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Abstract
Homogenized models are often used in multiscale analysis of composite materials because of their
computational efficiency. However they frequently fail to provide sufficient accuracy in regions
with considerable gradients in solution fields. One approach to overcome this issue is to adap-
tively couple the homogeneous model with a full field, heterogeneous model in selected zones of
interest which need to be determined somehow. For this purpose, I have proposed a new model-
ing error estimate based on a higher-order asymptotic homogenization method associated with an
original general boundary layer correction, shown to provide accurate estimation of heterogeneous
fields even for cases with a weak scale separation between the characteristic lengths of the hetero-
geneities and the structural problem. This modeling error estimation quantifies the terms neglected
by classical first-order homogenization, which become significant for weak separation of scales.
An original multiscale coupling strategy is also developed to more effectively couple the homoge-
neous and heterogeneous domains as a step toward hierarchical modeling of elastic heterogeneous
structures.

Keywords
Modeling error, multiscale analyses, asymptotic homogenization, boundary layer effect, global-
local analysis.

Résumé
Les modèles homogénéisés sont souvent utilisés dans l’analyse multi-échelle des matériaux com-
posites en raison de leur efficacité de calcul, cependant ils ne fournissent souvent pas une précision
suffisante dans les régions présentant des forts gradients dans les champs de solution. Une ap-
proche pour surmonter cette difficulté est de coupler de manière adaptative le modèle homogène
avec un modèle hétérogène dans des zones d’intérêt identifiées. J’ai développé un nouvel estima-
teur d’erreur de modélisation afin de détecter ces régions où le raffinement du modèle de matériau
est nécessaire. Cet estimateur est formulé en se basant sur la méthode d’homogénéisation asymp-
totique d’ordre supérieur associée à une correction originale des effets de bords que j’ai proposée.
En effet, il est démontré que l’homogénéisation d’ordre supérieur fournit une estimation précise
des champs hétérogènes même dans les cas où la séparation d’échelle entre les longueurs carac-
téristiques des hétérogénéités et le problème structurel est faible. Cette estimation de l’erreur de
modélisation quantifie la différence entre une estimation d’ordre supérieur introduisant l’effet des
gradients macroscopiques et une estimation classique de premier ordre. Une stratégie de cou-
plage adéquate est également développée pour coupler efficacement les domaines homogènes
et hétérogènes, constituant une étape vers la modélisation hiérarchique des structures élastiques
hétérogènes.

Mots clés
Erreur de modélisation, analyse multi-échelle, homogénéisation asymptotique, effets de bords,
couche limite, analyse globale/locale.
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Chapter 1

Introduction

”Pour ce qui est de l’avenir, il ne
s’agit pas de le prévoir, mais de le
rendre possible. “

Antoine de Saint Exupéry,
Citadelle, 1948

Global warming is one of the biggest threats humankind faces nowadays. It leads and
continues to cause several environmental problems like an increasing number of climate
cataclysms, sea level rise, precipitation problems, forest fires, and so on. Scientists have
high confidence that global temperatures will continue to rise for many decades, mainly
due to greenhouse gases (GHG) produced by human activities.
To address this emergency, the European Union (EU) aims to be climate-neutral by 2050
and has reinforced its emissions targets for 2030, committing to reduce greenhouse gas
(GHG) by at least 55% compared to 1990. This requires unprecedented and deep changes
for the industry, especially the transportation sector which is very energy-intensive and
difficult to decarbonize.
Consequently, the aerospace industry has already planned several evolutionary technolo-
gies, particularly for engines which are the main source of aircraft emissions. Safran
Group and GE Aviation, international leaders in aircraft engines, launched the CFM RISE
(Revolutionary Innovation for Sustainable Engines) program with the objective, among
others, of improving engine efficiency.
For the RISE demonstrator engine (see figure 1.1), an open fan architecture has been cho-
sen. It is expected to reduce fuel consumption and carbon dioxide (CO2) emissions by
more than 20% compared with the current generation of LEAP engines [CFM Interna-
tional, 2022] while maintaining comparable thrust and noise performance. The LEAP
engine has already achieved fuel burn and CO2 emissions reductions of about 15% com-
pared with the previous generation of engines (CFM56) [CFM International, 2022]. One
key to reach this efficiency is to increase the engine bypass ratio, the main contributor to
the total thrust. This is achievable by increasing the size of the fan blades size (see fig-
ure 1.2). Major scientific challenges arise such as reducing the excess mass due to the
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Chapter 1. Introduction

Figure 1.1: RISE demonstrator engine. [CFM International, 2022]

Figure 1.2: New open fan size compared with the current generation of LEAP en-
gine [CFM International, 2022].

increasing size of the engine and improving the mechanical design of fan blades, espe-
cially regarding fatigue and bird ingestion. Numerical methods and simulations play a
crucial role in answering these questions to avoid performing expensive laboratory exper-
iments.
The new fan blades are manufactured using 3D woven carbon composites with an RTM
(Resin Transfer Molding) process. Three scales may be used to describe such a ma-
terial (see figure 1.3). The smallest scale occurs at the packing level of the individual
fibril on the order of fiber diameters (∼ µm), and the biggest scale is the specimen
macroscale (∼ m). The intermediate length scale, between the micro and macroscale,
is the mesoscale (∼ mm) characteristic of the yarn architecture. It is possible to adapt the
mesostructure of 3D woven composite components throughout the manufacturing pro-
cess according to targeted local aerodynamics and mechanical requirements. To this end,
there is a need to investigate what could occur in the mesoscale (or microscale) but if
all mesoscopic (or microscopic) heterogeneities are taken into account, we will be facing
intractable computational problems due to the extremely fine spatial discretization mesh
(around 500 million degree of freedom for a full 3D woven fan blade simulation).
The homogenization methods have been developed to tackle this by modeling the het-
erogeneous material as a simpler homogeneous material based on the mechanics of the
underlying heterogeneities.
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1.1 Homogenization methods

Figure 1.3: Scale zoom on engine fan blade [CFM International, 2022].

1.1 Homogenization methods

Numerous homogenization methods exist in the literature. They can be divided into two
main categories: Closed-form (often analytical) homogenization methods and computa-
tional homogenization methods.

The simplest analytical methods are based on the assumption that either strains or
stresses are uniform within the unit-cell, leading to the well known Voigt [1889] and Reuß
[1929] bounds. Hill [1952] has proved rigorously that the Voigt and the Reuss approxi-
mations are the upper and lower bounds of the true homogeneous stiffness. Nevertheless,
the width of these bounds grows with the heterogeneities’ volume fraction and the con-
trast in their properties. A more sophisticated method is the mean field homogenization
method that uses formulations based on Eshelby’s solution [Eshelby, 1957] for a com-
posite made of particles dispersed in a matrix. It is assumed that there is no particle
interaction so that the problem can be considered as a single inclusion immersed in an in-
finite matrix domain with uniform outer loading. Eshelby [1957] has proven that the strain
state inside the ellipsoidal inclusion is uniform and depends only upon each individual
phase property and the inclusions aspect ratio. The strong assumption of non-interacting
particles may provide inaccurate results, leading to the development of other methods
incorporating particle interaction such as the Mori–Tanaka method [Mori and Tanaka,
1973; Benveniste, 1987], the Self Consistent method [Hill, 1965], and the Generalized
Self Consistent method [Christensen, 1990]. Mean field methods exhibit difficulties to
take into account the clustering effect and lose their accuracy for material with high con-
trast [Hashin, 1983]. It is possible to determine better (narrower) bounds compared to
the Voigt and the Reuss bounds by using the principle of minimum potential energy and
the concept of polarization [Hashin and Shtrikman, 1963] leading to several variational
bounding methods [Willis, 1981; Hashin, 1983; Castaneda and Suquet, 1997].

Asymptotic homogenization [Sanchez-Palencia, 1983; Bensoussan et al., 2011], also
known as periodic or mathematical homogenization, is one of the most rigorous closed-
form homogenization methodologies available in the literature. It is based on the assump-
tion of the microstructure’s spatial periodicity, where the unit-cell specifies the Repre-
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Chapter 1. Introduction

sentative Volume Element (RVE) without any ambiguity. This method consists in using
asymptotic expansions of the mechanical fields of the full-scale problem in order to split it
into a decoupled set of microscale unit-cell problems and a macroscale problem. Solving
the former allows one to compute the effective properties of the equivalent homogeneous
medium but also to estimate, by a relocalization process, local heterogeneous fields within
the material. Nevertheless, this estimation remains inaccurate in the vicinity of the bound-
aries due to the loss of periodicity assumption in these regions.

Computational homogenization methods [Moulinec and Suquet, 1998; Feyel and
Chaboche, 2000; Kouznetsova et al., 2001, 2002; Miehe and Koch, 2002; Kanit et al.,
2003] do not lead to closed-form overall constitutive equations but consider the solution
of a microscale boundary value problem at every macroscopic point to deduce the macro-
scopic homogenized constitutive response. Although these methods are computationally
expensive, they are well adapted for nonlinear analyses. In this thesis, I will mainly treat
linear elastic materials.

We use asymptotic homogenization in a finite element framework for multiscale lin-
ear elastic analyses. Also, only periodic heterogeneous structures are taken into account.
The periodicity assumption of the underlying mesostructure is hardly verified in realistic
engineering composite structures as the fan blades which display irregular domains and
locally nonperiodic zones. Nevertheless, the periodicity assumption can fairly be consid-
ered for a specimen or coupon of the global structure. For instance in [Gras et al., 2013] an
identification of the macroscopic elastic parameters of a 3D woven composite used in the
fan blades is performed by confronting periodic homogenization numerical results with
experimental full-field measurements. When the periodicity assumption is considered,
asymptotic homogenization remains the most accurate method to determine the macro-
scopic overall characteristics (homogenization) and also to estimate heterogeneity effects
on the macroscopic behavior (relocalization), without computing the response of the full
mesostructure in the global analysis.

1.2 Limitation: scale separation

Asymptotic homogenization introduces a scale factor ε = l/L, where l and L are the
characteristic lengths of the mesostructure and macrostructure, respectively. First-order
asymptotic homogenization, which considers only the first term in the asymptotic ex-
pansion, assumes a complete separation of scales in materials, i.e. ε ≪ 1, and remains
effective in capturing uniform macroscopic strain fields without large gradients.
Nevertheless, the fan blade contains critical regions of high gradients as discussed by Gras
et al. [2015] and illustrated in figure 1.4. As also argued by Boisse et al. [2018], the scale-
independent Cauchy-type continuum obtained by first-order homogenization is unable to
correctly describe the mechanical behavior of woven composites because of its inability
to describe the slipping between the fibers and their resulting bending stiffness. Con-
sequently, a first-order homogenization is not adapted for some real engineering cases.
Indeed, for weak scale separation scenarios, i.e. ε < 1, first-order asymptotic homoge-
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1.3 Modeling error

Figure 1.4: Schematic view of a fan blade root made of 3D woven composite [Gras et al.,
2015]. The region highlighted in red is expected to exhibit high gradients of the solution
fields, where first-order homogenization becomes inaccurate.

nization becomes inaccurate [Ameen et al., 2018]. Solution fields, however, can be ap-
proximated by keeping higher-order terms in the series expansion. Indeed, successive
gradients of macroscale strain and tensors characteristic of the mesostructure are intro-
duced, which results in inducing a non-local effect in the material behavior [Boutin et al.,
2010].

While asymptotic homogenization may estimate local heterogeneous fields, even in
cases of a weak separation of scales, by a higher-order relocalization process, the con-
struction of a solution in the vicinity of the boundaries remains beyond the capabilities
of this method. This is mainly explained by the loss of periodicity assumption in these
regions. One approach to tackle the non-periodicity in the boundary layers is to introduce,
for each relocalization process, evanescent corrective terms that would decay toward the
interior of the material [Dumontet, 1986].

There is still a lack in literature regarding numerical frameworks to perform higher-
order asymptotic homogenization/relocalization in order to deal with low scale separation
cases as encountered for 3D woven composites, especially around stress concentrations.
Also, there is still a need for a general higher-order correction strategy to account for
non-periodicity in the boundary layers.

1.3 Modeling error

As stated by Fish et al. [1994b]; Zohdi et al. [1996], while conducting a finite element
simulation, two sources of error generally occur: discretization and modeling error. The
first one is due to the inherent inaccuracies incurred in the discretization of mathematical
models of the events, and the second one is due to the natural imperfections in models of
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Chapter 1. Introduction

the actual physical phenomena, as expressed by Oden and Prudhomme [2002].
The discretization error estimation techniques can be distinguished with respect to

three main categories:

• Averaging-based error estimators [Zienkiewicz and Zhu, 1987, 1992a,c] make use
of the fact that the gradient of the discretized solution is discontinuous across the
inter-element boundaries. Hence, a comparison between the computed field and a
smoothed one is conducted to estimate the error.

• Residual-based error estimators [Babuška and Rheinboldt, 1978; Bank and Weiser,
1985; Ainsworth et al., 2007] make use of the fact that the approximate FE solution
does not satisfy equilibrium. Therefore, a residual is estimated either directly from
the equilibrium equation (explicit estimation) or by solving local problems where
the load function is given by the local residuals (implicit estimation).

• Constitutive relation-based estimators [Ladevèze and Leguillon, 1983; Ladevèze
et al., 1999] are built upon the computation of admissible fields which satisfy both
compatibility and equilibrium equations. Thereafter, the residual on the constitutive
equation between the two fields is evaluated.

The modeling error, has raised the interest of researchers since the mid-1990s, i.e.,
several years after the discretization error, with a less extensive bibliography. It quantifies
the error emanating from replacing an actual exact model with a simplified one in order
to improve computational efficiency.
In the context of our study, the exact model is the heterogeneous one and the simplified
model is the one obtained by homogenization methods, as in Fish et al. [1994b]; Zohdi
et al. [1996]. In these works, error estimation techniques have been used to steer adaptive
processes, as shown in figure 1.5.

Sources of error in FEM

Discretization error Modeling error

Used to steer
an adaptive
mesh refine-
ment process

Used to steer
an adaptive
modeling pro-
cess

Figure 1.5: Errors in FEM used to steer adaptive processes.
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1.4 Hierarchical modeling

The main focus is not to estimate the exact modeling error value but to use the relative
magnitude of this error to detect areas where refining the material model is necessary,
this process is referred as hierarchical modeling. It couples, adaptively, a fine material
description in some regions of the domain and a coarse, less accurate macroscopic model
in regions of homogeneous deformation. This is analogous to the mesh refinement in the
FEM controlled by the discretization error, except that, here, the refinement is in terms of
the material model, as shown in figure 1.6.

Figure 1.6: Illustration of adaptive modeling strategy for a T-shape structure. Two regions
are differentiated: regions requiring macroscopic analysis using homogenized material
properties e.g., regions of relatively benign deformation, and regions that require an ex-
plicit representation of the local mesostructure.

Hierarchical modeling raises the challenge of adequately coupling the homogeneous
and heterogeneous models which are different with dissimilar discretization. Several cou-
pling techniques have been proposed in the literature such as the volume coupling of the
Arlequin method [Ben Dhia, 1998], and surface coupling techniques such as the mor-
tar coupling [Bernardi et al., 1993; Belgacem, 1999] or the Nitsche coupling [Hansbo and
Hansbo, 2002]. Another coupling strategy is the submodeling technique [Schwartz, 1981;

9



Chapter 1. Introduction

Kelley, 1982], which consists in performing a global homogeneous analysis whose solu-
tion is used as input for a local analysis on a chosen heterogeneous model. This technique
is a descending process in the sense that there is no feedback from the heterogeneous
computation toward the homogeneous one. A such feedback has been proposed in Gen-
dre et al. [2009]. We are particularly interested in the submodeling technique since it is
largely used in the industry and is supported by most commercial finite element software
programs.
These techniques have not been originally developed to deal with incompatible homoge-
neous and heterogeneous models, which may result in high interface coupling errors. For
example, it can be necessary, in the submodeling technique, to enlarge the chosen local
heterogeneous model to avoid spurious coupling errors in a region of interest, which can
be computationally expensive. Recently, a second-order homogenization-based coupling
has been proposed by Wangermez et al. [2020] and demonstrated to provide better results
than a mortar coupling.

1.5 Objectives & Methodology
The ultimate goal of this research is the development of modeling error estimation, in a
finite element framework, to steer hierarchical modeling of periodic heterogeneous struc-
tures. By doing so, we aim to couple a heterogeneous material description in regions with
a low scale separation, i.e, critical areas of high gradients, and a homogeneous, less ac-
curate macroscopic model in regions of benign deformation. Therefore, in a comparison
with a full heterogeneous computation, this process could reduce the computational cost
considerably. Also, this thesis attempts to propose a robust/efficient technique in order to
adequately couple the homogeneous and heterogeneous domains.

To this end, we use asymptotic homogenization to derive a modeling error estimator
quantifying the terms neglected by classical first-order homogenization, which become
significant for weak separation of scales. The proposed estimation quantifies the modeling
error that occurs at the boundaries as well. Also, a multiscale enhancement of the classical
submodeling is suggested based on estimates derived from a higher-order relocalization
process.

Regarding the aforementioned aspects, this thesis serves to investigate the following
research topics:

• Scale separation limits of classical and higher-order asymptotic homogenization/re-
localization.

• Boundary layer correction to account for the non-periodicity in regions near the
boundaries.

• Modeling error estimation and its competition with discretization error.

• Hierarchical modeling and coupling of incompatible models.

10



1.6 Thesis outline

1.6 Thesis outline
The thesis contains 3 additional self-contained chapters than can be read separately. They
are organized as follows:

In chapter 2, a post-processing scheme is proposed to conduct the relocalization step.
A new general boundary layer correction method, effective for various boundary con-
ditions (Dirichlet, Neumann, or mixed), is presented. The scale separation limit of the
classical first-order relocalization is highlighted as well.

The effectiveness of higher-order relocalization for cases with low scale separation is
demonstrated in chapter 3, in order to estimate correctly the heterogeneous fields within
the material. An extension of the previously suggested boundary layer correction is pro-
posed for these higher-order estimates. In chapter 2 and 3, the relocalization process is
conducted while considering that the heterogeneous and homogeneous meshes are iden-
tical.

An extension of the post-processing relocalization scheme to deal with arbitrary ho-
mogeneous meshes is proposed in chapter 4. A modeling error estimation is derived, and
its competition with the discretization error is also investigated. A multiscale enhance-
ment of the classical displacement-based submodeling technique is proposed as well.
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Chapter 2

First-order asymptotic homogenization with
boundary layer correction

Abstract
The asymptotic homogenization method is often used in multiscale analysis of periodic
structures instead of conducting a full field heterogeneous analysis, to achieve compu-
tational feasibility and efficiency. When completed with a relocalization process, this
method may provide relevant estimates of microscale fields within the material. Never-
theless, the construction of a solution near the boundaries remains beyond the capabil-
ities of classical relocalization schemes due to the loss of periodicity in the vicinity of
the boundaries, unless a boundary layer correction is applied. This chapter proposes a
post-processing scheme to conduct the relocalization step within a finite element frame-
work for periodic linear elastic composite materials. It also assesses the boundary layer
effect and a new general method, effective for various boundary conditions (Dirichlet,
Neumann, or mixed), is proposed based on the idea of computing corrective terms as a
solution to auxiliary problems on the unit-cell. These terms are finally added to the usual
fields obtained from the relocalization process to obtain the corrected solution near the
boundaries. The efficiency, accuracy, and limitation of the proposed approach are studied
on various numerical examples.

Résumé
La méthode d’homogénéisation asymptotique est largement utilisée dans l’analyse multi-
échelle des structures périodiques comme une alternative à une analyse hétérogène qui
représente un coût conséquent en temps de calcul. Lorsqu’elle est complétée par un
processus de relocalisation, cette méthode peut fournir des estimations pertinentes des
champs hétérogènes au sein du matériau. Néanmoins, la construction d’une solution près
des frontières reste au-delà des capacités des schémas de relocalisation classiques en rai-
son de la perte de périodicité au voisinage des frontières, à moins qu’une méthode de
correction des bords est appliquée. Dans ce chapitre, je propose une méthode de correc-
tion des effets de bords en homogénéisation asymptotique valable pour différents types de
conditions aux limites (Dirichlet, Neumann et mixte). Des correcteurs de couche limite
sont rajoutés dans les développements asymptotiques au premier ordre et au niveau du
voisinage des bords. L’ajout de ces termes permet de satisfaire de façon exacte les con-
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Chapter 2. First-order asymptotic homogenization with boundary layer correction

ditions aux limites sur les bords. Des exemples numériques sur structures en composite
sont présentés pour démontrer l’efficacité de la méthode ainsi que ses limites.
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2.1 Introduction

2.1 Introduction
Composite materials’ microstructure can be varied, ranging from randomly distributed
phases to a perfectly periodic microstructure. Direct Numerical Simulations (DNS, i.e.
when the geometry of the microstructure is explicitly described in simulations) of com-
posite materials are often difficult to perform because of the resulting complexity and size
of the computational problems. Therefore, to fully realize the benefits offered by these
materials, it is essential to develop reliable computational methods, bypassing DNS, to
predict their behavior.
Homogenization of periodic structures has been successfully used to determine their ef-
fective properties at the macroscale from the knowledge of local mechanical properties of
one unit-cell, representative of the material microstructure. The obtained effective prop-
erties can then be used for numerical simulations of the homogeneous problem without
conducting DNS. The unit-cell problem can be solved either analytically or numerically.
The simplest analytical methods are based on the assumption that either strains or stresses
are uniform within the unit-cell, leading to the well known Voigt [Voigt, 1889] and
Reuss [Reuß, 1929] bounds. More accurate analytical methods were developed, among
which the composite sphere model and the self-consistent scheme [Hashin and Shtrikman,
1963; Hill, 1965; Mori and Tanaka, 1973]. Numerical homogenization using computa-
tional methods like the Finite Element Method (FEM) has also been used for solving the
unit-cell problem [Ghosh et al., 1995; Feyel and Chaboche, 2000; Terada and Kikuchi,
2001], among many others.
Most of these methods are known to be effective for materials with large scale separa-
tion between the scale of heterogeneity and the macroscale dimension. For low scale
separation, however, they generally become inaccurate. In such a case, the wavelength
of variation of the macroscale fields is not sufficiently large compared to the size of the
heterogeneities. Thus, the predicted effective properties may fail to describe the local
or global response of the composite [Ameen et al., 2018]. To tackle this, higher-order
gradients of macroscale strain may be taken into account in the homogenization of the
unit-cell. At least two approaches exist regarding this subject:

• The first approach uses Quadratic Boundary Conditions (QBCs) applied to the unit-
cell [Kouznetsova et al., 2004; Yuan et al., 2008; Forest and Trinh, 2011], deduced
from the macroscale higher-order strain-stress fields. This method has a major flaw
as shown in Forest and Trinh [2011]. Indeed, the effective strain-gradient properties
remain non zero when the material is homogeneous, which seems to be a physically
unreasonable result. To tackle this, a correction has been proposed in Yvonnet et al.
[2020] by adding adequate body forces to QBCs.

• The second approach considers higher-order problems in the asymptotic expansion
at the basis of the homogenization method, introduced in Sanchez-Palencia [1983];
Bensoussan et al. [2011]. This method consists in using asymptotic expansions
of mechanical fields of the microscale problem in order to split them into sepa-
rate microscale and macroscale problems. It is shown in Boutin [1996] that the
higher-order terms in asymptotic homogenization introduce successive gradients of
macroscale strain and tensors, characteristic of the microstructure, which results in
introducing a non-local effect in the material behavior.

15
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These methods allow the prediction of both the local, by a relocalization process, and the
overall averaged properties of the structure. A recent comparison between the asymptotic
homogenization and QBCs-based method [Monchiet et al., 2020] shows that a modifica-
tion of the QBCs-based method, by adding body forces, is necessary to be consistent with
the asymptotic homogenization.
Asymptotic homogenization has been applied in a wide range of engineering problems,
e.g. to optimize structures [Sigmund, 1995; Suzuki and Kikuchi, 1991; Hassani and Hin-
ton, 1998], compute the effective elastic behavior of woven fabric composites [Chung
and Tamma, 1999] and evaluate localized stiffness degradation [Visrolia and Meo, 2013].
Different numerical methods have been applied in conjunction with the asymptotic ho-
mogenization theory. The Fast Fourier Transform [Moulinec and Suquet, 1994; Michel
et al., 2000] (FFT) method was used to apply the homogenization theory on microstruc-
tures defined on regular grids [Tran et al., 2012]. FEM has also been successfully applied
for the analysis of linear and non-linear microstructures with arbitrary discretization, al-
beit at a higher computing cost. Different implementation strategies [Chung et al., 2001;
Cheng et al., 2013; Oliveira et al., 2009; Dutra et al., 2020] were proposed for the ho-
mogenization of composites using the FEM. However, the validity of the relocalization
process is usually not verified, except asymptotically in an idealized setting. The analysis
of local gradients and boundary effects requires additional effort.
The response of a composite structure near its geometric boundaries has been studied
both experimentally and analytically [Pipes et al., 1973; Tang and Levy, 1975; Hsu and
Herakovich, 1977; Pagano, 1978]. It has been shown that complex stress states with a
rapid change of gradients occur within a very local region near the boundaries, frequently
referred to as a boundary layer effect. Ultimately, the high stresses developed in these
regions may be responsible for the failure initiation of the structure [Pipes et al., 1973].
While asymptotic homogenization allows estimating local fields within the structure by a
relocalization method, the construction of a solution near the vicinity of the boundaries
remains beyond the capabilities of the classical homogenization [Sanchez-Palencia, 1986]
for two reasons:

• First, in asymptotic homogenization, the solution is considered to be periodic. How-
ever the loads are no longer periodic in the vicinity of boundaries, and consequently,
the solution is not periodic either.

• Second, the boundary condition on the composite domain cannot be satisfied by a
periodic unit-cell solution.

One approach to tackle the non-periodicity in the boundary layers is to introduce evanes-
cent corrective terms that would exponentially decay toward the interior of the body [Du-
montet, 1986; Lefik and Schrefler, 1996]. These corrective terms are obtained by solving
auxiliary problems on the unit-cell. An application of this approach is found in Abdel-
moula and Leger [2005], in which heterogeneous stress fields are estimated by consider-
ing a Neumann boundary condition correction as in Dumontet [1986]. More recently, a
numerical study was conducted to investigate the decay of the boundary layer in a three
dimensional periodic homogenization for different fiber orientations using a domain with
fixed edges (Dirichlet boundary) [Koley et al., 2019]. It is worth remarking that these pa-
pers have not proposed a boundary layer correction strategy for various types of boundary
conditions.
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2.2 Estimation of microscale fields based on asymptotic homogenization

Regarding the aforementioned aspects, the present work proposes a general boundary
layer correction methodology for asymptotic homogenization to approximate real mi-
croscale fields near the boundaries. The main idea is to compute corrective terms obtained
from the resolution of different problems over the unit-cell. The nature of the problems
to be solved depends on the actual boundary conditions applied locally to the structure.
Then, the corrective terms are added to the estimated local fields. The obtained results
demonstrate the significance of boundary layer corrections even in the general case. In-
deed, the proposed method is valid for different Boundary Conditions (BCs): Dirichlet,
Neumann, or mixed. The authors are unaware of a similar general boundary layer correc-
tion strategy for asymptotic homogenization in the literature.
The outline of this chapter is as follows. In Sec. 2.2, we first recall briefly the asymptotic
expansion homogenization method and describe the proposed relocalization process. In
Sec. 2.3, we detail the proposed general boundary layer correction procedure. Numeri-
cal examples are presented and discussed in Sec. 2.4, to demonstrate the efficiency and
limitations of the suggested approach.

2.2 Estimation of microscale fields based on asymptotic
homogenization

This section briefly recalls the asymptotic homogenization approach in linear elasticity.
The reader is referred to seminal works in Sanchez-Palencia [1983]; Bensoussan et al.
[2011] and other recent references [Boutin, 1996; Chung et al., 2001; Hassani and Hin-
ton, 1999] for further details. We also describe the proposed estimation of microscale
fields based on the relocalization process, derived from asymptotic homogenization. This
relocalization stage is associated with a given macroscale equilibrium state detailed in this
section.

2.2.1 Statement of the boundary value problem and homogenization
procedure

An inhomogeneous body is considered as a linearly elastic solid in static equilibrium,
whose heterogeneity arises from the distribution of separate phases at the microscale. We
define the bounded domain Ωε occupied by this heterogeneous body and corresponding
to the microscale (see Fig. 2.1) and subjected to a body force f per unit volume. The
boundary ∂Ωε consists of a portion Γu, on which the displacements are prescribed to the
value ud , and a portion Γt on which surface tractions F d per unit area are prescribed such
that ∂Ωε = Γu∪Γt , and Γu∩Γt = /0.
Due to its heterogeneity, the mechanical behavior of the body is assumed to depend on
two scales:

• Macroscale, free of heterogeneities, having L as a characteristic length and global
coordinates x ∈Ω with the assumption that ∂Ωε = ∂Ω (see Fig. 2.1).

• Microscale, having l as a characteristic length and with local coordinates y ∈ Y ,
where Y is the unit-cell domain, typically chosen to be an open rectangular paral-
lelepiped Y =]0,Y1[×]0,Y2[×]0,Y3[ (see Fig. 2.1).
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The coarse and fine scales are related by the parameter ε such that:

ε =
l
L
, y =

x

ε
. (2.1)

The domain Ωε can be considered as the product space Ω×Y :

Heterogeneous problem(
Pre f

)

Homogeneous problem
(Phom)

×1
εCε (x)

C0

f

f
F d

F dΩ

Ωε

Heterogeneous
Unit-cell

Y

Homogeneous
Unit-cell

Y

Γu

Γu

Homogenization Relocalization

Figure 2.1: Illustration of the heterogeneous problem
(
Pre f

)
with domain Ωε , con-

structed by translating the unit-cell Y characterized by an oscillatory behavior Cε (x)
over the three-space directions. The homogenized problem (Phom) with homogeneous
domain Ω is characterized by the homogenized elasticity tensor C0 obtained from the ho-
mogenization step. Microscale fields are estimated from a relocalization process.

Ω
ε =

{
x ∈Ω

∣∣∣(y =
x

ε

)
∈ Y

}
. (2.2)

We further consider that, at each material point of Ωε , there exists a periodically re-
peating microstructure. Owing to this periodicity, one can define the elasticity tensor C
as Y−periodic:

C= C(y) . (2.3)

Expressed in global coordinates, the heterogeneous stiffness tensor would read Cε (x) =
C(x/ε) = C(y), the superscript indicating fine-scale dependence. Similarly, the mi-
croscale displacement, strain and stress fields in global coordinates read uε , εε , and σε ,
respectively.
In the ensuing sections, we will define the following boundary value problems:

• The heterogeneous problem
(
Pre f

)
corresponding to microscale and generated by

translating the unit-cell Y characterized by an oscillatory behavior Cε (x) over the
three-space directions.
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2.2.1 Statement of the boundary value problem and homogenization procedure

• The first-order periodic problem
(
P1st

order

)
used to deduce the homogenized elas-

ticity tensor C0 and localization tensors.

• The homogenized problem (Phom) corresponding to the macroscale characterized
by the homogenized elasticity tensor C0.

The proposed first-order estimate of microscale fields will also be defined.

Definition of the heterogeneous problem
(
Pre f

)
The boundary value problem of the heterogeneous linear elastic body Ωε reads:

Find (uε ,σε) such that:
div(σε (x))+f (x) = 0, ∀x ∈Ω

ε ,

σε (x) = Cε (x) : εε (x) , ∀x ∈Ω
ε ,

uε (x) = ud, ∀x ∈ Γu,

σε (x) ·n= F d, ∀x ∈ Γt ,

(2.4a)
(2.4b)

(2.4c)

(2.4d)

where Eq. (2.4a) is the balance equation, Eq. (2.4b) is the constitutive equation and
Eq. (2.4c), Eq. (2.4d) are the applied boundary conditions, with n the outward unit normal
vector to Γt . The traction and displacement fields are assumed to be continuous across the
interfaces. The strain field εε is given by:

ε
ε = sym(∇uε) =

1
2

(
∇uε +(∇uε)

⊤
)
, (2.5)

where sym(•) indicates the symmetric part of second-order tensors.
Thus, by considering Einstein’s convention for tensor notation, the resolution of

(
Pre f

)
consists in determining the displacement field corresponding to the solution uε of the
following variational problem:∫

Ωε

Ci jkl
∂uε

k
∂xε

l

∂vi

∂xε
j

dΩ
ε =

∫
Ωε

fi vi dΩ
ε +

∫
Γt

Fd
i vi dΓ, ∀vi ∈ V 0

Ωε , (2.6)

where V 0
Ωε are the sets of sufficiently regular functions, zero-valued in Γu.

Mechanical fields, solution of
(
Pre f

)
, are approximated with an asymptotic expansion in

powers of the small parameter ε as:

uε (x) = u0 (x,y)+εu1 (x,y)+O
(
ε

2) ,
εε (x) = ε0 (x,y) +εε1 (x,y) +O

(
ε

2) ,
σε (x) = σ0 (x,y)+εσ1 (x,y)+O

(
ε

2) .
(2.7)

(2.8)

(2.9)

The quantities un, εn and σn are Y−periodic functions called correctors of order n of the
displacement, strain and stress fields, respectively.
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The existence of two scales means that a function f ε (x) is associated with the func-
tion f (x,y), where the chain rule is applied:

f ε (x) = f (x,y) ,
d
dx

f ε =
∂

∂x
f +

1
ε

∂

∂y
f , (2.10)

The expansion of strains is obtained by substituting the expansion of displacements (2.7)
into the strain definition (2.5), and making use of the chain rule (2.10). The expansion
of stresses is obtained by substituting the resulting strains into the constitutive equa-
tion (2.4b). The stress expansion is substituted into the balance equation (2.4a) and, by
collecting the terms of like powers of ε , we obtain a sequence of equilibrium equations
of different orders with respect to powers of ε , defined on the unit-cell [Boutin, 1996].
We choose to ignore higher-order homogenization problems and restrict our study to the
resolution of the first-order problem. It is shown that u0 (x,y) = u0 (x), meaning that
the displacement u0 is independent of the microscale coordinates y and can be identified
with the macroscale displacement field.

First-order periodic problem
(
P1st

order

)
This problem is defined on the unit-cell Y . Its solution is the first-order displacement
corrector u1 and stress σ0. It reads:

Find (u1,σ0) such that:
divy

(
σ0 (x,y)

)
= 0, ∀y ∈ Y,

σ0 (x,y) = C(y) :
(
E0 (x)+εy(u

1)
)
, ∀y ∈ Y,

u1 (x,y) , is Y −periodic,

σ0 (x,y) ·n, is Y − antiperiodic,

(2.11a)

(2.11b)

(2.11c)

(2.11d)

where E0 (x) = εx(u
0 (x)) is a prescribed macroscale strain, divy(•) is the divergence

operator with respect to local variable y, and εx, εy are the strain tensors calculated ac-
cording to the global variable x and local variable y, respectively:

ε• = sym(∇•u
ε) =

1
2

(
∇•u

ε +(∇•u
ε)
⊤
)
. (2.12)

The periodic fluctuation solution of the first-order problem takes the following form:

u1 (x,y) = D0 (y) : E0 (x) , (2.13)

where D0 (y) is a third-order tensor, called the displacement localization tensor. It is
periodic over unit-cell Y and verifies

〈
D0〉

Y = 0, where ⟨•⟩Y = 1
|Y |

∫
Y • dY indicates the

volume average over unit-cell Y . Note that D0 is symmetric with respect to its two last
indices.
The displacement localization tensor components are the solutions Di jk ∈ V #

Y of the
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2.2.1 Statement of the boundary value problem and homogenization procedure

variational problem:∫
Y

Ci jkl
∂D0

kmn
∂yl

∂vi

∂y j
dY =

∫
Y

Ci jmn
∂vi

∂y j
dY, ∀vi ∈ V #

Y , (2.14)

where V #
Y is the set of Y -periodic sufficiently regular functions with zero average value

in Y .
The total first-order microscale strain field reads:

ε0 (x,y) = εy(u
1 (x,y))+E0 (x) = A0 (y) : E0 (x) , (2.15)

where A0 (y) is a fourth-order tensor, called the strain localization tensor:

A0 (y) = I+εy(D0 (y)), (2.16)

where I is the fourth-order identity tensor operating on symmetric second order tensors.
We therefore can define the first-order microscale stress field as:

σ0 (x,y) = C(y) : ε0 (x,y) = B0 (y) : E0 (x) , (2.17)

where
B0 (y) = C(y) : A0 (y) , (2.18)

is the stress localization tensor. Note that A0 and B0 possess minor symmetries.
The homogenized elasticity tensor C0 is deduced from the volume average of the stress
localization tensor over the unit-cell:

C0 =
〈
B0 (y)

〉
Y . (2.19)

It can be proved that C0 possesses the minor and major symmetries as required for an
elasticity tensor.

Definition of the homogeneous problem (Phom)

The boundary value problem on the macroscale for the homogeneous linear elastic body Ω

reads:

Find (U ,Σ) such that:
divx (Σ(x))+f (x) = 0, ∀x ∈Ω,

Σ(x) = C0 : E (x) , ∀x ∈Ω,

U (x) = ud, ∀x ∈ Γu,

Σ(x) ·n= F d, ∀x ∈ Γt ,

(2.20a)

(2.20b)

(2.20c)

(2.20d)

where divx(•) is the divergence operator with respect to global variable x, the macroscale
displacement is U =u0 and the macroscale strain E and stress Σ are equal to the volume
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average over the unit-cell of their microscopic counterparts ε0 and σ0, respectively.

E =
〈
ε0〉

Y , Σ=
〈
σ0〉

Y . (2.21)

The resolution of (Phom) consists in finding the displacement field corresponding to the
solution u0 of the following variational problem:∫

Ω

C0
i jkl

∂u0
k

∂xl

∂vi

∂x j
dΩ =

∫
Ω

fi vi dΩ+
∫

Γt

Fd
i vi dΓ ∀vi ∈ V 0

Ω , (2.22)

where V 0
Ω

is the set of sufficiently regular functions, zero-valued in Γu.
It is apparent from Eq. (2.20c) and (2.20d) that macroscale fields (U ,Σ) verify given
boundary conditions. However, as we will demonstrate later, the microscale fields esti-
mated after the relocalization process, do not necessarily verify these boundary condi-
tions. For instance, the estimated local stresses σ0 do not verify in general the Neumann
boundary conditions:

σ0 ·n ̸= F d. (2.23)

2.2.2 Proposed first-order estimate

The design and reliability analysis of composite structures taking into account the state
of microscale fields can be more accurate than an entirely macroscale analysis. To tackle
this, it is possible to bind the macroscale with the microscale based on a relocalization
process derived from asymptotic homogenization.
As mentioned before, periodic homogenization is based on the assumption of scale sep-
aration between that of heterogeneities (with local coordinates y) and the characteristic
macroscale dimension (with global coordinates x). This assumption induces a local in-
variance by translation and the periodicity of microscale fields. The scale separation
assumption leads to:

ε ≪ 1, (2.24)

with ε defined in Eq. (2.1). In what follows, we propose to investigate situations where the
scale separation assumption is not verified, meaning that the size of the heterogeneities
can be comparable to the characteristic macroscale length scale, e.g. near the boundaries.
Thus, the macroscale gradients could be such that it is no longer possible to assume a
uniform mechanical field acting on the unit-cell. Therefore, we will consider:

ε = 1 =⇒ x= y. (2.25)

This directly implies that the separation of scales assumption is not verified. Therefore,
the mechanical fields of the reference problem depend only on x, representing both mi-
croscale and macroscale coordinates.
For the purpose of this study, the reference problem is tractable by Direct Numerical
Simulation (DNS) and its mechanical fields are used as reference results. However, in
the more general case where a DNS would be out of reach, common practice would
call for a best estimate. This estimate is built here using the solution of the homoge-
neous problem (Phom) and localization tensors (D0,A0,B0) obtained after the resolution
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2.2.3 Proposed relocalization procedure

of
(
P1st

order

)
. The proposed estimate fields read:


uest (x) = U (x)+D0 (x) : E (x) , ∀x ∈Ω,

εest (x) = A0 (x) : E (x) , ∀x ∈Ω,

σest (x) = B0 (x) : E (x) , ∀x ∈Ω.

(2.26a)

(2.26b)

(2.26c)

The displacement U (x) and the strain E (x) are obtained from the resolution of the
homogeneous problem (Phom).

2.2.3 Proposed relocalization procedure

Once
(
P1st

order

)
is solved, the resulting homogenized elasticity tensor C0 is used to com-

pute the homogeneous structure problem conducted at the macroscale, whose solution
fields are (U ,E,Σ). To carry out the relocalization process, an intermediate step is per-
formed to locate each unit-cell on the macroscale structure. To eliminate mesh-sensitivity
and facilitate the computation of error estimates, we considered that the macroscale mesh
was constructed by translating the unit-cell mesh over the three space directions, i.e.
macroscale and microscale meshes are identical. If not, a mapping of the homogeneous
fields on the microscale mesh could be considered as shown in Kruch [2007]. We consid-
ered the relocalization process improvement proposed in Kruch and Forest [1998], which
is a simple way of taking into account macroscale gradients in relocalization formula-
tion. For instance, the microscopic estimated strain (or stress), in a given point of the
unit-cell, is determined using localization tensors combined with the value of the current
macroscale strain at this point, and not its average over the unit-cell.

2.3 Boundary layer correction
Asymptotic homogenization may provide an estimate of the microscale fields within the
material if the macroscale computation is complemented by a relocalization process. Nev-
ertheless, the construction of a solution near the boundaries remains beyond the capabili-
ties of classic homogenization/relocalization. This is mainly due to the loss of periodicity
in the vicinity of boundaries.
We propose a new approach to account for non-periodicity in the boundary layers based
on the idea of introducing corrective terms that would decay as one moves toward the
interior of the body, which can be seen as an extension of Dumontet [1986]; Koley et al.
[2019].
The main objective of this section is to describe the proposed general boundary layer
correction procedure, effective for various types of boundary conditions (Dirichlet, Neu-
mann, or mixed), see Fig. 2.3.
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Estimated fields(
uest1,εest1,σest1)

Homogenized
fields

(U ,E,Σ)

Unit-cell(
D0,A0,B0) Γu

Γu

f

f
F d

F d

(Phom)

Y

Locate each cell
on the macrostructure

σest1 (x) = B0 (x) : E0 (x)

εest1 (x) = A0 (x) : E0 (x)

uest1 (x) =U (x)+D0 (x) : E0 (x)

Figure 2.2: Illustration of the proposed relocalization procedure scheme without scale
separation. Mechanical fields depend only on x, representing both microscale and
macroscale coordinates.

n

n

n

∂Ω
Cell at Neumann

boundary

Cell at Dirichlet
boundary

Cell at mixed
boundary

Figure 2.3: Illustration of the boundary layers for Dirichlet, Neumann, and mixed bound-
ary conditions. With n is the normal direction of the boundary.
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2.3.1 Correctors for Neumann BCs

2.3.1 Correctors for Neumann BCs

The homogenized problem (Phom) could be written as:
div

〈
σest (x)

〉
Y +f (x) = 0, ∀x ∈Ω,〈

σest (x)
〉

Y = C0 : E (x) , ∀x ∈Ω,〈
uest (x)

〉
Y = ud, ∀x ∈ Γu,〈

σest (x)
〉

Y ·n= F d, ∀x ∈ Γt,

(2.27a)

(2.27b)

(2.27c)

(2.27d)

with the macroscale stress: ⟨σest⟩Y =Σ and strain: ⟨εest⟩Y =E.
It is apparent from problem (2.27d) that the boundary condition on Γt is only satisfied by
the mean value of σest , therefore:

σest ·n ̸= F d. (2.28)

For this reason, added to the fact that the local stress field is generally not periodic in the
vicinity of the Neumann boundaries, σest is inaccurate near the boundaries. To overcome
this, it was proposed in Dumontet [1986] to correct the expansion of the displacement
and the associated expansion of the stresses in the neighborhood of the boundary of a 2D
problem. Boundary layers term σbl are introduced whose sum with local stresses satisfies
exactly boundary conditions at each microscopic point.
We propose to compute σbl by considering six auxiliary problems on the unit-cell sub-
jected to six characteristic loads Fkl with kl = {11,22,33,23,31,12} on the surface
where the Neumann boundary condition is applied. The opposite surface is fixed, and
other surfaces of the unit-cell are subjected to periodicity conditions. The characteristic
load is defined as follows:

Fikl =−B0
i jkl ·n j +

1
|Y |

∫
Y

B0
i jkl ·n j dY with fixed index j, (2.29)

where n j is the normal direction of Γt and the fixed index j ∈ {1,2,3} is the index of
this normal direction. Binkl are the components of the stress localization tensor B0.
The resulting displacements, strains, and stresses solving each auxiliary problem are the
components of the boundary-layer localization tensors D0,bl , A0,bl , and B0,bl , respectively.
Thus, the boundary layer corrective terms are computed as follows:

σbl= B0,bl : E,

εbl = A0,bl : E,

ubl= D0,bl : E.

(2.30)

(2.31)

(2.32)

As a result, the stress field σcor

σcor = σest +σbl, (2.33)

satisfies the Neumann BC.
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Chapter 2. First-order asymptotic homogenization with boundary layer correction

2.3.2 Correctors for Dirichlet BCs

We recall that the proposed estimated displacement field is given by equation (2.26a):

uest (x) =U (x)+u1 (x) , (2.34)

with u1 = D0 : E is the first-order corrector of the displacement field obtained from the
resolution of

(
P1st

order

)
. The displacement uest estimates correctly the real displacement

in the interior of the material where the structure is periodic. Nevertheless, we need to
ensure that uest verifies the Dirichlet boundary condition uest =ud on Γu. But since U =
ud on Γu is enforced then uest do not necessarily verify the Dirichlet boundary conditions.
Therefore, a correction is needed that is the negative of u1 at the boundary and decays
inward, and such that the corrected field would read:

ucor (x) =U (x)+
(
u1 (x)+ubl (x)

)
. (2.35)

The correction ubl must verify:

ubl (x) =−u1 (x) ∀x ∈ Γu. (2.36)

As in the Neumann case, an auxiliary problem is considered on which the bound-
ary layer fields will be computed. In this case, corrective displacements ϱkl
with kl = {11,22,33,23,31,12} are applied to the unit-cell and defined as:

ϱikl =−D0
ikl, (2.37)

where Di jk are the components of the displacement localization tensor D0. The cor-
rective boundary layer fields are obtained by conducting the same analyses defined in
Eq. (2.30),(2.31), and (2.32).

2.3.3 Mixed BCs

The correction for boundary layers with mixed BCs is conducted by considering six aux-
iliary problems on the unit-cell subjected to both six characteristic loads Fikl defined in
Eq. (2.29) and displacements ϱikl defined in Eq. (2.37), with kl = {11,22,33,23,31,12}.
The correction to be ultimately applied for each i index depends on the actual (Neumann
or Dirichlet) BC applied in this specific direction. For the purpose of illustration, we shall
consider the following simple of a composite in tension (see Fig. 2.4):

2.3.4 Proposed general boundary correction scheme

The proposed boundary correction strategy is summarized in Fig. 2.6. For the sake of sim-
plicity and clarity, an invariance along the thickness direction is considered. The structure
in Fig. 2.6 is fixed on Γu, a surface traction is applied on Γt and other boundaries of Γt are
kept free of forces. The estimated fields are correct in the bulk region where the structure
is periodic and the boundary layers to be corrected are divided into five regions. For what
follows, kl = {11,22,33,23,31,12} and i ∈ {1,2,3}. The five regions are:
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2.3.4 Proposed general boundary correction scheme

Neumann BCs
correction

Mixed BCs
correction kl = {11,22,33,23,31,12}

Figure 2.4: Illustration of the Neumann and mixed BCs corrections to be applied to the
unit-cell.

1. Boundary layers subjected to Dirichlet BCs:
The unit-cell is subjected to six displacement vectors ϱikl (2.37) on the face where
Dirichlet BCs are applied, the opposite face is kept free of forces. The remaining
faces of the unit-cell are subjected to periodicity conditions (see Fig. 2.5a).

2. Corner cells subjected to both Neumann and Dirichlet BCs:
The unit-cell, which is a corner cell in this case as shown Fig. 2.6, is subjected to
six displacement vectors ϱikl (2.37) on the face where Dirichlet BCs are applied and
six loads Fikl (2.29) on the face where Neumann BCs are applied. The remaining
faces of the unit-cell are kept free of forces (see Fig. 2.5b).

3. Free forces boundary layers:
The unit-cell is subjected to six loads Fikl (2.29) where the unit-cell is free of forces.
The opposite face where the loads are applied is fixed. The remaining faces of the
unit-cell are subjected to periodicity conditions (see Fig. 2.5c).

4. Boundary layers subjected to Neumann BCs:
The unit-cell is subjected to six loads Fikl (2.29) on the face where Neumann BCs
are applied. The opposite face where the loads are applied is fixed. The remaining
faces of the unit-cell are subjected to periodicity conditions (see Fig. 2.5d).

5. Corner cells subjected to Neumann BCs:
The unit-cell is subjected to six loads Fikl (2.29) where Neumann BCs are applied
and where the unit-cell is free of forces. The remaining faces of the unit-cell are
fixed (see Fig. 2.5e).

The boundary layer correction and localization tensors D0,bl , A0,bl , and B0,bl are con-
structed from the resolution of auxiliary problems. Thereafter corrective boundary layer
fields are computed and added to estimated fields as summarized in Fig. 2.6.
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# ##

# ##

# ## free surface

periodic

(a) Correction for a cell
subjected to Dirichlet
BCs

free surfacefree surface

(b) Correction for a cor-
ner subjected to Neu-
mann & Dirichlet BCs

#
#
#

#
#
#

#
#
#

(c) Correction for a free
cell

# ##

# ##

# ##

(d) Correction for a cell
subjected to Neumann
BCs

(e) Correction for a cor-
ner subjected to Neu-
mann BCs

Fikl

Fikl

Fikl

Fikl

ϱikl ϱikl Fikl

Figure 2.5: Illustration of auxiliary problems for boundary layers correction.
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2.3.4 Proposed general boundary correction scheme

ϱ

ϱ F

F F

F

F

D0,bl,A0,bl,B0,bl

↓
σbl (x) = B0,bl (x) : E (x)
εbl (x) = A0,bl (x) : E (x)
ubl (x) = D0,bl (x) : E (x)

↓
σcor (x) = σbl (x)+σest (x)
εcor (x) = εbl (x) +εest (x)
ucor (x) = ubl (x)+uest (x)

Figure 2.6: Illustration of the boundary layer correction process. An invariance along the vertical (thick-
ness) direction is considered for simplicity.
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Chapter 2. First-order asymptotic homogenization with boundary layer correction

2.4 Numerical examples

In this section, numerical examples are presented and discussed to demonstrate the effi-
ciency and limitations of the suggested approach. For illustrative purposes, a simple study
conducted on a uni-directional laminate in tension is presented in appendix A.2.

2.4.1 Matrix-inclusion composite

We consider the plane strain linear elasticity problem of a matrix-inclusion composite
in tension as depicted in Fig. 2.7. The size of the structure is L = 8 mm, H = 5 mm
and W = 1 mm, and the diameter of the fibers is D = 0.2 mm. The matrix and the
spherical inclusions are assumed to be isotropic linear elastic with coefficients (Em =
1000 MPa, νm = 0.3) and (E f , ν f = 0.3) where E f is varied in the examples, respec-
tively. We propose to estimate the microscale fields by using the relocalization procedure

u

(E , ν )
f f (E , ν )

m m

(a) Structure geometry (b) unit-cell domain

Figure 2.7: Illustration of matrix-inclusion composite. The structure is fixed on Γu and a
non-zero surface traction is applied on Γt , other boundaries are kept free. The results will
be plotted along AB and CD lines.

described in subsection. 2.2.3, and correct these estimates on the boundaries based on the
proposed boundary correction scheme described in Sec. 2.3.
In this study we will compare the ensuing stress fields:

• The microscale stress field obtained by solving the problem
(
Pre f

)
using DNS,

which will be considered as our reference, indexed ref.

• The homogeneous stress field obtained from solving the problem (Phom), indexed
hom.

• The proposed estimate of the microscale stress field obtained by the relocalization
process, indexed est.

• The correction of the microscale stress field corrected with the proposed boundary
layer correction scheme, indexed cor.
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2.4.1 Matrix-inclusion composite

We will also quantify the difference between the reference and estimated fields by com-
puting the modeling error. For this purpose, we define the following local (element wise)
error in energy norm:

∥e∥E(Ωe) = ∥u
re f (x)−uk (x)∥E(Ωe)

=

(∫
Ωe

∇
s
(
ure f (x)−uk (x)

)
: C : ∇

s
(
ure f (x)−uk (x)

)
dΩe

) 1
2

,
(2.38)

where Ωe denotes the domain of an element and uk (x) denotes the estimated displace-
ment field whose error is measured (k = est or k = cor). The global error ∥e∥E(Ω) is
then defined as:

∥e∥2
E(Ω) = ∑

e
∥e∥2

E(Ωe)
. (2.39)

Comparison of stress fields

We consider a contrast E f
Em

= 10, where E f and Em are Young’s moduli of the fiber and
matrix phases, respectively. Comparison of resulting stress fields along AB and CD lines
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Figure 2.8: Results of the homogenized (hom), reference (ref), estimated (est) and cor-
rected (cor) stress fields plotted along the AB line with E f

Em
= 10 for the matrix-inclusion

composite in tension.

are presented in Fig. 2.8 and Fig. 2.9, respectively. The corresponding AB and CD lines
are defined in Fig. 2.7. Both σ est

11 and σ est
22 perfectly coincide with reference ones in the

inner domain of the composite, where they are periodic. Nevertheless, accuracy is lost
near the boundaries. After the boundary layer correction, the corrected fields provide
a good approximation of the reference near the boundaries. In particular, σ cor

11 verifies
the applied Neumann condition (300 MPa) at x1 = 8 mm as for the reference and the
homogeneous counterparts, but it is not the case for σ est

11 . A more precise quantification
of the error is provided in the next subsection.
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Figure 2.9: Results of the homogenized (hom), reference (ref), estimated (est) and cor-
rected (cor) stress fields plotted along the CD line with E f

Em
= 10 for the matrix-inclusion

composite in tension.

Modeling error

The local relative modeling error without the boundary layer correction, presented in
Fig. 2.10a, is concentrated near the boundaries and maximal in the vicinity of the applied
Neumann boundary. This is mainly explained by the loss of periodicity in the vicinity of
the boundaries. After the correction, the error is significantly reduced near the boundaries.
We notice that the remaining error is mainly concentrated at the corners, especially near
the Neumann boundary. We recall that a particular treatment was considered for the
corners correction, as explained in Fig. 2.6. This correction improves the overall result but
seems to be still imperfect since errors remain at the interfaces. Table 2.1 summarizes the

(a)
∥ure f−uest∥2

E(Ωe)

∥ure f ∥2
E(Ω)

(b)
∥ure f−ucor∥2

E(Ωe)

∥ure f ∥2
E(Ω)

Figure 2.10: Comparison of the local relative modeling error results with E f
Em

= 10 for the
matrix-inclusion composite in tension.

global relative modeling error for different contrast ratios. The boundary layer correction
allows to drastically reduce the modeling error by a factor of 4 to 5 for the four ratios.
This demonstrates that the correction process is effective even for higher contrast between
fiber and matrix phases.
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2.4.2 Laminated composite in tension

Table 2.1: Comparison of the global relative modeling error for different contrast ratios
for the matrix-inclusion composite in tension.

Global modeling Contrast Contrast Contrast Contrast
error 10 25 50 100

∥ure f−uest∥E(Ω)

∥ure f ∥E(Ω)
0.038 0.044 0.046 0.048

∥ure f−ucor∥E(Ω)

∥ure f ∥E(Ω)
0.009 0.010 0.011 0.012

2.4.2 Laminated composite in tension

We consider a plane strain elasticity problem of a laminated composite made of two layers
as presented in Fig. 2.11. The size of the structure is L = 8 mm, H = 5 mm and W =
1 mm. The two layers are assumed to be isotropic linear elastic with coefficients (Em =
1000 MPa,νm = 0.3) and (E f ,ν f = 0.3) where E f is varied in the examples. We conduct
the same study as in the previous example. In order to correct the Γu boundary layer, it is
necessary to apply both the Neumann and Dirichlet boundary corrections.

u

(E , ν )
f f (E , ν )

m m

(a) Structure geometry (b) unit-cell domain

Figure 2.11: Illustration of the laminated composite in tension. The structure is sliding
on Γu and surface tension is applied on Γt . Other boundaries are kept free. Results will
be plotted along AB and CD lines.

Comparison of stress fields

Figs. 2.12 and 2.13 show that σ cor is in agreement with σ re f in the inner domain of the
composite and on the boundaries. We also notice that high stresses are developed in the
vicinity of the sliding boundary Γu, especially for higher contrast ratios. For a ratio of 50,
the estimated stress is 3 times smaller than the real stress for σ11 and 7 times smaller
for σ12, which may result in underestimating failure criteria if the design is conducted
without any boundary layer correction.
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Figure 2.12: Results of the homogenized (hom), reference (ref), estimated (est) and cor-
rected (cor) stress fields plotted along the AB line with E f

Em
= 10 for the laminated com-

posite in tension.
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Figure 2.13: Results of the homogenized (hom), reference (ref), estimated (est) and cor-
rected (cor) stress fields plotted along the AB line with E f

Em
= 50 for the laminated com-

posite in tension.

Modeling error

The local relative modeling error between the reference and estimated fields (Fig. 2.14a)
is negligible in the inner domain of the composite but significant on the boundaries, es-
pecially in the vicinity of the sliding boundary Γu. After the correction (Fig. 2.14b), the
modeling error is significantly reduced, and remains concentrated at the corners of Γu.
Table 2.2 summarizes the relative modeling error for different contrast ratios. Similarly,

by correcting the boundary layers, the remaining error is divided by 3 for the four ratios.

2.4.3 Laminated composite in bending
The same composite as in the previous example is now subjected to bending as shown in
Fig. 2.15. This specific load will create high macroscale strain gradients. In this case, the
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(a)
∥ure f−uest∥2

E(Ωe)

∥ure f ∥2
E(Ω)

(b)
∥ure f−ucor∥2

E(Ωe)

∥ure f ∥2
E(Ω)

Figure 2.14: Comparison of the local relative modeling error results for E f
Em

= 10 for the
laminated composite in tension.

Table 2.2: Comparison of the global relative modeling error for different contrast ratios
for the laminated composite in tension.

Global modeling Contrast Contrast Contrast Contrast
error 10 25 50 100

∥ure f−uest∥E(Ω)

∥ure f ∥E(Ω)
0.10 0.14 0.17 0.20

∥ure f−ucor∥E(Ω)

∥ure f ∥E(Ω)
0.027 0.036 0.047 0.066

first-order approximation is expected to lose its accuracy even in the inner domain of the
structure. To illustrate this, the same study is conducted by comparing stress fields and
computing the modeling error.

u

(E , ν )
f f

(E , ν )
m m

Figure 2.15: Structure composed of a laminated composite subjected to bending. Results
will be plotted along AB and CD lines.
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Comparison of stress fields

We only consider a contrast of 10 in this example, as it will be sufficient to illustrate our
point. Comparisons of the stress fields along the AB line are presented in Fig. 2.16 and
along the CD line in Fig. 2.17.
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Figure 2.16: Results of the homogenized (hom), reference (ref), estimated (est) and cor-
rected (cor) stress fields plotted along the AB line with E f

Em
= 10 for the laminated com-

posite in bending.

The results show that the estimated fields, contrary to the previous examples, are
inaccurate even in the inner domain of the structure. This is mainly explained by
high macroscale strain gradients induced by the bending. To overcome this shortcom-
ing, higher-order terms must be introduced in the asymptotic expansion which features
higher-order gradients of macroscale strain and characteristic tensors of the microstruc-
ture [Boutin, 1996]. Despite this clear limitation, the corrected estimated stresses are still
a better approximation of the real stresses near the boundaries.
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Figure 2.17: Results of the homogenized (hom), reference (ref), estimated (est) and cor-
rected (cor) stress fields plotted along the CD line with E f

Em
= 10 for the laminated com-

posite in bending.
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2.5 Conclusions

Modeling error

The local relative modeling error before the correction is maximal in the vicinity of the
sliding boundary Γu but also spread across the structure as shown in Fig. 2.18a. After the
boundary layer correction, the error is considerably reduced on the boundaries but still
present inside the structure as shown in Fig. 2.18b.
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Figure 2.18: Comparison of the local relative modeling error results for E f
Em

= 10 for the
laminated composite in bending.

2.5 Conclusions
In this study, we propose a general boundary layer correction based on asymptotic ho-
mogenization to estimate consistent microscale fields in the vicinity of the boundaries.
The main idea of the method is to compute corrective terms from solving different aux-
iliary problems on the unit-cell. The nature of the problem to solve depends on the local
boundary conditions. These corrective terms are added to the usual fields obtained from
the relocalization process, drastically improving the solution near the boundaries.
It was shown, by means of three numerical examples, that the corrected fields success-
fully predict stress or strain concentrations near the boundaries, which can be responsible
for the failure of the individual phases. The proposed method was developed for differ-
ent boundary conditions (Dirichlet, Neumann, and mixed). The associated computational
cost is relatively inexpensive since the corrective terms are computed over the unit-cell.
All localization tensors can be computed off-line and used for any composite structure
involving the same unit-cell.
The major conclusions that can be drawn from this study are as follows:

• The first-order estimated fields, obtained from the relocalization process, are a good
approximation of the heterogeneous (reference) fields in the inner domain of the
structure. This result is not true for cases when high gradients of macroscale strains
exist.

• The boundary layer correction allows to reduce the global modeling error by a factor
of 3 to 4 for different ratios E f

Em
.
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• The corrected stress field captures high stresses developed near the boundaries.
Particularly, for the laminated composite in tension (ratio of E f

Em
= 50) shown in

Sec. 2.4.2, the estimated stress component is 3 times smaller than the real stress
for σ11 and 7 times smaller for σ12. This may result in underestimating failure
criteria if the design is conducted without any boundary layer correction.

The method can now be applied with confidence to more realistic engineering composite
structures, especially in the 3D case for which DNS are more expensive to achieve. This
also implies the use of coarse macroscale finite element meshes and proper projection/in-
terpolation to the unit-cell mesh.
The limitation of the proposed approach has also been evidenced in some cases where
boundary conditions are not the only source of modeling error. Second-gradient effects,
which first-order asymptotic homogenization neglects, may also play a prominent role.
Combining higher-order and boundary correctors could be a path toward efficient error
estimation or adaptive model refinement as we will see in the following chapters.
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Chapter 3

Higher-order asymptotic homogenization with
boundary layer correction

Abstract
I have demonstrated in the previous chapter that first-order homogenization generally
becomes inaccurate for materials with a weak scale separation between characteristic
lengths of the heterogeneities and the structural problem. I have also shown that it is
unable to provide a correct solution in the vicinity of the boundaries due to the loss of pe-
riodicity in these regions. In this chapter, I demonstrate the effectiveness of higher-order
homogenization, up to the third-order, in estimating correctly the heterogeneous solution,
for cases with a low scale separation in elastic composite materials. I also propose an ex-
tension of the previously proposed general boundary layer method to correct higher-order
estimates obtained near the boundaries. The efficiency and accuracy of the proposed
methods are studied on various numerical examples dealing with elastic laminates and
fiber-matrix composites.

Résumé
J’ai démontré dans le chapitre précédent que l’homogénéisation asymptotique au premier
ordre est généralement imprécise pour les matériaux avec une faible séparation d’échelle
entre les longueurs caractéristiques des hétérogénéités et le problème structurel. J’ai
également montré qu’elle est incapable de fournir une solution correcte au voisinage
des bords en raison de la perte de périodicité près de ces régions. Dans ce chapitre, je
démontre l’efficacité de l’homogénéisation d’ordre supérieur, et ce, jusqu’au troisième
ordre, afin d’estimer correctement la solution hétérogène, sur des cas avec une faible sé-
paration d’échelle. Je propose également une extension de la méthode de correction de
couche limite afin de corriger les estimations aux ordres supérieurs obtenues près des
bords. L’efficacité des méthodes proposées sont étudiées sur divers exemples numériques
portant sur des laminés élastiques et des composites à matrice de fibres.
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3.1 Introduction
Classical or first-order homogenization methods assume a complete separation of scales in
composite materials. This assumption is only valid when the scale of the microstructure
or microstructural fluctuation is much smaller than the characteristic dimension of the
macrostructure. Most of these homogenization methods are known to be effective in
capturing uniform macroscopic strain fields without large gradients. For weak separation
of scales, however, they generally become inaccurate [Ameen et al., 2018]. Such cases can
occur mainly when: (a) The size of the microstructure is of the same order of magnitude
as that of the macrostructure, and (b) the wave length of variation of macroscale fields
is not sufficiently large compared to the size of the microstructure. In such cases, the
predicted properties obtained by first-order homogenization may fail to describe the local
or global responses of the composite [Ameen et al., 2018; Kouznetsova et al., 2002; He
and Pindera, 2020a]. This is mainly explained by two reasons:

• The scale separation assumption implicitly implies macroscopic quasi-uniformity
of the strain field over the microstructure. Therefore, only first-order deformation
modes (tension, compression, and shear) are considered. In contrast, in the case
of weak separation of scales, capturing a bending mode, for example, remains be-
yond the capabilities of classical homogenization [Kouznetsova et al., 2002; Fer-
goug et al., 2022a], as will be shown later in this chapter.

• Higher-order homogenization may require consideration of non-local media. In-
deed, classical homogenization methods take into account the influence of the vol-
ume fraction, distribution, and morphology of the microstructure [Sanchez-Palencia
and Zaoui, 1987; Suquet, 2014], but cannot account for geometrical size effects in
the mechanical behavior of heterogeneous materials.

To overcome these limitations, generalized continuum theories (higher-order continua or
higher-grade theories) are used to describe the behavior of either the microscopic scale or
the macroscopic one or both levels simultaneously. Indeed, enriched continuum theories
extend the range of applicability of homogenization methods beyond the strict assump-
tion of scale separation. They also enable relaxation of the local action principle by intro-
ducing some additional length scale parameters to take into account the influence of the
surrounding physical state on the behavior of a continuum point.
Two main categories of generalized continua are distinguished:

• Higher-order continua that introduce additional degrees of freedom, like the
Cosserat medium proposed by the Cosserat brothers [Cosserat and Cosserat, 1909]
where local micro-rotations are introduced at each continuum point in addition to
the displacement field. This enhancement can be extended further to obtain the
micromorphic elasticity [Mindlin, 1964; Germain, 1973].

• Higher-grade continua according to Mindlin [1964]; Mindlin and Eshel [1968] that
include higher-order gradients of kinematic or internal variables in the expression
of the (elastic) energy density.

The strain-gradient continuum offers some advantages compared to higher-order continua
as stated in Yvonnet et al. [2020]. Indeed, this model is rich enough to incorporate a char-
acteristic length of the microstructure without introducing a large number of parameters as
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in micromorphic elasticity [Auffray et al., 2015]. Furthermore, such a model can be con-
structed by asymptotic analyses [Boutin, 1996; Smyshlyaev and Cherednichenko, 2000;
Peerlings and Fleck, 2004; Tran et al., 2012].
In most cases, it is agreed that including higher gradients of the macroscopic field in the
homogenization of a Representative Volume Element (RVE) is a natural way to introduce
the internal length scale characterizing the microstructure. At least two approaches exist
regarding this subject.
The first approach uses Quadratic Boundary Conditions (QBCs) applied to the unit-
cell [Gologanu et al., 1997; Forest, 1998; Forest et al., 2001; Kouznetsova et al., 2002;
Yvonnet et al., 2020]. This method is an extension of the classical Kinematic Uniform
Boundary Conditions (KUBC) [Huet, 1990; Kanit et al., 2003] which consist in applying,
on the boundary of the RVE, the displacement field that would occur if the strain field
was uniform. Indeed, a displacement that has a quadratic dependence with the position
vector is applied, with the macroscopic gradient of strain being the considered enforcing
term. This method has a major flaw: QBCs lead to non-zero fluctuations when the mate-
rial is homogeneous, which seems to be physically unreasonable as stated by Yuan et al.
[2008], Forest and Trinh [2011], Tran et al. [2012], Monchiet et al. [2020], and Yvonnet
et al. [2020], since these fluctuations are due to the heterogeneity of the microstructure.
To tackle this, a correction has been proposed in Monchiet et al. [2020] by adding ade-
quate body forces to QBCs and has been successfully used in Yvonnet et al. [2020].
The second approach considers higher-order problems in the asymptotic homogeniza-
tion method. This approach of series expansion initially presented by Sanchez-Palencia
[1983]; Bensoussan et al. [2011] for periodic heterogeneous materials, introduces a scale
factor ε = l/L, where l and L are the characteristic lengths of the microstructure and
macrostructure, respectively. In the case of strict scale separation, i.e. ε ≪ 1, classi-
cal homogenization gives adequate estimate properties. In cases of weak scale separa-
tion, i.e. ε < 1, the solution can be approximated by keeping higher-order terms in the
series expansion. These terms are obtained by resolving a hierarchical set of elasticity
problems with prescribed body forces and eigenstrains, obtained from the solution at the
lower-order. It is shown in Boutin [1996] that higher-order terms in asymptotic homoge-
nization introduce successive gradients of the macroscale strain and tensors characteristic
of the microstructure, which result in introducing a non-local effect on material behavior.
The analytical solutions of these characteristic tensors were provided by Boutin [1996] for
a laminate. The agreement with the phenomenological strain-gradient theories was estab-
lished by Smyshlyaev and Cherednichenko [2000]; Peerlings and Fleck [2004]; Tran et al.
[2012] by combining the asymptotic method with a variational technique.
In the present chapter, the retained method for our multiscale analyses is the asymptotic
homogenization method. Consequently, only periodic heterogeneous materials are con-
sidered where the period, i.e. the unit-cell, defines the RVE without any ambiguity.
We establish a general numerical framework to evaluate the effect of macroscopic strain
gradients on the local response of the composite. This framework is implemented, in this
chapter, using the Finite Element Method (FEM) but could be implemented using another
discretization method. We perform a relocalization process to estimate heterogeneous
local fields by considering higher-order homogenization problems, up to the third-order
in the asymptotic expansion. This relocalization process is associated with a macroscale
problem, which remains, in this work, a scale-independent Cauchy type. Indeed, commer-
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cial FE software is usually limited to the computation of Cauchy media and our approach
is an attempt to conduct relocalization in such a situation. My numerical implementa-
tion of the localization tensors will be verified based on analytical solutions provided
by Boutin [1996] (see appendix B.1).
While asymptotic homogenization may estimate local fields within the composite by a
relocalization process, the construction of a solution at the vicinity of the boundaries
remains beyond the capabilities of classical homogenization [Sanchez-Palencia, 1986;
Dumontet, 1986; Koley et al., 2019; Fergoug et al., 2022a]. Indeed, asymptotic homoge-
nization assumes a periodic solution, which is not the case on the boundaries. It has been
shown by Pipes et al. [1973]; Tang and Levy [1975]; Hsu and Herakovich [1977]; Pagano
[1978] that complex stress states with a rapid change of gradients occur within a local
region near the boundaries, frequently referred to as a boundary layer effect. This effect
is often responsible for the initiation of structural failure, e.g. in laminates [Pipes et al.,
1973].
In a previous work [Fergoug et al., 2022a], a general boundary layer correction was pro-
posed. It is valid for different Boundary Conditions (BCs): Dirichlet, Neumann, or mixed.
The main idea of this method is to enrich, on boundaries, the first-order relocalized solu-
tion fields by adding decaying corrective terms obtained by the resolution of independent
auxiliary problems over the unit-cell. The nature of the problems to be solved depends on
the actual boundary conditions applied locally to the structure. These corrective terms are
then added to the first-order relocalized fields.
In the present chapter, we propose an extension of this general boundary layer correction
to rectify higher-order relocalization fields up to the third-order. Indeed, matching bound-
ary conditions requires the introduction of boundary layers in each order.
Regarding the aforementioned aspects, the present work proposes two main aspects:

• A higher-order relocalization process up to the third-order. This means that we
the introduce effects of the macroscopic strain, its gradient, and its second gradi-
ent on the local response of the composite. By doing so, we extend the range of
applicability of relocalization to cases subjected where a first-order homogeniza-
tion/relocalization is generally not valid anymore.

• A general boundary layer correction to accurately estimate higher-order relocalized
fields, up to the third-order, on the boundaries.

To the best knowledge of the authors, such an extension of first-order boundary layer cor-
rection has not been yet proposed in the literature.
A computing workflow is proposed to perform both the relocalization step and the bound-
ary layer correction within a finite element framework.
The outline of this chapter is as follows. In Sec. 3.2, we first briefly recall the asymptotic
expansion homogenization method and describe the proposed higher-order relocalization
process. In Sec. 3.3, we detail the proposed general boundary layer correction procedure.
A numerical implementation procedure is proposed in Sec. 3.4. Numerical examples are
presented and discussed in Sec. 3.5, with the objective of demonstrating the efficiency of
the suggested approach.
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3.2 Higher-order estimation of micromechanical fields
Conventionally in mechanical homogenization, asymptotic series are truncated at the first-
order. It follows that the obtained effective macroscopic continuum is a scale-independent
Cauchy type continuum. The consequence of taking into account additional terms of
the expansion, up to the third-order, as derived by Boutin [1996], is to introduce scale-
dependent corrective terms on material behavior.
The objective of this section is to describe the proposed estimation of local heteroge-
neous fields based on a higher-order relocalization process. This relocalization stage is
associated with a given macroscale equilibrium state also elaborated in this section.

3.2.1 Statement of the boundary value problem and homogenization
procedure

Consider a problem domain Ωε , formed by the spatial repetition of a heterogeneous unit-
cell, as shown in Fig. 3.1. This body, considered as a linear elastic solid in static equi-
librium, is subjected to a body force f per unit volume. The boundary ∂Ωε consists
of a portion Γu, on which the displacements are prescribed to the value ud , and a por-
tion Γt on which surface traction F d per unit area are prescribed, such that ∂Ωε = Γu∪Γt ,
and Γu∩Γt = /0.
Because of the heterogeneous nature of the material, the corresponding mechanical be-
havior depends on two scales:

• Macroscale with domain Ω, free of heterogeneities, having L as a characteristic
length and global coordinates x ∈ Ω with the assumption that ∂Ωε = ∂Ω (see
Fig. 3.1).

• Microscale, having l as a characteristic length and with local coordinates y ∈ Y ,
where Y is the unit-cell domain, typically chosen here to be an open rectangular
parallelepiped Y =]0,Y1[×]0,Y2[×]0,Y3[ (see Fig. 3.1).

The coarse and fine scales are related by the parameter ε such that:

ε =
l
L
, y =

x

ε
. (3.1)

The domain Ωε can be considered as the product space Ω×Y :

Ω
ε =

{
x ∈Ω

∣∣∣(y =
x

ε

)
∈ Y

}
. (3.2)

Since the heterogeneity of the material arises from the periodically repeating unit-cell,
and owing to this periodicity, one can define the elasticity tensor C as Y−periodic:

C= C(y) . (3.3)

The heterogeneous stiffness tensor reads Cε (x) = C(x/ε) = C(y), the superscript in-
dicating fine-scale dependence. Similarly, the microscale displacement, strain, and stress
fields read uε , εε , and σε , respectively.
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Heterogeneous problem(
Pre f

)

Homogeneous problem
(Phom)

×1
εCε (x)

C0

f

f
F d

F dΩ

Ωε

Heterogeneous
Unit-cell

Y

Homogeneous
Unit-cell

Y

Γu

Γu

Homogenization Relocalization

Figure 3.1: Illustration [Fergoug et al., 2022a] of the heterogeneous problem
(
Pre f

)
with domain Ωε , constructed by translating the unit-cell Y characterized by an oscilla-
tory behavior Cε (x) over the three space directions. The homogenized problem (Phom)
with homogeneous domain Ω is characterized by the homogenized elasticity tensor C0

obtained from the homogenization step. Microscale fields are estimated by a relocaliza-
tion process.

In our previous work [Fergoug et al., 2022a], we have defined the following boundary
value problems:

• Heterogeneous problem
(
Pre f

)
with solution (uε ,εε ,σε). This problem is usually

intractable by Direct Numerical Simulation (DNS, i.e. when the geometry of the
microstructure is explicitly described in simulations). Common practice would call
for a tractable estimate.

• First-order periodic problem
(
P1st

order

)
used to deduce the homogenized elas-

ticity tensor C0 and first-order displacement, strain, and stress localization ten-
sors: D0, A0, and B0, respectively.

• Homogenized problem (Phom) corresponding to the macroscale with solution
(displacement U ,strain E,stress Σ), characterized by the homogenized elasticity
tensor C0.

Formal definitions of these problems are omitted here for conciseness; we refer the reader
to Fergoug et al. [2022a] for more details.
We aim to truncate the asymptotic expansion up to the third-order. Therefore, mechanical
fields, solution to

(
Pre f

)
, are approximated with an asymptotic expansion in powers of
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the small parameter ε as:

uε (x) = u0 (x,y)+εu1 (x,y)+ε
2u2 (x,y)+ε

3u3 (x,y)+O
(
ε

4) ,
εε (x) = ε0 (x,y) +εε1 (x,y) +ε

2ε2 (x,y) +O
(
ε

3) ,
σε (x) = σ0 (x,y)+εσ1 (x,y)+ε

2σ2 (x,y)+O
(
ε

3) .
(3.4)

(3.5)

(3.6)

The quantities un, εn and σn are Y−periodic functions called correctors of the displace-
ment, strain, and stress fields, respectively.
The following formulation for higher-order homogenization is classical without new de-
velopments. Nevertheless, efforts have been made to detail the formulation of hierarchi-
cal periodic problems, up to the third-order. Details of the prescribed body forces and
eigenstrains, used to solve these periodic problems, are provided. Furthermore, since our
objective is to conduct a higher-order relocalization process, the localization tensors at
different orders are also provided.

Second-order periodic problem
(
P2nd

order

)
This problem is defined on the unit-cell Y . Its solution are the displacement corrector u2

and stress σ1. It reads:

Find (u2,σ1) such that:

(
P2nd

order

)
:


divy

(
σ1 (x,y)

)
+L1 (x,y) = 0, ∀y ∈ Y,

σ1 (x,y) = C(y) :
(
εy(u

2)+ηηη
1 (x,y)

)
, ∀y ∈ Y,

u2 (x,y) is Y −periodic,

σ1 (x,y) ·n is Y − antiperiodic,

(3.7a)

(3.7b)

(3.7c)

(3.7d)

with:
εy(u

2) = sym
(
∇yu

2)= 1
2

(
∇yu

2 +
(
∇yu

2)⊤) . (3.8)

The body force L1 (x,y) and the strain field ηηη1 (x,y) read:L1 (x,y) =

(
B0 (y)−

〈
B0 (y)

〉
Y

)
... ∇xE (x) ,

ηηη
1 (x,y) = sym

(
D0 (y) : ∇xE (x)

)
.

(3.9)

The periodic fluctuation u2 takes the following form:

u2 (x,y) = D1 (y)
... ∇xE (x) , (3.10)

where D1 (y) is a fourth-rank tensor, called second-order displacement localization tensor.
It is periodic over unit-cell Y and verifies

〈
D1〉

Y = 0, where ⟨•⟩Y = 1
|Y |

∫
Y • dY indicates

the volume average over unit-cell Y .
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The second-order strain corrector reads:

ε1 (x,y) = A1 (y)
... ∇xE (x) , (3.11)

where A1 (y) is a fifth-rank tensor, called second-order strain localization tensor. We
therefore can define the second-order stress corrector as:

σ1 (x,y) = C(y) : ε1 (x,y) = B1 (y)
... ∇xE (x) , (3.12)

where
B1 (y) = C(y) : A1 (y) , (3.13)

is the fifth-rank stress localization tensor.
The effective, fifth-rank, elasticity tensor C1, which depends on the microstructure, is
deduced from the volume average of the stress localization tensor over the unit-cell:

C1 =
〈
B1 (y)

〉
Y . (3.14)

The tensor C1 is of odd rank and therefore equals to zero in the case of centro-symmetric
unit-cell.

Third-order periodic problem
(
P3rd

order

)
This problem is defined on the unit-cell Y . Its solution are the displacement corrector u3

and stress σ2. It reads:

Find (u3,σ2) such that:

(
P3rd

order

)
:


divy

(
σ2 (x,y)

)
+L2 (x,y) = 0, ∀y ∈ Y,

σ2 (x,y) = C(y) :
(
εy(u

3)+ηηη
2 (x,y)

)
, ∀y ∈ Y,

u3 (x,y) is Y −periodic,

σ2 (x,y) ·n is Y − antiperiodic.

(3.15a)

(3.15b)

(3.15c)

(3.15d)

The body force L2 (x,y) and the strain field ηηη2 (x,y) read:
L2 (x,y) =

(
B1 (y)−

〈
B1 (y)

〉
Y

)
:: ∇x∇xE (x) ,

ηηη
2 (x,y) = sym

(
D1 (y)

... ∇x∇xE (x)

)
.

(3.16)

Similarly to the second-order, a body force and eigenstrain based on the solution to the
previous order are prescribed over the unit-cell.
The periodic fluctuation u3, solution to the third-order problem, reads:

u3 (x,y) = D2 (y) :: ∇x∇xE (x) , (3.17)
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where D2 (y) is a fifth-rank tensor, called third-order displacement localization tensor. It
is periodic over unit-cell Y and verifies

〈
D2〉

Y = 0.
The third-order strain corrector reads:

ε2 (x,y) = A2 (y) :: ∇x∇xE (x) , (3.18)

where A2 (y) is a sixth-rank tensor, called third-order strain localization tensor. We can
therefore define the third-order stress corrector as:

σ2 (x,y) = C(y) : ε2 (x,y) = B2 (y) :: ∇x∇xE (x) , (3.19)

where
B2 (y) = C(y) : A2 (y) , (3.20)

is the third-rank stress localization tensor.
The effective, sixth-rank, elasticity tensor C2 reads:

C2 =
〈
B2 (y)

〉
Y . (3.21)

For both second and third-order problems, the applied body forces and eigenstrains are
related to successive gradients of the macroscopic strain tensor. Hence, the resolution
of these problems introduces a non-local effect on material behavior. When strain gradi-
ents are significant, contributions of higher-order correctors become significant as well.
In contrast, a weaker contribution is expected for quasi-homogeneous deformation cases.
For these reasons, the possible drawback of QBCs approaches highlighted in the intro-
duction, that strain gradient effects persist even when the material is homogeneous, does
not concern periodic homogenization based on asymptotic series expansion.

3.2.2 Proposed micromechanical fields estimates
Fergoug et al. [2022a] have shown that a first-order relocalization may provide an accu-
rate estimate of DNS fields, provided that macroscale strain gradients remain sufficiently
small. Indeed, for a bending case, it was shown that the first-order estimate may not be
accurate anymore [Fergoug et al., 2022a].
We propose a better estimate of DNS fields by conducting a higher-order relocalization
process which takes into account additional terms of the asymptotic expansion, up to the
third-order. This is expected to capture the effect of macroscopic successive gradients,
and thus introduce a length scale in the modeling.
This estimate is built here using:

• The macroscale strain and its successive gradients obtained from the resolution of
the homogeneous problem (Phom). We recall that the homogenized macroscopic
continuum is a scale-independent Cauchy type.

• localization tensors (D0,A0,B0), (D1,A1,B1), and (D2,A2,B2) obtained from the
resolution of

(
P1st

order

)
,
(
P2nd

order

)
, and

(
P3rd

order

)
, respectively.

The proposed estimates in the composite read:
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uest (x,y) = U (x)

+ ε D0 (y) : E (x)

+ ε
2 D1 (y)

... ∇xE (x)

+ ε
3 D2 (y) :: ∇x∇xE (x)


∀x ∈Ω, ∀y ∈ Y, (3.22)

εest (x,y) = A0 (y) : E (x)

+ ε A1 (y)
... ∇xE (x)

+ ε
2 A2 (y) :: ∇x∇xE (x)

 ∀x ∈Ω, ∀y ∈ Y, (3.23)

σest (x,y) = B0 (y) : E (x)

+ ε B1 (y)
... ∇xE (x)

+ ε
2 B2 (y) :: ∇x∇xE (x)

 ∀x ∈Ω, ∀y ∈ Y. (3.24)

3.3 Boundary layer correction

While asymptotic homogenization may provide an accurate estimate of local fields within
the structure based on a relocalization process, the construction of a solution near the
boundaries remains beyond its capability. This is mainly explained by the loss of the pe-
riodicity assumption in the vicinity of boundaries.
Fergoug et al. [2022a] have proposed a new approach to correct first-order estimates, con-
structed by a first-order relocalization process. This approach is based on the idea of
introducing corrective terms that would decay inward the material, far from boundaries.
These terms are obtained from the resolution of various problems over the unit-cell. The
nature of the problems to be solved depends on the actual boundary conditions applied to
the structure. The proposed approach is general, i.e. valid for different BCs: Dirichlet,
Neumann, or mixed.
In this section, an extension of this method is proposed to correct higher-order estimated
fields, (uest ,εest ,σest) defined in Eq. (3.22), (3.23), (3.24), respectively. To do so, sup-
plementary problems over the unit-cell, besides those of a first-order correction, must
be considered: 18 additional problems for second-order correction and 54 for third-order
correction.
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3.3.1 Correctors for Neumann BCs

The homogenized problem (Phom) can be written as:
div(Σ(x))+f (x) = 0, ∀x ∈Ω,

Σ(x) = C0 : E (x) , ∀x ∈Ω,

U (x) = ud, ∀x ∈ Γu,

Σ(x) ·n= F d, ∀x ∈ Γt,

(3.25a)

(3.25b)

(3.25c)

(3.25d)

with the macroscale stress: ⟨σest⟩Y =Σ and strain: ⟨εest⟩Y =E.
It is apparent from problem (3.25d) that the boundary condition on Γt is only satisfied by
the mean value of σest , therefore, in general:

σest ·n ̸= F d. (3.26)

Corrective term σbl is introduced, whose sum with the estimated stress field σest satisfies
exactly the Neumann boundary condition at each microscopic point, then:(

σest +σbl
)
·n= F d. (3.27)

We propose to compute σbl by considering auxiliary problems on the unit-cell, subjected
to characteristic loads Fi with i ∈ {1,2,3} where the Neumann boundary condition is
applied. The opposite surface is fixed, and other remaining surfaces are subjected to
periodicity conditions (see [Fergoug et al., 2022a] for more details). The expression of
characteristic loads depends on the order of the boundary correction:

• First-order corrective load:

F0
ikl =−B0

i jkl n j +
1
|Y |

∫
Y

B0
i jkl n j dY. (3.28)

B0
i jkl are components of the first-order stress localization tensor B0 and kl =

{11,22,33,23,31,12}6. Therefore, 6 loads are applied successively over the unit-cell.

• Second-order corrective load:

F1
iklm =−B1

i jklm n j +
1
|Y |

∫
Y

B1
i jklm n j dY. (3.29)

B1
i jklm are components of the second-order stress localization tensor B1 and klm =

{111,211,311, ...,112,212,312}18. Therefore, 18 loads are applied successively over the
unit-cell.

• Third-order corrective load:
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F2
iklmn =−B2

i jklmn n j +
1
|Y |

∫
Y

B2
i jklmn n j dY. (3.30)

B2
i jklmn are components of the third-order stress localization tensor B2 and klmn =

{1111,2111,3111, ...,1312,2312,3312}54. Therefore, 54 loads are applied successively
over the unit-cell.

Note that n is the normal direction of Γt. For instance, the normal vector n will be
equal to 1√

2

(
1 1 0

)⊤ in the case of a macroscopic boundary that has a 45◦ direction.
The resulting displacement, strain, and stress fields obtained for each loading case pro-
vide a component of first, second, or third order boundary layer displacement, strain, and
stress localization tensors (D0,bl,A0,bl,B0,bl), (D1,bl,A1,bl,B1,bl), and (D2,bl,A2,bl,B2,bl),
respectively.
Therefore, the boundary layer correctors read:

ubl (x,y) = εD0,bl (y) : E (x)

+ ε
2 D1,bl (y)

... ∇xE (x)

+ ε
3 D2,bl (y) :: ∇x∇xE (x)

 ∀x ∈ Γt, ∀y ∈ Y, (3.31)

εbl (x,y) = A0,bl (y) : E (x)

+ ε A1,bl (y)
... ∇xE (x)

+ ε
2 A2,bl (y) :: ∇x∇xE (x)

 ∀x ∈ Γt, ∀y ∈ Y, (3.32)

σbl (x,y) = B0,bl (y) : E (x)

+ ε B1,bl (y)
... ∇xE (x)

+ ε
2 B2,bl (y) :: ∇x∇xE (x)

 ∀x ∈ Γt, ∀y ∈ Y. (3.33)

As a result, the stress field σcor

σcor = σest +σbl, (3.34)

satisfies the Neumann BC.

3.3.2 Correctors for Dirichlet BCs

It is clear from (3.25c) that the homogenized displacement field U verifies the Dirichlet
BC, i.e. U = ud on Γu. Therefore, uest defined in Eq. (3.22) does not necessarily satisfy
this BC. Therefore, a correction is needed that verifies:

ucor (x,y) =U (x)+
(
v (x,y)+ubl (x,y)

)
, (3.35)

where the periodic fluctuation v reads:

v = εu1 (x,y)+ ε
2u2 (x,y)+ ε

3u3 (x,y) , (3.36)
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Chapter 3. Higher-order asymptotic homogenization with boundary layer correction

then
v =ε D0 (y) : E (x)

+ ε
2 D1 (y)

...∇xE (x)

+ ε
3 D2 (y) :: ∇x∇xE (x) .

(3.37)

The correction ubl must verify:

ubl (x,y) =−v (x,y) , ∀x ∈ Γu, ∀y ∈ Y. (3.38)

Similarly to the Neumann boundary case, several auxiliary problems are consid-
ered providing boundary layer correctors. In this case, corrective displacements ρi
with i ∈ {1,2,3} are applied to the unit-cell and defined as:

• First-order corrective displacement:

ρ
0
ikl =−D0

ikl, (3.39)

with kl = {11,22,33,23,31,12}6 and D0
ikl are components of the first-order displacement

localization tensor D0.

• Second-order corrective displacement:

ρ
1
iklm =−D1

iklm, (3.40)

with klm = {111,211,311, ...,112,212,312}18 and D1
iklm are components of the second-

order displacement localization tensor D1.

• Third-order corrective displacement:

ρ
2
iklmn =−D2

iklmn, (3.41)

with klmn = {1111,2111,3111, ...,1312,2312,3312}54 and D2
iklmn are components of

the third-order displacement localization tensor D2.

The corrective boundary layer fields are obtained by conducting the same analyses defined
in Eq. (3.31), (3.32), and (3.33).

Remark 1 We recall that in order to compute boundary layer localization tensors, for
Neumann boundary conditions, at different orders: (D0,bl,A0,bl,B0,bl), (D1,bl,A1,bl,B1,bl),
and (D2,bl,A2,bl,B2,bl), auxiliary problems are solved over the unit-cell. In this case, the
loads F0

ikl , F1
iklm and F2

iklmn defined in Eq. (3.28), (3.29), and (3.30), are applied on the
unit-cell. Similarly for Dirichlet boundary conditions, displacement fields ρ0

ikl , ρ1
iklm, and

ρ2
iklmn, defined in Eq. (3.39), (3.40), and (3.41), are applied on the unit-cell. Details con-

cerning the formulation of auxiliary problems, at the first-order, are provided in Fergoug
et al. [2022a], and are omitted here for higher-orders for the sake of conciseness.
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3.4 Numerical implementation

Remark 2 For mixed BCs, the correction is derived by applying both characteristic
load Fi and displacement ρi. The correction to be ultimately applied depends on the
actual (Neumann or Dirichlet) BC applied in this specific direction. For more details, the
reader is referred to Fergoug et al. [2022a].

3.4 Numerical implementation

The objective of the relocalization process is to compute estimated fields (uest ,εest ,σest)
defined in Eq. (3.22), (3.23), (3.24), respectively. To do so, three hierarchical sets of elas-
ticity problems are solved over the unit-cell, with applied Periodic Boundary Conditions
(PBC):

• First-order problem
(
P1st

order

)
: After discretizing the unit-cell domain, six linearly

independent unit strain loads are applied (for 3D cases). By using the modified Voigt
notations, the macroscale strain field reads:

E =
(

E11,E22,E33,
√

2E23,
√

2E31,
√

2E12

)
6
. (3.42)

The solutions to these problems are first-order displacement, strain, and stress localization
tensors: D0, A0, and B0, respectively. The homogenized elasticity tensor reads: C0 =〈
B0 (y)

〉
Y .

• Second-order problem
(
P2nd

order

)
: A body force L1 and eigenstrain η1 defined in

Eq. (3.9), which depend on the resolution of
(
P1st

order

)
, are prescribed over the unit-cell.

Since these enforcing terms are connected with the gradient of strain E, then one should
apply 18 loads on the unit-cell. Indeed, ∇xE is symmetric according to its first two
indices

(
Ei j,k = E ji,k

)
, then it is possible to represent it by a vector of dimension 18 as:

∇xE =
(

E11,k,E22,k,E33,k,
√

2E23,k,
√

2E31,k,
√

2E12,k

)
18
, with k = 1,2,3. (3.43)

The solutions to these problems are second-order displacement, strain, and stress local-
ization tensors: D1, A1, and B1, respectively.

• Third-order problem
(
P3rd

order

)
: A body force L2 and eigenstrain η2 defined in

Eq. (3.16), which depend on the resolution of
(
P2nd

order

)
, are prescribed over the unit-

cell. Since these enforcing terms are connected with the second gradient of strain E, one
should apply 54 loads on the unit-cell. Indeed, ∇x∇xE can be represented by a vector of
dimension 54:

∇x∇xE =
(

E11,k j,E22,k j,E33,k j,
√

2E23,k j,
√

2E31,k j,
√

2E12,k j

)
54
, with k, j = 1,2,3. (3.44)

The solutions to these problems are third-order displacement, strain, and stress localiza-
tion tensors: D2, A2, and B2, respectively.
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Chapter 3. Higher-order asymptotic homogenization with boundary layer correction

Remark 3 From a practical standpoint, solving
(
P1st

order

)
,
(
P2nd

order

)
and

(
P3rd

order

)
cor-

responds to subjecting the unit-cell to 6, 18 or 54 gradients of various order of the strain
field.

Remark 4 Localization tensors, of various orders, are functions of microstructural char-
acteristics only, and are independent of the homogenized problem. Thus, these quantities
are computed only once for each type of unit-cell.

After discretizing the macroscale mesh, one can solve the homogenized problem (Phom)
whose solution fields are (U ,E,Σ). Successive macroscale strain gradients are used to
compute estimated fields defined in Eq. (3.22), (3.23), (3.24).

Remark 5 Successive gradients of the macroscale strain, involved in higher-order re-
localization processes, are resolved numerically. For instance, the gradient of the
macroscale strain field, ∇xE, has been evaluated by extrapolating corresponding strain
values between integration points to the nodes and then appropriately differentiating them
using the usual finite element shape functions. The same procedure is used to evaluate the
second gradient of the macroscale strain field ∇x∇xE. Sufficient order of finite element
shape functions is required.

To eliminate mesh sensitivity and facilitate the computation of error estimates, we con-
sider that the macroscale mesh is identical to the microscale one, but endowed with ho-
mogenized properties. If not, a mapping of the homogeneous fields on the microscale
mesh could be considered as shown by Kruch [2007]. An intermediate step is then con-
sidered to locate each unit-cell on the macroscale mesh as in Fergoug et al. [2022a].
The relocalization process improvement proposed by Kruch and Forest [1998] is consid-
ered. Estimated fields, in a given point of the unit-cell, are determined using localization
tensors combined with the value of the current macroscale strain or its gradients at this
point, and not its average over the unit-cell.
Once homogenization problems are solved, localization tensors are used to construct cor-
rective loads and displacements for the boundary layer correction. Afterwards, boundary
layer localization tensors (D0,bl,A0,bl,B0,bl), (D1,bl,A1,bl,B1,bl) and (D2,bl,A2,bl,B2,bl)
are computed and used to compute boundary layer correctors defined in Eq. (3.31), (3.32),
and (3.33).
Higher-order relocalization and boundary layer correction processes are summarized in
Fig. 3.2.
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Figure 3.2: Workflow describing higher-order relocalization and boundary layer correc-
tion processes.
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Chapter 3. Higher-order asymptotic homogenization with boundary layer correction

3.5 Numerical examples

To demonstrate the effectiveness of the proposed relocalization and boundary layer cor-
rection processes, two numerical examples of composite structures in linear elasticity are
presented.
In these examples, we will compare the following fields:

• Microscale fields obtained by solving problem
(
Pre f

)
using DNS, which will be

considered as our reference, indexed ref.

• Homogeneous fields obtained by solving problem (Phom), indexed hom.

• Proposed first, second, and third-order estimates of microscale fields obtained by
the first, second, and third-order relocalization processes, indexed est1, est2, and
est3, respectively.

• Proposed first, second, and third-order boundary layer corrections of estimated
fields indexed cor1, cor2, and cor3, respectively.

We will also quantify the difference between the reference and estimated fields by com-
puting the modeling error. For this purpose, the following local (element-wise) error in
energy norm is defined:

∥e∥E(Ωe) = ∥u
re f (x)−uk (x)∥E(Ωe)

=

(∫
Ωe

∇
s
(
ure f (x)−uk (x)

)
: C : ∇

s
(
ure f (x)−uk (x)

)
dΩe

) 1
2

,
(3.45)

where Ωe denotes the domain of an element and uk (x) denotes the estimated displace-
ment field whose error is measured. The global error ∥e∥E(Ω) is then defined as:

∥e∥2
E(Ω) = ∑

e
∥e∥2

E(Ωe)
. (3.46)

3.5.1 Laminated composite in bending
We consider a plane strain elasticity problem of a laminated composite made of two
layers as presented in Fig. 3.3. The size of the structure is L = 8 mm, H = 5 mm
and W = 1 mm. The two layers are assumed to be isotropic linear elastic with coeffi-
cients (Em = 500 MPa,νm = 0.3) and (E f = 5000,ν f = 0.3).

In this example, we consider that ε = 1. Therefore, mechanical fields depend only
on x, representing both microscale and macroscale coordinates. The finite element mesh
describing the unit-cell is composed of 1600 fifteen-node wedge elements as shown in
Fig. 3.3. The mesh describing the entire structure including all heterogeneities is com-
posed of 64 000 elements, corresponding to 867 909 degrees of freedom.

Remark 6 In order to correct the mixed boundary Γs, it is necessary to apply both the
Neumann and Dirichlet boundary corrections.
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3.5.1 Laminated composite in bending

s

(E , ν )
f f

(E , ν )
m m

(a) Structure geometry (b) Unit-cell domain (c) Unit-cell mesh

Figure 3.3: Illustration of the laminated composite subjected to bending. The structure is
sliding on Γs and a surface bending is applied on Γt . Other boundaries are kept free of
forces. Results will be plotted along AB and CD lines. Boundary layer correctors will be
plotted for the boundary cell with a dashed line.

Comparison of stress fields

Comparison of resulting stress fields along AB and CD lines are presented in Fig. 3.4.
First-order estimates, i.e. σ est1

11 and σ est1
12 , obtained by the first-order relocalization pro-

cess, are inaccurate in the inner domain of the structure. This is mainly explained by high
macroscale strain gradients induced by the bending and neglected by classical first-order
relocalization.
We propose to conduct a higher-order relocalization process, up to the third-order, to in-
troduce the effects of the macroscale strain gradients. As noticed in Fig. 3.6, second-order
estimates, i.e. σ est2

11 and σ est2
12 , and third-order estimates, i.e. σ est3

11 and σ est3
12 , perfectly co-

incide with the reference inside the structure.

Remark 7 In this example, the contribution of third-order relocalization is negligible
compared to second-order relocalization. This is explained by the low second gradient of
the macroscale strain field, ∇x∇xE, induced by the bending. For the sake of conciseness,
upcoming analyses will be restricted up to the second-order.

The estimated fields lose their accuracy near the boundaries. This is due to the loss of
periodicity in the vicinity of these regions.
We propose a boundary layer correction method based on the computation of corrective
terms, that decay toward the interior of the body. Figures 3.5a and 3.5b show first and
second-order boundary layer correctors σbl1

11 , and σbl2
11 , respectively. The decay of both

boundary corrections takes place over one unit-cell. These corrective terms are added to
the estimated fields obtained from the relocalization processes.

First-order (cor1) and second-order (cor2) corrected fields plotted along AB and CD
lines are presented in Fig. 3.6.

Remark 8 Boundary layer correctors are introduced at each order. Thus, for in-
stance: σ cor1

11 = σ est1
11 +σbl1

11 , and σ cor2
11 = σ cor1

11 +σbl2
11 .

First-order corrected fields are still inaccurate on the boundaries, contrarily to second-
order corrected fields which are in good agreement with the reference fields. In particu-
lar, σ cor2

11 verifies the applied Neumann condition at x1 = 8 mm similarly to the reference
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Figure 3.4: Results of the homogenized (hom) and reference (re f ) fields compared with the
first-order (est1), second-order (est2), and third-order (est3) estimates for the laminated
composite in bending.

and the homogeneous counterparts, but it is not the case for σ est1
11 .

We also notice that high stresses are developed inside the structure and in the vicinity
of the sliding boundary Γs as shown in figure 3.6, which may result in underestimat-
ing failure criteria if the design is conducted without the higher-order relocalization and
boundary layer correction.
A more precise quantification of the error is provided in the next subsection.
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3.5.1 Laminated composite in bending

(a) σbl1
11 (MPa) (b) σbl2

11 (MPa)

Figure 3.5: First-order (σbl1
11 ) and second-order (σbl2

11 ) boundary layer correctors for the
boundary cell with a dashed line in Fig. 3.3. The decay inward (left side of the unit-cell)
of both boundary corrections takes place over one unit-cell.

Modeling error

Local relative modeling errors between the reference and first-order relocalized fields, be-
fore and after the boundary layer correction, are shown in Fig. 3.7a and 3.7b, respectively.
After the boundary layer correction, the error is reduced on the boundaries, yet still spread
inside the structure. For second-order fields, the error before the correction (Fig. 3.7c),
is negligible in the inner domain of the structure but significant on the boundaries, espe-
cially in the vicinity of the sliding boundary Γs. After the correction, the modeling error
is drastically reduced but remains concentrated at the corners, as shown in Fig. 3.7d.

Remark 9 A particular treatment was considered for corner cells correction, as ex-
plained by Fergoug et al. [2022a]. This correction improves the overall result, yet leaves
some residual errors because of the loss of periodicity conditions. Indeed, as shown
in Fergoug et al. [2022a], Periodic Boundary Conditions (PBC) are not applied for cor-
ner cells, contrary to other boundaries where PBC are considered. The corner cells
correction can be improved by considering a boundary layer correction applied to four
unit-cells instead of one, as shown in appendix D.2.

Table 3.1 summarizes the global relative modeling error for different fields. Second-order
relocalization combined with the boundary layer correction allows to drastically reduce
the global modeling error by a factor of 3 to 4.

Remark 10 The use of a Cauchy continuum on the macroscale can lead to errors in
the relocalization process for some microstructures and loading conditions as shown in
appendix B.3. In these cases, a higher continuum should be considered at the macroscale.
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hom ref cor1 cor2
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Figure 3.6: Results of the homogenized (hom) and reference (re f ) fields compared with
the corrected first-order (cor1), and second-order (cor2) estimates for the laminated com-
posite in bending.

Table 3.1: Comparison of the global relative modeling error for different fields.

Global modeling k = k = k = k =
error est1 cor1 est2 cor2

∥ure f−uk∥E(Ω)

∥ure f ∥E(Ω)
16.6% 10.9% 14.4% 4.7%
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3.5.1 Laminated composite in bending

(a)
∥ure f−uest1∥2

E(Ωe)

∥ure f ∥2
E(Ω)

(b)
∥ure f−ucor1∥2

E(Ωe)

∥ure f ∥2
E(Ω)

(c)
∥ure f−uest2∥2
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(d)
∥ure f−ucor2∥2

E(Ωe)

∥ure f ∥2
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Figure 3.7: Comparison of the local relative modeling error results for the laminated
composite in bending. The modeling error is drastically reduced by increasing the order
of the relocalization and boundary layer correction.
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3.5.2 Matrix-inclusion composite subjected to prescribed body forces
We consider the in-plane linear elasticity problem of a matrix-inclusion composite, as de-
picted in Fig. 3.8, subjected to body forces ( f1 and f2) in the two space directions, with Γu
fixed. The size of the structure is L = 1 mm and H = 1 mm with fiber volume fraction
of 0.25; matrix and inclusions are assumed to be isotropic linear elastic with coefficients
(Em = 1 MPa, νm = 1/3) and (E f = 100, ν f = 1/3), respectively. In this example, the
scale ratio ε = 1/3. The finite element mesh describing the unit-cell is composed of 6300
twenty-node brick elements as shown in Fig. 3.8. The mesh describing the entire structure
including all heterogeneities is composed of 56 700 elements, corresponding to 1 193 409
degrees of freedom.
Body forces are prescribed in the form:

(E , ν )
m m

(E , ν )
f f

u

(a) Structure geometry

y

y

(b) Unit-cell domain (c) Unit-cell mesh

Figure 3.8: Illustration of matrix-inclusion composite. The structure is fixed on Γu, body
forces f1 and f2 are applied in the two directions of space. Results will be plotted along
AB and CD lines. Boundary layer correctors will be plotted for the boundary cell with a
dashed line.


f1=sin(πx1)sin(πx2)−

C0
1122 +C0

1212

C0
2222 +C0

1212
cos(πx1)cos(πx2),

f2=sin(πx1)sin(πx2)−
C0

2211 +C0
1212

C0
1111 +C0

1212
cos(πx1)cos(πx2).

(3.47a)

(3.47b)

The choice of the applied body forces f1 and f2 is justified by the resulting simple analyt-
ical solutions obtained for the homogenized problem (Phom). Indeed, the homogenized
displacement field is:

Ui=Xi sin(πx1)sin(πx2),

X1=
1

π2
(
C0

1111 +C0
1212

) , X2 =
1

π2
(
C0

2222 +C0
1212

) ,
(3.48a)

(3.48b)

where C0
i jkl are the components of the effective tensor C0, and the homogenized material

is orthotropic.

Remark 11 Successive gradients of the macroscale strain are computed analytically.
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3.5.2 Matrix-inclusion composite subjected to prescribed body forces

Therefore, numerical errors resulting from higher-order spatial derivatives of E are
avoided. In the general case, E and its successive gradients must be obtained numer-
ically, as in the previous example 3.5.1.

This problem 3.5.2 has also been treated by He and Pindera [2020b], where third-order
relocalization is performed using a finite volume method. The boundary layer correc-
tion is conducted by applying the third-order relocalized displacement field, defined in
Eq. 3.22, in the inner domain of the fully detailed, i.e. using DNS, boundary. This may be
computationally cumbersome when the boundary domain is large. We propose an alter-
native boundary layer method, where corrective terms are obtained by the resolution of
independent auxiliary problems over a single unit-cell, and then added to the relocalized
fields as explained in section 3.3. The nature of the problems to be solved depends on
the actual boundary conditions applied locally to the structure [Fergoug et al., 2022a]. A
comparative study is performed in appendix B.2.

Comparison of stress fields

Comparisons of stress fields, before the boundary layer correction, along the AB and CD
lines are presented in Fig. 3.9. Second and third-order estimates perfectly coincide with
reference fields in the inner domain of the composite but are inaccurate near the bound-
aries. The first-order estimate, however, provides a poor approximation of the whole
plotted domain. It is noticed, in Fig. 3.9, that third-order estimates provide slightly more
accurate solutions than second-order estimates, especially near the boundaries, albeit at a
higher computation cost.
First (σbl1

11 ), second (σbl2
11 ) and third-order (σbl3

11 ) boundary layer correctors are shown in
figures 3.10a, 3.10b, and 3.10b, respectively. It is observed that the decay of the correc-
tion takes place over one unit-cell and becomes less pronounced by increasing the order
of the correction.
Comparisons of stress fields, after the boundary layer correction, along the AB and CD

lines are presented in Fig. 3.11. It is shown that corrected fields, near the boundaries, get
closer to the reference by increasing the order of the correction.

Modeling error

The local relative modeling error, without the boundary layer correction, is presented in
figures 3.12a, 3.12b, and 3.12c. By increasing the order of the relocalization, the error is
drastically reduced in the inner domain of the composite, but remains concentrated near
the fixed boundary Γu.
The local relative modeling error, after the boundary layer correction, is presented in fig-
ures 3.12d, 3.12e, and 3.12f. The modeling error significantly decreases near the bound-
aries but remains mainly concentrated at the corners.
Table 3.2 summarizes the global relative modeling error for different fields. The global
modeling error is reduced by a factor of 3 to 4 for third-order relocalization combined
with boundary layer correction.
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Figure 3.9: Results of the reference (re f ) field compared with the first-order (est1),
second-order (est2), and third-order (est3) estimates.

Table 3.2: Comparison of the global relative modeling error for different fields.

Global modeling k = k = k = k = k = k =
error est1 cor1 est2 cor2 est3 cor3

∥ure f−uk∥E(Ω)

∥ure f ∥E(Ω)
16.4% 12.7% 12.6% 6.1% 12.3% 5.1%
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(a) σbl1
11 (MPa) (b) σbl2

11 (MPa) (c) σbl3
11 (MPa)

Figure 3.10: First (σbl1
11 ), second (σbl2

11 ), and third-order (σbl3
11 ) boundary layer correctors

for the boundary cell with a dashed line in Fig. 3.8. The decay inward (upper side of the
unit-cell) of the corrections takes place over one unit-cell, but is less pronounced for the
second and third-order corrections.
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Figure 3.11: Results of the reference (re f ) field compared with the first-order (est1),
second-order (est2), and third-order (est3) estimates.
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3.5.2 Matrix-inclusion composite subjected to prescribed body forces
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Figure 3.12: Comparison of the local relative modeling error results. The error is drasti-
cally reduced by increasing the order of the relocalization and boundary layer correction.
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3.6 Conclusions
In this work, we have proposed a higher-order relocalization process, up to the third-order,
to estimate heterogeneous fields without conducting DNS. The proposed relocalization
captures the effects of the macroscale strain gradients, generally neglected by classical
first-order homogenization. As a result, the range of applicability of asymptotic homog-
enization/relocalization is extended to cases subjected to strong macroscale strain gradi-
ents. My implementation of localization tensors has been verified, up to the third-order,
based on analytical solutions provided by Boutin [1996]. These tensors can be computed
off-line and used for any composite structure involving the same unit-cell.
We have also proposed a general boundary layer correction based on asymptotic homog-
enization, up to the third-order, in order to estimate consistent microscale fields in the
vicinity of the boundaries. Classical asymptotic relocalization is modified at the bound-
aries by adding corrective terms, that decay toward the interior of the structure. These
terms are obtained from the resolution of different problems over the unit-cell. The nature
of the problems to be solved depends on the actual boundary conditions applied locally
to the composite structure. The proposed boundary layer method is valid for different
boundary conditions: Dirichlet, Neumann, or mixed.
The major conclusions that can be drawn from this study are as follows:

• The boundary layer correction decays within one unit-cell. The theoretical work
of Allaire and Amar [1999] provides a mathematical proof of the exponential decay
of the boundary layer correction in a rectangular plate and this for any considered
order. The characteristic decay length may extend over one or more cells. This may
be numerically tested and improved by considering two or three layers of the cell
as done by Dumontet [1986]. This was not necessary for the presented examples.

• First-order estimates may be inaccurate on the boundaries and in the inner domain
of the structure. In contrast, second and third-order estimates are in good agree-
ment with the reference fields inside the structure, but remain inaccurate at the
boundaries.

• By increasing the order of the boundary layer correction, corrected fields progres-
sively converge towards the reference.

• Higher-order relocalization combined with boundary layer correction allows to
drastically reduce the global modeling error by a factor of 3 to 4.

• Second and third-order corrected stress fields capture high stresses developed inside
the structure and near boundary regions. In particular, for the laminated compos-
ite in bending shown in Sec. 3.5.1, σ est1

12 is 3 times smaller, inside the structure,
than σ

re f
12 and 5 times smaller near the sliding boundary. This may result in under-

estimating failure criteria if the design is conducted without higher-order relocal-
ization and boundary layer correction.

The proposed higher-order relocalization and boundary layer correction are applicable
to 3D cases, but only 2D examples were provided for the sake of conciseness. The
suggested methods could be a path toward estimating microscale fields of 3D realistic
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engineering composite structures. This implies the use of irregular structure domains,
coarse macroscale finite element meshes, and locally nonperiodic zones. Early work on
the extension of the asymptotic homogenization method to non-periodic zones has been
investigated in the work of Americo De Almeida [2022] (see appendix D.3), an intern I
supervised for one year.
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Chapter 4

Modeling error estimation & hierarchical
modeling

Abstract
Homogenized models are widely used in multiscale analysis for their computational effi-
ciency, but they often fail to provide sufficient accuracy in regions exhibiting high varia-
tions in the solution fields. One way to address this limitation is to adaptively couple the
homogeneous model with a full field, heterogeneous one in designated zones of interest.
Within the framework of finite-element based higher-order asymptotic homogenization,
this work introduces a modeling error estimator in order to detect regions where refin-
ing the material model is necessary. I also analyze the competition between discretiza-
tion and modeling errors. I finally propose a multiscale enhancement of the classical
displacement-based submodeling technique in order to adequately couple the homoge-
neous and heterogeneous domains. The promise of the proposed methods and the overall
associated strategy is illustrated on various numerical examples of elastic fiber-matrix
composites.

Résumé
Les modèles homogénéisés sont largement utilisés dans l’analyse multi-échelle pour leur
efficacité de calcul, mais ils ne parviennent souvent pas à fournir une précision suffisante
dans les régions présentant de fortes variations dans les champs solution. Une façon de
remédier à cette limitation est de coupler de manière adaptative le modèle homogène avec
un modèle hétérogène dans des zones d’intérêt désignées. Dans le cadre éléments finis
de l’homogénéisation asymptotique d’ordre supérieur, ce travail introduit un estimateur
d’erreur de modélisation afin de détecter les régions où le raffinement du modèle matériel
est nécessaire. J’analyse également la compétition entre les erreurs de discrétisation et
de modélisation. Je propose enfin une amélioration multi-échelle de la technique clas-
sique de zoom structural afin de coupler de manière adéquate les domaines homogènes
et hétérogènes. L’efficacité des méthodes proposées sont illustrées par divers exemples
numériques de composites élastiques à fibres et matrices.
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4.1 Introduction

Analyses of heterogeneous structures are conventionally performed using effective or ho-
mogenized material properties, instead of explicitly taking into account each material
phase and the geometrical arrangements of the microstructure. These effective properties
are usually obtained by homogenization methods, which can be broadly divided into two
main categories: closed-form (or analytical) methods and computational methods.

Asymptotic homogenization, firstly introduced in the theoretical work of Sanchez-
Palencia [1983] and Bensoussan et al. [2011], is one of the most rigorous closed-form
homogenization approaches available in the literature. It is based on the assumption of
spatial periodicity of the microstructure where the unit-cell defines the Representative
Volume Element (RVE) without any ambiguity. This method consists in using asymptotic
expansions of the mechanical fields of the full-scale problem in order to split it into a
decoupled set of microscale unit-cell problems and a macroscale problem. Solving the
former allows one to compute the effective properties of the equivalent homogeneous
medium but also to estimate, by a relocalization process, local fields within the mate-
rial. Asymptotic homogenization, as an engineering tool, has been explored in the semi-
nal works of Kikuchi and coworkers [Guedes and Kikuchi, 1990; Hollister and Kikuchi,
1992; Terada and Kikuchi, 1995] where the finite element method has been used to solve
the unit-cell problems to compute equivalent material properties, as well as local fields
estimation. Such multiscale computational analyses have been conducted by Ghosh et al.
[1995, 2001] where the asymptotic homogenization theory has been combined with the
Voronoi cell finite element method (VCFEM) to study elastic and elasto-plastic material
behavior. Fish and coworkers [Fish et al., 1994b; Fish and Belsky, 1995; Fish and Yu,
2001] have used asymptotic homogenization to develop a multigrid method for the analy-
sis of periodic materials and to account for the damage phenomena occurring at different
scales. Recent works resort to asymptotic homogenization in a wide range of engineer-
ing problems, e.g. to study metamaterial behavior [Yang et al., 2019, 2020; Abali and
Barchiesi, 2020; Abali et al., 2022; Yang et al., 2022], to optimize structures [Suzuki
and Kikuchi, 1991; Sigmund, 1995; Hassani and Hinton, 2012], and to evaluate localized
stiffness degradation [Visrolia and Meo, 2013]. On the other hand, computational homog-
enization methods [Moulinec and Suquet, 1998; Feyel and Chaboche, 2000; Kouznetsova
et al., 2001, 2002; Miehe and Koch, 2002] do not lead to closed-form overall constitutive
equations but retrieve the averaged macroscale response at every macroscopic point of in-
terest by entailing the solution of a microscale boundary value problem attributed to that
point. The reader is referred to Kanouté et al. [2009] for a thorough review of homoge-
nization methods. In this chapter, we use asymptotic homogenization for multiscale linear
behavior analyses. Therefore, only periodic heterogeneous structures are considered.

Conventional or first-order asymptotic homogenization, which considers only the first
term in the asymptotic expansion, works well for cases with a complete separation of
scales. This assumption is only valid when the scale of the microstructure or microstruc-
tural fluctuations are much smaller than the characteristic dimensions of the macrostruc-
ture. For weak separation of scales, however, it generally becomes inaccurate [Ameen
et al., 2018]. One solution to overcome this limitation is to keep higher-order terms in
the series expansion. Indeed, Boutin [1996] shows that higher-order terms in asymptotic
homogenization introduce successive gradients of macroscale strain and tensors charac-
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teristic of the microstructure, which result in introducing a non-local effect in the material
behavior. Therefore, asymptotic homogenization may offer a better estimate of local
fields, even in cases of a weak separation of scales, by a higher-order relocalization pro-
cess. Nevertheless, the construction of a solution at the vicinity of the boundaries remains
beyond the capabilities of this method due to the loss of periodicity assumption in these
regions, unless a boundary layer correction is applied. In Fergoug et al. [2022b] a FEM
numerical framework has been proposed to perform a higher-order relocalization pro-
cess associated with a general boundary layer correction method. This work is limited to
the assumption that both the heterogeneous microscale mesh, constructed by translating
the unit-cell, and the overall macroscale mesh are identical, which can be computation-
ally prohibitive. In the present chapter, we propose an extension of the aforementioned
work to deal with different coarser macroscale meshes, requiring less computation time
than Direct Numerical Simulations (DNS, i.e. when the geometry of the microstructure
is explicitly described in simulations). As a result, local fields corrected at the bound-
aries needed, for example, to predict damage initiation, will be estimated on the coarse
macroscale mesh.

Numerical simulations of heterogeneous structures depend on several factors such as
the characteristics of the microstructure, the domain of interest, and the applied loads as
well as the targeted accuracy and the objective of the simulation. Consequently to avoid
a DNS, there is a need to adaptively select the appropriate scale for each domain of in-
terest. Toward this end, the concept of hierarchical modeling was introduced to couple
a multilevel material model in the same simulation. This process of adaptivity is usually
steered by criteria used to detect areas where refining the material model is necessary.
These criteria can be physically oriented, for example, based on the level of stress, strain
or damage [Ghosh et al., 2001] or mathematically oriented by using the macroscale dis-
cretization error or the modeling error [Zohdi et al., 1996; Fish et al., 1994a; Ghosh et al.,
2007; Temizer and Wriggers, 2011; Vernerey and Kabiri, 2012]. The non-exhaustive rep-
resentative works that have treated the subject of adaptivity are as follows:

• Zohdi et al. [1996] and Oden and Zohdi [1997] have initiated a hierarchical mod-
eling strategy based on the estimation of a global modeling error, which quantifies
the error induced by replacing the heterogeneous material with a homogeneous one.
Based on the observation that global estimates can be insensitive to local features
such as stress concentrations or average strains, Oden and Vemaganti [1999, 2000]
have proposed an extension of the modeling error to quantities of interest. This
error estimation and adaptivity process have been extended to nonlinear problems
by Oden et al. [2001]. A disadvantage of this class of methods is that it needs
access to the full microscale material fluctuations, and the modeling error estima-
tion is thus conducted through an integral over the corresponding heterogeneous
domain, which can be computationally prohibitive.

• Fish and coworkers [Fish and Markolefas, 1993; Fish et al., 1994a; Fish and Belsky,
1995; Fish and Shek, 2000] have proposed a coupling strategy of the macroscale
with the microscale of an underlying periodic microstructure at a region of interest
identified by multiscale reduction error estimators/indicators derived from asymp-
totic homogenization. The limitation of this method is that it does not take into
account the boundary layer effect.
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• Gosh and coworkers [Ghosh et al., 2001; Raghavan and Ghosh, 2004; Raghavan
et al., 2004; Ghosh et al., 2007] have suggested an adaptive multi-level methodology
to create a hierarchy of computational sub-domains with a varying resolution, from
homogenized formulations to explicit microstructural modeling. The macroscale
computations are done by conventional FEM models while the VCFEM is used for
micromechanical analysis. The switching criteria from one level to another can be
associated with the gradients of macroscale variables (e.g. stress, strain, or strain
energy) or the evolution of microscale damage. This method has addressed damage
evolution in composites accurately and efficiently.

In this chapter, we present a novel modeling error estimation based on a higher-order
relocalization process derived from asymptotic homogenization. The main idea of the
proposed estimation is to quantify the terms neglected by conventional first-order homog-
enization, necessary to capture the gradients of the macroscale field in case of a weak
separation of scales. Contrary to Fish et al. [1994b], our estimation quantifies the mod-
eling error that occurs on the boundaries. Indeed, a rapid change of gradients generally
occurs near the boundaries, which, ultimately, may be responsible for the failure initiation
of the structure [Pipes et al., 1973].
The adaptivity process generally entails minimizing two types of errors, viz. the dis-
cretization error, inherent to finite element approximation, and the modeling error, as
discussed by Fish et al. [1994a] and Zohdi et al. [1996]. To this end, we also study the
competition of both discretization and modeling errors for different macroscale meshes
and material phase ratios.

Finally, hierarchical modeling raises the challenge of adequately coupling the
macroscale and the microscale domains. Several coupling techniques have been pro-
posed in the literature such as the submodeling technique, which consists in perform-
ing two independent analyses, one on the macroscale global model with a coarser mesh,
and the other on the microscale local model with a refined mesh (submodel), where the
displacement obtained with the global model is prescribed to the boundary of the local
one. It will be shown later that this technique generally leads, in the context of mul-
tiscale analyses, to high modeling errors on the interfaces. Other coupling techniques
that differ according to the physics of the problem exist, such as the volume coupling
of Arlequin method [Ben Dhia, 1998], and surface coupling techniques such as the mor-
tar coupling [Bernardi et al., 1993; Belgacem, 1999] or the Nitsche coupling [Hansbo and
Hansbo, 2002], or more recently a second-order homogenization based coupling [Wanger-
mez et al., 2020]. In this chapter, we propose a multiscale enhancement of the classical
submodeling technique where, instead of applying the macroscale displacement on the
local domain, a higher-order relocalized displacement field corrected at the boundaries
is applied. This is expected to give better results since relocalized fields provide a good
estimation of local microscale fields, as will be shown later in this chapter.

Regarding the aforementioned aspects, the present work proposes the following main
novelties:

• A higher-order relocalization process with boundary layer correction conducted on
macroscale coarse meshes to provide an estimation of local microscale fields. A
modeling error, based on this estimation, is proposed.
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• A multiscale enhanced submodeling technique based on the relocalized fields cor-
rected at the boundaries to adequately couple the macroscale with the microscale
domains.

To the best of our knowledge, such aspects have not been proposed in the literature yet.
The outline of this chapter is as follows. In Sec. 4.2, we first present the studied

boundary value problem and briefly recall the relocalization process and the boundary
layer correction method. In Sec. 4.3, we detail the proposed procedure to conduct this
relocalization process on coarse macroscale meshes. The suggested modeling error es-
timation is elaborated in Sec. 4.4, and the multiscale submodeling technique is depicted
in Sec. 4.5. Each section is accompanied by numerical example to demonstrate the ef-
ficiency of the suggested approaches. The analysis is limited to linear elastic material
behavior under the small strain assumption.

4.2 Preliminaries

Asymptotic homogenization can be used to determine the effective properties of periodic
materials from the knowledge of local mechanical properties over one unit-cell, repre-
sentative of the microstructure. This method is also able to estimate, by a relocalization
process, local fields within a structure without conducting DNS. Nevertheless, the solution
provided by the relocalization process is inaccurate in the vicinity of the boundaries due
to the loss of periodicity assumption in these regions, unless a boundary layer correction
is applied.
In this section, we present the studied boundary value problem and briefly recall the re-
localization procedure and the boundary layer correction method to improve the accuracy
of estimated fields on the boundaries. We refer the reader to Fergoug et al. [2022a,b] for
more details.

4.2.1 Statement of the boundary value problem
A heterogeneous periodic body is considered as a linearly elastic solid in static equi-
librium, whose heterogeneity arises from the distribution of separate phases at the mi-
croscale. We define the bounded domain Ω, shown in figure 4.1a, occupied by this
heterogeneous body and corresponding to the microscale. The boundary ∂Ω consists
of a portion Γu, on which the displacements are prescribed to the value ud = 0, a por-
tion Γt on which a pressure distribution P(x) is applied, and the last portion Γs on which
the structure is sliding freely. The size of the structure is L = 12 mm, H = 6 mm,
and W = 1 mm, with a fiber volume fraction of 25%. The matrix and the inclusions
are assumed to be isotropic elastic with coefficients (Em = 500 MPa, νm = 0.3) and
(E f , ν f = 0.3), respectively, where the value of E f will be varied across the examples.
This boundary value problem will be solved under the plane strain conditions.
Due to its heterogeneous nature, the mechanical behavior of the body Ω is assumed to
depend on two scales:

• Macroscale with materially homogeneous domain Ω, having L as a characteris-
tic length and global coordinates x ∈ Ω, and endowed with homogenized proper-
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Figure 4.1: Illustration of the studied fiber-matrix composite. The corresponding mi-
croscale mesh is built by repeating the unit-cell Y characterized by a heterogeneous be-
havior C(y) over the three space directions. The structure is sliding on Γs, fixed on Γu
and a pressure distribution P(x) is applied on Γt .

ties C0 (x), obtained from the resolution of the first-order homogenization problem
over the unit-cell;

• Microscale, having l as a characteristic length and with local coordinates y ∈ Y ,
where Y is the unit-cell domain, and endowed with heterogeneous properties C(y).

The coarse and fine scales are related by the parameter ε such that:

ε =
l
L
, y =

x

ε
. (4.1)

The finite element mesh describing the unit-cell is composed of 1,008 twenty-node brick
elements as shown in figure 4.1c. Therefore the microscale mesh describing the entire
structure including all heterogeneities is composed of 72,576 (1,008×6×12) elements,
corresponding to 1,527,345 degrees of freedom.
In section 4.2, we consider that the macroscale mesh is identical to the microscale one,
but endowed with homogenized properties C0 (x).

4.2.2 Relocalization procedure
In Fergoug et al. [2022b], an estimation of heterogeneous fields has been proposed by
conducting a higher-order relocalization, up to the third-order. The obtained estimates are
expected to capture the effect of macroscale successive gradients neglected by a conven-
tional first-order relocalization. The main aspects of the estimation are briefly recalled
here and the reader is referred to Fergoug et al. [2022b] for more details.
The proposed estimation is constructed by solving the following problems:

• Homogeneous problem (Phom) with effective behavior C0 (x). Solving this
problem enables to compute the macroscale strain and its successive gradi-
ents (E (x) ,∇xE (x) ,∇x∇xE (x)). The gradient of the macroscale strain
field, ∇xE, is numerically evaluated by extrapolating corresponding strain values
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between integration points to the nodes and are averaged for each element (at the
nodes). Strain values are then appropriately differentiated using the finite element
symmetric gradient operator, usually denoted B. A similar procedure is used to
compute the second gradient of the macroscale strain field ∇x∇xE.

• First
(
P1st

order

)
, second

(
P2nd

order

)
, and third-order

(
P3rd

order

)
homogenization

problems over the unit-cell. First-, second-, and third-order localization tensors
(D0,A0,B0), (D1,A1,B1), and (D2,A2,B2) are obtained from the resolution of these
problems, respectively.

The proposed estimates read:

uest (x,y) = U (x)

+ ε D0 (y) : E (x)

+ ε
2 D1 (y)

... ∇xE (x)

+ ε
3 D2 (y) :: ∇x∇xE (x)


∀x ∈Ω, ∀y ∈ Y, (4.2)

εest (x,y) = A0 (y) : E (x)

+ ε A1 (y)
... ∇xE (x)

+ ε
2 A2 (y) :: ∇x∇xE (x)

 ∀x ∈Ω, ∀y ∈ Y, (4.3)

σest (x,y) = B0 (y) : E (x)

+ ε B1 (y)
... ∇xE (x)

+ ε
2 B2 (y) :: ∇x∇xE (x)

 ∀x ∈Ω, ∀y ∈ Y. (4.4)

Estimated fields in Eqs. 4.2, 4.3, 4.4 are computed using localization tensors combined
with the value of the macroscale strain or its gradients at this current point, and not
its average over the unit-cell (see figure 4.2). This relocalization process improvement,
firstly proposed by Kruch and Forest [1998], requires identical microscale and macroscale
meshes in order to locate each unit-cell on the macroscale structure (see figure 4.2). An
extension of this relocalization process to different coarser macroscale meshes is pre-
sented in section 4.3.

4.2.3 Boundary layer correction
Asymptotic homogenization is unable to provide an accurate estimation of local fields
near the boundaries since periodicity is lost in these regions. Indeed, a complex stress
(or strain) field occurs within a very local region near the boundaries, frequently referred
to as a boundary layer effect. Following previous work of Dumontet [1986], we have
proposed a general method to correct higher-order estimates on the boundaries, valid for
various Boundary Conditions (BCs): Dirichlet, Neumann, or mixed. The main idea of the
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Relocalization Homogenization

Microscale
element

Macroscale
element

Identical macroscale and miscroscale
meshes

y

y

Figure 4.2: Illustration of the relocalization procedure. The macroscale strain and
its gradients (E (x) ,∇xE (x) ,∇x∇xE (x)) are stored at the integration points of the
macroscale elements. Strain and stress localization tensors (A,B) are stored at the in-
tegration points of the microscale elements of the unit-cell, and the displacement local-
ization tensor D on the nodes. Estimated fields are computed after locating the unit-cell
mesh on the macroscale one.

correction is summarized, for Dirichlet BCs, in figure 4.3. The relocalization process pro-
vides a spurious periodic fluctuation v on the boundary. The opposite of this fluctuation is
applied to an auxiliary problem subjected to adequate periodic boundary conditions. Solv-
ing this problem enables to obtain first, second, or third-order boundary layer displace-
ment, strain, and stress localization tensors (D0,bl,A0,bl,B0,bl), (D1,bl,A1,bl,B1,bl), and
(D2,bl,A2,bl,B2,bl), respectively. Afterward, boundary layer correctors

(
ubl, ϵbl, σbl) are

computed by conducting similar relocalization processes, detailed in figure 4.2, on the
concerned boundary.

Remark 12 A particular treatment was considered for boundary layer correction of cor-
ner cells, as explained by Fergoug et al. [2022a].

In what follows, we consider the following fields:

• Microscale fields obtained by solving problem
(
Pre f

)
using DNS, which will be

considered as our reference, indexed ref, with solution
(
ure f ,εre f ,σre f ).

79



Chapter 4. Modeling error estimation & hierarchical
modeling

# # #

# # #

v
-v

𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 
𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

Evanescent corrective terms 
to be added to estimated fields

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐
 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

Before 
the correction

After
the correction

Figure 4.3: Illustration of the boundary layer correction method for a Dirichlet boundary.
Relocalization processes provide a spurious periodic fluctuation v on the boundary. The
inverse of this fluctuation is applied to an auxiliary problem over the unit-cell, providing
boundary layer displacement, strain, and stress localization tensors. After a relocaliza-
tion process on the concerned boundary, evanescent corrective terms are computed and
added to estimated fields.

• Homogeneous fields obtained by solving problem (Phom), indexed hom, with so-
lution (displacement U ,strain E,stress Σ).

• Proposed first-, second-, and third-order estimates of microscale fields obtained by
the first-, second-, and third-order relocalization processes, indexed est1, est2, and
est3, respectively.

• Proposed first-, second-, and third-order boundary layer corrections of estimated
fields indexed cor1, cor2, and cor3, respectively.

4.3 Extension of the relocalization procedure to arbi-
trary macroscale meshes

Asymptotic homogenization enables, by a relocalization process, to estimate the mi-
croscale fields from the knowledge of the formerly determined macroscale fields.
In this section, we propose an extension of the relocalization process described in sec-
tion 4.2, to deal with coarser macroscale meshes. As a result, global balance and mi-
croscale fields are estimated on the macroscale mesh, requiring much less computational
cost than DNS.
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4.3.1 Proposed relocalization technique
The relocalization process is illustrated in figure 4.4. A cell box, with the same dimen-
sions of the unit-cell mesh, is being moved around the global mesh. Integration Points
(IPs) of the macroscale elements inside the moving box are then selected. For each of
these macroscale IPs, its nearest microscale IP is then identified after mapping the unit-
cell on the current position of the moving box. A first relocalization step is conducted
over the global mesh by contracting the strain field (or its gradients) values of the current
macroscale IP with relocalization tensors of the identified nearest microscale IP. After-
ward, the relocalized field is corrected at the boundaries by using the same previously
described approach on the concerned boundary.

Figure 4.4: Illustration of the relocalization process on a coarser macroscale mesh.

The higher-order stress relocalization process is detailed in algorithm 1 (the same proce-
dure is used for strain relocalization). To conduct the displacement relocalization process,
the displacement relocalization tensor D, originally stored at the nodes of the unit-cell
mesh, is interpolated to integration points. Therefore, the relocalization process can be
carried out as previously discussed. The obtained result, which is a displacement correc-
tion on the macroscale mesh, is then extrapolated to nodes and added to the macroscale
displacement field, as shown for uest in figure 4.2.
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Algorithm 1: Stress relocalization with boundary layer correction on the
macromesh

Input: Macromesh, unit-cell mesh, E, ∇xE, ∇x∇xE, B, Bbl

Output: σcor1, σcor2, σcor3

Repetition of the unit-cell mesh in the macromesh

{Lx, Ly, Lz}←− BoundingBox(Macromesh)
{lx, ly, lz}←− BoundingBox(Micromesh)
n_cell_x = Lx/lx, n_cell_y = Ly/ly, n_cell_z = Lz/lz ▷ Number of repetitions of the unit-cell

mesh on the macromesh
Relocalization with boundary layer correction

for i← 0 to (n_cell_x)−1 do
for j← 0 to (n_cell_y)−1 do

for k← 0 to (n_cell_z)−1 do
unit-cell mesh box moving around the macromesh

cell_x_min = i∗ lx; cell_x_max = (i+1)∗ lx;
cell_y_min = j ∗ lx; cell_y_max = ( j+1)∗ ly;
cell_z_min = k ∗ lx; cell_z_max = (k+1)∗ lz;
Macroelements IPs contained in the unit-cell mesh moving box

Macroelem_in_Cell_Box = {Elements s.t. barycentre ∈ unit-cell mesh box}
for elem← 0 to Macroelem_in_Cell_Box do

for ip← 0 to Nb_of_IP(elem) do
if IP_Coords (elem,ip) ∈Moving_Cell_Box then

(MacroIP_in_Cell_Box).append(IP_Rank,IP_Coords)
end

end
end
Relocalization

for (IP_Rank,IP_Coords) ∈MacroIP_in_Cell_Box do
IP_Rank_Micro = Locate.Nearest(IP_Coords,Micromesh) ▷ Locate nearest

micro IP of the current macro IP
B = Reloc_Tensor(IP_Rank_Micro) ▷ Load tensor stored in the identified micro

IP
E = Macro_Strain(IP_rank), ∇xE = Macro_GradStrain(IP_rank), ∇x∇xE

= Macro_GradGradStrain(IP_rank)
σest1 = B0 : E

σest2 = σest1 +B1...∇xE
σest3 = σest2 +B2 :: ∇x∇xE

end
Boundary layer correction

for (IP_Rank,IP_Coords) ∈MacroIP_in_Cell_Box do
if Moving box with position (i,j,k) is located on boundaries then

IP_Rank_Micro = Locate.Nearest(IP_Coords,Micromesh)
B0 = Reloc_Tensor(IP_Rank_Cell)
E = Macro_Strain(IP_rank), ∇xE = Macro_GradStrain(IP_rank),
∇x∇xE = Macro_GradGradStrain(IP_rank)

σcor1 = σest1 +(B0,bl : E)

σcor2 = σcor1 +(σest2 +B1,bl ...∇xE)
σcor3 = σcor2 +(σest3 +B2,bl :: ∇x∇xE)

end
end

end
end
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4.3.2 Numerical results
To illustrate the effectiveness of the proposed relocalization process, six macroscale un-
structured meshes composed of fifteen-node wedge elements are considered, as shown
in figure 4.5. The ratio between the numbers of microscale and macroscale degrees of
freedom varies from 560 for the coarsest mesh (see figure 4.5a) to 2 for the finest one (see
figure 4.5f). A mesh adaptation technique, with a target elements size obtained through
the a posteriori discretization error estimator ZZ2 [Zienkiewicz and Zhu, 1992b,d], is
used to generate macroscale meshes (see figures 4.5c,4.5d, 4.5e, 4.5f) refined in areas
of interest, where stress concentrations occur. For the finest macroscale mesh, the mesh
adaptation procedure has been performed while preserving the topology of the fibers (see
figure 4.5f). For this example, we consider a ratio E f

Em
= 10 and a relocalization process

with boundary layer correction up to the second-order, as it is sufficient to capture strain
gradients in the present example.

Macroscale mesh 1

(a) DOFmicro

DOFmacro ≈ 560

Macroscale mesh 2

(b) DOFmicro

DOFmacro ≈ 150

Macroscale mesh 3

(c) DOFmicro

DOFmacro ≈ 113

Macroscale mesh 4

(d) DOFmicro

DOFmacro ≈ 30

Macroscale mesh 5

(e) DOFmicro

DOFmacro ≈ 8

Macroscale mesh 6

(f) DOFmicro

DOFmacro ≈ 2

Figure 4.5: Macroscale meshes on which the global balance and relocalization processes
are performed.

A comparison of σ22 and σ12 is show in figures 4.6 and 4.7, respectively (other stress and
displacement components are presented in appendix C.1). By comparing reference fields,
σ

re f
22 and σ

re f
12 , with relocalized fields, one can notice that the quality of the predicted

stresses increases by refining the macroscale mesh. Nevertheless, the contribution of
different material phase (matrix and fibers) to the stress field becomes visible starting
from macroscale mesh 3, which provides an acceptable estimation of reference fields
even though it contains 113 times fewer degrees of freedom than the microscale problem.
Furthermore, high stress gradients, especially near regions where the load is applied and
on the interfaces, are correctly predicted starting from macroscale mesh 3.
This relocalization process provides valuable insights on local responses of the con-
stituents, at any material point, for a given macroscale state computed on a coarse mesh,
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which is significantly less computationally expensive than DNS. This is of special interest
for identifying local deformation mechanisms and quantities of interest such as damage.
Furthermore, estimating local fields on macroscale meshes is a path toward error estima-
tion and efficient multiscale submodeling, as it will be shown in the next sections.

Remark 13 All localization tensors can be computed off-line and in parallel to reduce
the computing time. Also, they can be used for any composite structure involving the same
unit-cell with the same material properties of the constituents.

(a) σ
re f
22 on microscale mesh

(b) σ cor2
22 on macroscale mesh 1 (c) σ cor2

22 on macroscale mesh 2 (d) σ cor2
22 on macroscale mesh 3

(e) σ cor2
22 on macroscale mesh 4 (f) σ cor2

22 on macroscale mesh 5 (g) σ cor2
22 on macroscale mesh 6

Figure 4.6: Comparison of σ22 (MPa) results.
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(a) σ
re f
12 on microscale mesh

(b) σ cor2
12 on macroscale mesh 1 (c) σ cor2

12 on macroscale mesh 2 (d) σ cor2
12 on macroscale mesh 3

(e) σ cor2
12 on macroscale mesh 4 (f) σ cor2

12 on macroscale mesh 5 (g) σ cor2
12 on macroscale mesh 6

Figure 4.7: Comparison of σ12 (MPa) results.
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4.4 Modeling error: A bridge between scales

Solving DNS is generally intractable because of the resulting extremely fine spatial dis-
cretization mesh. Nevertheless, there is a need to investigate what could occur at the
microscale, since the behavior of heterogeneous structures depends on the characteristics
of the heterogeneities. One method to tackle this is to adaptively couple a fine hetero-
geneous material description in some regions of the domain and a coarse, less accurate
macroscale model in the other regions. For this purpose, one can use the well known
submodeling techniques, which will be investigated in section 4.5.
In this work, a modeling error is used to steer this adaptive modeling process by detecting
areas where refining the material model is required.

4.4.1 Formulation of the modeling error estimator

We recall that ure f , solution to
(
Pre f

)
, is the reference displacement field computed by

DNS. This field can be approximated with an asymptotic expansion in powers of the small
parameter ε as:

ure f (x) = u0 (x,y)+ εu1 (x,y)︸ ︷︷ ︸
uest1

+ε
2u2 (x,y)

︸ ︷︷ ︸
uest2

+ε
3u3 (x,y)

︸ ︷︷ ︸
uest3

+ . . . , (4.5)

where the quantities un are Y−periodic functions called correctors of the displacement
field. The first-, second-, and third-order relocalized displacement fields, uest1, uest2,
and uest3, are obtained by truncating the asymptotic expansion to the first-, second-, and
third-order, respectively (see equation 4.5).
As stated before, estimated fields are generally incorrect in the vicinity of the boundaries
due to the loss of periodicity in these regions. Indeed, matching boundary conditions
requires the introduction of boundary layer correctors at each relocalization order. As a
result of this correction, ucor1, ucor2, and ucor3 are the first-, second-, and third-order
corrected fields on the boundaries, respectively (see algorithm 1).
In this chapter, we define

∥∥∥ure f −uest1
∥∥∥

L2(Ωe)
=

(∫
Ωe

(
ure f −uest1

)
·
(
ure f −uest1

)
dΩe

) 1
2

, (4.6)

as the measure of the local (element-wise) true modeling error, where Ωe denotes the
domain of an element. Thus, the global true modeling error,

∥∥ure f −uest1
∥∥

L2(Ω)
, reads:

∥∥∥ure f −uest1
∥∥∥2

L2(Ω)
= ∑

e
∥ure f −uest1∥2

L2(Ωe)
, (4.7)

where Ω denotes the structural domain area.
For this study, the reference problem is tractable by Direct Numerical Simulation (DNS)
and its mechanical fields are used as reference results to validate our approach. However,
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in the more general case where a DNS would be out of reach, common practice would
call for a tractable estimate.
Consequently, we choose to estimate the modeling error by replacing ure f with the best
estimate of the displacement field yet, i.e. ucor3. The modeling error is then estimated by:∥∥∥ure f −uest1

∥∥∥
L2(Ω)

≈
∥∥ucor3−uest1∥∥

L2(Ω)
. (4.8)

The proposed modeling error estimator quantifies the terms neglected by a first-order
relocalization. These terms are generally negligible in the case of a complete separation
of scales. Nevertheless, for weak separation of scales, these terms become significant
and necessary to capture gradients of the macroscale field. The proposed estimation also
quantifies the modeling error that occurs on the boundaries.

Remark 14 The modeling error estimation can be formulated using other mechanical
fields than the displacement, i.e. the strain, or the stress field (

∥∥εcor3−εest1
∥∥

L2(Ω)
=(∫

Ω

(
εcor3−εest1) :

(
εcor3−εest1)dΩ

) 1
2 and

∥∥σcor3−σest1
∥∥

L2(Ω)
, respectively).

Remark 15 It is also possible to use an energy norm to quantify the modeling error.
Thus, the estimation would read:

∥ucor3 (x)−uest1 (x)∥E(Ω) =

(∫
Ω

(
εcor3−εest1) :

(
σcor3−σest1)dΩ

) 1
2

. (4.9)

4.4.2 Comparison with the discretization error

In general, relocalized solutions, ucor3 and uest1, are obtained by a finite dimensional
approximation, which is, in our case, a finite element approximation ucor3,h and uest1,h,
obtained on the macroscale mesh. By the Cauchy–Schwarz inequality, one can obtain:∥∥ucor3−uest1∥∥

L2(Ω)
≤
∥∥∥uest1−uest1,h

∥∥∥
L2(Ω)

+
∥∥∥ucor3−ucor3,h

∥∥∥
L2(Ω)︸ ︷︷ ︸

Discretization error: ηdisc

+
∥∥∥ucor3,h−uest1,h

∥∥∥
L2(Ω)︸ ︷︷ ︸

Modeling error: ηmod

.
(4.10)

Therefore, a bipartite discretization error, indexed ηdisc, occurs. The first and second parts
constituting this error are due to the numerical approximation of uest1 and ucor3, respec-
tively. To estimate the discretization error, we shall consider that the reference solutions
of uest1 and ucor3 are obtained by conducting the relocalization process and boundary
layer correction on the fine microscale mesh (see figure 4.8). Therefore, an interpolation-
based nodal field transfer of uest1,h and ucor3,h is necessary from the macroscale mesh to
the microscale one is considered (see figure 4.8). This nodal transfer preserves the con-
tinuum fields with no information loss since the coarse finite element space is included in
the fine one [Dureisseix and Bavestrello, 2006]. The modeling error estimation, indexed
ηmod , is computed on the macroscale mesh (see figure 4.8).
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Remark 16 On real use cases, relocalization procedure on the microscale mesh is com-
putationally intractable. In this case one can use well known discretization error estima-
tors as the posteriori error estimator ZZ2 [Zienkiewicz and Zhu, 1992b,d].

Figure 4.8: Illustration of the error estimation process. The modeling error is computed
on the macroscale mesh. A nodal field transfer of uest1,h and ucor3,h to the microscale
mesh is conducted to compute the discretization error.

4.4.3 Numerical results

Relative element-wise contribution to modeling and discretization errors, for a ratio E f
Em

=

10 and E f
Em

= 500, are shown in figures 4.9 and 4.10, respectively. The relocalization pro-
cess with boundary layer correction is considered up to the second-order, as it is sufficient
to capture strain gradient effects since the second gradient of the macroscale field was
found to be negligible in this case. A comparison of the reference solution ure f , with the
obtained relocalized fields, uest1 and ucor2, is shown in appendix C.2.
Both parts of the discretization error decrease by refining the macroscale mesh and start
to cluster mainly on the fiber/matrix interfaces starting at mesh 4, until mesh 6 which pre-
serves the topology of the fibers and, therefore, preserves the interfaces (see figure 4.5f).
One can notice that the second part of the discretization error,

∥∥ucor2−ucor2,h
∥∥

L2(Ω)
, is

slightly higher than the first part due to numerical errors emanating from the computation
of second-order relocalization and boundary layer correctors.

Remark 17 One can fairly consider that both parts of the discretization error are nearly
identical, thus:

ηdisc ≈ 2
∥∥∥uest1−uest1,h

∥∥∥
L2(Ω)

(4.11)

The modeling error, contrarily to the discretization error, varies relatively little by refining
the macroscale mesh.
Global discretization error, ηdisc, and modeling error, ηmod , for different ratios E f

Em
are

shown in figure 4.11. Global values of the discretization error decrease by refining the
macroscale mesh, whereas modeling error remains relatively constant.

88



4.4.3 Numerical results

Figure 4.9: Comparison of relative element-wise contribution to modeling and discretiza-
tion errors for a ratio E f

Em
= 10 on different macroscale meshes illustrated in figure 4.5.

The modeling (and discretization) error estimation is relatively independent of the mis-
match ratio E f

Em
, especially for ratios higher than 50, as shown in figure 4.11. This low con-
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Figure 4.10: Comparison of relative element-wise contribution to modeling and dis-
cretization errors for a ratio E f

Em
= 500 on different macroscale meshes illustrated in fig-

ure 4.5.

trast dependency is a key difference with the modeling error estimator proposed by Zohdi
et al. [1996], which highly depends on the material phase contrast. This is explained by
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the fact that their estimator quantifies the error emanated from the difference between the
heterogeneous and the homogeneous materials, which can be high for important contrast
ratios. Contrarily, our proposed modeling error estimator is constructed based on the qual-
ity of the approximation of heterogeneous fields, explaining the low contrast dependency,
a property desirable in a modeling error estimator.

10-3

10-2

10-1

103 104 105 106

Ndof

η
||L
2|
|

Figure 4.11: Global discretization error ηdisc and modeling error ηmod for different ra-
tios E f

Em

Also, regarding the competition between the discretization and the modeling error illus-
trated in figure 4.11, one shall consider a mesh refinement procedure to reduce the dis-
cretization error, and this until a refinement degree between mesh 3 and mesh 4 where the
modeling error becomes dominant. One way to reduce this modeling error is to conduct
an adaptive modeling process. This is analogous to mesh refinement, except that the re-
finement is in terms of the material model, i.e. replacing a homogeneous material by a
heterogeneous one in regions with high modeling error.
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4.5 Multiscale submodeling

The relative modeling error estimation of the stress field, i.e.∥∥σcor2−σest1
∥∥

L2(Ωe)

∥σre f ∥L2(Ω)

, (4.12)

on macroscale mesh 3 and for a ratio E f
Em

= 500 is illustrated in figure 4.12. To reduce this

Figure 4.12: Relative modeling error estimation of the stress field
∥σcor2−σest1∥L2(Ωe)

∥σre f∥L2(Ω)

on

macroscale mesh 3, shown in figure 4.5c, and for a ratio E f
Em

= 500. Different submodels
are detected depending on target accuracy. For the sake of conciseness, the modeling
error in the fixed boundary region (highlighted in green) is neglected.

error, one can replace the homogeneous material by the heterogeneous material in regions
where the modeling error is relatively high. These regions to be replaced depend on target
accuracy, as suggested in figure 4.12. Indeed, replacing the microscale region labeled
submodel 3 is expected to reduce the modeling error more than inserting submodel 2,
which itself will reduce the error more than inserting submodel 1.
For hierarchical modeling, it is necessary to adequately couple the macroscale homoge-
neous domain with the selected microscale heterogeneous one. Such coupling is proposed
in this section.
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4.5.1 Proposed coupling strategy
Submodeling, also called structural zoom or global-local analysis, is largely used in the
industry to conduct multiscale analyses since it is supported by most commercial finite
element software (e.g. Abaqus or Ansys). In this approach, homogenized material prop-
erties are first determined, in our case using asymptotic homogenization. The macroscale
problem is then solved using these homogeneous properties. The displacements are ex-
tracted from the boundary of a macroscale region of interest (ΓG in figure 4.13). These
fields become the boundary conditions (on ΓL in figure 4.13) for a finite element submodel
that contains microscale details, as shown in figure 4.13.

Figure 4.13: Illustration of the classical and the proposed submodeling techniques.

Remark 18 Using displacement field interpolation, the submodel boundary ΓL nodes do
not have to match with the macroscale boundary ΓG nodes.

Classical submodeling, i.e. applying u0, is expected to fail in appropriately coupling the
macroscale with the microscale, and this no matter the size of the submodel, as it will be
shown later, for the following reasons:

• The homogenized displacement u0, misses, by definition, the microscale details.
The coupling, therefore, neglects the heterogeneous nature of the submodel, which
result in high interface coupling errors. Consequently, it is necessary to enlarge the
submodel to avoid coupling errors in a region of interest as shown in figure 4.14,
which can be computationally expensive.
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• Homogeneous fields are only valid for infinite periodic arrays under a uniform state
of macro-stress (or macro-strain). This is not the case for weak separation of scale
scenarios.

• Homogenized solutions do not take into account the boundary layer effect due to
the loss of periodicity conditions on the boundaries.

In what follows, the proposed submodeling is performed by applying ucor2 instead of
ucor3, since the second gradient of the macroscale field was found to be negligible in this
case.
The proposed submodeling considers the aforementioned aspects since the displacement
field ucor2 is heterogeneous by construction, takes into account macroscale strain gradi-
ents, and is corrected at the boundaries.
It is worth noting that the submodeling approach is a descending process in the sense that
there is no feedback from the submodel computation toward the macroscale one. Such
feedback is necessary to conduct reliable hierarchical modeling. However, this aspect is
left for future works.

4.5.2 Numerical results

To compare the reference solution ure f with the displacement field obtained using clas-
sical submodeling uL or the proposed submodeling uL ∗

, the following local (element-
wise) error in energy norm is defined:

∥e∥E(Ωe) = ∥u
re f (x)−uk (x)∥E(Ωe)

=

(∫
Ωe

(
εre f −εk

)
:
(
σre f −σk

)
dΩe

) 1
2

,
(4.13)

where Ωe denotes the domain of an element and k = (L or L ∗). Thus, the global er-
ror ∥e∥E(Ω) reads:

∥e∥2
E(Ω) = ∑

e
∥e∥2

E(Ωe)
, (4.14)

where Ω denotes the domain of the chosen submodel. We define the local (element-wise)
relative error as:

erel =
∥e∥2

E(Ωe)

∥ure f ∥2
E(Ω)

. (4.15)

We also consider a quantity of interest corresponding to the relative mean error, emean
rel , in

the region of interest Ωsub1 illustrated in figure 4.13:

emean
rel =

1
nE

∑e∥e∥E(Ωsub1
e )

∥ure f ∥E(Ω)
, (4.16)

where nE is the number of elements in Ωsub1.
Figure 4.14 shows a comparison of the relative error, defined in equation 4.15, obtained
by using the classical submodeling (k = L ) and the proposed one (k = L ∗), for the three
submodels illustrated in figure 4.12, and for ratio E f

Em
= 500. The macromesh 3, shown in
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figure 4.5c, is used for the macroscale computation and the relocalization process. The

Figure 4.14: Comparison, for a ratio E f
Em

= 500, of the relative error defined in 4.15
and the relative mean error (×10−6) defined in 4.16, both obtained by using the classical
submodeling and the proposed multiscale submodeling. The macromesh 3 (illustrated in
figure 4.5c) is used for the macroscale computation and the relocalization process.
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relative error is drastically reduced by the proposed submodeling compared to the classical
one, for the three submodels and the considered ratio. Indeed, classical submodeling leads
to large errors, especially in the vicinity of the coupling interfaces. This coupling error
increases by increasing the material phase contrast. The proposed submodeling enables to
reduce the relative mean error emean

rel by a factor of ≈ 5 for submodel 1 and a factor of ≈ 3
for submodels 2 and 3.
Comparison of the global relative error, formulated in equation 4.14, obtained by using
the classical and the proposed submodeling, is shown in table 4.1. One can notice that the
global error increases by increasing the material phase contrast. The proposed coupling
reduces the global error by a factor of ≈ 5 for submodel 1, a factor of ≈ 3 for submodel 2
and a factor of ≈ 4 for submodel 3.

Table 4.1: Comparison of the global relative error
∥e∥E(Ω)

∥ure f ∥E(Ω)
obtained by using the classi-

cal vs the proposed submodeling.

Ratio/Submodel 1 2 3
Classical Proposed Classical Proposed Classical Proposed

10 8.50% vs 1.74% 7.03% vs 2.11% 10.79% vs 2.90%
50 9.91% vs 2.06% 8.18% vs 2.51% 12.53% vs 3.41%

100 10.11% vs 2.04% 8.33% vs 2.54% 12.77% vs 3.46%
500 10.26% vs 2.06% 7.51% vs 1.51% 12.96% vs 3.50%

To study the influence of the macroscale mesh on the proposed submodeling, a com-
parative study is presented in figure 4.15, investigating the relative error and the mean
error obtained for a coupling with different macroscale meshes, illustrated in figure 4.5,
and for different submodels, shown in figure 4.12. The material phase contrast considered
in this study is E f

Em
= 500.
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Figure 4.15: Comparison of the relative error defined in 4.15 and the relative mean
error (×10−6) defined in 4.16 obtained for the proposed multiscale coupling with different
macroscale meshes, for different submodels and for a ratio E f

Em
= 500.
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The main features of these results are the following:

• Classical submodeling is almost insensitive to the macroscale mesh. Indeed, the
coupling error remains high even after refining the macroscale mesh, irrespective
of the submodeling domain size. This is explained by the fact that the homogenized
displacement field, applied on the interface of the submodel, is nearly the same for
the six macroscale computations as it does not consider the microscale details, but
depends only on the effective behavior, unchanged for the six macroscale computa-
tions. On the other hand, the proposed coupling is sensitive to the macroscale mesh
since the relocalization process depends on this one.

• The multiscale proposed submodeling, with macroscale mesh 1 and 2, is signifi-
cantly less accurate than with other meshes, since the relocalization process is still
largely incorrect, as shown in figures 4.6, 4.7, and 4.11.

• For all the considered cases, the relative local coupling error induced by the pro-
posed submodeling is significantly smaller than the error obtained by the classical
submodeling.

• The mean error emean
rel is reduced, besides results obtained for mesh 1, by at least a

factor of 2 (for mesh 2 - submodel 1) and at the best by a factor of 5 (for mesh 3 -
submodel 1).

A comparison of the global relative error and the relative mean error obtained for a cou-
pling with different macroscale meshes, and for different submodels are shown in fig-
ure 4.16 and figure 4.17.
The main features of these results are the following:

• The global and the mean error induced by the classical submodeling are insensitive
to macroscale mesh refinement. Contrarily, the errors induced by the proposed sub-
modeling are sensitive to the macroscale mesh refinement since the relocalization
process is conducted on this one.

• For all the considered cases, the global error induced by the proposed submodeling
is inferior to the one obtained by the classical submodeling. The error is reduced at
least by a factor of 1.2 and the best by a factor of 5.

• The mean error in the region of interest Ωsub1 decreases by increasing the size of
the submodel.

• For all the considered cases, the mean error induced by the proposed submodeling
is less than to the one obtained by the classical submodeling. The error is reduced
at least by a factor of 1.12 and the best by a factor of 5.
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4.5.2 Numerical results

Figure 4.16: Comparison of the global relative error obtained for a coupling with differ-
ent macroscale meshes, and for different submodels.

Figure 4.17: Comparison of the relative mean error obtained for a coupling with different
macroscale meshes, and for different submodels.
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Chapter 4. Modeling error estimation & hierarchical
modeling

4.6 Conclusions
In this work, we have proposed a new numerical method to conduct, on a macroscale
coarse mesh, a higher-order relocalization process to estimate local heterogeneous fields
within a structure, without conducting any Direct Numerical Simulations (DNS). This
relocalization process, contrary to first-order homogenization, takes into account addi-
tional terms of the asymptotic expansion, and thus captures the effect of macroscopic
successive gradients, generally high in cases of low scale separation. The proposed relo-
calization process also includes a boundary layer correction to correct estimated fields on
the boundaries. As a result, the proposed numerical method provides valuable insights on
microscale fields, for a given macroscale state computed solely on the coarse macroscale
mesh, much less computationally expensive than DNS.

We have also proposed a modeling error estimation based on the resulting fields com-
puted by the aforementioned relocalization process. Indeed, the suggested error estima-
tion quantifies the terms neglected by the first-order asymptotic expansion. These terms
are significant in cases where scales are not well separated and necessary to capture gra-
dients of the macroscale fields. The proposed error estimation is also able to quantify the
modeling error on the boundaries due to the loss of periodicity assumptions in boundary
regions. This modeling error estimation is used to steer a hierarchical modeling process
by detecting areas where refining the material model is necessary.

To couple the microscale domain with the macroscale one, we have suggested a mul-
tiscale enhanced submodeling based on the constructed local fields. As a result, the pro-
posed submodeling, contrary to the classical one, considers the heterogeneous nature of
the submodel and remains valid in regions with low scale separation, e.g. regions with
high macroscale strain or stress gradients, and in the vicinity of the boundaries.

The major conclusions that can be drawn from this work are as follows:

• The quality of the estimated stress fields increases by refining the macroscale mesh.
Nevertheless, it has been shown that the proposed relocalization process conducted
on a macroscale mesh containing ≈ 100 times fewer degrees of freedom than the
DNS already provides an acceptable estimation of the local stress field, as illustrated
in figures 4.6, and 4.7.

• It is possible to reduce the discretization error by refining the macroscale mesh; the
modeling error, however, remains unchanged, as shown in figure 4.11. To reduce
this error, hierarchical modeling (or another alternative) should be considered.

• Classical submodeling is less sensitive to macroscale mesh refinement, contrary to
the proposed submodeling, as illustrated in figure 4.16 and 4.17.

• The proposed submodeling technique reduces the global coupling error by a factor
of 5, compared to classical submodeling, as shown in figure 4.16. It also reduces
the mean error in a region of interest by a factor of 5, as shown in figure 4.17.

Reliable hierarchical modeling requires a feedback from the submodel computation
toward the macroscale one, which has not been investigated in this work. The suggested
methods could also be a path toward the hierarchical modeling of realistic 3D composite
structures. This implies the use of irregular structure domains, locally nonperiodic zones,
and controlling simultaneously both the discretization and the modeling error.
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Chapter 5

Conclusions and Outlook

5.1 Summary of the main results

The main goal of this Ph.D. was to develop a modeling error estimator in order to steer hi-
erarchical modeling of heterogeneous periodic structures. By doing so, I aim to adaptively
couple a heterogeneous model in regions with a low separation of scales and a homoge-
neous, less accurate model in other regions of relatively homogeneous deformation. As a
result, hierarchical modeling may significantly reduce computational cost compared to a
full heterogeneous computation. Another objective of this Ph.D. was to propose an ade-
quate coupling technique to connect the heterogeneous model with the homogeneous one.
Asymptotic homogenization remains the most rigorous and suitable method to deal with
periodic structures. It permits not only to determine the macroscopic overall characteris-
tics but to estimate, by a relocalization process, mesostructural effects on the macroscopic
response as well.

It has been shown that first-order estimates, obtained from the relocalization process,
are a good approximation of the heterogeneous fields in the inner domain of the struc-
ture, provided that macroscale gradient fields remain low, i.e., scales are completely sep-
arated. Nevertheless, accuracy is lost near the boundaries due to the non-periodicity in
the boundary layers. Indeed, I have shown that high stress fields are developed near the
boundaries and are neglected by a classical relocalization, which, for example, may re-
sult in underestimating a failure criterion if the design is conducted without any boundary
layer correction. I have proposed a correction, effective for different boundary conditions
(Dirichlet, Neumann, and mixed), to estimate consistent microscale fields in the vicinity
of the boundaries. Fundamental idea of this method is to compute correction terms by
solving several auxiliary problems on the unit-cell. The type of problem to be solved is
determined by the local boundary conditions. These correction terms are added to the
standard fields resulting from the relocalization procedure, significantly improving the
solution at the boundaries. I have also demonstrated, on a bending case, the scale separa-
tion limit of the first-order homogenization method. Indeed, I have shown that first-order
estimates become inaccurate, even in the inner domain, when the structure is subjected to
important macroscale gradients.

To deal with real engineering cases generally subjected to strong macroscale strain
gradients, I have considered higher-order asymptotic homogenization/relocalization, up
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Chapter 5. Conclusions and Outlook

to the third-order. As a result, estimated fields are shown to be in perfect agreement with
the reference fields inside the structure, even for cases of low scale separation. I have also
proposed an extension to the proposed boundary layer correction to rectify higher-order
estimates, up to the third order, in the vicinity of the boundaries.

To estimate the modeling error, I first extended the higher-order relocalization process
to deal with arbitrary coarse macroscale meshes. As a result, crucial insights on local
responses of the constituents are computed on the coarse mesh, which results in a sig-
nificantly less computationally expensive analysis than a full heterogeneous calculation.
The proposed modeling error estimation quantifies the terms neglected by the first-order
asymptotic expansion. These terms become significant in cases of a low separation of
scales. The proposed error estimation is also able to quantify the modeling error on the
boundaries. The competition between the discretization error and the modeling error has
been investigated. Furthermore, I have suggested a multiscale enhancement of the classi-
cal submodeling in order to adequately couple the homogeneous and heterogeneous do-
mains. It has been shown that the proposed submodeling drastically reduces the coupling
errors compared the classical submodeling.

5.2 Main contributions

Most of the development carried-out during this Ph.D. are implemented in the finite el-
ement code Z-set [2022]. The main contributions and new developments that I made
throughout my Ph.D. are as follows:

• Higher-order asymptotic homogenization: Localization tensors are obtained by
solving a hierarchical set of elasticity problems with prescribed body forces and
eigenstrains, obtained from the solution at the lower-order. I implemented a bound-
ary condition to apply these body forces and eigenstrains in order to compute
higher-order asymptotic homogenization, up to the third-order. My implementation
has been verified, up to the third-order, based on analytical solutions of localization
tensors provided by Boutin [1996], as shown in appendix B.1.

• Relocalization process and boundary layer correction: I proposed and imple-
mented a post-processing scheme to conduct higher-order relocalization process,
up to the third-order to estimate heterogeneous fields. To correct these estimates
on the boundaries, I proposed and implemented a new boundary layer correction
method which is constituted from several boundary conditions to be applied on the
unit-cell. These boundary conditions depend on the actual location of the bound-
ary to be solved as explained in figure 2.6. I also proposed and implemented a new
method to conduct the relocalization process on arbitrary macroscale meshes, as de-
scribed in figure 4.4. In this method, boundaries are automatically, i.e. in the same
computation, identified and relocalization fields are then corrected. The method is
also able to automatically apply the specific treatment for corner cell illustrated, for
example, in figure 2.5e.
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5.3 Prospects

• Modeling error estimation: I proposed a modeling error estimation based on
higher-order relocalization. This estimation is implemented in a post-processing
step. Different norms of the error can be considered (L2 norm and energy norm).
The modeling error is then used to detect areas where to refine the material model.

• Multiscale submodeling: After constructing, on the macroscale mesh, higher-
order estimates corrected on the boundaries, I used the submodel boundary con-
dition to apply the resulting estimated field instead of the macroscale one, as per
classical submodeling.

5.3 Prospects
Even if the primary research questions outlined in this thesis’ introductory chapter have
been successfully addressed, certain questions still remain unresolved and new issues
arose throughout the Ph.D.

• Extension to realistic 3D composite structures: The proposed approaches are
adapted for periodic structures. Nevertheless, realistic structures, as the fan blade,
display irregular structure domains and locally nonperiodic zones. An extension
to such cases would undoubtedly facilitate numerical simulations of engineering
structures. Fish and coworkers [Fish and Wagiman, 1993; Fish and Fan, 2008] have
tried to account for locally nonperiodicity in the asymptotic homogenization, but
this challenging subject requires additional efforts.

• Simultaneous model and mesh refinement: Although I have studied the compe-
tition between the modeling and discretization error, it would be interesting to pro-
pose an multipurpose error estimator able to simultaneously steer both discretiza-
tion and modeling refinement as done by Temizer and Wriggers [2011]; Vernerey
and Kabiri [2012].

• Reliable hierarchical modeling: The proposed submodeling is a descending pro-
cess in the sense that there is no feedback from the submodel computation toward
the macroscale one. Such feedback is necessary to conduct reliable hierarchical
modeling.

• Higher-gradient macroscale continuum: In some cases, the conventional Cauchy
medium may give a poor prediction of the real deformation state. Consequently,
the relocalization process will be inaccurate, even by including higher-order terms,
since the resulting macroscale strain and its gradients, considering a Cauchy con-
tinuum, are inaccurate and not representative of the deformation state. In these
cases, it would be necessary to consider higher-gradient macroscale continua as
done in Forest and Sab [1998]; Yvonnet et al. [2020].
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5.4 Valorization

Contribution to the Z-set suite

The implemented methods are provided, through an internal Git Repository, for the com-
munity of researchers and users of the Z-set suite. Also, a user-guide is written for docu-
mentation purposes and to explain how to practically use the implemented methods.

Supervision of a trainee

I supervised, for one year, Mateus AMERICO DE ALMEIDA as part of his specialized
master’s degree. During the first part (6 months) of the internship at Mines Paris, I accom-
panied Mateus in his bibliographical research on the asymptotic homogenization method
and particularly on solutions to extend this method to non-periodic zones. During the sec-
ond part of the internship (6 months), I received Mateus at Safran and we worked together
on:

• Automatization of the global framework to conduct higher-order relocalization with
boundary layer correction in Z-set, see appendix D.1.

• Enhancement of boundary layer correction for corner cells, see appendix D.2.

• Early work on the extension of the asymptotic homogenization method to non-
periodic zones, see appendix D.3.

Articles

Two articles have been published and one submitted article:

• Mouad Fergoug, Augustin Parret-Fréaud, Nicolas Feld, Basile Marchand and
Samuel Forest. A general boundary layer corrector for the asymptotic homog-
enization of elastic linear composite structures. Composite Structures, 2022,
285:115091. doi: 10.1016/j.compstruct.2021.115091

• Mouad Fergoug, Augustin Parret-Fréaud, Nicolas Feld, Basile Marchand and
Samuel Forest. Multiscale analysis of composite structures based on higher-order
asymptotic homogenization with boundary layer correction. European Journal of
Mechanics - A/Solids, 2022, 96:104754. doi: 10.1016/j.euromechsol.2022.104754

• Mouad Fergoug, Augustin Parret-Fréaud, Nicolas Feld, Basile Marchand and
Samuel Forest. Toward hierarchical modeling of heterogeneous structures driven
by a modeling error estimator. Submitted to: Computer Methods in Applied Me-
chanics and Engineering

One published article in a national conference proceedings:
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• Mouad Fergoug, Nicolas Feld, Samuel Forest, Basile Marchand, Augustin Parret-
Fréaud. Méthode générale pour la correction des couches limites en homogénéi-
sation asymptotique. 15ème colloque national en calcul des structures, Université
Polytechnique Hauts-de-France [UPHF], May 2022, 83400 Hyères-les-Palmiers,
France. ffhal-03717638

The research results of this thesis were communicated in several international confer-
ences:

• WCCM 2020: World Congress in Computational Mechanics (WCCM-ECCOMAS
2020), France (Virtual congress).

• ADMOS 2021: 10th International Conference on Adapive Modeling and Simula-
tion, Sweden (Virtual congress).

• COMPOSITES 2021: 8th Conference on Mechanical Response of Composite,
Sweden (Virtual congress).

• ECCOMAS 2022: 8th European Congress on Computational Methods in Applied
Sciences and Engineering, Norway.

• ESMC 2022: 11th European Solid Mechanics Conference, Ireland.
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A.1 Finite element resolution of the first-order

Appendix of Chapter 2

A.1 Finite element resolution of the first-order
This appendix describes the numerical procedure using the Finite Element Method (FEM)
in order to solve

(
P1st

order

)
and thus compute the localization tensors (D,A,B) and the

homogenized elasticity tensor C0. We also describe the proposed numerical relocalization
scheme used to estimate the full microscopic fields.

Computation of relocalization and homogenized elasticity matrices

The displacement corrector u1, solution of the first-order periodic problem, constitute the
components of the corrector displacement matrix [D]. The finite element approximation
to Eq. (2.14) is:∫

Y e
[B]⊤Ndo f×6 [C]6×6 [B]6×Ndo f

[D]Ndo f×6 dY e =
∫

Y e
[B]⊤Ndo f×6 [C]6×6 dY e

=
[
FD]

Ndo f×6 ,
(A.1)

where the script e denotes element quantities from the discretized unit-cell domain Y . [C]
is the heterogeneous elastic stiffness matrix, [B] is the strain shape function matrix,
and [D] is the displacement localization matrix whose components are solutions of
Eq. (A.1). The load

[
FD] is a matrix composed of six columns in the 3D cases. Each

column is a force vector corresponding to an initial strain loading. To illustrate this, we
recall that the nodal forces

{
fε0

}
induced by an initial strain ε0 are defined as:

{
fε0

}
=

∫
Y
[B]⊤ [C]ε0dY. (A.2)

Thus, in our case, the loading is six unit initial strain tensors Ekl applied to the unit-cell
with kl = {11,22,33,23,31,12}. Indeed, Eq. (A.1) is a set of six matrix equations with
six solutions, each providing a column of [D]:

Dikl = u1
i for i ∈ {1,2,3}, kl = {11,22,33,23,31,12}, (A.3)

where Di jk are components of the displacement localization tensor D. Periodic boundary
conditions are imposed on the unit-cell in order to solve problems in Eq. (A.1). The
resulting strain and stress fields obtained for each loading case also provide a column of
the strain and stress localization matrices [A] and [B], respectively. The homogenized
elasticity matrix C0 can be obtained from the volume average of [B]:

[
C0]= 1

|Y |

∫
Y
[B]dY. (A.4)
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Practically, the components of C0 can be computed by solving elementary load cases
corresponding to the different components of the macroscale strain Ekl and performing a
unit-cell average of the resulting microscopic stress components.

Flowchart for the numerical resolution of
(
P1st

order

)
In practice, after discretizing the unit-cell domain, it is sufficient to run the finite el-
ement program for six different unit initial strain tensors Ekl applied on the unit-cell.
With kl = {11,22,33,23,31,12} each load case provides a column vector of [D], [A],
and [B]. Components of the displacement corrector matrix [D] are stored at the nodes and
those of the localization matrices [A] and [B] are stored at integration points. The main
steps for the numerical resolution of the first-order problem are summarized in Fig. A.1.

Apply unit strain field
Ekl

with kl = {11,22,33,23,31,12}

Compute equivalent force vector{
FD

kl

}
=

∫
Y [B]⊤ [C]

{
Ekl}dY

Solve equilibrium equa-
tions [K]{Dkl} =

{
FD

kl

}
using

periodic boundary condition

Store {Dkl} at nodes

Compute and store {Akl}
and {Bkl} at integration points

Compute the homogenized
elasticity matrix

{
C0

kl

}

Figure A.1: Flowchart summarizing the numerical resolution of
(
P1st

order

)
.
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A.2 Uni-directional laminated composite in tension

A.2 Uni-directional laminated composite in tension
We consider a uni-directional laminated composite made of two layers as presented in
Fig. B.1. The size of the structure is L = 8 mm, H = 5 mm and W = 1 mm. The two layers
are assumed to be isotropic linear elastic with coefficients (Em = 1000 MPa,νm = 0.3)
and (E f = 10Em,ν f = 0.3).

u

(E , ν )
f f

(E , ν )
m m

Top

Bottom

(a) Structure geometry (b) unit-cell domain

Figure A.2: Illustration of the uni-directional laminated composite in tension. The struc-
ture is sliding on Γu and surface tension is applied on Γt .

Case 1: Flat Top and Bottom surfaces

In this case, periodicity conditions are applied to Top and Bottom surfaces. Both homoge-
neous and heterogeneous solution fields depend only on the x1 variable. Estimated fields
using relocalization process are supposed to match exactly with the heterogeneous ones,
even on the boundaries as there is no fluctuation of material properties in the x2 direction
(see ε

re f
11 , εhom

11 and εest
11 in Fig. A.3). Therefore, no boundary layer correction is needed.

Case 2: Free Top and Bottom surfaces

In this case, heterogeneous fields are expected to fluctuate at Top and Bottom surfaces due
to the heterogeneity of the material along these free edges. Therefore, a boundary layer
correction in these surfaces is necessary in order to correctly estimate heterogeneous fields
(see σ

re f
11 , σ est

11 and σ cor
11 in Fig. A.3).

Results of stress fields are plotted in Fig. A.4 along the AB line shown in Fig. B.1. The
corrected stress field σ cor

11 captures the fluctuation of the reference field σ
re f
11 contrary

to the estimated field σ est
11 which is constant. The difference between relocalized and

corrected fields at x1 = [0,1] and x1 = [7,8] in Fig. A.4 is due to the imperfection of the
proposed correction for corner cells.
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ε
re f
11 σ

re f
11

εhom
11 σ est

11

εest
11 σ cor

11

Figure A.3: Results of the strain fields for case 1 (Periodicity conditions on Top and
Bottom surfaces) and stress fields for case 2 (Free Top and Bottom surfaces).
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Figure A.4: Results of the homogenized (hom), reference (ref), estimated (est) and cor-
rected (cor) stress fields corresponding to case 2 and plotted along the line AB.
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Appendix of Chapter 3

B.1 Numerical validation of localization tensors

The objective of this appendix is to validate our numerical implementation of higher-
order localization tensors, up to the third-order. To do so, we compare the obtained
numerical, relocalization and effective, tensors with their analytical solutions provided
by Boutin [1996]. For the sake of conciseness, expressions of analytical solutions are
omitted.
A stratified composite is considered composed of two isotropic elastic layers a and b
with respective thickness (1− τ)h and τh as shown in Fig. B.1a. The elastic moduli of
the phase a and b are (Ea, νa) and (Eb, νb), respectively. Layers a and b are periodically
distributed along the direction y1, and remain unchanged by any translation along
directions y2 and y3. Therefore, local fields depend only on variable y1.

(a) Stratified composite geometry (b) Unit-cell domain

Figure B.1: Illustration of the studied problem.

For numerical simulations, the following material properties are consid-
ered: Eb = 1GPa, Ea = 5GPa and µa = µb = 0.3 with τ = 0.5.

First-order problem
(
P1st

order

)
validation

The solutions to these problems are first-order displacement, strain, and stress localization
tensors: D0, A0, and B0, respectively.
Components D0

111 and A0
1111 are shown in Fig. B.2a and B.2b, respectively. Displacement

fields, i.e. components of D0, are piecewise linear as shown in Fig. B.2c while strain
fields, i.e. components of A0, are constant per layer as shown in Fig. B.2d. Comparison
between obtained numerical and analytical solutions of first-order displacement, strain,
and stress localization tensors: D0, A0, and B0 are shown in figures B.2c, B.2d and B.2e,
which are in perfect agreement.
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B.1 Numerical validation of localization tensors

remark B.1 By a volume average process on B0, one can deduce the homogenized elas-
ticity tensor C0. An orthotropic macroscopic elastic behavior is obtained.

Second-order problem
(
P2nd

order

)
validation

The solutions to these problems are second-order displacement, strain, and stress local-
ization tensors: D1, A1, and B1, respectively.
Components D1

2222 and A1
12222 are shown in figures B.2a and B.2b, respectively. Displace-

ment fields are now quadratic functions as shown in Fig. B.3c while strain fields are piec-
wise linear as shown in Fig. B.3d. Comparison between obtained numerical and analyti-
cal solutions of second-order displacement, strain, and stress localization tensors: D1, A1,
and B1 are shown in figures B.3c, B.3d and B.3e, which are in perfect agreement.

remark B.2 Components of B1 have a zero volume average on the unit-cell. Therefore,
the second-order effective tensor C1 = 0, which is a fifth-rank tensor.

Third-order problem
(
P3rd

order

)
validation

The solutions to these problems are third-order displacement, strain, and stress localiza-
tion tensors: D2, A2, and B2, respectively.
Components (D2

12222, B2
222222) and (D2

21121, A2
121121) are shown in Fig. B.4. Displacement

fields are now cubic functions as shown in figures B.4b and B.4f while stress/strain fields
are quadratic functions as shown in figures B.4d and B.4h.

remark B.3 After averaging values of B2, one can deduce the third-order effective ten-
sor C2, which is a sixth-rank tensor. Analytical expression of D2, A2, and B2 were not
provided in Boutin [1996], but values of C2 are detailed. We have verified that we obtain,
exactly, the same values of C2 provided in Boutin [1996] by our numerical procedure.
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Figure B.2: Results of the first-order homogenization problem
(
P1st

order

)
. Fig-

ures B.2c, B.2d and B.2e show perfect agreement between numerical (in blue) and an-
alytical (in red) results.
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Figure B.3: Results of the second-order homogenization problem
(
P2nd

order

)
. Fig-

ures B.3c, B.3d and B.3e show perfect agreement between numerical (in blue) and an-
alytical (in red) results.
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Figure B.4: Third-order relocalization components (D2
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and (D2

21121, A2
121121).
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B.2 Comparative study with He and Pindera [2020a]

B.2 Comparative study with He and Pindera [2020a]
The objective of this appendix is to compare our results of higher-order relocalization and
boundary layer correction with those obtained in He and Pindera [2020a].
First, second and third-order components of stress localization tensors are shown in
Fig. B.5. These results are to be compared with those presented in He and Pindera [2020a]
(see their figure 3), where a finite-volume method was used to compute localization ten-
sors. It is noticed that exactly the same results are obtained.

(a) B0
1111 (MPa) (b) B1

11111 (MPa) (c) B2
111111 (MPa)

Figure B.5: First, second and third-order components of stress localization tensors pro-
duced by a unit loadings.

remark B.4 The component B1
11111 has a zero average distribution over the unit-cell,

implying that the first component of the second-order effective tensor C1
11111 = 0. In

general, C1 = 0 in case of centro-symmetric unit-cell.

Comparison of different stress fields σ11 are shown in Fig. B.6. By increasing the order
of the relocalization, estimated stress fields approach progressively the reference. Fig-
ures B.6e and B.6f show that a third-order relocalization provides a good estimation in
the inner domain of the structure, nevertheless accuracy is lost near the boundaries. Sim-
ilar results are shown in He and Pindera [2020a] (see their figure 5).
Comparison of stress fields, after the boundary layer correction, are shown in Fig. B.7. It

is noticed that the corrected stress, σ cor3
11 , provides a better estimation near the boundaries

(see figure B.7b), contrary to σ est3
11 in figure B.6f.

In He and Pindera [2020a], a boundary layer correction is conducted by applying the
third-order relocalized displacement field in the inner domain of the fully detailed, i.e.
using DNS, boundary.
By comparing our results, it is noticed that a better approximation of σ cor3

11 is provided by
the boundary correction by He and Pindera [2020a], albeit at a higher computing cost. In-
deed, instead of conducting DNS, which may be computationally cumbersome when the
boundary domain is large, our method introduce corrective terms computed on a single
unit-cell.
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(a) σ est1
11 (b) σ est2

11 (c) σ est3
11

(d) σ
re f
11 (e) σ est1

11 −σ
re f
11 (f) σ est3

11 −σ
re f
11

Figure B.6: Comparison of different stress fields σ11 (MPa). By increasing the order of
the relocalization, estimated stress fields approach progressively the reference, yet remain
inaccurate near the boundaries.

(a) σ cor3
11 (b) σ cor3

11 −σ
re f
11

Figure B.7: Comparison of corrected stress fields σ11 (MPa). σ cor3
11 provides a better

approximation than σ est3
11 as shown in Fig. B.6f.
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B.3 Limitation of the proposed approach

B.3 Limitation of the proposed approach
We consider a plane strain elasticity problem of a laminated composite made of two
layers as presented in Fig. B.8. The size of the structure is L = 8 mm, H = 5 mm
and W = 1 mm. The two layers are assumed to be isotropic linear elastic with coeffi-
cients (E f /Em = 200, νm = ν f = 0.3). The structure is fixed on the left whereas a
prescribed displacement u2 = −2 mm is applied on the right, as shown in Fig. B.8.
The comparison between the reference displacement field ure f

2 and the homogenized one

x

x

u =-2mm
2

(E , ν )
f f

(E , ν )
m m

(a) Structure geometry

y

y

(b) Unit-cell domain

Figure B.8: Illustration of a laminated composite in bending. The structure is fixed on the
left, a displacement u2 = −2 mm is applied on the right.

uhom
2 , using conventional Cauchy continuum, are presented in Fig. B.9. It can be seen that

(a) ure f
2 (b) uhom

2

Figure B.9: Comparison between the reference and homogenized displacement field u2.

the Cauchy medium gives a poor prediction of the real deformation state. This is due to
the fact that it is not able to take into account the clamping conditions. Consequently,
the relocalization process will be inaccurate, even including higher-order terms, since the
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resulting macroscale strain and its gradients, considering a Cauchy continuum, are inac-
curate and not representative of the deformation state, especially near the fixed boundary,
which can be seen in Fig. B.10. Cosserat medium was considered at the macroscale

(a) σ
re f
11 (MPa) (b) σ est1

11 (MPa)

(c) σ est2
11 (MPa) (d) σ est3

11 (MPa)

Figure B.10: Results of the reference (σ re f
11 ) field compared with the first-order (σ est1

11 ),
second-order (σ est2

11 ), and third-order (σ est3
11 ) estimates for the laminated composite in

bending.

in Forest and Sab [1998] providing better solutions. A higher-order relocalization, using
a Cosserat medium at the macroscale, is supposed then to provide better solutions than
those presented in Fig. B.10. A macroscopic strain gradient approach would also provide
a better solution.

remark B.5 When considering a structure constructed by one of the two unit-cells pre-
sented in subsection 3.5.1 or 3.5.2 and subjected to the same boundary conditions in
Fig. A.2a, the macroscale strain and its gradients, using a Cauchy continuum, will be
representative of the deformation state. Consequently, higher-order estimates will accu-
rately approximate reference fields. The need of a higher-gradient continuum is, therefore,
specific to both the considered microstructure and loading conditions.
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C.1 Comparison of relocalized field on macroscale meshes

Appendix of Chapter 4

C.1 Comparison of relocalized field on macroscale meshes
Comparison of U1, U2 and σ11 components, solution of the problem detailed in subsec-
tion 4.3.2, are presented in figures C.1, C.2 and C.3, respectively. Same conclusions as
in subsection 4.3.2 are drawn. Indeed, the quality of estimated fields increases by refin-

(a) U re f
1 on microscale mesh

(b) Ucor2
1 on macroscale mesh 1 (c) Ucor2

1 on macroscale mesh 2 (d) Ucor2
1 on macroscale mesh 3

(e) Ucor2
1 on macroscale mesh 4 (f) Ucor2

1 on macroscale mesh 5 (g) Ucor2
1 on macroscale mesh 6

Figure C.1: Comparison of U1 results.

ing the macroscale mesh. However, contribution of different material phase (matrix and
fibers) to estimated fields begins to be clearly distinguished starting from mesh 3, which
provide an acceptable estimation. It is also capable of capturing high gradients developed
near region where the load is applied and on the interfaces.
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(a) U re f
2 on microscale mesh

(b) Ucor2
2 on macroscale mesh 1 (c) Ucor2

2 on macroscale mesh 2 (d) Ucor2
2 on macroscale mesh 3

(e) Ucor2
2 on macroscale mesh 4 (f) Ucor2

2 on macroscale mesh 5 (g) Ucor2
2 on macroscale mesh 6

Figure C.2: Comparison of U2 results.
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C.1 Comparison of relocalized field on macroscale meshes

(a) σ
re f
11 on microscale mesh

(b) σ cor2
11 on macroscale mesh 1 (c) σ cor2

11 on macroscale mesh 2 (d) σ cor2
11 on macroscale mesh 3

(e) σ cor2
11 on macroscale mesh 4 (f) σ cor2

11 on macroscale mesh 5 (g) σ cor2
11 on macroscale mesh 6

Figure C.3: Comparison of σ11 results.
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C.2 Comparison of the reference fields with the relocalized ones

Figure C.4 shows a comparison of the reference solution ure f , with the obtained relo-
calized fields, uest1 and ucor2 for different ratios E f

Em
. This comparison was conducted

by considering an identical macroscale mesh with the microscale one. The second-order
relocalized field corrected on the boundaries ucor2, highly reduces the modeling error
compared to the first-order relocalized field uest1. As a result, ucor2 provides a better
estimation to ure f than uest1.
A third-order relocalization is supposed to provide a better solution than ucor2 as illus-
trated in Fergoug et al. [2022b], albeit at a higher computation cost. We have chosen to
restrict our study to ucor2 since it is sufficient to illustrate our purpose.

Figure C.4: Comparison of the relative local error (in the energy norm defined in equa-
tion 4.13) between ure f and the obtained relocalized fields, uest1 and ucor2, for different
ratios E f

Em
.
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D.1 Automatization workflow

Work in collaboration with Mateus AMERICO DE
ALMEIDA
In this appendix, the main results of the work conducted in collaboration with Mateus
AMERICO DE ALMEIDA Americo De Almeida [2022] as a part of his internship are
summarized.

D.1 Automatization workflow
To conduct higher-order relocalization with the boundary layer correction, the user must
go through several manual steps, which can be difficult, time consuming and can lead
to errors. Mateus has proposed a Python tool to conduct, automatically, higher-order
relocalization with the boundary layer correction just by entering the geometry of the unit-
cell and the dimensions of the used structure, as detailed in the workflow in figure D.1.

Figure D.1: Proposed automatization workflow Americo De Almeida [2022].
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D.2 Boundary layer correction for corner cells
The objective of this appendix is to improve the boundary layer correction in corner cells.
Indeed, instead of applying the boundary layer correction to one unit-cell, the correction
is applied to four unit-cells as shown in figure D.2. Localization tensors are then extracted
from the region of interest only (highlighted in blue), corresponding to the studied corner
cell.

Figure D.2: Example of the proposed boundary layer correction for corner cells Americo
De Almeida [2022].

A comparison of displacement localization components, Dbl
111 and Dbl

1111, are shown in
figures D.3 and D.4, highlighting the difference between results obtained by the classical
and the improved corrections.

A comparison of the local relative modeling error results obtained before and after
the improvement of the corner cell correction is shown in figure D.5. One can notice that
the modeling error is greatly reduced on corner cells. Particularly, the global modeling
error is reduced from 10.9% to 7.3% for the first-order and from 4.7% to 2.6% for the
second-order.
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D.2 Boundary layer correction for corner cells

(a) Dbl
111 (b) Dbl

1111

Figure D.3: Comparison of displacement localization components.

(a) Dbl
111 (b) Dbl

1111

Figure D.4: Comparison of values of displacement localization components over the line
AB Americo De Almeida [2022] Americo De Almeida [2022].
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(a)
∥ure f−ucor1∥2

E(Ωe)

∥ure f ∥2
E(Ω)

(b)
∥ure f−ucor2∥2

E(Ωe)

∥ure f ∥2
E(Ω)

Figure D.5: Comparison of the local relative modeling error results obtained before and
after the improvement of the corner cell correction Americo De Almeida [2022].
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D.3 Extension to nonperiodic structures

D.3 Extension to nonperiodic structures
We have considered the nonperiodic structure illustrated in figure D.6, where a hole is
inserted in the middle of the structure.

Figure D.6: Illustration of the studied nonperiodic structure Americo De Almeida [2022].

The reference field σ11 is illustrated in figure D.7a, and the second-order corrected
field in figure D.7b. It is clear that the relocalized solution is a good approximation to the
reference one except near the hole where the periodicity assumption is lost.

(a) σ
re f
11 (b) σ cor2

11

Figure D.7: Comparison of the reference and relocalized field σ11 Americo De Almeida
[2022].

The reference field verifies the following Neumann condition:

σ
re f (x).n= 0,∀x ∈ Γn (D.1)

Nevertheless, this condition is not verified for σ cor2:

σ
cor2(x).n ̸= 0,∀x ∈ Γn (D.2)
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To correct the estimated field, we have considered:

• A first intermediate computation to deduce reaction forces on the boundary Γn.

• A second computation where the opposite of these forces are applied as a boundary
condition in order to verify the Neumann condition D.1.

The obtained field is illustrated in figure D.8.

Figure D.8: Solution of σ11 after the proposed correction Americo De Almeida [2022].

Clearly, the proposed correction is not satisfactory to deal with the nonperiodicity of
the solution fields. Further analyses are required to account for locally nonperiodicity in
the asymptotic homogenization.
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MOTS CLÉS

Erreur de modèle, Analyse multi-échelle, Analyse Globale/Locale, Erreur de discrétisation, Homogénéisation,
Eléments-Finis

RÉSUMÉ

Les modèles homogénéisés sont souvent utilisés dans l’analyse multi-échelle des matériaux composites en raison de
leur efficacité de calcul, cependant ils ne fournissent souvent pas une précision suffisante dans les régions présentant
des forts gradients dans les champs de solution. Une approche pour surmonter cette difficulté est de coupler de
manière adaptative le modèle homogène avec un modèle hétérogène dans des zones d’intérêt identifiées. J’ai développé
un nouvel estimateur d’erreur de modélisation afin de détecter ces régions où le raffinement du modèle de matériau
est nécessaire. Cet estimateur est formulé en se basant sur la méthode d’homogénéisation asymptotique d’ordre
supérieur associée à une correction originale des effets de bords que j’ai proposée. En effet, il est démontré que
l’homogénéisation d’ordre supérieur fournit une estimation précise des champs hétérogènes même dans les cas où
la séparation d’échelle entre les longueurs caractéristiques des hétérogénéités et le problème structurel est faible. Cette
estimation de l’erreur de modélisation quantifie la différence entre une estimation d’ordre supérieur introduisant l’effet
des gradients macroscopiques et une estimation classique de premier ordre. Une stratégie de couplage adéquate est
également développée pour coupler efficacement les domaines homogènes et hétérogènes, constituant une étape vers
la modélisation hiérarchique des structures élastiques hétérogènes.

ABSTRACT

Homogenized models are often used in multiscale analysis of composite materials because of their computational effi-
ciency. However they frequently fail to provide sufficient accuracy in regions with considerable gradients in solution fields.
One approach to overcome this issue is to adaptively couple the homogeneous model with a full field, heterogeneous
model in selected zones of interest which need to be determined somehow. For this purpose, I have proposed a new
modeling error estimate based on a higher-order asymptotic homogenization method associated with an original gen-
eral boundary layer correction, shown to provide accurate estimation of heterogeneous fields even for cases with a weak
scale separation between the characteristic lengths of the heterogeneities and the structural problem. This modeling error
estimation quantifies the terms neglected by classical first-order homogenization, which become significant for weak sep-
aration of scales. An original multiscale coupling strategy is also developed to more effectively couple the homogeneous
and heterogeneous domains as a step toward hierarchical modeling of elastic heterogeneous structures.

KEYWORDS

Modeling error, Multi-scale analysis, global-local analysis, Discretization error, Homogenization, Finite Ele-
ment Analysis
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