
HAL Id: tel-04299235
https://pastel.hal.science/tel-04299235

Submitted on 22 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Learning-Assisted Modelling of Turbulence in
Fluids

Aakash Patil

To cite this version:
Aakash Patil. Deep Learning-Assisted Modelling of Turbulence in Fluids. Artificial Intelligence [cs.AI].
Université Paris sciences et lettres, 2023. English. �NNT : 2023UPSLM014�. �tel-04299235�

https://pastel.hal.science/tel-04299235
https://hal.archives-ouvertes.fr

Préparée à Mines Paris - PSL

Modélisation de la Turbulence dans les Fluides Assistée

par l’Apprentissage Profond

Deep Learning Assisted Modelling of Turbulence in Fluids

Soutenance le

Aakash PATIL
Le 1 Février, 2023

École doctorale no364

Sciences Fondamentales
et Appliquées

Spécialité

Mathématiques
Numériques, Calcul
Intensif, et Données

Composition du jury :

Gianluigi ROZZA
Professor, SISSA Trieste, Italy Président

Ricardo VINUESA
Associate Professor, KTH Stockholm,
Sweden

Rapporteur

Paola CINNELLA
Professor, Sorbonne University, France Rapporteur

Jonathan VIQUERAT
Researcher, Mines Paris - PSL, France Examinateur

Elie Hachem
Professor, Mines Paris - PSL, France Directeur de thèse

Dedicated to My Mother and Father
who continue to support and sacrifice their everything for me

i

ii

Acknowledgements

I am deeply grateful to all those who supported me from my high-school years,
when my interest in fluid mechanics and computer sciences began, to my Ph.D.
completion, where I developed expertise in turbulence and deep learning.

First and foremost, I extend my heartfelt gratitude to my parents, Shri. Vijay
Patil and Sau. Aruna Patil, for their unwavering support and encouragement.
Their tireless efforts and sacrifices for my education and well-being are beyond
measure. As I reflect upon their struggles, my own journey from bachelors to doc-
torate seems comparatively effortless. I cannot thank them enough for everything
they have done for me.

I would like to express my heartfelt gratitude to my advisor, Elie Hachem,
for providing me with everything I needed to succeed in my research. Right from
the day I was hired, Elie ensured that I had state-of-the-art hardware, computing
infrastructure, and a generous conference and travel budget. Under his guidance,
I learned valuable skills such as leadership, confidence, independence, and the
freedom to conduct research on my own terms. He instilled in me the importance
of the socio-economic impact of research, which helped me ask the right questions.
Throughout the challenging times of the COVID-19 pandemic, he checked on me
like an elder brother and encouraged me to take days off to rest and recharge. I
am grateful for his constant support, encouragement, and insistence on work-life
balance.

Jonathan, my colleague and unofficial advisor, played a crucial role in my
Ph.D. journey. I am grateful for his guidance in writing research papers and
his validation of every small step. Without his support, this Ph.D. would not
have been possible. He also helped to advocate for my ideas and at times even
pushed my advisor, Elie, to support them. Special thanks to Florence, Aurelien,
Philippe, and Franck for interesting discussions.

Thanks to Mrunmayee, the love of my life, for supporting my unconventional
atrangi ideas of changing the world and for ensuring that my Ph.D. meets my
expectations. She has been my best friend since my teenage years, and now, as
my wife, her constant company and support have been invaluable to me. Also,
my younger sister Mrunalini has been a constant support throughout my journey,
always there for me like an older sister. She played a key role in keeping me sane
during the challenging times and accompanied me throughout the writing of my
thesis, validating my flow of ideas. I am grateful for her unwavering support and
encouragement.

iii

I would like to thank my dear kutumb best friends, Nikhil, Shivraj, Chaitanya,
Manish, Srijith, Sakshi, and Parag for their life advice and constant support
throughout my journey. I am also grateful to my master’s and Ph.D. friends, Mo-
han, Akshay, Diana, Leo, Diego, Bipin, Bastien, Pierre-Alexandre, and Puneeth,
for showing me the importance of work-life balance and enjoying life. I would like
to express my heartfelt gratitude to my family in Antibes - Ashish sirji, Megha
vahini, Nisarg, and Shrikant, for their care, engaging discussions, and for the best
time we had in French Riviera. They were my constant source of encouragement
and support, and I cherish the memories of our time together.

I am grateful to my colleagues at Mines ParisTech - CEMEF for making the
Ph.D. journey enjoyable and memorable. I had the pleasure of working alongside
Jonathan, Robin, Sofia, Gulia, Luca, and later Diego and Adrien. I am also thank-
ful to Junfeng, Hassan, George, Victor, Franco, Joe, Wassim, Ramy, Ghanniya,
Sasha, Juhi, and Prasanth for their company and good times. I would always
remember our dicussions on a spectrum of topics from computing to economics
to finance, and ofcourse food and culture.

I am grateful to Salunkhe sir for being my long-term mentor, who introduced
me to research projects, grant writing, and guided me towards a career in re-
search from a young age. During my master’s in turbulence at Lille, I would
like to thank Jean Phillpe for his mentorship and encouragement, Jean Marc for
honing my experimental skills, and Thomas for giving me multiple opportunities
and pushing me to explore Machine Learning for studying turbulence. Frank in
Poitiers provided me with experimental access and helped me develop my skills
in studying turbulence. I am also thankful to Corentin in Toulouse, who gave me
my first exposure to French supercomputers and deep learning infrastructure.

I am grateful for the invaluable opportunities provided by the Lille Turbulence
Program, CNRS-GDR Turbulence meetings, and the overall turbulence commu-
nity in France. These opportunities allowed me to share my perspectives and
defend my views on important topics such as reproducibility, replicability, the
future of applied artificial intelligence, and the importance of giving it a test of
time.

Finally, I am grateful to the gods and goddesses of all religions for providing
opportunities and taking care of my family and friends during the challenging
time of the Covid-19 pandemic. Pursuing a Ph.D. during the pandemic was not
easy, especially while living far away from loved ones, but I feel fortunate to have
received support from somewhere or something. Or, as some of my friends would
say, perhaps I was just lucky ! I am grateful for the opportunities and blessings
that have come my way, and I will always be humbled by the experience.

iv

Table of Contents

Acknowledgements iii

Table of Contents vi

List of Figures xiii

1 Introduction 1

1.1 Fluid Mechanics and Turbulence 2
1.2 Artificial Intelligence and Deep Learning 7
1.3 Thesis Organization and Contributions 11

2 Theoretical Background 13

2.1 Turbulence in Fluids . 14
2.1.1 Navier-Stokes to Kolmogorov 14
2.1.2 The closure problem and modelling 17
2.1.3 Numerical Treatments . 20

2.2 Deep Learning for Spatio-Temporal Data 22
2.2.1 Deep Learning Preliminaries 23
2.2.2 Convolutional Neural Networks 38
2.2.3 Recurrent Neural Networks to Transformers 41
2.2.4 Encoder-Decoder Architecture 46

2.3 Examples of Deep Learning Applied to Turbulence 47

3 Robust Learning for Turbulent Flows 59

3.1 Introduction . 60
3.2 Problem setup & data generation 61

3.2.1 Governing equations . 61
3.2.2 Datasets of turbulent flow around obstacle 63

3.3 Network architecture and training procedure 64
3.3.1 Deep learning model . 64
3.3.2 Patch-based training procedure 66

3.4 Results and discussion . 68
3.4.1 Comparison on out-of-training snapshot 69
3.4.2 Comparison on out-of training datasets 69
3.4.3 Parametric study . 71

v

TABLE OF CONTENTS

3.5 Conclusions . 75

4 Learning Subgrid-scale Turbulence 79

4.1 Introduction . 80
4.2 Turbulent channel flow datasets and preparation 81
4.3 Deep Learning Architecture and Training 83
4.4 Results and Discussions . 84

4.4.1 Effects of coarse-graining 85
4.4.2 Effects of Refinement Direction 86
4.4.3 Investigating Successive Refinement 88
4.4.4 Application on Experimental Data 93

4.5 Conclusions . 97

5 Auto-Regressive Learning of Spatio-Temporal Turbulence 105

5.1 Introduction . 106
5.2 Deep Learning Method . 107
5.3 Numerical simulation cases and data generation 112

5.3.1 Governing equations . 112
5.3.2 Case 1 : Wake-flow past a square cylinder 112
5.3.3 Case 2 : Environmental flow over surface-mounted tower . 113

5.4 Results and Discussion . 115
5.5 Conclusions . 125

6 Conclusion and Perspectives 135

vi

Chapter 3

Robust Learning for Turbulent
Flows

Des modèles les plus simples aux réseaux neuronaux profonds complexes, la mod-
élisation de la turbulence à l’aide de techniques d’apprentissage automatique
présente encore de nombreux défis. Dans ce contexte, la présente contribution
propose une stratégie robuste utilisant l’apprentissage par patch pour apprendre
la viscosité turbulente à partir des vitesses d’écoulement et démontre son utili-
sation efficace sur le modèle de turbulence Spalart-Allmaras. Des ensembles de
données d’entraînement sont générés pour l’écoulement à travers des obstacles
bidimensionnels à des nombres de Reynolds élevés et utilisés pour entraîner un
réseau neuronal convolutionnel de type auto-encodeur avec des entrées de patchs
locaux. Par rapport à une technique d’apprentissage standard, l’apprentissage
par patchs permet non seulement d’améliorer la précision, mais aussi de réduire
les coûts de calcul nécessaires à l’apprentissage.

59

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

3.1 Introduction

Computational fluid dynamics (CFD) is an essential asset for research and in-
dustrial applications. Despite advances in computational power over the years,
industrial CFD tools still largely rely on the Reynolds Averaged Navier-Stokes
(RANS) turbulence models due to cost-savings and lesser time-to-solution of-
fered by RANS when compared with intensive Large Eddy Simulations (LES)
and Direct Numerical Simulations (DNS), especially for flows at high-Reynolds
numbers. Among the variety of one-equation to many equations RANS models,
the Spalart Allmaras (SA) turbulence model Spalart and Allmaras [1992], that
solves for the kinematic eddy turbulent viscosity, and has not been derived from
the existing turbulent kinetic energy-based RANS models. In this sense, it can
be described as a proper one-equation model which does not require knowledge of
a specific problem and additional advantages include numerical stability as well
as reliability for convergence of results. Due to these reasons, the SA model has
been widely used, documented, and serves as a benchmark turbulence model for
many CFD applications Ferziger et al. [2002]; Spalart [2000].

The Spalart-Allmaras turbulence model has also been subject to machine
learning-based investigations in several works. In 2015, Tracey et al. Tracey
et al. [2015] demonstrated one of the first works on the SA model using neural
networks to predict a part of the RANS closure model (namely the source terms
of the eddy viscosity transport). Their study features hand-picking of features
from the SA eddy viscosity transport equation in order to predict its source
term. Later on, Singh et al. Singh et al. [2017] followed a similar procedure
by exploiting hand-picking of input features deploying neural networks for the
prediction of source terms of SA eddy viscosity transport, and later presented
both a priori and a posteriori analysis. More recently, Liang et al. [2019]; Maulik
et al. [2020] proposed to predict the eddy viscosity from input features consisting
of data from Navier-Stokes and transport equations, while Pal [2020] used neural
networks for predicting subgrid-scale viscosity in the geophysical applications.

Although convolutional neural networks are traditionally trained using full-
scale inputs, patch-wise deep learning models have been successfully applied in
the past in the computer-vision community. In particular, Long et al. proposed
a work on object detection Long et al. [2015] where data was spatially divided
into patches of information, which were then fed to the model with a primary
intention of reducing memory consumption during training. This study proved
efficient not only in terms of error reduction, but also in memory consumption
during the training. Also, it has been demonstrated in the image classification
tasks in Farabet et al. [2012]; Pinheiro and Collobert [2014] that the patch-wise
training can correct class imbalance as well as assist in the spatial correlation
of dense patches. More than saving training memory, patch-wise training offers
a great opportunity for deep learning research in CFD, primarily because the
spatial data can be divided into small patches of neighboring nodes to achieve
global as well as local learning, independent of the size of the domain. It also

60

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

offers a way for CFD data augmentation by increasing the quantity of the same
data with flipping and rotation of patches.

In the present contribution, we aim at learning the SA turbulent viscosity
from the velocity field using a convolutional neural network trained following a
patch-based approach. The proposed novelties are (i) the blind-learning of SA
eddy viscosity from input velocities, without any hand-picking, manual feature
selection, non-dimensionalization, or tailored losses, and (ii) a novel patch-based
learning strategy with an auto-encoder type convolutional neural network, pro-
vided as a way towards generalized deep learning in turbulence modeling. The
remaining of the paper is organized as follows: first, the problem setup and its
governing equations are described, and the methods used for the dataset gener-
ation are covered; then, the selected network architecture is presented, and the
patch-based learning procedure is described thoroughly; finally, the interests of
the proposed approach are assessed, and results are discussed and compared to
baseline solutions.

3.2 Problem setup & data generation

3.2.1 Governing equations

The evolution of the velocity u and pressure p in an incompressible fluid flow
with given positive constant density ρ and dynamic viscosity µ is governed by
the Navier-Stokes equations:

ρ (∂tu + u · ∇u) − ∇ · σ = f ,

∇ · u = 0,
(3.1)

where σ = 2µ ε(u) − p Id is the Cauchy stress tensor for a Newtonian fluid,
ε(u) the strain-rate tensor, and Id the d-dimensional identity tensor. Equations
(5.6) are supplemented with adequate boundary and initial conditions, to be
specified. Reynolds-Averaged Navier-Stokes (RANS) equations are then obtained
by applying the Reynolds decomposition to the system (5.6), such that velocity
and pressure are expressed as the sum of a mean-field and a fluctuation. Applying
a time averaging operator to the resulting expressions yields a forcing term under
the form of the divergence of the so-called Reynolds stress tensor. The latter
consists of correlations of velocity fluctuations and accounts for the effect of the
turbulent fluctuations on the averaged flow. In the Boussinesq approximation,
first-order closure of the system of averaged equations amounts to a mean gradient
hypothesis: turbulence is therefore modelled as an additional diffusivity called
eddy viscosity µt. The eddy viscosity µt itself proceeds from a model involving one
or more turbulent scales, each of which is the solution of a nonlinear convection-
diffusion-reaction equation. For additional details, the reader is referred to the
works of Pope [2001] on turbulent flows.

The turbulence model chosen to compute the eddy viscosity is the one-equation

61

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

Spalart-Allmaras (SA) model Spalart and Allmaras [1992], which describes the
evolution of the kinematic eddy viscosity by solving a convection-diffusion-reaction
problem and serves as baseline for future testing of other models. Applying
this model, the eddy viscosity µt in the Navier-Stokes equations is obtained by
µt = ρ νtfv1, where fv1 is a given damping function to enforce linear profile in
the viscous sublayer. The turbulent scale νt is itself governed by the following
nonlinear convection-diffusion-reaction equation:

∂νt

∂t
+u·∇νt−cb1(1−ft2)S̃νt+

[
cw1fw −

cb1

κ2
ft2

] (
νt

d

)2

−
cb2

σ
∇νt·∇νt−

1

σ
∇·[(ν + νt)∇νt] = 0

(3.2)
where d is the distance to the nearest wall boundary, σ = 2/3, and S̃ is the

modified vorticity magnitude given as,

S̃ = S +
νt

κ2d2
fv2, S =

√
2W (u) : W (u),

Here κ = 0.4 is the von Kármán constant, W is the rotation-rate tensor,
fv2 is a damping function to enforce the logarithmic profile, with other damping
functions given as:

fv1 =
χ3

χ3 + c3
v1

, χ =
νt

ν
, fv2 = 1 −

χ

1 + χfv1

ft2 = ct3e
−ct4χ2

fw = g

[
1 + c6

w3

g6 + c6
w3

] 1
6

, g = r + cw2(r
6 − r), r =

νt

S̃κ2d2
,

and model coefficients are specified as:

cb1 = 0.1355 , cb2 = 0.622 , cv1 = 7.1 , cv2 = 0.7 , cv3 = 0.9

cw1 =
cb1

κ
+

1 + cb2

σ
, cw2 = 0.3 , cw3 = 2 , ct3 = 1.2 , ct = 0.5.

From dimensional considerations, νt is proportional to the product of charac-
teristic length and velocity, and as a result proportional to the Reynolds number:

νt ∝ uL ∼ f(Re) (3.3)

More details on the implementation of this model can be found in Guiza
et al. [2020], and more details on the turbulent viscosity models can be found in
Pope [2001]. Variants of the SA model exist in the literature, most of which are
collected in NASA’s turbulence modeling resource webpage Rumsey et al. [2010].
In this present work, the negative Spalart-Allmaras Model was selected due to
its capability to avoid the generation of negative turbulent viscosity without the
use of clipping Allmaras and Johnson [2012]. These equations were cast into
a stabilized finite element formulation and solved using an in-house variational
multi-scale solver CimLib CFD Hachem et al. [2013]. For additional details, the
reader is referred to Hachem et al. [2013] and Guiza et al. [2020]

62

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

∂yux = uy = 0,
∂y ν̃ = 0

free pressure

ux = uy = 0

u = uin

6.
5
H

H
6.

5
H

4.5H H

20H

1
4
H

(a) Sketch of the considered problem (not to scale)

(b) Associated mesh (c) Zoom on the cylinder area

Figure 3.1: 2D square cylinder configuration and mesh used for the
study. (5.3a) The cylinder lateral size is denoted H, and is centered at the origin
of the domain. The dimensions of the computational domain are [−5H, 15H] ×
[−7H, 7H] in the streamwise x and crosswise y directions. (3.1b)-(3.1c) The mesh
used for CFD computations is refined along with mesh-convergence.

3.2.2 Datasets of turbulent flow around obstacle

We consider the widely benchmarked turbulent flow past a two-dimensional (2D)
square cylinder Rodi et al. [1997]; Guiza et al. [2020]. A sketch of the problem,
including its dimensions, is presented in figure 3.1, along with the associated mesh.
The baseline Reynolds number is set to 22 × 103, based on the inlet velocity
and the cylinder diameter. The inflow boundary conditions are u = (Vin, 0),
together with ν̃ = 3ν, which corresponds to a ratio of eddy to kinematic viscosity
of approximately 0.2. For the lateral boundaries, we use symmetry conditions
∂yux = uy = 0 and ∂yν̃ = 0. For the outflow, ∂xux = ∂xuy = 0, ∂xν̃ = 0 together
with p = 0 are prescribed. Finally, no-slip conditions u = 0 and ν̃ = 0 are
imposed at the cylinder surface.

Following the problem setup and methods, a baseline dataset (hereafter re-

63

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

Table 3.1: Datasets generated for the present study. Two types of obstacles
and three different Reynolds numbers are considered, resulting in six different
datasets, each holding 3000 snapshots of steady-state velocities and turbulent
velocities.

Dataset name Re Obstacle type

SqRe22k 22 × 103 2D square

SqRe44k 44 × 103 2D square

SqRe88k 88 × 103 2D square

CyRe22k 22 × 103 2D cylinder

CyRe44k 44 × 103 2D cylinder

CyRe88k 88 × 103 2D cylinder

ferred to as SqRe22k) composed of 3000 snapshots of steady velocities and SA
turbulent viscosities is generated by skipping the transient regime and storing the
established regime (i.e. each snapshot is captured only after the flow is estab-
lished). Each snapshot is sampled on a rectilinear grid having spatial dimensions
of (Nx × Ny) = (360 × 300). The sampling on a rectilinear grid was performed to
facilitate the use of CFD data coming from unstructured meshes. The same rec-
tilinear grid was used to perform sampling on the square and circular obstacles.
For points inside the obstacle, the velocities and turbulent viscosities were zeroed
out, following the no-slip boundary conditions on the obstacle. In practice, it
would be possible to skip the unstructured-to-structured sampling by making use
of the graph neural networks, as presented in recent works Chen et al. [2021]. The
dataset is deliberately not normalized to achieve robust and generalizable train-
ing. For testing purposes, additional datasets are also generated by changing the
obstacle to a 2D circular cylinder, and by modifying the Reynolds number. As
is summarised in table 3.1, six different datasets are obtained. Sample snapshots
of velocity and turbulent viscosity from SqRe22k are shown in figure 3.2. In the
following, the training subset is composed of 75% of the SqRe22k samples and
25% of the CyRe44k samples, while the remaining samples are reserved for the
validation and testing subsets (each of the latter is therefore composed of 12.5%
of the SqRe22k and 37.5% of the CyRe44k).

3.3 Network architecture and training procedure

3.3.1 Deep learning model

Given the input dataset x (here, the velocity snapshots from the RANS simula-
tions) and the desired output dataset y (here, the turbulent viscosity snapshots
from the RANS simulations), we desire to find the optimal set of weights and

64

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

−0.5 0.5 1.5

(a) u field

−1 0 1

(b) v field

0.01 0.02

(c) ν̃ field

Figure 3.2: Snapshot of velocities u (3.2a), v (3.2b), and turbulent vis-
cosity ν̃ (3.2c) from dataset SqRe22k.

biases θ = (w, b) in a deep-learned model f such that f(x; θ) = y. The set of
free parameters θ is optimized using Adam Kingma and Ba [2014], in order to
iteratively minimize the mean squared error (MSE) loss defined as:

L =
1

ns

ns∑

i=1

(yi − f(x; θ)i)2, (3.4)

where ns is the number of samples. The full training dataset is shown repeat-
edly to the network after a shuffling step during the training, and each pass is
referred to as an epoch. An early stopping criterion is used along with a reduction
of learning rate if learning doesn’t improve after every 100 epochs. The neural
network was implemented using TensorFlow Abadi et al. [2016], and trained on
an Nvidia Tesla V100 GPU.

The network architecture proposed for the present work is an auto-encoder
structure Hinton and Salakhutdinov [2006] . Auto-encoders contain two parts:
(i) a converging part that decreases the spatial dimension of the input (the en-
coder) and compresses the input using successive convolutions, and (ii) a di-
verging part that rebuilds a predicted output of the same size as input (the
decoder). The encoder and decoder handle the spatial-dimensionality reduction
by compressing the high-dimensional spatial data, using convolutional layers, to
a low-dimensional representation called latent space. For example, a Ny × Nz

feature map can be reduced to Ny/2 × Nz/2 using a convolutional layer with a
stride of 2. An essential aspect of this operation is that it preserves the most
important features of the map. To increase robustness and generalization of the
trained model, data standardization was not performed. Instead, batch normal-
ization layers were used, which apply a transformation that maintains the mean
and standard deviation of output close to 0 and 1, respectively. The proposed
network architecture is shown in figure 3.3. In the literature, similar architectures
(trained with full-scale inputs) were successfully exploited for studies focusing on
turbulent flows Fukami et al. [2019]; Mohan et al. [2019].

The convolutional filters used in the proposed architecture incorporate a sym-
metric boundary condition into the padding operation. Classically, padding is

65

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

3
×

3
c
o

n
v

,
m

3
×

3
c
o

n
v

,
m

B
N

+
R

e
L

U

3
×

3
c
o

n
v

,
2

m

3
×

3
c
o

n
v

,
2

m

B
N

+
R

e
L

U

3
×

3
c
o

n
v

,
4

m

3
×

3
c
o

n
v

,
4

m

B
N

+
R

e
L

U

3
×

3
c
o

n
v

,
8

m

3
×

3
c
o

n
v

,
8

m

B
N

+
R

e
L

U

3
×

3
c
o

n
v

,
1

6
m

3
×

3
c
o

n
v

,
1

6
m

B
N

+
R

e
L

U

3
×

3
c
o

n
v

,
3

2
m

3
×

3
c
o

n
v

,
3

2
m

2
×

2
d

e
c
o

n
v

3
×

3
c
o

n
v

,
1

6
m

3
×

3
c
o

n
v

,
1

6
m

2
×

2
d

e
c
o

n
v

3
×

3
c
o

n
v

,
8

m

3
×

3
c
o

n
v

,
8

m

2
×

2
d

e
c
o

n
v

3
×

3
c
o

n
v

,
4

m

3
×

3
c
o

n
v

,
4

m

2
×

2
d

e
c
o

n
v

3
×

3
c
o

n
v

,
2

m

3
×

3
c
o

n
v

,
2

m

2
×

2
d

e
c
o

n
v

3
×

3
c
o

n
v

,
m

1
×

1
c
o

n
v

,
m

Figure 3.3: Proposed auto-encoder network architecture. The encoder
branch is based on a convolution-convolution-batch-normalization pattern: the
first convolution has a stride of s = 1, while the second has a stride of s = 2. The
batch-normalization layer is followed by a rectified linear unit (ReLU) layer. At
each occurrence of the pattern, the spatial dimensions are divided by two, while
the number of filters, noted m, is doubled. In the decoder branch, a transposed
convolution step is first applied to the input from the previous layer, while the
number of filters is halved and two convolution layers are applied. At the end of
the last layer, a 1 × 1 convolution is applied to obtain the final output.

used to preserve the spatial dimensions of the field being convoluted, but the
standard zero-padding approach doesn’t usually represent the expected physical
behavior. Indeed, padding with zeros everywhere would violate the representa-
tion of existing boundary conditions, for example, the notion of wall-boundaries
would have lesser significance if a region is padded with zeros on all the sides in
a channel flow Patil and Lapyere [2019] . To preserve the boundary conditions
after multiple successive convolutions, a boundary condition formulation was im-
plemented such that the walls could be padded with zeros if required, while the
periodic sides could be padded with adequate values from the periodic cells. The
ReLU function was used as an activation function, which is known to be an effec-
tive tool for stabilizing the weight update in the machine learning process Nair
and Hinton [2010].

3.3.2 Patch-based training procedure

We remind the goal of the present work, which is to train a deep learning model
to infer the turbulent viscosity ν̃ at every grid point from the velocities (u, v)
at the same position. As underlined earlier, no data-preprocessing tasks such
as normalization or standardization were used, and the input-output fields were
used "as is" from the RANS simulation output. Similar to splitting between
training and validation dataset as described in section 3.2.2, we use a mixture
of the SqRe22k and CyRe44k datasets. The first stage of patch-based learning
consists of dividing each snapshot of the dataset into smaller n × n overlapping
patches with stride s, as is shown in figure 3.4. In this case, the number of patches

66

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

(a) Original snapshot (b) Extracted patches

Figure 3.4: Patch extraction from u field. Patches in figure (3.4b) are ob-
tained from the original snapshot (3.4a) For better clarity of the figure, overlap-
ping is only applied in the horizontal direction, and different colors are used to
differentiate overlapping patches. Similarly, patches at the same corresponding
locations are taken for v and ν̃ fields.

obtained can be doubled by considering an up-down flipping transformation on
the same snapshot.

For a baseline comparison, the proposed network is also trained convention-
ally over the full-spatial field dimensions, without using patch-based learning
(this training method is hereafter referred to as M1). In this context, the batch
size is 32, and the learning rate is 0.001. When a sufficient accuracy level is
reached and no more improvement is observed, the training is terminated using
the early-stopping criterion. A decent accuracy after convergence is obtained for
both training and validation subsets, with a mean-squared error of 1 × 10−6, as
presented on the learning curve in figure 3.5. Total training time is 0.85 hours on
a Tesla V100 GPU card, for 28 million degrees of freedom.

For patch-based training, patches from the different samples are randomly
shuffled together and presented to the network in batches of size 32, with a
learning rate equal to 0.001 (this training method is hereafter referred to as
M2). Baseline values for the patch size n and the stride s are chosen to be 50
and 75, respectively, but their respective impact on the training performance is
evaluated in section 3.4. Similarly, the impact of batch size is assessed in the
following section. The model is trained for 850 epochs, after which the accuracy
stops improving, resulting in a final MSE error of the order of 1 × 10−7, i.e.one
order of magnitude lower than that of method M1. Total training time is 2.38
hours for 1.7 million degrees of freedom. Although this represents about 3 times
the training time of method M1, it must be noticed that the final M2 accuracy
is significantly lower than that of M1, as is visible in figure 3.5. More, the
final generalization level is also superior, evidenced by the negligible gap between
validation and training curves. As the patch-based approach grounds the learning
in a local velocity-to-turbulent-viscosity inference, it is argued that the trained
network is able to re-use local mappings from one snapshot to another, leading

67

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

0 200 400 600 800 1,000

10−7

10−6

10−5

10−4

Training epochs

M
S

E
lo

ss

M1 (training)

M1 (validation)

M2 (training)

M2 (validation)

Figure 3.5: Training and validation loss history for the M1 and M2 training
methods. The patch-based technique (M2) yields lower error and better gen-
eralization than the baseline M1, as evidenced by the negligible gap between
validation and training curves. M1 training was performed for 1000 epochs, and
the M2 training was stopped after 850 epochs when error stopped improving.

to improved generalization capabilities compared to a monolithic snapshot-to-
snapshot inference.

3.4 Results and discussion

In this section, the benefits induced by the patch-based training procedure are
compared with that of the regular M1 training method on predictive tasks. To
this end, predictions of both models are evaluated against reference solutions
obtained from the CFD solver. In the remaining of this section, training data
consists of 75% of samples from the SqRe22k dataset and 25% of samples from the
CyRe44k dataset. Such a mixing of datasets is used to assess the generalization
capabilities of the two methods, as both datasets present similar flow features, but
with different obstacles. First, comparisons are made on out-of-training samples
from the SqRe22k dataset using baseline training parameters. Then, predictions
obtained with snapshots from different datasets (SqRe44k, SqRe88k, CyRe22k,
and CyRe88k) are evaluated against their references. Finally, a parametric study
considering the impact of batch size b, the patch size n, and the stride size s on
the final performance is proposed. Overall, comparisons are made on the basis of
(i) contour plots of predicted and expected ν̃, (ii) 1D plots of ν̃ along streamwise
and spanwise lines at different locations in the domain, as shown in figure 3.6,
and (iii) scatter and density plots of the predicted ν̃ against reference values.

68

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

−4 −2 0 2 4 6 8 10 12 14

−5

0

5

y = 0.02

x
=

1
0

.0
2

x

y

Figure 3.6: Locations of the probe lines used for comparison to CFD
reference.

3.4.1 Comparison on out-of-training snapshot

In this section and the following, baseline training parameters are used, i.e.batch
size is equal to 32, patch size n is equal to 50, and stride size s is equal to
75. As stated above, the training data consists of 75% of samples from the
SqRe22k dataset and 25% of samples from the CyRe44k dataset. M1 and M2
models’ predictive capabilities are compared on an out-of-training snapshot from
the SqRe22k dataset, as shown in figure 3.7. As can be observed on the scatter
plot (figure 3.7a), both M1 and M2 methods are in good accordance with the
reference regarding the predicted ν̃. Still, the M2 prediction presents an average
relative deviation of 2.25% on the entire sample, against 5.04% for M1. More, its
maximum relative deviation is also lower, with 36.44% for M2, against 76.23%
for M1. To illustrate, the error fields obtained with M1 and M2 predictions are
shown on the same snapshot in figure 3.8.

3.4.2 Comparison on out-of training datasets

In this section, models M1 and M2 (trained on a mixed dataset composed of sam-
ples from SqRe22k and CyRe44k) are used to make predictions on snapshots from
datasets SqRe44k, SqRe88k, CyRe22k, and CyRe88k, which were not used for
training. M1 and M2 predictions for one snapshot of each dataset are compared
against CFD reference on stream-wise and span-wise 1D plots of ν̃, at the loca-
tions presented in figure 3.6. Results are shown in figure 3.9. As can be observed,
the patch-based trained model consistently outperforms the M1 model, while
presenting an excellent agreement with reference data. On the x = 10.02 line,
which represents full developed wake region, performances of M1 and M2 models
are close on SqRe44k and SqRe88k datasets, but M1 significantly overestimates
the ν̃ values on the CyRe22k and CyRe88k datasets, indicating that model M1
is unable to fully leverage the diversity of the training dataset, and only learns

69

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

0 0.5 1 1.5 2 2.5

·10−2

0.5

1

1.5

2

2.5
·10−2

ν̃SA

ν̃
p

r
e
d

x = y

M1

M2

(a)

0 0.5 1 1.5 2 2.5

·10−2

250

500

1000

1500

2000

ν̃

N
s
a

m
p

le
s
(ν̃

)

SA

M1

M2

(b)

Figure 3.7: Scatter plot and histogram of predicted and expected ν̃ for an
out-of-training snapshot of SqRe22k. (3.7a) The plot is a superposition of two
scatter plots, namely SA against M1 and SA against M2. (3.7b): The histogram
compares the occurence of truth and predictions on a step-type filled histogram.

−0.3 −0.15 0 0.15

(a) Relative error for prediction from
M1

−0.3 −0.15 0 0.15

(b) Relative error for prediction from
M2

Figure 3.8: Contour plots of relative errors obtained from the same snapshot
input from dataset SqRe22k, using methods M1 (3.8a) and M2 (3.8b). In both
cases, maximal error levels are observed in the vicinity of the obstacle.

70

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

full-scale velocity-turbulent viscosity patterns. Conversely, the M2 model here
proves its ability to learn local feature mapping from velocity field to turbulent
viscosity field and accurately reconstructs it, independently of the obstacle-type
and Reynolds number. Similarly, on the y = 0.02 line, which passes through the
obstacle boundaries as well as the wake regions, M1 and M2 models show similar
performances on datasets with a square obstacle, while M1 largely deviates from
the reference data on snapshots coming from datasets with a cylindrical obstacle.
Contrarily, the M2 model again provides accurate predictions. The latter results
are further emphasized on the contour plots of figure 3.10, where M1 predictions
on cylindrical obstacles present inaccurate features and saturated fields in the
turbulent area downstream of the obstacle. This again indicates the inability of
training procedures on full-scale samples to infer proper mapping from velocity
fields to turbulent viscosity fields at the local scale, which is not the case of patch-
based training. The Reynolds numbers are of similar orders in magnitudes which
explains the capabilities of M1 and M2 to extrapolate on Re values outside of
their training datasets. Hence, the extrapolation capabilities of the M2 model
could be assessed even at higher Reynolds number.

3.4.3 Parametric study

A parametric study is performed to explore the impact of the batch size b, the
patch size n and the stride size s on the MSE error LMSE (as defined in equation
(5.5)) computed on validation data. To this end, the performances of various
(n, s) pairs with relation s = 1.5 × n are first compared in terms of final vali-
dation performance and training time. To select the best performance of each
pair, early stopping is used during training, and the average validation error over
the last 50 epochs, noted LMSE, is retained. As shown in table 3.2a, the pairs
(100, 150) and (50, 75) yield close performances in terms of final MSE error. Al-
though the (100, 150) is slightly better in accuracy and training time, the (50, 75)
pair is preferred for its larger amount of patches per snapshot. The larger er-
rors of the (20, 30), (10, 15), (6, 9), and (2, 3) pairs can be attributed to the low
number of points per patch making it difficult to train the model with the same
hyper-parameters, while the (200, 300) pair prevents the efficient learning of local
features, and is likely to present the same flaws as method M1.

In a second time, we consider the impact of varying stride size s for the
previously-select n value, equal to 50. Results are presented in table 3.2b. As
can be seen, no significant difference is observed for stride values ranging from 30
to 300, indicating that in this context, the amount of patches per snapshot (and
thereby total samples) is not a limitation. Finally, the effect of varying batch size
is assessed for (n, s) = (50, 75). As shown in table 3.2c, small batch sizes 8, 16,
and 32 yield close error levels, while larger batch sizes are associated with errors
larger by roughly one order of magnitude. Although b = 8 is slightly lower than
the other values, b = 32 is retained as the best accuracy/training time ratio.

71

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

0 0.2 0.4 0.6 0.8 1 1.2

·10−2

−5

0

5

ν̃

y

SA
M1
M2

(a) SqRe44k

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·10−2

−5

0

5

ν̃

y

(b) SqRe88k

0 0.5 1 1.5 2 2.5

·10−2

−5

0

5

ν̃

y

SA
M1
M2

(c) CyRe22k

0 0.5 1 1.5 2 2.5

·10−2

−5

0

5

ν̃

y

(d) CyRe88k

(a)-(d): ν̃ in the span-wise direction at x = 10.02

−5 0 5 10 15

0

1

2

3
·10−2

x

ν̃

SA
M1
M2

(e) SqRe44k

−5 0 5 10 15

0

1

2

3
·10−2

x

ν̃

(f) SqRe88k

−5 0 5 10 15

0

1

2

3

·10−2

x

ν̃

SA
M1
M2

(g) CyRe22k

−5 0 5 10 15

0

1

2

3

·10−2

x

ν̃

(h) CyRe88k

(e)-(h): ν̃ in the stream-wise direction at y = 0.02

Figure 3.9: Line plots along x = 10.2 and along y = 0.1 comparing predic-
tion accuracies of M1 and M2 on out-of-training samples from datasets SqRe44k
(3.9a)-(3.9e), SqRe88k (3.9b)-(3.9f), CyRe22k (3.9c)-(3.9g) and CyRe88k (3.9d)-
(3.9h). M1 and M2 perform similarly on datasets with a square obstacle, even
on higher Re values. Yet, M1 consistently fails at predicting accurate ν̃ on sam-
ples with cylindrical obstacle, while M2 presents an almost-perfect fit with CFD
reference. The small deviation observed for M2 at the top of the square cylinder
can be likely attributed to the unstructured-to-structured data sampling, and its
study is deferred to a future work.

72

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

SA M1 M2

0 0.01 0.02 0.03

Figure 3.10: Comparison of M1 and M2 ν̃ predictions against CFD
reference on snapshots from different out-of-training datasets, namely
SqRe44k (top row), SqRe88k (second row), CyRe22k (third row), and CyRe88k
(bottom row). While M1 and M2 perform similarly on snapshots with square
obstacle even at high Re numbers, M1 predictions on cylindrical obstacle are
significantly saturated in the wake region, showing that the model was unable to
learn features from the related samples in the training dataset. Conversely, M2
predictions are in line with the SA reference.

73

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

(a) Model performance for various (n, s) pairs

Pairs (n, s) LMSE Training time (hours) Patches per snapshot

200,300 1.08 × 10−6 1.06 1

100,150 3.09 × 10−7 1.85 4

50,75 3.36 × 10−7 2.38 20

20,30 1.77 × 10−6 3.34 120

10,15 1.94 × 10−6 7.09 480

6,9 1.98 × 10−6 62.26 1320

2,3 7.85 × 10−6 128.5 12000

(b) Model performance for varying stride s, with n = 50

Pairs (n, s) LMSE Training time (hours) Patches per snapshot

50,300 3.98 × 10−7 1.93 2

50,150 4.06 × 10−7 2.34 6

50,75 3.36 × 10−7 2.38 20

50,30 3.57 × 10−7 10.2 99

(c) Model performance for varying batch size b, with (n, s) = (50, 75)

Batch size LMSE Training time (hours)

256 3.10 × 10−6 0.86

128 2.34 × 10−6 1.07

64 1.48 × 10−6 1.40

32 3.36 × 10−7 2.38

16 4.09 × 10−7 3.37

8 2.85 × 10−7 9.80

Table 3.2: Model performance for varying (n, s, b) parameters. (3.2a)
Model performance for various (n, s) pairs, with the constraint s = 1.5 × n. Best
validation performance is obtained for (100, 150), but the close performance of
(50, 75) and its larger amount of generated snapshots make it a more versatile
candidate. (3.2b) Model performance for varying stride size s, with n = 50.
Best performance is obtained for s = 75, although other stride values present
closer performance levels. (3.2c) Model performance for varying batch size b,
with (n, s) = (50, 75). Although best performance was obtained for b = 8, batch
sizes of 16 and 32 made no significant different in validation error. Hence, faster
training was privileged, and b = 32 was retained.

74

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

3.5 Conclusions

In this article, we have demonstrated the deployment of a robust deep learning
model for predicting Spalart-Allmaras eddy viscosities. The method of patch-
based training works by dividing the full-scale samples into patches, in order to
let the model learn multiple local feature mappings, instead of learning monolithic
full-scale features. Applied to an auto-encoder architecture, it was observed that
patch-based training led to training and validation errors one order of magnitude
lower than standard full-scale training, and was able able to efficiently learn local
mappings from multiple datasets with different features, which was not the case
of full-scale training method. For practical CFD purposes, a local patch-based
model would be of great importance so that any input fluid domain, either full or
in parts by region of interest, can be split into patches and passed to the model to
predict the quantities of interest. Hence, patch-based training holds an important
potential to improve the usability of trained models in the coupling with CFD
solvers. Deploying a trained model to solve for turbulent viscosity inside a CFD
solver is regarded as a future extension of the present work.

Bibliography

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 16), pages
265–283, 2016.

Steven R Allmaras and Forrester T Johnson. Modifications and clarifications
for the implementation of the spalart-allmaras turbulence model. In Seventh
international conference on computational fluid dynamics (ICCFD7), pages 1–
11, 2012.

Junfeng Chen, Elie Hachem, and Jonathan Viquerat. Graph neural net-
works for laminar flow prediction around random 2d shapes. arXiv preprint
arXiv:2107.11529, 2021.

Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning
hierarchical features for scene labeling. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1915–1929, 2012.

Joel H Ferziger, Milovan Perić, and Robert L Street. Computational methods for
fluid dynamics, volume 3. Springer, 2002.

Kai Fukami, Yusuke Nabae, Ken Kawai, and Koji Fukagata. Synthetic turbulent
inflow generator using machine learning. Physical Review Fluids, 4(6):064603,
2019.

75

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

G Guiza, A Larcher, A Goetz, L Billon, P Meliga, and Elie Hachem. Anisotropic
boundary layer mesh generation for reliable 3d unsteady rans simulations. Fi-
nite Elements in Analysis and Design, 170:103345, 2020.

Elie Hachem, Stephanie Feghali, Ramon Codina, and Thierry Coupez. Immersed
stress method for fluid–structure interaction using anisotropic mesh adapta-
tion. International journal for numerical methods in engineering, 94(9):805–
825, 2013.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of
data with neural networks. science, 313(5786):504–507, 2006.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

SUN Liang, AN Wei, LIU Xuejun, and LYU Hongqiang. On developing data-
driven turbulence model for dg solution of rans. Chinese Journal of Aeronau-
tics, 32(8):1869–1884, 2019.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3431–3440, 2015.

Romit Maulik, Himanshu Sharma, Saumil Patel, Bethany Lusch, and Elise Jen-
nings. A turbulent eddy-viscosity surrogate modeling framework for reynolds-
averaged navier-stokes simulations. Computers & Fluids, page 104777, 2020.

Arvind Mohan, Don Daniel, Michael Chertkov, and Daniel Livescu. Compressed
convolutional lstm: An efficient deep learning framework to model high fidelity
3d turbulence. arXiv preprint arXiv:1903.00033, 2019.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Icml, pages 285–319, 2010.

Anikesh Pal. Deep learning emulation of subgrid-scale processes in turbulent
shear flows. Geophysical Research Letters, 47(12):e2020GL087005, 2020.

Aakash Vijay Patil and Corentin Lapyere. Development of deep learning methods
for inflow turbulence generation. arXiv preprint arXiv:1910.06810, 2019.

Pedro Pinheiro and Ronan Collobert. Recurrent convolutional neural networks for
scene labeling. In International conference on machine learning, pages 82–90.
PMLR, 2014.

Stephen B Pope. Turbulent flows, 2001.

W Rodi, JH Ferziger, M Breuer, and M Pourquie. Status of large eddy simulation:
results of a workshop. Transactions-American Society of Mechanical Engineers
Journal of Fluids Engineering, 119:248–262, 1997.

76

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

Chris Rumsey, Brian Smith, and George Huang. Description of a website resource
for turbulence modeling verification and validation. In 40th Fluid Dynamics
Conference and Exhibit, page 4742, 2010.

Anand Pratap Singh, Shivaji Medida, and Karthik Duraisamy. Machine-learning-
augmented predictive modeling of turbulent separated flows over airfoils. AIAA
Journal, pages 1–13, 2017.

Philippe Spalart and Steven Allmaras. A one-equation turbulence model for
aerodynamic flows. In 30th aerospace sciences meeting and exhibit, page 439,
1992.

Philippe R Spalart. Strategies for turbulence modelling and simulations. Inter-
national journal of heat and fluid flow, 21(3):252–263, 2000.

Brendan D Tracey, Karthikeyan Duraisamy, and Juan J Alonso. A machine learn-
ing strategy to assist turbulence model development. In 53rd AIAA aerospace
sciences meeting, page 1287, 2015.

77

CHAPTER 3. ROBUST LEARNING FOR TURBULENT FLOWS

78

Chapter 4

Learning Subgrid-scale
Turbulence

Le présent chapitre se situe à l’intersection de la vision par ordinateur, de l’apprentissage
profond et de la turbulence informatique et expérimentale. L’objectif principal
était d’explorer l’état de l’art des méthodes d’apprentissage profond pour estimer
la turbulence à l’échelle de la maille à partir des grandes échelles mesurées ou
des échelles résolues par la maille. La principale contribution de cette étude
est d’effectuer un apprentissage par transfert en ré-entraînant un modèle formé
pour des problèmes non physiques afin de réapprendre de nouvelles caractéris-
tiques physiques. Les champs à gros grains sont calculés à partir des ensembles
de données de référence pour faire les prédictions a priori en utilisant le modèle
d’apprentissage profond formé sur l’ensemble de données DNS. Des reconstruc-
tions à l’échelle de la maille sont effectuées et comparées aux ensembles de données
DNS et PIV de référence. Dans les deux ensembles de données, des ensembles de
données d’écoulement de canal turbulent délimité par des murs sont utilisés. Les
reconstructions à l’échelle de la maille le long de diverses directions de raffinement
et de divers niveaux de grossissement sont comparées à la référence en mesurant
des statistiques physiques telles que l’intensité de la turbulence, la dissipation,
l’enstrophie et les spectres d’énergie.

79

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

4.1 Introduction

Turbulence is multiscale in nature, with a very wide range of scales coexisting
and interacting. Turbulence is governed by the Navier-Stokes equation in most
practical problems, and is still very difficult to predict and model. In order to un-
derstand its detailed physics, spatio-temporal resolved information is necessary.
Unfortunately, none of the current facilities, even within academic research, can
provide this information over a sufficiently wide spatial range and different flow
conditions. Despite advances in computational resources, direct numerical simu-
lation (DNS) is limited to flows with low to moderate Reynolds numbers or simple
geometries. Complex fluid flows encountered in many engineering and physical
applications are computationally demanding to resolve using DNS, hence large
eddy simulation (LES) and Reynolds Averaged Navier-Stokes (RANS) modeling
are commonly used frameworks that can provide accurate predictions by consid-
ering the interaction between the grid-resolved and subgrid scales. On the other
hand, experimental measurement techniques such as Particle Image Velocimetry
(PIV) and Hot-wire Anemometry (HWA) have limited measurement capacity for
spatio-temporal resolved velocities. High-frequency tomography PIV has pro-
gressed over the last decade, but is still limited to small volumes and low veloci-
ties. HWAs provide time-resolved measurements, but combining a large number
of HWAs remains challenging and disruptive.

Works involving re-generating turbulence statistics as well as super-resolution
has been the focus of multiple recent contributions Fukami et al. [2019b]; Mo-
han et al. [2019]; Beck et al. [2019]; Kim and Lee [2019]; Fukami et al. [2019a,
2020]. Some investigations have considered machine learning methods and super-
resolution data reconstruction techniques for reproducing turbulent flows Fukami
et al. [2021]; Jiang et al. [2020]. Once trained on high-quality data, these methods
have been shown capable of reproducing the underlying flow field using remark-
ably coarse measurements. Previous studies have also considered purely statis-
tical data fusion methods for flow reconstruction. In Van Nguyen et al. [2015],
a “model-free” maximum a posteriori (MAP) algorithm was proposed for fusing
low-temporal-high-spatial resolution data with high-temporal-low-spatial resolu-
tion data for turbulent flow reconstruction. On the experimental side, Krishna
et al. [2019, 2020] showed that the gaps between PIV snapshots can be filled with
simple linear assumptions on the Navier Stokes equations. In that work, sim-
ple linear regression models were used to propagate PIV snapshots forward and
backward in time, with a weighted average of forward and backward predictions
used to estimate the turbulent flow between snapshots.

The current chapter addresses the problem of estimating subgrid-scale infor-
mation from grid-resolved information to provide a complete view of turbulent
flows at both large and small scales. Available turbulence databases, both com-
putational and experimental, are used to reconstruct subgrid-scale turbulence.
First, the DNS database used for training the deep learning model is described,
followed by the rationale of the deep learning model’s architecture and the as-

80

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

sociated transfer learning. Later, the subgrid-scale reconstruction statistics are
compared with reference to the DNS data. The trained model is also tested
against a PIV dataset to demonstrate its robustness and applicability to the
experimental dataset.

4.2 Turbulent channel flow datasets and prepa-

ration

One of the important concepts in the subgrid-scale reconstruction of the turbu-
lent flow between consecutive snapshots is the model used to approximate the
flow evolution. We consider the three-dimensional incompressible Navier-Stokes
equations (NSE) linearized around the mean flow profile to satisfy the momen-
tum equation and continuity constraint. Considering the dynamics of turbulent
velocity fluctuations u = (u1, u2, u3) around a mean flow U = (U(x2), 0, 0), we
have:

∂u

∂t
+ U · ∇u + u · ∇U = −∇p +

1

Reτ

∇2u + (NL), (4.1)

∇ · u = 0, (4.2)

where U = [U(x2), 0, 0] denotes the mean flow profile in a three-dimensional
coordinate system, as shown in Fig. 4.1. We use (x1, x2, x3) to represent the
streamwise, wall-normal, and spanwise directions, respectively. u = [u1, u2, u3]
denotes the turbulent velocity fluctuations, and p represents the pressure fluctu-
ations. Reτ denotes the friction Reynolds number.

We assume linearity as proposed by Hunt and Carruthers [1990] in such a way
that the non-linear interactions can be neglected on scales that are much shorter
than typical scales of interaction, which in the case of time evolution means
that the interactions shorter than typical eddy turnover time can be neglected.
These assumptions allow for linearized equations of motions for the subgrid-scale
reconstruction of flow over shorter spatial or temporal scales. This means the
non-linear terms can be neglected when the grid resolution (∆) or time step (∆t)
is less than a typical eddy length or eddy turnover time. The simplified NSE
would thus read as:

∂u1

∂t
+ U

∂u1

∂x1︸ ︷︷ ︸
advection

=
1

Reτ

(
∂2u1

∂x2
1

+
∂2u1

∂x2
2

)

︸ ︷︷ ︸
diffusion

− u2
∂U

∂x2︸ ︷︷ ︸
coupling

,

∂u2

∂t
+ U

∂u2

∂x1︸ ︷︷ ︸
advection

=
1

Reτ

(
∂2u2

∂x2
1

+
∂2u2

∂x2
2

)

︸ ︷︷ ︸
diffusion

.

(4.3)

A direct numerical simulation database of turbulent channel flow is used to
validate the subgrid-scale reconstruction method described in this chapter. To

81

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

x

y z

No-Slip Boundary

Figure 4.1: Geometry of 3D turbulent channel flow.

access fully resolved velocity fields, DNS data is chosen as it simulates flows
without any turbulence modeling, and is free from noises as well as experimental
uncertainties. DNS of incompressible turbulent wall-bounded flow at Reynolds
number Reτ ≈ 1000 based on the friction velocity is used, where Reτ = uτ h/ν,
and the numerical procedure described in Lozano-Durán and Jiménez [2014] is
used for the simulation. The streamwise, wall-normal, and spanwise directions in
the cartesian coordinates of simulation in space are denoted by x, y, z respectively.
The channel domain size Lx x Ly x Lz normalized by channel half-height σ is 2π x
2π x π. Fully resolved fluctuating streamwise velocities in all three flow directions
are used. The high-resolution high-fidelity DNS data is a superposition of the
mean and fluctuating velocities along the symmetric directions, and is given as:

u = ut
i − ut

i
′

, (4.4)

where (.) denotes the mean quantity along symmetric or homogeneous direc-
tions, and (.)′ denotes the fluctuating quantity. In this case, we can take the mean
along t and x, making the resulting velocities a function in y − z planes. Here-
after, the fully resolved fluctuating velocities in a plane normal to flow direction
are denoted by u′. This data contains a total P = 512 × 1700 snapshots repre-
senting samples in x and t. Each snapshot has a spatial resolution of 384 × 512
denoting the samples in the y − z plane. This is our true data, and the target
of higher resolution against which we would compare our errors of subgrid-scale
reconstruction.

The lower-resolution dataset is synthetically produced from the high-resolution
data with spatial coarse-graining. We perform spatial coarse-graining with mean-
pooling, max-pooling, and sparse sampling of the higher-resolution data. The
lower resolution dataset coefficients are 4∆, 16∆, and 64∆ for four-times, sixteen-
times, and sixty-four times coarse-grained snapshots respectively. For example,
when 4∆ is spatially coarse-grained along the y−z plane, a 384×512 higher reso-
lution snapshot becomes a 96×128 lower resolution snapshot. These datasets are
used to estimate high-resolution turbulent flow fields from low-resolution ones,

82

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

C
o
n
v

U
p
sa
m
p
li
n
g

C
o
n
v

C
o
n
v

C
o
n
v

LR

SR

Basic Block Basic Block Basic Block

(a) The basic architecture from ESRGAN by Wang et al. [2018] is used where
most computation is done in the low-resolution feature space. The ’basic
blocks’ can be designed or chosen such as residual block, dense block, or resid-
ual in residual dense blocks (RRDB) for better performance. Image courtesy:
Wang et al. [2018]
Residual Block (RB) Residual in Residual Dense Block (RRDB)

C
o
n
v

B
N

R
e
L
U

C
o
n
v

B
N

C
o
n
v

R
e
L
U

C
o
n
v

+ +

SRGAN RB w/o BN

C
o
n
v

L
R
e
L
U

C
o
n
v

L
R
e
L
U

C
o
n
v

L
R
e
L
U

C
o
n
v

L
R
e
L
U

C
o
n
v

+ + +

Dense

Block

×
𝛽

×
𝛽

×
𝛽

× 𝛽
Dense

Block

Dense

Block

+

(b) Left: Removal of batch-normalization BN layers in the residual block.
Right: RRDB block used in ESRGAN model with suitable residual scaling
parameter. Image courtesy: Wang et al. [2018]

Figure 4.2: Deep learning architecture used for learning subgrid-scale turbulence

thus demonstrating whether the subgrid-scale turbulence can be estimated from
grid-resolved or large-scale measurements.

4.3 Deep Learning Architecture and Training

A deep learning model to estimate mapping between subgrid scales and large
scales is required. This can be considered as whether a non-linear model M exists
such that, given a lower-resolution field, a corresponding higher-resolution field
would be predicted by:

ut
i
′

HR = M(ut
i
′

LR), (4.5)

where ut
i
′

HR is a higher-resolution snapshot at instant t containing the complete
subgrid-scale information, and ut

i
′

LR is a lower-resolution snapshot at the same
instant containing the large scales.

A deep learning architecture based on enhanced super-resolution generative
adversarial networks (ESRGAN) Wang et al. [2018] is used to reconstruct high-
resolution flow fields from low-resolution fields. Figures 4.2 show the architec-
tures of a generator and discriminator in the ESRGAN. A generator consists of a
deep convolution neural network with residual in residual dense blocks (RRDBs)
Wang et al. [2019]. A low-resolution input snapshot is first fed to the generator
which is passed through a convolution layer followed by a series of RRDBs, and
passed through a final convolutional layer to generate a high-resolution snapshot.
The original ESRGAN uses an additional discriminator to which the generated

83

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

and true snapshots are fed by passing through a series of convolutional, batch
normalization, and rectified linear unit (ReLU) layers. After successful train-
ing, the generator is expected to produce a snapshot with statistics similar to
the true snapshot that a discriminator cannot distinguish from the true snap-
shot. Readers are referred to the work of Goodfellow et al. [2020] for details on
generative-adversarial networks (GANs) where two adversarial neural networks,
the generator, and the discriminator, compete with each other. For the present
study, we deploy transfer learning by making use of a previously trained ESR-
GAN model on super-resolution of images from various sources in Wang et al.
[2018]. Transfer-learning is used to re-train a model for a new dataset which helps
in saving training time.

This deep learning architecture aims at proposing a nonlinear model to es-
timate subgrid-scale information given the large-scale information. The use of
deep learning models is in the context where data at all scales are available from
the DNS dataset. The proposed model learns an empirical relation between large
and subgrid scales, which is presented in the form of a function M(.) to predict
subgrid scale information on new datasets and situations. The deep learning
architecture aims at finding nonlinear mapping functions with a more adaptive
kernel space and allows to model nonlinear phenomena.

The resulting deep learning model is trained with the Adam Kingma and
Ba [2014] optimizer, to iteratively minimize the total Root Mean Square Error
(RMSE) of the reconstruction loss defined by:

ǫ(t) =
(
∫ h

x1=0

∫ h
x2=0

(
(u1 − û1)

2 + (u2 − û2)
2
)

dx1dx2)
1/2

(
∫ h

x1=0

∫ h
x2=0 ((u1)2 + (u2)2) dx1dx2)1/2

, (4.6)

where û1 and û2 are the reconstructed velocity fluctuations while u1 and u2 are
the velocity fluctuation from the DNS ground truth. Following the same metrics,
we can also evaluate the RMSE with respect to the streamwise and wall-normal
velocity components separately with an aim to evaluate the reconstruction errors
for each component of the 2D velocity profiles:

ǫx1
(t) =

(
∫ h

x1=0

∫ h
x2=0 (u1 − û1)

2 dx1dx2)
1/2

(
∫ h

x1=0

∫ h
x2=0 u2

1dx1dx2)1/2
,

ǫx2
(t) =

(
∫ h

x1=0

∫ h
x2=0 (u2 − û2)

2 dx1dx2)
1/2

(
∫ h

x1=0

∫ h
x2=0 u2

2dx1dx2)1/2
.

(4.7)

4.4 Results and Discussions

The deep learning model is trained on 70% of the available DNS snapshots and
the remaining 30% snapshots are kept for evaluation of results presented in this
section. First, the results from various coarse-graining methods for generating
synthetic low-resolution datasets are compared, followed by the effects of refine-
ment direction on reconstructing the subgrid-scales. Later, successive refinement

84

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

through various scaling factors is compared. Lastly, the trained deep learning
model is tested on a PIV experimental dataset of wall-bounded turbulence.

To compare the results of subgrid-scale reconstructions with DNS, several
turbulence statistics are compared. Turbulence intensity, dissipation, and enstro-
phy are compared along with turbulent kinetic energy spectra in streamwise and
spanwise directions. The turbulence intensity, also often referred to as turbulence
level, is defined as:

I =
u′

U
, (4.8)

where u′ is the root-mean-square of the turbulent velocity fluctuations and U is
the mean velocity. If the turbulent kinetic energy k is known, u′ can be computed
as:

u′ =

√
1

3
(u′2

x + u′2
y + u′2

z) =

√
2

3
k. (4.9)

U can be computed from the three mean velocity components Ux, Uy and Uz as:

U =
√

U2
x + U2

y + U2
z . (4.10)

Turbulence dissipation, ǫ is the rate at which turbulence kinetic energy is dissi-
pated, which is written as:

ǫ ≡ ν
∂u′

i

∂xk

∂u′

i

∂xk

. (4.11)

Finally, the enstrophy Ω is a type of potential density which is directly related to
the kinetic energy in the flow that corresponds to dissipation effects in turbulent
flows. For incompressible flows with ∇ · u = 0, the enstrophy can be described
as the integral of the square of the vorticity ω given by:

Ω ≡
∫

Ω
|ω|2 dx. (4.12)

4.4.1 Effects of coarse-graining

Since it is not known which pooling method for spatial coarse-graining is bet-
ter than other pooling methods, the effects of these methods are examined. As
described in the previous section, the lower-resolution dataset is synthetically pro-
duced from the high-resolution data with spatial coarse-graining. Spatial coarse-
graining is performed with mean-pooling, max-pooling, and sparse sampling of
the higher-resolution data. As shown in figure 4.3 max-pooling refers to taking
the maximum value at each filter, average or mean-pooling refers to taking the
average value at each filter, whereas sparse-pooling refers to sparse-sampling of
the available feature space at each filter.

When max, mean, and sparse pooling methods are compared, it is found that
the choice of these coarse-graining methods does not have a significant impact on

85

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

Figure 4.3: Representation of various pooling methods for spatial coarse-graining
operations with a sample pool-size of 2×2 from a 4×4 feature space. Max-pooling
and mean-pooling refer to taking the maximum and minimum value at each filter
respectively and then arranged into a new output with a size of 2 × 2 feature.
Sparse-pooling refers to the sparse sampling of the available feature space at each
filter.

the subgrid-scale reconstruction. Figures 4.4b and 4.4c show the comparison of
turbulence dissipation and enstrophy for various coarse-graining methods when
measured along streamwise directions. Figure 4.4 shows a comparison of these
methods by measuring turbulence intensity in a streamwise direction, where it
can be noted that subgrid-scale reconstruction from all three methods have sim-
ilar accuracy and are comparable to DNS. Additionally, when the spectral con-
tributions are compared as shown in figure 4.5, it is observed that these three
methods have similar accuracy for streamwise energy spectra, whereas, for the
spanwise averaged spectrum of turbulent kinetic energy, it is observed that the
subgrid-scale reconstruction from max-pooling has dissipated more compared to
that from sparse-pooling. For further reporting, sparse pooling was chosen since
it represents realistic situations for both experimental and numerical data, and
it is computationally faster to perform sparse pooling.

4.4.2 Effects of Refinement Direction

Now that the effect of coarse-graining methods is established, we proceed towards
investigating refinement direction and its effect on subgrid-scale reconstruction.
The DNS dataset is a 3D dataset with data available along x − y, y − z, and
x − z 2D planar refinement directions, hence it is essential to demonstrate the
deep learning model’s performance for subgrid-scale reconstruction along these
refinement directions. These investigations would be particularly useful later
while demonstrating the trained model’s applicability on the PIV dataset which
is available only along two planes.

Figure 4.6 shows the comparison of turbulence intensity of DNS with the
subgrid-scale reconstruction along various refinement directions. The turbulence

86

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

0 1 2 3 4 5 6

0.4

0.6

0.8

1

1.2

x

I c
/I

b

DNS
Max
Mean
Sparse

(a)

0 2 4 6

0.2

0.4

0.6

0.8

1

x

ǫ c
/ǫ

b

(b)

0 2 4 6

0.5

1

x

Ω
c
/Ω

b

DNS
Max
Mean
Sparse

(c)

Figure 4.4: Comparison of refinements from max, mean, and sparse sampled
coarse-graining methods on the (a) turbulence intensity (b) turbulent dissipation
(c) turbulent enstrophy

87

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

10−3 10−2 10−1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

log(k)

lo
g
E

(k
)

(a)

10−3 10−2 10−1

10−7

10−6

10−5

10−4

10−3

10−2

log(k)
lo

g
E

(k
) DNS

Max
Mean
Sparse

(b)

Figure 4.5: Comparison of the effect of max, mean, and sparse sampled coarse-
graining methods on the (a) streamwise energy spectrum and (b) spanwise energy
spectrum for the turbulent channel flow.

intensity is compared along x − y, z − y, and x − z refinement directions in figure
4.6a, figure 4.6b, and figure 4.6c respectively. Similarly, turbulence dissipation
and turbulence enstrophy from subgrid-scale reconstructions are compared with
DNS data along the refinement directions in figure 4.8 and figure 4.7 respectively.
The subgrid-scale reconstruction along all three refinement directions shows good
agreement with the DNS data. From a finer evaluation, it is observed that the
turbulence intensity is slightly under-predicted across all refinement directions,
whose effect is then magnified in the turbulence dissipation comparison. Fur-
thermore, streamwise and spanwise spectra are compared for these refinement
directions as shown in figure 4.9 and figure 4.10. Both spectra from subgrid-scale
reconstruction along all three refinement directions show good accuracy across the
range of large and small scales. Overall, a good agreement in measured physical
statistics is observed for subgrid-scale reconstructions compared to DNS.

4.4.3 Investigating Successive Refinement

The quality of subgrid-scale reconstruction by the extent of coarse-graining is
investigated. Successive refinements are performed until DNS-comparable spatial
levels are attained. The present deep learning model is trained for 4× subgrid-
scale reconstruction, which means a DNS comparable complete spatial snapshot
is estimated from a 4× spatially coarse-grained snapshot. But, can a 16× spa-
tially coarse-grained snapshot be used to predict a DNS-comparable complete
spatial snapshot by using the same deep learning model? Can this be done for

88

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

0 1 2 3 4 5 6

0.6

0.7

0.8

0.9

x

I c
/I

b DNS
DL

(a)

0 1 2 3 4 5 6

0.6

0.7

0.8

0.9

z

I c
/I

b DNS
DL

(b)

0 1 2 3 4 5 6

0.6

0.7

0.8

0.9

x

I c
/I

b DNS
DL

(c)

Figure 4.6: Comparison on the turbulence intensity by refinement direction in
(a)XY (b)ZY (c)XZ

89

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

x

ǫ c
/ǫ

b DNS
DL

(a)

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

z

ǫ c
/ǫ

b DNS
DL

(b)

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

x

ǫ c
/ǫ

b DNS
DL

(c)

Figure 4.7: Comparison on the turbulence dissipation by refinement direction in
(a)XY (b)ZY (c)XZ

90

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

x

Ω
c
/Ω

b DNS
DL

(a)

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

z

Ω
c
/Ω

b DNS
DL

(b)

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

x

Ω
c
/Ω

b DNS
DL

(c)

Figure 4.8: Comparison on the turbulence enstrophy by refinement direction in
(a)XY (b)ZY (c)XZ

91

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

10−3 10−2 10−1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

log(k)

lo
g
E

(k
x
)

(a)

10−3 10−2 10−1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

log(k)

(b)

10−3 10−2 10−1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

log(k)

DNS
DL

(c)

Figure 4.9: Comparison of refinement direction on the streamwise energy spec-
trum for the turbulent channel flow.

10−3 10−2 10−1

10−6

10−5

10−4

10−3

10−2

log(k)

lo
g
E

(k
z
)

(a)

10−3 10−2 10−1

10−7

10−6

10−5

10−4

10−3

10−2

log(k)

(b)

10−3 10−2 10−1

10−6

10−5

10−4

10−3

10−2

log(k)

DNS
DL

(c)

Figure 4.10: Comparison of refinement direction on the spanwise energy spectrum
for the turbulent channel flow.

92

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

64× coarse-grained snapshot? Essentially, the effect of severe coarse-graining is
investigated by successively refining the coarse-grained snapshot by 4× during
each refinement. Thus for a DNS comparable solution of subgrid-scale recon-
struction, a 64×, 16×, 4× coarse-grained snapshot would need one, two, and
three successive refinements, respectively.

The subgrid-scale reconstructions for 64×, 16×, 4× coarse-grained snapshots
are compared by measuring turbulence intensity as shown in figure 4.11. As ex-
pected, the 4× subgrid-scale reconstruction has better accuracy with respect to
DNS, as compared to the 64× subgrid-scale reconstruction. As shown in figure
4.12 and figure 4.13, similar trends are observed for turbulence dissipation and en-
strophy. It is observed that the 4× and 16× subgrid-scale reconstructions exhibit
an LES-like behavior, whereas 64× subgrid-scale reconstruction shows a RANS-
like behavior when turbulence intensity, dissipation, and enstrophy are compared
. These results show how challenging it is for a deep learning model to get DNS-
like solutions from coarse-grained data. When subgrid-scale reconstructions are
investigated for streamwise and spanwise turbulence kinetic energy spectra as
shown in figure 4.14, the streamwise spectra offer a distinct picture of reconstruc-
tions across scales. For streamwise spectra, 64× subgrid-scale reconstruction
shows a clear and direct dissipation at larger scales, whereas 4× subgrid-scale
reconstruction shows DNS comparable dissipation until smaller scales.

Additionally, root mean squared (RMS) turbulent velocities after subgrid-
scale reconstructions are compared as a function of distance from the chan-
nel’s wall. Subgrid-scale reconstructions for 64×, 16×, and 4× coarse-grained
snapshots are compared. Turbulent velocity components along streamwise, wall-
normal, and spanwise directions are compared to DNS data as shown in figure4.15.
At higher y+, i.e. away from the wall, the stream-wise velocity component shows
expected agreement for all subgrid-scale reconstructions compared to DNS. Near
the wall, only 4× subgrid-scale reconstructions show better agreement to that of
DNS which is expected and consistent with the previous results. 64× subgrid-
scale reconstructions show unexpected oscillations for all the turbulent velocity
components, which could disappear with averaged statistics using more number
of snapshots.

4.4.4 Application on Experimental Data

To demonstrate the robustness of the trained deep learning model for subgrid-
scale reconstruction, experimental Particle Image Velocimetry (PIV) data is used.
A typical PIV setup consists of flow in a wind tunnel seeded with tracer par-
ticles which get illuminated when passed across a laser sheet created in re-
gions of interest. This tracer particle movement is captured with complementary
metal–oxide–semiconductor sensors which are cameras with high shutter speeds,
from which velocity fields are measured by calculating the speed and direction of
tracer particles. High-resolution PIV can measure the flow at a small field-of-view
but at a very high spatial resolution, but for studying a flow region with a bigger

93

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

0 1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

x

I c
/I

b DNS
64x
16x
4x

Figure 4.11: Comparison of successive refinement on the intensity of turbulence

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

x

ǫ c
/ǫ

b DNS
64x
16x
4x

Figure 4.12: Comparison of successive refinement on the dissipation of turbulence

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

x

Ω
c
/Ω

b DNS
64x
16x
4x

Figure 4.13: Comparison of successive refinement on the enstrophy of turbulence

94

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

10−3 10−2 10−1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

log(k)

lo
g
E

(k
)

(a)

10−3 10−2 10−1

10−7

10−6

10−5

10−4

10−3

10−2

log(k)
lo

g
E

(k
) DNS

64x
16x
4x

(b)

Figure 4.14: Comparison of successive refinement on the (a) streamwise (b) span-
wise turbulence energy spectra

101 102 103

0

0.5

1

1.5

2

2.5

3

3.5

log(y+)

√
u

′ i2

(a)

101 102 103

0

0.5

1

1.5

log(y+)

(b)

101 102 103

0

0.5

1

1.5

2

log(y+)

DNS
64x
16x
4x

(c)

Figure 4.15: Comparison of successive refinement on the RMS of turbulent ve-
locities in (a) streamwise (b) wall-normal (c) spanwise fluctuations as a function
of distance from wall

95

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

(a) (b)

Figure 4.16: Stereo PIV setup at Lille Fluid Mechanics Laboratory (LMFL)
used for studying the flat plate turbulent boundary layer (a) Top-view of the
experimental set-up (b) Example of an instantaneous streamwise velocity field.
Image courtesy: LMFL

field-of-view PIV resolution is usually sacrificed. This motivates the application
of a trained deep learning model to reconstruct subgrid-scales or sub-pixel scales
to enhance PIV data. Experimental data of flat plate turbulent boundary layer at
Reynolds numbers Reτ = 2300 with two synchronized stereo-PIV perpendicular
planes in the near wall region by Foucaut et al. [2016] is used. The experiment
was performed in the Lille Mechanics Laboratory at the 20m long boundary layer
facility, which is composed of two stereo-PIV systems acquiring data simultane-
ously. The two PIV planes are normal to the wall and intersect into a single line
so that the set-up has a L shape as shown in figure 4.16. Each PIV system is
composed of two Hamamatsu cameras with a resolution of 2k × 2k capturing two
fields of view of about 80mm in the spanwise or streamwise direction and 120mm
in the wall-normal one.

Coarse-grained data by a factor of 4× is obtained by sparse-pooling as de-
scribed in previous sections. Subgrid-scale reconstruction is performed by the
trained deep learning model by predicting full-field PIV snapshot from the 4×
coarse-grained snapshot. Figure 4.17 shows turbulence intensity measured along
refinement directions in x − y and z − y planes. A good agreement is seen for
subgrid-scale reconstruction when compared with PIV data. Similar trends are
seen for turbulence dissipation and enstrophy of turbulence as shown in figure
4.18 and figure 4.19 respectively. Additionally, spectral contributions are exam-
ined by comparing streamwise and spanwise spectra as shown in figure 4.20 and
figure 4.21, both of which show a good agreement across the range of scales.

Similar to the method described previously, we perform successive refinements
on PIV data for 64×, 16×, and 4× subgrid scale reconstruction. Figure 4.22
shows a combined plot of turbulence intensity, dissipation, and enstrophy for

96

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1

1

1

1

x

I c
/I

b PIV
DL

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.9

0.95

1

1.05

1.1

z

I c
/I

b PIV
DL

(b)

Figure 4.17: Comparison for PIV on the turbulence intensity by refinement di-
rection in (a)XY (b)ZY

various coarse-graining levels. A good agreement is observed in subgrid-scale
reconstructions against the PIV snapshot for the measured physical statistics.
Similarly, streamwise and spanwise turbulent kinetic energy spectra are compared
for 64×, 16×, and 4× subgrid scale reconstruction as shown in figure 4.23, which
shows the expected level of good agreements with the PIV data.

4.5 Conclusions

The present study is on the intersection of computer vision, deep learning, and
computational as well as experimental turbulence. The primary objective was to
explore the state-of-the-art deep learning method to estimate subgrid-scale tur-
bulence from measured large scales or grid-resolved scales. The key contribution
of this study is to perform transfer learning by re-training a model trained for
non-physics problems to re-learn new physical features. Coarse-grained fields are
computed from the reference datasets to make the a priori predictions using the
trained deep learning model on the DNS dataset. Subgrid-scale reconstructions

97

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.96

0.98

1

1.02

1.04

1.06

x

ǫ c
/ǫ

b PIV
DL

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

z

ǫ c
/ǫ

b PIV
DL

(b)

Figure 4.18: Comparison for PIV data on the turbulence dissipation by refinement
direction in (a)XY (b)ZY

98

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.96

0.98

1

1.02

1.04

1.06

x

Ω
c
/Ω

b PIV
DL

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

z

Ω
c
/Ω

b PIV
DL

(b)

Figure 4.19: Comparison for PIV data on the turbulence enstrophy by refinement
direction in (a)XY (b)ZY

10−2 10−1
10−8

10−7

10−6

10−5

log(k)

lo
g
E

(k
x
)

(a)

10−1 100

10−7

10−6

10−5

10−4

log(k)

PIV
DL

(b)

Figure 4.20: Comparison of refinement direction on the streamwise energy spec-
trum for the PIV data of turbulent channel flow.

99

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

10−1 100

10−4.3

10−4.2

10−4.1

10−4

log(k)

lo
g
E

(k
z
)

(a)

10−2 10−1

10−6

10−5

10−4

log(k)

PIV
DL

(b)

Figure 4.21: Comparison of refinement direction on the spanwise energy spectrum
for the PIV data of turbulent channel flow.

are performed and compared with reference DNS as well as PIV datasets. In both
datasets, wall-bounded turbulent channel flow datasets are used. Subgrid-scale
reconstructions along various refinement directions and various coarse-graining
levels are compared with the reference by measuring physical statistics like tur-
bulence intensity, dissipation, enstrophy, and energy spectra.

PIV or HWA being limited by the hardware resolutions, experiments can only
capture what is within the limits of their acquisition methods. The DNS or similar
numerical simulations are limited by the grid resolutions and computing power.
It is almost impossible to increase information transfer beyond this limit, but the
features outside the limit can be reconstructed from features based on the global
or historical context of the data, demonstrating the need for further work on deep
learning to reconstruct grid-scale turbulence. Such an approach may allow going
beyond what can be measured, computed, or stored. The results from this work
would provide a way to design experiments or numerical simulations in such a way
that deep learning facilitates the recovery of a maximum level of information. On
the experimental side, time-resolved velocity fields at large field-of-view and high
spatial resolution could be estimated with such a deep learning-assisted method.

Bibliography

Andrea Beck, David Flad, and Claus-Dieter Munz. Deep neural networks for
data-driven les closure models. Journal of Computational Physics, 398:108910,
2019.

Jean-Marc Foucaut, Christophe Cuvier, Sebastien Coudert, and Michel Stanislas.
3d spatial correlation tensor from an l-shaped spiv experiment in the near wall
region. In Progress in Wall Turbulence 2, pages 405–417. Springer, 2016.

Kai Fukami, Koji Fukagata, and Kunihiko Taira. Super-resolution reconstruction
of turbulent flows with machine learning. J. Fluid Mech., 870:106–120, 2019a.

100

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.9

1

1.1

x

I c
/I

b PIV
64x
16x
4x

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

x

ǫ c
/ǫ

b PIV
64x
16x
4x

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

x

Ω
c
/Ω

b PIV
64x
16x
4x

(c)

Figure 4.22: Comparison for PIV data with successive refinement on (a) the
intensity of turbulence (b) dissipation of turbulence (c) enstrophy of turbulence

101

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

10−1 100

10−7

10−6

10−5

10−4

log(k)

lo
g
E

(k
)

(a)

10−2 10−1

10−6

10−5

10−4

log(k)
lo

g
E

(k
) PIV

64x
16x
4x

(b)

Figure 4.23: Comparison for PIV data with successive refinement on the (a)
streamwise (b) spanwise turbulence energy spectra

Kai Fukami, Yusuke Nabae, Ken Kawai, and Koji Fukagata. Synthetic turbulent
inflow generator using machine learning. Physical Review Fluids, 4(6):064603,
2019b.

Kai Fukami, Koji Fukagata, and Kunihiko Taira. Machine learning based spatio-
temporal super resolution reconstruction of turbulent flows. arXiv preprint
arXiv:2004.11566, 2020.

Kai Fukami, Koji Fukagata, and Kunihiko Taira. Machine-learning-based spatio-
temporal super resolution reconstruction of turbulent flows. Journal of Fluid
Mechanics, 909, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial networks. Communications of the ACM, 63(11):139–144, 2020.

Julian CR Hunt and David J Carruthers. Rapid distortion theory and the ‘prob-
lems’ of turbulence. Journal of Fluid Mechanics, 212:497–532, 1990.

Chiyu Max Jiang, Soheil Esmaeilzadeh, Kamyar Azizzadenesheli, Karthik
Kashinath, Mustafa Mustafa, Hamdi A Tchelepi, Philip Marcus, Anima Anand-
kumar, et al. Meshfreeflownet: A physics-constrained deep continuous space-
time super-resolution framework. arXiv preprint arXiv:2005.01463, 2020.

Junhyuk Kim and Changhoon Lee. Deep unsupervised learning of turbu-
lence for inflow generation at various reynolds numbers. arXiv preprint
arXiv:1908.10515, 2019.

102

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

C Vamsi Krishna, Mengying Wang, Maziar Hemati, and Mitul Luhar. Fusion of
physics-based models with field measurements for turbulent flow reconstruc-
tion. In 11th International Symposium on Turbulence and Shear Flow Phe-
nomena, TSFP 2019, 2019.

C Vamsi Krishna, Mengying Wang, Maziar S Hemati, and Mitul Luhar. Recon-
structing the time evolution of wall-bounded turbulent flows from non-time-
resolved piv measurements. Physical Review Fluids, 5(5):054604, 2020.

Adrián Lozano-Durán and Javier Jiménez. Effect of the computational domain
on direct simulations of turbulent channels up to re τ= 4200. Physics of Fluids,
26(1):011702, 2014.

Arvind Mohan, Don Daniel, Michael Chertkov, and Daniel Livescu. Compressed
convolutional lstm: An efficient deep learning framework to model high fidelity
3d turbulence. arXiv preprint arXiv:1903.00033, 2019.

Linh Van Nguyen, Jean-Philippe Laval, and Pierre Chainais. A Bayesian fu-
sion model for space-time reconstruction of finely resolved velocities in turbu-
lent flows from low resolution measurements. Journal of Statistical Mechanics:
Theory and Experiment, 2015(10):P10008, 2015.

Hua Wang, Dewei Su, Chuangchuang Liu, Longcun Jin, Xianfang Sun, and Xinyi
Peng. Deformable non-local network for video super-resolution. IEEE Access,
7:177734–177744, 2019.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
and Chen Change Loy. Esrgan: Enhanced super-resolution generative adver-
sarial networks. In Proceedings of the European conference on computer vision
(ECCV) workshops, pages 0–0, 2018.

103

CHAPTER 4. LEARNING SUBGRID-SCALE TURBULENCE

104

Chapter 5

Auto-Regressive Learning of
Spatio-Temporal Turbulence

Un modèle de transformateur basé sur un codeur-décodeur convolutif est proposé
pour l’entraînement autorégressif sur des données spatio-temporelles d’écoulements
turbulents. La prédiction des champs d’écoulement futurs est basée sur le champ
d’écoulement précédemment prédit afin de garantir des prédictions à long terme
sans divergence. Une combinaison de réseaux neuronaux convolutifs et d’architecture
de transformateur est utilisée pour traiter les dimensions spatiales et temporelles
des données. Pour évaluer les performances du modèle, des évaluations a pri-
ori sont effectuées et des accords significatifs sont trouvés avec les données de
la vérité de terrain. Les prédictions a posteriori, qui sont générées après un
nombre considérable d’étapes de simulation, présentent des variances prédites.
L’apprentissage autorégressif et la prédiction des états a posteriori sont considérés
comme des étapes cruciales vers le développement de modèles et de simulations de
turbulence plus complexes basés sur des données. La dynamique hautement non
linéaire et chaotique des flux turbulents peut être gérée par le modèle proposé,
et des prédictions précises sur de longues périodes peuvent être générées. Dans
l’ensemble, cette approche démontre le potentiel des techniques d’apprentissage
profond pour améliorer la précision et l’efficacité de la modélisation et de la sim-
ulation des turbulences. Le modèle proposé peut être optimisé et étendu pour
incorporer des conditions physiques et limites supplémentaires, ouvrant ainsi la
voie à des simulations plus réalistes de la dynamique des fluides complexes.

105

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

5.1 Introduction

The main factor in turbulent flows is convection, which makes tasks such as flow
control and model reduction complex and challenging. These tasks become non-
linear, high-dimensional, multi-scale, and non-convex optimization problems due
to the dominance of convection over diffusion. Due to the vast amount of numer-
ical and experimental data available for turbulent flows, data-driven approaches
are now gaining popularity in the fluid mechanics community. These approaches
use deep learning models to make predictions and represent a valid alternative
to traditional methods. This article explores a new data-driven approach based
on deep learning to estimate future fluid flow fields from previous ones. The pro-
posed method uses a novel convolutional encoder-decoder transformer model and
autoregressive training to achieve long-term spatio-temporal predictions. The
approach is tested on two turbulent fluid flow cases, namely a wake-flow past
a stationary obstacle and an environmental flow past a tower fixed on a sur-
face. The results show the effectiveness of the proposed method in predicting the
fluid flow fields accurately, highlighting the potential of data-driven approaches
in solving challenging problems in fluid mechanics.

There are several traditional ways to address temporal estimations, such as
Koopman theory and proper orthogonal decomposition, which are suitable for
prediction and control Williams et al. [2015]; Brunton et al. [2016]; Rowley and
Dawson [2017]. Additionally, data assimilation schemes are popular, where the
model weights are updated to reflect new observations Mons et al. [2016]. In
recent years, supervised learning techniques using neural networks have been ap-
plied to capture nonlinear relations between past and future states. For example,
a recurrent neural network with long-short term memory was used to predict the
chaotic Lorenz system, and convolutional networks were used to predict tran-
sient flows Dubois et al. [2020]; Xu and Duraisamy [2020]. There have also been
attempts to approximate the full Navier-Stokes equations using deep neural net-
works, but prediction accuracy decreased significantly for chaotic and turbulent
flows Lusch et al. [2018]; Sirignano and Spiliopoulos [2018]; Tang et al. [2021]; Sun
et al. [2020]. Regarding the estimation of flow fields using deep neural networks,
several studies have focused on spatial and temporal reconstruction, as well as
spatial supersampling Cheng and Zhang [2021]; Yousif et al. [2021]; Schmidt et al.
[2021]. Hybrid deep neural network architectures have been designed to capture
the spatial-temporal features of unsteady flows Han et al. [2019], and machine
learning-based reduced-order models have been proposed for three-dimensional
complex flows Nakamura et al. [2021]. A deep learning framework combining long
short-term memory networks and convolutional neural networks has been used
to predict the temporal evolution of turbulent flames Ren et al. [2021]. However,
despite the significant progress made in the acceleration of flow simulation, these
models still suffer from the generalization problem and are sensitive to parameter
changes Kochkov et al. [2021].

New deep learning architectures for temporal problems in unstructured and

106

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

structured data are emerging, with transformers being one of the most promis-
ing. These models make use of self-attention mechanisms to differentially weight
the significance of each part of the input data Vaswani et al. [2017]; Bahdanau
et al. [2014], without the need for recurrent network architecture. Inspired by
neighborhood-like notions in convolutional neural networks, transformers build
features of inputs using a self-attention mechanism to determine the importance
of other samples in the dataset with respect to the current sample. The updated
features of the inputs are simply the sum of linear transformations of all features
weighted by their importance. Transformers avoid recurrence by using the self-
attention mechanism, which accounts for the similarity score between elements
of a sequence and the positional embedding of these elements, allowing them to
account for the full sequence instead of single elements. These models have been
successful in natural language processing (NLP) tasks such as translation and
text summarization, and are becoming the model of choice for NLP problems, re-
placing classical recurrent neural network (RNN) models such as long short-term
memory (LSTM) Wolf et al. [2020]; Devlin et al. [2018]; Radford et al. [2019].
Transformers have also been applied to image processing tasks using convolu-
tional neural networks to capture relationships between different portions of an
image Dosovitskiy et al. [2020]; Parmar et al. [2018]; Touvron et al. [2021]. Hybrid
architectures combining convolutional layers with transformers have achieved ex-
cellent results in several computer vision tasks Dai et al. [2021]; Wu et al. [2021a].
In spatio-temporal context, transformers have been used for video-understanding
tasks, capturing spatial and temporal information through the use of divided
space-time attention Sharir et al. [2021]; Bertasius et al. [2021]. In fluid mechan-
ics, attention mechanisms have enhanced the reduced-order model to extract
temporal feature relationships from high-fidelity numerical solutions Wu et al.
[2021b]. Recently, a similar combination of autoregressive transformers and two-
dimensional homogeneous isotropic turbulence was proposed for spatio-temporal
prediction of flow fields Peng et al. [2022]. However, transformers have never been
used for spatio-temporal prediction of flow fields involving turbulent flows.

The present contribution is organized as follows: first, the deep learning
method based on the convolutional self-attention transformer is discussed, af-
ter which focus is made on the autoregressive training procedure. The following
section provides insights into the performance of the proposed approach by con-
sidering (i) a turbulent flow case with an obstacle embedded in a rectangular
domain, and (ii) a surface-mounted tower in an open flow. This part is followed
by a discussion and a conclusion.

5.2 Deep Learning Method

The primary focus of this contribution is to address the challenge of learning
the spatio-temporal dynamics of turbulent flows, which are known for their high
complexity, non-linear behavior, and high dimensionality. There are two main
approaches to estimate a reference spatio-temporal field Xt: (i) reconstruction,

107

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

which involves utilizing limited measurements X̃t at a specific time t to recon-
struct the full Xt field at the same time, and (ii) prediction, where a dynami-
cal model is utilized to advance the field in time based on previous estimates.
Here, spatio-temporal learning is formulated as a task with a given time-series
containing N sequential snapshots

[
xt, xt+∆t,, xt+(N−1)∆t

]
, in order to pre-

dict the same quantity of interest on M steps ahead in time. The input X
of the deep learning model is

[
xt, xt+∆t,, xt+(N−1)∆t

]
, and the output Y is[

xt+N∆t, ..., xt+N+(M−1)∆t

]
. Each snapshot xt can be a scalar field or a vector

field containing multiple features.

Transformer models in deep learning were developed to address natural lan-
guage processing problems, where sentence completion and translation are per-
formed using a word by word embedding Vaswani et al. [2017]. The sentence-
completing NLP tasks can be understood as a temporal learning problem, with
a time series of words or sentence tensors measured over a time duration. These
models have achieved remarkable performances in a variety of other tasks, in-
cluding learning image patches as sequences, image completion and reconstruc-
tion Vaswani et al. [2017]; Dai et al. [2021]; Wu et al. [2021a]. As a result, the
transformer models have been challenging the classic long short-term memory
(LSTM) models, the de facto RNNs, and replacing them with a state-of-the-art
approach in a variety of temporal learning tasks.

Like RNNs, transformers are designed to handle sequential input data. How-
ever, unlike the latter, they do not necessarily process the data in order. Rather,
the attention mechanism provides context for any position in the input sequence,
and self-attention itself identifies/learns the weights of attention. In the case of
spatio-temporal data, the attention can be applied to the spatial as well as the
temporal sequence to attend to or pay attention to. The vanilla transformers in
their original form are pure sequence to sequence models, as they learn a target
output sequence from an input sequence, i.e. they perform transformation at
the sequence level. Their limitations, such as disrupting temporal coherence and
failing to capture long-term dependencies, were reached for sentence completion
of language generation tasks, where difficulties were noted while generating texts
with a model which learns sequences without the knowledge of full-sequences
Bahdanau et al. [2014]; Yu et al. [2017]; Guo et al. [2018]. Several studies were
performed, such as that of Dai et al. Dai et al. [2019], to address this inability to
capture long-term dependencies by attending to memories from previously learned
parameters, yet at the expense of computing costs. To deal with some of these
issues, autoregressive transformers were proposed by Katharopoulos et al. [2020]
for sentence and image completion tasks. Although not explicitly stated in some
works, the Generative Pre-trained Transformer (GPT) family of models Radford
et al. [2018, 2019]; Brown et al. [2020] are in fact autoregressive transformers
inspired by the decoder part of the original transformers. In Katharopoulos et al.
[2020], Katharopoulous et al. showed that a self-attention layer trained in an
autoregressive fashion can be seen as a recurrent neural network. Transform-
ers can be combined with the classic convolutional encoder-decoder type models

108

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

to harness their full potential when the input and target output tensors are in
a spatio-temporal form. As locality is more important in learning small-scale
features, this combination serves as a powerful method for a variety of computer-
vision problems, including video-frame prediction. The self-attention mechanism
on convolutional layers not only attends or focuses on a sequence of significance,
but it also improves the representation of spatially-relevant regions by focusing
on important features and suppressing less-important ones Woo et al. [2018].

When a transformer block is applied after a convolutional layer, the model
learns to emphasize meaningful features along the channel sequence and spatial
dimensions. The input sequences are first appended channel-wise to the input
layer and subsequent convolutional operations are performed in the encoder. In
the convolutional layers, the intermediate feature maps F ∈ R

C×H×W of a given
layer are passed through the self-attention convolutional transformer layer convα,
which simultaneously attends to spatial representation and the positional embed-
dings of the input sequence channels. In convα, let x, y ∈ R

C be the input and
output intermediate feature tensors, with C representing the number of interme-
diate channels. When i, j ∈ R

H×W are indices of the spatial nodes, a classical
convolution operation is performed such that:

yi =
∑

j∈N(i)

Wi→jxj, (5.1)

where N(i) represents the spatial nodes in a local neighborhood defined by a
kernel of size k × k centered at node i, i → j represents the relative spatial re-
lationship from i to j, and Wi→j ∈ R

C×C is the weight matrix. On the other
hand, self-attention for intermediate convolutional features has three weight ma-
trices Wq, Wk, Wv ∈ R

C×C to compute query, key and value respectively. For each
convolution window, the self-attention is given as:

yi =
∑

j∈N(i)

αi→jWvxj,

αi→j =
e(Wqxi)

T Wkxj

∑
z∈N(i) e(Wqxi)T Wkxz

=
Wqkxi[j]

∑
z∈N(i) Wqkxi[z]

,

(5.2)

where the self-attention αi→j ∈ (0, 1) is a scalar that controls the contribution
of values in spatial nodes, with Wqk ∈ R

C×k2

, and [j] means jth element of the
tensor. α is usually normalized by a softmax operation such that

∑
j αi→j = 1.

These operations are summarized in figure 5.1.
Combining equations (5.1) and (5.2), one obtains both an input sequence

dependent kernel and the learnable convolution filters providing the final output
feature map F

′′ by convolutional transformer layer, given as:

yi =
∑

j∈N(i)

softmax (αi→j) Wi→jxj

i.e. F′′ = convα(F)

(5.3)

109

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

xin

space to

depth
BMM xout

similarity values+

depth to

space

Input H, W, Cin

H
2

, W
2

, k × k, Cin

H, W, Cin
H
2

, W
2

, k × k, Cout

H
2

, W
2

, k × k, k × k

H
2

, W
2

, k × k, Cout

H, W, Cout

Output

Figure 5.1: The convolutional transformer layer is composed of two blocks:
the batched matrix multiplication (BMM) and the self-attention summation. The
BMM block corresponds to Wi→jxj in equation (5.2), with the batch dimension
being the number of spatial locations. It performs k×k different input-dependent
summations with the weights α in equation (5.2). It contains both the learnable
filter and the dynamic kernel.

The current self-attention convolutional transformer layer has a 3 × 3 ker-
nel and incorporates the representation of convolutional features. Combining
convolutional neural networks with self-attention thus offers superior learning ca-
pabilities of spatio-temporal structures, which would benefit turbulent flows and
CFD in general, where one learns spatial filters as well as temporal embeddings
and dependencies. In addition to the convolutional transformer layer, the model
is trained in an autoregressive fashion. Formally, autoregressive models are those
which forecast future sequences from the previously forecasted sequences in a
cyclical way, and thus here auto indicates the regression of the variable sequence
against itself.

In turbulent flow problems, the high-dimensional state-space is characterized
by intricate spatio-temporal dynamics, and therefore, dimensionality reduction
techniques can be useful Dubois et al. [2022]. Reconstruction and prediction
problems are therefore equivalent to the estimation of the reduced or latent
state, thus making the use of encoder-decoder based architecture a natural choice.
The encoder-decoder architecture comprises an encoder that takes input tensors
and maps them to a high-dimensional representation by learning which parts of
the input tensors are important and converts or passes them to abstract low-
dimensional representation. With the addition of a decoder after this encoder,
this high-dimensional representation is converted to target output tensors. By
chaining the encoder and decoder together, their weight matrices jointly learn the
output tensors from input tensors, thus helping to learn the small-scale features.
The decoder is comprised of successive up-samplings followed by convolutions,
and brings the latent space representation of dimension nz × nz back to the orig-
inal spatial dimensions of the target output at time xt+∆t. The figure 5.2 offers
a global view of the considered deep learning architecture.

110

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

In
p

u
t

la
y

e
r

T
i
n

,
H

,
W

,
C

c
o

n
v

n
e
t

+
B

N
,

m
=

T
i
n

×
C

k = 3

c
o

n
v

n
e
t

tr
a

n
sf

o
rm

e
r

k = 3

4m

a
v

g
p

o
o

l

c
o

n
v

n
e
t

tr
a

n
sf

o
rm

e
r

k = 3

8m

a
v

g
p

o
o

l

c
o

n
v

n
e
t

tr
a

n
sf

o
rm

e
r

k = 3

16m

a
v

g
p

o
o

l

c
o

n
v

n
e
t

tr
a

n
sf

o
rm

e
r

k = 3

32m

u
p

sa
m

p
le

c
o

n
v

n
e
t

+
B

N

k = 3

16m

+

u
p

sa
m

p
le

c
o

n
v

n
e
t

+
B

N

k = 3

8m

u
p

sa
m

p
le

c
o

n
v

n
e
t

+
B

N

k = 3

4m

c
o

n
v

n
e
t,

m
=

T
o

u
t

×
C

k = 1

O
u

tp
u

t
la

y
e
r

T
o

u
t
,
H

,
W

,
C

Figure 5.2: Convolutional encoder-decoder transformer architecture
Model architecture of the convolutional encoder-decoder transformer to process
low and high level features. The canonical four-stage design is utilized in addition
to the convolutional transformer blocks or layers. H, W are the input resolutions
for each snapshot in Tin sequence and Tout sequence.

For a trained model M as shown in figure 5.2, multi-step training is performed
for quantity Xt in an auto-regressive manner, i.e. Xt+∆t is predicted from pre-
viously predicted Xt, where t is some non-dimensional time. In other words, an
initial condition Xt is inputted to the model to learn X̂t+∆t, after what this pre-
dicted X̂t+∆t is then fed back to the model again to learn X̂t+2∆t and so on, in
an autoregressive manner:

X̂t+∆t = M(Xt),

X̂t+2∆t = M(X̂t+∆t),

...

X̂t+(n−1)∆t = M(X̂t+(n−2)∆t),

(5.4)

where t is the time step and X ∈ R
C×H×W the input tensor snapshot at instant

t. In the following, the autoregressive training sequence length is set equal to two
in order to limit the computational cost.

In order to preserve meaningful values at the boundaries, the convolutional
filters used in the proposed architecture incorporate a symmetric boundary condi-
tion into the padding operation. Classically, padding is used to preserve the spa-
tial dimensions of the field being convoluted, but the standard zero-padding ap-
proach doesn’t usually represent the expected physical behavior. Indeed, padding
with zeros everywhere would violate the representation of existing boundary con-
ditions, for example, the notion of wall boundaries would have lesser significance
if a region is padded with zeros on all the sides in a channel flow. To preserve the
boundary conditions after multiple successive convolutions, a boundary condition
formulation was implemented such that the walls could be padded with zeros if
required, while the other sides could be padded with adequate values from the
symmetric cells. The resulting model is trained with the Adam Kingma and Ba
[2014] optimizer, to iteratively minimize the total equi-weighted mean squared
error (MSE) loss defined by:

111

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

L =
1

ns

[
ns∑

i=1

(
(Xt+∆t)

i −
(
X̂t+∆t

)i
)2

+
ns∑

i=1

(
(Xt+2∆t)

i −
(
X̂t+2∆t

)i
)2

+ · · ·

+
ns∑

i=1

((
Xt+(n−1)∆t

)i
−
(
X̂t+(n−1)∆t

)i
)2
]
.

(5.5)

The ReLU function was used as an activation function, which is known to
be an effective tool for stabilizing the weight update in the training process Nair
and Hinton [2010]. The full training dataset is shown repeatedly to the network
after a shuffling step during the training, and each pass is referred to as an
epoch. An early stopping criterion is used along with a reduction of the learning
rate if learning doesn’t improve after every 100 epochs. The neural network was
implemented using TensorFlow Abadi et al. [2016], and trained on Nvidia Tesla
V100 GPUs.

5.3 Numerical simulation cases and data gener-

ation

5.3.1 Governing equations

The evolution of the velocity u and pressure p in an incompressible fluid flow
with given positive constant density ρ and dynamic viscosity µ is governed by
the Navier-Stokes momentum and continuity equations:

ρ (∂tu + u · ∇u) = ∇ · (−p Id + 2µ ε(u)) + f ,

∇ · u = 0,
(5.6)

where ε(u) is the strain-rate tensor, Id is the d-dimensional identity tensor, and f

is the additional forcing or source term. Equations (5.6) are supplemented with
adequate boundary and initial conditions based on the physical cases. Turbu-
lence is modeled as an additional diffusivity called eddy viscosity µt which itself
proceeds from a model involving one or more turbulent scales, each of which is
the solution of a nonlinear convection-diffusion-reaction equation. The turbu-
lence model chosen to compute the eddy viscosity is the one-equation Spalart-
Allmaras (SA) model Spalart and Allmaras [1992], which describes the evolution
of the kinematic eddy viscosity like variable νt by solving a convection-diffusion-
reaction problem.

5.3.2 Case 1 : Wake-flow past a square cylinder

A widely benchmarked turbulent flow past a two-dimensional (2D) square cylin-
der is considered. The baseline Reynolds number is set to 22 × 103, based on

112

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

the reference velocity U∞ and the cylinder lateral size H which is centered at
the origin of the domain. The dimensions of the computational domain are
[−5H, 15H] × [−7H, 7H] in the streamwise x and crosswise y directions respec-
tively, and the domain is discretized into sufficiently large number of cells to per-
form a URANS or VMS simulation using an in-house finite-element flow solver
Bazilevs et al. [2007]; Takizawa et al. [2018]; Hachem et al. [2013]; Guiza et al.
[2020]. The inflow boundary conditions are u = (Vin, 0), together with ν̃ = 3ν,
which corresponds to a ratio of eddy to kinematic viscosity of approximately 0.2.
For the lateral boundaries, symmetry conditions ∂yux = uy = 0 and ∂yν̃ = 0 are
used. For the outflow, ∂xux = ∂xuy = 0, ∂xν̃ = 0 together with p = 0 are pre-
scribed. Finally, no-slip conditions u = 0 and ν̃ = 0 are imposed at the cylinder
surface. The time step is ∆t = 0.05 seconds, and the simulation is performed for
a total physical time equal to 5000 seconds. Since the wake flow is of interest,
around 200 seconds are required for the flow to be established and reach periodic
vortex shedding. The data corresponding to the remaining 4980 seconds is stored
for training and testing purposes. The data is sampled at each ∆t = 0.25 sec-
onds, thus collecting around 1500 snapshots. In terms of non-dimensional time
defined as t∗ = tU∞/H, this sampling rate corresponds to ∆t∗ = 1. One vortex
shedding cycle corresponds to a non-dimensional period T ∗ = 5.23 units, and
approximately 24 shedding cycles are observed in simulation data. Given the
70/30 splitting strategy, 16 shedding cycles are observed in training data, which
seems reasonable to fully characterize the dynamics of wake turbulent flow past
a two-dimensional square cylinder considering its simplicity. Figure shows the
sketch of the associated case.

5.3.3 Case 2 : Environmental flow over surface-mounted
tower

The turbulent flow past a two-dimensional (2D) rectangular tower on the land
surface is considered. The baseline Reynolds number is set to 45 × 102, based on
the reference velocity U∞ and the square tower of sides H which is placed on the
surface. The dimensions of the computational domain are [−5H, 30H]×[−H, 7H]
in the streamwise x and crosswise y directions respectively, and the domain is dis-
cretized into sufficiently large number of cells to perform a URANS or VMS sim-
ulation. The inflow boundary conditions are u = (Vin, 0), together with ν̃ = 3ν,
which corresponds to a ratio of eddy to kinematic viscosity of approximately 0.2.
For the top of the domain, the velocity component normal to the surface is set
to zero. No-slip boundary conditions u = 0 and ν̃ = 0 are imposed at the tower
surface, as well as the bottom surface at y = −1. The time step is ∆t = 0.01 sec-
onds and 300 seconds are simulated. For a statistically steady state to be reached
(periodic vortex shedding to be observed), around 100 seconds are required. The
data of the remaining 200 seconds (i.e. approximately 20 × 103 time steps) is
stored for training and testing purposes. The data is sampled at each ∆t = 0.1
seconds, thus collecting around 2000 snapshots. In terms of non-dimensional time

113

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

∂yux = uy = 0,

∂y ν̃ = 0

free pressure

ux = uy = 0

u = uin

6
.5

H
H

6
.5

H

4.5H H

20H

1
4
H

(a) Case 1 setup: Wake-flow past a square cylinder

∂yux = uy = 0,

∂y ν̃ = 0

ux = uy = 0 free pressure
ux = uy = 0

u = uin

H
7
H

5H H

35H

8
H

(b) Case 2 setup: Environmental flow over a surface-mounted tower

114

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

defined as t∗ = tU∞/H, this sampling at each ∆t = 0.1 denotes ∆t∗ = 1. Figure
5.3b shows the sketch of the associated case. Initially, a free separated shear
layer expands above the tower and becomes wavy, and then reattaches at the
bottom surface of the domain. The shear layer flaps and vortical structures are
shed from it. Approximately 18 shedding cycles are observed in simulation data.
Given the 70/30 splitting strategy, 12 shedding cycles are observed in training
data enough to reasonably characterize the dynamics of environmental flow over
the surface-mounted obstacle.

5.4 Results and Discussion

In this section, the results are discussed as follows: first, the temporal evolutions
of the quantities are compared, then the spatial measurements at various times
are compared for velocity components. In a second time, temporal propagation
of errors and correlation coefficients are compared along with the propagation
of phase shifts. Additionally, the contour plots of quantities are also compared
to provide qualitative assessments. These comparisons are performed for both
the cases and for both the a priori and a posteriori simulations as illustrated
in figure 5.4. To compare results, a first a priori simulation is performed by
exploiting data samples that were not used during training. The trained model is
fed snapshots at instant t, and predicts the next two snapshots at instants t + ∆t
and t+2∆t, and the process is repeated by feeding the subsequent snapshots from
the dataset, until the same number of snapshots is reached for comparison with
the original ground truth time series. As snapshots from the dataset are utilized,
this approach is termed a priori deep learning simulation. On the other hand, a
posteriori simulation is performed by feeding a snapshot at instant t0 from the
same dataset not used during training, and by predicting the next two snapshots
at instants t + ∆t and t + 2∆t. This predicted snapshot at instant t + 2∆t is
then injected back into the model to predict snapshots at instants t + 3∆t and
t+4∆t, and the process is similarly repeated until the same number of snapshots
are obtained so as to compare with the true snapshots. This way of recycling
the model predictions is termed a posteriori deep learning simulation. Once an
equal length of time snapshots are obtained, both the a priori and the a posteriori
results against the truth from the dataset can now be compared. Figure 5.5 shows
the temporal evolution of the ensemble average of velocity magnitude for case 1
and case 2. For case 1, both a priori and a posteriori predictions present a good
agreement with respect to the truth, whereas for case 2 the predictions, though
fairly accurate, suffer from deterioration. Moreover, the long-term predictions of
the model are evident from the accuracy of a posteriori predictions, giving us an
indication of global long-term learning while comparing ensemble averages.

The accuracy of the predictions is further verified by comparing the values
along the various streamwise and cross-streamwise locations. These locations are
marked with dashed lines in figure 5.6 for both the cases. For case 1, measure-
ments were made along streamwise directions at x = [−2.5H, 8H, 12H, 16H] and

115

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

Xt

X̂t+∆t

X̂t+2∆t

X̂t

X̂t+∆t

X̂t+2∆t

Figure 5.4: Illustration of a priori and a posteriori simulations Left: For
a priori simulation, each Xt from {X}, the dataset not used in training time, is
fed to the model. Right: For a posterioi simulation, the inputs X̂t are received
from its own previous predictions, provided it was initiated with a suitable Xt.

0 20 40 60 80 100 120 140 160 180 200

−1

−0.5

0

0.5

1

·10−2

tn

ū
i

(a) A priori and a posteriori predic-
tions compared to ground truth for case
1

0 10 20 30 40 50 60 70 80 90

0.5

1

1.5

2

2.5

·10−2

tn

ū
i

True

DL

pDL

(b) A priori and a posteriori predic-
tions compared to ground truth for case
2

Figure 5.5: Temporal evolution of the ensemble averages for a priori and
a posteriori values of velocity magnitude compared to the true values in black.
Left: Ensemble mean for spatial values of velocity magnitude for case 1. Right:
Ensemble mean for spatial values of velocity magnitude for case 2.

116

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

−4 −2 0 2 4 6 8 10 12 14

−5

0

5

y = −2H

y = 0

y = 2H

x
=

−
2

.
5

H

x
=

8
H

x
=

1
2

H

x
=

1
6

H
x

y

(a)

−5 0 5 10 15 20 25 30

0

2

4

6

y = 0.5H

y = 1.5H

y = 5H

x
=

−
2

.
5

H

x
=

8
H

x
=

1
6

H

x
=

3
2

H

x

y

(b)

Figure 5.6: Locations of the probe lines used for comparison to the ref-
erence quantities. Left: Lines along streamsie and cross-streamwise directions
for case 1. Right: For case 2.

117

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

cross-streamwise directions at y = −2H, 0, 2H, and similarly for case 2, the mea-
surements were made at x = [−2.5H, 8H, 16H, 32H] and at y = [0.5H, 1.5H, 5H].
As the wake-flows are topic of interest, these locations were chosen based on the
region of interest away from the obstacle for both the cases. With regards to
temporal evolution, the predictions were compared at a certain percentage of the
total predicted snapshots. As a reminder, around 200 snapshots were predicted
for case 1 and around 100 snapshots for case 2. The predictions are compared at
instants t = [2%, 33%, 66%] to verify the quality of temporal evolution.

Figure 5.8 shows the evolution of temporal predictions of streamwise veloc-
ity component u0 when measured along with cross-streamwise directions. The a
priori predictions follow closely the reference values indicating a good agreement
with the short-term predictions along with the measured spatial directions. For
a posteriori predictions, an increasing deviation from the reference was observed
as time evolves, which can be attributed to the accumulation error while making
long-term predictions. Similarly, the evolution of the same quantity (u0) when
measured along streamwise directions is shown in figure 5.7. A similar trend is
observed for the predictions against the reference, where the a posteriori predic-
tions deteriorate as time evolves. It can be noted that the upstream predictions
at x = −2.5H are better across times, as it is not affected by the turbulent wake.
Overall measurements indicate a decent agreement of both the short-term a pri-
ori predictions as well as long-term a posteriori predictions with the reference
solutions.

Later, the temporal evolution of prediction error against reference by com-
puting relative mean-squared errors of velocity magnitude for both cases is inves-
tigated. These errors are measured along the locations mentioned earlier. Figure
5.9(a) shows the evolution of error for a priori predictions and figure 5.9(b) shows
a posteriori predictions for case 1 measured at streamwise locations. As could
be expected, the errors accumulate for long-term posterior predictions, leading
to a clear distinction when compared to a priori predictions. It is interesting to
note that although magnitude increases over time, this evolution also follows the
vortex/wake shedding cycles denoting that the trained model performs well for
long-term a posteriori predictions. A similar trend is observed for case 2 as shown
in figure 5.9(c) and figure 5.9(d), although here the magnitude of accumulated
errors is higher than that of case 1. As shown in figure 5.10, a similar trend is
observed when measurements of errors were performed at cross-streamwise loca-
tions.

The a posteriori predictions are observed to experience high noise conditions
caused by error propagation. Hence, extracting the correlation between these two
sets (predicted vs. reference) of temporal evolution is important, in particular
to assess whether the heavy noise contributions are degrading correlation values.
To do so, the Pearson product-moment correlation coefficient Rxy of n pairs of
time series data {(x1, y1), . . . , (xn, yn)} is computed:

118

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

True DL pDL

0.98

y
=

2
H

0.48

y
=

0

0 0.5 1

0.97

y
=

−
2

H

x/H

0.15

y
=

5
H

0.79

y
=

1
.5

H

0 0.5 1

1.15

y
=

0
.5

H

x/H

(a) Time t = 0.02 Tn

0.97

y
=

2
H

0.48

y
=

0

0 0.5 1

1

y
=

−
2

H

x/H

5.53 · 10−2

y
=

5
H

0.73

y
=

1
.5

H

0 0.5 1

1.14

y
=

0
.5

H

x/H

(b) Time t = 0.33 Tn

0.98

y
=

2
H

0.49

y
=

0

0 0.5 1

1

y
=

−
2

H

x/H

4.74 · 10−2

y
=

5
H

0.75

y
=

1
.5

H

0 0.5 1

1.14

y
=

0
.5

H

x/H

(c) Time t = 0.66 Tn

Figure 5.7: Comparative predictions of streamwise velocity components
(u0) sampled along y-axis for case 1 (left) and case 2 (right). Figures
from top to bottom denote the predictions at increasing times, i.e. the top row
contains instantaneous preditctions at t = 0.02 Tn, the middle row at t = 0.33 Tn,
and the bottom row shows the predictions at t = 0.66 Tn .

119

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

True DL pDL

0.98

0

0.5

1

y
/
H

x = −2.5H

0.99

x = 8H

0.91

x = 12H

0.95

x = 16H

0.63

0

0.5

1

y
/
H

x = −2.5H

0.11

x = 8H

0.74

x = 16H

0.57

x = 32H

(a) Time t = 0.02 Tn

0.97

0

0.5

1

y
/
H

x = −2.5H

0.78

x = 8H

0.92

x = 12H

0.95

x = 16H

0.62

0

0.5

1

y
/
H

x = −2.5H

8.72 · 10−2

x = 8H

0.84

x = 16H

0.57

x = 32H

(b) Time t = 0.33 Tn

0.97

0

0.5

1

y
/
H

x = −2.5H

0.77

x = 8H

0.93

x = 12H

0.98

x = 16H

0.63

0

0.5

1

y
/
H

x = −2.5H

0.31

x = 8H

0.56

x = 16H

0.71

x = 32H

(c) Time t = 0.66 Tn

Figure 5.8: Comparative predictions of streamwise velocity components
(u0) for case 1 (left) and case 2 (right). Figures from top to bottom, denote
the predictions at increasing times, i.e. the top row contains instantaneous pre-
dictions at t = 0.02 Tn, the middle row at t = 0.33 Tn, and the bottom row shows
the predictions at t = 0.66 Tn.

120

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

·10−4

Tn

M
S

E

(a)

0 20 40 60 80 100 120 140 160 180 200

0

1

2

3

4

·10−3

Tn

x = −2.5H

x = 8H

x = 12H

x = 16H

(b)

0 10 20 30 40 50 60 70 80 90

0

0.5

1

1.5

2

·10−3

Tn

M
S

E

(c)

0 10 20 30 40 50 60 70 80 90

0

0.5

1

1.5

·10−1

Tn

x = −2.5H

x = 8H

x = 16H

x = 32H

(d)

Figure 5.9: Mean squared error propagation for velocity magnitude with
respect to the reference values. The top row shows the evolution for case 1,
and the bottom row shows the evolution for case 2. On the left is the temporal
evolution of a priori mean squared error. While on the right are the temporal
evolution of a posteriori mean squared error. The values are shown for locations
along the X-axis.

121

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

0 20 40 60 80 100 120 140 160 180 200

1

2

3

·10−4

Tn

M
S

E

(a)

0 20 40 60 80 100 120 140 160 180 200

0

1

2

3

·10−3

Tn

y = −2H
y = 0

y = 2H

(b)

0 10 20 30 40 50 60 70 80 90

0

2

4

6

8

·10−4

Tn

M
S

E

(c)

0 10 20 30 40 50 60 70 80 90

0

2

4

·10−2

Tn

y = 0.5H

y = 1.5H

y = 5H

(d)

Figure 5.10: Mean squared error propagation for velocity magnitude with
respect to the reference values. The top row shows the evolution for case 1,
and the bottom row shows the evolution for case 2. On the left is the temporal
evolution of a priori mean squared error, while on the right is the temporal
evolution of a posteriori mean squared error. The values are shown for locations
along the Y-axis.

122

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

0 20 40 60 80 100 120 140 160 180 200
0.6

0.7

0.8

0.9

1

Tn

R

(a)

0 20 40 60 80 100 120 140 160 180 200
0.6

0.7

0.8

0.9

1

Tn

x = −2.5H

x = 8H

x = 12H

x = 16H

(b)

0 10 20 30 40 50 60 70 80 90

0.4

0.6

0.8

1

Tn

R

(c)

0 10 20 30 40 50 60 70 80 90

0.4

0.6

0.8

1

Tn

x = −2.5H

x = 8H

x = 16H

x = 32H

(d)

Figure 5.11: Correlation propagation for velocity magnitude with respect to
the true values. The top row shows the evolution for case 1, and the bottom
row shows the evolution for case 2. On the left is the temporal evolution of the
Pearson product-moment correlation coefficient for a priori values with reference
to true values, while on the right are the R values for a posteriori values with
reference to true values. The values are shown for locations along the X-axis.

123

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

0 20 40 60 80 100 120 140 160 180 200
0.98

0.99

1

Tn

R

(a)

0 20 40 60 80 100 120 140 160 180 200
0.98

0.99

1

Tn

y = 2H
y = 0

(b)

0 10 20 30 40 50 60 70 80 90
0.95

0.96

0.97

0.98

0.99

1

Tn

R

(c)

0 10 20 30 40 50 60 70 80 90
0.95

0.96

0.97

0.98

0.99

1

Tn

y = 0.5H
y = 1.5

(d)

Figure 5.12: Correlation propagation for velocity magnitude with respect to
the true values. The top row shows the evolution for case 1, and the bottom
row shows the evolution for case 2. On the left is the temporal evolution of the
Pearson product-moment correlation coefficient for a priori values with reference
to true values, while on the right are the R values for a posteriori values with
reference to true values. The values are shown for locations along the Y-axis.

124

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

Rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (5.7)

where n is sample size, xi, yi are the individual sample points indexed with i,
and x̄ = 1

n

∑n
i=1 xi is the sample mean (analogously for ȳ). In simple terms, Rxy

is the covariance of the two variables divided by the product of their standard
deviations. For our measurements, the two variables are simply the predicted
and reference snapshots at the same instants, and computation is performed for
both the a priori and a posteriori predictions. Figure 5.11(b) and 5.11(d) show a
gradual decrease in the correlation coefficient for the a posteriori predictions for
case 1 and case 2 respectively. A steeper degradation of correlation is observed
in the measurements at cross-streamwise locations as shown in figures 5.12(b)
and 5.12(d) for both cases, while that of the a posteriori predictions remains
stable. Since a clear trend is observed in degrading correlations for a posteriori
predictions, the phase-shift ϕ(t) were measured for the temporal evolution of
velocity magnitude predictions against the reference. Measurements were done
along the similar spatial directions as mentioned before, the results of which are
shown in figure 5.13. The value ϕ(t) < 0 denotes that predictions are shifted
by that value before the reference, and the ϕ(t) > 0 denotes predictions shifted
after the reference. For case 1, it is interesting to note that the phase shift goes
on increasing in magnitude as time evolves, indicating the model’s stability for
long-term predictions. However, any clear trend for case 2 when measured at
streamwise locations was not observed.

For a qualitative assessment of results, the contours of velocity components
for both cases is compared. Figure 5.14 shows the instantaneous snapshots of
streamwise velocity contours for case 1 at t = [2%, 33%, 66%] of total predicted
snapshots as mentioned earlier, and similar instantaneous snapshots for case 2
are shown in figure 5.15. For both the cases, the a priori, as well as a posteriori
predictions, show a fairly accurate agreement with the reference.

5.5 Conclusions

A convolutional encoder-decoder-based transformer model has been developed to
auto-regressively train on spatio-temporal data of turbulent flows. The method of
auto-regressive training works by predicting future fluid flow fields from the previ-
ously predicted fluid flow field to ensure long-term predictions without diverging.
The model has been validated by demonstrating its applicability to turbulent
wake flow past an obstacle and environmental flow past surface mounted obsta-
cle. The work demonstrates a promising model and method for forecasting fluid
flow fields where the training data is available. The proposed model trained in an
autoregressive way shows significant agreements for a priori evaluations, whereas
the posterior predictions show expected deviations after a considerable number
of simulation steps. The spatio-temporal complexity of predictions is compara-

125

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

0 20 40 60 80 100 120 140 160 180 200

−5

0

5

Tn

ϕ
(t

)

x = −2.5H x = 8H x = 12H x = 16H

(a)

0 20 40 60 80 100 120 140 160 180 200

−4

−3

−2

−1

0

Tn

y = −2H y = 0 y = 2H

(b)

0 10 20 30 40 50 60 70 80 90
−1

−0.5

0

0.5

1

Tn

ϕ
(t

)

x = −2.5H x = 8H x = 16H

(c)

0 10 20 30 40 50 60 70 80 90

0

1

2

3

Tn

y = 0.5H y = 1.5 y = 5H

(d)

Figure 5.13: Phase-shift evolution for a posteriori values of velocity magnitude
with respect to the reference values. The top row shows the evolution for case
1, and the bottom row shows the evolution for case 2. On the left are temporal
evolutions measured along with streamwise locations. While on the right are the
evolutions measured along with cross-streamwise locations.

126

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

t
=

0
.0

2
T

n
t

=
0
.3

3
T

n
t

=
0
.6

6
T

n
t

=
0
.9

9
T

n

truth a priori a posteriori

−0.5 0 0.5 1 1.5

Figure 5.14: Comparison of a priori and a posteriori prediction stream-
wise velocity contours against the reference showing the temporal evolution
for case 1.

127

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE
t

=
0
.0

2
T

n
t

=
0
.3

3
T

n
t

=
0
.6

6
T

n
t

=
0
.9

9
T

n

truth a priori a posteriori

−0.5 0 0.5 1 1.5

Figure 5.15: Comparison of a priori and a posteriori prediction stream-
wise velocity contours against the truth reference showing the temporal evo-
lution for case 2.

128

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

ble to the target simulations of fully developed turbulence. The autoregressive
training and prediction of a posteriori states is the primary step towards the de-
velopment of more complex data-driven turbulence models and simulations. It
is shown that the self-attention transformers incorporated within the convolu-
tional encoder-decoder can predict up to 200∆t time steps with relatively high
accuracy, and the proposed data-driven deep learning model remains stable for
multiple long time scales, promising a stable and physical deep learning predic-
tive turbulence modeling candidate. Changes to loss function can be done to
achieve even longer, stable, physically realistic results. Additional experiments
are needed to demonstrate the model’s ability on generalizing to local mesh re-
gions as well as longer a posteriori simulation steps. Further investigations on a
variety of industrial and academic cases could include training for flow Reynolds
numbers, turbulence intensity, and other inlet parameters. Conclusions from this
work would also provide valuable insights for the development of new deep learn-
ing methods and their deployment for turbulent flows on complex geometries in
industrial problems. Deploying a trained model to assist a fluid solver is regarded
as a future extension of the present work.

Bibliography

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 16), pages
265–283, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

Y Bazilevs, VM Calo, JA Cottrell, TJR Hughes, A Reali, and G23614751169 Sco-
vazzi. Variational multiscale residual-based turbulence modeling for large eddy
simulation of incompressible flows. Computer methods in applied mechanics
and engineering, 197(1-4):173–201, 2007.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention
all you need for video understanding. arXiv preprint arXiv:2102.05095, 2(3):
4, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

129

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

Steven L Brunton, Bingni W Brunton, Joshua L Proctor, and J Nathan Kutz.
Koopman invariant subspaces and finite linear representations of nonlinear dy-
namical systems for control. PloS one, 11(2):e0150171, 2016.

Chen Cheng and Guang-Tao Zhang. Deep learning method based on physics in-
formed neural network with resnet block for solving fluid flow problems. Water,
13(4):423, 2021.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-
length context. arXiv preprint arXiv:1901.02860, 2019.

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying
convolution and attention for all data sizes. Advances in Neural Information
Processing Systems, 34:3965–3977, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiao-
hua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Pierre Dubois, Thomas Gomez, Laurent Planckaert, and Laurent Perret. Data-
driven predictions of the lorenz system. Physica D: Nonlinear Phenomena, 408:
132495, 2020.

Pierre Dubois, Thomas Gomez, Laurent Planckaert, and Laurent Perret. Machine
learning for fluid flow reconstruction from limited measurements. Journal of
Computational Physics, 448:110733, 2022.

G Guiza, A Larcher, A Goetz, L Billon, P Meliga, and Elie Hachem. Anisotropic
boundary layer mesh generation for reliable 3d unsteady rans simulations. Fi-
nite Elements in Analysis and Design, 170:103345, 2020.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long
text generation via adversarial training with leaked information. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Elie Hachem, Stephanie Feghali, Ramon Codina, and Thierry Coupez. Immersed
stress method for fluid–structure interaction using anisotropic mesh adapta-
tion. International journal for numerical methods in engineering, 94(9):805–
825, 2013.

Renkun Han, Yixing Wang, Yang Zhang, and Gang Chen. A novel spatial-
temporal prediction method for unsteady wake flows based on hybrid deep
neural network. Physics of Fluids, 31(12):127101, 2019.

130

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret.
Transformers are rnns: Fast autoregressive transformers with linear attention.
In International Conference on Machine Learning, pages 5156–5165. PMLR,
2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner,
and Stephan Hoyer. Machine learning–accelerated computational fluid dynam-
ics. Proceedings of the National Academy of Sciences, 118(21), 2021.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for uni-
versal linear embeddings of nonlinear dynamics. Nature communications, 9(1):
1–10, 2018.

Vincent Mons, J-C Chassaing, Thomas Gomez, and Pierre Sagaut. Reconstruc-
tion of unsteady viscous flows using data assimilation schemes. Journal of
Computational Physics, 316:255–280, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Icml, pages 285–319, 2010.

Taichi Nakamura, Kai Fukami, Kazuto Hasegawa, Yusuke Nabae, and Koji Fuka-
gata. Convolutional neural network and long short-term memory based reduced
order surrogate for minimal turbulent channel flow. Physics of Fluids, 33(2):
025116, 2021.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. Image transformer. In International Confer-
ence on Machine Learning, pages 4055–4064. PMLR, 2018.

Wenhui Peng, Zelong Yuan, and Jianchun Wang. Attention-enhanced neural
network models for turbulence simulation. Physics of Fluids, 34(2):025111,
2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improv-
ing language understanding by generative pre-training. OpenAI blog, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners. OpenAI
blog, 1(8):9, 2019.

Jiahao Ren, Haiou Wang, Guo Chen, Kun Luo, and Jianren Fan. Predictive
models for flame evolution using machine learning: A priori assessment in
turbulent flames without and with mean shear. Physics of Fluids, 33(5):055113,
2021.

131

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

Clarence W Rowley and Scott TM Dawson. Model reduction for flow analysis
and control. Annual Review of Fluid Mechanics, 49:387–417, 2017.

David Schmidt, Romit Maulik, and Konstantinos Lyras. Machine learning ac-
celerated turbulence modeling of transient flashing jets. Physics of Fluids, 33
(12):127104, 2021.

Gilad Sharir, Asaf Noy, and Lihi Zelnik-Manor. An image is worth 16x16 words,
what is a video worth? arXiv preprint arXiv:2103.13915, 2021.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm
for solving partial differential equations. Journal of computational physics, 375:
1339–1364, 2018.

Philippe Spalart and Steven Allmaras. A one-equation turbulence model for
aerodynamic flows. In 30th aerospace sciences meeting and exhibit, page 439,
1992.

Yifan Sun, Linan Zhang, and Hayden Schaeffer. Neupde: Neural network based
ordinary and partial differential equations for modeling time-dependent data.
In Mathematical and Scientific Machine Learning, pages 352–372. PMLR, 2020.

Kenji Takizawa, Tayfun E Tezduyar, and Yuto Otoguro. Stabilization and
discontinuity-capturing parameters for space–time flow computations with fi-
nite element and isogeometric discretizations. Computational Mechanics, 62
(5):1169–1186, 2018.

HS Tang, L Li, M Grossberg, YJ Liu, YM Jia, SS Li, and WB Dong. An
exploratory study on machine learning to couple numerical solutions of partial
differential equations. Communications in Nonlinear Science and Numerical
Simulation, 97:105729, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. Training data-efficient image transformers &
distillation through attention. In International Conference on Machine Learn-
ing, pages 10347–10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–
driven approximation of the koopman operator: Extending dynamic mode de-
composition. Journal of Nonlinear Science, 25(6):1307–1346, 2015.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. Transformers: State-of-the-art natural language processing. In

132

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

Proceedings of the 2020 conference on empirical methods in natural language
processing: system demonstrations, pages 38–45, 2020.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Con-
volutional block attention module. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and
Lei Zhang. Cvt: Introducing convolutions to vision transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 22–31,
2021a.

Pin Wu, Siquan Gong, Kaikai Pan, Feng Qiu, Weibing Feng, and Christo-
pher Pain. Reduced order model using convolutional auto-encoder with self-
attention. Physics of Fluids, 33(7):077107, 2021b.

Jiayang Xu and Karthik Duraisamy. Multi-level convolutional autoencoder net-
works for parametric prediction of spatio-temporal dynamics. Computer Meth-
ods in Applied Mechanics and Engineering, 372:113379, 2020.

Mustafa Z Yousif, Linqi Yu, and Hee-Chang Lim. High-fidelity reconstruction
of turbulent flow from spatially limited data using enhanced super-resolution
generative adversarial network. Physics of Fluids, 33(12):125119, 2021.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative
adversarial nets with policy gradient. In Proceedings of the AAAI conference
on artificial intelligence, volume 31, 2017.

133

CHAPTER 5. AUTO-REGRESSIVE LEARNING OF SPATIO-TEMPORAL

TURBULENCE

134

MOTS CLÉS

Turbulence, Modélisation, Apprentissage

RÉSUMÉ

Malgré plusieurs avancées dans les ressources expérimentales et informatiques, et malgré les progrès des procédures
théoriques et mathématiques pour aborder la fermeture des équations de Navier-Stokes, la turbulence reste un problème
non résolu même après 200 ans de recherche continue. D’autre part, l’intelligence artificielle et les technologies connexes
font des progrès rapides dans plusieurs domaines de la science et de l’ingénierie, nous aidant à résoudre efficacement
les problèmes de modélisation et à découvrir de nouveaux phénomènes physiques. Le présent travail tente de combiner
ces deux branches et d’explorer si les machines computationnelles peuvent être utilisées pour étudier efficacement
la turbulence dans les fluides, et peut-être un jour nous aider dans la découverte des lois universelles manquantes.
L’apprentissage profond est utilisé pour apprendre la modélisation de la turbulence et une méthode basée sur les patchs
est proposée pour un apprentissage robuste. L’apprentissage de la turbulence à l’échelle de la sous-grille à partir des
grandes échelles résolues est démontré, de même que l’étude de l’effet des méthodes de raffinage grossier et des
raffinements successifs. L’apprentissage spatio-temporel des flux turbulents est proposé pour apprendre les instantanés
temporels et des simulations a posteriori sont effectuées.

ABSTRACT

Despite several advancements in experimental and computational resources, and despite progress in theoretical and
mathematical procedures to address the closure of Navier-Stokes equations, turbulence remains an unsolved problem
even after 200 years of continuous research. On the other hand, artificial machine intelligence and related technologies
are making rapid advancements in several domains of science and engineering, helping us humans to efficiently solve
modeling problems and discover new physics. Present work tries to combine these two branches and explore if computa-
tional machines can be used to efficiently study turbulence in fluids, and perhaps someday help us in the discovery of the
missing universal laws. Deep learning is employed to learn turbulence modeling and a patch-based method is proposed
for robust learning. Learning of subgrid-scale turbulence from the resolved large scales is demonstrated along with inves-
tigation of effect of the coarse-graining methods and successive refinements. Spatio-temporal learning of turbulent flows
is proposed to learn the temporal snapshots and a posteriori simulations are performed.

KEYWORDS

Turbulence, Modelling, Deep Learning

