Psat) of MCM condensables is estimated using UMan-
SysProp ([Topping, 2016]), employing the method of [Nannoolal, 2008] for vapor pressure
and the method of [Nannoolal, 2004] for boiling point. For PRAM condensables, the
estimation of Psat is based on the SIMPOL method ([Pankow, 2008]), as originally used
in the PRAM evaluation performed by [Roldin, 2019]. These methods were adopted by
[Xavier, 2019], where they replicated the biogenic SOA mass yields from an oxidative flow
reactor (OFR) and an idealized smog chamber with 0-D simulations using near-explicit
mechanisms (MCM + PRAM). Other aerosol properties, including the activity coefficient
and Henry’s law constant, are computed by the SSH-aerosol model based on the surrogate
structures using the same method as in GENOA v1.0. As presented in Fig. S2, the SOA
yields simulated with the Ref. mechanism closely match the reported values by [Xavier,
2019], confirming the reliability of the selected methods for SOA simulations.

2.4.2 Evaluation dataset

The evaluation datasets used for assessing the mechanism reductions comprise different
groups of representative near-realistic atmospheric conditions. These datasets consist of
the training and pre-testing datasets for different stages in the training process, as well
as the testing dataset for the testing process. Figure 3.4 illustrates the locations of the
training, pre-testing, and testing datasets adopted for the monoterpene mechanism re-
duction. All the selected atmospheric conditions were extracted from the same database
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used for the sesquiterpene reductions reported in [Wang, 2022]. This database includes
CHIMERE simulation results performed over a one-year period (2015) over Europe. A
monthly diurnal profile of hourly meteorological data was extracted from each condition
(e.g., temperature, relative humidity), as well as hourly concentrations of oxidants, radi-
cals, and other inorganic species. The evaluation datasets were selected according to the
methodology described in [Wang, 2022]. Specifically, different locations with varying API
concentrations were selected to cover a range of concentrations of oxidants (OH, O3, and
NO3) and radicals (HO2, NO).

Figure 3.4: Locations of conditions in the training (8 “TC" conditions, detailed in Ta-
ble 3.2), pre-testing (100 conditions, navy dots), and testing datasets (9 818 conditions,
white dots) for the monoterpene mechanism reduction.

Table 3.2: Geographic and meteorological characteristics of the training dataset for the
monoterpene mechanism reduction.

Condition a Lat Lon Time TEMP RH RNO
b RO3

(◦N) (◦E) (month) (K) (%) (%) (%)
TC1 45.75 9.0 Dec. 279 85 100 17
TC2 55.75 37.4 Feb. 270 81 100 67
TC3 52.5 0.6 May. 285 69 66 23
TC4 45.5 25.8 Nov. 277 76 68 40
TC5 52.0 12.2 Jun. 290 62 62 25
TC6 47.0 35.4 Aug. 297 46 51 21
TC7 33.25 -4.2 Aug. 297 40 16 65
TC8 32.0 -11.8 Jul. 295 83 9 26

a Columns from left to right list the condition identifier, latitude, longitude, time period,
average temperature, average RH, average daily NO reaction ratio, and average daily O3

reaction ratio.
b The calculation of reaction ratios is described in Table S1.

The training dataset contains extreme atmospheric conditions representing different
chemical regimes (e.g., high NOx and low NOx conditions, high amount of O3, OH or
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NO3) in order to guarantee that any changes in the mechanisms are tested over a wide
range of environmental conditions. As shown in Table 3.2, the training conditions are
referred to as “TC1" to “TC8" and cover a broad range of environmental parameters,
including variations in temperature from 270 K to 297 K and relative humidity (RH)
from 9 % to 100 %. The selection of training conditions is based on the reaction ratios
of different oxidants (OH, O3, NO3 radicals), NOx, HO2, and RO2, as SOA formation
depends on NOx/HO2 ratios and ozone concentrations ([Porter, 2021]). These ratios are
calculated using the equations described in Table S1, with the kinetic constants extracted
from the API degradation scheme in MCM. The training conditions cover high and low
NOx regimes with NO ratios from 9 % to 100 % and ozone ratios from 17 % to 67 %.

Once the mechanism has been reduced to a pre-defined accuracy, the training dataset
is replaced by the pre-testing dataset, which is used to evaluate the general accuracy
of the reduced mechanism under the most relevant conditions. The pre-testing dataset
comprises 100 randomly selected conditions from the testing dataset (9 818 conditions).
To ensure that the pre-testing dataset represents the general atmospheric conditions, the
average reduction error using the pre-testing dataset is compared to the error using the
testing dataset. The user can adjust the initially randomly selected pre-testing conditions
so that the errors between the pre-testing and testing datasets are similar. This helps to
ensure the accuracy and reliability of the reduced mechanism evaluation while minimizing
any potential biases that may have arisen from the initial selection process.

The testing dataset initially is composed of 10 011 conditions, containing 4 011 condi-
tions with high API concentrations (≥ 0.2 µg/m−1) and 3 000 randomly selected condi-
tions with medium (between 0.1 µg/m−1 to 0.2 µg/m−1) and low (between 0.01 µg/m−1 to
0.1 µg/m−1) API concentrations, respectively. From the initially selected testing dataset,
193 conditions with low SOA concentrations (with an hourly maximum SOA concentra-
tion lower than 1 µg/m−1 during the testing process) are excluded to avoid significant
numerical uncertainty during evaluation. The final testing dataset consists of 9 818 con-
ditions that are relevant to monoterpene SOA formation over Europe.

2.4.3 Initial condition

As previously discussed in Sect. 2.2, the reduction process requires different initial condi-
tions of precursor concentrations to accurately capture the distinct SOA formation path-
ways related to multiple precursors. For the monoterpene mechanism reduction, four ini-
tial conditions listed in Table 3.3 are employed to preserve both the specific and common
reaction pathways of all three monoterpene precursors. In the initial condition labeled
“iniMT", the total concentrations of the three representative monoterpene precursors are
set to 5 ppb, ensuring high SOA production. The concentration of each monoterpene in
“iniMT" is assigned proportionally to its emission reported in [Guenther, 2012], i.e., 3 ppb
for API, 1 ppb for BPI, and 1 ppb for LIM. For the other three initial conditions labeled
“iniAPI", “iniBPI", and “iniLIM", the concentration of only one monoterpene precursor
is set to 3 ppb, namely 3 ppb of API for iniAPI, 3 ppb of BPI for iniBPI, and 3 ppb
of LIM for iniLIM. During the training process, candidate reductions are first evaluated
under the initial condition iniMT. Subsequently, reductions that meet the criteria pro-
ceed to a second evaluation under the other initial conditions collectively. During this
second evaluation, the average errors from these three conditions are calculated together
to determine the acceptability of the reductions.
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Table 3.3: Initial concentrations of SOA precursor used for the monoterpene mechanism
reduction.

Seta API BPI LIM
iniMT 3 1 1
iniAPI 3 0 0
iniBPI 0 3 0
iniLIM 0 0 3

a From left to right, the table lists the identifier of the initial conditions (“ini" + dominated
precursors) and the corresponding concentrations of API, BPI, and LIM in parts per billion

(ppb).

2.4.4 Training stages

The reduction process is divided into four training stages, namely stages I, II, III, and
IV. A summary of the key reduction parameters and options adopted in each stage can
be found in Table 3.4.

During each training stage, reduction cycles are performed, each consisting of multiple
reduction steps that search for and evaluate all candidate reductions related to a targeted
species. In each reduction step, only one candidate reduction is accepted if it meets all
error tolerances and has the highest reduction score among all candidates. The prede-
fined error tolerances adopted for reduction evaluation include thresholds for average and
maximum reduction errors (ϵ) under the evaluation dataset, in comparison to the Ref.
mechanism (i.e., tolerances εref

ave and εref
max), and to the previously reduced mechanism (i.e.,

tolerances εpre
ave and εpre

max). The increase of the error ϵref
ave induced by one reduction is also

limited by a tolerance change threshold δε.
The reduction performance is evaluated after each reduction cycle by the reduction

errors (ϵpre−testing
ave and ϵpre−testing

max ) using the pre-testing dataset. The user-defined error
tolerances for the final reduced mechanism, denoted as εusr

ave for the average error and εusr
max

for the maximum error, are set to 3 % and 30 %, respectively. These two tolerances
serve as criteria to constrain the errors ϵpre−testing

ave and ϵpre−testing
max of the final reduced

mechanisms at each stage. If no further reduction can be achieved with the applied
reduction parameters and options of one stage, the training progresses to the next stage
or terminates after stage IV.

The settings for each training stage are explained below.

• Stage I: The reduction begins with the Ref. mechanism and undergoes evaluation
against the training dataset with error tolerances ranging from 0.05 % to 3 %. Once
the algorithm no longer identifies any further reduction candidates within all sets
of error tolerances in stage I or when the current errors (ϵref

ave or ϵref
max) approach the

final user-defined tolerances (εusr
ave and εusr

max), the reduction process advances from
stage I to stage II.

• Stage II: Candidate reductions are tested against the pre-testing dataset. Given that
the mechanism has already undergone a certain degree of reduction in stage I, the
evaluation in stage II employs tolerances equal to εusr

ave and εusr
max, allowing reductions

with errors up to 3 % on average and 30 % at maximum. To enhance the efficiency of
the reduction process, the reduced mechanisms are solely compared to the reference
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mechanism against the pre-testing dataset in stage II and the subsequent stages. In
other words, there are no further restrictions for errors ϵpre

ave and ϵpre
max during these

stages.

• Stage III: Training in this stage adopts tolerances εref
ave with values higher than the

user-defined tolerance εusr
ave. By allowing a larger tolerance, stage III may temporarily

accept mechanisms with errors that exceed εusr
ave. These high errors may be compen-

sated by errors induced in subsequent reductions, resulting in a mechanism with er-
rors falling under εusr

ave after several reductions. Such a mechanism, although trained
with larger tolerances, is highly desirable as it enables more reduction than those
directly trained with εusr

ave, while still meeting user-defined accuracy. For monoter-
pene reduction, the reduced mechanism trained with εref

ave of 5 % is selected as the
final reduced mechanism for this stage.

• Stage IV: This final reduction stage is intended to finalize the reduction process.
Therefore, the final user-defined tolerances are employed for reduction evaluation.
The mechanism obtained after this stage is adopted as the final mechanism for the
entire training process.

The training process also involves several specific treatments during different stages,
which are now detailed.

• Efficient treatment is applied during stages I and II. At the end of one reduction cy-
cle, the next cycle typically proceeds with the next set of reduction parameters (e.g.,
error tolerances) only if no reduction is accepted during the current cycle. With ef-
ficient treatment, the next cycle can move to the next set of parameters when the
number of accepted reductions in the current cycle is less than five. This approach
prevents the algorithm from spending excessive time reexamining candidate reduc-
tions with overly restrictive parameters in the early stages of reduction, which may
impede reductions that might be easily accepted in subsequent reductions.

• Aerosol-oriented treatment is implemented during stages II and III. With this treat-
ment, candidate reductions are only accepted if they lead to a reduction in the
number of condensable species or a decrease in the average error. In other words,
candidate reductions that meet all error criteria but do not reduce condensables
or increase the current reduction errors are not accepted with the aerosol-oriented
treatment. This approach prioritizes reductions that improve the accuracy of the
reduced mechanism or reduce the number of condensables, thereby giving priority
to the reduction of aerosol species.

• Elementary-like treatment is adopted in stages III and IV. This treatment involves
reorganizing the reaction list, where reactions with multiple products are separated
into elementary-like reactions with one product. This approach can increase the
number of reactions, leading to a larger pool of candidate reductions via remov-
ing reactions to assess the possibility of removing each elementary-like reaction.
With more reduction attempts, the mechanism may be further reduced. After stage
IV, elementary-like reactions with the same reactants and kinetics are rewritten as
combined reactions, resulting in a more concise and readable final mechanism.
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3 Results and discussion
The monoterpene mechanism reduction was conducted using a 128-core computer and
lasted for approximately four days. The final reduced monoterpene SOA mechanism,
hereafter referred to as the “MT-rdc" mechanism, contains 197 reactions, 110 species,
and 23 condensable species. As explained in Sect. 2.4.4, the training process for the
monoterpene mechanism reduction can be divided into four consecutive training stages.
The detailed training stages along with the resulting mechanism reductions are presented
in Sect. 3.1. The final obtained MT-rdc mechanism is described in Sect. 3.2, and its
complete lists of reactions and species are provided in the Supplementary Material. When
evaluated against the testing dataset, MT-rdc introduces an average error of less than
3 % over 9 818 conditions across Europe compared to the results simulated with Ref., as
discussed in Sect. 3.3. MT-rdc can also well reproduce the API SOA yields of [Xavier,
2019], as shown in Fig. S2. Finally, a discussion on the selection of error tolerance and
a sensitivity test of MT-rdc on environmental parameters are presented in Sect. 3.4 and
Sect. 3.5, respectively.

3.1 Mechanism evolution during reduction
Figure 3.5 displays the evolution of the size of the mechanisms in terms of the number of
reactions, species, and condensables during the training process, comprising 37 reduction
cycles within 1 877 approved reductions. Table 3.4 summarizes the reduction setups and
mechanism evolution for each training stage, highlighting the key reduction parameters
and treatment, as well as the size and accuracy of the resulting mechanisms.

Figure 3.5: Evolution of the size (measured as a percentage reduction in the number of
reactions, species, and condensables) and accuracy (measured as ϵpre−testing

ave ) of the reduced
mechanisms during training compared to the reference mechanism. Vertical gray and
white intervals indicate reduction cycles. Vertical yellow, orange, and red bars indicate
the end of training stages I, II, and III, respectively.

The majority of approved reductions occurred during training stage I, accounting for
83 % of all approved reductions, consuming 65 % of the total training time. More than
half of the reductions (58 %, 1 086 reductions) happened in the first reduction cycle, which
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Table 3.4: Reduction configurations and results for different training stages of the
monoterpene mechanism reduction.

Training stage stage I stage II stage III stage IV
Reduction parameter and option

Evaluation dataset training pre-testing pre-testing pre-testing
Tolerance εref

ave (%) 0.25 - 1.5 a 3 3 - 5 3
Tolerance εref

max (%) 0.5 - 3 30 30 30
Tolerance εpre

ave (%) 0.25 - 0.5 - b - -
Tolerance εpre

max (%) 0.5 - 1 - - -
Tolerance δε (%) 0.05 - 0.3 0.3 0.3 - 1.5 0.3

Efficient treatment Yes Yes No No
Elementary-like treatment No No Yes Yes
Aerosol-oriented treatment No Yes Yes No

Training detail
No. of approved reduction 1 559 142 90 86

No. of reduction cycle c 17 3 10 7
Training time (h) 57.7 8.7 16 5.6

Size and accuracy of mechanism d

No. of reaction 499 358 (468) e 364 197 (279)
No. of species 239 160 130 110

No. of condensable 74 28 23 23
Error ϵpre−testing

ave
f (%) 1.6 2.5 2.6 3.0

Error ϵpre−testing
max (%) 6.2 26.3 24.9 28.4

a For stage I, the values of εref
max/ εpre

max are applied to the reduction in the following order: 0.5/
0.5, 1/ 1, 1.5/ 1, 2/ 1, 2.5/ 1, 3/ 1. For all training under pre-testing dataset, other tolerances

are assigned accordingly: εref
ave = εref

max / 2, εpre
ave = εpre

max / 2, δε = εref
max / 10.

b Tolerance not used. c Record only those with approved reductions. d Mechanisms obtained
after the respective training stages.

e The number of elementary-like reactions (the values within parentheses) is only noted at the
start and end of elementary-like treatment (mechanisms of stages II and IV).

f Errors ϵpre−testing
ave and ϵpre−testing

max represent the average and maximum errors, respectively,
obtained when evaluating the reduced mechanisms against the Ref. mechanism using the

pre-testing dataset.
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utilized strict error tolerances with both εref
max and εpre

max set to 0.5 %. As the reduction
process continued, error tolerances progressively increased. At the end of stage I, the
reduced SOA mechanism consisted of 449 reactions and 239 species, with an average
error (ϵref

ave) of 1.6 % under the pre-testing conditions. The reduction process in stage I
resulted in significant reductions in the numbers of reactions, species, and condensables
by 81 %, 75 %, and 88 %, respectively, compared to the Ref. mechanism.

After 1 559 approved reductions, the reduction proceeded to stage II, where the pre-
testing dataset was used for reduction evaluation and the aerosol-oriented treatment was
activated. Since the mechanism had been strongly reduced in stage I, the reductions
achieved in stage II accounted for less than 8 % of the total reduction. Compared to the
stage I mechanism, the number of reactions and species were reduced by 28 % and 33 %,
respectively. Furthermore, the aerosol-oriented treatment led to a reduction of up to 62 %
in the number of condensable species, from 74 to 28, indicating the effectiveness of the
treatment. At the end of this stage, the reduced mechanism consisted of 337 reactions
and 144 species.

Afterward, in stage III, the reactions with multiple products were separated into mul-
tiple reactions with one product due to the elementary-like treatment. This resulted in a
change in the number of reactions in the stage II mechanism, increasing from 358 to 468.
The other settings remained identical to stage II, except for the use of higher error tol-
erances. After completing stage II, GENOA v2.0 selects the stage III mechanism trained
with a tolerance εref

ave of 5 %, balancing accuracy and reduction extent. This mechanism
exhibits an average error of 2.6 % and a maximum error of 24.9 % under pre-testing con-
ditions, satisfying the final user-defined tolerances. Compared to the stage II mechanism,
the use of the elementary-like treatment facilitated a reduction of 22 % in the number of
elementary-like reactions.

In the final training stage, the mechanism was trimmed with the final user-defined
tolerances. While no condensables were removed in stage IV, 23 % of reactions and 15 %
of species were reduced compared to the stage III mechanism. Finally, the elementary-like
reactions were recombined, resulting in the MT-rdc mechanism with 197 reactions.

Table 3.5: Percentage and number of approved reductions per reduction strategy in dif-
ferent training stages.

Training stage a stage I stage II stage III stage IV Overall
Removing reactions b 48 37 75 74 50

Jumping 6 16 9 10 7
Lumping 13 21 6 5 13

Replacement 4 5 2 5 4
Removing species 20 15 8 6 18

Removing partitioning 9 5 0 0 8
No. of reduction c 1 574 129 93 81 1 877

a Total percentage per training stage is 100 %. The last column shows the percentage for the
entire training process.

b includes reductions via removing elementary-like reactions.
c Number of approved reactions per training stage.

Table 3.5 presents the percentages and numbers of approved reductions achieved per
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reduction strategy at different training stages. Based on the results, removing reactions
is the most effective reduction strategy, contributing significantly to the reduction at all
stages, especially in stages III and IV, where the elementary-like treatment is activated,
accounting for approximately three-quarters of the total reductions. Other removal strate-
gies, including removing species and removing partitioning, together represent 26 % of the
total reductions. These two types of removal strategies are mainly effective for reducing
pathways that have a negligible impact on SOA formation in the early stages of reduction.
When reducing the pathways that are more sensitive to SOA formation, particularly in
stage II, the reduction strategies of lumping and jumping stand out, together leading to
a total reduction of 37 %. These two strategies are favored for reducing the number of
condensables due to aerosol-oriented treatments. Compared to other strategies, reduction
via replacement contributes less, with an average contribution of 4 %.

Table 3.6: Percentage and number of organic species derived from different combinations
of monoterpene precursors per reduced SOA mechanisms. a

Combination b Ref. stage I stage II stage III MT-rdc
API 10 18 12 12 17
BPI 18 9 11 10 13
LIM 48 21 20 17 17

API+BPI 7 7 4 5 6
BPI+LIM 2 0 0 0 0
API+LIM 5 10 21 14 7

API+BPI+LIM 10 36 32 43 39
No. of species 975 239 160 130 110

a Total percentage per mechanism is 100 %.
b Mechanisms from left to right are the reference mechanism (Ref.), mechanisms of training

stages I, II, III, and the final reduced SOA mechanism (MT-rdc).

Table 3.6 displays the variation of the numbers of species derived from different SOA
precursors during the reduction. The original mechanism considers the SOA formation
and aging from three monoterpene precursors, i.e., API, BPI, and LIM, resulting in com-
mon and individual reaction pathways and formed species. Species are classified based on
the combinations of precursors from which they can be formed, including one precursor
(API, BPI, or LIM), two precursors (e.g., API + BPI, API + LIM, BPI + LIM), or all
three precursors (e.g., API + BPI + LIM). The numbers of reactions and condensable
species exhibiting similar variation patterns to those of the number of species are therefore
not discussed further here.

As shown in Table 3.6, the number of species decreases significantly during stage I
from 975 to 239, consistent with the largest number of reductions occurring during this
stage. LIM leads to the formation of the largest number of monoterpene species (48 %)
in the Ref. mechanism. Its number decreases the most during reduction compared to the
number of species formed from the other two precursors. As the mechanism is reduced,
the percentage of species common to the three precursors (API + BPI + LIM) increases.
This result is reasonable since the reduction via lumping and replacing tends to merge
species from different precursors. While species common to the three precursors represent
only 10 % of species in Ref., they represent 39 % of species in the final reduced mechanism.
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Meanwhile, the percentage of species derived from a single precursor decreases from 76 %
to 47 %.

3.2 Description of the reduced mechanism
The MT-rdc mechanism, which comprises 197 reactions and 110 species, is illustrated
in Fig. 3.6. As depicted in this figure, for each MT precursor, reactions with all three
oxidants (i.e., OH, O3, NO3) are kept in MT-rdc. Key oxidation products involved in
SOA formation are preserved but may be lumped with similar surrogates. Those lumped
surrogates are designated with the prefix “m" followed by the dominant original species
contributing to the lumped species. Reactions with radicals (NO, HO2, RO2) are also
preserved, indicating the mechanism can account for SOA formation pathways under
various atmospheric conditions, including both high- and low- NOx chemical regimes.

While high-generation oxidations from different precursors are significantly merged in
MT-rdc, the disparities in the first two generations of oxidations are retained. For API, ten
first-generation oxidant radicals are preserved, including two nitrate RO2 (i.e., APINAO2
and NAPINBO2) from the API + NO3 reaction, three RO2 species from API + OH
reactions (including one monomer C10H17O4O2 originating from the PRAM mechanism),
and five from reactions with O3 (including C10H15O2O2 from PRAM). Consequently, two
first-generation condensables, namely mNAPINAOOH and C920PAN, specific to API
oxidation, are retained with MT-rdc. With regard to BPI, the initial reactions with BPI
yield seven radicals, five of which are specifically formed from BPI oxidation, such as
NBPINAO2 and NBPINBO2 from NO3 reactions; BPINAO2 and BPINBO2 from OH
reactions; and NOPINDO2 from ozonolysis. BPI oxidation leads to the formation of
two first-generation condensables (i.e., mBPINAOOH and mNBPINAOOH). As for LIM,
six radicals result from oxidant-initiated reactions: NLIMO2 from the NO3 reaction;
mLIMAO2, mLIMCO2, and C19H17O4O2 from the OH reaction; and LIMALBO2 and
C10H15O2O2 from ozonolysis. Two condensables (i.e., LIMALNO3 and LIMALOOH)
are generated from the first two generations of LIM oxidation. As a consequence of the
extensive merging of high-generation oxidation in the MT-rdc, 14 out of 23 condensables
are formed from the common reaction pathways of all three precursors.

The MT-rdc mechanism also preserves the HOM formation from the PRAM mech-
anism. As illustrated in Fig. 3.7, three condensable species are retained from PRAM
(including 69 condensables), derived from the initial reactions of monoterpenes with
OH and O3. The HOM condensables comprise two lumped monomer condensables (i.e.,
mC10H14O9 and mC10H14O11) formed from RO2 reactions with autoxidation and one
dimer condensable C20H30O13 formed from three dimerization reactions. Regarding
HOM formation, MT-rdc records three RO2 reactions with HO2, nine RO2 reactions with
NO, and 12 RO2-RO2 reactions. It is worth noting that some of the reactions with radicals
in the MT-rdc mechanism are competitive, which suggests that the mechanism is capable
of maintaining the sensitivity of HOM formation to the chemical regime under both high-
and low-NOx conditions.
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Figure 3.7: Reaction pathway in the MT-rdc mechanism corresponding to the formation
of HOMs trained from the PRAM mechanism. Refer to Fig. 3.6 for a more detailed
description of the legend.

3.3 Mechanism performance during testing
The testing process is evaluated by comparing the differences in simulated total SOA
concentrations between the reference mechanism (Ref.) and the final reduced SOA mech-
anism (MT-rdc) under the testing dataset (consisting 9 878 testing conditions, explained
in Sect. 2.4.2). The reduction error (calculation detailed in Sect. 2.3.4) over testing con-
ditions is used to evaluate the efficiency of the reduction.

In total, within 79 024 simulations, an average error of 2.9 % is obtained, which
is consistent with the predefined error tolerance set for training. The errors over testing
conditions for different initial SOA precursor conditions and starting times are summarized
in Table 3.7. Overall, the testing errors for all initial conditions are acceptable, ranging
from 2.1 % and 4.0 %. MT-rdc performs slightly better for simulations beginning at noon
(12 h) than those beginning at midnight (0 h), with an average error of 2.4 % and 3.4 %,
respectively. This suggests that MT-rdc is slightly more efficient at predicting daytime
SOA formation than nighttime.

Error (%) iniMT iniAPI iniBPI iniLIM Average
at 0 h 3.4 3.0 3.4 4.0 3.4
at 12 h 2.1 2.2 3.0 2.3 2.4
Average 2.7 2.6 3.2 3.1 2.9

Table 3.7: Errors generated by the MT-rdc mechanism (compared to the reference mech-
anism) simulated over testing conditions with different initial SOA precursor conditions
and two simulation starting times (i.e., 0 h and 12 h).

The monthly distribution of the testing errors is presented in Fig. 3.8. 86 % of testing
conditions (8 509 conditions) are between May to September and the rest 14 % (1 369
conditions) are from October to April. The majority of conditions correspond to warm
weather that is likely to be associated with high monoterpene SOA concentrations. be-
tween May to September, a low error is obtained with MT-rdc with an average below
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2.5 % for testing with all initial conditions. The monthly errors are higher from October
to April, averaging 5.4 %. This result indicates that MT-rdc exhibits higher accuracy for
predicting SOA formation under spring and summer conditions in Europe than for fall
and winter conditions in Europe. This discrepancy may be attributed to the pre-testing
dataset having a higher proportion of conditions between May to September (83 out of
100 conditions) than from October to April (17 out of 100 conditions).

Furthermore, significant errors are observed in the simulations conducted with the
initial condition iniBPI compared to those performed with other initial conditions. This
disparity is particularly prominent for the testing conditions during December, where the
average error obtained with iniBPI is 11.4 %. However, it is worth noting that the SOA
yields from BPI oxidation are significantly low compared to those from other monoterpene
precursors, especially in December. Under all testing conditions, an average SOA yield of
3.5 % is obtained with iniBPI while simulations with other initial conditions lead to higher
yields (15 % for iniMT, 11 % for iniAPI, and 35 % for iniLIM). Consequently, despite the
high testing errors, the absolute errors remain low when simulated with iniBPI, especially
under the December testing conditions, when the average BPI SOA yield is only 2 %.
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Figure 3.8: Monthly distribution of errors over testing conditions (box plot) generated by
the MT-rdc mechanism (compared to the reference mechanism) simulated with different
initial SOA precursor conditions. The bars represent the number of testing conditions
adopted for testing.

The map distribution of errors induced by the reduction and the corresponding SOA
yields simulated with the MT-rdc mechanism under testing conditions between May to
September are presented in Fig. 3.9. As mentioned previously, LIM has the highest
SOA productivity, leading to the highest SOA yields simulated with iniLIM compared to
those simulated with other initial conditions. The highest SOA yields are simulated in
Northern and Eastern Europe around the Baltic Sea, followed by Central Europe around
the Mediterranean Sea. between May to September, no obvious differences in errors are
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simulated between the different initial concentration conditions. The results are consistent
with the monthly distribution of errors reported in Fig. 3.8 and are considerably lower than
those across all testing conditions presented in Fig. S3. 95 % of simulations are within
an error lower than 6.3 %, while 99 % with an error lower than 12.6 %. High errors
(above 12 %) are concentrated in a few particular areas with high-NOx conditions for all
initial conditions. These areas, (e.g., near Moscow, Rome, and the English Channel) likely
correspond to areas near large cities or shipping routes. However, these areas have very
low monoterpene SOA production (average yield around 4% over these areas). Other
conditions with high errors are distributed sporadically over Europe, with many also
associated with low SOA production. If the performance of the reduced mechanism needs
to be improved under these sporadic conditions, one or several conditions with high errors
can be added to the pre-testing dataset to better constrain the mechanism. However, as
a trade-off, the new reduced mechanism may contain more species and reactions than
MT-rdc.

3.4 Reduction sensitivity to prescribed error tolerances
The reduction parameters and options adopted during training can significantly influence
the resulting mechanisms. In particular, error tolerances directly affect reduction evalu-
ation, thereby altering the size and accuracy of the reduced mechanisms. The effect of
larger error tolerances on the extent of the reduction is investigated. As shown in Fig. 3.10,
during the training stage III (detailed in Sect. 2.4.4), the error tolerances (i.e., εref

ave and
εref

max) are increased up to 90 % to explore further reduction. As the aerosol-oriented treat-
ment is activated during stage III, a candidate reduction can only be accepted if it reduces
condensables or current errors. Consequently, with increasing tolerance, the errors of the
reduced mechanisms rise only when the number of condensables decreases. Due to the
aerosol-oriented treatment and potential error compensation along with approved reduc-
tions, the obtained reduction errors are much lower than the tolerances, reaching only
11 % at the end of stage III against 90 % for the tolerance.

From all mechanisms obtained during stage III, three are selected (marked in Fig. 3.10)
and undergo the final training stage IV with different user-defined error tolerances: εusr

ave

is 3 % for MT-rdc, 6 % for case I, 12 % for case II, and 20 % for case III. Table 3.8
lists the size and accuracy of those reduced mechanisms. The reaction pathways of cases
I to III can be found in the Supplementary Material. As expected, there is a trade-off
between mechanism size and accuracy. Training with larger error tolerances leads to
greater reductions in size but decreases accuracy. The more reduced mechanisms exhibit
a lower number of condensable species (i.e., 13, 6, and 5 for cases I to III, respectively)
compared to MT-rdc trained with a stricter error tolerance of 3 %, which includes 23
condensables. Notably, a highly condensed SOA mechanism with only 40 reactions and 24
species is obtained with an average tolerance of 20 %, which corresponds to the tolerance
used in other reduction algorithms (e.g., in [Lannuque, 2018]). This case III mechanism
undergoes a remarkable reduction in size compared to the reference mechanism (more
than 98 % reduction) and holds great potential for 3-D simulations. The selection of
appropriate error tolerances is, therefore, crucial in order to achieve an optimal balance
between the extent and accuracy of the reduction.
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Testing errors (%) SOA yields (%)
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Figure 3.9: Map distributions of MT-rdc testing errors (left panels) and SOA yields (right
panels) simulated with the different initial precursor conditions under testing conditions
between May to September (8 509 conditions, corresponding 86 % of total testing condi-
tions). The maps of all testing conditions are in Fig. S3.
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Figure 3.10: Evolution of the size (measured as the number of condensables) and accuracy
(measured as ϵpre−testing

ave ) of reduced mechanisms during training stage III with increasing
error tolerances. The final reduced mechanisms after stage IV reduction, trained from
three stage III mechanisms marked in the figure, can be found in Table 3.8.

Mechanism a MT-rdc case I case II case III
Size and accuracy of mechanism b

No. of reaction 197 153 81 40
No. of species 110 84 47 24

No. of condensable 23 13 6 5
Error ϵtesting

ave (%) 2.9 6.0 11.7 19.1
Error ϵtesting

99% (%) 15.6 28.5 50.2 55.2
Error tolerance for stage IV

Tolerance εusr
ave (%) 3 6 12 20

Tolerance εusr
max (%) 30 30 60 60

Table 3.8: Size and accuracy of the reduced mechanisms trained with different error
tolerances.

a Mechanisms are trained from stage III mechanisms noted in Fig. 3.10. The case IV
mechanism is trained from the case III mechanism with a higher tolerance εusr

ave during stage IV.
b The errors ϵtesting

ave and ϵtesting
99% represent the average error and the 99th percentile error,

respectively, when compared to the Ref. mechanism under the testing dataset.
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3.5 Mechanism sensitivity to environmental parameters

Figure 3.11: Dependence of average SOA yields simulated under the pre-testing dataset
with the reference mechanism (Ref., solid line) and the final reduced SOA mechanism
(MT-rdc, dotted line) on (a) temperature, (b) relative humidity, and (c) SOA mass at 1 h
(red point), 8 h (blue triangle) and 72 h (green square).

The sensitivity of MT-rdc to several environmental parameters crucial for SOA forma-
tion is investigated. These parameters include temperature, relative humidity (RH), and
SOA mass conditions. Average SOA yields under the pre-testing dataset are simulated for
five days with two start times (0 h and 12 h), while varying environmental parameters.
The default temperature and RH are held constant at 298 K and 50 %, respectively, and
the initial precursor condition follows the iniMT condition. The sensitivity to SOA mass
is achieved by changing the concentration proportionally in the initial concentrations of
precursors (the ratios between the different precursors are kept identical to iniMT). While
changing one of the three parameters, the others are kept constant.

The results of the sensitivity test, presented in Fig. 3.11, are compared at three dif-
ferent simulation times (1 h, 8 h, and 72 h) considering the SOA formation evolution.
Overall, the MT-rdc and Ref. mechanisms showed similar behaviors. No significant dif-
ferences (lower than 2 %) between the two mechanisms were found when varying RH from
5 % to 95 % or mass loading from 10−4 µg/m3 to 103 µg/m3. Regarding temperature
variations, MT-rdc differs from the Ref. mechanism under a few extreme low-temperature
conditions, with differences of up to 10 % observed when the temperature was set constant
to 270 K. The disparities between the two mechanisms were mainly noticeable for oxida-
tion durations of 1 h and 8 h, whereas for an oxidation duration of 72 h, the variations
were relatively minor (approximately 3 %) even at 270 K.

4 Conclusion
This paper presents the development and application of GENOA v2.0, an algorithm de-
signed to reduce the size and complexity of SOA mechanisms for multiple precursors. As
part of the parallel reduction scheme of GENOA v2.0, multiple candidate reductions are
evaluated simultaneously at each reduction step, with the optimal reduction chosen based
on evaluation criteria such as reduction score and errors. To account for both the unique
and common reaction pathways of multiple SOA precursors, several initial conditions with
different compositions of SOA precursors are used in the training process. The training
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is divided into several stages, in which the user can adjust the reduction parameters and
options in order to customize the reduction.

GENOA v2.0 has been applied to the reduction of monoterpene SOA mechanisms from
MCM combined with the HOM formation mechanism from PRAM for three monoterpene
precursors (α-pinene, β-pinene, limonene). The original MCM + PRAM mechanism con-
tains 3 001 reactions and 1 143 gas-phase species, with 738 species that can be considered
condensables. After reduction, the monoterpene SOA mechanism (MT-rdc) is reduced to
197 reactions and 110 species, with the number of condensable species decreasing from
738 to 23. When evaluated against the testing dataset, MT-rdc introduced a low average
error of less than 3 % over Europe compared to the reference mechanism. Sensitivity
tests demonstrated that MT-rdc behaves similarly to the original mechanism in response
to changes in temperature, relative humidity, and SOA mass loading. By allowing a
larger error tolerance of up to 20 %, the SOA mechanism could be further reduced to
a mechanism consisting of 40 reactions and 24 species, including only 5 condensables.
This work shows that GENOA v2.0 has the potential to generate reduced condensed SOA
mechanisms from explicit VOC mechanisms while maintaining reasonable accuracy.

Code and data availability
The source code for GENOA v2.0 is hosted on GitHub at https://github.com/tool-
genoa/GENOA-SSH-aerosol/tree/v2.0 (last access: 26 July 2023). The associated Zenodo
DOI is https://doi.org/10.5281/zenodo.8187339. The data for the monoterpene MCM re-
ductions mentioned in this paper can be accessed publicly on Zenodo:
https://10.5281/zenodo.8187593.
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Supplemental materials for

Implementation of a parallel reduction algorithm in the GENerator of

reduced Organic Aerosol mechanisms (GENOA v2.0): application to

multiple monoterpene aerosol precursors

S1 Information related to the training dataset

Figure S1: Bar plot showing the seven reaction ratios under the eight training conditions used for monoterpene mechanism
reduction at midnight (0 h, top bar) and noon (12 h, bottom bar with slash). From left to right, six ratios are presented
on each bar in the following order: RO3 , ROH , RNO3 , RRO2−NO, RRO2−HO2 , RRO2−NO3 , and RRO2−RO2 (No display if
the ratio is zero). The computation of ratios is explained in Table 1.
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Table S1: Computation of reaction ratios used in selecting training dataset.

Ratio a Equation b Kinetic rate coefficient c

ROH kOH [OH] / f1 kOH = 1.97 × 10−10

RO3 kO3 [O3] / f1 kO3 = 1.20 × 10−14

RNO3
kNO3

[NO3] / f1 kNO3
= 1.90 × 10−11

f1 = kOH [OH] + kO3 [O3] + kNO3 [NO3]

RRO2−NO kNO [NO] / f2 kNO = 2.70 × 10−12 × exp( 360T )

RRO2−HO2
kHO2

[HO2] / f2 kHO2
= 2.91 × 10−13 × exp( 1300T )

RRO2−RO2 kRO2 [RO2] / f2 kRO2 = 9.20 × 10−14

RRO2−NO3 kNO3 [NO3] / f2 kRNO3 = 2.30 × 10−12

f2 = kNO [NO] + kHO2
[HO2] + kRNO3

[NO3] + kRO2
[RO2]

a names of the reaction ratio of OH radical, O3, and NO3 radical reacted withPI. (ROH + RO3 + RNO3 = 1); and of the reaction
ratio of NO, HO2 radical, RO2 radical, and NO3 radical (at the presence of RO2) reacted with RO2 species (RRO2−NO +

RRO2−HO2 + RRO2−RO2 + RRO2−NO3 = 1).
b [species name] (e.g.,[OH]) is the monthly average concentration of oxidants concentration extracted from CHIMERE.

c kinetic rate coefficient are provided by MCM, where kOH , kO3 , and kNO3 are the kinetic rate coefficient of first-generation API
reaction with OH, O3, and NO3, respectively; kNO, kHO2 , and kRNO3 are the simple rate coefficients KRO2NO, KRO2HO2, and

KRO2NO3, respectively; kRO2 is self-reaction rate coefficients for the tertiary peroxy radicals (e.g., BCAO2, BCCO2). T:
temperature (K).

S2 Information related to the MT-rdc mechanism: MT-rdc

S2.1 An overview of the MT-rdc mechanism

Table S2: Reaction list of the MT-rdc mechanism.

1 APINENE + NO3 → 0.65 NAPINAO2 + 0.35 NAPINBO2 1.2×10−12 × exp( 490T )

2
APINENE + O3 → 0.297 C107O2 + 0.243 C109O2

8.1×10−16 × exp(−640
T )

+ 0.2 mC96O2 + 0.2 APINBOO + 0.06 C10H15O2O2

3
APINENE + OH → 0.902 APINBO2 + 0.073 APINCO2

1.2×10−11 × exp( 440T )
+ 0.025 C10H17O4O2

4 BPINENE + NO3 → 0.8 NBPINAO2 + 0.2 NBPINBO2 2.5×10−12

5 BPINENE + O3 → 0.502 NOPINONE + 0.3 NOPINDO2 1.4×10−15 × exp(−1270
T )

6
BPINENE + OH → 0.841 BPINAO2 + 0.075 BPINBO2

2.4×10−11 × exp( 357T )
+ 0.074 APINCO2 + 0.01 C10H17O4O2

7 LIMONENE + NO3 → NLIMO2 1.2×10−11

8
LIMONENE + O3 → 0.256 mLIMAO2 + 0.256 LIMALBO2

2.8×10−15 × exp(−770
T )

+ 0.219 C10H15O2O2 + 0.135 mLIMAL

9
LIMONENE + OH → 0.586 mLIMCO2 + 0.404 mLIMAO2

4.3×10−11 × exp( 401T )
+ 0.01 C10H17O4O2

10 NAPINAO2 + HO2 → mNAPINAOOH 2.7×10−13 × exp( 1300T )

11 NAPINAO2 + NO → mAPINANO3 2.7×10−12 × exp( 360T )

12 NAPINAO2 → mAPINANO3 [RO2] × 6.7×10−15

13 NAPINBO2 + HO2 → NAPINBOOH 2.7×10−13 × exp( 1300T )

14 NAPINBO2 + NO → 2.7×10−12 × exp( 360T )

15 NAPINBO2 → 0.111 mAPINANO3 [RO2] × 2.2×10−13

16 APINBO2 + HO2 → mAPINAOOH 2.3×10−13 × exp( 1300T )

17 APINBO2 + NO → 0.877 mAPINANO3 + 0.104 mC926O2 3.1×10−12 × exp( 360T )

18 APINBO2 → mAPINANO3 [RO2] × 5.3×10−13

19 APINCO2 + HO2 → mAPINCOOH 5.3×10−13 × exp( 1300T )
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20 APINCO2 + NO → C720O2 4.7×10−12 × exp( 360T )

21 NBPINAO2 + HO2 → mNBPINAOOH 2.7×10−13 × exp( 1300T )

22 NBPINAO2 + NO → NOPINONE 2.7×10−12 × exp( 360T )

23 NBPINAO2 + NO3 → NOPINONE 2.3×10−12

24 NBPINAO2 → 0.7 NOPINONE + 0.3 mBPINANO3 [RO2] × 9.2×10−14

25 NBPINBO2 + HO2 → mNBPINAOOH 2.7×10−13 × exp( 1300T )

26 NBPINBO2 + NO → NOPINONE 2.7×10−12 × exp( 360T )

27 NBPINBO2 → mBPINANO3 [RO2] × 8.0×10−13

28
NOPINONE + OH → 0.367 mNOPINCOOH2

1.6×10−11

+ 0.136 NOPINDO + 0.13 mC918O2

29 BPINAO2 + HO2 → mBPINAOOH 2.7×10−13 × exp( 1300T )

30 BPINAO2 + NO → 0.76 NOPINONE + 0.24 mBPINANO3 2.7×10−12 × exp( 360T )

31 BPINAO2 → NOPINONE [RO2] × 6.4×10−14

32 BPINBO2 + HO2 → mBPINAOOH 2.7×10−13 × exp( 1300T )

33 NLIMO2 + HO2 → NLIMOOH 2.7×10−13 × exp( 1300T )

34 NLIMO2 + NO → mLIMAL 2.7×10−12 × exp( 360T )

35 NLIMO2 → mLIMAL [RO2] × 6.4×10−14

36 mLIMAO2 + HO2 → mLIMAOOH 2.1×10−13 × exp( 1300T )

37 mLIMAO2 + NO → 0.771 mLIMAL + 0.229 mC729CHO 2.2×10−12 × exp( 360T )

38 mLIMAO2 → mLIMAL [RO2] × 7.3×10−14

39 mLIMCO2 + NO → 0.766 LIMKET + 0.234 mLIMAL 2.1×10−12 × exp( 360T )

40 mLIMCO2 + HO2 → LIMCOOH 2.0×10−13 × exp( 1300T )

41 mLIMCO2 → LIMKET [RO2] × 4.9×10−14

42 mNAPINAOOH + OH → NAPINAO2 6.3×10−12

43 NAPINBOOH + OH → NC101CO 1.2×10−11

44 NC101CO + OH → NC102O2 5.5×10−12

45 NC101CO → C96CO3 J(1.1×10−5, 0.974, 0.309)

46 C107O2 + HO2 → 2.7×10−13 × exp( 1300T )

47 C107O2 + NO → mC106O2 2.7×10−12 × exp( 360T )

48 C107O2 + NO3 → mC106O2 2.3×10−12

49 C107O2 → 0.863 mC106O2 + 0.137 C10H15O7O2 [RO2] × 6.7×10−14

50 C109O2 + HO2 → C109OOH 2.7×10−13 × exp( 1300T )

51 C109O2 + NO → 0.8 C89CO3 + 0.2 C920CO3H 2.7×10−12 × exp( 360T )

52 C109O2 → 0.8 C89CO3 + 0.2 C920CO3H [RO2] × 1.8×10−12

53 APINBOO → 0.875 mAPINANO3 [H2O] × 1.6×10−17

54 mC96O2 + HO2 → 0.903 mC96OOH + 0.097 mC98OOH 2.6×10−13 × exp( 1300T )

55 mC96O2 + NO → 0.843 C97O2 2.4×10−12 × exp( 360T )

56 mC96O2 → C97O2 [RO2] × 7.0×10−13

57 mAPINAOOH + OH → APINBO2 1.7×10−11

58 mAPINCOOH + OH → APINCO2 6.6×10−11

59 mNBPINAOOH + OH → NBPINAO2 9.0×10−12

60 mNBPINAOOH → NOPINONE J(7.2×10−6, 0.682, 0.279)

61 mBPINANO3 + OH → NOPINONE 4.1×10−12

62 mC918O2 + HO2 → 0.7 mNOPINCOOH + 0.3 mC106O2 1.8×10−13 × exp( 1300T )

63 NOPINDO2 + HO2 → NOPINDOOH 2.6×10−13 × exp( 1300T )

64 NOPINDO2 + NO → C89CO3 2.7×10−12 × exp( 360T )

65 NOPINDO2 → C89CO3 [RO2] × 1.8×10−12
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66 mBPINAOOH + OH → BPINAO2 1.3×10−11

67 NLIMOOH + OH → NLIMO2 4.3×10−11

68 LIMALBO2 + NO → C822CO3H 2.7×10−12 × exp( 360T )

69 mLIMAOOH + OH → mLIMAO2 6.8×10−11

70 LIMCOOH + OH → mLIMCO2 1.0×10−10

71 mAPINANO3 + OH → C96CO3 5.2×10−12 × exp( 600T )

72 mAPINANO3 → mC96O2 J(2.8×10−5, 0.805, 0.338)

73 C96CO3 + NO → mC96O2 7.5×10−12 × exp( 290T )

74 C96CO3 + NO2 → C10PAN2 KFPAN

75 C109OOH + OH → mC109CO 5.5×10−11

76 mC109CO → C89CO3 J(1.5×10−4, 0.170, 0.208)

77 C622CHO + OH → 0.407 mC728O2 + 0.198 mC109CO 1.6×10−10

78 mC96OOH → C97O2 J(5.5×10−6, 0.682, 0.279)

79 HCC7CO + OH → C719O2 1.2×10−10

80 C720O2 + NO → 0.722 HCC7CO + 0.278 C720NO3 2.7×10−12 × exp( 360T )

81 mNOPINCOOH + OH → mC918O2 7.5×10−12

82 NOPINDOOH + OH → NOPINDCO 2.6×10−11

83 NOPINDCO + OH → C89CO3 3.1×10−12

84 mLIMAL + NO3 → mNLIMALO2 2.5×10−13

85 mLIMAL + O3 → 0.67 mC926O2 + 0.33 C817CO3H 8.2×10−18

86 mLIMAL + OH → 0.712 LIMALO2 + 0.288 C923CO3 1.1×10−10

87 mC729CHO + OH → 0.798 mC728O2 + 0.202 C729CO2H 5.0×10−11

88 LIMKET + O3 → 0.844 LMLKAO2 + 0.156 C817O2 1.3×10−16

89 C96CO3 + NO → 0.95 mC106O2 2.7×10−12 × exp( 360T )

90 C10PAN2 → C96CO3 KBPAN

91 mC106O2 + HO2 → mC106OOH 2.7×10−13 × exp( 1300T )

92 mC106O2 + NO → 4.5×10−12 × exp( 360T )

93 C89CO3 + NO → 0.8 C811CO3 7.5×10−12 × exp( 290T )

94 C89CO3 + NO2 → C89PAN KFPAN

95 C89CO3 → 0.651 C811CO3 + 0.349 C89CO2H [RO2] × 8.6×10−12

96 C920CO3H + NO → C920O2 7.5×10−12 × exp( 290T )

97 C920CO3H + NO2 → C920PAN KFPAN

98 C920O2 → C921O2 [RO2] × 1.3×10−12

99 C97O2 + HO2 → mC97OOH 2.6×10−13 × exp( 1300T )

100 C97O2 + NO → C98O2 2.7×10−12 × exp( 360T )

101 C719O2 + HO2 → mC719OOH 2.4×10−13 × exp( 1300T )

102 C719O2 + NO → 0.958 H3C25C6CO3 2.7×10−12 × exp( 360T )

103 C720NO3 + OH → HCC7CO 9.6×10−11

104 mNLIMALO2 + HO2 → mNC102OOH 2.5×10−13 × exp( 1300T )

105 mNLIMALO2 + NO → C817CO3H 2.6×10−12 × exp( 360T )

106 mNLIMALO2 + NO3 → C817CO3H 2.2×10−12

107 mNLIMALO2 → 0.7 C817CO3H [RO2] × 8.8×10−14

108 LIMALO2 + HO2 → LIMALOOH 2.7×10−13 × exp( 1300T )

109 LIMALO2 + NO → 0.941 C817CO3H + 0.059 LIMALNO3 2.7×10−12 × exp( 360T )

110 mC729CHO + NO3 → mNLIMALO2 7.1×10−14

111 C822CO3H + NO → 0.8 C823CO3 + 0.2 mLIMAO2 7.5×10−12 × exp( 290T )

112 C822CO3H + NO2 → mC822PAN KFPAN
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113 mC926O2 + NO → 0.57 C622CHO 2.1×10−12 × exp( 360T )

114 mC728O2 + HO2 → 0.517 mNORLIMOOH + 0.483 mC719OOH 1.4×10−12 × exp( 1300T )

115 mC728O2 + NO → 1.2×10−11 × exp( 360T )

116 C923CO3 + OH → mC729CHO 6.9×10−11

117 NC102O2 + HO2 → mNC102OOH 2.7×10−13 × exp( 1300T )

118 NC102O2 + NO → 2.7×10−12 × exp( 360T )

119 C89CO2H + OH → C811CO3 2.2×10−11

120 C89PAN + OH → 2.5×10−11

121 C89PAN → C89CO3 KBPAN

122 C920PAN + OH → C622CHO 5.6×10−12

123 C920PAN → C920CO3H KBPAN

124 mC97OOH + OH → C97O2 9.8×10−12

125 mC719OOH + OH → C719O2 4.8×10−11

126 mNC102OOH + OH → mNLIMALO2 2.0×10−11

127 mC926O2 + HO2 → mC98OOH 1.4×10−13 × exp( 1300T )

128 C817CO3H + NO → C817O2 7.5×10−12 × exp( 290T )

129 C817CO3H + NO2 → KFPAN

130 C817O2 + NO → 0.862 mC96O2 2.7×10−12 × exp( 360T )

131 LIMALOOH + OH → LIMALO2 4.7×10−11

132 LIMALNO3 + OH → C817CO3H 3.0×10−11

133 C729CO2H + OH → C622CHO 8.3×10−11

134 mC822PAN + OH → mC729CHO 6.4×10−11

135 mC822PAN → C822CO3H 7.6× KBPAN×10−1

136 mNORLIMOOH + OH → mC728O2 2.2×10−11

137 LMLKAO2 + HO2 → mC97OOH 2.7×10−13 × exp( 1300T )

138 LMLKAO2 + NO → 0.5 C731CO3 5.4×10−12 × exp( 360T )

139 C811CO3 + HO2 → 2.1×10−13 × exp( 980T )

140 C811CO3 + NO → C811O2 7.5×10−12 × exp( 290T )

141 C811CO3 + NO2 → C811PAN KFPAN

142 C811CO3 → 0.7 C811O2 + 0.3 mPINIC [RO2] × 1.0×10−11

143 C921O2 + HO2 → mC812OOH 2.6×10−13 × exp( 1300T )

144 C98O2 + HO2 → mC98OOH 2.6×10−13 × exp( 1300T )

145 C98O2 + NO → 0.118 C98NO3 2.7×10−12 × exp( 360T )

146 C823CO3 → mC823O2 [RO2] × 7.0×10−12

147 mC106OOH + OH → mC106O2 5.6×10−11

148 C811O2 + HO2 → C811OOH 2.5×10−13 × exp( 1300T )

149 C811O2 + NO → 0.862 C812O2 2.7×10−12 × exp( 360T )

150 C811O2 → C812O2 [RO2] × 7.8×10−13

151 mPINIC + OH → C811O2 5.6×10−12

152 C811PAN + OH → mC729CHO 6.8×10−12

153 C811PAN → C811CO3 KBPAN

154 mC812OOH + OH → 0.637 C812O2 + 0.363 C921O2 1.1×10−11

155 mC98OOH + OH → C98O2 1.8×10−11

156 mC98OOH → J(2.9×10−4, 0.148, 0.215)

157 C98NO3 → J(3.3×10−4, 0.148, 0.215)

158 H3C25C6CO3 + NO → 7.5×10−12 × exp( 290T )

159 H3C25C6CO3 + NO2 → H3C25C6PAN KFPAN
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160 C731CO3 + NO2 → mC822PAN KFPAN

161 C811OOH + OH → mC729CHO 1.7×10−11

162 C811OOH → C812O2 J(7.6×10−6, 0.682, 0.279)

163 C921O2 + NO → mC823O2 1.9×10−12 × exp( 360T )

164 H3C25C6PAN + OH → 2.3×10−11

165 C812O2 + HO2 → mC812OOH 2.5×10−13 × exp( 1300T )

166 C812O2 + NO → C813O2 2.7×10−12 × exp( 360T )

167 mC823O2 + HO2 → mC621OOH 9.0×10−14 × exp( 1300T )

168 mC823O2 + NO → 1.1×10−12 × exp( 360T )

169 mNORLIMOOH → J(4.5×10−5, 0.148, 0.215)

170 C813O2 + HO2 → C813OOH 2.5×10−13 × exp( 1300T )

171 C813O2 + NO → 0.896 C516O2 + 0.104 C813NO3 2.7×10−12 × exp( 360T )

172 C813OOH + OH → C813O2 1.9×10−11

173 C813OOH → C516O2 J(1.5×10−4, 0.170, 0.208)

174 C813NO3 → C516O2 J(1.5×10−4, 0.170, 0.208)

175 C516O2 + HO2 → C516OOH 2.1×10−13 × exp( 1300T )

176 C516O2 + NO → 2.7×10−12 × exp( 360T )

177 C516OOH + OH → C516O2 3.4×10−11

178 C10H15O2O2 → C10H15O6O2 1.2×1017 × exp(−12077
T )

179 C10H15O6O2 → C10H15O10O2 2.0×1017 × exp(−12077
T )

180 C10H15O7O2 → C10H15O9O2 1.2×1017 × exp(−12077
T )

181 C10H15O2O2 + NO → C10H15O7O2 2.7×10−12 × exp( 360T )

182 C10H15O7O2 + NO → 0.87 C10H15O10O2 + 0.13 mC10H14O9 2.5×10−12 × exp( 360T )

183 C10H15O9O2 + NO → 0.6 mC10H14O9 1.4×10−12 × exp( 360T )

184 C10H15O10O2 + NO → 0.6 mC10H14O11 1.9×10−12 × exp( 360T )

185 C10H15O10O2 + HO2 → mC10H14O11 2.9×10−13 × exp( 1300T )

186 C10H15O2O2 → 0.6 C10H15O7O2 [RO2] × 1.0×10−12

187
C10H15O6O2 → 0.467 mC10H14O9 + 0.311 C10H15O7O2

[RO2] × 9.0×10−12

+ 0.222 C20H30O13

188 C10H15O7O2 → 0.556 C20H30O13 + 0.444 mC10H14O9 [RO2] × 1.1×10−11

189 C10H15O9O2 → 0.714 C20H30O13 + 0.286 mC10H14O9 [RO2] × 2.8×10−11

190 C10H15O10O2 → 0.553 mC10H14O11 + 0.447 mC10H14O9 [RO2] × 1.4×10−11

191 C10H17O6O2 → C10H17O7O2 6.0×1016 × exp(−12077
T )

192 C10H17O4O2 + NO → 0.957 C10H17O6O2 2.5×10−12 × exp( 360T )

193 C10H17O6O2 + NO → 0.646 C10H17O7O2 + 0.166 mC10H14O9 2.9×10−12 × exp( 360T )

194 C10H17O7O2 + NO → 0.6 mC10H14O9 1.4×10−12 × exp( 360T )

195 C10H17O4O2 + HO2 → mC10H14O9 2.9×10−13 × exp( 1300T )

196 C10H17O7O2 + HO2 → mC10H14O9 2.9×10−13 × exp( 1300T )

197 C10H17O7O2 → mC10H14O9 [RO2] × 8.0×10−12

a [H2O] is the concentration of H2O, [RO2] is the concentration of RO2 pool, and [O2] is the concentration of O2. Kinetic rate
constants, i.e., KFPAN and KBPAN, are the complex rate coefficients from the MCM mechanism v3.3.1. Photolysis rates are in
the format J(l,m,n) = l×cosXm×exp(-n×secX) with solar zenith angle X in radians.
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Table S3: Species list of the MT-rdc mechanism.

Surrogatea Typeb Molecular formula MWc Pd
sat ∆He

vap Hf γg C*

HCC7CO VOC C7H10O2 126.2

C622CHO VOC C7H12O2 128.2

APINENE VOC C10H16 136.2

BPINENE VOC C10H16 136.2

LIMONENE VOC C10H16 136.2

LIMKET VOC C9H14O 138.2

NOPINONE VOC C9H14O 138.2

NOPINDCO VOC C9H12O2 152.2

mC729CHO VOC C8.24H12.52O2.62 153.5

C729CO2H VOC C8H12O3 156.2

mLIMAL VOC C10H16.00O2 168.3

C89CO2H VOC C9H14O3 170.2

mNOPINCOOH VOC C9H14O3 170.2

NOPINDOOH VOC C9H14O3 170.2

C720NO3 VOC C7H11NO4 173.2

C811OOH VOC C8H14O4 174.2

mC96OOH VOC C9.28H16O3.28 180.2

mC109CO VOC C9.95H13.95O3 181.6

C822CO3H VOC C9H14O4 186.2

mAPINAOOH VOC C10.00H17.98O3 186.2

LIMCOOH VOC C10H18O3 186.2

mAPINCOOH VOC C10H18O3 186.2

mLIMAOOH VOC C10.00H17.89O3.06 187

C109OOH VOC C10H16O4 200.2

C817CO3H VOC C9H14O5 202.2

NC101CO VOC C10H15NO4 213.2

mAPINANO3 VOC C9.98H16.91NO4 214.9

mBPINANO3 VOC C10H16.96NO4 215.2

C920CO3H VOC C10H16O5 216.2

C89PAN VOC C9H13NO6 231.2

NAPINBOOH VOC C10H17NO5 231.2

NLIMOOH VOC C10H17NO5 231.2

mC822PAN VOC C8.76H12.51NO6.24 231.7

C10PAN2 VOC C10H15NO6 245.2

C811PAN VOC C9H13NO7 247.2

C720O2 Radical C7H11O3 143.2

C516O2 Radical C5H7O6 163.1

NOPINDO2 Radical C9H13O3 169.2

mC96O2 Radical C8.90H14.80O3.20 173

C811O2 Radical C8H13O4 173.2

C817O2 Radical C8H13O4 173.2

mC823O2 Radical C7.20H11.39O4.80 174.8

C719O2 Radical C7H11O5 175.2

mC728O2 Radical C6.88H12.77O5 175.5

mC918O2 Radical C9H13O3.50 177.2

APINBOO Radical C10H16O3 184.2

C89CO3 Radical C9H13O4 185.2

APINBO2 Radical C10H17O3 185.2

BPINAO2 Radical C10H17O3 185.2
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BPINBO2 Radical C10H17O3 185.2

APINCO2 Radical C10H17O3 185.2

mLIMCO2 Radical C10H17O3 185.2

C731CO3 Radical C8H11O5 187.2

C920O2 Radical C9H15O4 187.2

C97O2 Radical C9H15O4 187.2

mLIMAO2 Radical C9.96H16.56O3.18 187.3

H3C25C6CO3 Radical C7H9O6 189.1

C812O2 Radical C8H13O5 189.2

mC926O2 Radical C9H13.89O4.56 195

C10H15O2O2 Radical C10H15O4 199

C107O2 Radical C10H15O4 199.2

C96CO3 Radical C10H15O4 199.2

C109O2 Radical C10H15O4 199.2

C923CO3 Radical C10H15O4 199.2

LIMALBO2 Radical C10H15O4 199.2

C811CO3 Radical C9H13O5 201.2

C823CO3 Radical C9H13O5 201.2

LMLKAO2 Radical C9H13O5 201.2

C921O2 Radical C9H15O5 203.2

C98O2 Radical C9H15O5 203.2

C813O2 Radical C8H13O6 205.2

mC106O2 Radical C9.62H13.94O4.80 206.4

LIMALO2 Radical C10H17O5 217.2

NAPINAO2 Radical C10H16NO5 230.2

NAPINBO2 Radical C10H16NO5 230.2

NBPINAO2 Radical C10H16NO5 230.2

NBPINBO2 Radical C10H16NO5 230.2

NLIMO2 Radical C10H16NO5 230.2

C10H17O4O2 Radical C10H17O6 233

NC102O2 Radical C10H14NO7 260.2

mNLIMALO2 Radical C9.92H15.83NO7 261.1

C10H15O6O2 Radical C10H15O8 263

C10H17O6O2 Radical C10H17O8 265

C10H15O7O2 Radical C10H15O9 279

C10H17O7O2 Radical C10H17O9 281

C10H15O9O2 Radical C10H15O11 311

C10H15O10O2 Radical C10H15O12 327

mNAPINAOOH SVOC C10H16.83NO5.08 232.4 6.06×10−8 96.1 4.96×104 1.85×104 2.46×107

mBPINAOOH SVOC C10H18O3 186.2 4.61×10−8 97.4 4.68×103 2.57×105 1.77×106

mNBPINAOOH SVOC C10H17NO5 231.2 3.61×10−8 98.3 3.86×104 4.00×104 1.14×107

C920PAN SVOC C10H15NO7 261.2 2.56×10−8 99.3 1.08×103 2.00×106 2.27×105

mC97OOH SVOC C9H15.99O4 188.3 2.28×10−8 101 166 1.46×107 3.11×104

H3C25C6PAN SVOC C7H9NO8 235.1 2.27×10−8 101 11.6 2.10×108 2.16×103

C98NO3 SVOC C9H15NO6 233.2 7.98×10−9 105 204 3.42×107 1.33×104

mC106OOH SVOC C10H16O5 216.2 7.08×10−9 105 212 3.70×107 1.23×104

mPINIC SVOC C9.22H14.44O4 189.3 4.77×10−9 108 50.8 2.30×108 1.98×103

LIMALNO3 SVOC C10H17NO6 247.2 1.48×10−9 113 650 5.75×107 7.88×103

mC98OOH SVOC C8.94H15.75O5 203.3 1.13×10−9 114 37.5 1.30×109 349

mC719OOH LVOC C7.15H12.30O5 178.2 7.14×10−10 118 7.52 1.03×1010 43.9

mNORLIMOOH LVOC C8.37H14.96O5.14 197.8 2.56×10−10 121 21.5 1.01×1010 45
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mNC102OOH LVOC C10H15.95NO7 262.2 2.12×10−10 121 4.11×103 6.38×107 7.14×103

LIMALOOH LVOC C10H18O5 218.2 1.50×10−10 124 137 2.70×109 168

mC812OOH LVOC C8.32H14.65O5 194.8 3.23×10−11 132 40.9 4.20×1010 10.8

C813NO3 LVOC C8H13NO7 235.2 1.65×10−11 135 30.8 1.10×1011 4.16

mC621OOH LVOC C6.34H11.34O5.66 178.2 1.56×10−11 135 1.93 1.84×1012 0.246

C516OOH LVOC C5H8O6 164.1 7.12×10−12 139 0.716 1.09×1013 0.0417

mC10H14O9 LVOC C10H15.47O8.40 269.8 3.41×10−12 75.9 63.2 2.58×1011 1.76

C813OOH LVOC C8H14O6 206.2 8.76×10−13 148 9.03 7.02×1012 0.0648

mC10H14O11 ELVOC C10H14.77O11.25 314.8 1.80×10−15 81.3 12.6 2.45×1015 1.85×10−4

C20H30O13 ELVOC C20H30O13 478 1.97×10−20 105 4.86×103 5.79×1017 7.83×10−7

a species with “m” are the new surrogates that merged multiple MCM species. b VOCs (stable gas-phase species) and radicals
(unstable gas-phase species) are assumed not to undergo gas-particle partitioning; SVOCs: semi-volatile organic compounds with
saturation vapor pressure (Psat at 298 K) lower than 10−9 atm; LVOCs: low-volatile organic compounds with Psat between 10−9

atm and 10−13 atm; and ELVOCs: low-volatile organic compounds with Psat lower than 10−13 atm. c Molar weight (g mol−1).
Properties calculated for condensable substances only: d saturation vapor pressure at 298 K (atm) ; e Enthalpy of vaporation (kJ
mol−1); f Henry’s law constant (mol L−1 atm−1); g activity coefficient at infinite dilution in water.

S2.2 Companions to other studies

Figure S2: Reproduction of the SOA yields from the ozonolysis of α-pinene reported by [Xavier et al., 2019] (red circles)
with the reference mechanism (MCM+PRAM, blue square), and the reduced monoterpene SOA mechanism MT-rdc
(green triangle). The gas-particle partitioning is calculated using UManSysProp ([Topping et al., 2016]), with the method
of [Myrdal and Yalkowsky, 1997] for vapor pressure and the method of [Nannoolal et al., 2004] for the boiling point. The
legend “chamber” and “OFR” stands for SOA yields simulated using configurations of an idealized smog chamber (open
symbols) and an oxidative flow reactor (filled symbols), respectively, as detailed in [Xavier et al., 2019].

S2.3 Testing results and SOA yields under all testing conditions
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Figure S3: Map distributions of MT-rdc testing errors (left panels) and SOA yields (right panels) simulated with different
initial precursor conditions under all testing conditions (9 818 conditions).
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S3 Reaction pathways of other reduced mechanisms: case I to III

S3.1 Case I mechanism

Figure S4: Reaction pathway related to SOA formation in the case I mechanism.
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S3.2 Case II mechanism

Figure S5: Reaction pathway related to SOA formation in the case II mechanism.
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S3.3 Case III mechanism

Figure S6: Reaction pathway related to SOA formation in the case III mechanism.
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Chapter 4
Modeling the response of biogenic secondary
organic aerosol formation to anthropogenic
NOx emission reduction: a comparison of
implicit and semi-explicit aerosol mechanisms

Anthropogenic nitrogen oxide (NOx) emissions from human activities contribute sig-
nificantly to the formation and evolution of secondary organic aerosols (SOA). An
investigation of the influences of NOx emission reduction on biogenic SOA formation
using the three-dimensional (3-D) Chemical Transport Model (CTM) CHIMERE is
presented in this chapter. The semi-explicit GENOA-generated biogenic SOA mech-
anism (GBM) and the implicit Hydrophobic/Hydrophilic Organic mechanism (H2O)
are adopted to simulate SOA concentrations and compositions over Europe for the
2018 summer (from June 1 to August 31). The GBM mechanism incorporates multi-
generation oxidation pathways from near-explicit mechanisms reduced by GENOA
v2.0, involving 228 reactions and 128 species describing the SOA formation from
monoterpene (MT) and sesquiterpene (SQT). In contrast, the H2O mechanism de-
scribes the MT and SQT SOA formation with a few model species and reactions
organized from experimental data, involving 25 reactions and 18 species.

The use of the detailed semi-explicit GBM mechanism improves the performance
of SOA simulation in current 3-D modeling, leading to closer agreement with mea-
surements compared to the H2O mechanism. The simulated OA concentrations with
GBM and H2O mechanisms are similar in magnitude, with biogenic MT and SQT
SOAs dominating the concentrations, particularly in central Europe. The detailed
GBM mechanism considers multi-generation oxidation, including the formation of
highly oxidized HOMs due to auto-oxidation for MT SOAs, leading to more oxidized
aerosols than those estimated by H2O, which lacks this level of detail.

Furthermore, the influences of NOx emission reduction (i.e., NO, NO2, and HONO)
on biogenic SOA formation have been investigated with GBM and H2O mechanisms.
In response to NOx emission reduction, aerosol concentrations simulated with GBM
and H2O mechanisms increase and become more oxidized. When the anthropogenic
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NOx emission is reduced by 50 %, most places in Europe are under the low-NOx
regime. Due to the absence of NO, the oxidized products from MT degradation react
preferentially with organic peroxy radicals (RO2) and HO2, leading to changes in SOA
concentration and composition. For MT SOAs, condensables with lower volatility are
formed from reactions with RO2 and HO2 than those from reactions with NO, favor-
ing auto-oxidation for the formation of highly oxygenated molecules (HOMs). This
change, which significantly contributes to SOA formation and aging, can be included
in 3-D simulations with the GBM mechanism.

These results suggest that using a semi-explicit SOA mechanism in 3-D modeling
can capture more variability in SOA concentrations based on the physical-chemical
conditions, compared to using an implicit SOA mechanism. The importance of inte-
grating a detailed SOA mechanism that considers the multi-generation aging process
and the formation of highly oxidized molecules (HOMs) is also highlighted for accurate
prediction of SOA concentration and composition in air quality modeling.
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Chapter 4. 3-D modeling BSOA formation to NOx emission reduction

Modeling the response of biogenic secondary organic aerosol formation to
anthropogenic NOx emission reduction: a comparison of implicit and semi-
explicit aerosol mechanisms

Abstract
This study investigates the impacts of NOx emission reduction on secondary organic
aerosol (SOA) formation using the three-dimensional (3-D) Chemical Transport Model
(CTM) CHIMERE and two SOA mechanisms: a semi-explicit GENOA-generated bio-
genic SOA mechanism (GBM) and an implicit Hydrophobic/Hydrophilic Organic mech-
anism (H2O). The GBM mechanism is generated by the GENerator of Reduced Organic
Aerosol Mechanisms (GENOA) version 2.0. It considers detailed SOA formation path-
ways and aging with multi-generation oxidation related to monoterpene and sesquiterpene
SOA formation. The use of a semi-explicit mechanism leads to a significant improvement
in model performance compared to measurements. Additionally, the study shows that
SOA aging contributes significantly to SOA formation. In response to the emission re-
duction of nitrogen oxides (NOx), aerosol concentrations simulated with GBM and H2O
mechanisms increase and become more oxidized. The changes are due to enhanced HO2
and RO2 reactions with oxidized products from biogenic VOC degradation, which is fa-
vorable to auto-oxidation for the formation of highly oxygenated molecules (HOMs) from
monoterpene. The results suggest that detailed semi-explicit SOA mechanisms are po-
tentially valuable for accurate predictions of air quality and informed policy decisions.
Overall, this study provides insights into the complexity of gas-phase chemistry on SOA
formation and highlights the importance of incorporating semi-explicit SOA mechanisms
in CTMs.

1 Introduction
Atmospheric aerosols play a crucial role in influencing air quality, climate, and human
health ([Breysse, 2013; Seinfeld, 2016; McNeill, 2017]). Among all types of aerosols,
secondary organic aerosols (SOAs) have received much attention in air quality studies
(e.g., [Kanakidou, 2005; Hallquist, 2009; Couvidat, 2013; Huang, 2014]). The formation
processes of SOAs in the atmosphere are complex, involve multiphase physicochemical
transformations, and are not yet well understood ([Hodzic, 2016]). After being emit-
ted into the troposphere, volatile organic compounds (VOCs) undergo multi-generation
gas-phase chemistry, forming oxidation products with low volatilities that may condense
on existing particles to form SOA through gas-particle partitioning under favorable at-
mospheric conditions ([Hallquist, 2009]). When SOAs are formed, SOA chemical aging
occurs due to successive oxidation of the first-generation oxidation products ([Donahue,
2006; Wang, 2018]). Due to a wide variety of VOC origins and SOA formation condi-
tions, the SOA composition and concentrations vary spatially and temporally. Generally,
VOCs can come from many sources, including biogenic emissions from vegetation, anthro-
pogenic emissions from human activities (such as transportation and manufacturing), and
biomass burning. [Guenther, 2012] reported a yearly production of approximately 1 000
Tg of biogenic VOCs, including 50 % from isoprene, 15 % from monoterpene, and 3 %
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from sesquiterpene. Although emissions of monoterpene and sesquiterpene are lower than
those of isoprene, they strongly influence SOA formation because of their higher yields
([Seigneur, 2019]).

In contrast to biogenic VOCs, anthropogenic VOCs are linked directly to human activ-
ity. Besides VOCs, anthropogenic emissions also include a range of other pollutants, such
as nitrogen oxides (NOx) and sulfur dioxide (SO2), which can alter aerosol formation.
Particularly, nitrogen oxides (NOx) are one of the most important pollutants influencing
SOA formation [Ng, 2007; Porter, 2021]. In addition to playing a role in the formation
and destruction of tropospheric ozone concentration and therefore affecting the oxidation
of precursors, NOx can react with the organic radicals (RO2) formed by the oxidation of
precursors and therefore affect the chemical pathways and SOA formation.

Current regulation efforts, e.g., on traffic, are leading to significant reductions in NOx
emissions [André, 2020]. It is generally considered that biogenic organic aerosol concen-
trations drop as a response to current emission regulations and decrease of anthropogenic
emissions, particularly in rural and peri-urban areas where oxidant concentrations (e.g.,
ozone) are predicted to decrease ([Sartelet, 2012; Shrivastava, 2019]). However, some
studies suggested that reducing anthropogenic emissions could potentially result in less
significant reductions in biogenic organic aerosol concentrations or even an increase (e.g.,
[Huang, 2020]). These non-linear effects could be attributed to competition between low-
NOx and high-NOx conditions or even to non-linear effects due to the interactions of
products formed from individual VOCs [Takeuchi, 2022]. This highlights the need for
further investigation into the influences of emission reduction on SOA formation. To
effectively regulate and mitigate the impact of anthropogenic emissions on the environ-
ment, it is necessary to accurately predict the influences of those emissions on aerosol
formation. This requires a comprehensive understanding of accurate VOC chemistry,
which involves the interactions between emissions and aerosol formation, including the
influences of environmental conditions and atmospheric pollutants.

Explicit chemical mechanisms, such as the Generator for Explicit Chemistry and Ki-
netics of Organics in the Atmosphere (GECKO-A), which is fully explicit, and the Master
Chemical Mechanism (MCM), which lumps reactions after first and second generations,
contains up-to-date knowledge on VOC chemistry derived from theoretical and experi-
mental studies. As a complement to MCM, the Peroxy Radical Autoxidation Mechanism
(PRAM) models auto-oxidation and the formation of extremely low-volatility organic
compounds (ELVOCs) from monoterpenes that are missing in MCM ([Roldin, 2019]).
However, the direct use of explicit chemical mechanisms in regional-scale modeling is
scarce due to the computational consideration ([Li, 2015]). Currently, three-dimensional
(3-D) Chemistry-Transport Models (CTM) often use implicit chemical mechanisms based
on a few model species and reactions to simulate the formation of organic aerosols. These
implicit mechanisms are usually built from chamber measurements, potentially lacking
some chemical pathways to depict SOA formation over contrasted regions adequately.
Widely used approaches to derive these implicit mechanisms of SOA formation are based
on the two-product Odum approach ([Odum, 1996]), the volatility basis set (VBS) ap-
proach [Donahue, 2006]), or the surrogate approach (e.g., [Couvidat, 2012]). In the one-
dimensional (1-D) VBS approach, organic compounds are divided into logarithmically-
spaced bins of similar saturation concentration. In the two-product Odum approach, the
oxidation of a VOC precursor is approximated by a reaction forming two lumped prod-
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ucts, which are semi-volatile and can condense onto the particle phase. In the surrogate
approach, these products are affected by surrogate molecules with representative physic-
ochemical properties for gas/particle partitioning. As detailed in the description of the
H2O mechanism ([Couvidat, 2012]), the surrogate approach allows taking into account
the hydrophilic properties of SOA and interactions between compounds. However, these
interactions are represented in a very simple way, especially as the surrogate molecules
are chosen arbitrarily, based on a few measurements only. To represent auto-oxidation
from monoterpenes, a simple chemical scheme built from the measurements of [Ehn, 2014]
was implemented in the implicit mechanism H2O ([Chrit, 2017]). 3-D simulations showed
the potentially large influence of auto-oxidation for SOA formation over the Mediter-
ranean ([Chrit, 2017]) and for ultrafine particle formation over the city of Paris ([Sartelet,
2022a]). However, the assumptions used in implicit mechanisms could lead to uncertain-
ties in the model evaluation of the response to regulation assessments.It is, therefore,
necessary to evaluate the models and their responses, taking into account the different
formation pathways, the non-linear effects due to the interaction of oxidation products,
and the dependency on environmental conditions.

To address this issue, the GENerator of Reduced Organic Aerosol Mechanisms (GENOA)
was developed by [Wang, 2022; Wang, 2023], generating concise semi-explicit SOA mech-
anisms from detailed chemical mechanisms. The generated SOA mechanisms preserve the
complexity of explicit SOA formation mechanisms within a size suitable for 3-D regional
simulations. Version 2.0 of GENOA ([Wang, 2023]) employs a parallel reduction approach,
allowing the processing of mechanisms from multiple SOA precursors simultaneously, and
it has been applied to monoterpene and sesquiterpene reduction.

In this work, to investigate SOA formation response to anthropogenic emission re-
duction, the GENOA-generated SOA mechanisms from monoterpene and sesquiterpene
are integrated into the 3-D CTM model CHIMERE coupled to the state-of-the-art aerosol
module SSH-aerosol and applied to simulations over Europe. With 3-D CHIMERE simula-
tions, the pollutant concentrations simulated with the GENOA-reduced SOA mechanisms
and the implicit H2O mechanism are compared, as well as differences in SOA formation for
a NOx emission reduction scenario. The model and the simulation set-up are detailed in
section 2. The CHIMERE concentrations simulated with implicit and semi-explicit chem-
ical mechanisms are compared with measurements in section 3.1 and inter-compared in
section 3.2. Finally, the influence of the mechanism on concentrations simulated with the
NOx emission reduction scenario is investigated in section 3.3. By exploring the relation-
ship between anthropogenic emissions, aerosol formation, and environmental conditions,
this study aims at contributing to our understanding of the complex interplay between
these factors and support the development of effective strategies for reducing the negative
impacts of anthropogenic emissions on air quality.

2 Method

2.1 Model overview
The 3D simulations are carried out with the CHIMERE CTM model ([Menut, 2021]).
The model was modified by coupling CHIMERE with the aerosol formation SSH-aerosol
([Sartelet, 2020]) based on a splitting approach, where the different processes (e.g., trans-
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port, chemistry, and aerosol dynamics) are solved sequentially. The model first solves
together all processes related to transport, deposition, and emissions. Then the model
calculates the evolution of concentrations due to chemical reactions. In the last step,
CHIMERE launches SSH-aerosol to solve all processes related to aerosol dynamics (con-
densation/evaporation of semi-volatile compounds and coagulation).

In SSH-aerosol, the gas-particle partitioning is computed with the thermodynamic
module SOAP ([Couvidat, 2015]) accounting for interactions between organic and inor-
ganic compounds based on the molecular structure of the molecules (i.e., non-ideality of
aerosol). In the current study, thermodynamic equilibrium is assumed for gas-particle
partitioning. For the particle size discretization, a sectional approach is used with 10
sections and diameters ranging from 10 nm to 10 µm.

2.2 SOA mechanisms
The SOA formation in the gas phase is simulated with two different SOA chemical mecha-
nisms: the Hydrophilic/Hydrophobic Organic (H2O) mechanism and the GENOA-reduced
SOA mechanism. The H2O mechanism uses an implicit surrogate approach based on ex-
perimental data ([Couvidat, 2012; Majdi, 2019]). Each key SOA precursor is oxidized into
several model surrogate species with attached molecular structures representing lumped
aerosol species. Its latest version [Sartelet, 2020], which includes a simple chemical scheme
to represent the auto-oxidation of monoterpenes, is adopted in this work.

As a mechanism reduction algorithm, GENOA v2.0 generates semi-explicit SOA mech-
anisms by reducing near-explicit chemical mechanisms, preserving their complexity of
VOC chemistry for SOA formation. The GENOA-reduced SOA mechanism, hereafter
referred to as "GBM" for GENOA Biogenic Mechanism, was trained by the GENOA v2.0
algorithm ([Wang, 2023]), for the degradation schemes of biogenic SOA precursors, in-
cluding one C15 surrogate (i.e., humulene) representing all sesquiterpenes and three C10
surrogates (i.e., α-pinene, β-pinene, limonene) representing all monoterpenes. As done
in H2O and following [Pun, 2006], the α-pinene and β-pinene mechanisms were adopted
to represent the SOA formation from sabinene and carene respectively. The limonene
mechanism was used to represent the SOA formation from the rest of the MT precursors.
The degradation schemes of limonene and ocimene are identical except for the initial
degradation rates. For other SOA precursors (i.e., isoprene and aromatics), GBM uses
the same SOA schemes as in H2O. For simplicity and clarity, abbreviations are adopted
for the repeatedly mentioned organic names listed in Table 4.1.

Full name Abbr. Full name Abbr.
sesquiterpene SQT monoterpene MT

humulene HUM α-pinene API
β-pinene BPI limonene LIM
ocimene OCI

Table 4.1: Abbreviations for organic species mentioned in this work.

The MT SOA scheme of GBM is trained from MCM and the Peroxy Radical Autox-
idation Mechanism (PRAM, developed by [Roldin, 2019]). MCM describes the detailed
degradation schemes of three MT species (i.e., API, BPI, and LIM) with O3, OH, and
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NO3 radicals, while PRAM completes the MCM schemes with the formation of highly
oxygenated molecules (HOMs) from MT. The GBM’s MT SOA scheme contains 198 re-
actions and 107 species (including 24 condensables), reduced from 3 001 reactions and
1 227 species (including 738 condensables). As for HOMs, 30 reactions and 14 HOM
species, including five condensables (i.e., three C10 monomers and two C20 dimers), are
preserved in GBM from PRAM. The detailed training processes have been reported by
[Wang, 2023]. The reaction pathways leading to the formation of MT HOM SOAs and
all MT SOAs are shown in Figs. 4.1 and 4.22, respectively. The SQT SOA scheme of
GBM is also obtained from GENOA v2.0, where the VOC degradation scheme of SQT in
MCM (as β-caryophyllene) was used as the reference mechanism. After the reduction in
GENOA v2.0, the scheme includes 30 reactions and 21 species (including 8 condensables),
down from 1 626 reactions and 579 species (including 356 condensables). The SQT SOA
scheme in GBM is presented in Fig. 4.4, and the scheme in H2O can be presented by
Eq. 4.1, where oxidants include O3, OH, and NO3 radicals.

HUM + oxidants → 0.74BiBmP + 0.26BiBlP + oxidants (4.1)

Figure 4.1: Reaction pathways of the MT SOA scheme illustrating HOM formation in the
GBM mechanism trained from the PRAM mechanism.

A comparison of the size of the H2O and GBM mechanisms derived from MT and
SQT precursors can be found in Table 4.2, in terms of the numbers of reactions, gas-
phase species, gas-phase condensable species, highly oxygenated molecules (HOMs), and
organic peroxy radicals (RO2s). Compared to H2O, GBM preserves more species and
reactions, which are indicative of the greater complexity of gas-phase chemistry in SOA
formation.

For the MT scheme in H2O, non-HOM species "BiA0D", "BiA1D", "BiA2D" and
"BiNIT" are formed by oxidation of monoterpenes, representing hydrophilic non-dissociative,
hydrophilic monoacid, hydrophilic diacid, and hydrophobic nitrate, respectively ([Couvi-
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Figure 4.2: Reaction pathways of the monoterpene SOA scheme in the H2O mechanism
regarding the formation of non-HOM species.

Figure 4.3: Reaction pathways of the monoterpene SOA scheme in the H2O mechanism
regarding the formation of HOM species, i.e., Monomer and Dimer. Species tRO2, RpO2,
RppO2, RpppO2, RelvocO2 are peroxy radicals derived from monoterpene oxidation with
Ozone, while "Air" indicates the destruction of tRO2 and RpO2 concentrations.
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Figure 4.4: Reaction pathways of the sesquiterpene SOA scheme in the GBM mechanism
illustrating the SOA formation. Degradation pathways that do not form SOA are not
shown.

Precursor MT SQT
Mechanism H2O GBM H2O GBM
Reaction a 22 198 3 30

Species 15 107 3 21
Condensables 6 24 2 8

HOMs 2 5 0 0
RO2s 5 40 0 6

Table 4.2: Number of components in the SOA mechanisms H2O and GBM for MT and
SQT oxidations

a same degradation kinetic rate of API, BPI, and LIM in H2O and GBM as in MCM.
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dat, 2012]). Meanwhile, two hydrophobic surrogates "Monomer" and "Dimer" with 5 RO2
species represent the SOA chemical aging and HOM formation from RO2-RO2 reactions
and HO2 reactions, as shown in Fig. 4.3. The stoichiometric ratios and partitioning co-
efficients in the H2O MT SOA scheme are derived from experimental data. As shown by
the reaction pathways in Fig. 4.2, where only first-generation degradation is considered
for non-HOM SOA formation in H2O, and reactions with inorganics (e.g., NO, HO2) are
not taken into account.

The MT scheme in GBM is more complex, as it is reduced from the near-explicit
VOC mechanisms. The scheme attempts to preserve the responses of multi-generation
oxidations (up to 13 generations) on SOA formation and aging for the degradation of API,
BPI, and LIM. As a result, GBM contains reaction pathways common to two or three MTs,
as well as pathways specific to one MT. The influences of inorganics on MT SOA formation
are considered, as GBM includes 40 reactions with NO, 6 with NO2, 35 with HO2, and
2 with H2O, respectively. Furthermore, for the 24 condensables, their condensations on
both the organic and aqueous aerosol phases are computed during partitioning (to be
assumed as both hydrophilic and hydrophobic aerosols).

The RO2-RO2 reactions of GBM between two organic peroxy radicals (RO2s) are per-
formed using a "RO2" pool that sums the concentrations of RO2 species derived from the
targeted SOA precursors and the background RO2s. Background RO2 concentrations are
the sum of the RO2 concentrations from inorganic reactions and the RO2 concentrations
from the other SOA precursors. In GBM, the MT RO2 pool contains 22 MT RO2 species
and contributes to 30 reactions. For the MT HOM formation, as shown in Fig. 4.1, all 5
MT HOMs can be directly formed through RO2-RO2 reactions, while for non-HOM, the
RO2-RO2 reactions products can react with NO or HO2 to form condensables.

As for the SQT degradation, two hydrophobic organics with low and medium satu-
ration vapor pressure, i.e., BiBlP and BiBmP, are adopted in the H2O mechanism. In
the GBM mechanism, there are 8 condensables from 30 multi-generational oxidations,
including 8 reactions with NO, 4 with HO2, and 2 with H2O. As for RO2-RO2 reactions,
only one reaction is preserved from GENOA reduction (see Fig. 4.4). A SQT RO2 pool
consisting of the background RO2 and the SQT RO2 species "mBCALBO2", is used to
compute the formation of the condensable "C136PAN".

For comparison, the initial degradation rates of VOC oxidation in H2O and GBM
mechanisms are set to be consistent with each other. Consequently, the gas-phase VOC
degradation and inorganic variations simulated with the two mechanisms are identical.

In 3-D simulations using the H2O mechanism, the parameterization of [Pun, 2007] is
usually used to account for intraparticle reactions (such as oligomerization) over acidic
particles, increasing the partitioning of pinonaldehyde. For example, [Lemaire, 2016]
showed that SOA formed via this parameterization could represent 50 % of the simulated
concentrations of total biogenic SOA. While theoretically possible, the reactive uptake
of pinonaldehyde on an acidic particle was shown to be too slow to be significant under
atmospheric conditions ([Couvidat, 2018a]). Therefore, in this study, simulations with
H2O were performed with and without activating this parameterization.
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2.3 Configuration of simulations
Simulations are performed over Europe (latitudes from 32 °N to 70 °N and longitude from
17 °W to 39.8 °E), with a horizontal resolution of 0.25 °×0.4 °. The OA concentrations and
compositions from 1 June to 31 August 2018 are investigated, considering that biogenic
aerosol formation is expected to be significant during the summer. All simulations started
15 days before (on 15 May) to minimize the influence of initial conditions. Boundary
conditions are taken from CAMS CIFS global model simulations ([Flentje, 2021]). Mete-
orology was obtained from the operational analysis of the Integrated Forecasting System
(IFS) model of the European Centre for Medium-Range Weather Forecasts (ECMWF)
([Flentje, 2021]). The anthropologic emissions of gas and particles were taken from the
CAMS-REG-AP inventory (version v5.1_REF2.1) ([Kuenen, 2022]).

2.4 Computation of biogenic emissions
Biogenic emissions for CHIMERE are calculated in CHIMERE with the MEGAN v2.1
algorithm ([Guenther, 2012]), as described in [Couvidat, 2018b; Menut, 2021]. How-
ever, recent studies indicate that there is considerable uncertainty in the estimation of
biogenic emissions, up to a factor of two to three at the global level, and even higher
values at the regional level ([Messina, 2016; Sindelarova, 2022]). Studies also reported
that biogenic emissions computed with MEGAN over Europe might approximately be
significantly overestimated for isoprene by a factor of 3, while underestimated for MT by
a factor of 3 ([Jiang, 2019; Ciccioli, 2023]). With higher emissions of MT, [Jiang, 2019]
shows better model performance in simulated SOA concentrations.

Therefore, several simulations were performed in this study with either the default
MEGAN emissions or with the MT and SQT emissions increased by a factor of 3 but with
emissions of isoprene decreased by a factor of 3. While the underestimation of emissions
may vary spatially and temporally, the use of these simple factors should provide a good
estimation of the uncertainties related to biogenic emissions.

2.5 Observation
The observation data is extracted from the EBAS website (https://ebas.nilu.no/,
last access: 2023/01/01). EBAS is a dataset that hosts atmospheric measurement data
from various national and international programs. As this study is focused on the or-
ganic aerosol formation, the comparisons with observations concentrate on available data
during the simulation period for PM2.5, PM10 total concentrations as well as organic con-
centrations, i.e., organic carbon mass in PM2.5 (OCP M2.5), organic carbon mass in PM1
(OCP M1), and organic mass in PM1 (OMP M1 . The model to measurement comparisons
for inorganic gaseous and other particulate pollutants (i.e., O3, NO2, particulate nitrate
(pNO−

3 ), particulate ammonium (pNH+
4 ), particulate chloride (pCl−), particulate sodium

(PNa+), and particulate sulfate (pSO2−
4 )) are presented in the Fig. 4.21.

Statistical indicators, i.e., Mean Fractional Errors (MFE) and Mean Fractional Bias
(MFB), are adopted for analysis. MFE and MFB are calculated by Eqs. 4.2 and 4.3,
respectively, where Cmod

i and Cmea
i are the simulated and the measured concentrations of

the targeted compound at time i (N is the total number of time steps). The following
two criteria reported by [Boylan, 2006] have been used in many studies for evaluating the
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model performance (e.g., [Couvidat, 2018b; Lannuque, 2020]): For a model performance
to be considered acceptable, MFE and MFB should be in the range of 75 % and ± 60 %,
respectively. The performance should fall within the range of 50 % and ± 30 % for
MFE and MFB to be considered close to the best values a model can achieve. These
evaluation criteria together with other statistical (i.e., correlation, the root mean square
error (RMSE)) indicators are used in this study.

MFE = 1
N

N∑
i=1

2|Cmod
i − Cmea

i |
Cmod

i + Cmea
i

(4.2)

MFB = 1
N

N∑
i=1

2(Cmod
i − Cmea

i )
Cmod

i + Cmea
i

(4.3)

3 Results and discussion

3.1 Comparison between simulation results and measurements
In this section, the 3-D simulation results modeled with different SOA mechanisms are
compared with the measurements. In order to determine the best configurations, a total
of six simulations are conducted with the GBM and H2O mechanisms, considering or not
the modified biogenic emissions and oligomerization. The details of the simulations are
listed below with the corresponding identifiers used in the analysis:

• "GBM": Simulation with the GBM mechanism.

• "GBM-bio3": Simulation with the GBM mechanism and modified biogenic emissions
(triple for MTs and SQTs, and one-third for isoprene).

• "H2O": Simulation with the H2O mechanism.

• "H2O-oligo": Simulation with the H2O mechanism and activated oligomerization for
monoterpene oxidation according to the parameterization of [Pun, 2007].

• "H2O-bio3": Simulation with the H2O mechanism and modified biogenic emissions
(same emission as for the GBM-bio3 simulation).

• "H2O-oligo-bio3": Simulation with the H2O mechanism, activated oligomerization,
and modified biogenic emissions.

The comparisons for inorganic gaseous and particulate pollutants between simula-
tions and measurements can be found in Fig. 4.21, in terms of MEGAN and MFB. For
inorganic pollutants, the results show that all simulations estimated similar inorganic
concentrations, suggesting that modifications in SOA mechanisms and biogenic emissions
have negligible effects on inorganic gaseous and particulate concentrations. The similarity
is predictable since the modifications do not directly influence inorganic chemistry and
gas-to-particle partitioning. Compared to the measurements, most of the inorganic con-
centrations estimations are acceptable, except for particulate sulfate (pSO−

4 ), whose MFB
value is about 70 %.
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Figure 4.5: MFE and MFB of the different investigated simulations compared to mea-
surements for concentrations of PM2.5, PM10, OCP M2.5 , OCP M1 , and OMP M1 .

Figure 4.5 presents the comparisons between simulation results and the measurements
in terms of MFE (Fig. 4.5a) and MFB (Fig. 4.5b) for concentrations of PM2.5, PM10,
OCP M2.5 , OCP M1 , and OMP M1 . The numbers of selected observatory stations and com-
pared measurements are listed in Table 4.3. While data are available for a significant
number of stations for OCP M2.5 , data for only a few stations are available for OCP M1 and
OMP M1 . For OCP M1 , only two stations with available data are found for the simulation
domain during the simulation period. For OMP M1 , 4 stations are initially found. How-
ever, two stations are not taken into account as they introduce significant uncertainties
in the comparison: one is the Puy de Dôme observatory station in France (EMEP station
code: FR0030R) on top of an extinct volcano at an altitude of 1 471 m that differs sig-
nificantly of the average altitude of the corresponding cell (16.9 m), indicating that the
resolution of the model is not sufficient to reproduce the local topography in the vicinity
of this station. The other station is the only urban station of the database and is located
near Lille (EMEP station code: FR0027U). Therefore, a very high resolution would be
necessary to perform a suitable comparison at this station.

According to MFB values recorded in Fig. 4.5b, all simulations with non-modified bio-
genic emissions (GBM in green circle, H2O in orange triangle, H2O-olig in cyan triangle)
underestimate the aerosol concentrations compared to measurements. This underesti-
mation could be explained by an underestimation of biogenic emissions over Europe by
MEGAN 2.1 as explained previously (see Sect.2.4).

For simulations with modified biogenic emissions, the simulation results of GBM-
bio3 (blue circle in Fig. 4.5) and H2O-bio2 (purple triangle in Fig. 4.5) are significantly
improved compared to the results simulated with the original biogenic emissions in both
MFE and FMB values for organic aerosols (i.e., OCP M2.5 , OCP M1 , and OMP M1) as well as
PM2.5 and PM10. The results are consistent with the results of [Jiang, 2019; Ciccioli, 2023]
who reported that underestimations on simulated SOA concentrations could be explained
by an underestimation of biogenic emissions by MEGAN2.1.

With non-modified biogenic emissions, the H2O-olig simulation improves the quality of
the results in terms of MFB and MFE (e.g., MFB reduced from -0.99 to -0.48 for OMP M1).
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However, this parameterization may artificially increase the SOA mass and compensate
for errors in biogenic emissions. The performance of H2O-olig (MFB = -0.73, MFE =
1.06 on OCP M2.5) is lower than the performance of H2O (MFB = -1.12, MFE = 1.21, on
OCP M2.5). Moreover, when accounted for the modified biogenic emission, H2O-olig-bio3
leads to a clear overestimation of concentrations (MFB = 0.19, MFE = 0.92, on OCP M2.5).
Based on all these results and the fact that the parameterization of [Pun, 2007] leads to
an overestimation of pinonaldehyde condensation, we considered that the GBM-bio3 and
H2O-bio3 are the most reliable configurations.

Moreover, the statistical analysis shows that the results simulated with the GBM mech-
anism are closer to the measurement (with lower MFE and MFB values) than those sim-
ulated with the H2O mechanism, suggesting that simulations with the GBM mechanism
have better performances in SOA concentrations than those with the H2O mechanism.
The GBM mechanisms may simulate SOA concentrations closer to the measurements than
those simulated with the H2O mechanism, indicating that the detailed SOA mechanism
may improve the performance of SOA simulation in current 3-D modeling.

Overall, the comparison with the measurements suggests that the simulations with
GBM-bio3 and H2O-bio3 have better performances than other simulations. As shown
in Fig. 4.5, the two simulations have MFE and MFB mostly in acceptable ranges for
particulate concentrations except for OCP M2.5 , where H2O-bio3 has an MFE of 83 %
above the acceptable threshold of 75 % defined by [Boylan, 2006]. Table 4.3 provides
more information about the measurement comparison of the GBM-bio3 and H2O-bio3
simulations, including the number of measurements adopted for evaluation, measured
and simulated mean concentrations, correlation, and RMSE. The results show that the
GBM-bio3 simulation has higher correlation and lower RMSE values than the H2O-bio
simulation, indicating a better performance simulated with the GBM-bio3 simulation than
the H2O simulation. For the purpose of further investigation, the configurations of the
GBM-bio3 and H2O-bio3 simulations are applied, as these two simulations have the best
performances compared to the measurements.

3.2 Comparison between the implicit and detailed SOA mech-
anisms

3.2.1 Comparison of organic aerosol concentrations

The 3-D results simulated using the GBM and H2O mechanisms with modified biogenic
emissions (one-third of isoprene emissions and triple of MT and SQT emissions estimated
with MEGAN v2.1) are compared in this section. As no noticeable differences are observed
in the concentrations of oxidants and inorganic gas-phase and particle pollutants simulated
with the two mechanisms, the comparison between the two simulations focuses mainly
on organic aerosol (OA) concentrations. For simplicity, the simulations are referred to by
their SOA mechanism name, i.e., GBM and H2O, for the following discussion.

Figure 4.6 shows the mass distribution of the total OA concentrations simulated with
GBM (Fig. 4.6a), as well as the absolute concentration differences between GBM and H2O
simulations (Fig. 4.6b). Over the whole simulation period (from June to August 2018), the
GBM mechanism simulates an average OA concentration over the domain of 2.1 µg/m3

(maximum of 15.8 µg/m3), while H2O simulates a concentration of 1.7 µg/m3 (maximum
of 17.3 µg/m3). With the GBM simulation, 95 % of OA average concentrations are
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Table 4.3: Statistics analysis for comparing with measurements the simulated daily con-
centrations of simulations with GBM-bio3 and H2O-bio3.

PM10 PM2.5 OCP M2.5 OCP M1 OMP M1

No. station 80 61 25 2 2
No. measurement b 92 89 16 17 25
Measurement mean 13.5 7.9 2.5 2.3 4.2

Simulation with GBM - bio3
Mean 9.3 7.2 2.4 3.1 5.7
RMSE 7.7 4.5 2.3 2.4 3.3

Correlation 0.62 0.64 0.72 0.39 0.84
MFB -0.37 -0.09 -0.27 0.08 0.12
MFE 0.48 0.41 0.72 0.56 0.38

Simulation with H2O - bio3
Mean 8.9 6.7 2.6 3.6 5.9
RMSE 8.1 4.8 3.0 3.4 3.9

Correlation 0.59 0.62 0.69 0.41 0.82
MFB -0.42 -0.16 -0.32 0.13 0.10
MFE 0.52 0.45 0.83 0.71 0.41

b the sum of all stations. Noted that the measurements have been converted to the daily
average for comparison.

(a) GBM Conc. (µg/m3) (b) GBM. - H2O Conc.(µg/m3)

Figure 4.6: Average organic aerosol concentrations simulated with the GBM mechanism
(a) and differences with the H2O mechanism (b) during June-August 2018.
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simulated in the range of 0 µg/m3 to 5.5 µg/m3, and 99 % of those lower than 8.0 µg/m3.
As shown in Fig. 4.6a, high OA concentrations (≥ 5 µg/m3) are observed in central Europe
between 35 °N and 50 °N, and in northern Europe, between 55 °N to 65 °N, while extreme
high OA concentrations above 10 µg/m3 are observed in the western Balkan Peninsula,
near Bosnia. Those locations with high OA concentrations are consistent with the places
with high biogenic emissions.Compared to H2O, GBM generally simulates higher OA
concentration over most continental areas of Europe. In Eastern Europe, near the Baltic
Sea, Southern Spain, and north of the Mediterranean Sea, the simulated OA concentration
differences are in the range of 1 µg/m3 to 1.6 µg/m3 (The highest increase of 1.6 µg/m3

is found near the Baltic Sea). However, as shown in Fig. 4.6b, H2O produces more SOA
than GBM in central Europe (up to 3.2 µg/m3 difference is found near Bosnia), at the
place corresponding to high SOA concentrations and biogenic emissions.

3.2.2 Comparison of OM/OC ratios

(a) GBM (b) H2O

OM:OC ratio

Figure 4.7: Average organic mass to organic carbon (OM:OC) ratios simulated with GBM
(a) and H2O mechanisms (b) during June-August 2018.

The map distributions of OM:OC ratios simulated with GBM and H2O are presented
in Fig. 4.7. A higher OM:OC ratio is simulated with the GBM mechanism with an average
of 1.81 (ranging from 1.34 to 2.14), compared to the ratio simulated with H2O with an
average of 1.64 (ranging from 1.32 to 1.85). The OM/OC ratio distribution indicates that
more oxidized products are simulated with GBM than with H2O, which is consistent with
the reaction pathways as more oxidized organics derived from high-generation oxidation
are included in GBM. High-generation oxidation is referred to the succession oxidation
steps after the first and the second generations.

However, due to the low amount of reported data on the OM/OC ratio, it is difficult
to determine which simulated ratios are the most realistic ones. [Turpin, 2001] reported
a ratio of 2.1 in rural sites in the US. Over Europe, [Poulain, 2011] reported an OM/OC
ratio of 1.75 at Melpitz (in eastern Germany) during the summer of 2008. A ratio of 1.95
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and 1.75 was simulated during the summer of 2018 with the GBM and H2O mechanisms,
respectively, suggesting a potential overestimation of the ratio by the GBM mechanism.
However, the CHARMEX summertime measurements over the Mediterranean indicate a
ratio of 2.34 at Ersa in Corsica and 1.97 at Mallorca in the summer of 2013 ([Chrit, 2017;
Sartelet, 2022b]). The OM/OC ratio could then be underestimated at these two locations
by the GBM mechanism (1.95 at Ersa and 1.85 at Mallorca).

3.2.3 Comparison of MT and SQT SOA

In the total organic mass simulated with GBM, MT SOAs account for approximately 45 %,
SQT SOAs account for 41 %, and isoprene SOAs account for 0.3 %. Similar proportions
with slight decreases are also observed with the H2O mechanism, where MT, SQT, and
isoprene account for approximately 43 %, 41 % and 0.2 %, respectively. The results show
that biogenic SOAs, particularly the SOAs from MTs and SQTs, dominate the total OA
concentrations over Europe during the 2019 summertime for both simulations, with a
contribution of roughly 85 % with both mechanisms. The result is consistent with sev-
eral studies demonstrating the dominance of biogenic proportions in SOA concentrations,
particularly in rural and suburban areas (e.g., [Kelly, 2018; Hong, 2022]).

To further investigate the variations in aerosol formation, the total OA concentra-
tions are divided into three categories: MT SOAs, SQT SOAs, and other OAs. Fig-
ure 4.8 presents their concentration distributions simulated with the GBM mechanism
(left panels), as well as the absolute concentration differences between GBM and H2O.
Average concentrations of 0.96 µg/m3, 0.88 µg/m3, and 0.29 µg/m3 of MT, SQT, and
other SOA were simulated with GBM over the domain, respectively, against 0.73 µg/m3,
0.70 µg/m3, and 0.27 µg/m3 simulated with H2O. High MT and SQT SOA concentrations
(≥ 2 µg/m3)are simulated with GBM in central and northeast Europe (See Fig. 4.8a and
Fig. 4.8c). The highest concentrations (7.3 µg/m3 for MT and 6.2 µg/m3 for SQT) are
found near Bosnia. For other OAs (Fig. 4.8e), average concentrations are generally lower
than 1.2 µg/m3, except in Northern Italy where concentrations of other SOAs locally
reach 3.8 µg/m3 due to high concentrations of aged primary organic aerosols (3.5 µg/m3).

As GBM uses the same mechanism as H2O for other SOA, no clear differences were
found between the two simulations for other SOA concentrations (Fig. 4.8f). The dif-
ferences in total SOA concentrations shown in Fig. 4.6 can therefore be explained by
differences in MT and SQT SOAs. Both MT and SQT SOAs simulated with GBM de-
creased in part of Central Europe compared to the H2O results, with a decrease down to
1.6 µg/m3 for MT and 1.8 µg/m3 for SQT. In northern Europe, GBM simulates more MT
SOAs (up to 1.1 µg/m3) but fewer SQT SOAs (-0.5 µg/m3 to -0.1 µg/m3). These results
indicate that H2O simulates higher SOA concentrations than GBM for regions with high
OA concentrations (e.g., Central Europe with high biogenic emissions). However, for the
other regions of Europe, higher concentrations of MT-SOA and SQT-SOA were simulated
with the GBM mechanism.

3.2.4 Comparison of HOM and non-HOM concentrations

Depending on the aerosol properties, MT SOAs can be further divided into non-HOM
and HOM SOAs. While some compounds in the MCM (and therefore some compounds
formed by aging in the GBM mechanism) can be considered as HOM (because of a high
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GBM Conc. (µg/m3) GBM - H2O Conc. (µg/m3)

MT
SOA

SQT
SOA

Other
OAs

Figure 4.8: Maps of SOA concentrations derived from monoterpene, sesquiterpene, and
other SOA precursors simulated with the GBM (left panels) and differences with the H2O
mechanism (right panels).
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GBM Conc. (µg/m3) GBM - H2O Conc. (µg/m3)

Non
HOM

t

HOM

Figure 4.9: Average concentrations of non-HOM (top panels) and HOM MT SOAs (bot-
tom panels) simulated with the GBM mechanism (left panels) and concentration differ-
ences with the H2O mechanism (right panels) during June-August 2018.
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O/C ratio), for the purpose of the comparison, we only considered as HOM compounds
formed by auto-oxidation and RO2 dimerization in both mechanisms (species originating
from PRAM in GBM; Monomer and Dimer species in H2O).

Figure 4.9 presents the concentration distributions of non-HOM and HOM MT-SOAs
simulated with GBM, as well as the absolute concentration differences between results
simulated with GBM and H2O. Overall, HOMs dominate the total MT SOAs, accounting
for 62 % (0.60 µg/m3 on average) and 93 % (0.68 µg/m3) of MT SOAs simulated with
GBM and H2O, respectively. High HOM concentrations up to 4.4 µg/m3 and 7.7 µg/m3

and high non-HOM concentrations up to 3.2 µg/m3 and 1.3 µg/m3 are found in central
Europe simulated with GBM and H2O, respectively.

(a) non-HOM MT SOAs (b) HOM MT SOAs

Figure 4.10: Composition of non-HOM (a) and HOM (b) MT SOAs simulated with the
GBM mechanism during June-August 2018. The fraction "Others" represents the sum of
SOA species with a concentration contribution of less than 5 %.

As mentioned previously in Sect. 2.2, both GBM and H2O involve the formation of
non-HOMs and HOMs from MTs, with the GBM mechanism containing more details than
the H2O mechanism involving multi-generation oxidation and a more complex dependency
on inorganic radicals.

Figure 4.10 shows the compositions of non-HOM and HOM MT SOAs simulated with
GBM. As shown in Fig. 4.10a, species greatly contribute to non-HOM SOAs formed under
low NOx conditions (compounds formed from RO2 reacting with HO2). Among them,
the first-generation oxidant products derived from ozonolysis of LIM, pLIMALOOH, con-
tribute to 42 % of non-MT SOAs, indicating LIM has higher SOA yields than API and
BPI. Other non-HOM species having contributions above 5 % shown in Fig. 4.10a are all
second-generation or higher products. Together these second-generation or higher species
account for 59 % of total non-HOM SOAs, showing that a significant fraction of non-HOM
MT SOAs is due to SOA aging. As reaction pathways of multi-generation oxidation re-
flecting SOA aging for non-HOM species are absent in H2O, the non-HOM concentrations
simulated with H2O are much lower than those simulated with GBM. These results are
consistent with the higher OM:OC ratio with GBM shown in Fig. 4.7 indicating more
oxidized SOA.
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Figure 4.11: Distribution of mC10H16O11 concentration in HOM MT SOA concentrations
(%).

As shown in Fig. 4.10b, out of a total of five HOM species in GBM, mC10H16O11
contributes 82.9 % of HOM SOAs, followed by mC10H16O8iso2 contributing 16.4 %.
Both mC10H16O11 and mC10H16O8iso2 are terminal species resulting from multiple
auto-oxidation steps. The two dimer species resulting from RO2 dimerization and the
remaining HOM species account for 0.7 % of the total HOMs, indicating that auto-
oxidation is the major HOM formation pathway. The map distribution of the dominant
HOM species, mC10H16O11, is shown in Fig. 4.11. In Eastern Europe, mC10H16O11
can account for up to 90.8 % of HOMs at places observed with high HOM concentrations.
Compared to GBM, the highly simplified mechanism of H2O resulted in high HOM SOA
concentrations. A total of 46 % of MT SOAs simulated with H2O are pMonomer, 47 %
are pDimer, 6 % are pBiNITs (SOA formed by MT + NO3), and the remaining species
(including BiA0D, Bi1D, BiA2D, BiA3D) counts for 1 %.

Figure 4.12: Composition of SQT SOAs simulated with the GBM mechanism.

As for SQT SOA concentrations, GBM adopts 8 condensables involved in 30 reac-
tions (shown in Fig. 4.4) to describe the SOA formation and aging process. Figure 4.12
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presents the composition of SQT SOAs simulated with GBM. It shows that two condens-
ables mC132OOH (51 %) and C131CO2H (35 %) dominate the SQT SOA concentrations,
followed by mBCSOZNO3 accounting for 6 % and C133CO for 5 %. mC131CO2H is the
main first-generation oxidation product from the ozonolysis of sesquiterpenes, while pBC-
SOZNO3 is the first-generation product from the OH-initiated reaction and inorganic re-
action with NO. mC132OOH is a lump species representing third and all higher-generation
oxidation products. As this last species is the dominant SQT-SOA species, these results
suggest that higher-generation products from SQT oxidation make significant contribu-
tions to atmospheric SOA formation.

Figure 4.12 shows the map distribution of C131CO2H and mC132OOH concentrations.
It is shown that high C131CO2H contributes more SQT SOAs in central Europe, while
mC132OOH is produced more in northern Europe. As shown in Eq. 4.1, H2O adopts only
a single oxidation step and two SOA species to simulate the SQT SOA formation process.
BiBmP (SVOC compounds from sesquiterpene with medium volatility) represents 48 %
of SQT-SOA and BiBlP (SVOC compounds from sesquiterpene with low volatility) is the
remaining fraction. Due to the single oxidation in H2O, the mechanism may be unable to
track SOA aging contrary to GBM.

(a) C131CO2H (b) mC132OOH

Contribution to SQT SOAs (in %)

Figure 4.13: Distribution of dominant SQT SOA species in total SQT SOA concentrations
simulated with the GBM mechanism. Their contributions to SQT SOA can be found in
the GBM SQT scheme in Fig. 4.4.

3.3 Response of biogenic SOA concentrations to NOx emission
reduction

Since SOA formation involves multigenerational reactions and multiphase transforma-
tions, its potential reaction to anthropogenic reduction is highly nonlinear. NOx (i,e, NO,
NO2, HONO) profoundly affects SOA concentration and composition, either by partic-
ipating in the oxidation pathways or by forming secondary inorganic aerosols that may
interact with the gas-particle partitioning of organic compounds. In this section, both
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the GBM and H2O mechanisms are used to evaluate changes in SOA concentrations due
to NOx emission reduction. An anthropogenic NOx emission reduction of 50 % over the
simulation domain is considered. The conditions before and after NOx emission reduction
are referred to as the "REF" and "NOx50" scenarios, respectively. The simulations are
conducted in June-August 2018 over Europe.

3.3.1 Effect of NOx reduction on concentrations of oxidants and radicals

(a) NO NOx50 - REF Conc. (%) (b) HO2 NOx50 - REF Conc. (%)

Figure 4.14: Relative differences in NO (a) and HO2 (b) concentrations between the
NOx50 and REF scenarios. Simulations are performed with the GBM mechanism.

To comprehend the effect of reducing NOx emissions on the formation of secondary
organic aerosols (SOAs), it is crucial to investigate how the reduction of NOx affects the
levels of oxidants and radicals involved in the formation of SOAs. The map of Fig. 4.14a
shows the distribution of relative differences in NO concentrations under the NOx and
REF scenarios. In response to a 50 % reduction in anthropogenic NOx emissions, the
simulated NO concentrations are reduced between 2 % and 80 % (30 % on average)
compared to the REF scenario. Similar decreases are also noted for NO2 concentration
changes (ranging from 3 % to 58 % with an average of 31 %), due to emission reduction
and the interdependence between NO and NO2.

Figure 4.15a, b, and c show the average relative changes in oxidant concentrations (i.e.,
O3, OH, and NO3) resulting from NOx reduction simulated with the GBM mechanism.
In most areas of Europe, decreases in concentrations were simulated for all oxidants but
to different extents, with an average reduction ratio of -6 % (up to 18 %) for O3, -34 %
(up to 72 %) for NO3, and -17 % (up to 41 %) for OH. However, oxidant concentrations
decrease less or even increase in some areas with high NOx emissions (along the shipping
routes in the Baltic Sea, North Sea, and English Channel, as well as in a few urban areas
near Moscow). The highest relative increases are simulated up to 19 % for O3, 104 % for
OH, and 38 % for NO3 in the English Channel near Dunkirk. These results may be due
to a reduction of O3 by the titration reaction in these regions, or to a reduction in the
rate of HNO3 production due to the termination reaction of NO2 with OH. After NOx

124



3. Results and discussion

(a) Ozone NOx50 - REF Conc. (%) (b) OH NOx50 - REF Conc. (%)

(c) NO3 NOx50 - REF Conc. (%) (d) Chemcial regime ratio in NOx50 a

Figure 4.15: Relative differences in oxidant concentration, i.e., Ozone (a), OH radical
(b), and NO3 radical (c) between the NOx50 and REF scenarios, as well as the chemical
regime ratio of NOx50 scenario. Simulations are performed using the GBM mechanism.
a The parameterization described in the CHIMERE documentation ([Menut, 2021]) is utilized
to compute the chemical regime ratio, which calculates the ratio of the reaction rate of RO2
radicals with NO (high-NOx regime) to the sum of reaction rates of the reactions with HO2

and RO2 (low-NOx regime).
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emission reduction, these areas remain under the high-NOx regime (see Fig. 4.15d), while
most places in mainland Europe are under the low-NOx regime.

As explained by [Sillman, 1999], under the low-NOx regime, NOx reduction limits
O3 formation by NO2 photolysis, leading to a decrease in O3, NO3, OH, and HO2, as
shown in the mainland Europe due to NOx reduction. Conversely, under the high-NOx
regime, a decrease in NOx concentrations results in an antagonistic effect that increases
O3 concentrations, as simulated in places near Moscow, the English Channel, and the
Strait of Gibraltar. Accompanying changes in Ozone concentrations were increases in
NO3, OH, and HO2 under the high-NOx regime and decreases under the low-NOx regime.
Moreover, for HO2, concentrations decrease slightly under the low-NOx regime (≤ 8.7 %)
and increase strongly under the high-NOx regime (up to 239 %), resulting in a slight
increase (0.4 %) on average.

Similar changes in radical and oxidant concentrations were observed for those simu-
lated with the H2O mechanism, as the H2O mechanism shares common inorganic reactions
and VOC degradation rates with the GBM mechanism.

3.3.2 Comparison of total organic aerosols and OC:OM ratio

GBM H2O

Total
OAs

Other
OAs

NOx50 - REF Conc. (µg/m3)

Figure 4.16: Absolute concentration differences in total OA (top panels) and OAs besides
MT and SQT SOAs (noted as "Other OAs", shown in the bottom panels) between NOx50
and REF scenarios simulated with the GBM (left panels) and H2O (right panels) mech-
anisms.
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The concentration differences in total SOAs as well as other OAs besides MT and SQT
SOAs due to NOx emission reduction are presented in Fig. 4.16. As a response to NOx
emissions, simulations using the detailed SOA mechanism suggest an overall increase in
organic aerosol concentrations (up to 0.68 µg/m3 in central Europe) with some decreases
in areas with high biogenic emissions (down to -0.31 µg/m3), whereas the simulations
with the implicit H2O mechanism estimated a lower increase over mainland Europe (up
to 0.27 µg/m3) with more decrease in central Europe (down to -0.31 µg/m3). On average,
the total OA concentrations increase by 0.08 µg/m3 and by 0.04 µg/m3 with the GBM
mechanism and H2O mechanism, respectively. These increases are consistent with the
changes in the sum of MT and SQT SOAs as a result of NOx reduction. For other
OAs presented in Figs. 4.16c and 4.16d, simulations with both mechanisms estimate
slight increases under the high-NOx regime and decreases under the low-NOx regime,
correspondent to the changes in oxidant concentrations, particularly O3 and OH.

(a) GBM (b) H2O

OM:OC ratio in NOx50 - REF

Figure 4.17: Absolute differences in organic mass to organic carbon (OM:OC) ratios
between NOx50 and REF scenarios simulated with the GBM (a) and H2O (b) mechanisms.

Figure 4.17 illustrates the organic mass to organic carbon (OM:OC) ratio changes
due to NOx reduction simulated with the GBM and H2O mechanisms. As a response
to NOx emission reduction, increases in OM:OC ratios are simulated with the GBM and
H2O mechanisms, with an average increase of the ratios by 0.02 and 0.01, respectively.
This evolution suggests that slightly more oxidized SOAs are formed when NOx emissions
are reduced, probably as a result of enhanced HOM formation of MT SOAs. Compared
to those simulated with the H2O mechanism, OM:OC ratios simulated with the GBM
mechanism show larger increases (up to 0.032 for GBM and 0.026 for H2O) due to more
oxidized SOAs produced from auto-oxidation. Some reactions with RO2 and HO2 may
also contribute to the increase in OM:OC ratios.

3.3.3 Comparison of MT SOAs

The impacts of NOx emission reductions on the average concentration of MT SOAs sim-
ulated using two mechanisms, GBM and H2O, were investigated. Figure 4.18 illustrates
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GBM H2O

MT
SOA

Non
HOM

HOM

NOx50 - REF Conc. (µg/m3)

Figure 4.18: Absolute differences in MT SOA concentrations (top), HOM MT SOA (mid-
dle), and non-HOM MT SOA (bottom) between NOx50 and REF scenarios, simulated
with the GBM (left panels) and H2O (right panels) mechanisms.
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the differences in total MT SOA, MT non-HOMs, and MT concentrations between the
NOx50 and REF scenarios. Notably, the simulated response of MT SOA to NOx reduc-
tion differs between the two mechanisms in response due to different responses of the SOA
mechanisms to the changes in oxidants and radical concentrations.

On average over the simulated domain, both mechanisms predict an increase in MT
SOAs due to NOx emission reduction, but the GBM mechanism predicts a larger increase.
The average increase with GBM is around 0.09 µg/m3, corresponding to a 15 % relative
difference, while the increase with H2O is around 0.03 µg/m3 (10 %). When separating
the total MT SOAs into non-HOM and HOM concentrations, it is observed that the GBM
mechanism estimates increases of SOAs in both non-HOM (0.04 µg/m3 corresponding to
24 % relative difference) and HOM (0.046 µg/m3 or 10 %) species as a response to NOx
emission reduction. In contrast, the H2O mechanism estimates an increase for HOM
species (0.043 µg/m3 or 10 %) but a decrease for non-HOM MT species (-0.01 µg/m3

or -2 %). It is noted that for HOM MT concentrations, the simulations of the two
mechanisms estimate a similar amount of increases on average, while higher peaks of MT
HOM concentrations are found with H2O at 0.72 µg/m3 against 0.46 µg/m3 simulated
with GBM.

The differences in the SOA mechanisms can explain the changes in SOA concentra-
tions. For non-HOM formation, the GBM mechanism preserves multi-generation oxida-
tion and the reactions of oxidized products (i.e., RO2 species) with NO, HO2, or another
RO2 species. Therefore, when anthropogenic NOx emission is reduced, RO2 radicals form
during the oxidation and will react preferentially with RO2 and HO2 in most places of
Europe as lower concentrations of NO are simulated. Depending on the chemical path-
ways that are favored, a decrease in NOx may either promote or impede the formation of
less volatile semi-volatile organic compounds (SVOCs). The reaction between RO2 and
NO results in the production of more volatile products such as aldehydes, ketones, and
organic nitrates in MT SOA formation ([Presto, 2005; Ng, 2007]), in contrast to the RO2
+ HO2 reactions that produce less volatile hydroxyperoxides. Therefore, a decrease in
NOx may lead to an increase in MT SOAs. Both [Xavier, 2019] and [Yu, 2021] reported
findings, demonstrating a negative correlation between the concentration of monoterpene
SOAs and NOx levels modeled with the MCM + PRAM mechanism. Furthermore, since
NOx reduction leads to a greater decrease in NO3 concentrations (34 %) than O3 (6 %)
and OH (17 %), there may be a reduction in the initial oxidation of precursors that results
from decreasing NOx.

The implicit H2O mechanism contains only a single oxidation step (as shown in
Fig. 4.2) which is only influenced by the degradation of precursors with the different
oxidants and does not account for the reaction of RO2 with the other radicals. Therefore,
the changes in non-HOM concentrations simulated with H2O directly reflect the changes
in oxidant concentrations (i.e., O3, OH, NO3), presenting a decrease in mainland Europe
while a small increase is simulated covering the Baltic Sea (at high-NOx regime due to
shipping pollution).

For HOM formation, the GBM mechanism preserves auto-oxidation and RO2 reactions
with NO, HO2, and RO2 that partially favor the termination of the auto-oxidation process.
The RO2 reactions with HO2 and RO2 are enhanced as a result of NOx emission reduction,
which further encourages auto-oxidation and leads to an increase in HOM concentration.

In the H2O mechanism, the RO2 - RO2 reactions and influences of NO and HO2 on
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HOM formation are also preserved but with a very simplified mechanism. As illustrated
in Fig. 4.3, in the H2O mechanism, NO does not directly participate in the HOM forma-
tion, it only contributes to the destruction of tRO2 species. On the contrary, HO2 not
only contributes to the destruction of tRO2 but also directly participates in the HOM
formation in the H2O mechanism, i.e., the formation of Monomer and Dimer. Therefore,
when reactions with HO2 and other RO2 species are favorable due to NOx reduction,
considerably more HOMs are produced with H2O.

The MT SOA compositions simulated with the GBM mechanism under the NOx50
scenario are presented in Fig. 4.23. No significant composition differences are observed
compared to the results under the REF scenario. Since most MT SOAs can be formed
from multiple reactions with NO, HO2, and RO2, changes in oxidants and NOx do not
result in notable changes in MT SOA composition. Overall, the results indicate that the
detailed GBM mechanism can preserve more complexity in the gas-phase chemistry of
MT SOA formation, particularly the pathways involving auto-oxidation, as well as RO2
reactions with HO2 and RO2. Those are critical for understanding the pathways and
factors affecting SOA concentrations in response to NOx emission reductions.

3.3.4 Comparison of SQT SOAs

(a) GBM (b) H2O

NOx50 - REF Conc. (µg/m3)

Figure 4.19: Effect on NOx reduction by 50% on SQT SOA concentrations simulated with
the GBM (a) and H2O (b) mechanisms.

The concentration differences in SQT SOAs between the NOx50 and REF scenarios
simulated with the GBM and H2O mechanism are also compared. Figure 4.19 presents
the simulation results for SQT SOA, where slight decreases (up to 0.22 µg/m3) in SQT
SOA concentrations over mainland Europe as a response to NOx emission reduction are
simulated with the GBM mechanism and no significant change (inferior to 0.022 µg/m3)
is simulated with the H2O mechanism. The changes in the total SQT SOA concentration
simulated with the GBM mechanism can be explained by a compensation between in-
creased SOAs from RO2 + HO2 reactions (i.e., C132OOH) and decreased SOAs from RO2
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+ NO reactions (i.e., mBCSOZNO3, mBCKSOZ, mC133NO3, and C133CO). The RO2 +
RO2 reaction in the GBM SQT SOA scheme does not lead to noticeable SOA formation
(≤ 1%) and therefore does not contribute to concentration changes. Figure 4.20 presents
the SQT SOA composition simulated with the GBM mechanism under the NOx50 sce-
nario. Notably, the composition of SQT SOA species and their distribution in total SQT
SOAs is highly akin to that simulated under the REF scenario (See Fig. 4.12). Compared
to the result simulated under the REF scenario shown in Fig. 4.12, the contribution of
mC132OOH in SQT-SOA is increased from 51 % to 53 %. The contribution of C133CO
in SQT-SOA is decreased from 5 % to 4 %. This confirms that SQT SOAs from RO2 +
HO2 reactions increase in response to reduced NOx emissions. In the case of simulations
with the H2O mechanism, NOx emissions are not expected to affect the SQT SOA con-
centrations, since the H2O mechanism adopts a highly simplified SQT scheme shown in
Eq. 4.1, disregarding the dependence of the NOx regime on SQT SOA formation.

Figure 4.20: Composition of SQT SOAs simulated with the GBM mechanism and NOx50
emission reduction scenario during June-August 2018.

4 Conclusion
In this study, the impacts of NOx emission reduction on SOA formation are investi-
gated using the three-dimensional (3-D) chemical transport model CHIMERE model and
a semi-explicit GENOA-generated biogenic SOA mechanism (GBM). The GBM mecha-
nism was generated by the GENerator of reduced Organic Aerosol mechanisms (GENOA)
version 2.0 and contains detailed degradation schemes of monoterpene (MT) and sesquiter-
pene (SQT) accounting SOA formation mechanisms reduced from the Master Chemical
Mechanism (MCM) for both MT and SQT and Peroxy Radical Autoxidation Mechanism
(PRAM) for MT. Aerosol concentrations and compositions are simulated over Europe for
the 2018 summer (June-August) using the GBM mechanism and the implicit Hydropho-
bic/Hydrophilic Organic mechanism (H2O) for comparison.

The results simulated with the two mechanisms (GBM and H2O) and different esti-
mations of biogenic emissions (regular biogenic emission estimated with MEGAN v2.1,
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and the modified biogenic emissions with one-third of isoprene and triple of MT and SQT
of the regular emission to account for the potential errors in biogenic emissions suggested
by the literature review) are first compared to the measurements. The results showed
that the 3-D simulations with regular MEGAN biogenic emissions tend to underestimate
aerosol concentrations compared to the measurements. However, after modifying biogenic
emissions, the organic concentrations estimated with both mechanisms meet the model
performance standard reported by [Boylan, 2006]. This suggests that biogenic VOC emis-
sions may have a major impact on SOA formation and it may be necessary to improve
the calculation of biogenic emissions over Europe and to reduce the uncertainties. Using
the GBM mechanism leads to an enhancement in the model’s performance than that sim-
ulated with the H2O mechanism in terms of correlation, bias, and error when compared
to the measurements. This feature emphasizes the need to implement more detailed SOA
mechanisms in 3D air quality models in order to improve the performance in simulating
SOA concentration.

The simulations performed with both the GBM and H2O mechanisms showed that bio-
genic SOA concentrations, mainly the MT and SQT SOAs, dominate the OA concentra-
tions, with high SOA concentrations observed in central Europe. This is because the GBM
considers more detailed pathways regarding the SOA formation and aging with multi-
generation oxidation than H2O, including the formation of HOMs via auto-oxidation.
Accounting for those high-generation oxidation products simulated with GBM also leads
to higher OM:OC ratios than those simulated with the H2O. The results indicate that the
products formed over several generations of oxidation estimated with GBM contribute
significantly to SOA formation.

Finally, the study investigated the influences of a Nitrogen oxides (NOx) emission
reduction scenario on biogenic SOA formation with semi-explicit and implicit SOA mech-
anisms. Both mechanisms indicate that SOA concentrations should increase in concen-
tration and becomes more oxidized when reducing NOx emissions. With the semi-explicit
GBM mechanism, simulated MT non-HOM and HOM concentrations increase as a re-
sponse to NOx reduction. The H2O mechanism also shows raised aerosol concentrations
due to MT HOM concentration growths.

In conclusion, this study demonstrates the importance of using detailed SOA mech-
anisms (such as the semi-explicit mechanisms generated with the GENOA mechanisms)
in order to preserve the dependency of SOA formation on environmental conditions and
accurately determine the impact of emission reduction scenarios. The current regulation
assessments may be insufficient due to simplified SOA mechanisms, which may miss es-
sential pathways in SOA modeling. Therefore, detailed semi-explicit SOA mechanisms are
potentially valuable to evaluate the models and their responses, taking into account the
different formation pathways, the nonlinear effects caused by the interaction of oxidation
products, and the dependency on environmental conditions. Overall, our findings provide
insights into the complexity of gas-phase chemistry on SOA formation and the importance
of incorporating semi-explicit SOA mechanisms in CTMs for accurate predictions of air
quality and informed policy decisions.
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Appendix: Additional information related to 3-D sim-
ulation

O3 NO2 pNO3
-

pNH4
+ pCl -

pNa + pSO4
2 -

1.0

0.5

0.0

0.5

1.0

Acceptable Best GBM GBM-bio3 H2O H2O-olig H2O-bio3 H2O-olig-bio3

(a) MFE

(b) MFB

Figure 4.21: MFE (a) and MFB (b) between simulations and measurements on different
inorganic pollutants. From left to right, measurements of O3, NO2, particulate nitrate,
ammonium, chloride, sodium, and sulfate are compared. The numbers of stations and
measurements compared with are listed in Table 4.3.
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Table 4.4: Monoterpene aerosol properties related to the GBM and H2O mechanisms. a

Name MW Psat Henry’s γinf Hvap Precursors
GBM mechanism

mNAPINAOOH 231.2 7.5×10−8 1.5×104 4.9×104 95.2 API
mNBPINAOOH 231.2 3.6×10−8 4.0×104 3.9×104 98.3 BPI

BPINAOOH 186.2 4.6×10−8 2.5×105 4.8×103 97.4 BPI
mC97OOH 190.6 2.1×10−8 1.7×107 1.6×102 101.0 API, BPI, LIM

mNLIMALOOH 262.4 1.9×10−10 6.9×107 4.2×103 121.8 API, LIM
mC719OOH 178.8 7.5×10−10 1.1×1010 6.7 117.5 API, BPI, LIM

C716OH 158.2 1.2×10−6 1.3×107 3.6 83.1 API, BPI, LIM
LIMALOOH 218.2 1.5×10−10 2.7×109 1.4×102 123.6 LIM

mNORLIMOOH 202.6 4.9×10−10 2.0×109 54.8 118.3 LIM
mC728OOH 171.8 1.3×10−10 6.2×1010 7.1 126.0 LIM
mC812OOH 194.8 3.2×10−11 4.2×1010 40.9 132.1 API, BPI

C98OOH 204.2 9.2×10−10 1.5×109 39.4 114.6 API, BPI, LIM
C98NO3 233.2 8.0×10−9 3.4×107 2.0×102 104.7 API, BPI, LIM

mH3C25C6PAN 238.5 1.4×10−8 5.9×108 6.8 103.2 API, BPI, LIM
mC925OOH 217.5 8.6×10−13 1.5×1013 4.4 147.7 API, BPI, LIM
C614OOH 162.1 9.1×10−9 2.5×109 2.5 104.6 API, BPI, LIM
C813OOH 206.2 8.8×10−13 7.0×1012 9.0 148.4 API, BPI
C813NO3 235.2 1.6×10−11 1.1×1011 30.8 134.8 API, BPI
C516OOH 164.1 7.1×10−12 1.1×1013 7.2×10−1 139.1 API, BPI

mC10H16O11 318.3 2.6×10−16 1.9×1016 11.0 95.1 API, BPI, LIM
mC10H14O7 234.0 1.2×10−9 4.2×108 1.1×102 68.5 API, LIM
C20H30O13 478.0 2.0×10−20 5.8×1017 4.9×103 105.5 API, BPI, LIM

mC10H16O8iso2 266.4 1.8×10−12 2.1×1011 1.5×102 84.6 API, BPI, LIM
C20H34O10 434.0 3.1×10−16 3.3×1012 5.4×104 103.9 API, BPI, LIM

H2O mechanism
BiA0D 168.0 3.6×10−7 1.4×103 2.0×106 50.0 API, BPI, LIM
BiA1D 170.0 2.9×10−10 1.1×108 126.5 50.0 API, BPI, LIM
BiA2D 186.0 1.9×10−10 2.7×108 37.0 109.0 API, BPI, LIM
BiA3D 204.0 4.3×10−10 ELVOCb ELVOC 109.0 API, BPI, LIM
BiNIT 215.0 3.3×10−9 HPHOc HPHO 50.0 API, BPI, LIM

Monomer 278.0 1.3×10−17 HPHO HPHO 50.0 API, BPI, LIM
Dimer 432.0 1.3×10−17 HPHO HPHO 50.0 API, BPI, LIM

a Columns from left to right are the name of the condensable species, molar mass (MW in
mol/g), the saturation vapor pressure at 298 K (Psat in atm), Henry’s law constant (Henry’s in

mol L−1 atm−1), the activity coefficient at infinite dilution in water (γinf ), the enthalpy of
vaporization (Hvap in kJ/mol), and the corresponding SOA precursors (API: α-pinene, BPI:

β-pinene, and LIM: limonene).
b BiA3D is considered as a non volatile species.

c HPHO: Hydrophilic species (i.e., BiNIT, Monomer, and Dimer) condense only on organic
phases in the H2O mechanism, so Henry’s and γinf are not computed for those species.
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Name MW Psat Henry’s γ Hvap

GBM mechanism
NBCOOH 299.4 4.0×10−12 1.8×106 7.6×106 118.6
C131CO2H 254.3 5.8×10−12 5.0×109 1.9×103 120.3
mBCKSOZ 252.8 2.0×10−8 1.4×104 1.9×105 91.1
C136PAN 299.3 1.8×10−9 1.2×105 2.6×105 101.0

mC132OOH 280.3 4.9×10−14 1.9×1011 6.0×103 135.3
mBCSOZNO3 330.0 8.5×10−13 9.8×107 6.7×105 123.9

mC133NO3 302.5 1.8×10−14 2.4×1012 1.3×103 139.2
C133CO 256.3 6.6×10−13 1.3×1012 64.0 128.1

H2O mechanism
BiBmP 236.0 3.9×10−10 HPHO HPHO 175.0
BiBlP 298.0 7.9×10−13 HPHO HPHO 175.0

Table 4.5: Sesquiterpene SOA properties related to the GBM and H2O mechanisms. The
explanation for "HPHO" sees 4.4.

Columns from left to right are the name of the condensable species, molar mass (MW in
mol/g), the saturation vapor pressure at 298 K (Psat in atm), Henry’s law constant (Henry’s in

mol L−1 atm−1), the activity coefficient at infinite dilution in water, and the enthalpy of
vaporization (Hvap in kJ/mol).

(a) non-HOM MT with GBM (b) HOM MT SOAs with GBM

Figure 4.23: Composition of non-HOM (a) and HOM (b) MT SOAs simulated with the
GBM mechanism and NOx50 emission reduction scenario during June-August 2018.
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1 Conclusions
This thesis presents a comprehensive investigation of the formation and evolution of sec-
ondary organic aerosol (SOA) in regional-scale Chemical Transport Models (CTMs), with
a particular focus on developing effective and accurate mechanisms for simulating SOA
formation. The work can be divided into two main parts: the development and applica-
tion of the GENerator of reduced organic Aerosol Mechanisms (GENOA), a mechanism
reduction algorithm that produces semi-explicit mechanisms for simulating SOA forma-
tion and aging; and the impact investigation of reducing the emission of anthropogenic
nitrogen oxides (NOx) on biogenic aerosol formation using the CTM model CHIMERE
and the detailed biogenic SOA mechanisms generated by GENOA.

In the first part of the work, detailed in chapters 2 and 3, the GENOA algorithm
is developed and applied to reduce mechanisms describing SOA formation from differ-
ent SOA precursors. The obtained semi-explicit mechanisms preserve the accuracy of
near-explicit chemical mechanisms for SOA formation to an extent demanded by the user
while requiring significantly fewer reactions and species, which are more computationally
efficient than explicit mechanisms and suitable for large-scale air quality modeling. The
first version of GENOA (GENOA v1.0) described in chapter 2, is shown to be effective in
reducing mechanisms describing sesquiterpene (SQT) from the Master Chemical Mech-
anism (MCM), resulting in a reduced mechanism that is 2 % of the size of the original
mechanism, while inducing an average error of 2.7 % in a testing process under 12 159
conditions over Europe. To further improve the reduction efficiency and allow the si-
multaneous reduction of mechanisms from several SOA precursors, a second version of
the GENOA algorithm (GENOA v2.0) is developed. As presented in chapter 3, GENOA
v2.0 adopts a parallel reduction structure with updates on the reduction strategy and the
evaluation method. When applied to reduce monoterpene (MT) SOA mechanisms from
MCM and the Peroxy Radical Autoxidation Mechanism (PRAM), GENOA v2.0 results
in a reduced MT SOA mechanism with 197 reactions and 110 species (23 of them being
condensables) that is about 7 % of the size of the original mechanism, while inducing an
average error of less than 3 % under 9 818 testing conditions over Europe.

In the second part of the work, detailed in chapter 4, the impacts of anthropogenic
emission reduction on biogenic SOA formation are investigated using 3-D CHIMERE
over Europe for the 2018 summer. Simulations are conducted using the semi-explicit
GENOA-generated biogenic SOA mechanism (GBM), containing MT and SQT SOA
schemes trained by GENOA v2.0, compared to those simulated with the implicit Hy-
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drophobic/Hydrophilic Organic mechanism (H2O). The results show that the use of a
semi-explicit SOA mechanism leads to a significant improvement in model performance
compared to measurements. The biogenic aerosols simulated with GBM are more oxidized
than those simulated with H2O as a result of GBM taking into account SOA aging due
to multi-generational oxidation.

Reducing anthropogenic NOx emissions by 50 % was estimated to increase MT SOA
yields using both GBM and H2O mechanisms, with a greater increase estimated using
GBM. As a result of the absence of NO under the low-NOx regime, peroxy radicals (RO2)
from MT oxidation react preferentially with other RO2 and HO2, forming condensables
with lower volatility that increase aerosol concentration. The formation of highly oxy-
genated molecules (HOMs) of MT SOAs from auto-oxidation is also favorable in response
to NOx reduction. These results underscore the importance of considering the complex
interactions between anthropogenic NOx emissions and biogenic organic aerosol forma-
tion and highlight the need for implementing semi-explicit SOA mechanisms to improve
SOA predictions in 3-D air quality modeling.

In summary, the work presented in this thesis demonstrates the effectiveness of the
GENOA algorithm in producing semi-explicit mechanisms for simulating SOA formation
and aging, emphasizing the importance of incorporating such detailed mechanisms in
regional-scale CTM modeling. The research suggests that incorporating semi-explicit SOA
mechanisms can help preserve more SOA variations in 3-D air quality modeling, depending
on the physical-chemical environment, leading to better predictions of air quality and
assessment of the impact of emission reduction scenarios. These insights can inform
policymakers in making informed decisions concerning air quality management.

2 Perspectives
The GENOA algorithm, developed in this study, has the potential to enhance the accuracy
of 3-D air quality models by improving the representation of SOA formation processes.
This novel algorithm, moreover, holds great potential for advancing our understanding of
the explicit VOC mechanisms that underlie SOA formation across different scales, includ-
ing urban and regional contexts. Further application and development can be applied to
GENOA.

2.1 Model development
Moving forward, there are several avenues for improving the accuracy and efficiency of
the GENOA algorithm in reducing complex atmospheric chemical mechanisms.

To enhance the accuracy of the GENOA algorithm, improvements can be made in the
selection of evaluation datasets, evaluation criteria, and selection of reduced mechanisms.
Currently, the evaluation datasets used for training the reduction are selected randomly
or manually from 3-D simulation results. The selection can be time-consuming and may
not cover all conditions effective on SOA formation. To address this, an effective method
for obtaining representative conditions is needed to ensure the representability of environ-
mental conditions. For example,[Porter, 2021] quantified atmospheric parameter ranges
for ambient secondary organic aerosol formation, which can be employed to build evalua-
tion datasets. In addition, cluster analysis may also be helpful in sorting and categorizing
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representative environmental conditions for SOA formation.
The current evaluation criteria are based on a reduction error calculated from the

total SOA concentration simulated with the 0-D aerosol model. As a result, the current
GENOA does not preserve the concentration variations of other compounds besides SOA
(e.g., organic peroxy radicals, oxidants, and inorganics) on SOA formation. To improve
the evaluation, an "error matrix" can be introduced, where the performance of reduction
candidates can be estimated based on the variations of multiple parameters (e.g., concen-
trations of crucial organic condensables and radicals) on SOA formation. Additionally,
the updated error matrix may allow GENOA to extend to other atmospheric pollutants
besides SOAs.

To further improve the accuracy of mechanism reduction, an alternative strategy is
to exhaustively explore all potential late-stage reductions and identify those with both
high accuracy and small size. This can be achieved through the implementation of a
"reduction tree" framework, in which each node represents a reduced mechanism with a
potential reduction candidate and branches indicate different reduction paths. By employ-
ing this approach, the future GENOA will be able to systematically traverse all possible
late-stage reductions, thereby minimizing the impact of reduction parameters (e.g., user-
defined parameters) on the training results. This strategy, however, may have significant
computational requirements and should be reduced to some extent by combining it with
other approaches.

In addition to improving reduction accuracy, enhancing reduction efficiency is essential
for applying the GENOA algorithm to more complex mechanisms, particularly in its appli-
cation to full explicit mechanisms with millions of reactions and species. Current versions
of GENOA can be applied to near-explicit MCM mechanisms or mechanisms with similar
levels of complexity, but reductions for full explicit mechanisms such as GECKO-A may
take months or longer. To improve the efficiency of GENOA, the reduction structure can
be reorganized to group reduction candidates and accept multiple reduction attempts at
a time, reducing the total number of reduction steps required while preserving the com-
bination effects (1+1 > 2) of reductions. For example, instead of testing many reduction
candidates and accepting one at a time (as currently applied to GENOA v2.0), an ad-
vanced evaluation system can be developed, which groups all those reduction candidates
into several sets, and then directly investigate the performance of the group reductions.
The evaluation system may be developed using machine learning algorithms, which can
automate the selection of reduction candidates and evaluate the impact of reductions on
the overall mechanism. This could potentially speed up the reduction process and improve
the accuracy of the final reduced mechanism.

Overall, those further developments could help to expand the applicability and utility
of the GENOA algorithm in advancing our understanding of atmospheric chemistry and
air quality.

2.2 Model application
GENOA is a powerful and flexible tool for generating reduced organic aerosol mechanisms
with a balance between accuracy and size. The mechanisms produced by GENOA can be
implemented in various air quality models for different case studies related to SOA for-
mation. In-depth investigations using detailed GENOA-generated SOA mechanisms can
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provide valuable insights into the spatial and temporal variations of SOA concentration
and composition, which are often challenging to capture with implicit mechanisms.

In addition to NOx, other inorganic emissions such as SO2 and NH3 have been reported
to impact SOA formation ([Xu, 2021b]), and their effects can be explored using GENOA-
generated SOA mechanisms. Another possible application of GENOA is to generate semi-
explicit SOA mechanisms for anthropogenic precursors, including alkanes and aromatics
(e.g., toluene and xylene). Detailed SOA mechanisms for these compounds are expected
to provide a better understanding of urban air pollution dynamics. Likewise, the semi-
explicit SOA mechanism of isoprene degradation can also be investigated with GENOA.

Moreover, GENOA-generated SOA mechanisms can be used to investigate the inter-
actions in multi-precursor systems, where the presence of one VOC may affect the SOA
formation process of another VOC as reported by [McFiggans, 2019]. By considering all
main SOA precursors, both anthropogenic and biogenic, the semi-explicit SOA mechanism
can contribute to exploring how different emissions interact and influence SOA production.
Furthermore, GENOA-generated SOA mechanisms may have further applicability in pre-
dicting SOA pollution from various environmental events, including shipping emissions,
wildlife, and industrial accidents. Such investigations may enhance our comprehension of
the impacts of SOA formation on human health and the environment.

As the capabilities of the GENOA model continue to develop, it may become feasible
to apply it to fully explicit chemical mechanisms such as GECKO-A. This would enable a
comparison between the semi-explicit SOA mechanisms generated from different explicit
chemical mechanisms, including those reduced from MCM and GECKO-A. Additionally,
if the inorganic and SOA concentrations can be preserved, GENOA could also produce a
single, semi-explicit SOA mechanism from all VOC precursors, preserving the complexity
of the gas-phase chemistry involved in both SOA formation and inorganic reactions.

140



References

[André, 2020] M. André, K. Sartelet, S. Moukhtar, J.M. André, and M. Redaelli. “Diesel, petrol or
electric vehicles: What choices to improve urban air quality in the Ile-de-France region? A simulation
platform and case study”. Atmos. Environ. 241 (2020), p. 117752 (cit. on pp. 3, 105).

[Atkinson, 2000] Roger Atkinson. “Atmospheric chemistry of VOCs and NOx”. Atmos. Environ. 34.12-
14 (2000), pp. 2063–2101 (cit. on pp. 5, 61).

[Atkinson, 2003] Roger Atkinson and Janet Arey. “Atmospheric Degradation of Volatile Organic Com-
pounds”. Chem. Rev. 103.12 (2003), pp. 4605–4638 (cit. on pp. 5, 14, 60).

[Aumont, 2005] B. Aumont, S. Szopa, and S. Madronich. “Modelling the evolution of organic carbon
during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating
approach”. Atmos. Chem. Phys. 5.9 (2005), pp. 2497–2517 (cit. on pp. 15, 23, 61).

[Bianchi, 2019] Federico Bianchi, Theo Kurtén, Matthieu Riva, Claudia Mohr, Matti P. Rissanen, Pon-
tus Roldin, et al. “Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involv-
ing Peroxy Radicals: A Key Contributor to Atmospheric Aerosol”. Chem. Rev. 119.6 (2019), pp. 3472–
3509 (cit. on pp. 16, 61).

[Boylan, 2006] James W. Boylan and Armistead G. Russell. “PM and light extinction model perfor-
mance metrics, goals, and criteria for three-dimensional air quality models”. Atmos. Environ. 40.26
(2006), pp. 4946–4959 (cit. on pp. 112, 115, 132).

[Breysse, 2013] Patrick N Breysse, Ralph J Delfino, Francesca Dominici, Alison CP Elder, Mark W
Frampton, John R Froines, et al. “US EPA particulate matter research centers: summary of research
results for 2005–2011”. Air Qual. Atmos. Health 6.2 (2013), pp. 333–355 (cit. on pp. 11, 104).

[Camredon, 2007] M Camredon, B Aumont, J Lee-Taylor, and S Madronich. “The SOA/VOC/NO x
system: an explicit model of secondary organic aerosol formation”. Atmos. Chem. Phys. 7.21 (2007),
pp. 5599–5610 (cit. on p. 61).

[Carter, 2010] William P.L. Carter. “Development of the SAPRC-07 chemical mechanism”. Atmos.
Environ. 44.40 (2010), pp. 5324–5335 (cit. on p. 22).

[Carter, 2020] WPL Carter. “The SAPRC-18 Atmospheric Chemical Mechanism”. web site at http://www.
cert. ucr. edu/˜ carter/SAPRC/18 (2020) (cit. on p. 23).

[Chen, 2022] Tianzeng Chen, Peng Zhang, Biwu Chu, Qingxin Ma, Yanli Ge, Jun Liu, et al. “Sec-
ondary organic aerosol formation from mixed volatile organic compounds: Effect of RO2 chemistry
and precursor concentration”. npj Clim. Atmos. Sci. 5.1 (2022), pp. 1–8 (cit. on p. 61).

[Chrit, 2017] M. Chrit, K. Sartelet, J. Sciare, J. Pey, N. Marchand, F. Couvidat, et al. “Modelling
organic aerosol concentrations and properties during ChArMEx summer campaigns of 2012 and 2013
in the western Mediterranean region”. Atmos. Chem. Phys. 17 (2017), pp. 12509–12531 (cit. on pp. 106,
118).

[Ciccioli, 2023] Piero Ciccioli, Camillo Silibello, Sandro Finardi, Nicola Pepe, Paolo Ciccioli, Francesca
Rapparini, et al. “The potential impact of biogenic volatile organic compounds (BVOCs) from terres-
trial vegetation on a Mediterranean area using two different emission models”. Agric. For. Meteor. 328
(2023), p. 109255 (cit. on pp. 112, 114).

141



References

[Coggon, 2019] M. M. Coggon, C. Y. Lim, A. R. Koss, K. Sekimoto, B. Yuan, J. B. Gilman, et al.
“OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass
burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary
NMOG formation”. Atmos. Chem. Phys. 19.23 (2019), pp. 14875–14899 (cit. on p. 61).

[Couvidat, 2013] F. Couvidat, Y. Kim, K. Sartelet, C. Seigneur, N. Marchand, and J. Sciare. “Modeling
secondary organic aerosol in an urban area: application to Paris, France”. Atmos. Chem. Phys. 13.2
(2013), pp. 983–996 (cit. on p. 104).

[Couvidat, 2018a] F. Couvidat, M. G. Vivanco, and B. Bessagnet. “Simulating secondary organic aerosol
from anthropogenic and biogenic precursors: comparison to outdoor chamber experiments, effect of
oligomerization on SOA formation and reactive uptake of aldehydes”. Atmos. Chem. Phys. 18.21 (2018),
pp. 15743–15766 (cit. on p. 111).

[Couvidat, 2018b] Florian Couvidat, Bertrand Bessagnet, Marta Garcia-Vivanco, Elsa Real, Laurent
Menut, and Augustin Colette. “Development of an inorganic and organic aerosol model (CHIMERE
2017β v1. 0): seasonal and spatial evaluation over Europe”. Geosci. Model Dev 11.1 (2018), pp. 165–
194 (cit. on pp. 112, 113).

[Couvidat, 2012] Florian Couvidat, Edouard Debry, Karine Sartelet, and Christian Seigneur. “A hy-
drophilic/hydrophobic organic (H2O) aerosol model: Development, evaluation and sensitivity analy-
sis”. J. Geophys. Res.-Atmos. 117.D10 (2012) (cit. on pp. 24, 26, 61, 105–108).

[Couvidat, 2015] Florian Couvidat and Karine Sartelet. “The Secondary Organic Aerosol Processor
(SOAP v1. 0) model: a unified model with different ranges of complexity based on the molecular
surrogate approach”. Geosci. Model Dev 8.4 (2015), pp. 1111–1138 (cit. on pp. 18, 26, 28, 107).

[Donahue, 2011] N. M. Donahue, S. A. Epstein, S. N. Pandis, and A. L. Robinson. “A two-dimensional
volatility basis set: 1. organic-aerosol mixing thermodynamics”. Atmospheric Chemistry and Physics
11.7 (2011), pp. 3303–3318 (cit. on pp. 24, 61).

[Donahue, 2006] N. M. Donahue, A. L. Robinson, C. O. Stanier, and S. N. Pandis. “Coupled Partition-
ing, Dilution, and Chemical Aging of Semivolatile Organics”. Env. Sc. and Tech. 40.8 (2006), pp. 2635–
2643 (cit. on pp. 7, 15, 24, 61, 104, 105).

[Ehn, 2014] Mikael Ehn, Joel A Thornton, Einhard Kleist, Mikko Sipilä, Heikki Junninen, Iida Pullinen,
et al. “A large source of low-volatility secondary organic aerosol”. Nature 506.7489 (2014), pp. 476–479
(cit. on pp. 61, 106).

[Flentje, 2021] H. Flentje, I. Mattis, Z. Kipling, S. Rémy, and W. Thomas. “Evaluation of ECMWF
IFS-AER (CAMS) operational forecasts during cycle 41r1–46r1 with calibrated ceilometer profiles over
Germany”. Geosci. Model Dev 14.3 (2021), pp. 1721–1751 (cit. on p. 112).

[Fry, 2009] J. L. Fry, A. Kiendler-Scharr, A. W. Rollins, P. J. Wooldridge, S. S. Brown, H. Fuchs, et al.
“Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a
gas-phase kinetics/aerosol partitioning model”. Atmos. Chem. Phys. 9.4 (2009), pp. 1431–1449 (cit. on
p. 61).

[Gelencsér, 2007] András Gelencsér, Barbara May, David Simpson, Asunción Sánchez-Ochoa, Anne
Kasper-Giebl, Hans Puxbaum, et al. “Source apportionment of PM2.5 organic aerosol over Europe: Pri-
mary/secondary, natural/anthropogenic, and fossil/biogenic origin”. J. Geophys. Res.-Atmos. 112.D23
(2007) (cit. on p. 60).

[Goldstein, 2007] Allen H Goldstein and Ian E Galbally. “Known and unexplored organic constituents
in the earth’s atmosphere”. Env. Sc. and Tech. 41.5 (2007), pp. 1514–1521 (cit. on p. 60).

[Goliff, 2013] W.S. Goliff, W.R. Stockwell, and C.V. Lawson. “The Regional Atmospheric Chemistry
Mechanism, version 2”. Atmos. Environ. 68 (2013), pp. 174–185 (cit. on pp. 22, 28, 64).

[Goshua, 2022] Anna Goshua, Cezmi A Akdis, and Kari C Nadeau. “World Health Organization global
air quality guideline recommendations: Executive summary”. Allergy 77.7 (2022), pp. 1955–1960 (cit.
on pp. 11–13).

142



References

[Granier, 2019] C. Granier, S. Darras, H. Denier van der Gon, J. Doubalova, N. Elguindi, B. Galle, et al.
“The Copernicus Atmosphere Monitoring Service global and regional emissions (April 2019 version)”
(2019) (cit. on p. 12).

[Griffin, 2003] Robert J. Griffin, Khoi Nguyen, Donald Dabdub, and John H. Seinfeld. “A Coupled
Hydrophobic-Hydrophilic Model for Predicting Secondary Organic Aerosol Formation”. J. Atmos.
Chem. 44.2 (2003), pp. 171–190 (cit. on p. 61).

[Guenther, 2012] A. B. Guenther, X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons,
et al. “The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an
extended and updated framework for modeling biogenic emissions”. Geosci. Model Dev 5.6 (2012),
pp. 1471–1492 (cit. on pp. 60, 73, 104, 112).

[Hallquist, 2009] M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, et
al. “The formation, properties and impact of secondary organic aerosol: current and emerging issues”.
Atmos. Chem. Phys. 9.14 (2009), pp. 5155–5236 (cit. on pp. 60, 61, 104).

[Han, 2023] S. Han and M. Jang. “Modeling daytime and nighttime secondary organic aerosol formation
via multiphase reactions of biogenic hydrocarbons”. Atmos. Chem. Phys. 23.2 (2023), pp. 1209–1226
(cit. on p. 61).

[Hodzic, 2016] A. Hodzic, P. S. Kasibhatla, D. S. Jo, C. D. Cappa, J. L. Jimenez, S. Madronich, et al.
“Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal,
shorter lifetime”. Atmos. Chem. Phys. 16.12 (2016), pp. 7917–7941 (cit. on p. 104).

[Hong, 2022] Youwei Hong, Xinbei Xu, Dan Liao, Taotao Liu, Xiaoting Ji, Ke Xu, et al. “Measurement
report: Effects of anthropogenic emissions and environmental factors on the formation of biogenic
secondary organic aerosol (BSOA) in a coastal city of southeastern China”. Atmos. Chem. Phys. 22.11
(2022), pp. 7827–7841 (cit. on p. 118).

[Huang, 2014] Ru-Jin Huang, Yanlin Zhang, Carlo Bozzetti, Kin-Fai Ho, Jun-Ji Cao, Yongming Han,
et al. “High secondary aerosol contribution to particulate pollution during haze events in China”.
Nature 514.7521 (2014), pp. 218–222 (cit. on p. 104).

[Huang, 2020] Xin Huang, Aijun Ding, Jian Gao, Bo Zheng, Derong Zhou, Ximeng Qi, et al. “Enhanced
secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China”. Natl.
Sci. Rev. 8.2 (2020) (cit. on pp. 21, 105).

[Isaacman-VanWertz, 2021] G. Isaacman-VanWertz and B. Aumont. “Impact of organic molecular struc-
ture on the estimation of atmospherically relevant physicochemical parameters”. Atmos. Chem. Phys.
21.8 (2021), pp. 6541–6563 (cit. on p. 25).

[Jenkin, 2020] M. E. Jenkin, R. Valorso, B. Aumont, M. J. Newland, and A. R. Rickard. “Estimation
of rate coefficients for the reactions of O3 with unsaturated organic compounds for use in automated
mechanism construction”. Atmos. Chem. Phys. 20.21 (2020), pp. 12921–12937 (cit. on p. 61).

[Jenkin, 2008] ME Jenkin, LA Watson, SR Utembe, and DE Shallcross. “A Common Representative
Intermediates (CRI) mechanism for VOC degradation. Part 1: Gas phase mechanism development”.
Atmos. Environ. 42.31 (2008), pp. 7185–7195 (cit. on pp. 25, 62).

[Jenkin, 2012] ME Jenkin, KP Wyche, CJ Evans, T Carr, PS Monks, MR Alfarra, et al. “Development
and chamber evaluation of the MCM v3. 2 degradation scheme for β-caryophyllene”. Atmos. Chem.
Phys. 12.11 (2012), pp. 5275–5308 (cit. on pp. 61, 64).

[Jenkin, 1997] Michael E Jenkin, Sandra M Saunders, and Michael J Pilling. “The tropospheric degra-
dation of volatile organic compounds: a protocol for mechanism development”. Atmos. Environ. 31.1
(1997), pp. 81–104 (cit. on pp. 23, 61).

[Jiang, 2019] J. Jiang, S. Aksoyoglu, G. Ciarelli, E. Oikonomakis, I. El-Haddad, F. Canonaco, et al.
“Effects of two different biogenic emission models on modelled ozone and aerosol concentrations in
Europe”. Atmos. Chem. Phys. 19.6 (2019), pp. 3747–3768 (cit. on pp. 112, 114).

[Kaduwela, 2015] Ajith Kaduwela, Deborah Luecken, William Carter, and Richard Derwent. “New di-
rections: Atmospheric chemical mechanisms for the future”. Atmos. Environ. 122 (2015), pp. 609–610
(cit. on p. 62).

143



References

[Kampa, 2008] Marilena Kampa and Elias Castanas. “Human health effects of air pollution”. Environ.
Pollut. 151.2 (2008), pp. 362–367 (cit. on p. 11).

[Kanakidou, 2005] Maria Kanakidou, JH Seinfeld, SN Pandis, Ian Barnes, Franciscus Johannes Den-
tener, Maria Cristina Facchini, et al. “Organic aerosol and global climate modelling: a review”. Atmos.
Chem. Phys. 5.4 (2005), pp. 1053–1123 (cit. on pp. 60, 104).

[Kelly, 2018] J. M. Kelly, R. M. Doherty, F. M. O’Connor, and G. W. Mann. “The impact of biogenic,
anthropogenic, and biomass burning volatile organic compound emissions on regional and seasonal
variations in secondary organic aerosol”. Atmos. Chem. Phys. 18.10 (2018), pp. 7393–7422 (cit. on
p. 118).

[Kelp, 2022] Makoto M Kelp, Daniel J Jacob, Haipeng Lin, and Melissa P Sulprizio. “An online-learned
neural network chemical solver for stable long-term global simulations of atmospheric chemistry”. J.
Adv. Model. Earth Syst. 14.6 (2022), e2021MS002926 (cit. on p. 62).

[Kesselmeier, 1999] John Kesselmeier and Michael Staudt. “Biogenic volatile organic compounds (VOC):
an overview on emission, physiology and ecology”. J. Atmos. Chem. 33 (1999), pp. 23–88 (cit. on p. 4).

[Khan, 2017] MAH Khan, ME Jenkin, A Foulds, RG Derwent, CJ Percival, and DE Shallcross. “A
modeling study of secondary organic aerosol formation from sesquiterpenes using the STOCHEM
global chemistry and transport model”. J. Geophys. Res.-Atmos. 122.8 (2017), pp. 4426–4439 (cit. on
p. 25).

[Kuenen, 2022] J. Kuenen, S. Dellaert, A. Visschedijk, J.-P. Jalkanen, I. Super, and H. Denier van der
Gon. “CAMS-REG-v4: a state-of-the-art high-resolution European emission inventory for air quality
modelling”. Earth Syst. Sci. Data 14.2 (2022), pp. 491–515 (cit. on p. 112).

[Lannuque, 2018] V. Lannuque, M. Camredon, F. Couvidat, A. Hodzic, R. Valorso, S. Madronich, et al.
“Exploration of the influence of environmental conditions on secondary organic aerosol formation and
organic species properties using explicit simulations: development of the VBS-GECKO parameteriza-
tion”. Atmos. Chem. Phys. 18.18 (2018), pp. 13411–13428 (cit. on pp. 25, 62, 84).

[Lannuque, 2020] V. Lannuque, F. Couvidat, M. Camredon, B. Aumont, and B. Bessagnet. “Modeling
organic aerosol over Europe in summer conditions with the VBS-GECKO parameterization: sensitiv-
ity to secondary organic compound properties and IVOC (intermediate-volatility organic compound)
emissions”. Atmos. Chem. Phys. 20.8 (2020), pp. 4905–4931 (cit. on pp. 25, 113).

[Lemaire, 2016] V. Lemaire, I. Coll, F. Couvidat, C. Mouchel-Vallon, C. Seigneur, and G. Siour. “Oligomer
formation in the troposphere: from experimental knowledge to 3-D modeling”. Geosci. Model Dev 9.4
(2016), pp. 1361–1382 (cit. on p. 111).

[Li, 2015] Jingyi Li, Meredith Cleveland, Luke D. Ziemba, Robert J. Griffin, Kelley C. Barsanti, James
F. Pankow, et al. “Modeling regional secondary organic aerosol using the Master Chemical Mechanism”.
Atmos. Environ. 102 (2015), pp. 52–61 (cit. on pp. 61, 105).

[Li, 2022] Qi Li, Jia Jiang, Isaac K Afreh, Kelley C Barsanti, and David R Cocker III. “Secondary
organic aerosol formation from camphene oxidation: measurements and modeling”. Atmos. Chem.
Phys. 22.5 (2022), pp. 3131–3147 (cit. on p. 61).

[Lugon, 2021] Lya Lugon, Karine Sartelet, Youngseob Kim, Jéremy Vigneron, and Olivier Chrétien.
“Simulation of primary and secondary particles in the streets of Paris using MUNICH”. Faraday
Discussions 226 (2021), pp. 432–456 (cit. on p. 8).

[Majdi, 2019] M. Majdi, K. Sartelet, G. M. Lanzafame, F. Couvidat, Y. Kim, M. Chrit, et al. “Precursors
and formation of secondary organic aerosols from wildfires in the Euro-Mediterranean region”. Atmos.
Chem. Phys. 19.8 (2019), pp. 5543–5569 (cit. on p. 107).

[Manisalidis, 2020] Ioannis Manisalidis, Elisavet Stavropoulou, Agathangelos Stavropoulos, and Euge-
nia Bezirtzoglou. “Environmental and Health Impacts of Air Pollution: A Review”. Public Health Front.
8 (2020) (cit. on pp. 9, 11).

[McFiggans, 2019] Gordon McFiggans, Thomas F Mentel, Juergen Wildt, Iida Pullinen, Sungah Kang,
Einhard Kleist, et al. “Secondary organic aerosol reduced by mixture of atmospheric vapours”. Nature
565.7741 (2019), pp. 587–593 (cit. on pp. 61, 140).

144



References

[McNeill, 2017] V Faye McNeill. “Atmospheric Aerosols: Clouds, Chemistry, and Climate”. Annual Rev.
Chem. Biomol. Eng. 8 (2017), pp. 427–444 (cit. on pp. 6, 104).

[Menut, 2021] L. Menut, B. Bessagnet, R. Briant, A. Cholakian, F. Couvidat, S. Mailler, et al. “The
CHIMERE v2020r1 online chemistry-transport model”. Geoscientific Model Development 14.11 (2021),
pp. 6781–6811 (cit. on pp. 26, 106, 112, 125).

[Messina, 2016] P. Messina, J. Lathière, K. Sindelarova, N. Vuichard, C. Granier, J. Ghattas, et al.
“Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and
sensitivity to key parameters”. Atmospheric Chemistry and Physics 16.22 (2016), pp. 14169–14202
(cit. on p. 112).

[Mouchel-Vallon, 2022] Camille Mouchel-Vallon and Alma Hodzic. “Towards emulating an explicit or-
ganic chemistry mechanism with random forest models”. J. Geophys. Res. (2022), e2022JD038227 (cit.
on p. 62).

[Mouchel-Vallon, 2020] Camille Mouchel-Vallon, Julia Lee-Taylor, Alma Hodzic, Paulo Artaxo, Bernard
Aumont, Marie Camredon, et al. “Exploration of oxidative chemistry and secondary organic aerosol
formation in the Amazon during the wet season: explicit modeling of the Manaus urban plume with
GECKO-A”. Atmos. Chem. Phys. 20.10 (2020), pp. 5995–6014 (cit. on pp. 23, 61).

[Nannoolal, 2008] Yash Nannoolal, Jürgen Rarey, and Deresh Ramjugernath. “Estimation of pure com-
ponent properties: Part 3. Estimation of the vapor pressure of non-electrolyte organic compounds via
group contributions and group interactions”. Fluid Phase Equilibr. 269.1 (2008), pp. 117–133 (cit. on
p. 71).

[Nannoolal, 2004] Yash Nannoolal, Jürgen Rarey, Deresh Ramjugernath, and Wilfried Cordes. “Esti-
mation of pure component properties: Part 1. Estimation of the normal boiling point of non-electrolyte
organic compounds via group contributions and group interactions”. Fluid Phase Equilibr. 226 (2004),
pp. 45–63 (cit. on p. 71).

[Newland, 2022] M. J. Newland, C. Mouchel-Vallon, R. Valorso, B. Aumont, L. Vereecken, M. E. Jenkin,
et al. “Estimation of mechanistic parameters in the gas-phase reactions of ozone with alkenes for use in
automated mechanism construction”. Atmos. Chem. Phys. 22.9 (2022), pp. 6167–6195 (cit. on p. 61).

[Ng, 2007] N. L. Ng, P. S. Chhabra, A. W. H. Chan, J. D. Surratt, J. H. Kroll, A. J. Kwan, et al. “Effect
of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes”.
Atmos. Chem. Phys. 7.19 (2007), pp. 5159–5174 (cit. on pp. 105, 129).

[Odum, 1996] Jay R. Odum, Thorsten Hoffmann, Frank Bowman, Don Collins, Richard C. Flagan, and
John H. Seinfeld. “Gas/Particle Partitioning and Secondary Organic Aerosol Yields”. Env. Sc. and
Tech. 30.8 (1996), pp. 2580–2585 (cit. on pp. 23, 24, 61, 105).

[Pankow, 2008] J. F. Pankow and W. E. Asher. “SIMPOL.1: a simple group contribution method for
predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds”. At-
mos. Chem. Phys. 8.10 (2008), pp. 2773–2796 (cit. on p. 71).

[Pankow, 1994] James F. Pankow. “An absorption model of gas/particle partitioning of organic com-
pounds in the atmosphere”. Atmos. Environ. 28.2 (1994), pp. 185–188 (cit. on p. 17).

[Porter, 2021] William C Porter, Jose L Jimenez, and Kelley C Barsanti. “Quantifying atmospheric
parameter ranges for ambient secondary organic aerosol formation”. ACS Earth Space Chem. 5.9
(2021), pp. 2380–2397 (cit. on pp. 61, 73, 105, 138).

[Poulain, 2011] L. Poulain, G. Spindler, W. Birmili, C. Plass-Dülmer, A. Wiedensohler, and H. Her-
rmann. “Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research
station Melpitz”. Atmos. Chem. Phys. 11.24 (2011), pp. 12579–12599 (cit. on p. 117).

[Presto, 2005] Albert A. Presto, Kara E. Huff Hartz, and Neil M. Donahue. “Secondary Organic Aerosol
Production from Terpene Ozonolysis. 2. Effect of NOx Concentration”. Env. Sc. and Tech. 39.18 (2005),
pp. 7046–7054 (cit. on p. 129).

[Pun, 2007] B. K. Pun and C. Seigneur. “Investigative modeling of new pathways for secondary organic
aerosol formation”. Atmos. Chem. Phys. 7.9 (2007), pp. 2199–2216 (cit. on pp. 24, 111, 113, 115).

145



References

[Pun, 2006] Betty K. Pun, Christian Seigneur, and Kristen Lohman. “Modeling Secondary Organic
Aerosol Formation via Multiphase Partitioning with Molecular Data”. Env. Sc. and Tech. 40.15 (2006),
pp. 4722–4731 (cit. on pp. 24, 61, 107).

[Raes, 2000] Frank Raes, Rita Van Dingenen, Elisabetta Vignati, Julian Wilson, Jean-Philippe Putaud,
John H Seinfeld, et al. “Formation and cycling of aerosols in the global troposphere”. Atmos. Environ.
34.25 (2000), pp. 4215–4240 (cit. on p. 19).

[Roldin, 2019] Pontus Roldin, Mikael Ehn, Theo Kurtén, Tinja Olenius, Matti P Rissanen, Nina Sar-
nela, et al. “The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate sys-
tem”. Nat. Commun. 10.1 (2019), pp. 1–15 (cit. on pp. 15, 61, 69, 71, 105, 107).

[Sartelet, 2012] K. Sartelet, F. Couvidat, C. Seigneur, and Y. Roustan. “Impact of biogenic emissions
on air quality over Europe and North America.” Atmos. Environ. 53 (2012), pp. 131–141 (cit. on pp. 4,
21, 105).

[Sartelet, 2022a] K. Sartelet, Y. Kim, F. Couvidat, M. Merkel, T. Petäjä, J. Sciare, et al. “Influence of
emission size distribution and nucleation on number concentrations over Greater Paris”. Atmos. Chem.
Phys. 22.13 (2022), pp. 8579–8596 (cit. on p. 106).

[Sartelet, 2022b] Karine Sartelet. “Secondary Aerosol Formation and Their Modeling”. Atmospheric
Chemistry in the Mediterranean Region: Volume 2 - From Air Pollutant Sources to Impacts. Ed. by
François Dulac, Stéphane Sauvage, and Eric Hamonou. Cham: Springer International Publishing, 2022,
pp. 165–183 (cit. on p. 118).

[Sartelet, 2020] Karine Sartelet, Florian Couvidat, Zhizhao Wang, Cédric Flageul, and Youngseob Kim.
“SSH-Aerosol v1. 1: A Modular Box Model to Simulate the Evolution of Primary and Secondary
Aerosols”. Atmosphere 11.5 (2020), p. 525 (cit. on pp. 26, 64, 106, 107).

[Sarwar, 2008] Golam Sarwar, Deborah Luecken, Greg Yarwood, Gary Z. Whitten, and William P. L.
Carter. “Impact of an Updated Carbon Bond Mechanism on Predictions from the CMAQ Modeling
System: Preliminary Assessment”. J. Applied Meteor. 47.1 (2008), pp. 3–14 (cit. on pp. 22, 28, 64).

[Saunders, 2003] Sandra M Saunders, Michael E Jenkin, RG Derwent, and MJ Pilling. “Protocol for
the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation
of non-aromatic volatile organic compounds”. Atmos. Chem. Phys. 3.1 (2003), pp. 161–180 (cit. on
p. 61).

[Schraufnagel, 2019] Dean E Schraufnagel, John R Balmes, Clayton T Cowl, Sara De Matteis, Soon-Hee
Jung, Kevin Mortimer, et al. “Air pollution and noncommunicable diseases: A review by the Forum
of International Respiratory Societies’ Environmental Committee, Part 2: Air pollution and organ
systems”. Chest 155.2 (2019), pp. 417–426 (cit. on p. 11).

[Schreck, 2022] John S Schreck, Charles Becker, David John Gagne, Keely Lawrence, Siyuan Wang,
Camille Mouchel-Vallon, et al. “Neural Network Emulation of the Formation of Organic Aerosols Based
on the Explicit GECKO-A Chemistry Model”. J. Adv. Model. Earth Syst. 14.10 (2022), e2021MS002974
(cit. on pp. 25, 62).

[Seigneur, 2019] Christian Seigneur. Air Pollution: Concepts, Theory, and Applications. Cambridge Uni-
versity Press, 2019 (cit. on pp. 5, 7, 13, 20, 105).

[Seinfeld, 2016] John H Seinfeld, Christopher Bretherton, Kenneth S Carslaw, Hugh Coe, Paul J De-
Mott, Edward J Dunlea, et al. “Improving our fundamental understanding of the role of aerosol-cloud
interactions in the climate system”. Proc. Nat. Acad. Sci. 113.21 (2016), pp. 5781–5790 (cit. on pp. 9,
104).

[Shen, 2022] L. Shen, D. J. Jacob, M. Santillana, K. Bates, J. Zhuang, and W. Chen. “A machine-
learning-guided adaptive algorithm to reduce the computational cost of integrating kinetics in global
atmospheric chemistry models: application to GEOS-Chem versions 12.0.0 and 12.9.1”. Geosci. Model
Dev 15.4 (2022), pp. 1677–1687 (cit. on p. 62).

[Shrivastava, 2019] M. Shrivastava, M.O. Andreae, P. Artaxo, H.M.J. Barbosa, L.K. Berg, J. Brito,
et al. “Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest”.
Nat. Commun. 10 (2019), p. 1046 (cit. on p. 105).

146



References

[Shrivastava, 2017] Manish Shrivastava, Christopher D. Cappa, Jiwen Fan, Allen H. Goldstein, Alex
B. Guenther, Jose L. Jimenez, et al. “Recent advances in understanding secondary organic aerosol:
Implications for global climate forcing”. Rev. Geophys 55.2 (2017), pp. 509–559 (cit. on pp. 10, 61).

[Sillman, 1999] Sanford Sillman. “The relation between ozone, NOx and hydrocarbons in urban and
polluted rural environments”. Atmos. Environ. 33.12 (1999), pp. 1821–1845 (cit. on p. 126).

[Sindelarova, 2022] K. Sindelarova, J. Markova, D. Simpson, P. Huszar, J. Karlicky, S. Darras, et al.
“High-resolution biogenic global emission inventory for the time period 2000–2019 for air quality mod-
elling”. Earth Syst. Sci. Data 14.1 (2022), pp. 251–270 (cit. on p. 112).

[Stockwell, 2020] William R Stockwell, Emily Saunders, Wendy S Goliff, and Rosa M Fitzgerald. “A
perspective on the development of gas-phase chemical mechanisms for Eulerian air quality models”. J.
Air Waste Manag. Assoc. 70.1 (2020), pp. 44–70 (cit. on p. 61).

[Stolzenburg, 2022] Dominik Stolzenburg, Mingyi Wang, Meredith Schervish, and Neil M. Donahue.
“Tutorial: Dynamic organic growth modeling with a volatility basis set”. J. Atmos. Sci. 166 (2022),
p. 106063 (cit. on p. 61).

[Sturm, 2023] Patrick Obin Sturm, Astrid Manders, Ruud Janssen, Arjo Segers, Anthony S Wexler,
and Hai Xiang Lin. “Advecting Superspecies: Efficiently Modeling Transport of Organic Aerosol
With a Mass-Conserving Dimensionality Reduction Method”. J. Adv. Model. Earth Syst. 15.3 (2023),
e2022MS003235 (cit. on p. 62).

[Szopa, 2005] S. Szopa, B. Aumont, and S. Madronich. “Assessment of the reduction methods used
to develop chemical schemes: building of a new chemical scheme for VOC oxidation suited to three-
dimensional multiscale HOx-NOx-VOC chemistry simulations”. Atmos. Chem. Phys. 5.9 (2005), pp. 2519–
2538 (cit. on p. 62).

[Takeuchi, 2022] M. Takeuchi, T. Berkemeier, G. Eris, and N.L. Ng. “Non-linear effects of secondary
organic aerosol formation and properties in multi-precursor systems”. Nat. Commun. 13 (2022), p. 7883
(cit. on p. 105).

[Topping, 2016] D. Topping, M. Barley, M. K. Bane, N. Higham, B. Aumont, N. Dingle, et al. “UMan-
SysProp v1.0: an online and open-source facility for molecular property prediction and atmospheric
aerosol calculations”. Geosci. Model Dev 9.2 (2016), pp. 899–914 (cit. on p. 71).

[Turner, 2020] Michelle C Turner, Zorana J Andersen, Andrea Baccarelli, W Ryan Diver, Susan M
Gapstur, C Arden Pope III, et al. “Outdoor air pollution and cancer: An overview of the current
evidence and public health recommendations”. CA: Cancer J. Clin. 70.6 (2020), pp. 460–479 (cit. on
p. 4).

[Turpin, 2001] B. J. Turpin and H.-J. Lim. “Species contributions to PM2.5 mass concentrations: Revis-
iting common assumptions for estimating organic mass”. Aerosol Sc. and Tech. 35 (2001), pp. 602–610
(cit. on p. 117).

[Utembe, 2011] S.R. Utembe, M.C. Cooke, A.T. Archibald, D.E. Shallcross, R.G. Derwent, and M.E.
Jenkin. “Simulating secondary organic aerosol in a 3-D Lagrangian chemistry transport model using
the reduced Common Representative Intermediates mechanism (CRI v2-R5)”. Atmos. Environ. 45.8
(2011), pp. 1604–1614 (cit. on p. 25).

[Utembe, 2009] S.R. Utembe, L.A. Watson, D.E. Shallcross, and M.E. Jenkin. “A Common Representa-
tive Intermediates (CRI) mechanism for VOC degradation. Part 3: Development of a secondary organic
aerosol module”. Atmos. Environ. 43.12 (2009), pp. 1982–1990 (cit. on p. 25).

[Wang, 2018] N. Wang, E. Kostenidou, N. M. Donahue, and S. N. Pandis. “Multi-generation chemi-
cal aging of α-pinene ozonolysis products by reactions with OH”. Atmos. Chem. Phys. 18.5 (2018),
pp. 3589–3601 (cit. on p. 104).

[Wang, 2022] Zhizhao Wang, Florian Couvidat, and Karine Sartelet. “GENerator of reduced Organic
Aerosol mechanism (GENOA v1.0): an automatic generation tool of semi-explicit mechanisms”. Geosci.
Model Dev 15.24 (2022), pp. 8957–8982 (cit. on pp. 62–65, 68, 72, 106).

147



References

[Wang, 2023] Zhizhao Wang, Florian Couvidat, and Karine Sartelet. “Implementation of a Parallel
Reduction Algorithm in the Generator of Reduced Organic Aerosol Mechanisms (Genoa V2.0): Appli-
cation to Multiple Monoterpene Aerosol Precursors” (2023) (cit. on pp. 106–108).

[Watson, 2008] L.A. Watson, D.E. Shallcross, S.R. Utembe, and M.E. Jenkin. “A Common Representa-
tive Intermediates (CRI) mechanism for VOC degradation. Part 2: Gas phase mechanism reduction”.
Atmos. Environ. 42.31 (2008), pp. 7196–7204 (cit. on pp. 25, 62).

[Weber, 2020] J. Weber, S. Archer-Nicholls, P. Griffiths, T. Berndt, M. Jenkin, H. Gordon, et al. “CRI-
HOM: A novel chemical mechanism for simulating highly oxygenated organic molecules (HOMs) in
global chemistry–aerosol–climate models”. Atmos. Chem. Phys. 20.18 (2020), pp. 10889–10910 (cit. on
pp. 25, 62).

[Whitehouse, 2004a] L. E. Whitehouse, A. S. Tomlin, and M. J. Pilling. “Systematic reduction of com-
plex tropospheric chemical mechanisms, Part I: sensitivity and time-scale analyses”. Atmos. Chem.
Phys. 4.7 (2004), pp. 2025–2056 (cit. on p. 62).

[Whitehouse, 2004b] L. E. Whitehouse, A. S. Tomlin, and M. J. Pilling. “Systematic reduction of com-
plex tropospheric chemical mechanisms, Part II: Lumping using a time-scale based approach”. Atmos.
Chem. Phys. 4.7 (2004), pp. 2057–2081 (cit. on p. 62).

[Wiser, 2023] F. Wiser, B. K. Place, S. Sen, H. O. T. Pye, B. Yang, D. M. Westervelt, et al. “AMORE-
Isoprene v1.0: a new reduced mechanism for gas-phase isoprene oxidation”. Geosci. Model Dev 16.6
(2023), pp. 1801–1821 (cit. on p. 62).

[Wolf, 2021] Sarah Wolf, Jonas Teitge, Jahel Mielke, Franziska Schütze, and Carlo Jaeger. “The Eu-
ropean Green Deal—more than climate neutrality”. Intereconomics 56 (2021), pp. 99–107 (cit. on
p. 12).

[Wu, 1994] Pei-Ming Wu and Kikuo Okada. “Nature of coarse nitrate particles in the atmosphere—A
single particle approach”. Atmospheric Environment 28.12 (1994), pp. 2053–2060 (cit. on p. 7).

[Xavier, 2019] Carlton Xavier, Anton Rusanen, Putian Zhou, Chen Dean, Lukas Pichelstorfer, Pontus
Roldin, et al. “Aerosol mass yields of selected biogenic volatile organic compounds–a theoretical study
with nearly explicit gas-phase chemistry”. Atmos. Chem. Phys. 19.22 (2019), pp. 13741–13758 (cit. on
pp. 71, 76, 129).

[Xia, 2009] A. G. Xia, D. V. Michelangeli, and P. A. Makar. “Mechanism reduction for the formation
of secondary organic aerosol for integration into a 3-dimensional regional air quality model: α-pinene
oxidation system”. Atmos. Chem. Phys. 9.13 (2009), pp. 4341–4362 (cit. on p. 62).

[Xu, 2021a] L. Xu, X. Liu, H. Gao, X. Yao, D. Zhang, L. Bi, et al. “Long-range transport of anthro-
pogenic air pollutants into the marine air: insight into fine particle transport and chloride depletion
on sea salts”. Atmos. Chem. Phys. 21.23 (2021), pp. 17715–17726 (cit. on p. 4).

[Xu, 2021b] Li Xu, Lin Du, Narcisse T Tsona, and Maofa Ge. “Anthropogenic effects on biogenic sec-
ondary organic aerosol formation”. Adv Atmos Sci . 38 (2021), pp. 1053–1084 (cit. on p. 140).

[Ying, 2011] Qi Ying and Jingyi Li. “Implementation and initial application of the near-explicit Master
Chemical Mechanism in the 3D Community Multiscale Air Quality (CMAQ) model”. Atmos. Environ.
45.19 (2011), pp. 3244–3256 (cit. on p. 61).

[Yu, 2021] Zechen Yu, Myoseon Jang, Tianyu Zhang, Azad Madhu, and Sanghee Han. “Simulation of
Monoterpene SOA Formation by Multiphase Reactions Using Explicit Mechanisms”. ACS Earth Space
Chem. 5.6 (2021), pp. 1455–1467 (cit. on p. 129).

[Zhang, 2007] Qi Zhang, Jose L Jimenez, MR Canagaratna, J David Allan, H Coe, I Ulbrich, et al.
“Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced
Northern Hemisphere midlatitudes”. Geophys. Res. Lett. 34.13 (2007) (cit. on p. 7).

[Zhu, 2015] S. Zhu, K. N. Sartelet, and C. Seigneur. “A size-composition resolved aerosol model for sim-
ulating the dynamics of externally mixed particles: SCRAM (v 1.0)”. Geoscientific Model Development
8.6 (2015), pp. 1595–1612 (cit. on p. 26).

148


	Remerciements
	Résumé
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Air pollution
	Sources
	Anthropogenic emission
	Biogenic emission

	Gaseous pollutants
	Nitrogen oxides
	Volatile organic compounds
	Ground-level ozone

	Particulate Pollutants
	Size distribution
	Chemical composition

	Health and Environmental and health impacts
	Environmental effects
	Health impacts

	Guideline and regulation
	WHO guideline
	EU regulation


	Formation of organic aerosols
	Gas-phase chemistry: Low-volatile organic formation
	VOC oxidation
	HOM formation

	Gas-particle thermodynamic
	Aerosol dynamics
	Condensation/evaporation
	Nucleation
	Coagulation


	Interaction between anthropogenic emission and aerosol formation
	Gas-phase chemistry
	Gas-particle partitioning
	Effects of anthropogenic emission mitigation

	Modeling of organic aerosol formation
	Gas-phase chemical mechanism
	Simplified chemical mechanism
	Explicit chemical mechanism

	SOA mechanism
	VOC mechanism reduction for SOA modeling

	Numerical models employed in this work
	Chemical transport model
	Aerosol box model

	Objectives and the plan of the work

	Development of GENOA v1.0 and its application to sesquiterpene SOAs
	Abstract
	 Introduction
	 Model development
	 Prereduction
	 Reduction strategies
	 Removal strategy
	 Jumping strategy
	 Lumping strategy
	 Replacement strategy

	 Datasets of atmospheric conditions applied to reduction
	 Training dataset
	 Pre-testing dataset
	 Testing dataset

	 Settings for SOA simulations
	 Settings for evaluation
	 Settings for aerosol-oriented treatments

	 Application to the -caryophyllene mechanism
	 Building of the reduced SOA mechanism
	 Evaluation of the reduced SOA mechanism
	 Reproduction of the SOA concentrations
	 Reproduction of the SOA composition
	 Sensitivity on environmental parameters


	 Conclusions
	Appendix

	Parallel reduction algorithm in GENOA v2.0: application to monoterpene SOAs
	Abstract
	Introduction
	Methods
	Presentation of GENOA v1.0
	Limitations
	New features in GENOA v2.0
	Parallel reduction
	Reduction search order
	Reduction strategy
	Reduction score

	Application to monoterpene SOA reduction
	Reference mechanism
	Evaluation dataset
	Initial condition
	Training stages


	Results and discussion
	Mechanism evolution during reduction
	Description of the reduced mechanism
	Mechanism performance during testing
	Reduction sensitivity to prescribed error tolerances
	Mechanism sensitivity to environmental parameters

	Conclusion
	Code and data availability
	Supplemental materials

	3-D modeling biogenic organic aerosol formation to anthropogenic NOx emission reduction
	Abstract
	Introduction
	Method
	Model overview
	SOA mechanisms
	Configuration of simulations
	Computation of biogenic emissions
	Observation

	Results and discussion
	Comparison between simulation results and measurements
	Comparison between the implicit and detailed SOA mechanisms
	Comparison of organic aerosol concentrations 
	Comparison of OM/OC ratios
	Comparison of MT and SQT SOA
	Comparison of HOM and non-HOM concentrations

	Response of biogenic SOA concentrations to NOx emission reduction
	Effect of NOx reduction on concentrations of oxidants and radicals
	Comparison of total organic aerosols and OC:OM ratio
	Comparison of MT SOAs
	Comparison of SQT SOAs


	Conclusion
	Appendix

	Conclusions and perspectives
	Conclusions
	Perspectives
	Model development
	Model application


	References

