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Chapter 1

Introduction

Résumé

Les codes informatiques sont partout, dans nos appareils mobiles, les rovers Mars
Perseverance [27], en passant par les jeux et les équipements critiques (médicaux,
systemes autonomes, aérospatial, etc.). Tous les calculs qu’ils impliquent nécessitent
de grandes ressources de mémoire, énergétiques et du temps. Pouvoir appliquer des
transformations de code qui permettront de réduire ces temps d’exécution, voire de
réduire le besoin en ressources mémoire et énergétique, est essentiel, surtout en cette
période de consommation raisonnée des ressources.

Cette these se place dans le contexte des transformations de programme source-
a-source. Cela signifie qu’ayant un programme écrit dans un langage de program-
mation source (dans notre cas le langage C), nous voulons obtenir un programme
transformé dans le méme langage de programmation qui est plus efficace. La fonc-
tion de colt qui guide l'optimisation peut varier : temps d’exécution, temps de
compilation, consommation mémoire, combinaison de différentes métriques, etc. De
plus, cette these tire parti des techniques d’apprentissage automatique.

L’apprentissage automatique est une classe de méthodes d’intelligence artifi-
cielle, dont une caractéristique distinctive n’est pas une solution directe au probleme,
mais I’apprentissage par évaluation de solutions sur de nombreuses taches similaires.
L’objectif principal de cette these est de définir une recette appropriée de transfor-
mations source-a-source de programme pour améliorer une fonction de cotit choisie
(temps d’exécution, empreinte mémoire, etc.) pour une architecture homogene en
utilisant le Machine Learning.

Introduction

Computer codes are everywhere, from our mobile devices to Mars Perseverance
rovers [27], games, and critical equipment (medical, autonomous systems, aerospace,
etc.). All the calculations they involve require execution time and large memory
and power resources. Being able to apply code transformations that will reduce
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their execution times, or even reduce the need for memory and energy resources, is
essential, especially in this period of rational resource consumption.

Code optimizations could be applied at very different levels. For instance, one
may propose an algorithm that would have lower asymptotic computational time
complexity, and the other - a compiler - might generate code that runs faster. This
thesis takes place in the context of source-to-source program transformations. This
means that having a program written in a source programming language (in our
case C language), we want to obtain a transformed program in the same program-
ming language which is more efficient. By transformation, we mean an action that
changes the source code but does not change the semantics of the program after
transformation.

The cost function that guides the optimization can vary: execution time, com-
pile time, memory consumption, a combination of different metrics, etc. The most
significant and used in the context of this Ph.D. is the execution time and memory
consumption.

In particular, we focused on nested loop transformations, because typically loops
are the most consuming part of a program. As experiments show, [1], [29], [32]
appropriate transformations can greatly improve performance.

The common source-to-source loop transformations targeted in this thesis are:

e Loop unrolling
e Loop tiling
e Loop interchange

Loop tiling is the core transformation in the context of this thesis. We show
that this transformation has many parameters to predict that were not properly
investigated in literature. Loop interchange is connected with loop tiling, it is nec-
essary to apply it before tiling in order to either to enable the loop parallelism or to
improve the locality of array accesses. Loop unrolling is a classical transformation
that provides gains in performance for many kernels of our interest. Although, we
considered three transformations, our methodology allows the addition of arbitrary
transformations (e.g. loop fusion/fission) for Machine Learning modeling. They
would follow the same steps that we applied for the other transformations.

It is very difficult to predict the execution time of a program (or any other
metric) even after a single transformation. Indeed, many factors (e.g. temporal and
spatial locality, computational loop overhead, instruction-level parallelism) underlie
performance, and transformations can make each of them worse or better.

The performance also depends on the architecture. Nowadays, more and more
new architectures emerge. They are more productive and efficient, but also more
complex, which undoubtedly makes program optimization more difficult. Moreover,
find a good optimization for one architecture is not enough, since the performance
is not portable.
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In addition, this thesis takes advantage of machine learning techniques. Machine
learning is a class of artificial intelligence methods, a distinctive feature of which
is not a direct solution to the problem, but learning in applying solutions to many
similar tasks. These methods are widely used in fields such as banking, computer
vision, speech recognition, bioinformatics, and many others. The main objective of
this thesis is to define an appropriate recipe of source-to-source program transfor-
mations to improve a chosen cost function (execution time, memory footprint, etc.)
for a homogeneous architecture using Machine Learning.

1.1 Motivation

Choosing the best parameters of loop transformations is not an easy matter. The
main difficulty is that the number of possible parameters of the transformations can
be very large. For instance, if we would like to apply parallelepiped tiling on a kernel
that multiplies 4096 x 4096 matrices, this gives us 68.7 billion potential partitioning
matrices. Adding the fact that we would like to investigate simultaneously the loop
unrolling and loop interchange transformations, this gives us 395 billion potential
options.

Many heuristics of discrete optimization (e.g. genetic algorithms for autotuning,
simulated annealing, or just random sampling) can be integrated into a compiler.
They work quite well and help to find acceptable solutions. But they do not general-
ize the knowledge about previous "bad” and ”"good” executions. Machine Learning
could potentially do that. This is the main motivation for the techniques we used in
this thesis: the search in a large optimization space could be accelerated with a smart
generalization technique, and it can also be considered as a form of extrapolation.

The other motivation to use Machine Learning is that many factors affect perfor-
mance. Some optimization combinations can improve one factor and worsen others.
As mentioned before, temporal and spatial locality, computational loop overhead,
and instruction-level parallelism could be considered. Creating heuristics for each
factor does not seem like the best strategy. Moreover, what if we do not know about
the existence of some factors that affect performance? The sources of data that can
provide information on these factors are of different natures. It can be information
obtained during static analyzes or dynamic analyses, or it can be some graphs de-
scribing the code. All this interaction cannot be represented as an explicit function.
As experiments show, machine learning successfully copes with such tasks.

1.2 Research challenges

The challenges we faced during our study are common for almost all Machine Learn-
ing pipelines. We use Machine Learning as a tool, hence we see our main impact
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not on improving the ML techniques but on integrating existing techniques for our
problems. The most crucial challenges are listed below.

e Data collection: Since this thesis takes place in the context of Machine Learn-
ing, it is crucial to have appropriate training and validation sets to train prop-
erly and draw reasonable conclusions. There are many options on how to mine
data for training (e.g. open-source code parsing, synthetic code generation,
using existing benchmarks). Data collection becomes the main research chal-
lenge before creating the ML itself. We argue that this is the most important
step since the ML model just captures patterns observed in the training set.
We started our investigation with known existing benchmarks and then shifted
to the field of synthetic code generation.

e Machine Learning modeling:

Machine Learning is a very general concept. It aggregates many different ideas
and approaches inside. For instance, we can distinguish sub-fields such as
supervised learning, unsupervised learning, reinforcement learning, and many
many others. On the other hand, the code optimization domain also aggregates
a lot of different sub-fields. It was a challenge to find their proper interaction,
where the code optimization domain benefits the most from ML techniques.

To address this challenge, we have proposed solutions to the following prob-
lems:

— Synthetic code generation.

— Determination of the optimal parameters for certain transformations such
as tiling, unrolling, and interchange.

— Choosing the best way to encode the meaningful code properties in fixed
numerical vectors.

As the most appropriate sub-fields of ML, we used supervised ML (regression
methods + classification methods) and Active Learning methods for the code
generation. The key difference between supervised and unsupervised learning
is that we have training labels for learning in supervised process. It serves
better when it is crucial to predict the outcomes for the new data (the goal of
this thesis).

e Feature space design: When the training set is collected and the problem
statement is fixed, it is the step of feature representation of the data that
we operate. Chapter 2 highlights the whole evolution process toward the
feature space design in code optimization. Shortly speaking, the use of ML
started with the use of handcrafted features created by experts. Then the
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focus shifted to the automatic collection of specific features that are compiler-
related. The current trend is to use embeddings (vector representation of some
concepts) which have been obtained during representation learning with some
deep neural networks. It is a challenge to define what kind of features fit
the most for our problems. In this thesis, we work with handcrafted features
mainly, but also endow the search with a more abstract code representation
that does not rely on any potentially biased knowledge. In the scenario of
more abstract code representation, we allow the system itself to choose which
features to take from raw data for better performance.

1.3 Research directions

This thesis targets the applicability of Machine Learning models to the code opti-
mization domain. We investigated four main research questions during this thesis.

e Question 1: Can we collect enough training data for Machine Learning models
that would be representative of all the transformations that we are targeting?

e Question 2: Are we able to make our predictions automatically for the different
options of the Tiling transformation?

e Question 3: Can we propose alternative ways to encode the code properties
that would be invariant for the code transformations?

e Question 4: Can our predictions help to accelerate the iterative search of the
best parameters?

1.3.1 Data mining

Chapters 3 and Chapter 4 aim to answer Question 1. We believe that creating
our synthetic code generator is the most reasonable option to solve the problem
of lack of data. Chapter 3 provides the main building block and guidelines for
the generator. We define the associated domain-specific language to describe
the desired properties of the generated code. Chapter 4 provides the way how
to generate just the most representative data that maximizes the performance
of the ML model. It relies on the idea of Active Learning that not all data
samples are equally important, and the model can choose the best match by
itself.
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1.3.2 Tiling transformation

The state-of-the-art Machine Learning models that target tiling transforma-
tion aim to make predictions only with cubic/parallelepiped tiling. To answer
Question 2, we try to show that other tiling options and hyperparameters im-
pact a lot on performance. Chapter 5 shows that different tiling shapes, scan-
ning directions, and hyperparameters are crucial components of well-tuned
code. In Chapter 6, we build the predictions of such tiling options as 1)
Inter-tile scanning directions 2) Intra-tile scanning directions 3) Tile shape 4)
Tile size. Moreover, we give a comparison of existing pipelines to predict the
optimal tile size and define the best way to do that.

1.3.3 Feature space design

The majority of well-performing ML models in the field of code optimization
rely on handcrafted code characteristics proposed by an expert. Our research
therefore also extends the research in this direction. We propose a representa-
tion to encode data dependencies in chapter 6. It allows for characterizing data
dependencies with a fixed-size data structure, precise enough to be exploited
by ML techniques. However, we do not only consider handcrafted features.
Chapter 6 tries to answer Question 3 by proposing some other alternative
feature spaces. We consider the encoding of the data-dependence graph and
the control-flow graph into vectors of fixed size and use them as features for
the ML model. Close vectors correspond to the graphs which ”"look similar”.
For instance, code with many data dependencies will be different from code
without dependencies. The main advantage of our features is that they could
be used for the prediction of any transformation.

1.3.4 Iterative search acceleration

State-of-the-art Auto-tuners are very sensitive to the initial parameters of the
search. Poorly chosen parameters could lead to a longer search and not optimal
found configuration of the optimal parameters. This is a very common case
for Autotuners since the search is task-agnostic. The search engine knows
nothing about the problem of interest and could choose the not optimal first
solution. Chapter 7 tries to answer to Question 4. We used the predictions
of our models as the initial seed for the Autotuner. Moreover, we investigate
the ability of the model to perform the iterative search by itself.
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1.4 Thesis structure

This thesis is organized as follows. Chapter 2 presents the related work towards
4 different fields: 1) Data collection 2) Prediction of optimization parameters 3)
Feature space design 4) Machine Learning methods. Chapter 3 and 4 present our
synthetic code generator that would be used for the collection of the training set
for each ML model. Chapter 4 presents our strategy on how to select the most
representative data generated by our generator given time constraints. Chapter 5
investigates the impact of different tiling parameters on code performance. Chapter
6 attempts to predict all these parameters that are crucial for efficient code gen-
eration and evaluates two modeling pipelines to predict the tile size. Chapter 7
evaluates how the one-shot prediction of the tile sizes used as an initial seed for the
Autotuner could accelerate the search process. We also evaluate the applicability of
our prediction ranking in the autotuning process.
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Chapter 2

Related work

Résumé

Cette these adresse deux domaines : 'optimisation de code et ’apprentissage au-
tomatique. Ce chapitre met en évidence les travaux connexes dans les deux do-
maines et également leur interaction. Nous considérons I'apprentissage automatique
comme un outil pour résoudre certaines taches concretes, et 'optimisation du code
comme le domaine d’applicabilité de cet outil. Nous pensons qu’il est raisonnable
de fournir des travaux connexes pour chaque phase du pipeline d’apprentissage au-
tomatique. Le pipeline typique de Machine Learning pourrait étre décomposé de
plusieurs phases :

e (Collecte de données
e Formulation du probleme et modélisation ML
e Modélisation de 'espace des caractéristiques

e Machine Learning formation/prédiction/évaluation des résultats

Nous présentons des travaux connexes pour chaque phase. La section 2.2
résume la maniere dont les données sont collectées et extraites dans les pipelines
d’optimisation de code. La deuxieme phase en section 2.3 met en évidence les
problemes d’optimisation du code lorsque 'apprentissage automatique est utilisé.
La troisieme section 2.4 cible les caractéristiques concretes du code requises pour la
modélisation des problemes et celles utilisées dans 1’état de 'art traitant de la con-
ception de I'espace des fonctionnalités. La derniere section 2.5 fournit des travaux
connexes concernant les techniques et les pipelines d’apprentissage automatique ex-
istants.

13
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2.1 Introduction

This thesis takes place in two domains: code optimization and machine learning.
This chapter highlights related work in both domains and also in their interaction.
We consider machine learning to be a tool to solve some concrete tasks, and code
optimization to be the domain of applicability of this tool. We believe it is reasonable
to provide related work for each phase along the machine learning pipeline. The
typical Machine Learning pipeline could be decomposed into several phases:

e Data collection
e Problem formulation and ML modeling
e Feature space modeling

e Machine Learning training/prediction/result evaluation

We provide related work for each phase. Subsection 2.2 summarizes how data
is collected and mined in the code optimization pipelines. The second phase in
Subsection 2.3 highlights code optimization problems when Machine Learning is
used. The third subsection 2.4 targets concrete code characteristics required for
problem modeling and how the authors of existing research deal with feature space
design. The last subsection 2.5 provides related work in the scope of existing machine
learning techniques and pipelines.

2.2 Data collection

Quality of data is a crucial component in ML pipelines. The training data must
be as indicative as possible and reflect similar characteristics to those on which ML
techniques are applied. This section summarizes common approaches to collecting
training and validation sets for ML issues in the code optimization domain.

2.2.1 Existing benchmarks

There are various known benchmarks for the C programming language that address
specific aspects. For instance, BEEBS Benchmarks [51], Embench™ [42], MiBench
[43] address performance analysis on embedded platforms. PolyBench 4.2 [46], Liv-
ermore loops (LFK) [49], LCALS v1.0.2, TSVC, [47], LORE [66] focus mainly on
compiler optimizations and performance analysis. However, these benchmarks con-
tain a limited number of typical kernels. For instance, TSVC contains 151 perfectly-
nested loops, PolyBench 4.2 contains 30 computational kernels (kernel may contain
several loop nests), Livermore loops (LFK) have 30 loop nests, and LCALS v1.0.2
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contains 32 loop nests, LORE aggregates loops from other benchmarks and contains
2499 loops in C.

This amount of data may not be enough when the code optimization domain
actively integrates with the machine learning domain [36]. The strength of Machine
Learning techniques often comes from the use of a large training set. For instance,
MNIST [34] a benchmark for image processing contains 70.000 images, LibriSpeech
[39] for speech recognition includes 1000 hours of speech, Enron corpus [40] for
natural language processing aggregates 500,000 messages.

Therefore, there are much less benchmark data available in the code optimiza-
tion domain than in fields where ML shows state-of-the-art performance. There
is not enough training data to properly cover the feature space of parameters for
complex transformations such as loop tiling, loop unrolling, loop interchange, etc.
Note further that different transformations have different feature spaces from a
machine-learning perspective. One training set could capture better features for
one transformation, another - for another. It becomes challenging to create a uni-
versal training set. Thus, synthetic code generation is a crucial component of the
proper use of Machine Learning for code optimization.

The possible data collection can be organized in two ways: data mining from
open sources or synthetic data generation.

2.2.2 Data mining

The advantage of data mining is that we collect programs directly from the real
world. These are exactly the programs that we want to optimize. Also, modern
hosting services provide countless amounts of data. For instance, there are at least
10 million GitHub repositories. There is a whole line of research in this direction
[53], [56], [55], [54]. However, there are some drawbacks, such as the correctness of
the data, their completeness, difficulties arising from parsing, the lack of input data
necessary for their execution, the diversity of the types of collected programs, and
much more.

2.2.3 Synthetic data generation

The alternative direction that tries to get rid of the drawback of the previous ap-
proach is synthetic code generation. Some researchers have decided to create or
synthesize their own benchmarks.

Deniz et al. [57] propose a MINIME-GPU benchmark synthesis framework
for GPU using OpenCL. Joshi et al. [58] propose the BenchMaker framework
where microarchitecture-independent characteristics are used to describe the re-
quired workload. Code synthesizing for some particular problems was introduced
in [59], [60]. However, the closest to our work are projects such as GENESIS and
CLgen.
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Chiu et al. [37] introduce GENESIS, a language for Generating Synthetic Pro-
grams. The main idea is that the user can annotate the code template with the
parameters that she/he wants to vary. The generation works based on the known
pre-defined statistical distribution of the parameters. It helps to obtain reliable data
for known domain-specific problems. Statistical distributions depend on the domain
knowledge of the expert who tunes them. It makes it complicated to imitate not
investigated domains.

Cummings et al. [38] [21] propose a slightly different approach. Their code
generator CLgen has a deep learning model as the core of their pipeline. It helps
to capture statistical distributions over training codes and imitate new domains
without expert knowledge. The disadvantage of this approach is that it requires a
huge training set for the deep learning model.

2.2.4 Conclusion

Our work in Chapter 3 presents our original contribution to this related work.
We have developed tools to automatically generate synthetic data because the ex-
isting solutions do not fully reflect the patterns (uniform and non-uniform data-
dependencies, loop index permutations, different patterns of array accesses) we are
interested in.

2.3 Prediction of optimization parameters

This section focuses on how Machine Learning can help in the selection of optimiza-
tion parameters. By optimization parameters, we mean a huge scope of things. It
can be parameters of program transformations, compilation flags, paths, and many
other things. One of the main contributions of this thesis targets the loop tiling
transformation. We consider it reasonable to provide related work for this program
transformation separately.

2.3.1 Loop tiling transformation

Research related to tiling parameter prediction can be classified into three main
groups.

e Static analytical models handcrafted by an expert,
e Iterative auto-tuners,

e Static analytical models derived by Machine Learning algorithms.
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The earliest approaches [72], [71], [78], [75] [73], [76], [74], [79], [77] [24] related to
the tile size selection problem refers to analytical models that capture architectural,
program and compiler characteristics. These models attempt to analytically disen-
tangle all the complexity of their interactions and provide the optimal size. However,
the interaction of so many concepts can be a very complex problem. Therefore, an-
alytical solutions will lead to not fully satisfactory results. Moreover, new analytical
models need to be re-analyzed for every single architecture or compiler and require
a huge expert time to maintain the up-to-date versions of the analytical solution.
The exact opposite is the approach using auto-tuners [32], [88], [84], [87], [86], [85],
[83]. The idea is to explore a grid of transformation parameters iteratively by find-
ing better and better solutions. The majority of existing auto-tuners are limited to
cubic tiling, which may not be the best option. This approach provides good results
but requires a lot of time to execute potential points, and it does not provide any
insights about the final choice.

Our study relates to the third group, we use Machine learning techniques to
make predictions and generalizations about the tiling transformation. The most
related papers to our study are [1], [45], [81], [44].

Yuki et al. [1] investigate the problem of automatic tiling selection using machine
learning approaches. The authors consider cubic tiling on three nested loops with
2D data. The authors describe each loop nest based on the array references inside
the loop nest. Each array reference can either take advantage of the spatial locality
given by the prefetcher or not, or be constant in the innermost loop. Yuki et al.
also mark each reference as a read or write reference.

Liu et al. [45] propose a slightly similar approach. The key difference is that the
construction of the feature space can potentially contain loops of any fixed depth
and data of any dimensionality.

Malik [44] uses dynamic hardware performance characteristics to determine the
optimal tile size. The drawback of this approach is that hardware performance
does not provide any insights about the code at the source level. Moreover, Malik
considers cache interaction just for the L1 cache.

Rahman et al. [81] propose an alternative to iterative compilation. Their
method predicts execution time based on given input tile sizes. This approach
helps to learn the distribution of beneficial tile sizes for a given kernel and to deter-
mine the limits of convergence for random empirical search. However, this model
does not provide any insights into the factors that impact this distribution.

We consider our work to be closest to [1] and [45]. However, all related work
focuses on the prediction of just one parameter - the tile size.

The originality of our approach is that we consider several tile shapes and provide
a way to predict the optimal scanning directions of tiles and tile elements during
their execution. Moreover, we consider data dependencies to be a piece of meaningful
information to make this choice and encode them in a feature vector for Machine
Learning problems.
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2.3.2 Static approach for optimization

This subsection highlights related work for code optimization where parameters are
predicted statically. It means that code execution is not required for the optimization
decision.

Transformation parameters prediction

Monsifrot et al. [52] make a binary decision on whether to unroll a loop or not.
They identify 5 classes of features that have an impact on the result: memory access
class, arithmetic operations, size of the loop body, control statements in the loop,
and number of iterations. For binary classification, the authors use the Random
Forest(+ boosting technique). The above features are the input of the algorithm.
The disadvantages of this approach include the fact that the authors do not predict
how many times this loop should be unrolled.

Stephenson et al. [134] try to predict the optimal unrolling factor. They consider
this problem as a multiclass classification with 8 possible values of the unrolling
factor {1,2,3...8}. To solve it, they use NN and SVM. For this classification, the
authors used 38 handcrafted features. Stephenson et al. conclude that this technique
predicts optimal/ near-optimal unrolling factors in 68% / 79% of cases.

Magin et al. [128] addresses a problem of thread-coarsening transformation.(merging
the code that is executed by different threads into one thread). This paper is in-
teresting because the authors used a complex machine-learning model consisting of
cascade-connected neural networks to predict the optimal value of thread-coarsening.
However, the input for the model was not raw code, but meaningful features. This
creates limitations for further generalization of the results to other transformations.
Nevertheless, the authors come to the conclusion that this model shows the best
results of their popular heuristics. In particular, they achieved an average speed
from 1.11x to 1.33x depending on the GPU architecture.

Fursin et al. [132] proposes MILEPOST Framework. This work is the first
attempt to create an open-source compiler that uses machine learning.

The authors conclude that this compiler is able to show competitive performance
and can improve existing baselines on the benchmarks tested. The main goal of
Machine Learning is to predict optimal optimization passes. For ML, the authors
use models of two classes:

e Probabilistic Model. The probabilistic distribution for the training set of pro-
grams is first studied. Then, for the new program from the test set, we find
its closest neighbor from the training set.

e Transductive Model. Supervised Machine Learning problem, decision tree
model was used to obtain predictions.
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Park et al. [114] propose a new approach to represent programs and capture the
most relevant information for Machine Learning models called graph-based char-
acterization (they test on SVM in order to predict optimization sequences). This
approach can work in both iterative mode and non-iterative mode. The authors con-
clude that on the tested benchmarks, this representation shows better performance
(73% of the maximum) than the existing concepts (53%).

Compiler flags prediction

Cavazos et al. [109] investigate the possibility of using machine learning tools in
order to select optimal compilation flags. They represent each program as a 26-
dimensional vector. Then, using a logistic regression-based strategy, the authors
obtain the required flag vector for this program. Depending on the benchmark,
the authors get a decrease in the execution time by 25% and 51% compared with
baselines.

Phase-ordering prediction

Kulkarni et al. [107] investigate the problem of phase-ordering prediction for Jikes
RVM JIT compiler. The idea is to predict the best next single optimization (or
predict stop of prediction), then re-evaluate the characteristics of the code and
predict the best next optimization. The authors use a neuro-evolution approach to
derive ANN, which will be used. Kulkarni et al. conclude that this approach is
effective and the first of this kind.

Other predictions

Shivan et al. [129] predict which compiler will generate the fastest code for a loop
nest. Namely, the optimization of serial code to be auto-parallelized was observed.
There are 4 code optimizers: clang (LLVM), GCC (GNU), ICC (Intel), and Polly.
The goal is to predict the optimal optimizer for a given code. Performance counters
were used as features and for classification, the Random Forest algorithm was ap-
plied. The performance gain from the ML predictions is up to 1.42x for the serial
code and up to 1.71x for the auto-parallelized code across two multi-core architec-
tures.

2.3.3 Dynamic approach for optimization

The alternative approach to code optimization is a dynamic one. We execute a
program to optimize and collect essential information about its performance.

In this subsection, we provide an overview of strategies used in dynamic search
space exploration. We will highlight the most influential articles on each approach
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and attempt to understand the big picture of how each strategy has evolved and its
prospects.

Iterative compilation without Machine Learning

The iterative compilation is a technique for optimizing programs, where each new
iteration generates a new version of a program according to a certain criterion. The
most popular iterative search techniques are:

e Genetic algorithms
e Random search

e Simulated annealing
e Grid search

e Window search

After several steps, we can get a well-optimized program. In the general case, this
approach is very expensive, but for some applications (e.g. embedded applications),
this cost is amortized. The opposite direction is a strategy based not on program
profiling, but on collecting some of its static indicators and directly predicting the
optimization of the target.

Space exploration

Bodin et al. [98], Kisuki et al. [115] and Fursin et al. [125] conclude that iterative
compilation overperforms existing static methods for program optimization, and it
can achieve high optimization level of optimization for a small number of steps.
The authors considered the optimization set of loop unrolling and tiling and/or
array padding. To focus on iterative search, they applied heuristic strategies.

Cooper et al. [151] consider iterative compilation in terms of reducing code
size. The authors translate the source code to ILOC (low-level intermediate lan-
guage). After that, Cooper et al. explore iloc-to-iloc transformations. The search
space contains 10 non-parametrized transformations and allows to the generation of
sequences of arbitrary length with repetitions.

Triantafyllis et al. [116] present the Optimization-Space Exploration (OSE)
technique based on the search space pruning strategy and use of static heuristic,
which reduces the number of iterations.

Pan et al. [113] propose an orchestration heuristic algorithm in order to find
effective compilation settings. The key idea is to iteratively eliminate options with a
negative effect on a cost function according to a proposed heuristic algorithm. The
authors claim that this approach requires less time to tune than existing methods.
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Ding et al. [105] present a two-level machine learning approach in order to
predict the most optimal optimization strategy for iterative compilation depending
on a given input.

Almagor et al. [153], [103] address the problem of order in compilation sequence.
This article attempts to answer 3 questions: (1) What percentage of theoretically
possible sequences reach a specified level of performance relative to the absolute
maximum? (2) Is there a pattern in the distribution of ”good” sequences? (3)
Understand the distribution of local minimums. Their frequency will influence the
choice of the optimal search strategy. The authors consider sequences of length 10
with 5 optimizations: peeling one iteration of a loop, partial redundancy elimination,
peephole optimization over logical windows, register coalescing via graph coloring,
and dead code elimination. The optimization space has 5'° points.

Almagor et al. conclude that (1) about 15% of sequences are in 10% of the
maximum, and 30% of all sequences are in 20% of the maximum. (2,3) The authors
managed to find one large cluster of good solutions (2.6% of the maximum) and
many isolated local minimum clusters. The authors also investigate the possibility
of iterative search using genetic algorithms in the search space with 13° points, and
conclude that this approach overperforms baselines.

Iterative compilation navigated by Machine Learning

Studies based on heuristic search strategies have several shortcomings. The main
one is that the knowledge obtained from previous experiments is not generalized for
future experiments. This leads to an increase in the number of iterations to achieve
the desired level of optimization and to the deterioration of performance. Using
machine learning techniques can help overcome these shortcomings.

Agakov et al. [118] propose a methodology using machine learning to identify
areas of the transformation space that are most likely to improve performance. The
idea is to use an Independent identically distributed model or Markov Model [23]
to better target Genetic Algorithms or Random Search. The new program must
go through the stage of feature extraction and mapping to the 5-D space (after
PCA), where we find its "nearest neighbor” (for which we have learned probability
distribution).

The authors consider the following set of transformations: Loop unrolling (1-4),
loop flattening, for-loop normalization, non-perfectly nested loop conversion, break
load constant instructions, common subexpression elimination, dead code elimina-
tion, hoisting of loop invariants, move loop-invariant conditionals, copy propagation.
That is, 9 are not parametrized transformations and 1 is parametrized. The output
is the sequence of non-fixed length. The authors conclude that this method shows
highly efficient results.

Cavazos et al. [130] try to generalize the behavior of programs at a lower level,
namely, they profile each program 3 times in order to collect relevant hardware
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performance counters. Next, the authors use a model based on logistic regression to
find a mapping between performance counters and optimal optimization sequences.
For the program for which we want to find the optimal optimization sequence (121
flags were selected in order to construct the search space), the input is only 3 times
measured performance counters. The output is a distribution, which Cavazos et al.
use to draw optimization sequences. The authors claim that by using this technique
they are able to achieve a certain level of optimization much faster than the current
state-of-the-art techniques.

Park et al. [100] considers three ways of modeling the prediction of optimiza-
tion sequence: Sequence Predictor, Speedup Predictor, and Tournament Predictor.
Tournament Predictor is a novel approach and the authors investigate its applica-
bility. The authors consider 7 optimization phases (45 unique optimizations, there
are a lot of optimizations related to loop nest optimization phases). The input of
this model is performance counters and two optimization sequences, the output is
the prediction of the best sequence. Prediction models are based on SVN or Linear
Regression. The authors claim that Tournament Predictor overperforms Sequence
and Speedup Predictor and generally shows its viability on a variety of different
benchmarks.

Ashouri et al. [108] present COBAYN a compiler autotuning framework based
on Bayesian Networks. The authors use hybrid features in order to characterize pro-
grams in their model. Bayesian Networks were chosen as an intellectual core because
of their capability to capture the probability distribution of available features.

The authors consider 7 optimizations: optimizations for floating-point arith-
metic, unrolling of all loops, -O2 optimization level, not guessing of branch prob-
abilities disabling loop optimizations on trees, disabling optimizations that inline
all simple functions, and disabling induction variable optimizations on trees. The
authors claim that they overperform existing state-of-the-art iterative and non-
iterative compilation techniques.

Ogilvie et al. [123] emphasize that not all samples of points in the decision space
provide useful information. And if we can use just the most ”useful” measurements,
we will significantly reduce the iteration compilation overhead. The authors use
sequential analysis and active learning to solve this problem.

Ashouri et al. [106], Martins et al. [104] and Nombre et al. [99] focus on
Design Space Exploration approaches in order to solve the phase ordering problem.

Ashouri et al. [106] propose a methodology based on predicting modeling. Tt
has classical phases of data collection, training, and prediction. The final model is
able to predict immediate speedup for a given optimization. This model implements
2 search strategies for the optimal sequence: DFS Search Heuristic and Exhaustive
Search Heuristic.

The authors observe 13 different optimizations for LLVM (such as -loops -loop-
simplify -lessa -branch-prob). These 13 optimizations form 4 different genes (se-
quences) of compilation. The goal is to predict the next-gen. Ashouri et al. conclude
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that these heuristics overperform LLVM by 4% and 2%.

Martins et al. [104] also address the problem of phase ordering for LLVM opti-
mizations. The proposed methodology consists of encoding, clustering, and arrange-
ment of pass stages. In order to generate clusters, Martins et al. use approaches such
as Normalized Compression Distance, Neighbor-Joining, and a new ambiguity-based
clustering algorithm.

The authors come to the conclusion that this approach achieves around 20x
speedup in search space exploration compared to genetic algorithms and a 1.41x
speedup over baseline in terms of the execution time.

Dubach et al. [135] propose a methodology based on the predictive model in
order to predict optimization sequence. It requires 64 runs (with different opti-
mizations) of a program to be optimized. Then the obtained execution times and
the feature representation of the program (4 classes of features: cycles, memory ac-
cesses, operations executed, and operations presented in the source code) are used
to predict a speedup for each possible optimization. ANN and Linear regression
were used to construct a predictor.

The authors consider source-to-source transformations, namely, loop unrolling
(with factors 1-4) and 9 non-parameterized optimizations like dead code elimination
or move loop-invariant conditionals. This feature space yields 88000 invariants. The
authors test their method in larger optimization space: 1034 points. Dubach et al.
conclude that the proposed methodology manages to reduce the cost of search and
gives predictions with a high correlation coefficient.

Frameworks

Many frameworks have been created for iterative compilation issues. For instance,
Chen et al. [112] introduce their loop transformation framework CHILL. The au-
thors conclude that this framework finally fills the gap between the best hand-tuned
codes and compiler optimizations for loops. Based on CHIiLL and Active Harmony
[111] Tiwari et al. [88] propose a framework that is able to perform both fully
automatic code transformations and transformations under user assistance (static
sequence defined by the user) and then search for the optimal parameters.

COLE Framework [87] considers multi-objective space exploration while all pre-
vious studies on iterative compilation considered only single-objective exploration.

Ansel et al. [86] propose framework for building domain-specific multi-objective
program autotuners. This framework contains such search techniques as AUC Ban-
dit Meta Technique, Nelder-Mead search, Torczon hillclimbers, and many others.

Baghdadi et al. proposes a polyhedral compiler framework called TTRAMISU.
The distinct features of this work are four-level intermediate representation of a
code and special scheduling language allowing targeting different architectures. The
authors claim that their approach over performs existing state-of-the-art tools and
hand-tuned codes.
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As will be indicated in Chapter 4, I collaborated with the author of Locus frame-
work [32] by Teixeira et al., so I pay special attention to its description.

Locus is a system and a language to orchestrate the optimization of applications.
In particular, Locus allows us to deal with source-to-source transformations. The
distinctive feature is that we can define transformation sequences separately from the
source code. This preserves the clarity and readability of the code. The idea behind
Locus is that in the source code we specify the sections that we want to optimize.
Then an optimization program written in a DSL (domain-specific language) defines
transformations over the specified code segment. Parameters of transformations can
be specified either explicitly or in the form of intervals. To apply transformations
and find their optimal parameters, Locus integrates several modules :

e Transformation modules: Locus integrates multiple transformation models,

namely, the source-to-source compilers PIPS and RoselLocus, Pragmas, and
BuiltIn,

e Search modules: In order to perform a search in the optimization space, Locus
integrates modules such as OpenTuner and HyperOpt.

The authors used various benchmarks to test performance and compare it with
Pluto. They examined 856 loop nests with execution longer than 10* CPU cycles.
The best code generated by Locus archives a 1.15x average speedup, while Pluto
(with pre-defined parameters) reaches 1.05x. Moreover, Locus is able to transform
822 loop nests out of 856 (versus 397 for Pluto).

2.3.4 Conclusion

Our results presented in Chapter 6 bring contributions relative to this subsection.
Our contributions target static approaches. We have focused on optimizing the loop
tiling transformation and defined a set of parameters to predict that has not been
covered in previous existing studies.

2.4 Feature space design

The proper choice of features is one of the key points in the performance of almost
every machine-learning algorithm. Therefore, it is important to understand what
data we can collect and use to train our models. Below we give a classification of
possible features based on their essence.

Note that this section does not try to compare and determine which type of
features is worse or better, and does not try to bring the most recent research with
mentioned features. The main goal is to show the immediate advantage of different
features for solving various problems relative to our work. The most illustrative
studies are given as examples.
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2.4.1 Static code features (without code profiling)

This subsection highlights the features that could be extracted during the phase of
static code analysis without compilation and execution.

Handcrafted features. The simplest idea is to let the experts decide which features
in the programs are important for a certain optimization and which are not.
Relying on their rich experience and intuition, we can get a fairly representa-
tive set of values that describe in detail the distinctive characteristic of this
program.

Below we give an example of two studies that use handcrafted features in order
to predict the unrolling loop factor.

Monsifrot et al. [52] predict a binary decision whether to unroll a loop or
not. The authors distinguish 5 classes of handcrafted features that can influ-
ence performance. These classes are ”Memory access” features, ” Arithmetic
operations count”, ”Size of the loop body” and "Number of iterations”. The
authors claim that this approach overperforms compiler optimization (-O3).

Stephenson et al. [133] solve multi-class classification problems to predict
the optimal unrolling loop factor. The authors distinguished 38 handcrafted
features for Nearest Neighbours and SVN algorithms. They achieve a 5-9%
(depending on the benchmark) improvement over existing methods.

Generated features. Although handcrafted features intuitively well describe the
essence of the program, they have a number of shortcomings. The main thing
is that the space of possible features is infinite and we have no control if these
features are important or not. But experts choose from this infinite set only
some limited list based on their intuition. It may potentially be biased and
not optimal.

Leather et al. [120] propose an approach based on a combination of genetic
algorithms and machine learning. The authors choose productions from the
internal representation using genetic algorithms in order to construct feature
space. Then the machine learning algorithm is trained on these features (pro-
ductions) and consistently we get a better set of features. Leather et al. test
their approach on loop unrolling. They achieve 76% of the maximum perfor-
mance available, while state ML (using handcrafted features) achieves only
59%.

Namolaru et al. [121] propose a general method for systematically generating
numerical features from a program. The authors view the program as a set of
relationships between its entities and infer new ones and extract features from
them. The authors evaluate this approach to the optimization flag selection.
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They achieve 74% of the potential speedup obtained through iterative compi-
lation on a wide range of benchmarks and four different general-purpose and
embedded architectures.

Adams et al. [4] propose a mode to schedule Halide programs. The au-
thors distinguish two types of features: schedule-specific features (either count
events of various types, or characterize memory footprints) and algorithm-
specific features (histograms of the operations performed). Then these features
go through specific architecture of a Neural Network. The Neural Network pro-
duces schedules that are on twice faster than existing Halide auto-scheduler.

Representation Learning using Deep Learning. The approaches described above

have deeper drawbacks. They, as a rule, are suitable only for predicting one
specific heuristic (for example, loop unrolling). But if we want to predict some-
thing else, then we need to extract new features by ourselves (for handcrafted
features), or apply the whole methodology from scratch and repeat many ex-
pensive experiments. In other words, these methodologies cannot generalize
to many different optimizations (although they can generalize many different
programs across the same optimization). Moreover, they are deeply embed-
ded into the compiler (very dependent on the used AST). The use of neural
networks looks very promising and powerful direction to overcome these limi-
tations.

Cummings [126] developed a deep neural network that learns heuristics over
the raw code, entirely without using code features. Their model consists of
source re-writer, language model, LSTM (long short-term memory) [91] and
neural network.

They test their model on 2 tasks: heterogeneous device mapping and thread
coarsening. The authors claim that this approach overperforms state-of-the-
art ML approaches with handcrafted features. Namely, in 89% of the cases,
the quality is not worse than the Machine Learning models and the average
speedup is 16% for heterogeneous device mapping and 12% for thread coars-
ening.

Baghdadi et al. [102] present a new cost model to predict program speedup.
This cost model is a regression that takes special code embeddings as input.
The authors introduce a program characterization in the form of an ordered
tree of computation vectors. This concept includes 1) loop nest representation;
2) assignment representation; 3) loop transformation representation. This
essential information helps to create representative code embeddings.

Graph-based Features. Many important relations in a program are usually repre-

sented as graphs. So, for example, it can be a dependency graph or a control
flow graph. Undoubtedly, this information is important for more accurate
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prediction and can be used by machine learning algorithms. The use of infor-
mation in the form of a graph is reflected in [114]. To represent a program the
authors use graph-based intermediate representation, which is based on CFG
(Control-Flow Graph).

The authors conclude that such a feature presentation gives good results in the
iterative compilation scenario (achieves 88% of maximum speedup in 5 itera-
tions), and in the non-iterative scenario (achieves 74% of maximum speedup
and overperforms state-of-the-art techniques).

2.4.2 Dynamic features

Dynamic features cannot be obtained directly without code profiling. As a rule, we
can highlight three levels of abstraction to which dynamic features belong: applica-
tion level, operation system level, and hardware level.

e Application. Roughly speaking, this level works at the same level of abstrac-
tion as static code analysis. Sometimes the data collected during static code
analysis is not enough (some features cannot be counted, for example, the
number of iterations may depend on user input). But we can count them after
code profiling.

e Operation System. As the name implies, at this level we can track features
that are defined at the operating system level. This, for example, is all about
input/ output or CPU loads.

e Hardware. These features work at the lowest level of abstraction. They
track the relevant information about the application performance on a given
hardware. Only at this level we can, for example, find out the number of
different cache misses because the cache sizes are determined by hardware.

An example of using such features is [130] where Cavazos et al. use performance
counters in order to predict appropriate compiler optimizations. The authors con-
clude that this approach overperforms existing static code methods since it is able
to capture a lot of relevant information about hardware performance.

2.4.3 Feature learning approaches

Deep Learning methods have the unique ability to reconstruct data distribution
from raw data. This ability allows them to gradually enter into all spheres of our
life, like text processing or banking. Not surprisingly, they are gaining more and
more popularity in compiler optimizations.

Cumming et al. [126] developed a deep neural network that learns heuristics
over raw code, entirely without using code features. The authors evaluated their



28 CHAPTER 2. RELATED WORK

approach to heterogeneous device mapping and GPU thread coarsening. The key
components of this model are:

e Source rewriter. The main tasks are parsing the AST, removing conditional
compilation, then rebuilding the input source code using a consistent code
style and identifier naming scheme.

e Sequence encoder. Code to a sequence of integers

e The order to apply transformations can be 1) not predetermined (we must
find it by ourselves) 2) predetermined in accordance with best practices

e Embedding. Each token (integer value) to a real 64-dim vector (Similar tokens
(int, float) to vectors with small distance)

e LSTM. Long short-term memory [91] (special kind of recurrent neural net-
work).

e Auxiliary inputs. To maintain system flexibility, it allows you to add features
that cannot be obtained from code.

e Heuristic model consists of Batch Normalization and Neural Network. The
idea is that the neural network, based on the code representation and auxiliary
inputs, makes predictions about the optimization parameter values.

The authors conclude that in 89% of the cases, the performance of this approach
matches or surpasses the state-of-the-art predictive models that use handcrafted
features. The average speedup is 16% for heterogeneous mapping and 12% thread
coarsening factor prediction The main contribution of this article is that with the
help of this model we can generalize over different transformations (we should not
develop everything from scratch) and over different programs.

Chen et al. [127] propose a framework to iteratively optimize tensor operator
programs for a given platform. It consists of Exploration Module, Code Generator,
Cost Models, and History data

The authors paid great attention to the formalization of the problem, which
became the theoretical basis for their invariant code generator. They also proposed
two cost models (based on gradient-boosted trees and on TreeGRU), which allow
the exploration module to select candidates to query on Hardware. The authors
created a transferable representation for both their cost models that is invariant to
the source and target domains. It means that transfer learning becomes possible.

Results on deep learning workloads show this framework overperforms Tensor-
Flow, ARMComputeLib, TensorFlow XLA, TensorFlow Lite, and MXNet from 1.2x
to 3.8 over tested frameworks. Although this paper contains a methodology of it-
erative search, it is interesting for us from the point of view of the presented cost
models and the proposed data representation.
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[38] by Cummings et al. addresses an important problem of generating data
using deep learning models. The fact is that any machine learning/deep learning
algorithm relies on the data on which it was trained. Deficiencies in the training
data, such as their unrepresentativeness can have a negative impact on the training
of the model. Hence, we get poor predictions that do not correspond to the real
state.

The authors propose a methodology using deep learning architectures to generate
a set of representative programs. They conclude that the state-of-the-art predictive
model trained on data generated by this method speedups by 27%.

2.4.4 Conclusion

This section gives us a detailed overview of how the information about code char-
acteristics is captured now and what we can improve. This information targets
explicitly chapter 6. We see the drawbacks of the existing feature spaces and over-
come them.

2.5 Machine Learning methods

Machine learning is a class of artificial intelligence methods. A distinctive feature
is that these algorithms can be trained on a set of similar tasks to solve the given
problem. Typically, they deal with tasks where it is not possible to establish the
mapping function between input and output in an explicit, human-readable form.

Since Machine Learning acts only as a tool for obtaining results in the context of
this Ph.D., we will only give a brief description of the classes of possible algorithms
to give an idea of what results can be obtained.

2.5.1 Supervised Learning

The basic idea is that we have a labeled data set. Each sample consists of a labeled
target variable and a set of independent variables (predictors). Predictors are also
called features, they represent some characteristics, some values that describe the
essence of a phenomenon being observed. Based on this labeled data set (training
set), a machine learning algorithm tries to find an optimal mapping function between
features and the target variable. When this function is found, we can use it to predict
a target variable for new samples of data.

The values of the target variable can be discrete or continuous. In the first case,
we are dealing with a classification problem, and in the second with a regression
problem.

e Common classification algorithms are Support Vector Machines (SVM), K-
nearest neighbours, Decision trees, and Random Forest, Naive Bayes, and
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Log. regression, Gradient Boosting

e Common regression algorithms are Linear Regression, LASSO (least absolute
shrinkage and selection operator), Ridge regression, and Elastic Net.

2.5.2 Unsupervised Machine Learning

In unsupervised Learning, we have no target variable to predict. Our data are not
designed in such a way as to get directly from them some kind of correct answer.
Instead, we can use existing feature representation to solve such problems as

e Clustering - grouping objects into some clusters. Objects within one cluster
are more similar than objects outside this cluster. Common algorithms: K-
Means, distribution-based clustering, hierarchical clustering,

e Associations - roughly speaking, to find interesting dependencies/relations in
our data. Common algorithms are the Apriori algorithm, Eclat algorithm, and
FP-growth algorithm.

e Autoencoders - compressing the initial data into some code, and then recov-
ering data from this code only.

2.5.3 Reinforcement learning

Reinforcement learning is one of the methods of machine learning, during which
the software agent is trained by interacting with a certain environment and getting
rewards for its actions.

Common algorithms are Q -learning, Deep Q-learning, Actor-Critic, Policy Gra-
dients, and Proximal Policy Optimization.

2.5.4 Deep Learning

Deep Learning is a subset of Machine Learning, which deserves special attention. A
distinctive feature of deep learning models is that they are able to construct data
representations automatically, not relying on extracted features. Thus, these models
can be trained entirely on raw data. By raw data, we understand the data without
any pretreatment. For example, it may be a set of image pixels or a source program
code. The deep learning model usually refers to some subsets of neural networks
(deep neural networks), which may have very different architectures and different
parameters.

Common neural network architectures are Feed-forward networks, Convolutional
NN, Residual NN, Generative Adversarial Networks, Recurrent NN, and many oth-
ers.
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2.5.5 Active Learning

Active learning is a sub-field of Machine Learning. The crucial idea is that the
model itself decides which data to use for more effective training. It finds thought
in areas where data annotation is relatively expensive or maybe not feasible. We
would like to highlight this section because it finds deep reflection in the context of
this thesis.

Sampling scenarios

Active learning pipelines [28] work under several scenarios: pool-based scenario [64],
stream-based selective sampling [63] and membership query synthesis [62]

The pool-based approach is the most suitable for the code optimization domain.
We could obtain more accurate results with this approach since we have time to
evaluate all the candidates. The main idea is that we have a pool of candidates.
Candidates of this pool are not labeled. For each candidate, we evaluate a mea-
sure that corresponds to a performance gain of the ML model after labeling this
candidate. It provides the most accurate estimation due to the evaluation of each
possible candidate from the pool of candidates. This approach has been used in the
context of this thesis.

Classification problem

(Classification is one of the two main problems of supervised Machine Learning tasks.
The idea is to choose the output value from a finite number of classes, contrary to
the regression problem where continuous value is predicted.

1. Uncertainty Sampling

The idea is to get a measure of how a classifier is sure about its prediction on
this data sample. If the classifier is not sure then we would like to label this
piece of data. We can use the entropy [101] as the required measure.

More formally, let 6 denotes the classifier, x denotes a feature vector, and y;
stands for the label of the i-th sample. Then, the chosen data sample z* equals

x* = argmax — Z P(y;0, ) x log P(y;|0, x)

i=1
The idea is to choose the data sample, which features vector gives the highest
value of entropy.

Alternatively, we can judge based on the lowest probability of the most prob-
able class.
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x* = argmin P(y, |6, x)

Where y, stands for the most probable class. The idea is that the classifier
does not know exactly where this sample belongs, and we ask to label this
piece of data.

. Query-By-Committee

The high-level idea of this method is to create a committee of models that
introduce the concurrency hypothesis. The goal is to define the measure of
their disagreement about a given data sample and to take the label which
maximizes this measure. For instance, we have four models and two potential
classes. The first two models vote for the first class, and the two second models
vote for the second class. We can construct a measure of this disagreement.

The following metrics could be used for this measure:

1 (?Jz) v (yz)
* _ E log —2%
T argmzv ax 2 C * log C

Where V(y;) gives how many votes this label got from the committee, and C
is the number of models in the committee. Alternatively, KL distance could
be used.

Regression problem

Wu et al.[65] propose a technique to generate the most representative data for a
regression problem. It consists of 3 algorithms: Greedy Sampling on the Inputs,
Greedy Sampling on the Outputs, and Greedy Sampling on the Inputs and Outputs.

Let A consists of N samples {z,,}2_,. The goal is to choose K most representative

samples.

1. Greedy Sampling on the Inputs

The main idea is to choose the initial point as the closest to the centroid of the
global pool A, and then iteratively choose points farthest from the one already
chosen to increase the diversity of the data. If we assume that k samples have
already been chosen, then for each remaining sample the method computes
the following distances.

dy =mind;, n=k+1,.. N

nm’
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Samples with the highest d” will be chosen.

2. Greedy Sampling on the Outputs

The key idea is to use greedy sampling on the inputs to build the initial
model, then to choose points with the farthest distance but in the output
space according to the model prediction. The distance formulation d¥ follows:

= f(xn) —yml|l,m=1,...ksn=k+1,...,N

where f(x) is the regression model and {y,,}* _, is a pool of already labeled
outputs.
d? =mind’ ,n=k+1,...N

nm?

3. Improved Greedy Sampling on both Inputs and Output

This approach considers the multiplication of the distances in the input and
output spaces as the deciding metric. The data sample with the highest value
is chosen.

nm-nm’

dy¥ =mind’, d; n=k+1,.. N

2.5.6 Conclusion

The overview of existing methods that we have just presented in this section high-
lights the main tools used in this thesis. Machine Learning algorithms are involved
in each section of this Ph.D. Active Learning ideas are explicitly used in Section 4
and data collection of all experiments in this thesis.

2.6 Chapter conclusion

A detailed analysis of the related work provides us with valuable insights.

e Generating synthetic data is the suitable approach for our issues. It helps us
to define the appropriate high-level specifications of the considered transfor-
mations. We can rely on existing benchmarks due to the amount of data and
data mining due to the specificity of our optimizations.

e Research on loop tiling transformation is limited to tile size prediction. We
see the potential to predict much more parameters.

e The scope of problems to which ML is applied is very heterogeneous. There is
no common pipeline or problem formulation. We can formulate the problem
of our interest in a very flexible way.
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e Much research relies on handcrafted features. There is a trend towards repre-
sentation learning, but it does not find deep reflection at the moment. We try
to fill this gap.

e Machine learning is a powerful tool that finds applicability in many domains.
There are prerequisites to successful use in code optimization. Active Learn-
ing helps us to accelerate synthetic data collection in such a time-consuming
domain.



Chapter 3

Synthetic data generator

Résumé

De nos jours, les algorithmes de Machine Learning atteignent un tres haut niveau de
performance, mais la qualité des données d’apprentissage disponibles n’est pas au
méme niveau. La qualité des données est essentielle dans les problemes modernes.
Les ingénieurs en apprentissage automatique passent la majorité de leur temps non
pas & améliorer des algorithmes, mais a résoudre des problemes liés aux données (par
exemple, collecte de données, nettoyage, synthese de données). C’est le principal
axe d’amélioration de la qualité des prédictions.

Nous soutenons que ce probleme est aussi tres présent dans le domaine de
I'optimisation de code. Nous sommes confrontés a un manque de données. Pire
encore, ces données ne sont pas nécesssairement représentatives des problemes que
nous ciblons. Il existe deux facons de résoudre ce probleme : la génération de
données synthétiques et la collecte de données a partir de sources publiques. Nous
nous sommes concentrés sur la premiere approche. Cela signifie que nous visons
une génération des données d’apprentissage a partir de caractéristiques que nous
considérons significatives. Nous présentons notre générateur de code qui permet de
cibler ces concepts de performance, la localité des données et le parallélisme.

Introduction

Nowadays, Machine Learning algorithms reach a very high level of performance,
but the quality of available training data is not at the same level. Data quality
is becoming a bottleneck in modern problems. Machine Learning engineers spend
the majority of their time not improving algorithms but solving data-related prob-
lems (e.g. data collection, cleaning, data synthesis). This is the main direction of
improvement for the quality of predictions.

We argue that this problem is very pronounced in the code optimization domain.
We are facing a lack of data. Even worse, if this data is not representative of many
of the issues we target. There are two possible ways to solve this problem: synthetic

35
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data generation and data collection from open sources (e.g. GitHub). We focused
on the first approach. This means that we would like to generate data with certain
characteristics that we consider meaningful. We present our code generator which
can target such performance concepts, data locality, and parallelism.

The results of this chapter were obtained with the help of Justyna Zawalska
and Maryna Savchenko during their internship at MINES ParisTech. Justyna and
Maryna were responsible of the first version of the code generator (generation of
the instructions and loop bounds computation). My contribution relates to array
initialization and declaration, code infrastructure, and the determination of the
appropriate high-level concepts for the generator.

3.1 Motivation

Benchmarking is an essential part of testing code optimization techniques and mod-
els. In case of obtaining unsatisfactory results, all the assumptions of the study
may be rejected. Therefore, benchmark programs must be the most indicative as
possible and reflect similar characteristics to those on which we want to apply our
techniques.

Our objective is to have benchmarks adapted to the evaluation of automatic code
transformations. These transformations (presented in Chapter 2) make it possible
to improve program characteristics such as the spatial and temporal locality of data
accesses, the loop iteration order, and the potential parallelism. The execution time
gain of a transformation depends on the transformation parameters that have to be
defined for each kernel and the target architecture.

Chapter 2 concludes that there are much fewer data in the code optimization
domain than in fields where ML shows state-of-the-art performance. There is not
enough training data to properly cover the feature space of parameters for complex
transformations such as loop tiling, loop unrolling, loop interchange, etc. As pre-
sented in Chapter 2 different transformations have different feature spaces from a
machine-learning perspective.

One training set could capture better features for one transformation, another -
for another. It becomes challenging to create a universal training set. Thus, syn-
thetic code generation is a crucial component of the proper use of Machine Learning
for code optimization.

In this chapter, our work proposes a solution to these problems. We introduce a
methodology to generate a representative benchmark that captures many computa-
tion patterns. We present a code generator that can automatically create synthetic
data. Our code generator uses information like array sizes, data dependencies, loop
index order, and data access functions as a high-level specification of the generated
code. We use a domain-specific language (DSL) to easily manipulate these con-
cepts and generate code in a very parametric and flexible way. This data generation
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approach enables the creation of highly representative training sets for program op-
timization in a machine-learning context. Moreover, we are able to generate our
codes for different benchmark distribution styles.

This chapter is structured as follows. Subsection 3.2 introduces the context of
our work, pointing out the guidelines we used in our code generator. Sections 3.3
- 3.7 introduce the main constructing blocks of the generation process. Subsection
3.8 gives a detailed description of our domain-specific language.

3.2 Guidelines for the generator

We follow three concepts as guidelines for building an automatic code generator of
programs used by machine learning techniques to predict efficient transformation
parameters.

First, Machine learning algorithms build prediction models based on training
data. The key idea is that the model should capture meaningful patterns in train-
ing data and should be able to generalize them for arbitrary input. We consider
the training set to be "good”, if the model trained on this set is able to generalize
data from the test set. However, if the training and the test sets are from different
distributions, we can expect poor performance. The model will capture patterns
during the training phase that may not be significant during the test phase. How-
ever, we do not want to mimic the test set itself. We use such high-level concepts
for the code generator to be able to express all the different patterns for the target
transformations. The global overview of each building block of this pipeline is given
in Section 3.3.

The second important concept is the amount of available data. From a machine
learning perspective, the more data available the better, and the more insights we
can obtain. However, data labeling can be a very time-consuming process (e.g.
computation of speedups for considered loop unrolling factors). Therefore, time
also constrains the size of the training set. It is important to build a representative
benchmark of the right size.

We solve this problem by using active learning methods. The idea is that not
all points in a training set have the same impacts on model training and its final
performance. Our goal is to select only the most representative samples from the
training set to match all the time constraints. This issue is discussed in detail in
Chapter 4.

The third concept concerns code characteristics. Because loop nests are often
the time-consuming computation parts in programs, our study focuses on the op-
timizations conventionally used by compilers such as loop permutation, unrolling,
tiling, etc. To optimize their execution time, it is necessary to take into account the
spatial and temporal locality of the data accesses and data dependencies to extract
the potential parallelism and apply the transformations only when they are legal.
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Therefore, the important information to consider is the number of different arrays
referenced in the kernel, array sizes, array access functions, data dependency types,
the execution order of iterations, and the iteration domain and its shape. It also
seems to be a reasonable choice to express any type of access pattern. Section 3.3
presents how this code specification is exploited in our code generator.

3.3 Code Generator Design

In this subsection, we introduce the main components of our automatic generator
of C code. For each of them, we precise the type of code generated. Figure 3.1
highlights its main building blocks.

PolyBench-like Style
and Infrastructure

Amray Declaration Computation

and A ;
Initialization Instruction ‘

Inputdata = ——»| J —| Outputcode  b--------- Ta"ﬁ:g:‘::;““’e ||

Loop Bound
Computation

¥

Code Infrastructure

Figure 3.1: Pipeline of the code generator

3.3.1 Output Code and Input Data

The objective of the generator is to automatically produce a code written in C that
respects the following hypothesis:

e it is compliant with C language,

e it is correct. The code must not produce any runtime errors such as out-of-
bound memory access, etc;

e it meets the code criteria specified by the user in the DSL sample;

e the number of instructions in the generated code that matches the input spec-
ification should be minimized;

e it includes the necessary infrastructure to perform performance tests such as
header files, directives/pragmas and calls to timing reporting functions;

e it can be easily compiled and executed. For instance, the arrays are properly
initialized in the code.
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However, these requirements do not have much in common with the high-level
criteria we want to use for code optimization. These are the number of arrays and
their sizes (memory pressure), data dependencies (management of the ordering of
iterations and instructions), an order of the loop indices, and array access functions
(pressure on spatial and temporal locality). These concepts allow us to explore
the legality of potential transformations and optimize the code. It seemed logical to
separate the high-level requirements for the code and the implementation of the code
generator. We have therefore developed a Data Specific Language (DSL) allowing
to define the high-level criteria and semantics of the targeted generated codes. This
DSL is introduced in Subsection 3.8. The information described in an instance of
the DSL is communicated in a JSON format and given as input to the generator.

We apply the building blocks of Figure 3.1 after parsing the input. After these
steps, we obtain the first version of our code. Then there is the option to process the
generated code to a PolyBench-like style or another benchmark distribution style.

Note that it is also easy to produce code for an architecture other than CPU
such as GPU. Indeed, we can add an additional pass translating our kernels into

dedicated GPU code as is the case in the PIPS framework [33].

3.3.2 Array Declaration and Initialization

The code generator takes array sizes from the input file (DSL description) and
dynamically or statically (depending on the chosen option) allocates the requested
arrays. The code generator may choose array sizes automatically if the user uses
the PolyBench-like style of kernels. For instance, the EXTRALARGE_DATASET
directive indicates that arrays should not fit the L3 cache. Then the code generator
will perform these computations respecting the directive and ignoring any numeric
input. The following default options are available for array initialization in the same
manner as in PolyBench 4.2:

¢ EXTRALARGE. Around 120MB of memory.

LARGE. Around 32MB of memory. Arrays should not fit within L3 cache.

MEDIUM. Around 1MB of memory. Arrays should not fit within L2 cache
but may fit within the L3 cache.

SMALL. Around 128KB of memory. Arrays should not fit within L1 cache
but may fit within the L2 cache.

MINI. Around 12KB of memory. Arrays should fit within L1 cache.
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3.3.3 The shape of the initialized arrays

Our code generator allows the generation of arrays of arbitrary shapes in manual
mode. For example, hyper rectangular shape A[35][10][4] is possible. However, pre-
defined options for array size generate only cubic/square shapes of the arrays with
powers of two sizes (e.g. A[16][16][16]).

3.3.4 Array size selection in automatic mode

The main idea is that all requested arrays should take about ”the same amount” of
memory. We introduce the logic of array size selection in automatic mode with the
example below.

Suppose the user asks to generate one 2-D array and two 3-D arrays with the
EXTRALARGE option. The type of each array is assumed to be integer.

Let x be the size of each dimension for the 2-D array (it has a square shape),
y and z are the sizes for the two 3-D arrays. The equation below implies that the
sum of the sizes of all arrays should be approximately equal to the size denoted as
an EXTRALARGE cache:

4 bytes x (22 +9® + 23) = 1.2 % 108 bytes = 2% + y> + 2% ~ 3 x 107 bytes.

We assume that each array should take about "the same amount” of memory.
It means that 2, respectively y® and 23, should be close to 107.

Finding the closet powers of two that respect these constraints, we found that
r = 2048, y = z = 256.

Hence, we generate A[2048][2048], B[256][256][256], C[256][256][256] and these
arrays occupy 150 MB of memory which is quite close to the desired conditions.

3.4 Computation Instructions

This component generates the computation instructions included in the loop nest.
Each instruction is composed of a reference to a write array and several (at least
one) to read arrays. The array access functions are either explicitly given by the
user or defined by the generator that respects the data dependencies which have
been expressed in the DSL sample.

The main challenge is that when we generate code directly based on what the
user has requested, more instructions than necessary can be produced. Indeed, it is
possible to generate an instruction for each requested dependence or to generate a
single instruction carrying all the dependencies. The goal is to minimize them. We
use simple heuristics.

The main idea is to check the set of already generated dependencies after each
generated reference. It helps to control the number of dependencies at each step and
to take into account already generated ones to optimize the number of generated
instructions.
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3.5 Loop Bound Computation

The generated code should be correct. To avoid out-of-bound memory accesses
to array elements, the generator computes the largest computation iteration do-
main according to the array declarations and the array access functions. We use
linear-programming techniques to compute correct bounds. For constant (uniform)
dependencies, we generate numerical values for loop bounds. Non-constant (non-
uniform) dependencies require the usage of macros that calculate the MIN and MAX
values of several linear expressions (e.g. Listing 1.2 1.3) in our approach.

Our generator generates kernels made up only of perfectly nested loops. This
assumption comes from the loop transformations that we want to use and which
only apply to this type of loop nest.

3.6 Code Infrastructure
This component consists of adding all the infrastructure necessary for the execution
of a stand-alone C program with time-reporting functions. It includes:

e header files (header from line 9, Listing 3.1)

e variable declaration (lines 70-78)

e initialization, array allocation, and deallocation (lines 11-29, 76-78, 82-84)
e calls to time reporting functions (lines 88, 98, 99)

e pragmas and directive insertion (lines 1-9, 90, 97)

e adjustment of array sizes according to the requested cache size (Section 3.4.4)

This phase is classic and systematic. It is the same whatever the input, except
for the variable declarations and array allocation, which considers the given code
specifications. It concludes the generation of the basic style code.

3.7 PolyBench-like Style and Infrastructure

PolyBench 4.2 is considered one of the most famous benchmarks in the code opti-
mization domain. We propose a processing pass that transfers our generated kernel
to a PolyBench-like style. This pass adds the PolyBench header files, uses its array
allocation and deallocation functions, includes calls to execution time reporting, and
some pragmas marking kernels. Then the processed code could be considered as just
one more computational kernel from the PolyBench suite. It allows users to use the
known code style and to use the convenient infrastructure of this benchmark.
The example of the generated code is shown on the listing 3.1
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Listing 3.1: PolyBench style generated code

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <string.h>

4 #include <math.h>

5 #include <polybench.h>

6 #include <stdio.h>

7 # include < time.h >

8 # include < stdlib.h >

9 #include \"16136950084198.h\"

10

11 static void init_array (int xa, int ya, DATA_TYPE POLYBENCH_2D (A, xA, yA, xa, vya),
int xb, int yb, DATA_TYPE POLYBENCH_2D (B, xB, yB, xb, yb), int xc, int vyc,
DATA_TYPE POLYBENCH_2D(C, xC, yC, xc, yc)) {

12 srand (time (NULL)) ;

13 int i, 3, k, 1;

14 for (i i < xa; i++) {

15 for j o< ya; j++) {

16 Al rand () % 50;;

17 }

18 }

19 for (i = 0; i < xb; i+4++4) {

20 for (j = 0; j < yb; j++) {

21 B[i][j] = rand() % 50;;

22 }

23 }

24 for (i = 0; i < xc; i++) {

25 for (j = 0; 3 < yc; j++) {

26 C[i]l[j] = rand() % 50;;

27 }

28 }

29 }

30 static void print_array (int xa, int ya, DATA_TYPE POLYBENCH_2D (A, xA, yA, xa, vya),
int xb, int yb, DATA_TYPE POLYBENCH_2D (B, xB, yB, xb, yb), int xc, int yc,
DATA_TYPE POLYBENCH_2D(C, xC, yC, xc, yc)) {

31 int i, j, k, 1;

32 POLYBENCH_DUMP_START ;

33 POLYBENCH_DUMP_BEGIN ("A") ;

34 POLYBENCH_DUMP_START ;

35 POLYBENCH_DUMP_BEGIN ("A") ;

36 for (i = 0; i < xa; i++) {

37 for (j = 0; j < ya; j++) {

0
38 fprintf (POLYBENCH_DUMP_TARGET, "\n");
(

39 fprintf (POLYBENCH_DUMP_TARGET, DATA_PRINTF_MODIFIER, A[i]l[3F]);
40 }

41

42 POLYBENCH_DUMP_END ("A") ;

43 POLYBENCH_DUMP_FINISH;

44 POLYBENCH_DUMP_START ;

45 POLYBENCH_DUMP_BEGIN ("B") ;
46 POLYBENCH_DUMP_START ;

47 POLYBENCH_DUMP_BEGIN ("B") ;
48 for (i = 0; i < xb; i++4) {
49 for (j = 0; j < yb; j++) {

0
50 fprintf (POLYBENCH_DUMP_TARGET, "\n");
(

51 fprintf (POLYBENCH_DUMP_TARGET, DATA_PRINTF_MODIFIER, B[i][3F]);
52 }

53

54 POLYBENCH_DUMP_END ("B") ;

55 POLYBENCH_DUMP_FINISH;

56 POLYBENCH_DUMP_START;

57 POLYBENCH_DUMP_BEGIN ("C") ;
58 POLYBENCH_DUMP_START ;

59 POLYBENCH_DUMP_BEGIN ("C") ;
60 for (i = 0; i < xc; i++) {
61 for (j = ;03 < ver d++) |

0
62 fprintf (POLYBENCH_DUMP_TARGET, "\n");
(

63 fprintf (POLYBENCH_DUMP_TARGET, DATA_PRINTF_MODIFIER, C[i][j]);
64 }

65 }

66 POLYBENCH_DUMP_END ("C") ;

67 POLYBENCH_DUMP_FINISH;

68 }

69 int main(int argc, char ** argv) {
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int xa = xA;
int ya = yA;
int xb = xBj;
int yb = yB;
int xc = xC;
int yc = yC;

POLYBENCH_2D_ARRAY_DECL (A, DATA_TYPE, xA, yA, xa, vya);
POLYBENCH_2D_ARRAY_DECL (B, DATA_TYPE, xB, yB, xb, yb);
POLYBENCH_2D_ARRAY_DECL (C, DATA_TYPE, xC, yC, xc, yc);

init_array (xa, ya, POLYBENCH_ARRAY (A), xb, yb, POLYBENCH_ARRAY (B), xc, vyc,
POLYBENCH_ARRAY (C) ) ;
kernel _16136950084198 (xa, ya, POLYBENCH_ARRAY (A), xb, yb, POLYBENCH_ARRAY (B),
yc, POLYBENCH_ARRAY (C)) ;
polybench_prevent_dce (print_array (xa, ya, POLYBENCH_ARRAY (A), xb, vyb,
POLYBENCH_ARRAY (B), xc, yc, POLYBENCH_ARRAY (C))) ;
POLYBENCH_FREE_ARRAY (A) ;
POLYBENCH_FREE_ARRAY (B) ;
POLYBENCH_FREE_ARRAY (C) ;
return O0;
}
void kernel_16136950084198 (int xa, int ya, DATA_TYPE POLYBENCH_2D (A, xA, VA, xa,
, int xb, int yb, DATA_TYPE POLYBENCH_2D (B, xB, yB, xb, yb), int xc, int yc,

DATA_TYPE POLYBENCH_2D(C, xC, yC, xc, yc)) {
polybench_start_instruments;
int i, Jj, k, 1;
#pragma scop

tiling_3D: for (i = 0; 1 < 1024; i++)
tiling_2D: for (j = 0; J < 1024; j++)
< 1024; k++) {
[3]

for (k = 0;

k
Al[i]1 (3] A[1i]

.

- B[Jjllk] - C[jllk] + 72;

#pragma endscop
polybench_stop_instruments;
polybench_print_instruments;
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3.8 Domain-Specific Language

Our domain-specific language makes it easy to express the specifications of the code
we want to generate. The code generator is then in charge of producing a code
consistent with the specifications and guaranteeing the correction of the generated
code. Moreover, it is much easier to generate a JSON file (the format of our DSL)

than the entire code.

3.8.1 Grammar

The subsection below presents the grammar of our DSL.

<alpha> ::= 'a’" .. 'z’ | 'A" .. 'Z7'
<digit_positif> :: 112131415|6]1718]9
<digit> ::= 0O|<digit_positif>
<integer> ::= <digit_positif> <digit>*

<array_name> ::= <alpha>+ (<digit>* |<alpha>¥*)
<dim_name>::= <alpha>+ (<digit>* |<alpha>¥*)
<dependence_name>::= <alpha>+ (<digit>* |<alpha>*)
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<array_type> ::= type : (float | double | int) ,

#definition of symbolic size ex: x:32,y:64

<size> ::= <dim_name> : <integer>

#sizes : x:32,y:64

<sizes> ::= sizes : { (<size> ,)* <size> },

<distance> ::= <dependence_name> : <integer>

#distances: dl:2,d2:6

<distances> ::= distances : { ((<distance> ,)* <distance>) } ,
# x | 32

<array_dimension> ::= <dim_name> | <integer>

#init_with : random

<array_init_value> ::= init_with : (zeros | ones | random) ,

#loop_nest_level : 3
<loop_nest_level> ::= loop_nest_level : <digit_positif> ,

# Alx,y]l | A[32,64]
<array> ::= <array_name> [ (<array_dimension> , )* <array_dimension> ]
<array_declaration> ::= array declaration : { (<array> , )* <array> } ,

# index_permutation has as many digits as the number of loops.

#The order corresponds to the array access function of the elements written.
#It will be used for the array access function of the read array elements,

# in case of constant dependencies

<index_permutation> ::= index permutation : [ (<digit> , )* <digit> ]

<constant_dim_dependence> ::= <dependence_name> | <integer>

# constant_dependence has as many constant_dim_dependence as the

# array dimension.

#ex: constant_dependencies :[dl,d2] | [-2,1]

<constant_dependence> ::= [ (<constant_dim_dependence> , )*
<constant_dim_dependence> ] ,

# there can be several references to the same array with different
# constant dependencies.
#Here the array name is the referenced array of the instruction.
<constant_dependencies> ::= constant_dependencies
{ (<constant_dependence> , )*
<constant_dependence> } '
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<referenced_array> ::= array_nhame : <array_name> ,

# array_dim_access_function has as many digits as the loop indices +1.
#The last dimension corresponds to the constant offset.

#It corresponds to one row of the array_access_function matrix.
<array_dim_access_function> ::= [ (<digit> ,)* <digit> ] ,

# as many array_dim_access_function as the array dimension.
#Here the array name is the referenced array of the additional computation.
<array_access_function> ::= array_ access_function
[ <array_dim_access_function> , )*
<array_dim_access_function> ] ,

# there can be additional computations with several references to the same
# array with different array access functions
# Here, the elements of the referenced array are read
<additional_computations> ::= additional_computations
{
({ <referenced_array> <array_access_function> } ,)*
{ <referenced_array> <array_access_function> }
b
# here, the elements of the referenced array are written
<instruction> ::= { <referenced_array>
<index_permutation> <constant_dependencies>
<additional_computations>}

# there can be several instructions in the loop nest body.
<instructions> ::= instructions : { (<instruction> ,)* <instruction> } ’

<kernel> ::= <sizes> <distances>
<array_type> <array_init_value> <loop_nest_level>
<array_declaration> <instructions>

3.8.2 High-Level Specification

We use the number of arrays, data dependencies, loop index order, and array access
functions as high-level code specifications for our code. The main motivation to use
them is that these concepts have a critical impact on the performance criteria of
many code transformations we want to apply. For instance, the number of arrays
referenced in the kernel and their layout has an impact on memory pressure. The
data dependencies define the legality of the transformations that can be applied.
Loop interchange, loop distribution, and loop tiling are not always legal whereas
loop unrolling can always be applied. They impact the iteration and instruction
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orders as the potential parallelism that can be extracted from the computations.
The loop index order and array access functions define the spatial and temporal
locality of the computations that we seek to increase in order to reduce the pressure
on caches.

3.8.3 DSL Concept

In this subsection, we introduce briefly the code specification that is given as input
to generate the code. An example of a DSL sample is represented in Listing 1.
The main structures of our DSL, with their default values, follow:

e Array name, type, and size: array type could be float, double, or int. Array size
is numeric or symbolic depending on variables defined in a previous variable-
declaration code section.

e Array initialization value could be one, zero, or random.
e Loop nest level defines the number of nested loops.

For each wnstruction included in the loop nest, the written array reference is
set first. Then, in the case of dependencies, for each one, a read reference to the
same array verifying the dependency characteristics is added to the instruction. The
instruction-block components are:

e the Array name which precises the array to be referenced in the written part,
and in the reading part if constant dependencies are requested,

e the Index permutation that precises the permutation of loop indices to consider
in the array access function, and

e the Constant dependencies (if any) which are expressed as dependence vectors
whose size depends on the array dimension (e.g. Listing 3.2 1.5). There could
be a list of dependencies.

The previous instruction block enables only to the addition of constant depen-
dencies, so additional-computation blocks could be added for each instruction. These
blocks are used to add references to new arrays or to new references to the same
array with more complex linear access functions. This block is composed with:

e Array name precises the additional array to be referenced in the reading part
of the instruction.

e Array access function is expressed as a numerical matrix (nxm) (e.g. Listing
3.2 1.7). mis the size of the loop index vector plus 1 component for a potential
constant value. n is the array dimension. This access function may imply
complex dependencies with the other references.
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Note that additional dependencies can be introduced via successive instructions.
They can come from the complex array access functions given in the DSL sample.
Our generator therefore can only guarantee that at least the set of dependencies
requested by the user is included in the nest of loops.

Listing 3.2 illustrates an example of the input file, giving the requested code
specification using our DSL. Listing 3.3 expresses the computation kernel generated
by our generator.

Listing 3.2: Input JSON file

[{”arrayisizes”: {”XA”: 64, "yA": 32, "zA": 128}, "type": "int", "init_with": "

random", "loop_nest_level": 3,
"arrays": ["A[xA,yA,zA]", "B[256,256]"],
"instructions": [{”array_name”: "A",

"index_permutation": "(1,0,2)",

"dependencies": {"distance": "[(1,2,3)]1"},

"additional_computation": [{”arrayiname“: "B",

"array_access_function": "[[0,2,0,8], [1,1,1,8]1]1"}1}1}]

Listing 3.3: Generated code

int A[64][32][128],B[256][256];

for (int i

= 0; i < 30; i++)
for (int j = 0; J < 63; J++)
for (int k = max(-i-3j-8, 0); k < min(248-i-3j, 125); k++)
AlJ1[11[k]1=A[J+1]1[1i+2] [k+3]+B[2*j+8] [i+j+k+8];

3.9 Conclusion

This chapter presents a tool for efficiently generating benchmarks for the code op-
timization domain. It includes

e An automatic code generator enabling to imitate of some existing benchmark
styles

e An associated DSL handling the high-level specification of the code to be
generated

The concepts used to specify the generated code are simple: the number of
arrays, loop index order, array access functions, and data dependencies, but enough
to create highly representative codes for code optimizations. The state-of-the-art
has proven these concepts have a strong impact on the performance criteria of the
code transformations commonly applied to kernels for efficient parallel execution.
Hence, our generator can produce representative code for training Machine Learning
models in the context of the optimization problems mentioned above. Machine
Learning algorithms would be not able to draw reasonable conclusions and make fair
generalizations without representative data. This synthetic code generator solves
this problem.
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The number of potential codes that we can generate is not limited, but bound by
time constraints for data labeling. In our experiments, we create several thousands
of programs for each task. The aspects of proper generation strategy and how well
it covers a feature space will be discussed in the next chapter.

Potential future work related to this generator concerns the extension of our
benchmark criteria with arbitrary loop nests, not necessarily perfectly nested. This
will extend the type of code transformations that can be tested.

Our generator can be extended to many programming languages (not only C)
because the principal concepts we used are language-agnostic. It only requires some
changes in the syntax and code routines for successful translation into the target
language.



Chapter 4

Data augmentation and optimal
experimental design

Résumé

Ce chapitre fournit un pipeline sur la facon d’organiser ’ensemble des données
nécessaires a la phase d’apprentissage et engendrer une stratégie de génération effi-
cace en terme de performance du modele. Du point de vue du ML, plus il y a de
données disponibles, mieux c’est et plus nous pouvons obtenir d’information. Cepen-
dant, I’étiquetage des données peut étre un processus tres long. Par conséquent,
le temps limite également la taille de I'ensemble d’apprentissage. Il est impor-
tant de construire un benchmark représentatif avec une taille raisonnable. Aussi,
I'optimisation de la phase d’apprentissage permet de réduire la consommation d’énergie
nécessaire a |'utilisation des techniques ML dont on sait qu’elle est importante.

Nous introduisons des techniques d’apprentissage actif pour former 1’ensemble
d’apprentissage et proposons un pipeline de ’ensemble du processus d’optimisation,
utilisant ces données, pour la sélection efficace de la taille des tuiles 3D. Nous
évaluons I'impact de la nouvelle stratégie et la comparons aux pipelines classiques
d’apprentissage passif.

Dans cette section, nous évaluons notre méthodologie complete sur la transfor-
mation de tuilage, mais les idées principales utilisées pour obtenir toutes les données
d’apprentissage sont applicables a d’autres transformations.

Introduction

The previous chapter presents the generation and underlying concepts of code gen-
eration, but it says nothing about how it should be used to generate data to solve
a concrete problem.

Moreover, there are many ways to define the generation strategy, but how to
select the optimal one? This section tries to answer these questions.

49
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4.1 Motivation

Chapter 3 presents the high-level parameters we have chosen to characterize our
generated code and its associated DSL to express them. We need to generate many
files written in our DSL, pass them to the code generator, collect outputs and thus
obtain a training set. The way how we generate the input files is called the generating
strategy.

There is a bunch of requirements for the generating strategy. On one hand, the
input files should capture meaningful properties of the problem posed. On the other
hand, these properties should have a great diversity. Intuitively it means that we
would like to explore all possible values of the properties that we are exploring. We
can draw reasonable conclusions based on that.

This chapter provides a pipeline on how to organize the training set/choose the
generation strategy in the best way in terms of model performance. From an ML
perspective, the more data available the better, and the more insights we can obtain.
However, data labeling can be a very time-consuming process. Therefore, the time
also constrains the size of the training set. It is important to build a representative
benchmark with a reasonable size. Also, optimization of the learning phase helps
to reduce the energy consumption necessary for the use of ML techniques which is
known to be important.

We introduce Active Learning techniques to form the training set and show the
pipeline of the whole process for the 3-D tile size selection problem. We evaluate
the impact of the new strategy and compare it to the classical Passive Learning
pipeline.

In this section, we evaluate our complete methodology on the tiling transforma-
tion, but the main ideas used to obtain all the training data are applicable to other
transformations.

This section is organized as follows. Section 4.2 introduces the ML pipeline
of our experiments and highlights metrics, and concrete ML models. Section 4.3
presents the basic steps of the Active Learning pipeline and shows the results in the
context of different ML models and different feature spaces. Section 4.4 draws the
conclusion about the applicability of our methods.

4.2 Machine Learning modeling

Our objective is to show that our approach can accelerate the techniques of code
optimization using ML in the context of a given feature space. In this section,
we describe the pipeline that we would like to accelerate using Active Learning
techniques. By accelerating, we mean the need for less training data to achieve
good performance (in terms of obtained speedups after our predictions) compare to
the original pipeline. Alternatively, we can achieve the same level of performance
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using less amount of data compared to the original pipeline.

4.2.1 Machine Learning pipeline
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Figure 4.1: Training and prediction pipeline

We investigate the problem of loop tiling size prediction for 3-D cubic tiles to
validate our Machine Learning model. We consider tile sizes from 2 to 512 for the
experiments and predictions. As features, we take the code characteristics proposed
by a) Yuku et al. [1], b) Liu et al. [45] and ¢) one-hot encoding [8] of array references.

We consider this problem a regression problem. The model takes the features
mentioned above as input and predicts the values of the tile sizes in the real domain.
A heuristic of rounding the tile size to the nearest divisor of the loop bound could
be applied and was used in our experiments. It impacts a lot on the performance,
this heuristic is discussed in detail in Section 5.2.2.

Then we generate the code based on the predicted tile size. The training and
prediction pipelines are shown in Figure 4.1. The main idea is that a set of feature
vectors and corresponding labels are used to tune the ML model. Then this model
is used to make the predictions (tile size) for a given code. Predicted tile size is used
for the code generation step. After we get the optimized code.

Note that once the training pipeline phase is complete, the parameters of the
prediction model are fixed. It is possible to predict with this tuned model the best
parameters of the program transformation we want to apply in one shot. This model
can then be integrated into a compiler.

A program Autotuner, such as LOCUS [32], typically uses several techniques to
traverse a solution space and find an optimal version of a program. But the time
needed to reach this solution for a program is not comparable to that of a single
one-shot prediction of a tuned machine learning model. For this reason, we use the
result of the Autotuner only as a reference of the optimal version to compare with
our best-predicted version of the program.
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4.2.2 Machine Learning models

Machine Learning models could be classified as linear ones and nonlinears ones.
The main difference is that linear models assume the linear relationship between
input features and the output. We argue that non-linear machine learning models
are more appropriate for our problem. There exist cases where the model must
solve the following dilemma: to optimize the level of parallelism or to optimize data
locality? Maximization of one factor could negatively impact on the other factor.
It can be seen as a decision tree. This is the main prerequisite for using nonlinear
models for this task. Random Forest regressor [93] showed the best results in terms
of metrics considered in our experiments.

4.2.3 Metrics

The mean squared error (MSE) or mean average error (MAE) losses were used as
Loss Functions for regression.

MSE = %Z?Zl(y} — y;)?, where y; is the ground-truth value of the optimal
tile size of the i-th data sample, and y; was predicted by our ML model. We use
this metric for ML modeling since optimal tile sizes are distributed near the same
neighborhood, and we want to penalize our model if it predicts tile sizes that are
far from the global optimum.

MAE = %22;1 lyi — Uil

It handles local minimum situations better than MSE (mean square error), but
penalizes less for the predictions that are far from the global minimum.

These cost functions have several drawbacks. They do not provide explicit in-
formation about our target goal - fast code execution. The losses provide no infor-
mation to the programmer on how the generated code would perform in terms of
execution time. Moreover, they do not provide insights into architecture parallelism
and the profitability that we can gain from the transformation. The illustration of
the previous statement can be observed in Figures 5.5 and 5.6 in the next chap-
ter. The y-axis (execution time) gives insights into the profitability of the tiling
transformation for given tile sizes.

That is why we introduce the second-step metric showing how far we are from
the most efficient generated code. We use the following relative speedup metric.

RS; = %, where speedup(y;) gives the speedup obtained after tiling the
code with the predicted parameter. And speedup(y*;) gives the speedup found
by the Autotuner. An average relative speedup can be computed with RS =
% Z?:l RS;.

The drawbacks of this function are that it is very sensitive to outliers. RS of a tile
in the same neighborhood may be different due to factors that are not possible to take
into account using existing feature spaces. For instance, information about divisors
of the iteration space is not included in the mentioned feature spaces. Imagine, we
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have a cubic iteration space with 1024 iterations per loop, tile sizes 32 and 33 would
be very similar from the point of view of MAE and MSE metrics. But RS could
be significantly different due to the non-uniform balancing factor of computations
between threads.

Moreover, it does not have derivatives; it is a piecewise-defined function. Hence,
it is not applicable to be used for the training of many ML models. Thus, each metric
is more appropriate for the stage where it is used. The combination of both provides
a more correct way to navigate the training process and evaluate the results.

MSE loss for Random Forest, Passive Learning vs Active Learning
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Figure 4.2: Yuki et al., MSE on validation set
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Figure 4.3: Liu et al., MSE on validation set

4.3 Active Learning

Data labeling is the calculation of a value of the target variable for a data sample of
the training set. This step can be very time-consuming in traditional ML pipelines.
It makes sense to find a trade-off between how quickly we collect data and the
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MSE loss for Random Forest, Passive Learning vs Active Learning
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Figure 4.4: One-hot encoding, MSE on validation set

accuracy of the final model. The issue of optimal experimental design arises. How
to construct our training set to get the maximal possible gain? The techniques used
in the active learning domain seem a promising direction to answer this question.
A detailed overview of Active Learning methods was presented in Chapter 1.

4.3.1 Experimental statement

The learning process goes more efficiently for data generated with active learning,
especially when we do not have expert knowledge about the given domain. We
expose this statement to demonstrate the applicability of active learning techniques
for the code optimization domain. While any handwritten strategy brings some
bias to data, especially in case the expert knows which benchmarks will be used for
testing, active learning appears to be the approach to facilitate representative data
generation without introducing significant bias.

The pipeline for training the model is shown in Figure 4.1. The set of C programes,
used as inputs, could be obtained using naive sampling (passive learning) or more
sophisticated strategies (active learning). The quality of the predictions and the
speed of convergence of the models depends on this set.

4.3.2 Generating strategy

Training, test, and validation sets are required to properly tune the model and
evaluate its applicability for real problems.

We train the ML model on the training set. The validation set is needed to
evaluate the model performance (MSE) and determine its parameters based on that.
The test set represents real-world data. We use our generator to sample data for
the training and validation sets. We use a simple generation strategy that does not
require any expert knowledge about the feature space for the loop tile size prediction.
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The most important parameters that we vary are the existence of data dependencies,
the number of statements and arrays involved in the computations, and loop index
permutations.

10000 kernels were randomly sampled to obtain a pool of not annotated data.
Then, the Active Learning phase chooses 1250 most suitable kernels (training set
for Active Learning). We do the labeling of the chosen samples and train the model
on them. 300 kernels were sampled (from the same distribution as 10k kernels) and
labeled for the validation set. There are not involved in model training but are used
as intermediate evaluation of the performance.

9 well-known computational kernels were taken to form our test set. We com-
pute the average relative speedup for them after tiling to assess the quality of the
generated code.

Statistical characteristics

We provide mean, variance, and standard deviation for the features of programs
chosen by Active and Passive learning. They are shown in Table 1 and Table 2.
These features introduce the count of array references that match different patterns,
6 different patterns were provided. The statistical characteristics show how many
these patterns we can observe for the average kernel in the training sets and the
variance of these counts.

Active Learning tends to suggest data with higher variance and larger absolute
values of features. It means that Active Learning takes - more diverse programs in
terms of these counts, - programs with more array references inside of any pattern.

Invariant Read | Locality Read | No locality Read | Invariant Write | Locality Write | No locality Write
Mean 3.30 3.25 3.5 0.98 0.95 1.01
Std. Dev 2 1.96 2.05 0.75 0.76 0.74
Variance 4.00 3.86 4.22 0.56 0.57 0.55

Table 4.1: Statistical characteristics, Active Learning candidates

Invariant Read | Locality Read | No locality Read | Invariant Write | Locality Write | No locality Write
Mean 3.04 2.98 3.04 0.92 0.91 0.92
Std. Dev 1.79 1.8 1.83 0.71 0.70 0.71
Variance 3.23 3.24 3.37 0.51 0.49 0.51

Table 4.2: Statistical characteristics, whole set of candidates

4.3.3 Passive Learning Training Set

We sample the same amount (1250) of kernels with random sampling to compare the
performance of the model trained on the training set obtained with Active Learning.
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These 1250 kernels were chosen randomly also from the 10000 samples of not labeled
data.

We investigate the possibility of Active Learning to shift the distribution to
meaningful patterns in a given distribution.

4.3.4 Data labelling

The data labeling process begins after the choice of the kernels of the training set.
This process is very time-consuming. For each kernel, we generate about 300 code
variants (tiled codes with different tile sizes) and execute them to assign labels for
the regression problem. The time to propose a variant plus its execution time varies
from 0.1s to 50s, the median value is about 2s.

The whole process is equal to the number of repetitions x number of variants
x number of kernels x (the time to generate a variant + the time to execute
the variant). For us, it took around 30 days to label all the required data. This
estimation illustrates that the data labeling process time can be significant. When
time is limited, data quality becomes crucial. This is the main motivation for using
the Active Learning approach.

4.3.5 Experimental results

The objective of this chapter is not to find the best ML algorithm to perform tiling
but to propose efficient techniques to automatically generate benchmarks suitable for
the evaluation of code transformations and used as input for the ML techniques. In
this section, we compare the results obtained with the Active and Passive Learning
approaches.

The experiments were run on Intel® Core™ i7-8650U 4C/4T @1.90GHz with
capacity caches of L1: 32KB, L2: 256KB, L3: 8192KB, and 32GB DDR4 DIMM
RAM, Phys. cores: 4, Compiler: GCC 5.4.0, Number of Threads: 4, Opt. level:
-03

Loss on the validation set

Figures 4.2, 4.3, 4.4 compare the MSE on the validation set for the Active Learning
approach and the Passive Learning approach for 3 different feature spaces. X-axis
corresponds to the number of training kernels involved into the training process, Y-
axis shows the MSE loss on the validation set. The lower loss the better. It shows
the fact that the square of the difference between the true tile size and the predicted
tile size is less for lower points than for higher points. Blue line shows the losses for
the Passive Learning strategy and the orange line for Active Learning approach.
MSE was scaled by the minimum value found for the Active Learning strategy for
the corresponding feature space. We can conclude that the larger the feature space
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we have, the more impact Active Learning techniques could have. We observe the
biggest gap between Active and Passive Learning performance for 4.4. This feature
space contains 18 numerical values that capture array accesses. On the other hand,
the training set gain for 4.3 is not obvious since it has just 4 features related to
array access encoding.

At some point, the losses for both strategies converge. But Active Learning
significantly overperforms (for Yuki et al. and One-hot encoding) Passive learning
under current settings due to the choice of the most diverse data. This fact could
be used for problems where we have time constraints for data labeling and we need
a faster-converged ML model.

Tiling size prediction, Yuki et al. feature space
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Figure 4.5: Yuki et al. features, Average relative speedups

Losses on the test set

We measure the average relative speedup for the test set to evaluate the quality of
the generated code. Figures 4.5, 4.6, 4.7 show the results for nine well-known compu-
tational kernels after applying loop tiling and for three different feature spaces. The
blue columns correspond to the training process based on passive learning settings,
and the red ones - are based on Active Learning.

The other columns correspond to speedups obtained with the state-of-the-art
LOCUS auto-tuner [32] when loop tiling is applied. The autotuner’s search space
is made up of the same points as for our ML model (integer values from 2 to 512
for 3-D cubic tiling). LOCUS was asked to execute 300 points out of the search
grid to find its best solution. These last results are used as references to know how
far we are from the optimum. The higher the bar, the better. It shows the fact
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Tiling size prediction, Liu et al. feature space
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Figure 4.6: Liu et al. features, Average relative speedups
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that the found speedup the closer to the speed that the autotuner found during the
exhaustive search.
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Figure 4.8 introduces the relative average speedups for the three different feature
spaces. The average relative speedup with the Yuki et al.[l] features obtained by
Active Learning is 71% out of the speedup found by LOCUS autotuner. The average
speedup obtained by Passive Learning is 58%. The same result is observed for the
one-hot encoded features [8]. The corresponding values for Liu et al.[45] features
are 68% and 53%. The average speedup with Active Learning is 69% compared to
64 % without it.

Predictions made by our models were not robust for kernels TMM and Floyd-
Warshall. It means that each new piece of data could dramatically change the
performance. We connect it with the factors that impact performance but are not
taken into account in the used feature spaces. This is a non-rectangular iteration
space for the TMM kernel and a conditional statement for Floyd-Warshall. Our
training data had only rectangular iteration spaces and did not contain conditional
statements. For other kernels, we observed more or less the same behavior not
depending on the feature space. The closer kernel is to the center of the data points
used - the better predictions we have.

Active Learning performs better than passive learning on average and for the
majority of kernels. The average speedup along feature spaces is 1.11x higher with
the use of Active Learning. The results obtained show that the active learning
approach can traverse the learning process more efficiently and shift the distribution
of chosen kernels toward important patterns. For the results shown in this chapter,
we used Greedy Sampling on both Inputs and Outputs since it achieved the best
quality.

Losses on the test set. Alternative Machine Learning models

Figures 4.9, 4.10, 4.11, 4.12, 4.13 show the loss function on the test set for the
Active Learning and the Passive Learning approaches. Each point was obtained by
training the model on the exact number of training samples and measuring MAE.
MAE was scaled on the minimal value found for the Active Learning strategy for
each classifier. K-top ranked points were taken to compute the function at point
k (at the x-axis). We trained these models on a restricted training set (top-300
programs) due to time constraints.

At some point, the losses for both strategies converge. But Active Learning
significantly over-performs Passive Learning under current settings due to the choice
of the most diverse data. This fact could be used for problems where we have time
constraints for data labeling. We can observe that at some point MSE/MAE loss
stops to decrease for the Active Learning approach. Firstly, we investigated just
300 kernels for the training. Perhaps, it may go down investigating more kernels.
Secondly, we considered the relatively simple transformation and used feature spaces
with not high cardinality. For the experiments in the next chapters, the saturation
point would be shifted much righter in terms of the kernels used, since we need to
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cover more patterns in data.

We provide the results of the experiments for five ML models: Random Forest,
Gradient Boosting, Decision Tree, SVR, and Lasso. Due to computational non-
stability, results for the Decision Tree cannot be interpreted, but they are stable
for the other classifiers and Active Learning overperforms Passive Learning for each
We can observe more pronounced results for non-linear models (Random
Forest and Gradient Boosting) with a gain in terms of loss up to 100%, for linear

case.

models it is up to 20%.

MAE loss for Random Forest, Passive Learning vs Active Learning
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Figure 4.9: Random Forest, MAE (scaled) on the test set
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Figure 4.10: Gradient boosting, MAE (scaled) on the test set

Figure 4.14 introduces the MAE loss for different ML models. Non-linear models
(Random Forest and Gradient Boosting) perform much better than linear ones.

MAE loss is more than two times less.
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MAE loss for Decision Tree, Passive Learning vs Active Learning
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Figure 4.11: Decision Tree, MAE (scaled) on the test set
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Figure 4.12: Lasso, MAE (scaled) on the test set

Sampling strategies comparison

We also provide a comparison of different sampling strategies in figure 4.15.

The greedy Sampling strategy on Inputs and Outputs performs the best. These
results demonstrate that diversity in each concept matters and their combination
can bring significant gain. However, diversity in inputs brings more profit.

4.4 Conclusion

This chapter presents a methodology for efficiently generating benchmarks for code
optimization using ML techniques. It presents a smart strategy with active learning
for extending the benchmark as needed.

We have proposed a strategy to increase the amount of data in a limited time. In
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MAE loss for SVR, Passive Learning vs Active Learning
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Figure 4.13: SVR, MAE (scaled) on the test set

this way, we only generate the most useful inputs. This approach allows us to select
the best data for analysis and generate the most representative machine-learning
models if we do not have enough expert knowledge about the domain or do not
want to introduce bias in the selection. The speedup gain for our strategy is up to
15% higher depending on the feature space and 11% higher on average.
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Chapter 5

Loop Tiling transformation. Its
parameters and experimental insights

Résumé

La transformation de tuilage est I'une des techniques d’optimisation de code es-
sentielle pour optimiser la localité et le parallélisme des données. L’idée principale
est de diviser I'espace d’itération initial en blocs et de les parcourir dans un or-
dre adéquate. Cette transformation est paramétrique et tres sensible au réglage des
parametres. Une mauvaise sélection des parametres peut entrainer des performances
bien inférieures a celles du code initial. Les solutions performantes existantes con-
siderent une liste restreinte de parametres pour gérer ce probleme et garantir des
solutions stires.

Cette these propose des solutions qui vont au-dela des techniques de pointe
actuelles et gagnent en accélération supplémentaire compte tenu d'un plus grand
nombre d’options de tuilage. Notre approche est basée sur des méthodes d’apprentissage
automatique et dérive automatiquement des heuristiques pour ajuster les parametres
de tuilage.

Ce chapitre donne le contexte nécessaire a cette transformation et met en évidence
les points clés qui impactent le plus les performances et celles que nous essayons de
prévoir.

Introduction

The tiling transformation is one of the most crucial code optimization techniques to
expose data locality and parallelism. The main idea is to split the initial iteration
space into blocks and traverse them in a special order. This transformation is
parametric and very sensitive to parameter tuning. Poor parameter tuning can
lead to much lower performance than the initial code. Existing state-of-the-art
solutions consider a restricted list of parameters to handle this issue and guarantee
safe solutions.

65
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This thesis proposes solutions that go beyond current state-of-the-art techniques
and gain additional speedup considering a larger set of options for tiling. Our ap-
proach is based on Machine Learning methods and automatically derives heuristics
to tune tiling parameters.

This chapter brings the necessary context for this transformation and highlights
the key points that impact the most on the performance and what we are trying to
predict.

This chapter is organized as follows. Section 5.1 presents the main parameters of
our tiling transformation. An adequate setting of them determines the performance
of this transformation. Section 5.2 presents interesting insights found during our
experimental phase. This knowledge helps us to better understand which loop tiling
parameters are necessary for a good prediction during the machine learning phase,
and what must be taken into account.

Finally, Section 5.3 summarizes our experimental knowledge gained in this chap-
ter and draws a conclusion on which hyperparameters to be taken into account for
ML modeling.

5.1 Loop Tiling Parameters

The potential performance that you can get by applying loop tiling depends on the
choice of the loop tiling parameters but also on the quality of the code generated
after tiling (in the context of this thesis, we use only PIPS as code generation
tool). Indeed, once the tile parameters have been chosen, there are several possible
execution paths to generate the tiled code which respect the semantics of the initial
program. The questions of the choice of the directions for scanning, the tiles, and
the ordering of the computational iterations in the tiles arise.

This section introduces important criteria: parameters and code generation op-
tions that have an impact on the loop tiling transformation performance.

5.1.1 Tile partitioning

Loop tiling transformation implies the partitioning of the iteration space into blocks
according to the chosen partitioning matrix [67].
Figure 5.1 shows an example of diamond tiling of the iteration space. Partitioning

vectors pl,p2 on the figure form the partitioning matrix g 9

In the context of this thesis, we explore the following techniques of tile parti-
tioning.

e Cubic partitioning applied on 3D nested loops.

e Parallelepiped partitioning applied on 3D nested loops.



5.1. LOOP TILING PARAMETERS 67

Original basis

L.
r

di+d2

d2 d1

p2 p1 i

[
>

v

Original basis

Tiling partitioning Data dependencies

Figure 5.1: Tile partitioning

e Square partitioning applied on 2D nested loops.
e Rectangular partitioning applied on 2D nested loops.
e Diamond partitioning applied on 2D nested loops.

Tile partitioning is a general concept, it leaves a lot of freedom for researchers to
define it. These options help us to consider a huge set of tile partitioning matrices,
and to investigate more general or more narrow cases to draw conclusions about their
applicability. We tried to find a trade-off between the complexity of the partitioning
matrix, the quality of an ML prediction, and the gain we can obtain. Obviously,
the more general case we consider, the more potential gain we can achieve, but
on the other hand, a Machine Learning model can perform much worse due to the
complexity of the output and more factors to capture. However, our methodology
is not limited with these tiling partitionings. Potentially, partitions of any depths
could be applied.

5.1.2 Tile sizes

The selection of tile sizes is a crucial step of the tiling transformation. Large tile
sizes can cause a lot of slow high-level cache usage. In contrast, small tiles may not
fully benefit from improved data locality.
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Also, tile sizes that are not divisors of the loop bounds can lead to restricted tile
partitioning on the borders of the iteration space. It can lead to poor load balancing
between threads and unsatisfactory performance.

The tile size selection depends on many criteria such as the application, the
architecture, and the cache hierarchy. In our study, we only vary the application
characteristics such as the size of the iteration domain, the access functions for array
elements, and the data dependencies. The architecture is fixed.

5.1.3 Scanning directions for tiles and its elements

The loop tiling transformation implies the partitioning of the iteration space into
blocks according to the chosen partitioning matrix [67]. However, the order in which
the blocks are traversed is not unique. Data dependencies define the correctness of
execution (block traversal). Likewise, the order of traversal of the points inside the
block is not unique. Since several possibilities are possible, we can consider this
choice as a parameter to predict.

A
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d2, p2 &
d1, p1 g

Figure 5.2: Inter-tile scanning

Our compiler PIPS [33] offers nine possible choices for generating tiled code. Tt
is a combination of three possible choices for scanning the tiles and three possible
choices for scanning the elements inside the tiles.

Figure 5.2 illustrates one possible way of scanning the tiles of the computational
domain according to its data dependency vectors. Let us define d1 and d2 as the
extreme rays [2] of the dependence cone which summarizes the set of dependencies
of the computational kernel [69]. The concept of extreme rays and dependence cone
is introduces in details in 6.2.1.
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The red vector r represents their sum (the sequential hyperplane direction), the
blue vector b is perpendicular to the red vector and represents a potential parallel
direction [157]. The red and blue vectors describe a possible basis for scanning the
tiles that we refer to as Tpgraue tile direction. The sequential hyperplane direction
carries all dependencies, while blocks along the parallel direction can be executed
concurrently. So, the sequence of blocks 1-4-2-7-5-3-8-6-9 represents a legal execution
schedule if we apply Tpaeraner Scanning; among others, blocks 3-5-7 can be run in
parallel.

The second possible direction to scan tiles is named Tgpgpe. Its scanning direc-
tions are parallel to the partitioning vectors of the tiles (rectangular shape in this
case), so pl and p2 become a possible tile scanning basis. Thus the sequence of
blocks 1-2-3-4-5-6-7-8-9 is an example of legal execution in this case. The third pos-
sible scanning directions T4 are parallel to the initial iteration basis and match
the second case here.

We use the same strategy to define possible scanning directions for the elements
inside each tile:

® L .iia: relative to the initial iteration basis,
® Lparane: the hyperplane sequential direction and its relative orthogonal vector,
® Lgnape: relative to the partitioning vector directions.

The same possible scanning vectors exist to traverse intra-tile elements.

In the general case, we have nine combinations of scanning directions. However,
some of them may not be legal due to data dependencies. PIPS is responsible for
verifying that the requested transformation is legal.

5.1.4 Kernels of interest

Loop tiling transformation can only be applied to parts of kernels whose loops are
perfectly nested.

We distinguish two classes of these kernels which benefit the most from the tiling.
First, kernels with data dependencies (read-read or read-write dependencies). It is
intuitive because if dependencies exist, some data is referenced several times and it is
interesting to exploit the locality of their use. Therefore, if tiling is not applied first,
we have a more restricted set of optimizations and less potential benefit. Second,
kernels that have large array references. The tiling transformation effectively helps
to reduce the number of living variables needed when computing the tiles.

5.1.5 Parallel code generation

After applying tiling and exploiting parallelism in the nest of loops, several loops
can be parallelized and vectorized.
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In OpenMP; it is not beneficial to generate several levels of parallel loops because
the creation of new parallel threads in threads has an additional cost. It is more
efficient to keep a single parallel loop externally and a vectorial loop internally.

The choice of which parallel loops to keep when there are several possible is
tricky. We must take into account the number of iterations of these loops; it must
be greater than the number of processors and be a multiple of it, if possible, to take
full advantage of the potential number of architectural parallelism. The outermost
loop should be preferred for GPU or coarse-grain architectures.

In the framework of this study, we exploit the parallelism of loops by generating
OpenMP parallel directives for the outermost parallel loop and OpenMP vectorial
directives for the innermost loop. The number of threads has been chosen to use
the maximum number of parallel cores available and multi-threading when possible.
The example of the original code and the tiled code is shown in listings 5.1 and 5.2.
A cubic tiling with tile size 8 was applied to the initial code.

Listing 5.1: MM original code

for (i = 0; i < 1024; 1i++)
0; j < 1024; j++)
for ( k = 0; k < 1024; k++)
Cli][j] = ClillJ] + A[il[k] * B[k][J];
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Listing 5.2: MM with the best cubic tile size

#pragma omp parallel for private(i_t, k_t,Jj_t,i_1,%k_1,3_1,1,%k,J)

for (i_t = 0; 4i_t <= 127; i_t += 1)

for (j_t = 0 j_t <= 127; Jj_t += 1)
for (k_t = 0 k_t <= 127; k_t 4= 1)
for (i_1 = 8 * i_t il <= ((8 * i_t) + 7) il + 1)
for (j_1 = 8 * j_t J_1 <= ((8 * j_t) + 7) j_1 + 1)

{

#pragma vector always
for (k_1 = 8 * k_t; k_1 <= ((8 * k_t) + 7) k_1 += 1)

Cli_1][j_1] = Ccri_11[03_1] + (A[i_1][k_1] * Bl[k_11[3j_11)

}

5.1.6 Conclusion

This section summarizes all the crucial components that we need for efficient code.
First, we need programs that potentially benefit from the tiling transformation.
Then, we need a set of options for the transformation to be tuned. And the final
step is the proper parallel code generation and its benefits.

5.2 Experimental insights about tiling transformation

This section provides some experimental answers to some questions related to tiling
that could be answered only in a practical way. In this section we compare different
tiling options, choose hyperparameters and measure their profitability. This infor-
mation is required to define the proper settings of Machine Learning models, it helps
us to understand what to predict exactly and which parameters/hyperparameters
to use.

The fixed hyperparameters that we used were:

e Architecture: Intel@®) Core™ i7-8650U 4C/4T @1.90GHz; Caches: L1: 32KB,
1.2: 256KB, L3: 8192KB: 32GB DDR4 DIMM RAM: Phys. cores: 4

e Compilation sequence: -O3 -march=native -mtune=native -ftree-vectorize -
fopenmp / 4 Threads

e Baseline sequence: -O3 -march=native -mtune=native -ftree-vectorize -fopenmp

/ 1 Thread.

We investigate the impact of the following choices on the performance:

e Strategy to label data: only divisors of loop bounds vs. any integer in the
domain

e Size of the iteration domain: whether it fits L3 cache or not

e Strategy to choose dimensions for tiling: 2D or 3D tiling
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Shape and complexity of the partitioning matrix: Cubic or parallelepiped

.
tiling

e Number of threads: 2, 4, 8 threads

e Tile size

e Scanning directions

e Tiling matrices: Cubic, Parallelepiped, Square, Rectangular, Diamond matri-

ces

5.2.1 Loop tiling speedups

The previous sections have presented the theoretical components of a loop tiling
transformation. This subsection experimentally addresses the real benefits that can
be achieved just with loop tiling without any other transformations.

Parallelepiped Tiling, 4 Threads, -O3 -march=native -mtune=native -firee-vectorize
25

| .
{,- —.- —
gemm TR

floyd strmm syTh2 risalv mm strsm mm
Benchmark

Figure 5.3: Tiling Speedups

Figure 5.3 gives the speedups obtained by applying the loop tiling transformation
to 9 famous kernels. We applied a parallelepiped tiling on a cubic iteration domain
with 4096 iterations per dimension and executed it with 4 threads. The optimal tile
sizes were found with the LOCUS Autotuner [32] after an iterative search.

6 out of 8 benchmarks benefited from tiling transformation, the average speedup
is 6.07x, the median is 4.46x and we achieved 24.33x speedup for mm kernel. Two
kernels (gemm and strsm) did not benefit from the transformation.
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Listing 5.3 gives the code of gemm-kernel. It contains three different array ref-
erences: Cli][k], Ali][j], and BJj][k]. We notice that because of the order of execution
of the iterations, tiling (i,j,k) provides no performance gain or better locality to the
references of arrays C (the second dimension is fully accessed for each iteration j)
and B (fully accessed for each iteration i). Only the reference on A is invariant for
the last innermost loop.

Strsm-kernel 5.5 has a non-typical iteration domain shape (triangular on ik
dimensions), hence some problems with ”small tiles” on the borders of the iteration
space which can affect and downgrade performance.

On the other hand, listing 5.4 contains the reference B[k]|[j] which basically does
not have good locality property and makes this kernel a point of interest for the tiling
transformation. Note, that Gemm and MM are variants of the same benchmark but
with interchanged loops.

Listing 5.3: Gemm example

for (i =0; i< n; i++)
for (j =0; j <n; j++)
for ( k= 0; k < n; k++4)
Cli][k] = C[i][k] + A[1][j] = B[j][k];
Listing 5.4: MM example
for (1 =0; i <n; it++)
for ((j =0; j <n; j++)
for ( k= 0; k < n; k++4)
Clil[j] =C[i][j] + Ali][k] = B[k][j];
Listing 5.5: Strsm example
for (i =0; i< 1024; i++)
for ( j = 0; j < 1024; j++)
for ( k = i+1; k < 1024; k++)
{

We can conclude that the experimental results of tiling transformation are very
promising, this transformation can accelerate code up to 14x for some known bench-
marks. However, not all kernels benefit from it. We show the results of this trans-
formation with basic parameters, different options and trade-offs will be shown in
the following subsections.
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5.2.2 Loop bound divisors vs. all integers in the domain as tile
sizes

This subsection provides insights on which values to predict. Can we restrict our
predictions just to the divisors of the loop bounds (in this subsection they are powers
of two) or do we need to consider any integer of the domain to archive the maximum
gain?

1024 iterations per dimension, 4 Threads, -03 -march=native -mtune=native -firee-vectorize
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Figure 5.4: Speedups from using powers of two versus integers for cubic tiling

Figure 5.4 gives a comparison of speedups found when we asked autotuner to
consider just loop-bound-divisors as tile sizes versus all-integers for cubic tiling. Y-
axis corresponds to the ratio of execution time with the best integer solution found
by the Autotuner [32] to the execution time found with the loop-bound-divisors
search strategy.

As we can see, for 7 out of 8 benchmarks, there is no gain in performance.
However, the loop-bound-divisor solution for the mm-benchmark was 3.78x higher
than the integer one. Figure 5.5 shows the autotuning results for mm-kernel. We
can see that the loop-bound-divisor solutions overperform all possible solutions out
of this domain. The all-integers strategy marked tile size 512 as the best one but
did not investigate the area of small tile sizes properly, marking it as not potentially
profitable. It leads to poor performance compared to the divisor strategy that easily
found the best tile size 8.

However, loop-bound-divisor solutions do not always overperform the other so-
lutions. Figure 5.6 demonstrates that divisors do not tend to be outliers during
autotuning. The autotuning results of other kernels are presented in appendix A
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Figure 5.7 shows the difference between the best tile size and the one found with
the all-integers strategy. The x-axis corresponds to the studied kernel and the y-axis
corresponds to its optimal tile size. In two cases the misprediction was significant in
absolute value. For these cases, the best tile size is a ”power of two” and corresponds
to a loop-bound-divisor since we considered 1024 as loop bound for all the loops.

1024 iterations per dimension, 4 Threads, 1024 iterations per dimension, 4 Threads, -O3 -march=native -mtune=native -firee-vectorize
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Figure 5.7: Difference between best tile and the best ”integer” one

The main point is that even if the search domain is relatively small, then con-
sidering all integers worsen the performance sometimes. What are the results in the
opposite situation when we increase the search domain?

Now we consider parallelepiped tiling instead of cubic. Figure 5.8 presents a
comparison of speedups found when we asked the autotuner to consider just loop-
bound-divisors versus all-integers for parallelepiped tiling. Our search domain has
been increased in cubic progression. We increased the autotuner search time by a
factor of 5, but this did not help to achieve the performance of tiled codes with loop-
bound-divisors (powers of two) for 6 out of 8 codes. The average result obtained with
loop-bound-divisors is 1.10x higher than the result found considering all integers.
The further increase in autotuner search time shows weak convergence compared to
the loop-bound-divisors results.

The search space is complex and nonlinear, so Autotuner does not aim to gen-
eralize information about previous executions to find the appropriate solution in a
reasonable amount of time.

This fact will be used in our further models. Actually, we predict integer solutions
all the time, but we introduce the heuristic to round the prediction to the nearest
divisor of the corresponding loop bound. It helps to achieve better code in terms of
execution time in many cases.
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Figure 5.8: Speedups from using loop-bound-divisors vs. integers for parallelepiped
tiling

5.2.3 Impact of the size of the iteration domain

This subsection investigates the impact of the number of iterations of the compu-
tational domain on the achieved speedups after tiling. We consider two sizes of the
iteration space: the first one that does not fit to the L3 cache (4096x4096x4096
iterations per loop) versus 1024x1024x1024 that fits the L3 cache on the mentioned
above architecture.

Figure 5.9 provides a comparison of the speedups that were achieved with a
domain of 1024 iterations per loop dimension and 4096 iterations per loop dimension.
Figure 5.10 shows the ratio of how the speedup increases for each benchmark. On
average, we can expect 90% in speedup if we increase the number of iterations from
1024 to 4096. The maximum gain was achieved for tmm kernel. The speedup for
1024 iterations was 1.29x but increased by 350% and became 5.85x.

As we can see, for the majority of the kernels, the increase in the number of
iterations to 4096 per dimension implies a huge gain in performance. It can be
easily explained by the amortization of the computation of complex loop bounds
derived from tiling transformation and the execution of not full tiles at the border
of the iteration space.

We do not consider it reasonable to predict the speedup itself to evaluate the
quality of our predictions, as it is an iteration-dependent metric. We observe the
more stable behavior of the relative speedup metric. The relative speedup is the
ratio of the speedup that gives the tile size that we predicted to the speedup found by
the autotuner. This metric is not iteration dependent and can help us to generalize
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Figure 5.9: Impact of the number of iterations on the speedups

and evaluate our predictions if we consider loop nests with different numbers of
iterations. We consider that if the data was labeled taking into account relative
speedup as the labels then it maximizes the relative speedup on the training set.
Of course, relative speedup has a correlation with absolute one but if the absolute
speedup labels were used then it would maximize absolute speedup greater.

5.2.4 Cubic or Parallelepiped Tiling?

In the previous sections, we showed examples of cubic and parallelepiped tiling.
Obviously, cubic tiling has fewer parameters to tune. Assuming that the size of
each dimension of the iteration domain is n then we have only n possible values
for the tile size. In opposite, we have n® values for these parameters in the case of
parallelepiped tiling because the tile size for each dimension should be chosen with
respect to those of the other dimensions. Does this increase the performance or just
make the search process longer for the Autotuner without significant gain?

Figure 5.11 shows the experimental results. Parallelepiped tiling increased the
performance for 8 kernels out of 8. It seems to be a very powerful tiling setting
that worth to be investigating. The average speedup with parallelepiped tiling
is 3.74x, with cubic - 1.72x. We can reach 2.17x higher performance considering
parallelepiped tiling settings.
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Figure 5.10: Relative gain from the increase of the iteration domain

5.2.5 2-D or 3-D Tiling?

Loop Tiling is a very flexible transformation. It leaves a lot of freedom to define
its parameters. For instance, one of the most arguable questions is to use tiling
on which levels. We investigate the question of profitability of 3-D tiling on three
nested loops and 2-D tiling on two, the innermost loops of a three-loop nest.

Figure 5.12 gives the results of this comparison. 3D tiling is a much more pow-
erful code transformation. On average we can expect a 3.42x average gain in per-
formance if we consider three nested tiling. The gain in performance is crucial, we
see it reasonable to consider 3-D tiling only.

5.2.6 Number of threads

This subsection demonstrates the impact of the number of threads on the speedup
that we can achieve.

Figure 5.13 gives the speedups that we can achieve if we execute the code on
the different numbers of threads 2/4/8 vs sequential baseline. In our experiments,
we consider the number of threads to be a hyperparameter. We do not vary it and
consider it to be fixed. We have chosen a safe choice of the number of physical cores.
In our case, this is 4 threads. We can see the degradation of performance in the
case of 2 threads for trisolv-kernel and in the case of 8 threads for mm-kernel. Four
threads (the number of cores) seems a safe choice for this hyper-parameter.
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Figure 5.13: Comparison of results on different number of threads

5.2.7 Tile size selection

In this subsection, we show that the selection of the tile size is a crucial element.
The distribution of the optimal tile sizes is not regular and requires the development
of complex, nonlinear models. This is the reason why we have developed a powerful
ML model.

Figures 5.14 and 5.15 show the speedup distribution for different tile sizes on two
different kernels (4096 iterations per dimension). The speedup distribution of other
kernels is presented in appendix B. We illustrate this distribution on examples of
parallelepiped tiling. The X-axis corresponds to the chosen tile size on the outermost
loop, Y-axis on the second loop, and the Z on the innermost loop.

The points of this space were visited with the Autotuner. Of course, it is not
possible to visit all 4096 combinations in a reasonable amount of time. We shrink
the search space to the powers of two and ask the Autotuner to visit all of them.
Autotuner could stop the search earlier if it reaches some inner criterion and is sure
that the best combination was found. As we can see in Figure 5.17, kernel Syr2k
has a relatively large amount of ”good executions”. They are concentrated around
small values of the X-axis. The opposite case is the MM kernel. The amount of
"good executions” is relatively small, we see just several points that overperform
the others.

Figures 5.16 and 5.17 present the results for rectangular tiling (2-D case) for the
same kernels (1024 iterations per dimension). The speedup distribution of other
kernels (2D-case) is presented in appendix C

We see that there is no unique rendering of how the tile sizes are distributed.
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The distribution is very different from kernel to kernel, non-linear, with different
sizes of ”good executions” clusters, and there are many outlier values.

Speedup distribution, kernel mm
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Figure 5.14: Speedup distribution, MM kernel

5.2.8 Tile matrices and scanning directions

Scanning directions

To illustrate the impact of different scanning directions, we use handcrafted kernel
(Listing 5.6).
Listing 5.6: Handcrafted kernel
0; i < n; i++)
] j < mnj; o jtt)
i = Al =1][j] + A[L][J 1] + A[i=1][] —1];
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Figure 5.15: Speedup distribution, Syr2k kernel

There are two different ways to scan -intra and -inter tiles for this kernel:
T/ Linitia - relative to the initial iteration basis and T/Lpgraner - hyperplane se-
quential direction and its relative orthogonal vector. The second outermost loop
after tiling is parallel.

Figures 5.18, 5.19, 5.20, 5.21 present the performances for each possible com-
bination of scanning directions for this kernel. The inter-tile scanning directions
T parallel (TP), T rnitial (TI) and the intra-tile directions L pgraiie (LP), Lirnitial (LI)
are described in section 5.1.3. The execution was scaled based on the minimum ex-
ecution time of the TI-LI scanning directions to give an intuition of what we might
get compared to the initial settings. The X-axis corresponds to the tile size along
the i dimension in the original code, the Y-axis corresponds to the j dimension.

Our experiments show that, for this kernel, we can achieve 1.21x better perfor-
mance compared to the original scanning directions, if we used the TI-LP directions
(T rnitiar for -inter and Lpgpque for -intra). If we were using TP-LI directions, we can
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Figure 5.16: Speedup distribution, MM kernel

only get 0.71x the performance of the original settings.
This example shows that scanning directions are a crucial part of a successful
model. This should certainly be taken into account if a kernel has data dependencies.

Tiling matrices

In the same way, we compare the diamond matrix and the rectangular one for the
kernel 5.7. The results are shown in Figures 5.22 and 5.23. Our experiment shows
that the proper matrix selection could bring up to 15% gain. This choice may be
essential for kernels that have data dependencies.

Listing 5.7: Handcrafted kernel

for (i =0; i <n; i++)
for ((j =0; j <n; j++)
AlL][J] = AliT+1][j 1] + A[i—1][j 1] + A[i][]—1];
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Figure 5.17: Speedup distribution, Syr2k kernel

5.3 Conclusion

Our experiments help us understand which tiling parameters are needed to predict
and derive maximum benefit from the tiling transformation. Our experiments imply
the following conclusions:

e Using loop-bound-divisors for the data labeling seems a reasonable choice.
Heuristic to round the prediction to the nearest divisor may improve the per-
formance.

e Size of the iteration domain matters the absolute speedup. The more iterations
the more speedup. We propose an iteration-independent metric - relative
speedup. We would like to evaluate not absolute values but to understand
how far we are from the best solution.

e 3D tiling is a much more powerful transformation than 2D tiling. We see it
reasonable to concentrate on 3D case for ML modeling.
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Parallelepiped is a more complex partitioning than the cubic one but po-
tentially can bring a significant gain. We see it reasonable to capture this
partitioning in ML modeling.

We keep the number of threads to be a hyperparameter. It means we do not
vary it in our experiments. The number of physical cores seems the safest
choice for the number of threads.

Tile size is crucial. It is the most significant parameter in terms of impact on
performance. The goal of our ML model is to predict the best possible tile
size.

Scanning directions and different tile partitioning may be very useful for ker-
nels, where we have data dependencies. Our model should capture this infor-
mation and provide the most reasonable way of scanning and way of parti-
tioning.
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Chapter 6

Tiling parameter prediction

Résumé

La transformation de tuilage de boucles est une technique d’optimisation de code
puissante pour augmenter le niveau de localité et de parallélisme des données dans
un code donné. Comme il a été mentionné dans le chapitre 5, cette transformation a
de nombreux parametres (taille des tuiles, forme, directions de balayage) et hyper-
parametres (nombre de cceurs de 'architecture cible, caractéristiques dépendantes
de l'architecture). Le choix inadapté d’'un seul d’entre eux peut entrainer de mau-
vaises performances. Cela rend le probleme de la sélection des parametres de tuilage
tres compliqué.

Ce chapitre se concentre sur deux contributions importantes. Tout d’abord,
nous étudions le compromis entre la complexité du modele et le bénéfice potentiel
que nous pouvons en tirer. On pourrait s’attendre a ce que plus le modele est
complexe, meilleur est le code optimisé que ’on peut obtenir, mais en fait la qualité
des prédictions peut étre dégradée par rapport a un modele relativement simple.

Notre deuxieme contribution concerne la prédiction d’un ensemble plus avancé de
parametres pour la transformation de tuilage. Nous ne limitons pas nos prédictions
uniquement a la taille des tuiles. Notre pipeline d’apprentissage automatique est
capable de prédire 1) la forme des tuiles 2) les directions de balayage intra-tuiles 3)
les directions de balayage inter-tuiles 4) la taille des tuiles pour un code donné.

Introduction

Loop tiling transformation is a powerful code optimization technique to increase
the level of data locality and parallelism in a given code. As it was mentioned in
chapter 5, this transformation has many parameters (tile size, shape, scanning direc-
tions) and hyperparameters (number of cores of the target architecture, architecture-
dependent characteristics). The poor choice of even one of them can lead to poor
performance. This makes the problem of selection tiling parameters very compli-
cated.

93
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This chapter focuses on two significant contributions. Firstly, we investigate the
trade-off between the model complexity and the potential benefit we can gain. One
would expect that the more complex the model, the more optimized code we could
obtain but the quality of the predictions could be worse compared to a relatively
simple model.

Our second contribution relates to the prediction of a more advanced set of
parameters for tiling transformation. We do not restrict our predictions just to the
tile size. Our Machine Learning pipeline is able to predict 1) tiling shape 2) intra-tile
scanning directions 3) inter-tile scanning directions 4) tile size for a given code.

This chapter is organized as follows. Section formulates which models would be
used in this chapter and for which tasks. Section 6.2 introduces the features that
would be used for each model presented in Section . Section 6.3.1 details the process
of each model from an ML perspective. Sections 6.3 and 6.4 present the results for
the two mentioned contributions. Section 6.3 presents the differences between the
quality of the predictions for classical pipelines. Section 6.4 highlights our progress
on the prediction of advanced tiling options (tiling shapes, scanning directions).

6.1 Problems of interest

In the context of this thesis, we build Machine Learning models for the following
cases:

e 3D Cubic partitioning applied on 3D nested loops.

e 3D Parallelepiped partitioning applied on 3D nested loops.

Existing research [1], [45] does not give any insight into which tile partitioning
to use for ML predictions. It gives general recommendations on how to build a
pipeline for each of them. Our work investigates each pipeline and gives a recom-
mendation on the partitioning to choose for ML modeling. The difficulty lies in the
trade-off between model complexity and its potential benefit. For instance, on one
hand, the 3D parallelepiped model is potentially the most beneficial as was stated
in the previous chapter, but also the most complicated from a Machine Learning
point of view, since we need to predict three values (higher probability for mispre-
diction). The complexity of the model could have a negative impact on the quality
of the predictions, and hence this pipeline might not be the most suitable for code
optimization. Moreover, there are many ways how to model this problem from a
Machine Learning perspective. We analyze each way of modeling and discuss the
most appropriate.

Our second contribution towards tiling prediction targets the prediction of an
extended set of parameters - 1) Tile size 2) Intra-tile scanning directions 3) Inter-tile
scanning directions 4) Partitioning shape. Our target model can predict all these
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parameters. We argue that the consideration of these parameters for kernels that
have uniform data dependencies could help the optimization. For this contribution
we considered the following partitioning matrices:

e 2D square partitioning applied on 2D nested loops.

e 2D diamond partitioning applied on 2D nested loops.

It should be noted that our methodology allows adding other types of tiling
partitionings. We stopped just on mentioned above in the context of this thesis.

6.2 Feature space design

Machine Learning techniques draw conclusions based on some characteristics of a
phenomenon under consideration. Usually, it is a vector of fixed size, and each value
represents relevant properties of the phenomenon [90]. A choice of irrelevant features
implies that the characteristics of the phenomenon are not sufficiently represented.
Machine Learning algorithms cannot generalize based on them. It would lead to
unsatisfactory results and poor performance. Therefore, the design of a suitable
function space comes to the fore.

We distinguish two main concepts which are crucial for the selection of tiling
parameters. These are 1) the data dependencies, 2) the array access functions, and
information about the iteration domain. Data dependencies define the legality of
the tiling and motivate the use of different scanning directions [68].

Array access functions associated with the iteration domain characterize the
spatial and temporal data locality and the parallelization/vectorization opportuni-
ties [1], [45]. Array access functions are important criteria to choose the correct tile
sizes.

6.2.1 Encoding of dependencies

Encoding dependencies is not an easy task. The main problem is that although the
concept of data dependencies is well-defined, they can be represented or approxi-
mated in many ways. Moreover, the information about data dependencies needs
to be transferred to a vector of a fixed size for ML purposes. To find the proper
level of abstraction, we investigate research about the suitable abstractions for data
dependencies to apply tiling.

Data Dependence Abstraction for Tiling

Yang et al. [69] defined the minimal abstraction for a loop transformation. The
dependence cone turned out to be the minimal abstraction to legally apply the tiling
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transformation, which means that among the studied abstractions, it is the smallest
abstraction that is enough precise to check whether the transformation is legal. In
our study, we encode this abstraction into a feature vector for Machine Learning
issues. The dependence cone is the convex hull of the set of points that are a positive
linear combination of dependence distance vectors. More formally, the dependence
cone is defined as DC(L) = {v = Zle Nid; € Z"|d; € D(L),\; > 0, Zle A > 1},
where D(L) is the set of all distance vectors d; in loop nest L.

Figure 6.1: Dependence cone

Figure 6.1 shows an example of dependence cone for a code with d1, d2, d3
dependence vectors. Note, that vectors d3 and d1 form the extreme rays of this
cone.

Abstractions to encode data dependencies in our ML model

We use three abstractions to encode the data dependency information. We illustrate
them in the example of Listing 6.1. The tiled version of this code with TP=LP
scanning directions is presented in appendix D.

Listing 6.1: Original code
2; 1 < 1022; i++4)
= 2; J < 510; Jj++)
ATL103] = Ali-2103-11 + ATi-1103-11 + A[i-11(j-27;

1 - Dependence cone

The dependence cone is the minimal abstraction to verify the legality of the loop
tiling application. The dependence cone can be represented as a set of extreme rays.
The first abstraction encodes the areas of the iteration space where we observe these
extreme rays. For each extreme ray, we compute its angle with the x-axis in degrees.
Here, = represents the first dimension of the dependency vector.
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Our abstraction to encode the information on the extreme rays is a vector of
fixed size (8 for 2-dimensional iteration domain). Let’s describe the elements of the
vector from 0 to 7. The i-th element of this vector gives how many extreme rays
of the dependence cone form the angle 6 with the x-axis, such as 6 € [45x i; 45 X
(i+1)).

The pseudo-code of this mapping function is given in 6.2. The illustration is given
in Figure 6.2. The blue vectors correspond to the extreme rays and are located in
the first and second sub-areas.

Listing 6.2: Encoding of the extreme rays. Python-like pseudo code.

dependence_cone_encodings =

[
dependence_cone = [22.5, 67.5

0,0,0,0,0,0,0,0]
| #angles in degrees

for extreme_ray in dependence_cone:
encoding_index = math. floor (extreme_ray /45)
dependence_cone_encodings|[encoding_index| 4= 1

# dependence_cone_encodings = [1,1,0,0,0,0,0,0]

The mapping function for 3-dimensional iteration domains is pretty similar, ex-
cept that it goes through the coordinates of two polar angles for the dependency
vectors instead of one. The vector summing these types of vectors is of size 32 (c.f.
section 6.2.3).

11 II

v I

Y

Vv VIII

VI VII

Figure 6.2: Encoding of the extreme rays
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2 - Summation vector

The second abstraction related to the data dependencies is a vector which is the
sum of all data dependency vectors. We extract a unique value - the angle of this
vector with the x-axis. This information is required because this vector is used as
a basis vector for some scanning directions (T pgraizer and Lpgrque directions). In
the example 6.1, the sum of three dependence vectors results in vector (4,4), which
makes an angle of 45 degrees with the x-axis.

3 - Encoding of uniform data-dependencies

In the same way, we encode the extreme rays 6.2.1, we encode the uniform data
dependence vectors. Our abstraction to encode the information on the uniform
dependencies is a vector of fixed size (8 for 2 dimension iteration domain). The i-th
element of this vector gives how many uniform data dependencies form the angle 6
with the x-axis, such as 6 € [45x i; 45 x (i+1)).

This vector for Example 6.2 equals [1,2,0,0,0,0,0,0].

6.2.2 Encoding of the iteration domain

The iteration domain can have an impact on the prediction of all the parameters
considered. We propose to encode it with two simple features: 1) the number of
iterations for each loop and their total 2) the presence of constant loop bounds for
all loops.

The first feature vector is a vector of the size that equals the number of nested
loops + 1. The first value represents the number of iterations for the first nested
loop (NaN, if it is unknown, e.g. variables of functions), the second value represents
the number of iterations for the second nested loop, etc. The last value represents
the total number of iterations for the loop nest. This vector, for example, 6.2 equals
(1020, 508, 518160].

The second feature vector is a vector of the size that equals the number of nested
loops. The first value represents the presence of constant loop bound (1) or their
absence (0) for the first nested loop, etc. This vector, for example, 6.2 equals [1,1]
since the loop bounds are constant.

6.2.3 Generalization for 3-D case

In the proposed encoding of the dependence cone, data dependencies can be easily
generalized for 3-D tiling and for higher dimensions. Let 6 be the angle between
a data-dependence vector/extreme ray of a dependence cone and the Z-axis. And
¢ is the angle between the projection of the same data-dependence vector/extreme
ray to the XY plane and X-axis. Let V denotes the vector, which contains all the
subareas of 3-D space to be encoded. V = <vl Vg ... vK>
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where v; is a particular subarea of 3-D space, ¢+ < K, K is the number of chosen
subareas of 3-D space (e.g. we have experimented that 32 is a good choice). Then
we can define the mapping function that assigns the subarea of the 3-D space to
each value of 6 and ¢ angles. Actually, this mapping function could be considered
as the mapping from polar coordinates to the subareas of 3-D space.

flz) < ¢,0 >= v, €V

In the 3-D case, we need also two angles # and ¢ to encode the information about
the summation vector.

6.2.4 Encoding of array accesses

There is a lot of research investigating the proper encoding of array accesses.

Yuki et al. [1] investigate the problem of automatic tiling selection using machine
learning approaches. The authors consider cubic tiling on three nested loops with
2D data. They describe each loop according to the references inside the arrays.
Each array reference can either benefit from the advantages of spatial locality or
not, or be constant in the innermost loop. Yuki et al. also mark each reference as a
read or write reference. However, this approach could be easily applied to loops of
any dimensionality. For instance, if we consider MM kernel from example 5.1, then
from Yuki perspective it has the write and write references C[i][j] that are invariant
for the innermost loop. This kernel also contains A[i][k] reference that benefits from
spatial locality and B[K][j] that does not.

Liu et al. [45] propose a slightly similar approach. The key difference is that the
construction of the feature space can potentially contain loops of any fixed depth
and data of any dimensionality.

In the context of this Ph.D., we use the concatenation of two vectors to properly
encode the array accesses. For the 2D case, Yuki et al. [1] features contain 4 values,
and Liu et al. [45] contain 3 values. The concatenation vector contains 7 values.
Our experiments showed that this approach gives the best results.

6.2.5 Note on the feature space design

Table 6.1 summarizes the features appropriate to each model. Our experiments show
that data-dependency information is not useful for the rectangular/parallelepiped-
shaped partitioning for the original scanning directions. However, this information
could be crucial for shape and direction predictions.

6.2.6 Encoding CFG et DDG

We presented the features that were used to achieve the best results in this Ph.D. in
6.2.1 - 6.2.4. However, we have also conducted research on other feature representa-
tions that have not achieved the same level of performance but are worth mentioning
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Encoding of Encoding of Information about
array accesses | data dependencies | iteration domain
3D Cubic n i
Tiling
3D Parallelepiped
arallelepipe i i N
Tiling
Sh directi tile si
ape + ‘1re‘c 1on + tile size n n n
prediction model

Table 6.1: Feature spaces

as they appear to be a promising direction for extending our work. Machine Learn-
ing projects tend towards models that are as general as possible and do not focus on
a very narrow issue. This is reflected in the feature space construction. The trend is
to use representative learning from raw data. It enables us to find automatically the
appropriate feature representation of a concept under observation. The emerging
direction that finds applicability in many domains is the use of embeddings.

Our point of interest in this subsection is the embedding of graphs. We introduce
a method to embed the Data-Dependence graph (DDG) and the Control-Flow Graph
(CFQG) for a given code. We consider the concepts they integrate (data dependencies
and control flow) as crucial for many code transformations.

We believe that the representation of graphs is a proper level of abstraction to
describe important code properties and extract their features from them. Embed-
ding raw code can be too general and capture a lot of unnecessary properties (e.g.
everything related to coding writing style). Obviously, this information does not
bring clarification on the prediction but weakens the model with useless inputs.

On the other hand, the ”concentration” of useful information in the graphs
describing the code is very high. It also gives the flexibility to construct graphs that
concern different code aspects (e.g. data-dependencies of a given code or control
flow between basic blocks) and to embed information from them.

Graph construction

We use PIPS Framework [33] to extract information about dependencies between
array references and control flow between basic blocks or any required abstraction
(e.g. statement in a code that is not a basic block in classical definition). This
information is provided in explicit text format by PIPS. We construct the graph
using NetworkX library [18] based on the text output. The main idea is to map text
information from PIPS output to NetworkX objects (vertices, edges, labels).
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Control-Flow Graph

In our study we consider the CFG to be a directed and unweighted graph with labels
on the nodes and we focus on the flow of control just inside a loop nest.

More formally, let G = (V| E, ¢, p) be a graph, where V' is a finite set of vertices,
E a set of edges. V' corresponds to the set of basic blocks in the code, E illustrates
the existence of control flow between blocks.

¢ E — {(x,y)|(x,y) € VEAz # y} is a mapping of each edge to an ordered
pair of vertices. p : V. — {origin, sink,if,else, statement, for} is a mapping of
each vertex to a set of possible labels. We take into account each statement inde-
pendently, that slightly changes the classic definition of a basic block. We consider
each statement as a basic block.

Thus, we have two artificial concepts origin and sink in our graph that corre-
spond to the entry and exit points of the loop execution. Note, that we consider
for-loops with only one exit point (no return, break, or function call in the loop
nest). Hence, all other concepts that we can observe are labeled for, statement or
< if,else > in case of a conditional statement.

Data-Dependence Graph

Our construction of the Data-Dependence Graph describes the dependencies be-
tween the data references in the code. We define DDG as a directed, unweighted
graph with labels on edges.

More formally, let F' = (V, E,¢,v) denote a DDG, where V' is a finite set of
vertices and F is a set of edges. V' corresponds to the data references. E illustrates
the existence of data dependency between references. As for CFG, ¢ is a mapping
of each edge to an ordered pair of vertices, and v : E — DDV is a mapping of each
edge to a corresponding dependence-distance vector.

Generation of synthetic data from CFG and DDG

The Control-Flow Graph is a relatively simple object to synthesize. We managed to
create a synthetic CFG generator. Any generated CFG can correspond to a legal,
compilable, executable program. The main steps are:

e Synthetically generate a training set \; that contains 10.000 CGF's

e Train embedding model M, using training set A\;. M; takes an arbitrary CFG
and returns an embedding vector.

The Data-Dependence Graph is a much more complex object. There is no guar-
antee that there is a potential program corresponding to a randomly generated
dependence graph. Hence, we used a synthetic code generator [70] that uses data
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dependencies as a high-level abstraction for the code, to get valid programs. The
main steps are:

e Synthetically generate training set A, that contains 10.000 kernels
e Extract DDG to Ay from each kernel in As,.

e Train embedding model M using training set \y. M takes an arbitrary DDG
and returns an embedding vector.

We investigate techniques proposed by library NetworkX [18] to embed these graphs.

Conclusion on the encoding of CGF and DFG

The proposed features seem to be an interesting concept to capture code character-
istics regarding its control flow and data-dependence graphs. They could be used
for any code transformation, not only tiling. However, they are not precise enough
as hand-crafted features to provide a satistying level of performance.

6.3 Tiling predictions

Existing ML tile size selection models [1], [45] propose many different ways to predict
tile sizes. Both papers mention that modeling the tile size selection could be done
by predictions of tile size directly, or by prediction of speedup/execution time. Some
papers such as [102] also consider the prediction of the speedup for a given sequence
of transformations. It gives us the intuition that modeling could be performed in
many different ways. Moreover, the papers that target tiling transformation consider
different partitioning matrices, for instance, [1] considers only cubic, [45] considers
parallelepiped tiling. To our best knowledge, there is no generalization among the
different approaches for the tile size selection problem. This section overcomes these
limitations. We do a generalization through the cubic and parallelepiped tiling,
considering two techniques to model this issue in an ML pipeline. The first technique
predicts the tile size directly, the second predicts the speedup based on program
characteristics and potential tile size. The first approach tends to memorize the best
patterns of tiling and choose them as labels, the second approach learns to memorize
all possible tiling patterns. We consider it important to investigate which one is
more applicable for this issue. The tile size that maximizes the speedup is taken
as the optimal one. Kernels of interest for this section do not have uniform data
dependencies. Kernels under investigation represent a permutation of the vector
of indices in the array access functions. We could have dependencies, such as a
reduction in one or two dimensions.
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6.3.1 Machine Learning modeling

We investigate two approaches to choose the best tile sizes: direct tile size prediction
and tile size prediction based on potential absolute speedup prediction.

The pipeline of our first approach is shown in Figure 6.3. It is done in a straight-
forward manner. We learn the regressor to predict just the optimal tile directly.
Only optimal tile sizes are taken for each execution.

The second approach is a bit more tricky and is illustrated in Figure 6.4. The
idea is to predict the speedup for a given code based on tile size and a feature vector
from section 6.1. We sample all possible tile sizes for a given kernel and predict the
speedup for each tile size. We select the tile size with the highest predicted speedup.
It should be noted that the speedup we predict cannot be used as an accurate esti-
mate of the real speedup. There are many different factors that impact the speedup
and we do not take them into account, but the predicted "speedup” helps differen-
tiate the impact of the tiling parameters on real speedup. This approximation helps
to choose the more appropriate combinations of parameters.

Tiling size model tuning

Feature

vectors

ML model to tune  —»  Tuned ML model

Optimal tile
sizes

Tiling size model prediction

49_" af“\—p Tuned ML model —r4ng>

Figure 6.3: Tile size prediction pipeline

6.3.2 Machine Learning models

The problems that we want to model relate to the regression problem. The idea is
to predict continuous numerical value.
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Figure 6.4: Tile size prediction based on speedup prediction pipeline

The description of the ML models was given in chapter 2. In the context of this
thesis, we consider the following algorithms for our experiments.

Gradient boosting regression [143]
Random Forest regression [162]
Linear regression [159]

Regularized regressions [158]

e Linear support vector regression [22]

We can distinguish two groups of models: linear ones and non-linear ones. The
first class models the relationships between input and output based on the linear
predictor function. The function used for the second class might be non-linear.
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Non-linear machine learning models (such as Gradient Boosting, and Random
Forest) are more appropriate to our problems. They show better performance than
linear ones since the distribution of the targeted outputs is not a linear function of
the inputs. For instance, we can easily demonstrate that the tile size or the speedup
is not linear. For instance, for some kernels we can apply vectorization, it makes
sense to increase the tile size of the innermost dimension until some limit. On the
other side, it may be the case that the increase of the innermost dimension leads
to the degradation of data locality. The model should find the trade-off between all
the factors that impact the performance, these factors may contradict each other.

Note, that we do not apply Deep Learning models for this task. We consider
that we have a relatively small dataset and we can easily overfit our model. The
number of samples is hundred of thousands but the number of unique programs is
just 1250. We argue that there are prerequisites for over-fitting [7].

Stacked classifier

The best single regressor (e.g. Random Forest or Gradient Boosting) may lead to
acceptable performance but could be easily improved by stacking different regressors
[20]. The idea is to have a set of independent first-step regressors that outputs the
predictions of a given kernel independently. The second-step regressor takes the
outputs of the first-step regressors as features and produces the final prediction.
Although some weak regressors might be included in the first-step regressors the
main idea is to use regressors that have not correlated predictions. It will lead to
the decrease of variance of the model [17] and hence better predictions.

In our experiments, SVR regression [22] and Gradient boosting regression [143]
showed less correlated predictions. We decided to use them as first-step models.
Another Boosting model aggregates their predictions. It was chosen based on an
empirical search among all potential candidates. The pipeline of the final regressor
is shown in Figure 6.5.

6.3.3 ML metrics

Two classes of metrics could be distinguished: proxy metrics and business metrics
[19]. Proxy metrics are used during the process of learning, while business metrics
show the correspondence of our target predictions to the target goal.

Proxy metrics

Mean squared error (MSE) is used as a Loss Function for the regression.

MSE = 1% (y; —y:)?, where y; is the ground-truth value of the optimal tile
size of the i-th data sample, and y; was predicted by our ML model. Where n is
the number of data samples.
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Figure 6.5: Stacked regressor

We use this metric for MLL modeling since optimal tile sizes are distributed near
the same neighborhood (empirical conclusion, check Appendix A), and we want to
penalize our model if it predicts tile sizes that are far from the global optimum.

This cost function has several drawbacks. It does not provide explicit information
about our target goal - fast code execution. The losses provide no information to
the programmer on how the generated code would perform in terms of execution
time. Moreover, it does not provide insights into the parallelism of the architecture
and the profitability that we can gain from the transformation.

That is why we introduce the second-step metric showing how far we are from
the most efficient generated code. We use the relative speedup metric described in
the next section.

Business metrics

Business metrics should reflect the quality of the code generated on real examples.
They should not be proxy metrics but actually correspond to our target. We use
two metrics to evaluate the quality of the generated code: Absolute speedup and
Relative speedup.

We introduce two definitions:

RS; = %, where speedup(y;) gives the speedup obtained after tiling the
code with the predicted parameter. And speedup(y*;) gives the speedup found by
the Autotuner [32] An average relative speedup can be computed with

RS = % > i, RS;, where n is the number of samples to evaluate.

AS; = %7 where speedup(y;) gives the speedup obtained after tiling the

code with the predicted parameter. And speedup(y+;) gives the speedup of the
initial code without optimization. An average absolute speedup can be computed
with AS = % > AS;, , where n is the number of samples to evaluate.
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The drawbacks of these functions are that they are very sensitive to outliers. RS
and AS of a tiled code with tile sizes in the same neighborhood may be different due
to factors that are not possible to take into account using existing feature spaces
(e.g. load balancing among threads).

Moreover, they do not have derivatives; they are piecewise-defined functions.
Hence, it is not applicable to be used for training our ML models. Thus, each
metric is more appropriate for the stage where it is used. The combination of the
two provides a more correct way to implement the training process and evaluate the
results.

6.3.4 Experimental setup

The experiments were run on Intel®) Core™ i7-8650U 4C/4T @1.90GHz with capac-
ity caches of L1: 32KB, L2: 256KB, L3: 8192KB and 32GB DDR4 DIMM RAM,
Phys. cores: 4, Compiler: GCC 5.4.0, Number of iterations per dimension in the
test set: 1024, Number of Threads: 4, Opt. level: -O3

6.3.5 Training/Validation/Test sets

We generated about 1500 unique programs with our generator [70] and labeled
them with LOCUS [32]. Firstly, we labeled them with parallelepiped and cubic
partitioning. In total, this generates around 155.000 executions for parallelepiped
tiling and around 12.000 for cubic one. We removed duplicates in terms of Yuki
et al. [1] feature space and got eventually around 1000 unique programs that have
different features. Executions of 900 of them were taken to form our training sets.
Executions related to the other 100 programs were taken for validation. 9 well-
known kernels were taken for the test set to evaluate the quality of our predictions
on not generated data.

Data labelling

Data labeling is a very time-consuming process. For each kernel, we generate up
to 1000 code variants (tiled codes with different tile sizes and options) and execute
them to assign labels for the regression problem. The overall time required for this
process is equal to the number of repetitions x number of variants x number of
kernels x (the time to generate a variant + the time to execute the variant). For
us, it took around 2 months to label all the required data for the experiments in
this chapter.

Speedup interpretation

There are several factors that impact the performance and could be worsened or
improved by tiling transformation. They are data locality, load balancing across
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threads, level of parallelism, and some others. The ML model tries to entangle their
complex interaction and chooses the tile size that improves the most factors that
affect the performance.

The other factor that worsens the performance is complex loop bounds after
tiling transformation. The loop bounds might be computationally expensive and
the optimized kernel would perform worse than the baseline version. This factor
could be amortized by the number of iterations.

6.3.6 Validation set results

This subsection provides experimental results for the validation set that consists of
executions from 100 kernels. The results are presented in figures 6.6 and 6.7 and in
the table 6.2.
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Results on the test set show that

e The parallelepiped partitioning is a more profitable transformation for the
targeted kernels. The average maximal speedup is 2.62x versus 1.91x for cubic
partitioning.

e The strategy to select tile size based on the predicted speedups overperforms
the strategy to predict tile size directly. It achieves 0.91 and 0.88 of aver-
age relative speedup versus 0.7 and 0.64 for the direct predictions. Absolute
speedups are also significantly higher.

e The strategy to predict parallelepiped partitioning based on the predicted
speedups seems the best choice on the validation set. It overperforms all other

strategies.

I Tile size

prediction
Il Speedup
prediction
Autotuner
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Strategy Absolute speedup | Relative speedup
Cubic jc11§ size 135 0.7
prediction
Parallelepiped 1.67 0.64
tile size prediction
Cubic tile size selection
based on speedup prediction 1.85 0.88
Parallelepiped tile size se‘le(.:tlon 9 45 0.916
based on speedup prediction
.CllblC' tile size 101 1
selection with Autotuner
Parallelepiped tile size 9 69 1
selection with Autotuner '

Table 6.2: Validation set. Results

e The strategy to predict parallelepiped partitioning based on the predicted
speedups seems the best choice on the validation set. It overperforms all other
strategies.

e The strategy to predict based on the predicted speedups is more applicable
for this issue. The models take data from all tile size (not just the best ones)
for the training. Models behave in more robust way when they do not know
how to optimize given kernel in the best.

6.3.7 Test set results

This subsection provides experimental results for the 9 known kernels that were not
generated with our code generator. The results are presented in Figures 6.8 and
6.9 and in table 6.3. The relative speedups for the test set could be improved if
we used relative speedup (not absolute) as a target value for the Machine Learning
model that implicitly predicts the tile sizes (Section 6.3.1). Obviously, if we used
RS as labels for our data, then the RS speedup on the test set would be greater.
But our experiments show that choosing RS/AS as the label does not change (just
on several percent) the results on average.

6.3.8 Test set representativeness

We consider that the programs we used in the training set are more representative
than the kernels that we observe in the test set. We used a much wider range of
parameters for the training set. They are presented in Table 6.4.
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Strategy Absolute speedup | Relative speedup
Cubic ‘tll(.% size 134 0.8
prediction
Parallelepiped 1.57 0.67
tile size prediction
Cubic tile size select}or% 158 0.6
based on speedup prediction
Parallelepiped tile size sgle(?tlon 335 0.64
based on speedup prediction
Cubic tile size 181 1
selection with Autotuner '
Parallelepiped tile size 3 85 1
selection with Autotuner '

Table 6.3: Test set. Results

We compare the ranges of Yuki’s features [1] in the two sets. We could mimic
the training set to increase the performance on the test significantly but the value
of the speedups was not the focus of this study.

Conclusion on test set results

Results on the test set shows that

e The parallelepiped partitioning is a more profitable transformation for the test

set.

e Absolute speedups of parallelepiped predictions overperform the cubic ones.
3.35x and 1.57x versus 1.58x and 1.34x.
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Ranges of features | Test set | Training set
# of writes
with locality 0-1 0-2
# of writes
without locality 0-0 0-2
# of reads
with locality 14 0-10
# of reads
without locality 0-2 0-11
# of 1n'var1ant 0.2 0.2
writes
# of invariant 13 011
reads

Table 6.4: Test set vs Training set. Feature ranges

e Relative speedups are higher for direct predictions. Direct tile size selection
achieves a good level of relative speedups on kernels that could not be improved
a lot by tiling (e.g. gemm). The other strategy shows worse results on this
type of kernel but maximizes the performance on kernels that are improved
by tiling.

Figure 6.10 shows the values of relative speedups for the proposed strategy.
It should be mentioned that the proposed model is able to capture the profitable
patterns for kernels that benefit a lot from tiling (syr2k, syrk, mm) and does not
capture properly for non-beneficial kernels (gemm, strsm).

6.3.9 Conclusion on our tiling predictions

In this section, we do a comparison of two groups of approaches. Firstly, we compare
the predictions made for cubic vs parallelepiped tiling. Cubic tiling is a less beneficial
transformation but could be easy to model and predict. Hence, we could potentially
get better predictions due to the low complexity of the problem.

Secondly, we do a comparison of strategies on how to model the problem of tile
size selection from a machine learning point of view. Both approaches are regression
techniques, the first one predicts tile sizes directly [1], and the second approach
predicts speedups [102] and chooses the tile size that maximizes the speedup.

We conclude that

e The parallelepiped partitioning is the most reasonable concept for ML model-
ing in our context. Predictions made on parallelepiped are up to 32% better
on the validation set and up to 112% better on the test set in terms of absolute
speedup.
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Figure 6.10: Test benchmark

e The tile size selection based on speedup predictions is the best strategy. We
can improve predictions up to 47% on the validation set and up to 113% on
the test set.

e Our predictions reach up to 91.6% out of the optimal ones found by autotuner
on the validation set and up to 70% on the test set formed with real kernels.

6.4 Advanced tiling

State-of-the-art research for tile size selection using Machine Learning considers
mainly kernels that do not have data dependencies [1], [45]. So the feature space
design in the previous articles does not reflect the fact that the program may have
data dependencies. Moreover, Machine Learning predictions are limited only to
tile sizes for cubic [1] or parallelepiped [45] tile shapes. This chapter attempts to
overcome these limitations. We show that taking into account scanning directions
and tile shapes can improve the performance of kernels that have uniform data
dependencies. We validate our methodology on 2-dimensional nested loops and show
that it could improve our predictions for the kernels that have data dependencies.

6.4.1 Data collection

We used the code generator [70] to generate around 1000 synthetic kernels. The
main concept that we targeted during the generation was the creation of uniform
data dependencies. The generated programs had from 1 to 5 true uniform data
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dependencies (constant write-before-read dependencies). We tried to generate ker-
nels with the most different possible dependence cones. The methodology was to
generate kernels whose second outermost loop could be parallel after the tiling trans-
formation.

Autotuning process

We used LOCUS Autotuner [32] to label the data for two different settings. First, we
asked the Autotuner to find the optimal combination of parameters for the square
tiling considering 4 different scanning directions: TI-LI, TI-LP, TP-LI, and TP-LP.
TS and LS scanning directions are respectively identical to TT and LI in the case of
square tiling. Second, we asked the Autotuner to tune the same kernel with diamond
tiling considering 9 possible scanning directions. Scanning directions related to the
partitioning shape (TS, LS) have been added for -Intra and -inter tiles. That gives
9 combinations in total. All the collected executions and corresponding execution
times were collected for the learning process.

Legality checks

We used a 4-step verification system to validate the correctness of our experiments.
First of all, PIPS compiler [33] is used with the options allowing the generation
of tiled codes only in cases where the transformation is legal. If it is the desired
scanning directions that are not legal, PIPS returns a tiling with the initial scanning
directions. Secondly, we always verified that the scanning directions of the gener-
ated code correspond to those requested. Third, we performed data dependence
analysis to validate that the second outermost loop could be parallelized after the
tiling transformation. Finally, we compare the checksum of the initial sequential
code compiled without OpenMP and the aggressive compiler optimizations with the
optimized tiled parallel version. If one of the kernels fails any of these tests, it is
not taken as input to the learning process.

Data analysis

To our best knowledge, the consideration of additional tiling parameters has not
been thoroughly analyzed in the literature. Moreover, it has not been shown that
it could have a performance impact on a large set of programs. We try to overcome
these issues in this subsection.

Figure 6.11 shows what percentage of generated kernels benefit from extended
scanning directions for cubic or diamond tiling (any scanning directions). Our anal-
ysis shows that around 21% of the generated kernels benefit from this extended
setting. Figure 6.12 shows the speedup distribution of the generated kernel com-
pared to the same kernels auto-tuned with the original tiling settings. The mean
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speedup across all beneficial kernels is around 6.5% compared to the original set-
tings. We consider these results meaningful. First, we managed to generate around
200 kernels which perform better with the extended tile settings. This research topic
has not been sufficiently addressed. Some kernels have been used as a reference of
profit for extended tiling settings, such as diamond tiling code, but performance has
rarely been measured. The high code generation overheads, due to more complex
loop bounds, are often not mentioned. However, we show that despite the overhead,
we can generate kernels that benefit from these parameters. We used the COLA-
Gen autotuner [70] for that. These results justify that our generator is capable to
generate the code of our interest.

Figure 6.13 shows the distribution of the best scanning directions. The initial
basis was the best in 79% of cases. Unfortunately, the scanning directions related
to the partitioning of the diamond tiling shape have never been the best in our
experiments. It could be explained as not optimal generation strategy of the syn-
thetic data or by large overhead to compute these scanning directions. The TP-LI
scanning direction takes second place in terms of frequency of the best scanning.

Percentage of kernels that benefit from advanced settings

100 Il Does the
kernel
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advanced
settings?
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40
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Figure 6.11: Amount of kernels that benefit from Advanced settings

6.4.2 Machine Learning modeling

Figure 6.11 concludes that we have a huge imbalance in our classes. The original
tiling shape and scanning are the best options in almost 80% of cases. Hence, we
think it reasonable to create a two-stage ML model that would consist of two parts.
The first model will predict whether we consider only the original tile settings or
the extended settings, the best option for the given code. The second model will
predict the tile sizes if the answer is positive (not profitable for extended settings),
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or all the parameters for a given kernel (tiling shape+scanning directions+ tile size)
otherwise. The pipeline is illustrated in Figure 6.14.
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Figure 6.14: Prediction pipeline

Classifiers ROC-AUC score
Random Forest 0.83
Gradient Boosting 0.84
Logistic Regression 0.82
Stacking 0.89
Majority class prediction 0.79
Random guess 0.50

Table 6.5: Comparison of different models

First-step model. Binary Classification

Our first-step model is a binary classification model. It takes the input features pre-
sented in Table 6.1 and predicts whether this kernel is potentially a good candidate
for restricted parameters of tiling or not (extended parameters). We do modeling
using the stacked classifier. The base models are: Random Forest Classifier [30],
Gradient Boosting Classifier [16], SVM [161] and Logistic Regression [160]. We use
Logistic regression as a meta-classifier to aggregate the predictions The pipeline is
shown in Figure 6.15. The performance of different classifiers is shown in table 6.5.
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Figure 6.15: First-stage model
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Train/test split

We evaluated the model on the test set. These kernels were not involved in the
training phase. Kernels from the train set were involved in the training of all models
in this subsection. The train/Test split ratio is 0.85/0.15 with the same class balance
of the minority class in both splits.

Model evaluation

We face a problem of imbalanced classification. We consider it reasonable to use the
ROC-AUC score to evaluate the quality of the predictions. The ROC-AUC curve is
a graph showing the performance of a classification model at all classification thresh-
olds. The y-axis corresponds to the recall of the model and the y-axis corresponds
to the False Positive Rate. We compute the ROC-AUC score, the area under its
curve. The best value of 1 would correspond to the ideal classifier, the value of 0.5
corresponds to the random guess, and the value of 0.79 would correspond to the
constant classifier which always predicts the majority class. We achieved a ROC-
AUC score of 0.89, we conclude that our model has a good generalization ability to
distinguish whether a kernel benefits from extended tiling parameters or not.

Feature importance

Figure 6.16 presents the importance of the features of the encoding that we used.
We used the single CatBoost [16] classifier to measure the feature importance. The
importance was calculated based on model performance without considering partic-
ular features. If we ignore some features and train models without them, there are
two cases. The model performance is degrading, which means the information cap-
tured by this feature was crucial. If performance does not change or even improve,
then this feature was meaningless. The feature important algorithm implemented
in CatBoost also uses feature interaction. The metric of performance is normalized
to have a sum of 100 if we would add all the importance. The summation vector is
the crucial feature of our model, it impacts the performance the most. The iteration
domain is also crucial. We can conclude that all our encodings are meaningful and
provide useful information for the model.

Second-step models

We distinguish two models for the second step prediction. If the data sample was
marked as beneficial for the extended tiling parameters then we predict the tile
shape, scanning directions, and tile size. Otherwise, we only predict tile sizes. We
consider it as a regression problem that predicts the speedup and we sample the best
parameters that maximize the speedup for the prediction. We used single CatBoost
[16] to handle this task.
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Figure 6.16: Feature importance

Evaluation of the results

Figure 6.17 shows the comparison of our approach to predict the extended tiling
parameters by applying the first and second steps of our model compared to the
model that predicts cubic size and initial scanning directions. Our methodology
could bring up to 5% of absolute speedup for the kernels that benefit from it. The
relative speedup we get is about 84% for the results of the two concatenated step

models.
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Figure 6.17: Acceleration of classical pipeline
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6.4.3 Conclusion on predictions for Advanced Tiling transforma-
tion

In this subsection, we perform Machine Learning modeling to predict the extended
set of tiling parameters. We do not restrict our predictions to tile size but predict
1) tile shape 2) -intra tile scanning directions 3) -inter tile scanning directions 4)
tile size.

Our pipeline consists of two consecutive Machine Learning models. The first one
predicts whether or not we should apply tiling with extended parameters for this
kernel. The second model applies tiling with advanced parameters if it is necessary.

We conclude that

e We managed to generate around 200 kernels that benefit from extended pa-
rameters of tiling compared to tiling with the original parameters. It shows the
ability of our COLA-gen generator [70] to generate very diverse codes. To our
knowledge, the profitability of tiling with extended parameters has not been
properly addressed in the literature, we show that it could bring up to 30%
performance for 2-dimensional nested loops. Our preliminary experiments on
3-dimensional nested loops show that the acceleration can be up to 75% on
some particular examples.

e We manage to create the Machine Learning model that predicts if this kernel
potentially benefits from extended tiling parameters. It has shown its efficiency

and achieved a 0.89 ROC-AUC score.

e Our second-step Machine Learning model predicts tiling parameters for kernels
that benefit from advanced tiling. We managed to accelerate these kernels
by 5% on average compared to the case when we only considered the initial

scanning directions and the initial shape. It is about 84% of what Autotuner
could find.

e All features that we used have a significant impact on the model performance.
Their elimination would lead to model performance degradation.

6.4.4 Technological stack
For the experiments in this chapter, I used the following tools
e Python: Programming language
e Sklearn: Machine learning modeling, data prepossessing.
e NetworkX: Work with graphs, graphs visualization, graphs embeddings.

e PyTorch: Experiments with Deep Learning models
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e Numpy, Pandas: Data processing

e CatBoost: Implementation of gradient boosting

6.4.5 Conclusion

This section brings two important contributions to this thesis.

e We proposed the encoding of the following concepts: data dependencies, de-
pendence cone, iteration domain, and the vector which is the sum of all the
dependencies. We show that these concepts have an important impact on the
performance of the model and help to capture the problem being observed.

e We do a generalization through existing methods to model the problem of tile
size predictions and generalization between different shapes for tiling transfor-
mation. We conclude that the best way to model tiling from an ML perspective
is to implicitly predict tile sizes of parallelepiped shape. First, predict the po-
tential speedup that we could get with each tile size, then choose the tile size
that maximizes the speedup. We can improve predictions up to 47% on the
validation set and up to 113% on the test set.

e Our predictions can reach up to 91.6% out of the optimal ones found by
autotuner on the validation set and up to 70% on the test set formed with real
well-known kernels. We did not try to mimic the distribution of real kernels
but used a very general training set with a very wide range of parameters.

e We do not restrict our model predictions to tile sizes only. We add information
about scanning directions (for -inter and -intra tiles) and tile shapes (square
or diamond). We introduce a two-stage ML pipeline to model that. The first
model predicts whether or not we apply extended tiling for a given kernel
and the second model chooses the appropriate parameters. We show that the
extended tiling could bring up to 30% compared to the classical tiling. Our
predictions for the kernels that benefit from the extended tiling achieved a
speedup of about 5% over tiling where we only consider original tiling param-
eters. We reach about 84% of what the autotuner could find.

e We used about 1000 perfectly nested 3-D loops generated by COLA-gen [70]
for the prediction of the best tile sizes in section 6.3. We used about 1000
perfectly nested 2-D loops for section 6.4 also generated by our generator.



Chapter 7

Autotuning acceleration using
Machine Learning

Résumé

L’autotuning est une technique puissante pour trouver les parametres performants
des transformations de code. L’idée est d’explorer itérativement différents points
de l'espace de recherche en recherchant des solutions de plus en plus proches de
Ioptimal. Cette idée est assez différente de ce sur quoi nous nous sommes concentrés
auparavant. Nous avons ciblé des prédictions ponctuelles, cela signifie que nous
n’avons qu’une seule tentative pour estimer la meilleure solution. Cette approche
est beaucoup plus rapide mais moins précise que la recherche exhaustive. Dans le
chapitre 6, nous montrons que nous visons a obtenir environ 60%-80% de ce que
I’Autotuner a trouvé pour la transformation de tuilage.

Ce chapitre combine les deux approches précedentes. Nous essayons de com-
prendre si les prédictions uniques pourraient étre utiles ou non pour améliorer
I’ Autotuning et si cela pourrait étre compatible.

Introduction

Autotuning is a powerful technique to find beneficial parameters of code transfor-
mations. The idea is to iteratively explore different points of the search space by
looking for better and better solutions. This idea is quite different from what we
focused on before. We targeted one-shot predictions, it means we have just one at-
tempt to guess the best solution, this approach is much faster but less accurate than
the exhaustive search. In chapter 6, we show that we aim to get around 60%-80%
out of what the state-of-the-art Autotuner found for the tiling transformation.

This chapter combines these two different approaches. We try to understand if
the one-shot predictions could be useful for Autotuning improvements or not and if
could it be compatible.
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This chapter is organized as follows. Section 7.1 presents the autotuner we
used in the context of this thesis and introduces its search modules. Section 7.2
shows our preliminary results on the autotuning strategy based on predicted speedup
estimation of the search domain. Section 7.3 present our investigation on how the
choice of the initial point could accelerate the iterative search.

7.1 Locus Autotuner

Locus [32] is a system and a language to express and optimize complex kernels
for different architectures. It uses optimization techniques and guides an empirical
search for the best solutions using several complex search space traversal techniques.
This tool was used to label all the data in this thesis and we use it as a reference
for this chapter. The key part of the autotuner is its empirical search modules.

Locus integrates two empirical search modules inside [86] and [5].

OpenTuner [86] has a hierarchical structure of search techniques. There is a
root technique that chooses sub-techniques to perform. AUC Bandit technique with
greedy mutation, differential evolution, and two hill climber instances were used as
the default root technique for this search engine.

Bergstra et al. [5] presents hand-crafted algorithm Hyperparameter Optimiza-
tion algorithm (HOA) to focus the iterative search.

7.2 Point Ranking Strategy

The previous section highlights the search engines that Locus uses. This section
presents preliminary results showing that Machine Learning can accelerate the it-
erative search. We plot the results of our autotuning strategy based on Machine
Learning. The strategy is very simple and naive. The idea is to use the model 6.3
described in the previous chapter in order to evaluate the speedup of the potential
candidates. We rank all candidates according to their speedup and take one after
the other. Obviously, this strategy is not optimal since it does not even have a
feedback loop that changes actions based on observations. The goal is to show that,
even in this context, Machine Learning ranking can sometimes be competitive with
Autotuner.

Perfect predictions

We guessed the best tile size in one shot for two benchmarks: mm and syr2k-kernels.
As it was mentioned before, our model could efficiently capture the patterns for
kernels, which benefit a lot from tiling. It took 29 and 33 iterations correspondingly
for the autotuner to figure out what tile size is the best for these kernels.
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Figure 7.2: MM kernel

Good predictions

There are cases, where we take fewer attempts than the autotuner to guess the best
tile sizes. It took 19 versus 30 iterations for trisolv-kernel and 31 versus 64 iterations
for syrk-kernel to find the best tile size.
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Bad predictions

Unfortunately, our model cannot capture patterns for cases when the kernel does not
benefit a lot from tiling. This is the case for gemm-kernel. We spend 192 iterations
versus 24.
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Conclusion on the naive point ranking strategy

This section shows the ability of our model to overperform the state-of-the-art au-
totuner for some well-known kernels in predicting the best parameters of the tiling
transformation. Obviously, the strategy could be improved by adding a feedback
loop. But even in this context, we may capture some crucial proprieties about
speedup distribution for the tiling transformation. It is a prerequisite for further
generalization.

7.3 Acceleration of more complex search spaces

This section evaluates our approach to the search space that consists of a combina-
tion of hierarchical loop tiling (two tilings consequently) and then loop unrolling.
The search space has more possible combinations than the search space just for the
tiling transformation.

We investigate the hypothesis that the iterative search process is sensitive to the
initial point selected. The idea is to investigate some search spaces and evaluate
the convergence properties if 1) We let the autotuner choose it by itself and 2) We
predict it with Machine Learning.

The target optimization sequence is Paralelepiped loop tiling - parallelepiped
loop tiling - loop unrolling. It gives 2657205 different code variants. We predict the
parameters of the tiling transformation that is applied first. We do not predict the
parameters of the second tiling.
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Figure 7.6 shows the comparison of the different initialization strategies for mm-
kernel. The strategy based on the initialization with Machine Learning prediction
overperforms the default strategy. It only took 20 iterations to find high-quality
solutions. On the other hand, the default strategy made about 75 attempts to find
the same quality solution.

Figure 7.7 shows that the ML strategy found the q95 solution almost immedi-
ately. When default strategy spends around 140 iterations for that.

Figure 7.8 presents the autotuning process for syr2k-kernel. The results are
comparable but the ML strategy managed to find a solution that was not found by
the default strategy.

This section shows that initializing the Autotuner with Machine learning pre-
diction seeds helps the model to find efficient solutions faster. We validate our
methodology on 3 well-known benchmarks: mm, syr2k and syrk.

Impact of the initial configuration. Kernel mm

— Locus
ML strategy

Relative speedup found

0 50 100 150 200 20 300 B0
Number of iterations

Figure 7.6: Mm. Initial seed

7.4 Conclusion

In this section, we discussed the ability of Machine Learning to accelerate the it-
erative search for the state-of-the-art Autotuner. The first results show that our
ranking ML model could autotuner some well-known kernels faster than Autotuner.

Our results were conducted with parallelepiped and cubic tiling transformations.
Our second hypothesis shows that ML predictions used as the initial point for the
iterative search could accelerate the search process. We used up to 100 iterations less
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to find the same quality of solutions for well-known benchmarks. All these results
derive a positive discussion about the applicability of ML methods for Autotuning,
especially for large search spaces encountered in program optimizations.
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Chapter 8

Conclusion

Résumé

Cette these présente les résultats de mes recherches sur 'optimisation du code des
noyaux a forte intensité de calcul, basée sur des transformations source-a-source, a
I’aide de techniques d’apprentissage automatique.

Nous adressons les deux domaines scientifiques: Machine Learning et optimisa-
tion de code. Nous considérons les techniques ML comme un outil pour prédire les
parametres d’optimisation. Par conséquent, mes contributions concernent la formu-
lation de problemes d’optimisation de code dans le cadre du ML. En particulier,
nous proposons des techniques pour prédire efficacement les parametres étendus
d’une transformation de tuilage de boucles efficace permettant de se rapprocher des
performances maximales du code.

Nos autres contributions consistent a créer les conditions préalables essentielles
a ’application des techniques de ML dans ce domaine. Par exemple, nous avons
travaillé sur les données collectées et le design expérimental optimal afin de fournir les
données les plus représentatives pour nos modeles, puisque la qualité des données est
la principale exigence du Machine Learning. Cela inclut également de travailler sur
la fagon dont nous représentons ces données dans les modeles, car la représentation
d’un concept d’intérét est un élément crucial d’'un modele réussi.

8.1 Introduction

This thesis presents the results of my research on code optimization of compute-
intensive kernels, based on source-to-source transformations, using machine learning
techniques.

It takes place in two scientific domains - Machine Learning and Code Optimiza-
tion. We consider ML techniques as a tool to predict optimization parameters.
Therefore, my contributions concern the formulation of code optimization problems
within the framework of ML. In particular, we propose techniques to efficiently pre-
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dict the extended parameters of an efficient loop tiling transformation to come close
to the peak code performance.

Our other contributions are in creating the essential prerequisites for the appli-
cation of ML techniques in this field. For example, we worked on the collected data
and the optimal experimental design in order to provide the most representative
data for our models, since the quality of data is the main requirement of Machine
Learning. This also includes working on how we represent our data in models as
representing a concept of interest is a crucial part of a successful model.

8.2 Thesis Contributions

Our contributions fall into two groups: 1) data collection and its optimal experi-
mental design and 2) application of the loop tiling transformation. The first group
targets aspects of the synthetic loop generator used to collect all the data for this
thesis. It also targets the techniques to select the most representative data for code
generation. The contributions of the second group concern the choice of the best
way to model the tiling transformation from the ML perspective, the modeling of
the code properties from the tiling perspective, and the consideration of different
tiling parameters for the predictions.

Data collection and optimal experimental design

We propose a synthetic code generator that can generate representative data pat-
terns for code transformations such as loop tiling, loop interchange, and loop un-
rolling. This generator can produce training and validation sets of arbitrary sizes
for Machine Learning needs.

Moreover, we propose a strategy based on Active Learning to generate the most
representative data samples. It helps either to reduce the training time to reach
a certain level of performance or to obtain a more efficient model under the same
time constraints. This technique achieves up to 15% more speed-up using the same
amount of data. Active learning techniques reduce the number of input programs
needed and the time during the training phase. Active learning can easily be inte-
grated when developing ML models of program transformations, because thanks to
the generator, we can provide representative kernels in all desired program classes.
Contribution related to this section was published and presented in the 13th Work-
shop on Parallel Programming and Run-Time Management Techniques for Many-
Core Architectures and the 11th Workshop on Design Tools and Architectures for
Multicore Embedded Computing Platforms (PARMA-DITAM 2022).
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Tiling transformation

Loop tiling has been studied for many years, it was ambitious to start new research
on this code optimization. We justify our research by the fact that among the
optimizations, loop tiling is essential (Chapter 5), and there is no technique that
yields its optimal partitioning parameters in a reasonable time. The main difficulty
is that the space of tiling parameters is very large, and a proof of concept of the
usefulness of machine learning techniques in a compiler environment needed to be
investigated

Firstly, we provide analyses of common ML pipelines to predict the optimal tile
size and choose the best one. Our training set was generated with our automatic
code generator, totally independent of the benchmarks chosen for the evaluation
phase of our results. The performances obtained are remarkable in this context
since 80% of the optimal performances are reached for the cubic tiling and 70% for
the parallelepiped tiling. We conclude that the best way to predict the efficient
tiling is 1) to predict the speedup for a given kernel using potential tile size as the
input feature and then 2) for the prediction to sample all possible tile sizes and
choose the one that maximizes the predicted speedup. Parallelepiped tiling seems a
more reasonable abstraction for ML modeling, we manage to obtain 2.45x speedups
on the validation set and 3.35x on the test set. On the other hand, our predictions
for cubic tiling reached 1.85x and 1.58x respectively.

Secondly, we investigate new tiling criteria to consider, such as the quality of the
generated code, in addition to its natural properties of increasing in data locality
and extracting potential parallelism. We do not limit our predictions to tile sizes
for a fixed shape. We propose an approach to simultaneously predict 1) tile size,
2) intra-tile scanning directions, 3) inter-tile scanning directions, and 4) tile shape
for kernels that have uniform data dependencies. We show that these parameters
that could bring up to 30% of additional speedups for some kernels and up to 7% of
additional speedups for the kernels that we investigated on average if we compare
just with the tile size prediction. Moreover, it eases the derivation of heuristics
independent from our ML models. Noting that in 80 % of cases the TI-LI scanning
direction setting is beneficial for programs with data dependencies, this setting can
be systematically applied to these codes. Our Machine Learning model managed
to predict up to 5% of additional speedup for the kernels that benefit from more
extended tiling parameters. Our pipeline for extended tile settings for 2-D loops
reaches up to 84% of what the Autotuner found.

An essential part of our results is the proper choice of the features of the pro-
grams to be considered and the proposal of their representations (fixed size) in an
ML context. The most original representation is the one proposed to encode data
dependencies. It allows for characterizing data dependencies with a fixed-size data
structure, precise enough to be exploited by ML techniques. We also investigated al-
ternative feature spaces such as graph embedding techniques to embed control-flow
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and data-dependence graphs. For control-flow graphs, we created a synthetic CFG
generator that could produce millions of valid CFGs corresponding to programs we
are interested in. For DDG embeddings we use kernels produced by a synthetic code
generator [25].

We also provide an analysis of how our ML model could be used for kernel
Autotuning. We conclude that it could be beneficial in some cases, especially when
the Autotuner needs the initial seed to start the search process.

It should be mentioned that all the results were obtained by applying the tiling
transformation alone. It is therefore difficult to compare our gains with other opti-
mizers that apply combinations of transformations including tiling in its simplified
version. Our ML approach allows us to obtain even greater gains if we combine the
ML models of each of the transformations. However, the preliminary studies that
we have carried out on the prediction of the parameters of a single model coupling
several transformations (tiling + unrolling + permutation) show that the more the
search space for the parameters of an ML model is increased, the less it is precise,
compared to the results that can be obtained with separate models for each of the
transformations.

8.3 Future work and improvements

This manuscript opens the way for potential improvements that can be made, and
for other research of interest.

Generalization for different architectures

The results of this thesis are those obtained for a particular architecture. It would be
interesting to validate them for architectures with the same characteristics: memory
size, number of processors, number of threads, etc. and to establish a classification
of architectures.

Code generator

The prerequisites for extending our methods are as follows: to have a set of repre-
sentative and executable kernels and to have a tool capable of applying the source-
to-source transformation, in a systematic and legal way.

In chapter 3, we present the code generator for the collection of training and vali-
dation sets for ML issues. The generated codes are representative of transformations
such as loop tiling, loop unrolling, and loop interchange.

e Our generator can be extended to many programming languages (not only C)
because the main concepts we used are language-agnostic. It only requires
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a few modifications to the syntax and code routines to achieve a successful
translation into the target language.

e Our code generation pipeline has been extended to CUDA but not been ex-
ploited yet.

e The generator can be extended and generate more diverse programs (triangular
iteration domain, conditional iterations, etc.), which will improve the results
for less regular calculation kernels.

e The code generation for different architectures is the point for improvement.
We investigated the quality of the code generated only on a particular CPU.
The analysis of the code generated on different architectures of CPU, GPU
and on heterogeneous architectures is the key direction for the research.

Optimal experimental design

In chapter 4, we present techniques to select the most representative data that
would be taken as input for the training phase in the ML pipeline. We evaluate our
methodology on loop tiling transformation and later use this idea to collect all the
data for the experiments in this thesis.

e The future improvements may target the validation on a greater number of
transformations than just loop tiling.

e The investigation of better generation strategies. For instance, scanning direc-
tions associated with diamond tiling were never labeled as optimal ones in 6.4.
It could be also explained by high computational overhead of this scanning.

e More Active Learning techniques could be investigated such as those proposed
by Wu et al. [65]. Future improvement targets the applicability of Active
Learning not only for the regression task but for a large bunch of ML problems
in code optimization.

e The hyperparameters (number of chosen programs to label at each step, dis-
tance metrics of programs, etc.) tuning of the active learning techniques is
the point for improvement. It may improve the convergence of the models.

Machine Learning part

In the context of this thesis, we used classical Machine Learning models such as
classification and regression. Moreover, we investigated Active Learning techniques.
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e The state-of-the-art research in ML operates with millions of data samples.
However, we work with only thousands. Our results could be improved if
much more data were collected. It opens the opportunity of applying Neural
Networks for our tasks such as in the work of Baghdadi et al. [102]. Deep
Learning models tend to perform better and extract more sophisticated pat-
terns with the increase of the training set and this could potentially improve
our prediction pipeline.

Alternative feature spaces

As previously stated, in chapter 6, we investigated the embedding of different code
concepts and their impact on the performance of the models.

e We worked on the integration of Control Flow and Data Dependence Graphs.
The potential integration of broader concepts (such as whole code) might be
beneficial.
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Kernel Autotuning
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Figure A.1: Trisolv kernel Autotuning
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floyd kernel autotuning, 1024 iterations per dimension, 4 Threads, -03 -march=native -mtune=native -firee-vectorize
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Figure A.2: Floyd kernel Autotuning
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Figure A.3: Gemm kernel Autotuning
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Figure A.4: MM kernel Autotuning
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Figure A.5: Strsm kernel Autotuning

151



152

Execution time (ms)

Execution time (ms)

5000

g
(=]

5]
3

2000

5000

4500

2
[=]

5]
3

3000

2500

APPENDIX A. KERNEL AUTOTUNING

syrk kernel autotuning, 1024 iterations per dimension, 4 Threads, -O3 -march=native -mtune=native -firee-vectorize
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Figure A.6: Syrk kernel Autotuning
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Figure A.7: Syr2k kernel Autotuning



Execution time (ms)

1400

1200

1000

800

600

tmm kernel autotuning, 1024 iterations per dimensicn, 4 Threads, -O3 -march=native -mtune=native -firee-vectorize

.
.
c -
e *® [ ¢
W.".-..’ vl N’ o0 o*e folosm o0 0 % 0 *moe
.
.
.
.
100 200 300 400 500
Tile size

Figure A.8: Tmm kernel Autotuning

153



154 APPENDIX A. KERNEL AUTOTUNING



Appendix B

Paralelipiped tiling. Speedup
distribution

Speedup distribution, kernel trisolv
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Figure B.1: Trisolv kernel. Speedup distribution
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Speedup distribution, kernel floyd
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Figure B.2: Floyd kernel. Speedup distribution
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Speedup distribution, kernel gemm
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Speedup distribution, kernel mm
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Speedup distribution, kernel strsm
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Speedup distribution, kernel syrk
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Speedup distribution, kernel syrk2
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Speedup distribution, kernel tmm
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Figure B.8: Tmm kernel. Speedup distribution



Appendix C

Rectangular tiling. Speedup
distribution

Speedup distribution, trisolv kernel
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Figure C.1: Trisolv kernel. Speedup distribution

163



164 APPENDIX C. RECTANGULAR TILING. SPEEDUP DISTRIBUTION

Speedup distribution, floyd kernel
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Speedup distribution, mm kernel
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Speedup distribution, strsm kernel
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Speedup distribution, syrk kernel

2 0 0.00 0.00 0.00 0.00

4 .00 0.45

16
9
w @
o=
84
- -0.50
128
- 075
LGl 0.00
- -1.00
M 0.00 0.00
2 4 8 16 32 84 128 256 2
X-axis

Figure C.5: Syrk kernel. Speedup distribution

167



168 APPENDIX C. RECTANGULAR TILING. SPEEDUP DISTRIBUTION

Speedup distribution, syrk2 kernel
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Figure C.6: Syr2k kernel. Speedup distribution
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Appendix D

Advanced tiling example.
scanning

Listing D.1: Tiled kernel

TP-LP

for (i_t = 0; i_t <= 254; i_t += 1)
{ #pragma omp parallel for private(j_t,i_1,3j_1)
for (j_t = pips_max_2(-i_t, -127); j_t <= pips_min_2(

for (i_1 = (16 * i_t) + 10; i_1 <= pips_min_3((16 *
16 * j_t)) + 2062, ((-16) * j_t) + 2062); i_1 +=

for (j_1 = pips_max_3((((-i_1) + (16 * i_t)) + (16 *
j_t) - 20); J_1 <= pips_min_3((((-i_1) + (16 * i
(=i_1) + 2042, (16 * j_t) - 5); F_1 += 1)

A[-J_110i 1 + J_11 = (A[(-J_1) - 2][(i_1 + j_1) - 1]
j_1) - 11) + A[(-3_1) - 11[(i_1 + 3_1) - 21;}

(-i_t) + 127,

i_t) + 40,

((

0); Jj_t +=
16 * i_t) +

2042, (le6 *
j_t)) + 20,

11[0(i 1 +

1)
(
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Appendix E

Glossary

e Features: In machine learning and pattern recognition, a feature is an indi-
vidual measurable property or characteristic of a phenomenon. Features are
usually numeric, but structural features such as strings and graphs are used
in syntactic pattern recognition. The concept of "feature” is related to that
of the explanatory variable used in statistical techniques. [9]

e Training set: A training data set is a data set of examples used during the
learning process and is used to fit the parameters (e.g., weights) of, for exam-
ple, a classifier. [11]

e Validation set: A validation data set is a data set of examples used to tune
the hyperparameters (i.e. the architecture) of a classifier. [11]

o Test set: A test data set is a data set that is independent of the training data
set, but that follows the same probability distribution as the training data set.
If a model fit to the training data set also fits the test data set well, minimal
overfitting has taken place (see figure below). A better fitting of the training
data set as opposed to the test data set usually points to over-fitting. [11]

e Loss function: In mathematical optimization and decision theory, a loss func-
tion or cost function is a function that maps an event or values of one or more
variables onto a real number intuitively representing some ”cost” associated
with the event. [12]

e Labeled data: is a group of samples that have been tagged with one or more
labels. [13]

e Optimal experimental design: are a class of experimental designs that are
optimal with respect to some statistical criterion. [14]
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e Ground-truth value: is information that is known to be real or true, provided
by direct observation and measurement (i.e. empirical evidence) as opposed
to information provided by inference. [15]

e Embedding: is a relatively low-dimensional space into which you can translate
high-dimensional vectors. Embeddings make it easier to do machine learning
on large inputs like sparse vectors representing words. Ideally, an embedding
captures some of the semantics of the input by placing semantically similar
inputs close together in the embedding space. An embedding can be learned
and reused across models. [10]



RESUME

Les optimisations de code peuvent étre appliquées a des niveaux tres différents. Par exemple, un programmeur peut
optimiser un algorithme afin qu’il ait une complexité de temps de calcul asymptotique plus faible, et un compilateur peut
transformer du code afin qu’il s’exécute plus rapidement. Cette thése se place dans le contexte des transformations de
programme source a source. Cela signifie qu’a partir d'un programme écrit dans un langage de programmation source,
nous voulons obtenir un programme transformé dans le méme langage de programmation qui est plus efficace. En par-
ticulier, nous nous sommes concentrés sur les transformations de nids de boucles imbriquées, car elles représentent
les parties de code les plus consommatrices. Les transformations de boucles source-a-source ciblées sont le tuilage
de boucle, le déroulement et I'échange de boucles. Cette thése utilise des techniques d’apprentissage automatique.
Lobjectif principal de cette theése est de définir une méthode appropriée pour les transformations de programme source-
a-source afin d’améliorer une fonction de colt choisie pour une architecture homogéne utilisant 'apprentissage automa-
tique. Mes principales contributions se répartissent en deux groupes 1) la collecte d’'un ensemble de codes représentatifs
pour le ML et sa conception expérimentale optimale, 2) I'application d’une transformation de tuilage de boucle efficace. Le
premier groupe se concentre sur les aspects de génération automatique de codes. Nous proposons le générateur COLA-
GEN pour former des ensembles de données qui capturent des modeles pertinents pour les transformations de boucles.
Ce générateur peut produire des ensembles pour I'apprentissage et la validation de tailles arbitraires pour les besoins du
Machine Learning. De plus, nous proposons une stratégie basée sur I’Active Learning pour générer des échantillons de
données les plus représentatifs. Elle permet soit de réduire le temps d’apprentissage pour atteindre un certain niveau
de performance, soit d’obtenir un modéle plus performant sous les mémes contraintes de temps. Cette technique peut
atteindre une vitesse jusqu’a 15% plus rapide en utilisant la méme quantité de données. Le deuxieme groupe cible la
détermination des parametres optimaux pour le tuilage de boucle. Deux types de modéles ont été développés. Le pre-
mier modeéle cible la prédiction des tailles de tuiles optimales. Nous montrons que le meilleur pipeline consiste a prédire
1) 'accélération pour un noyau donné en utilisant des tailles de tuiles potentielles comme caractéristique d’entrée, puis
2) la taille de tuile qui maximise I'accélération prévue. De plus, nous montrons que le pavage parallélépipédique est la
forme de tuile la plus appropriée pour la modélisation ML, il atteint des accélérations de 2,45x sur 'ensemble de valida-
tion et de 3,35x sur 'ensemble de test. En revanche, les prédictions pour le pavage cubique atteignent respectivement
1,85x et 1,58x. Les performances de notre modele sont remarquables puisque 80% des gains optimaux sont atteints
pour un pavage cubique et 70% pour un pavage parallélépipédique par rapport a ceux obtenus par un autotuneur. Le
deuxiéme modele cible 'ensemble étendu de paramétres de la transformation de tuilage. Nous proposons une approche
pour prédire simultanément 1) la taille des tuiles, 2) les directions de balayage intra-tuiles, 3) les directions de balayage
inter-tuiles et 4) la forme des tuiles pour les noyaux qui ont des dépendances de données uniformes. Nous montrons
que ce type de parametres pourrait apporter jusqu’a 30% d’accélération supplémentaire pour les nids de boucles 2D. Il
atteint 7% d’accélération supplémentaire en moyenne pour les nids de boucles ou les parametres de direction de bal-
ayage sont avantageux. Notre modéle pour les paramétres de tuilage étendus pour les boucles 2D atteint jusqu’a 84%
des performances maximales trouvées par un autotuneur.

MOTS CLES

Machine Learning, Optimisation, Compilation

ABSTRACT

Code optimizations could be applied at very different levels. For instance, one could propose an algorithm that would
have lower asymptotic computation time complexity, and another - a compiler - could generate code that runs faster. This
thesis takes place in the context of source-to-source program transformations. This means that having a program written
in a source programming language (in our case C language), we want to obtain a transformed program in the same
programming language which is more efficient. The cost function that guides the optimization can vary: execution time,
compile time, memory consumption, a combination of different metrics, etc. The most significant and used in the context
of this Ph.D. is the execution time and memory consumption. In particular, we focused on nested loop transformations,
because typically they are the most consuming part of a program. The common source-to-source loop transformations
targeted in this thesis are loop tiling, loop unrolling and loop interchange. This thesis uses machine learning techniques.
Machine learning is a class of artificial intelligence methods, a distinctive feature of which is not a direct solution to the
problem, but which learns by applying solutions to many similar tasks. The main objective of this thesis is to define an
appropriate recipe for source-to-source program transformations to improve a chosen cost function for a homogeneous
architecture using Machine Learning. My main contributions fall into two main groups 1) Data collection of representative
code patterns for the ML purposes and optimal experimental design, 2) Application of an efficient loop tiling transformation.
The first group focuses on aspects of synthetic code generation. We propose the COLAGEN generator to collect data that
captures relevant patterns for loop transformations. This generator can produce training and validation sets of arbitrary
sizes for Machine Learning needs. In addition, we propose a strategy based on Active Learning to generate the most
representative data samples. It helps either to reduce the training time to reach a certain level of performance or to
obtain a more efficient model under the same time constraints. This technique achieves up to 15% more speed-up using
the same amount of data. The second group targets the determination of the optimal parameters for the loop tiling
transformation. Two types of models have been developed. The first model targets the prediction of optimal tile sizes.
We show that the best pipeline is to predict 1) the speedup for a given kernel using potential tile sizes as input feature,
and then 2) the tile size that maximizes the predicted speedup. The parallelepiped tiling seems the most appropriate
tile shape for ML modeling, it achieves 2.45x speedups on the validation set and 3.35x on the test set. In contrast, the
predictions for cubic tiling reached 1.85x and 1.58x respectively. Our model performances are remarkable since 80% of
the optimal gains are reached for cubic tiling and 70% for parallelepiped tiling compared to those obtained by an autotuner.
The second model targets the extended set of parameters of the loop tiling transformation. We propose an approach to
simultaneously predict 1) tile size, 2) intra-tile scanning directions, 3) inter-tile scanning directions, and 4) tile shape for
kernels that have uniform data dependencies. We show that this kind of parameters could bring up to 30% additional
speedups for 2D loop nests. It achieves 7% more speedups on average for kernels where the scanning direction settings
are beneficial. Our model for extended tile settings for 2D loops achieves up to 84% of the peak performance found by an
autotuner.
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