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Résumé en français

Cette thèse est l’aboutissement des recherches que j’ai effectuées au laboratoire Chimie Biologie
Innovation dans le groupe Matériaux Innovants pour l’Énergie sous la direction d’Annie Colin. Ces
travaux ont été réalisés en collaboration avec L’Oréal. Ils ont mené à la publication de deux articles
[1, 2].

Contexte général

Les crèmes hydratantes, les crèmes solaires et les fonds de teint sont largement utilisés pour protéger ou
embellir la peau. De nombreux soins pharmaceutiques se présentent également sous forme de crèmes à
application externe. L’étalement de ces produits est une étape clé car elle conditionne les performances
réelles du produit lors de son utilisation par le consommateur et elle est liée aux perceptions sensorielles.
L’idéal est d’obtenir un dépôt fin et homogène en épaisseur afin d’assurer des performances optimales.
En pratique, l’étalement au doigt génère des défauts, par exemple un dépôt irrégulier en épaisseur ou
la formation d’agrégats, ces derniers affectant également les perceptions sensorielles. La modélisation
de l’application d’une crème est complexe puisqu’elle nécessite de faire intervenir de nombreuses
physiques, qui sont parfois interdépendantes, ce qui explique pourquoi ce processus reste encore assez
largement incompris et fait l’objet de nombreuses recherches. De plus, la transition actuelle vers des
matières premières biosourcées a remis au premier plan des problématiques telles que la formation
d’agrégats, ce qui représente un challenge pour l’industrie cosmétique. Dans notre étude, l’objectif était
de réduire la complexité de ce processus à travers des systèmes modèles qui permettent de mettre en
évidence les principes fondamentaux liés aux phénomènes étudiés. Nous avons cherché à répondre aux
questions suivantes : Quels sont les paramètres qui contrôlent l’épaisseur déposée lors de l’étalement
d’un fluide ? Quels sont les éléments responsables de l’apparition d’agrégats, quel est leur mécanisme de
formation, et comment les éviter ? L’objectif final étant de mieux comprendre le dépôt formé sur la peau
pour donner des conseils aux formulateurs afin d’optimiser les performances des produits cosmétiques.

Résumé du manuscript

Ce manuscrit s’articule en deux parties quasi-indépendantes: seules les bases de la rhéologie présentées
dans le Chapitre 1 (section 1.2) peuvent être utiles à la compréhension de la partie II.
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Partie I : Élastohydrodynamique
La partie I est composée de quatre chapitres traitant de l’étalement de fluides complexes par lamelle
flexible. Le premier chapitre introduit le sujet et les trois autres décrivent les résultats obtenus en étalant
des fluides aux propriétés de plus en plus complexes. Dans tous les cas, il s’agit de fluides modèles
(polymères purs ou en suspensions) qui ne contiennent pas de particules solides.

Chapitre 1 : Introduction - Partie I
L’étalement de fluides complexes fait intervenir des connaissances portant à la fois sur les fluides et
leurs comportements sous cisaillement, ainsi que sur les processus d’étalement. Ce chapitre introductif
se présente donc en deux parties. Dans la première partie sont abordés les principes fondamentaux
de la rhéologie. Les principales catégories de fluides sont décrites, ainsi que les outils expérimen-
taux d’évaluation des propriétés et leurs limites. Dans une seconde partie, les différentes géométries
d’étalement sont présentées. Nous montrons que l’enduction par trempage et l’étalement par lame
rigide ont été largement étudiés avec des fluides newtoniens et non-newtoniens. A contrario, un nombre
très limité de travaux portent sur l’étalement par lamelle flexible, en particulier en ce qui concerne les
fluides non-newtoniens. La revue bibliographique montre également que l’étalement d’une quantité
de fluide fini, c’est à dire avec un réservoir de fluide qui se vide au cours de l’étalement, a été très peu
considéré. Cette situation est cependant primordiale pour modéliser l’étalement de crèmes, de peinture
ou de confiture par exemple. Si l’on s’intéresse à l’étalement par lamelle flexible, choisie pour modéliser
un doigt capable de se déformer sous contrainte, une seule étude à notre connaissance, menée par Kusina
[3], fait intervenir un réservoir de fluide fini. Son travail a porté sur le cas particulier des fluides à seuil.
L’étalement d’une quantité finie de fluide par une lamelle flexible est donc un problème académique
largement ouvert à de nouvelles investigations et qui trouve également une forte résonance dans le milieu
industriel.

Dans les Chapitres 2, 3 et 4 nous avons cherché à comprendre l’impact d’un réservoir de taille
finie sur la loi de dépôt et comment les propriétés rhéologiques influencent l’épaisseur du dépôt et la
dynamique d’étalement.

Chapitre 2 : Étalement par lamelle flexible d’un réservoir fini de fluide newtonien
Dans ce deuxième chapitre, nous modélisons le premier mouvement de l’application d’une crème
en étalant par une lamelle flexible une petite quantité de fluide newtonien. Pour des questions de
simplification, nous avons utilisé un substrat rigide et réalisé un mouvement d’étalement linéaire.
L’épaisseur déposée lors du vidage du réservoir est mesurée par un profilomètre optique. Le paramètre
choisi pour suivre et quantifier le niveau de remplissage du réservoir est la longueur de mouillage du
fluide sur la lamelle. Nous avons montré qu’à vitesse constante le film déposé a une épaisseur qui décroît
au fur et à mesure que le réservoir se vide. L’épaisseur déposée augmente avec la vitesse et la viscosité
du fluide et diminue lorsque la rigidité de la lame augmente. Nous avons proposé, en équilibrant les
forces élastiques et visqueuses, une loi d’échelle donnant l’épaisseur déposée en fonction notamment de
la longueur de mouillage, et permettant ainsi de prédire les données expérimentales. Nous avons validé
le préfacteur employé par un modèle numérique plus détaillé qui a donné des résultats en bon accord
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avec les données expérimentales sans avoir à utiliser de paramètre ajustable. Cette approche numérique a
également permis de montrer que les effets capillaires sont du second ordre et ont un impact significatif
sur l’épaisseur déposée uniquement pour des surfaces (lamelles et substrats) très hydrophobes. Dans ce
cas, l’épaisseur déposée augmente. L’impact de la vitesse d’étalement et de la viscosité du fluide sur
le profil du film déposé a également été étudié. Ainsi, l’épaisseur du dépôt gagne en homogénéité en
diminuant la viscosité du fluide. Enfin, nous avons montré que l’analogie entre capillarité et élasticité
[4–6] n’est pas valide lorsque le niveau de liquide sous la lamelle est variable.

Chapitre 3 : Extension au cas des fluides rhéofluidifiants
Ce chapitre suit une méthode très similaire à celle présentée dans le Chapitre 2 : les expériences, lois
d’échelle et calculs numériques ont été adaptés au cas de fluides rhéofluidifiants. Nous avons utilisé
des suspensions de polymères dont la viscosité diminue lorsque le taux de cisaillement augmente. En
modélisant le fluide avec l’équation de Ostwald et de Waele, nous avons obtenu une loi d’échelle
permettant de prédire l’épaisseur déposée en fonction des paramètres rhéologiques du fluide. L’approche
numérique a été utilisée pour comparer l’étalement de fluides rhéofluidifiants et de fluides newtoniens.
En définissant le "newtonien équivalent" comme le fluide qui permet de déposer un même volume de
fluide en un même temps que le fluide rhéofluidifiant d’intérêt (à vitesse et longueur de mouillage initiale
identiques) nous avons montré qu’étaler un fluide rhéofluidifiant nécessite plus d’énergie qu’étaler un
fluide newtonien. Le profil du film de fluide déposé est également différent. Nous avons ainsi relevé une
différence de courbure qui se traduit par un dépôt moins homogène en épaisseur mais plus long dans le
cas d’un fluide rhéofluidifiant. Avec ces résultats, il est donc possible pour le formulateur de déterminer
si l’ajout d’un polymère dans le but d’obtenir un comportement rhéofluidifiant est nécessaire ou non
selon les effets souhaités.

Chapitre 4 : Cas des fluides rhéofluidifiants générant des forces normales ou présentant un seuil
Les fluides utilisés en industrie présentent souvent une combinaison de plusieurs propriétés. Dans
une première partie, nous avons traité le cas de fluides rhéofluidifiants qui additionnellement génèrent
des forces normales sous cisaillement. Nous nous attendions à obtenir des épaisseurs déposées plus
importantes du fait de la pression exercée par les forces normales sur la lamelle. Cependant, la génération
de forces normales n’a pas montré expérimentalement d’effets sur la loi de déposition. Les fluides à
forces normales ont pu être décrit de manière satisfaisante en considérant uniquement leurs propriétés
rhéofluidifiantes, ce qui s’explique par la géométrie employée. Pour prédire si les forces normales ont
un effet, il ne faut pas se baser sur le nombre de Weissenberg qui compare les contraintes visqueuses et
normales, mais sur un nombre sans dimension comparant les pressions associées. Cela fait apparaître
un facteur géométrique qui dépend de l’épaisseur déposée et de la longueur de mouillage. Dans notre
situation, ce terme est petit, ce qui explique l’absence d’effet des forces normales, contrairement à ce
qui a pu être rapporté dans la littérature lors d’expériences d’enduction par trempage pour lesquelles les
forces normales entraînent un gonflement du film déposé. Dans ce dernier cas, la longueur caractéristique
correspond à la déformation du ménisque ce qui conduit à un nombre sans dimension supérieur à un.
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Dans une seconde partie, nous avons traité le cas de fluides rhéofluidifiants dits "à seuil". Au repos,
ils se comportent comme un solide et s’écoulent uniquement lorsque la contrainte appliquée dépasse
la contrainte seuil. L’étalement de fluides à seuil par une lamelle flexible donne lieu à des résultats
expérimentaux très dispersés. Nous avons identifié deux phénomènes pouvant expliquer cette dispersion.
Premièrement, du fait du seuil, des forces élastiques provenant du liquide interviennent dans l’équilibre
des forces définissant la forme de la lamelle. Ces forces élastiques pourraient expliquer pourquoi on
observe parfois un vidage du réservoir de bas en haut au lieu de s’effectuer latéralement, ce qui se
traduit par une longueur de mouillage constante au cours de l’étalement. Cette situation n’est pas prévue
dans notre modèle. Deuxièmement, une partie du fluide présent dans le réservoir peut rester bloquée
sous la lamelle et amener à des cycles de redéposition successifs. Cela se traduit concrètement par
un dépôt du fluide en îlots. Ces deux phénomènes ont limité la possibilité de modéliser simplement
l’étalement de fluides à seuil par lamelle flexible, la longueur de mouillage ne décrivant plus le vidage
du réservoir. Dans la plupart des expériences, les deux situations sont combinées, ce qui résulte au final
en une importante dispersion des données. Nous pensons qu’avec une lamelle rigide (dont l’écart avec
le support et la position sont fixés), il serait possible d’étudier et de prédire l’épaisseur déposée dans
le cas de fluides à seuil en adaptant le modèle proposé par Kusina [3], mais cela ne modéliserait plus
vraiment l’étalement de crème par un doigt.

Ce modèle d’étalement en mouvement linéaire par une lamelle flexible sur un substrat rigide est
assez éloigné des cas réels d’applications de cosmétiques, il représente au mieux le tout premier
mouvement réalisé lors de l’étalement d’une crème, processus qui donne lieu généralement à des
mouvements complexes circulaires, en aller-retour... Cette étude a permis cependant de donner des
pistes de formulation en montrant que le fluide qui s’étale de la manière la plus homogène et avec le
moins d’énergie est un fluide newtonien, de faible viscosité, et étalé lentement. Une piste intéressante à
poursuivre serait d’étudier l’effet de l’élasticité du substrat en utilisant un matériau mou en guise de
substrat, par exemple du polydiméthylsiloxane réticulé. Corvalan prévoit dans le cas d’un réservoir
infini que l’épaisseur déposée sera plus faible toutes autres conditions égales par ailleurs [7]. La mesure
expérimentale n’est pas évidente avec notre système car il repose sur une lecture de l’épaisseur déposée
par profilomètre optique et se pose alors la question de la mesure de la référence (substrat sans liquide)
dont la position peut varier du fait de la présence de liquide.

Partie II : Suspensions
Dès l’application d’une crème cosmétique, ou plus tard en frottant un dépôt cosmétique "sec", on peut
voir apparaître des agrégats qui ressemblent à des petits cylindres et qui finissent par tomber de la peau
sous l’action de la gravité. Un exemple est montré en Figure 5.18. Ces agrégats sont très pénalisants car
ils induisent des sensations déplaisantes et empêchent une couverture homogène et uniforme du produit
cosmétique. Les retours consommateurs sont variables et surprenamment dépendants des régions du
monde ce qui laisse présager un problème complexe ne dépendant pas uniquement de la formulation du
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produit. L’utilisation de certaines nouvelles matières biosourcées a engendré une apparition accrue de
ces défauts. Il est donc primordial de se pencher sur ces problèmes, qui, bien qu’ils aient toujours existé,
reviennent au premier plan du fait de la transition vers les particules biosourcées.

La deuxième partie du manuscrit comporte deux chapitres. Le premier, introductif, présente le cadre de
l’étude et l’état de l’art pertinent à la compréhension et à l’interprétation des résultats. Le second présente
l’étude expérimentale de l’apparition d’agrégats de particules lors de l’étalement d’une formulation de
type crème cosmétique et le mécanisme proposé pour expliquer leur formation. Un critère formulatoire
simple pour limiter l’apparition des agrégats est enfin présenté.

Chapitre 5 : Introduction - Partie II
Dès son application et tout au long de sa vie sur la peau, une crème cosmétique passe par de nombreux
états et est soumise à de nombreux mécanismes différents. Nous avons donc présenté dans ce chapitre une
revue de littérature assez large concernant les aspects suivants. Initialement, une crème cosmétique peut
être assimilée à une suspension semi-diluée de particules dont les propriétés dépendent principalement
de la phase liquide. Lors du séchage, la fraction volumique en particules solides augmente et nous avons
montré que cela s’accompagne souvent de comportements non-newtoniens liés aux contacts et aux
interactions entres les particules. Lors du séchage au repos d’une suspension, des études ont également
signalé la formation d’une croûte de particules conduisant à une distribution non-uniforme des particules
dans le dépôt. Enfin, lors du cisaillement d’un dépôt cosmétique sec, on s’attend à ce que l’adhésion et
la cohésion jouent un rôle. Ce point a été principalement étudié dans le contexte des adhésifs sensibles à
la pression, mais pas dans le contexte de l’étalement de couches minces de fluides complexes. Nous
avons également effectué une revue bibliographique sur la peau et ses modèles synthétiques dans le but
de construire une expérience nous permettant d’étudier la formation d’agrégats en reproduisant en partie
les propriétés mécaniques de la peau. Sous l’angle de cet état de l’art, nous avons cherché à comprendre
: comment expliquer la formation d’agrégats ? Quels sont les paramètres et mécanismes impliqués
dans leur apparition ? L’objectif final du point de vue industriel était de proposer des pistes permettant
d’éviter en pratique la formation d’agrégats. C’est principalement sur les aspects formulatoires que
nous avons cherché ces pistes, car c’est le levier sur lequel l’industriel peut facilement avoir un impact,
contrairement à la gestuelle et la technique d’application du produit.

Chapitre 6 : Impact des particules solides sur la formation d’agrégats dans les dépôts cosmétiques
Dans cette seconde partie, nous avons complexifié les systèmes étudiés en ajoutant des particules solides
et un liquide non-volatile dans la formulation pour se rapprocher de la composition des cosmétiques. Le
montage expérimental d’étalement a lui aussi été rendu plus réaliste par l’utilisation de surfaces molles
et/ou rugueuses pour le substrat et l’applicateur. Des mouvements en aller-retour, également plus proches
d’une gestuelle classique, ont été réalisés par un robot à des valeurs de vitesses et de pressions réalistes.
Ces modifications permettent d’étudier la formation d’agrégats de particules qui apparaissent lorsque le
dépôt de cosmétique est cisaillé après séchage. Nous avons identifié les principaux paramètres impliqués
dans l’émergence de ces défauts. Ces observations ont été complétées par des tests de caractérisation
(notamment via des mesures rhéologiques et de pégosité), nous permettant de proposer un modèle de
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mécanisme de formation des agrégats qui explique pourquoi au lieu de s’étaler de façon régulière le
dépôt de fluide génère ces défauts. Enfin, nous avons proposé un critère basé sur la fraction volumique
en particules solides pour réduire le risque de formation d’agrégats.

Normalement, la présence d’une phase non-volatile doit assurer le maintien d’un milieu continu
capable de s’étaler. Lorsque la concentration de particules est plus grande que la concentration maximale
d’empilement, la formation d’agrégats est attendue et s’apparente à de la granulation. Prendre en compte
le gonflement et la porosité des particules est essentiel pour évaluer correctement cette limite à ne pas
dépasser par les formulateurs. Cependant, nous avons observé des agrégats en dessous de ce seuil.
Nous considérons que les agrégats se forment lorsque la cohésion de la formulation séchée l’emporte
sur l’adhésion aux parois de l’applicateur et du substrat. Dans le cas inverse, le dépôt sec est étalé ou
fracturé. Il est possible de passer de l’une à l’autre de ces situations en jouant sur : la concentration
en particules solides, la présence ou non de polymère, la vitesse d’étalement, la force appliquée, et les
propriétés adhésives aux parois. Alors que les mesures rhéologiques se sont révélées très limitées sur
les formulations séchées à haute concentration en particules, les tests d’adhésion/cohésion (de type
tests de pégosité) ont permis d’évaluer cet équilibre adhésion/cohésion en fonction du mode de rupture
observé. De notre point de vue, le test de pégosité représente une voie à poursuivre dans l’étude de
la formation de ces agrégats, notamment pour permettre une validation quantitative du modèle que
nous proposons. Il serait intéressant d’utiliser les mêmes surfaces que celles du test d’étalement pour
améliorer la comparaison entre ces expériences. Le test de pégosité peut être facilement utilisé en
industrie, car il est facile à mettre en place et pourrait permettre une évaluation rapide du risque de
formation d’agrégats pour une formulation donnée, qui ne soit pas dépendant du testeur, comme c’est le
cas actuellement.

Les annexes apportent des informations complémentaires aux différents chapitres et reproduisent les
deux articles publiés à Physical Review Letters et Physical Review Fluids.
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The skin is the largest and heaviest organ of the human body, covering about 2 m2 of surface on average
for a mass ranging from 3 to 5 kg [8]. It maintains the inside of the body almost perfectly isolated from
the outside, ensures the protection against external aggression (physical, chemical and radiative) and is
the organ of the touch. It also has strong social implications (particularly for the skin on the face), as it
corresponds to what others see of us.

To protect, maintain and improve the skin, it is common to use cosmetics or pharmaceutical products
for external use, in the form of liquids, creams or gels. Many manufacturers work on the elaboration
of these products, whose complex formulations are designed to ensure very diverse properties (UV
protection, anti-aging, moisturizing ...). The spreading of these products on the skin is a key step because
it impacts the performance of the products and acts on sensory perceptions. The objective is to obtain a
thin deposit, as homogeneous as possible in thickness, to ensure equivalent properties throughout the
product’s application area. In reality, everyone knows that when you start spreading a small amount
of sunscreen linearly, for example from the shoulder to the elbow, the deposit is thicker at the starting
point than at the end of the movement. This means that you have to complexify your movements in
order to better homogenize the product thickness. In addition, spreading defects, such as aggregates, can
appear and strongly affect not only the properties but also the sensory perceptions. When trying to model
the application step, one is confronted to the complexity of the problem which involves numerous and
sometimes interdependent physics (e.g. rheology, tribology, drying, wetting, fluid and solid mechanics).
This explains why it remains a large field of research at the present time. In addition, the transition to
bio-based products in cosmetic formulations leads to new behaviors and challenges, especially during
the spreading process, shaking the cosmetics industry. The stakes are high when we see that L’Oréal’s
objective is to reach 95% of bio-based raw materials in its products by 2030!

It is therefore essential to understand the following: what are the parameters that govern the spreading
and control the deposited fluid thickness? What are the elements responsible for the observed defects?
What are the processes of creation of these defects?

In order to answer these questions, the manuscript is articulated in two parts. The first part focuses
on understanding the deposited thickness at the beginning of the spreading process using a "simple fluid"
- with no solid particles. We mimic a one-way linear spreading with a soft blade coating system and
study experimentally, theoretically, and numerically the impact of the fluid rheology on the spreading
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process and the fluid film profile. The second part focuses on the spreading defects arising at the end of
the spreading process using fluid with solid particles.

Each part begins with an introductory chapter explaining the framework of the study and presenting
the state-of-the-art relevant to the discussion of the results.
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Elastohydrodynamics





Chapter 1

Introduction - Part I

In this chapter, the bibliographical study concerning the spreading of complex fluids is presented. It
serves as a basis for understanding Chapters 2, 3 and 4. We first present the fundamental principles of
rheology and the different categories of fluids studied thereafter. Then, we describe the wetting and
the spreading of a fluid. After a brief presentation of the main spreading geometries, we focus on the
specific case of soft blade coating.
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1.1 Cosmetic context

Most personal care and cosmetic products, such as creams, lipsticks, mascaras, need to be spread by
the consumer in order to obtain their desired function. This application step is crucial. If the spreading
is difficult and leads to non-uniform deposit in thickness, or heterogeneities in composition, then the
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product used in real condition does not meet its desired properties, even if they were obtained during
laboratory tests (e.g. the level of sun protection for a sunscreen). Furthermore, spreading plays an
important role in the user experience of products: if the sensory perceptions are not pleasant for the
consumer, this is detrimental. Therefore, there is a current need to understand and improve the spreading
properties of cosmetics products [9].

Most cosmetic products are composed of several ingredients, which gives them a non-trivial behavior
when spread. Focusing on liquid formulations, the presence of solid particles and polymers is often
responsible for non-Newtonian behavior. Rheological measurements allow the fluid to be classified
into different categories based on its behavior (see section 1.2.2). A topic of interest in the literature
has been to try to predict sensory perceptions (ease of spreading or spreadability) by physical and in
particular rheological measurements [10–12] but this sometimes lacks reproducibility [10]. Others have
investigated the impact of composition on the spreadability by measuring the area covered by a product
spread under gravity and capillarity effect [9] or by pressing the product between two plates to evaluate
the deposited thickness [13]. In these cases, spreadability does not refer to sensory perceptions but
to the ability of a product to cover the largest area with the thinnest film. It is not well understood
how the rheological properties affect the physical characteristics of a spread film such as the thickness.
In particular, knowing whether (and why) different classes of fluids give rise to different spreading
results, such as the shape of the deposited film, which may be more or less homogeneous, or the energy
required to spread the product, is of interest in providing formulation advice that are not tied to a certain
composition but are intended to be generalized to an entire fluid category.

In the following we describe the fundamentals of rheology that are used to distinguish the main types of
fluid behavior encountered in cosmetics. Then the coating techniques are presented, focusing on the one
that we believe is most relevant to mimic finger spreading: flexible (or soft) blade coating.

1.2 Rheology

1.2.1 What is rheology?

Rheology, literally the science of flow, is the study of fluids under solicitation (flow, deformation...). It
has been developing from the beginning of 20th century, to fill a gap left between the theories of solid
mechanics and fluid mechanics, which were unable to describe and explain the behavior of complex
fluids. Complex fluids, also called non-Newtonian fluids, are defined in opposition to simpler fluids,
namely Newtonian fluids (for which stress and strain rate are proportional). They correspond, but not
exclusively, to polymers melts or solutions, suspensions, emulsions, gels, foams... Most non-Newtonian
fluids have an intermediate behavior between a perfectly elastic solid (for which stress and strain are
proportional) and a Newtonian fluid. Rheology allows us to categorize the different types of fluids
according to their properties (shear-thinning, shear-thickening ...). Fluid properties have a direct impact
on product processability and performances, making rheology a powerful tool for formulators to evaluate
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and control them. Results of macroscopic rheological measurements are also a direct consequence of
the material’s microstructure, which provides insight into it. For instance, Koumakis and Petekidis [14]
linked the two yields measured with an attractive colloid gel at high volume fraction to the breaking of
bonds within particle cages, and the breaking of the cages into smaller constituents. Nguyen Le et al.
showed that microscopic characteristics, such as inter-particle friction, could be directly linked to the
bulk rheology [15].

1.2.2 Main fluid classes

The simplest solicitation is to shear a fluid cell between two parallel plates (Fig. 1.1). The upper plate is
in motion, transmitting the force to the material as there is no slip. The stress is defined by the force
applied over the surface σyx =

F
S , in Pa.
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Fig. 1.1 − a Simple shear flow between two plates of surface S, the upper plate being moved at velocity,
V . The velocity profile is linear. b The stress components for a small volume of fluid.

Newtonian fluids

In 1687, Newton hypothesised that "the resistance which arise from the lack of slipperiness of the part of
the liquid [...] is proportional to the velocity with which the parts of the liquids are separated from one
another" for a simple shear flow [16]. This can be expressed by σyx = η

V
d with V

d the velocity gradient,
in s−1, also known as the shear rate, and η the fluid viscosity, in Pa.s, which is a measure of the resistance
to flow. This equation describes the behavior of Newtonian fluids for which the viscosity is independant
of the shear rate. In the current definition of Newtonian fluid, there are additional requirements:

• The two normal stress differences (σxx −σyy and σyy −σzz) are zero.
• There is no time-dependence of viscosity, and stress or shear rate when the other one is maintained

constant.
• The viscosities measured for different types of deformation (shear vs extension) are in direct

proportion.
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𝜎

 𝛾  𝛾

𝜂

𝜎𝑦
Newtonian: 𝜎 = 𝜂  𝛾

Yield stress (Bingham): 𝜎 = 𝜎𝑦 + 𝑘  𝛾

Shear-thinning: 𝜎 = 𝑘  𝛾𝑛, 𝑛 < 1

Shear-thickening: 𝜎 = 𝑘  𝛾𝑛, 𝑛 > 1

Yield stress (Herschel-Bulkley):

𝜎 = 𝜎𝑦 + 𝑘  𝛾𝑛, 𝑛 ≠ 1

Fig. 1.2 − Schematic representation of the rheological curves for the main categories of fluid: σ = f (γ̇)
and η = f (γ̇) in linear and logarithmic scales respectively.

Let σi j being the stress component, with i denoting the surface orientation and j referring to the direction
of the stress vector. The relevant stress distribution for Newtonian fluids is:

σxy = σyx = σ = ηγ̇, σxz = σyz = 0
σxx −σyy = 0, σyy −σzz = 0

}
(1.1)

The use of the stress differences is made to avoid considering the isotropic pressure pi (σxx = σyy =

σzz =−pi).

For non-Newtonian fluids, more complex behavior can be observed. The viscosity defined in the
general case η = σ/γ̇ is not necessarily constant anymore (Fig. 1.2). The following types of fluids
describe particular properties and, in practice, complex fluids often exhibit a combination of these
properties. Several examples are given to illustrate the physical origin of such behavior, others, specific
to suspensions, are given in section 5.1.2.

Shear-thinning fluids

For shear-thinning fluids, the viscosity decreases with increasing shear rate (Fig 1.2). Several models
describing the viscosity are used such as the Cross (1965) and Carreau models (1972) [16]. One popular
model for its simplicity is the power-law model (Ostwald and de Waele) :

η = kγ̇
n−1 (1.2)

with k the consistency (in Pa.sn), and n the shear-thinning index. It describes a pure shear-thinning
fluid (no Newtonian plateau at low or high shear rate), which is in many cases sufficient to describe the
behavior of the fluid.
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Shear-thinning reflects a reduction of the resistance to flow. It can have various physical origins. For
instance it can result at the microscopic level from the alignment of the solid particles or polymer chains
in the flow direction [16]. For particle suspensions, the fluid slip on the particles [17] and the breaking
of aggregates under shear [18] have also been presented as origins to explain shear-thinning.

Shear-thickening fluids

Shear-thickening fluids exhibit a viscosity that increases with the shear rate (Fig 1.2). A well-known
example of a shear-thickening fluid is a suspension of cornstarch that behaves like a solid under shear
and resumes flowing at rest. This behavior is typically encountered for highly concentrated suspensions
of solid particles. The contact interactions between the particles transition from lubricated to frictional,
leading to force chains that oppose the shear [19, 20]. This phenomenon is accentuated for rough and
irregular particles that combine high sliding and rolling friction [21].

Yield stress fluids

Yield stress fluids present a stress, σy, called the yield stress: it has to be overcome for the system to
start flowing. When the fluid behaves like a Newtonian fluid when flowing, it can be described by the
Bingham model [16]:

σ = σy +ηγ̇ (1.3)

Most of the time, the system does not only exhibit a yield stress but is also shear-thinning. The
Herschel-Bulkley model [22] is used to describe both phenomena:

σ = σy + kγ̇
n (1.4)

Yield stress fluids have a solid-like behavior at rest and fluid-like behavior under sufficient shear. On a
small scale, the yield stress results from a stress bearing network that exists for soft glassy materials.
This material category is vast. These networks can originate, for instance, from attraction interactions in
suspensions [23], sometimes combined with high friction and rolling constraints amplifying jamming
[24]. System jamming can also be obtained with soft beads when pressed against each others (e.g.
microgel [25–27] and emulsions [28]).

Normal stress fluids

The relevant stress distribution for elastic liquids is :

σxy = σ = γ̇η(γ̇), σxz = σyz = 0
σxx −σyy = N1(γ̇), σyy −σzz = N2(γ̇)

}
(1.5)

with N1 and N2 the first and second normal stress difference respectively, in Pa. Sometimes the normal
stress coefficient notation, Ψ1 and Ψ2 is preferred with: N1 = γ̇2Ψ1 and N2 = γ̇2Ψ2. The normal stress
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𝑅eff

At rest Under shear

a. b. c. 

Fig. 1.3 − a. Deformation of polymer chain in a capillary tube the arrows represent the velocity profile.
b. Weissenberg rod climbing effect for pure PDMS polymer (left) and a suspension of glass sphere at
0.3 v% (right) from Aral and Kaylon [33] c. Edge fracture in a parallel plate geometry.

differences are observed for non-linear solicitations of the sample (for large-amplitude oscillatory shear
or for steady flow at high shear rate). N1 can generally be fitted by: N1 = αγ̇m with α and m two
constants [16].

The emergence of unbalanced normal stress, and thus non-zero normal stress differences, arises from
the anisotropy generated by the flow in the microstructure. For example, for polymer systems, the chains
at rest have a spherical shape whose characteristic size is the radius of gyration of the polymer chain.
When subjected to a flow field, the chains are elongated in the flow direction, giving to the enveloping
volume an ellipsoidal shape [16], as shown in Figure 1.3a. Deformations related to the normal stress
differences are also observed on the droplets of an emulsion [29]. These anisotropically deformed
microstructures generate restoring forces that are consequently anisotropic. These forces give rise to
the normal stress components of the normal stress difference. In most situations, the restoring force is
greater in the flow direction, resulting in N1 ≥ 0 (i.e. σxx ≥ σyy). Negative values of N1 can be observed
in strongly-orientated systems. For instance negative N1 has been linked to the formation of flocculated
rod-like structures aligned along the vorticity [30, 31] or the change in orientation of deformed emulsion
droplets [29]. The second normal stress difference N2 is generally considered as small compared to N1

for dilute polymers but begins to be non-negligible for particle suspensions for which N2 is often on the
order of N1 [32].

An example of normal stress fluid behavior is called the Weissenberg effect or "rod climbing" effect:
the fluid rises along the stirring rod instead of being pushed towards the beaker rims (Fig. 1.3b). Another
classic example is the swelling of a polymer jet outside a capillary tube [16]. An example of this effect
is shown in Chapter 4, Figure 4.5.

Viscoelastic fluids

Up to now we have presented general laws of behavior that are time independent. In reality, the response
to a solicitation of a fluid often depends on the time. Thus, for some fluids, the behavior lies between
an elastic response and a viscous behavior, depending on the time scale of the experiment relative to
some characteristic time scale of the material. For slow solicitations, the material will appear more
viscous than elastic, whereas for relatively fast solicitations, the opposite is true. In practice, almost all
the real materials can be assumed to be viscoelastic to some extent. To take into account the viscoelastic
properties, partial derivatives needs to be added.
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A simple model for a viscoelastic fluid is the Maxwell model. It corresponds to a spring (σ = Gγ̂)
and a viscous damper (σ = ηγ̇) connected in series giving: γ̇ = σ̇

G + σ

η
. The first term represents the

equation of Hookean elasticity (with G the rigidity modulus and γ̂ = ∆L/d the strain - see Fig. 1.1) and
the second one the Newtonian viscous flow. This differential equation expresses a short term elastic
behavior and a long term viscous behavior. This linear equation is only valid for small deformations,
other models, such as Oldroyd B model, involves more complex time derivatives of the stress tensor and
extend its applicative range to large deformations [34].

1.2.3 Material solicitations and characterizations

There are two main categories of rheological measurements: in flow or in oscillation. They are used
to access different information: in the first case, it is the non-linear regime that is evaluated (large to
infinite deformation), while in the second case, the measurement is often made in the linear regime
(small deformations). The choice depends on the conditions of use of the material to be reproduced.

Principle of measurement in flow

In this case, the strain is infinite, the material flows continuously under an imposed stress or shear rate.
The structure of the fluid is usually lost after a few seconds of continuous shear. The flow properties
are assessed and particularly η , σ and N1 as a function of γ̇ , allowing to identify the type of the fluid
(Newtonian, shear-thinning ...). Viscoelasticity can be observed by performing creep or relaxation
experiments (focusing on the transient regime of flow at constant stress or strain). However, this property
of the fluid is investigated more thoroughly by performing oscillation measurements.

Principle of measurement in oscillation

In this case, the material is deformed around its equilibrium state by small amplitude oscillatory shear.
The experiment are performed either at constant angular frequency ω f or at constant strain amplitude γ̂0.
The oscillating strain γ̂(t) can be written:

γ̂(t) = γ̂0 cos
(
ω f t
)

(1.6)

For small amplitude solicitations, the stress in the material is proportional to the deformation, it oscillates
at the same frequency but with a phase shift δ :

σ(t) = σ0 cos
(
ω f t +δ (ω f )

)
(1.7)

Using the formalism of complex numbers (identified by a star ∗) the strain and stress can be rewritten:
γ̂∗ = γ̂0eiω f t and σ∗ = σ0ei(ω f t+δ (ω f )).
The Hooke law formalism can be used σ∗ = G∗γ̂∗, with G∗ the complex modulus expressed as a
combination of the storage modulus G′ which represents the in-phase part measuring the elastic response,



10 Introduction - Part I

Elastic
solid

Viscous
fluid

Viscoelastic
fluid

𝑡

𝑡

𝑡

𝛿 = 0

𝛿 = 𝜋/2

0 < 𝛿 < 𝜋/2

𝜎

 𝛾

𝜎

 𝛾

𝜎

 𝛾

a. b. 

Fig. 1.4 − a. σ and γ̂ in the linear region for a pure elastic solid, a pure viscous fluid and a viscoelastic
fluid. b. Three types of behavior for G’ and G” during an amplitude sweep describing from left to right:
shear-thinning, yield stress fluids, and shear-thickening fluids.

and the loss modulus G′′ which represents the out-of-phase part measuring the dissipation, such that
G∗ = G′+ iG′′. Thus, by identifying the real and imaginary parts, G′ = σ0

γ̂0
cos(δ ) and G′′ = σ0

γ̂0
sin(δ ).

The material response is written:

σ(t) = γ̂0[G′(ω f )cosω f t +G′′(ω f )sinω f t] (1.8)

For a purely viscous fluid, σ = ηγ̇ , the stress is in phase quadrature resulting in G′(ω f ) = 0 and
G′′(ω f ) = ηω . For a purely elastic solid, σ = Gγ̂ , giving G′ = G and G′′ = 0 (Fig. 1.4a).

In practice, viscoelastic materials have more complex behaviors where both G′′(ω f ) and G′(ω f )

take non-zero values. For instance, the Maxwell model described before gives G′ = G
ω2

f t2
R

1+ω2
f t2

R
and

G′′ = G ω f tR
1+ω2

f t2
R

with tR = η/G the relaxation time of the material. At low frequency, the viscous term is
dominant while at high frequency the elastic term dominates. More sophisticated models relying on
complex combination of multiple springs and dashpots exist to describe finer viscoelastic materials. For
high deformations (or oscillation frequency), the shear stress is no longer a sinusoidal function of time
and G′ and G′′ become dependant on γ̂: the material is solicited in the non-linear viscoelastic range.

It is possible to use oscillatory measurements to identify the fluid type (Fig. 1.4). For instance, the
relative positions of G′ and G′′ in the linear region (G′ and G′′ constant) indicate the presence of a
yield stress, in that case G′ > G′′ . It is sometimes easier to determine the yield stress σy with this
type of experiment rather than in flow: it is materialized by a change of slope of the curve σ = f (γ̂)
represented with logarithmic scales. For a viscous fluid, G′′ is greater than G′. If, in addition, the
fluid is shear-thinning, then G′ and G′′ decrease in the non-linear regime. The opposite happens for
shear-thickening fluid (with a possible crossover of the two curves).
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1.2.4 Rheological measurements in practice

Main geometries

Rheological measurements in flow and in oscillation are carried out on rotational rheometer using
different types of geometries. The main ones are parallel plate, cone and plate and Couette (Figure 1.5)
[16].

The choice between these different geometries depends mainly on the viscosity of the fluid. Thus,
a Couette cell should be chosen for low viscosity fluids, while small diameter parallel plate or cone
and plate are preferred for highly viscous fluids. Reducing the contact area decreases the value of the
torque, which helps maintaining its value within the measurement range. Other considerations justify
the choice of one geometry over another. For instance, the gap d needs to be greater than 10 particles
in size to consider the material homogeneous in its composition. This is often a limitation to the use
of cone and plate geometry for solid suspensions of non-Brownian particles. However, with the cone
and plate, the shear rate is theoretically the same in the entire sample, whereas with the parallel plate,
the shear rate increases with the distance from the center (Table 1.1), resulting to potential particle
migration. Moreover, using parallel plate or cone and plate geometries does not give access to the same
data regarding the normal stress differences: with cone and plate N1 is measured while with parallel
plate it is N1 −N2.

𝑅

𝑑 𝛼

𝑟𝑖

𝑟𝑜
𝜔, 𝑇 𝑙

Fig. 1.5 − Three most commonly used geometries for rheological experiments: from left to right, parallel
plate, cone-and-plate and Couette geometries. The geometries are rotated either by imposing the angular
velocity ω or by imposing the torque T .

Measurement performed by the rheometer

Regardless the geometry chosen, the sample is positioned between the stator (bottom part of the
geometry) and the rotor (top part). Two types of rotational rheometer exist: either the torque T is
imposed, and both the angular velocity ω and the angular displacement Θ are measured, or the opposite.
In practice, a computer control feedback loop allows to impose indistinctly the torque or the angular
velocity/angular displacement. The rheometer also measures the vertical force F applied on the mobile.
Geometric parameters are used to convert the raw measurements (T , ω and Θ) in term of shear rate γ̇

and shear stress σ . To evaluate them the rheometer software makes the assumption that: the fluid is
Newtonian (assuming a linear velocity profile), there is no wall slip, and the flow is homogeneous and
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stationary. The expressions of the shear rate, shear stress and normal stress differences are given in Table
1.1 [16]. Note that the equation of the shear rate used for the cone and plate is valid only for a small
opening angle α . In fact rigorously for a linear velocity profile: γ̇ = ωr

d(r) with d(r) the local gap height.
The Weissenberg-Rabinowitsch correction is applied on the apparent shear rate for non-Newtonian
fluids. In fact the rheometer compute the shear rate making the assumption of a velocity profile
corresponding to the Newtonian case. For non-Newtonian fluid the velocity profile is not known and the
apparent wall shear rate γ̇a needs to be corrected to access the real shear rate experienced by the fluid :

γ̇R(σ) = γ̇a

[
1
4

(
3+ dln γ̇a

dlnσ

)]
[35].

Table 1.1 Expression of the apparent shear rate, shear stress, and normal stress corresponding to the
different geometries.

Couette Parallel plate Cone and plate

Shear rate γ̇a
roω

ro−ri
Rω

d (maximum value) ω

α

Shear stress σ
T

2πr2
ol

2T
πR3

3T
2πR3

Normal stress difference / N1 −N2 =
2F
πR2

(
1+ 1

2
dlnF
dln γ̇

)
N1 =

2F
πR2

Note that in the case of the Couette geometry, the equations in Table 1.1 are written for a narrow gap
cell (which is usually not the case with commercial rheometers such as the TA DHR2 used in this work
leading thus to more complex equations not shown here).

Classic side effects

Slip at the wall

Rheological measurements assume a no-slip condition at the walls. However, in practice, slip can occur
at the walls and is sometimes difficult to noticed it with the naked eye, especially at low shear rates. If
slip does occur, the stress or shear rate values are underestimated, which amounts to underestimating
the viscosity. Materials that are susceptible to wall slip include polymer melts, and dispersed systems
such as colloidal suspensions, emulsions [36], and soft particles [37]. The particles do not adhere to the
surface, and an interstitial fluid film is created at the wall by depletion of the particles [36], or by soft
particle squeezing [37]. This film often has a lower viscosity than the bulk material. To avoid slippage,
rough surfaces are used (using sandpaper for instance). However they can lead to fracture inside the
material [38], this internal slip layer again leading to an inhomogeneous flow field.

Edges fractures

Edge fracture is most often observed for highly elastic materials at relatively high shear rates with the
cone-plate or parallel plate geometry. The air/liquid interface deforms and becomes pinched like an
hourglass. The sheared surface then decreases (Reff < R, see Fig. 1.3c) resulting in a drop in stress, which
limits the usable range of shear rates. This phenomenon occurs when the second normal stress difference
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N2 exceeds a certain critical value depending on the surface tension and the gap height [39, 40]. To
reduce this effect, it is possible to reduce the gap or immerse the flow cell in a viscous liquid [41].

This edge fracture is not related to another limiting phenomena observed at high shear rates, and
encountered also with Newtonian fluids, which is the sample ejection due to the effect of centrifugal
forces.

Inhomogeneity in particle concentration

For suspensions, sedimentation [42], but also shear-induced particle migration [43, 44], lead to inhomo-
geneity in particle concentration and affect rheological measurements. Ovarlez demonstrated migration
of non-colloidal particles in both Newtonian [43] and yield stress [44] fluids in a Couette geometry. The
particles migrate to the region of lowest shear rate (radial outward flow) and this effect increases with
the volume fraction of the particles.

Air bubbles

Most of the time, bubbles can easily be avoided. However, with yield stress fluids, it is more difficult to
ensure a perfect contact with the mobile and the liquid because the surface shape is not controlled by
surface tension forces but is held fixed by the action of the yield stress. Bubbles decrease the contact
area between the solid surfaces and the sample leading to underestimated values of the viscosity.

Inertia

Inertia can come both from the fluid or from the rheometer :
• Fluid inertia can be at the origin of negative normal stress that can become significant for high

geometry radius, fluid viscosity and angular velocity. The contribution to the N1 value related to
the inertia is Ninertia

1 =− 3
20 ρω2R2 with ρ the fluid density [45]. Subtracting it from the apparent

value of N1 gives access to its true value. Fluid inertia can also be the cause of increased stress
at high shear rates, sometimes leading to an apparent increase in viscosity that should not be
mistaken for shear-thickening.

• The rheometer’s inertia means that the torque or angular velocity input are not applied instanta-
neously. The time needed to reach the set value has to be short to avoid detrimental effect on the
measurement results. This affects the measurements performed in oscillations at high frequency
or high amplitude, limiting the achievable range of measurements.
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1.3 Spreading a fluid on a rigid plane

1.3.1 Wetting and spreading

Spontaneous spreading, and wetting at equilibrium

When a fluid droplet is deposited on a surface, it is initially out of equilibrium and can spread sponta-
neously if it is energetically favoured. To characterize the spreading capacity of a fluid on a surface,
the spreading coefficient Sp is defined: Sp = γS0 − γLV − γSL, with γLV (also named γ) and γSL, the
surface tensions of liquid/vapor and solid/liquid interface respectively, in N.m−1 [46]. Physically, γS0

is associated with a "dry" solid surface, it is used instead of γSV (the solid/vapor surface free energy)
since initially the solid and the vapor are not in thermodynamic equilibrium. The spreading coefficient
compares the work of adhesion between the substrate and the liquid, with the work of cohesion within the
liquid [47]. Therefore, if Sp > 0, spontaneous spreading occurs until the droplet reaches its equilibrium
angle δe (assuming no metastability). At equilibrium, the contact angle of the droplet on the substrate, is
given by the Young’s equation:

γSV = γSL + γLV cosδe (1.9)

The wettability is quantified by the value of δe. Three main cases exist and are presented in Figure 1.6.
When δe = 0◦, this corresponds to a perfect wetting situation and Seq

p = 0 [48], the drop forms a very
thin film set by the drop volume and potentially van der Waals forces [49]. When δe = 180◦, the liquid
is perfectly dewetting, it keeps a spherical shape to minimize its surface tension. In between, the fluid
is partially wetting (Seq

p < 0). Another situation, called pseudo-partial wetting, can be observed: the
droplet, while maintaining a finite contact angle, is surrounded by a molecular film. The latter originates
from van der Waals forces whose interaction amplitude is given by the Hamaker constant [50].

𝛿𝑒

Perfect dewetting Partial wetting Perfect wettingPseudo-partial wetting

Fig. 1.6 − Different wetting situations according to Young’s equation, and the particular case of pseudo-
partial wetting.

Dynamic regime

Dynamic contact angles

When a droplet moves on a surface (for instance by tilting it), the shape changes: the droplet adopts an
advancing angle δa and a receding angle δr such that δa > δe > δr (Fig. 1.7). The difference between
these two angles increases with the tilt angle, but also with the number of defects present on the substrate
[49]. If the surface is sufficiently rough (micrometer size), the triple contact line is anchored to the
substrate [51] and can no longer move. It can only be depinned by applying an external force above a
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certain threshold [49].

Fig. 1.7 − Schematic representation of advancing and receding angles adopted by a droplet on a slope.

Forced spreading and dynamic contact line

When a fluid does not spread spontaneously on a surface, it can be forced by an external force, for
example with a blade, as done in the experiments described later. The capillary number, Ca = V η

γ
is

a dimensionless number comparing the effect of the viscous forces to the surface tension. V is the
characteristic velocity of the system. This number is key to understand the dynamics of the contact line.

Here we describe the example of a dip coating experiment, which is one of the simplest method
to spread a liquid on a surface. An object is dipped into a bath of fluid and withdrawn at a controlled
velocity. At rest, the liquid adopts a contact angle δe at the triple contact line. Different behaviors are
observed depending on the wetting properties of the fluid (Fig. 1.8). For a perfectly wetting fluid, a film
of fluid of thickness e ∼ lcCa2/3 is deposited on a plate with lc =

√
γ/(ρg) the capillary length and g

the gravity constant (see section 1.3.3 for the detailed calculation) [52]. For partial wetting, the situation
is more complex: a critical capillary number must be exceeded for the liquid to spread on the object.
If the capillary effects are dominant over the viscous effects (Ca <Cac), the liquid tends to minimize
its surface energy and resists the extension of its surface: the contact line remains at an equilibrium
height. If the viscous forces are greater than the capillary forces (Ca >Cac), a liquid film is formed
during the object’s withdrawal. The resulting deposited film no longer simply follow the Landau-Levich
rule, e.g. an overhanging ridge may form near the contact line, leading to more complex fluid profiles
than represented in Fig. 1.7 [53]. This critical capillary number reflects the fact that there is a maximum
speed at which the contact line can move relative to the plate [54]. If this velocity is exceeded, there is no
longer a stationary solution for the contact line, which is dragged along by the object, and a macroscopic
film is formed.
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𝐶𝑎 < 𝐶𝑎𝑐 𝐶𝑎 > 𝐶𝑎𝑐

v

Fig. 1.8 − Dynamics of wetting, with, from left to right, the meniscus at rest, the static meniscus at low
velocity and the formation of the liquid film at high velocity.
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The lower the surface tension and the higher the viscosity and spreading speed, the easier it is to form
a liquid film. However, the withdrawal velocity cannot be increased indefinitely since destabilization
of the contact line occurs at high speeds [55], and it is also sometimes limited by the set-up. Another
method to achieve spreading is to use a rough substrate that pins the contact line even if Ca <Cac. This
solution is adopted in Chapter 3 and 4 since the fluids studied are insufficiently wetting on a smooth
substrate while it was non-necessary in Chapter 2 because silicon oil is a highly wetting fluid.

1.3.2 Classic coating processes

Dip coating Curtain coating Slot coating

Hard blade coating Soft blade coating

Roll-over-web coating

Flow free fall

F

Fig. 1.9 − Schematic representation of coating geometries.

Different spreading techniques, more or less widespread, are used in industry (Fig. 1.9). These include
the previously discussed dip coating, but also slot coating, where the fluid is fed vertically through a die,
curtain coating, which, as its name implies, consists of passing the object through a curtain of liquid,
and roll coating, where a roller is used to deposit the fluid. The family of blade coatings includes many
subcategories. In the rigid blade category there is the case where the support is a moving plane, often
referred to just as a blade coating (or doctor blade coating), and the case where the support is a cylinder,
called blade-over-roll coating. When the blade is flexible, it is referred to as soft blade or flexible blade
coating. This situation is very different from the hard blade coatings because the gap is not fixed but
results from the balance between elastic forces exerted by the blade on the liquid underneath, and the
viscous forces applied by the liquid on the blade.

In industry, flexible blade coating is primarily used to apply mineral pigmented, latex, or functional
coatings to paper at very high speeds [56]. Spreading icing on a cake with a flexible spatula or painting
with a brush are more or less direct examples of flexible blade coating. We chose this coating technique
to model the spreading of a cosmetic product by a finger on a skin. The detailed motivations can be
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found in section 2.1. Thus, we focus our literature review on flexible blade coating with occasional
references to other blade coating techniques and dip coating.

1.3.3 Study of deposited thickness with soft blade coating

Few studies exist on soft blade coating geometries, and they all consider an infinite reservoir of fluid with
the exception of Kusina [3]. An infinite reservoir of fluid does not necessarily cover entirely the blade but
extends indefinitely over the substrate behind it, an example is shown later in Figure 1.12. Most studies
are numerical [4, 7, 57–61] although some experimental work can be found [3, 4, 62]. Additionally to
a numerical and experimental approach, Seiwert also proposed a scaling law to predict the deposited
thickness [4]. Corvalan focused on the special case of a soft substrate [7]. Deblais and Kusina were the
only ones to include non-Newtonian fluids in their study: Deblais performed experiments on viscoelastic
polymer solutions and Kusina on yield stress fluids [3].

Dynamic effects in soft blade coating

Similar to dip coating, a critical capillary number has to be overcome to spread a partial wetting liquid
with a flexible blade. This was demonstrated by Deblais on Newtonian fluids and viscoelastic polymers
solutions [62]. Kusina also showed that a critical velocity must be exceeded for yield stress fluids to
be spread on a smooth substrate. He also showed that increasing the velocity leads at some point to
discontinuities such as bumps and holes in the fluid film (Fig. 1.10) [3].

Fig. 1.10 − Map showing the emergence of instabilities in the fluid film as a function of velocity and
yield stress (from [3]).

Scaling law for an infinite reservoir of Newtonian fluid

To propose a scaling law for the deposited thickness, Seiwert drew an analogy between soft blade coating
and dip coating of a plate. To understand this analogy, we first briefly present a dimensional approach
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based on Landau and Levich’s theoretical derivation [52] to predict the film thickness in a dip coating
experiment.

The deposition law of dip-coating:

At rest, we have seen that a partially wetting fluid (0◦ < δe < 90◦) adopts a meniscus shape at the contact
with the object to minimise its surface energy. Its spatial extension is limited by gravity and is of the
order of the capillary length lc. When withdrawing the object out of the fluid bath to coat it with a liquid
film, the static meniscus is locally deformed to transition towards a film of constant thickness e (Fig.
1.11). Landau and Levich made the assumption that this deformation affects only a small region of the
static meniscus of size l, called the dynamic meniscus.

static meniscus

dynamic meniscus length

planar film of thickness 𝑒𝑒𝑥

𝑙:

0

𝑑

𝑉

Fig. 1.11 − Schematic representation of the dip coating experiment and the dynamic meniscus region.
The figure is adapted from [4].

At low Reynolds number, the fluid inertia can be neglected. From the viscous shear stress τ =

ηγ̇ ∼ ηV/e one can write the viscous stress gradient τ/e ∼ ηV/e2. The Laplace pressure in the static
meniscus is ∆P = γ/R with the radius of curvature R ∼ lc. Since ∆P is zero in the fluid film, a pressure
gradient can be defined in the dynamic meniscus: ∆P/l ∼ γ/(lcl). Gravity has been neglected in front
of capillary effects implying that γ/(lcl) ≫ ρg, and therefore that l ≪ lc since lc =

√
γ/(ρg). The

expression of l can be determined by writing the continuity of the curvatures of the static and dynamic
menisci. The curvature of the static meniscus scales as 1/lc, and the curvature of the dynamic meniscus
as e/l2. Thus:

l ∼
√

elc

Finally, balancing the viscous and capillary gradients allows expressing the deposited thickness as:

e ∼ lc

(
ηV
γ

)2/3

∼ lcCa2/3 (1.10)

With this equation, Landau and Levich made explicit the dependency of the deposited thickness on
velocity, first observed by Ward and Goucher in 1922. Derjaguin showed that when gravity is no longer
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negligible (Ca ≪ 1), the thickness can be described by a slightly different equation: e ∼ lcCa1/2 [63].

Back to the flexible blade coating:

In the case of dip coating, the deposited thickness results from a balance between viscous forces and
capillary forces resulting from meniscus deformation. Seiwert considered flexible blade scraping, when
the tip is tangent to the surface, to be analogous to dip coating by considering that "the liquid meniscus
has been replaced by an elastic one" [64]. This analogy has also been used by Warburton and Dixit to
study plate withdrawal situations where an elastic film is present at the fluid/air interface [5, 6] and more
generally can be useful in a wide range of elastocapillary phenomena [65].

Liquid
𝑙𝑥

𝑒

Fig. 1.12 − Schematic representation of the Seiwert’s soft blade coating experiment. The figure is
adapted from [4], the liquid region has been added to the drawing.

In Seiwert’s study, the capillary number is large, and the Reynolds number is small, which allows
both surface tension and fluid inertia to be neglected. Therefore, a balance between the elastic and
viscous force determines the deposited thickness. He makes the assumption that the blade is deformed
only over a small part of length lx and that lx ≪ L where L is the blade length (Fig. 1.12). For a static
blade just tangent to the surface the curvature dθ

ds is zero at the blade tip so its shape goes as y ∼ −x3

L2 near
the contact, and considering the gap at the tip of the order of the deposited thickness e, the deformation
region lx can finally be expressed as:

lx ∼
(

eL2
)1/3

(1.11)

The viscous forces scale as ηV/e2. The force exerted by the blade per unit length is of order B/L2 since
the curvature of the blade can be approximated by 1/L and with B the blade rigidity. The related elastic
pressure gradient along the deformed length lx is B

l2
x L2 . Balancing the viscous and elastic forces, and

using the Eq. 1.11 gives:

e ∼ L5/2
(

ηV
B

)3/4

∼ LCe3/4 (1.12)

By defining Ce = ηV L2/B a dimensionless number comparing the viscous and elastic forces, Seiwert
highlighted the parallel with the equations of Landau, Levich and Derjaguin (Eq. 1.10), with the
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elasticity of the blade replacing the capillary forces of the meniscus. This approach relies on the fact
that the blade is only deformed on a small region lx ≪ L.

The scaling law points out the increase of the deposited thickness with velocity and viscosity. This
is in agreement with the work of Pranckh and Scriven, that previously showed numerically that the
downstream film thickness increases with the velocity, viscosity and blade length but reduces with the
bending stiffness. The effect of the blade length was also pointed out by Giacomin [61]. When an
external loading is additionally applied on the blade, pressing it onto the fluid, additional parameters
impact the deposited thickness [57]. Corvalan showed that with a compressible substrate the deposited
thickness is thinner than with a rigid substrate, without having to increase the blade loading [7].

Difference between hard and soft blade coating of Newtonian fluids

The scaling law proposed by Seiwert highlights that hard blade and soft blade coating are not similar
and give strongly different results. In fact, the hard blade coating of a Newtonian fluid gives a deposited
thickness around a half of the geometric gap separating the blade from the coated surface. Hwang
showed mainly theoretically that e decreased slightly with blade velocity and fluid viscosity, which is
the opposite of what was seen by Seiwert with soft blade coating [66]. The impact can be reversed
but only at large velocities where inertia begins to play a role which is not the scope of our study [56].
Sullivan even observed that the velocity does not have an impact with blade-over-roll coating [67] and
that the coated thickness is only dependant on the geometric characteristics of the blade (gap, blade
angle, blade length ...). This difference of behavior between hard and soft blade coating, in the simple
case of a Newtonian fluid, makes it clear that studies done on non-Newtonian fluids with a hard blade
cannot be extrapolated to soft blade coating.

Numerical approach

Soft blade coating is a coupled problem of fluid dynamics (fluid under the blade and fluid in the air)
and elastic deformation (blade). The coupling exists in the sense that the shape acquired by the blade
constitutes the geometrical limit of the channelled fluid while the viscous forces and the fluid pressure
constitute the distributed load applied to the blade. Capillarity must be taken into account to express the
formation of a meniscus in the deposit at the exit of the blade. Besides, for the problem we are interested
in here, we must also take into account the surface tension at the free surface of the reservoir, which is
considered as finite.

Most of the time, the lubrication approximation is introduced when the fluid is confined, which
allows to simplify the flow considered [4, 7, 58–60]. The flexible blade equations can be written
in different forms, depending on the particular geometries (and sometimes additional external load
[7, 57, 60]), but they often amount to non-linear differential equations, up to the fifth order if the blade
height is chosen as the blade descriptor [4, 58, 59, 61]. It belongs to the boundary value problems for
which boundary conditions are specified at more than one point (e.g. at both ends of the blade). Several
methods of resolution are employed: the finite element method is the most commonly used [57, 58],
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sometimes combined with the Galerkin method of weighted residuals [7, 60], or the collocation method
[59], otherwise numerical integration can be performed [4, 61].

The study conducted by Trinh is interesting because it proposes to solve the fifth order equation
describing the blade shape in combination with a third order equation for the shape of the thin film
deposited behind the blade [59]. This second equation allows him to use the atmospheric pressure
condition in the liquid film far from the blade tip as one of the boundary conditions of the problem. The
goal is to account for the formation of a liquid meniscus at the blade tip that impacts the thickness of the
flat film (Fig. 1.13). In this case, the pressure in the liquid film reaches a maximum under the blade and
is lower than the atmospheric pressure at the blade tip due to the meniscus [68].

The flexible blade coating configuration we are interested in is the one with a vertically hanging
blade that was considered by Seiwert as well (Fig. 1.12). In Seiwert’s study, the external forces applied to
the blade were calculated in the approximation of small deformation, which is valid in the nearly tangent
part of the blade only. The full blade form actually corresponds to a large deflection problem. Since
the load applied by the fluid under the blade is a distributed load, it is thus possible to draw inspiration
from theoretical studies of beams undergoing large deflection with distributed loading [69, 70] for the
derivation of the flexible blade coating, using the Navier Stokes equations to express the load applied by
the fluid.

Fig. 1.13 − Numerical solutions obtained for the blade (thick line) and liquid film (thin line) shapes.
From left to right the capillary number increases and the reservoir pressure decreases (from [59]).

1.3.4 Coating of non-Newtonian fluids

With soft blade coating

Few studies deal with the spreading on non-Newtonian fluids with a flexible blade. Deblais focused on
the regime of instabilities observed below the critical capillary number and showed that shear-thinning
properties give instabilities (filaments) over a wider velocity range, while viscoelastic properties stabilize
the resulting patterns [62]. Kusina studied the thickness deposited during the spreading of yield stress
fluids [3]. He revealed the presence of instabilities in the film (see Fig. 1.10) and extended Seiwert’s
scaling law (Eq. 1.12) to yield stress fluids, modeled by Herschel Buckley’s equation (Eq. 1.4), following
the same reasoning but making another choice for the curvature [3].
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Based on Seiwert’s scaling law (Eq. 1.12), it appears that flexible blade coating is more comparable to
dip coating than hard blade coating. With this in mind, we have chosen to present the results for dip
coating of complex fluids in more detail than for hard blade coating.

With dip-coating

Numerous works have been conducted on dip-coating of complex fluids, often theoretically, sometimes
with discrepancies with the few experimental data [71, 72] showing that the effect of the shear-thinning
behavior, in particular, is difficult to predict quantitatively. Most studies agree that a Newtonian fluid
gives a thicker coating that a shear-thinning fluid [71–73]. This is predicted by the scaling law derived
by Quéré for the dip coating of a fiber (radius r), balancing capillary pressure and shear stress gradients:

e ≈
(

r3k2

γ2

)1/(2n+1)
V 2n/(2n+1). One of the factors explaining the divergence of results is the effect of

gravity and inertia which might or might not be taken into account and lead to different results. Spiers
also stressed that most fluids studied in the studies are in fact viscoelastic (in the sense that they generate
normal stress) and not purely shear-thinning. Additionally, the fluids used for the experiments are often
Carbopol solutions at low concentrations [71, 72] whose yield stress has been neglected but might have
an impact.

𝑒/𝑟

Fig. 1.14 − Dimensionless thickness e/r as a function of the capillary number for solutions of different
concentrations (empty circles, c = 0.001%; empty squares, c = 0.01%; gray circle, c = 0.1%; full
circle, c = 0.5%; full squares, c = 1%). The solid line correspond to the Landau Levich equation
e = 1.34rCa2/3 for Newtonian fluid (from [73]).

The effect of fluid elasticity (related to normal stress) on dip coating of fibers, has been investigated
by de Ryck and Quéré [73]. The fluids were also shear-thinning. They observed experimentally,
and confirmed theoretically, an increase in deposited thickness compared to the Newtonian case and
attributed it to normal stresses. Thus, in Figure 1.14 we can see that the deposited thickness is greater
for a given capillary number compared to the Landau Levich situation. The capillary number was
carefully evaluated for shear-thinning fluids by estimating the typical shear rate as V/e and deducing
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the corresponding viscosity. Quéré proposed a scaling law for the deposited thickness, when normal

stresses are dominant, by balancing the capillary pressure and normal stress gradients: e ≈
(

Ψ1r
γ

)1/2n
V ,

with Ψ1 the first normal stress coefficient.
Ashmore et al. extended this study to other coating geometries and particularly to roller coating

[74]. Two regimes could be identified. In the weakly elastic limit, the viscous stress is dominant over
the elastic stress which can be neglected and the deposited thickness is less than that of the Newtonian
fluid. In the strongly elastic limit, the elastic stress dominates and results in thicker film.

For a yield stress fluid, Smit et al. showed that the deposited thickness is strongly influenced by
the size of the fluid reservoir and the withdrawal velocity and decreases as the yield stress increases
relatively to the shear stress [75]. He proposed flow diagrams predicting e in different domains that
depend on the ratio of yield stress versus viscous stress or versus gravitational stress, capillary number,
and fluid confinement. This article highlights the difficulty to compare different works and to draw
conclusions on the effect of the fluid rheology due to the multiplicity of domain of definition for different
behavior laws. This could explain why Spiers reported that the yield stress leads to an increase in film
thickness [72].

With hard blade coating

For a pure shear-thinning fluid, Sullivan numerically predicted that the deposited thickness is increased
compared to a Newtonian fluid with blade-over-roll geometry [67, 76]. For a purely elastic fluid (Boger
fluid), Mitsoulis reported a reduced thickness [77]. As both effects are usually coupled in viscoelastic
fluids the deposited thickness can be either increased or decreased compared to the Newtonian case de-
pending on the relative contribution of the viscous and elastic properties. Greener made this observation
for the blade geometry and Sullivan for the blade-over-roll geometry [67, 76, 78]. We can notice that the
thickness variations are reversed with respect to dip-coating.

Maillard focused on yield stress fluids and showed that the thickness is about 10% greater than the
gap, and consequently the thickness of a Newtonian film (e around half the gap) [79].

There is a wide variety of spreading behavior of non-Newtonian fluids, which leads to many deposition
models and laws that are not easy to sort out to be adapted to new geometries. Thus, the deposited
thickness depends on various parameters: capillary, elastic (related to the fluid and also to the geometry
in the case of a flexible blade), and viscous, which play a different role depending on the geometry. The
use of complex fluids allows to finely probe the different mechanisms at play. By judiciously choosing
complex fluids with various properties and behaviors, it is possible to identify and disentangle the effects
of the different parameters.
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1.4 Goals of this thesis - Part I

The literature review presented above shows that the spreading of a finite amount of fluid, i.e. with a
reservoir of fluid that empties during spreading, has been very little investigated. Yet, this situation
is essential to study the spreading of cosmetic and pharmaceutical products, for example, when the
user spreads a patch of cream whose volume reduces as spreading proceeds. Concerning the soft blade
coating, whose geometry is relevant to model the spreading by a finger capable of deforming under
stress, only one study, conducted by Kusina [3], deals, to our knowledge, with a finite fluid reservoir.
He was interested in the special case of yield stress fluids. No work has been reported on flexible blade
coating of a finite volume of Newtonian, shear-thinning fluid, or fluid generating normal stresses (Fig.
1.15). Because the blade geometry is not fixed (e.g. the gap), but results from balance with the fluid
forces, emptying the reservoir of fluid implies an evolution of the whole system (fluid reservoir and
blade) during spreading. This problem is not trivial and we expect the results to differ from studies
dealing with infinite reservoir of fluid. The spreading of a finite amount of fluid by a blade is therefore
an academic problem that is wide open to new investigations, which also finds a strong resonance in
industry.

a. b.

Fig. 1.15 − Soft blade coating of a. an infinite fluid reservoir such as the one studied by Seiwert [4], or
b. a finite reservoir of fluid.

Following this introductory chapter, in Chapter 2 we focus on answering the question: how does
finite size reservoir influence the spreading dynamics in soft blade coating? To answer this question, we
concentrate on the simple case of a Newtonian fluid and investigate experimentally, numerically, and
propose a theoretical prediction of the deposited thickness as a function of the liquid filling level under
the blade.

Subsequently, Chapters 3 and 4 aim at determining: what are the impacts of the rheological behavior
of the fluid on the deposition law? In Chapter 3, we extend the study describing the case of Newtonian
fluids to shear-thinning fluids. In Chapter 4, we analyze the case of shear-thinning fluids that also exhibit
normal forces or yield stress.

From an industrial point of view, it is important to know which formulation tracks are to be
encouraged. For instance, one can wonder if adding polymer in formulation, to obtain products that
generate normal stresses, has an advantage over the spreading or not. Such a question is answered by
evaluating the effect of rheological properties on criteria such as the magnitude of the film height, the
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homogeneity of the deposit in thickness, or the ease of spreading (concretely linked to a lower energy
needed to spread the fluid).

1.5 Conclusion

Conclusion − Chapter 1
Fluid spreading is a broad and complex subject due to the wide variety of fluid behaviors
under shear, and the diversity of spreading processes. Many combinations of fluid type
and spreading geometry are possible. We showed that dip coating and hard blade coating
have been widely studied with Newtonian fluids, but also with non-Newtonian fluids
(shear-thinning, normal stress and yield stress). In contrast, studies concerning flexible blade
coating have been less numerous, especially when dealing with non-Newtonian fluids, which
leaves room for future investigations.

One case, that to our knowledge has not yet been addressed, is the spreading by a flexible
blade of a finite reservoir of fluid that empties during spreading. This case is not intended to
analyze classical industrial processes used on production lines, but it is interesting to model
the spreading of small quantities of material such as cosmetic cream, paint or jam. What
is the impact of a finite size reservoir on the deposition law? How do fluid rheological
properties influence the deposit thickness and spreading dynamics?

To answer these questions, we first focus on Newtonian fluids since they exhibit a simpler
behavior than complex fluids (Chapter 2), then we extend the study to non-Newtonian fluids
(Chapter 3 and 4).





Chapter 2

Soft blade coating of Newtonian fluid with
finite reservoir of fluid

In this chapter, we discuss the soft blade coating of a small quantity of Newtonian fluids. We study the
variation of the deposited thickness during the emptying of the fluid reservoir. We analyze the forces at
stake and propose to model the coating process by a scaling law and numerical calculations. Finally, we
compare our model to the case of an infinite reservoir of fluid.

The results presented in this chapter have been published in Physical Review Letters [1]. The article
can be found in Appendix A.
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2.1 Motivations

2.1.1 Industrial motivations: cosmetics spreading

The classic way of spreading a cream, such as a moisturizing cream, a foundation or a sunscream,
consists in depositing a small quantity of formulation on the skin. This deposit is then usually spread
with the tip of the fingers. Everyone has already experienced that a linear movement leads to an
inhomogeneous deposit in thickness. The cream layer becomes thinner and thinner until it reaches zero
thickness when there is no more cream driven by the fingers. This is equivalent to consider that the fluid
reservoir, corresponding to fluid under the fingers, has emptied. This inhomogeneity pushes the user
to perform more complex movements, such as combining linear and circular movements, and going
back and forth, in order to even out the thickness deposited on the surface to be coated. Finding what
are the different parameters controlling the decreasing thickness profile of the deposit is key to be able
to propose application tips, or formulation advice, to reduce inhomogeneity. The more homogeneous
the deposit is in thickness from the first movement, the less the user will need to spread the deposit
further. Studying a linear spreading motion, although it corresponds to a very simplified situation, seems
therefore a good approach to capture the essence of the inhomogeneity problem.

The choice of a flexible blade was made to mimic the spreading done by the fingers. From a
geometrical point of view, its curved shape reminds that of a finger. We also consider that the spreading
of cosmetic products is not done with a fixed gap, as the user cannot maintain a fixed distance between
his finger and the skin surface. Consequently, a hard blade geometry, for which the gap is fixed, does not
seem appropriate. The fingers impose a pressure on the fluid to be spread, which corresponds to the
characteristics of a soft blade geometry for which the elasticity of the blade imposes a force on the fluid.

While the vast majority of cosmetic products are complex fluids with non-trivial behavior, we
decided to start by focusing on Newtonian fluids. Their constant viscosity makes them much easier to
model and understand. Moreover, no literature was found on the soft blade coating of a finite reservoir
of Newtonian fluid. It seemed relevant to lay the foundations before increasing the complexity with
non-Newtonian fluids.

2.1.2 Academic motivations: elasto-hydrodynamic coupling

Soft blade coating is an example of fluid-structure problems, involving the coupling of a flexible sheet
with a fluid flow, which presents a rich non-linear behavior [58, 59, 68]. On these small scales, the
fluid is confined by the elastic plate and the forces responsible for the deformation of the solid are
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viscous instead of inertial: for instance paper sheets gliding on thin air just above the floor after falling
from a table [58]. The use of a flexible blade in the industrial process of paper coating has motivated
earlier studies [7, 57, 60, 61, 80]. More recently, this problem has been studied in the light of an
elasticity-capillarity analogy [4] and compared with another well-known system, dip coating [52, 63].
Following this analogy, soft blade coating is viewed as an "elastic" dip-coating problem [4–6], where
elastic forces due to the bending of the blade replace the capillary forces and resist the viscous forces of
the fluid. This approach was used to predict the film thickness as a function of the blade properties [4, 6]
and was shown to successfully model the experiments [4]. However they studied the case of a blade
scraping a continuous deposit of fluid initially present on the substrate, which is the same as considering
an infinite fluid reservoir (Fig. 1.12). Moreover they assumed that the blade, while in motion, is only
deformed over a length lx from the tip. This internal length is analogous to the dynamical meniscus
length in dip-coating. However, in a large majority of everyday situations, such as the spreading of a
paint on a wall, or cream on the skin, the liquid reservoir is finite and the wetting of the blade varies
during spreading. This introduces a new length scale, the wetting length lw (as shown in Fig. 2.1), and
its existence challenges the Landau-Levich approach [4–6]. For these reasons, we decided to study the
spreading of a finite reservoir of fluid by a soft blade.

2.2 Spreading experiment

2.2.1 Experimental set-up

Soft blade

(mylar)

Rigid 

substrate

(PMMA)Substrate 

mouvement

Reservoir 

of liquid

Fig. 2.1 − a. Picture of the experimental setup and b. schematic representation

Principle

To perform a soft blade coating, a small amount of liquid is deposited on a rigid plate and then spread
with a flexible scraper [3, 4]. In this experiment the flexible scraper remains immobile while the substrate
moves to perform the spreading (Fig. 2.1). The substrate is a smooth poly(methyl methacrylate) (PMMA)
plate of 5 mm thickness. The upper surface is smooth while the lower one is sandblasted with roughness
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of approximately 20 μm, to ensure a good scattering of the laser beam emitted by the profilometer (see
next paragraph).

Blade caracteristics

The flexible blade is made of smooth poly(ethylene terephtalate) (PET) also called mylar. It is laser cut
in a rectangular shape, with a constant width b = 4 cm, a length L of typically 5.7 cm and thickness
u = 125 or 250 μm. The upper part of the blade is clamped perpendicularly to the surface, at the height
H = 0.46L. This clamping height ensures that the free edge of the blade is exactly tangent to the surface
in absence of liquid. Seiwert et al. showed that the deposited thickness is strongly dependent on the
configuration of the blade : the thickness is the largest in the tangent configuration (Fig. 2.2).

L

Fig. 2.2 − Deposited thickness e as function of the ratio between the height of the clamping point and
the length of the blade. The dashed line corresponds to H = 0.46L. The experimental conditions are
V = 8.2 mm/s, B = 4.210−3 N.m, L = 4 cm and η = 17.4 Pa.s. Figure from Seiwert et al., 2013 [4]

The rigidity of the blade B is determined by measuring its deflection under its own weight [64, 81, 82].
Two methods were used depending on the stiffness of the blade. The first method consists in vertically
clamping the blade and measuring the length of the blade L so that the clamping point and the free end
are at same height when it deforms under its own weight (Fig. 2.3a). At this particular point z f = 0 the
adimentioned number, ∆= ρsgL3

B , comparing the effect of gravity to stiffness, is equal to 13.634 [64], with
ρs the surface density, g the gravity constant, L the blade length and B the blade rigidity by unit width.
The surface density is measured experimentally, giving 173±1 g.m−2 and 347±2 g.m−2 for 125 and
250 μm thick mylar respectively which implies a density of 1.38, in good agreement with the density of
mylar reported by suppliers (1.38−1.4). The rigidity is determined using the equation: B = ρsgL3

13.634 . This
method is efficient for flexible enough mylar. However, as the maximum length is limited by the sheet
dimensions, in the case of rigid mylar it is not possible to reach a sufficient deformation. Another method
is used: it consists in measuring the deformation of a blade clamped horizontally (Fig. 2.3b). The re-
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a. b.

Fig. 2.3 − a Schematic representation of the method used to measure stiffness of highly flexible blade
and b more rigid ones.

lation between the angle Θ, defined between the blade tip and the clamping point, and ∆ is tabulated [64].

B is typically varied by a factor 7 when changing the blade thickness, with B = 1.0± 0.1 mN m
for u = 125 μm and B = 7.1± 0.5 mN m for u = 250 μm. The force applied by the blade on the
substrate is thus higher for a thicker blade, i.e. for a more rigid blade [3]. Using B = E∗u3

12 , we obtain a
modified Young Modulus E∗ of the material, that already includes the Poisson ratio correction, such that
E∗ = E

1−ν2 . Experimentally, E∗ ≃ 6.2±0.5 GPa, a value in good agreement with what is expected for
type A mylar [83].

Protocol

To perform a spreading experiment, a small volume of liquid (0.05 < Ω0 < 2 mL) is deposited under
the blade so that it completely fills the corner formed between the blade and the plate. The substrate
performs a single linear motion at a constant velocity (2.5 <V < 10 mm/s) over a distance of 10 cm. If
not stated otherwise the blade rigidity is B = 1.0 mN m and the blade length is L = 5.7 cm. The liquid
reservoir empties progressively and two variables are measured simultaneously :

• The deposited thickness e : An optical profilometer (Keyence LJ-V7060K) positioned above the
film, analyses the surface 2 millimeters from the edge of the blade (Fig. 2.1a). A laser sheet of
length 16 mm (in the z direction) is projected onto the film, from which the film thickness e(z, t)
is measured as a function of position z and time t.

• The wetting length lw : It is defined as the length of the blade in contact with the liquid (as visible
in Fig.2.1b). During an experiment, lw(t) varies with time and typically diminishes by 2 cm as the
reservoir empties. It is measured from the side and from the top using two optical cameras (Basler
acA1920-150um with 50 mm and 16 mm focal length lenses), at 10 frames per second.

The camera and the profilometer are synchronized using an in-house Labview software, so that e and lw
are recorded simultaneously during the spreading. The initial time, t = 0, corresponds to the setting in
motion of the horizontal stage. The camera positioned on the side is also used to measure the dynamic
contact angle at the back of the reservoir.
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Measurement of the deposited thickness with an optical profilometer

Optical profilometers are designed to measure the topography of an object based on the optical reflections
of a laser. To measure the thickness of the deposited film of fluid in its central part a two step protocol is
required: i) the position of the substrate is first measured as a reference and ii) a second measurement is
made while spreading the liquid. The difference between these two measurements gives access to the
deposited thickness. However, measuring transparent liquid such as silicone oil, can be quite challenging
with an optical profilometer. Contrary to metal for instance, most of the beam is not reflected on the
surface but instead penetrates the liquid, and even, in our case, the transparent PMMA plate underneath,
before being reflected by a scattering surface. This gives rise to multiple rays that can be partially
reflected or refracted at each change of medium, an example is given in Figure 2.4). The recorded
rays have an optical path more complex than considered by the manufacturer, which implies the use of
corrective factors to access the true topography. In addition, the profilometer is tilted, away from the
vertical, to measure the scattered rays and avoid spurious specular reflections, which adds a new layer of
complexity (see Appendix B). Typically, the tilt, φt , is on the order of 20◦.

𝑒
𝑛𝑟

𝜃𝑖2

𝜃𝑖

Measured

with liquid

Reference

Fig. 2.4 − Illustration of the optical path of the rays emitted by the profilometer in a telecentric
configuration. The incident ray can either be directly reflected on the film (blue ray) or refracted in
the liquid before being reflected on the substrate (green ray). This last one is compared to the red ray
(measured in the absence of liquid) to calculate the coating thickness e (figure adaptated from [3]).

Several hypotheses have to be taken in order to propose a simple corrective factor. The details of
the hypothesis and the different steps to obtain the corrective factor are presented in Appendix B. The
corrective factor applied to the thickness measured by the profilometer is :

Corrective factor =
tanα cosφt

tanα − tan
(

sin−1
(

sinα

nr

)) (2.1)

where tanα =
√

tan2 θi + tan2 φt with θi the incident angle without tilt (fixed at 17.5◦) and φt the
tilt angle. In the case of silicone this factor is 3.1735 (without tilt). This factor has been verified
experimentally with different materials of known thicknesses and various tilt angles (error < 5% for
1◦ ≤ φt ≤ 30◦).
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2.2.2 Silicone oil as a Newtonian fluid model

The fluid spread is silicone oil from Sigma Aldrich. It is made of polydimethylsiloxane. By using
polymers of various chain length a wide range of viscosity is accessible. We used silicone oils of
different viscosity (275 mPa.s < η < 1 Pa.s). Silicone oil shows a Newtonian behavior over a wide
range of shear rates as seen on the rheological curves in Figure 2.5. The rheology is measured using
a cone and plate geometry (40 mm diameter, 2◦ angle) on a TA instrument DHR2 controlled-stress
rheometer at 25◦C. A computer-controlled feedback loop on the torque is used to keep a constant angular
velocity (hence a constant mean shear rate) without any fluctuations ( δ γ̇

γ̇
< 0.001). Technical data given

by some supplier indicate that shear-thinning behavior can be observed for shear rates above 103 s−1

and high molecular weight (in terms of viscosity: η ≥ 1000 mPa.s). In most of our experiments, we
used silicone oil 480 mPa.s and the shear rate remained below 200 s−1. The viscosity slightly depends
on the temperature: 10% variation is expected for changes of 5◦C around 25◦C [84].

Other advantages of silicone oil are its low volatility at room temperature and its highly wetting
capabilities which facilitate reservoir filling. Glycerol, although a more common cosmetic product, was
not chosen as a Newtonian fluid model because it is hygroscopic and its viscosity strongly depends on
the water content, making it difficult to use in a reproducible way.

a. b.
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Fig. 2.5 − a Silicone oil chemical formula. b Flow behavior of silicone oil is constant with the shear
rate. Silicon 480 mPa.s and 960 mPa.s

For the purpose of the simulation (see section 2.5.1, Eq. 2.11), the dynamic contact angles between
the fluid and the blade, δb, and the fluid and the substrate, δs, were measured with a camera during
spreading experiments. In a typical experiment, δs ≃ 100±10◦, and δb ≃ 15±10◦ (Fig. 2.11). δs varies
a little with the velocity from 90 to 120◦ for velocity increasing from 2.5 to 10 mm.s−1.
The density of silicone oils varies little in the range studied (ρ = 0.96−0.97 g/ml). The surface tension
was measured by the drop weighing technique using Tate’s law, giving γ = 26±2 mN.m−1. This value
is higher than those classically reported in the literature, around 20 mN.m−1, but it has already been
measured for 1000 cSt silicone [85].
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2.3 Spreading dynamics

2.3.1 Two regimes
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Fig. 2.6 − a. Map of the central part of the film (with viscosity η = 960 mPa s) during the spreading at
V = 5 mm/s, as a function of the lateral position z and time t. The color code varies from dark blue for
e ≃ 0 up to bright yellow for e = 400 μm. b. The line shows the corresponding mean thickness e(t) over
the film width, as a function of time. The coated film can be divided in two phases I and II, separated by
a vertical dashed line (see text).

A typical thickness profile from a soft blade coating experiment is shown in Figure 2.6a. The colour
maps represents the thickness e of a silicone oil film (with viscosity η = 960 mPa s) as a function of
time t and position z (z = 0 corresponding to the center of the film, and the center of the laser beam).
Despite a small residual noise due to multiple light reflections, the film thickness is relatively uniform in
the z-direction along the width of the blade: edge effects are only visible 2 mm from the edges, as shown
in Figure 2.7. The edge effects represent only 10% of the blade width and are not in the measurement
range of the laser beam for standard experiments (centered positioning). Therefore the signal can be
averaged and filtered along the z-direction, the resulting mean thickness is plotted in Figure 2.6b.

However, the film exhibits very large variations with time. The coating profile can be divided into
two parts. First the film profile exhibits a sharp increase in the first 6 seconds, where the thickness
grows from 0 to 230 μm. This corresponds to a transient state (phase I), associated with the setting
in motion of the liquid below the blade, which was previously observed in similar systems [4]. The
second part of the plot corresponds to the steady state (phase II). Unlike experiments carried out with a
liquid level maintained constant under the blade, the deposited thickness varies during the spreading
process. We observe here a continuous reduction of the film thickness e with time t - from 230 to 80
μm between 7 s and 20 s. In our work, we focus on the steady part (phase II) and all data displayed
afterward corresponds to this phase.
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Fig. 2.7 − a. Film thickness e measured near the edge of the blade at three different times t of the
experiment. e is measured between the center of the blade (z = 0) and the side edge (z = 2 cm). The
presence of liquid in excess (respectively missing liquid) at the edges causes an increase (resp. decrease)
of the film thickness over 2 mm to the edge. b. Top view picture of the side of the blade showing the
position of the laser used in a. In this experiment, L = 5.7 cm, η = 480 mPa.s, B = 1.0±0.1 mN and
V = 5 mm/s. Some liquid in excess can be seen on the right of the blade.

2.3.2 Importance of the wetting length

We interpret this reduction in film thickness as a consequence of the finite size of the reservoir. Indeed,
the decrease in thickness of the deposit is accompanied by the emptying of the reservoir which can be
monitored by the decrease in the length lw(t) of the blade actually wet by the liquid. This relationship
between e(t) and lw(t) is highlighted in Figure 2.8a, where e(lw) is measured for two silicone oils of
viscosity η = 480 mPas (gray circles) and η = 960 mPas (black triangles). e is measured sufficiently
close to the tip of the blade (2 mm away) so that at a time t it can be associated with the value lw related
to the volume remaining under the blade: these two variables are treated quasi-statically. The initial
volume of liquid, Ω0 was varied by a factor 3 for each fluid. For a given viscosity, the data for all initial
volumes of liquid overlap, which indicates that the film thickness does not depend on the initial state of
filling, but only on the actual volume of the reservoir at a time t. As shown in Figure 2.8a, the relation
between e and lw is non-linear: e increases more slowly for larger lw. In addition, a strong dependency
of e with the fluid viscosity η is observed: e increases by roughly 50% from η = 480 mPas to η = 960
mPas for the same filling lw. The spreading velocity is also found to have an impact on the deposited
thickness: e increases from 120 to 200 μm when V goes from 5 to 10 mm/s at lw = 10 mm (Fig. 2.8b).
A higher spreading velocity means a thicker fluid film.

2.4 Estimation of the deposited thickness with a scaling law

Experimentally, a strong dependency between the deposited thickness and the wetting length is observed.
Two main hypotheses can be proposed to explain this dependency. Either it results from an elasto-
capillary competition due to the presence of the meniscus at the back of the liquid reservoir at s = sw

(Fig. 2.11). Or it results from an elasto-hydrodynamic competition between the elasticity of the blade
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Fig. 2.8 − a. Film thickness e(t) as a function of the wetting length lw at the same time t, for two different
oils with viscosity η = 480 mPa s (gray) and η = 960 mPa s (black). The markers correspond to different
initial fluid volumes Ω0: • : Ω0 = 0.21±0.01 cm3, ▲ : Ω0 = 0.50±0.03 cm3 and ⋆ : Ω0 = 0.60±0.02
cm3. The continuous lines show the scaling law (Eq. 2.4) with prefactors 0.15 (for η = 480 mPa s) and
0.17 (for η = 960 mPa s) corresponding to the best fits. The dashed lines are the numerical solutions. In
both experiments, V = 5 mm/s, B = 1.0 mN m and L = 5.7 cm. b. e = f (lw) for four different velocities
V = 2.5,5,7.5 and 10 mm/s. The continuous line shows the scaling law adjusted with prefactors 0.14,
0.15, 0.18 and 0.19 respectively.

and the pressure exerted by the fluid underneath. Concerning the first hypothesis, we show in section
2.4.2 that the capillary pressure is negligible as compared to viscous pressure. The numerical results
presented in section 2.5.3 also show that capillary is a second order phenomenon that slightly affects
the deposited thickness, but does not explain the interplay between e and lw. The second hypothesis is
developed below.

2.4.1 Elasto-hydrodynamic competition

Under the hypothesis of elasto-hydrodynamic competition, the thickness is determined by a balance
between viscous torque on the one hand, and elastic torque on the other hand: those are the two
components we try to evaluate here by scaling laws. Navier Stokes equation is used to estimate the
viscous torque:

ρ

(
∂v
∂ t

+(⃗v⃗∇)⃗v
)
=−∇⃗P+η∆⃗v+ρ g⃗ (2.2)

To simplify this equation the following assumptions are made:
• The regime is considered stationary (e and lw are quasi-static).
• The Reynold number is sufficiently low to neglect inertia and also to place ourselves in the

framework of the approximation of lubrication because we are in a case where the liquid is
strongly confined between two surfaces. The Reynolds number Re = ρVe

η
is five orders of

magnitude smaller than lw
e ≃ 100 for typical value of η ∼ 1 Pas, lw ∼ 10−2 m, e ∼ 10−4 m and

V ∼ 10−2 m.s−1. Moreover, the tip of the blade is almost parallel to the substrate (the mean angle
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in the wet part of the blade is typically 3◦). The lubrication approximation implies neglecting the
velocity component perpendicular to the walls, neglecting the velocity variations along the flow
and considering that the pressure is constant along the y-axis.

• The problem is considered invariant according to z, which is equivalent to consider a blade of
infinite width (section 2.3.1).

• Gravity is neglected.
The Navier-Stokes equation (Eq. 2.2) can be rewritten under these assumptions:

η
∂ 2v
∂y2 =

∂P
∂x

(2.3)

The viscous term writes in scaling law: η
V
e2 . It is balanced by a pressure gradient established over the

length of liquid under the blade lw:

η
V
e2 ∼ p

lw

with p the fluid pressure defined as the pressure relative to the atmosphere p = P−Patm. The region
of the blade wet by the liquid is submitted to a lubricating pressure p ∼ η

V
e2 lw. It induces a torque

Γwet, pushing up the wet part of the blade (of area blw). The lever arm is ∼ L− lw, so that Γwet writes
Γwet ∼ η

V
e2 bl2

w(L− lw). At equilibrium, this torque is compensated by the rigidity of the dry part of the
blade, leading to a resisting torque written from Euler’s Elastica: Γdry ∼ E∗I dθ

ds ∼ E∗I
(L−lw)

. With s the
curvilinear abcissa, θ(s) the angle describing the shape of the blade (defined between the vertical and
the blade tangent vector – see Fig. 2.11), and I the second moment of inertia of the blade, I = bu3

12 . The
torque balance sets the deposition law:

e ∼ lw

√
ηV L2b

E∗I

(
1− lw

L

)
(2.4)

The scaling law evidences the fundamental impact of the wetting length lw. We recall that this model
implies that lw ≪ L from the lubrication approximation, and the Γdry approximation (see below for more
details), so it cannot be used to predict the deposited thickness when lw → L. This scaling law also gives
the dependency of the deposited thickness on other parameters: e increases as η

1
2 and V

1
2 which is in

agreement with the experiments (Fig. 2.8). Conversely, the stiffer the blade ( EI
b increases), the thinner

the deposited thickness.

2.4.2 Limits of the scaling law

When establishing the scaling law, all capillary effects have been neglected. The capillary pressure
arising from the presence of the meniscus at the back of the reservoir can be expressed with Laplace
pressure equation pcapi =

γ

R , with R the meniscus radius, and thus be compared to the viscous pressure
p:

pcapi

p
∼ γe2

ηV lwR
∼ 10−3
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with R ≃ 10−3 m, e ≃ 10−4 m, lw ≃ 10−2 m and γ ≃ 10−2 N.m−1.
Capillary can also have an effect by directly applying a force to the blade at the triple point

corresponding to the menisci on the back of the reservoir and the blade tip. The associated torque
Γcapi ∼ γb(L− lw) is compared to the viscous torque and is found to be negligible as well:

Γcapi

Γwet
∼ γe2

ηV lw2 ∼ 10−4

Neglecting capillary effects in the scaling law is thus justified. However, the numerical computations
reveal they nevertheless have an impact on the deposited thickness, which we considered is second order
(see section 2.5.3) and is included in the numerical prefactor of the scaling law.

The matching point of the torque balance can be challenged. In fact the equation mathematically
describe a parabola. Consequently, for lw ≥ L/2, the deposited thickness is expected from Equation
2.4 to be decreasing with lw, which is not expected physically. In the extreme case of a blade fully wet
(lw = L), considering the lever arm to still be L− lw makes no sense. However, for smaller value of lw,
the wet region remains quite straight making this expression of the lever arm plausible. In Figure 2.9,
the blade shape h(x) is shown for two different wetting lengths lw = 6 mm and lw = 14 mm and in the
absence of fluid. The blade which is curved over its whole length in the absence of liquid present a
straight part corresponding to the wetting length in contact with the liquid. We believe this definition of
the matching point is the main source of discrepancy between the scaling law and the experiments for
large volume of reservoir (lw ≥ 15 mm). This discrepancy was not observed with silicone oil, because
filling the reservoir to this level is made difficult by the high wettability of the oil, but is quite strong for
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Fig. 2.9 − Effect of the wetting length on the blade shape and deposited film thickness, as calculated
numerically with parameters L = 5.7 cm, η = 480 mPa.s, B = 1.0±0.1 mN and V = 5 mm/s . Three
configurations are shown: the dry blade (in purple), lw = 6 mm (blue) and lw = 20 mm (green). The
inset shows the full blade, while the main figure focuses on the free end of the blade (thick line). The
thin line represents the deposited fluid film.
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shear-thinning and normal stress fluids (see Chapter 3 and 4).

The lubrication approximation remains largely verified even for lw up to 22 mm as the thickness
of the fluid sheared and the angle between the blade and the substrate stays small. This was verified
by numerical calculation. The blade approaches the surface with a small angle α in presence of liquid
which increases with lw: we measure α = 1.7◦ for lw = 6 mm and α = 2.9◦ for lw = 14 mm (Fig. 2.9).

2.4.3 Comparison with experiments

The scaling law (Eq. 2.4) is plotted in Figure 2.8a (with a continuous line). It reproduces very
convincingly the dependency of the film thickness e with both lw and η . The best fits are obtained with
similar prefactors: 0.15 for η = 480 mPas and 0.17 for η = 960 mPas.
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Fig. 2.10 − Experimental (color dots) and numerical (white squares) film thickness, plotted as a function
of the theoretical thickness (Eq. 2.4). The black line is a linear fit whose slope indicates that the optimal
prefactor is 0.17. Data correspond to varying velocities V = 2.5 mm/s (light blue), 5 mm/s (blue, yellow,
purple), 7.5 mm/s (dark green) and 10 mm/s (red, fuchsia pink, light green), viscosities η = 960 Pa.s
(purple, light green) and 480 Pa.s (all other colors), blade rigidities B = 7.1±0.5 mN m (light green and
fuchsia pink) and 1.0 ± 0.1 mN m (all other colors) and lengths L = 7 cm (yellow, fuchsia pink, light
green) and 5.7 cm (all other colors). The different combinations are summarized in the table.

The validity of the scaling law is checked by varying the different parameters at stake (Fig. 2.10).
Thus the film thickness is measured for different blade rigidities B, blade lengths L, liquid viscosities
η , spreading velocities V (respectively varied by a factor 8, 0.3, 2 and 4). Each color corresponds to
a different set of parameters (refer to the legend). When plotted as a function of the theoretical film
thickness, all data collapse on a single line with slope 0.17. The residual scattering of the data, observed
particularly with V , might be explained by the influence of capillarity, which was neglected in Equation
2.4. The dynamic contact angles are observed to vary with the velocity [86, 87] meaning capillary effects
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are velocity dependent. They could be the cause of the prefactor variation: 0.14 to 0.19 for velocity
ranging from V = 2.5 mm/s to V = 10 mm/s (Fig. 2.8b).

2.5 Numerical model of deposited thickness

To take into account capillary effects, and validate the prefactor used for the scaling law, a full numerical
study of this experiment was performed. It also gives access to the spreading dynamics which allows to
study the shape of the deposited fluid film.

2.5.1 Model presentation

In the following, we describe the calculation done to determine the fluid thickness deposited on a
plate by a flexible elastic blade. Since e and lw evolve quasi-statically with time, we solve the elasto-
hydrodynamic equations statically, with a constant lw as an input variable and the corresponding e as the
output variable. Furthermore, the geometry is split in two zones:

• the blade itself, which interacts with the fluid below over a length lw (< L).
• the free liquid film, spread by the blade.

On one hand, we start by deriving the expressions of each of the external forces acting on the blade
using the hydrodynamic equations and then we express the torque balance on the blade. On the other
hand, we state the equations describing the free surface after the end of the blade. Finally, the coupling
by boundary conditions at the tip of the blade of this two set of equations, along with the numerical
resolution method are presented.

Blade equations
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δs

δb
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Fig. 2.11 − a. Soft blade coating notations b. Axes convention.

We consider an elastic blade submitted to non uniformly distributed forces, due to the presence of a
Newtonian liquid under the blade, as shown in Figure 2.11a. The liquid is tightly confined between
the blade and the substrate and, as shown previously, the Reynolds number in the fluid is low; thus the
lubrication approximation holds, and we use it to determine the flow within the reservoir.
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The fluid motion below the blade generates two forces distributed along the wet part of the blade: a
lift force, due to the lubrication pressure p, which is exerted normally to the blade, and viscous force fv

coming from the no-slip boundary condition, which is exerted locally along the tangent to the surface.
In addition, we consider the capillary forces, Fsw

c and FL
c , applied along the tangent to the meniscus at

s = sw and L (due to the local surface tension). These local forces are expected to be of small influence,
as discussed before with scaling laws. This is confirmed with numerical computation and they can
therefore be neglected (see Figure 2.13). However, the contribution of the Laplace pressure arising from
the curvature of the interfaces at s = sw and s = L (which acts as a boundary condition on the lubrication
pressure p) has a significant impact on the film thickness e.

The full shape of the blade is modeled from the clamping point s = 0 to the free edge s = L. In this
large deflection problem, the normal n⃗ and tangent t⃗ vectors (as defined in Fig. 2.11b) depend on the
curvilinear abscissa s. The local equilibrium equations of curvilinear media mechanics gives [88]:
- the local equilibrium for forces:

dF⃗
ds

+ f⃗ext = 0

With F(s) the internal force exerted on point s by the portion of the blade located on the interval ]s;L],
and fext the linear density of the forces.
- the local equilibrium for torques:

dΓ

ds
+(⃗t × F⃗) · u⃗z +m(s) · u⃗z = 0 (2.5)

With Γ(s) the torque exerted on point s by the portion of the blade located on the interval ]s;L], and m
the linear density of moments, here m = 0.

By taking into account the forces that we listed above, the total internal force F(s) acting to the right of
s on the blade writes:

F⃗(s) =
∫ L

s
f⃗ext ds =

∫ L

s

(
p(s′)⃗n(s′)+ fv(s′)⃗t(s′)

)
bds′+H(sw − s)F⃗sw

c + F⃗L
c (2.6)

with H(sw − s) the Heaviside step function which expresses the fact that the meniscus capillary force at
sw only plays a role for s < sw.

Calculation of the forces
Fluid pressure

We consider a stationary flow in the lubrication approximation as presented previously in section 2.4.1.
For ease of reading, the lubrication equation (Eq. 2.3) is recalled here :

η
∂ 2v
∂y2 =

∂ p
∂x
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To calculate the excess pressure p in the reservoir, the velocity is integrated over y with no-slip boundary
conditions at the moving plate (v(0) =V ) and the blade (v(h) = 0) so that:

v(y) =
1

2η

∂ p
∂x

(y2 −hy)+V
(

1− y
h

)
(2.7)

The flow rate q is calculated by integrating v over y:

q =
∫ h

0
vbdy =− b

12η

∂ p
∂x

h3 +
V bh

2
(2.8)

Rewriting Equation 2.8:

∂ p
∂x

= 6η
V h−2q/b

h3 (2.9)

The derivative along the curvilinear abscissa, obtained using the relation ∂ p
∂ s = ∂ p

∂x sinθ , is integrated
between sw and s which gives the fluid pressure p:

p(s) =
∫ s

sw

6η

(
V h(s′)−2q/b

h(s′)3

)
sinθ(s′)ds′+ psw, (2.10)

with psw the Laplace pressure arising from the deformation of the meniscus at s = sw. We model the
meniscus by an arc to obtain an expression of psw and the local radius of curvature R as a function of the
wetting angles δs and δb (Fig. 2.12). An example is given for a wetting situation, using the relations
(h+ x)/R = cos(δb) and x/R = sin(δs −π/2), we get:

psw =
γ

R
=−cos(δb +π/2−θ(sw))+ cosδs

h
γ (2.11)

Writing the equations in the dewetting case (δb and δs > π/2) give the same relation for psw.
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Fig. 2.12 − Meniscus at the back of the fluid reservoir

The flow rate is expressed using Equation 2.10 at the position s = L:

q =
b
2

∫ L
sw

V sinθ

h2 ds′+ psw−pL
6η∫ L

sw
sinθ

h3 ds′
(2.12)
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This expression is later used in the calculation of the fluid pressure p. Finally, from the pressure at s = L,
an initial guess is used to start the numerical computation before it is determined iteratively by coupling
the blade and the free surface calculation (see sections Free surface equation and Numerical method).

Viscous stress

The viscous stress fv, exerted by the fluid on the blade, is defined as :

fv =− η
∂vx

∂y

∣∣∣∣
y=h

where
∂vx

∂y

∣∣∣∣
y=h

is derived from Equation 2.7 so that: fv =−h
2

∂ p
∂x

+
ηV
h

(2.13)

Using Equation 2.9, fv writes:

fv =
2η

h2

(
3q
b
−V h

)
(2.14)

Capillary forces

The capillary forces are expressed as:

F⃗L
c = γbe⃗L

γ , and F⃗sw
c = γbe⃗sw

γ (2.15)

with e⃗γ the vector tangent to the liquid surface at the triple line position. For the meniscus at s = sw, the
projection of e⃗sw

γ on the x and y-axis is written: e⃗sw
γ = sinθmsw⃗x−cosθmsw⃗y, with θmsw = θ(s)−δb. For

the meniscus at s = sL, the expression is similar , instead of θmsw the angle is θmL = θ(L).

Torque balance
In the large deflection problem, the calculation of the total torque Γ(s) (corresponding to the sum of the
torques applied by the fluid on the blade between s and L) involves the projection angle θ on the x and y
axis. Combining Equation 2.5 and 2.6 gives:

dΓ

ds
= −⃗t ∧

[∫ L

s
b
(

p(s′)⃗n+ fv(s′)⃗t
)

ds′+H(sw − s)F⃗sw
c + F⃗L

c

]
· u⃗z (2.16)

=−

∣∣∣∣∣∣∣∣

sinθ(s)
−cosθ(s)

0
∧




∫ L

s
b


p(s′)

∣∣∣∣∣∣∣∣

cosθ(s′)
sinθ(s′)

0
+ fv(s′)

∣∣∣∣∣∣∣∣

sinθ(s′)
−cosθ(s′)

0


ds′+ γb


H(sw − s)

∣∣∣∣∣∣∣∣

sinθmsw

−cosθmsw

0
+

∣∣∣∣∣∣∣∣

sinθmL

−cosθmL

0






· u⃗z

=−b
[∫ L

s

[
pcos(θ(s)−θ(s′))− fv sin(θ(s)−θ(s′))

]
ds′− γb

[
H(sw − s)sin

(
θ(s)−θmsw

)
+ sin

(
θ(s)−θmL

)]]

(2.17)

Following the classical way of solving the beam equation [70, 89], and according to the Euler-Bernoulli
beam equation, under the assumption the material of beam remains linearly elastic, the relationship of
bending moment and beam deformation is:

Γ = E∗I
dθ

ds
(2.18)
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The differentiation of Equation 2.18, using Equation 2.17 results in:

d2θ

ds2 =
b

E∗I

∫ L

s

[
−pcos(θ(s)−θ(s′))+ fv sin(θ(s)−θ(s′))

]
ds′+Fc

[
sin
(
θ(s)−θmL

)
+ sin

(
θ(s)−θmsw

)]

(2.19)
By replacing p, fv and Fc by their expressions (Eq. 2.10, 2.14 and 2.15 respectively), an equation
describing the shape of the blade θ(s) is obtained. Note that in the dry zone the terms p and fv are zero.

Influence of the local capillary forces
The second term of Equation 2.19, Fc

[
sin
(
θ(s)−θmL

)
+ sin

(
θ(s)−θmsw

)]
can be neglected when

compared to the torque derivative arising from the pressure in the lubricated film. This point was
previously discussed using scaling laws (see section 2.4.2). Here, we confirm it by comparing the
numerical solutions of Equation 2.19 in the presence and in the absence of this capillary term. The
blade shapes calculated in both cases perfectly match, showing that local capillary forces can indeed be
safely neglected. Both results are shown in Figure 2.13, with the full solution in gray, and the simplified
one (where the contribution of Fc is neglected) in black. However, and as discussed in section 2.4.2,
the contribution of the Laplace pressure (due to the local deformation of the liquid interface) on the
lubricating film itself is small but not fully negligible, as it imposes the fluid pressure in s = sw and
s = L.
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Fig. 2.13 − Influence of the local capillary forces on the film thickness e, as calculated from the
numerical integration of Equation 2.19. Two situations are compared, in presence of capillary forces
F⃗c = γbe⃗γ (in gray) or in the absence of this term (corresponding to Fc = 0, in black). The two plots
almost perfectly overlap, indicating that the influence of capillary forces on the torque balance is almost
completely negligible.

Free-surface equations

Following Trinh et al. [59], the pressure at s = L is obtained by determining the shape of the free surface
of the deposited liquid. The equations governing the free surface are presented below. To distinguish the
variables of the free surface from those of the blade, we use an index l (for "liquid").
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In this part we consider the liquid deposited behind the blade, typically over a length of 0.5 cm, an
interval chosen sufficiently large to reach the atmospheric pressure in the liquid: p(x = ∞) = 0. The
lubrication Equation 2.3 integrated with the no-slip boundary condition on the substrate (v(0) =V ) and
no tangential stress on the free surface, ∂v

∂y |hl = 0, gives :

v(y) =
1

2η

∂ p
∂x

(y2 −2hly)+V (2.20)

This expression of the velocity is integrated to give the flow rate, q =− b
3η

∂ p
∂x h3

l +V bhl , which can be
rewritten to express the derivative of p:

∂ p
∂x

= 3η
V hl −q/b

h3
l

(2.21)

By writing the Laplace pressure equation in the meniscus at the end of the blade we obtain another
expression for p:

p =−γ
dθl

ds
(2.22)

The differentiation of 2.22, using Equation 2.21, and the relation between the derivatives with respect to
s and x finally gives:

d2θl

ds2 =−3η

γ

(
V hl −q/b

h3
l

)
sinθl(s) (2.23)

This equation governs the shape of the free surface of the deposited layer of fluid behind the blade.
The liquid flow rate involved in this equation should be equal at any point in the fluid because the it is
incompressible. In the numerical resolution we use the value of the flow rate at x = ∞, q =V bhl(∞) =

V be.

Boundary conditions

The boundary conditions depend on the solved set of equations:

• for the blade: the fixed mounting imposes θ(0) = 0, and there is not torque at the end of the blade
leading to ∂θ

∂ s

∣∣∣
L
= 0.

• for the free surface: as the deposited layer is horizontal at x = ∞, θl(∞) = π/2 , and the Laplace
pressure equation written at L gives the second condition: ∂θl

∂ s

∣∣∣
L
=− pL

γ
.

• Finally, the matching of the solutions of Equations 2.19 (for the blade) and 2.23 (for the free
film) is done by imposing a continuity of the flow rate q at x = L, as well as of the liquid height:
h(x = L) = hl(x = L).
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Numerical method

The governing equations for the shape of the blade (Eq. 2.19) and of the free surface (Eq. 2.23) have the
same structure and can be both rewritten as:

d2θ

ds2 =−S(s,θ(s)) (2.24)

where −S is the right member of Equations 2.19 and 2.23 depending on s and θ . Note that the local
height of the blade, present in the description of p and fv is directly linked to θ with dh

ds = cosθ ; the
same relation is used to compute hl from θl for the free surface. Equation 2.24 is a piecewise 2nd order
non linear boundary value problem. It is non linear in the sense that the function S depends itself on
the angle distribution θ(s) we are looking for. There are different methods to solve this problem such
as the shooting method, projection methods, and difference methods [90]. We chose to apply the false
transient (or pseudo transient) method [91–93]. We solve the Equation 2.24 using an analogy with
the heat equation. Equation 2.24 can be seen as a 1D steady-state non-linear heat equation where θ is
equivalent to temperature at abscissa s, with a heat conductivity equal to 1 and a heat source distribution
S. In order to solve it, we refer to the transient heat equation (2.25) where the derivative of θ versus a
virtual time, ∂θ

∂ tv
, is added (the volumetric heat capacity is also chosen equal to 1):

∂θ

∂ tv
=

∂ 2θ

∂ s2 +S(s,θ) (2.25)

We start with a guess for θ(s, tv = 0). Solving numerically by finite difference (see next) the transient
heat equation (Eq. 2.25) with proper boundary conditions, we obtain a time dependent distribution
θ(s, tv) sequentially. The stable asymptotic state obtained after a while corresponds to the steady state
solution of Equation 2.24 we are looking for (since then ∂ θ

∂ tv
= 0). An implicit-explicit scheme [94, 95]

has been chosen as a compromise between stability and computation time. The scheme is not strictly
implicit because it is explicit for the source which is expressed at time step n instead of n+1 in the case
of the purely implicit scheme :

θ
n+1
i −θ n

i

∆tv
=

θ
n+1
i−1 −2θ

n+1
i +θ

n+1
i+1

∆s2 +S(s,θ n) (2.26)

where θ n
i ≈ θ(i∆s,n∆tv) with i the spacial indexes, i going from 1 to N (Fig. 2.14), and n the temporal

index, n = 1 corresponding to the initial state of the system . To obtain the corresponding matrix the
Equation 2.26 is rewritten :

−Kθ
n+1
i−1 +(1+2K)θ n+1

i −Kθ
n+1
i+1 = θ

n
i −Sn

i ∆tv with K =
∆tv
∆s2 (2.27)

And the transcription of the boundary conditions writes:
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• For i = 1, equivalent to s = 0, θ(s = 0) = 0 is imposed to be constant, so θ n
i = θ

n+1
i = 0 whatever

the source value.

• For i = N, equivalent to s = L, ∂θ

∂ s |L = 0 is imposed, the thermal balance of the last cell (of half
size ∆s/2 - Fig. 2.14) becomes: −2KθN−1

n+1 +(1+2K)θN
n+1 = θN

n −Sn
N∆tv

We can therefore write the scheme as a matrix system:




1 0
−K 1+2K −K

...

−K 1+2K −K
−2K 1+2K







θ
n+1
1

:

θ
n+1
N




=




θ n
1

:

θ n
N




−




0
S2

:

SN




∆tv

This scheme is stable and thus converges to the stationary solution (when it exists), according to the
Lax equivalence theorem [96]. The classical choice consists in choosing a timestep such as ∆tv < ∆t lim

v /2
with ∆t lim

v = ∆s2 and ∆s the size of a cell. In most of the simulations, the model converges nicely so that
the calculation is accelerated by using a time-step ∆tv = 20∆t lim

v . The spatial discretization was chosen
such as: ∆s ∈ [0.03,0.3] mm.

i=1 i=N

Fig. 2.14 − Distribution of the nodes and cells of the numerical scheme

Convergence criteria

The convergence of the numerical simulation is achieved when two conditions are simultaneously met:
1. when the steady state is reached for the transient heat equation (Eq. 2.25) which provides the

solution for the governing equations of the shape of the blade (Eq. 2.19) and the free surface (Eq.
2.23)

2. when the two flow rates, calculated on the one hand under the blade (from Eq. 2.12) and
on the other hand evaluated in the coated film (where q = V bhl(∞)) equalize because of flow
conservation.

Coupling of the blade and free surface calculation

In the resolution process, a given input is the wetting length lw, which implies that e and lw both
vary quasi-statically with time. A new simulation is thus necessary to determine e for each value of
lw. The other inputs are the wetting angles at the position sw, δs and δb, whose values are measured
experimentally. It is also necessary to make an initial guess of the shape of the blade θ(s, tv = 0) and of
the free surface θl(s, tv = 0), and provide a first estimate of the value of the pressure at the tip of the
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blade, pL, as well as the meniscus angle at this position, θmL. The initial guess of θ(s) was obtained from
the static blade without liquid, whose shape has been modified to show a small gap at the end, while the
free surface was initially considered nearly flat θl(s)≈ π/2. These guesses are used for the computation
of the transient heat equations (Eq. 2.19 and Eq. 2.23) which give updated θ(s), θl(s), and θmL = θl(L).
The arbitrary value of pL is adjusted through a corrective factor extracted from the difference between
the two values of flow rates, q and ql (pL(n+1) = pL(n)− (ql

q −1)a with a a numerical factor). This
process is iterated until the flow rates can be considered equal, usually 10−2%, leading to the "correct"
value of pL. The fluid thickness e is finally extracted from the height of the deposited fluid for x −→ ∞

(in practice 4 to 10 mm after the blade tip). A schematic representation of the numerical resolution is
given in Appendix C .

Results for the calculation of shear rate, fluid velocity and pressure

In this section we show the numerical results of some of the physical variables defined before: the shear
rate, the velocity and the pressure (Fig. 2.15). For this example, the spreading velocity is V = 10 mm/s,
the viscosity is η = 478 mPa.s and the wetting length is lw = 14 mm.
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Fig. 2.15 − Calculated values of physical parameters in the liquid region under the blade (30 ≤ x ≤ 44)
and in the deposited film (44 < x) for η = 480 mPa.s, V = 5 mm/s and lw = 14 mm. The dark line in
a and b represents the blade shape h(x) and the free surface hl(x). a. Map of the shear rate γ̇ within
the film. The negative value comes from the axis convention. b. Velocity profile v = f (x,y) (dark line)
plotted against the reference value v = 0 (vertical gray line) for different abscissas. c. The fluid pressure
p = f (x) presents a maximum at x = 42, the negative values of the pressure, pw and pL correspond to
the menisci.

The shear rate is represented in Figure 2.15a. The blade shape h(x) and the free surface hl(x) are
shown with a thick black line. The colormap indicates the local shear rate γ̇ within the film. Note that
the shape of the meniscus at the back of the reservoir is not represented as it is not calculated in our
simulation: the meniscus is only considered to provide a boundary value for p. Since the substrate is
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moving (in the positive x direction), the shear rate is negative almost everywhere in the fluid under the
blade. We observe an almost constant shear rate gradient as a function of y (at a given x position), in
good agreement with what is expected of a Stokes flow, where ∂ γ̇

∂y = 1
η

∇∇∇p, is a constant for a given x
position.
The velocity of the fluid is represented in Figure 2.15b. Four types of velocity profile are observed:

• Near x = 42 mm, a nearly linear velocity profile is observed as in a Couette flow.
• At the back of the fluid reservoir, the velocity changes direction near the blade [61]. The fluid

goes towards the left in a recirculation movement.
• At the blade tip, the fluid velocity pass through a maximum slightly higher than the velocity of

the substrate. This can be explained by the strong pressure drop near the tip of the blade which
generates an additional Poiseuille flow (Fig. 2.15c).

• Under the free surface, the velocity profile is quickly homogenized after the meniscus and v ≃V
over the whole height.

The fluid pressure goes through a maximum p(x = 44) = 190 Pa.s (Fig. 2.15c). This maximum
corresponds to linear velocity profile and constant shear rate. This naturally derives from the Stokes
flow. The negative pressures arising from the menisci presence at xsw and xL are observed around −19
and −11 Pa respectively.

2.5.2 Prefactor validation

Comparison with experiment and scale law

In Figure 2.8a, the numerically calculated film thicknesses (black and grey dashed lines) are compared to
the experiments for different values of the wetting length lw. They match the experimental data for both
η = 480 mPas and η = 960 mPas, without any adjustable parameter. The good agreement between the
numerical calculation, the experiments and the scaling law is further highlighted in Figure 2.10. The
numerical solutions of the elasto-hydrodynamic equations (Eq. 2.19 and Eq. 2.23) are shown with white
squares. Here, the same parameters (η , V and B) as in the experiments are used. For this figure, capillary
action is neglected (capillary forces and psw = 0) to compare scaling law and numerical calculation in
the same scope. All data, including the numerical ones, were obtained without any adjustable parameter.
They collapse on the same master curve with slope 0.17, thus confirming the prefactor used for the
scaling law.

In addition, the numerical solution of the blade shape is compared to the experiment. The picture
of a blade taken during an experiment while spreading liquid (lw = 16 mm), or not, is shown in Figure
2.16a. From this picture we are able to determine the shape of the blade h(s), except towards the end of
the blade where the image is not sharp enough in the presence of liquid. The computed profile h(s) (Eq.
2.19) nicely overlaps the experiment, as shown in Figure 2.16b.
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Fig. 2.16 − a. Picture of the moving blade during a typical spreading experiment (L = 5.7 cm, η = 960
mPa.s, B = 1.0±0.1 mN and V = 5 mm/s) for lw = 16 mm (in green), and in absence of liquid (purple).
b. Comparison of the experimental blade shape h(s) (dashed line) and the numerical solution (calculated
through the integration of the elasto-hydrodynamic equations), with parameters L = 5.7 cm, η = 480
Pa/s, B = 1.0±0.1 mN and V = 5 mm/s (green line). The simulation is seen to match the experimental
shape.

Limits

Even if capillary is taken into account, the results obtained from the numerical calculations still show
some discrepancy, particularly for η = 960 mPa.s (Fig. 2.8). These differences between the exper-
iments and the numerical results can arise from experimental uncertainty over the measurement of
the parameters involved in the calculation (the contact angles δb and δs, the surface tension γ , the
viscosity η , the blade rigidity B), or directly from the measurement of lw and e. A parametric study
was conducted to test the sensitivity of the calculated thickness to these different input parameters. We
observed that e is very little affected by variations in γ , δb and δs (< 2 %) but varies by about 6−7%
with η , V and B for a ±10% variation in the value of these parameters. Consequently a poor evalu-
ation of the viscosity or the blade rigidity can be at the origin of systematic error for the numerical results.

Moreover the lubrication approximation, the approximation of the psw equation, and the assumption of
a zero transverse flow may cause the discrepancy between numerical and experimental data. Seiwert
et al. showed an important impact of the deposited thickness with the blade width b, questioning the
hypothesis of invariance in the transverse direction z [4]. However, in our situation the finite size of
the reservoir limits this effect: no liquid was observed escaping from the side of the blade in most
experiments. The potential exception concerns the beginning of the spreading due to the initial deposit
shape (Fig. 2.7), however it mostly corresponds to the transient phase I (not taken into account in the
data).

2.5.3 Capillary effect

The numerical approach easily allows testing the assumption made in section 2.4: it assumed that the
dependency between e and lw would result from an elasto-capillary competition due to the presence of



2.5 Numerical model of deposited thickness 51

the meniscus at the back of the reservoir. We compare in Figure 2.17 numerical simulations of e(lw)
in two different configurations: in absence of a pressure jump at s = sw (gray line), and for varying
wetting conditions (dotted lines). This is achieved by modifying the contact angles δs and δb on the
surface and on the blade (as in Fig. 2.17). They are directly linked to the pressure at psw (Eq. 2.11). A
major observation from Figure 2.17 is that e varies with lw even when capillary forces are absent. This
confirms that the pressure jump at the meniscus does not cause the dependency of e with lw.
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Fig. 2.17 − Effect of wetting on e(lw). The continuous gray line corresponds to the absence of a pressure
jump p(sw) = 0. A typical experiment (δb = 10◦, δs = 97◦) is plotted in red, and two extreme situations
of almost perfect wetting (δs = δb = 10◦) and non-wetting (δs = δb = 170◦) are shown in green and
yellow. The numbers indicate the pressure jump p(sw) due to the meniscus (in Pa).

However wetting conditions still have an influence on the film thickness: the e(lw) curves are
shifted. Thus e is potentially increased by a factor two when comparing the almost perfect wetting
(δs = δb = 10◦) to the non-wetting situation (δs = δb = 170◦). However the latter is highly unlikely
as the film would be unstable and dewet the substrate. In classical wetting configurations (green and
red plots), capillary forces cause a modest variation of e, close to 20%. Experimentally, the surface
condition of the PMMA support and the mylar blade must be controlled to avoid variations in wetting
and limit the discrepancy of the data.

2.5.4 Shape of deposit

The profile of the fluid film can be computed from the numerical data describing the blade shape h(x).
The conservation of the volume of fluid during the emptying the reservoir from lwj to lw(j+1) gives:
∆Ωd = ēV ∆td = ē∆ld . With ē = (e j +e j+1)/2 the averaged deposited thickness, ∆td the deposition time,
∆ld the deposited length and ∆Ωd the deposited volume which is also equal to the variation of volume
under the blade, ∆Ωd =

∫ L
x j

h j dx− ∫ L
x j+1

h j+1 dx. The length interval ∆ld to transition from a deposited
thickness e j to e j+1(< e j) can thus be expressed:

∆ld |e j→e j+1 =

∫ L
x j

h j dx− ∫ L
x j+1

h j+1 dx

ē
(2.28)
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The small quantity ∆ld is integrated to give access to the deposited length resulting from an emptying of
the reservoir , starting from lw = 18 mm. The thickness is plotted as a function of the deposited length ld
which gives access to the profiles of the fluid film. For the final part of the reservoir emptying (lw < 4),
the profile is approximated by considering a triangular shape for the deposited film and represented by
dotted lines (Fig. 2.18a). Experimentally, the deposition length lexp

d is measured (directly proportional to
t in Fig. 2.6) but it cannot be considered as directly equivalent to the numerically calculated deposition
length since: i) the "initial" lw (measured at the beginning of phase II) must be the same for a comparison
to be possible, ii) and the transient regime is taken into account in lexp

d . For each experiment, an offset
is applied to the first value of lexp

d in phase II, in order to obtain the best fit between the experimental
and numerical data. The comparison of the experimental data with the numerical data does not enable
to validate the values of ld obtained numerically but allows to check the slope of e = f (ld). Figure
2.18a shows a good agreement between the numerically calculated profile shape and the experimentally
obtained one.
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Fig. 2.18 − Profile of the deposited fluid film for an initial value lw = 18 mm. a. Comparison of the
experimental datas (markers) with the numerically calculated profile (plain line) for η = 480 mPa.s and
V = 10 mm/s. The dashed lines correspond to approximated values. b. Effect of V and η on the shape
of the deposited profile. The thicker deposits are spread on shorter distance with high local variation of
the thickness.

The numerical calculation is useful to complement the results obtained from the scaling law. In
particular it gives additional information about the dynamic of the spreading. Previously, we have shown
that the scaling law predicts that e increases with the velocity V and the viscosity η , for a given lw.
However, it gives no information on the shape of the fluid deposit. The numerical computation allows
access to this information: in Figure 2.18b the film profile is plotted for three combinations of η and
V . At the beginning of the film (ld = 0) we observe the results predicted by the scaling law , e(V = 5
mm/s, η = 480 mPa.s)< e(V = 10 mm/s, η = 480 mPa.s)< e(V = 10 mm/s, η = 960 mPa.s). Then
this order is not maintained, the initially thicker deposit is also the shorter one. Since the initial volume
of fluid under the blade is not the same in these different situations (e.g. Ω0(V = 10 mm/s, η = 960
mPa.s) > Ω0(V = 10 mm/s, η = 480 mPa.s)), this results is not straightforward. Additionally, the
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thickness decreases non-uniformly as it tends to fall slowly before plummeting. This slope variation is
stronger for the low values of velocity and viscosity. Concretely, from a cosmetic point of view, reducing
the spreading velocity or the viscosity of the fluid allows achieving a more homogeneous deposit.

2.6 Flexible blade coating with finite size reservoir is not analogous to
dip coating

The scaling law, confirmed numerically, allows us to put a central point forward. In the case of a finite
reservoir, the viscous forces of the lubricated film are exerted over an externally imposed distance lw
that varies over the course of the spreading. This is fundamentally different from the capillary-elasticity
analogy approach, where the pressure is applied over an internal dynamical length lx ∼ (eL2)1/3 [4, 65]
that varies with the parameters of the blade and the liquid. This length, in turn, impacts the scaling of

the film thickness, which writes e ∼ L
(

ηV bL2

E∗I

)3/4
in the blade-meniscus analogy [4–6].

Furthermore, the blade here is deformed by the film along its entire length, as highlighted in Figure
2.19, where the blade shapes, numerically calculated for different velocities, are shown. This is contrary
to the meniscus in dip-coating experiments, which is only locally deformed. For this reason, the blade
shape cannot be resolved using asymptotic matching, as usually done for a liquid interface. Consequently
the analogy between soft blade coating and dip coating does not seem to be valid in the case of a finite
reservoir of fluid.
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Fig. 2.19 − Comparison of the blade shape at varying velocities V = 0.1,1,5 and 10 mm/s. The fluid
viscosity is η = 460 mPa s, the wetting length lw = 14mm, B = 1.0 mN m and L = 5.7 cm. With a finite
reservoir and a finite blade length, the whole blade is deformed over its whole length.
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2.7 Conclusion

Conclusion − Chapter 2
In this chapter we have studied the film thickness of a Newtonian fluid spread by a soft blade.
We focused on a finite reservoir of fluid to mimic spreading situations such as cosmetic
spreading or painting. This study has an important application scope:

1. We demonstrated that it is impossible to obtain a deposit of constant thickness with an
elastic blade if the spreading is done at constant speed. By using the Stokes equation
and elastic beam theory we proposed a scaling law able to predict the experimental
data.

2. We proposed a more detailed model by numerical calculations. We obtained good
agreement with the experimental data without any adjustable parameter, which allowed
us to validate the prefactor used for the scaling law.

3. We evidenced the effect of capillarity: it is a second order phenomena and plays a
significant role only for very hydrophobic substrates.

4. We showed how viscosity and spreading velocity influence the shape of the deposit.

5. We suggested that the analogy between elastic and capillary interfaces is not valid
when the level of liquid under the blade varies (finite reservoir).

Now that the basis have been laid in the Newtonian case, we seek to extend this study to
more complex fluids that are primarily used in industry. The addition of polymers is often
responsible for changing the fluid properties. Chapter 3 presents the case of shear-thinning
fluids. And Chapter 4 deals with the spreading of shear-thinning fluids which additionally
generates normal forces or display a yield stress.



Chapter 3

Extension to shear-thinning fluids

In this chapter, we consider the spreading of complex fluids with a soft blade and focus on shear-thinning
fluids. We combine experiments, the scaling law approach and numerical computations to compare
the film deposition of shear-thinning and Newtonian fluids. We point out the differences in shape and
mechanical work required to spread the fluid: more energy is required to spread at constant velocity a
given volume in a given time of a shear-thinning fluid.

The results presented in this chapter have been published in Physical Review Fluids [2]. The article
can be found in Appendix D.
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3.1 Experiment

3.1.1 Fluid model: Xanthan gel

Xanthan gum is a natural polysaccharide, produced by the fermentation action of a bacterium, Xan-
thomonas campestri. Discovered in the 1950s at the United States Department of Agriculture, it has
since been used in many industrial applications for its thickening, stabilizing or suspending properties.
This biopolymer is used in the cosmetic and pharmaceutical industries, as well as in the formulation of
paints and cements for the construction industry, and in the oil and gas industry. In the food industry, it
is often used as a food additive under the European code E415, for its thickening properties.

Xanthan is a polymer consisting of a main chain of cellulose branched by side chains of trisaccharide.
The presence of carboxyl groups gives it a good solubility in water. At room temperature and up to
40◦C, xanthan is in an ordered native conformation [97]. This is a helical structure that is stabilized by
intermolecular and intramolecular hydrogen bonds. A xanthan macromolecule can be modeled as a
semi-rigid rod with a typical hydrodynamic length of 1.5 μm [98].

a. b.

Fig. 3.1 a. Structure of xanthan gum. b. Schematic representation of the effect of shear on the polymer
network. The rod-shaped polymer aligns along the shear (from Song et al. [99]).

This rod shape confers to xanthan in aqueous solution a specific rheological behavior. Xanthan
is known to be a strong shear-thinning fluid exhibiting at low shear rates either a Newtonian plateau
or a low yield stress (a few Pa) for dilute and concentrated suspensions respectively [98, 99]. The
values reported in the literature to define the limits at rest of the dilute, semi-dilute and concentrated
regime vary: formulated below 0.13-1 w% the xanthan is in the dilute regime, and above 1.1−7 w%
it reaches the concentrated regime [100]. The pronounced shear-thinning behavior may be interpreted
as a conformational change of the polymer molecules. Figure 3.1 gives the representation proposed
by Song et al [99]. At low shear rates and at rest, the xanthan macromolecules can form a network
structure through entanglement and hydrogen bonding between the rods. The resulting viscosity is
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significant and some yield stress can even be observed at high concentration. When a stress is applied,
these non-covalent bonds break and disentanglement happens, so that the macromolecules begin to
align parallel to the shear direction [101]. Viscosity decreases as the alignment facilitates the flow. By
removing the shear, the disordered lattice structure is instantly re-formed and the initial viscosity is
recovered [102]. Several models have been used to describe the rheological shear-thinning behavior of
xanthan gel [99, 102, 103], such as Oswald and de Waele power law, and, in the case of an initial yield
stress is considered, the Casson model.

Preparation of polymer solutions

Solutions of xanthan gel (Rhodicare® XC, Solvay) in water have been obtained by dissolving the
polymer under mechanical agitation at room temperature. First, a small amount of a biocide, the
2-phenoxyethanol, is added to the water (0.5 w%). The xanthan is well know to be quickly contaminated
by bacteria, notably as some might not have been completely eliminated during the production process.
Without biocide, the shelf life of the sample is only a few days while otherwise by keeping the sample in
the refrigerator it can be increased at least to a month. The powder is then added little by little in the
solution to avoid agglomerates. The samples are kept under continuous stirring from a few hours to 24
hours for the highest concentrations. We mainly studied the samples at 0.4 and 0.9 w% to focus on the
shear-thinning behavior. At a higher concentration, a yield stress could appear. At a lower concentration,
the fluid was not sufficiently viscous to obtain a fluid film thick enough to have a high signal-to-noise
ratio from the profilometer, and avoid dewetting interfering with the measurement.

Prior to the first experiment, the solutions are kept at rest for a minimum of 24 hours so the samples
can reach their equilibrium state.

Rheology of xanthan gel

The flow curves were obtained with cone and plate geometry, using a shear-imposed flow-sweep, with
5 points per decade. The shear rate γ̇ was incremented between 10−3 and 400 s−1. The stress value is
given when three consecutive 10 s measurements have given the same results with a tolerance of 5%,
or when the sample has undergone 60 s of constant shear rate. This maximum time is long enough for
the measurements not to be sensitive to the rheometer inertia, or to the fluid inertia (for high viscosity
fluids).

The rheological measurements are presented in Figure 3.2. Xanthan is strongly shear-thinning at any
concentration. The viscosity decreases by three orders of magnitude for an applied shear rate increasing
from 0.01−1 to 400 s−1. At low shear rates, a Newtonian plateau is clearly visible at 0.4 w% while it is
less obvious at 0.9 w%. The viscosity at the Newtonian plateau is denoted η0. A critical shear rate, γ̇c,
can be defined as the limit between the Newtonian and shear-thinning regions. Above γ̇c, the viscosity
follows the classical Ostwald and de Waele power law for polymer solutions. Finally, the viscosity is
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Fig. 3.2 − Viscosity as a function of the shear rate γ̇ for xanthan gel at 0.4 w% and 0.9 w%.

written:

η =





η0 for γ̇ < γ̇c

kγ̇
n−1 for γ̇ > γ̇c

(3.1)

with η0, k and n constants whose values were determined by least square fitting. They are given in Table
3.1.

Table 3.1 Rheological properties of xanthan gels.

0.4% 0.9%
η0 (Pa s) 21 56
k (Pa sn) 1.5 4.0

n 0.29 0.30

Surface tension

The surface tension of xanthan varies with polymer concentration. Various values are reported in the
literature, ranging from 42 to 74 mN.m−1 for concentrations between 0.1 and 1 wt% [104, 105]. Since
the values have not been reported specifically for 0.9 and 0.4 w% we measured them by the drop
weighing technique using Tate’s law and obtained γ = 54.5± 4 mN.m−1 at 0.9 w% and γ = 60± 4
mN.m−1 at 0.4 w%. These values are in good agreement with those described in the literature: they show
a decrease of surface tension with concentration and they fall within the range reported by Prud’Homme
& Long who measured γ = 42.3 mN.m−1 at 1 w% concentration and γ = 70.7 mN.m−1 at 0.1 w%
concentration [104].
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Dynamic contact angles

The dynamic contact angles at the back of the fluid reservoir, between the fluid and the blade (δb), and
between the fluid and the substrate (δs) were measured during the spreading experiments of the two
xanthan solutions at V = 5 and 10 mm/s. Although they appear to vary slightly with the velocity and the
concentration, these variations are comprised within the error of measurement and no distinction was
made between these different situations: in practice, we considered δb = 16±10◦ and δs = 115±10◦

for xanthan solutions.

3.1.2 Spreading dynamics

The same type of spreading experiment, as described in Chapter 2, was performed, except that this time
the fluid spread is a shear-thinning fluid instead of a Newtonian fluid. To avoid slippage and dewetting,
the surfaces of the blade and substrate were sandblasted to achieve a roughness of approximately 5 to
10 μm. A typical film thickness profile obtained for xanthan at 0.9 w% and V = 10 mm/s is shown in
Figure 3.3. This profile appears at first glance to be similar to that of silicone: after an initial increase
(until t = 2 s), the thickness decreases continuously with time as the reservoir empties. Again, only the
data corresponding to the decreasing phase, here t > 2 s, are studied in the following.
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Fig. 3.3 − Map of thickness of the central part of the film for 0.9% xanthan during spreading at V = 10
mm/s, as a function of the lateral distance z and time t. The color code ranges from red for e ≃ 0 up to
yellow for e = 250 μm. The first peak is an artifact and is not taken into consideration. The white line
shows the thickness e(t) averaged over the width of the film, as a function of time.

In Figure 3.4a, the mean thickness e is plotted as a function of time t, for three initial xanthan gel
volumes Ω0 = 0.30 ± 0.03 mL (triangles), 0.58 ± 0.02 mL (squares) and 1.01 ± 0.1 mL (stars). Two
effects are evidenced: first, e increases with Ω0, typically by a factor 2 when Ω0 is multiplied by 3. In
addition, and more importantly, e also decreases during the course of an experiment: for Ω0 = 0.30
mL, e diminishes from 100 μm to 20 μm at the end of the 10 s long blade movement. Both effects are a
consequence of the finite size of the reservoir, as discussed previously in Chapter 2. Indeed, and as shown
in Figure 3.4b (blue points), all the curves for varying initial liquid volumes almost perfectly overlap
when plotted as a function of the wetting length lw(t), measured at the same time. Figure 3.4b also
evidences a strong correlation between the film thickness and the polymer concentration: for example,
for lw = 15 mm the film thickness varies by a factor 2.6 between the 0.4% xanthan solution and the 0.9
% solution (with e increasing from 60 ± 12 μm to 155 ± 24 μm). In the case of Newtonian fluids, these
variations are directly related to the fluid viscosity η since e ∼√

η . In the case of shear-thinning fluids,
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the viscosity is no longer constant as a function of the shear rate. A new expression of the thickness, as a
function of the different spreading and rheological parameters, is needed to describe the experimental
results.
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Fig. 3.4 − a. Profile of the fluid mean thickness e as a function of time t and initial volume Ω0 for a
0.9 % xanthan gum solution (V = 10 mm/s). The symbols correspond to different initial liquid volumes
Ω0 = 0.3± 0.03 mL (triangles), Ω0 = 0.58± 0.02 mL (squares) and Ω0 = 1.01± 0.1 mL (stars). b.
Evolution of the fluid thickness e with the wetting length lw for two concentrations: 0.9% in dark blue
and 0.4% in light blue. The data used for xanthan 0.9 w% in b. combine those from a and those from
experiments corresponding to other Ω0 ∈ [0.27,1.34] (circles). The solid lines show the scaling law
(Eq. 3.7) with prefactor 0.06 for both concentrations. The dashed lines are obtained from numerical
calculations. The parameters are V = 10 mm/s, B = 1.0 mN.m and L = 5.7 cm.

3.2 A generalized scaling law to predict the film thickness

3.2.1 Elasto-hydrodynamic competition for shear-thinning fluids

Our objective is to propose a scaling law to describe the spreading dynamics of a shear-thinning fluid.
The principle is the same as in the case of a Newtonian fluid (balance between elastic and viscous
torque) except that the model must take into account the variable viscosity of the shear-thinning fluid.
As mentioned earlier, we consider the flow beneath the blade to be a simple shear flow. The Reynolds
number Re = ρeV/η is smaller than 10−1 for xanthan (denoting ρ ≃ 103 kg/m3 the fluid density and
η > 10−2 Pa s the fluid viscosity). As for the silicone oil, the liquid is highly confined under the blade:
lw ≫ e and the tip of the blade is almost parallel to the substrate, the conditions are fulfilled to make the
lubrication approximation.
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Tensorial approach

Since the viscosity is not constant, it is not possible to directly use the expression of the Navier Stokes
equation used in Chapter 2 (directly written for a Newtonian fluid) to express the lubricating pressure.
In this paragraph, we use a tensorial approach to obtain the general hydrodynamic equations of a fluid.
The Cauchy momentum equation that describes the momentum transport in any continuum is:

Dvvv
Dt

=
1
ρ

∇∇∇ ···σσσ + fff (3.2)

with vvv the flow velocity vector field, Dvvv
Dt the material derivative of vvv which is equal to Dvvv

Dt =
∂vvv
∂ t + vvv ·∇vvv,

σσσ the stress tensor and fff the body forces per unit mass. In our experiment, gravity is neglected ( fff
equals zero), the regime is considered stationary ( ∂vvv

∂ t = 0) and the lubrication approximation is made
(vvv ·∇vvv = 0).
The Cauchy equation reduces to:

∇∇∇ ···σσσ = 0 (3.3)

The stress tensor is σσσ = −pIII + τττ denoting p the hydrodynamic pressure within the fluid, III the
identity matrix and τττ the deviator of the stress tensor. The normal stresses appear in the diagonal
components of the deviator tensor: the first normal stress difference N1 is defined as N1 = τxx − τyy and
the second normal stress difference N2 is equal to τyy − τzz. In addition, the trace of the deviator is equal
to zero, τxx + τyy + τzz = 0. By combining these elements, the stress tensor σσσ writes:

σσσ =



−p+ τxx τxy τxz

τyx −p+ τyy τyz

τzx τzy −p+ τzz


=



−p+ 2N1+N2

3 τxy τxz

τyx −p+ −N1+N2
3 τyz

τzx τzy −p+ −N1−2N2
3


 (3.4)

Replacing this expression of σσσ (Eq. 3.4) in Cauchy equation (Eq. 3.3) gives for the projection on the
x-axis:

−∂ p
∂x

+
∂

∂x

(
2
3

N1 +
N2

3

)
+

∂τxy

∂y
+

∂τxz

∂ z
= 0 (3.5)

The first and second normal stress differences are negligible for a simple shear-thinning fluid. This
approximation for the xanthan solutions is discussed and validated in Chapter 4. Moreover the problem
is considered invariant along the z-axis, so ∂τxz

∂ z = 0. The Navier-Stokes equation thus reduces to a simple
steady-state Stokes equation, which is written:

∂ p
∂x

=
∂τxy

∂y
(3.6)
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with τxy the shear stress under the blade. We place ourselves in the case of a pure shear-thinning fluid
(no Newtonian plateau or yield stress at low γ̇), thus τxy = η(γ̇)γ̇ = kγ̇n.

Using the Equation 3.6, the pressure (responsible for the lifting of the blade) therefore scales as
p∼ τxy

lw
e ∼ k

(
V
e

)n
lw
e . We recall the Newtonian case: p∼ ηnewtV lw

e2 for ease of comparison. Following the

same reasoning as in the previous chapter, the correspond viscous torque is: Γwet ∼ k
(

V
e

)n
lw2b

e (L− lw).
This torque is compensated by the rigidity of the blade. The expression of the elastic torque is unchanged:
Γdry ∼ E∗I

L−lw
. The equilibrium of the two torques sets the film thickness for the shear-thinning fluids:

e ∼
(

lw

(
1− lw

L

)√
kV nL2b

E∗I

)2/(n+1)

(3.7)

If n = 1, we obtain the Newtonian case: the viscosity is independent of the shear rate (η = k) and this
equation becomes identical to the one derived in Chapter 2 (Eq. 2.4).

3.2.2 Comparison with experimental data

Figure 3.4b displays a comparison between Equation 3.7, in continuous line, and the experimental
data using n and k values from Table 3.1. A prefactor of 0.06 was used for all concentrations. One
can note that this prefactor is close to the prefactor used for silicone oils (0.17 in Fig. 2.10) at the
power 2/(n+1).This could however be only a coincidence. The scaling law fits well with the data: it
reproduces in particular the dependency of e with lw and the relative variations of e with the rheology of
the fluids.

Discrepancies at large volume of reservoir

A sharp increase in thickness for the experimental data is observed for large reservoir sizes, typically here
for lw > 15 mm. One can refer to section 2.4.2 which describes the potential sources of discrepancies
between the experimental data and the scaling law. In the case of xanthan, the capillary pressure and
the torque coming from the meniscus are still negligible compared to the viscous pressure and viscous
torque :

pcapi

p
∼ γen+1

kV nlwR
< 10−1 and

Γcapi

Γwet
∼ γen+1

kV nlw2 < 10−2

However, the difference between the viscous and capillary terms is smaller than before, suggesting an
increased effect of capillarity.

The choice of the matching point used in the torque equilibrium calculation may also be responsible
for these discrepancies. With xanthan, larger volumes of liquid can be spread because it is more viscous
and less wetting than the silicone oils used in the previous chapter. As discussed previously, taking
L− lw as a lever arm no longer makes sense when lw ≥ 28 mm (≥ L/2) and can be questioned below
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Fig. 3.5 − Shape of the blade h = f (x) (gray line) obtained by numerical calculations for wetting length
ranging for 4 to 18 mm. The liquid spread is xanthan at 0.9 w% at V = 10 mm/s. The wet portion of the
blade is highlighted by the color markers. The angles between the blade tip and the horizontal range
from 1.4 to 5.4◦.

that. In Figure 3.5, the shape of the blade h(x), obtained numerically, can be considered linear in the
wetted region for small volumes of fluid only. As the volume increases, the blade becomes curved in
the liquid part (e.g. lw = 16 and 18 mm) which challenges the choice of the matching point for large
volumes. The angle between the tip of the blade and the substrate also increases with lw but remains quite
small, for lw = 18 mm the angle is only 5◦, the small angle approximation still holds. The lubrication
approximation also relies on the fact that Re ≪ lw

e . This condition is still valid.

3.3 Numerical solution of the elasto-hydrodynamic equations adapted to
the shear-thinning fluids

To extend our numerical calculation to the case of shear-thinning fluids, the equations and the resolution
method must be adapted from the Newtonian case, even if the general idea remains the same. We
present in this section the modifications resulting from the adaptation of the calculation to the case of
shear-thinning fluids.

As done previously for Newtonian fluids, we first present two sets of equations describing: i) the
interaction of the blade with the hydrodynamic forces arising from the fluid sheared beneath it (Equations
2.15, 3.21, 3.23, 3.24 and 3.25), and ii) the free film after the tip of the blade (Equations 3.30 and 3.32).
Then, we detail the numerical resolution method, and the peculiarities of the convergence criteria in the
case of a shear-thinning fluid.
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θ

s

Fig. 3.6 a. Schematic representation of Newtonian and shear-thinning areas in the liquid. The notations
and conventions used are the same than in Chapter 2 (Fig. 2.11). b. Representation of the different zones
considered separately to write the equations of the shear rate and velocity. The order (and presence)
of the Newtonian and shear-thinning areas differs between these zones. The signs of ∂ p

∂x and ∂ v
∂y also

change depending on the position under the blade. More details can be found in Appendix E.

3.3.1 Under-blade-area equations

The dependency of viscosity on shear rate implies a different set of equations to describe the fluid
contribution (the lubrication pressure and the viscous drag force). The capillary forces keep the same
expression as in the Newtonian case (Eq. 2.15) and are not presented here.

Calculation of the pressure and stresses

Fluid pressure

The same approximations as described for the establishment of the scaling law in section 3.2.1 are made,
leading to the simple Stokes equation:

∂τ

∂y
=

∂ p
∂x

(3.8)

we use here the notation τ = τxy for simplicity.

The shear-thinning fluid is modeled as in the Equation 3.1. Depending on the local shear rate in the
flow, the fluid behaves as a Newtonian fluid (when |γ̇| < γ̇c) or as a power-law fluid (when |γ̇| > γ̇c).
Thus we can express the shear stress τ as:

τ =





η0γ̇ for |γ̇|< γ̇c

k|γ̇|n−1
γ̇ for |γ̇|> γ̇c

(3.9)

Note: τ can also be written more compactly in the shear-thinning zone, τ = k⟨γ̇⟩n using the notation
⟨x⟩a = sgn(x)|x|a.
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Contrary to the scaling law, the Newtonian plateau is taken into account. Concretely, we expect to
have different areas under the blade corresponding to either a Newtonian fluid or a shear-thinning fluid.
The Figure 3.6 gives a schematic representation of a classical situation encountered in our calculations.
In addition, we must take into account that γ̇ and the pressure gradient can be negative in some parts
of the fluid, and that the power-law index n is inferior to 1. In order to avoid errors in numerical
calculations, it is therefore mandatory to carefully control the power manipulations and identify the sign
of the calculated quantities.

To determine the fluid equations, we define y0 such that τ(y0)= 0, it marks the separation between the
positive and negative shear rate. The vertical asymptote observed in the y0 curve (red line) corresponds
to the position of the maximum fluid pressure which, from Eq. 3.8, implies a constant shear stress along
y. Integrating Equation 3.8 over y gives, since under the lubrication approximation ∂ p

∂x does not depend
on y:

τ =
∂ p
∂x

(y− y0) (3.10)

To calculate the pressure in the reservoir, we consider the continuity of the shear rates at the limit
between the shear-thinning and Newtonian regions. The Newtonian region is symmetrical around y0

as expected from the Stokes equation when ∂ p
∂x does not depend on y. We can therefore define dyc the

half width of the area where the shear rate is less than γ̇c and the shear stress is expressed as Newtonian
(Fig. 3.6a). The shear rates are calculated in both regions by combining Equations 3.9 and 3.8, and the
continuity of γ̇ at y = y0 ±dyc writes:

∂ p
∂x

dyc

η0
=

〈
∂ p
∂x

dyc

k

〉1/n

. (3.11)

Rewriting this equation gives an expression for the pressure gradient, but the sign still needs to be
determined:

∣∣∣∣
∂ p
∂x

∣∣∣∣=
1

dyc

η

n
n−1

0

k
1

n−1
(3.12)

In this equation there are two unknowns: the value of dyc and the sign of ∂ p
∂x . To access those, we use Eq.

3.9 and combine it with Eq. 3.10. The shear rate (γ̇ = ∂ v
∂y ) is then integrated over y with no-slip boundary

conditions at the moving plate (v(0) =V ) and at the blade (v(h) = 0). At the position y = y0 ±dyc we
use the continuity of the velocity. We distinguish four zones based on the presence and position of the
Newtonian region (Fig. 3.6b). For each of them, a set of equations describing the velocity in the different
parts of the fluid is written and the flow rate q is calculated by integrating v over y. The presentation of
the different zones and some detailed equations of the velocity can be found in Appendix E. A general
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equation for the flow rate is obtained:

q =V y0 −
1

3η0

∂ p
∂x

(
sgn(y0)min(|y0|,dyc)

3 + sgn(h− y0)min(|h− y0|,dyc)
3
)

+

〈
1
k

∂ p
∂x

〉1/n
(
−⟨y0⟩1/n+2 −⟨h− y0⟩1/n+2 + sgn(y0)min(|y0|,dyc)

1/n+2 + sgn(h− y0)min(|h− y0|,dyc)
1/n+2

1/n+2

)

(3.13)

A close analysis of Eq. 3.13 shows that the sign of ∂ p
∂x is the same as that of V y0 −q which gives, from

Eq. 3.12 :

∂ p
∂x

= sgn(V y0 −q)
1

dyc

η

n
n−1

0

k
1

n−1
(3.14)

By writing the condition of velocity continuity at y0 we obtain another equation:

0 =V − 1
2η0

∂ p
∂x

(
min(|y0|,dyc)

2 −min(|h− y0|,dyc)
2
)

−
〈

1
k

∂ p
∂x

〉1/n
(

max(|y0|,dyc)
1/n+1 −max(|h− y0|,dyc)

1/n+1

1/n+1

)

(3.15)

By injecting Eq. 3.14 into Eq. 3.13 and 3.15 we obtain two equations that are used to calculate y0

and dyc for a given flow rate, q, and blade local height, h(x). Note that in some zones these values are
not defined within the fluid but they can still be evaluated and they are represented by dashed lines in
Figure 3.6. It is now possible to calculate the fluid pressure: the derivative along the curvilinear abscissa,
obtained using the relation ∂ p

∂ s = ∂ p
∂x sinθ , is integrated between sw and s:

p(s) =
∫ s

sw

∂ p
∂x

sinθ ds+ psw =
∫ s

sw

sgn(V y0 −q)
1

dyc

η

n
n−1

0

k
1

n−1
sinθ(s′)ds′+ psw, (3.16)

psw is evaluated in the same way as in the Newtonian case (using Eq. 2.11). In contrast, it is not possible
to use the value of the pressure at the position s = L to obtain an explicit equation of the flow rate
q = f (h,θ , pL, psc,V,b,sw) as done with Newtonian fluids. Here, the problem is highly non linear, so
we use solvers to find a value of q, y0 and dyc. Once injected in Eq. 3.16 for s = L, it gives a pressure at
the blade tip which should, after convergence, be approximately equal to its guess value pL (see below
Convergence criteria in 3.3.4). This value of the guess is determined by considering the pressure at
x =+∞ fixed to Patm so p(x =+∞) = 0, and using this condition to solve the shape of the liquid surface
after the blade (see section Free surface equations 3.3.3).

Viscous stress
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The viscous stress fv, exerted by the fluid on the blade, is defined as:

fv =−τ(h) =−∂ p
∂x

(h− y0) (3.17)

which writes, using equation 3.14, fv:

fv =−sgn(V y0 −q)
1

dyc

η

n
n−1

0

k
1

n−1
(h− y0) (3.18)

Simplification : pure shear-thinning fluid under the blade

We observed numerically that taking into account the Newtonian zone under the blade has a very
limited impact on the results: the pressure profile only differs by less than 10−3% between a simple
power-law fluid and the fluid described by Equation 3.1 (with a Newtonian viscosity plateau at low
shear). We therefore used the assumption of pure shear-thinning behavior under the blade to speed up
the computation. With this simplification, Equation 3.13 becomes:

q =V y0 −
〈

1
k

∂P
∂x

〉1/n
[
⟨y0⟩1/n+2 + ⟨h− y0⟩1/n+2

1/n+2

]
(3.19)

The velocity continuity at y0 gives :

V (1/n+1) =
〈

1
k

∂P
∂x

〉1/n(
|y0|1/n+1 −|h− y0|1/n+1

)
(3.20)

By combining Eq. 3.20 and 3.19 we obtain a new equation of the flow rate that depends only on y0 and
h:

q =V


y0 −

1/n+1
1/n+2

(
⟨y0⟩1/n+2 + ⟨h− y0⟩1/n+2

|y0|1/n+1 −|h− y0|1/n+1

)
 (3.21)

We can express the pressure derivative from Eq. 3.19 :

∂P
∂x

= k

〈
(V y0 −q)(1/n+2)

⟨y0⟩1/n+2 + ⟨h− y0⟩1/n+2

〉n

(3.22)

p(s) =
∫ s

sw

k

〈
(V y0 −q)(1/n+2)

⟨y0⟩1/n+2 + ⟨h− y0⟩1/n+2

〉n

sinθ ds+ psw (3.23)
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The viscous stress fv becomes:

fv =−k

〈
(V y0 −q)(1/n+2)

⟨y0⟩1/n+2 + ⟨h− y0⟩1/n+2

〉n

(h− y0) (3.24)

3.3.2 Torque balance

The equation describing the torque balance (Eq. 2.19) is recalled here:

d2θ

ds2 =
b

E∗I

∫ L

s

[
−pcos(θ(s)−θ(s′))+ fv sin(θ(s)−θ(s′))

]
ds′+Fc

[
sin
(
θ(s)−θmL

)
+ sin

(
θ(s)−θmsw

)]

(3.25)

It depends on the pressure and viscous stress exerted by the fluid beneath. Hence, p and fv must be
replaced by their new expressions describing the shear-thinning fluid influence (Eq. 3.23 and 3.24
respectively). One should refer to section 2.5.1 paragraph Torque balance for more details on this matter.

3.3.3 Free surface equations

In a second part, we define a second set of equations to calculate the thickness, shape and flow in the
free liquid film downstream of the tip of the blade. The analyzed area, about 0.8 cm long, was a little
longer than with Newtonian fluids.

The lubrication equation (Eq. 3.8) is integrated with the boundary condition τ(0) = 0 on the free
surface at local height hl (no tangential stress), which gives:

τ =
∂ p
∂x

(y−hl) (3.26)

Again, we have to consider separately two regions, in which the fluid behaves either as a Newtonian
fluid (at low shear rate), or as a power-law liquid (at high shear rate). We define the boundary height
between these two regions yc. Since most of the liquid in the free film is at rest (γ̇ is rapidly vanishing),
it is particularly important to take into account the Newtonian plateau in the rheological law, contrary to
what is done under the blade.
The shear rate equality at yc gives an expression for the derivative of p:

∂ p
∂x

= sgn
(

∂ p
∂x

)
1

hl − yc

η

n
n−1

0

k
1

n−1
(3.27)

To determine yc, the no-slip boundary condition on the substrate (v(y = 0) = V ) and the velocity
continuity at yc are used to obtain the expressions of the velocity in both regions. The integration gives
the flow rate:

ql =V hl −
1

3η0

∂ p
∂x

(hl − yc)
3 +

〈
1
k

∂ p
∂x

〉1/n (hl − yc)
1/n+2 −h1/n+2

l
1/n+2

(3.28)
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From this equation it can be shown that the sign of ∂ p
∂x is equivalent to the sign of V hl −ql . This results

leads to a new expression for the pressure derivative from Eq. 3.27:

∂ p
∂x

= sgn(V hl −ql)
1

hl − yc

η

n
n−1

0

k
1

n−1
(3.29)

The equation describing the flow rate (Eq.3.28) can be rewritten as a function of only the variables hl

and yc by using Eq. 3.29:

ql =V hl − sgn(V hl −ql)

(
η0

k

) 1
n−1


1

3
(hl − yc)

2 +
1

(hl − yc)1/n

(hl − yc)
1/n+2 −h1/n+2

l
(1/n+2)


 (3.30)

Since the liquid is incompressible, the flow rate ql is equal to the flow rate q below the blade. Thus, we
use in the numerical resolution of the equations that at x = ∞, ql =V hl(∞) =Ve.

The pressure p in the liquid at the end of the blade is set by the Laplace pressure within the meniscus,
which gives a second expression for p:

p =−γ
dθ

ds
(3.31)

By combining equations 3.31 and 3.29, and using the relation between the derivatives with respect to s
and x, we finally obtain:

d2θ

ds2 + sgn(V hl −ql)
1

hl − yc

η

n
n−1

0

γk
1

n−1
sin(θ) = 0 (3.32)

This equation governs the shape of the free surface of the deposited layer of fluid behind the blade. To
accelerate the convergence, Eq. 3.32 is used when yc ∈ [0,hl] and the equation for pure Newtonian fluid
(Eq. 2.23) when yc ≤ 0.

3.3.4 Numerical method

The numerical method used to solve the two sets of equations governing the blade shape (Eq. 3.25) and
the shape of the fluid free surface (Eq. 3.32 and 2.23) is the same as in the previous Chapter. It is based
on an analogy with the heat equation; details can be found in section 2.5.1.

The resolution method and the coupling of the blade and free surface equations are similar to those
for Newtonian fluids. The differences include in particular the choice of the initial guess for θ(s, tv = 0)
and θl(s, tv = 0). The initial shape of the blade is obtained by a rough calculation for a Newtonian fluid
using the numerical calculation presented in the previous chapter but without taking into account the
free surface (the value of pL corresponds to the initial guess). The viscosity of this Newtonian fluid is
η = 480 mPa s and, to facilitate the following calculations, it has the same wetting properties (surface
tension and contact angles) as the shear-thinning fluid that is studied next. The shape of the free surface
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is initially modeled with the help of a hyperbolic tangent (to reproduce the shape of the meniscus). The
initial flow rate is obtained by making the assumption of a linear velocity profile at the output of the
blade (qinit =V ∗h(L, tv = 0)/2). It is used to compute y0(s, tv = 0) using Eq. 3.21. During the following
iterations, q is computed by combining Eq. 3.21, and Eq. 3.23 expressed for s = L. For the free surface
the general idea is the same, ql is equal to V hl(∞, tv = 0) and this value is used to compute yc(s, tv = 0)
(note that initially ql is different from q). It is thus possible to calculate the source term and solve the
transient heat equation (Eq. 2.25) for both regions.

The spatial discretization of the blade equations is ∆s ∈ [0.1,0.5] mm. The spacing is non-uniform
for the free surface calculation: the size of the cell is exponentially increased from the meniscus area to
the "end" of the free film, with ∆s going from 10−5 to 10−1 mm.

Convergence criteria

For shear-thinning fluids the equation of the flow rate under the blade (Eq. 3.21) requires an additional
convergence criterion than what is needed for a Newtonian fluid. Thus, the convergence of the numerical
simulation is achieved when three conditions are simultaneously met:

1. The steady state is reached for the transient heat equation (Eq. 2.25) which provides the solution
for the governing equations of the blade shape (Eq. 3.25) and the free surface (Eq. 3.32).

2. The two flow rates, q ,calculated from the blade equations (Eq. 3.21), and ql =V h(∞) in the free
film, equalize (at 10−4).

3. The pressure at L, calculated through Eq. 3.23, corresponds to the guess value of pL. This guess
value is iteratively adjusted during the computation by a corrective factor proportional to the
difference between the two flow rates.

3.3.5 Results of the calculation for the shear rate

In this section, we examine the new shear rate map obtained numerically in the case of a shear-thinning
fluid. The shear rate map is expected to strongly differ from what was previously shown in the section
2.5.1 because it is no longer ∂ γ̇

∂y which is constant at a given x (Newtonian case) but instead ∂ γ̇n

∂y . This
result is derived by rewriting the Stokes equation with the definition of τ (Eq. 3.8 and 3.9). In Figure 3.7,
the shear rate is represented below the blade, and in the free surface. The spreading velocity is V = 1
cm/s and the wetting length is lw = 14 mm. Note that the negative value of the shear rate comes from
the fact that it is the substrate and not the blade which is moving. To highlight the differences between
these two situations, the case of a Newtonian fluid with viscosity η = 300 mPa.s (Fig. 3.7b) is presented
next to the shear-thinning fluid, a 0.9 w% xanthan solution (Fig. 3.7a). Comparison of Figures 3.7a
and b illustrates the effect of shear-thinning on fluid flow. For the shear-thinning fluid, the shear rate
varies more rapidly close to the substrate (where the shear stress is maximal) than close to the blade.
This observation, again, is consistent with what is expected of a shear-thinning fluid, which viscosity is
the lowest where the stress is the highest. For the Newtonian fluid, the shear rate isolines are evenly
distributed over y, as observed previously. These flow differences, which might seem incidental at first
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glance, have a strong (and counter-intuitive) impact on the spreading which will be further discussed in
3.4.2.
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Fig. 3.7 Comparison of the shear rate below the blade a. For a shear-thinning fluid (with η0 = 56 Pa s,
k = 4 Pa sn, n = 0.30), corresponding to a 0.9% xanthan gum solution and b. For a Newtonian fluid,
with viscosity η = 300 mPa s. The dark lines depict the shape of the blade (for x < 44 mm) and the free
surface. The parameters are lw = 1.4 cm and V = 1 cm/s.

3.3.6 Comparison with experiments and scale law

The simulation results are shown with dashed lines in Figure 3.4. They match well the experimental
data for both xanthan gels (at 0.4 and 0.9 w%) and without any adjustable parameter. This confirms the
scaling law and validates the prefactor used. Deviations are observed for high values of lw (e.g. xanthan
at 0.4 w% for lw ≥ 18 mm) and they will be discussed in the next chapter (see section 4.1.3). We believe
that they are due to a poor description of the shape of the back meniscus when lw is large.

3.4 Comparison of shear-thinning and Newtonian fluids

From an industrial perspective, it is interesting to be able to compare fluids of different kinds to see
which one will give better spreading results. The evaluation can be done, for example, on the shape
of the fluid film. The fluid that provides the most uniform profile in thickness will be preferred in
many industrial applications. The energy required to spread the fluid can also be an evaluation criterion.
This can impact the user experience in the case of cosmetics, with a product that may feel more or
less easy to spread. At a time when a lot of research is being done to reduce the energy consumption
of industrial processes, these comparisons may also be relevant for other application areas (building
materials, coating).

To compare the spreading of a shear-thinning and a Newtonian fluid the question that arises is on
which ground to compare them. Indeed, by definition, the shear-thinning fluids have a variable viscosity
depending on the shear rate. Unlike a fluid sheared between two parallel plates at a constant velocity,
a fluid spread in the flexible blade geometry is not subject to a uniform shear rate (Fig. 3.7). This
means that if the fluid under consideration is shear-thinning, the viscosity is variable under the blade.



72 Extension to shear-thinning fluids

Newtonian fluids by definition have a constant viscosity. The question that arises then is what should
be the viscosity of an equivalent Newtonian when comparing these two fluids? Several approaches are
possible and are discussed in the following paragraphs.

3.4.1 Choice of the equivalent Newtonian fluid

First case: Zero shear rate viscosity

One possibility is to take the viscosity of the Newtonian fluid to be equal to the zero shear rate viscosity of
the shear-thinning fluid [74]. This is equivalent in our case to writing µ = η0 (with µ the notation used in
this paragraph to distinguish the Newtonian viscosity). This viscosity is very high: for instance η0 = 21
Pa.s for a 0.4 w% xanthan solution and η0 = 56 Pa.s at 0.9 w%. In this case, the shear-thinning fluid
film is significantly thinner than the Newtonian film, similarly to what was demonstrated in dip-coating
experiments by Ashmore et al. [74].

Another approach consists in increasing n until n = 1. This is equivalent to considering that the
viscosity of the Newtonian equivalent corresponds to µ = k, i.e. 4 Pa.s for xanthan solution at 0.9 w%.
Even though the viscosity is not as high as the zero shear rate viscosity, it is equal to the viscosity at
γ̇ = 1 s−1 which still might not be representative of the shear rates experienced by the system. The
maps of shear rates under the blade shown in Figure 3.7a show that the experimental values are typically
greater in magnitude than 1 s−1. Similar conclusions are obtained: the thickness increases with n by 4.4
times going from n = 0.3 to n = 1, all other parameters being kept identical to the xanthan at 0.9w%
case (Fig. 3.8).
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Fig. 3.8 − Thickness as a function of the shear-thinning index n . Results of the numerical calculation
for a shear-thinning fluid with k = 4 Pa.sn, V = 10 mm/s and lw = 14 mm. The n value varies from 0.3
to 1 (Newtonian case). The surface tension and contact angles correspond to those of xanthan at 0.9 w%.

However Newtonian fluids (such as silicon oils) with such high viscosities (estimated at γ̇ 7→ 0 or
γ̇ = 1) are difficult to handle and spread: they do not appear to be a good Newtonian equivalent to
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the xhantan gel. The comparisons made between these two situations are not very relevant from an
application point of view.

Second case: Viscosity evaluated at a "representative" shear rate

A more natural choice might be to select a Newtonian fluid with a viscosity equal to the viscosity of the
shear-thinning fluid at a typical shear rate. This typical shear rate can be chosen in several ways: for
example, at the exit of the geometry γ̇∗ ∼ V

hL
[76, 106] or in the coated film γ̇∗ ∼ V

e [73]. The latter choice
leads to an equivalence between the scaling law of a Newtonian fluid (Equation 2.4) and a complex fluid
(Equation 3.1). However, it is important to note that this coincidence is only pointwise. Contrary to what
is observed in dip-coating experiments [73], the film thickness e varies during spreading, so that γ̇∗ ≃ V

e

cannot be uniquely defined. This implies that the viscosity of such a "perfect" Newtonian equivalent
changes for each value of e, and thus with the reservoir size lw. Similarly, it is not possible to define
a representative shear rate based on the gap of the geometry defined at the blade tip, hL, as this value
is not fixed but evolves with time with the emptying of the fluid reservoir. For example, with a 0.9%
xanthan solution, the scaling laws give viscosities in the range 45 mPa.s to 300 mPa.s (or 150 mPa s to
380 mPa s if hL is used in the shear rate definition instead of e) for lw varying between 4 and 20 mm.
The range of viscosity is quite large and we lack another comparison point to choose one over another
and to consider that the chosen viscosity represents the shear-thinning fluid behavior over the entire
spreading experiment.
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Fig. 3.9 −a. Comparison of the scaling laws predicting the film thickness e(lw) for a Newtonian fluid
with viscosity η = 170 mPa s (Eq. 2.4) and a shear-thinning fluid, a 0.9% xanthan solution (Eq. 3.7)
with a prefactor of 0.17 and 0.06 respectively. b. Comparison of the scaling laws and experimental data
for a Newtonian fluid with viscosity η = 275 mPa s and the 0.9% xanthan solution.

An example is given in Figure 3.9a which compares the evolution of thickness as a function of wetting
length lw for a shear-thinning fluid and for a Newtonian fluid spread at V = 1 cm/s. The viscosity chosen
for the Newtonian fluid is estimated for l∗w = 12 mm. The corresponding thickness of the shear-thinning
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film is computed numerically: e = 112 μm. The typical shear rate under the blade is approximated by
γ̇∗ ≃V/e(l∗w)≃ 90 s−1 and the corresponding viscosity η = 170 mPa s is obtained from the rheological
curves (Fig. 3.2). We observe that the deposition curves coincide only at one point. The rest of the time,
a deviation (of less than 20%) is seen between the two curves. Another example is presented in Figure
3.9b, this time the viscosity of the Newtonian fluid was chosen equal to 275 mPa.s, which is close to the
value obtained by estimating the viscosity for l∗w = 18 mm. There is no crossing between the two curves
and e = f (lw) is always higher for the Newtonian fluid. The experimental data confirm this difference in
the deposition law.

With this approach, the choice of the viscosity for the Newtonian fluid remains arbitrary and depends
on the wetting length chosen as representative. Another important drawback of the scaling law is to
estimate that the shear rate within the fluid is uniform, which might lead to neglecting some effects of
the shear-thinning property.

Third case: Viscosity defined to get the same volume spread in a given time

This time we consider the definition of the equivalent Newtonian from a more applicative point of view,
assuming that in the industry, if someone were to compare the spreading of two types of fluids for a
given application he might initially formulate them in such a way that they give comparable spreads. We
will not choose the Newtonian fluid whose viscosity corresponds to that of the shear-thinning fluid taken
at the shear rate most representative of the spread, but rather the one that will give a comparable final
deposit (thickness, length, volume, deposition time ...).

We do the following thought experiment: starting from identical initial conditions (ie same lwi and
same spreading velocity V ), it should take the same time td to spread a volume Ωd of the equivalent
Newtonian fluid as of the shear-thinning fluid of interest. Indeed, if the mechanical properties of the
blade are known, for a fixed V and lwi, there is a bijective relation between the spreading time and the
viscosity of the Newtonian fluid.
Concretely we calculate for a xanthan solution the time td necessary to spread a given volume Ωd starting
from a given lwi by integrating the following equation:

∆td |e j→e j+1 =
∆Ωd

ēV
=

∫ L
x j

h j dx− ∫ L
x j+1

h j+1 dx

ēV
(3.33)

This equation describes the mass conservation during the emptying of the fluid reservoir from lwj and
lw(j+1), with

∫ L
x j

h j dx and
∫ L

x j+1
h j+1 dx the volumes of liquid under the blade at lwj and lw(j+1) respectively.

The difference of volumes is entirely found in the deposited film and can be written ēV ∆td |e j→e j+1 with
ē = (e j + e j+1)/2 the averaged deposited thickness and ∆td the corresponding deposition time. Note
that the lowest lw taken as input of the numerical calculation are typically 4 mm. There is a lack
of discretization to finely represent the behavior at the end of the spreading. Instead, the end of the
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deposited profile is approximated by a triangular shape: ∆td |elw=4→0 = 2
∫ L

xlw=4
hlw=4 dx

elw=4V . In Figures 3.10
and 3.12 the dotted lines at the end of each curves are used to highlights this final part.

We then estimate the viscosity of the Newtonian fluid which has the same spreading characteristics,
i.e the same time td required to spread the same volume Ωd at the same velocity and starting from
the same lw. Figure 3.10.a shows the curves td = f (Ωd) obtained with xanthan at 0.9w% (continuous
blue line) and some Newtonian fluids of viscosity η = 150, 300, 500 and 1000 mPa.s (dashed lines).
The spreading velocity is V = 10 mm/s and the initial wetting length is lwi = 18 mm. The equivalent
Newtonian fluid has a viscosity equal to 300 mPa.s: a volume of Ωd = 0.4 cm3 is spread in t = 6s
for both this fluid and the xanthan solution. More generally, the two curves overlap almost perfectly
allowing the 300 mPa.s solution to be considered as a broad Newtonian equivalent to the xanthan for
most of the spreading experiment and not just pointwise. This definition of Newtonian equivalent is
used in the following sections to compare shear-thinning and Newtonian spreading.
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Fig. 3.10 − a. Deposition time td as a function of the deposited volume Ωd for xanthan at 0.9% (dark
blue) and Newtonian fluids with viscosity from top to bottom: 1000 mPa s (green), 500 mPa s (yellow),
300 mPa s (pink) and 150 mPa s (cyan). Initially lwi = 18 mm, and V = 10 mm/s. b. Mechanical
work of the viscous forces during the spreading of volume Ωd for the fluids of figure 3.10a) and the
supplementary case 50 mPa s (red). The xanthan fluid dissipates more energy than the Newtonian
fluid with η = 300 mPa s ( −W is 30% higher for Ωd = 0.2 cm3, 34% for Ωd = 0.4 cm3 and 26% for
Ωd = 0.64 cm3).

3.4.2 Mechanical work

The mechanical work dissipated by the fluid when emptying the reservoir from lwj to lw(j+1) is defined
by:

∆W = F̄V ∆td (3.34)

with F̄ = (Fj +Fj+1)/2 the average force. Here we denote Fj the force exerted by the fluid under the
blade on the PMMA surface and calculated by integrating the shear stress at the liquid/substrate interface
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in the x and z directions, for lwj:

Fj =
∫ xL

xwj

τ(x)bdx (3.35)

The force exerted by the liquid under the free surface, and particularly in the meniscus zone, is neglected.
By integrating Eq. 3.34 from lw = 18 to lw = 0 mm it is thus possible to access the mechanical work
−W needed to spread the fluid present under the blade entirely. Figure 3.10b shows the value of W
as a function of the deposited volume for the 0.9 w% xanthane, its Newtonian equivalent (η = 300
mPa.s), and other Newtonian fluids with η = 50,150,500 and 1000 mPa.s. We observe that the energy
required to spread a shear-thinning fluid is typically 30% higher than its Newtonian equivalent according
to the "3rd case" definition (e.g. 34% for Ωd = 0.40 cm3). This is consistent with the comparison of
shear stress extracted from the simulations of the shear-thinning fluids (Fig. 3.11a) and the Newtonian
fluids (Fig. 3.11b). The stress is distributed more evenly under the blade in the shear-thinning case,
which is expected of a Stokes flow since ∂τ

∂y is constant at a given x (Eq. 3.8). But more importantly,
we also observe that the shear stress at the moving interface (the substrate) is significantly higher in
the shear-thinning case. The fact that more energy is needed to spread a shear-thinning fluid than the
equivalent Newtonian fluid might seem counter-intuitive: indeed, in industrial applications, the addition
of polymer to a product is often seen as a way to make the liquid easier to spread. Here we show that the
opposite may be true: shear-thinning fluids resist more to the spreading than the equivalent Newtonian
fluid.
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Fig. 3.11 − Numerical computation of the stress distribution, for lw = 14 mm in a. a shear-thinning fluid
(xanthan 0.9%) and b. in an equivalent Newtonian fluid (same td = f (Ωd)) with viscosity η = 300 mPa s
spread at V = 1 cm/s. The color scale indicates the shear stress τ .

If we look at the problem from the opposite angle, we see that to deposit the same volume of fluid
without increasing its energy expenditure, we must then choose a Newtonian fluid of lower viscosity,
η = 150 mPa.s. Indeed, in Figure 3.10b, the xanthan curve is superimposed on the 150 mPa.s curve.
However, the deposition time (or the deposition length) is longer for the fluid of viscosity 150 mPa.s
than with xanthan (Fig. 3.10a). The choice was made to define the equivalent Newtonian as the fluid that
allows the same volume to be deposited in the same time (at the same velocity and lwi). Other definitions
are possible. For example, the equivalent fluid could be the one that allows to deposit the same volume
of fluid by providing the same work. The choice between these different definitions depends on the final
application. In the case of cosmetics, the surface concentration is often the most important parameter. A



3.4 Comparison of shear-thinning and Newtonian fluids 77

classic example is the application of a sunscreen: it is essential to ensure the same coverage to maintain
the same level of sun protection. In the context of energy-intensive industrial coating processes, one
can imagine the case where reducing (or keeping constant) energy expenditure is the main criterion for
comparison between different types of fluids.

3.4.3 Shape of the fluid deposit

Going back to our definition of the Newtonian equivalent, the spreading of the same volume over an
identical length does not presume the shape of the deposited fluid film. To obtain the profile of the
fluid film, the same calculation is performed as with the Newtonian fluid (see section 2.5.4). Figure
3.12b displays the deposition profile, e = f (ld), calculated numerically for both categories of fluid with
V = 10 mm/s and lwi = 18 mm. In the situation of Newtonian fluids (η = 150,300 and 500 mPa.s),
the deposited thickness decreases more and more sharply to reach zero at the end of the film. This
situation is particularly visible for 150 mPa.s. In the xanthan situation, the deposited thickness decreases
more strongly at the beginning than at the end. In other words, shear-thinning fluids thin out almost
linearly in contrast to Newtonian fluids whose thickness tends to drop abruptly after some point. The
curvature is opposite in these two situations. This difference in slope between the two types of fluid is
validated in Figure 3.12a by comparing the experimental data to the numerical data (in red, a Newtonian
fluid, silicon oil at 480 mPa.s –from Fig. 2.18a– and in blue , a shear-thinning fluid, 0.9% xanthane
). The experimental data were initially offset (see section 2.5.4) to account for the fact that the length
of the deposited fluid is only modeled in the steady-state. Back on Figure 3.12b, when ld reaches
80% of the total deposited length, the thickness has dropped by 90% for xanthan versus 68% for the
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Fig. 3.12 − a. Evolution of the deposited thickness e as a function of the deposited length ld for a
480 mPa s silicone oil (red) and 0.9% xanthan (dark blue). The dots are experiments, and the lines are
computations without fitting parameters. The experiments are carried with a velocity of 1 cm.s−1. b.
Shape of the deposit for xanthan and Newtonian fluids of viscosity: 500 mPa s (yellow) , 300 mPa s
(pink) and 150 mPa s (light blue)
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Newtonian equivalent with 300 mPa.s. The spreading of the equivalent Newtonian fluid results in a
more homogeneous deposit than for the shear-thinning fluid.

3.4.4 Disentangle the effect of the rheological parameters n and k

To better understand the impact of the shear-thinning properties on the deposited film shape, the values
of n and k have been varied. Figure 3.13 shows the film profile resulting from different combinations of
values of these parameter.
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Fig. 3.13 − Study of the influence of the rheological parameter n on spreading. Three fluids with
increasing shear-thinning index are compared: n = 0.3 (dark blue), 0.6 (blue) and 1 (light blue), while
k is kept constant at 4 Pa.sn (V = 1 cm/s and lwi = 18 mm). Note that n = 0.3 corresponds to xanthan
at 0.9%, and n = 1 describes the case of a Newtonian fluid. a. Deposition time td as a function of
the deposited volume Ωd . b. Mechanical work −W provided during the spreading of volume Ωd . c.
Evolution of the thickness of the deposit e as a function of the deposited length ld d. Deposited thickness
normalised by its initial value (e(lw = 18)) as a function of the deposited length normalised by its final
value (ld(lw = 0)).

By increasing n, the relation td = f (Ωd) is modified, a same volume of fluid is deposited in a shorter
time thus on a shorter distance. For example for Ωd = 0.5 cm3 the deposited lengths are 8.2, 3.2 and
1.7 cm for n = 0.3 to 0.6 and 1 respectively. The work required to deposit this volume is decreased by
a factor of 1.5 and 2. Figure 3.12c shows the shape of the corresponding fluid profiles. Increasing n
while keeping k constant results in initially thicker profiles, but the thickness decreases more rapidly. By
normalizing the deposited thickness (by its maximum value e(lw = 18)) and the deposited length (by its
maximum value ld(lw = 0)) we can thus highlight the difference in curvature previously observed while
comparing the deposited shapes between xanthan and silicone oil (Fig. 3.12). By increasing n from
0.3 to 1 the curvature goes from negative to a slightly positive testifying to a slightly better thickness
homogeneity in the Newtonian case. This difference in curvature is controlled by the value of n but can
be amplified to some extent by varying k.

When k is reduced by a factor 8 in the Newtonian fluid case (n = 1, µ = k) then the curvature
increases (Fig. 3.14d) and the thickness homogeneity improves as discussed in Chapter 2. This effect
is also observed in Figure 3.12. However, for shear-thinning fluids multiplying k by 3 or 5 (dashed
lines), does not appear to have an significant impact on the curvature of the film profile. In particular,
we observe a superposition of the curves of e

e(lw=18) = f ( ld
ld(lw=0)) as presented in the Figure 3.14d. It
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can also be noticed that the work required to deposit a given volume remains almost the same while the
time required to deposit this given volume decreases when k increases. These results suggest that n is
the dominant parameter controlling the amount of work needed to deposit a volume of shear-thinning
fluid. It would be interesting to complement these results with shear-thinning fluids featuring k less
than 4 Pa.sn to verify to what extent k has such a small effect on the shape of the deposit and the energy
necessary to spread it.
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Fig. 3.14 − Study of the influence of the rheological parameter k on the spreading. Its reference value 4
Pa.sn (solid lines) is multiplied (dashed lines) by 5 for n = 0.3 (dark blue), by 3 for n = 0.6 (blue) and
divided by 8 for n = 1 (light blue). V = 1 cm/s and lwi = 18 mm. a. Deposition time td as a function
of the deposited volume Ωd . b. Mechanical work −W provided during the spreading of volume Ωd . c.
Evolution of the thickness of the deposit as a function of the deposited length ld d. Deposited thickness
normalised by its initial value (e(lw = 18) as a function of the deposited length normalised by its final
value (ld(lw = 0)). The curves corresponding to n = 1 are presented only in b. and d. for clarity.

3.5 Conclusion
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Conclusion − Chapter 3
In this chapter, we have studied the film thickness of a shear-thinning fluid spread by a soft
blade and compared it to a Newtonian fluid:

1. We extended the scaling law to model the soft blade coating of shear-thinning fluids.
We showed that the thickness of the deposit can be predicted as a function of the
rheological parameters of the fluid when modelled as a power law fluid following the
Ostwald and de Waele equation.

2. Numerical calculations were also adapted to the shear-thinning equations. They were
in good agreement with the experimental data and validated the scaling law.

3. In order to compare the soft blade coating of Newtonian and shear-thinning fluids, we
discussed the main possible definitions of a Newtonian "equivalent". In this work we
decided to define as a Newtonian equivalent a fluid for which the same volume can be
spread in the same time (at an identical spreading velocity and initial wetting length)
as the shear-thinning fluid of interest.

4. In this context, we evidenced numerically that shear-thinning fluids require more
energy to be spread than Newtonian fluids. This is related to an increase in interfacial
stress, which can either be an advantage (allowing a better control of the movement,
for example) or a drawback (since more energy is needed to move the solid at the same
velocity).

5. The shapes of the deposited film were also found to be different. The shear-thinning
fluid thins more linearly, making the deposit less homogeneous in thickness. This
difference in curvature has been related essentially to the shear-thinning index n. The
parameter k was observed to impact the curvature only in the Newtonian case (µ = k).
These results will be valuable in applications, for example to determine whether a
polymer needs to be added to a product, or to choose the polymer depending on the
expected effect: a thicker or a more regular film or a fluid that is more easy to spread.

Shear-thinning fluids are one type of fluid among many. In particular, is is rare to have pure
shear-thinning fluids, but this property is often combined with others, such as the presence of
a yield-stress at low shear rates or the generation of normal stresses at high shear rates. In
the next chapter, we discuss the soft blade coating of two polymer solutions chosen to model
these rheological behaviors.



Chapter 4

Normal stress and Yield stress
shear-thinning fluids

In this chapter, we consider the spreading of complex fluids with a soft blade and focus on shear-thinning
fluids that additionally generate normal stresses at high shear rates, or exhibit a yield stress at low shear
rates. In the first part, the experiments are compared to the pure shear-thinning case presented in Chapter
3 in order to discuss the effect of first normal stress difference over the deposited thickness. We perform
a dimensional analysis to explain the results obtained and we propose a new dimensionless number to
predict the impact of the normal stress for this coating geometry. This number also helps to understand
the results obtained in the literature on dip coating of normal stress fluids.

In the second part, the spreading experiments are finally performed with yield stress fluids. The
scaling law approach no longer describe the experimental results. A lateral follow-up of the spreading
experiment is used to obtain a qualitative understanding of the observed discrepancies. A theoretical
study of the flow under the blade partially explain the behavior of the fluid during spreading.

The results presented in this chapter about the role of the normal stresses have been published in
Physical Review Fluids [2]. The article can be found in Appendix D.
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4.1 Normal stress fluid coating

Normal stress fluids generate normal stress when sheared, usually at high shear rate. In the case of
polymers, this is due to the stretching of the polymer chains. When spreading with a soft blade, one
would expect the polymer chains to experience this stretching at the blade tip, where the shear rate is at
its highest. Thus, one would imagine that normal stresses would contribute to the lifting of the blade
and result in a different deposition law and film profile. To determine if the addition of polymers, when
aimed to generate these normal stresses, has an positive impact, we studied the spreading of a model
fluid.

4.1.1 HPAM solutions

We focus on partially hydrolyzed polyacrylamide (HPAM). This polymer is often used for its viscosifying
properties that help to improve oil recovery (fossil fuel industry). But the property of most interest to us
in this work is its ability to generate high normal stresses at high shear rates, which is why it is often
used to illustrate the Weissenberg effect. The effect is observable for the highest molecular weights (e.g.
18×106 g/mol in [107]) and varies with the concentration [107].

From a structural point of view, this polymer is linear and it consists of a succession of acrylamide
monomers. A fraction of theses monomers is hydrolyzed, i.e. the amide groups are replaced by
carboxylate groups (in water at pH= 7). For the HPAM studied (from SNF), with a molecular weight
Mw = 18×106 g/mol, around 25 to 30% of the functions are hydrolyzed.

O NH2

m

O O-

n

Fig. 4.1 − Chemical formula of HPAM.

Preparation of HPAM solutions

HPAM solutions were prepared by dissolving the powder in Milli-Q water at room temperature by gentle
magnetic stirring, for up to 24 hours. The choice of a gentle agitation was motivated by the concern
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to avoid polymer chain breakage. The samples were left to rest for 24 hours after preparation. Due to
potential bacterial contamination and polymer oxidation, the samples were stored in a refrigerator (5◦C)
and their rheological properties were checked before each measurement campaign.

Three concentrations were studied: 0.1 w%, 0.3 w% and 0.5 w%. According to Beaumont’s work
[107], HPAM is expected to be in a semi-dilute entangled regime for all these concentrations as he
estimated the critical entanglement concentration to be below 40 ppm.

Rheology in flow

Rheological measurements of HPAM solutions were performed with a cone and plate geometry at 25◦C.
The limit of detection for the normal force by the rheometer is 5 mN, which correspond to 8 Pa for the
normal stress N1. The shear rate was imposed and was varied from 10−2 to 1000 s−1.
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Fig. 4.2 − Rheological curves of HPAM solutions with a concentration of 0.1 (light green), 0.3 (green)
and 0.5 w% (dark green). a. Viscosity η as a function of the shear rate γ̇ . b. First normal stress
difference N1 as a function of γ̇ . The grey lines represent the fits obtained with the parameters from the
Table 4.1.

HPAM solutions exhibit strong shear-thinning behaviour after a Newtonian plateau (Fig. 4.2a). The
shear-thinning behavior can therefore be described by a power law equation similar to that of xhantan
(Eq. 3.1). The rheological parameters n, k and η0 are given in Table 4.1. The shear-thinning behavior is
more pronounced as the concentration increases (n decreases).

The first normal stress difference, N1 is measured as a function of the shear rate in Figure 4.2b. Note
that this value has been corrected for inertia which is not negligible at high angular velocity (typically
γ̇ > 100 s−1). For cone-plate (and parallel plates) geometry, the inertia contributes to the value of Nexp

1

through Ninertia
1 =− 3

20 ρω2R2 [45]. The corrected value of N1 is hence Nexp
1 −Ninertia

1 . N1 increases as a
power law for high shear rates: N1 = αγ̇m. The values of the first normal stress coefficients α and m
are given in Table 4.1. The normal stress difference increases with the concentration: at γ̇ = 103 s−1 it
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reaches more than 800 Pa for 0.5% concentration against less than 200 Pa at 0.1 %. Consequently, the
impact of normal stresses is likely to be greater for 0.5 % concentration.

Table 4.1 Rheological properties of HPAM solutions.

0.1% 0.3% 0.5%
η0 (Pa s) 6.3 12.4 48
k (Pa sn) 0.65 2.2 5.1

n 0.29 0.27 0.21
α (Pa sm) 2e-3 1.44 5.24

m 1.62 0.82 0.73

4.1.2 Spreading experiment

The spreading experiment is performed with the HPAM at different concentrations under the same
experimental conditions as in Chapter 3. It again appears that e(t) is a function of lw(t) (Fig. 4.3) and,
at first glance, no obvious difference can be seen with the e = f (lw) of xanthan solutions presented in
Chapter 3. The deposited thickness was calculated numerically for HPAM using the code developped for
xanthan, thus considering only a shear-thinning behavior. There is a good agreement at low lw between
the experimental and numerical data. The discrepancies observed at high lw are explained in section
4.1.3.
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Fig. 4.3 − Evolution of fluid thickness e with wetting length lw for HPAM at 0.1 (light green), 0.3 (green)
and 0.5 (dark green) w%. The markers represent the experimental data. The numerical calculations
describing shear-thinning fluids (without considering the normal stresses) are shown as dashed lines.
The solid lines depict the scaling laws written in the previous chapter (Eq. 3.7) with a prefactor of 0.06.
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4.1.3 Comparison with xanthan

In order to investigate the effect of normal stresses and disentangle it from shear-thinning, HPAM is
compared with a pure shear-thinning fluid (without normal stresses).

Rheological properties

In practice, HPAM at 0.5 w% was compared to xanthane at 0.9 w%. As evidenced in Figure 4.4a,
the comparison of these two specific fluids is particularly relevant. Indeed, the shear rheology of the
two solutions is almost identical: the viscosity η(γ̇) of HPAM (green triangles) overlaps with that of
xanthan (blue circles) as shown in Figure 4.4a. However, the normal components of the stress tensor
are fundamentally different. In particular, the first normal stress difference in HPAM reaches several
hundred Pascals under high shear (as visible in Figure 4.4b) while N1 is always less than 80 Pa in
xanthan (Fig. 4.4b). For instance, for γ̇ = 400 s−1, N1 is 5 times higher with HPAM.
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Fig. 4.4 − Comparison of the flow curves of 0.5% HPAM solution (green) and 0.9% xanthan solution
(blue). a. Viscosity as a function of shear rate. b. First normal stress difference N1 as a function of the
shear rate γ̇ .

Following a classification used by Ashmore et al. [74], xanthan is in the weakly elastic limit (it is
an almost purely shear-thinning fluid) while HPAM is in the strongly elastic limit, since it develops
large normal stresses. To be more precise, the boundary between weakly and strongly elastic situations
is often set by the Weissenberg number Wi = N1

τ
, which compares the normal stress N1 to the shear

stress τ . For the HPAM solution considered here, Wi is much larger than one: using our notations, and a

characteristic shear rate γ̇ = V
e ≃ 100, it writes: Wi = α

k γ̇m−n ≃ α

k

(
V
e

)m−n
≃ 10. On the contrary, the

Weissenberg number in the xanthan gel is less than 2 (for 0.9 w% xanthan, α = 0.99 and m = 0.74).
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This difference in Weissenberg number is large enough to see effects on the behavior of these fluids.
For example, when looking at the jet of these two polymer solutions coming out of a capillary tube, a
noticeable difference can be observed: in the case of HPAM, the jet swells after exiting the capillary
tube (Fig. 4.5). This experiment is performed with a capillary tube of 0.65 mm outer diameter and a
flow rate of 0.5 mL.s−1. Thus, under the conditions of the spreading experiments, one would reasonably
expect normal stresses to play a role.

Fig. 4.5 − Comparison of a polymer jet outside a capillary tube for a 0.9% xanthan (left) and 0.5%
HPAM (right) solution. The polymer jet clearly swells in the case of HPAM while the liquid jet remains
straight with xanthan.

Similar spreading dynamics between shear-thinning and normal stress fluids

Surprisingly, the spreading experiments shows that the normal stresses do not impact the film deposition
law. In Figure 4.6, the film thicknesses e, obtained by the spreading of a 0.5 % HPAM solution (green
triangles) and a 0.9% xanthan solution (blue circles) are compared. The spreading conditions are strictly
identical, with V = 1 cm/s. Intriguingly, the two sets of experimental data overlap almost perfectly,
suggesting that, within the experimental error, normal stresses do not affect the film thickness.

This is further confirmed by the simulation: in Figure 4.6, the thicknesses calculated numerically
for purely shear-thinning fluids are shown in dashed lines. The simulation matches the experimental
data points for HPAM particularly well, even though the effects of normal stresses were not taken into
account in the calculation. If the normal stresses were to have an effect, there would be a discrepancy
between the numerical and experimental data.

It can be noted that there is some deviation at high lw, but if normal stress effect were to occur it
would rather be at low lw since it corresponds to higher shear rates on average and would maximize
the potential effect. This deviation is not attributed to normal forces and an explanation of its origin is
presented in the next paragraph.
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Fig. 4.6 − Film thickness of 0.9% xanthan (blue) and 0.5% HPAM (green) solutions as a function of the
wetting length lw. The markers correspond to the experimental data. The solid lines represent the scaling
law (Eq. 3.7) with a prefactor 0.06. The dashed lines show the results of numerical simulations of the
film thickness in both cases. The numerical computation correspond to the one presented in Chapter 3,
and it does not take into account N1.

Deviation with the numerical computation at large lw

With HPAM, the deviation between the experimental data and the numerical computation is highly
evidenced for lw ≥ 18 mm. Similar deviation had already been observed but to a lesser extent with
xanthan at 0.4 w%. In order to investigate the origin, a sensitivity analysis was performed for shear-
thinning fluids (xanthan solution at 0.9%), with spreading conditions lw = 14 mm and V = 10 mm/s. It
shows that e is very little affected by variations in γ , η0 and δb but varies by about 6−8% with δs and k
and 13% with n (the parameters were varied by ±10% to perform this sensitivity study). The contact
angle of the fluid on the substrate, δs, if badly estimated, can be at the origin of a significant deviation
from the experimental results. For large fluid reservoir, the shape of the meniscus at the back of the
reservoir can no longer be described as a circular arc but takes a S-shape (Fig. 4.7). As a consequence
the approximation of the pressure psw by the Laplace equation (Eq. 2.11) does not properly describe
the experimental situation anymore, hence the divergence. The pressure psw is underestimated in the
numerical computation leading to an underestimated thickness which is consistent with the observed
deviation. However, it is difficult to estimate the actual value of psw to correct it with confidence.

Now that we have shown that there is no evidence of the effect of normal stresses from the experimental
data, how can we explain such a small effect of normal stresses on the spreading, even though they are
dominant over shear stress in the highly elastic limit?
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a. b.

Fig. 4.7 − Pictures of the meniscus at the back of the fluid reservoir for HPAM 0.5 w% spread at V = 10
mm/s. a. Case 1: the shape correspond to a circular arc implying psw < 0 (lw = 15.5 mm). b. Case 2:
The shape can no longer be fitted by a circle arc but instead shows a positive and a negative curvature.
The associated pressure becomes potentially psw ≥ 0 (lw = 21.8 mm).

Discussion in light of a dimensional analysis

To understand why normal stresses do not have a significant impact on the deposition law, a dimensional
analysis is performed from the Equation 3.5, recalled here for ease of reading: .

−∂ p
∂x

+
∂

∂x

(
2
3

N1 +
N2

3

)
+

∂τxy

∂y
+

∂τxz

∂ z
= 0

This time, the N1 term is kept. As often for polymer solutions, the influence on the flow of the second
normal stress N2 is neglected. It is typically ten times smaller than N1 for dilute systems [32, 108]. This
approximation is done by de Ryck & Quéré [73] and by Ashmore et al. [74] (using a more complex
polymeric model). It further simplifies the flow equation which writes :

∂ p
∂x

=
∂τ

∂ z
+

2
3

∂N1

∂x
(4.1)

The total pressure p can therefore be expressed as the sum of two terms: p = plub + pN . The first term is
the usual lubrication pressure which scales, as before with the Newtonian and shear-thinning fluids, as
plub ∼ τ

lw
e . The second term corresponds to the additional pressure pN due to the normal stresses, which

is simply proportional to N1. The ratio of the two pressures gives an estimate of the relative importance
of the two terms in the spreading:

pN

plub
∼ 2

3
N1

τ

e
lw

∼ 2
3

Wi
e
lw
. (4.2)

As shown in Eq. 4.2, a new dimensionless number E = 2
3Wi e

lw
can be defined. It compares the two terms

of the total fluid pressure p, and characterizes the effect of normal stresses in spreading experiments. For
E ≪ 1, only shear-thinning effects are visible, while for E ≫ 1, the elastic effects of the fluid become
dominant. In practice, E ≪ 1 is always verified for xanthan in our experiment. Interestingly, even though
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the Weissenberg number is close to 10 in the 0.5% HPAM solution – indicating that the first normal stress
difference dominates over the shear stress – E is of the order of 0.1 due to the geometric factor e

lw
≃ 10−2.

For E ≪ 1 the N1 term can simply be neglected, and the Equation 4.1 simply reduces to the Equation
3.6. Thus the scaling law equation (Eq. 3.7) describing the deposited film thickness as a function of
the wetting length written for xanthan is also valid for HPAM. The condition E ≪ 1 can be rewritten

2
3

α

k

(
V
lw

) m
n+1
(

1− lw
L

) 2(1−m+n)
n+1

(
kL2blw

E∗I

) 1−m+n
n+1 ≪ 1. This expression is used to determine that E ≪ 1 is true

as long as lw > 0.05 mm for 0.5% HPAM. This condition is always verified in our experiments. This is
consistent with the fact that the scaling law expressed for shear-thinning fluids is in good agreement
with the experimental data of the HPAM spreading experiment (Fig. 4.3). This dimensional analysis
explains why the effect of normal stresses is negligible in soft blade coating. The Weissenberg number
is not the appropriate characteristic number to predict the effects of normal stress in this geometry.

4.1.4 Comparison with other coating geometry described in the literature

The geometric factor e/lw is central to explain the difference with other experiments. For example,
de Ryck et al. [73] found a very strong effect of the normal stresses when dip-coating a fiber. They
used a 1% PAA solution whose properties are similar to those of the 0.5% HPAM solution, so that the
Weissenberg number is also close to 10. However, in dip-coating, the characteristic length scale in the
flow direction parallel to the rod is an internal length l ∼

√
e(r+ e) with r the fiber radius. In Ref. [73]

the ratio e/l varies between 0.2 and 1, so that E is always greater than 1. In our experiment, however,
the presence of the blade imposes the wetting length lw as the relevant length scale. Since lw ≃ 100e,
we cannot observe any effect of the normal stresses unless the Weissenberg number is greater than 100,
a situation that cannot be obtained with the fluids used here and which will be difficult to achieve.
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4.2 Yield stress fluid coating

Most cosmetic and pharmaceutical creams present a yield stress. This means that at rest the fluid does
not flow and behaves like a solid. In practice, this property is usefull to deposit patches of a sunscreen or
a foundation without being in a hurry to spread them. The user can thus better control the deposition and
the spreading of the product. In this context, extending our study to yield stress fluids seemed relevant.
We encountered difficulties to predict the deposited thickness, at first sight it was even difficult to observe
a tendency in the experimental results which were very poorly reproducible. Our objective was then to
find the origins of these discrepancies in a qualitative way.

4.2.1 Carbopol gels

Carpopol is a polymer often chosen as a model of a yield-stress fluid in many academic researches
[25], and it is also widely used in cosmetics and pharmaceutical products for its mechanical properties
(thickener and yield stress fluid). Carbopol is the brand name given to carbomers. It is part of the
family of water-swellable microgels. Carbopol are hydrophilic polymers of polyacrylic acid with a low
crosslink density (Fig. 4.8a). In water, the molecules swell due to the dissociation of the acrylic acid. By
adding a base (e.g. NaOH) to the solution, the carboxylate groups are deionized and the polymer chains
repel each other electrostatically (Fig. 4.8b). The microgels can increase in volume 200 to 1000 time in
water [25, 26] and up to 8 times in polar solvent such as glycerol [27]. Above the jamming concentration,
the microgel particles are compressed and the polymer-chain ends of different Carbopol particles can
become entangled [25–27]. This jamming is at the origin of the yield stress: if the stress applied to the
solution is not high enough, the space-filling structure is not mobile and instead behaves like an elastic
solid. It can be considered as a glass of sponges [109]. The jamming concentration depends on the
Carbopol type (structure and crosslink density) as well as the pH [110]. In water this value is between
0.05-0.1 w% [26, 109, 110], and in glycerol it is comprised between 0.8 and 1.1 w% [27]. In this work,
we use Carbopol 940 from Lubrizol. This Carbopol is one of the most cross-linked carbomers.
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Fig. 4.8 − a. Chemical formula of the Carpobol polymer b. Microgel swelling after neutralization in
alkali aqueous solution. The solid circles represent the crosslinks.
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Preparation of the solutions

The Carbopol is initially in powder form. Gels are prepared by dissolving Carbopol in MilliQ water. The
powder is added little by little to avoid large agglomerates under mechanical stirring at 500 rpm. After
one hour of stirring, the polymer is completely hydrated and a solution of sodium hydroxide is added to
the mixture. The amount should be sufficient to adjust the pH between 6 and 7. In practice, the mass of
NaOH solution (at 1 mol/L) added is 8 times the mass of Carbopol. As soon as the NaOH comes into
contact with the solution, gelation occurs. The Carbopol gel is then stirred at 900 rpm for 2 hours. It
is important not to apply a higher stirring speed and time, to avoid breakage of Carbopol polymer in
small chains. These small chains can create depletion forces between the large polymers, resulting in
thixotropic behavior, that translates in practice into hysteresis between the upward and downward flow
curves [111]. Sometimes, at the highest concentration in Carbopol, air bubbles can be trapped in the gel
during the preparation. For some applications (as in Chapter 6) it is not a problem but for the spreading
experiment described here the gels are centrifuged for 2 minutes.

We prepared Carbopol gel with concentrations of 0.2, 0.15 and 0.1 w%. For all these concentrations,
the system is jammed.

Rheological characterization

The rheology of Carbopol gels was measured using a parallel plate geometry on an Anton Paar rheometer
(MCR 302). The sample was tested in the non-linear regime with a 1 mm gap at 20◦C. The shear
rate γ̇ was swept from 200 to 10−1 s−1. Going from high to low shear rate allows avoiding to measure
the elasticity effect at the beginning of the flow due to the high elasticity of the Carbopol gels [112].
For each value of the shear rate, the effort was maintained for 30 s on the sample. The Rabinowitsch
correction was applied on the data [35].
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Fig. 4.9 − Stress τ as a function of the shear rate γ̇ for Carbopol formulated at 0.1 0.15 and 0.2 w%.
The grey line corresponds to the Herschel-Bulkley fit with rheological parameters given in Table 4.2.
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Table 4.2 Rheological properties of Carbopol gels.

0.1% 0.15% 0.2%
τy (Pa) 6.7 23.2 44.4

k (Pa sn) 2.6 7.7 12.7
n 0.45 0.41 0.4

The flow curves are presented in Figure 4.9. The Carbopol gels are yield stress fluids: their rheological
behavior can be described by Herschel-Bulkley model [22]. The fits corresponding to τ = τy + kγ̇n are
shown in grey lines, with τy the yield stress, k the consistency index and n the shear-thinning index. The
values extracted from these fits are given in Table 4.2. They are in the range of the values reported in
the literature [25] but these values vary widely. For instance for Carbopol 940 at 0.2 w% and pH ∼ 7,
Aktas reports τy = 20 Pa, k = 5.8 Pa.sn and n = 0.42 [113] and Gomez, τy = 91 Pa, k = 46.8 Pa.sn and
n = 0.33, with more uncertainty on the pH value (pH= 6.2−7) [114].

4.2.2 Expectations for spreading dynamics by dimensional analysis

The stress is described by the Herschel-Bulkley model τ = τy + kγ̇n, it scales as τ ∼ τy + k
(

V
e

)n
. The

yield stress τy could be neglected only if:

τy ≪ k
(

V
e

)n

(4.3)

In this case, the shear stress could be expressed simply as τ ≈ kγ̇n and the scaling law giving the
deposited thickness would correspond to the Equation 3.7 describing a pure shear-thinning fluid. An
example is given in Figure 4.11a (dashed curve).

However, for most of our spreading experiments, τy is of the order of k
(

V
e

)n
and therefore cannot

be neglected. In this situation, a consequent part of the fluid behaves like a solid and the spreading
process corresponds to a fracture process [75]. Therefore, we expect discrepancies between the scaling
law and the experimental data.

4.2.3 Huge variation of e = f (lw) relationship

The soft blade coating experiments were performed on Carbopol gels. Spreading conditions such as
velocity and blade rigidity were varied. However, contrary to what was expected from the scaling law,
no clear tendency seems to emerge when plotting e = f (lw) for a given set of parameters. Examples are
given in Figure 4.10 for Carbopol at 0.15 w% spread at 5 and 10 mm/s. The initial volumes, Ω0, were
varied and the corresponding results are represented with different tones. The data do not overlap on a
single curve but rather appear to be sensitive to initial conditions. Two types of behavior can be noticed:
at high lw, the series are nearly vertical showing that the deposited thickness is nearly independent from
the wetting length, whereas for the lower lw values a more usual quasi-linear trend is observed, however
bounded to low values of the deposited thickness. Even at low yield stress (e.g. 6.7 Pa for Carbopol
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Fig. 4.10 − Deposited fluid thickness as a function of the wetting length for 0.15 w% Carbopol gel
spread at a. V = 10 mm/s, and b. V = 5 mm/s. The initial volumes Ω0 are varied as indicated on the
plots. In both cases, the data appear to be experiment-dependent; the points do not merge into a single
line.

at 0.1 w%) such types of behavior have been observed. One can also note, during the spreading, the
increase in e for Ω0 = 0.77 and 0.65 cm3 (Fig. 4.10b) and in lw for Ω0 = 0.75 , 0.31 and 0.25 cm3 (Fig.
4.10a). When spreading yield stress fluids, more complex phenomena occur than expected, leading to
surprising and inconsistent results.

Two effects, thereafter discussed, have been found to explain, at least partially, the high dispersion
of the experimental points and the fact that the scaling law does not allow describing them.

4.2.4 Impact of Carbopol elasticity

In Figure 4.11, a representative example of unexpected behavior is presented. When spreading 0.78 cm3

of Carbopol 0.2 w% at 2.5 mm/s, the deposited thickness decreases from 220 to 50 μm but the wetting
length only slightly varies from 20.5 to 18.2 mm (Fig 4.11a). We call this situation a "blocking" situation.
The pictures of the blade taken from above at t = 12 and 32 s (corresponding to the orange and blue
circles of Fig. 4.11a) confirm the small variation of the wetting length during this spreading experiment
(Fig. 4.11b). One might wonder where does the deposited volume comes from as the volume of the
fluid reservoir seems to remain constant (lw varies very little), except for a slight emptying on the sides
but that cannot account for all of the deposited volume. Looking at the blade from the side, it appears
that it gradually moves down during the experiment (Fig. 4.11c). This variation of the blade position is
underlined by the zoom in the inset showing the difference in blade positions at t = 12 s (orange) and
32 s (blue). The decrease in the height of the blade makes sense to explain where the volume of the
deposited film comes from.

We hypothesize, to explain this situation, that due to the yield stress of the fluid, the initial equilibrium
of the blade result not only from the balance between viscous stress and blade elasticity but also involves
the elasticity of the fluid. At the beginning of an experiment, a finite amount of fluid is deposited with a
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a.
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Fig. 4.11 − a. Deposited film thickness e as a function of the wetting length for a spreading experiment
of Carbopol at 0.2 w% (k = 12.7 Pa.sn, n = 0.40) at V=2.5 mm/s (dots). The dashed line correspond
to the equation 3.7, the numerical prefactor has been chosen so that e(lw = 0−20) ∈ [0,200] μm. This
equation is plotted to highlight the difference in shape with the experimental data. The orange and blue
circles corresponds to t = 12 and 32 s. b. Top pictures of the blade during the experiment at 12 s (top)
and 32 s (bottom). The yellow line is drawn at s = 39 mm to facilitate comparison. c. Side pictures of
the blade taken at 12 s (left) and 32 s (right). The shape of the blade is highlighted by orange and blue
lines respectively. The two shapes are compared in the bottom image. The inset is a zoom at the end of
the blade. The blade goes down between t = 12 s and 32 s.

syringe at the estimated position of the blade end, and then the blade is set on top. Without a yield stress,
the blade elasticity compresses the fluid underneath until a corner is formed. With a yield stress fluid,
the fluid acts as an elastic solid and the blade can stay on top of it, leaving a gap of a few millimeters
between the tip of the blade and the substrate. To get a situation where the fluid fills a corner between
the blade end and the surface, the blade end is manually pressed down on the fluid. This is source
of reproducibility issues as it is difficult to ensure an equivalent initial state. During the spreading
experiment, after an initial decrease of lw linked to the setting in motion of the system, lw varies very
little during several seconds, the situation is "blocked". This situation is schematized in Figure 4.16a.
The blade goes down until a certain point where we assume the fluid elasticity becomes second order
compared to the viscous stress. From that moment lw starts to decrease significantly with e as expected
theoretically.
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4.2.5 Fluid partially stuck under the blade

Experimental observations

When looking at some of the deposition profiles, e = f (t), independently, we can observe quite often
small bumps. The thickness no longer decreases continuously in phase II, but increases temporarily
before decreasing again. An example is given in Figure 4.12. Note that using Carbopol with a higher
yield stress amplifies this phenomenon, as reported by C. Kusina (Fig. 1.10), and that not only one,
but several consecutive bumps are observed for τy ≥ 60 Pa and high spreading velocities [3]. Kusina
postulated these bumps were the manifestation of instabilities arising when the fluid is no longer able to
recirculate under the blade. To evaluate this assumption experimentally, one must closely examine what
happens under the blade during spreading.
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Fig. 4.12 − Average thickness over the film width as a function of time, during the spreading at V = 10
mm/s of 0.83 cm3 of Carbopol 0.2 w%. Instead of a continuous decrease in phase II, at t = 5.3 s the
thickness is observed to increase temporarily.

Using an optical camera, it can be determined that some of the fluid remains stuck under the blade
in a triangular shape as evidenced in Figure 4.13. We call it a "passive volume" because it does not
participate anymore in the formation of the fluid film. The rest of the fluid ("active volume") is spread:
the triple contact line moves towards the blade tip. As a consequence, the length of the liquid supporting
the blade decreases and the blade progressively goes down.

At some point, the fluid stuck under the blade can enter in contact with the moving substrate, as
observed in Figure 4.13b and illustrated in Figure 4.16b. It starts to be partially sheared and a part of it is
spread. Experimentally, this area of fluid appears as a dark spot as shown in Figure 4.14. This increase
in "active" volume is thought to be the cause of the increase in thickness and explain the presence of
bumps in the deposition profile. In such situations, lw can no longer be defined and the fluid stuck under
the blade has an additional weight that should be taken into account in the scaling law balance.

It should be noted that, even for low yield stresses (e.g. 6.3 and 23 Pa), a part of the fluid remains
stuck under the blade. Most of the time, the conditions for the passive volume of fluid to be redeposited
are not met and this does not lead to bumpy profiles. However, ignoring this volume in the deposition
models would lead to divergences.
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Fig. 4.13 − Two examples of partial deposition of liquid under the blade for an initial volume Ω0 of 0.2
w% Carbopol spread at V = 10 mm/s with a. a 125 μm thick blade (B = 1.0 mN m) and Ω0 = 0.91 cm3,
or b. a 250 μm thick blade (B = 7.1 mN m) and Ω0 = 0.78 cm3 . At the back of the reservoir, the triple
contact line on the substrate represented in a. (in yellow) moves to the right. However the triple contact
line on the blade does not move. Note that there is a small perspective effect on the pictures. In b. the
liquid stuck under the blade enters in contact with the substrate at t = 8 s and a re-deposition is observed.

In addition, experiments with solid particles tracers did not allow to observe any recirculation near
the blade. The existence of negative velocity near the blade is not questioned but we think that it is a
marginal effect that does not allow an efficient recirculation of the fluid.

t↗

Triple contact line 

Initial position

Fig. 4.14 − Top view of the spreading experiment of 0.2 wt% Carbopol gel (Ω0 = 0.69 cm3, V = 10
mm/s, B = 1.0 mN m). The pictures taken at 0.5 s of interval evidence the redeposition of a part of the
fluid stuck under the blade (circled in red). The initial lw is shown in green dashed line and the positions
of the triple contact lines with the substrate are shown in solid lines. In the zone where the liquid is in
contact with both substrate and blade, it appears in dark grey. When the fluid is stuck under the blade is
is not visible from the top. It appears only when it enters in contact with the substrate and is redeposited.

Prediction of the fluid residual under the blade

The behaviour observed under the blade that has been described before can be explained by stating that
a part of the fluid under the blade is not sheared enough to be considered liquid-like, i.e.

∣∣τ(y)
∣∣< τy.
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Consequently, when the fluid is deposited, part of it does not flow and gets stuck under the blade as a
solid would. This is predicted by Kusina and coworkers [3]. They adopted the same assumptions as
those made in this manuscript: gravity was neglected and they assumed laminar flow. They defined
λi(x) and λo(x) as the two positions where τ(λi) =−τy and τ(λo) = τy (Fig. 4.15). Three regions can
be distinguished based on the number of liquid-like and solid-like regions under the blade. In the first
one, both λi and λo are defined in the fluid, meaning liquid with negative velocity is expected near the
blade surface. In the second region, only λi is defined: a liquid region in contact with the substrate is
overlaid with a solid region in contact with the blade. And in the third region, the fluid is liquid-like
over its entire height.

To obtain the λi and λo positions, we use the calculations proposed by Kusina [3]. They are recalled
in Appendix F.
In region I, λi and λo are defined by a system of two equations:

1+n
n

[
k(λo −λi)

2τy

] 1
n

V = λ
1+ 1

n
i − (h−λo)

1+ 1
n (4.4)

(1+n)(1+2n)
n

[
k(λo −λi)

2τy

] 1
n

eV = nλ
2+ 1

n
i − (h+nh+nλo)(h−λo)

1+ 1
n (4.5)

In region II, only λi is defined in the fluid and happens to be independent of x:

λi =
1+2n

n
e (4.6)
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Fig. 4.15 − a. Schematic representation of the blade and the flow regions beneath it (adaptated form
Kusina [3]). b. and c. Evaluation of λi(x) (green dashed line) and λo(x) (red dashed line) from Equation
4.4, 4.5 and 4.6 using experimentally measured h(x) (blue markers). λi is compared to the height at
which the liquid is stuck under the blade (green markers). The experimental data used in b. correspond
to Figure 4.13a at tg = 8.6 s, and in c. to Carbopol at 0.2 w% spread with a thicker blade (B = 7.1 mN.m,
V = 10 mm/s, Ω0 = 1.12 cm3) at tg = 7.5 s.
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It is possible to evaluate the value of λi (and λo) in our experiments at a given time tg. The pictures
taken during the spreading from the side give access to the experimental value of h(x, tg) and the
profilometer measured the corresponding deposited thickness e(tg). Equations 4.4, 4.5 and 4.6 are then
solved. Two examples are plotted in Figure 4.15. In some cases, the calculated boundary height between
the solid-like and liquid-like regions (λi) matches quite well with the experimentally measured shape
of the fluid stuck (Fig. 4.15b). For other situations, the volume of fluid stuck is more important than
predicted by computing the interface position (Fig. 4.15c).

This can be explained by several factors. First, the camera axis is sometimes slightly above the
blade. Second, it images well what happens on the side, the measurements are therefore sensitive to the
edge effects. Furthermore using particle tracers, the fluid velocity at the back of the reservoir showed a
visible component along y in addition to the one along x for the large fluid volumes, which questions
the lubrication approximation used to write the equations. Performing these measurements with a rigid
fixed blade would help conclude if the fluid stuck precisely corresponds to the solid-like region.

Here we have highlighted at least two limiting phenomena that may explain the variation of the
experimental data when spreading yield stress fluids with a soft blade. They are summarized in Figure
4.16.

solid
liquidsolid

equilibrium 

without liquid 

elasticity

Before motion starts : t = 0 s

t = 0 s

Liquid elasticity

Liquid stuck under the blade

redepositon
fluid stuck

a.

b.

Fig. 4.16 − Schematic representation of the two limiting effects that were observed. a. The blade
equilibrium is affected by the fluid elasticity due to the yield stress and lw does not significantly vary
during the deposition process. b. Some of the fluid is stuck under the blade and might be deposited later
on, resulting in bumps in the deposit.

4.3 Conclusion
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Conclusion − Chapter 4
In this chapter, we studied the film thickness of a shear-thinning fluid that additionally
exhibits either yield stress or positive first normal stress difference:

1. We showed that normal stresses plays a little role with this spreading geometry even
for a Weissenberg number of order of 10. Experimentally, no significant difference
was observed in the deposition law between a shear-thinning fluid and a fluid that
additionally generates normal forces. The normal stress fluid could be satisfactorily
described by the scaling law and the numerical computations presented in Chapter 3
for shear-thinning fluids.

2. We proposed a new dimensionless number, involving a geometric factor, to predict
whether or not normal stresses have an effect on the deposited thickness.

3. These results further confirm that soft blade coating of a finite reservoir of fluid is not
analogous to dip-coating as the two processes do not involve the same characteristic
length scale: an externally imposed length in blade coating (the wetting length lw),
versus an internal length (the meniscus deformation) in dip-coating, which explains
why normal stresses have an effect on thickness with dip-coating and not with soft
blade coating geometries.

4. The study of soft blade coating of a yield stress fluid like Carbopol showed some
limitations and no model was found to predict the thickness deposited in this situation.
This is mainly due to the fact that the presence of yield stress leads to an emptying of
the reservoir which can no longer be described by a decrease of lw. Either because the
initial equilibrium of the blade also involves the elasticity of the fluid which results in
a reservoir emptying preferentially from bottom to top rather than from left to right
during the spreading. In this case lw is no longer a measure of the change in reservoir
volume. Or because part of the fluid remains stuck under the blade and can sometimes
be deposited afterwards creating bumpy profiles. In most experiments, both situations
are combined, leading to a large scattering of the data.

4.4 Perspectives

The fact that the gap is not fixed and that the blade can move vertically make the measurement sensitive
to the problems described above. We believe that in the case of a rigid blade (whose shape and position
are fixed) it would be possible to study and predict the deposited thickness by adapting the model
proposed by C. Kusina [3]. In this case, the blade position would no longer be defined by an equilibrium
involving changing contributions. And even if part of the liquid could remain stuck under the blade, it
would not redeposit during the process (fixed blade), therefore this effect could be estimated and taken
into account in the model. However, the use of a rigid blade with a fixed gap takes us away from the
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model of the cosmetic spreading by a finger. It was therefore decided not to pursue further this line
of research, but rather to study cosmetic spreading from another angle. So far, we have studied really
simple cosmetic fluid models, consisting only of polymer solutions. In practice, most cosmetics such as
moisturizers, foundations, nail polishes, mascaras... contain solid particles in suspension. Focusing on
cream type formulas, we sometimes observe the appearance of particle aggregates when the product is
spread on the skin. In this second part, the problematic is the following: Why defects such as aggregates
appear during the application of some formulations?

To study these defects, model formulations containing solid particles are used and new spreading
set-ups are developed. In Chapter 5, the different physical concepts needed afterwards to understand the
aggregate formation are presented. In Chapter 6, the spreading experiments performed and their results
are described. We then propose a model to explain the formation of these defects. And finally we give a
formulation criterion to be respected to limit their appearance.



Part II

Suspensions





Chapter 5

Introduction - Part II

In this second part of the manuscript we study the effect of solid particles, present in cosmetic formula-
tions, on spreading defects, with particular interest in the formation of aggregates. In comparison to the
first part we will not study "simple" fluids but suspensions of solid particles. Moreover, in order to get
closer to the real conditions of use of cosmetic products, we wish to use a soft substrate reproducing the
mechanical properties of the skin, and make the spreading gesture more complex.

This chapter presents the bibliographical analysis carried out on suspensions, their rheological
behavior, and their drying, which might lead to a granulation. Notions about adhesion and cohesion are
also described. Then we present the characteristics of the human skin and the experimental models that
have been developed in the literature to reproduce its mechanical and surface properties.
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5.1 Suspension of particles

A suspension is a particular case of dispersion where the continuous phase is liquid and the suspended
elements are solid. The flow of a suspension depends on the flow of the liquid around the solid particles,
so it is more difficult to make a suspension flow than the pure liquid because the particles create a
disturbance. The volume fraction in a suspension is therefore a fundamental parameter for understanding
its flow properties.

5.1.1 Phase diagram

The different regimes

The solid volume fraction of a suspension (often called concentration) is defined as the volume occupied
by the solid particles, vp, in the total volume (volume of the particles and the interstitial liquid vil):

φ(v%) =
vp

vp + vil
(5.1)

Porosity and particle swelling must be taken into account to evaluate the effective volume fraction (see
section 6.6.2).

When increasing the volume fraction of particles in a liquid, they pack more and more closely until there
is not enough liquid to embed all particles. Above that point several objects are formed: it corresponds
to the granulation regime. A schematic representation is given in Figure 5.1 and illustrative experiments
are shown in Figure 6.30.
Several regimes can be defined regarding the suspension:

• the diluted regime: the concentration is low enough for the particles to behave as if they were
alone in the liquid, they do not interact hydrodynamically.

• the semi-diluted regime: at a volume fraction beyond a few percent, the particles interacts
hydrodynamically, by their presence they disturb the flow over distances greater than the distance
which separates them from their neighbors.

• the concentrated regime: the hydrodynamic interactions are not necessarily predominant, the
contacts between the particles play a role and the behavior of the system reflects the evolution of
particles network under shear. The system begin to have great difficulty flowing because particle
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jamming can occur under shear through the formation of continuous chains of particles in contact
with one another and opposing the induced motion. The viscosity, which measures the ability of a
material to flow, begins to diverge.

• the compact regime: it corresponds to the maximum packing fraction of the particles in a liquid.
The system is no longer able to flow. At this volume fraction the viscosity diverges.

The transition from the purely hydrodynamical regime to the one where contacts play a role is around
35 v% [115].

Dilute Semi-dilute Concentrated Compact Granules Powder

𝜙𝜙𝑀

Fig. 5.1 − Phase diagram of solid particles in a solvent (adapted from [116])

Maximum packing fractions

The transition from compact regime to granules occurs at the maximum packing fraction φM, at which
the viscosity diverges (see section 5.1.2). For monodisperse hard spheres, in frictionless contact (µ = 0),
φM is called the random close packing fraction φRCP. Empirically, computations and experiments have
given φRCP ≈ 64 v% [117, 118]. It can be noted that this value is lower than the maximum "organized"
packing fraction which is 74 v% for face-centered cubic and hexagonal compact packings.

In practice, the value of φM is strongly affected by the shape, polydispersity and friction of the
particles, as well as by the interactions between particles. With non-spherical particles, the packing
is less efficient, the particles do not organize easily when they are angular or have asperities, leading
to jamming situations at lower volume fraction [119]. Particles with high friction (sliding or rolling
friction) have difficulty moving relative to other particles, which is also a decay factor of φM as shown in
Figure 5.2 [21, 120, 121]. Conversely, having polydisperse particles increases the attainable value of
φM. The small particles can fill some of the interstitial space left between the large particles. McGeary
showed in an idealized experimental study it is possible to reach a solid fraction as high as 95 v% for a
quaternary system of spheres with diameter ratio up to 316 [122]. Without attaining such level of space
optimization, binary systems have been shown to significantly increase the maximum packing fraction
[123–125]. At equivalent mass fraction of solid particles, a polydisperse system has a lower viscosity
than a monodisperse one. Finally, in presence of attractive forces the particles can form aggregates and
agglomerates that prevent packing optimization: this creates structures full of voids that reduce the φM .



106 Introduction - Part II

a. b.

𝜙
𝑀

𝜙
𝑀

Fig. 5.2 − a. Numerical evaluation of φM as a function of the friction coefficient µ (from [121]). b.
Experimental measurement of φM as a function of the roughness parameter h/d defined in the schematic
representation (adapted from [21]).

Granulation

Above φM , shearing the suspension makes it granulate (Fig. 5.1). Conducting rheological measurements
in this range of volume fractions is irrelevant because the material is inhomogeneous and more like a
solid than a liquid. As the solid content increases, the granules are smaller and more numerous until at a
some point a dry granular media is obtained. The granules belong to the wet granular materials, they
are cohesive due to the capillary forces that generate suction between the beads. Closer examination
shows that several states allow cohesion between beads: the capillary, the funicular and the pendular
states (Fig. 5.3a). The force at a neck of a capillary bridge can be written: Fbridge = 2πr2γ +πr2

2∆P
with the surface tension γ , the radius of the neck r2 and the suction ∆P = γ

[
1
r1
− 1

r2

]
derived from the

Young-Laplace equation (Fig. 5.3b). The suction increases as the liquid content decreases, while the
overall cohesion goes through a maximum in the funicular state [126]. Granules can also be formed
at volume fractions slightly below φM. Cates observed the formation of a matt granule by shearing a
droplet from a very dense shear-thickening suspension [127]. Under the effect of shear, the material
wants to expand (dilatancy), which leads to partial emergence of the beads on the surface of the droplet
(Fig. 5.3c). The system is jammed and can be maintained in this state by the capillary forces created at
the surface [128].

Cosmetic creams are suspensions of solid particles initially in the diluted or semi-diluted regime.
However, during the drying stage, most of the liquid volume is evaporated since the first ingredient in
most products is water. This is like going through the phase diagram from left to right until reaching the
particle volume fraction in the non-volatile phase (Fig. 5.1). The final stage of the cosmetic product on
the skin is often a dense suspension. We focus here on the rheology of concentrated suspensions and
only briefly address the case of diluted suspensions.
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𝜙
a. b.

c.

Fig. 5.3 − a. Diagram of granular media when varying φ . In the capillary state the pores are filled
with liquids while in pendular state the liquid bridges are located between the grains. b. Schematic
representation of a liquid bridge between two particles. (a. and b. adapted from [126]) c. A fluid (left)
and the solid droplet (right) obtained after shearing. Under the effect of vibration, it returns to its liquid
state (from [127]).

5.1.2 Rheology of dense suspensions

Dimensional analysis

In the general situation, the viscosity of a suspension is a function of several independent variables: the
solid fraction φ (or the particle pressure P), the particle diameter dp, the particle density ρp, the fluid
density ρ f , the fluid viscosity η f , the shear rate γ̇ (or the shear stress τ) and the thermal energy kBT .

η = f (P,dp,ρp,ρ f ,η f , γ̇,kBT ) (5.2)

These variables can all be expressed in mass, length and time dimensions. According to the Buckingham-
π theorem, four dimensionless parameters are needed to fully describe the system.

η = f (Iv,St,Pe,Sh) (5.3)

where St =
ρp γ̇d2

p
η f

is the Stokes number which characterizes the interplay between viscous and inertial

flow, Pe=
3πη f γ̇d3

p
4kBT is the Péclet number which compares the advective and diffusive transport, Sh= η f γ̇

∆ρgdp

is the Shield number which quantifies buoyancy or sedimentation, and Iv is a number comparing the
microscopic time of rearrangement η f /P with the macroscopic time 1/γ̇ [129].
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Non-Brownian suspensions

The number of dimensionless parameters can be reduced if we consider that the particles are large
enough to be considered non-Brownian (Pe → ∞), that the system is density matched and/or the fluid
is highly viscous (Sh → ∞), and that the viscous forces are much larger than inertial forces (St → 0).
Experimentally, we evaluated for the "dry" formulation (see Chapter 6): St < 10−10, Pe > 107, and
Sh > 107, using η f ∈ [102,104] Pa.s, γ̇ ∈ [10−1,102] s−1, dp = 5 μm, T = 298 K, ρp = 2.15103 kg.m−3,
and ρ f = 1.26103 kg.m−3. Therefore, the viscosity can be considered to depend only on four dimensional
parameters η = f (P,dp,η f , γ̇) and thus on a unique dimensionless number Iv. The constitutive laws can
be expressed as functions of Iv: φ = g(Iv) and τ = µ(Iv)P [129]. Using the definition of Iv = η f γ̇/P,
we can write τ = µ[g−1(φ)]

η f γ̇

g−1(φ)
with µ the effective friction law. This expression can be rewritten in

terms of viscosity:

τ = η(φ)γ̇ with η(φ) = η f
µ[g−1(φ)]

g−1(φ)
(5.4)

This equation means that a suspension of spherical and rigid non-Brownian particles with low Stokes
and Shield numbers behaves as a Newtonian fluid: assuming the volume fraction is homogeneous, the
viscosity is therefore constant in the fluid and does not vary with the shear rate.

Fig. 5.4 − Relative viscosity ηs = η/η f as a function of the reduced volume fraction φ/φc. φc is the
notation used here for the maximum packing fraction φM. The black markers correspond to numerical
simulations and color markers to experiments with poly(methylmethacrylate), polystyrene and glass
spheres suspensions. The lines shows the different laws ηs = f (φ) and in particular the Einstein and
Krieger laws (reproduced from [130]).
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η(φ) for the different concentration regimes:
In the diluted regime, η(φ) can be expressed as an affine function of φ [131]:

η = η f (1+[η ]φ) (5.5)

with [η ] the Einstein coefficient or "intrinsic viscosity" often considered to be [η ] = 2.5 even though
different values have been reported in practice in the literature [132].

In the concentrated regime, the interparticle distances become lower than the particle size. The spacial
arrangement of the particles and their interaction (lubrication and friction) makes modeling and experi-
mentation more delicate. Empirical correlations have been proposed but there is no general consensus.
The most popular model has been proposed by Krieger and Dougherty [133]:

η = η f

(
1− φ

φM

)−[η ]φM

(5.6)

The others models often differ in the value of the exponent, sometimes taken simply as 2 [43]. Figure
5.4 compares the different laws with experimental and numerical data reported in the literature. The
Krieger Dougherty model is often used to estimate the value of φM from rheological measurements of
viscosity.

In practice, most of the suspensions studied in the literature do not show the expected Newtonian
behavior. This is due to discrepancies with the monodisperse rigid sphere model. Note that small
deviations from the model assumptions often have a negligible effect in the dilute regime but can
have a noticeable effect in the concentrated regime, which is why different models are used to fit the
experimental data. Such non-Newtonian behaviors result for example from the presence of colloidal
forces, a change in the nature of the contact under shear, a certain polydispersity, the presence of
roughness, or an inhomogeneity of the concentration or the shear rate.

Colloidal forces

Colloidal forces are attractive or repulsive forces exerted by particles on their neighbors. These
forces impact the microstructure and compete with the particle pressure which leads to non-Newtonian
mechanical behaviors when they are predominant. Attractive and repulsive forces can have various
origins such as: van der Waals interactions, electrostatic forces, absorbed polymers layers and depletion
[116]. We do not detail these aspects here, but focus on the associated rheological behaviors.

Attractive suspensions
Attractive particles tend to aggregate (Fig. 5.5). When a percolating network is created it corresponds to
an attractive colloidal gel. At rest, the structure does not flow, it is a yield stress fluid [14, 24].

For τ > τy, the stress is sufficient to break the aggregate network and the mixture starts to flow. As
the shear rate goes up, the clusters are broken into smaller pieces, resulting in a decrease in viscosity,
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Attractive interactions Repulsive interactions

Fig. 5.5 − Attractive and repulsive suspensions in the concentrated regime (from [116])

characteristic of shear-thinning behavior [14, 18]. These systems can be complex to study because
their rheological properties are strongly dependent on the aggregate network, itself dependent on the
preparation steps, rest times and aggregation dynamics.

Repulsive suspensions

Repulsive particles can be thought of as soft particles with a larger effective radius, resulting in a larger
effective volume fraction. At high concentrations, a network of interactions can jam the suspension,
even if no direct contact exists between the particles, as long as the interaction potential is stronger than
the thermal agitation (Fig. 5.5). In that case, the mixture is a yield stress fluid [134].

Under flow, the particle pressure increases with the shear rate leading to lower effective volume
fraction. As a result, the viscosity is reduced, the suspension is shear-thinning [135].

A shear-thickening behavior can be observed when the particle pressure force becomes dominant over
the repulsive forces. The contact between the particles shifts from lubricated to frictional [19, 136, 137].
The law η = f (φ) is modified since it depends on the friction between the particles. Thus, at a given
volume fraction, the viscosity increases (Fig. 5.6b) [136]. Shear-thickening amplifies with the volume
fraction of the particles: by increasing φ , the jump from one curve to the other is higher (Fig 5.6a).

These systems can again be shear-thinning at higher shear rate, which corresponds to high particle
pressure. It has been shown that the friction coefficient µ of particles in frictional contact decreases
with applied normal force [135, 138], resulting in enhanced flow and reduced viscosity. This behavior is
observed both when the suspension is initially frictional at γ̇ = 0 s−1 [138], and when it is initially in the
lubricated state and brought to the frictional regime by shearing the solution sufficiently strongly [135].
The decrease of µ with the normal force can have various origins: it can result as the transition from an
elastic to a plastic contact due to the presence of surface asperities [138] or be linked to the formation of
a soft layer induced by the swelling of the particles [15].



5.1 Suspension of particles 111

a. b.

Fig. 5.6 − a. Relative viscosity ηr as a function of φ for the limit of lubricated (µ = 0) and frictional
(µ = 1) situations. By increasing the shear rate the friction increases and the viscosity transitions from
the low to high curve (from [20]). b. Schematic representation of the flow curve η = f (γ̇) showing
the different behaviors encountered for a repulsive system made of beads with polymer brushes at the
surface. It is first shear-thinning, then shear-thickening, then shear-thinning again (adapted from [135]).

5.1.3 Suspensions of particles in a yield stress fluid

At rest

In a yield stress fluid at rest, the suspended particles need to overcome a critical force Fc to be set in
motion: Fc = 14πR2τy for a spherical object [139]. This drag force does not tend towards zero when
the particle moves infinitely slowly, contrary to the Newtonian case. In fact a significant deformation
needs to be applied to the surrounding yield stress fluid to make it transition from a solid to a liquid in a
sphere of twice the radius of the particle. This property is useful to obtain stable suspensions of particles
that are not density matched with the fluid. If the particles are small enough and the yield stress is high
enough, sedimentation is prevented. The stability condition at rest is: ∆ρgΩp < Fc with ∆ρ the density
difference and Ωp the particle volume [116].

Under shear

Under shear the yield stress fluid behaves as a liquid and the suspended particles sediment if their
density is higher than that of the fluid. Adding particles to a yield stress fluid does not change its overall
behavior: it is still a yield stress fluid with only a higher apparent viscosity [140]. In the solid regime,
the fluid can be assumed to be purely elastic, the particles can be considered to have an analogous effect
on the elastic modulus than on the viscosity of a Newtonian fluid. Thus, in a first approximation for the
concentrated regime, G = G0(1− φ

φM
)−2.5φM with G0 the elastic modulus without particles[140].
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5.2 Drying

An important phenomenon occurring during the application of a cosmetic is drying. Indeed, the first
ingredient of a hydrating cream is water, this solvent facilitates the transport of non-volatile cosmetic
principles (solid particles, polymers, emulsion droplets) during spreading and is used to give a desired
texture to the product. Giorgiutti-Dauphiné and Pauchard recently published a review describing the
drying of drops with a solute [141]. We present here the main mechanisms applicable to the drying of
cosmetic creams.

5.2.1 Drying of a sessile droplet

The drying of a liquid droplet is limited by the vaporization kinetics, the diffusion in the vapor phase,
and the heat transfer. The evaporation of a cosmetic product corresponds approximately to conditions
of calm atmosphere, it is thus considered that the limiting factor is the diffusive transport of water
molecules in the ambient air. This diffusion determines the evaporation rate. Generally, the droplet
evolves in two modes: i) its contact line with the substrate can be pinned, i.e. the contact surface remains
constant, ii) or it retracts with a constant contact angle (Fig. 5.7b and a). Pinned situations can occur
for example because of surface roughness [51], if the contact angle is not small enough [142] or when
solutes are present in the composition.

The presence of non-volatile constituents in the cosmetic formulation (such as solid particles, oil
emulsion droplet, polymers), makes the drying mechanism more complex and we present below two
classical effects.

𝑹𝟎

𝜹

c. 

b. 

a. 

Fig. 5.7 − a. Unpinned contact line associated with uniform evaporation: the contact area decreases
progressively while the contact angle remains constant. b. Pinned contact line leading to advective
current: the contact angle progressively decreases (from [143]). c. Illustration of capillary and Marangoni
flows (from [141]).

5.2.2 Drying of complex fluids

Pinned contact line

When non-volatile compounds are present in solution, they deposit near the triple line that is pinned
to the substrate [143, 144]. Unlike the evaporation of a pure water droplet [141], the radius R0 of a
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pinned droplet does not decrease during the drying, only the droplet thickness, and the contact angle
δ decreases (Fig 5.7b). Sometimes, stick-slip motions are observed with an alternation of pinned and
unpinned steps [145]. In the particular case of a cosmetic cream, they often present a yield stress (e.g.
carbopol gel or dense emulsions) which is another factor known to pin a contact line [146].

For a pinned sessile drop (droplet lying on a surface) such that R0 is less than the capillary length,
the local evaporation flux close to the contact line, J scales as [143]:

J ∼
(

1
R0 − r

) π−2δ

2(π−δ )

(5.7)

with r the distance from the center to the triple line. For δ < π/2 (wetting scenario), the evaporation
flux is maximal (it diverges) at the contact line. This inhomogeneity in evaporation flux leads to internal
flows that have an impact on the solute distribution.

Inhomogeneity of particles concentration

In the presence of non-volatile species, such as solid particles, a crust or "skin" may form at the
surface of the droplet [141, 143, 147] (Fig 5.8). Evaporative flux causes particles to accumulate near
the surface of the droplet if advection dominates particle diffusion [148]. The effect is enhanced at
the edges by inner radial flows (Fig 5.7c). Indeed, since drying is faster at the edges when δ < 90◦

(Eq 5.7), a strong outward capillary flow inside the drop is produced to replenishing the corner [143].
This flow transports the solid particles which creates a zone of high particle concentration at the edge.
Marangoni convection flow, originating from surface tension gradient related to surfactant concentration
or temperature gradients, creates recirculation loops. The Marangoni flow can oppose the capillary flow
and transport the solutes in the center [143, 149], however, most of the time (and particularly for thin
drop edge), it is the capillary flow that dominates, leading to the well know coffee ring effect.

Due to this particle accumulation, a solidification front is observed: it separates a fluid domain from
a porous region where solid particles are stacked. The formation of a particle crust corresponds to a
"vertical drying" process which is present when the evaporation rate or solute concentration is high
(Fig. 5.8). For small value of δ , horizontal drying can become dominant which leads to a liquid droplet
surrounded by a disc of solid particles.

Similar crust formation occurs when drying a suspension of solid particles in a beaker near the
air/liquid interface [150].

The composition (volume fraction) varies resulting in non-uniform rheological properties. Note
that the evaporation can continue, despite this crust made of solid particles, as it can be considered as a
porous media where permeation occurs. This is not the case for soft deformable particles that can lead
to a blockage of the evaporative flux [141].

Mechanical instabilities such as buckling [151] and crack formation in the solid layer of particles
can occur due to the relaxation of stresses built up during drying [150, 152]. For example, during
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Fig. 5.8 − Schematic representation of solid particle accumulation at the drop surface (by vertical
drying) and at the drop edge (by horizontal drying) leading to an envelope formation or a solid drop
edge respectively (from [141]).

evaporation, the capillary meniscus formed at the liquid interface between neighboring solid particles
creates a pressure gradient and strong stress. If the adhesion to the substrate is not high enough cracks
may appear.

5.3 Adhesion and cohesion

In this section, we give some background information to understand the concepts of adhesion and
cohesion that are used in Chapter 6. These properties have been extensively studied for elastomeric films
for use in adhesive tapes and labels. In other fields, such as food [153, 154], building material [155, 156],
and cosmetics [157], these properties are also important, being desired or unwanted properties for
processors and customers.

5.3.1 Differentiation between tackiness, stickiness, adhesion, and cohesion

Before going any further in the description of adhesion and cohesion, we felt it was necessary to clarify
the terminology as various terms - tackiness, stickiness, adhesion - are used in different research fields,
sometimes without distinction, which can create some confusion. The review by Noren et al., focused
on distinguishing between the different terminologies previously used in the literature [154]. We use
their definitions in this work.

When an adhesive and an adherend are brought into contact, they can bond either by covalent or
non-covalent bonds (e.g. van der Walls interactions) at the interface: this is called adhesion. For the
adhesion to be effective, a certain amount of time and pressing force are required. Cohesion describes
the particular case where these two objects are made of the same material. If no force is required to
separate the two objects after bringing them into contact, then they are not adhesive (or cohesive).

Several definitions have been proposed in the literature regarding tackiness and stickiness, both
of which describe situations where cohesion and adhesion are involved. Two situations are usually
observed when pressing an adhesive material between two surfaces before separating them: either it
leaves residues on both surfaces, or it detaches from one of them (Fig. 5.9). The first case is called
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cohesive failure: the adhesive forces are stronger than the cohesive forces. The opposite scenario is
called adhesive failure. The general idea that emerges from Noren’s review is that tackiness refers to a
material that undergoes adhesive failure while stickiness refers to a material that undergoes a cohesive
debonding [154]. A material is said to be tacky if it has a high cohesion and a large energy is needed
to obtain adhesive failure. For instance, a soft PDMS gel is tacky while honey is considered sticky as
cohesion is very low and leads easily to cohesive failure. Of course, in practice, intermediate behavior
between adhesive failure and cohesive one can be observed [153, 158], which reinforces the difficulty of
categorizing the material behavior.

Cohesive

failure

Cohesive-

Adhesive

failure

Adhesive

failure

Non adhesive 

Fig. 5.9 − Several debonding mechanisms have been identified for sugar solutions (adapted from [153]).
The first situation is not perfectly a cohesive failure but, for simplicity, we consider it here as such.

5.3.2 Main categories of material adhesives

Tacky and sticky materials are numerous and common. Here we present the main categories of material
with these properties.

We leave aside the case of adhesive materials whose mechanism is based on covalent bonding, such
as UV-curable resins, or epoxy glue, which transition from a liquid to a solid state upon curing.

Pressure sensitive adhesives (PSA) are elastomers designed to bond under light pressure on most
surfaces without any activation and are not supposed to leave residuals when withdrawn. They rely
on van der Walls interactions. Numerous theoretical and experimental work exists in the literature
to describe the debonding mechanism of these products due to their wide range of applications. The
objective is generally to require a large force to separate the adhesive and substrate surfaces while
dissipating a large amount of energy during the process.
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Newtonian and non-Newtonian liquids can also be sticky if they have good wetting properties
with the surface. They might generate sometimes quite similar behavior than observed with PSA (e.g.
cavitation and fingering instability [159]).

Colloidal and granular pastes which correspond to concentrated suspensions of particles in simple or
complex fluids are also studied. The reported morphological debonding behavior most often corresponds
to cohesive failure with large plastic deformation [155, 156].

5.3.3 Adhesion tests

There are different experimental techniques for analyzing the adhesive properties of a material, and they
give access to different information (Fig. 5.10).

Probe

Sample

𝐹

𝐹, 𝑉

𝐹, 𝑉pb

substrate

backing

a. b. c.

Fig. 5.10 − a. Shear test b. Peel test c. Probe tack test

• The shear test (Fig 5.10a). It measures the resistance of the material to shear. A strip of adhesive
is brought into contact with a substrate and subjected to a constant shear stress. The time taken to
reach the failure of the assembly indicates the shear holding power of the adhesive, it is a measure
of the material’s ability to resist creep.

• The peel test (Fig 5.10b). It evaluates long-term adhesion and is often use in industry because
it mimics the removal of an adhesive tape. A strip of adhesive material is peeled away from a
substrate at a fixed peeling rate and peeling angle (usually held at 90◦ or 180◦). The peeling force
is recorded. During peeling, the fracture propagates progressively and is often accompanied by
bulk fibrils.

• The tack test (Fig 5.10c). It assesses the material’s ability to quickly create an interaction with
the surface upon light contact, and its ability to resist debonding. Several tack tests exist, such
as the rolling ball test and the loop tack test, but in the vast majority of studies the probe tack
test is performed, as it is more rigorous and provides access to more data. In this case, a probe
(flat or spherical) is brought into contact with the material until a set force is reached. Contact is
maintained for a period of time during which the material is allowed to relax, and then the probe
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is pulled back at a constant speed Vpb. The force and displacement are recorded throughout the
process. They are used to plot characteristic nominal stress - nominal strain curves for the traction
step. After reaching some displacement, the material ultimately undergoes a cohesive or adhesive
failure.

In this work, we used a probe tack test because we wanted to discern which samples were subject to
cohesive or adhesive failure and it is simple to set up with a rheometer.

5.3.4 Results of a tack test

The tack curve

The force-displacement curve is transformed into a nominal stress (σN = F
πa2 ) versus nominal strain

(ε = h−h0
h0

) curve, h0 being the initial thickness of the material before probe removal. The three main
parameters can be extracted whatever the type of material: the peak stress σmax, the maximum extension
εmax, and the work of debonding, generally defined as Wdeb = h0

∫
εmax
0 σN(ε)dε (Fig. 5.11). In Chapter

6, we prefer to use instead the volumetric work of debonding written Wdeb =
∫

εmax
0 σN(ε)dε because the

volume of the different samples varies greatly through h0. In the case of a fracture occurring strictly
at the interface without dissipation, the energy per unit area required to separate the two surfaces is
called the thermodynamic work of adhesion and is given by Dupré’s equation: ∆γ = γA + γB − γAB

calculated by adding the two free surface energy and subtracting the interaction free energy [160]. When
the two materials are identical, the equation simplifies to ∆γ = 2γ . In practice Wdeb is greater than the
thermodynamic work of adhesion for adhesive failure mechanism, as it is a combination of both the
energy needed to separate the two surfaces and the energy involved in the bulk deformation:

Wdeb =Winterface +Wbulk (5.8)

In other words, the tack curve and the debonding work derived from it include the contributions of both
adhesion and cohesion. We will come back to this in the section 5.3.5.

Several experimental limitations can affect the measurements performed by probe tack test. In
particular, the lack of parallelism leads to uneven material confinement and non homogeneous contact.
This can lead to different results as exposed by Crosby et al. [161] who highlighted the role of
confinement in elastomer debonding. Instrument compliance can play a role on the real velocity and
displacement imposed [162]. For instance, when performing the tack test at the highest pull-back
velocity on our rheometer, the velocity increases from 0.08 to 3.2 mm/s during the 0.6 seconds that
last the experiment instead of rapidly reaching the 10 mm/s set value (and in theory applicable by the
rheometer).
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Fig. 5.11 − Typical probe tack test curves for a. liquid-like behavior (e.g. paste) b. solid-like behavior
(brittle failure) c. adhesive debonding of a PSA with large bulk deformation (fibrils).

Effect of test parameters

The contact time, the contact force, the temperature and the retracting velocity are known to have an
influence on the results of the probe tack test.

• Increasing the load allows the sample to achieve a greater contact with the probe surface which
improves the adhesion [163, 164].

• Increasing the contact time augments the ability of the material to relax and make close contact
with the surface [163]. Once the material has had time to relax completely, increasing the contact
time has no effect [165].

• Increasing the retracting velocity, Vpb, shifts the debonding from cohesive to adhesive for PSA
[166]. Lakrout et al. also evidenced that the peak stress is proportional to the elastic modulus G′

at the debonding frequency Vpb/h0. In case of Newtonian fluids, the increase of the debonding
velocity also has an impact: it changes the debonding mechanism from fingering to cavitation
[159].

• Temperature often has an effect, particularly with polymers, as it can strongly modify their
rheological properties, and particularly G′ and G′′, making the material more flowable or more
rigid.

Failure mechanism

Depending on the type of material being studied, its properties, and the surface of the probe, the
debonding can occur in the bulk or at the interface (Fig. 5.12).

In bulk, cohesive failure can occur after the formation of fibrils that result from the growth and
merging of cavities within the bulk, and can withstand a sometimes long deformation before breaking
[158]. Another mechanism relies on a radial flow that creates a central neck that thins and eventually
ruptures (with potential fingering) [159]. A combination of the mechanisms can be observed for instance
with granular paste where inward flow is combined with internal void growth [156].
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At the interface, the adhesive failure can result from fracture propagation. Cavities appear at the
interface and quickly merge without much deformation of the material. Another potential mechanism is
the formation of fibrils that ultimately prefer to detach at the interface rather than in the middle due to
strain hardening [158].

Several models use the rheology to determine when systems transition from interfacial crack
propagation to bulk deformation mechanisms.

Adhesive failure

Fibrillation 

Cohesive failure

Fig. 5.12 − Illustration of several debonding mechanisms occurring in bulk or at the interface and
leading to cohesive or adhesive failure. The pictures are from [155] (left) and [167] (middle).

5.3.5 Link with rheological properties

Dahlquist criterion

The first criterion often used to predict the adhesiveness of a material is the Dahlquist criterion: the
storage modulus G′ at the bonding frequency must be less than 0.1 MPa for the material to make
sufficient contact. This ensures that the material is energetically favored to deform along a rough surface
and creates bonding not just at the peaks. This value can be explained with a simple formula giving
the modulus needed for a material to spontaneously flow in a roughness: G′

c = ∆γ

√
Rr
hr

3 with Rr the
radius of the roughness and hr its height above the mean level [158, 168]. By taking hr = 1 μm , Rr = 5
μm and a work of adhesion ∆γ = 50 mJ/m2 the value of 0.1 MPa for G′

c is obtained. Of course, this
critical value of the storage modulus varies with the level of roughness and surface energy, but it has
been experimentally shown to be a good criterion for various materials [169], and is largely used in the
adhesive community. When the Dahlquist criterion is not met, the tack curve is sharp (Fig. 5.11b) [170],
the material is rapidly subjected to an adhesive failure without bulk deformation.
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Linear viscoelastic properties and debonding mechanisms

Based on thermodynamic considerations, the Griffith criterion expressing the equilibrium of a crack
inside an inelastic material writes [158]:

Gc = ∆γ (5.9)

with Gc the strain energy release rate corresponding to the energy necessary to make the interfacial crack
move and ∆γ the thermodynamic work of adhesion.

In case of deformable material, several debonding mechanisms can be observed occurring either
at the interface or in the bulk. To predict the transition between interfacial and bulk mechanism for
elastomers, Gc the critical strain energy release rate is compared to Eh0 the energy needed to deform
the bulk (with E the elastic modulus and h0 the thickness of the adhesive layer) [171]. When Gc

Eh0
< 1

the initial defects will expand at the interface of the adhesive layer. When a crack propagates in a
viscoelastic material, viscoelastic dissipation limits the crack velocity to a maximum value v. Maugis
and Barquins proposed an empirical equation for the critical energy release rate [172]:

Gc = G0(1+Φ(aT v)) (5.10)

With Φ the dissipation function, aT the time-temperature coefficient, v the crack velocity and G0 the
threshold fracture energy for zero rate of crack growth (v → 0). In case of reversible separation: G0 = ∆γ .
In the high velocity and dissipation approximation, the second term becomes predominant and Eq. 5.10
is simply:

Gc ≈ G0Φ(aT v) (5.11)

The dissipation term is proportional to tanδ = G′′
G′ for a simple elastomer having only van der Walls

interactions with the surface [172]. Moreover, the elastic modulus E is of the order of the storage
modulus G′. Hence, the ratio Gc

Eh0
can be rewritten only as a function of rheological parameters and G0:

Gc

Eh0
≈ G0 tanδ

G′h0
(5.12)

Using this ratio, Nase et al. proposed for elastic rubbers a mechanism map, plotting G0 tanδ = f (G′h0),
which allows to distinguish samples that undergo interfacial crack propagation from the ones subjected
to fibrillation and bulk deformation mechanism [173]. When the energy cost to deform the bulk is high,
interfacial crack propagation is expected: G0 tanδ < G′d. In the opposite situation, crack propagation
requires high energy, which leads to bulk mechanism (deformation, fibrillation). In practice, G′(ω f ) and
tanδ (ω f ) are measured experimentally at the angular frequency ω f = 2πVpb/h0 [166, 170] and G0 is
obtained by measuring the debonding work with a tack test performed at low Vpb [173]. Deplace also
proposed a close representation, following the same reasoning, separating the viscoelastic parameters
from the the fracture parameters (Fig. 5.13) [170]. An important point here, is that, with elastomers,
having crack growth in bulk or at the interface does not necessarily mean that the failure type is different.
For instance Deplace always observed adhesive failures.
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Fig. 5.13 − Prediction of the debonding mechanisms as function of the rheological parameters for
viscoelastic fluids a. Open symbols represent bulk deformation and black full symbols interfacial
crack propagation for PolyDiMetylSiloxane systems (adapted from [173]). b. Another quite similar
representation adapted from [170]. Increasing G0 leads to lower the critical value of tanδ/G′ above
which bulk deformation occurs.

The number of studies dealing with pastes is quite low compared to those dealing with elastomers.
In addition, the pastes are usually tested in a range of concentration where only deformation in bulk and
cohesive debonding occur. We did not find any study proposing a suitable map to distinguish the bulk
mechanism from the interface mechanism in the case of pastes.

5.4 Soft substrate: the skin

So far, we have described the aspects related to cosmetic formulations (rheology, drying, adhesion).
When modelling the defects that appear during the spreading of cosmetic fluids, the choice of the support
can play an important role through its surface and mechanical properties.

In this bibliographic report we seek to describe the structure and properties of the skin to propose a
model that is relevant for our study.

5.4.1 Skin structure

The skin has a multilayered structure (Fig. 5.14a). It is composed of three main layers, the epidermis,
the dermis and the hypodermis, which are themselves subdivided into sub-layers. These distinctions
are based on differences in cell populations and structures that allow for appropriate mechanical and
physiological functions.

The skin also has elements such as hairs, sebaceous glands and nerves that we have decided to ignore
in our model for obvious reasons of simplification and which are therefore not presented here.
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Collagene fibers Elastine fibers

Fig. 5.14 − a. Schematic representation of the different skin layers (from [174]). b. Collagen fibers
(from L’Oréal) and elastin fibers (from [175]) of the reticular dermis observed by electron microscopy.

The epidermis

The epidermis corresponds to the external part of the skin. It is the thinnest layer of the skin; it measures
from a few tens of micrometers to 100 μm [176, 177]. It is made up of five sub-layers: the cells, which
are constantly renewed, migrate towards the surface by passing through the different layers successively
and end up in the cornea. This last layer is about 15 μm thick [175], and corresponds to a layer of dead
cells. The cornea provides protection against biological, chemical and mechanical aggressions. It is
mainly made up of keratin which gives its very specific mechanical properties compared to the rest of
the epidermis. Its properties varies greatly depending on the level of hydration. Nevertheless, to simplify
the mechanical models of the skin, the cornea and the epidermis have long been considered to have a
negligible impact, particularly in traction, in comparison with the dermis [178]. However, the epidermis
has been recently studied as a bilayer with the cornea on the one hand, and the viable epidermis on the
other hand in order to make the models more representative [174, 179]. Indeed the viable epidermis
enhances the rigidity of the cornea and should not be overlooked [8].

The dermis

The dermis is a connective tissue, i.e. it is characterized by the presence of fibers, cells and fundamental
substances. The dermis is measured between 1 and 4 mm thick depending on the area of the body [180]:
on the face, it is around 1.2 mm thick [181]. The reticular dermis stands for 90% of this thickness and is
composed of elastin and collagen fibers at respectively 2 to 4% and 60 to 80% of the dry weight of the
skin (Fig. 5.14b) [182, 183]. Elastin fibers play a role in small deformations, by allowing the elasticity
of the skin, while collagen fibers provide tensile strength at large deformations and prevent tearing. Due
to the presence of this densely intertwined network of fibers parallel to the skin surface, the reticular
dermis is often considered to be solely responsible for the mechanical properties of the skin in the most
simplified models.
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The hypodermis

The hypodermis is a highly vascularized connective tissue made of adipose tissue. The thickness varies
greatly according to the morphology, for example on the upper arm it is around 5 mm thick for men
and twice that for women [184]. The hypodermis is regularly considered not to be part of the skin, and
is rarely taken into account in mechanical models despite its role as a shock absorber. This very loose
tissue also allows the skin to move en bloc over the underlying areas.

5.4.2 Mechanical characteristics

Skin is a material with a complex mechanical behavior. It is non-linear, viscoelastic, anisotropic and
pre-stressed.

Mechanical behavior

Non-linearity

As early as 1861, Langer showed by in vitro tests that the force-elongation relationship is not linear by
in vitro test [185], which was later confirmed in vivo by Evans and Siesennop [186].

In the first phase, the skin is very extensible with a low modulus of elasticity. From a microscopic
point of view, this corresponds on the one hand to the unfolding of collagen fibers, which occurs
practically without effort, and on the other hand to the extension of elastin fibers, which contribute to
the beginning of traction (Fig. 5.15).

In the second phase, some collagen fibers, by unfolding and orienting themselves, begin to play a
role in tensile strength. As the number of collagen fibers involved increases, the stiffness of the skin
increases, as they have a much higher Young’s modulus than elastin fibers.

Then, in the last phase, all collagen fibers are aligned in the direction of traction and participate in
the tensile strength, the behavior is again linear with a very steep slope.

The transition from the initial linear to non-linear regime is found around 20-40% deformation
[187–189]. The transition from the second to the last phase occurs around 60% deformation [188]. In
the case of spreading, we are on limited deformation ranges that mainly belong to the linear regime as
the maximum deformation achievable in vivo without creating pain and trauma is about 25% [8].

Viscoelasticity

The skin has a viscoelastic behavior [188, 190–192] . This behavior is due to the flow of the fundamental
substance between the fibers of the dermis. Due to the density of the fiber network, this behavior is only
visible for strains <30% [193] and low tensile speeds [175].

Anisotropy and prestressing

The anisotropy of the skin was first demonstrated by Dupuytren, in 1836, by cutting the skin with tools
of circular section. The shapes obtained were not round but oval, which showed differences between
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Fig. 5.15 − Stress-strain curve and organisation of the associated collagen network. A = fibers straight-
ening out but not yet carrying load; B = some fibers are straight and collagen starts to carry load; C = all
fibers are carrying load (from [188]).

the tensions at rest according to the directions. A difference in Young’s modulus can be measured
[182, 194].

All these characteristics, to which we can add the structural heterogeneity of the skin, make this
material very difficult to characterize and model. We will now review the measurements made on the
mechanical and physico-chemical properties of the skin.

Quantification of mechanical characteristics

In vivo or in vitro

Depending on the measurement techniques used, the tests are carried out in vivo or in vitro on cadaveric
tissue.

In vitro measurements allow to scan wider ranges of stresses and deformations [195] and makes it
possible to study separately the different layers of the skin [174]. This method raises several problems:
the separation of the tissues can affect the properties of the tissues, dead tissue may not be represen-
tative of living tissue [196], and fixing the sample means prestressing in a way that is not necessarily
representative of in vivo situation.

In vivo measurements are intended to be closer to the actual characteristics, but it is very tricky to
separate the response of the skin from the underlying tissues, or within the skin itself, to determine
whether one is measuring the response of the skin as a whole or only certain layers [197].

Method of measurements

A wide variety of measurements have been presented in the literature: the four main ones are suction,
tension, torsion, and indentation. Traction is most often carried out in vitro by fixing the sample between
jaws to stretch it parallel to its surface, whereas suction and indentation, which involve small defor-
mations in a non-invasive way, are suitable for in vivo measurements. In the case of suction, the skin
is sucked by depressurization in a tube, the resulting shape allows to trace the mechanical properties.
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Indentation is a technique that uses an indenter to apply a compressive deformation to the skin. Finally,
torsion can be carried out in vivo or in vitro by applying a rotation to a disc attached to the skin. These
different measurements do not stimulate the skin in the same way and do not measure the same elements.

Results present in the literature

A very wide variety of elastic moduli are proposed for skin in the literature. The values are reported in
Figure 5.16. Moduli ranging from a few kPa to several tens of MPa are listed, i.e. almost 5 orders of
magnitude of differences.

Fig. 5.16 − Elastic moduli reported in the literature for the human whole skin and its different layers
measured in vivo or in vitro. The colors correspond to the main categories of measurement. The black
bars correspond to the range of values considered by L’Oréal. The data have been extracted from the
literature reviews and the experimental data shown in the thesis of Hendricks [196], Jacquemoud [195],
Geerligs [174], Tran [198] and the articles of Abellan [179], Dai [199] and Nicolle [197].

The studies that have tried to give distinct moduli according to the layers are less numerous but
the variability of the moduli is just as important. We find that the cornea is quite rigid compared to the
other layers. There is little difference between the epidermis, dermis and hypodermis, but this may be
the result of the type of test performed. Most of the time, for these layers, indentation or torsion tests
are reported in the literature, these tests do not highlight the strength of the dermal fibers as much as a
tensile test would, for example, which can lead to a bias.

Factors affecting the measured mechanical properties

Several factors intrinsic to the skin explain the variability of the moduli reported in the literature.

Intrinsic factors of the skin
First of all, within the same individual, the layers of skin do not have the same thickness nor the same
relative thickness according to the places of the body which causes different properties. The anisotropy
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of the skin presented before generates different measurements for the same sample depending on the
axis in which it was stimulated. There is also variability between individuals, particularly related to age
[200] linked with microstructural changes.

Factors related to the measurements
First of all, depending on the technique used, the reported measured moduli are not the same, they can
be elastic or shear moduli. The notion of elastic modulus itself varies according to the mode of stress:
tension, compression or bending. Within the same type of mechanical stimulation, the results vary
greatly depending on the protocol and the conditions of the measurements. As mentioned, there will be
differences between in vitro and in vivo measurements. The impact of the hydration of the sample is also
determinant, particularly for the study of the cornea for which the modulus can be decreased by an order
1 or 2 [201–203]. Depending on the tool used to hold the sample, additional pre-stressing may occur and
disturb the measurement. Finally, the measured moduli are not the same from one experiment to another
if parameters such as frequency, amplitude, deformation are varied, due to the non-linearity of the skin.

5.4.3 Surface properties

As for the mechanical properties, the physico-chemical properties depend on the areas of the body
considered. This is due to differences in the composition of the lipidic film at the skin surface. For
example, the production of sebum is very strong on the forehead and the face and less on the rest
of the body. This fatty body impacts the hydrophobic/hydrophilic character and the surface energy
[204, 205]. Skin is highly hydrophobic due to the presence of keratin and lipids on the surface. The
contact angle method gives angle values of 91−140◦ [204, 206]. On areas with high sebum production
hydrophobicity is (surprisingly) decreased, angles of 60 to 85◦ are measured [204]. It is also character-
ized by a fairly low surface energy: on average on the body it is 38−39 mN/m [205, 207] while for
the forehead it is higher, 42− 46 mN/m [205]. The skin surface has a roughness of 17-20 μm [206].
This point, although important in spreading processes, is neglected in the following to simplify the model.

Now that we have presented the properties of the skin, we discuss the synthetic skin models that have
been developed to reproduce these properties.

5.4.4 Skin Models in the literature

The skin has a large number of properties and there are therefore a large number of models that are
very different from one another and that seek to reproduce one or more of its properties. Biological
models of human skin are currently being developed but they are very restrictive and are most often
intended for tissue reconstruction. "Physical models" are made of inert materials and intend to reproduce
certain properties of the skin (thermal, electrical, mechanical, chemical, optical, surface properties, etc.).
Dabrowska wrote an interesting review on the various physical models developed so far [180].
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Within the framework of the spreading of cosmetics, two groups of properties were identified as
having a fundamental role: the mechanical properties and the physico-chemical properties of surface.
The transpiration also impacts the spreading but it has been neglected in this study in order not to make
the system too complex.

Fig. 5.17 − Materials used to simulate skin functions and properties (from Dabrowska’s review [180])

The materials used in the literature to reproduce the mechanical and surface properties of the skin
correspond to gelatinous substances and elastomers (Fig. 5.17):

• Gelatinous substances:
They refer in the case of skin models to gelatin agar, collagen, and polyvinyl alcohol (PVA). As
they are gels, their properties are very flexible by playing on the concentration of water but also
on temperature or on pH for example. Gelatin is one of the components of the skin. This protein,
put in gel, allows to reproduce the density and the viscosity of the skin. This model is widely used
to study impacts and injuries but it can also be used to test creams. Agar and PVA are used mainly
for imaging applications, the recent development of cryogel PVA opens up greater opportunities
as the mechanical properties of the skin are achieved with this material.

• Elastomers:
These are viscoelastic polymers at room temperature. The most used elastomers for skin models
are silicones and polyurethane. PolyDiMethylSiloxane (PDMS), sometimes combined with fillers,
is used to reproduce the skin surface state, optical, acoustic, electrical and mechanical properties.
Studies that reproduce the mechanical properties aimed at model skin wound [208, 209], needle
penetration [210] or tactile behavior [211–213]. Polyurethanes are regularly used as mechanical
models, they can reproduce skin friction, injection and wounding behavior, tactile evaluation and
optical properties.

Multilayer models (2 or 3 layers) have been studied in order to better model the skin by combining
layers with different properties. Thus the epidermis (or stratum corneum) is often modelled separately
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from the rest of the skin as its friction properties are important and its mechanical properties differ from
the rest of the skin [209, 212].

5.4.5 Focus on PDMS

The PolyDiMethylSiloxane is a silicon material that can be reticulated with a cross-linker agent to form
a gel structure.
Mechanical properties
Different grades of PDMS exist to achieve very different elastic moduli. For the same type of PDMS
it is possible to reach elastic moduli ranging from a few kPa to about ten MPa, by playing on the
polymer/crosslinking agent ratio as well as on the curing time and temperature [214, 215]. This effect
can also be obtained by mixing several types of PDMS [216, 217] which can even allow to reproduce
the non-linearity of the skin [218]. Such range of moduli makes it possible to reproduce with PDMS
both the properties of the stratum corneum (of the order of MPa) and the lower layers (of the order of
tens of kPa).
Surface properties
The contact angle of water deposited on PDMS is around 110◦ [216, 219]. The surface energy reported
is 19−21 N.m−1 [219]. These values are close to those reported for the skin of the body, but are far from
those reported for areas with high sebum production (face). In this last case, PDMS is more hydrophobic
than the skin.

Various values of the coefficient of friction have been reported in the literature, with silicone rubber
having a lower [211] or higher [213] coefficient than real skin (µ ≃ 0.2−1.3).

5.5 Goals of this thesis - Part II

As soon as a cosmetic cream is applied, or later when rubbing a "dry" cosmetic deposit, aggregates
might appear. They look like small cylindrical objects that eventually fall off the skin under the action
of gravity. An example is shown in Figure 5.18. These aggregates are very detrimental because they
cause unpleasant sensations and prevent a homogeneous and uniform coverage of the cosmetic product.
Consumer feedback is often variable, and surprisingly dependent on the region of the world, which
suggests a complex problem that is not solely dependent on the product formulation. In the switch to
biobased products, the use of some new materials has led to an increased occurrence of these defects. It
is therefore essential to address these issues, which, although they have always existed, are coming back
to the forefront with the shift to biobased particles.

A review of the literature has shown that this problem and possible solutions have not yet been
reported. Based on this state of the art, dealing on the one hand with suspensions, their drying, adhesion
and cohesion mechanisms, and on the other hand with the skin and its synthetic models, we are going
to build an experiment that allows us to study the formation of aggregates. Our goal is first to identify
the different parameters involved in their formation in order to understand the mechanisms involved
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Fig. 5.18 − Picture illustrating the cylindrical aggregates formed during the rubbing of a dried cosmetic
deposit on a forearm.

and to propose a model to explain the formation of aggregates. The final objective, in the perspective of
industrial application and consumer benefit, is to propose advice to avoid the formation of aggregates
in practice. It is mainly on the formulation aspects that we are looking for these guidelines, because
it is the point on which the industrial has the most impact, as opposed to the gesture and technique of
application of the product by the consumer.

5.6 Conclusion
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Conclusion − Chapter 5
From its application and throughout all its life on the skin, a cosmetic cream goes through
many states and is submitted to many different mechanisms. Therefore we presented in this
chapter a quite broad literature review related to the following aspects. Initially a cosmetic
cream can be assimilated to a semi-diluted suspension of particles whose properties mainly
depend on the suspending phase. When drying, the volume fraction of particles increases and
we have shown it is often accompanied by non-Newtonian behaviors related to the particle
contacts and interactions. During drying at rest, studies also reported a crusting phenomenon
leading to a non-uniform distribution of particles in the deposit. Finally when shearing a
dried cosmetic deposit, adhesion and cohesion start playing a decisive role. This point which
has been mostly studied in the context of pressure sensitive adhesives, but not in the context
of spreading of thin layers of complex fluids, will be discussed in detail in the next Chapter.

In light of this literature review we seek to understand: How to explain the aggregate
formation? What are the parameters and mechanisms involved in their occurrence ? How
to avoid them ?

In Chapter 6, to answer these questions, we first develop a set-up allowing to reproduce in a
controlled way the aggregates observed in practice on the skin. Then we identify the main
parameters involved in the emergence of these defects. These observations are completed
by characterization tests, which allow us to propose a model of the aggregate formation
mechanism that explains why instead of smoothly spreading, the fluid deposit generates
those defects. Finally, we propose a criterion based on the volume fraction of the particles to
reduce the risk of aggregate formation.



Chapter 6

Impact of fillers in the formation of
aggregates in cosmetic deposit

In this chapter, we study a common problem encountered with fillers in cosmetics: the formation of
macro-aggregates during the spreading on the skin, or after drying, of the formulation. We develop a
back and forth spreading experiment to mimic the formation of these aggregates in vitro. The choice of
applicator and substrate has proven to be crucial to reproduce these defects. We study the effect of filler
concentration and polymer on their appearance. Finally, we propose a mechanism for the formation of
cylindrical aggregates. The jamming volume fraction of fillers in the non-volatile phase should not be
exceeded to limit aggregation, which implies a good knowledge of the filler properties such as porosity
or swelling.
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6.1 Context and evaluation

6.1.1 Industrial context

Most cosmetic formulations are much more complex than those presented in the first part. Indeed, they
are composed of a large number of ingredients. In particular, in addition to water, oils and polymers,
there are usually solid particles which are called fillers. They are most of the time micrometric (or
even nanometric). They are used, for example, for sun protection (titan or zinc oxide particles), as an
optical agent (silica), as a covering agent (mica), to make the formulation more adherent, to modify its
density or its texture (wax). However, they are often considered as responsible for defects that appear
during the spreading and drying of the formulation. Thus, some particles can create a squeaky feeling,
others generate macro-aggregates. These defects have a double negative impact on the consumer: i)
on the sensory perceptions and ii) on the effectiveness of cosmetic products. Aggregates concentrate
the formulation locally, leaving large areas of the skin uncovered, which is highly detrimental to the
covering effect or sun protection for example.

To narrow the scope of the study, we have chosen to focus on a single type of defect: the formation
of aggregates. This defect is of major importance because it is reported for classic type of cream with
high content of particles (especially foundation and blur). In addition, some bio-based products (such
as micrometric cellulose beads), which are strategic for the cosmetic transition to sustainability, have
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shown a strong tendency to form aggregates. This represents a barrier to their large-scale use and makes
this topic a critical one.

The formation of macro-aggregates in the cosmetic deposit is a complex phenomenon whose very
definition can be debated. We present how it is described and evaluated in the industry, then propose a
more precise definition and perform a scope-specific analysis.

6.1.2 Industrial evaluation of defects

Product evaluation is a key step during the development of new cosmetic formulations. It can be
conducted in vivo either on expert panels, or directly with consumers. However, this process is costly
and is often implemented only in the last phase of product development. Moreover, the spreading
parameters, such as the velocity and force applied during the movement, are not controlled and therefore
cannot be studied rigorously. For the initial research and development phases, it is therefore necessary
to use in vitro test protocols. The challenge is to find quantitative and reproducible methods that are
representative of real-life conditions of use.

In the example of aggregates formation, a test was developed in industry to identify the formulations
that produce them. A commercial artificial skin made of a PDMS matrix, covered with a polyurethane
film, and which presents the topography of a human skin (pores and lines) is used as a skin model. To
perform a test, a mass of fluid is deposited to obtain a final surface concentration of 2 mg/cm2. The
artificial skin is maintained at 35◦C. Then a protocol consisting in a succession of spreading by hand
and drying steps is followed:

• Spreading: 15 rotations during 15s.
• Drying: for 15s
• Spreading: 15 rotations during 15s.
• Drying: for 2 minutes and 15s
• Spreading (or shearing): by making 5 strong rotations (the normal force FN targeted is 5N) on

the dry deposit (meaning only the particles and the non-volatile phase, such as glycerol, are still
present).

A rating is given between 1 and 5, by looking at the aspect of the final deposit. This rating reflects the
likelihood of a formulation to generate defects, 1 corresponds to the case where no defects are observed
and 5 to the case where aggregates are numerous. Three references, rated 1, 3 and 5, are tested first to
calibrate the way of rating. The defects usually encountered are macro-aggregates in rolls, in sheets, but
also the appearance of powdery zone where the particles are visible by creating white areas. Sometimes,
the deposit, instead of generating aggregates on the sample, forms residues in the papillary folds of the
fingers, leading to delicate rating. To have more robust results, these tests are performed by a panel of 3
to 5 people.
This evaluation tool is a quick way to test formulations but has several limits:

• It is not very reproducible because of differences in applied force, spreading velocity, and
characteristics of the skin of the fingers (dry, oily...) that can differ between experiments.
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• The polyurethane film covering the substrate shows rapid deterioration when high pressing force
is used (tears and partial delamination of the film lead to the formation of particle "traps" between
the PDMS and the film, film flaps can form and act as aggregate nucleator).

• The cleaning is difficult due to the presence of folds and holes (related to skin topography).
These limits motivated us to develop a new setup to study in a more controlled and quantitative way the
formation of these aggregates.

6.1.3 Problem definition and scope

Definition of the object of study

The previously described test is used not only to quantify the presence of macro-aggregates but also
other defects, such as white powdery deposit, that do not have the same physical origin (Fig. 6.1b and c
respectively). In our study, we focus ourselves on macro-aggregates, by defining them as assemblies of
solid particles that are sufficiently aggregated and cohesive to be handled with a pair of tweezers for
example (Fig. 6.1b). We call them macro-aggregates but also cylindrical, rolling or simply aggregates.
We thus exclude from our study the clusters of particles, the powdery deposits, or other heterogeneities
in concentration, which do not constitute the formation of a new object. The physical question we ask
ourselves is: why, instead of spreading, some parts of the dry deposit create macro-structures that roll
under shear?

5000 µm2000 µm

500 µm

500 µm 2000 µm

Fig. 6.1 − Picture from Hirox microscope showing typical results obtained after the test on the com-
mercial artificial skin. a. Spreading situation obtained for starch at 1.3 w%. The residual liquid and
the solid particles are visible in the skin folds. b. Cylindrical aggregates of various size are observed
(dark arrows) for cellulose beads at 5.0 w% in water based formulation (Carbopol gel and glycerol at
10w%). The lost of focus highlights the three-dimensionality of these objects compared to the powdery
areas. The picture of a macro-aggregate of approximately 1.2 mm long and 100 μm wide is shown. This
object is cohesive and can be manipulated. c. White powdery deposit obtained with starch 35.9 w% in
oil based formulation (isododecane and silicone oil 100 cSt at 10 w%).
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Scope of the study

Several elements involved in aggregates formation can be identified: the applicator, the substrate and
the formulation. For example, the roughness and the softness of the applicator and substrate influence
defects formation [3]. Additional interactions with the deposit (wetting, electrostatic effect...) might also
have an impact. The normal force [3], the motion, and the shearing velocity applied by the applicator
are other parameters at stake. Figure 6.2 presents a summary of the different elements and their main
parameters supposedly involved in the formation of aggregates. The main lever of action of the cosmetic
industry being the formulation, we seek to set the parameters related to the substrate and the applicator
in a configuration that reproduces fairly the results obtained on natural skin to focus on the parameters
related to the deposit.
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Interparticular friction
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- Elasticity
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Fig. 6.2 − Representation of the different elements of the problem and the related factors that might play
a role in the formation of aggregates. The list is not meant to be exhaustive but gives a first overview.

6.2 Mimic the spreading of cosmetics

In the first chapters (2−4), a flexible blade coating set up has been used to spread the liquid on a rigid
surface. This system does not allow to realize complex movements, such as back and forth, or circular
motions. Moreover, the rigid surface does not reproduce the elastic properties of the skin and pre-tests
have shown that the use of a soft support favors very strongly the appearance of these aggregates. To
study the formation of aggregates, we wanted to develop a new set-up that more closely reproduces the
conditions under which aggregates appear.

6.2.1 Proposition of a new skin model

To model the skin a PDMS (PolyDiMethylSiloxane) bilayer was used (Fig. 6.3). The lower layer is
the thickest and the softest; it mimics the dermis and hypodermis part of the skin. The upper layer is
thinner and more rigid; it tends to reproduce the corneum. This layer also prevents the artificial skin
to be too sticky. In practice the lower layer is made first by casting about 4.5 cm thick of soft PDMS
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(DowsilTM CY52-276 from Dow Chemicals) in a PMMA mold handled in a grey room. After degassing
under vacuum, it is cured at 70◦C for 30 minutes. Then a layer of about 0.5 cm thick of hard PDMS
(SylgardTM 184 from Dow Chemicals) is cast on top. A quick degassing is again performed if necessary.
It is cured again at 70◦C for 30 minutes. The weight ratio of hard versus soft PDMS is 1:9 (Fig. 6.3 a).
The PDMS CY52-276 is mixed in a 1:1 ratio of polymer chains and curing agent, to obtain an elastic
modulus of around 10 to 25 kPa [220–222]. The PDMS Sylgard is mixed in a 4:1 ratio of polymer
chains and curing agent to obtain an elastic modulus of around 2 to 5 MPa depending on the curing
conditions and type of test (compression [214] or traction [215]). The effective longitudinal Young
modulus of the bilayer can be estimated using the Voigt model, known as the "Rule of Mixtures":

E long
bilayer = fsEs + fhEh

with Es and Eh the elastic modulus, and fs and fh the volume fraction, of the soft and hard layer
respectively. The effective transverse Young modulus E trans

bilayer is obtained, using the Reuss model

E trans
bilayer =

(
fs
Es
+ fh

Eh

)−1
. Using, Es = 17±7 kPa [220–222], Eh = 3.5±1.7 MPa [214, 216] and for the

geometric parameters, fs = 0.9 and fh = 0.1, the value of the effective Young moduli is estimated to
be: E long

bilayer = 365±157 kPa and E trans
bilayer = 19±8 kPa. The estimated moduli are of the order of those

reported in the literature, generally of the order of a few tens to several hundred kPa for the linear region.

~ 3.5 MPa

~ 17 kPa
5 mm

1/10

9/10

2 cm PDMS 
bilayer

Spreading area

Fig. 6.3 − a. Schematic representation of the PDMS bilayer. b. Top view picture of the PDMS bilayer
in a PMMA mold used as a substrate for the spreading experiment. The white rectangle delimits the
spreading area. The square cut-outs on the sides are shims.

With this skin model, the hard layer, mimicking the corneum, is way thicker than the real thickness
of the corneum, around 15 μm [8]. Thinner layers of hard PDMS (typically 5 to 25 μm) lead to wrinkling
pattern due to stress relaxation. These stresses are thought to be generated during the fabrication process,
coming either from the difference in thermal expansion of the two types of PDMS, or resulting from
the stacking of the two layers if cured separately. The buckling theory predicts the wavelength of the

wrinkling pattern λ = 2πhh

(
E∗

h
3E∗

s

) 1
3
, with E∗ the plane strain modulus including the Poisson’s ratio and

hh the thickness of the thin film [223, 224]. The soft substrate is considered infinite in thickness in
this model. We consider this assumption holds in our case as hh ≪ hs . The measure of the wrinkling
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wavelength in a prestressed sample (λexp = 1.2± 0.2 cm) was in agreement with the theoretical one
(λtheo = 1.3 cm), thus confirming the ratio of the two elastic moduli. To avoid wrinkling pattern the
easiest solution was to make thicker the hard layer, even if it meant having a more approximate skin
pattern.

Regarding the wetting properties, the PDMS tends to be more hydrophobic than the skin (section
5.4.5) but it was decided not to try to correct it with a coated film to avoid potential tearing and
degradation. A picture of the skin model is presented in Figure 6.3b.

6.2.2 New applicator

The applicator used to spread the dry deposit (see section 6.2.3 for the protocol) is a PMMA cylinder, 40
mm long and 15 mm in diameter (Fig. 6.4a). It is covered with a latex film, cut from a non-powdered
latex glove (VWR) and glued by its inner side with double-sided tape. This material was chosen because
it is sometimes used in the industry, instead of bare fingers, to evaluate the tendency to make aggregates.
Its surface presents a certain roughness (Fig. 6.4b) and ensures a good grip, via its frictional character,
with the dry deposit. In fact, rubbers such as latex are known to present high friction coefficients due
to their adhesive and viscoelastic properties [225]. Without this latex covering, all other conditions
being equal, it was not possible to generate aggregates. The characteristic size of the roughness (5 μm)
corresponds to the size of the spread particles, which allows us to consider a non-slip situation at the
applicator wall.

The cylindrical shape is chosen to mimic a finger shape and, as it is symmetric, it allows for
equivalent back and forth movements. The applicator degrees-of-freedom are only vertical and horizontal
translations. It is not free to rotate. The PMMA cylinder is fixed to a mounting, itself fixed to a robotic
arm. The robotic arm is a Cobot UR3e from Universal Robots. The robot is used to perform the back
and forth movements at a controlled velocity. A system of masses and ball bearings allows to apply a
constant normal force during an experiment, as the cylinder is free to move up and down (Fig. 6.5a).
The applied normal force FN can be varied by changing the masses.

20 µm 

Rigid
cylinder

Latex2 cm 

Mounting
bracket

Fig. 6.4 − a. Picture of the applicator used for the spreading experiment. The rigid cylinder cannot
roll. It is covered with latex. b. SEM picture of the latex glove showing the roughness of the surface in
contact with the dry deposit. The characteristic in-plane length describing the surface heterogeneities is
around 5 μm.
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6.2.3 Protocol

Although the general idea of the test is similar to the industrial procedure, some notable differences exist.
We start by spreading between 0.1 and 0.16 g of the sample using the latex-coated cylinder first handled
by hand. This initial spreading is performed with a linear motion along the y-axis, perpendicularly
to that performed later by the robot (along the x-axis). Figure 6.7b shows an example of the initial
deposit after drying; it is discontinuous due to dewetting. Dewetting occurs during the initial spreading
movement; during drying the deposit does not further dewet, the contact lines are pinned (see section
5.2.2). Small droplets and line of fluids are observed, most often ranging in size from 100 μm to
several centimetres along the y-axis, and from 100 μm to 500 μm along the x-axis. Spreading the initial
formulation perpendicularly to the direction of the test results in small objects along the x-direction
which favors the generation of aggregates. The effect of the initial deposit discontinuity over aggregates
formation is discussed in section 6.3.1.

Rigid
cylinder

Latex

Mounting
bracket

Variable mass

Robot

V

FN

Substrate

Dry deposit

𝑥

𝑦

𝑧

𝑥𝑦
𝑧

Fig. 6.5 − a. Schematic illustration of an experiment and b. image of the robotic set-up.

The deposit is dried on a hot plate at 40◦C for 20 minutes, a time sufficient to ensure complete
drying regardless of particle concentration. Then it is placed on a force sensor. This sensor is used to
record, during the test, the forces applied to the substrate in the x, y and z directions. A picture of the
set-up is presented in Figure 6.5b). Two back and forth movements are performed, by the robot, at a
constant velocity (V = 0.01 to 200 mm/s) and constant normal force (FN = 0.20 to 1.37 N). A picture
of the deposit is taken initially, and after each linear movement, with a Nikon camera hanged above the
set-up.

The velocity range is chosen to include typical spreading velocities, estimated around 50 to 150
mm/s. For the industrial test (presented in section 6.1.2) the value is estimated around 125 mm/s. The
normal force range chosen is 10 times lower than for the industrial test. With an artificial skin that
mimics the topography of the skin (like the one used industrially) particles are drawn into the pores and
foldings during the first spreading step. A high pressing force is then required to push out the particles
and observe the formation of aggregates. In the case of the PDMS bilayer, the dry deposit remains above
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the flat surface and a high pressing force, like the one applied in the industrial test, would lead to a
complete scraping of the deposit. Unlike the industrial test the substrate is not heated during the test
(room temperature).

With this protocol, the drying and spreading steps are fully dissociated which is a main difference
compared to a real application. This choice is motivated by the desire to simplify the study of aggregates
formation.

6.2.4 Water-based formulations

The studied formulations are simplified versions of a cosmetic cream, made with solid particles dispersed
in a formulation base.

Formulation base

It can be of two categories: water or oil based. We mainly studied the water-based formulation but some
results with oil-based formulation are presented in section 6.6.

For water-based system, the formulation base is made of a Carbopol gel commonly used in cosmetics.
It is a yield stress fluid, namely it is solid-like at rest, and fluid-like when a sufficient shear stress is
applied (σ > σy). This behavior is sought to allow an easier use of the cosmetic product. Carbopol
is prepared at 0.3 w% in water. The corresponding yield stress is σy = 72 Pa. It is associated with a
biocide used to prevent contamination of the formulation (2-phenoxyethanol at 0.5 w%). Glycerol at 10
w% completes this formulation base. Since it is non-volatile, it is used to maintain a residual fluid film
containing the other ingredients of the cream after water evaporation.

Solid particles

The formation of aggregates has been observed for different types of particles such as cellulose, starch,
wax and silica. We decided to focus on silica microbeads (NP30, Sunsphere). They are refered to as
NP. They present a spherical shape, with no porosity and no swelling, which makes them great model
particles. Their density is 2.15. Their diameter is of the order of 4 μm, with some polydispersity that has

5 µm 50 µm

Fig. 6.6 − a. SEM picture of silica beads (named NP). b. Dispersion in a formulation with 10v% of NP
in the non-volatile phase.
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not been quantified (Fig. 6.6a). These particles are pretty well dispersed in the formulation base (Fig.
6.6b). In the following, the different formulations are distinguished by the volume fraction, cv, of the
particles in the non-volatile phase (i.e. glycerol). The Carbopol is excluded from the calculation of the
volume fraction. In the initial formulation (i.e. before drying), the Carbopol is highly swelled in water
(due to the neutralization step with NaOH), by 200-1000 times its original volume [25]. During drying,
the volume of the Carbopol microgels decreases, but they are expected to remain swollen up to more
than 8 times their initial size since the glycerol can also act as a swelling agent thanks to its polarity
[27]. This is confirmed by the observation of the sample after drying: only one fully transparent phase is
observed. Thus we consider the Carbopol as a modifier of the interstitial fluid properties and not as a
solid particle.

In the last section, we extend our study to cellulose, corn starch and silica microbeads which are
more complex to study because of their porosity, swelling, roughness or angular shape for instance.

6.3 Factors that influence the formation of aggregates

In this section we describe several factors influencing the formation of aggregates such as the continuous
or discontinuous nature of the deposit, the concentration of solid particles, and the presence of Carbopol.

6.3.1 Discontinuity in the dry deposit

The experiment described before is carried out on two types of deposits: a continuous one of about 100
μm thickness, and a discontinuous one due to the dewetting of the formulation. To obtain a continuous
deposit, the mass of deposited fluid per square centimeter has been multiplied by 10. The thickness of
the film becomes sufficient for gravity to stabilize it with respect to the capillary forces. Both types
of samples are left overnight to dry due to the longer drying duration of the continuous deposit. It is
possible that a particle crust forms on the surface of the deposits during the drying process (section 5.2.2),
but this would apply to both continuous and discontinuous deposits. Then the spreading experiment is
performed. Pictures of the two deposits are shown before and after the test for a formulation at cv = 65
v% (Fig. 6.7a and b). We observe the formation of rolling aggregates only for the discontinuous deposit.
For the continuous deposit, we observe a slight footprint left by the passage of the cylinder, as it removed
only few particles away. However, if we initially generate a defect (i.e. discontinuity) in the continuous
deposit, such as a scratched line, we observe that rolling aggregates resulting from this defect can be
formed (Fig. 6.7c). From these observations, we can state that aggregate formation is linked to the
inhomogeneity of the deposit. This inhomogeneity originates in our system from the dewetting of the
formulation on the PDMS.

How does this compare to the real situation? The skin topography also presents inhomogeneities: the
pores and skin lines act as particle traps during the first phase of the spreading (Fig. 6.8a). A top view of
the skin shows patches and lines of particles quite similarly to what is observed with our artificial skin
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2 cm

1 cm

1 mm

Fig. 6.7 − a. Continuous dry deposit, and b. discontinuous dry deposit of NP at cv = 65 v% in the
glycerol phase. First line: Pictures of the initial continuous deposit, Second line: Pictures of the final
deposit after spreading, and Bottom: Zoom of the initial (green) and final (orange) deposits. Cylindrical
aggregates are observed after the test for the discontinuous deposit. The parameters of the spreading test
are FN = 0.6 N and V = 50 mm/s. c. Macro-aggregates obtained after a fracture (dark arrow) had been
made in the continuous deposit (manual movement of the applicator).

(Fig. 6.8b). The main difference is that these deposits are more easily sheared off by an applicator in the
case of PDMS, as they are protruding, whereas with a skin topography, greater forces must be applied to
push these particles out of the holes and see aggregates build up.

Thereafter all the results presented were obtained from discontinuous deposits.
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Skin

PDMS

Formulation with solid particules 

1 mm

Fig. 6.8 − a. Schematic representation of the deposit inhomogeneity on a PDMS substrate (top) and on
the skin (bottom). The formulation is not deposited with a homogeneous thickness on the whole surface
but is concentrated at the bottom of the folds and holes. b. Hirox microscope picture of a commercial
artificial skin on which a formulation has been spread using the industrial protocol. During the drying
and spreading steps, the particles are not evenly distributed on the surface but concentrate at the bottom
of the folds and holes, forming white lines (porous silica H51 in an oil formulation base at 21 w%, see
section 6.6).

6.3.2 Solid particle concentration in the non-volatile phase

To study the effect of the particle concentration, samples with various volume fractions of solid particles
in the non-volatile phase (cv ∈ [10,90] v%) were formulated.

57v%

55v% 56v%50v%

65v% 80v%70v% 90v%

40v%

62v%

30v%20v%10v% 

60v%

1 cm

Fig. 6.9 − Pictures of the central part of the deposit, taken after the first spreading movement of the
robot. From left to right, top to bottom, increasing volume fraction of NP from 10 to 90 v%. The
deposits are initially discontinuous. The parameters used for the spreading test are V = 50 mm/s and
FN = 0.6 N. The spreading direction is vertical (red arrow). The white areas indicate the presence of NP
particles. At low particle concentration, cv ≤ 55 v% the dry deposit is spread and appears light grey.

The pictures of the dry deposits, obtained after the 1st and 4th spreading movement, are presented in
Figure 6.9 and 6.10 respectively. For, 10 ≤ cv ≤ 55 v%, the deposit is spread as a viscous fluid would be.
Elongated patches of deposit are observed in the spreading direction. For volume fractions cv ∈ [65,80]
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Fig. 6.10 − Same as Figure 6.9 except that the pictures are taken after the 4th spreading movement of
the robot.

v%, rolling aggregates are clearly observed. They present an elongated (∼ cylindrical) shape aligned on
the mean perpendicularly to the spreading direction. They are well defined and fully detached from the
initial dry deposit. They tend to grow in size, particularly in length, after each run. This is due to the
merging of several aggregates together (Fig. 6.11).

When increasing the volume fraction from 65 to 80 v%, we observe a decrease of the aggregate size.
In fact, the volume of interstitial liquid is no longer sufficient to ensure the cohesion of all the particles
by capillary bridges. Consequently, it tends toward a powdery deposit as seen for 90 v%. At this volume
fraction the deposit is considered as "spread" again, while it could have been considered as a defect in
the industrial test and rated 5/5. For cv ranging from 55 to 62 v% we observe an intermediate situation:
aggregates tend to form after the first run (Fig.6.9) but the are spread little by little in the following runs.

1mm

Fig. 6.11 − SEM image of aggregates of NP (cv = 65 v%). SEM conditions : low pressure vaccum
100 Pa, voltage 10 kV, and current 0.18 nA. The aggregates are cylindrical with various length. Their
diameter is around 50 to 200 μm and can reach several millimeters. The bigger ones are obtained by the
merging of smaller ones.
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Wave-like pattern can be observed by looking carefully at the shapes of the deposits (Fig. 6.10). This is
an indication of anchor points on the PDMS substrate causing the aggregates to spread. This behavior
will be further discussed in section 6.5.3.

The results for the intermediate volume fraction (cv ∈ [55,62] v%) are not always reproducible,
leading sometimes to full spreading (as with cv = 50 v%), or aggregates that grow larger run after run
(as with cv = 65 v%). We believe the humidity of the air can modify the properties of the dry deposit,
and thus its behavior under shear.

6.3.3 Normal force and velocity dependency

We use the robot to map the effect of velocity and normal force applied at a given concentration. Figure
6.12 shows the results for three volume fractions: 57 v%, 60 v% and 65 v%. The velocity typically
ranges from 1 to 200 mm/s, and the applied normal force from 0.2 to 1.37 N. The points at high velocity
and low normal force (FN = 0.2 N, V = 200 mm/s) are not shown because we are concerned that the
contact is not assured and that disturbances such as bumping might occur under these conditions. Three
types of behavior are observed: either aggregates appear and grow, the deposit is scraped, or the deposit
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Fig. 6.12 − Map representing the spreading test results after the 1st (top line) and 4th run (bottom line)
for different velocities V ∈ [1,10,50,100,200] mm/s and normal forces FN , for formulations at 57 v%,
60 v% and 65 v% (from left to right). The dots correspond to samples tested experimentally. Three
behaviors are observed: aggregates formation (light green), spreading (dark green) and scraping of the
deposit (blue). The areas with common behavior have been colored with associated colors. For some
test conditions (FN ,V ) the aggregates are spread after the first run, this is represented by a color change
from light to dark green.
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is spread. Figure 6.13 shows the three types of results. When the deposit is scraped, this corresponds to
a situation where there is no material left in the test area, instead it can be seen agglomerated on the
applicator cylinder. It is equivalent to say that there is slip at the bottom wall. The results of both the 1st

and the 4th run are presented; if it happens that aggregates appear in the first run but eventually spread,
then the sample is described as "spread".

Velocity dependency

Whatever the concentration chosen, if the spreading velocity is too low, there is no formation of aggre-
gates and the deposit is instead directly spread or scraped (even when applying a low normal force). A
critical velocity Vc must be exceeded to form aggregates that will not be spread (e.g. Vc ∈]50,100[ mm/s
at 60 v% and Vc ∈]10,50[ mm/s at 65 v%). This means that some kind of dynamics is involved.
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Fig. 6.13 − Pictures and schematic representations of the different behaviors observed after the 4th

run by varying the velocity V (cv = 65 v%, FN = 0.6 N). The spreading direction correspond to the
horizontal (red arrow). The deposit is scraped off the surface and agglomerates on the applicator at
V = 1 mm/s. At V = 10 mm/s, the sample spreads (widening and wavy shapes). Finally at V = 50 mm/s,
cylindrical aggregates are observed. Note that the skin pattern (particularly visible for V = 1 mm/s)
comes from the fact that a synthetic leather has been placed under the substrate to obtain contrasted
images.

Normal force dependency

There is little effects of the normal force over the range studied. However, in some cases (cv = 60 v%,
V = 100 mm/s, and cv = 65 v%, V = 200 mm/s) the increase in normal force changes the situation from
aggregation to spreading. The increase of the normal force goes hand in hand with the increase of the
tangential force (∼ shear stress) which becomes sufficient enough to spread the aggregates.
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6.3.4 Carbopol role

To test the impact of the Carbopol we formulate the particles directly in a water-glycerol mixture, keeping
the same proportions of solid particles in the non volatile phase as before. Due to the low viscosity of
the mixture, and the high density of the particles, sedimentation occurs. To limit this effect the solutions
are homogenized just before spreading. Without Carbopol the deposit is inherently different, it dewets
more in small droplets, but we managed to obtain equivalent characteristic sizes of the liquid islands by
thorough spreading of the initial deposit. By comparing formulations with and without Carbopol (top
and bottom line of Fig. 6.14), we observe that, without Carbopol, the deposit is spread whatever the
concentration is. The picture from Figure 6.10 are reproduced for ease of comparison. No cylindrical
aggregates of particles are seen, instead we observe dry deposit trails along the spreading direction
without Carbopol. These results suggest that the Carbopol plays an important role in the formation of
rolling aggregates for this type of formulation base. Complementary tests were performed to validate
the absence of impact of the biocide (2-phenoxyethanol), alone or in interaction with Carbopol, on
aggregates formation (study not shown here).
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Fig. 6.14 − Picture of the deposit obtained after the 4th run for various concentration of particles in the
glycerol phase (cv = 40 to 90 v% from left to right) with Carbopol (top line), and without Carbopol and
2-phenoxyethanol (bottom line). The spreading is materialized by gray lines parallels to the motion
direction while when aggregates are formed, they align perpendicularly.

The potential sedimentation of the particles during the 20 minutes of drying would lead to hetero-
geneities of concentration along the z-direction. The particles (of density d = 2.15) are expected to
accumulate at the bottom leaving a layer of pure glycerol (d = 1.26) at the top. However, for large
concentration of particles, as 65 v% and 70 v%, the volume of particles is sufficiently high compared to
the interparticular liquid volume to consider there is only one region with particles and glycerol present
over the full height of the deposit. We consider that the situation in that case can be compared without
restriction to the one with Carbopol. The absence of macro-aggregates at these concentrations confirms
the importance of Carbopol.
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To understand the differences in behavior observed by varying the composition of the deposit, the applied
normal force, and the spreading velocity, we characterized the rheology of these formulations (with and
without carbopol when indicated) in their dried state.

6.4 Rheology of the dried formulations

To study the rheology of the dried deposits, we dry the formulations (concentration ranging from cv = 40
to 59 v%) in bulk in an oven at 50◦C for at least 48 hours. Evaporation monitoring shows that, after
this time, the samples masses vary very little, and that more than 99 w% of the water content has been
evaporated. Note that the samples are not homogenized by mixing during drying in order to more closely
replicate the spreading experiment for which the sample is left at rest to dry for 20 minutes. This opens
the possibility for heterogeneity in particle concentration to occur during drying (see section 5.2.2). At
low particle concentrations, the dried formulations are sticky and elastic, while at high concentrations,
the formulations become stiffer pastes. At 65 v% and above, the dried formulations are no longer liquids
and become brittle. In fact, experiments and computer simulations predict a random close packing
of around 64 v% for hard spherical monodispersed particles [226]. The exact value is driven by the
polydispersity, the swelling, the roughness, the particle shape, the colloidal interactions etc. Beyond
this volume fraction, there is not enough liquid to consider a continuous phase and granulation occurs.
This is the reason why rheological measurements were limited to volume fractions cv ≤ 60 v%. A piece
of the dry formulation is collected and deposited on the rheometer plate, still without previous mixing.
The geometry used is parallel plate with 1 mm gap and plane diameter of 20 mm. To avoid slippage,
sandpaper (Grit P800, grain diameter 22 μm ) is glued on both surfaces with double-sided tape. The
temperature is fixed with a Peltier plate at 25◦C.

6.4.1 Flow properties in the non-linear region

Typical results

A constant stress is applied to the sample for 120 seconds. The shear rate and the axial force are recorded
as a function of time. This experiment is repeated for increasing values of stress on the same sample.
We observe that for most stress levels, the measured shear rate value is not constant but evolves with
time (Fig. 6.15). We can identify four different regions:

• Region I: For the lowest stresses (red), the angular velocity required to apply these setpoints is
too low compared to the limit of the device. Therefore, these values are not reliable and are not
considered in the following. Note that this limit is reached for quite high absolute stress values (4
to 8 kPa in this example) due to the very high viscosity of the sample.

• Region II: For 11 ≤ σ ≤ 17 kPa (light green), the shear rate, after a sharp drop, continues to
decrease without reaching a plateau. The flow gradually slows down while the viscosity continues
to increase with time.
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• Region III: At σ = 20 kPa (dark green), a more usual behavior is observed. After a few seconds,
the shear rate reaches a constant value over time. Steady state viscous flow is reached: only the
viscous response is measured on the plateau.

• Region IV: For σ ≥ 22 kPa (orange), we observe an increase in the shear rate over time with
occasional fluctuations. This corresponds experimentally to the onset of edge fracture, and the
formation of formulation ridges outside the geometry (see Edges fractures in section 1.2.4).

In all cases, the shear rate starts by decreasing quickly, which corresponds to the instantaneous elastic
response of the material.
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Fig. 6.15 − Change in shear rate over time for different stress levels applied successively for 120 s over
the same sample. The sample is a dried formulation of NP at cv = 56 v%. Colors are used to distinguish
four different regions (see text).

This figure illustrates how difficult it is to measure the flow properties of such a material. The sample
barely reaches steady state before undergoing instabilities that prevent further measurements. This
bifurcation behavior between the second and third region means that there is a critical shear stress under
which shearing leads to a non-flow condition in the steady state [227]. This critical stress corresponds to
a yield stress. Thus, in this example, we define the yield stress around σy = 18.5±1.5 kPa. This value
has been confirmed by the determination of the yield stress from the oscillation experiments (data in
section 6.4.2). For σ < σy the rheology measures the elasticity of the material. Note that as the steps are
successively applied to the same sample, kinetics might be hindered by the history experienced by the
sample.

In the following parts, the data from region II and III are kept, although region II do not give access
to proper rheological characterization (out of equilibrium data); it is used to show some tendency only.

Yield stress

From the rheological curves, we identify the yield stress at different concentrations as the critical stress
where steady flow is reached. The corresponding values are indicated by dashed lines in Figure 6.16a.
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The yield stress increases strongly with particle concentration (Fig. 6.16b). The error bars represent the
uncertainty associated with this definition of yield stress.
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Fig. 6.16 − a. Stress as a function of the shear rate for dried samples at different volume fractions of NP
in glycerol. The dashed lines represent the estimated yield stresses. Only the stress levels in regions II
and III, defined in section 6.4.1, are shown. b. Yield stress as a function of particle concentration in the
non-volatile phase.

6.4.2 Viscoelastic properties in the linear region

Oscillatory stress at a constant frequency (1 Hz) is imposed on the material using strains, γ̂ , comprised
between 0.01 and 1000%. The elastic and loss moduli are recorded. This experiment shows the behavior
of the dried formulation in the linear regime (G′ and G′′ constant) and its transition to the non-linear
regime (G′ and G′′ with non-zero slope) where the curves even cross. The curves are characteristics
of yield stress material with G′ above G′′ in the linear regime before changing order in the non linear
regime (Fig 6.17a). However, edge fractures are observed for samples with particles at the end of the
elastic regime (γ̂ ≃ 50%) which prevents us from studying the high strains above this value.

We estimated the deformation of aggregates around 20% (dotted line in Figure 6.17), which cor-
responds to the elastic behavior region. To probe the viscoelastic properties of the material at this
amplitude, an oscillatory stress at various frequencies (ranging from 0.01 to 10 Hz) is applied to the
sample.

We observe that the storage modulus, related to the elastic properties of the material, increases with
the concentration of particles and the frequency of solicitation. For 56 v% NPs in the glycerol phase, G′

increases by 54% over two decades of frequency (Fig 6.17b).
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Fig. 6.17 − a. Evolution of the storage G′ and loss modulus G′′ as a function of oscillation strain γ̂ of
dried formulation of NP at various volume fractions in glycerol. b. Evolution of the storage modulus G′

as a function of the oscillation frequency at a constant strain of 20% (dashed line in plot a.). The sample
with no particles is not shown.

6.4.3 Impact of Carbopol on rheology

To estimate the effect of Carbopol on aggregates formation, we compared the dried formulations with a
mixture of particles formulated at the same volume fraction directly in glycerol. We observe a totally
different rheological behavior. The results are presented in Figure 6.18 for NPs at 57 v% in the glycerol.

Flow behavior

Different levels of constant stress are applied to the samples as described previously. In this section,
all the regions are shown for the sample with Carbopol and the regions II and III are highlighted by
the green rectangle (Fig. 6.18a). We observe that for this range of shear rates, the viscosity of the
formulation is 5 orders of magnitude lower without Carbopol. In fact, in the absence of Carbopol, there
is no yield stress (σy(no Carbopol) ≈ 0) and instead the sample is shear-thickening after a Newtonian
plateau. The situation in which the applied stress is lower than the yield stress no longer exist for the
samples without Carbopol.

We note that the onset of shear-thickening measured for the sample without Carbopol occurs at the
same shear rate, γ̇ ≈ 0.2 s−1 as edge fracture and expulsion of the sample with Carbopol. The shear-
thickening is related to the frictional contact chain of particles [19, 20]. Since the particle concentration
is the same relative to the interparticular fluid, it is logical to expect that interparticle contacts would
appear at the same shear rate with Carbopol. This is consistent with the appearance of edge defects
because these are generally associated to a high value of the second normal stress difference N2, and N2

is itself related to the contact between spheres [32]. Interplay between shear-thickening and increased
normal stress differences has been reported previously by Cwalina & Wagner [228].
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Fig. 6.18 − Comparison of the rheological curves obtained for NPs at 57 v% in glycerol, with (blue) and
without Carbopol (red). a. Viscosity η as a function of the shear rate γ̇ obtained by applying different
stress levels for 120 s. The green area represents the region II and III. b. Storage G′ and loss G′′ moduli
obtained for amplitude oscillations at 1 Hz, c. or frequency oscillations at γ̂ = 20 %. The amplitude
chosen corresponds to the dashed line in b.. G′ increases by 55% with Carbopol and by more than a
decade without Carbopol when increasing the frequency from 0.02 Hz to 10 Hz.

Behavior in oscillation

The comparison of the oscillation curves also shows strong differences between the two situations. For
example, the storage modulus G′ is more than 4 orders of magnitude lower in the absence of Carbopol
for most strains (Fig 6.18b). The storage modulus is also lower than the loss modulus in this case. Hence,
at e.g. 20% strain and 1 Hz, the sample with Carbopol behaves like an elastic solid while the sample
without Carbopol behaves like a viscous liquid. The frequency oscillations (Fig. 6.18c) show that these
observations are valid for most frequencies. The sharp increase observed in the storage modulus for a
frequency f ≥ 30 Hz is linked to shear-thickening behavior.
In both cases, G′ increases with the frequency: by 55% with Carbopol and by more than a decade
without Carbopol (when increasing the frequency from 0.02 Hz to 10 Hz).

Based on the spreading experiments and rheological measurements performed on the dried formulations,
we propose, in the following section, a mechanism to explain the formation of aggregates.

6.5 Formation mechanism

In this section, we first attempt to understand how aggregates are initiated from the dry deposits, and then
propose a mechanism and a model to explain why some samples spread while others generate rolling
aggregates. We use the experimental results from the sections 6.3 and 6.4 as well as some additional
results on tackiness and millimeter-sized aggregates to support them.
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6.5.1 Nucleation of the cylindrical shape

After drying, the deposit consists mainly of small sessile drops due to the dewetting. When the aggregates
appear they take the shape of cylindrical rods. To go from a disk geometry to a cylinder geometry, we
can imagine two mechanisms (Fig. 6.19c). First, we can imagine a rolling of the deposit like a snail
shell. Second, we can have a rolling without slipping of the entire deposit like a treadmill. To decide
between these two potential mechanisms, we examine the formation of an aggregate from a sessile drop.
Since the substrate is transparent (PMMA and PDMS bilayer), it is possible to follow what happens
to a sessile drop during shearing by the applicator. Figure 6.19a shows a drop being deformed by the
passage of the applicator and fractured before forming an aggregate visible from t = 0.2 s. We notice
that the aggregate appears at the back of the cylinder whose center axis is highlighted by the gray line.
This suggests a treadmill type of driving mechanism whose steps are now illustrated with a macroscopic
system. Thus, to test this hypothesis, we studied the shearing of a glue pad disk between a sheet of
sandpaper and a transparent PMMA cylinder (Fig. 6.19b). The glue pad (UHU Patafix) is a pressure

middle axis of the 
moving cylinder

V

t=0s t=0.1s t=0.2s t=0.3s

Snail :Treadmill :

1 cm

1 mm

Fig. 6.19 − a. Bottom view, through the transparent substrate (PDMS bilayer), of the formation of
aggregates. The central axis of the applicator is shown as a dashed line. It moves from right to left
according to the direction indicated by the red arrow. Looking at the particular case of the circled
dry deposit we observe at t = 0.1 s a deformation of the deposit then at t = 0.2 s the formation of a
cylindrical "child" aggregate circled in blue. The formulation used was cv = 65 v%, the motion was
done by hand and did not allow to control V and FN . b. Top view of a transparent PMMA cylinder
shearing a Patafix disk deposited on a sandpaper. The disk has been pre-marked with chevrons on its
upper side and crosses on its lower side. Spacers of 125 μm are used to avoid scratching the cylinder on
the sandpaper. It is observed during the experiment that the disk is first deformed by the cylinder before
contracting on itself at the back of the cylinder to form a rod-like aggregate. The crosses are visible in
the second and third picture, indicating a treadmill-like mechanism. c. Schematic representation of two
types of cylinder formation, either through a treadmill type mechanism (left) or through a "snail shell"
type mechanism (right).
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driven adhesive, yield stress, and viscoelastic material. There are no strong chemical bonds between the
glue pad and the walls, but there are strong (cohesive) forces that allow it to roll easily. The materials
of the substrate and applicator were chosen to allow a good grip, and the transparency of the PMMA
applicator cylinder allows to follow the mechanism from above. We observe a deformation of the disc
which extends perpendicularly to the movement. A rod is formed at the back of the applicator. Moreover,
the observation of the marks, made prior to the experiment on the two faces of the disc, testify of a
mechanism of treadmill type as all markers remain (deformed) on the surface of the rod. The glue
pad experiment is a proof of concept that treadmill-like motion is possible with highly cohesive and
adhesive materials and results in a cylindrical rod formed at the back of the applicator. In this case, no
fracture is observed, unlike in Figure 6.19a (for a better understanding of the fracture in a treadmill
mechanism, reference should be made to Fig. 6.26c). Tests performed on dried formulation at 65 v%
also evidenced a treadmill motion when a milimeter sized deposit was sheared between two sandpaper
plates (see section 6.5.3).

To conclude, we consider that a rolling without slipping motion accompanied by a treadmill-like
motion is at the origin of the cylindrical shape of the aggregates.

6.5.2 Proposal for a microscopic mechanism

To get a treadmill motion, as described above, two parameters seem critical: a strong cohesion inside the
material, which prevents it from deforming too much (being spread) while still being able to deform
to roll, and a certain adhesion to the walls that allows the material to be driven in this rolling motion.
We propose that aggregates formation occurs when the cohesion within the material is greater than the
adhesion on the walls. Otherwise, the sample spreads until a fracture within the material occurs.

The illustration of this model is shown in Figure 6.20. It should be noted that some level of adhesion
is always required to ensure aggregates formation. If this is not the case, the deposit is scraped, or
remains in place on the substrate without perturbation depending on how the applicator enter in contact
with the deposit (from the side or the top). This situation is represented in the top line of the figure. It is
equivalent to say slip can occur at one or both walls. We make the assumption of non-slip at the walls.
The main difference between the spreading and rolling situations lies in the behavior of the particles
colored in red and green :

• In the first case (middle line of Fig. 6.20), they remain stuck to the walls: this corresponds to
the spreading situation. The deposit stretches in the spreading direction, which is accompanied
by a movement of the upper and lower walls towards each other, and finally, by a fracture of the
deposit if the material cannot be deformed sufficiently. Fracture can occur in the sample (a picture
of the two fractured parts is shown in Figure 6.26d) or near the interface between the sample and
one of the walls (bottom or top). The cohesion in the material is not high enough compared to
the adhesion to the walls to prevent stretching and/or fracture. When fracture takes place in the
sample, it is considered as "spread".
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Rolling

Spreading

Slip on wall

fracture

Fig. 6.20 − Illustration of the competition between adhesion and cohesion and the resulting behavior
of the sheared deposit: either spread (middle) or undergoing a rolling motion (bottom). The latter
situation describes the formation of rolling aggregates. The spheres represent the solid particles inside
the glycerol/Carbopol matrix (pale yellow). Some are colored (red and green) to easily follow their
displacement. The first line corresponds to a situation where the slip occurs at the top interface. The
yellow arrows indicate the vertical movement of the top plate caused by the deformation of the droplet.

• In the second case, the cohesion within the material prevents a strong stretching of the material.
The adhesive force between the colored particles and the walls is overcome by the cohesive force,
causing them to detach. The rolling without slipping motion starts.

Experimentally, the adhesion on the top and bottom walls are not equivalent as the materials used
(PDMS and latex) are not the same. If the cohesion is greater than the adhesion on one wall but less than
the adhesion on the other wall, fracture and consequently slip is expected to occur at the low adhesion
interface, even though the adhesion is not zero in absolute terms.

The term describing the adhesion energy is written ∆γS with ∆γ the Dupré energy which corresponds
to the work per unit area necessary to move two surfaces apart: ∆γ = γ1 + γ2 − γ12 expressed in J.m−2

(see section 5.3.4). Multiplied by the surface of contact between the material and the wall, S, it gives
the energy needed to separate the two surfaces. However to start a rolling motion it is not the whole
surface of contact that has to detach but only a fraction corresponding to the surface of few particles.
The quantity is denoted Elocaladhesion and is expressed as ∆γrα with r the surface of contact between one
particle and the substrate, and α the number of particles involved in the detachment, rα < S as only a
fraction of the top and bottom surfaces must be detached to perform rolling. To take into account the
dissipation that occurs during crack propagation, a dissipation function Φ should be added similarly as
in Eq. 5.10. Note here that to simplify this model we consider the top and bottom walls are made of the
same material.
The cohesion energy can be written as G′Ω with G′ the storage modulus, Ω the volume of the material.

Aggregates form if :
Ecohesion > Elocaladhesion (6.1)
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which can be rewritten as :
G′

Ω > ∆γ rα Φ (6.2)

The inequality 6.2 is similar to the criterion used in the adhesive field to describe the transition
between interfacial and bulk deformation Gc

Ed [158, 171], where Ed ≈ G′Ω
S and Gc represent the energy

to propagate a crack at the interface. Using the reasoning of Deplace [170] and Nase [173] we would be
tempted to consider Φ ≈ tan(δ ) with δ the phase shift between stress and strain. This approximation
is applicable to elastomers, and has been studied in this framework. The transposition to the case of
dense suspensions may not be straightforward. Further work needs to be done on this question in order
to refine and validate the expression of Elocaladhesion, in particular the dissipative term.

To validate the model (Eq. 6.1) we want to check the dependency of aggregates formation over the
storage modulus (G′) and the adhesion to the walls.

6.5.3 Validation of the model with experimental results

In light of this model, we propose explanations to the results obtained in section 6.3 by combining the
rheological measurements with probe tack test, used to assess the cohesion/adhesion balance.

Aggregates and particle concentration

The formation of aggregates was found to be related to the concentration of particles in the non-volatile
phase. This increase in concentration leads to an increase in viscosity, yield stress and storage modulus.
In Figure 6.21, we observe that the samples that generate aggregates on the first run (red rectangle)
correspond to those with the highest storage modulus G′ and yield stress σy. We estimate that the applied
stress σa is higher than σy in all spreading situations. Indeed, the deformations undergone during the
spreading are very large. The pictures in Figure 6.26d show that the sample has undergone at least 200%
deformation before fracturing, this level of deformation corresponds to the non-linear regime above
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Fig. 6.21 − a. Storage modulus G′ (value at γ̂ = 20% extracted from amplitude sweep test performed
at 1 Hz) and b. yield stress σy as a function of particle concentration cv. The red area highlights the
concentrations at which aggregates can be observed.
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the yield stress (Fig. 6.17). For samples that generate aggregates, the expected strain is less, between
10 and 50%. To know whether the applied stress is above the yield stress or not in this situation, we
tried to estimate the value of σa. It can be expressed as σa =

Fx
S′ , with Fx the tangential force measured

in the x-direction by the force sensor, and S′ = Sβ the area on which this force is applied (β < 1 is a
factor applied on the evaluated area without any deposit, S, to take into account the fact that the deposit
is discontinuous and does not cover the whole area). The main difficulty is the determination of S′

because the initial deposit is discontinuous and the substrate is soft. An estimate for cv = 57 v% gives
σa ≈ 45000 Pa with S′ = 4 cm ×1 mm×0.5 and Fx = 0.9 N corresponding to a situation where half
the surface of contact effectively shears the deposit. Although the value cannot be given precisely, it
turns out that it is of the order of the yield stress, σy(57v%) = 20000±2000 Pa. The uncertainty on β

prevents us from concluding that σa > σy for 100% of the situations, but it is likely to be the case as
the deposit is highly discontinuous and height variations might further reduce the area sheared. In any
case, since the system is not in a stationary flow, but is solicited over short periods of time, it reacts
elastically. In the first moments of the shear, the system is initially at low deformations (γ̂ = γ̇t), it starts
from 0% and increases until the system starts to roll or until it fractures. The yield stress is therefore not
the determining factor here in the understanding of the aggregates, motivating the choice of a model
relying on the cohesion through G′.

G′ increases with particle concentration (Fig. 6.21a), which implies elasticity and cohesion are
greater for materials with high content in solid particles. It can be assumed that the cohesion becomes
greater than the adhesion from a certain concentration. Probe tack experiments are performed to test this
assumption and investigate how concentration might also affect adhesion.

Probe tack test:

time

FN

contact

relaxation

withdrawal

Probe

Sample

Force

Fig. 6.22 − a. Illustration of the probe tack test. b. Typical force profile obtained during an experiment.
After an approach phase, the probe comes into contact with the sample and compresses it until it reaches
the target value FN . The system is left at rest for a few seconds during which a relaxation of the force is
observed. Then the probe is withdrawn which applies a tension on the sample: a strong increase of the
force is measured up to a maximum. At this point, the adhesive contact begins to break and the force
gradually returns to zero as the probe is removed.
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To evaluate the tackiness, related to both cohesion and adhesion, a probe tack test is performed (Fig.
6.22a and b). A sample with a lateral dimension of 8 mm and a thickness of 1 to 2 mm is cut from the
dry deposit and placed on the plane of the rheometer as such or after manual pre-mixing. The probe is a
6 mm diameter cylinder. The rheometer is used to control the movement of the probe and measure the
axial force. The plane of the rheometer and the surface of the probe are covered with sandpaper (grit
P800 ∼ 20 μm roughness). For a typical experiment, the probe enters in contact at controlled speed (0.1
mm/s) until the pressure reaches F = 1.5 N, then pauses for 2 s at the same position, and then pull-backs
at Vpb = 0.5 mm/s (Fig. 6.22b).

The two classic types of behavior are observed: either the material undergoes a cohesive failure or
an adhesive failure. The two situations are illustrated in Figure 6.23a by circles and crosses respectively.
In the first case, the adhesion is stronger than the cohesion, and necking of the material or filaments are
observed, leaving at the end some material residuals on the probe. In the second case, the detachment
occurs at the interface, indicating the existence of strong cohesive forces. Different situations are
observed if the samples are previously mixed or not, we focus here on unmixed samples, the impact
of mixing is discussed in the next paragraph. For samples tested directly after drying (unmixed), if
cv ≥ 56 v% an adhesive failure is observed, while for cv ≤ 50 v% a cohesive failure occurs. At 54 v% a
combination of both situations is observed, called cohesive-adhesive failure. The curves of nominal stress

0 % 40 % 50 % 54 % 56 % 57 % 59 % 65 %a.

b. c.

Fig. 6.23 − a. Pictures of the tack tests for samples at different particle concentrations cv. Two situations
are observed: the failure occurs inside the sample (circle) or at the interface (cross). The cohesion energy
becomes lower than the adhesion energy for cv ≤ 54 v%. b. Normalized force-displacement curve
σN = f (ε) for unmixed samples. σN max and εmax decrease when the concentration of particles increases.
c. Volumetric work of debonding Wdeb as a function of the concentration for unmixed samples. Wdeb
increases as the particle concentration decreases. The pull-back velocity is 0.5 mm/s and FN = 1.5 N.
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(σN = F
πa2 ) versus nominal strain (ε = h−h0

h0
) obtained in the pull-back step for different concentrations

are plotted in Figure 6.23b, with h0 is the initial thickness of the material before the probe withdrawal.
The maximum deformation experienced by the sample before failure, as well as the σNmax, increase
strongly for materials undergoing a cohesive failure. Overall, the volumetric work of debonding, defined
as Wdeb =

∫
εmax
0 σN(ε)dε , increases when the particle concentration decreases (Fig 6.23c). This increase

of Wdeb results from an increase in adhesion, since cohesion is known to reduce (G′ decreases with
particle concentration, in Fig. 6.21). At a really high concentration, almost no adhesion is observed (for
cv = 59 and 65 v%). This could be directly explained by the Dahlquist criterion which specifies that
adhesion cannot occur if G′ > 105 Pa [229] at the bonding frequency. This is because the material is not
able to deform sufficiently to ensure good contact with the probe surface. Figure 6.17a shows that such
ranges are attained for 57 and 59 v% at 1 Hz for γ̂ ≤ 4%.

This experiment allows to measure the balance between cohesion and adhesion. The parallel
can be drawn with the results of this test and the formation of aggregates, if we consider that the
problem can be considered isotropic. If the rupture occurs in the material, it corresponds to a situation
where Eadhesion > Ecohesion and spreading is expected. If the rupture occurs at the interface with a
small deformation of the sample (σN = f (ε) returns quickly to 0), this corresponds to the situation:
Eadhesion < Ecohesion and the formation of aggregates is expected. A fairly good agreement is obtained
with the spreading experiments: in the first run (no pre-mixing) the aggregates are observed from cv ≥ 56
v% (Fig. 6.9), it is also the lowest concentration at which a clear adhesive failure is observed in Figure
6.23a. This comparison is further discussed in section 6.5.4.

In summary, increasing particle concentration is equivalent to increase cohesion and reduce adhesion,
leading to a situation where Ecohesion > Elocaladhesion and aggregates appear.

Change in properties with pre-shear and link to aggregates spreading

In this section, we seek to explain the observation made in section 6.3.2 on the spreading of aggregates.
Indeed, we have seen, at some concentrations, that aggregates can be observed after the first run but they
spread during the following runs by forming wave-like shapes. This situation is observed for example at
62 v%. In Figure 6.24b, we highlight the formation of well-defined, cylindrical, rolling aggregates after
the 1st run and their spreading leading to a wave shape in the subsequent runs.

By performing rheological experiments, we realized that the dried formulations had a modified
behavior in case of prior shearing at high γ̇ . Note that due to fracture and ejection of the sample even at
quite low shear rates, the pre-shear is applied manually by mixing the sample with a spatula. On the
one hand, the viscosity, yield stress and storage modulus decrease (G′(mixed)< G′(unmixed)). On the
other hand, the tackiness measured after mixing increases significantly, for instance, for cv = 57 v% the
sample goes from adhesive failure to cohesive failure by premixing (Fig. 6.24a). The volumetric work
of debonding is multiplied by 24 when the sample is premixed. Therefore, a greater adhesion to the
walls is expected: Eadhesion(mixed)> Eadhesion(unmixed). Both effects increase the weight of adhesion
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After 1st run

a. b.

After 4th run

5 mm

Fig. 6.24 − a. Normalized force-displacement curves for a 57 v% sample that has been previously
mixed (red) or not (blue). The pictures illustrate the cohesive and adhesive debonding that occurs with
and without premixing, respectively. b. Picture of the sheared deposit of the 62 v% formulation after
the 1st run (left) and the 4th run (right). Arrows indicate rolling cylindrical aggregates (left) or spread
aggregates with a wave-like shape suggestive of adhesion points (right).

relative to cohesion. Note that this increase in tackiness is observed for all concentrations as highlighted
in Figure 6.25.

Such change in properties can explain the spreading test results. In the first run of the spreading test,
the sample has not yet been pre-sheared and generates aggregates for cv ≥ 56 v%. This first run acts as a
pre-shearing of the deposit and consequently, during the following runs, the adhesion increases and the
cohesion decreases leading to a spreading of the aggregates for cv ∈ [56,62] v%. Once the aggregates
have been spread, they cannot be formed again. Their wavy shape is evidence of adhesive anchoring at
given locations.

It can be noted that adhesive failure is observed with the tack test from 59 v% which is in contradiction
with the observation of spread aggregates up to 62 v% (Fig. 6.24b). An exact parallel cannot be drawn
between these different situations: it has been shown that the velocity plays a role (see section 6.3.3)
and the choice of Vpb might not reflect the conditions of the aggregate formation in the spreading test. In
addition, the materials used are not the same in the tack test and in the spreading test, which probably
modifies the adhesion. The tendency remains correct and further studies should be performed to refine
these observations.

To explain this shift in properties with pre-shearing, we suspect that a structuring of the material
occurs as the formulation dries: the measured viscosity is one decade higher for a sample directly
tested after drying as compared to a sample that was previously mixed. A first hypothesis could be that
this results from the formation of a particle crust (see section 5.2.2). This hypothesis is supported by
the tack measurement carried out on the samples showing that they are less adhesive before mixing.
Another mechanism involving potentially drying-induced consolidation could be at play [230] but we
lack information on how Carbopol deswells in the presence of particles.
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Fig. 6.25 − a. Pictures of the tack tests for premixed samples (bottom line) at different particle
concentrations cv The unmixed samples from Fig. 6.23 are given in the top line for ease for comparison.
The concentration at which the failure occurs inside the sample (circle) instead of the interface (cross) is
shifted. The cohesion energy becomes lower than the adhesion energy for cv < 59 v% with premixing
(instead of 54 v% without). b. Normalized force-displacement curve σN = f (ε) for mixed samples. c.
Volumetric work of debonding Wdeb as a function of the concentration for mixed (red) and unmixed
(blue) samples. Wdeb increases when performing a pre-mixing. The pull-back velocity is 0.5 mm/s and
FN = 1.5 N.

Effect of the normal force applied

It was previously shown that increasing the applied force allows to go from a situation where the deposit
forms aggregates to a situation where the deposit is spread (section 6.3.3). In our model, aggregates are
generated if Ecohesion > Elocaladhesion. By increasing the applied normal force, Elocaladhesion is expected
to increase. This dependency is usually seen with pressure driven adhesive [164]. In fact, by applying
a greater force on the deposit, the contact area increases. In our case, this translates in Eq. 6.2 by
an increase in α value. Therefore, the cohesion term can become smaller than the adhesion term,
Ecohesion < Elocaladhesion, and spreading is expected for fairly high FN in agreement with the observations
(see Fig. 6.12).

Effect of the velocity

A clear effect of the velocity has been observed experimentally (section 6.3.3). For a given concentration
and normal force, we observe sometimes situations where the sample is scraped at low velocity, spread
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at medium velocity and forms aggregates at high velocity (see Fig. 6.12 and 6.13). Increasing the
spreading velocity is equivalent to increase the rolling frequency of potential aggregates. In Figure
6.17b, dried formulations were shown to be viscoelastic and G′ increases with the frequency. However,
it is questionable whether the range of frequencies studied is really representative of the frequencies of
solicitation experienced by the aggregates.

Limits of the rheological measurements

In oscillatory mode, the frequency range is limited at its lower and upper end by the inability of the
rheometer to track the target strain value. The frequencies at which a rolling soft body is stimulated are
diverse and associated with rolling, contact zone deformation, roughness solicitation ... The smallest
frequency at stake is the rolling frequency. For V = 50 mm/s and R = 50 μm, which are typical values
of shearing velocity and aggregate radius, the rolling frequency is f = V

2πR ≃ 160 Hz. Higher velocities
and lower radius lead to even higher values of the frequency. The rheometer does not allows to reach
this frequency range. We decided, instead of trying to characterize the material at high frequencies, to
decrease the frequency range of interest by studying millimeter-sized aggregates at smaller velocities.
Thus, if R = 1 mm and V = 0.1 to 10 mm/s, the rolling frequency becomes on the order of 10−2 to 1 Hz
which corresponds to the frequency range of rheological measurements.

Millimeter-sized aggregates and link to rheology

A quadrilateral of typical dimensions 10 mm is cut from the dried formulation and placed between
two parallel plates covered with sandpaper (grit P800 ∼ 20μm roughness). The lower plate moves
at a constant velocity V (ranging from 0.1 to 10 mm/s) along the x-axis for 47 mm, while the upper
plate is free to move along the z-axis. A constant mass of 69 g is applied by the upper plate. The
displacement of the sample is tracked laterally by a high speed camera. This gives access to the velocity
of its barycenter Vs and the relative velocity ṽ is defined as ṽ = Vs

V . The results are given for different
solid particle concentrations in Figure 6.26a. Two types of situations are observed :

• ṽ ≃ 0.5: This value corresponds to the theoretical prediction for a rolling without slipping. This
type of behavior is depicted by the pictures presented in Figure 6.26c for cv = 57 v% and V = 1
mm/s. At the end of the experiment, a rod-shaped object is obtained.

• ṽ ≃ 1 or ṽ ≃ 0: The sample moves at the same velocity as the lower or upper plates respectively.
This situation is more difficult to observe because the upper and lower plates tend to move closer
and closer together, as shown in Figure 6.26d. At the end of the experiment, two objects are
usually obtained, one on each plate, testifying to a fracture that occurred in the middle of the
sample during the experiment. The shapes of the two deposits show that the sample is partially
spread before the fracture.

Rolling without slipping is obtained for high particle concentrations. Furthermore, this experiment
highlights the velocity influence on the behavior of the sheared deposit since either rolling or spreading
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Fig. 6.26 − a. Relative velocity of the millimeter-sized object ṽ as a function of the NP concentration in
the dried formulation. The substrate velocity is varied : V = 0.1, 1 or 10 mm/s. b. Relative velocity
as a function of storage modulus measured at the expected rolling frequency (around 0.6 and 0.06 Hz
for velocity of V = 10 and 1 mm/s and an initial diameter of 5 mm). The values of G′ are extracted
from Fig. 6.17a. Picture taken from the side view for a shear experiment showing: c. the rolling of a
sample at cv = 57 v%, V = 1 mm/s, with the initial and final shapes of the deposit at the bottom, d. the
spreading and fracturing of a sample at cv = 54 v% and V = 0.1 mm/s. The yellow arrows indicate the
presence of the sample. The pictures at the bottom show the sample is elongated before fracturing in
two parts during the process. The upper plate is the white rectangle and the lower plate is light gray. The
upper plate can move freely along the vertical and in d. it descends.

is obtained by varying the velocity at a given concentration (e.g. at 56 v% and 57 v%). By examining
the value of the elastic modulus G′ at the rolling frequency, we observe that we can define a critical
value G′

v ≈ 15 kPa above which the sample rolls instead of spreading (Fig. 6.26b).
This study on millimeter-sized samples highlights the dependency of aggregate formation (rolling

behavior) on shearing velocity. This can be related to the viscoelastic properties of the material: a higher
velocity means a higher rolling frequency which leads to a higher storage modulus. In other words, the
elasticity and thus cohesion of the material increases with the velocity applied to shear it, until, beyond a
critical value, it becomes sufficiently large relative to the adhesion so that the material can no longer be
spread but starts to roll.

An example of mixed behavior can be observed in Figure 6.26c: in the picture at t = 22.5 s, we can
see a filament of the material that has been stretched and broken in the middle. The cohesive forces are
not high enough to avoid some fracture of the material, leaving a deposit on the substrate. However,
when looking at the deposit as a whole, it rolls, indicating cohesion and elasticity that are nevertheless
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strong.
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Fig. 6.27 − Effect of the pull-back velocity on tack measurements a. Normalized force-displacement
curve for a premixed 60 v% sample with Vpb = 0.01 (blue), 0.5 (yellow) and 3.2 mm/s (red). b. Peak
stress σNmax as a function of Vpb (logarithmic scale). c. Maximum extension as a function of Vpb.

Confirmation of the velocity effect by tack measurements

The probe test is carried out at various pull-back velocity (Vpb = 0.01, 0.5 and 3.2 mm/s) on premixed
samples at 60 v% for which velocity has been shown to have a wider impact on the spreading test results
(Fig 6.12 bottom line). Reducing the pull-back velocity leads to lower and wider peaks: σN decreases
while εmax increases (Fig. 6.27). In all cases, detachment occurs at the interface level but some residuals
are visible on the probe and their amount increases when the velocity is reduced. Concretely, the sample
deforms more for lower pull-back velocities. This can be understood as the solicitation frequency fpb

reduces when Vpb diminishes: Lakrout et al. proposed to approximate fpb by Vpb/h0 [166]. With h0 ≃
1 mm, fpb = 0.01, 0.5 and 10 Hz respectively. Reducing the velocity therefore implies to reducing
G′ and thus reducing the cohesion of the sample. Reducing the pull-back velocity can also have an
impact on the adhesion as the surfaces are kept longer in contact and relaxation and rearrangements are
favoured. Although we did not observe cohesive failure at low velocity, this measurement suggests that
as velocity increases, the material is less able to deform and should form rolling aggregates more readily.
This is confirmed by the millimeter sized aggregate spreading test. Sheared between the two plates the
premixed samples are spread for V = 1 mm/s and a hybrid situation is observed at V = 10 mm/s (rolling
frequency f ≈ 0.7 Hz): part of the sample remains stuck on the upper plate while the rest starts to roll.
One would have expected to observe rolling aggregates at both V = 1 and 10 mm/s since the tack test
gave quite good adhesion failure (very few residuals left on the probe). This reasoning is too direct and
it does not take into account the fact that the pull-back or spreading velocity correspond to different
solicitation frequencies. A factor 10 is present between the two, the rolling frequency ( f ) being lower
than the pull-back frequency ( fpb) for a given velocity. The tack curve that should be used to interpret
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the millimeter aggregates spreading at V = 1 mm/s, thus would lie in between the yellow and blue curve:
it describes a sample that tends to deform (εmax high), which shows a tendency to be spread.
The tack test measures the change in properties due to the change in velocity which is another confirma-
tion of the impact of velocity.

Carbopol role

The study of the Carbopol (c) role revealed that without Carbopol (nc) the formulation did not generate
aggregates (see section 6.3.4). The rheology shows that the removal of Carbopol leads to a very strong
decrease in the value of G′ so: G′

c ≫ G′
nc (4 orders of magnitude for cv = 57 v% at 1 Hz and γ̂ = 20% in

Fig. 6.18). The cohesion of the material is strongly reduced without Carbopol, which favors spreading.
When performing the tack test on 60 v% in pure glycerol, the sample behaves as a shear-thickening
liquid, a capillary bridge forms during the pull-back and finally breaks leaving residuals on the probe.
The adhesion is hence stronger than the cohesion of the material which explain why Carbopol-free
formulations spread.

Substrate dependency

To further confirm the importance of adhesion, aggregates formation was tested on a wide range of
substrates. A range of sticky PDMS was prepared by changing the ratio of polymer to curing agent
(50:1, 35:1 and 25:1) with Sylgard 184. These samples were both soft and sticky because there is no thin
hard layer unlike our bilayer PDMS. We observed that the sticky PDMSs did not allow aggregates to
form while the smooth PMMA led to complete scraping of the deposit. This highlights the importance
of material selection (substrate and applicator) for the test. If the substrate is too sticky, the adhesion is
greater than the cohesion of the material and the formulation is spread, whereas if the adhesion is really
weak (smooth PMMA), it is scraped off. Adhesion also partly explains differences in concentration at
which the first aggregates are observed when comparing real skin, industrial skin, and PDMS bilayer.

6.5.4 Comparison of the different tests

The following is a summary of how the different tests carried out - spreading test with the robot, tack test,
and spreading of millimeter-sided objects - compare with each other in terms of results. In the Figure
6.28, are recalled the results obtained for these three tests according to the quantity of solid particles, on
samples previously mixed or not. We show for unmixed samples, that the appearance of aggregates (in
the spreading test), the observation of adhesive failure (tack test), and the rolling of millimeter sized
aggregates are observed for nearly the same concentration which is around 56 v%, with more or less
uncertainty depending on the tests. Less agreement is observed for premixed (or presheared) samples
when comparing the spreading test with the tack test and the spreading of millimeter-sized objects; the
latter two underestimate the concentration at which aggregates appear. In general, the values at which
aggregates, adhesive failure, and rolling are first observed are in 8% range. Of these three tests, the tack



6.5 Formation mechanism 165

v%

30 40 60 70

AggregatesSpreading

Without premixing

Cohesive failure Adhesive failure

v%

55 56

30 40 50 60 70

50 56

v%

30 40 60 70

Spreading Rolling54 56

50

With premixing or preshearing

v%

30 40 60 70

AggregatesSpreading

Cohesive failure Adhesive

failure

v%

62 65

30 40 50 60 70

57

v%

30 40 70

Spreading Rolling57

50

50

59

60

Spreading test:

Tack test:

Millimeter-sized

aggregates:

Fig. 6.28 − Comparison of the results observed when performing: the spreading tests with the Cobot
(after the 1st run (left) or 4th run (right), V = 50 mm/s, FN = 0.6 N), the tack tests (Vpb = 0.5 mm/s) and
the spreading of millimeter-sized aggregates (V = 10 mm/s, FN = 0.7 N). Samples were pre-mixed or
pre-sheared prior to the experiments in the right column. The hatched areas correspond to the uncertainty
range.

test seems to be a promising and easy-to-implement test for predicting whether or not aggregates will
appear.

6.5.5 How to favor spreading ?

Here is a summary of the different lever of action that have been shown to be relevant to reduce the
incidence of aggregates.
The balance between adhesion and cohesion can be shifted in favor of spreading by:

• Decreasing the solid particle concentration (for cv < φM). The adhesion becomes larger than the
cohesion as the particle concentration decreases: the storage modulus decreases and the adhesion
energy is increased.

• Increasing the concentration of solid particles (for cv > φM). There is not enough interparticular
fluid to provide capillary bridges over the entire sample. In this case, the overall cohesion becomes
weaker and weaker and the spreading starts to be important again (e.g. 90 v%).

• Removing the Carbopol from the formulation. The cohesion is greatly reduced: the storage
modulus is strongly decreased, resulting in a viscous fluid.

• Pre-shearing of the dried deposit. It leads to an increase in adhesion energy relative to cohesion
energy, especially through a decrease in the modulus of elasticity.

• Modifying the substrate to increase its adhesion to the material.
• Increasing the normal force applied during the spreading to increase its adhesion by maximizing

the contact surface.
• Reducing the spreading velocity. As seen previously, a decrease in velocity can be associated with

a decrease in the frequency of material solicitation, which is accompanied by a decrease in storage
modulus. This leads to a decrease in the cohesion of the material, which can become lower than
the adhesion. The latter might be enhanced by longer contact time.
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Fig. 6.29 − Illustration summarizing the model and representing the different behaviors observed as a
function of the balance between adhesion and cohesion. The adhesion is assumed to be equivalent with
the upper and lower surfaces. If the adhesion is too low, the deposit remains at rest or is mechanically
pushed aside by the applicator. In the case where there is no slip on the walls: if the cohesion is higher
than the adhesion, the deposit forms aggregates, otherwise it is spread (with potential fracturing of the
material). When both adhesion and cohesion are very important, the whole system can be blocked. The
color arrows represent qualitatively the influence of the different factors on the adhesion/cohesion ratio
and consequently on the emergence or disappearance of aggregates.

6.6 Link with φM

In this last part we look for a simple formulation criterion to avoid aggregate formation, that can be
easily assessed and followed by formulators. In the previous sections, it was shown that aggregates are
particularly present from 65 v%. This volume fraction is close to the jamming fraction measured at
φM = 64±1v% in pure glycerol. Kusina studied aggregates formation with corn starch and concluded
that having a volume fraction of particles above φM systematically leads to systems that form aggregates
[3]. Above this volume fraction, there is not enough liquid to maintain a continuous phase. In bulk, this
situation is equivalent to granulation (Fig. 6.30). He proposed to consider φM as a criterion to avoid
aggregation. Here, we verified this criterion by testing other particles and other formulation systems
(oil-based) and showed that it is not a "strict" limit. Some aggregates can appear below this threshold as
long as the cohesion is greater than the adhesion as stated in the previous section.
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Fig. 6.30 − NP in pure glycerol at various volume fraction. Glycerol is progressively added from left to
right. φM correspond to the volume fraction were a unique ball is formed, here around 64.9 v%.

6.6.1 Formulation tested

In this section, the different types of particles and formulation bases used to validate the role of φM are
presented.

The particles studied are:
• Porous silica (H51, Sunsphere). The volume porosity is 0.74 mL/g, giving a density of 0.82 (true

density of 2.15). The pore diameter is 5.5±1 nm. It was measured by the nitrogen adsorption
method allowing the measurement of interconnected and semi-interconnected pores.

• Cellulose beads (Cellulobeads USF, Daito Kasei). These particles are porous: the volume porosity
is 0.58 mL/g and the pores diameter is around 9.4 nm. The true density is 1.56 and it becomes
0.82 when the porosity is taken into account. In addition, the cellulose beads show roughness (in
air) and strong swelling in lots of different solvents. Using an optical microscope, we observed
that the particles swell by a factor of 1.3 in pure glycerol, of 2.3 in water. In a water/glycerol
mixture at 10wt% in glycerol, the particles swell and remain swollen (factor 2 in volume) even
after evaporation of the water.

• Corn starch (Beauté by Roquette® ST 005, Roquette). These particles are angular and are well
known to present strong shear-thickening behavior. The density is 1.54. They present a slight
swelling both in water and in glycerol: the volume increases by a factor 1.26.

They are all rather spherical and of comparable size (about 5 μm). Swelling and porosity are important
to evaluate: they must be taken into account to properly assess the volume fraction of the particles.

a. b. c.
Silica Cellulose beads

5 µm5 µm 20 µm

Corn starch

Fig. 6.31 − SEM images from L’Oréal of a. Porous silica (H51) b. Cellulose beads (USF) c. Corn
starch (ST 005).
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In addition to the water-based formulation system used so far (water/Carbopol/glycerol), an oil-
based formulation system is also studied. It consists in a mixture of isododecane (volatile phase) and
100 cSt silicone oil (non-volatile phase) at 10 wt%. Isododecane (2,2,4,6,6-Pentamethylheptane from
Ineos Oligomers) was chosen because it is commonly used in cosmetics and evaporates quickly (0.803
mg/cm2/minute at 25◦ and 50% relative humidity [231]). Silicone oil (Sigma Aldrich) is also a cosmetic
material, the one used is 7 times less viscous than glycerol in the water-based system.

6.6.2 Evaluation of φM and calculation of volume fractions

Measurement protocol

The principle of the measurement is to scan the phase diagram to find the volume fraction at which
the system changes from a granular state to a concentrated liquid (Fig. 6.30). The liquid is added
progressively (almost drop by drop) to a known quantity of powder (∼ 1g) while homogenizing with
the spatula between each addition, until a single ball is formed that does not flow at rest and is not soft.
φM corresponds to the fraction in particle at which this ball is formed. To increase the measurement
accuracy, the phase diagram can be run back and forth several times (addition of liquid until φ < φM,
then powder until φ > φM).

Equations used to calculate volume fractions

The general equation of the volume fraction (5.1) is recalled here:

φ(v%) =
vp

vp + vil
=

mp/dp

mp/dp +ml/dl

with mp, ml the weights and dp, dl the densities of the particles (true density) and the interstitial liquid
respectively. Note here that vil represents the volume of interstitial liquid, and that in the following vl is
used to denote the total volume of liquid. These two volumes correspond the non-volatile phase.

Case of porous particles: we define dpp the density corrected by the pore volume vpores (in cm3/g of
powder), dpp =

1
vpores+1/dp

There are two extreme cases:
• Either the liquid does not enter the pores:

φ(v%) =
vp

vp + vil
=

mp/dpp

mp/dpp +ml/dl

• Or it enters the pores (volume vl p), then vil = vl − vl p:

φ(v%) =
vp

vp + vl − vl p
=

mp/dpp

mp/dpp +ml/dl − vpores.mp
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Case of swollen particles: the effective volume of the particle increases (increase factor g) while the
volume of the interstitial liquid is reduced by vlg (volume of the fluid involved in the swelling).

φ(v%) =
vp.g

vp.g+ vl − vlg
=

mp/dp.g
mp/dp.g+ml/dl − (g−1)mp/dp

=
mp/dp.g

ml/dl +mp/dp

Case of porous particles that swell: the two effects must be combined.

φ(v%) =
mp/dpp.g

mp/dpp.g+ml/dl − vpores.mp − (g−1)mp/dpp
=

mp/dpp.g
ml/dl − vpores.mp +mp/dpp

It is quite difficult to calculate the actual value of the volume fractions because particle swelling can
be difficult to measure and many uncertainties remain about the pore volume actually accessible to the
fluid.

Choice of the fluid

For the oil-based systems φM is measured in the non-volatile phase, i.e. pure silicone oil.

For the water based systems the choice of the fluid is debatable. The options considered for a direct
measurement were pure water, pure glycerol, mixture of glycerol in water (at 10 w%) and dried
formulation (Carbopol in glycerol). None of these allow direct comparison with the spreading experiment
as they correspond, at the best, to the environmental media of the solid particles at a specific moment of
the experiment (e.g. before or after drying). For non-porous and non-swelling particles such as NP, the
φM values obtained in water, glycerol, and dried formulation, are 76.3, 73.2, and 72 w% respectively.
The volume fractions corresponding are quite close, 60, 64, and 60 v%. In this case the choice of the
liquid has little impact on the value of φM. The best compromise seems to be the glycerol: the dried
formulation has to be prepared in advance (with 2 days of drying) and the yield stress resulting from
the carbopol presence makes the φM measurement difficult. Additionally, measuring φM in glycerol is
preferred to pure water, as it is closer to the final conditions in which the aggregates are formed.

However, in the case of porous or swelling particles, the history experienced by the particles is
important. Fluid penetration into the pores and/or its participation in swelling may be initially favoured
by the presence of water, while it may be prevented in case of highly viscous fluid, high yield stress or
unfavourable interactions between the particles and the remaining solvent. Consequently, neither the
measurement in pure water, nor in pure glycerol, or in the dried formulation is fully satisfactory. The
best practice would be to prepare samples with increasing particles concentration in the water, glycerol
and carbopol mixture, let them dry and test whether the dry samples flow or granulate. This technique
was not chosen because it is time consuming and would not be easily transferable to industry. Instead,
the choice was made to perform the measurements in glycerol for the porous particles, as glycerol is
expected to enter the porosity as easily as water (molecular diameter 0.5 nm). For the swelling particles,
the presence of water is primordial to promote the swelling (section 6.6.1) so the measurements were
made in pure water.
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Table 6.1 Summary the fluid chosen to measure φM

Particles Type Water-based systems Oil-based systems
Non porous silica (NP30) hard sphere glycerol silicone oil

Porous silica (H51) porous glycerol silicone oil
Cellulose (USF) porous and swelling water silicone oil

Starch swelling water silicone oil

Note that we expect a few percent of error from these choices since they are not fully representative
of the reality undergone by the formulation during a spreading experiment. However as it will be shown
later this approach is still useful to give guidance to formulators.

6.6.3 Results on the industrial skin model

The industrial spreading tests, described in section 6.1.2, were performed for at least three different
concentrations for each [particles, formulation base] combination. We assumed that the interstitial
liquid penetrates the pores of the H51 silica, and the cellulose beads. For the water-based systems, the
non-volatile liquid is considered to also participate in the swelling of the cellulose bead particles (swollen
by a factor of 2 in volume) and starch (by a factor 1.26). Grades are given according to industrial criteria,
meaning both white powdery deposit and aggregates will be graded 5. The results are displayed in
Figure 6.32.

We observe that all samples formulated above φM generate defects and are graded 5, as expected.
This observation is valid for both water-based and oil-based systems. Below φM , most samples are well
spread. However, we can observe that some samples, close to, but below φM, can show aggregates.
This effect is particularly important with starch where defects are observed from cv = 30 v%, while
φM is evaluated at 62 v%. For non-porous silica, defects are also observed from cv = 50 v% which is
comparable with the results obtained with the new set-up presented in section 6.3 (defects were observed
from cv = 55 v%). It is interesting to note that the same observation can be made for oil-based systems.
Consequently, φM is a one sided limit: it should not be exceeded to avoid defects such as aggregates (or
others), but formulations below this fraction are not necessarily defect-free as some aggregates can be
formed at an intermediate fraction.

An important point highlighted in Figure 6.32 is that for particles that swell or have porosities, the
jamming fraction is reached at very low mass fractions. This is the case for cellulose beads for which we
estimate φM around 66 v% which corresponds to a mass fraction of particles of only 22 w%. This shows
that it is very important for formulators to adapt their mixtures according to the φM of each particle.
Determining whether a particle is porous or swollen is interesting to understand the physics behind the
values measured, but from a practical point of view, one can mostly focus on the mass fractions. For
instance, with the porous silica, the limit is 35 w%, and to determine this, one only needs to know the
mass of the particles and the liquid. The density and porous volume values are not involved, which
reduces measurement and approximation errors and it is not necessary to make assumptions about the
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Fig. 6.32 − Evaluation of the defects obtained during the spreading of water-based (left), or oil-
based (right) formulation on the industrial skin model. On each graph are represented the φM values
(continuous line) delimiting the areas were defects are expected (red zone). The φM values correspond
to measurements in silicone oil (black), glycerol (purple) or water (blue). The tested samples are
represented by dots. The colors correspond to their grade (green=1 or 2 , orange=3 or 4 red=5). The
particle concentration in the non-volatile phase is expressed either by mass fraction (top) or by effective
volume fraction (bottom). The hypotheses used for the calculation of the effective volume fraction are
signaled by markers. For cellulose beads and starch, the liquid participates in the swelling (square) in
water-based systems. For porous silica and cellulose beads, the liquid (water, glycerol, or silicone oil,
depending on the situation considered) is assumed to enter the porosities (star).

presence of liquids inside the pores. The cosmetic formulations should have mass fraction of solid
particles in the non-volatile phase below this value. For greater confidence, the measurements should be
performed in the non-volatile phase and the main liquid phase (e.g. water) if the particle is suspected to
swell and if there is a difference, further investigation is required.

The assumptions made about the role of the fluid in swelling and pore filling are supported by the
fact that the values of φM obtained are all around 64 v%, which is the theoretical value expected for
spherical monodispersed hard spheres. In oil-based system the range of values is wider than for water
based systems. For instance φM for cellulobeads in silicone oil is estimated around 51 v%. This could
be related to the surface roughness (Fig. 6.31). In water-based formulation the swelling is thought to
smooth the surface which is consistent with a value closer to 64 v%.
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The defects observed with silicone oil are mostly white powdery deposits, or flake-like clusters
of particles with very low cohesion. The situation can be compared to the particle formulated in pure
glycerol: the viscosity of the silicone oil is lower, and the potential capillary bridges are weaker (lower
surface tension: 63.4 mN.m−1 for glycerol [232] and typically three times less for silicone oil [84]).
Therefore, the dried deposits are not cohesive enough to generate rolling aggregates.

6.6.4 Origin of defects formation when φ < φM

When φ < φM, the formation of cylindrical aggregates is no longer a granulation problem but can be
explained by a cohesion larger than adhesion (see section 6.5). Thus this is expected to have aggregates
below φM in most of the systems studied.

Another rheological factor that has not be explored in depth here, but which could explain the
peculiarity of starch, is the strong shear-thickening behavior. Doing the same study with starch directly
formulated in pure glycerol (no drying phase), we obtained aggregates that have the peculiarity of
flowing at rest for cv ≥ 35 v%. The rheology of these formulations shows a continuous shear-thickening
above this concentration. It is conceivable that in the presence of Carbopol, which ensures the solid
behavior at rest, the aggregates are maintained in their shape. A parallel can be drawn with Cates’s study
about the granulation from suspensions undergoing brittle fracture, with capillary forces stabilizing the
granule shape and maintaining a jammed state [127, 128].

Other experimental factors that could play on the emergence of these aggregates below φM are the
potential deterioration of the substrate that plays a role of nucleator of aggregates, and the difficulty to
ensure a perfect cleaning of the substrate (in particular at the level of holes and folds).

If we now return to the problem of the application of cosmetics on the skin, the presence of hairs, dead
skin, as well as the possible penetration of glycerol in the skin are likely to be amplifying factors for the
appearance of aggregates below φM.

6.6.5 Reducing aggregates formation by increasing φM

We presented φM as a limit that should not crossed by the formulators in order to largely avoid the
formation of aggregates.

To avoid this problem one can also change the approach and try to increase φM (the value in volume
and mass) to widen the concentration range available to the formulator. Several methods are possible,
some of which were described in the previous chapter:

• Improving the dispersion of particles to avoid aggregated systems that do not optimize particle
stacking [233]. This can be achieved by using a dispersant to reduce attractive colloidal interactions
[234].

• Using polydisperse systems. The interparticule space can be optimized in this way. Smaller
particles will be able to fit into the spaces left by the larger particles [122, 123].
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• Reducing the friction coefficient. This can be done by reducing the roughness of the particles,
which can more easily slide but also roll on one against another [21]. Another technique is to use
polymer coating. The polymer brush fixed on the particles can facilitate their sliding. In the work
carried out by Poon and collaborators, the lecithin was used to reduce the coefficient of friction of
chocolate [120], and the polyacrylic acid added to calcite resulted in φM increase of about 10%
[24]. These works seem promising but it is difficult to disentangle the effect of the polymer as a
dispersant or a friction modifier.

It is difficult to demonstrate experimentally that increasing φM by any of these methods increases the
range of concentrations at which no aggregation occurs with our systems. This is due to two factors.
First, the expected variations in φM are overall quite small in the case of conventional particles. For
instance, modifying the coefficient of friction of 34% (by urea sorption) only resulted in an increase
in φM by 1% [234]. Otherwise, when the variations are significant, this is often not really accessible
in the usual situations. For example Hsu et al [21] who reports increases in φM of 15 points, which is
very large, have model systems that have extreme characteristics (smoothness and roughness), which
does not give a good idea of the variations expected for more conventional systems. Identically with
polydispersity, the largest variation in φM corresponds to extremely well-defined quaternary systems
with a diameter ratio that reaches more than 300 between the smallest and largest spheres [122]. This
difference in diameter is not feasible in cosmetic products where nanoscale particles raise toxicity issues
and only a small diameter range generally gives the desired properties. Secondly, it was previously
shown that φM is not an absolute limit: aggregates are visible below this value and even with the robotic
spreading setup on PDMS bilayer there is a range of concentration for which it is difficult to determine
if aggregates are formed or not (cv = 55−62 v% with NP). This uncertainty is greater than the expected
variations of φM in the case of mixing of bidisperse systems for example, so we could not validate these
proposals.

For an equivalent volume fraction of particles, it is also possible to increase the maximum mass fraction
(the value of φM in w%) and consequently the number of particles:

• By using non-swelling particles. Thus it is possible to put a larger number of particles in the same
volume.

• By using non-porous particles, or particles with closed pores. This avoids that a part of the
liquid does not participate in the interstitial liquid phase. One solution would be to use highly
cross-linked polymer particles.

The interest of these methods depends on the effect sought by the presence of these particles. In
cosmetics, it is often preferable to have a large number of small particles to ensure good covering.

6.7 Conclusion
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Conclusion − Chapter 6
In this chapter, we studied the formation of rolling cylindrical aggregates that appear at the
end of the spreading of a cosmetic deposit (after evaporation of the volatile phase):

1. We proposed a new set-up to study the formation of aggregates with back and forth
movements performed by a robot on a skin model made of a PDMS bilayer.

2. We investigated the factors having an impact on the formation of aggregates. We
observed that they form from discontinuities in the deposit. We also pointed out that
the formation of aggregates is related to the particle volume fraction in the non-volatile
phase and the presence of Carbopol. The application parameters such as the velocity
and, to a lesser extent, the applied strength, affect the development of aggregates.

3. Rheological measurements of the dried formulations revealed the presence of a strong
yield stress associated with high storage modulus , the latter increasing with the fre-
quency. However we highlighted the limit of classic rheology to study the formulations
in the right range of solicitation due to partial ejection, fracture and slip of the sample.

4. We proposed a model to explain their formation as a competition between the cohesion
of the material and its adhesion on the substrate and applicator surfaces. Under the
condition of no slip at the walls, if cohesion is greater than adhesion then the material
tends to detach and start to roll rather than deform and spread.

5. We validated this model and particularly understood the role of particle concentra-
tion, Carbopol and velocity in light of this model. In addition to the spreading test
results and rheological measurements, probe tack tests were used to assess the co-
hesion/adhesion balance, and larger scale systems enabled to study the rolling or
spreading of macro-sized aggregates. As a perspective, we think it would be interest-
ing to further investigate the link between tack test results and aggregates formation.

6. Focusing on the formulation lever, we have shown, in agreement with the work of C.
Kusina [3], that the volume fraction of particles should not be higher than φM in the
non-volatile phase to partly avoid the presence of aggregates but also other defects such
as white powdery deposits. For formulations at higher volume fraction the non-volatile
phase amount is too low to ensure a continuous media.

7. This limit is a one-sided limit, which means that some aggregates can also be observed
below it, especially if cohesion is stronger than the adhesion, and shear-thickening
might also play a role.

8. For swelling and porous particles, φM corresponds to low mass fractions of solid
particles in the non-volatile phase. Evaluation of φM should help formulators to avoid
preparing samples that are doomed to generate aggregates.
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6.8 Perspectives

This exploratory study presented in the manuscript about aggregates formation in the presence of solid
particles is a first step in the understanding of this phenomenon. Further work needs to be accomplished
to refine and validate quantitatively the model proposed to describe and match closer the application
case.

For instance, our substrate (the PDMS bilayer) is smooth and does not present folds and holes like
those encountered on skin. This geometrical difference implies that the experimental conditions for
the formation of aggregates, in particular the normal force applied, are not the same. An important
force (about 5 N) is applied to form the aggregates on the skin while in our experimental device it is 10
times weaker. This difference in geometry implies more complex phenomena in the case of the skin as
the material has to be extracted from the bottom of the folds and limits the parallels that can be made
when comparing the results. Studying the formation of aggregates on wrinkled substrates, used to better
represent the skin, would be interesting to compare the effect of topography.

The most promising way to predict the formation of aggregates and to move towards a quantitative
approach in order to validate the model, is from our perspective the tack test. In particular, it would
be relevant to perform this test by covering the probe and the substrate with surfaces that are more
representative of the skin. A first step would be to use PDMS and latex surfaces to make a better parallel
with the robot spreading test.

Quantifying the adhesion part of the model is challenging. Nase and Deplace have shown that, by
using rheological and tack test at small pull-back velocity, it was possible to evaluate the adhesion term
with the dissipation factor [170, 173]. We did not have enough time to try to extend their approach to
our materials but it seems to be an interesting way to go towards a better quantification of aggregates
formation.





Conclusion and perspectives

In this thesis, we studied the spreading of complex fluids in order to better understand the phenomena
involved in the application of cosmetics and pharmaceuticals. By modeling the first movement of a cream
application using a soft blade coating of a finite amount of liquid, we came to the conclusion that the
deposited thickness was not constant and decreased as the reservoir emptied. We proposed, by balancing
the elastic and viscous forces, a scaling law that gives the deposited thickness for a shear-thinning
or a Newtonian fluid as a function of the blade wetting length lw, a parameter allowing to follow the
filling level of the fluid reservoir. This scaling law successfully explains how the finite reservoir of fluid
affects the thickness of the deposit. It was confirmed with a numerical model whose scope was extended
(compared to the previous literature) in particular by taking into account large deformations and the
presence of a meniscus at the back of the reservoir. The deposited thickness increases with spreading
velocity and fluid viscosity and decreases as blade rigidity increases. Capillary effects are second order
and, when the wettability of the fluid on the surfaces decreases, the deposited thickness increases slightly.
Our work leads us to believe that the analogy with dip coating, where elastic forces are considered to
replace capillary forces, does not hold in the case of a finite reservoir.

In order to compare the spreading of a shear-thinning fluid with that of a Newtonian fluid, we have
defined a so called Newtonian "equivalent" fluid (and the corresponding viscosity) such that the same
amount of fluid is deposited in the same amount of time. In this context, it is necessary to provide more
energy to spread a shear-thinning fluid than a Newtonian fluid. We also observed that the deposited film
is more homogeneous if a Newtonian fluid is spread compared to a shear-thinning one, and this effect
can be amplified by reducing the viscosity of the Newtonian fluid.

The presence of normal forces did not experimentally show any effect on the deposition law. Normal
force fluids can be satisfactorily described by considering only their viscous properties. This result is
linked to the geometry used. In order to predict whether normal forces have an effect in this situation,
one should not rely on the Weissenberg number which compares viscous and normal stresses but on a
dimensionless number which compares the pressures resulting from these stresses. Thus a geometric
factor, which is the ratio of the deposited thickness over the wetting length, is introduced. In our situation,
this term is small, which explains the absence of normal stress effects, contrary to what has been reported
in the literature for dip coating experiments, where normal forces lead to a swelling of the deposited
film.
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Yield stress fluids spreading with a flexible blade gave very scattered results. We identified two
reasons for this discrepancy in the data. First, due to the yield stress, the blade may be initially out of
equilibrium which may lead to a draining of the reservoir from bottom to top, thus at constant wetting
length, which is not taken into account in our model. Secondly, a part of the fluid present in the reservoir
remains stuck under the blade and can lead to successive redeposition cycles, producing patchy deposit
of fluid. These two phenomena prevent us from modelling easily the coating of yield stress fluids with a
flexible blade.

By judiciously combining the different types of fluids, we highlighted the impact (or absence of
impact) of the different rheological properties studied over the deposited thickness.

This model of spreading in linear motion using a flexible blade on a rigid substrate is somewhat far
from real cosmetic applications. At best, it represents the first movement realized during the spreading
of a cream which is then followed by complex circular and back and forth movements. However, this
study provides leads for cosmetic formulations by showing that the fluid which spread in the most
homogeneous way with the least energy is a Newtonian fluid of low viscosity spread slowly.

An interesting avenue to pursue would be to see the effect of substrate elasticity using a soft material
as a substrate, such as PDMS. In the case of an infinite reservoir, Corvalan predicts that the deposited
thickness is thinner, all other conditions being equal [7]. The measurements with an optical profilometer
will not be straightforward because the reference level corresponding to the skin position before spread-
ing will be modified in the presence of liquid.

In a second part, we have made the formulations, materials and gestures more complex to get closer
to a more representative spreading situation. These modifications allowed us to study the formation
of particle aggregates which may appear when the cosmetic deposit is sheared after drying. Normally,
the presence of a non-volatile phase should ensure a continuous medium capable of spreading. When
the particle volume fraction is higher than the maximum packing fraction φM, aggregates formation is
expected and is similar to granulation. Taking into account the swelling and the porosity of the particles
is essential to correctly evaluate this limit which should not be exceeded by the formulators. However,
aggregates can also be observed below this threshold. Aggregates are considered to form when the
cohesion of the dried formulation prevails over the adhesion on the walls of the applicator and substrate,
otherwise the dry deposit is spread. We managed to show that one can switch between these situations by
changing: the volume fraction of the particles, the presence of polymers, the spreading speed, the applied
force and the adhesive properties of the walls. While rheology was very limited to evaluate the properties
of dried formulations with high particle content, the tack test allowed to evaluate the adhesion/cohesion
balance according to the observed failure mode. Thanks to this study and the proposed model we are
able to better understand the formation of aggregates and therefore better prevent their occurrence.

From our point of view, the tack test represents a way to pursue the study of the formation of these
aggregates and in particular to allow a quantitative validation of the model that we propose. It would
be interesting to use the same surface as in the spreading test to improve the similarity of conditions
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between these tests. It also seems relevant as an industrial test because it is easy to set up and could
allow a quick evaluation of the risk of aggregates formation that is not user dependent.

An important part of the cosmetic formulations being emulsions, it would be interesting to study the
role that the second phase can have in aggregates formation in light of this model.
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A. Impact of the Wetting Length on Flexible Blade Spreading
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In this appendix is reproduced the article published about the spreading of Newtonian fluid showing in
particular the impact of the wetting length over the deposited thickness. It refers to the Chapter 2 of this
manuscript.
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We study the spreading of a Newtonian fluid by a deformable blade, a common industrial problem,
characteristic of elasto-hydrodynamic situations. Here, we consider the case of a finite reservoir of
liquid, emptying as the liquid is spread. We evidence the role of a central variable: the wetting
length lw, which sets a boundary between the wet and dry parts of the blade. We show that the
deposited film thickness e depends quadratically with lw. We study this problem experimentally
and numerically by integration of the elasto-hydrodynamic equations, and finally propose a scaling
law model to explain how lw influences the spreading dynamics.

PACS numbers:

The flapping of flags or the deformation of boat sails
are emblematic of the coupling of flexible sheets with a
fluid flow. Beyond these large-scale situations, there is a
blooming interest for smaller systems, in which the forces
responsible for the deformation of the solid are viscous
instead of inertial. Such situations are encountered when
a fluid is confined by an elastic plate, for example paper
sheets gliding on thin air just above the floor after falling
from a table [1].
The spreading or the scraping of liquids with a flexible
blade (Fig 1) is another paradigmatic example of this
class of fluid-structure problems, with a rich non-linear
behavior [1–3]. Flexible blade spreading is central in nu-
merous industrial processes such as paper coating, which
inspired early studies [4–8]. More recently, this problem
has been studied in the light of an elasticity-capillarity
analogy [9] and compared with another well-known sys-
tem, dip coating [10, 11]. Following this approach, the
elastic forces induced by the local curvature of the sheet
replace surface tension forces [12–14]. An elastic Landau-
Levich approach [12, 13] can be used to predict the film
thickness as a function of the blade properties. This
method, which successfully modeled selected experiments
[12] is based on two assumptions: i) the blade is fully cov-
ered with liquid (which amounts to neglecting capillarity)
and ii) while in motion, it is only deformed over a length
lx close to the tip. This internal length is analogous to
the dynamical meniscus length in dip-coating. However,
in a large majority of everyday situations, such as the
spreading of a paint on a wall, or cream on the skin, the
liquid reservoir is finite and the blade partially wet. This
introduces a new length scale, lw (as shown in Fig. 1),
and its existence challenges the Landau-Levich approach.
In this paper, we evidence the central role of lw on the

spreading dynamics, and we analyze the similarities and
differences with dip-coating.

θ

Wetting length lwh

Profilometer

e
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x

z

s

y
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�b

V

Figure 1: Experimental setup. A finite amount of fluid de-
posited under an elastic blade is emptied by moving the sub-
strate at a constant speed V . The thickness of the deposited
layer e is measured by a profilometer. As the reservoir emp-
ties, the wetting length lw diminishes, which impacts the de-
posit.

A Newtonian fluid (here silicone oil) with viscosity η
ranging from 480 to 960 mPa s is spread on an horizontal
smooth PMMA plate by a soft blade made of PET plas-
tic (Mylar) (Fig.1). The dynamic contact angles of oil
on both surfaces are denoted by δs and δb: in a typical
experiment, δs ' 100±10◦, and δb ' 15±10◦. The blade
is cut in a rectangular shape, with a constant width b =
4 cm, a length L of typically 6 cm and thickness u = 125
or 250 μm. The upper part of the blade is clamped per-
pendicularly to the surface, at a height H = 0.46 L. This
clamping height ensures that the free edge of the blade
is exactly tangent to the surface in absence of liquid. It
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is also the position for which the film thickness is the
largest [12]. The rigidity B of the blade is determined by
measuring its deflection under its own weight [15]. B is
typically varied by a factor 10 when changing the blade
thickness, with B = 1.0± 0.1 mNm for u = 125 μm and
B = 7.1 ± 0.5 mNm for u = 250 μm. Using B = E∗u3

12 ,
we obtain a modified Young Modulus E∗ of the material,
that already includes the Poisson ratio correction. Ex-
perimentally, E∗ ' 6.2 GPa, a value in good agreement
with what is expected for type A mylar [16].

A known volume of liquid Ω0 (between 0.1 and 1.5
mL) is deposited under the blade and then spread with
a one-way movement, by moving the substrate at a
constant speed V (2.5 < V < 10 mm/s). The thickness
of the scraped liquid film e is measured with an optical
profilometer (Keyence LJ-V7060K) positioned above the
film, 2 millimeters from the edge of the blade (Fig. 1).
A laser sheet of length 16 mm (in the y direction) is
projected onto the film, from which the film thickness
e(y, t) is measured as a function of time t and position y.
The liquid reservoir below the blade slowly empties as
oil is scraped over a distance of ' 10 cm. One important
variable here is the length of the blade in contact with
the liquid, which we call the wetting length lw (as visible
in Fig.1). During an experiment, lw(t) varies with
time and typically diminishes by 2 cm as the reservoir
empties. It is measured from the side and from the top
using two optical cameras, at 10 frames per second.
The camera and the profilometer are synchronized using
an in-house Labview program, so that e and lw are
recorded simultaneously during the spreading. The
initial time t = 0 corresponds to the setting in motion of
the horizontal stage.

In Fig. 2a, the thickness e of a silicone oil film (with
viscosity η = 960 mPa s) is mapped as a function of time
t and position y (y = 0 corresponding to the center of the
film). The color code varies from e ' 0 (dark blue) up
to e = 400 μm (bright yellow). Despite a small residual
noise due to multiple light reflections, the film thickness
is relatively uniform in the y-direction along the width
of the blade: edge effects are only visible 2 mm from the
edges, as shown in Supp. Fig. 1. It represents only 10%
of the blade width. However, the film exhibits very large
variations with time. This is even more striking when
looking at the mean thickness e(t), plotted in white in
Fig. 2a. The film profile exhibits a sharp increase in
the first 6 seconds, where the thickness grows from 0 to
230 μm. This corresponds to a transient state, associ-
ated with the setting in motion of the liquid below the
blade, which was previously observed in similar systems
[12]. However, the second part of the plot (corresponding
to the steady state) strongly differs from previous exper-
iments. We observe here a continuous reduction of the
film thickness e with time t - from 230 to 80 μm between 7
s and 20 s. The decrease of e with time is largest with the
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Figure 2: a. Map of the central part of the film (with vis-
cosity η = 480 mPa s) during the spreading, as a function of
the width y and time t. The color code varies from e ' 0
(dark blue) up to e = 400 μm (bright yellow). The white
line shows the mean thickness e(t) over the film width, as
a function of time. b. Film thickness e(t) as a function of
the wetting length lw at the same time t, for two different
oils with viscosity η = 480 mPa s (gray) and η = 960 mPa
s (black). The markers correspond to different initial fluid
volumes Ω0: • : Ω0 = 0.21 ± 0.01 cm3, N : Ω0 = 0.50 ± 0.03
cm3 and ? : Ω0 = 0.60± 0.02 cm3. The continuous lines show
the scaling law (Eq.4) with prefactors 0.15 (for η = 480 mPa
s) and 0.17 (for η = 960 mPa s) corresponding to the best
fits. The dashed lines are the numerical solutions. In both
experiments, V = 5 mm/s, B = 1.0 mNm and L = 5.7 cm.

softest blade and the more viscous fluids, and is observed
for both silicone oil and glycerine. We interpret this as
a consequence of the finite reservoir size. Indeed, as the
liquid empties, the length lw(t) of the blade effectively
wet by the liquid diminishes, which in turn impacts the
film thickness e(t). This intimate relation between e(t)
and lw(t) is evidenced in Fig. 2b, where e(lw) is measured
for two oils of viscosity η = 480 mPa s (gray circles) and
η = 960 mPa s (black triangles). Data points are taken
at a given time t, so that e and lw are treated quasi-
statically. The markers indicate the initial liquid volume
Ω0, varied by a factor 3. With η fixed, the data for all
Ω0 overlap, which indicates that the film thickness only
depends on the actual volume of the reservoir at the time
t – a quantity measured by lw(t). As shown in Fig. 2, the
relation between e and lw is non-linear: e increases more
slowly for larger lw. In addition, a strong dependency of
e with the fluid viscosity η is observed: e increases by
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roughly 50% from η = 480 mPa s to η = 960 mPa s.
To understand how the reservoir size influences the

spreading dynamics, we perform a full numerical study
of the experiment. Since e and lw evolve quasi-statically
with time, we solve the hydroelastic equations statically,
with a constant lw as an input parameter. The geometry
is split in two zones: i) the blade itself, which interacts
with the fluid below over a length lw (< L) and ii) the
free liquid film, spread by the blade. In the following, the
lubricated blade shape and the free liquid film are mod-
eled by two different sets of equations (Eq. 1 and Eq. 2),
coupled by boundary conditions at the tip of the blade.
In both cases, the Reynolds number Re in the liquid is
small, Re = ρeV

η < 10−3, and the oil is highly confined,
with lw � e, which allow us to use the lubrication ap-
proximation to describe the flow.
The blade shape is described as a large deflection prob-
lem, using Euler’s elastica [17, 18]. In the steady state,
the bending torque (expressed as a function of the curvi-
linear length s along the blade) is equal to the torque
Γ produced by the external forces, which arise from the
liquid below the beam. The fluid motion generates two
forces: a lift, perpendicular to the blade, due to the lu-
brication pressure p and a viscous drag force fv, locally
tangent to the surface. Both are calculated by solving
the Stokes equation in the lubrication approximation (see
Supplementary materials). We also include the capillary
forces arising from the liquid surface deformation on the
left and right parts of the wet area of the blade. They
exert a small torque on the blade and, more importantly,
impose the fluid pressure at s = sw and s = L through
the curvature of the liquid surface. Finally, the weight of
the plate is neglected. With these conditions, the deriva-
tive of the torque balance Γ = EI dθds (denoting I the
moment of inertia of the blade and θ the local tangent
angle of the blade with respect to the vertical) writes:

E∗I
d2θ

ds2
= b

∫ L

s

fv sin (θ(s)− θ(s′))− p cos (θ(s)− θ(s′))ds′,
(1)

with b the width of the blade. We neglect the contribu-
tion of capillary forces on the torque derivative dΓc

ds ∼ γb
(with γ the surface tension of the liquid), which is more
than 100 times smaller than the contribution of the lubri-
cating film dΓv

ds ∼ pblw (see Supplementary Materials).
In a second part, the free surface of the liquid deposited
by the blade is calculated through the canonical Landau
Levich equation (following [2]). The variables of the free
surface are distinguished here from those of the blade by
using an index l):

d2θl
ds2

= −3η

γ

(
V hl − q/b

h3
l

)
sin θl(s), (2)

with hl the film height, and q the flow rate of the liquid
in the reference frame of the blade.

Equations 1 and 2 can both be seen as 1D steady-state
non-linear heat equations where θ is equivalent to tem-
perature, with a conductivity equal to 1 and a source
distribution S(s, θ(s)) corresponding to the right hand
side of the equations. We use this analogy to solve the
set of coupled equations 1 and 2 (for the lubricated blade
and for the deposited film). To do so, we look for the sta-
tionary asymptotic solution to a transient heat equation
(Eq. 3) associated to Eqs. 1 and 2, where the derivative
of θ versus a virtual time τ is added (the volumetric heat
capacity is chosen unitary):

dθ

dτ
=
d2θ

ds2
+ S(s) (3)

Starting from an initial guess of the shape (θ(s) and θl(s))
and p(s = L), Eq. 3 is solved numerically by finite differ-
ences using a semi-implicit scheme [19]. The non-linear
source term S(s) is treated explicitly while the rest is
treated implicitly (see Supplementary Materials for the
details). This scheme is stable, and thus ensures conver-
gence to the stationary solution θ(s) (according to Lax
equivalence theorem [20]), for a given set of input vari-
ables lw, δs and δb. Two sets of boundary conditions
complete this modeling. For the blade, the fixed mount-
ing imposes θ(0) = 0, and the absence of torque at the
tip gives dθ

ds |s=L = 0. For the free surface, the Laplace
pressure equation imposes dθl

ds

∣∣
L

= −p(s=L)
γ at the con-

tact of the blade tip, while far from the blade the film is
horizontal, so that lim

x→+∞
θl = π/2. Finally, the matching

of the two solutions is done iteratively by imposing a con-
tinuity of the flow rate q. The liquid height at s = L is
continuous [3], but there is an angle discontinuity, similar
to what happens at a three phase contact line.

Integration of the blade and deposited film equations
thus give the film thickness e for a given lw, correspond-
ing to the height of the free surface hl for x→∞. In Fig.
2, the calculated film thicknesses (black and grey dashed
lines) are compared to the experiments for varying wet-
ting lengths lw. They match the experimental data for
both η = 480 mPa s and η = 960 mPa s, without any ad-
justable parameter. In addition, the numerical solution
of the blade shape (Eq. 1) also matches the experiments,
as shown in the supplementary materials.

How does the wetting length influence the spreading
dynamics? Since the presence of a meniscus below the
blade induces a pressure jump at s = sw, a first hy-
pothesis is that the dependency of e with lw results from
an elasto-capillary competition [21, 22]. To check this
idea, we compare in Fig. 3 numerical simulations of e(lw)
in two different configurations: in absence of a pressure
jump in s = sw (gray line), and for varying wetting con-
ditions (dotted lines). A major observation from Fig. 3
is that e varies with lw even when capillary forces are
absent. This indicates that the pressure jump at the
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Figure 3: Effect of wetting on e(lw). The continuous gray
line corresponds to the absence of a pressure jump p(sw) = 0.
The green, red and yellow dotted lines show three different
wetting configurations with varied contact angles δs and δb
on the substrate and on the blade. The numbers indicate the
pressure jump p(sw) due to the meniscus (in Pa).

meniscus does not cause the dependency of e with lw.
Wetting conditions only have a small influence on the
film thickness, by shifting the e(lw) curves: the dotted
lines correspond to varying contact angles δs and δb on
the surface and on the blade (as in Fig. 1). While e is
potentially increased by a factor two when comparing the
almost perfect wetting (δs = δb = 10◦) to the non-wetting
situation (δs = δb = 170◦), the latter is highly unlikely
as the film would be unstable and dewet the substrate.
In classical wetting configurations (green and red plots),
capillary forces cause a modest variation of e, close to
20%.
A second hypothesis is that the dependency of e with lw
arises from a modified balance between viscous and elas-
tic forces. Indeed, due to the finite size of the reservoir,
the pressure within the sheared film applies over a vari-
able distance lw, so that the viscous force lifting the blade
diminishes as the reservoir empties. Under this assump-
tion, we propose a scaling law for the film thickness e.
The region of the blade wet by oil (of size lw) is submit-
ted to a lubricating pressure p ∼ η Ve2 lw. p thus induces
a torque Γwet, pushing up the wet part of the blade (of
area blw). The lever arm is ∼ L− lw, so that Γwet writes
Γwet ∼ η Ve2 bl

2
w(L − lw). At equilibrium, this torque is

compensated by the rigidity of the dry part of the blade,
inducing a resisting torque Γdry ∼ E∗I dθds ∼ E∗I

(L−lw) . The
torque balance sets the deposition law:

e ∼ lw
√
ηV L2b

E∗I

(
1− lw

L

)
(4)

This scaling law is plotted in Fig. 2b (with a continuous
line). It very convincingly reproduces the dependency of
the film thickness e with both lw and η. The best fits are
obtained with similar prefactors: 0.15 for η = 480 mPa s

and 0.17 for η = 960 mPa s.
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Figure 4: Experimental (colored dots) and numerical (white
squares) film thickness, plotted as a function of the theoretical
thickness (Eq. 4). All points collapse on a line (in black)
with numerical prefactor of 0.17. Data correspond to varying
velocities V = 2.5 mm/s (light blue), 5 mm/s (blue, yellow,
purple), 7.5 mm/s (dark green) and 10 mm/s (red, fuchsia
pink, light green), viscosities η = 960 Pa.s (purple, light green)
and 480 Pa.s (all other colors), blade rigidities B = 7.1± 0.5
mNm (light green and fuchsia pink) and 1.0 ± 0.1 mNm (all
other colors) and lengths L = 7 cm (yellow, fuchsia pink, light
green) and 5.7 cm (all other colors).

To further validate our approach, we summarize in
Fig. 4 the film thickness measurements for different blade
rigidities B and length L, varying liquid viscosity η and
spreading velocity V (respectively varied by a factor 8,
0.3, 2 and 4). Each color corresponds to a different set
of parameters (see legend). When plotted as a function
of the theoretical film thickness, all data collapse on a
single line with slope 0.17. The numerical solution of
the elasto-hydrodynamic equations (Eqs. 1 and 2) is also
shown with white squares. Here, the same parameters
(V , η, B) as the experiments are used, and capillarity
is neglected. The numerical results also collapse on the
same master curve, which is a further validation of the
scaling law: it shows that the essential physical param-
eters are taken into account. The residual scattering of
the data might be explained by the influence of capillary
forces, neglected in Eq. 4, which induce a small variation
of the dynamic contact angles with V [23, 24].

The scaling law evidences the fundamental impact of
the wetting length lw, and allows us to put a central
point forward. With a finite reservoir, the viscous forces
of the lubricated film are exerted over an externally im-
posed distance lw that varies during the spreading. This
is fundamentally different from the capillary-elasticity
analogy approach, where the pressure applies over an
internal dynamical length lx ∼ (eL2)1/3 [9, 12] vary-
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ing with the blade and liquid parameters. This in turn
impacts the scaling of the film thickness, which writes

e ∼ L
(
ηV bL2

E∗I

)3/4

in the blade-meniscus analogy [12–
14]. In addition, the blade is here deformed by the film
over its whole length, as visible in Supplementary Figure
3, contrary to the meniscus in dip-coating experiments.
For this reason, the blade shape cannot be solved using
an asymptotic matching, as usually done for a liquid in-
terface.

This study has an important applicative scope: we in-
deed demonstrate that it is impossible to obtain a deposit
of constant thickness with an elastic blade if the spread-
ing is done at constant speed. In addition, we evidence
the role of capillarity, which only plays a role for very
hydrophobic substrates. Our work also suggests that the
analogy between elastic and capillary interfaces is not
valid when the blade is not fully covered with liquid.
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B. Measurement of the thickness of a transparent liquid film with an
optical profilometer

To measure the film thickness of the fluid spread by soft blade coating we used an optical profilometer.
The detailed calculation of the corrective factor used to access the real thickness from the profilometer
data are presented here.

The first hypothesis made is that the measured beams are parallels (case of a telecentric lens).
Although this is not the case for the implemented profilometer, it simplifies the calculation of the
corrective factor. The error on the thickness value that results from this assumption is discussed at the
end of this appendix.

𝐷𝑓

𝑒

𝜃𝑖

𝑒
𝑛𝑟

𝜃𝑖2

𝛿𝑓

𝛿𝑦
𝜃𝑖

𝐷𝑓

a. b.

Fig. B.1 − Illustration of the optical path of the rays emitted by the profilometer in a telecentric
configuration for the measurement of the thickness e. a. Case of an opaque solid (grey rectangle). The
incident ray undergoes a direct reflection on the support (red line) and on the object (blue line). b. Case
of a continuous transparent object. The green ray corresponds to the ray refracted by the layer of liquid
then reflected by the support. This last one is compared to the red ray (measured in the absence of liquid)
to calculate the deposited thickness [3].

Measurement of a step height in the case of an opaque object
To measure the height of a step in the case of an opaque object, the profilometer records the difference
in position D f between the reflected beams at the top (blue ray) and bottom (red ray) of the step (Figure
B.1a). The thickness is related to this distance through the equation:

e =
D f

2tanθi cosθi
(B.1)

with D f the distance between the two beams and θi the incident angle. Experimentally, θi is fixed at
17.5◦.

Measurement of the thickness of a transparent object
First thing to point out is that the profilometer can not give access to the true value of the thickness in
the case of a transparent object, as it makes the assumption that the rays are all reflected on a surface
(blue and red rays in Fig. B.1a) and not refracted before being reflected as in this situation (green ray in
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Figure B.1b). With the profilometer, we first record the reflected rays on the surface in the absence of
liquid (red ray), and then the refracted ray in the presence of the liquid film (green ray). The resulting
thickness obtained by subtracting this two signals corresponds to er =

δ f
2tanθi cosθi

.
To find the corrective factor to apply to er to access the deposited thickness e we write : δy =

2e tanθi2 cosθi, with θi2 is the refracted angle linked to θi by Snell-Descartes law: sinθi = nr sinθi2,
where nr is the refractive index of the transparent medium. The value used for nr are 1.3455 for xanthane
gel [235], 1.4246 for silicone [236], 1.4817 for glycerol [237], and 1.3388 for water [238], at the wave-
length of the profilometer laser (404.7 nm). In the case of carbopol gel and HPAM solution the refractive

index of water was used. By combining these two equations it leads to δy = 2e tan
(

sin−1
(

sinθi
nr

))
cosθi.

Finally, using δ f = D f −δy and replacing D f and δy by their expressions, this gives the equation linking
e and er:

e = er
tanθi

tanθi − tan
(

sin−1
(

sinθi
nr

)) (B.2)

This last equation highlights the corrective factor to be used in this situation to access the actual deposited
thickness e. For silicone, the corrective factor is 3.1735. In general it ranges from 2.91 to 3.60 for the
series of considered liquids. The value of the refractive index has a strong impact on the corrective factor
and might lead to systematic error in the measurement of the deposited thickness.

Measurement of the thickness of a transparent object lying over a transparent substrate
The use of a transparent PMMA plate, of refractive index nrp and thickness ep gives rise to a second

a. b.
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Fig. B.2 − Illustration of the optical path of the rays emitted by the profilometer in a telecentric
configuration. a. Case of a transparent object lying on a transparent substrate whose bottom surface
is scattering. Additional refractions are observed at the interface of the object and the substrate for
the green and red rays. b Schematic view of the rotation of the profilometer around the x-axis. α

corresponds to the angle between the incident ray and the z-axis. The rays show our simplified view of
the optical paths.
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level of reflections and refractions (Figure B.2a). The equations become:

δy = 2cosθi
(
e tanθi2 + ep tanθi3

)
with sinθi = nr sinθi2 and nr sinθi2 = nrp sinθi3 (B.3)

D f = 2cosθi
(
e tanθi + ep tanθi4

)
with sinθi = nrp sinθi4 (B.4)

Combining together Descartes’ relations we get θi3 = θi4. Consequently δ f = D f −δy keeps the same
expression as before when the liquid was deposited directly on an opaque surface. This transparent
PMMA plate will therefore be ignored in the following sections.

Measurement of the thickness of a transparent object with additional tilt φt

To avoid additional parasitic reflections which disturb the measurement and thus capture only the
diffusing rays, a rotation φt along the x axis is applied, as depicted in Figure B.2b. The angle α between
the incident beam and the vertical can be defined as a combination of θ and φt by using the scalar
product between the vector corresponding to the incident beam and the vertical vector. The incident
beam vector is obtained by applying a first rotation θi around the y-axis, and a second rotation φt around
the x-axis, thus,

v =




1 0 0
0 cosφt −sinφt

0 sinφt cosφt







cosθi 0 sinθi

0 1 0
−sinθi 0 cosθi







0
0
1


=




sinθi

−sinφt cosθi

cosθi cosφt


 (B.5)

The scalar product of v with the vertical vector gives : cosα = cosθi cosφt . With a tilt the incident
angle corresponds to α = arccos(cosθi cosφt). Note an approximated value of α , obtained by calcu-
lating tan2 α while considering cos2 φt ≈ cos2 θi ≈ 1 and neglecting the term tan2 θi tan2 φt has been
used instead : α = arctan

(√
tan2 θi + tan2 φt

)
. The approximated angle differs by 2% from the exact

definition for θi = 17.5◦ and φt = 20◦.

The visualisation of the beams become quite complex, as they are no longer in the same plane,
and the problem becomes 3D. Indeed, by considering that the rays arriving with an angle α compared
to the normal are refracted and reflected only in the same plane, it is not possible to measure them
using the sensor of the profilometer. This latter measures rays which return "behind", this is possible
in particular thanks to the scattering. A way to simplify the problem is to consider that the equation
without tilt is still valid with two differences: the incident ray has an angle α instead of θi with respect
to the normal, and the thickness of the fluid passed through by the rays, et , is larger because of the tilt of
the beam: et =

1
cosφt

e. Under this model the equation giving the deposited thickness from the measured
one becomes:

e = er
tanα cosφt

tanα − tan
(

sin−1
(

sinα

nr

)) (B.6)
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While this model is quite coarse, good agreement with experimental data (error< 5%) were found and
validated its use (see below).

As indicated before, the profilometer used is not telecentric, the beams represented are not parallel
but pass through the optical center of the lens before being projected onto the sensor. It raises the
question of the validity of the previous calculations made under this hypothesis. The calculation of the
corrective factor is described below by comparing the expression obtained for the thickness of a step and
the thickness of a transparent layer. We restrict ourselves to the calculation without additional tilt.
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a. b.

Fig. B.3 − Illustration of the optical path of the rays emitted by the profilometer in a non-telecentric
configuration for the measurement of the thickness e. a. Case of an opaque solid. The incident ray
undergoes a direct reflection on the support (red line) and on the object (blue line). The rays measured
by the profilometer are no longer parallel but pass through the optical center. The reflection considered
is no longer specular (asymmetric angles). b Case of a continuous transparent object. The green ray
corresponds to the ray refracted by the layer of liquid then reflected by the support.

Non-telecentric lens: Measurement of a step in the case of an opaque object
The system is assumed to be symmetric about the vertical at A (Figure B.3a).
We start by writing: A′C = AC− e

cosθi

The law of sines gives: AC
sinβ

= BC
sinα

, and since we have an isosceles triangle, α = π −2β .

Finally, AC = BC sinβ

sin2β
and likewise we can write A′C = BC sinβ ′

sin(β+β ′) .
So we obtain a relation linking the thickness e to the angle difference ∆β = β −β ′, this angle difference
then resulting in a position difference on the sensor:

e = BC cosθi

(
sinβ

sin2β
− sinβ −∆β

sin2β −∆β

)
(B.7)

Non-telecentric lens: Measurement of the thickness of a transparent object
Here we can no longer have a reflection with symmetric angles so θi ̸= θ ′′

i and ω ̸= ω ′′ (Figure B.3b).
The Snell-Descartes relations give sinθi = nr sinω , and sinθ ′′

i = nr sinω ′′. The device being initially
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in a symmetric position, the height of the device relative to the support, h, can be expressed as,
h = BC

2 cotθi. In presence of liquid, this height is reduced to h− e, and the side opposite the angle θ ′′
i

is BC
2 + e(tanθi − tanω − tanω ′′). Consequently, tanθi =

BC
2 +e(tanθi−tanω−tanω ′′))

h−e , which we can rewrite

using β ′′ = π/2−θ ′′
i , so cotβ ′′ =

BC
2 +e(tanθi−tanω−tanω ′′))

h−e . We deduce:

e =
BC
2

1− cot(β −∆β )cotθi

tan
(

arcsin sinθi
nr

)
+ tan

(
arcsin cos(β−∆β )

nr

)
− tanθi − cot(β −∆β )

(B.8)

In comparison with the opaque surface, one must multiply e by a factor of 3.17 to go from one equation
to the other. This average value was obtained using angular variation of β corresponding to thickness
values ranging from 0-200 μm (here ∆β = β −β ′′), BC = 50 mm and nr = 1.4246. This value is very
close to the value obtained in the case of the parallel beam calculations without additional tilt (difference
of order 0.1%). The assumption of parallel beam can be done with confidence. The corrective factor
depends on the liquid film thickness. However in our case the thickness is usually limited to 0 to 200 μm
which is a sufficiently low range to consider the factor constant at 0.06%.
Note: in the case of converging beams the relations obtained, whether for the opaque surface or the
transparent liquid are not linear, meaning there is no relationship of linear proportionality between the
thickness and the difference in position on the sensor. However, these phenomena are limited.

Experimental validation of the corrective factor and tilt impact
As described before a certain number of assumption had to be done in order to find a corrective factor that
gives access to the value of the deposited thickness. To check that the deviations between the calculated
value and the actual value are small, the thickness of a transparent object of known thickness was
measured. For this we used a PMMA plate of 3 mm thickness and a glass plate of 150 μm thickness and
we varied the angle of inclination (0< φt ≤ 30◦). The difference between the calliper and profilometer
measured values, using the correction factor described in Eq. B.6, is typically between 1 and 5%.
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C. Schematic representation of the numerical resolution for Newtonian
fluids
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Fig. B.4 − Schematic representation of the steps of the numerical resolution for the simple case of
Newtonian fluids. It illustrates the description made in section 2.5.1.
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D. Spreading of complex fluids with a soft blade

Marion Krapez, Anaïs Gauthier, Jean-Baptiste Boitte, Odile Aubrun, Jean-François Joanny and Annie
Colin Spreading of complex fluids with a soft blade. Physical Review Fluids, 7, 084002, 2022.

In this appendix is reproduced the article published about the spreading of complex fluids, in which the
viscous, shear-thinning and normal stress effects are disentangled, showing in particular the negligible
effect of the normal stresses in this geometry and the effect of shear-thinning properties on the mechanical
work needed for spreading the fluid. It refers to the Chapter 3 and 4 of this manuscript.
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The spreading of complex fluids is not only a part of our everyday life but also a
central process in industry to produce functional thin films or protective coatings. Here
we consider the spreading of polymer solutions with an elastic blade that deforms during
the coating (similarly to a brush or a finger). By using complex fluids with well-chosen
rheological properties, we disentangle the effects of shear viscosity, shear thinning, and
normal stresses. We reveal two counterintuitive results: First, the mechanical work needed
to spread a given volume of a shear-thinning fluid is higher than for the same volume of an
equivalent Newtonian fluid at constant spreading velocity. Second, the first normal stress
difference, which usually leads to remarkable behaviors such as the swelling of jets or the
rise of the fluid on a rotating rod, has strikingly negligible effect here.

DOI: 10.1103/PhysRevFluids.7.084002

I. INTRODUCTION

Many industrial situations require the deposition of a uniform liquid film on a substrate either to
produce a functional thin film [1–4] or a protective coating (glass treatment, cosmetics, paint, etc.).
The fluid can be deposited directly by drawing the substrate out of a liquid bath (dip coating) or with
the help of a nondeformable solid [5] or an elastic solid tool, a technique we call here blade coating.
Interestingly, an analogy is often made between the physics of dip coating and blade coating. In
dip-coating experiments, the thickness of the film is set by the deformation of the liquid bath surface
close to the substrate. The static meniscus is deformed into a dynamic meniscus, which shape and
curvature is set by a competition between capillary and viscous forces [6,7]. Soft blade coating is
currently viewed as an “elastic” dip-coating problem [8–11] where elastic forces due to the bending
of the blade resist the viscous force and replace the capillary forces. These studies deal with infinite
reservoirs, the blade is always totally covered by the liquid. Recent experiments on Newtonian fluids
[12] have shown that this analogy is fragile when the size of the reservoir is finite. The deposited
thickness diminishes with time as the fluid reservoir below the blade empties. The film thickness
seems to be fixed by the length of the blade wet by the liquid and not by the size of a dynamic
“elastic meniscus” due to the deformation of the moving blade. However, these experiments are
performed on a restricted range of parameters, which limits the validation of the scaling laws. Here
we propose to use complex fluids with well-characterized shear-thinning behavior and first normal
stress difference to probe with precision the flows. This allows us to conclude definitively on the
possible analogy between dip coating and blade coating. In addition, this approach is also important
from an industrial point of view: In most formulations (as in paint and cosmetic creams), at least a
small amount of polymer is added to the liquid [13], and its influence on the spreading is not known.

2469-990X/2022/7(8)/084002(18) 084002-1 ©2022 American Physical Society
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Strikingkly, we highlight counterintuitive behaviors. First, it requires a higher mechanical work to
spread a shear-thinning fluid than a Newtonian fluid—for an identical initial fluid volume, blade
velocity, and spreading duration. Second, normal forces, known to create instabilities and swellings
of the deposits during dip coating [14], play little or no role in blade spreading.

The organization of the manuscript is as follows. After presenting the fluids used and our
experimental setup (Sec. II), we show experimentally how the fluid rheology impacts the film
thickness (Sec. III) and model our results by combining a scaling law analysis and simulations
(Sec. IV). We finally discuss how the fluid rheology impacts the spreading process (Sec. V).

II. MATERIALS AND CHARACTERIZATIONS

A. Formulation and rheological properties of the solutions

Three different fluids are used in the experiments: (i) a Newtonian silicone oil (Sigma Aldrich,
500 cSt) with viscosity η = 480 mPa s; (ii) a shear-thinning solution of xanthan gel (Rhodicare
XC, Solvay) (this is made by dissolving 0.9% in mass of polymer in pure water under mechanical
agitation), and 0.5% in weight of 2-phenoxyethanol is eventually added as a biocide; and (iii) solu-
tions of partially hydrolyzed polyacrylamid polymer (HPAM, from SNF Floeger) with a high molar
mass Mw = 18 × 106 g/mol, which are known to generate important normal stress. The polymer is
dissolved in water through gentle magnetic agitation to produce solutions with concentrations 0.1%,
0.3%, and 0.5% in weight. Before use, all the polymer solutions are kept at rest for 24 h.

The flow curve of the formulations is obtained using a rheometer (DHR-2, TA) equipped with
a cone and plate cell, with radius R = 20 mm and angle α = 2◦. The rheometer imposes a torque
T on the rotational axis and measures the angular velocity of the axis ω and the normal force F
exerted on the cone by the fluid. As is done classically, the mean shear rate γ̇ is calculated from ω,
with γ̇ = ω/ tan(α), the mean shear stress σ is deduced from the torque σ = 3T

2πR3 . These definitions
ensure that (σ, γ̇ ) correspond to the mean of the local shear stress σ (r) and the mean of the local
shear rate γ̇ (r) in the Newtonian fluid situation. The first normal stress difference N1 born by the
sample is calculated from the vertical force F , with N1 = 2F

πR2 . It is corrected for inertia, which is not

negligible at angular velocities γ̇ > 102 s−1, with N inertia
1 = − 3ρω2R2

20 (denoting ρ the fluid density).
In most experiments, a computer-controlled feedback loop on the torque T is used to keep a

constant angular velocity (hence a constant mean shear rate) without any fluctuations ( δγ̇

γ̇
< 0.001).

The temperature is set to 298.15 ± 0.1K using a water circulation around the cell. The flow curves
are obtained using a shear-imposed flow-sweep, with five points per decade. The stress value is given
when three consecutive 10-s-long measurements have given the same results with 5% tolerance or
when the sample has undergone 60 s of constant shear rate. This maximum time is long enough to
ensure that the measurements are not sensitive to the inertia of the rheometer.

Figure 1(a) presents the flow curves of the fluids considered here. As expected, silicone oil
(shown with red squares) is Newtonian, with a constant viscosity η (independent on γ̇ ). The
solutions of xanthan gum (blue circles) and HPAM (green triangles), however, are all shear thinning.
Their viscosity follow a classical empirical law for polymer solutions:

η =
{
η0 for γ̇ < γ̇c

kγ̇ n−1 for γ̇ > γ̇c
, (1)

Interestingly, the 0.9% xanthan and the 0.5% HPAM solutions have almost the same viscosity
at all the shear rates considered here: The curves η = f (γ̇ ) overlap. There is, however, a major
difference between these two fluids, as shown in Fig. 1(b). In both fluids, the first normal stress
difference N1 follows the law N1 = αγ̇ m, but the 0.5% HPAM solution display an important first
normal stress difference, contrary to the 0.9% xanthan solution. This is evidenced in the inset of
Fig. 1(b): Normal stresses cause the swelling of a 0.5% HPAM jet (green), a phenomenon that is not
observed for xantan (blue). The values of the parameters η0, n, k, α, and m for all the suspensions
are given in Table I.

084002-2



SPREADING OF COMPLEX FLUIDS WITH A SOFT BLADE

FIG. 1. Rheological curves of silicone oil with viscosity η = 480 mPa s, xanthan gum at 0.9% and HPAM
solutions with concentrations 0.1%, 0.3%, and 0.5%. (a) Viscosity η as a function of the shear rate γ̇ . (b) First
normal stress difference N1 as a function of γ̇ . The pictures show the swelling of a jet of HPAM at 0.5% (green)
compared to xanthane at 0.9% (blue) from a capillary tube of outside diameter 0.65 mm and at a flow rate of
0.5 ml s−1.

B. Experimental device

The blade coating experiment is presented in Fig. 2(a). The fluid is spread with a soft blade, made
of a rectangular plastic sheet of Mylar, with thickness u = 125 μm, width b = 4 cm and length
L = 5.7 cm. The modified Young modulus E∗ = E

1−ν2 of the sheet (which includes the Poisson
ratio ν) is equal to 6.2 ± 0.6 GPa. It is determined by measuring the deflection under its own
weight, following Refs. [12,15].

The blade is clamped vertically above a PMMA substrate, at a height y = 0.46L. This height is
chosen so that the tip of the blade is just tangent to the substrate in absence of liquid [8]. Both the
blade and the substrate are sanded to avoid a potential dewetting and slippage. The roughness of the
blade and the surface is of the order of 5 μm, which is at least one order of magnitude smaller than
the thickness of the deposit. A known volume of liquid �0 (between 0.05 and 1.3 cm3) is deposited
under the blade and spread in a one-way movement by sliding the substrate at a constant velocity
V = 1 cm/s over 10 cm. The film thickness e(t ) is measured 2 mm beyond the tip of the blade using
an optical profilometer. Simultaneously, the amount of liquid wetting the blade at a given time t is
measured thanks to a camera placed above the translucent mylar sheet. It is quantified by the wetting
length lw, which measures the portion of the blade that is in contact with the liquid [Fig. 2(a)].

TABLE I. Rheological properties of xanthan gum and HPAM solutions.

Xanthan HPAM

0.9% 0.1% 0.3% 0.5%

η0 (Pa s) 56 6.3 12.4 48
k 4.0 0.65 2.2 5.1
n 0.30 0.29 0.27 0.21
α 0.99 2e-3 1.44 5.24
m 0.74 1.62 0.82 0.73
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FIG. 2. (a) Schematic representation of the soft blade coating experiment. (b) Map of the central part of
the film for xanthane 0.9% during the spreading, as a function of the width z and time t . The color code varies
from e � 0 (red) up to e = 250 μm (yellow). The first peak is an artifact and is not taken into consideration.
The white line shows the mean thickness e(t ) over the film width as a function of time.

III. EXPERIMENTAL RESULTS

Figure 2(b) displays the temporal evolution of e along the z axis (with z = 0 the center of the
blade) as a function of time. The fluid used is xanthan gum, with an initial volume �0 = 0.58 ml.
As evidenced by the white line, which plots the mean value of e(t ) along the z axis, the film thins out
during the course of an experiment. After a transient state (corresponding to the first two seconds),
the film thickness e(t ) continuously decreases, from 175 to 20 μm at the end of the 10-s-long blade
movement. This a consequence of the finite size of the liquid reservoir below the blade. Indeed, and
as shown in Fig. 3, e(t ) is a function of the wetting length lw(t ), measured at the same time. This
observation is valid for all liquids used in the experiment: Figure 3(a) which displays the overlap
of more than 30 experiments in total [an experiment corresponds to a set of values e(t ), lw(t )].
Interestingly, as highlighted in Fig. 3(b), the measurements obtained with the 0.5% HPAM solution
are almost identical to those obtained with the 0.9% xanthan gum solution. Even if these two fluids
share the same rheological curve [in Fig. 1(a), the viscosity η(γ̇ ) of HPAM overlaps the data points
of xanthan], the first normal stress difference in HPAM reaches several hundreds of pascals under
high shear [Fig. 1(b)] while N1 is always smaller than 80 Pa in xanthan. Under the conditions of
the spreading experiments, one would naively expect the normal stress to play a role: Indeed, the
Weissenberg number Wi = N1

τ
∼ α

k (V
e )m−n, which compares the first normal stress difference N1 to

the shear stress τ , is around 1 in the case of xanthan gum solutions, whereas it is about 10 in the
case of HPAM solutions. This indicates that in our experiments, the normal forces generated by the
flow in HPAM are very important compared to the shear stress forces. However, they do not impact
the film deposition law.

IV. MODEL

To capture this point and model the relation between e and lw for the non-Newtonian fluids, we
propose a scaling analysis.

In all our experiments, the liquid is highly confined below the blade: The wetting length lw
typically varies between 2 cm and a few millimeters, while e is of the order of 100 μm, so that
lw � e. The Reynolds number Re = ρeV/η is smaller than 10−1 (denoting ρ � 103 kg/m3 the fluid
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FIG. 3. (a) Evolution of the fluid thickness e with the wetting length lw for two complex fluids (xanthan
0.9% in blue, HPAM 0.3% in green, and HPAM 0.1% in light green) and a Newtonian fluid (silicone oil, η =
480 mPa s in red). The markers correspond to the experimental data measured for different initial fluid volumes.
The continuous lines show the scaling law [Eq. (1)] with prefactors 0.17 (for silicone oil) and 0.06 (for xanthan
and HPAM) corresponding to the best fits. The dashed lines are the numerical solutions. (b) Comparison of
xanthan 0.9% and HPAM 0.5% (dark green). The blue symbols correspond to the same experiments in (a)
and (b).

density and η > 10−2 Pa s the fluid viscosity). In addition, the tip of the blade is almost parallel to
the substrate, and the mean angle in the wet part of the blade is typically 5◦. This implies that the
shear gradient is mostly horizontal and the elongational component of the flow is negligible. Thus,
the flow below the blade is close to a simple lubrication flow: The fluid velocity v is oriented along
the x axis and varies with y only.

In the general case, and when neglecting gravity, the fundamental relation of dynamics at low
Reynolds number is

∂P

∂x
= ∂τxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
, (2)

with P the hydrodynamic pressure within the fluid and τ the deviator of the stress sensor (which
has the same symmetry as the velocity field). Equation (2) can be expressed as a function of the
first and second normal stress differences N1 and N2. Using N1 = τxx − τyy and N2 = τyy − τzz and
τxx + τyy + τzz = 0 (by definition of the pressure), Eq. (2) is written as follows:

∂P

∂x
= ∂τxy

∂y
+ ∂

( 2N1+N2
3

)
∂x

+ ∂τxz

∂z
. (3)

In our experiment, symmetry implies that τxz = 0. In addition, and following Refs. [14] and
[16], we consider that N2 � N1, which is classical for polymer solutions. Finally, the steady Stokes
equation in the lubrication approximation is

∂P

∂x
= ∂τxy

∂y
+ 2

3

∂N1

∂x
. (4)

The pressure in the liquid film confined below the blade is thus the sum of two terms. The
first is the lubrication pressure, which scales as τ lw

e (denoting τ = τxy) and the second is due to
the normal stresses and is proportional to N1. During the spreading with a soft blade, the pressure
generates a lift force, which is balanced by a restoring elastic force coming from the blade. To
evaluate the influence of the normal stresses on the spreading, we define a nondimensional number,
E = 2N1e

3τ lw
∼ 2

3 Wi e
lw

, which compares the contributions of the two terms of the total fluid pressure P.
In practice, the condition E � 1 is always true for the 0.9% xanthan gum solution, which indicates
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that the shear-thinning effects are dominant over the elastic effects. Interestingly, it is also verified
for the 0.5% HPAM solution, despite a Weissenberg number Wi � 10. Indeed, E � 1 as long as
lw > 0.05 mm, which is always the case in our experiments.

We now propose a scaling law to model the film thickness e. The blade is subjected to two forces:
a lift force Flift created by the flow of the fluid which tends to lift the blade from the plate and an
elastic restoring force which tends to stick the blade to the plate Fblade. If E � 1, then the lift force
F ∼ (P − Po)lwb (with b the width of the blade) created by the fluid on the blade is mainly given
by the increase of pressure (P−Po) due to the confined flow. This value is estimated from Eq. (4).
When E � 1, we get P−Po

lw
= τ

e where the tangential stress τ is given by τ = k(V
e )n. The lift force

scales thus as Flift ∼ k(V
e )n l2

wb
e . This force is compensated by the rigidity of the blade, which induces

a resisting force Fblade ∼ E∗I
(L−lw )2 (denoting I the second moment of inertia of the blade). This scaling

law is found by relying on the equations of elastica [17]. The part of the blade that is not covered
by the liquid is in the air. In this situation (i.e., for s between 0 and L − lw ), the shape of the blade
is given by the following two equations:

d�

ds
= ( �F × �t ) · �uz, (5)

d �F
ds

= 0, (6)

where �F and � are respectively the force and the projection of the torque on �uz exerted at a point of
the blade by the portion of the blade located “on its right,” �t is the vector tangent to the surface, and
�uz the vector along the width of the blade. This leads to E d2θ

d2s = Fblade where θ is the angle between
the downward vertical and the tangential vector to the blade. If lw is less than L, then we can estimate
d2θ
d2s = 0− π

2
(L−lw )2 as θ goes to π

2 when s goes to L. If lw is close to L, then we get d2θ
d2s = −θ

(L−lw )2 , which
differs from the last case as θ goes to 0 when s goes to 0. This point explains why our expression is
valid only for lw less than L and gives Fblade ∼ E∗I

(L−lw )2 .
The balance between the two forces sets the film thickness e:

e ∼ lw

{(
1 − lw

L

)2
[

k
(

V
lw

)n
L2blw

E∗I

]}1/(n+1)

, (7)

with the condition E � 1, which correspond to α
k ( V

lw
)

m
n+1 (1 − lw

L )
2(1−m+n)

n+1 ( kL2blw
E∗I )

1−m+n
n+1 � 1.

At first sight this equation is striking since it predicts that e vanishes when lw goes to zero. We
recall that the value of e cannot be deduced from this equation since it is not valid when lw tends to
L, i.e., in the case of an infinite reservoir. This comes from the calculation of the elastic force of the
blade which is no longer valid.

For Newtonian fluids, i.e., for n = 1, Eq. (7) is similar to the scaling suggested by Krapez et al.
[12]. In this previous work [12] we have checked the dependence of the scaling law on each of
the variables for a Newtonian fluid. We have varied the velocity (four values between 2.5 and
10 mm/s) and the thickness of the blade (between 1 and 7 mN m) and the length of the blade
(5.7 and 7 cm) and shown that all the data collapsed. Here we focus on the rheological properties
of the fluid and study four non-Newtonian fluids with different rheological laws (the parameters are
given in Table I). The effect of speed is analyzed on two different speeds. We anticipate that the
wetting conditions and our experimental setup do not allow us to study respectively lower or higher
speeds.

In Fig. 3, the scaling law is shown with a continuous line and compared with the experimental
data, using the values of n and k extracted from the flow curves (Table I). The experimental data
reported correspond to several different films (at least five experiments per concentration). The
reported noise is the experimental noise. A prefactor of 0.06 is used for all the shear-thinning fluids
and of 0.17 for silicone oil. For lw > 15 mm, the scaling law fits well with the data: It reproduces
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FIG. 4. Evolution of the fluid thickness e with the wetting length lw for two different velocities and for a
solutions of xanthan (and 0.9%). The continuous lines show the scaling law [Eq. (1)] with prefactors of 0.06
corresponding to the best fits.

in particular the dependency of e with lw and the relative variations of e with the rheology of the
fluids. The same agreement is found when the velocity is varied (see Fig. 4).

A sharp increase, however, is observed for large reservoir sizes, typically here for lw > 15 mm
that is not predicted by the model. To get a better understanding of this complex situation, we
performed a full numerical computation of the experiment. The principle of the computation
is detailed in the Appendix. Basically, the spreading dynamics are described using two sets of
equations, coupled by boundary conditions at the tip of the blade. The first set of equations models
the viscoelastic interaction between the blade and the fluid. It is resolved using Euler’s elastica,
where the bending torque of the blade is compensated for by the torque arising from the gradient
of tangential stress in the lubricated layer of fluid below it. The capillary forces arising from the
liquid surface deformation on the left and right parts of the wet area of the blade are included in the
boundaries conditions for the pressure p. The second set of equations models the free liquid film at
the blade exit. These equations correspond to the canonical Landau-Levich situation: They express
the equilibrium between viscosity and surface tension, which sets the behavior of the spread film.
The matching between these two sets of equations is done iteratively by imposing the continuity
of the flow rate at the tip of the blade. In both sets of equations, the fluid is modelled within the
lubrication approximation, taking into account the rheological properties describing the Newtonian
or shear-thinning behavior. The values of η0, k, and n are taken from Table I. The results of the
simulation are shown with dotted lines in Fig. 3. They match well the experimental data for all
the fluids considered here and without any adjustable parameter. This confirms our dimensional
analysis. Deviations are also observed for high values of lw. We believe that this is due to a bad
description of the shape of the back meniscus of the volume of fluid below the blade when lw is
large.

V. DISCUSSION

The simulations, in which the normal stress is neglected, confirm the very little role played by
first normal stress in blade spreading experiments: In Fig. 3(b), the plots e(lw ) are nicely reproduced
for both xanthan and HPAM. The difference with other classical situations is striking. In general,
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these stresses cause spectacular effects, such as a swelling of the fluid flowing out of a tube in
extrusion processes, or the climbing of the fluid along rotating rods [18]. Here, contrary to most
flows, the Weissenberg number is not the appropriate characteristic number to characterize the
normal stress effects in spreading experiments, and a new number E = 2

3 Wi e
lw

has to be defined. In
our experiment, even if the Weissenberg number is close to 10 in the 0.5% HPAM solution—which
indicates that the first normal stress difference dominates over the shear stress—E is of the order
of 0.1 due to the geometrical factor e

lw
� 10−2. This explains why the effect of normal stresses is

negligible in soft blade spreading. This geometrical factor is central to explain the difference with
other experiments. For example, de Ryck et al. [14] evidence a very strong effect of the normal
stresses when dip coating a fiber. They use a 1% PAA solution with properties similar to the 0.5%
HPAM solution so that the Weissenberg number is also close to 10. However, in dip coating, the
characteristic length scale in the x direction is an internal length l ∼ √

eb with b the thickness of
the fiber. In Ref. [14] the ratio e/l varies between 0.2 and 1 so that E is always larger than 1.
In our experiment, however, the presence of the blade imposes the wetting length lw as the relevant
horizontal length scale. Since lw � 100 e, we cannot observe any effect of the normal stresses unless
the Weissenberg number is larger than 100, a situation that cannot be obtained with the fluids used
here and which will be difficult to achieve.

However, it is important to note that even if the normal stresses play no role here, the shear-
thinning rheology of the fluids has a strong influence on blade coating. To evidence this point, we
compare the spreading process of shear-thinning and Newtonian fluids, focusing on the work needed
to spread the fluid and the film profile

First, it is necessary to carefully select the viscosity of the “equivalent” Newtonian fluid that is
compared with a given shear-thinning solution. To do so, we do the following thought experiment:
Starting with identical initial conditions (same initial amount of fluid below the blade; i.e., same lwi,
same spreading velocity V ), it should take the same time td to spread a volume �d of the equivalent
Newtonian fluid than the shear-thinning fluid of interest. Indeed, if the mechanical properties of
the blade are known, then, for a fixed V and lwi, there is a bijective relation between the spreading
time and the viscosity of the Newtonian fluid. Figure 5(a) illustrates the choice of the equivalent
Newtonian fluid for the 0.9% xanthan solution. Using the simulations, we plot (with a continuous
line) the time td necessary to spread a given volume �d of xanthan. With dotted lines, we show
the spreading time td (�d ) for four different Newtonian fluids, with viscosity η = 150, 300, 500,
and 1000 mPa s. As evidenced in Fig. 5(a), the equivalent Newtonian fluid has a viscosity η = 300
mPa s: It almost overlaps the xanthan curve and has an identical spreading time td = 6 s for lwi =
18 mm and �d = 0.40 cm3.

To evaluate energy dissipation in blade spreading, we focus on work dissipated by the liquid
during the spreading W = ∫ td

0 FV dt and compare the 0.9% xanthan solution to its “equivalent”
Newtonian solution. We denote here F the force exerted by the fluid on the surface (calculated by
integrating the shear stress at the liquid/substrate interface in the x and z directions) and td the
deposition time. The calculated work is negative. It corresponds to the work dissipated by the fluid.
To spread the fluid, the experimenter needs to bring −W . Figure 5(b) shows the calculated value
of W for the 0.9% xanthan solution, the equivalent Newtonian fluid (η = 300 mPa s), and four
others (with viscosity η = 50, 150, 500, and 1000 mPa s). We observe that the energy needed to
spread the shear-thinning solution is typically 30% higher than its Newtonian equivalent (e.g., 34%
for �d = 0.40 cm3). This result might seem counterintuitive: Indeed, in industrial applications, the
addition of polymer to a product is often seen as a way to make the liquid easier to spread. We show
here that the opposite happens: Shear-thinning fluids resist more to the spreading than an equivalent
Newtonian fluid.

Note that in Fig. 5(b) the xanthan curve is superimposed on the curve of a Newtonian fluid of
viscosity 150 mPa s. This means that the same amount of work is needed to spread an equivalent
volume of xanthan and a fluid with viscosity 150 mPa s. However, the deposition time is longer for
the fluid of viscosity 150 mPa s than with xanthan [Fig. 5(a)]. It is thus not a Newtonian equivalent
in our definition, as opposed to 300 mPa s.
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FIG. 5. (a) Deposition time td as a function of the deposited volume �d for xanthan at 0.9% (dark blue) and
Newtonian fluids with viscosity from top to bottom: 1000 mPa s (green), 500 mPa s (yellow), 300 mPa s (pink),
and 150 mPa s (cyan). For �0 = 0.40 cm3, td = 6 s for the xanthan solution. (b) Work of the viscous forces
during the spreading of volume �d for the fluids of Fig. 5(a) and 50 mPa s (red). The xanthan fluid dissipates
more energy than the Newtonian fluid at η = 300 mPa s. (c) Evolution of the thickness of the deposit as a
function of the deposited length for silicone oil of 480 mPa s (red) and xanthan at 0.9%. Dots are experiments,
and lines computations without fitting parameters. The experiments are carried with a velocity equals 1 cm s−1.
(d) Shape of deposit for xanthan and Newtonian fluids of viscosity: 500, 300, and 150 mPa s.

Another property of the shear-thinning rheology is to change the profile of the deposited film.
This is illustrated in Fig. 5(c), where the film thickness e is plotted as a function of the length ld
of the deposited film for two fluid categories. The dots correspond to the experimental data (in
red, a Newtonian fluid, silicone oil with viscosity η = 480 mPa s and in blue a shear-thinning 0.9%
xanthan solution). The lines show the result of the simulations. Note that the length of fluid deposited
is only modeled in the steady state. To account for this phenomenon, an offset on ld must be added
to the experimental curves to compare the model and the data. In the Newtonian situation, the film
thickness drops sharply to zero at the end of the film (when the reservoir is almost empty), here for
ld = 7, 5 cm. However, for shear-thinning fluids, the deposited thickness generally decreases more
slowly and continuously from the beginning of the process to the end. This experimental observation
is confirmed by the simulations shown in Fig. 5(d): The shear-thinning solution (xanthan, in blue)
thins out almost linearly, in contrast to its Newtonian equivalent (η = 300 mPa s). Spreading a
shear-thinning fluid results in a more regular and longer film.
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VI. CONCLUSION

As mentioned in the Introduction, we study in this work the spreading of complex fluids by a
flexible blade and we focus on the case where the volume of liquid is finite. This case is found in
particular during the spreading of a paint by a pin or of glue with a flexible squeegee or glue with a
flexible squeegee. Most of the articles in the literature [8,13,19–26] concern studies where the liquid
reservoir is infinite and we are not aware of published data in the situation of a finite reservoir. We
have therefore developed an experimental approach to compare numerical simulations, scaling laws,
and experiments. By combining experiments with a judicious choice of fluids, and numerical and
scaling law models, we give a better understanding of the spreading dynamics of non-Newtonian
fluids. In particular, we show that the thickness of the deposit can be predicted as a function of the
rheological features of the fluid. Interestingly, we evidence that shear-thinning fluids require more
work to be spread than Newtonian fluids but that the deposit thins out more regularly. These results
will be valuable in applications, for example to determine whether a polymer needs to be added to a
product or to choose the polymer depending on the expected effect: a thicker or a more regular film
or a fluid that is more easy to spread.

Interestingly, we also show that normal stresses play only a small role in the spreading process
by a soft blade even if the Weissenberg number is of the order of 10. This implies that the analogy
that is often made between soft blade coating and dip coating [8–11] is not valid when the reservoir
is infinite. Both processes do not involve the same characteristic length scale: an externally imposed
length in blade coating (the wetting length lw) versus an internal length (the meniscus deformation)
in dip coating.

APPENDIX: NUMERICAL SOLUTION OF THE ELASTOHYDRODYNAMIC EQUATIONS

We present in this section the equations used to calculate numerically the blade shape and the
flow in a soft blade coating experiment. The general principle is the same as in our previous work
[12] but here for a shear-thinning fluid. In particular, the shear-rate dependency of the viscosity
implies a different set of equations to describe the fluid contribution (the lubrication pressure and
the viscous drag force). The shear-thinning fluid is modelled as in Eq. (1) of the main part of the
manuscript: Its viscosity is constant at low shear, and it follows a power law at high shear.

The blade and fluid are described using two sets of equations. The first set, called the “blade
equations” [Eqs. (A14), (A17), (A19), (A20), and (A24)], describes the interaction between the
elastic blade and the hydrodynamic forces arising from the fluid sheared below it. The second set,
the “free surface equations” [Eqs. (A29) and (A31)], describes the free film after the tip of the blade.
Finally, we detail the numerical resolution method. Its originality is to rely on an analogy between
the hydroelastic equations and the stationary heat transfer equation to solve the problem.

1. Blade equations

We consider in this part the interaction between the blade and the liquid. As shown in supple-
mentary Fig. 6(a), we consider an elastic blade submitted to nonuniformly distributed forces, due to
the presence of the shear-thinning liquid below. Since the Reynolds number Re = ρeV/η < 10−1

in the flow is small and since the mean angle between the tip of the blade and the substrate is of a
few degrees, we consider that the fluid flow corresponds to a simple Stokes flow in the lubrication
approximation. In particular, any elongational component of the flow is neglected.

When the blade is in motion, the fluid flow induces two forces that are distributed nonuniformly
along the part of the blade wet by the liquid. We distinguish here a lift force (perpendicular to the
blade), due to the lubrication pressure p, and a viscous force fv (tangent to the surface) arising from
the no-slip boundary condition. In addition, we consider the effect of surface tension forces which
are tangent to the meniscus at the positions s = sw and L. As discussed with Newtonian fluids [12],
these local forces have a very small impact on the film deposition (the order of magnitude of torque
from local capillary forces is 0.1% of the torque resulting from the lubrication pressure). However,
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FIG. 6. (a) Soft blade coating experimental setup, notations, and axes convention. (b) Schematic represen-
tation of the Newtonian and shear-thinning areas in the liquid.

we still consider the contribution of the Laplace pressure arising from the curvature of the interfaces
at s = sw and s = L, which acts as a boundary condition on the lubrication pressure p.

To model the shape of the blade, we use the curvilinear length s along the blade, with s = 0 the
clamping position and s = L the free edge. The blade is modelled as a large deflection problem,
where the normal �n and tangent �t vectors [as defined in Fig. 6(a)] both depend on s. We solve the
beam equation following a classical method [27]. We consider the variation of the internal torque �

of the blade with s, which depends on the sum of all the forces exerted on the right of the point of
interest s.

By taking into account the lubrication, viscous forces, and capillary forces, the total external
force F (s) acting on the right of s on the blade is

�F (s) =
∫ L

s
[p(s′) �n(s′) + fv (s′) �t (s′)]bds′ + �Fc, (A1)

where b is the width of the blade and Fc is the capillary force.

Calculation of the forces

Fluid pressure. We model the flow below the blade as a steady flow in the lubrication approx-
imation. We neglect the effect of a potential recirculation near sw, as well as the first and second
normal stress difference. Within this frame, the fluid pressure does not vary with y, and gravity is
neglected. The flow equation reads:

∂τ

∂y
= ∂P

∂x
. (A2)

To model the shear-thinning fluid, we use the following equations:

τ =
{
η0γ̇ for γ̇ < γ̇c

k|γ̇ |n−1γ̇ for γ̇ > γ̇c
. (A3)

Depending on the local shear rate in the flow, the liquid behaves as a Newtonian fluid (when |γ̇ | <

|γ̇c|) or as a power-law fluid (when |γ̇ | > |γ̇c|), as evidenced in supplementary Fig. 6(b). In addition,
we have to take into account that γ̇ and the pressure gradient can be negative in some parts of the
liquid, and that the power-law index n is inferior to 1. Thus, several cases have to be considered at
the same time.

To determine the fluid equations, we define y0 such as τ (y0) = 0, which marks the separation
between positive and negative shear rate. The vertical asymptotic observed in y0 corresponds to the
position of the maximum fluid pressure which implies a constant shear stress over y. The integration
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of Eq. (A2) over y gives:

τ = ∂P

∂x
(y − y0). (A4)

To calculate the pressure in the reservoir we consider the continuity of the shear rates at the limit
between the shear-thinning and Newtonian regions. We define dyc the half width of the area where
the shear rate is below γ̇c and the shear stress is expressed as Newtonian [Fig. 6(b)]. The Newtonian
region is symmetrical around the y0 limit as expected from the Stokes equation. We obtain:

∂P

∂x

dyc

η0
=

〈
∂P

∂x

dyc

k

〉1/n

. (A5)

Note that the notation 〈x〉a = sgn(x)|x|a is used in the equations.
Rewriting this equation gives an expression for the pressure gradient, but the sign still needs to

be determined:

∂P

∂x
= sgn

(
∂P

∂x

)
1

dyc

η
n

n−1
0

k
1

n−1

. (A6)

To calculate dyc, we use Eq. (A3) (expressed as a function of the velocity, by using γ̇ = dv
dy ) and

combine it with Eq. (A4). The shear rate is then integrated over y with no-slip boundary conditions
at the moving plate [v(0) = V ] and at the blade [v(h) = 0]. At the position y = y0 ± dyc we use the
continuity of the velocity. Finally, we obtain a set of equations describing the velocity in the different
part of the fluid and the flow rate q is calculated by integrating v over y. A general equation for the
linear flow rate is obtained as follows:

q = V y0 − 1

3η0

〈
∂P

∂x

〉
(sgn(y0) min(|y0|, dyc)3 + sgn(h − y0) min(|h − y0|, dyc)3) +

〈
1

k

∂P

∂x

〉1/n

×
[−〈y0〉1/n+2 − 〈h−y0〉1/n+2+sgn(y0) min(|y0|, dyc)1/n+2+sgn(h−y0) min(|h−y0|, dyc)1/n+2

1/n+2

]
.

(A7)

The sign of ∂P
∂x is the same as V y0 − q [result obtained from Eq. (A7)] which gives:

∂P

∂x
= sgn(V y0 − q)

1

dyc

η
n

n−1
0

k
1

n−1

. (A8)

By writing the condition of velocity continuity at y0 we obtain another equation:

0 =V − 1

2η0

〈
∂P

∂x

〉
[min(|y0|, dyc)2 − min(|h − y0|, dyc)2]

−
〈

1

k

∂P

∂x

〉1/n[max(|y0|, dyc)1/n+1 − max(|h − y0|, dyc)1/n+1

1/n + 1

]
. (A9)

By injecting Eq. (A8) into Eqs. (A7) and (A9) we obtain two equations that are used to calculate
y0 and dyc for a given flow rate, q, and blade shape, h. The derivative along the curvilinear abscissa,
obtained using the relation dP

ds = dP
dx sin θ , and integrated between sw and s gives the fluid pressure

p, defined as the pressure relative to the atmospheric pressure, p = P − Patm:

p(s) =
∫ s

sw

∂ p

∂x
sin θds =

∫ s

sw

sgn(V y0 − q)
1

dyc

η
n

n−1
0

k
1

n−1

sin θ (s′)ds′ + psw, (A10)

with psw the Laplace pressure arising from the presence of a meniscus at s = sw. To obtain an
expression of psw, we model the meniscus by a circular arc which radius of curvature R is determined
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from the wetting angles δs and δb:

psw = γ

R
= −cos [δb + π/2 − θ (sc)] + cos δs

h
γ . (A11)

Contrary to what can be done for Newtonian fluids, it is not possible to use the value of the pres-
sure at the position s = L to obtain an explicit equation of the flow rate q = f (h, θ, pL, psc,V, b, sw ).
Here the problem is highly nonlinear, so we use solvers to find a value of q, y0, and dyc. Once
injected in Eq. (A10) at the position s = L, they give a pressure at the blade tip approximately equal
to its guess pL.

Finally, the pressure at s = L is determined by considering the pressure at x = +∞ fixed to
Patm = 0 and using this condition to solve the shape of the liquid surface after the blade (see Sec. 4
of the Appendix).

Viscous stress. The viscous stress fv , exerted by the fluid on the blade, is defined as:

fv = −τ (h) = −∂P

∂x
(h − yo), (A12)

which we now write, using Eq. (A8), as fv:

fv = −sgn(V y0 − q)
1

dyc

η
n

n−1
0

k
1

n−1

(h − yo). (A13)

Capillary forces. The capillary forces are expressed as:

�Fc = γ b �eγ , (A14)

with �eγ the vector tangent to the free liquid surface at the triple line position.

2. Simplification: Pure shear-thinning fluid under the blade

We observed numerically that taking into account the Newtonian area under the blade has a very
limited impact on the results: The pressure profile only differs by less than 10−3% between a simple
power-law fluid and the fluid described by Eq. (A3) (with a Newtonian viscosity plateau at low
shear). Thus, we used the hypothesis of pure shear-thinning behavior under the blade to speed up
the computation. With this simplification, Eq. (A7) becomes

q = V yo −
〈

1

k

∂P

∂x

〉1/n[ 〈yo〉1/n+2 + 〈h − yo〉1/n+2

1/n + 2

]
. (A15)

The velocity continuity at y0 gives:

V (1/n + 1) =
〈

1

k

∂P

∂x

〉1/n

(|yo|1/n+1 − |h − yo|1/n+1). (A16)

By combining Eqs. (A16) and (A15) we obtain a new equation of the flow rate that depends only on
y0 and h:

q = V

[
yo − 1/n + 1

1/n + 2

( 〈yo〉1/n+2 + 〈h − yo〉1/n+2

|yo|1/n+1 − |h − yo|1/n+1

)]
. (A17)

We can express the pressure derivative from Eq. (A15):

∂P

∂x
= k

〈
(V yo − q)(1/n + 2)

〈yo〉1/n+2 + 〈h − yo〉1/n+2

〉n

, (A18)

p(s) =
∫ L

sc
k

〈
(V yo − q)(1/n + 2)

〈yo〉1/n+2 + 〈h − yo〉1/n+2

〉n

sin θds + psw. (A19)
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The viscous stress fv becomes

fv = −k

〈
(V yo − q)(1/n + 2)

〈yo〉1/n+2 + 〈h − yo〉1/n+2

〉n

(h − yo). (A20)

3. Torque balance

To solve the blade shape in the large deflection problem, a first step is the calculation of the total
external torque �(s) applied by the fluid on the blade. It corresponds to the sum of all elementary
torques applied by the fluid (due to the lubrication force, viscous stress and capillarity) between the
working position s and the tip of the blade L. To do so, we need to project the blade angle θ (as
defined in Fig. 6) on the x and y axis:

�(s) = b
∫ L

s

�SS′ ∧ [ �p(s′) + �fv (s′)]ds′ · �uz + �SL ∧ �Fc · �uz (+ �SSw ∧ �Fc · �uz if s < sw ), (A21)

= b
∫ L

s
[p[(x(s′) − x(s)) sin θ (s′) − (y(s′) − y(s)) cos θ (s′)] − fv[(x(s′) − x(s)) cos θ (s′)

+ (y(s′) − y(s)) sin θ (s′)]]ds′ − Fc[(xL − x(s)) cos θmL + (yL − y(s)) sin θmL

+ (xsw − x(s)) cos θmsw + (ysw − y(s)) sin θmsw]. (A22)

θmsw and θmL are the angles of the tangent of the meniscus with respect to the y axis at the
positions s = sw and s = L respectively.

Since the blade is in an equilibrium position, Euler’s elastica implies that the torque produced
by the internal stress E∗I dθ

ds is equal to the total torque �(s) produced by external forces. Now we
write:

�(s) = −E∗I
dθ

ds
. (A23)

Combining Eqs. (A22) and (A23) gives:

d2θ

ds2
= b

E∗I

∫ L

s
[−p cos (θ (s) − θ (s′)) + fv sin (θ (s) − θ (s′))]ds′

+ Fc[sin(θ (s) − θmL ) + sin(θ (s) − θmsw)]. (A24)

We finally obtain the equation describing the shape of the blade θ (s) by replacing p, fv , and Fc

by their expressions [Eq. (A19), (A20), and (A14) respectively].

4. Free surface equations

In a second part, we define a second set of equations to calculate the thickness, shape, and flow
in the free liquid film in the 0.8 cm after the tip of the blade. This interval is chosen to be sufficiently
large so that the atmospheric pressure is eventually reached into the fluid p(x = ∞) = 0. The
equations that govern the shape of the free surface are given below and follow an approach discussed
by Trinh et al. [28]. To distinguish the variables of the free surface from those of the blade we use
an index l .

The lubrication equation [Eq. (A2)] is integrated with the boundary condition τ (0) = 0 (no
tangential stress on the free surface), which give:

τ = ∂ p
∂x (y − hl ). (A25)

Again, we have to consider separately two regions, in which the fluid behaves either as a
Newtonian fluid (at low shear rate) or as a power-law liquid (at high shear rate). We define, as
before, the boundary between these two regions yc. Since most of the liquid in the free film is at
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rest (with γ̇ = 0), it is particularly important to take into account the Newtonian plateau in the
rheological law, contrary to what is done below the blade.

The shear rate equality at yc gives an expression for the derivative of p:

∂ p

∂x
= sgn

(
∂ p

∂x

)
1

hl − yc

η
n

n−1
0

k
1

n−1

. (A26)

To determine yc, the no-slip boundary condition on the substrate [v(0) = V ] and the velocity
continuity at yc are used to obtain the expressions of the velocity in both regions. The integration
gives the flow rate:

ql = V hl − 1

3η0

∂ p

∂x
(hl − yc)3 +

〈
1

k

∂ p

∂x

〉1/n (hl − yc)1/n+2 − h1/n+2
l

(1/n + 2)
. (A27)

From this equation it can be shown that the sign of ∂ p
∂x is equivalent to the sign of V hl − ql . This

results leads to a new expression for the pressure derivative:

∂ p

∂x
= sgn(V hl − ql )

1

hl − yc

η
n

n−1
0

k
1

n−1

. (A28)

The equation describing the flow rate [Eq. (A27)] can be rewritten only as a function of the
variables hl and yc by using Eq. (A28):

ql = V hl − sgn(V hl − ql )

(
η0

k

) 1
n−1

[
1

3
(hl − yc)2 + 1

(hl − yc)1/n

(hl − yc)1/n+2 − h1/n+2
l

(1/n + 2)

]
. (A29)

Since the liquid is incompressible, the flow rate ql is equal to the flow rate q below the blade.
Thus, we use in the numerical resolution of the equations that at x = ∞, q = V hl (∞) = Ve.

The pressure p in the liquid at the end of the blade is set by the Laplace pressure within the
meniscus, which gives a second expression for p:

p = −γ
dθ

ds
. (A30)

By combining Eqs. (A30) and (A28), and using the relation between the derivatives with respect
to s and x, we finally obtain:

d2θ

d2s
+ sgn(V hl − ql )

1

hl − yc

η
n

n−1
0

γ k
1

n−1

sin(θ ) = 0. (A31)

This equation governs the shape of the free surface of the deposited layer of fluid behind the blade.
To accelerate of the convergence, the equivalent equation for pure Newtonian fluid is used at s where
yc = 0:

d2θ

d2s
+ 3η0

γ

(
V hl − ql

h3
l

)
sin θl (s) = 0. (A32)

5. Numerical method

The numerical method used to solve the two sets of equations governing the blade shape and
fluid flow is the same as in Ref. [12]. We summarize here what was done.

It is important to notice first that the equations governing the shape of the blade [Eq. (A24)] and
the free surface [Eq. (A31)] have the same structure. They can both be written as:

d2θ

d2s
= −S(s, θ (s)). (A33)
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where −S is the right member of Eqs. (A24) and (A31). Interestingly, Eq. (A33) can be seen as
a one-dimensional steady-state nonlinear heat equation, where θ is equivalent to temperature and
S is a heat source distribution, depending on both s and θ . The heat conductivity is here equal to
1. Following this analogy, we thus solve Eqs. (A24) and (A31) by referring to the transient heat
equation [Eq. (A34)], where we add the derivative of θ versus a virtual time tv , ∂θ

∂tv
and a volumetric

heat capacity equal to 1,
∂θ

∂tv
= ∂2θ

∂s2
+ S(s). (A34)

The boundary conditions depend on the solved set of equations:
(i) for the hydroelastic equations (the blade and the fluid below) the fixed mounting imposes

θ (0) = 0. In addition, since there is no torque at the end of the blade, we also have ∂θ
∂s |L = 0.

(ii) for the free surface equations, since the fluid deposited is horizontal far from the tip of the
blade (at x = ∞), we have θl (∞) = π/2. In addition, the Laplace pressure equation written at L
imposes: ∂θl

∂s |L = − pL

γ
.

Finally, the matching of the two solutions of Eqs. (A24) (for the blade) and (A31) (for the free
film) is done by imposing a continuity of the flow rate q at x = L, as well as of the liquid height:
h(x = L) = hl (x = L).

6. Resolution method

The transient heat equation [Eq. (A34)] is solved numerically by finite differences, which gives
the asymptotic stationary solution. We start from an initial guess of the shape θ (s) of the blade.
This initial shape is obtained through a rough calculation for a Newtonian fluid (that satisfies the
initial guess of the pressure pL), using the equations of our previous work [12]. The viscosity of
this fluid is η = 478 mPa s and, to facilitate the following calculations, it has the same wetting
properties (surface tension, contact angles, and pressure psw) as the shear-thinning fluid that is
studied afterwards.

We chose an implicit-explicit scheme [29,30] as a compromise between stability and computing
time. Thus, the source term S is defined explicitly, while θ is not,

θn+1
i − θn

i

�tv
= θn+1

i−1 − 2θn+1
i + θn+1

i+1

�s2
+ S(s, θn), (A35)

where θn
i ≈ θ (i�s, n�tv).

According to the Lax equivalence theorem [31], this scheme is stable and converges to the
stationary solution, when it exists. Usually, the timestep �tv follows the condition �tv < �t lim

v /2,
where �t lim

v = �s2

E∗I and �s is the size of a cell. However, in most simulations, the model converges
nicely so that we can accelerate the calculation, and use instead �tv = 20 �t lim

v . For the spatial
discretization of the blade equations, we chose to set �s ∈ [0.1, 0.5] mm. The spacing is nonuniform
for the free surface calculation: We increase exponentially the size of the cell from the meniscus area
to the “end” of the free film, with �s increasing from 10−5 to 10−1 mm.

7. Convergence criteria

For shear-thinning fluids the equation of the flow rate under the blade [Eq. (A17)] requires an
additional convergence criteria compared to what is necessary for a Newtonian fluid. Thus, the
convergence of the numerical simulation is achieved when three conditions are simultaneously met:

(1) The steady state is reached for the transient heat equation [Eq. (A34)] which provides the
solution for the governing equations of the shape of the blade [Eq. (A24)] or the free surface
[Eq. (A31)].

(2) The two flow rates, calculated from the blade equations [Eq. (A17)] and from the free film
equation [where q = V bhl (∞)] equalize (because of flow conservation).

(3) The pressure at L calculated through Eq. (A19) matches the guess value of pL.
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8. Coupling of the blade and free surface calculation

In the resolution process, a given input is the wetting length lw, which implies that e and lw both
vary quasistatically with time. A new simulation is thus necessary to determine e for each value
of lw. The other inputs are the wetting angles at the position sw, δs, and δb (see Fig. 6), whose
values are measured experimentally. It is also necessary to make an initial guess of the shape of the
blade θ (s) and of the free surface θl (s) and provide a first estimate of the value of the pressure at
the tip of the blade, pL, as well as the meniscus angle at this position, θmL. As stated before, the
initial guess of θ (s) is obtained from a rough calculation of the blade shape with a Newtonian fluid,
without taking into account the free surface. The shape of free surface is initially modelled as an
hyperbolic tangent (to reproduce the meniscus shape). These guesses are used in the computation
of the transient heat equations [Eq. (A24)] and [Eq. (A31)], where each step gives an updated θ (s),
θl (s), and θmL = θl (L). The arbitrary value of pL is adjusted through a corrective factor extracted
from the difference between the two values of flow rates, q and ql . This process is iterated until the
flow rates can be considered equal, usually within 10−4, leading to the “correct” value of pL. The
fluid thickness e is finally extracted from the height of the deposited fluid for x −→ ∞.
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226 Appendix

E. Expression of the velocity for soft blade coating of shear-thinning
fluid

θ

s

Fig. E.1 − Illustration of the different zones under the blade. Zone 1 corresponds to a Newtonian region
between two shear thinning regions. In zone 3, the liquid can be described over its entire height with
shear thinning equations. Zone 2 and 4 describe the presence of a Newtonian region above (zone 2) or
below (zone 4) the shear thinning region. The sign of ∂ p

∂x and ∂ v
∂v changes depending on the position

under the blade. The limit between the positive and negative region correspond to y0(x) for ∂ v
∂v and the

vertical assymptote in y0 for ∂ p
∂x .

We distinguish four areas depending on the presence and the position of the Newtonian region (Fig. E.1).
We note dyc the difference between y0 defined as τ(y0) = 0 and yc defined as the boundary between the
Newtonian and shear-thinning regime. Additionally the shear rate and pressure derivative change signs
inside some of those zone which has to be taken into account when writing the corresponding equations.

Here is given an example of the set of equation describing the velocity field obtained from the
integration of Equation 3.10 in the zone 1 (Newtonian region comprised between two shear-thinning
regions). Using the no-slip boundary conditions at the moving plate v(0) =V , and at the blade v(h) = 0,
and the velocity continuity at y = y0 −dyc and y = y0 +dyc we can write a set of equations describing
the velocity at the different height y:

v(y) =





〈
1
k

∂ p
∂x

〉1/n (y0 − y)1/n+1 − y1/n+1
0

1/n+1
+V for y ∈ [0,y0 −dyc]

1
2η0

∂ p
∂x

((y− y0)
2 −dyc

2)+

〈
1
k

∂ p
∂x

〉1/n dyc
1/n+1 − y1/n+1

0
1/n+1

+V for y ∈ [y0 −dyc,y0]

1
2η0

∂ p
∂x

((y− y0)
2 −dyc

2)+

〈
1
k

∂ p
∂x

〉1/n dyc
1/n+1 − (h− yo)1/n+1

1/n+1
for y ∈ [y0,y0 +dyc]

〈
1
k

∂ p
∂x

〉1/n (y− y0)
1/n+1 − (h− y0)

1/n+1

1/n+1
for y ∈ [y0 +dyc,h]

(E.1)
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Writing the velocity continuity at y = y0 gives Equation 3.15 in the main text, recalled here:

0 =V − 1
2η0

⟨ ∂ P
∂x ⟩
(

min(|y0|,dyc)
2 −min(|h− y0|,dyc)

2
)

−⟨1
k

∂ P
∂x ⟩1/n

(
max(|y0|,dyc)

1/n+1 −max(|h− y0|,dyc)
1/n+1

1/n+1

)

The flow rate can be calculated in this domain by integrating the velocity equations from y = 0 to y = h.
It can be written under a generalized equation that takes into account the sign change between the
different regions:

q =V y0 −
1

3η0
⟨∂ p

∂x
⟩
(

sgn(y0)min(|y0|,dyc)
3 + sgn(h− y0)min(|h− y0|,dyc)

3
)

+ ⟨1
k

∂ p
∂x

⟩1/n

(
−⟨y0⟩1/n+2 −⟨h− y0⟩1/n+2 + sgn(y0)min(|y0|,dyc)

1/n+2 + sgn(h− y0)min(|h− y0|,dyc)
1/n+2

1/n+2

)

This equation correspond to the Equation 3.14 presented in Chapter 3.
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F. Determination of the position of the solid region under the blade for
yield stress fluids coating

I II III

xz

y

Fig. F.1 − Illustration of the different zones under the blade encountered when spreading a yield stress
fluid. Zone I corresponds to a solid-like region (|τ|< τy) between two liquid regions. In zone III, the
yield stress fluid can be described over its entire height as a liquid. Zone II describes the presence
of a solid-like region above the liquid-like region. λi and λo are represented by green and red lines
respectively.

In this appendix is presented the detailed calculation of λi and λo, the positions delimiting the solid-like
and liquid-like regions of yield stress fluid in a soft blade coating experiment. This calculation was
proposed by Kusina and coworkers [3]. The Stokes equation 3.8 is integrated under the same assumptions
as for shear-thinning fluids (lubrication approximation and gravity neglected). Using λi and λo, defined
by τ(λi) =−τy and τ(λo) = τy, as the integration constant, it gives the stress field:

τ =
2τy

λo −λi

(
z− λo +λi

2

)
(F.1)

where ∂ p
∂x =

−2τy
λi−λo

. The shear rate can be expressed using the Herschel-Bulkley model:

γ̇ =





−
(

2τy

k

)1/n(
λi − y

λo −λi

)1/n

for y < λi

0 for y ∈ [λi,λo]
(

2τy

k

)1/n( y−λo

λo −λi

)1/n

for y > λo

(F.2)

This expression of the shear rate is used to write the velocity at y = 0, using the boundary conditions
v(0) =V and v(h) = 0:

V =−
∫ h

0

∂v
∂y

dy =−
∫ h

0
γ̇ dy (F.3)
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The conservation of the flow rate under the blade, and in the deposited film, is expressed as a function of
γ̇ by performing an integration by part and using the fact that

[
yv(y)

]h
0 = 0, which gives:

eV =
∫ h

0
v(y)dy =−

∫ h

0
yγ̇(y)dy (F.4)

Equations F.3 and F.4 are solved by injecting Equation F.2 while distinguishing the three regions.

Region I: h > λi and h > λo

In the region I the following equations are obtained:

1+n
n

[
k(λo −λi)

2τy

] 1
n

V = λ
1+ 1

n
i − (h−λo)

1+ 1
n (F.5)

(1+n)(1+2n)
n

[
k(λo −λi)

2τy

] 1
n

eV = nλ
2+ 1

n
i − (h+nh+nλo)(h−λo)

1+ 1
n (F.6)

Region II: h > λi and h < λo

In region II, the velocity and flow rate conservation equation gives respectively:

1+n
n

[
k(λo −λi)

2τy

] 1
n

V = λ
1+ 1

n
i (F.7)

(1+n)(1+2n)
n

[
k(λo −λi)

2τy

] 1
n

eV = nλ
2+ 1

n
i (F.8)

By combining these two equations it is possible to express λi by:

λi =
1+2n

n
e (F.9)

λi is independent of x in this region.

For a given blade shape h(x) and the corresponding deposited thickness e, both of which are
measured experimentally, it is therefore possible to compute λi(x) and λo(x) and thus evaluate whether
a solid-like region is present in the fluid and where it is precisely located under the blade.
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Fluide complexe, Étalement, Rhéologie, Enduction, Agrégats

RÉSUMÉ

L’étalement de fluides complexes est un processus clé dans l’industrie. Les exemples classiques sont la pose d’enduit ou
de peinture, l’application de crème et de maquillage, et la fabrication de papier. Dans toutes ces situations, les fluides sont
non-newtoniens en raison de la présence de polymères et/ou de particules, ce qui induit un comportement rhéologique
complexe. En nous concentrant sur les applications cosmétiques, nous avons cherché à comprendre comment les
propriétés du fluide impactent le film déposé.
Dans une première partie, nous avons considéré l’étalement de solutions de polymères avec une lame flexible qui se
déforme pendant l’étalement. Ces expériences ont été combinées avec des modèles numériques et des lois d’échelles.
Nous montrons que l’épaisseur du film déposé diminue lorsque le réservoir de fluide se vide menant à des dépôts in-
homogènes en épaisseur. En utilisant des fluides newtoniens et complexes aux propriétés rhéologiques bien choisies,
nous avons caractérisé les effets de la viscosité, du caractère rhéofluidifiant, et des contraintes normales sur les car-
actéristiques du film déposé et du processus d’étalement. Ainsi en jouant sur les propriétés rhéologiques du fluide les
dépôts peuvent être plus ou moins homogènes. Nous révélons également deux résultats contre-intuitifs : il faut plus
d’énergie pour étaler un même volume en un même temps avec un fluide rhéofluidifiant qu’avec un fluide Newtonien.
Deuxièmement, les contraintes normales, qui conduisent habituellement à des comportements remarquables, ont ici un
effet négligeable en raison de la géométrie d’étalement. Avec les fluides à seuil, des phénomènes parasites associés au
seuil rendent les dépôts moins prédictibles.

Dans une deuxième partie, nous avons étudié les défauts d’étalement en se concentrant sur la formation d’agrégats

apparaissant parfois lors de l’étalement d’une formulation après séchage sur la peau. Nous avons identifié les paramètres

de formulation et d’étalement qui impactent l’apparition de ces défauts, et nous proposons un modèle basé sur la cohésion

et l’adhésion. Enfin, nous proposons un critère à respecter pour limiter leur occurrence.

ABSTRACT

The spreading of complex fluids is a key process in the industry. Classic examples are the coating of paint or protective
layer, cream and make-up application on the skin, and the fabrication of paper. In all these situations, the fluids are
non-Newtonian due to the presence of polymers or/and particles, resulting in more complex rheological behavior under
shear. Focusing on cosmetic applications, we sought to understand how the fluid properties impact the deposited film.
In the first part, we considered the spreading of polymer solutions with a flexible blade that deforms during spreading.
We combined these experiments with numerical models and scaling laws. We show that the thickness of the deposited
film decreases as the fluid reservoir empties leading to inhomogeneous deposits in thickness. Using Newtonian and
complex fluids with well-chosen rheological properties we disentangled the effects of shear viscosity, shear-thinning, and
normal stresses over the characteristics of the deposited film and the coating process. Thus, by playing on the rheological
properties of the fluid, the deposits can be more or less homogeneous. We reveal two counterintuitive results: it takes
more energy to spread a volume of shear-thinning fluid than a volume of a Newtonian fluid in a given time. Second, the
normal stresses, which usually lead to remarkable behaviors have a strikingly negligible effect here due to the coating
geometry. With yield stress fluids, specific phenomena associated with the yield make the deposits less predictable.

In the second part, we studied spreading defects by focusing on the formation of aggregates, which sometimes appear

during the spreading of a formulation after drying on the skin. We identified the formulation and spreading parameters

that influence the development of these defects, and proposed a model based on cohesion and adhesion. Finally, we

suggest a criterion to limit their occurrence.
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Complex fluid, Spreading, Rheology, Coating, Aggregates


	Table of contents
	Symbols
	Résumé en français
	General Introduction
	I Elastohydrodynamics
	1 Introduction - Part I
	1.1 Cosmetic context
	1.2 Rheology
	1.2.1 What is rheology?
	1.2.2 Main fluid classes
	1.2.3 Material solicitations and characterizations
	1.2.4 Rheological measurements in practice

	1.3 Spreading a fluid on a rigid plane
	1.3.1 Wetting and spreading
	1.3.2 Classic coating processes
	1.3.3 Study of deposited thickness with soft blade coating
	1.3.4 Coating of non-Newtonian fluids

	1.4 Goals of this thesis - Part I
	1.5 Conclusion

	2 Soft blade coating of Newtonian fluid with finite reservoir of fluid
	2.1 Motivations
	2.1.1 Industrial motivations: cosmetics spreading
	2.1.2 Academic motivations: elasto-hydrodynamic coupling

	2.2 Spreading experiment
	2.2.1 Experimental set-up
	2.2.2 Silicone oil as a Newtonian fluid model

	2.3 Spreading dynamics
	2.3.1 Two regimes
	2.3.2 Importance of the wetting length

	2.4 Estimation of the deposited thickness with a scaling law
	2.4.1 Elasto-hydrodynamic competition
	2.4.2 Limits of the scaling law
	2.4.3 Comparison with experiments

	2.5 Numerical model of deposited thickness
	2.5.1 Model presentation
	2.5.2 Prefactor validation
	2.5.3 Capillary effect
	2.5.4 Shape of deposit

	2.6 Flexible blade coating with finite size reservoir is not analogous to dip coating
	2.7 Conclusion

	3 Extension to shear-thinning fluids
	3.1 Experiment
	3.1.1 Fluid model: Xanthan gel
	3.1.2 Spreading dynamics

	3.2 A generalized scaling law to predict the film thickness 
	3.2.1 Elasto-hydrodynamic competition for shear-thinning fluids
	3.2.2 Comparison with experimental data

	3.3 Numerical solution of the elasto-hydrodynamic equations adapted to the shear-thinning fluids 
	3.3.1 Under-blade-area equations
	3.3.2 Torque balance
	3.3.3 Free surface equations
	3.3.4 Numerical method
	3.3.5 Results of the calculation for the shear rate
	3.3.6 Comparison with experiments and scale law

	3.4 Comparison of shear-thinning and Newtonian fluids
	3.4.1 Choice of the equivalent Newtonian fluid
	3.4.2 Mechanical work
	3.4.3 Shape of the fluid deposit
	3.4.4 Disentangle the effect of the rheological parameters n and k

	3.5 Conclusion

	4 Normal stress and Yield stress shear-thinning fluids
	4.1 Normal stress fluid coating
	4.1.1 HPAM solutions
	4.1.2 Spreading experiment
	4.1.3 Comparison with xanthan
	4.1.4 Comparison with other coating geometry described in the literature

	4.2 Yield stress fluid coating
	4.2.1 Carbopol gels
	4.2.2 Expectations for spreading dynamics by dimensional analysis
	4.2.3 Huge variation of e=f(lw) relationship
	4.2.4 Impact of Carbopol elasticity
	4.2.5 Fluid partially stuck under the blade

	4.3 Conclusion
	4.4 Perspectives


	II Suspensions
	5 Introduction - Part II
	5.1 Suspension of particles
	5.1.1 Phase diagram
	5.1.2 Rheology of dense suspensions
	5.1.3 Suspensions of particles in a yield stress fluid

	5.2 Drying
	5.2.1 Drying of a sessile droplet
	5.2.2 Drying of complex fluids

	5.3 Adhesion and cohesion
	5.3.1 Differentiation between tackiness, stickiness, adhesion, and cohesion
	5.3.2 Main categories of material adhesives
	5.3.3 Adhesion tests
	5.3.4 Results of a tack test
	5.3.5 Link with rheological properties

	5.4 Soft substrate: the skin
	5.4.1 Skin structure
	5.4.2 Mechanical characteristics
	5.4.3 Surface properties
	5.4.4 Skin Models in the literature
	5.4.5 Focus on PDMS

	5.5 Goals of this thesis - Part II
	5.6 Conclusion

	6 Impact of fillers in the formation of aggregates in cosmetic deposit
	6.1 Context and evaluation 
	6.1.1 Industrial context
	6.1.2 Industrial evaluation of defects
	6.1.3 Problem definition and scope

	6.2 Mimic the spreading of cosmetics
	6.2.1 Proposition of a new skin model
	6.2.2 New applicator
	6.2.3 Protocol
	6.2.4 Water-based formulations

	6.3 Factors that influence the formation of aggregates
	6.3.1 Discontinuity in the dry deposit
	6.3.2 Solid particle concentration in the non-volatile phase
	6.3.3 Normal force and velocity dependency
	6.3.4 Carbopol role

	6.4 Rheology of the dried formulations
	6.4.1 Flow properties in the non-linear region
	6.4.2 Viscoelastic properties in the linear region
	6.4.3 Impact of Carbopol on rheology

	6.5 Formation mechanism
	6.5.1 Nucleation of the cylindrical shape
	6.5.2 Proposal for a microscopic mechanism
	6.5.3 Validation of the model with experimental results
	6.5.4 Comparison of the different tests
	6.5.5 How to favor spreading ?

	6.6 Link with M
	6.6.1 Formulation tested
	6.6.2 Evaluation of M and calculation of volume fractions
	6.6.3 Results on the industrial skin model
	6.6.4 Origin of defects formation when <M
	6.6.5 Reducing aggregates formation by increasing M

	6.7 Conclusion
	6.8 Perspectives


	Conclusion and perspectives
	References
	Appendix
	A.  Impact of the Wetting Length on Flexible Blade Spreading
	B.  Measurement of the thickness of a transparent liquid film with an optical profilometer
	C.  Schematic representation of the numerical resolution for Newtonian fluids
	D.  Spreading of complex fluids with a soft blade
	E.  Expression of the velocity for soft blade coating of shear-thinning fluid
	F.  Determination of the position of the solid region under the blade for yield stress fluids coating


