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Abstract

Self-balanced exoskeletons offer individuals with disabilities recovered ambu-
lation capabilities thanks to their embedded control algorithms which realize
autonomous and stable walking. This thesis is concerned with enabling
patients to use these systems for rehabilitation purposes according to the
concept of active gait rehabilitation. In our interpretation, this concept
entails giving back some freedom of motion to the patients. This objective is
conflicting with ensuring safety, which implies taking control over the motion.
The main topic addressed in the thesis is the challenge of reconciling these
two objectives.

Our solution is twofold: empower the patient and monitor safety. Firstly,
we introduce a split in the control architecture, allowing patients to actively
participate in the swing leg motion. Concurrently, the control algorithm of
the support leg regulates the unilateral contact forces. Secondly, we solve
online optimal control problems in free final time on a reduced model to
generate stabilizable trajectories. The duration of these trajectories serves
as a determinant for when the control system should take back control over
the execution of the walking pattern.

The manuscript presents the necessary control architecture updates along
with the development of the safety management algorithm. Experimental
results are provided to assess the effectiveness of our approach in both
flat-foot and foot-rolling walking exercises.
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Résumé

Les exosquelettes auto-équilibrés, grâce à leurs algorithmes de contrôle qui
permettent une marche autonome et stable, offrent aux personnes handicapées
des capacités de marche retrouvées. Cette thèse vise à permettre aux patients
d’utiliser ces systèmes à des fins de rééducation selon le concept de rééducation
active de la marche. Selon notre interprétation, ce concept implique de
redonner une certaine liberté de mouvement aux patients. Cet objectif est
en conflit avec la garantie de la sécurité, qui implique de prendre le contrôle
du mouvement. Le principal sujet abordé dans cette thèse est le défi que
représente la conciliation de ces deux objectifs.

Notre solution est double : donner de la liberté au patient et en garan-
tissant l’équilibre. Tout d’abord, nous introduisons une division dans
l’architecture de contrôle existante, permettant aux patients de participer
activement au mouvement de la jambe de vol. Parallèlement, l’algorithme de
contrôle de la jambe de support régule les forces de contact. Deuxièmement,
nous résolvons de manière embarquée des problèmes de contrôle optimal
en temps final libre sur un modèle réduit afin de générer des trajectoires
stabilisables. La durée de ces trajectoires sert à déterminer le moment où le
système doit reprendre le contrôle de l’exécution de la marche.

Le manuscrit présente les mises à jour nécessaires de l’architecture de
contrôle ainsi que le développement de l’algorithme de gestion de la sécu-
rité. Des résultats expérimentaux sont fournis pour évaluer l’efficacité de
notre approche lors d’exercices de rééducation de la marche en utilisant une
trajectoire sans et une trajectoire avec déroulé du pied.
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relire ce manuscrit et d’assister à ma soutenance. En particulier, merci à
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Contents

Acronyms 11

Glossary 13

1 Introduction 17

1.1 Exoskeletons for walking rehabilitation . . . . . . . . . . . . . 18

1.1.1 A concise view of walking rehabilitation . . . . . . . . 18

1.1.2 Using exoskeletons during training . . . . . . . . . . . 20

1.2 Passive walking with a self-balanced exoskeleton . . . . . . . 24

1.2.1 Description of the Atalante platform . . . . . . . . . . 24

1.2.2 Passive walking control architecture: plan then execute 25

1.3 Active gait training with self-balanced exoskeletons . . . . . . 28

1.3.1 Spatial and temporal freedom for active gait training . 28

1.3.2 Exploiting spatial freedom with self-balanced exoskele-
tons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.3 Contribution of the thesis: exploit temporal freedom
and maintain balance . . . . . . . . . . . . . . . . . . 30

2 Atalante: models and passive walking controller 33

2.1 Atalante: description and dynamical models . . . . . . . . . . 35

2.1.1 Definitions of the frames of reference . . . . . . . . . . 35

2.1.2 Description of Atalante . . . . . . . . . . . . . . . . . 35

2.1.3 Kinematic model . . . . . . . . . . . . . . . . . . . . . 36

2.1.4 Lagrangian dynamics . . . . . . . . . . . . . . . . . . 39

2.1.5 Newton-Euler dynamics . . . . . . . . . . . . . . . . . 40

2.2 Offline trajectory generation . . . . . . . . . . . . . . . . . . . 40

2.2.1 Generic walking motion optimal control problem . . . 40

2.2.2 Flat-foot trajectory optimal control problem . . . . . 43

2.2.3 Foot-rolling trajectory optimal control problem . . . . 44

7



8 CONTENTS

2.3 Center of Mass stabilization and admittance controller . . . . 47

2.3.1 DCM control using admittance . . . . . . . . . . . . . 49

2.3.2 Hierarchical Inverse Kinematic problems: the Stack-of-
Tasks framework . . . . . . . . . . . . . . . . . . . . . 50

2.3.3 The nominal SoT1 of Atalante . . . . . . . . . . . . . 53

3 Empowering the patient for gait training 57

3.1 Satisfying the patient intent with the swing leg . . . . . . . . 59

3.1.1 Choice of the Virtual Guides definition space . . . . . 60

3.1.2 Construction of a parametric curve of reference . . . . 60

3.1.3 Virtual Guides controller . . . . . . . . . . . . . . . . 61

3.1.4 Behavior of Virtual Guides . . . . . . . . . . . . . . . 63

3.2 Stabilizing the Center of Mass with the support leg . . . . . . 72

3.2.1 Modification of admittance’s Stack-of-Tasks (SoT) . . 73

3.2.2 Synchronization of legs by Time Rescaling (TR) . . . 74

3.2.3 Trajectory smoothing . . . . . . . . . . . . . . . . . . 74

3.2.4 Impact of the modification of the SoT . . . . . . . . . 76

3.3 Impact on safety of patient empowerment . . . . . . . . . . . 80

3.3.1 Stability analysis . . . . . . . . . . . . . . . . . . . . . 80

3.3.2 Simulation results . . . . . . . . . . . . . . . . . . . . 81

3.3.3 Experimental observations . . . . . . . . . . . . . . . . 83

3.3.4 Performance analysis during a single step simulation . 86

4 Monitoring safety 89

4.1 Online Planning and velocity filter . . . . . . . . . . . . . . . 92

4.1.1 Trajectory generation with fixed final time . . . . . . . 93

4.1.2 Bi-level trajectory generation with free final time . . . 95

4.1.3 Modification of the rehabilitation controller . . . . . . 97

4.2 Bisection on trajectory final time . . . . . . . . . . . . . . . . 99

4.2.1 Set of admissible final times . . . . . . . . . . . . . . . 101

4.2.2 Numerical method . . . . . . . . . . . . . . . . . . . . 102

4.2.3 Simulation results . . . . . . . . . . . . . . . . . . . . 105

4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.1 Stability comparison . . . . . . . . . . . . . . . . . . . 107

4.3.2 Rehabilitation: experiments with an able-bodied user 108

5 Discussion and perspectives 115



CONTENTS 9

A Proof of Theorem 1 117
A.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.1.1 Decoupling dimensions . . . . . . . . . . . . . . . . . . 118
A.1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2 Regions of interest in the phase portrait . . . . . . . . . . . . 119
A.3 Boundedness of the set of feasible times T . . . . . . . . . . . 120
A.4 Convexity of bounded T cases . . . . . . . . . . . . . . . . . . 123
A.5 Convexity of unbounded T cases . . . . . . . . . . . . . . . . 125

B Empower and monitor during the double support phase 131
B.1 Whole-body VG: consequences on the CoM . . . . . . . . . . 132
B.2 Monitor next step feasibility: a conservative approach . . . . 133

Bibliography 137





Acronyms

CBF Control Barrier Functions

CoM Center of Mass

CoP Center of Pressure

DCM Divergent Component of Motion

DoF Degrees of Freedom

FK Forward Kinematics

HZD Hybrid Zero Dynamics

ID Inverse Dynamics

IK Inverse Kinematics

IMU Inertial Measurement Unit

LIP Linear Inverted Pendulum

MPC Model Predictive Control

NLP Non Linear Program

OCP Optimal Control Problem

OP Optimal Planning

PD Proportional Derivative

QP Quadratic Program

SoT Stack-of-Tasks

TR Time Rescaling

VG Virtual Guides

11





Glossary

SoT1 SoT used by the original passive walking controller of Atalante

SoT2 SoT used by the proposed active walking controller during single
support phase

Q nominal trajectory mapping time in R+ to the space of generalized
positions in R18

T nominal joint trajectory mapping time in R+ to joint space in
R12 [rad]

T sw nominal swing leg joint trajectory mapping time in R+ to joint
space in R6 [rad]

P parametric curve mapping curvilinear abscissa in R+ to joint
space in R6 [rad]

T Frenet-Serret unit tangent vector to the curve P mapping curvi-
linear abscissa in R+ to joint space in R6 [rad]

s curvilinear abscissa mapping time in R+ to arc length, in joint
space, in R+ [rad]

σ control variable in R+ [rad]

σ̇ control variable derivative in R [rad.s−1]
σ̇u simulated user velocity in R [rad.s−1]
ηu simulated user phase variable in R [s]

η̇u simulated user phase variable velocity in R
m Total mass of the patient-exoskeleton system [kg]

L angular momentum about the CoM in R3 [rad.s−1]
c CoM position w.r.t . the inertial frame, in R3 [m]

c∗ horizontal reference CoM position in R2 [m]
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ċ CoM velocity the inertial frame, in R3 [m]

ċ∗ horizontal reference CoM velocity in R2 [m.s−1]
c̈∗ horizontal reference CoM acceleration in R2 [m.s−1]
c̈d desired CoM acceleration in R3 [m.s−2]
ω LIP natural frequency in R+ [s−1]
ξ DCM in R2 [m]

ξ∗ reference DCM in R2 [m]
p∗ reference CoP command in R2 [m]

pd desired CoP position in R2 [m]

pT R time-rescaled CoP trajectory mapping curvilinear abscissa σ ∈ R+

to CoP in R2 [m]

pOP optimal CoP trajectory mapping curvilinear abscissa σ ∈ R+ to
CoP in R2 [m]

xT R time-rescaled CoM state trajectory mapping curvilinear abscissa
σ ∈ R+ to the CoM state in R4 [m,m.s−1]

xOP optimal CoM state trajectory mapping curvilinear abscissa σ ∈ R+

to the CoM state in R4 [m,m.s−1]
q vector of generalized positions in R3 × R15 [m x rad]

qsw vector of swing leg joint positions in R6 [rad]

qsp vector of support leg joint positions in R6 [rad]

qun vector of unactuated DoF in R3 × R3 [m x rad]

qt vector of target joint positions in R12 [rad]

qsw
t vector of swing leg target joint positions in R6 [rad]

qsp
t vector of support leg target joint positions in R6 [rad]

qT R time-rescaled joint trajectory, computed from the nominal joint
trajectory T , mapping time in R+ to joint space in R12 [rad]

q̇ vector of generalized velocities in R3 × R15 [m x rad]−1

q̇sw vector of swing leg joint velocities in R6 [rad.s−1]
q̇sp vector of support leg joint velocities in R6 [rad.s−1]
q̇un vector of generalized velocities in R3 × R15 [m x rad]−1

q̇t vector of target joint velocities in R12 [rad.s−1]
q̇sw

t vector of swing leg target joint velocities in R6 [rad.s−1]
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q̇sp
t vector of support leg target joint velocities in R6 [rad.s−1]
q̈ vector of generalized accelerations in R3 × R15 [m x rad]−2

q̈sw vector of swing leg joint accelerations in R6 [rad.s−2]
q̈sp vector of support leg joint accelerations in R6 [rad.s−2]
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t vector of support leg target joint accelerations in R6 [rad.s−2]
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τ sw vector of exoskeleton swing leg joint torques in R6 [N.m]

τ sp vector of exoskeleton support leg joint torques in R6 [N.m]

τu vector of patient’s joint torques in R12 [N.m]

τ sw
u vector of patient’s swing leg joint torques in R6 [N.m]
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u vector of patient’s support leg joint torques in R6 [N.m]

τ sw
P D vector of exoskeleton swing leg high-gain PD joint torques in R6
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τ sw
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Chapter 1

Introduction

Chapitre 1- Introduction: Ce chapitre introductif décrit les exercices de
rééducation de la marche, et en particulier s’attarde sur les principales
motivations des développements robotiques pour la rééducation. Les
différentes familles d’exosquelettes, sous-catégorie des robots de rééducation,
sont présentées, ainsi que les différents types d’exercices de rééducation
qu’ils permettent. Une caractéristique essentielle de ces exercices est mise en
avant : la possibilité pour le patient de modifier le mouvement à l’aide de sa
force musculaire. Nous appelons exercices actifs les exercices permettant une
telle modification du mouvement par le patient, et, par opposition, exercices
passifs ceux ne permettant pas de modification du mouvement.
L’exosquelette auto-équilibré Atalante, cible des travaux présentés dans ce
manuscrit, et son mode nominal de fonctionnement, permettant la
rééducation passive de la marche, sont décrits. Ensuite, deux catégories de
changement permis par les modes de controôle actifs d’exosquelettes sont mis
en avant: les changements de la forme des mouvements et les changements
de la durée des mouvements. Finalement, la principale contribution de ce
manuscrit, un contrôleur offrant une liberté temporelle au patient tout en
monitorant l’équilibre, est présentée, ainsi que l’organisation du reste du
manuscrit.
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1.1 Exoskeletons for walking rehabilitation

1.1.1 A concise view of walking rehabilitation

Human walking can be seen as repetitively achieving a gait1. Each leg has
a stance phase and a swing phase. These define, for the human, single and
double support phases. They are illustrated on Figure 1.1. At some instant of
the double support phase, the weight is transferred from one leg to the other
and the Center of Pressure (CoP)2 shifts from one foot to the other. At all
instants of single support phases, the human body is propelled forward. Each
single support phase includes at least one controlled falling phase [Perry2010],
i.e. a phase during which the Center of Mass (CoM) of the human body is
not directly above the base of support, the support foot, and the landing
of the other foot is required to prevent an actual fall3. Walking requires
two primary abilities: transferring the weight during double support phases
and moving both the CoM and the swing foot forward during single support
phases.

1A gait is a cyclic motion pattern that produces locomotion through a sequence of foot
contacts with the ground [Haynes2006].

2The Center of Pressure is the average of all the contact points weighted by the vertical
component of the force pushing on the ground.

3This is a particularity of human walking.
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Figure 1.1: Phases of gait cycle (from [Kour2019]).

Impaired patients following gait training programs are trained to re-
gain the ability to walk (see Figure 1.2 for examples). Because of their
neurological disorders4, they have strong difficulties controlling the weight
transfer or producing the efforts required to generate healthy single support
motion by themselves. Walking rehabilitation is exhausting for both the
physiotherapist and the patient because they need to maintain the balance
of the patient during the exercise by producing important external forces, in
a well-coordinated manner. These efforts often even lead to lower exercise
intensity and shorter durations of training sessions than what would be ideal.
This is an important matter as strong evidence indicates that higher intensity
(in the duration of exercises, number of repetitions and level of effort) leads
to faster recovery [Lohse2014; Lang2015; Hornby2019; Moore2020].

With their powerful actuators, robotic devices have the potential to
handle safety [Gassert2018], helping both the physiotherapist in their work
and the patient in their recovery process. Robotic rehabilitation is especially
promising for gait training as the potential load that could be lifted from
physiotherapists and patients is heavier. For this reason, exoskeletons are be-
coming more and more popular for gait training [Doppmann2015; Young2017;
Eveld2021; Shahrokhshahi2022; Kang2023].

4Neurological disorders encompass numerous disorders related to nervous system disor-
ders such as spinal cord injuries, cerebral palsy, or stroke.
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(a) Weight transfer training (b) Step training

Figure 1.2: Walking rehabilitation examples (from Helen Hayes Hospital
https://youtu.be/g__BYaS9viw).

1.1.2 Using exoskeletons during training

Exoskeletons are a special class of robots [Gassert2018]. They are meant
to be worn by humans s.t . they can exert efforts on several body parts
simultaneously. They vastly differ from robotic manipulators which interact
with humans only at their end-effector (see [Maciejasz2014] and references
therein). Exoskeletons are designed to align some of their joints with the
morphological joints of the human wearer, s.t . they share some Degrees of
Freedom (DoF), as opposed to manipulators (which rarely align their joints
with humans’).

Lower-limb exoskeletons (see examples on Figure 1.3) are a subclass

https://youtu.be/g__BYaS9viw
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specifically designed for walking rehabilitation or ambulation5. They are the
subject of this thesis. From now on, we only discuss lower-limb exoskeletons,
and we simply call them “exoskeletons”.

Passive vs active gait training

With such systems, two modes of operation must be distinguished. Passive
walking is the mode in which exoskeletons fully assign the patients’ leg
motion, irrespective of the patient’s efforts. This mode allows passive gait
training (i.e. rehabilitation with no participation required from the patient,
see [Quintero2012; Bortole2015]). By contrast, active walking is the mode
in which exoskeletons allow patients to significantly modify the motion of
the patient-exoskeleton system through their efforts (see Section 1.3.1 for
examples). Such active walking modes are used for active gait training
(i.e. rehabilitation with participation required from the patient). The con-
trol methodology of Atalante described in Section 1.2.2 allows passive gait
training.

Passive gait training is reported to be less effective than active gait
training, as it leads to the phenomena of “learned helplessness” [Skinner1979;
Wool1980]. Intuitively, one can easily understand that rewarding the proper
efforts and penalizing the inappropriate ones should encourage the patients
toward producing the right efforts. If the patient has no freedom of motion
and senses no difference in the robot’s motion regardless of their efforts, they
will tend to let the robot produce all the efforts. This is a negative and
undesired outcome.

Three families of exoskeletons

During gait training the exoskeleton must guarantee the safety of the patient.
Chronologically, three types of solutions have been developed for this purpose.
They have driven the development of three different types of exoskeletons:
platform-based exoskeletons (for instance Lokomat pictured in Figure 1.3a),
which are virtually fixed to the ground (either by being truly fixed to the
ground or by being sufficiently heavy s.t . their base remains still), crutched
exoskeletons (for instance Ekso pictured in Figure 1.3b), designed to be
used with crutches or external help for stabilization, and, more recently,
self-balanced exoskeletons (for instance REX pictured in Figure 1.3c or

5Ambulation is the act of moving around by walking. There is no rehabilitation objective
during ambulation, only a mobility one.
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Atalante Figure 1.3d), designed to balance themselves during walking and
not requiring crutches or external help.

These various types of exoskeletons constitute various trade-offs between
the realism6, safety7 and intensity8 of the walking exercises. Platform-based
exoskeletons are, by definition, the most stable as they ensure the patients
will never fall. They also allow high-intensity walking exercises. However,
they reduce the realism of the walking exercise. Hence, they favor safety and
intensity over the realism of the walking exercise.

The realism of the walking exercises is higher with crutched exoskeletons,
as the legs of the patients have to support their weight. However, they leave
the patients and/or physiotherapists with the exhausting walking stabilization
task, which limits the intensity of the rehabilitation exercises. The probability
of falling with these exoskeletons is not small. Hence, they favor realism over
the safety and intensity of the walking exercise.

Self-balanced exoskeletons, while not suffering from realism or intensity
issues, face a major challenge: ensuring the balance of the walk. Designing a
control algorithm to address this issue is not straightforward. In principle,
self-balanced exoskeletons could re-employ the vast humanoid and bipedal
robots’ literature to realize stable walking. However, the presence of a
patient in the system implies specific needs, unanswered by the literature9.
First, some freedom of motion must be given to the patients to boost their
rehabilitation, while humanoid robot controllers favor accurate tracking
of the planned motion. Second, by producing inappropriate efforts, and
because the behavior of the patient is only approximately known and difficult
to model, patients may disturb the balance of the system during walking
exercises, which implies the design of stabilization algorithms especially
robust to disturbances and model errors. We are interested in the design of
gait training control methods for self-balanced exoskeletons.

The work presented in this manuscript targets one of these self-balanced
exoskeletons, Atalante. We now describe its hardware and the control
algorithms designed for passive walking.

6We refer to realism of the walking for the ratio of patient weight supported by their
legs.

7We refer to safety of the walking for the probability of falling during walking.
8We refer to intensity of the walking exercise for the duration of the exercise and the

level of effort produced by the patient’s legs.
9Roughly speaking there is a 1-1 ratio between the mass of the human and the mass of

the exoskeleton.
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(a) Lokomat (https://www.hocoma.com)
(b) Ekso (https://eksobionics.com/)

(c) REX (https://www.rexbionics.c
om/)

(d) Atalante (https://www.wandercraf
t.eu/)

Figure 1.3: Exoskeleton examples: (a) platform-based exoskeleton, (b)
crutched exoskeleton, (c) self-balanced exoskeleton, (d) self-balanced ex-
oskeleton.

https://www.hocoma.com
https://eksobionics.com/
https://www.rexbionics.com/
https://www.rexbionics.com/
https://www.wandercraft.eu/
https://www.wandercraft.eu/
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Figure 1.4: Atalante

1.2 Passive walking with a self-balanced exoskeleton

1.2.1 Description of the Atalante platform

The exoskeleton Atalante is pictured on Figure 1.4. It has been certified
as a medical device for passive use by paraplegic patients in the European
market (in 2019) and in the US market (in 2023). Atalante carries a patient
standing on its feet s.t . the robot supports its weight. In addition, the
patient is strapped to the exoskeleton at his feet, shins, thighs and trunk
(see Figure 1.3d). To ease its use in medical care centers it is possible to
adjust the length of the shins and thighs to match the patient’s body parts
length and align their joints with the exoskeleton. In total, the exoskeleton
has 13 segments, and 7 of them are attached to the body parts of the patient.
The 13 segments constitute a kinematic chain having 12 actuated revolute
joints (6 for each leg: two joints at the ankle, one joint at the knee, and
three joints at the hip). These joints are mechanically optimized to be best
aligned with the morphological joints of the patients.
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This mechanical structure is put into motion by 12 independent electrical
actuators, each composed of an electrical motor and a gearbox. The whole
exoskeleton is powered by two batteries, located on its thighs, which offer an
autonomy of two hours under intensive use. Overall, the exoskeleton weighs
approximately 80 kg. Except for the ankles, all the gearboxes feature a
high reduction factor (approximately 100). The position of each joint of the
exoskeleton is measured by encoders located on the motor side. Atalante
also possesses 8 single-axis force sensors (4 under each of its feet) used to
sense the contact forces. In addition, 5 Inertial Measurement Unit (IMU) are
rigidly mounted on its feet, shins and back of the exoskeleton. They serve
two purposes. First, they are used to estimate the underactuated position
and orientation of the back of the robot, through the sensing of the proper
acceleration, which includes the gravity vector defining the local frame, the
direct kinematic model of the exoskeleton and the joint angles. Then, they are
used for the estimation and control of the mechanical structure’s deformations.
Indeed, the Atalante mechanical structure undergoes deformations, similar
to those of rotational springs located in its hips and ankles [Vigne2021]10.

Atalante’s control algorithms are running on the onboard dual-core Intel
Core i5-4300U @ 1.90GHz computer. The robot trajectories, tailored to
each patient’s measurements (their weight, height and length of the different
parts of their legs), are generated offline for each patient. Various motion
patterns are available: walking in a straight or curved line, walking sideways
and backward, turning around, standing up, and sitting down. The modes
of control and motions of the exoskeleton are commanded by a two-step
procedure: first, the patient uses a remote to select the desired control mode,
then the motion is triggered by the user when a specific movement of the
patient’s trunk is detected, using an IMU fitted within the jacket worn by
the patient (visible on Figure 1.3d).

Below, we describe the passive walking controller of Atalante and give a
brief overview of the humanoid robots’ literature which inspired its develop-
ment.

1.2.2 Passive walking control architecture: plan then execute

The primary control paradigm of Atalante is to plan then execute. It takes
the form of a passive walking controller, inspired by the humanoid robots’
literature, and is composed of three elements (illustrated on Figure 1.5):

10The estimation and control of the deformations are beyond the scope of the presented
work, and we refer the interested reader to the work in [Benallegue2014; Benallegue2015;
Mifsud2016] for humanoid robots, and in [Vigne2021] for a thorough study on Atalante.
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Figure 1.5: Elements of Atalante’s passive walking controller.

• a trajectory of the exoskeleton’s joints and underactuated DoFs, com-
puted offline;

• a stabilization algorithm, adapting this joint trajectory online to track
the underactuated DoFs trajectory;

• a low-level controller, composed of joint-independent high-gain PD
controllers, tracking the modified joint trajectory.

To follow the paradigm of humanoid robots, the patient is viewed as a set
of rigid bodies, rigidly fixed to the robot, adding mass and inertia to the
exoskeleton. The passive walking controller of Atalante is inspired by two
broad families of control methodologies used to realize walking motions with
humanoid robots11. A first version has appeared in [Gurriet2018]12.

Concerning trajectory design, the main sources of inspiration are the works
presented below. The method of virtual constraints and Hybrid Zero Dynamics
(HZD) is exposed in [Westervelt2007; Ames2014; Reher2016; Grizzle2017].
This control methodology is based on the offline design of optimal walking
trajectories [Hereid2016], which possess some unstable dynamics that are
stabilized online through the feedback of their timescale. The generalization
of this methodology is still the subject of some recent work [Castillo2019;
Castillo2020; Galliker2022]. A second family of controllers generates the
trajectories of the robot online. Because the trajectory is computed online
with these methodologies, it is better suited to react to perturbations in
a Model Predictive Control (MPC) fashion, execute various motions, and
modify the plan online. A line of work relies on some approximation of

11The benefit of a third family of control methodologies [Castillo2021; Siekmann2021;
Singh2022], leveraging the recent progress of machine learning, is still under investigation
for self-balanced exoskeletons [Duburcq2020; Duburcq2022b] and does not constitute the
primary control paradigm of Atalante.

12The same control methodology can be applied to realize a variety of motions like
walking in a straight line, side-ways, turning in place, or climbing stairs (see [Huynh2021]
and accompanying video https://youtu.be/4bmuNlnREaA).

https://youtu.be/4bmuNlnREaA
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the dynamics13 of the robot to generate trajectories of the reduced state
of the robot online, either as feedback controllers [Kajita2003] or as the
solution to an optimal trajectory design (in the form of a QP) over some
horizon [Wieber2006b; Herdt2010; Caron2016; Griffin2017], at a frequency
typically lower than 100 Hz. The controller of Atalante uses the same offline
design of optimal walking trajectories as [Hereid2016] but does not rely on
the HZD stabilization

Concerning stabilization, we employ the whole-body admittance algo-
rithm [Caron2019], which enables position-controlled robots to regulate the
unilateral contact forces and track the CoM trajectory. In this paradigm,
the state trajectories are converted at high-frequency (typically 1 kHz) into
an instantaneous acceleration in the joint-space through Inverse Kinematics
(IK)14. The next step is to achieve these joint accelerations. In principle,
this can be done by torque control or position control. However, mostly due
to the patient, the torques are vastly uncertain. This discards the torque
control strategies found on Atlas [Johnson2015], TORO [Englsberger2014]
or Talos [Villa2022], and favor instead position control ones found on HRP-
4 [Kaneko2011].

Finally, low-level controllers are implemented to achieve disturbance
rejection and to track the previously defined positions. They take the form of
independent high-gain PD controllers (running at 1 kHz). This decentralized
approach shows satisfactory results due to the high reduction factor gearboxes
(see [Finet2017] for more details).

In this passive walking controller, the patient efforts are not accounted
for: they are only seen as unmodeled disturbances to be compensated for by
the low-level controllers. In other words, all the patient deviations from the
trajectory are hampered by the exoskeleton. Despite its merits for passive
gait training, this control architecture is not suited for active gait training,
which is the topic of this thesis.

13The reduced-state trajectory being generated using an approximate model of the
dynamics, some conservatism during planning must be considered, which limits the per-
formance. Some of the most advanced works [Mansard2018; Dantec2022] on humanoid
robots control exhibit online motion generation and tracking considering the full dynamics
of the robots to alleviate this limitation. However, even by today’s computational power
standards, these algorithms are still too heavy a computational burden to run online at a
high update rate on the embedded computers available in robots and have to run on remote
computers. Other recent approaches attempt to ensure a consensus between reduced and
complete dynamics, as proposed in [Budhiraja2019].

14An alternative is to compute the torques directly by Inverse Dynamics (ID) [Her-
zog2016; Kuindersma2016; Koolen2016]
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1.3 Active gait training with self-balanced exoskeletons

1.3.1 Spatial and temporal freedom for active gait training

A variety of active walking controllers have been proposed for active gait
training with platform-based or crutched exoskeletons. They allow the
patient to participate in the motion by relaxing the tracking of a reference
trajectory15.

Reference trajectory tracking can be relaxed in various ways, leading to
different types of freedom: either temporal freedom, spatial freedom, or both at
the same time can be offered. We consider that a control law offers temporal
freedom (respectively spatial freedom) if, through their efforts, a patient
can substantially change the duration of the steps (respectively the shape
of the steps’ trajectory i.e. the geometric path followed during the steps).
These two freedoms are illustrated on Figure 1.6. Most of the active gait
training controllers found in the literature offer some form of both temporal
and spatial freedom. For instance, in [Aoyagi2007; Banala2009; Vallery2009;
Duschau-Wicke2010], a nearest-neighbor algorithm is used to offer temporal
freedom by finding the closest point, within a reference trajectory, to the
current position of the legs of the patient (in joint-space)16. This methodology
is extended in [Mart́ınez2018] to provide step-to-step variation of the step
length, through online modification of the reference trajectory between each
step. Another control law is proposed in [Mart́ınez2019], based on a flow
field rather than a potential field, in order to combine in a more native way
the freedom provided by the controller from [Duschau-Wicke2010] and some
form of assistance to the user.

Altering the trajectories of the system is troublesome as it may jeopar-
dize the balance of the exercises. This problem is not critical in the works
cited above because the exoskeletons under consideration are platform-based
exoskeletons, where the safety of the exercise is never at risk, or crutched
exoskeletons, which leave the physiotherapist or patient in charge of the
balance of the exercise. With self-balanced exoskeletons, maintaining balance
while allowing freedom is a seldom studied problem. This specific problem
lies at the intersection of the literature on humanoid walking robots (see Sec-
tion 1.2.2) and the one on robotic gait training (see above). While these
two fields of research have received numerous contributions over the past

15Some control laws do not use any reference trajectory. This is the case, for instance,
in [Ekkelenkamp2005; Vallery2008; Murray2015]. However, these paradigms deviate further
from Atalante’s passive walking paradigm, therefore we do not rely on them for inspiration.

16A PD controller with deadband is employed to help the patient to stay in the vicinity
of the reference trajectory while offering spatial freedom around the reference trajectory.
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(a) Swing hip position with spatial free-
dom from [Gurriet2020] (b) Swing hip position with simulated

temporal freedom

Figure 1.6: Comparison between spatial and temporal freedom on one joint
trajectory. The larger envelope on the right makes temporal freedom easier
to perceive for patients.

20 years, their intersection has only drawn little attention. This is certainly
caused by the small number of available self-balanced exoskeletons17.

1.3.2 Exploiting spatial freedom with self-balanced exoskeletons

To our knowledge, only one active walking controller for self-balanced ex-
oskeletons, demonstrated with Atalante, has been proposed in [Gurriet2020].
This controller, illustrated on Figure 1.6a, offers spatial freedom to the pa-
tient by relaxing the tracking of the trajectory on the swing hip and knee,
and uses Control Barrier Functions (CBF) to limit the deviation of these
joints from a nominal walk pattern. Specifically, safe regions are designed
in joint-space s.t . the freedom of the patient is saturated at the beginning
and the end of each step, and, therefore, the exoskeleton feet lift and land
correctly.

This controller constitutes the first demonstration of an active walking
controller for self-balanced exoskeletons. It offers spatial freedom around
the offline trajectory, but no temporal freedom. In this thesis, we propose a
rehabilitation controller for Atalante which offers temporal freedom around
the offline trajectory.

17To this day, REX (Rex Bionics) and Atalante [Gurriet2018] are the only self-
balanced exoskeletons on the market, while the XoMotion (Human in motion
Robotics) [Shahrokhshahi2022] is still under development
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Online replanning

Swing leg controller

Support leg controller

Exoskeleton-patient

Patient schedule estimator

Split-leg controllers

Figure 1.7: Proposed control architecture for active gait training: split-
leg controllers carefully synchronized with patient schedule through online
replanning.

1.3.3 Contribution of the thesis: exploit temporal freedom and
maintain balance

Temporal freedom has the potential to make the patient participate more
significantly. This point is illustrated on Figure 1.6 which reports the swing
hip position as a function of time for various degrees of spatial (left) and
temporal (right) freedom, respectively. The envelope of Figure 1.6b is larger
than Figure 1.6a, hinting that temporal freedom would be easier to perceive
for patients. Our objective in this thesis is to develop a new feature for
Atalante: a rehabilitation controller giving substantial temporal freedom to
the patient without requiring the physiotherapist’s assistance.

We propose a control system update. This update has a dual purpose: it
empowers the patient and monitors safety.

Overview of the solution The modifications are schematically depicted
on Figure 1.7. We choose to let the patient physically contribute to the
motion of the swing leg and, consequently, allow modulation of the velocity
at which a predefined gait is traveled. Because this directly impacts safety, a
new reference trajectory is computed for the low-level controllers of the whole
system. This is done online by an optimization-based trajectory planning
algorithm.

Detailed view The two legs of Atalante are the subjects of very distinct
changes. On the swing leg, we proceed as follows. The nominal gait for the
two-legged system, generated using the same offline optimization methodology
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as for the passive walking, serves to define a geometric path for the swing
leg. The exoskeleton efforts in the longitudinal direction of the path are
nullified and left for the patient to produce, while the robot motion is strictly
controlled in the hyperplane orthogonal to the path. To this end, we rely on
the Virtual Guides (VG) methodology which maps the high-dimensional user
efforts to a one-dimensional quantity: the velocity at which the swing leg’s
geometric path is followed. Implicitly, this defines a new schedule for the
nominal trajectory, the patient schedule, which is followed as long as safety
is not threatened.

On the support leg, the control structure is also updated. Because the
swing leg DoFs have been updated (see above), only the support leg can be
used for the admittance controller. This admittance controller successfully
tracks reference trajectories that satisfy the unilateral contact constraints.

To define a reference trajectory synchronous with the patient schedule, a
simple time rescaling of the nominal gait would be possible but will most
likely violate the aforementioned constraints. Instead, we chose to adopt an
online planning strategy.

The online planning strategy we consider solves an Optimal Control
Problem (OCP) over an unspecified horizon for a Linear Inverted Pendulum
(LIP) model, which represents the overall balance dynamics of the system
(patient+exoskeleton). The patient schedule defined above is treated as a
penalty on the final time. The unilateral contact constraints is a constraint
on the CoP. To ensure the feasibility of the next step, it is sufficient to require
that the trajectory endpoint satisfies some geometric constraints. These are
included in the OCP. The simplicity of the LIP model allows us to use a fast
resolution method for this nonlinear OCP, relying on the theoretical study
about the nature of the set of feasible times for the LIP dynamics (i.e. the
set of final times for which a solution to the OCP exists).

Note that, although it is known the Atalante platform undergoes deforma-
tions, we do not try to compensate them in the swing or support leg control
algorithms, nor the replanning. This choice is made in order to alleviate
some complexity to the already complex problem at hand. However, these
deformations might affect the performance of our algorithms when testing
them on the actual platform Atalante.

Thesis outline This manuscript presents the development of the solution
described above and experimental results stressing its performance.
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Chapter 2: Atalante: models and passive control laws. This chapter presents
in detail the experimental platform Atalante and its control methodology
during passive walking.

Chapter 3: Empower the patient for gait training. This chapter presents
the controller enabling temporal gait training. In particular, the split of the
exoskeleton’s DoF in half is detailed. The poor performance of a simple time
rescaling strategy is exposed.

Chapter 4: Monitor safety. This chapter presents the replanning method-
ology developed to ensure the balance of the system. The method for fast
solving of the OCP, compatible with real-time requirements on the Atalante’s
embedded controller, is provided. A theoretical study of the nature of the
solution space is provided in Appendix A. Extensive experimental results are
presented.

Chapter 5: Conclusion and perspectives. This chapter stresses the benefits
and limitations of the proposed active gait training controller. Possible
extensions are presented.

Publications in this thesis

The work done in this thesis led to the following published results:

• Maxime Brunet, Marine Pétriaux, Florent Di Meglio, and Nicolas
Petit. “Fast Replanning of a Lower-Limb Exoskeleton Trajectories
for Rehabilitation”. In: 2022 IEEE 61st Conference on Decision and
Control (CDC). Dec. 2022

• Maxime Brunet, Marine Pétriaux, Florent Di Meglio, and Nicolas Petit.
Enabling Safe Walking Rehabilitation on the Exoskeleton Atalante:
Experimental Results. Apr. 17, 2023. preprint to appear in 2023 IEEE
International Conference on Robotics and Automation (ICRA)

A video describing the main experiments done in this thesis is available
at https://youtu.be/_1A-2nLy5ZE.

https://youtu.be/_1A-2nLy5ZE


Chapter 2

Atalante: models and passive
walking controller

Chapitre 2 - Atalante: modèles et contrôleur de marche passif: Dans ce
chapitre, nous décrivons le robot Atalante et les principaux modèles utilisés
pour décrire le système patient-exosquelette. Ensuite, nous décrivons le
contrôleur nominal d’Atalante qui permet de réaliser des exercices passifs de
rééducation de la marche, composé de deux éléments principaux. Le premier
est un problème de commande optimale résolu hors-ligne pour obtenir des
trajectoires du système. Nous décrivons en particulier deux trajectoires de
marches qui seront utilisées comme cas d’usage du travail présenté dans ce
manuscrit : une trajectoire de marche simple, sans déroulé du pied, et une
trajectoire de marche plus complexe, avec un déroulé du pied. Le deuxième
élément composant ce contrôleur est une loi de contrôle utilisée en ligne pour
stabiliser ces trajectoires lors de leur exécution.

33
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In this chapter, we describe the hardware and the passive walking control
law of the exoskeleton Atalante. Contrary to walking rehabilitation, during
which the patient efforts on the exoskeleton are substantially impacting the
motion of the robot, in passive walking the controllers completely assign the
motion of the robot, no matter the level of patient efforts.

We start in Section 2.1 by describing the mechanical structure, actu-
ators and sensors of Atalante. Then, we derive the equation of motions
under the assumption that the patient motion is completely assigned by the
exoskeleton. The governing equations are similar to those of a humanoid
robot. Next, in Section 2.2, we describe how trajectory generation for the
patient-exoskeleton system can be cast into a non-linear Optimal Control
Problem (OCP). A direct collocation transcription of the OCP is described.
It is used offline. We detail two specific instances of OCPs:

• a flat-foot trajectory, for which the supporting leg switches instanta-
neously from one leg to the other. There is no double support phase
in between two single support phases, and the support foot is always
resting flat on the ground.

• a foot-rolling trajectory, for which there exist double support phases.
During these, the supporting feet are not resting still on the ground
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but are rolling on their front (for the trailing foot) or back edges (for
the leading foot). The support foot is resting flat on the ground during
single support phases.

The flat-foot trajectory is simpler to study but has a lower average transla-
tional velocity and is less anthropomorphic than the foot-rolling trajectory. It
will serve as our use-case trajectory throughout Chapter 3 and Chapter 4. The
foot-rolling trajectory will be used in the experiments discussed in Chapter 5.
Finally, in Section 2.3, we expose how these offline trajectories are tracked by
a stabilization control law based on a linearized model of the system, relying
on position-based impedance control [Hogan1984; Heinrichs1996], also called
admittance control.

2.1 Atalante: description and dynamical models

2.1.1 Definitions of the frames of reference

We consider three axes defined w.r.t . the patient, as depicted on Figure 2.1.
The X-axis points forward, the Y-axis to the left, and the Z-axis is aligned
with the local gravity vector, pointing upward. The local frame of reference is
chosen lying on the ground, under one of the exoskeleton feet1. The sagittal,
frontal and transverse planes are the three orthogonal planes intersecting at
the patient’s CoM as depicted on Figure 2.1.

2.1.2 Description of Atalante

The Atalante exoskeleton is depicted on Figure 2.2. It is composed of 13 rigid
bodies linked together by twelve actuated revolute joints (in blue). Except
for the two Henke ankle axes, all of them are orthogonal to one of the planes
defined on Figure 2.1 when the exoskeleton is standing still. The axis of each
knee joint is orthogonal to the sagittal plane. The three axes of the three
hip actuators of each hip are orthogonal to one of the sagittal, frontal or
transverse planes. Each ankle possesses two joints: one orthogonal to the
sagittal plane, and one aligned with the morphological Henke axis2. The
rigid body connecting the two legs of the exoskeleton is called the back body.
The upper-leg part (between the sagittal hip joint and the knee joint) is
called the thigh body. The lower-leg part (between the knee joint and the

1It is updated during the walk.
2This Henke axis is contained in the sagittal plane, and is equivalent to the X axis

depicted on Figure 2.1, but tilted by 37 degrees upward around the Y axis.
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Figure 2.1: Definition of the sagittal, frontal and transverse planes (adapted
from [Winter2009].

sagittal ankle joint) is called the shin body. The metal plate in contact with
the ground which supports the patient’s foot is called the foot body.

Atalante is equipped with several types of sensors (see on Figure 2.2). In
details, encoders are sensing the angular positions3 of each joint of Atalante.
Single-axis force sensors are located under each foot of the robot (4 sensors
under each foot) and sense the unilateral contact forces with the ground.
Several Inertial Measurement Unit (IMU), rigidly fixed to the exoskeleton,
are sensing the proper acceleration and angular velocity of several bodies of
the exoskeleton.

The patient is fastened using a special vest and straps for the feet, shins
and thighs, visible on Figure 2.2.

2.1.3 Kinematic model

The fastening system of Atalante completely assigns the positions of the lower
limbs of the patient w.r.t . the robot. The patient’s torso is also fastened to
the exoskeleton, but some freedom in the upper-body motion is allowed (in

3The velocity and acceleration of each joint are obtained through numerical differentia-
tion of their position.
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Figure 2.2: Atalante picture (Left). Atalante schematic hardware (Right).

particular in their head and arms motion). We neglect the impact of these
disturbing motions on the dynamics of the patient-exoskeleton system and
simply consider that the patient is an additional rigid body attached to the
exoskeleton.

According to the description above, we model the patient-exoskeleton
system as an articulated rigid-body system of mass m (the patient mass plus
the exoskeleton’s) with 12 actuated Degrees of Freedom (DoF), corresponding
to the joints of the exoskeleton, aligned with the patient’s, and 6 unactuated
DoF, defining the position and orientation of the back of the exoskeleton,
w.r.t . the inertial frame W.

In details, following [Featherstone2008], we denote q ∈ R18 the vector of
generalized positions, (qsw, qsp) ∈ R6 × R6 the vector of actuated positions
for the swing leg and the support leg, and qun ∈ R6 the vector of unactuated
positions, s.t .

q =

qsw

qsp

qun

 (2.1)

Likewise, we denote q̇ ∈ R18 (resp. q̈ ∈ R18) the vector of generalized velocities
(resp. acceleration), (q̇sw, q̇sp) ∈ R6 × R6 (resp. (q̈sw, q̈sp) ∈ R6 × R6) the
vector of actuated velocities (resp. acceleration) for the swing leg and the



38 CHAPTER 2.
ATALANTE: MODELS AND PASSIVE WALKING
CONTROLLER

support leg, and q̇un ∈ R6 (resp. q̈un ∈ R6) the vector of unactuated velocities
(resp. acceleration), s.t .

q̇ =

q̇sw

q̇sp

q̇un

 q̈ =

q̈sw

q̈sp

q̈un

 (2.2)

We employ the general model of the displacement of a rigid body B
w.r.t . to a frame W , living in the Special Euclidean Group SE(3). It
is defined by the position OB ∈ R3 of the origin of B, and the rotation
matrix RW

B ∈ SO(3). This displacement is represented by a homogenous
transformation matrix, denoted XW

B ∈ SE(3), which writes

XW
B =

[
RW

B OB

01×3 1

]
(2.3)

In the rest of the thesis, XW
B is referred to as a transform. The Special

Euclidean Group SE(3) is equipped with the composition operator ×◦ s.t .

×◦ : XW
L× XL

B ∈ SE(3)×SE(3) 7→ XW
L×◦ XL

B ≜ XW
B ∈ SE(3) (2.4)

For simplicity of notations, we omit this composition operator for the rest of
the thesis.

From the vector of generalized positions, and a kinematic model defining
the kinematic chain of the robot, we define the Forward Kinematics (FK)
function as the map

FK : q ∈ R18 7→ XW
B (q) ∈ SE(3) (2.5)

We denote τ ∈ R12 the vector of exoskeleton joint torques to be chosen
by the controllers, (τ sw, τ sp) ∈ R6×R6 the vectors of exoskeleton swing and
support joint torques, and (τ sw

u , τ sp
u ) ∈ R6 × R6 the vectors of swing and

support joint torques created by the patient, s.t .

τ =
(
τ sw

τ sp

)
τu =

(
τ sw

u

τ sp
u

)
(2.6)

The Center of Mass (CoM) of the patient-exoskeleton system is denoted
c ∈ R3, and the total angular momentum of the system w.r.t . the CoM, in
the inertial frame W, is denoted L s.t .

c =
∑

k mkOk∑
k mk

L =
∑

k

(Ok − c)×mkȮk + Ikωk (2.7)
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with Ok ∈ R3 (resp. Ȯk ∈ R3) the position (resp. velocity) of the origin of
the frame Fk attached to the part k ∈ [0 . . . 13] of the robot, w.r.t . the inertial
frame W, ωk ∈ R3 the rotation velocity of the frame Fk w.r.t . the inertial
frame W , mk ∈ R+ the mass of the part k (including the patient mass), and
Ik ∈ M(3,3) the inertia matrix of the part k of the system (including the
patient inertia matrix), and × the cross product of R3.

We denote .x,y the 2D vector representing the position of 3D points
projected onto the horizontal plane of reference. Analogously, we denote .z

the height of 3D points, or the vertical component of 3D vectors.
Finally, we denote ξ the Divergent Component of Motion (DCM), defined

as follows

ξ = cx,y + ċx,y

ω
∈ R2 (2.8)

with ω ≜
√

g
cz , and p the Center of Pressure (CoP), defined as

p ≜

∑
px,y

i fz
i∑

fz
i

∈ R2 (2.9)

with fi ∈ R3 the external force vectors acting on the patient-exoskeleton
system, in the inertial frame W, and pi ∈ R3 the location of application of
the external forces, in the inertial frame W. Note that, by definition, the
CoP belongs to the convex hull of all the contact points, also called the
support polygon SP. These quantities are of particular importance for the
design of the stabilization control law detailed in Section 2.3.

2.1.4 Lagrangian dynamics

With the above notations, the Lagrangian dynamics write, following [Feath-
erstone2008]4,

M(q)q̈ + C(q, q̇) = H(τ + τu) +
∑

i

Ji(pi, q)T fi (2.10)

with M(q) the generalized inertia matrix of the system, C(q, q̇) the combined

gravity and inertia effects vector, H ≜
[
I12 O6

]⊤
the matrix mapping the

joint torques to the actuated generalized coordinates, Ji(pi, q) the associated
Jacobian matrices at each contact point pi.

The Lagrangian dynamics (2.10) are identical to the one of walking
robots, except for the vectors of patient joint torques τu. These dynamics

4The patient efforts are internal to the patient-exoskeleton system. Hence, their only
effect appear in the joint position and can be expressed as additional joint torques.
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are instrumental in the offline trajectory generation framework described
in Section 2.2, where patient torques are set to zero to model a paraplegic
patient5.

2.1.5 Newton-Euler dynamics

The Newton and Euler equations [Wieber2006a], in the inertial frame W,
are, in accordance with (2.10),

m(c̈+ g) =
∑

i

fi , L̇ =
∑

i

(pi − c)× fi (2.11)

2.2 Offline trajectory generation

We now describe the Optimal Control Problem (OCP) formulation describing
the walking of Atalante, the transcription of this OCP into a discrete opti-
mization problem, and a numerical method to solve it. Then, two illustrative
OCP examples are discussed: a simple flat-foot OCP and a more advanced
foot-rolling OCP.

2.2.1 Generic walking motion optimal control problem

More details on the content of this section can be found in [Hereid2016;
Gurriet2018].

OCP formulation

The problem of multi-contact trajectory generation is an OCP for hybrid
dynamic. Each contact phase, defined by a different set of contact bodies
(i.e. one or two feet resting flat or on one edge on the ground), defines
distinct dynamics. These different contact phases, also called domains, are
separated using several time instants ti. The OCP allows to optimize the
vector τ of joint torques, the timing of each step ti, the contact forces fi

and application point pi to minimize a general cost function subjected to
constraints of various nature. The general OCP defining walking motion of
humanoid robots is of the following form [Goswami2019, Section VII], which
is also considered for Atalante,

5Paraplegic patients cannot voluntarily produce efforts with their legs. Patients suffering
from spinal cord injuries may produce erratic involuntary efforts (this syndrome is called
spasticity). The efforts are unpredictable by nature and are therefore unmodeled.
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Problem 2.1 (Generic multi-step walking motion OCP).

min
τ,tj ,fi,pi

n∑
j=1

(∫ tj

tj−1
Φj(q(t), q̇(t), τ(t))dt+

nj∑
k=0

Φj,k(tj , q(tj,k), q̇(tj,k), τ(tj,k))
)

s.t. for j = 1 . . . n, ∀t ∈ [tj−1, tj ]
q̈(t) = f(q(t), τ(t), pi, fi(t)) (2.12a)

gj(t, q(t), q̇(t), τ(t), pi, fi(t)) ≥ 0 (2.12b)

for j = 1 . . . n,
q(t−j ) = q(t+j ) + kq(t−j , q(t

−
j ), q̇(t−j )) (2.12c)

q̇(t−j ) = q̇(t+j ) + kq̇(t−j , q(t
−
j ), q̇(t−j )) (2.12d)

rcycj(q(tj−1), q̇(tj−1), q(tj), q̇(tj)) = 0 (2.12e)

for j = 1 . . . n, for k = 1 . . . nj ,

reqj,k(tj , q(tj,k), q̇(tj,k), τ(tj,k), pi, fi(tj,k)) = 0 (2.12f)

rinj,k(tj , q(tj,k), q̇(tj,k), τ(tj,k), pi, fi(tj,k)) ≥ 0 (2.12g)

with

f(q, τ, pi, fi) = M−1(q)
(
−C(q, q̇) +Hτ +

∑
i

Ji(pi, q)T fi

)
(2.13)

where (2.13) is obtained from (2.10), expressed in the forward sense (i.e.
with torques as inputs), where the patient torques τu are identically null.

The cost functions Φi are running costs and are used, for instance,
to guide the OCP toward solutions with the best energy efficiency, desired
walking velocity, and those with the highest margins (for instance in the sense
of penalizing solutions requiring contact forces generating large moments
along the vertical axis of the inertial frame W). The cost functions Φi,j

favor solutions passing through waypoints at specific times6 and are used
to produce trajectories with their feet rolling on edges between taking off,
rising their feet high enough, or avoid known obstacles like stairs.

The first type of constraints included in Problem 2.1 are called run-
ning constraints and must be satisfied at all times. The running con-
straints (2.12a,2.12b) are used to express the physical constraints acting
on the system, like the dynamics of the system, the friction cone constraints
(which include the unilateral contact constraints), the joint position limits, or

6The duration of each step being free to choose by the optimizer, the waypoints are
defined w.r.t . the total duration of each step, and not at absolute times.
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the actuation torque limits. They can also be used to incorporate constraints
like minimal foot clearance, bounded CoM height, or bounded torso orienta-
tion. The second type of constraints included in Problem 2.1 are waypoints
constraints and hold only at specific times6. Among them, constraints (2.12c)
and (2.12d) can be incorporated to reflect the impact dynamics, discrete by
nature. However, no impact map (kq, kq̇) has been implemented to generate
trajectories for Atalante so far, and, simply,{

kq ≜ 0
kq̇ ≜ 0

(2.14)

A special constraint can be included to enforce the periodicity through (2.12e).
It is used to generate trajectories that can be infinitely looped onto them-
selves by symmetrization. Finally, equality and inequality waypoint con-
straints (2.12f) and (2.12g) are used to shape trajectories 6 by placing feet
or CoM at specific locations, constraining the total footprint of trajectories,
or bounding the velocity of some bodies of the system.

OCP transcription

The OCP defined in continuous time by Problem 2.1 is transcribed into an
optimization problem using a finite number of variables using the Direct
Collocation method [Hargraves1987; vStryk1993]. Direct multiple shooting
methods [Bock1984; Mombaur2001; Hereid2015] have first been used to
solve non-linear OCPs of the type of Problem 2.1. However, they have
proved hard to scale with the increasing number of variables (arising for
robots with a high number of DoF and/or with numerous domains). Instead,
Direct Collocation has been found to be robust and scalable. The results
reported in [Huynh2021] constitute an example of successful optimization of
trajectories for Atalante involving more than 10 independent domains.

The general idea behind Direct Collocation is to approximate the trajec-
tory at a finite number of points xi, called collocation points, replacing the
explicit forward integration of the dynamical systems with a series of integra-
tion constraints. For the trajectory represented by these points xi to be an
approximation of the continuous solution of OCPs, a piece-wise polynomial
interpolation is used to estimate the continuous solution between collocation
points. Direct Collocation is generally used with defect constraints on defect
variables δ. Defect variables δ are additional optimization variables that relax
equality constraints at collocation points. Defect constraints are bounds on
the defect variables δ (typically a small value). Introducing defect variables
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and constraints, instead of closed-form constraints (i.e. directly expressed as
a function of the trajectory’s optimization variable), has several advantages,
like being faster to compute, decoupling the optimization into many indepen-
dent subproblems, and allowing the solver to violate the equality constraints
during the first iterations of the optimization. We refer the interested reader
to [Hargraves1987; vStryk1993; Duburcq2022a] for more details about Direct
Collocation and its implementation.

OCP resolution

The resulting discrete optimization problem is a relatively large Non Linear
Program (NLP). Typical setup includes up to 5000 variables in [Huynh2021].
However, it is very sparse [Hereid2016], which allows it to be solved efficiently
by solvers such as IPOPT [Wächter2006].

The output of the trajectory generation framework is a trajectory Q

Q : t ∈ [0, Tf ] 7→ Q(t) ∈ R18 (2.15)

2.2.2 Flat-foot trajectory optimal control problem

The general multi-step OCP defined by Problem 2.1 can be further specialized
to generate trajectories of interest. A first example of such specialization
gives the flat-foot trajectory. It is composed of 5 different contact phases:

• STARTD: a starting double-support weight transfer phase, during
which both feet are constrained to rest flat and still on the ground, the
weight of the system is gradually shifted toward the starting stance
foot, and the initial joint position is constrained (corresponding to a
standing posture).

• STARTS: a starting single-support phase, during which only the starting
stance foot is constrained to rest flat and still on the ground, and the
CoM and flying foot are both moved forward.

• CS: a cyclic single-support phase, during which only the left foot is
constrained to rest flat and still on the ground, the CoM and right
flying foot are both moved forward and the initial and final states are
constrained to be symmetric. Gathering this phase and its symmet-
ric constitute a cyclic trajectory, which can be repeated as much as
requested at run-time.
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CSSTARTS

STARTD

STOPS

STOPD

Figure 2.3: Transitions graph of flat-foot trajectory.

• STOPS: a stopping single-support phase, during which only the starting
stance foot is constrained to rest flat and still on the ground, and the
CoM and flying foot are both moved forward.

• STOPD: a stopping double-support weight transfer phase, during which
both feet are constrained to rest flat and still on the ground, the weight
of the system is gradually shifted from the stopping stance foot to the
middle of the feet, and the final posture is constrained (corresponding
to a standing posture).

In addition, continuity constraints are added so that the whole motion is
continuous, as illustrated on Figure 2.3.

The particularities of this OCP are that the CoP is always constrained
to lie within a box smaller than the actual support polygon SP (to add
safety margins), the step duration is arbitrarily fixed to 1.0 s for single
support phases and 0.5 s for double support ones, the step length is fixed
(approximately to 15 cm), and the feet are constrained to take off and land
horizontally to the ground. Thus, the average translational velocity is
approximately 15 cm/s.

The CoM, CoP and DCM of the trajectory solution of the flat-foot OCP
are reported on Figure 2.4, and the swing foot clearance during the (CS)
phase is given on Figure 2.6 (Left).

2.2.3 Foot-rolling trajectory optimal control problem

A second example of specialization of Problem 2.1 gives the foot-rolling
trajectory generation OCP, generating a more complex but more anthro-
pomorphic walking trajectory. In detail, most of the OCP is similar to the
one described above for the flat-foot trajectory. The major difference is
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Figure 2.4: CoM, CoP and DCM of the trajectory generated by the flat-foot
OCP (no double support phase between single support ones).
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CD CSSTARTS

STARTD

STOPS

STOPD

Figure 2.5: Transitions graph of foot-rolling trajectory.

the addition of a cyclic double support domain (CD), described below (and
depicted on Figure 2.5):

• CD: a cyclic double-support weight transfer phase, during which the
heel of the leading foot and the toe of the trailing foot are constrained
to rest still on the ground, but their pitch angle is not constrained, s.t .
the feet of the robot are rolling on their edges while the weight of the
system is gradually shifted from the trailing foot to the leading foot,
and the initial and final states are constrained to be symmetric.

For all single support domains defined in Section 2.2.2, the swing foot is no
longer constrained to land flat on the ground at the end of the domain, but
rather on its heel. The step timing is arbitrarily fixed to 0.81 s, for single
support phases, to 0.23 s, for the (CD) phase, and to 0.4 s for the (STARTD)
and (STOPD) phases. The step length is fixed approximately to 40 cm. The
CoM, CoP and DCM of the trajectory solution of the foot-rolling OCP are
displayed on Figure 2.7, and the swing foot clearance during the (CS) phase is
illustrated on Figure 2.6 (Right). The comparison of the swing foot clearance
given on Figure 2.6 shows the improvements offered by the foot-rolling OCP
over the flat-foot OCP, namely: longer step-length, higher foot clearance and
more anthropomorphic toe-off/heel-strike phases. The average translational
velocity is approximately 40 cm/s.
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Figure 2.6: Swing foot clearance comparison between the trajectory generated
by the flat-foot (Left) and the foot-rolling (Right) OCP. Lines representing
the sole of the swing foot at various instants of the (CS) phase, for the flat-foot
OCP, and the lumped (CD)-(CS)-(CD) phase, for the foot-rolling OCP in
the XZ-plane. The foot-rolling steps are longer and more anthropomorphic.

2.3 Center of Mass stabilization and admittance con-

troller

The two trajectories presented in the previous section satisfy the Lagrangian
dynamics (2.10) and all the constraints acting on the system. However, due
to the unstable nature of the dynamics (see the eigenvalues of (2.17) for
instance), they can not be directly executed on the robot as pure open-loop
joint torque trajectories, nor can they be naively followed by independent joint
controllers, without leading to the divergence of the generalized coordinates
q and, eventually, falling. For this reason, a stabilization algorithm, adapted
from the humanoid robots’ literature, ensures the correct execution of the
trajectories presented above on Atalante7.

In details, the stabilization algorithm tracks the horizontal CoM state
trajectory. This stabilization algorithm is a feedback law designed using
a linearized model of the patient-exoskeleton system, which performs a
particular feedback on the CoM through the contact forces. The contact
forces are in turn regulated by the so-called admittance control method.

7The stabilization algorithm also helps to mitigate all the uncertainties like the unknown
patient model, the unmodeled effects like the flexibilities of the structure [Vigne2021], the
actuator dynamics and the dynamics of their low-level current control laws.
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Figure 2.7: CoM, CoP and DCM of the trajectory generated by the foot-
rolling OCP (with double support phase between single support ones).
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2.3.1 DCM control using admittance

The linearized model of the system from which the feedback law stems
is derived for the Newton-Euler dynamics (2.11). Following [Wieber2016],
dynamics (2.11) can be simplified into the Linear Inverted Pendulum (LIP)
model. First, notice that (2.11) yields

mc× (c̈+ g) + L̇

m(c̈z + gz) =
∑
pif

z
i∑

fz
i

(2.16)

Along gait patterns of moderate velocity, the angular momentum variations
are small and can be neglected, i.e. L̇ = 0. Further, assuming that the robot
walks on horizontal ground and that the CoM remains at a constant height
cz, the X and Y dynamics of (2.16) simplify to the following uncoupled LIP
dynamics

c̈x,y = ω2(cx,y − p) (2.17)

where ω=
√

g
cz is the natural frequency, and p is the CoP defined by (2.9).

The CoP acts as bounded virtual8 actuator in (2.17) (recall that, by definition,
the CoP is bounded inside the support polygon SP).

The dynamics (2.17) reproduce the unstable nature of the system. For
stabilization, a stabilizing state feedback law on the CoM, such as the one
detailed in [Caron2019], is used to drive c∗ − c to 0. First, one defines

pd = p∗ − (1 + kp

ω
)(ξ∗ − ξ)− ki

ω

∫
(ξ∗ − ξ) + kd(ξ̇∗ − ξ̇) (2.18)

with ξ the DCM, readily computed from the horizontal LIP state (cx,y,ċx,y)
(see (2.8)), ξ∗ the DCM reference trajectory, computed from the horizontal
state trajectory (c∗,ċ∗), p∗ the associated CoP trajectory, and kp, kd, ki ≻ 0
three diagonal matrices. Note that the actual CoP being bounded, regulating
the DCM instead of the CoM gives the “Best CoM-ZMP9 regulator” in a
sense defined in [Sugihara2009]. Formula (2.18) encodes a feedback which,
for any kp > 0, ki = 0, kd = 0, drives any initial condition of the LIP in the
controllable region to 0. [Caron2019] extends the formula to ki > 0, kd > 0.

Then, because there is no physical actuator directly controlling the CoP
p, admittance control [Caron2019] is used to drive it to the desired value
pd (2.18). The admittance control methodology encompasses a general class

8The CoP is only indirectly commanded by the joint actuators through the (unknown)
contact equation, hence we call it a virtual actuator.

9On planar ground, the Zero Moment Point (ZMP) and the CoP coincide at all times.
Hence, we do not distinguish them in this thesis.



50 CHAPTER 2.
ATALANTE: MODELS AND PASSIVE WALKING
CONTROLLER

of control laws having a force regulation objective to be satisfied through
kinematic actuators. This methodology considers one or several kinematic
feedback laws, called admittance tasks, to regulate the force errors to zero.
It is used, for instance, in [Yokoi2003; Englsberger2012; Li2012].

On Atalante, there is only one admittance task, a horizontal CoM ac-
celeration task, which defines the desired horizontal CoM acceleration c̈d as
follows

c̈d = c̈∗ +A(p− pd) (2.19)

with p the measured CoP, c̈∗ the horizontal state trajectory acceleration, and
A ≻ 0 a diagonal gain matrix to be tuned. This admittance task is included
in a hierarchical Inverse Kinematics (IK) problem called a Stack-of-Tasks
(SoT) [Mansard2009] framework. The hierarchy yields that this equation
holds at almost all times. We describe this problem and SoT framework in
the next section.

2.3.2 Hierarchical Inverse Kinematic problems: the Stack-of-Tasks
framework

Inverse Kinematics (IK) problems are ubiquitous in the humanoid robots’
literature. They naturally arise because objectives are best formulated in
spaces (like the Cartesian inertial frame W) which are different from the
actuators’ space (the joint space). Hence, the FK map (2.5) needs to be
inverted to generate trajectories to be followed in the joint space.

Mathematically, if the FK map were invertible, the solution q∗ would
write

q∗ = FK−1(Xd) (2.20)

with Xd the desired transform of some rigid body of the robot. However, the
FK map is not injective due to kinematic redundancy. A classical workaround
is to define objectives as task errors and to ensure they are asymptotically
driven to zero.

In details, following the task-function approach [Samson1991], a task
function ei is any twice differentiable function that maps the robot configu-
ration space to Rn. Its image space is called the task space. The function ei

may define various objectives. We detail here a few important task functions.
The task function eq is expressed directly from the robot’s generalized

coordinates
eq : q ∈ R18 7→ qd − q ∈ R18 (2.21)

with qd ∈ R18 the desired configuration, which is time-varying. The task
function ex ∈ R3 in the literature is written w.r.t . the position x of a point,
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like the CoM, in Cartesian inertial frame W

ex : q ∈ R18 7→ xd − x(q) ∈ R3 (2.22)

with xd ∈ R3 the desired location, which is time-varying. Finally, the last
important task function eX is expressed from the transform of one of the
robot’s rigid bodies, in the sense of (2.3), and using the matrix log map,
which maps the Lie group SE(3) to the Lie algebra se(3) = R6,

eX : q ∈ R18 7→ log(XdFK(q)) ∈ R6 (2.23)

with Xd ∈ SE(3) the desired transform, which is time-varying.
For every task functions ei, we define its Jacobian Ji as follows

ėi = Ji(pi, q)q̇ (2.24)

which yields
ëi = J̇i(q)q̇ + Ji(pi, q)q̈ (2.25)

For each task function ei, the Jacobian Ji and its time derivative J̇i, defining
the objective wi, are computed using the efficient library Pinocchio [Carpen-
tier2019]. From the task acceleration (2.25), we define the objective wi for
all task functions ei as follows

wi(q̈) = ||ëi − ë∗
i ||2 = ||Ji(pi, q)q̈ − (ë∗

i − J̇i(q)q̇)||2 (2.26)

with a target task acceleration ë∗
i , illustrated on a Cartesian task, driving

the task error ei exponentially to zero, such as

ë∗
i = ẍd − kpiei − kdiėi (2.27)

with kp, kd ≻ 0 and ẍd denoting the feedforward in the Cartesian space.
The desired motion of the robot is usually defined by several objectives

wi, s.t . the total objective w writes

w(q̈) =
∑

i

λiwi(q̈) (2.28)

with λi ∈ R+ weights expressing the relative importance of the objectives wi.
The IK problem is to find optimal joint accelerations q̈ which minimize w.
In addition to these objectives, the physical limitations of the robot, such as
the joint position, velocity and acceleration bounds, must be embedded into
the IK problem. Finally, it writes

q̈∗ = arg min
s.t.

Aq̈ ≤ B

∑
i

λiwi(q̈) (2.29)
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with A (resp. B) a matrix (resp. vector) to represent the aforementioned
bounds. While the IK problem (2.29) has been successfully used to realize
stable walking of humanoid robots [Caron2019], we favor a different approach.
Indeed, the tuning of the weights λi can be cumbersome, and some objectives
often have a strict priority over others (for instance, the robot’s feet should
always be on the ground, while the posture tasks are used only for regulariza-
tion). An alternate formulation has been proposed, the Stack-of-Tasks (SoT)
framework [Mansard2009], enabling one to solve IK problems composed of
objectives listed in strict hierarchical order.

A Stack-of-Tasks (SoT) with n ≥ 0 levels is an ordered list of objectives
wj

i , grouped in several levels j, with wj their cost defined as follows

wj(q̈) =
∑

i

λj
iw

j
i (q̈) (2.30)

The levels are sorted in strict decreasing priority order, s.t . the cost wj

can only be decreased if the value wk, of all the levels k < j ≤ n, remains
constant (i.e. equal to the optimal cost wk∗

). Mathematically, a Hierarchical
IK problem with constraints writes

∀j = 0 . . . n, q̈∗ =arg min
∑

i

wj
i (q̈)

s.t.

Aq̈ ≤ B

∀k < j, wk(q̈) = wk∗
≜ min

q̈

∑
i

wk
i (q̈)

(2.31)

On Atalante, the SoTs are solved in real-time using state-of-the-art hierar-
chical optimization routines, such as the one proposed in [Escande2014]. The
key idea is to solve the Hierarchical IK problems (2.31) iteratively, starting
with the highest priority objectives, and then minimizing the objectives
of lower priority in the level set of the higher priority objectives already
minimized. We briefly illustrate below this iterative process.

For ease of notations, let us define a simplified Hierarchical IK problem,
with only two levels (n = 1), one task at each level, and no constraint. For
example, one has

q̈∗ = arg min w1
0(q̈)

s.t.

w0(q̈) = w0∗
(2.32)
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with {
w0(q̈) = w0

0(q̈) = ||J0
0 (q)q̈ − b0||2

b0 = ë0∗
0 − J̇0

0 (q)q̇
(2.33)

and {
w1(q̈) = w1

0(q̈) = ||J1
0 (q)q̈ − b1||2

b1 = ë01∗ − J̇1
0 (q)q̇

(2.34)

As there is no constraint, in this simple case, all the solutions q̈0∗
minimizing

w0(q̈) write

q̈0∗ = J0
0

†(q)b0 + P 0q̈1 (2.35)

with .† the matrix pseudo-inverse, P 0 ≜ (I − J0
0

†(q)J0
0 (q)) a projector on

the null-space ker(J0
0 (q̈)) of J0

0 (q̈), and q̈1 an arbitrary vector. If the kernel
ker(J0

0 (q̈)) is not null, then one can attempt to minimize the cost of the
level 1 problem, of lower priority.

The level 1 problem (2.34) is solved in level 0’s kernel by selecting q̈1

only. A direct resolution of this simple case yields

q̈1∗ =
(
J1

0 (q)P 0
)† (

b1 − J1
0 (q)J0

0
†(q)b0

)
(2.36)

and the solution of problem (2.34) write

q̈∗ = J0
0

†(q)b0 + P 0q̈1∗
(2.37)

Equation (2.37) and (2.36) show how one can iteratively solve a simple
Hierarchical IK problem such as (2.32). For more complex problems, we
refer the interested reader to [Escande2014] to get efficient solvers addressing
them.

2.3.3 The nominal SoT1 of Atalante

The goal of Atalante’s nominal SoT, denoted SoT1, is to stabilize the system
around the nominal trajectory, computed offline as described in Section 2.2.
To this end, most objectives included in SoT1 are the tracking of quantities
defined by the nominal trajectory, except for the task at level 1, which is
defined by the admittance horizontal acceleration (2.19).

Namely, the level 0 of SoT1, hence the highest priority, includes two tasks
on the robot’s feet,

w0
i (q̈) = ||J0

i (q)q̈ − (ë∗0
i − J̇0

i (q)q̇)||2 (2.38)
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defined by the transform task function (see Eq. (2.23))

e0
i = log(X0nom

iX
0
i (q)) (2.39)

where i = 0 (resp. i = 1) denotes the left foot (resp. the right foot), X0
i

is the left (resp. right) foot transform w.r.t . the inertial frame W, J0
i (q)

is the left (resp. right) foot transform Jacobian, and K0
p ,K

0
d ≻ 0 are two

matrices10. With these notations, level 0 writes

w0(q̈) = w0
0(q̈) + w0

1(q̈) (2.40)

The level 1 of SoT1 has only one task, defined by (2.19)

w1(q̈) = ||J1
cx,y (q)q̈ − (c̈d − J̇1

cx,y (q)q̇)||2 (2.41)

where J1
cx,y (q) is the horizontal CoM transform Jacobian. Recall, that

c̈d = c̈∗ +A(p− pd) (2.42)

with c̈∗ is horizontal CoM acceleration of the nominal trajectory.
The level 2 of SoT1 has only one task, concerning the robot’s back

orientation,
w2(q̈) = ||J2

back(q)q̈ − (ë∗
back − J̇2

back(q)q̇)||2 (2.43)

defined by the rotation task function

eback = log3(R2nom

backR
2
back(q)) (2.44)

where R2
back is the orientation of the robot’s back w.r.t . the inertial frameW ,

J2
back(q) is the Jacobian of the orientation of the robot’s back, and K2

p ,K
2
d ≻ 0

are two high gain matrices.
Finally, the level 3 of SoT1 is composed of one task, expressed on the

robot’s generalized position q, defined as follows

w3(q̈) = ||q̈ − (q̈nom +K2
p(qnom − q) +K2

d(q̇nom − q̇))||2 (2.45)

where (qnom, q̇nom, q̈nom) are the generalized position, velocity and accelera-
tion of the nominal trajectory.

From all the objectives of SoT1 described above, only the task at level 1
(see (2.42)) contains a term not only expressed using the nominal trajectory.
This suggests that the stabilization will be obtained by updating the horizon-
tal position of the CoM, as can be visible in experiments on the hip lateral
motion. SoT1 can be summarized as follows, with levels listed in decreasing
order of priority

10Chosen as high gain.



2.3. CENTEROFMASS STABILIZATION ANDADMITTANCE CONTROLLER55

Stack of Tasks SoT1

Level 0: tracking of swing and support feet pose by (2.40);

Level 1: tracking of CoM acceleration by (2.42), realizing (2.19);

Level 2: tracking of back orientation by (2.43);

Level 3: tracking of joint by (2.45).

On Atalante, the Hierarchical IK problem SoT1 is solved online by a
solver inspired from [Escande2014]. Its output is the optimal acceleration q̈t.
This signal is integrated twice to get joint position and velocity targets (qt,
q̇t). Finally, these joint targets are tracked using a high-gain PD controller[

τ sw

τ sp

]
= Kp(qt −

[
qsw

qsp

]
) +Kd(q̇t −

[
q̇sw

q̇sp

]
) (2.46)

From the definition of SoT1 and (2.46), the nominal controller is now
fully described. It is schematically depicted on Figure 2.8.
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Figure 2.8: Atalante’s passive walking controller: offline trajectories stabilized
with admittance control.



Chapter 3

Empowering the patient for gait
training

Chapitre 3 - Donner de la liberté au patient: Dans ce chapitre, nous
proposons un nouveau contrôleur pour l’exosquelette Atalante qui donne au
patient la possibilité de participer au mouvement. Plus précisément, nous
laissons le patient modifier la vitesse de la jambe de vol en temps réel tout
en stabilisant, grâce à la jambe de support, le centre de masse du système
autour de la trajectoire de référence synchronisée sur la jambe de vol. Nous
utilisons le principe des guides virtuels sur la jambe de vol pour libérer le
mouvement du patient le long de la trajectoire de référence. Nous modifions
la technique de stabilisation utilisée par le contrôleur passif d’Atalante pour
n’utiliser que la jambe de support. Une simple dilatation temporelle de la
trajectoire nominale est utilisée pour synchroniser la trajectoire de référence
du centre de masse avec la jambe de vol. Les performances de stabilisation
de ce contrôleur sont évaluées en simulation et à l’aide d’expériences avec
un mannequin.
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In this chapter, we propose a new controller for Atalante which enables
the user to participate in the motion. More precisely, we adapt the existing
controllers to

1. let the patient modify the swing leg’s schedule

2. stabilize the CoM dynamics around its reference trajectory using the
support leg.

We modify the existing controllers only during single support phases, and
keep them unchanged during the double support phases1.

We propose to use the Virtual Guides (VG) framework [Joly1995; Sanchez
Restrepo2018], originally developed for teleoperation and co-manipulation,
on the swing leg Degrees of Freedom (DoF). This requires some adaptations
and yields a controller akin to a path control feedback [Banala2007; Duschau-
Wicke2010] that aims at stabilizing a parametric curve in the articular
space. Because the velocity along the curve is left free to choose by this
controller, the patient is free to express an intent via the displacement of
the system along this path. This displacement defines the so-called patient

1We explore the possibility to modify the controllers during the double support phases
in Appendix B.
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schedule. On the other hand, we propose to use an adaptation of whole-body
admittance, originally developed for the stabilization of humanoid robots
during walking, for the support leg only. The purpose of the admittance
task is to stabilize the CoM dynamics around a reference trajectory. To
make this reference consistent with the swing leg motion, a natural idea is
to apply a Time Rescaling (TR) of the nominal CoM trajectory following
the patient schedule. The stabilizing properties of admittance around the
nominal trajectory are not diminished when using it on the support leg only,
as shown in Section 3.2.4. More precisely, its stabilization properties are
preserved within a neighborhood of the nominal trajectory, when rescaled by
the patient schedule, as shown in Section 3.3.

The chapter is organized as follows. First, we describe the VG control
law of the swing leg. Second, we describe our adaptation of the whole-body
admittance control law, for its use on the support leg only, along with a
natural synchronization strategy with the swing leg. Then, we prove that,
provided the support leg has sufficient control authority (a sufficient number
of DoF), and the motion of the swing leg is known, the use of the sole
support leg is sufficient for the admittance task to succeed. Finally, we study,
in simulation and experimentally, the stabilization property offered by our
controller when the patient schedule differs from the nominal schedule.

3.1 Satisfying the patient intent with the swing leg

The VG methodology [Joly1995] allows a parametric curve P to be followed
at a velocity prescribed by efforts not produced by the robot. This control
methodology is classically used during teleoperation and co-manipulation in
order to constrain a slave robot onto a desired manifold (e.g . in Cartesian
space) and/or, more generally, help an operator guide the robot during a
specific task.

The VG framework has two ingredients

1. a control law providing a contraction property in the direction orthog-
onal to the path. Usually, this control law is implemented as torques
at the joint level.

2. a control law accounting for the patient efforts. This controller is
implemented as a real-time re-scheduling of the nominal trajectory.

In a way, the VG methodology is a technological solution to realize a path
controller, which can be compared to several alternative formulations [Ba-
nala2007; Aoyagi2007; Vallery2009; Duschau-Wicke2010; Mart́ınez2018;
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Mart́ınez2019]. All these path controllers are stabilizing around the closest
point in the trajectory from the current state of the robot. We choose the VG
methodology as it possesses the advantage of explicitly minimizing the robot
forces acting on the patient, as will be detailed next. Also, its computation
load is light, which is handy for embedded implementation.

Virtual Guides (VG) allows the patient’s efforts onto the exoskeleton
to drive the velocity of his swing leg in real-time within a predefined path
(computed from the nominal swing leg trajectory). This approach enables
us to satisfy the user intent without actually measuring the patient’s efforts,
which is convenient since Atalante does not possess torque or force sensors
at the interfaces with the patient nor at the joint level.

3.1.1 Choice of the Virtual Guides definition space

Virtual Guides (VG) are defined in a certain task-space2, in which both
internal efforts (robot efforts) and external efforts (in our case, patient efforts),
are defined. In many occurrences, e.g . manipulators interacting with their
environment at their end-effector, VG are defined in Cartesian task-space.
This is not the case here, because exoskeletons interact with their users at
every link. Indeed, the patient does not exert efforts only at the end-effector
(the swing foot). This appears in the Lagrangian dynamics (2.10) of the
patient-exoskeleton system, where the patient efforts appear at every joint.
Besides, defining the control law of the exoskeleton in Cartesian space would
not enforce inter-joint coordination (but joint space does) due to the non-
injectivity of the joint to Cartesian position mapping. For these two reasons,
we consider the VG approach in joint-space, similar to most of the path-
control laws for exoskeletons [Aoyagi2007; Vallery2009; Duschau-Wicke2010;
Mart́ınez2018; Mart́ınez2019].

3.1.2 Construction of a parametric curve of reference

As already mentioned, Virtual Guides (VG) aim at constraining the motion
of the robot along a parametric curve or manifold. The parametric curve
used by our controller is built from a nominal joint trajectory T

T : t ∈ [0, Tf ] 7→ T (t) ∈ R12 (3.1)

2Here, any normed space enabling one to define error metrics (e.g . the Cartesian space
R3, the Special Orthogonal group of rotation matrices SO(3), or the Special Euclidean
group SE(3)).
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readily obtained from a trajectory Q computed by the offline trajectory
generation pipeline presented in Section 2.2. The swing leg trajectory T sw is
readily extracted from the complete trajectory T

T sw : t ∈ [0, Tf ] 7→MiT sw(t) ∈ R6 (3.2)

with Mi ∈ R6×12, i ∈ {l, r} a masking rectangle matrix depending on the
stance side (left or right). To obtain a parametric curve from the swing leg
trajectory T sw, we reparametrize it w.r.t . its curvilinear abscissa s

s : τ ∈ [0, Tf ] 7→
∫ τ

0
||Ṫ sw(t)||2 dt ∈ [0, Lmax] (3.3)

with Lmax the total length (in joint space) of the swing leg trajectory. By
this formula, the curvilinear abscissa s is monotonous, therefore, assuming
further that the Euclidean norm ||Ṫ sw(t)||2 is non-zero for all t, s can be
inverted. Then, we define the parametric curve as

P ≜ s ∈ [0, Lmax] 7→ T sw ◦ s−1(s) ∈ R6 (3.4)

To process this equation, one can numerically integrate the differential
equation

ṡ(t) = ||Ṫ sw(t)||2 (3.5)

Then, we gather the two grid vectors t = { i
N Tf , ∀i ∈ [0, N ]} and

s = {s(ti), ∀i ∈ [0, N ]}, and we fit 3rd order Bézier curves (Splines) allowing
us to evaluate s(t) for arbitrary values of t. The same fitting method is
used to evaluate s−1(σ) for arbitrary values of σ. An example of the result
representing the nominal trajectory is depicted on Figure 3.1, which stresses
that the mapping t 7→ s is monotonous, invertible but non-linear.

3.1.3 Virtual Guides controller

In the following
σ : t 7→ σ(t) ∈ [0, Lmax] (3.6)

is now used as a control variable. It defines the current set-point P (σ(t))
along the swing leg path. Schematically, the VG methodology constrains the
position x of the robot onto the parametric path P , as pictured on Figure 3.2.
At the current point P (σ(t)), the Frenet-Serret unit tangent vector to the
curve P , pointing in the direction of motion is

T (σ) ≜ dP

dσ
(σ) (3.7)
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Figure 3.1: Curvilinear abscissa s (Left) and curvilinear velocity ṡ (Right)
over one step, computed from the swing leg trajectory T sw obtained from
the flat-foot OCP (notice that s is strictly monotonous).

The exoskeleton joint torques of the swing leg τ sw are computed as the
sum of two torque vectors. First, a (vector-valued) torque τ sw

P D aiming at
providing a contraction property in the direction orthogonal to T , computed
as a high-gain PD controller

τ sw
P D(σ, σ̇, qsw, q̇sw) = Ksw

p (P (σ)− qsw) +Ksw
d (T (σ)σ̇ − q̇sw) (3.8)

with Ksw
p ,Ksw

d ≻ 0 constant diagonal gain matrices. Second, a gravity
compensation torque τ sw

GC , aiming at compensating the gravity effects on the
robot, computed by inverting the dynamics (2.10) of the exoskeleton (using
a holonomic fixed support-foot constraint [Featherstone2008]), s.t .

τ sw
GC(q) = Hsw

(
HM [I − JM ]H⊤

)†
HM [I − JM ]CR(q, 0) (3.9)

JM = J⊤(q)(J(q)M−1
R (q)J⊤(q))−1J(q)M−1

R (q) (3.10)

HM = HM−1
R (q) (3.11)

with MR the generalized inertia matrix of the robot only and CR(q, 0) the
gravity effects vector of the robot only. Finally, the swing leg τ sw exoskeleton
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Figure 3.2: Schematic description of the VG approach.

torques are computed as

τ sw(σ, σ̇) = τ sw
P D(σ, σ̇, qsw, q̇sw) + τ sw

GC(q) (3.12)

This PD plus gravity compensation controller is very similar to the path-
control controllers in [Banala2007; Duschau-Wicke2010], the main difference
with these lies in the choice of the control variable.

Following our VG approach, we define the control variable σ such that
the projection of the efforts τ sw

P D along the path P is nullified, which reads

T (σ)⊤τ sw
P D(σ, σ̇, qsw, q̇sw) = 0 (3.13)

Notice that we only nullify the efforts of the PD controller, as we do not aim
at canceling the gravity compensation efforts in any direction. This yields,
by injecting (3.8) and solving for σ̇ [Sanchez Restrepo2018],

σ̇(σ, qsw, q̇sw) ≜
T (σ)⊤

[
Ksw

p (qsw − P (σ)) +Ksw
d q̇sw

]
T (σ)TKsw

d T (σ) (3.14)

In summary, our VG controller boils down to implementing the joint
torques (3.12) and integrating (3.14) to get σ from σ̇.

3.1.4 Behavior of Virtual Guides

In this section, we illustrate the difference between the above-defined VG
controller and the path-control nearest-neighbor approach. This approach, de-
tailed in [Duschau-Wicke2010], consists in solving the following minimization
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problem
σnn = arg min

σ
||P (σ)− qsw

m ||2 (3.15)

where qsw
m is the vector of measured positions of the swing leg’s joints. We call

“nearest neighbor” the position qsw
nn = P (σnn) corresponding to σnn defined

by (3.15).

Almost a closest point algorithm: toy examples

In this section, we illustrate the asymptotic behavior of the VG dynam-
ics (3.14). To this end, we study the behavior of σ defined by dynamics (3.14)
with arbitrarily fixed values of qsw and q̇sw. We denote these fictitious joint
positions and velocities as follows

∀t , qsw(t) = qsw
fi , q̇sw(t) = q̇sw

fi (3.16)

In addition, we choose Ksw
p ,Ksw

d ≻ 0 as constant gain matrices (with Kd

the critically damped matrix)

Kp = αI6 , Kd = 2
√
Kp (3.17)

for some α ∈ R+. We study the convergence of (3.14) in the case where the
measured position lies perfectly on the trajectory, and the measured velocity
is null, i.e.

qsw
fi = T sw(tfi) , q̇sw

fi = 06 (3.18)

with tfi ∈ [0, Tf ], the fictitious time. The solutions of (3.14), integrated
over 200 ms from several initial conditions σ0 (s.t . t0 ≜ s−1(σ0)), and for
several tfi, are reported on Figure 3.3. The final value of the solution σ is
denoted σf (i.e. tf ≜ s−1(σf )). These solutions illustrate that the convergence
of σ to σfi ≜ s(tfi) is not guaranteed, which implies the existence of several
equilibrium points to (3.14). By definition, the equilibrium points of the
dynamical system defined by (3.14) are s.t .

T (σ)⊤
[
Ksw

p (qsw − P (σ)) +Ksw
d q̇sw

]
= 0 (3.19)

Interestingly, by using the weighted norm

f ≜ ||Ksw
p (qsw − P (σ)) +Ksw

d q̇sw||2N (3.20)

with

N = K
− 1

2
p (3.21)
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(a) tfi = 0.5 s, t0 = 0.1 s (b) tfi = 0.5 s, t0 = 0.9 s

(c) tfi = 0.8 s, t0 = 0.4 s (d) tfi = 0.8 s, t0 = 0.5 s

Figure 3.3: Curvilinear abscissa convergence may vary with initialization.

we note that

df

dσ
= −2T (σ)⊤

[
Ksw

p (qsw − P (σ)) +Ksw
d q̇sw

]
(3.22)

Note that f is proportional to the numerator in (3.14). Hence,

σ̇ = 0 ⇐⇒ df

dσ
= 0 (3.23)

Therefore, the local minima of f are the equilibrium points of the dynam-
ics (3.14).

For an arbitrary function h defined over [0, Lmax], we denote h̄ its nor-
malized version,

h̄ ≜
h−min[0,Lmax] h

max[0,Lmax] h−min[0,Lmax] h
(3.24)

We denote g(σ) ≜ ||P (σ)− qfi||22 the Euclidean distance from qfi.
On Figure 3.4, which depicts f̄ , we verify that the local minima of f are

indeed the equilibrium points of (3.14). In this example, with q̇sw
fi = 0 and

Kp a constant diagonal matrix,

f(σ) = ||Ksw
p (qsw − P (σ))||2N = α2g (3.25)
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(a) tfi = 0.5 s, t0 = 0.1 s

(b) tfi = 0.8 s, t0 = 0.4 s

Figure 3.4: Normalized f (defined by (3.20)) with q̇sw = 0: existence of local
minima depends on the fictitious time tfi.

Hence, ḡ is identical to f̄ . Therefore, Figure 3.4 also reveals that not all
the equilibrium points of (3.14) minimize the Euclidean distance, as the
path-control methodology does. The dynamics (3.14) converge toward a
local minimum, closer to the initial state.

The VG methodology also differs from the path-control approach because
it is impacted by the measured velocity. In particular, a non-zero measured
velocity q̇sw

fi can shift its equilibrium points. This point is illustrated on Fig-
ure 3.5, where the VG equilibrium is slightly different from the closest point
when the measured velocity q̇sw

fi is not null, for instance when the velocity is
nominal

q̇sw
fi = Ṫ sw(tfi) (3.26)

Further, in practice, the measured position is never precisely on the
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(a) tfi = 0.5 s, t0 = 0.1 s, q̇sw
fi ̸= 0

(b) tfi = 0.8 s, t0 = 0.5 s, q̇sw
fi ̸= 0

Figure 3.5: Normalized f and Euclidean distance with q̇sw ̸= 0.

trajectory (i.e. ∄ t s.t. qsw
fi = T sw(t)). We study the impact of this discrepancy

by adding a component to qsw
fi belonging to the hyperplane orthogonal

to T (σfi), in the direction of the nominal acceleration projected in this
hyperplane, i.e.

qsw
fi = T sw(tfi) + afi

T̈ sw(tfi)− T (σfi)⊤T̈ sw(tfi)T (σfi)
||T̈ sw(tfi)− T (σfi)⊤T̈ sw(tfi)T (σfi)||2

(3.27)

for some afi ∈ R. Choosing afi ̸= 0 modifies both the VG equilibrium
point and the nearest-neighbor, as depicted on Figure 3.6. Note that the
impact on the equilibrium point is sensitive to the values of tfi, t0 and afi.
On Figure 3.6a, the equilibrium is greatly modified, differing from both the
Euclidean minimum distance and σfi. However, on Figure 3.6b the impact
of this change seems negligible, and the VG equilibrium is still equal to the
nearest-neighbor, which is also equal to σfi.
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(a) tfi = 0.5 s, t0 = 0.1 s, afi = 0.1

(b) tfi = 0.8 s, t0 = 0.5 s, afi = 0.1

Figure 3.6: Normalized f with q̇sw = 0 and afi ̸= 0: orthogonal components
create and move local minima.

Finally, all the previous analyses were conducted with isotropic matrices
Kp and Kd (proportional to identity), which is never the case on the robot.
We study the impact of anisotropic Kp and Kd with the example matrices
below

K ′
p = Diag(

[
1e4 1e4 1e4 2e4 2e4 2e4

]
) , K ′

d = 2
√
K ′

p (3.28)

The results for this choice of K ′
p and K ′

d are pictured on Figure 3.7. Inter-
estingly, this modification changes the profile of f , but the nearest-neighbor
is still an equilibrium of the VG, and the other VG equilibrium can be
changed, as revealed on Figure 3.7b. Nonetheless, with the gains tuned for
the exoskeleton Kexo

p and Kexo
d , all the VG equilibria are unchanged w.r.t .

the isotropic matrices case, as shown on Figures 3.7c and 3.7d.
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(a) tfi = 0.5 s, t0 = 0.1 s, K ′
p, K ′

d (b) tfi = 0.8 s, t0 = 0.5 s, K ′
p, K ′

d

(c) tfi = 0.5 s, t0 = 0.1 s, Kexo
p , Kexo

d (d) tfi = 0.8 s, t0 = 0.5 s, Kexo
p , Kexo

d

Figure 3.7: Torque norm and Euclidean distance (null measured velocity and
afi = 0) with anisotropic gain matrices.

In summary, the VG controller locally behaves similarly to a path control
algorithm, when initialized close enough to the nearest neighbor. Additionally,
it cancels efforts tangential to the path. Hence, as expected, Figure 3.8 shows
that the reference set-points (P (σ), T (σ)σ̇) of the PD controller Eq. (3.8)
closely follow the fictitious joint positions and velocities, even in the case
when these positions and velocities are time-varying.

Virtual Guides behavior: experiment with a user

The VG behavior during an experiment with an able-bodied user inside the
exoskeleton is depicted on Figure 3.9 and Figure 3.10. This experiment has
been conducted using the complete algorithmic solution proposed in this
chapter. An experimented user of the exoskeleton provides external help,
holding the handles of the exoskeleton on its sides, to ensure the balance
during the whole experiment and focus on the VG behavior. The support
leg torques τ sp used during this experiment are yet to be specified, but we
focus here on the behavior of the swing leg VG controller, which is already
fully described by (3.12) and (3.14).

On Figure 3.9a, the nominal position trajectory is depicted in black
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(a) Joint position

(b) Joint velocity

Figure 3.8: Simulated joint position and velocity (Black: nominal state
(T sw, Ṫ sw), blue: time rescaled nominal state (P (σ), T (σ)σ̇), orange: ficti-
tious state (qsw

fi , q̇
sw
fi )).



3.1.
SATISFYING THE PATIENT INTENT WITH THE
SWING LEG

71

(a) Joint position

(b) Joint velocity

Figure 3.9: Experimental joint position and velocity (Black: nominal state
(T sw, Ṫ sw), blue: time rescaled nominal state (P (σ), T (σ)σ̇), orange: mea-
sured state (qsw

m , q̇sw
m )).
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Figure 3.10: Experimental curvilinear velocity varying more than −50%
of the nominal curvilinear velocity (Black: nominal curvilinear velocity ṡ
evaluated at control variable s−1(σ), blue: Virtual Guides σ̇).

and the position rescaled in time by the VG controller according to (3.14)
is depicted in blue. A clear consequence of the tangential VG controller
is that the measured position (in orange) is closely followed by the target
position. Figure 3.9b depicts the nominal, target, and measured velocities.
As expected, rescaling T sw in time amplifies the corresponding velocity by a
factor σ̇, as per (3.8).

3.2 Stabilizing the Center of Mass with the support leg

In this section, we detail our approach to stabilize the Center of Mass
(CoM) dynamics around a reference CoM trajectory. We adapt the existing
admittance controller. Whole-body admittance control is used to stabilize the
CoM around the trajectory during passive walking, as detailed in Section 2.3.
However, during single support phases, the swing leg torques are entirely
defined by the VG controller. Therefore, we propose below (in Section 3.2.1)
an adaptation of the passive walking admittance SoT from Section 2.3 to
compute the support leg joint targets taking into account the motion of the
swing leg. In Section 3.2.4, we expose the rationale of our admittance SoT
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modification and provide a numerical illustration of its performance for the
admittance task.

3.2.1 Modification of admittance’s SoT

As discussed earlier, the VG methodology implies that the swing leg target
position qsw

t follows a fixed path P . To prescribe the motion of the swing
leg, we design a single support Stack-of-Tasks (SoT), denoted SoT2, with a
task on the swing leg joints having higher priority than the CoM acceleration
tracking task, as follows

Stack of Tasks SoT2

Level 0: swing leg joint position and support foot pose tracking;

Level 1: CoM acceleration tracking (2.19);

Level 2: back orientation tracking;

Level 3: regularizing joint tracking.

The swing leg task is to follow the swing leg target joint position. It
writes

e0
0 = P (σ)− qsw (3.29)

We design the reference acceleration of this task s.t . it yields fast convergence
to the same targets (P (σ), T (σ)σ̇) as the VG controller (3.8)

q̈sw∗ = Ksw
p (P (σ)− qsw

t ) +Ksw
d (T (σ)σ̇ − q̇sw

t ) (3.30)

with (Ksw
p ,Ksw

d ) high gains and (qsw
t ,q̇sw

t ) the swing leg joint target computed
during the previous control loop. This task is the one with the highest priority,
therefore its associated cost w0

0 = ||q̈sw∗ − q̈sw||22 is always identically zero,
yielding

q̈sw
t = q̈sw∗

(3.31)

Thus, fast convergence of (qsw
t ,q̇sw

t ) to (P (σ), T (σ)σ̇) is ensured (by the
choice of high gains matrices (Ksw

p ,Ksw
d )), which enables the IK solver to

compensate for the bias introduced by the swing leg motion in the CoM
acceleration task. This property is further derived in Section 3.2.4.

As in Section 2.3, the optimal acceleration of the support leg q̈sp
t , resulting

from tasks of level 1− 3, is integrated twice to define the target support leg
position and velocity (qsp

t ,q̇
sp
t ). Finally, the support leg joint torques τ sp are

computed using a high-gain PD controller

τ sp = Ksp
p (qsp

t − qsp) +Ksp
d (q̇sp

t − q̇sp) (3.32)
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with Ksw
p ,Ksw

d ≻ 0 constant diagonal gain matrices. As the swing and
support legs are only defined during single support phases, we keep the SoT1
during double support phases3.

3.2.2 Synchronization of legs by Time Rescaling (TR)

The SoT2 described in the previous section incorporates the same CoM
acceleration task as SoT1 at level 1. The desired acceleration for this task
is computed by (2.19) which, in turn, aims at tracking the desired CoP
computed from (2.18). These two desired quantities are computed to stabilize
the CoM around a state trajectory x, with corresponding input trajectory
p. We now define these reference trajectories synchronized with the patient
schedule σ.

A natural way to define two synchronized trajectories x and p from the
nominal trajectory Q is to first time-rescale the nominal trajectory Q with
the patient schedule σ, defining the time-rescaled trajectory qT R

qT R(σ) ≜ Q ◦ s−1(σ) (3.33)

and then, to compute the time-rescaled state trajectory xT R and corresponding
time-rescaled input trajectory pT R from it{

x = xT R(σ) ≜ FK ◦ qT R(σ)
p = pT R ≜ ID ◦ qT R(σ)

(3.34)

readily obtained using Forward Kinematics (FK) (see e.g . [Carpentier2019]
for implementation) and Inverse Dynamics (ID).

The kinematic reference trajectories required for the other tasks are
readily computed from the time-rescaled trajectory qT R using FK. The
derivation of the controller that we propose in this Chapter is now complete.
It is schematically depicted on Figure 3.11.

3.2.3 Trajectory smoothing

Task changes produce discontinuities of target trajectories (qt,q̇t). These
occur either when lifting the foot off the ground (switching from SoT1 to
SoT2), or when landing the foot (switching from SoT2 to SoT1).

3Keeping during the double support phases is the safest approach, using all DoF to
stabilize the CoM dynamics. An opposite approach, using all DoF to follow the patient
schedule, is sketched in Appendix B.
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Figure 3.11: Split-leg rehabilitation controller using the naive TR synchro-
nization strategy.
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The discontinuities at foot lift are smoothed when switching from SoT1 to
SoT2 by interpolating between the nominal trajectory T sw and the last swing
joint target position qsw

t . This interpolation is performed using well-designed
5th order Splines over the remaining duration of the step. The smoothing is
performed once per step when the swing foot lifts off, hence the modified
swing leg trajectory is entirely known at the beginning of the swing phase,
and so the swing leg path P can be computed as explained in Section 3.1.2.

Besides, there are also target discontinuities when switching from SoT2
to SoT1 as, in the general case, the foot landing position in Cartesian space
is not exactly on the trajectory due to CoM tracking errors. When the
stabilization effect of admittance control is efficient, the CoM stays close to
the nominal one. In this case, when tasks change occurs at impact, the swing
foot lands almost at the expected place, and the targets are sufficiently close
to make the discontinuity imperceptible. When the stabilization effect of
admittance control is less efficient, the CoM can get noticeably far from the
nominal one, which results in larger discontinuities due to the tasks change
and the lack of target reconciliation strategy. We tackle the loss of balance
from which they result in Chapter 4.

3.2.4 Impact of the modification of the SoT

We now expose the rationale of our modification of admittance control. For
this purpose, we propose a formal analysis of the changes. We consider
the exoskeleton in single support. It constitutes an open kinematic chain.
We split this kinematic chain into a support sub-chain (the support leg), in
contact with the ground, on which the admittance task bears, and a swing
sub-chain (the swing leg), with no contact with the ground. We only study
the impact of the SoT modification on the target CoM acceleration, assuming
perfect tracking of the target joint acceleration qt. To lighten the notation,
we do not distinguish target and actual positions for the rest of this section,
i.e. q = qt.

We advocate that, provided a sufficient number of DoFs are included
in the support sub-chain, the admittance task (2.19) can be satisfied with
performance similar to the original SoT1, exposed in Section 2.3. This is
suggested by computations that we now detail.

Consider the schematic representation of the exoskeleton depicted on
Figure 3.12 during the single support phase. The kinematic chain is opened,
and it consists of 13 bodies Bj linked together by 12 revolute articulations
Ji. Each body Bj has an associated frame Fj with an origin Oj . The
articulation Ji links the body Bi to Bi+1, with i ∈ [0, 11]. The first chain
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Figure 3.12: Atalante’s kinematic chain during single support phases.

goes from the support foot B0 to the back B6, and the second chain from
B6 to the end of the robot’s kinematic chain B12. Both sub-chains possess 6
DoF.

Let us write, w.r.t . the inertial frameW , csw (resp. csp) the CoM position
of the support sub-chain (resp. the swing sub-chain) with mass msp (resp.
msw). One gets

c̈ = msp

msp +msw
c̈sp + msw

msp +msw
c̈sw (3.35)

The subscript ·|k is used for quantities defined w.r.t . the reference frame
Fk, expressed in the inertial frame W. Ωj is the angular velocity vector of
frame Fj w.r.t . the inertial frame W, and ak the acceleration of Ok. The
acceleration due to the swing leg motion is readily computed as

c̈sw = ä6 + Ω̇6 ∧O6Ocsw + c̈sw|6 + Ω6 ∧ (Ω6 ∧O6Ocsw) + 2Ω6 ∧ ċsw

(3.36)
where all the quantities in the second line are independent of the acceleration
q̈sp of the 6 DoF of the support sub-chain. To highlight the dependence of
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the various factors w.r.t . the variables of both legs, we express c̈ as

c̈ = msp

msp +msw
c̈sp(q̈sp, qsp)

+ msw

msp +msw
(ä6(q̈sp, qsp) + Ω̇6(q̈sp, q̇sp, qsp) ∧O6Ocsp(qsp, qsw))

+ msw

msp +msw
b(q̈sw, q̇sp, q̇sw, qsp, qsw)

≜ f(q̈sp, q̇sp, qsp, qsw) + msw

msp +msw
b(q̈sw, q̇sp, q̇sw, qsp, qsw)

(3.37)

with

b(q̈sw, q̇sp, q̇sw, qsp, qsw) = c̈sw|6 + Ω6 ∧ (Ω6 ∧O6Ocsw) + 2Ω6 ∧ ċsw (3.38)

This term b, entirely determined by the known acceleration q̈sw of the swing
sub-chain, can be seen as a bias in the equation (3.37) governing c̈.

As appears above, the first and second rows in equation (3.37), gathered
into a single function f(q̈sp, q̇sp, qsp, qsw), are controlled by the acceleration
q̈sp of the 6 DoF of the support sub-chain. Provided a sufficient number of
DoFs are used, the support sub-chain should be able to compensate for the
bias b created by the swing sub-chain and generate the desired total CoM
acceleration. Mathematically, if b belongs to the image of the mapping f ,
then it can be compensated for. The support leg possesses 6 DoF, while the
CoM acceleration is a 3D quantity, therefore it seems possible to realize any
given CoM acceleration.

To further validate this observation, the proposed split of DoF, and
subsequent changes in the SoT, we perform comparative simulations at
nominal velocity. The nominal curvilinear abscissa is our control variable for
the swing leg

σ(t) = s(t) (3.39)

which yields {
qsw

t = P ◦ s(t) = T sw(t)
q̇sw

t = T ◦ s(t)ṡ(t) = Ṫ sw(t)
(3.40)

In this case, the reference CoM (resp. CoP) trajectory is simply the nominal
CoM (resp. CoP) trajectory{

x = FK ◦ T (t)
p = ID ◦ T (t)

(3.41)
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Figure 3.13: CoM acceleration IK task error in simulation (same error
magnitude of the original and proposed algorithm). Original algorithm:
SoT1. Proposed algorithm: SoT2. Left: forward direction. Right: lateral
direction.

readily computed using Forward Kinematics (FK) and Inverse Dynamics
(ID), as in (3.34).

Figure 3.13 depicts the error of the CoM acceleration task during one
simulated step both for the original algorithm, using SoT1 during the complete
step (equivalent to the passive walking controller of Atalante described
in Chapter 2), and for the proposed algorithm, using SoT2 during single
support phases and SoT1 during double support phases. The error of the
CoM acceleration task is the difference between the desired CoM acceleration
c̈d, as defined by (2.19), and the target CoM acceleration, as defined by the
target joint acceleration q̈t solution of the IK solution to SoT1 or SoT2. As
shown on Figure 3.13, the error magnitude of the CoM acceleration task
during the single support phase (from 1.1 s to 2.05 s) is identical for the
original algorithm and the proposed algorithm. In addition, Figure 3.13
includes leading and tailing double support phases (from 1.0 s to 1.1 s and
from 2.05 s to 2.15 s), s.t . one can check that the error magnitude is not
increased due to the sudden tasks changes at the single-double support
phase changes. Thus, the comparison confirms that the proposed split has a
sufficient number of actuation DoF to track the desired acceleration c̈d as
well as the original admittance control scheme during single support phases.
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3.3 Impact on safety of patient empowerment

In this section, we first study the stabilization performance of the proposed
rehabilitation controller, both in simulation and during experiments. All
the simulation results presented in this section have been obtained using the
open-source simulator Jiminy [Duburcq2019]. Then, we provide a numerical
illustration of the limits of the proposed synchronization strategy, which
motivates the next Chapter.

3.3.1 Stability analysis

The safety of exoskeletons is directly linked to the stability of the walking
exercises. Hence, the stability must be rigorously evaluated, as recommended
in [Pinto-Fernandez2020]. To do so, we evaluate in this chapter the stability
of the walking exercises enabled by this controller over 10-second simulations
and experiments. We use a dummy instead of a patient during all experiments,
as shown on Figure 3.14, because able-bodied users tend to involuntarily
stabilize the exoskeleton using their upper bodies and/or legs (while disabled
patients might not be able to act similarly).

In order to ensure the repeatability of the experiments, one must generate
virtual patient efforts τ sw

u and τ sp
u , or the consequences of these efforts

expressed through the variations of the patient velocity σ̇u. Because Atalante
does not possess any force sensor at the interfaces with the patient nor at the
joint level, we do not have any experimental data to reproduce the patient
efforts (τ sw

u ,τ sp
u ). Therefore, we generate virtual control variable velocity

profiles σ̇u to simulate the consequences of variations of the patient efforts,
and not virtual efforts directly. We generate these profiles σ̇u for arbitrarily
tailored functions η̇u as follows

σu(t) = s ◦ ηu(t) (3.42)

We design the η̇u functions with one non-nominal phase variable velocity
change. These functions are parametrized with three variables: the non-
nominal phase variable velocity ¯̇η, the starting time of the velocity change tη,
and the duration of the modification ∆τ . To generate a periodic signal, we
make these functions start and end at nominal velocity. The ηu phase variable
function is created from a piecewise affine function, with a discontinuous
phase variable velocity change, smoothed by a Gaussian filter. An example
of an ηu function is pictured on Figure 3.15. Note that these functions are
not, a priori, exactly representative of patient efforts. However, they allow
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Figure 3.14: Dummy inside Atalante during passive walking (ensures that
no user stabilizes the system).

for an intuitive and systematic exploration of a class of velocity profiles with
various levels of difficulty.

Note that, as we constrain the ηu function to end at a specific final value
ηf , only a limited set of combinations of non-nominal velocity, duration and
start time can be explored.

3.3.2 Simulation results

The stability performance evaluation of the controller proposed in this chapter
consists of 10-second rigid-body walking simulations for each set of parameters.
A simulation is deemed successful if the robot has not fallen at the end of
the simulation. The aggregated results are shown on Figure 3.16 where,
for each set of parameters (custom velocity duration, custom velocity), the
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Figure 3.15: ηu (Left) and η̇u (Right) functions, along with the three param-
eters (emulation of patient-induced slow-downs).

rates of success are lumped in three bins: above 90%, between 35% and
90%, and below 35%. The custom velocity parameter ¯̇η is varying along the
Y axis of Figure 3.16, while the custom velocity duration parameter ∆τ is
varying along the X axis. The heatmap on Figure 3.16 shows the stabilization
algorithm has good performance only around the nominal velocity η̇n ≜ 1.0,
for custom velocities ¯̇η between 0.8 and 1.5. With lower or higher velocities
custom velocities ¯̇η, the algorithm fails to stabilize the exoskeleton, especially
when the velocity change is too long.

Surprisingly, the stabilization algorithm manages to stabilize some time-
rescaled trajectories which do not respect the constraints acting on the
system. Indeed, while the nominal trajectory respects both the direct (the
torque limits) and indirect (the unilateral force constraint) actuation limits,
as detailed in Section 2.2, the time-rescaled nominal trajectory, defined
by (3.33), violates the indirect actuation limit even for small variations
around the nominal velocity. This is illustrated on Figure 3.17, where the
rate of time-rescaled trajectories respecting the unilateral force constraint
for each set of parameters (custom velocity duration ∆τ , custom velocity ¯̇η)
is reported. These rates, aggregated along the starting time of the velocity
change tη dimension, are lumped in three bins: above 90%, between 35%
and 90%, and below 35%. Comparing Figure 3.17 with Figure 3.16 shows
that the stabilization algorithm manages to stabilize even some time-rescaled
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Figure 3.16: Heatmap of 10 s walking simulation success (good stabilization
performance around the base scenario, poor ones in the low-velocity range).
Success rate computed for each (custom velocity duration, custom velocity)
couple, aggregating the (custom velocity start) dimension.

trajectories which do not respect the unilateral force constraint. While this
performance is surprising at first, they only reflect that the stabilization
algorithm manages to dynamically find trajectories, close to the time-rescaled
trajectories, which respect all the actuation constraints. In other words,
these results reveal that there exist trajectories respecting all the actuation
constraints in a neighborhood of trajectories that violate constraints, and
the stabilization algorithm acts as a dynamic generation algorithm of these
trajectories. The distance of these trajectories to the tracked trajectory,
which does not respect the constraints, is reflected in the tracking error of
the stabilization algorithm.

3.3.3 Experimental observations

The custom functions depicted in Section 3.3.1 are used again for experimental
stability evaluation. As opposed to the simulations, the initial state of the
exoskeleton-dummy system is standing still. Hence, a starting step, different
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Figure 3.17: Heatmap of time-rescaled nominal trajectories violating the
unilateral force constraint. Rate of time-rescaled trajectories respecting the
constraint computed for each (custom velocity duration, custom velocity)
couple, aggregating the (custom velocity start) dimension.

from the next cyclic steps, is required. In order to get closer to the simulation
setup, we manually stabilize this starting step and, if required, the two first
cyclic steps by gently holding the exoskeleton side handles.

A reduced number of parameter combinations is tested to keep the total
duration of the experiments at a reasonable level (i.e. being able to complete
the experiments in one day). The custom velocity (tη, δτ, ¯̇η) triplets are
chosen to span as much as possible the simulations test range, but they are
also adapted during the test sessions w.r.t . the first results. For instance,
for each such triplet, we stop decreasing the custom velocity as soon as
we find an unstable velocity profile. This decision is guided by the results
depicted on Figure 3.16. For this reason, we only test velocities higher than
η̇min = 0.6.

The stabilization results are shown on Figure 3.18. We could not try
velocities higher than η̇max = 1.5 due to the electrical power limits of the
exoskeleton. We see that the walking experiment is successfully stabilized for
all the velocities in the [1.0, 1.5] velocity range, and for all velocity change
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Figure 3.18: Heatmap of 10 s walking experiments success. Success rate
computed for each (custom velocity duration, custom velocity) couple, aggre-
gating the (custom velocity start) dimension. The results are in accordance
with simulation, with lower performance in the low-velocity range.

durations. However, walking with our rehabilitation controller at velocities
lower than the nominal one often leads to falling, even for short-duration
changes. These results are mostly in accordance with the simulation results
of Figure 3.16, but with lower performance in the low-velocity range.

The observed performance reduction from simulation to experiments can
be explained by the model discrepancies with reality. Indeed, there are multi-
ple effects unaccounted for in simulations, among which the most important
one is the presence of flexibilities which result in several centimeters end-
effector position errors [Vigne2021; Vigne2022]. Other factors which could
also explain the performance reduction are, but not limited to, the unknown
interaction of the dummy with the exoskeleton and model uncertainty (its
total mass is precisely known, as with patients, but the limb masses and
inertias are approximated), or sensor errors.

These experimental performances are not sufficient for the rehabilitation
of deficient patients yet, as they will most likely have issues providing enough
effort to go as fast as the nominal velocity.
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Figure 3.19: Reference CoP uT R
y (violating the support polygon limits in

black), CoM cT R
y and measured CoM cy (diverging toward the end of the

step) positions along the Y axis of the inertial frameW . Reference quantities
computed using the TR strategy and a simulated patient velocity σ̇u as low
as 60% (tη = 0.2 s, ∆η = 0.9 s and ¯̇η = 0.6). Black horizontal lines represent
the limits of the support polygon SP on the Y axis.

3.3.4 Performance analysis during a single step simulation

The shortcomings of our rehabilitation controller in terms of balance, espe-
cially in the low-velocity range, come from the choice of the Time Rescaling
(TR) strategy described in Section 3.2.2. Indeed, this TR strategy does
not take the unilateral contact constraints into account, as already exposed
in Section 3.3.2. As a result, the CoP trajectory pT R is not confined to
the support polygon SP, i.e. the state trajectory xT R does not respect the
input-constrained dynamics, and the stabilization algorithm is unable to
generate a CoP command which stabilizes the trajectory. This is illustrated
on Figure 3.19 which reports the result of a simulation with a custom velocity
¯̇η = 0.6 for δτ = 0.9 s. The reference CoP, in green, is not contained in the
support polygon SP when modulating the trajectory at 60% of the nominal
velocity. The final state (the endpoint of the red line) is different from the
nominal final state xf ≜ FK ◦ T (Tf ) (the endpoint of the blue line). The
8 cm resulting error is sufficient to make the robot fall at the end of the step.
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This simulation reveals that the choice of the reference trajectory ac-
cording to the TR strategy is too naive to ensure the safety of the walking
exercise, and calls for a more careful choice of legs synchronization strategy.
This is the topic of the next chapter.





Chapter 4

Monitoring safety

Chapitre 4 - Gestion de la sécurité: Dans ce chapitre, nous proposons une
nouvelle stratégie de synchronisation des jambes et détaillons son
implémentation dans le contrôleur développé au chapitre précédent.
L’objectif de cette modification est d’augmenter l’équilibre lors des exercices
de rééducations actifs avec Atalante. Cette nouvelle stratégie s’appuie sur un
problème de contrôle optimal en temps final libre pour un modèle réduit du
système qui est résolu en ligne à haute fréquence. Parce que résoudre un tel
problème à une fréquence suffisamment élevée pour le confort du patient est
difficile, nous avons développé une méthode de résolution originale réalisant
une dichotomie sur la fonction de faisabilité d’un problème quadratique. La
solution de ce problème fournit une nouvelle trajectoire pour le centre de
masse du système, d’une durée cohérente avec la vitesse de la jambe de vol
du patient, ou aussi proche que possible de cette vitesse, tout en respectant
les contraintes dynamiques du système. Les modifications apportées au
contrôleur sont donc doubles : la trajectoire de référence est remplacée par
cette trajectoire optimale, et, lorsque nécessaire, la vitesse du patient est
limitée pour préserver l’équilibre. Les performances de stabilisation de ce
contrôleur sont évaluées en simulation et à l’aide d’expériences avec un
mannequin. Des expériences illustrant le comportement général de ce
contrôleur avec un patient sont également fournies.
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The experiments of Section 3.3 have shown that the Time Rescaling (TR)
strategy fails to generate trajectories that can be stabilized by admittance.
In this chapter, we derive a novel Optimal Planning (OP) strategy and
modifications to the controller from the previous chapter to solve this issue
and increase performance.

The OP strategy leverages an Optimal Control Problem (OCP) to gen-
erate a CoM trajectory, meant to be tracked by admittance control, while
taking the unilateral force constraint into account. The literature about
generating CoM trajectories online is broad and dates back to the early 2000s,
first as intricate preview regulators [Kagami2002; Kajita2003; Kagami2011],
which require a CoP reference planner to provide the reference CoP to track,
then as plain OCPs [Wieber2006b], which only require the contact sequence,
and can even optimize their location [Herdt2010]. Since then, the litera-
ture about online walking trajectory generation has flourished, leveraging
reduced [Feng2013; Caron2016] or complete [Erez2013; Koenemann2015;
Dantec2022] dynamical models of the robots, to optimize first a reduced set
of parameters (e.g . the horizontal motion of the CoM only [Wieber2006b]),
and then gradually increase the number of free parameters (e.g . optimizing a
combination the 2D CoM motion [Khadiv2016; Caron2020; Smaldone2021],
CoM height [Caron2020], stepping location [Khadiv2016; Smaldone2021],
and switching time [Khadiv2016; Smaldone2021]).

The OCP we formulate is specific for two reasons:

1. Our primary objective is to maximize patient expressiveness. Hence,
our OCP has a free final time.
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2. The optimal solution acts as a safety filter on the patient schedule.
Hence, it has to respect hard real-time constraints (typically running
at least at 1kHz).

Among all the online CoM trajectory generation algorithms for biped robots
published over the past 2 decades, we found only 5 explicit occurrences of
algorithms optimizing the switching time (note that including quadrupeds
adds only 2 occurrences). Namely, [Khadiv2016; Griffin2017; Smaldone2021;
Ahn2021; Katayama2022], among which two demonstrated their algorithm
in simulation only. In view of application, we did not consider these 2
algorithms with no experimental evidence of their performance. Among the
three remaining algorithms, only one [Griffin2017] satisfies the hard 1kHz
real-time constraint. However, this algorithm relies on the definition of the
CoP trajectory as a constant piecewise function with specified durations of
each piece, therefore the duration adjustment is not a free variable in their
optimization, but rather comes as an input from a stabilizing feedback on
the measured CoM state. Thus, this algorithm is not suitable for our use
case, in which we require the OCP to maximize a cost formulated on the
final time of the trajectory.

In details, we formulate an OCP as follows. We model the system as
subjected to the LIP dynamics with the unilateral force constraint being the
only actuation constraint. In addition, we limit the horizon to the end of
the current step, and we fix the footprints to be the same footprints as in
the nominal trajectory. The final time of the trajectory is free, and we set
a penalty on its difference with some patient-dependent target time. This
target time is computed by assuming the patient will produce efforts that
keep the instantaneous swing leg velocity constant up until the end of the
current step. To reflect that patient expressiveness has the highest priority
over all other objectives, we formulate the OCP as a bi-level optimization
problem, with the cost on the final time being the sole cost in the upper-level
problem. The sublevel cost is only a control input regularizing cost. The
importance of the sublevel comes from its constraints: the input-constrained
LIP dynamics, plus some well-chosen final state equality constraint ensuring
the recursive feasibility of the steps. Because of the sublevel constraints, the
final time penalty can not always be nullified. Thus, our OP strategy reveals
when the patient-driven swing leg velocity cannot safely be satisfied. In this
case, the final time of the optimal solution provides us with the optimal safe
velocity of the swing leg (i.e. which maximizes the patient desire by finding
the closest final time to the patient target time).

The controller from Chapter 4 is adapted to this online CoM trajectory
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generation strategy in two different ways. First, the admittance reference
trajectory, used to control the support leg, is replaced by the solution to the
OCP. Then, the patient swing leg velocity is replaced by the optimal velocity
from the OCP. When the OCP manages to nullify the final time penalty, the
optimal velocity is identical to the patient velocity and this change has no
impact. When the final time penalty is not nullified, the patient velocity is
filtered. Hence, the OCP also acts as a safety filter of the patient velocity.
Therefore, it has to run at the same frequency as the VG controller. It is
known from expert knowledge at Wandercraft that increasing the VG update
frequency (3.14) directly increases the user’s ability to drive the motion along
the swing leg path P . It has been found that running VG at 1kHz yields a
good trade-off between computation load and user efforts.

Solving an OCP with free final time at such a high-frequency replanning
is challenging, especially with the computational power limitations of the
Atalante onboard computer. As we found no readily applicable solver in the
literature, we have developed an original solving method of our bi-level OCP
based on bisection on the feasibility function of Quadratic Program (QP)s.
We show that this approach is optimal in almost all situations1 encountered
for the LIP dynamics in one dimension. We provide numerical hints that
this is probably always true in cases of practical interest. Further, even in
cases where our method does not find the optimal trajectory, i.e. when the
upper-level cost is not minimized, the constraints of the sublevel are always
satisfied. Therefore, even suboptimal trajectories are safe (i.e. respecting the
dynamics and boundary conditions).

The chapter is organized as follows. First, we motivate and derive our
OP strategy, along with the modifications it induces in the rehabilitation
controller from Chapter 3. Then, we study the optimality of the bisection
method used to determine the solution to the OCP. Finally, we quantify the
stabilization performance of this controller with extensive simulations and
during experiments with an able-bodied user.

4.1 Online Planning and velocity filter

In this section, we first describe the low-level fixed final time OCP with the
high-frequency requirement in mind. Then, we compute a target final time
from the patient-driven swing leg velocity, and we formulate the complete
bi-level OCP with a cost on the final time at the upper level. Finally, we

1i.e. for a large class of initial conditions and target final times
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describe how we modify the controller from the previous chapter for its use
with the bi-level OCP.

4.1.1 Trajectory generation with fixed final time

The target frequency of the OCP solving is the same as the VG controller
frequency, i.e. 1 kHz. For this reason, we use a reduced model of the system
dynamics, namely the LIP dynamical model (2.17). Recall that it writes, for
each dimension i ∈ {x, y} of the horizontal plane,

χ̇i = Aχi +Bui (4.1)

with the one dimensional state χi ≜ (ci, ċi), and the CoP command ui = pi.
This yields, in two dimensions,

χ̇ = Aχ+ Bu (4.2)

with χ ≜ (χx, χy), A =
(

A O2x2
O2x2 A

)
, B =

(
B O2x1
O2x1 B

)
, and u ≜(

ux

uy

)
∈ SP. For some duration T ∈ R+, we define the set of admissible

controls Uad(T )

Uad(T ) ≜ {u s.t. ∀t ∈ [0, T ], u(t) ∈ SP(t)} (4.3)

where SP is the support polygon and, from some initial state χ0 and some
input u ∈ Uad(T ), we denote χu the forward integration of (4.2) from χ0, s.t .

∀t ∈ [0, T ], χu(t) = eAtχ0 +
∫ t

0
eA(t−τ)Bu(τ)dτ (4.4)

To get to a simple yet insightful OCP, we only optimize for the state
trajectory and control input up until the end of the current step. For this
reason, the support polygon SP, which varies with each contact phase, is
constant over the optimization domain considered.

The VG controller restricts the freedom of the patient in such a way
that the path of the patient-exoskeleton system’s swing foot, in the back
referential, is identical to the nominal path. Hence, with this framework, the
swing foot location in the world frame W could theoretically be left free for
the optimization to choose, by changing the CoM final location2. However,

2Choosing the CoM location is not equivalent to choosing the position of the back,
which defines the landing location of the swing leg. However, the latter cannot directly
be included in a LIP-based OCP. Choosing the CoM position at the end of the step is
a surrogate, which is reasonable as the back frame is roughly at the center of the mass
distribution of the patient-exoskeleton system.
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the landing location of the swing foot is constrained by the kinematic limits
of the exoskeleton joints, but this constraint can not be incorporated in LIP-
based optimization and would require a non-trivial approximate surrogate.
For this reason, we do not include the landing location of the swing foot
in the optimization variables. Instead, we consider it fixed, at the location
defined by the nominal trajectory T , which respects the kinematic limits of
the exoskeleton according to Section 2.2.

It is critical, for our application, to guarantee the feasibility of the next
step i.e. the recursive feasibility of the OCP. Indeed, if not enforced, it
would jeopardize the safety of the walking exercise, hence the safety of the
patient. Classically, the recursive feasibility of LIP-based OCPs is either
guaranteed with a terminal constraint on the state, or only softly guaranteed
with an integral cost on some diverging quantities3, guiding the planner
toward recursively feasible trajectories [Wieber2016]. The soft guarantee
is not enough in our case for safety reasons, hence we follow the terminal
constraint approach. One type of such constraint is capturability constraints,
i.e. a constraint ensuring that the robot will be driven to a complete rest
in N steps. There is strong numerical evidence [Ciocca2017] that including
a capturability constraint does not jeopardize the recursive feasibility, even
when this constraint is recursively postponed into the future because the
objective is to keep walking, and not to stop. However, this is not guaranteed,
and we prefer not to take any risk for the safety of the patient. Thus, we
include a different constraint, ensuring strict recursive feasibility of our OCP.

Designing a constraint that ensures the recursive feasibility of LIP-based
OCPs requires some knowledge or assumptions about the desired motion
after the optimization horizon, as studied in [Scianca2020]. In their work,
they do not possess any offline trajectory to inform them about the desired
plan after the horizon, hence they study several ways to estimate this plan.
While they show that they manage to ensure the recursive feasibility of their
OCP, their solution entails the design of a sophisticated terminal constraint.
Luckily, we have an offline trajectory at our disposal to guide us, enabling
us to design a simpler terminal constraint.

Assuming the desired plan is to keep walking, we design our terminal
constraint as an equality constraint on the final state of the trajectory, with
the nominal final state as value, i.e. the final state of the nominal trajectory.
Indeed, the nominal trajectory satisfies the input-constrained full dynamics
from its initial state to its final state in a certain time Tnom. If there exist

3According to the LIP model, minimizing the integral of any derivative of the CoM over
a sufficiently long enough horizon is enough [Wieber2019]
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also a trajectory satisfying the input-constrained LIP dynamics joining the
same initial and final conditions over the same duration Tnom, then we can
use the nominal final state as a constraint for our OCP. This LIP feasibility
check is performed numerically by solving a QP problem at the beginning of
each exercise. The nominal walking trajectory being cyclic, it is sufficient to
check it over a single step.

Finally, our terminal constraint writes

χu(T ) = χf ≜ FK ◦ T (Tnom) (4.5)

with Tnom ∈ R+ the duration of the nominal trajectory T . We denote Ω the
set of feasible commands respecting the initial and final conditions (χ0, χf )

Ω(χ0, χf , T ) ≜
{
u ∈ Uad(T ), χu(0) = χ0, χu(T ) = χf

}
(4.6)

and the fixed final time OCP writes4

Problem 4.1. Given χ0, χf and T , find uopt s.t.

uopt = arg min
u∈Ω(χ0,χf ,T )

∫ T

0
u2dt

This OCP constitutes the lower level of our bi-level strategy.

4.1.2 Bi-level trajectory generation with free final time

The patient’s efforts directly affect the instantaneous swing leg velocity
through (3.14). At each time, the swing leg velocity equivalently defines a
forecasted step duration T as follows

T = Lmax − σ
σ̇

(4.7)

Imposing (4.7) as the final time of Problem 4.1 would synchronize the
support and swing leg trajectories. However, Problem 4.1 may be unfeasible
for some values of T . Therefore, we search for the closest step duration for
which Problem 4.1 has a solution.

The patient desired velocity is thus only a target velocity from now on
and denoted σ̇t. It is directly computed from (3.14), saturated to be strictly
positive, s.t .

σ̇t = max

ϵ, T (σ)⊤
[
Ksw

p (qsw − P (σ)) +Ksw
d q̇sw

]
T (σ)TKsw

d T (σ)

 (4.8)

4The presented quadratic cost function can easily be changed to incorporate extra
tuning parameters to affect performance, without loss of generality.
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with ϵ ∈ R+∗ a small parameter. The target velocity is converted into a
target time T t until the end of the current step as follows

T t = Lmax − σ
σ̇t

(4.9)

Problem 4.1 has solutions only for durations in T(χ0, χf ) ⊂ R+, the set
of feasible times for which Ω is not empty

T(χ0, χf ) ≜ {T > 0, Ω(χ0, χf , T ) ̸= ∅} (4.10)

However, there is no guarantee that a given T t is in T(χ0, χf ). For this
reason, we include the target time T t in the upper-level cost of a bi-level
OCP as follows

Problem 4.2. Given χ0, χf and T t, find uopt and T opt as

T opt = arg min
T ∈T(χ0,χf )

||T − T t||2

s.t. uopt = arg min
u∈Ω(χ0,χf ,T )

∫ T

0
u2dt

Problem 4.2 is a minimal time problem for input-constrained linear
dynamics of dimension 4. The solutions T opt and uopt are determined using
a bisection method on the final time T , granting high-numerical efficiency.
We implement this algorithm at 1 kHz.

Bisection resolution on the feasibility: In details, at time tk, given an initial
condition χ0, a target time T t

k > 0, and an initial guess T 0 ∈ T(χ0, χf ),
we solve Problem 4.2 using bisection between T t

k and T 0 on the feasibility
function5 of Problem 4.1 (the lower-level of Problem 4.2). Classically, the
search interval is reduced by a factor 2N using bisection, where N is the
maximum number of iterations (typically 10). We obtain the solution uopt

k ,

defined over T opt
k ∈ T(χ0, χf ). Then, we update the initial condition χ0 and

initial guess T 0 using the optimal solution (uopt
k , T opt

k ) as follows

χ0 = χuopt
k (dt) , T 0 = T opt

k − dt (4.11)

where dt = tk+1 − tk > 0 is the duration between two control loop iterations.
We repeat this procedure until T0 ≤ 0.

5We treat the feasibility function as a boolean.
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For a given T ∈ T(χ0, χf ), determining uopt solution of Problem 4.1 is a
fixed horizon input constrained LTI problem, which can be readily solved
numerically because it is convex. A more challenging point is the description
of the set T constraining Problem 4.2. It is the subject of Section 4.2, where
we leverage our main result to characterize the nature of T and conclude on
the optimality of the solution found using bisection.

Before detailing in Section 4.2 how we solve Problem 4.2, we describe
how we use T opt, to filter the patient target velocity σ̇t, and uopt, to define
the support leg targets.

4.1.3 Modification of the rehabilitation controller

Two modifications of the rehabilitation described in Chapter 3 are necessary
for using the solution of Problem 4.2.

First, the reference trajectory (ξ∗, p∗) tracked by the admittance-based
stabilizer, previously computed by the time rescaling of the nominal trajectory
T , must be replaced by the optimal reference trajectory (ξopt, pOP ) s.t .

ξ∗ = ξopt, p∗ = pOP (4.12)

with pOP = uopt and ξopt readily computed from xOP = χuopt
.

Then, the swing leg schedule must be replaced by the optimal schedule
σopt computed from the optimal time T opt as follows

σ̇opt ≜
Lmax − σopt(τ)

T opt(τ) (4.13)

with σopt recursively computed from the optimal velocity σ̇opt by numerically
integration. The derivation of the controller that we propose in this Chapter
is now complete. It is schematically depicted on Figure 4.1, with the Optimal
Planning (OP) block detailed in Algorithm 1.

This OP strategy induces two different changes. First, the reference tra-
jectory (ξ∗, p∗) is guaranteed to respect the input-constrained LIP dynamics.
This is illustrated on Figure 4.2a, where, as opposed to Figure 3.19, the CoP
reference trajectory pOP

y is entirely contained in the support polygon (black
horizontal lines), and the CoM trajectory copt

y is offsetted toward the y = 0.0
line. As a result, the endpoint of the forward integration of the full-state
dynamics (2.10) (the endpoint of the red line) is close to the nominal final
state (the blue cross): the state is successfully driven to the final state using
the stabilization controlled Section 3.2. This recursively ensures the success
of the walk. Second, the simulated target velocity σ̇t is filtered by the OP
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Algorithm 1 Optimal Planning (OP)

Require: χ0

Require: T0 ∈ T(χ0, χf )
while T0 > 0 do

T t
k ←

Lmax−σopt
k−1

σ̇t
k

▷ Convert target velocity to target time

T opt
k = arg min

T ∈T(χ0,χf )
||T − T t

k||2 ▷ Bisection on QP feasibility function

s.t. uopt
k = arg min

u∈Ω(χ0,χf ,T )

∫ T

0
u2dt ▷ Solved as a QP

σ̇opt
k ← Lmax−σopt

k−1
T opt

k

▷ Convert optimal time to optimal velocity

σopt
k ← σopt

k−1 + σ̇opt
k dt ▷ Integrate optimal velocity over dt

χ0 ← χuopt
k (dt) ▷ Update current state

T 0 ← T opt
k − dt ▷ Update current step duration

output (σopt
k , uopt

k (dt), χ0) ▷ Output toward VG and admittance
end while

strategy. This is illustrated on Figure 4.2b, where the optimal velocity σ̇opt

is identical to the target velocity σ̇t until 1.1 s, i.e. the target time T t is in
the set of feasible times T(χ0, χf ). After 1.1 s, the optimal velocity σ̇opt is
different from σ̇t, and the optimization finds the duration T opt ∈ T(χ0, χf )
closest to T t. In the next section, we show our bisection almost always finds
the optimal feasible final time.

4.2 Bisection on trajectory final time

The support polygon SP is constant over the optimization horizon and equal
to the footprint of the support foot, which is assumed to be rectangular, s.t .

u ∈ SP ≜ [umx, uM x]× [umy, uM y] (4.14)

with umx < uM x and umy < uM y. Since the local frame is defined by the
support foot, this yields that the x and y dynamics of the LIP model (2.17)
are decoupled. Therefore, with the trajectory duration T fixed, the set of
feasible commands is also decoupled, i.e.

Ω(χ0, χf , T ) = Ωx(χ0
x, χ

f
x, T )× Ωy(χ0

y, χ
f
y , T ) (4.15)
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(a) Reference CoP uOP
y , CoM cOP

y and measured CoM cy positions along the Y axis
of the inertial frame W . Black horizontal lines represent the support polygon limits
on the Y axis.

(b) Simulated target velocity σ̇t (with tη = 0.2 s, ∆η = 0.9 s and ¯̇η = 0.6) and
optimal velocity σ̇opt.

Figure 4.2: Reference quantities computed using the OP strategy and a
simulated target velocity. The support polygon limits are not violated using
the OP strategy, the CoM reference is successfully tracked, and the simulated
target velocity is followed as much as possible.
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with

Ωi(χ0
i , χ

f
i , T ) ≜

{
ui ∈ Uadi(T ), χui

i (0) = χ0
i , χ

ui
i (T ) = χf

i

}
(4.16)

and
Uadi(T ) ≜ {ui s.t. ∀t ∈ [0, T ], ui(t) ∈ [umi, uM i]} (4.17)

for i ∈ {x, y}.
Hence, the sole link between the sets of feasible commands in x and y

dimensions is the trajectory duration T , which has to belong to both sets of
feasible times for trajectories to exist with this duration, i.e.

T(χ0, χf ) = Tx(χ0
x, χ

f
x) ∩ Ty(χ0

y, χ
f
y) (4.18)

In the next section, we characterize the set T.

4.2.1 Set of admissible final times

In this section, we characterize the sets Tx and Ty. Since the analysis is
independent of the direction, we use the notation χ� (resp. u�) to denote χx

or χy (resp. ux or uy).

Preliminary results on minimum and maximum time solutions

Lemma 1. For all (χ0
� , χ

f
� ) ∈ R4 and T > 0, if there exists a solution

u� ∈ Ω(χ0
� , χ

f
� , T ), then a minimum time solution (noted umin) always exists

and, when the set T is upper-bounded, a maximum time solution (noted
umax) exists. They are global optima.

Proof. Equation (A.2) is linear, and Uad is compact and convex, hence, when

a solution u� ∈ Ω(χ0
� , χ

f
� , T ) exists, a minimum time solution umin exists

from [Liberzon2012, Theorem 4.3].
When the set T is upper-bounded, we note T its supremum. Given

a sequence (Tk, u�k) s.t. limk→∞ Tk = T , consider the sequence (T , ũ�k)
of prolonged u�k on [Tk, T ] by the null function, then the proof provided
in [Liberzon2012, Theorem 4.3] is straightforwardly extended to the ũ�k
sequence, yielding the existence of umax. Hence, T is maximum.

We denote

(Tmin, umin) ≜ arg minT,

u ∈ Ω(χ0
� , χ

f
� , T > 0)

(Tmax, umax) ≜ arg min−T

u ∈ Ω(χ0
� , χ

f
� , T > 0)

(4.19)

The following Theorem 1 fully characterizes the sets Tx,y and is instru-
mental to efficiently solve the bi-level OCP.
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Figure 4.3: Illustration of the main result, Theorem 1.

Theorem 1 (Description of T). The set of feasible times T(χ0
� , χ

f
� ) is either

empty, or of the form [Tmin, Tmax], or of the form [Tmin,+∞[, or of the form
[Tmin, A] ∪ [B,+∞[, A < B.

Proof. The proof of Theorem 1 is provided in Appendix A.

Theorem 1 reveals that T� is composed of one or two intervals in each
of x and y dimensions. This result also holds for the intersection of the two
sets, hence it holds for T = Tx ∩ Ty.

This is instrumental for numerically solving Problem 4.2. Knowing that
T is composed of one or two intervals, the solution is simply the projection
of T t onto them. As detailed in Section 4.2.2, numerical evidence hints
toward T being composed of a single interval in our practical case, therefore
the projection is readily obtained by a bisection method applied to the
feasibility function of a quadratic program.

4.2.2 Numerical method

Theorem 1 describes T. We notice, numerically, that T is most often a
single interval for the sets of initial conditions and target time typically
encountered in walking rehabilitation, which enables us to use bisection to
solve Problem 4.2. To compute T, we use the nominal terminal condition χf ,
which is the actual terminal condition set in Problem 4.2, and a time-varying
initial condition χt, computed from the nominal trajectory T as follows

χt = FK ◦ T (t) (4.20)

In order to ease the visualization of T, we rather compute the set of feasible
velocities V defined according to (4.9) as follows

V(χt, χf ) =
{
Lmax − s(t)

T
, T ∈ T(χt, χf )

}
(4.21)
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(a) x dimension (b) y dimension

Figure 4.4: Feasible velocities set V(χt
� , χ

f
� ) along the nominal CoM trajectory

(computed from T ). A hole appears at the end of the step for the x dimension.

Figure 4.4 displays the set of feasible velocities V for each dimension x and
y, over time, estimated by exhaustive numerical search. Figure 4.4b shows
that Vy(χt

y, χ
f
y) is an interval for all initial conditions χt (varying with time).

However, Figure 4.4b reveals that Vx(χt
x, χ

f
x) is the union of two intervals for

initial conditions χt evaluated at times near the end of the nominal trajectory
duration. This numerically illustrates our main Theorem 1, as it states that
T can be the union of two intervals.

Nonetheless, Figure 4.5, which depicts the intersection of Vx and Vy,
i.e. V(χt, χ0) according to (4.18), reveals that V is actually always a single
interval along the nominal CoM trajectory. This does not guarantee that V
is always a single interval along all possible CoM trajectories, but of all the
numerical exhaustive searches that we have performed along various CoM
trajectories (recursively defined through the optimal solutions of Problem 4.2
with various target velocity profiles η̇t), none revealed V being the union of
two intervals.

However, if, for any set of initial and final condition (χ0, χf ), the set of
feasible times T becomes the union of two intervals, then only the optimality of
the upper-level of Problem 4.2 would be lost (i.e. the bisection method would
return a feasible duration T ̸= T opt). The solution uopt, by-product of the
bisection method, would still minimize Problem 4.1, and therefore, respect the
input-constrained LIP dynamics and the two boundary conditions (χ0, χf ).
Thus, the trajectory would still be safe for the robot to stabilize around, and
only the optimality of the rehabilitation objective would be lost.
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Figure 4.5: Feasible velocities set V(χt, χf ) along the nominal CoM trajectory
(computed from T ). The hole of the x dimension is filtered out by the
intersection with the y dimension.

QP resolution and feasibility check

Problem 4.1 defines a fixed-time OCP that can be addressed using a direct
numerical method. Conveniently, the input signal is represented by a piece-
wise C1 function in between non-uniform nodes. The dynamics and the
value of the integral cost are exactly represented using the first-order hold
quadrature. This allows the expression of boundary conditions and input
constraints under an affine form in a finite number of variables, and the
cost as a quadratic function of these variables. The same discretization
procedure is employed in the x− y directions, resulting in a QP with 4P + 4
variables and 4P + 4 affine constraints. The outcome of the QP resolution is
a feasibility boolean, and, when it is feasible, a solution to Problem 4.1.

Towards real-time implementation

Typical numerical setups consider 2P + 2 = 10 variables, with N = 10
maximum number of iterations. The employed software is a streamlined im-
plementation of the positive definite QP dual algorithm from [Goldfarb1983]
specifically coded in C++ for this application to minimize any overheads. The
problem is treated as dense. Mean CPU times on a laptop with turboboost
disabled (s.t . the CPU frequency is similar to the embedded computer of
Atalante) is 0.2 ms, varying between 0.07 ms and 0.75 ms, which are lower
than the 10 ms reported in [Caron2017] and the 100 ms reported in [Pon-
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ton2021] where similar online planning problems are addressed. They are
also lower or equal to those reported in [Fernbach2020; Caron2016] where
fixed-time online planning problems are solved. These computation times
are in line with the target 1 kHz frequency of the OCP solving.

4.2.3 Simulation results

In this section, we first illustrate the performance of our bisection search
of the optimal trajectory duration with a highly varying simulated patient
input. Then, we study the increase of stability offered by the use of the OP
strategy instead of the TR strategy using extensive full-body simulations of
the patient-exoskeleton system under a variety of simulated patient inputs.

Results for highly varying target velocity profile

We first perform a simulation with a strongly varying target velocity profile
σ̇t. Similarly to Section 3.3.1, we generate this target velocity profile σ̇t from
an arbitrarily tailored function ηt as follows

σt(t) = s ◦ ηt(t) (4.22)

A strongly oscillating velocity η̇t along the geometric path is considered to
simulate the behavior of a highly demanding patient. The nominal velocity
is 1 and the variations are ±50%. This defines a signal t 7→ T t(t) from (4.9)
and the curvilinear abscissa s. For reference, the set of feasible velocities
V(χuopt

, χf ) is estimated by exhaustive numerical search at each instant.
Figure 4.6 depicts the corresponding target velocity η̇t and optimal velocity
η̇opt ≜ d

dt s−1 ◦ σopt. As is visible in Figure 4.6, the resolution of Problem 4.2
satisfies the simulated patient’s intent at the beginning of the simulation.
Gradually the feasible set gets more stringent and at some point, near
t = 0.4 s, the proposed algorithm has to intervene. The desired time T t is no
longer feasible on many occasions. The situation worsens until the end of
the simulation. Notably, in the end, the walking velocity has to be sped up
significantly. This comes from the numerical discretization of the horizon of
QP problem solving Problem 4.1.

Results on full-body simulations

Extensive closed-loop rigid-body simulations of the patient-exoskeleton sys-
tem have been performed to evaluate the stability increase of the walking
exercises offered by the use of the OP strategy (in particular w.r.t . the TR
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Figure 4.6: Velocity of the trajectory (1 is the nominal velocity). (Dotted
blue): target velocity η̇t. (Green dots): set T determined by an exhaustive
search, for reference. (Solid black): optimal velocity η̇opt from the OP
strategy.

strategy). To simulate the behavior of the patient, we consider the same
smoothed piecewise velocity signals as the ones described in Section 3.3.1.
Figure 4.7 reports the results (for each duration ∆τ and magnitude ¯̇ηt, a
vast list of possible starting times tη for the square disturbance is consid-
ered, and we report the success rate). Figure 4.7 (left) reports simulation
results obtained with the controller derived in Chapter 3, hence using the
TR strategy, while Figure 4.7 (right) reports the results obtained using the
same controller with the modifications presented in this chapter, hence using
the OP strategy. Again, a simulation is considered stable if the simulated
patient-exoskeleton system walks for at least 10 s without falling.

These results show the substantial improvement in the stability of the
walking exercises provided by the use of OP strategy over the TR one. In
details, a total of 2917 simulations have been conducted. In total, less than
8% of considered velocity profiles are failing with the OP strategy, while
more than 30% were with the TR strategy. Therefore, safety is ensured for
almost all considered cases, except for some very low-velocity cases with

7The white spaces in this figure correspond to unfeasible values of the parameters
violating the constraint σ < Lmax.
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long durations. A careful examination of simulation results reveals that fall
occurs mostly when the slow-down takes place at the late stages of the step.

4.3 Experimental results

Two types of experiments are conducted. First, we compare the stability
performance of the two strategies and conclude on the vast superiority of
the OP strategy. Then, we explore the performance of the OP strategy in
terms of compliance with the patient schedule.

4.3.1 Stability comparison

We perform extensive stability comparisons as in Section 3.3.3 by replacing
the patient with a dummy and simulating the behavior of the patient as
described in Section 3.3.2. An experiment consists of walking 10 steps in a
straight line. A practitioner keeps hold of the two lateral exoskeleton handles
and is allowed to create an effort with one finger on each hand only. This
creates a very low upper-bound on the external forces8.

The reported results on Figure 4.8 show a great safety improvement
offered by the OP strategy in the low-velocity range, below 90% of nominal
velocity, compared to the TR strategy. They stress that, using the OP
strategy, the proposed controller is completely preserving the balance of
the system for velocities about as low as 70% of the nominal velocity, and
velocities as low as 50% of the nominal velocity provided the change duration
is lower or equal to 300 ms. These results are in complete alignment with
the stability results obtained in simulation and reported in Section 4.2.3.

In addition, the mean computation time during these experiments is
0.039 ms, and varies between 0.22 ms and 0.11 ms, which validates the effi-
ciency of our bisection-based solver (running on a i7-1185G7E CPU at fixed
1.8 GHz frequency).

8Stabilization of patients walking with Atalante is still requiring some very low external
efforts, probably due to the inaccuracy of the patient model and/or their loose fastening to
the exoskeleton for safety reasons. Able-bodied users doing walking rehabilitation can walk
fully autonomously by moving their upper body to help maintain balance. The proposed
setup somewhat emulates this.

9The white spaces in this figure corresponds to unfeasible values of the parameters
violating the constraint σ∗ ≤ Lmax.



108 CHAPTER 4. MONITORING SAFETY

4.3.2 Rehabilitation: experiments with an able-bodied user

We report below the results of two walking experiments with an able-bodied
user using the proposed controller with the OP strategy:

• a 10-steps walking experiment, during which the user drives the walking
velocity between 25% and 150% of the nominal walking velocity;

• a single-step walking experiment, during which the user brings the
walking velocity to 0 for 2 seconds, then resumes walking.

10-steps walking experiment

We first report a single step velocity (on Figure 4.9) and CoM trajectory
(on Figure 4.10). Figure 4.9 reveals how the OP strategy accounts for the
unilateral contact constraint by projecting the target velocity on the set of
feasible velocities. In detail, during the first 450ms of the single support
phase, the OP strategy leaves the target velocity unchanged because the
solution of Problem 4.2 is T opt = T t (σ̇opt in green completely overlaps σ̇t in
blue). Hence, the patient’s desire is fully respected. During the remaining
500 ms, the OP strategy starts filtering the target velocity to preserve the
balance of the system, σopt ̸= σ̇t. Gradually, σopt is constrained around 71%
normalized velocity.

The OP strategy also wisely chooses the CoM reference trajectory and
satisfies the final state constraint. Figure 4.10 shows the final state con-
straint is satisfied by both the replanned (OP) and time-rescaled (TR) CoM
trajectories’ endpoints. However, the CoM trajectory computed with the OP
strategy is very different from the one with TR strategy, and, in particular,
exhibits a minimum on the Y axis 2.5 cm closer to the support foot (cen-
tered at 0.0 cm) than the nominal trajectory: the exoskeleton sways its hip
toward the support foot to accommodate for the user’s low-velocity desire
while remaining stable with the OP strategy, while the TR strategy only
accommodates for the user desire without taking care of the balance of the
system. The OP strategy’s behavior is consistent with human behavior.

Finally, Figure 4.11 shows σ̇opt over the whole experiment, with double
support areas in grey. During this experiment, the user varies the level
of effort produced by their legs during the single support phases. Note
that (3.14) is only used during these phases while the user’s desire is ignored
during double support phases10.

10More precisely, the reference trajectory used during double support is computed once,
at the beginning of the step. For this, we use the OP strategy and the mean velocity of
the previous step, for the sake of continuity.
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Mid-step complete stop experiment

We report a single step velocity (on Figure 4.12) and CoM trajectory (on
Figure 4.13). Figure 4.12 reveals how the OP strategy accounts for the
unilateral contact constraint by letting the user drive the walking velocity to
almost 0% of the nominal walking velocity for approximately 2 seconds, when
possible, then projects the target velocity on the set of feasible velocities by
limiting the target slow-down during the late part of the step to roughly 40%
of the nominal walking velocity.

The CoM trajectory computed with OP strategy, reported on Figure 4.13,
differs even more from the one with TR strategy than reported previously. In
particular, it exhibits a minimum on the Y axis 5 cm closer to the support foot
(centered at 0.0 cm) than the nominal trajectory: the exoskeleton sways its
hip toward the support foot twice more than during the previous experiment
to accommodate for the user desire to stop complete walking in the middle
of the step. This illustrative experiment reveals the great adaptability to the
user desire offered by the OP strategy.
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Figure 4.7: Comparison of rate of success heatmaps for velocity variations
having various durations and magnitudes7. The OP strategy increases the
stabilization performance in the low-velocity range (w.r.t . the TR strategy).
Left: TR strategy. Right: OP strategy.
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Figure 4.8: Comparison of experimental stability for velocity variations
having various durations and magnitudes9. Experimental results are in
accordance with the simulations, with lower performance in the low-velocity
range. Green: stable without external help. Orange: stable with practitioner
help. Red: unstable. Left: TR strategy. Right: OP strategy.
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Figure 4.9: Effective velocity σ̇opt and target velocity σ̇t over a step with
an able-bodied user (step 6 of Figure 4.11). Black curves: lower and upper
limits of the set of feasible velocities.

Figure 4.10: CoM from TR and OP strategies over a step with an able-bodied
user (step 6 of Figure 4.11). Grey areas: double support phases. White areas:
single support phases. Left: X axis. Right: Y axis.
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Figure 4.11: Effective velocity σ̇opt over a 10-steps experiment with an able-
bodied user. Grey areas: double support phases. White areas: single support
phases.

Figure 4.12: Effective velocity σ̇opt and target velocity σ̇t over a step com-
prising a full stop, with an able-bodied user. Black curves: lower and upper
limits of the set of feasible velocities.
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Figure 4.13: CoM from TR and OP strategies over a step comprising a full
stop, with an able-bodied user. Grey areas: double support phases. White
areas: single support phases. Left: X axis. Right: Y axis.



Chapter 5

Discussion and perspectives

Chapitre 5 - Discussion et perspectives: La contribution principale présen-
tée dans ce manuscrit est un nouveau contrôleur de rééducation active à la
marche qui laisse le patient modifier la vitesse d’exécution du mouvement,
tout en limitant son désire pour respecter la dynamique du système et assurer
sa sécurité. Dans ce chapitre, les performances quantitatives de ce contrôleur
sont rappelées et illustrées dans deux vidéos, tandis que ses limitations et
pistes d’amélioration sont discutées.

The proposed control methodology updates the existing controller of
Atalante in two ways: on one hand, the walking velocity is relaxed according
to the patient’s willingness and capacity to participate in the motion, enabling
walking rehabilitation with Atalante. On the other hand, the patient schedule
is monitored and followed at best while respecting the dynamics of the system,
guaranteeing the safety of the walking exercises. The proposed controller
is the first safe walking rehabilitation controller designed for self-balanced
exoskeletons and the main contribution of the thesis.

Thesis outcome

Using the presented empower and monitor control methodology, we have
been able to modulate by ±50% the temporal execution of two straight-line
walking trajectories of practical interest: the simple flat-foot trajectory, at
an average translational velocity of 15 cm/s, and the more anthropomorphic
foot-rolling trajectory, at an average translational velocity of 40 cm/s. Videos
obtained with an able-bodied user are given below:

115
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• Experiments with the flat-foot trajectory: https://youtu.be/_1A-2
nLy5ZE.

• Experiments with the foot-rolling trajectory: https://youtu.be/ZKO
ouUXfTvw.

Limitations and possible extensions

We have explored the possibility of offering temporal freedom to the user with
the self-balanced exoskeleton Atalante. The obtained results are encouraging.
However, the clinical evaluation of the proposed control methodology remains
to be done. Among the various metrics of importance, one should consider,
without loss of generality, the level of restored functional ambulation ability
(for instance evaluated with the Functional Ambulation Categories test), the
fatigue level of physiotherapists, and the sense of safety of patients.

On the methodological side, many ways of improvement shall be consid-
ered in the future. It is possible to combine temporal freedom with spatial
freedom, which has already been considered in the literature. For this pur-
pose, one could introduce constraint relaxation in the spirit of [Gurriet2020],
and/or formulate a more general OCP allowing one to include additional
variables such as the location of the swing-foot landing. Additionally, a
mathematical formulation could also consider the reverse execution of the
trajectories as required in some repetitive physical training, or reproduce the
behavioral description of the two-thirds power law [Ivanenko2002] to better
fit human intent.

Besides, for improved stabilization properties, it could be of interest to
consider other tasks than the considered admittance task, like foot damping
control (see [Caron2019]), or reduction of the disturbances coming from the
flexibilities, see [Vigne2021].

Finally, the class of trajectories under consideration could be extended.
Two extensions of dominant interest are turn-in-place and slope/stairway
trajectories. Interestingly, these two use cases challenge the representa-
tiveness of the LIP model for mobile/changing reference frames along tra-
jectories and some adjustments are necessary. Two distinct paths can be
followed to improve the dynamical model in Problem 4.2 and extend the
proposed methodology: leverage the recent progress of online whole-body
MPC (see [Dantec2022; Mastalli2022]), or compute an efficient oracle offline
using machine learning (see [Castillo2021; Siekmann2021; Singh2022]).

https://youtu.be/_1A-2nLy5ZE
https://youtu.be/_1A-2nLy5ZE
https://youtu.be/ZKOouUXfTvw
https://youtu.be/ZKOouUXfTvw
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As detailed in Section 4.2, the x and y dynamics of the LIP model (2.17)

are totally decoupled, and the Theorem 1 is about the nature of T(χ0
� , χ

f
� )

in one dimension. Therefore, we conduct the proof of the theorem in one
dimension and χ� notations in place of x or y dimension will be omitted in
this appendix.

The proof of Theorem 1 is organized as follows. First, after some pre-
liminary change of coordinates and definitions in Appendix A.1, we exhibit
in Appendix A.2 particular regions of the phase portrait which serve to
decompose the proof. Then, we study the boundedness of T in Appendix A.3.
Finally, we assess its convexity properties in Appendix A.4 and Appendix A.5
by differentiating according to the boundedness of T.
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A.1 Preliminaries

A.1.1 Decoupling dimensions

To ease the analysis of the set of feasible times T(χ0, χf ), we perform the
following change of coordinates, which diagonalizes the dynamics (2.17) with

x1 = c+ ċ

ω
x2 = −c+ ċ

ω
(A.1)

Then, (2.17) takes the diagonal form ẋ ≜ Ax+Bu with

ẋ =
(
ω 0
0 −ω

)
x+

(
−ω
−ω

)
u (A.2)

with
x ≜ (x1, x2) (A.3)

The solution of (A.2) with input u, from the initial condition x0 ∈ R2 is
denoted xu. For all vector variables, a subscript 1 or 2 indicates the first or
second coordinate. Zero-order hold of u for a duration d = t2 − t1 yields the
solution

xu(t2) =
(
eωd 0
0 e−ωd

)
xu(t1) +

(
1− eωd

e−ωd − 1

)
u (A.4)

The change of coordinate between χ and x is trivial, s.t . the set of feasible
times T(χ0, χf ) can be equivalently denoted T(x0, xf ). For brevity purposes,
we omit the dependence of the set of feasible times T on (χ0, χf ) when
convenient.

A.1.2 Definitions

A piecewise constant control input u having N steps over an interval [0, tf ]
is defined using a finite (irreducible) partition

0 < d1 < d2 + d1 < ... < dn + ...+ d1 = tf (A.5)

with u taking values only in {um, uM}. For convenience, it is described by
its first value and the durations, e.g. for 3 steps of respective durations d1,
d2, d3 starting with um, a sequence

(um, d1, d2, d3) = seq 7→ u

gives u(t) = um for 0 ≤ t < d1, u(t) = uM for d1 ≤ t < d2 + d1, u(t) = um

for d2 + d1 ≤ t < d3 + d2 + d1. For any initial condition x0, and any seq
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defining a control u as detailed above, over τ ∈ [0, tf ] we note the solution
xseq ≜ xu of the differential equation ẋ = Ax+Bu which is

ϕ(x0, seq, τ) ≜ xseq(τ) = eAτx0 +
∫ τ

0
eA(τ−s)Bu(s)ds

By extension, we define

ϕ(xf , seq,−τ) ≜ e−Aτxf −
∫ τ

0
e−A(τ−s)Bu(T − s)ds

We define several subsets of R2 as follows

D ≜ {(x1, x2), x2 = −x1}

D+ ≜ {(x1, x2), x2 > −x1} , D− ≜ {(x1, x2), x2 < −x1}

and

U−
m ≜ {(x1, x2), x1 < um} , U+

m ≜ {(x1, x2), x1 > um}

U−
M ≜ {(x1, x2), x1 < uM} , U+

M ≜ {(x1, x2), x1 > uM}

Finally, we define two open double cones

CM ≜ {D+ ∩ U−
M} ∪ {D

− ∩ U+
M} , Cm ≜ {D− ∩ U+

m} ∪ {D+ ∩ U−
m}

Next, we study the solutions of minimal and maximal time OCPs (4.19).
This study stresses the role of several regions in the phase plane being key in
the reachability of a target xf from an initial condition x0.

A.2 Regions of interest in the phase portrait

Lemma 2. The solution umin is bang-bang, i.e. takes only values in {um, uM},
with a maximum number of one switch. The same property holds for umax
when it exists.

Proof. Consider the Hamiltonian

H(t, λ0, λ, x, u) = µ+ λ(t)(Ax+Bu)

Using the PMP, the adjoint equation and solution write{
λ̇ = −∂H

∂x = −λ(t)A
λ(t) = λ0e−At
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and the switching function is

Γ(t) = λB = λ0e−AtB = −ωλ0
(
e−ωt eωt

)T

If λ0
1λ

0
2 < 0, then there exists a unique switching time 1

2ω log(−λ0
1

λ0
2
) for

which Γ changes sign. Otherwise, Γ has a constant sign. This concludes the
proof for umin. The proof regarding umax is identical.

Lemma 2 highlights the importance of the phase portrait in Figure A.1
corresponding to constant control values um and uM . It is split into nine
open regions, some of them being open semi-infinite strips, whose boundaries
are the trajectories passing through the equilibrium points for um and
uM . We denote each region Ri, i = 1, ..., 9. Also, we will note Rijk... ≜
Ri∪Rj∪Rk∪... for any number of indexes. Notice two interesting properties:
i) the locus of intersecting parallel arcs is D and ii) the subsets R147 and
R369 are positively invariant under the controlled flow.

Next, the following result states that in the cone Cm (resp. CM ), the flow
corresponding to um (resp. uM ) reaches a point symmetric to the initial
condition w.r.t . the line D. This property is instrumental in the proof.

Lemma 3. For all x in the double cones Cm ∪ CM , we have

ϕ(x, u, f(x, u)) = Sx

with S =
(

0 −1
−1 0

)
and f(x, u) ≜ 1

ω log(u+x2
u−x1

) by taking u = um if x ∈ Cm

or u = uM if x ∈ CM .

Proof. In the double cones Cm and CM , f is well-defined as a function of its
arguments. A direct calculus with (A.4) yields the conclusion.

A.3 Boundedness of the set of feasible times T

Depending on the values of x0 and xf , the set T can be empty (∅), bounded
(Bd), or unbounded (∞).

Lemma 4 (Boundedness of T). Conditions on x0 and xf corresponding to
cases of non-empty T are listed in Figure A.2.
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Figure A.1: Phase diagram for (A.2) with um = −1 (red) and uM = 2 (blue).
Cm covers R1∩D+, R5∩D−, R9∩D− and R8. CM covers R1∩D+, R5∩D+,
R9 ∩ D− and R2.
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• x0 ∈ R258

• x0 ∈ R2\R258: Bd

x0 ∈ R5 : ∞

x0 ∈ R2

(x0 ∈ R8)
xf ∈ R123: Bd
(xf ∈ R789)

xf ∈ R456: ∞

Figure A.2: Graph of all possible cases of non-empty T.

Proof. We split the proof according to the location of x0 in the phase plane
and, when necessary, the location of xf . Only cases corresponding to non-
empty T are considered.

For x0 ∈ R2\{R258}, the argument stems from the monotonic divergence
of x1. For instance x0 ∈ R147, there exists ϵ > 0, s.t. xu

1(0) ≤ um − ϵ.
Then, using (A.4), one easily shows that ∀t > t0, ẋ1 = ω(x1 − u) ≤ −ωϵ.
Therefore, the final time is upper bounded by x1(t0)−xf 1

ωϵ . A similar inequality
is obtained for xu

1(t0) ≥ uM + ϵ to cover R369. Hence, T is upper bounded.

For x0 ∈ R5\D, which is entirely covered by Cm ∪ CM , and is stable by
symmetry w.r.t . D. Lemma 3 permits to build a sequence that periodically
returns to x0, prolonging infinitely any solution from x0. Hence, T is not
upper-bounded.

For x0 ∈ R5 ∩ D, for all possible values of u, the tangent vector field at
x0 is orthogonal to D and does not vanish. For any short time, the preceding
rationale applies.

For x0 ∈ R2 and xf ∈ R123, one has ẋ2 < 0, therefore x2 is decreasing,
hence ẋ2 ≤ −ω(xf

2 +um). Therefore, T is upper-bounded by x02−xf 2
ω(xf 2+um) <∞.

For x0 ∈ R2 and xf ∈ R456, there exists a sequence from any x0 s.t., for
some t > 0, xw ≜ ϕ(x0, seq, t) ∈ R5. In addition, any xf can be accessed from
this waypoint xw through a sequence (um, a, b) or (uM , a, b), with a, b > 0.
Therefore, a transient from x0 to xf passing through xw can be arbitrarily
prolonged with sequences periodically returning to xw. Hence, T is not
upper-bounded.

The case x0 ∈ R8 the analysis is similar to x0 ∈ R2.

This completes the proof.
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A.4 Convexity of bounded T cases

Lemma 5. When T is bounded, T = [Tmin, Tmax].

Proof. Lemma 4 shows that for T to be bounded either x0 ∈ R2\R258, or
(x0, xf ) ∈ R2 ×R123, or (x0, xf ) ∈ R8 ×R789.

As we only consider the case of bounded T in this section, Lemma 1
shows the existence of solutions of (4.19). In general, there are at most
two bang-bang sequences with one switch between x0 and xf which are
noted seqm ≜ (um, am, bM ) and seqM ≜ (uM , aM , bm). Further, according
to Lemma 2, the two controls umin and umax are bang-bang with at most
one switch. Hence, either umin = seqm and umax = seqM , or the other way
around.

By definition, T ⊂ [Tmin, Tmax]. When Tmin = Tmax, T is a singleton,
hence is trivially convex. We now assume Tmin < Tmax. The rest of the proof
depends on the location of (x0, xf ) relative to D.

(x0, xf ) ∈ D−2
(on the same side)

Figure A.3 shows the trajectory steering the system from x0 to xf using
seqm and seqM . The trajectories do not cross each other. The trajectory
corresponding to seqm and the reverse trajectory corresponding to seqM

define a positively oriented closed curve. The region R147 ∩ D− being
positively invariant, the curve is strictly included in D−2

.

For all x ∈ D−,〈(
0 −1
1 0

)
(Ax+Bum), Ax+BuM

〉
> 0

Therefore, for all a ∈ [0, am], there exists b ≥ 0, c ≥ 0 s.t.

seqv(a, b, c) ≜ (um, a, b, c) ∈ Ω(x0, xf , a+ b+ c)

The solution xseqv is shown in Figure A.3. By definition, the solution xseqv

is continuous, hence

x1 ≜ ϕ(x, seqv(a, b, c), a+ b) = ϕ(xf , seqv(a, b, c),−c)

We define the function

T : [0, am] ∋ a 7→ T(a) = a+ b+ c ∈ [Tmin, Tmax]
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which maps the duration a of the first arc of xseqv to the total duration
a+ b+ c. Define g as

g(a, b, c) = ϕ(x0, seqv(a, b, c), a+ b)− ϕ(xf , seqv(a, b, c),−c)

From um ̸= uM , one has

rank(
[

∂g
∂b ,

∂g
∂c

]
) = rank(

[
Ax1 +BuM −Ax1 −Bum

]
)

= rank(
[
Ax1 B

]
)

= rank(
(
x1

1 1
−x1

2 1

)
) = 2

The intermediate point x1 is defined by g(a, b, c) = 0. The full rank
property above, associated with the injectivity of the function (a, b, c) 7→(
a g(a, b, c)

)T
, gives, through the global inversion theorem [Krantz2012,

Theorem 6.2.3], the existence of ψ ∈ C0 s.t., over the domain of definition
[0, amin], (b, c) = ψ(a).

Thus, the function T is continuous. Therefore, by the intermediate value
theorem, [Tmin, Tmax] ⊂ T([0, am]) ⊂ T, which concludes the proof.

(x0, xf ) ∈ D+2
(on the same side)

The proof is identical, replacing D− by D+, the trajectory corresponding to
seqm and the reverse trajectory corresponding to seqM defining a negatively
oriented closed curve.

(x0, xf ) ∈ D+ × D− (on opposite sides)

According to Figure A.2, x0 ∈ R1 ∩ D+ and xf ∈ {R1 ∩ D−} ∪ R4.

If the (Euclidean) distance d(xf ,D) between xf and D is strictly lower
than the distance d(x0,D) between x0 and D, then Lemma 3 states that
ϕ(xf , uM ,−t0) = Sxf = ϕ(xf , um,−t1), for some t0, t1 ≥ 0. We use the same
constructive proof between Sxf and xf with the sequence seqB ≜ (um, a, b, c),
with a ∈ [0, t0

2 ].
If d(xf ,D) > d(x0,D), then Lemma 3 states that ϕ(x0, uM , t0) = Sx0 =

ϕ(x0, um, t1), for some t0, t1 ≥ 0. We use the same constructive proof between
Sx0 and x0 with seqB.

If d(xf ,D) = d(x0,D), the proof directly follows from x0 = Sxf to xf ,
this situation is illustrated in Figure A.4.
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(x0, xf ) ∈ D− × D+ (on opposite sides)

The case is identical to the previous case, x0 belonging to R9 ∩ D− and xf

belonging to
{
R9 ∩ D+} ∪R6.

This completes the proof.

A.5 Convexity of unbounded T cases

Let us define J + a subset of R4 as follows

J + ≜



x0 ∈ R25 ∩ D+, xf ∈ R56 ∩ D+ s.t.

∃xD, xd ∈ D ∩R5, tD > 0, td > 0,
xd1 > xD1

xf = ϕ(xD, um, tD)
x0 = ϕ(xd, uM ,−td)

and J − by symmetry of J + w.r.t . D. The set J + is partially pictured
in Figure A.1 (all possible values of x0 are colored in red when xf varies
along the dashed line). It plays a particular role in Lemma 6 as it is the only
one where boundary conditions yield a non-convex set T.

Lemma 6. When T is unbounded, if (x0, xf ) /∈ J +∪J −, then T = [Tmin,+∞[,
otherwise, there exists A < B s.t. T = [Tmin, A] ∪ [B,+∞[.

Proof. Following Lemma 4, a careful investigation of the graph in Figure A.2
reveals that for T to be unbounded we have (x0, xf ) ∈ R258 × R456. By
symmetry of the vector field (rotation of π about (um+uM

2 ,−um+uM
2 )T ), we

now only consider a pair (x0, xf ) ∈
(
R25 ∩ D+)×R456.

(x0, xf ) /∈ J +

In all such cases, there exists a sequence (um, a, b, c, d), with a ≥ 0, b > 0, c >
0, d ≥ 0 steering x0 to xf with a single intersection with D ∩ R5. This
sequence can be easily extended in the vicinity of D ∩R5 (which excludes
equilibria) to increase the transient time by any desired arbitrarily small
increment ϵ > 0. Iteratively, this construction allows to infinitely increase
the transient time by a continuous constructive process.

Also, the same type of sequence with other values for a, b, c, d can generate
a smooth collection of trajectories approaching the minimum time trajectory.
The proof of Appendix A.4 yields the conclusion with the continuous mapping
T : (a, b, c, d) 7→ a+ b+ c+ d.
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(x0, xf ) ∈ J +

There exist two sequences seq1 = (um, a1, b1) (e.g. corresponding to the
minimum time Tmin) and seq2 = (uM , a2, b2) (with time T2) steering x0 to xf

by two paths Γ1 and Γ2 entirely in D+. They are illustrated in Figure A.5.
seq = (um, a, b, c) gives, by the continuity of (a, b, c) 7→ a+ b+ c, that all

feasible trajectories staying inside Γ1 ∪ Γ2 have a transient time in [Tmin, T2],
for T2 <∞.

Now, consider a trajectory from x0 to xf leaving Γ1 ∪ Γ2. A detailed
investigation of the phase portrait gives that this trajectory leaves Γ1 ∪Γ2 at
a point xii ≜ ϕ(xf , um,−t), 0 < t ≤ b2, strictly in R5, with control u > um.

From all solutions, starting from xii, reaching xf and leaving Γ1 ∪ Γ2
at xii, the one passing through Sxii displayed on Figure A.5 is the only
bang-bang solution. Hence, it is the fastest according to Lemma 2. We
denote Γii the union of this solution and the fastest solution red from x0 to
xii and construct Γi similarly by passing through xi ≜ ϕ(xf , um,−b2) instead
of xii.

We now show that Γi is faster than Γii. As they share the arc from Sxi

to xf , we only need to use that the one-arc solution from x0 to Sxi is faster
than the 3-arc solution passing through xii and Sxii. This holds because
the only bang-bang solution from x0 to Sxi is the minimum time solution
(according to Lemma 2). This holds for all xii, hence all solution leaving
Γ1 ∪ Γ2 is slower than Γi. As Γi is crossing D, it can be arbitrarily extended.
This completes the proof.
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Figure A.3: Phase diagram for (A.2) with u = um (dotted red), u = uM

(dotted blue), minimum time trajectory xmin (solid blue line), maximum
time trajectory xmax (solid red line), and xseqv for some a ∈ [0, am] (dashed
black line).
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Figure A.4: Phase diagram for (A.2) with u = um (dotted red), u = uM

(dotted blue), minimum time trajectory xmin (solid red line), maximum time
trajectory xmax (solid blue line), and xseqB for some a ∈ [0, t0

2 ] (dashed black
line).
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Figure A.5: Phase diagram for (A.2) with u = um (dotted red), u = uM

(dotted blue), minimum time trajectory xmin (solid red line), T2 time trajec-
tory xseq2 (solid blue line), and points of interest for the proof of Lemma 6.
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Empower and monitor during
the double support phase
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In this appendix, we sketch an alternative control methodology for active
gait training during double support phases which aims at enabling the patient
to participate in the motion during these phases. It could be beneficial to
patients’ rehabilitation because transferring the weight from one leg to the
other, which occurs during double support phases, is also important to regain
ambulation capabilities. The sketched control law offers temporal freedom
around the offline trajectory using the same VG methodology used during
single support phases (see in Section 3.1), with a substantial difference: all
the joints of the exoskeleton are constrained to the parametric curve P
(computed from the offline trajectory T instead of T sw). Hence, no DoF
is left free for the stabilization of the CoM dynamics. This is the opposite
choice to the one described in Chapter 3, where all the joints are used for
the stabilization of the CoM dynamics during double support phases.

In addition, we propose a saturation of the patient schedule, during
double support, which ensures the feasibility of the next single support phase.
This ensures the OP strategy can still be used during single support phases.
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B.1 Whole-body VG: consequences on the CoM

We propose to use the VG methodology on all Atalante’s joints. This
requires only minimal changes in the control law described in Section 3.1.
The curvilinear abscissa s and the parametric curve P are now defined from
the complete joint trajectory T

s : τ ∈ [0, Tf ] 7→
∫ τ

0
||Ṫ (t)||2 dt ∈ [0, Lmax] (B.1)

and
P : s ∈ [0, Lmax] 7→ T ◦ s−1(s) ∈ R12 (B.2)

The torque vector τ for all the joints of the exoskeleton is now computed as
a high-gain PD controller plus gravity compensation

τ(σ, σ̇) = τP D(σ, σ̇, qj , q̇j) + τGC(q) (B.3)

with
τP D(σ, σ̇, qj , q̇j) = Kp(P (σ)− q) +Kd(T (σ)σ̇ − q̇j) (B.4)

where σ ∈ [0, Lmax] is still the control variable and qj ∈ R12 is the vector
of joint positions. Following the VG approach, the control variable velocity
reads

σ̇(σ, qj , q̇j) ≜ T (σ)⊤ [Kp(qj − P (σ)) +Kdq̇
j
]

T (σ)TKdT (σ) (B.5)

The control variable σ defines the patient schedule by the relation

η : t ∈ [0, tf ] 7→ s−1 ◦ σ(t) ∈ [0, Tf ] (B.6)

with tf the final time defined by the first time the control variable σ reaches
the end of the curvilinear trajectory s i.e. σ(tf ) = Lmax.

The CoM trajectory c is defined by the parametric curve P and the
control variable σ according to

c(t) = FK ◦ P ◦ σ(t) = FK ◦ T ◦ η(t) (B.7)

By definition of T ,
c(t) = cnom ◦ η(t) (B.8)

with cnom ≜ FK ◦ T the nominal CoM trajectory. Hence, the CoM velocity
ċ reads

ċ(t) = η̇(t)dc
nom

dη
◦ η(t) (B.9)

Inspecting (B.8) and (B.9), one can easily notice that
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• The position c of the CoM trajectory follows the nominal CoM path
cnom. Consequently, the final CoM position c(tf ) is located at the final
nominal CoM location cnom(Tf ), i.e.

c(tf ) = cnom(Tf ) (B.10)

• The velocity ċ(t) of the CoM trajectory is tangential to the nominal CoM
velocity dcnom

dη , time-rescaled by the patient schedule η. Consequently,
the final CoM velocity ċ(tf ) is also tangential to the final nominal CoM
velocity dcnom

dη (Tf ), i.e.

ċ(tf ) = η̇(tf )dc
nom

dη
(Tf ) (B.11)

B.2 Monitor next step feasibility: a conservative ap-

proach

Motivated by the good results of the OP strategy, we ground our patient free-
dom saturation on the same reachability problem for the input-constrained
LIP dynamics (2.17). The fixed-horizon OCP writes the same way as Prob-
lem 4.1, but the set of feasible commands Ω is adapted to include the CoM
path constraint (B.10), yielding

Ω(χ0, χf , T ) ≜

u ∈ Uad(T ),


χu(0) = χ0

χu(T ) = χf

Cχu(t) ∈ γ, ∀t




with C =
(

1 0 0 0
0 0 1 0

)
and γ the manifold defined by the nominal CoM

path

γ =
{
x ∈ R2, ∃t ∈ [0, Tf ] s.t. x = cnom(t)

}
(B.12)

In general, γ is a non-trivial manifold. Hence, the constraint Cχu(t) ∈
γ, ∀t can not be written as an affine constraint, which makes Problem 4.1
impossible to transcribe as a QP problem. This discards the solving method-
ology of Problem 4.2 proposed in Chapter 4.

Luckily, further investigations of the nominal CoM trajectory during
double support1, depicted on Figure B.1, reveal that γ is almost a segment.
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Figure B.1: Nominal CoM trajectory during one step (double and single
support) and footprint of the support polygon during double support. The
nominal CoM path during double support is almost a segment (the dotted
orange segment).

Therefore, the CoM path constraint (B.10) can be approximated by an affine
constraint, consistent with the QP formulation.

This yields a few important remarks

• the X and Y CoM dynamics are linearly dependent, hence we only
need to solve Problem 4.2 along one axis;

• the CoM velocity and acceleration are tangential to the CoMdb
0 CoMdb

f

vector;

• the CoP location is constrained to lie on the segment defined by
the intersection of, on one hand, the (infinite) line passing through
CoMdb

0 and CoMdb
f , and the double support polygon, on the other hand

(by (2.17), the remark above and the unilateral contact constraints).

Rather than solving the OCP defined by Problem 4.2, we propose to
integrate the LIP dynamics backward from the final nominal state χf , along
each dimension X and Y, with the minimum and maximum CoP values u−

1The OCP used to generate the flat-foot trajectory, described on Section 2.2 in the
YX-plane, has been modified to include a double support phase for the purpose of the
development presented in this appendix.
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(a) (cx, ċx) (b) (cy, ċy)

Figure B.2: Backward trajectories from xf (final state of flat-foot trajectory
with double support). Nominal trajectory in green.

and u+. These solutions, along with the solutions with 9 intermediate values
between u− and u+, are displayed on Figure B.2.

Figure B.2 reveals that the set S of states from which the final nominal
state is reachable is compact. Hence, from this observation, and the CoM
velocity constraint (B.11), we can compute the saturation on the patient
schedule which ensures the reachability of χf . This saturation is illustrated
in Figure B.3, computed for each dimension X and Y. Note that

• the patient schedule is saturated to be equal to the nominal velocity 1
at the end of the double support phase, which is expected from (B.11)
and the final CoM velocity constraint;

• the saturation computed using dimensions X and Y do not exactly
overlap, which is a consequence of the real final nominal CoM velocity
is not exactly tangential to the CoMdb

0 CoMdb
f vector.

This alternative control law for double support phases has only been
tested in simulation with arbitrarily shaped patient schedules η to simulate
the impact of a patient. It acts as expected and stabilizes simulations with
simulated slowdowns during the double support phase which makes the
system fall without the proposed saturation. Experiments supporting these
simulation observations remain to be done.
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Figure B.3: Lower and upper saturation bounds computed using backward
CoM trajectories either along X or Y axis. Bounds differ with the dimension
used for their computation because the nominal CoM path during the double
support phase is not exactly a segment.
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MOTS CLÉS

Rééducation robotique, Exosquelette, Stabilisation, Marche bipède, Contrôle optimal

RÉSUMÉ

Les exosquelettes auto-équilibrés, grâce à leurs algorithmes de contrôle qui permettent une marche autonome et stable,
offrent aux personnes handicapées des capacités de marche retrouvées. Cette thèse vise à permettre aux patients d’utiliser
ces systèmes à des fins de rééducation selon le concept de rééducation active de la marche. Selon notre interprétation, ce
concept implique de redonner une certaine liberté de mouvement aux patients. Cet objectif est en conflit avec la garantie
de la sécurité, qui implique de prendre le contrôle du mouvement. Le principal sujet abordé dans cette thèse est le défi que
représente la conciliation de ces deux objectifs.
Notre solution est double : donner de la liberté au patient et en garantissant l’équilibre. Tout d’abord, nous introduisons
une division dans l’architecture de contrôle existante, permettant aux patients de participer activement au mouvement de la
jambe de vol. Parallèlement, l’algorithme de contrôle de la jambe de support régule les forces de contact. Deuxièmement,
nous résolvons de manière embarquée des problèmes de contrôle optimal en temps final libre sur un modèle réduit afin de
générer des trajectoires stabilisables. La durée de ces trajectoires sert à déterminer le moment où le système doit reprendre
le contrôle de l’exécution de la marche.
Le manuscrit présente les mises à jour nécessaires de l’architecture de contrôle ainsi que le développement de l’algorithme
de gestion de la sécurité. Des résultats expérimentaux sont fournis pour évaluer l’efficacité de notre approche lors d’exercices
de rééducation de la marche en utilisant une trajectoire sans et une trajectoire avec déroulé du pied.

ABSTRACT

Self-balanced exoskeletons offer individuals with disabilities recovered ambulation capabilities thanks to their embedded
control algorithms which realize autonomous and stable walking. This thesis is concerned with enabling patients to use
these systems for rehabilitation purposes according to the concept of active gait rehabilitation. In our interpretation, this
concept entails giving back some freedom of motion to the patients. This objective is conflicting with ensuring safety, which
implies taking control over the motion. The main topic addressed in the thesis is the challenge of reconciling these two
objectives.
Our solution is twofold: empower the patient and monitor safety. Firstly, we introduce a split in the control architecture,
allowing patients to actively participate in the swing leg motion. Concurrently, the control algorithm of the support leg regulates
the unilateral contact forces. Secondly, we solve optimal control problems in free final time on a reduced model to generate
stabilizable trajectories. The duration of these trajectories serves as a determinant for when the control system should take
back control over the execution of the walking pattern.
The manuscript presents the necessary control architecture updates along with the development of the safety management
algorithm. Experimental results are provided to assess the effectiveness of our approach in both flat-foot and foot-rolling
walking exercises.

KEYWORDS

Rehabilitation Robotics, Exoskeleton, Stabilization, Humanoid and Bipedal Locomotion, Optimal control
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