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“Although this may seem a paradox, all exact science is dominated by the idea of
approximation. When a man tells you that he knows the exact truth about anything,
you are safe in inferring that he is an inexact man.”

Bertrand Russell
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Abstract
Prédiction spatio-temporelle par

Équations aux Dérivées Partielles Stochastiques

Spatio-temporal prediction by Stochastic Partial
Differential Equations

In the task of predicting spatio-temporal fields in environmental science using statisti-
cal methods, introducing statistical models inspired by the physics of the underlying
phenomena that are numerically efficient is of growing interest. Large space-time
datasets call for new numerical methods to efficiently process them. The Stochas-
tic Partial Differential Equation (SPDE) approach has proven to be effective for the
estimation and the prediction in a spatial context. We present here the unsteady
advection-diffusion SPDE which defines a large class of nonseparable spatio-temporal
models. A Gaussian Markov random field approximation of the solution to the SPDE
is built by discretizing the temporal derivative with a finite difference method (implicit
Euler) and by solving the spatial SPDE with a finite element method (continuous
Galerkin) at each time step. The Streamline Diffusion stabilization technique is in-
troduced when the advection term dominates the diffusion. Computationally efficient
methods are proposed to estimate the parameters of the SPDE and to predict the
spatio-temporal field by kriging, as well as to perform conditional simulations. The
approach is applied to solar radiation and wind speed datasets. Its advantages and
limitations are discussed, and new perspectives for future work are envisaged, espe-
cially involving a nonstationary extension of the approach. As a further contribution
of the PhD, the nonseparable generalization of the Gneiting class of multivariate
space-time covariance functions is presented. The main potential of the approach is
the possibility to obtain entirely nonseparable models in a multivariate setting, and
this advantage is shown on a weather trivariate dataset. Finally, a review of some
methods for approximate estimation and prediction for spatial and spatio-temporal
data is proposed, motivated by the objective of reaching a trade-off between statistical
efficiency and computational complexity. These methods proved to be effective for
parameter estimation and prediction in the context of the “Spatial Statistics Compe-
tition for Large Datasets” organized by the King Abdullah University of Science and
Technology (KAUST) in 2021 and 2022. Lastly, possible further research directions
are discussed.
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Résumé
Prédiction spatio-temporelle par Equations aux Dérivées Partielles

Stochastiques

L’introduction de modèles statistiques inspirés de la physique des phénomènes sous-
jacents et numériquement efficaces est d’un intérêt croissant pour la prédiction de
processus spatio-temporels en sciences environnementales. Les grands jeux de don-
nées spatio-temporelles nécessitent de nouvelles méthodes numériques efficaces. L’ap-
proche par Equations aux Dérivées Partielles Stochastiques (EDPS) s’est avérée effi-
cace pour l’estimation et la prédiction dans un contexte spatial. Nous présentons ici
une EDPS d’advection-diffusion avec une dérivée de premier ordre en temps qui définit
une grande classe de modèles spatio-temporels non séparables. On construit une ap-
proximation de la solution de l’EDPS par un champ aléatoire Markovien Gaussien
en discrétisant la dérivée temporelle par la méthode des différences finies (Euler im-
plicite) et en résolvant l’EDPS spatiale par la méthode des éléments finis (Galerkin
continu) à chaque pas de temps. La technique de stabilisation “Streamline Diffusion”
est introduite lorsque le terme d’advection domine la diffusion. Des méthodes de
calcul efficaces sont proposées pour estimer les paramètres de l’EDPS et pour prédire
le champ spatio-temporel par krigeage, ainsi que pour effectuer des simulations con-
ditionnelles. L’approche est appliquée à des jeux de données de rayonnement solaire
et de vitesse du vent. Ses avantages et ses limites sont examinées, et de nouvelles
perspectives de travail sont envisagées, notamment afin de proposer une extension
dans un cadre non stationnaire. On présente également un travail portant sur la
généralisation non séparable de la classe de Gneiting des fonctions de covariance
spatio-temporelles multivariées. Le principal potentiel de l’approche est la possibilité
d’obtenir des modèles entièrement non séparables dans un cadre multivarié, et les
avantages sont illustrés sur un ensemble de données météorologiques trivariées. De
plus, on propose une analyse de méthodes d’estimation et de prédiction approximées
pour les données spatiales et spatio-temporelles, motivée par l’objectif de parvenir
à un compromis entre l’efficacité statistique et la complexité computationnelle. Ces
méthodes se sont avérées efficaces pour l’estimation des paramètres et la prédiction
dans le contexte de la “Compétition de statistiques spatiales pour les grands jeux
de données” organisée par la King Abdullah University of Science and Technology
(KAUST) en 2021 et 2022. Enfin, d’autres pistes de recherche sont envisagées et
examinées.
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Chapter 1

Introduction and background

Résumé
Dans ce chapitre, nous introduisons le cadre de la thèse, en détaillant les su-

jets fondamentaux : la statistique spatio-temporelle, les notions de nonséparabilité et
d’asymétrie, l’introduction de la physique dans les modèles statistiques, le problème
de la grande dimension des jeux de données. Nous présentons ensuite la méthode des
Équations aux Dérivées Partielles Stochastiques (EDPS) et son intérêt dans la mod-
élisation, la simulation, l’inférence et la prédiction des données spatio-temporelles.
Nous précisons les objectifs de ce travail consistant en des approches précises et com-
putationnellement efficaces pour la simulation, l’inférence et la prédiction de données
environnementales spatio-temporelles. Nous présentons aussi d’autres contributions
de la thèse, notamment la généralisation entièrement non séparable de la classe des
fonctions de covariance spatio-temporelles multivariées de Gneiting, et de nouvelles
techniques pour l’estimation et la prédiction approchées pour les grands jeux de don-
nées spatiales et spatio-temporelles, qui se sont avérées très performantes dans la
participation à la “Compétition de statistique spatiale pour les grands jeux de don-
nées” proposée par la King Abdullah University of Science and Technology (KAUST)
en 2021 et 2022.

1.1 Spatio-temporal statistics

Many areas of environmental science seek to predict a space-time variable of interest
from observations at scattered points in the space cross time domain of study, e.g.,
among other possible applications, wind prediction (Lenzi and Genton, 2020; Huang
et al., 2022), precipitation forecasting (Sigrist et al., 2011), urban air quality inference
(Paciorek et al., 2009), climate models inference (Genton and Kleiber, 2015; Edwards
et al., 2019), meteorological predictions (Bourotte et al., 2016; Allard et al., 2022),
data assimilation in oceanography (Bertino et al., 2003). A more detailed list of
references is available in Porcu et al. (2021).

On the one hand, when data are dense in time and sparse in space, one can
work within the framework of multivariate time series. For example, this is the case
of high frequency measurements arising from a small set of sensors. On the other
hand, when data are dense in space and sparse in time, the analysis can be done in a
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multivariate geostatistical setting, where repetitions in time are treated as different
variables. When data are dense both in time and space or when they show complex
spatio-temporal correlations, these approaches fail due to the inability to build very
large multivariate temporal or spatial processes. A much more flexible and richer
approach is to consider spatio-temporal models.

Even if data for environmental processes are often taken at fixed locations and
times, the processes themselves are generally defined on continuous sets in space and
time. Thus, the models are defined on Rd ×R, where d is the spatial dimension of the
process. When dealing with a spatial domain defined on a sphere, Rd must be replaced
by Sd, the d-dimensional sphere. In this work we will consider only spatio-temporal
models whose spatial domain is the d-dimensional Euclidean space Rd.

We denote Y (s, t) the value of the spatio-temporal random field at location s ∈ Rd

and time t ∈ R. Mathematically, one may consider Y (s, t) as a random function in
Rd+1 and apply geostatistics techniques as usual. This approach is mathematically
correct, but it misses a key point, which is the fact that time flows only in one
direction. Good statistical models should take this asymmetry into account.

We assume that the spatio-temporal field Y can be decomposed as a sum of fixed
and random effects

Y (s, t) = µ(s, t) +X(s, t), (1.1)

where µ(s, t) = E[Y (s, t)] is the spatio-temporal trend, i.e., the deterministic part.
In this work, we will always assume, unless stated explicitly otherwise, that X(s, t)
is a zero-mean second-order spatio-temporal random field, i.e., that its covariance
function is

CST (h, u) = Cov[X(s, t), X(s + h, t+ u)] = E[X(s, t)X(s + h, t+ u)], (1.2)

with (s, t) and (s + h, t + u) ∈ Rd ×R. This statement assumes that all the non-
stationarities of the process are accounted for in the deterministic part, which is a
quite difficult hypothesis to verify. Under the assumption of a Gaussian process X,
the mean and covariance functions completely characterize its distribution (see e.g.
Chilès and Delfiner (1999)).

The spatio-temporal field Y (s, t) is sampled at locations and times (si, ti), i =
1, . . . , n where n is the number of space-time data. Ideally, measurements are avail-
able for all times and locations, but very often data are missing for some times at
some locations. Predicting the spatio-temporal field Y (s, t) at an unsampled spatio-
temporal coordinate (s0, t0) ∈ Rd ×R from available measurements {Y (si, ti)}i=1,...,n

requires a model for the trend µ(s, t) and a covariance model for the random compo-
nent X(s, t). Several possibilities exist for modeling the deterministic part, including
parametric or non-parametric, linear or non-linear models, with or without covariates.
A major step in fitting a Gaussian model to data is the estimation of the covariance
function of X(s, t). Covariance functions are a measure of the linear dependence be-
tween the random variables X at the space–time locations (s, t) and (s + h, t + u).
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They allow computing the covariance between any couple of points X(si, ti) and
X(sj , tj), hence they must be positive definite functions. Conversely, any positive
definite function is the covariance function of a Gaussian process. This necessary and
sufficient condition limits the choice of available models and makes the construction of
models with realistic features difficult. The definition of spatio-temporal covariance
functions that appropriately capture complex interactions between space and time
has become a very active field of research. Important developments in this field are
detailed in Section 1.2.

If X is a spatio-temporal real stationary Random Field (RF) with covariance
function CST , then, for every t ∈ R, the spatial RF X(·, t) is a stationary spatial
RF, called the spatial trace of X. All spatial traces of X are stationary with same
stationary spatial covariance function given by CS(h) = CST (h, 0) for all h ∈ Rd.
Analogously, for every s ∈ R2, the temporal RF X(s, ·) is called the temporal trace of
X, and all the temporal traces of X are stationary temporal RF with same covariance
function given by CT (u) = CST (0, u) for all u ∈ R.

Among modern techniques proposing efficient methods for estimation and predic-
tion in a spatio-temporal framework, there is a distinction between two possible ways
of constructing and treating spatio-temporal models (Wikle and Hooten, 2010): either
one follows the traditional geostatistical paradigm, using joint space-time covariance
functions (see for example Cressie and Huang (1999), Gneiting (2002), Stein (2005),
as well as the recent reviews Porcu et al. (2021), Chen et al. (2021)), or one uses dy-
namical models, including functional time series of surfaces or solutions to Stochastic
Partial Differential Equations (SPDEs), see for example Wikle and Cressie (1999),
Sigrist et al. (2012) and Martínez-Hernández and Genton (2022). In this work, we
will propose two approaches to construct spatio-temporal models: one, the unsteady
advection-diffusion SPDE, belongs to the class of dynamical models; the other, the
nonseparable Gneiting class, belongs to the geostatistical class of models.

1.2 Nonseparability and asymmetry

Since it is often difficult to scrutinize spatial and temporal variations simultane-
ously, it is tempting to focus on CST (0, ·), i.e., how the covariances at a single loca-
tion vary across time, and CST (·, 0), i.e., how the covariances at a single time vary
across space. If these were the only variations that mattered, then separable mod-
els would suffice. A space-time covariance function is space-time separable if it is
the product of a spatial covariance function with a temporal covariance function, i.e.
if CST (h, u) = CST (0, 0)−1CS(h)CT (u). This is a valid covariance function, since
when CS is positive definite on Rd and CT is positive definite on R, then the prod-
uct CSCT is positive definite on Rd ×R. The advantage of separability lies in the
fact that it leads to a reduced number of parameters, allows separate estimation of
the parameters relating to space and time and provides faster prediction techniques
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for a constant spatial design, thanks to fast computations of the inverse and of the
determinant of the matrix involved in estimation and kriging.

However, using only products of spatial covariances and temporal covariances to
define the spatio-temporal covariances is a severe restriction. Separable space-time
covariance functions have often been used to take advantage of their computational
convenience, even when they are not realistic in describing the processes due to the
absence of space-time interaction. Separability implies that small changes in the
locations of observations can lead to large changes in the correlations between linear
combinations of observations (Stein, 1999). The source of this behavior is the fact
that separable covariance functions can be rougher away from the origin than at the
origin (Stein, 1999). For this reason, it is necessary to seek space-time covariance
functions that are smooth everywhere except possibly at the origin, i.e., when h = 0
and u = 0. Moreover, it can be interesting to find models that allow different degrees
of smoothness across space than across time. These models are called nonseparable.

A space-time covariance CST is said to be positively (resp. negatively) space-time
nonseparable if

s(h, u) = CST (h, u)CST (0, 0) − CS(h)CT (u) ≥ 0 (resp. ≤ 0). (1.3)

If such inequalities hold for all (h, u) ∈ Rd×R, then CST is called uniformly positively
(resp. negatively) nonseparable (Rodrigues and Diggle, 2010; De Iaco and Posa, 2013).
The function s(h, u) will be referred to as separability function. Their empirical
versions can be used as exploratory tools to characterize the type of nonseparability
in a dataset. In most applications, nonseparable models show better predictions than
separable models, since they are physically more realistic, albeit computationally
more expensive.

Nevertheless, it is difficult to write down directly nonseparable space-time covari-
ance functions. Recent studies have focused on constructing nonseparable models, see
Gneiting (2002), De Iaco et al. (2003), Porcu et al. (2006), Salvaña and Genton (2021),
as well as Bourotte et al. (2016) and Allard et al. (2022) in a multivariate context.
Nonseparable space-time covariance models can be constructed from Fourier trans-
forms of permissible spectral densities (Stein, 2005), mixtures of separable models
(De Iaco et al., 2003), and partial differential equations (PDEs) representing physical
laws (Carrizo-Vergara et al., 2022; Lindgren et al., 2020). They can be stationary or
nonstationary, univariate or multivariate, in the Euclidean space or on the sphere.
See Porcu et al. (2021) and Chen et al. (2021) for recent comprehensive reviews.

A notion closely related to separability is that of full symmetry. A spatio-temporal
covariance function is fully symmetric (Gneiting et al., 2006) if

CST (h, u) = CST (− h, u) = CST (h,−u) = CST (− h,−u)

for all (h, u) ∈ Rd ×R. A fully symmetric model is unable to distinguish possibly
differing effects as time moves forward or backward. Isotropy in space and symmetry
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in time imply full symmetry. Separable covariance functions are also fully symmet-
ric, but not vice versa. Product-sum models (De Iaco et al., 2003) and the Gneiting
class (Gneiting, 2002) are fully symmetric, nonseparable (uniformly negatively non-
separable and uniformly positively nonseparable, respectively) covariance functions
(Rodrigues and Diggle, 2010).

Atmospheric or environmental processes are often under the influence of air or
water flows, which are incompatible with full symmetry (Gneiting et al., 2006). The
Lagrangian reference framework, here detailed, is useful in this case. Transport effects
can be modeled with the help of a stationary spatial Gaussian random field and a d-
dimensional velocity vector γ, possibly random. The resulting space–time covariance,
which is stationary, but not fully symmetric, is defined as

CST (h, u) = CST (h −γ u, u).

This idea was applied to precipitation fields by Cox and Isham (1988) and Benoit et al.
(2018a), to wave heights by Ailliot et al. (2011) and to wind by Salvaña and Genton
(2021). It will also be discussed in Section 2.3.3. Covariance functions that are not
fully symmetric can also be constructed based on advection-diffusion equations or
SPDEs, as first discussed in Gneiting et al. (2006) and later in Lindgren et al. (2011);
Sigrist et al. (2015); Carrizo-Vergara et al. (2022). This construction will be used in
Chapter 2.

1.3 Physics-informed statistics

Understanding real-world dynamical phenomena is a challenging task. Across various
scientific disciplines, machine learning has been used to analyze big data and dynam-
ical systems, and it has become a powerful tool to make data-driven decisions based
on the input data alone. However, real-world data are stochastic, noisy, and incom-
plete, and contain uncertainty. Statistical methods and machine learning prediction
approaches ignore the fundamental laws of physics and often, although they perform
well at fitting observations, they fail to make plausible predictions.

In the last years, researchers have been trying to integrate data, statistical models
and physics to improve the predictive potential of traditional methods. The idea is
to introduce the prior knowledge about the dynamical models into the statistical
approach, in order to respect underlying physical principles. The Physics-Informed
Machine Learning (PIML) models (Raissi et al., 2019; Karniadakis et al., 2021) often
perform well for both interpolation and extrapolation, even for a small amount of
noisy, missing or sparse data. The physical prior information can be derived either
by Partial Differential Equations (PDEs), Ordinary Differential Equations (ODEs)
and Stochastic Differential Equations (SDEs) or by intuitive physics, and it can be
incorporated into different parts of machine learning models such as data, model
architecture, loss function, optimizer and inference algorithm (Linka et al., 2022).
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In this specific work, we will not make use of the most common PIML object, which
is the Physics-Informed Neural Network (PINN), that is designed to be trained to
satisfy the given data as well as the imposed governing equations. Instead, we will
apply the Physics-Informed framework in a more general meaning, by introducing
physical information into a statistical model. In this particular case, we will define a
spatio-temporal random field X(s, t) as the solution of a Stochastic Partial Differen-
tial Equation (SPDE) and use this interpretation to model the physical phenomena
underlying the spatio-temporal process Y (s, t) under study (see Chapter 2).

1.4 Big n problem

While the theoretical aspects of spatio-temporal geostatistics are well-developed (Cressie
and Wikle, 2011), their implementation still faces difficulties. The geostatistical
paradigm is computationally expensive for large spatio-temporal datasets, due to
the factorization of dense covariance matrices, whose complexity scales with the cube
of the number of observations. This well known problem is often referred to as the
“big n problem” (Banerjee et al., 2014).

By definition, the spatio-temporal covariance matrix contains (NSNT )2 covari-
ance values, where NS and NT are the number of spatial and temporal locations,
respectively. These locations can be the grid points where we want to compute a
simulation or the locations of data. This means that (NSNT )2 values should be
computed and stored, implying heavy computational and storage needs when this
number becomes very large. Using separable covariance functions can significantly
reduce the dimension of the covariance matrices that need to be inverted, alleviating
the computational demand. This is due to the fact that, in this particular case, the
large covariance matrix is defined as a Kronecker product of smaller matrices and
only those smaller matrices must be inverted.

However, as detailed in Section 1.2, separable models are not always appropri-
ate for environmental data due to their lack of flexibility, and even when they are,
the “big n problem” can arise from the spatial covariance matrix only. Numerous
solutions have been proposed in the stationary case to tackle this problem (see Sun
et al. (2012) for a comprehensive review). Some options are the use of compactly sup-
ported covariance functions (Gneiting, 2002; Bevilacqua et al., 2019), the covariance
tapering (Furrer et al., 2006; Kaufman et al., 2008), the Vecchia approximations and
their generalizations (Vecchia, 1988; Stein et al., 2004; Guinness, 2018; Katzfuss and
Guinness, 2021), among others. These methods limit the number of non-zero entries
in the covariance matrix.

Another way of dealing with the “big n problem” is to impose that the considered
Gaussian Random Field (GRF) is Markovian, i.e., a Gaussian Markov Random Field
(GMRF) (Besag, 1974; Rue and Held, 2005). This ensures that the resulting preci-
sion matrix, the inverse of the covariance matrix, has a limited number of non-zero
entries (Rue and Held, 2005), leading to a reformulation of the problems using the
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sparse precision matrix instead of the covariance matrix. The computational gains
from GMRFs have been exploited to provide fast and accurate Bayesian inference
for latent Gaussian field models through the Integrated Nested Laplace Approxima-
tion (INLA), proposed in Rue et al. (2009). However, GMRF approximations were
initially criticized, because they don’t allow a direct modeling of some specific cor-
relation behaviors and because it is not possible to write down the distribution at
a selected location, but only determine a conditional distribution given a set of lo-
cations. Moreover, the GMRF approximation was restricted to GRF observed over
a regular lattice. Those criticisms were overcome by Lindgren et al. (2011) who in-
troduced the GMRF approximation of a GRF with Matérn covariance function as a
solution of a Stochastic Partial Differential Equation (SPDE).

1.5 SPDE approach

The use of SPDEs for modeling spatial or spatio-temporal Gaussian processes is an
approach that has been used in the statistical community for decades, starting with
Whittle (1954), Heine (1955) and Whittle (1963). Later works include Jones and
Zhang (1997) and Brown et al. (2000). Since the spectral density can be directly
obtained from the SPDE, spectral methods can be considered to analyze data, as in
Fuentes (2007) for the spatial case and in Sigrist et al. (2015) and Liu et al. (2020)
for the space-time case. Rozanov (1977) proved that the solution of a specific class
of linear SPDEs is a Markov Random Field (MRF). This occurs when the field’s
spectral density is the inverse of a polynomial function of the frequencies. Lindgren
et al. (2011) used this property to show how the approximated solution of a certain
class of spatial SPDEs, obtained with the Finite Element Method (FEM), can be
considered as a GMRF. The SPDE framework developed in Lindgren et al. (2011)
was largely adopted in spatial statistics because of two main properties. First, Lind-
gren et al. (2011) linked a specific linear SPDE to the Matérn covariance function,
which is probably the most common covariance function in geostatistics. Second, the
FEM that was considered to build the GMRF representation was made available for
practitioners in the R-INLA and inlabru packages (Lindgren and Rue, 2015; Krain-
ski et al., 2018; Bakka et al., 2018). The SPDE’s parameters are related to the local
properties of the spatial or spatio-temporal model and are translated into the con-
ditional distributions in the GMRF representation. One can interpret the physical
parameters of the SPDE, build the prior distributions for the model parameters and
obtain the corresponding spatial or spatio-temporal field. A complete review of the
developments of the SPDE approach in the last decade, both from the methodological
and the applied point of view, is available in Lindgren et al. (2022).
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1.6 Thesis statement and main contributions

This PhD dissertation starts from the considerations detailed in the sections above
to propose methods for spatio-temporal inference and prediction that are physically
justified (see Section 1.3), computationally efficient (see Section 1.4) and, especially,
capable to model complex spatio-temporal dependence structures through nonsepa-
rable and asymmetric models (see Section 1.2).

The first contribution is the development of an SPDE approach for nonsepara-
ble asymmetric spatio-temporal models. A Spatio-Temporal (ST) advection-diffusion
SPDE is proposed; its coefficients, which can be also spatially and/or temporally vary-
ing, directly influence the spatio-temporal dependencies of the process, by explaining
its variability in space and time. Nonseparable and separable spatio-temporal fields
can be obtained as sub-models by choosing appropriate parameters. The advection-
dominated case is also discussed and dealt with by introducing the “Streamline Dif-
fusion” stabilization technique to reduce the convergence problems related to an
advection-dominated flow.

It will be shown that it is possible to build an accurate space-time approximation
of the process driven by the advection-diffusion SPDE using a combination of a Fi-
nite Element Method in space and implicit Euler scheme in time. This approximation
leads to sparse structured linear systems. We will obtain promising results, both in
terms of precision and speed, for estimation and prediction of spatio-temporal pro-
cesses based on the SPDE approach from information at scattered spatio-temporal
locations. When the size of the spatio-temporal mesh is moderate, direct matrix im-
plementation is possible through the Cholesky decomposition of sparse matrices. We
will show how “matrix-free” methods (conjugate gradient method, preconditioners,
etc.) can be implemented in order to obtain scalable computations even for very
large meshes. The method will be applied to two different spatio-temporal environ-
mental datasets, about solar radiation and wind speed, to show the potential of the
approach. Finally, a possible generalization to nonstationary fields is proposed and
some preliminary results are illustrated.

The second contribution is a generalization of the well-known Gneiting class of
multivariate space-time covariance functions (Gneiting et al., 2010; Bourotte et al.,
2016). The proposal is a very general parametric class of fully nonseparable direct
and cross-covariance functions for multivariate random fields, where each component
has a spatial covariance function from the Matérn family with its own smoothness
and scale parameters and, unlike all currently available models, its own correlation
function in time (Allard et al., 2022). The application of the proposed model will
be illustrated on a weather trivariate dataset. It will be shown that this new model
yields better fitting and better predictive scores compared to a more parsimonious
model with common temporal correlation function. In this case, the main potential
of the proposed approach is the possibility to obtain entirely nonseparable models in
a multivariate setting.
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The third contribution is a discussion about methods for approximate estimation
and prediction for spatial and spatio-temporal data, motivated by the objective of
reaching a trade-off between statistical efficiency and computational complexity. This
trade-off is required by the massive spatial and spatio-temporal datasets available
nowadays. Those techniques will be discussed in terms of predictive capabilities based
on the results of the “Spatial Statistics Competition for Large Datasets” proposed
by the King Abdullah University of Science and Technology (KAUST) in 2021 and
2022. We will present the techniques that led the team RESSTE, composed of 4
researchers from Mines Paris and INRAE Avignon (Denis Allard, Thomas Romary,
Thomas Opitz and myself), to rank first in some of the sub-competitions in both
editions.

1.7 Outline

The dissertation aims at introducing and applying the SPDE approach for nonsep-
arable advection-diffusion spatio-temporal models. In particular, we derive methods
for simulation, estimation and prediction of such models. In Chapter 2 we start by
setting up the mathematical framework and the main notions necessary to work with
spatio-temporal SPDEs; we then present the classes of spatio-temporal SPDE models
developed in the literature and the model on which this work is based: the unsteady
advection-diffusion SPDE model. Chapter 3 focuses on the algorithms designed to
simulate from the models via a numerical approximation of the SPDE, by first review-
ing the methods that are currently used and then introducing the approach chosen
in this specific work. This approach results in a convenient sparsity pattern of the
global spatio-temporal precision matrix, which leads to reduced computational cost
for all statistical methods (estimation, prediction, conditional simulations). Chap-
ter 4 is devoted to the non-conditional simulation of stationary advection-diffusion
SPDE models. Chapter 5 tackles the estimation and the prediction of a stationary
advection-diffusion SPDE model from its partial and noisy observations. We suggest
solving this problem using an approach inspired by kriging theory. In both cases, we
propose practical algorithms based on the Cholesky decomposition of sparse matrices
and on “matrix-free” methods. Chapter 6 presents an application of the approach
for the prediction of a spatio-temporal field from its partial and noisy observations,
both for solar radiation and wind speed datasets. Finally, Chapter 7 is devoted to
the nonstationary generalization of the SPDE approach and to some related results,
who are however still preliminary.

Moreover, the dissertation presents other contributions made during the PhD
(Chapter 8). First, a different point of view on nonseparable spatio-temporal models
is presented, through more classical models and their generalizations. In Section 8.1
we enlarge the Gneiting class of space-time covariance functions by introducing a very
general parametric class of fully nonseparable direct and cross-covariance functions
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for multivariate random fields. Then, Section 8.2 describes the contribution to the
“Spatial Competition for Large Datasets” proposed by KAUST in 2021 and 2022.

Finally, Chapter 9 presents the conclusions and the perspectives of the PhD.
Several possible research directions are explored.
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Chapter 2

Spatio-temporal SPDE models

Résumé
Dans ce chapitre, nous introduisons un cadre mathématique minimal permettant

d’étudier les modèles spatio-temporels qui sont solutions d’Equations aux Dérivées
Partielles Stochastiques (EDPS). Nous commençons par introduire les principales
classes d’EDPS spatio-temporelles dévéloppées dans la littérature statistique. Nous
présentons ensuite la classe d’EDPS d’advection-diffusion en étudiant ses caractéris-
tiques statistiques et en la comparant aux EDPS proposées précedemment.

We consider a spatio-temporal model Y (s, t) observed through some measure-
ments, with no direct measurements of the underlying stochastic process X(s, t), as
presented in Equation (1.1), and reported here:

Y (s, t) = µ(s, t) +X(s, t).

Y (s, t) is the sum of fixed and random effects. The fixed effects’ term can include a
temporal trend, a spatial trend, and time-varying or space-varying regressions. We
usually have little information about the covariance structure of the spatio-temporal
random model component X(s, t), except that it should mimic the dependency struc-
ture in models of physical processes. We would like not to impose any hypothesis
of separability on X, in order to be able to capture complex spatio-temporal depen-
dencies (see Section 1.2). We use the SPDE framework, presented in Section 1.5
and detailed in the following sections. From a theoretical viewpoint, in contrast to
statistically oriented constructions of nonseparable spatio-temporal models such as
the product-sum models and the Gneiting class (De Iaco et al., 2003; Gneiting, 2002;
Porcu et al., 2006), the SPDE approach proposes a physically grounded construction,
for which the parameters carry physical interpretation such as diffusion, reaction and
transport. It allows the construction of models X(s, t) with interesting nonseparabil-
ity and asymmetry properties, and where nonstationarity can also easily be accounted
for.

We first give a definition of Generalized Random Field (GeRF) (Itô, 1954; Rozanov
et al., 1982), which is the stochastic analogous to the generalization of functions
presented in Schwartz’s theory of distributions (Schwartz, 1966).
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Definition 2.1. A generalized random field (GeRF) X on Rd is a linear and con-
tinuous functional that associates to any smooth function with compact support φ ∈
C∞

0 (Rd) ⊂ L2(Rd) a random variable X (φ) ∈ R. X is characterized by its probability
distribution, which is the set of all joint distributions Fφ1,...,φm defined by

Fφ1,...,φm : (a1, . . . , am) ∈ Rm 7→ P[X (φ1) ≤ a1, . . . ,X (φm) ≤ am]

for any m ≥ 1 and φ1, . . . , φm ∈ C∞
0 (Rd).

The previous proposition implies that GeRFs have only meaning when applied to
test functions in some particular functional space, and not necessarily when evaluated
in points of the space.

We define a white noise as the functional W defined over Rd that satisfies

E[W (φ)] = 0, ∀φ ∈ L2(Rd)

and
Cov[W (φ1),W (φ2)] =

∫
Rd
φ1φ2 d s , ∀φ1, φ2 ∈ L2(Rd). (2.1)

If, moreover, for any m ≥ 1 and any linearly independent φ1, . . . , φm ∈ L2(Rd), the
random vector [W (φ1), . . . ,W (φm)]> is a Gaussian vector, then W is called Gaussian
white noise.

If {Zi}i∈N is a sequence of independent, standard Gaussian variables, then the
function W defined over L2(Rd) by

W (φ) =
∑
j∈N

Zj

∫
Rd
φej d s , ∀φ ∈ L2(Rd),

where {ej}j∈N denotes an orthonormal basis of L2(Rd), is a Gaussian white noise on
Rd.

Let us denote ξ ∈ Rd a spatial frequency and ω ∈ R a temporal frequency. The
Fourier transform of an integrable function φ(x), with x ∈ Rd and φ ∈ L2(Rd), is

F(φ)(ξ) = 1
(2π)d

∫
Rd
e−i x ξφ(x) d x , ξ ∈ Rd . (2.2)

Its inverse is called inverse Fourier transform and is defined as

F−1(φ)(x) =
∫
Rd
ei x ξφ(ξ) d ξ , x ∈ Rd .

In this case, we necessarily have that F−1(F(φ)) = φ.

An important result for the following sections is that the covariance structure of
a stationary second-order random field X can be equivalently characterized either by
its covariance function CX or by its spectral density SX . This is due to Bochner’s
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theorem (see e.g. Donoghue (1969, Chapter 37)), that states that any continuous
covariance function CX is the Fourier transform of a positive and finite measure. If
we want CX to be real, the measure should be also even. In our case, the measure is
absolutely continuous with respect to the Lebesgue measure. Hence, we can suppose
that there exists a function SX , positive and integrable, called spectral density, such
that (in the spatial case)

CX(h) = F(S(·))(h) =
∫
Rd
e−i h ξS(ξ) d ξ ,

where F denotes the Fourier transform on Rd and
∫
Rd S(ξ) d ξ = CX(0) < ∞. The

same result holds also for temporal and spatio-temporal covariances.
In the following sections, after presenting the spatial SPDE framework by Lind-

gren et al. (2011) (Section 2.1), we will review several classes of separable and nonsep-
arable spatio-temporal SPDE models proposed in the last years (Section 2.2) and we
will introduce the model on which this work is based: the unsteady advection-diffusion
SPDE model (Section 2.3).

2.1 Spatial SPDE model

In the SPDE representation, GRFs on Rd are viewed as solutions to specific SPDEs
(Whittle, 1954, 1963). In particular, Gaussian Whittle-Matérn fields, analyzed in
details in Lindgren et al. (2011) and reviewed in Lindgren et al. (2022), are solutions
to

(κ2 − ∆)α/2X(s) = τW (s), (2.3)

with α > d/2 and τ > 0. ∆ =
∑d

i=1
∂2

∂s2
i

is the Laplacian operator defining a diffusion
term (see Section 2.3.1 for more physical details), and W (s) is a standard spatial
Gaussian white noise. The equality is understood in a weak sense in L2. The spectral
density of W is SW (ξ) = (2π)−d.

The spectral density of X(s), solution to (2.3), is

S(ξ) = 1
(2π)d(κ2 + ‖ξ‖2)α

. (2.4)

When α is an integer, this density is the reciprocal of a strictly positive and isotropic
polynomial. Rozanov’s Theorem (Rozanov et al., 1982, Section 3.2.3) allows us to
state that this model is an isotropic stationary Markov Rrandom Field (MRF). In
Rozanov’s theory, a MRF is a RF such that for every domain of Rd, evaluations of
the RF on the interior of the domain are independent of evaluations on the interior
of the complement of the domain, conditionally on the behavior of the RF on a
neighborhood of the boundary of the domain. An evaluation is the inner product
between the field and a test function whose support is included in the interior of the
corresponding set.
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A generalization to an anisotropic model can be obtained by applying an anisotropy
matrix H to ξ in Equation (2.4) and by replacing the Laplacian operator ∆ with its
anisotropic form ∇ · H ∇. When α is not an integer, the SPDE (2.3) is said to be
fractional and the field X is no longer a MRF. This limitation on integer α can be
avoided by considering the approximation to the best Markov approximation, sug-
gested in the reply to Lindgren et al. (2011) and proposed in Bolin and Kirchner
(2017) as a combination of the FEM discretization in space with a rational approxi-
mation. Other possible ways to tackle fractional SPDEs are proposed in Xiong et al.
(2022); Bolin and Kirchner (2020); Roques et al. (2022), but we will not treat this
subject further in this work.

The covariance function of the Gaussian field solution to Equation (2.3) is the
well known Matérn covariance function (Matern, 1986)

C(h) = σ2CM
ν (κ‖h‖) = σ2

2ν−1Γ(ν) (κ‖h‖)ν Kν (κ‖h‖) , (2.5)

with smoothness parameter ν = α − d/2 > 0, scale parameter κ and variance σ2 =
τ2(4π)−d/2Γ(ν)Γ(ν + d/2)−1κ−2ν . Kν is the modified 2nd order Bessel function and
h = s − s′ is the spatial lag between two locations s and s′ in Rd. In particular, when
ν = 1/2, we get the exponential covariance function and when ν → +∞, after proper
renormalization, (2.5) tends to the Gaussian covariance function.

The spatial SPDE framework has been used for estimation and prediction of
spatial processes in several scientific domains. We refer to Lindgren et al. (2022) for
a complete review of applications of the spatial SPDE approach in the last years.

2.2 Spatio-temporal SPDE models: state of the art

To generalize the SPDE approach to linear spatio-temporal processes X(s, t), we
consider the framework proposed in Carrizo-Vergara et al. (2022).

Carrizo-Vergara et al. (2022) provided sufficient conditions to the existence and
uniqueness of stationary solutions to the spatio-temporal SPDE[

∂β

∂tβ
+ Lg

]
X(s, t) = Z(s, t), (2.6)

with β > 0. L =
[

∂β

∂tβ + Lg

]
is a spatio-temporal operator. The spatial operator Lg

is defined using the spatial Fourier transform on Rd, denoted FS ,

Lg(·) = F−1
S (gFS(·)),

where g : Rd → C is a sufficiently regular and Hermitian-symmetric function called
the symbol function of the operator Lg. The temporal operator ∂β

∂tβ is defined as

∂β

∂tβ
(·) = F−1

T ((iω)βFT (·)),
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where FT is the temporal Fourier transform on R and where we have used the symbol
function over R

ω 7→ (iω)β = |ω|βei sgn(ω)βπ/2.

These operators are called pseudo-differential operators (Lang and Potthoff, 2011).
In contrast to the spatial SPDE model detailed in Section 2.1, we remark the

presence of a temporal differential operator and of a spatio-temporal stochastic forcing
term Z(s, t). Unless otherwise stated, we will force the stochastic source term to be
a spatio-temporal white noise with unit variance Z(s, t) = W (s, t) = WS(s) ⊗WT (t),
but it was proved that solutions of SPDEs with white noise as source term are the
starting point of more general solutions, when the source term can be any stationary
GeRF (Carrizo-Vergara et al., 2022). Carrizo-Vergara et al. (2022) established that,
under mild conditions, the covariance of the stationary solution to a given SPDE
with a general random source term with covariance CZ is the convolution between
the covariance of the same SPDE with white noise source term and CZ . This result
is a powerful tool for easily characterizing solutions of very general SPDEs. The
space-time white noise W (s, t) is characterized by its spectral density SW (ξ, ω) =
(2π)−(d+1).

The spatio-temporal symbol function of the operator involved in (2.6) is

(ξ, ω) 7→ (iω)β + g(ξ) = |ω|β cos
(
βπ

2

)
+ gR(ξ) + i

(
sgn(ω)|ω|β sin

(
βπ

2

)
+ gI(ξ)

)
(2.7)

where gR and gI are the real and imaginary part of the spatial symbol function g.
If |gR| is inferiorly bounded by the inverse of a strictly positive polynomial and

gR cos
(

βπ
2

)
≥ 0, Theorem 1 and Proposition 3 in Carrizo-Vergara et al. (2022) state

that (2.6) admits a unique stationary solution for every arbitrary gI function. For the
rest of the Chapter, we will call this property the Sufficient Condition for Existence
and Uniqueness (SCEU).

Remark 2.2.1. When the closed set g−1({0}) = {ξ ∈ Rd |g(ξ) = 0} is non-empty, the
non-uniqueness is due to the existence of stationary solutions to the homogeneous
problem LgX(s, t) = 0.

In the following sections, we will review several classes of spatio-temporal SPDE
models in the framework detailed above: first we introduce separable models, then
we present nonseparable models in the chronological order in which they appeared
in the literature, by showing their similarities and differences. We consider the real
positive parameters τ, γs, γt, s, κ, α, β, α1, α2, αS and δ. τ is a standard deviation
parameter, γt is a time correlation parameter, γs is a spatial range parameter, s and κ
are inverse range parameters, α, β, α1, α2, αS and δ are smoothness parameters. We
only consider stationary fields, where the parameters of the SPDE are constant values.
Nevertheless, we note that nonstationarity can be obtained naturally by making the
operator L spatially and/or temporally varying L = L(s, t), as discussed by Lindgren
et al. (2011) and in Chapter 7.
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2.2.1 Separable spatio-temporal models

The easiest way to extend the spatial SPDE model of Lindgren et al. (2011) to
space-time is to use the spatial SPDE as the spatial component in a spatio-temporal
separable model. Jones and Zhang (1997) discussed how separable covariance func-
tions can be understood through differential operators, written as L = LSLT , where
LS is a purely spatial operator and LT is a purely temporal operator.

A separable space-time model can be defined as a SPDE model for the spatial
trace and an autoregressive model of order 1, i.e., AR(1), for the time dimension.
The space-time precision matrix of the separable model is defined by the Kronecker
product between the precision matrices of the spatial and temporal random effects
(Cameletti et al., 2011).

The same model is obtained in Krainski (2018) as a one dimensional SPDE de-
scribing the temporal evolution and another SPDE modeling the driving noise as
spatially correlated. This model writes

(
∂
∂t + a

)
X(s, t) = Z(s, t)

(κ2 − ∆)α/2Z(s, t) = τW (s, t)

However, as discussed in Section 1.2, separability is a strict hypothesis, rarely
satisfied in the real world. For this reason, researchers have been proposing spatio-
temporal nonseparable models as solutions of SPDEs.

2.2.2 Jones and Zhang (Jones and Zhang, 1997)

Jones and Zhang (1997) were the first in the spatio-temporal statistics community to
define a nonseparable spatio-temporal random field as solution to the SPDE[

γt
∂

∂t
+ (κ2 − ∆)α/2

]
X(s, t) = τW (s, t). (2.8)

The symbol function of the spatio-temporal operator is

(ξ, ω) → [(γtiω) + (κ2 + ‖ξ‖2)α/2] (2.9)

and the spectral density of the stationary solution X is

S(ξ, ω) = τ2

(2π)d+1[γ2
t ω

2 + (κ2 + ‖ξ‖2)α]
. (2.10)

Equation (2.8) verifies the SCEU and it can be proved that, when α > d, the
spatial trace has a Matérn covariance with smoothness equal to ν = (α − d)/2 and
scale parameter κ.
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2.2.3 Stein (Stein, 2005)

Stein (2005) defined a nonseparable spatio-temporal model with spectral density

S(ξ, ω) = 1
(2π)d+1[b(s2 + |ω|2)α1 + a(κ2 + ‖ξ‖2)α2 ]δ

, (2.11)

where a > 0 and b > 0 are scaling parameters, s and κ are scale parameters and α1,
α2 and δ are smoothness parameters.

Starting from this density, Krainski (2018), Carrizo-Vergara et al. (2022) and
Lindgren et al. (2020) derived the symbol function

(ξ, ω) → [b(s2 + ω2)β + a(κ2 + ‖ξ‖2)α]δ/2 (2.12)

and defined the SPDE whose solution is the spatio-temporal field with spectral density
equal to (2.11)

[
b

(
s2 − ∂2

∂t2

)α1

+ a(κ2 − ∆)α2

]δ/2

X(s, t) = W (s, t). (2.13)

The model verifies the SCEU. Moreover, to obtain an integrable marginal spatial
covariance, it is needed s2 + κ2 > 0 and a minimum smoothing condition stated by
d/α2 +1/α1 < 2δ. In this case, the marginal spatial covariance is a Matérn with scale
κ and smoothness ν = α2(δ − 1/(2α1)) − 1 and the marginal temporal covariance
(κ = 0) is a Matérn with scale s and smoothness νT = α1(δ − 1/(2α2)) − 1/2.

The interesting property of the Stein model is that, without being a separable
model, the temporal and spatial smoothness of the paths of the random function can
be controlled separately thanks to the parameters α1 and α2. There are only a few
special cases of spectral densities of the form (2.11) for which explicit expressions for
the Fourier transform are available.

Having α1 and α2 integers and δ half-integer gives the reciprocal of Equation
(2.11) a polynomial in ξ and ω and thus, the associated process is a MRF. Hence,
there is an explicit GMRF representations associated, as in Lindgren et al. (2011).

2.2.4 Stochastic Heat Equation

The Stochastic Heat Equation was proposed by both Krainski (2018) and Carrizo-
Vergara et al. (2022) and can be deduced from the Jones and Zhang model (2.8) with
the absence of the damping parameter (κ = 0) and a spatial smoothness parameter
equal to α = 2. It comes from the physical equation of heat, well known in the PDE
literature (see e.g. Quarteroni (2008)). It writes[

γt
∂

∂t
− ∆

]
X(s, t) = τW (s, t). (2.14)
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The symbol function is
(ξ, ω) → [γtiω + ‖ξ‖2].

One can only modulate how much comes from time and space by the parameter γt.
Hence, the stochastic heat equation defines an intrinsic random field. Equation (2.14)
does not respect the uniqueness condition, since g(ξ) = ‖ξ‖2 has a zero at the origin
(see Remark 2.2.1). However, there exist solutions to the Stochastic Heat Equation
for spatial dimensions d ≥ 3, which can only be conceived as GeRFs and never as
random functions continuous in mean-square (Carrizo-Vergara et al., 2022).

2.2.5 Damped Heat Equation (Krainski, 2018)

Krainski (2018) proposed the Damped Heat Equation, which can be obtained as a
special case of the Jones and Zhang model (2.8) with α = 2 or as a generalization of
the Stochastic Heat Equation (2.14) with the adding of the damping parameter κ2.
It hence writes [

γt
∂

∂t
+ (κ2 − ∆)

]
X(s, t) = τW (s, t). (2.15)

Its spatio-temporal symbol function is

(ξ, ω) → [(γtiω) + (κ2 + ‖ξ‖2)] (2.16)

and the spectral density of X is

S(ξ, ω) = τ2

(2π)d+1[γ2
t ω

2 + (κ2 + ‖ξ‖2)2]
. (2.17)

Equation (2.15) verifies the SCEU.

2.2.6 Evolution Equation (Carrizo-Vergara et al., 2022)

In Carrizo-Vergara et al. (2022) new spatio-temporal models were obtained from
known PDEs describing physical processes, such as diffusion, advection, and oscilla-
tions with stochastic forcing terms. The SPDE Equation (2.6) was called Evolution
Equation. When it respects the SCEU, the spectral density of its stationary solution
is given by

S(ξ, ω) = 1
(2π)d+1

[
|ω|2β + 2|ω|β

(
gR(ξ) cos

(
βπ
2

)
+ sgn(ω)gI(ξ) sin

(
βπ
2

))
+ |g(ξ)|2

] ,
(2.18)

It gives a separable model if gI = 0 and gR is a constant function. The presence of
the function sgn in Equation (2.18) implies that in some cases the spectral density
depends on |ω| with a negative sign. This means that the symmetry of the model
can be controlled. A symmetric model is obtained when β is an even integer or when
the function gI is null. An asymmetric model is obtained otherwise. The marginal
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temporal smoothness depends on the parameter β. Thus, this model allows a practical
control of the separability, symmetry and smoothness conditions.

Two specific cases of Evolution Equations are reported here, for β = 1 and β = 2.
When β = 1, the first order evolution model has a spectral density equal to

S(ξ, ω) = 1
(2π)d+1[(ω + gI(ξ))2 + g2

R(ξ)]
, (2.19)

while, when β = 2, the second order evolution model has a spectral density equal to

S(ξ, ω) = 1
(2π)d+1[(ω2 − gR(ξ))2 + g2

I (ξ)]
. (2.20)

2.2.7 Evolving Matérn (Carrizo-Vergara et al., 2022)

An Evolving Matérn model is a stationary solution to the evolution equation (2.6)
such that its spatial trace follows a Matérn model. Evolving Matérn models can be
obtained by controlling the spatial symbol function g, but also the structure of the
stochastic forcing term Z. We assume that the SCEU is verified, i.e., the parameters
are chosen such that gR satisfies the SCEU and gR cos

(
βπ
2

)
≥ 0.

When the stochastic forcing term is a spatio-temporal white noise, i.e., Z(s, t) =
W (s, t), the Evolving Matérn SPDE writes[

∂β

∂tβ
+ sβa(κ2 − ∆)α/2

]
X(s, t) = W (s, t), (2.21)

where sβ is a parameter that takes the value 1 or −1 depending conveniently on β in
order to obtain the conditions of the SCEU. Its spatio-temporal symbol function is

(ξ, ω) → (iω)β + g(ξ) = (iω)β + sβa(κ2 + ‖ξ‖2)α/2 (2.22)

and its spectral density is

S(ξ, ω) = 1
(2π)d+1

[
|ω|2β + 2|ω|βa(κ2 + ‖ξ‖2)α/2|cos

(
βπ
2

)
| + a2(κ2 + ‖ξ‖2)α

] .
(2.23)

The solution to (2.21) with β = 1 is a symmetric nonseparable model which is a
mixture of a J-Bessel model in space with an exponential model in time; it corresponds
to the model of Jones and Zhang (1997) detailed in Section 2.2.2. If β ∈ N these
models are a particular case of Stein models (Stein, 2005) (see Section 2.2.3).

2.2.8 DEMF (Lindgren et al., 2020)

The Diffusion-based Extension of the Matérn Field (DEMF) (Lindgren et al., 2020),
which was introduced in a particular case for the first time in Krainski (2018) as
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Iterated Heat Equation, is the SPDE

[
γt
∂

∂t
+ (κ2 − ∆)α/2

]δ

X(s, t) = τZ(s, t). (2.24)

The symbol function of the left-hand-side operator is

(ξ, ω) → [(γtiω) + (κ2 + ‖ξ‖2)α/2]δ (2.25)

and the right-hand-side stochastic forcing term is a Gaussian noise, white in time
and correlated in space, i.e., Z(s, t) = WT (t) ⊗ ZS(s), where ZS(s) is solution to the
spatial SPDE

(κ2 − ∆)αS/2ZS(s) = WS(s).

The spectral density of X is then

S(ξ, ω) = τ2

(2π)d+1[γ2
t ω

2 + (κ2 + ‖ξ‖2)α]δ(κ2 + ‖ξ‖2)αS
. (2.26)

Equation (2.24) verifies the SCEU and defines a family of spatio-temporal pro-
cesses which, when restricted to space given that the smoothness parameters are
chosen appropriately, gives the Matérn field. It allows us to choose how differentiable
the stochastic process should be through α, αS and δ. The type of nonseparability
also changes based on the chosen parameters. The DEMF family contains both a
subfamily of separable models (when α = 0) and a subfamily of the Stein family
(Stein, 2005) (when αS = 0), including Jones and Zhang model (Jones and Zhang,
1997) (when δ = 1 and αS = 0).

2.3 Unsteady advection-diffusion SPDE

As detailed in the previous section, Carrizo-Vergara et al. (2022), among others, built
models of spatio-temporal random fields that are stationary solutions, when they ex-
ist, of a very large class of SPDEs. They constructed very general models, that include
and encompass existing ones, for example by proposing asymmetric models. They
offered the possibility to build and characterize models far beyond the Matérn family
which is currently the covariance model considered within most SPDE implementa-
tions (Krainski, 2018; Lindgren et al., 2020).

In this work, we will focus on the unsteady advection-diffusion SPDE, which is
explained from a physical point of view in the next section and then detailed in a
statistical framework in the following sections. Unsteady (S)PDEs relate to the rate of
changes of spatially distributed physical quantities interacting with one another and
predict their evolution over time. Hence, at least one derivative with respect to time
is present in the (S)PDE and the solution is a function of time. The steady version
of the same (S)PDE is a time-independent function and it is obtained by setting the
partial derivative with respect to time to constant zero.
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Figure 2.1: Venn Diagram of nonseparable SPDE models proposed in the
literature.

In Figure 2.1, we illustrate the nonseparable models we’ve presented in the last
sections, along with the advection-diffusion model proposed in this work. We remark
how statisticians have been trying to enlarge the family of nonseparable SPDE models
to capture higher degrees of complexity.

2.3.1 Diffusion and advection

We here detail the physical characteristics of the advection-diffusion (S)PDE.
Diffusion is a mass transfer phenomenon that causes the distribution of a species

to become more uniform in space as time passes. The species can be, for example, a
chemical dissolved in a solvent. The driving force for diffusion is the thermal motion
of molecules, i.e., the fact that molecules are never at rest at temperatures above
absolute zero. When molecules collide with each other frequently, the direction of the
motion becomes randomized. Although diffusion occurs because of statistical effects,
usually diffusion is modeled through continuous partial differential equations. These
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PDEs include Fick’s laws (Fick, 1855), the advection-diffusion equation, or more
complex methods for concentrated mixtures, like Maxwell-Stefan diffusion (Maxwell,
1867; Stefan, 1871). Fick’s laws contain only one parameter, the diffusion coefficient,
or diffusivity, which is the proportionality constant between the molar flux due to
molecular diffusion and the negative value of the gradient in the concentration of the
species. Its unit of measurement is m2/s.

Advection is a mass transfer due to the bulk motion of a fluid. For example, the
flow of water transports molecules or ions dissolved in the water, or the flow of air
transports molecules present in air. Sometimes the words convection or transport are
used as synonyms of advection. Even though their signification is different in the
context of heat transfer (where the term convection usually refers to the combination
of heat transfer by conduction and advection, while the term advection refers to heat
transfer due to bulk fluid motion), from now on we will use those terms as equivalent.

The velocity of a molecule undergoing mass transfer incorporates both an advec-
tive and diffusive component, since all chemical species have a nonzero diffusivity in
reality. To summarize, advection is the mass transport due to the average velocity of
all molecules, and diffusion is the mass transport due to the instantaneously varying,
randomized velocity of individual molecules, compared to the average velocity of the
fluid as a whole.

2.3.2 Unsteady advection-diffusion SPDE model

In this work we study the unsteady advection-diffusion SPDE, where the randomness
is given by a stochastic forcing term. This SPDE writes[

∂

∂t
+ 1
c

(κ2 − ∇ · H ∇)α + 1
c
γ ·∇

]
X(s, t) = τ√

c
Z(s, t), (2.27)

where

• the operator ∇ · H ∇ is a diffusion term that can incorporate anisotropy in the
matrix H. When the field is isotropic, i.e. when H = λ I, this term reduces to
the Laplacian operator λ∆;

• the operator γ ·∇ models the advection, γ ∈ Rd being a velocity vector;

• α ≥ 0 relates to the smoothness of X(·, t), κ2 > 0 accounts for damping and c

is a positive time-scale parameter;

• τ ≥ 0 is a standard deviation factor and Z is a stochastic forcing term. From
now on, we will assume a Gaussian distribution for Z.

This equation was mentioned in Lindgren et al. (2011), Carrizo-Vergara et al.
(2022) and Lindgren et al. (2020), and was analyzed using spectral approaches in
Sigrist et al. (2015) and Liu et al. (2020). It is a particular case of the evolution
equation defined in Carrizo-Vergara et al. (2022) (see Section 2.2.6), as illustrated in
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Figure 2.1. The stochastic forcing term Z(s, t) is assumed separable with

Z(s, t) = WT (t) ⊗ ZS(s),

where ZS is a spatial GeGRF and WT is a temporal white noise. ZS is often chosen to
be a spatial white noise, denoted WS in this case. To ensure a sufficient smoothness
for Z, ZS can alternatively be a colored noise, such as for example the solution to the
spatial Whittle-Matérn SPDE (Lindgren et al., 2011)

(κ2 − ∇ · H ∇)αS/2ZS(s) = WS(s), (2.28)

where WS is a Gaussian white noise. Notice that the parameter κ2 in the forcing
term has been set identical to that in the diffusion term in the left-hand-side of (2.27)
to ensure that the spatial marginalization of the process is a Matérn field, as detailed
below.

When α > 0, X(s, t) is a stationary nonseparable spatio-temporal field with co-
variance function CST (h, u), with (h, u) ∈ Rd ×R. The advection-diffusion equation
(2.27) is a particular first order evolution model as in Equation (2.6) with β = 1. Its
spatial symbol function

g(ξ) = 1
c

[
(κ2 + ξ> H ξ)α + iγ> ξ

]
,

verifies the sufficient condition for existence and uniqueness of a stationary solution
(SCEU) recalled in Section 2.2. Carrizo-Vergara et al. (2022) showed that the ad-
vection term does not affect the spatial trace X(·, t) of the solution (see also Section
2.3.3). For some specific values of the parameters, the spatial trace of the solution to
(2.27) is a Matérn field, as detailed in Proposition 2.1. In the following |H| denotes
the determinant of the square matrix H.

Proposition 2.1. Let Z(s, t) be a spatio-temporal noise colored in space with ZS(s)
satisfying (2.28), and let αtot = α + αS. If αtot > d/2, the spatial trace of the
stationary solution X(s, t) of the SPDE (2.27) is the Gaussian Matérn field with
covariance

CS(h) = CST (h, 0) = τ2Γ(αtot − d/2)
2Γ(αtot)(4π)d/2κ2(αtot−d/2)|H|1/2C

M
αtot−d/2

(
κ
∥∥∥H−1/2 h

∥∥∥) .
(2.29)

where h = s − s′ is the spatial lag and CM
αtot−d/2(·) is the unit variance and scale Matérn

covariance function defined in (2.5) with smoothness parameter equal to ν = αtot−d/2.

Proposition 2.1 is adapted from Proposition 1 in Lindgren et al. (2020). A proof
is reported below.

Proof. The covariance function of the spatial trace between X(s, t) and X(s′, t) for
a spatial lag h = s − s′ does not depend on the imaginary part of the spatial symbol
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function (Carrizo-Vergara et al., 2022), hence it can be written as

CS(h) = CST (h, 0) =
∫
Rd

∫
R

exp
(
ih> ξ

)
S(ξ, ω) dω d ξ

=
∫
Rd

exp
(
ih> ξ

) [∫
R
S(ξ, ω) dω

]
d ξ

=
∫
Rd

exp
(
ih> ξ

)
SS(ξ) d ξ , (2.30)

where S(ξ, ω) is the spectral density defined as

S(ξ, ω) = τ2

(2π)d+1
[
ω2 + c−2(κ2 + ξ> H ξ)2α

]
c(κ2 + ξ> H ξ)αS

.

Integrating over ω, we obtain the spatial spectral density

SS(ξ) = τ2

(2π)dc(κ2 + ξ> H ξ)αS

∫
R

1
2π
[
ω2 + c−2(κ2 + ξ> H ξ)2α

] dω

= τ2

(2π)dc(κ2 + ξ> H ξ)αS

1
2 [c−2(κ2 + ξH ξ)2α]1/2

= τ2

2(2π)d(κ2 + ξ> H ξ)αtot
. (2.31)

Using the change of variable ξ = κH−1/2 w and plugging Equation (2.31) into (2.30),
we obtain

CS(h) = CST (h, 0) = τ2

2

∫
Rd

ei h> ξ

(2π)d(κ2 + ξ> H ξ)αtot
d ξ

= τ2

2

∫
Rd

ei h> κ H−1/2 w|κH−1/2|
(2π)d(κ2 + κ2 w> w)αtot

d w

= τ2

2κ2(αtot−d/2)|H|1/2

∫
Rd

ei h> κ H−1/2 w

(2π)d(1 + w> w)αtot
d w

= τ2Γ(αtot − d/2)
2Γ(αtot)(4π)d/2κ2(αtot−d/2)|H|1/2C

M
αtot−d/2

(
κ
∥∥∥H−1/2 h

∥∥∥) .
The last result comes from the computation of

∫
Rd(1 + w> w)−αtot d w with polar

coordinates.

The model reduces to a separable one in a particular case stated in the corollary
below.

Corollary 2.1. Let the coefficients of the SPDE (2.27) be such that α = 0 and
γ = 0; the spatial operator applied to the spatio-temporal field X(s, t) is then the
constant value c−1. Let Z(s, t) be a spatio-temporal noise colored in space, with ZS(s)
satisfying (2.28). If αS > d/2, the stationary solution to the SPDE is a separable
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spatio-temporal field with covariance

CST (h, u) = τ2Γ(αS − d/2)
2Γ(αS)(4π)d/2κ2(αS−d/2)|H|1/2C

M
αS−d/2

(
κ
∥∥∥H−1/2 h

∥∥∥) exp
(
u

c

)
,

with smoothness parameter equal to ν = αS − d/2.

2.3.3 Relationship between diffusion and advection-diffusion SPDE

Let us consider the stationary solution to the spatio-temporal SPDE[
∂

∂t
+ Lg + γ ·∇

]
X(s, t) = W (s, t),

where Lg is a purely spatial symbol operator that satisfies the SCEU. Given the
stationary solution X(s, t), if we shift it by defining Xγ(s, t) = X(s −γ t, t), then
Xγ(s, t) satisfies the SPDE[

∂

∂t
+ Lg

]
Xγ(s, t) = W2(s, t),

where W2(s, t) is a shifted form of W (s, t), but still a white noise with the same
covariance structure. For this reason, the solutions X(s, t) and Xγ(s, t) have the
same spatial trace and the spatio-temporal structure is influenced only by a shift
term depending on γ. If we wanted to simulate the solution X(s, t), we could simulate
the solution Xγ(s, t) of the SPDE without advection and shift it, by ensuring that
the domain is shifted too. This property will be illustrated in Chapter 4 through
simulations.
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Chapter 3

Discretization of spatio-temporal
SPDEs

Résumé
Dans ce chapitre nous décrivons les approches de discrétisation usuelles pour les

EDP et les EDPS, puis nous présentons l’approche choisie pour la classe d’EDPS
spatio-temporelles d’advection-diffusion. Nous discutons la notion de domination
d’advection et proposons des méthodes de stabilisation pour les EDPS qui présentent
cette caractéristique. Enfin, nous présentons la forme approchée du champ aléatoire
Gaussien de Markov et la structure creuse de sa matrice de précision.

3.1 Discretization approaches for (S)PDEs

In numerical analysis, different discretization approaches can be chosen to approx-
imate PDEs. The main ones are the Finite Difference Method (FDM), the Finite
Element Method (FEM), the Finite Volume Method (FVM) and spectral methods.

The principle of the FDM is to assign one discrete unknown per each discretization
point over a mesh and to write one equation per point. At each discretization point,
the derivatives of the unknown are approximated by finite differences through the
use of Taylor expansions. The FDM becomes difficult to use when the coefficients
involved in the equation are discontinuous, or when the geometry of the domain is
complex. For simplified geometries, FDM is an easy method to implement and likely
leads to faster codes than FEM and FVM.

The FEM (see e.g. Quarteroni (2008)) is based on a variational formulation,
which is written for both the continuous and the discrete problems. The variational
formulation is obtained by multiplying the original equation by a test function. The
continuous unknown is then approximated by a linear combination of the test func-
tions for the discrete variational formulation (this is the so called Galerkin method);
the resulting equation is integrated over the domain. The choice of the FEM to dis-
cretize spatial derivatives is, in general, directed by the consideration that the method
fits naturally to a general spatial domain, even for complex geometries, since the tri-
angulation of the domain can be much more precise than with FDM (Boulakia et al.,
2015).
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The FVM evaluates the unknowns at discrete locations in the spatial domain by
using an integral formulation of the balance equations and a successive approximation
of integrals by numerical integration at each cell of the decomposition of the domain.
The method is based on conservation laws.

Spectral methods consist in writing the solution of the differential equation as a
sum of basis functions (for example, as a Fourier series) and choosing the coefficients
of the terms of the sum in order to satisfy the PDE as well as possible.

In the following sections, we review the methods used in the statistical literature to
solve the SPDEs whose solutions are spatio-temporal random fields; then, we present
the discretization method chosen in our work.

3.1.1 Finite Element Method

Lindgren et al. (2020) represented the continuously indexed random process X(s, t),
solution to the spatio-temporal DEMF SPDE (2.24), by a discretely indexed GMRF,
to enable fast inference. They considered a discretization approach based entirely
on the FEM, both for temporal and spatial approximation. This approach directly
generalizes the spatial discretization in Lindgren et al. (2011).

Specifically, they gave a GMRF representation of the process X(s, t) in Equation
(2.24) on the domain Ω × [a, b], where Ω ⊂ Rd is a polygonal domain and [a, b] ⊂ R.
For the spatial domain, they used the Neumann boundary condition

∇X · n̂ = 0 on ∂Ω (3.1)

where n̂ is the normal vector to the boundary. They assumed that the domain
is extended away from the region of interest to account for possible errors at the
boundaries. For the temporal boundary, they ensured that the stochastic process is
stationary in time, i.e.,

Cov(X(s1, t1), X(s2, t2)) = Cov(X(s1, t1 + u), X(s2, t2 + u)), (3.2)

whenever t1, t2, t1 + u, t2 + u are in the domain.
Let ΦT = {φj}NT

j=1 denote a set of piecewise linear temporal basis functions over
a regular discretization of [a, b]. Let ΨS = {ψi}NS

i=1 denote a set of piecewise linear
spatial basis functions obtained by a triangulation of the spatial domain. They ap-
proximated the process X(s, t) in (2.24), with boundary conditions as in (3.1) and
(3.2), in the Kronecker basis ΨS ⊗ ΦT , as

Xh(s, t) =
NS∑
i=1

NT∑
j=1

xijψi(s)φj(t). (3.3)

This is the projection of the solution X(s, t) into the finite Hilbert space spanned by
ΨS and ΦT . They proved that the coefficients xij in (3.3) have a precision matrix
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that is expressed as a sum of Kronecker products. More details on this approach are
available in Lindgren et al. (2020).

3.1.2 Finite Volume Method

Other statisticians dealing with SPDEs prefer to use the FVM, that is well suited
for the numerical simulation of various types (elliptic, parabolic, or hyperbolic) of
conservation laws (Eymard et al., 2000). Some of the important features of the
FVM are similar to those of the FEM: it may be used on arbitrary geometries, using
structured or unstructured meshes, and it leads to robust schemes. Fuglstad (2010)
considered the model given in Equation (2.14) in the one-dimensional space domain to
derive the precision matrix using the FVM. Then, in following works (Fuglstad et al.,
2015; Fuglstad and Castruccio, 2020; Hu et al., 2022; Berild and Fuglstad, 2023),
the FVM was adopted for spatial SPDE models in 2D and 3D. The extension of the
FVM to spatio-temporal models in 2D and 3D was never considered, and usually the
temporal spatial repetitions were supposed to be independent.

3.1.3 Spectral methods

Spectral methods have been used in spatio-temporal statistics, mostly for approx-
imating or solving deterministic integro-difference equations or PDEs. Wikle and
Cressie (1999) introduced a dynamic spatio-temporal model obtained from an integro-
difference equation that is approximated by using a reduced dimensional spectral ba-
sis. Cressie and Wikle (2011, Chapter 7) gave an overview of basis function expansions
in spatio-temporal statistics.

In a stochastic framework, spectral methods are widely used to analyze approxima-
tions of solutions to specific SPDEs. When the FEM and the FVM lack in generality
for cases with complicated operators involved, spectral methods can be used, even if
they require a particular basis of functions to be fixed. This requisite implies that the
chosen basis can be useful for a specific setting and less adapted to different equations.
One of the possible basis is the Fourier basis (see Chilès and Delfiner (1999) for a com-
prehensive description of the method). Efficient simulations of the SPDE models can
be easily conceived using a Fourier spectral method as proposed in Lang and Potthoff
(2011) and extended in Carrizo Vergara (2018). Sigrist et al. (2015) showed how to
obtain a space–time Gaussian process by solving an advection–diffusion SPDE using
the real Fourier transform. They also showed that, by solving the SPDE using Fourier
functions, they obtained computationally efficient statistical inference methods. This
computational efficiency is due to the temporal Markov property and the fact that
Fourier functions are eigenfunctions of the spatial differential operators. The overall
computational cost is determined by the fast Fourier transform (FFT) (Cooley and
Tukey, 1965), which is O(NT log(NS)). However, it is difficult to fit this model to
sparse real data, since usually we cannot obtain a precise representation of the data
in the Fourier basis. Another downside of spectral methods is that, since Fourier
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terms are global functions, stationarity is a necessary assumption, while this is not a
requirement for the FEM and the FVM (see Chapter 7).

3.2 FEM for advection-dominated PDEs

In this section, we consider PDEs where both diffusion (second order) and advection
(first order) terms are present, as in the case of Equation (2.27). We present how
the FEM, used to discretize the spatial derivatives, is modified to take into account
a particular characteristic of the PDE: the advection-dominated state.

The steady advection-diffusion PDE reads

−λ∆X + γ ·∇X = f,

with λ > 0 and γ ∈ Rd.
If the problem is diffusion-dominated (λ � ‖γ‖), we can safely apply the Galerkin

technique, i.e., we can find a unique solution into a finite Hilbert space spanned by
the basis functions {ψi}NS

i=1 defined on a triangulation with NS spatial points. How-
ever, if we consider advection-dominated problems, applying the Galerkin technique
introduces significant instabilities (Quarteroni, 2008, Chapter 5). To investigate this
kind of phenomena, we analyze the 1D problem (γ ∈ R)

−λ∂
2X

∂x2 + γ
∂X

∂x
= f. (3.4)

We define the Péclet number as Peh = γh
2λ , where h is a measure of the mesh of the

spatial domain (e.g. the average length of the intervals in 1D). Peh is defined to be
the ratio of the rate of advection of a physical quantity by the flow to the rate of
diffusion of the same quantity driven by an appropriate gradient. If Peh > 1, that
is, if h > 2λ/γ, the PDE is said to be advection-dominated and it can be shown
that the numerical solution X to (3.4) is oscillating (Quarteroni, 2008, Chapter 5),
thus it is not physically admissible. Then, h must be set to a small value such that
Peh < 1. However, the condition h < 2λ/γ is too strict in practice, especially for
advection-dominated problems.

A way of stabilizing the advection operator γ · ∇ is to replace the diffusion co-
efficient λ with λ̃ = λ(1 + φ(Peh)), where limh→0 φ(Peh) = 0 and φ(Peh) ≥ Peh.
This method is called upwind (U) in the simplified case where φ(Peh) = Peh. The
idea behind the stabilization method is to add an artificial diffusion term equal to
λφ(Peh)∂2X

∂x2 that depends on the size of the discretization mesh h and on the Péclet
number. In this way, the equation with the additional stabilization term reads

−λ(1 + φ(Peh))∂
2X

∂x2 + γ
∂X

∂x
= f
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and it is not advection-dominated anymore, since its Péclet number P̃eh is now equal
to

P̃eh = Peh

1 + φ(Peh) ,

which always satisfies P̃eh < 1.
The problem extended to dimension d, where we add also a reaction term given

by bX, is the following:

−∇ · (λ∇X) + γ ·∇X + bX = f. (3.5)

The weak solution X ∈ V to (3.5), where V is a Hilbert space, satisfies∫
Ω
λ∇X · ∇v d s +

∫
Ω
γ ·∇Xv d s +

∫
Ω
bXv d s︸ ︷︷ ︸

A(X,v)

=
∫

Ω
fv d s︸ ︷︷ ︸
G(v)

∀v ∈ V. (3.6)

We can have a possible pathological situation, when the advection coefficient γ is
much larger than the diffusion coefficient λ. In this case, we can resort to a modified
version of the problem, with augmented diffusion, similarly to the 1D case. Inspired
by the 1D case, we consider the Galerkin method that searches Xh ∈ Vh ⊂ V such
that

Ah(Xh, vh) = G(vh) ∀vh ∈ Vh.

To choose Ah(·, ·), the general idea is to pick up

Ah(·, ·) = A(·, ·) + Sh(·, ·)

The additional term Sh(·, ·) has the purpose of eliminating, or at least reducing, the
numerical oscillations produced by the Galerkin method when the grid is not fine
enough, and are therefore named stabilization terms. By defining h as a measure
of the size of the triangulation of the spatial domain (e.g. the average diameter of
the triangles), the term Sh(·, ·) has to vanish at the limit h → 0 to ensure weak
consistency, i.e., the fact that limh→0 Ah(X − Xh, vh) = 0, ∀vh ∈ Vh. We have
several possible numerical approaches:

1. Upwind (U)

SU,h(wh, vh) = Qh
∫

Ω ∇wh · ∇vh d s , Q > 0.

2. Streamline Diffusion (SD) (Hughes and Brooks, 1981)

SSD,h(wh, vh) = Qh
∫

Ω(γ ·∇wh)(γ ·∇vh) d s , Q > 0.

γ ·∇w is called stream-line; it refers to all diffusion going on along the advection
direction. Generally Q is set to Q = ‖γ‖−1.

The scaling coefficient h is necessary to recover consistency. Indeed, element-
size, since ∇wh ∼ h−1, if h was not present, we would have both SU,h ∼ h−1 and
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SSD,h ∼ h−1, which implies no consistency. Both methods are only weakly consis-
tent and provide an error that is O(h), i.e., they are first order convergent. The
Upwind stabilization term can be considered as an additional artificial diffusion equal
to Qh∆X in the SPDE (3.5). This extra diffusion is not only in the direction of
the transport, where we aim to reduce the oscillations, but also in the orthogonal
direction, where there is no problem of convergence. The SD method, on the other
hand, considers only an artificial diffusion along the advection direction and it acts
as an extra anisotropic diffusion Qh∇ · γ γ> ∇X in (3.5).

It is also possible to add stabilization terms that ensure strong consistency, i.e.,
such that Ah(X −Xh, vh) = 0, ∀vh ∈ Vh, ∀h. These methods obtain a perturbed
problem in the strong form. In this case, the Galerkin method searches Xh ∈ Vh such
that

A(Xh, vh) + S̃h(Xh, f, vh) = G(vh) ∀vh ∈ Vh

where S̃h is such that S̃h(Xh, f, vh) = 0, to enforce strong consistency. Two typical
choices for S̃h are Galerkin Least Squares (GLS) and Streamline Upwind Petrov-
Galerkin (SUPG) methods, detailed below.

1. Galerkin Least Squares (GLS)

S̃GLS,h(wh, f, vh) =
∑

Tr∈T τTr
∫

Ω(Lwh − f)Lvh d s ,
with τTr = δhTr

|γ| , δ > 0, hTr = diam(Tr), with Tr being a triangle in the
triangulation T
and where Lu = −λ∆u+ γ ·∇u+ bu.

2. Streamline Upwind Petrov-Galerkin (SUPG)

S̃SUP G,h(wh, f, vh) =
∑

Tr∈T τTr
∫

Ω(Lwh − f)(LSSvh) d s ,
where LSS is the skew-symmetric part of L, i.e., LSSu = 1

2(div(γ u) + γ ·∇u),
as explained in the following remark.

Remark 3.2.1. We can always write an operator as the sum of a symmetric LS and
a skew-symmetric LSS part: Lu = LSu+ LSSu. Let the advection-reaction-diffusion
operator Lu = −λ∆u+ div(γ u) + bu. Since

div(γ u) = 1
2 div(γ u) + 1

2 div(γ u) = 1
2 div(γ u) + 1

2udiv(γ) + 1
2 γ ·∇u,

we can decompose the operator in the following way:

Lu =
[
−λ∆ + b+ 1

2 div(γ)
]
u+ 1

2 [div(γ u) + γ ·∇u] .
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Note that the reaction coefficient b has become b? = b+ 1
2 div(γ). The first bracket

is a symmetric term, since

〈LSu, v〉V ′,V = λ(∇u,∇v) + (b?u, v)

= −λ〈u,∆v〉V,V ′ + (u, b?v)

= 〈u,LSv〉V,V ′ , ∀u, v ∈ V,

and the second bracket is a skew-symmetric term, since

〈LSSu, v〉V ′,V = 1
2(div(γ u), v) + 1

2(γ ·∇u, v)

= −1
2(γ u,∇v) + 1

2(∇u,γ v)

= −1
2(u,γ ·∇v) − 1

2(u,div(γ v))

= −〈u,LSSv〉V,V ′ , ∀u, v ∈ V.

GLS and SUPG approximate the solution with error rate O(hm+ 1
2 ), where m is the

degree of the polynomial approximation used in the approximation. In the simple case
of piecewise linear functions, m = 1. One can ask how to choose between the several
methods proposed before. On the one hand, the SD method is easy to implement,
but it is only first order accurate with respect to the mesh size and much more
diffusive with respect to strongly consistent methods. On the other hand, it is well
known that the SUPG method has the capability of improving numerical stability for
convection-dominated flows, while satisfying a strong consistency property (Tezduyar,
1992). Like many other conforming stabilized methods, the SUPG scheme contains an
element-wise stabilization parameter τTr that has to be tuned in practice, and, except
for simplified situations, the optimal value is not known. Moreover, discontinuous
methods are naturally well suited for problems whose solution have low regularity,
and hence they work very well for advection-diffusion problems, both in advection-
dominated and diffusion-dominated regimen.

In our work, we accept to have a first order convergence and we opt for the
Streamline Diffusion method, which is easier to implement. We define S = SSD for
ease of notation.

In Figure 3.1, we represent how a stabilization method works. The 2D problem
considered here is Equation (3.5) with b = 0, λ = 0.1, f = 1. The domain is
Ω = [−1, 1]× [−1, 1] with Dirichlet boundary conditions (X = 0 on δΩ) and the mesh
is a grid with h = 0.1. γ is set to γ1 = [0.5, 0.5]> for a diffusion-dominated problem
and to γ2 = [5, 5]> for an advection-dominated problem. In fact, Peh,1 = 0.35, while
Peh,2 = 3.5. Figure 3.1 shows the FEM solution to the PDE with γ1 on the left, the
FEM solution to the PDE with γ2 without any stabilization in the middle and the
FEM solution to the PDE with γ2 with the Streamline Diffusion stabilization term
on the right. In the bottom line, we show the solution along the [1, 1]-diagonal. We
remark how the stabilization method in the right plot remove the oscillations present
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Figure 3.1: FEM solution to the PDE (3.5) with b = 0, λ = 0.1, f = 1,
h = 1 and Dirichlet BCs. Left: γ = γ1 = [0.5, 0.5]> without stabilization;
Middle: γ = γ2 = [5, 5]> without stabilization. Right: γ = γ2 = [5, 5]>

with SD stabilization.

in the middle plot.

3.3 Discretization of the unsteady advection-diffusion SPDE

In the numerical analysis literature, when the (S)PDE presents a first-order deriva-
tive in time, generally it is discretized in space using either the FDM, the FEM or
the FVM, and discretized in time using a standard implicit solver like Euler. The
discretization of SPDE by finite differences in time and finite elements in space has
been considered by several authors in theoretical studies, see for example Boulakia
et al. (2015); Cao et al. (2007); Hausenblas (2003).

In the method of lines, the (S)PDE is discretized first in space, obtaining a semi-
discrete equation (system of ODEs), and then in time. This approach allows switching
from one temporal discretization to another without much effort.

In the method of Rothe, the (S)PDE is discretized first in time, and then in space.
This is useful when one needs to adapt the mesh between time steps. In fact, with
the Rothe method, one can choose the spatial discretization independently at each
time step. For unsteady (S)PDEs, generally simple time stepping methods, such as,
for example, Crank-Nicolson or the implicit and explicit Euler schemes, are efficient
enough. For these simple time integrators, it is much easier to hand-code the time
integration than the spatial discretization. That might explain why most people in
the finite element world prefer to think along the Rothe method.

As we have already seen in Section 3.1.1, the third possibility is to discretize the
(S)PDE both in space and time simultaneously (also known as space-time discretiza-
tion), as it was proposed by Lindgren et al. (2020).
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Following the considerations above, the unsteady advection-diffusion SPDE (2.27)
is discretized with the Rothe method, first in time and then in space, using the
Finite Difference Method (FDM) and the Finite Element Method (FEM), respectively.
The temporal domain [1, T ] is discretized in NT regular time steps of length dt =
T/NT . Since implicit solvers are usually less sensitive to numerical instability than
explicit solvers, the implicit Euler scheme is chosen for the temporal discretization.
This choice implies unconditional stability, hence convergence towards the stationary
solution. Moreover, we will show in Section 3.3.2 that the implicit Euler scheme is
necessary to obtain a sparse structure of the global spatio-temporal precision matrix.
The FEM method for the spatial discretization is the Galerkin method with Neumann
boundary conditions, as detailed in Lindgren et al. (2011).

The solution in two dimensions is now detailed. The solution in three dimensions
involve geometrical technicalities, but is otherwise very similar. Let Ω ⊂ R2 be a
compact and connected domain of R2. Ω is meshed using a triangulation T with NS

vertices {s1, . . . , sNS
} ⊂ Ω. Let h := maxTr∈T hTr, where hTr is the diameter of the

triangle Tr ∈ T . As before, we use a first order finite element representation Xh of
the solution to the spatial SPDE, i.e., Xh =

∑NS
i=1 xiψi. The weights {xi}NS

i=1 define
uniquely the values of the field at the vertices, while the values in the interior of
the triangles are determined by linear interpolation. The Galerkin solution is then
obtained by finding the weights that fulfill the weak formulation of Equation (2.27)
for test functions belonging to the space Vh spanned by {ψi}NS

i=1.

Proposition 3.1. Let X(s, t) be the spatio-temporal process solution to Equation
(2.27) with α ∈ {0, 1} and spatio-temporal white noise, i.e. Z(s, t) = W (s, t) =
WT (t) ⊗ WS(s). Let T be a triangulation of Ω and {ψi}NS

i=1 be the piecewise linear
basis functions defined over T . Let us define the mass matrix M = [Mij ]NS

i,j=1, the
stiffness matrix G = [Gij ]NS

i,j=1, the advection matrix B = [Bij ]NS
i,j=1 and the matrix

K = [Kij ]NS
i,j=1 as follows:

Mij =
∫

Ω
ψi(s)ψj(s) d s ,

Gij =
∫

Ω
H ∇ψi(s) · ∇ψj(s) d s ,

Bij =
∫

Ω
γ ·∇ψi(s)ψj(s) d s ,

Kij = (κ2Mij +Gij)α.

Then, at each time step, the continuous Galerkin finite element solution vector
x(k+1) = {x(k+1)

i }NS
i=1 satisfies

(
M +dt

c
(K + B)

)
x(k+1) = M x(k) + τ

√
dt√
c

M1/2 z(k+1), (3.7)

where z(k+1) ∼ N (0, INS
), M1/2 is any matrix such that M1/2 M1/2 = M and dt =

T/NT . When the noise on the right-hand side is colored in space, i.e. Z(s, t) =
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WT (t) ⊗ ZS(s), the discretization reads

(
M +dt

c
(K + B)

)
x(k+1) = M x(k) + τ

√
dt√
c

M L>
S z(k+1),

where LS is the Cholesky decomposition of Q−1
S , the covariance matrix of the dis-

cretized solution ZS of the spatial SPDE (2.28), obtained with the continuous Galerkin
FEM (Lindgren et al., 2011).

Proof. For the sake of a clearer exposition, we set H = I, α = 1 and we consider a
spatio-temporal white noise Z(s, t) = W (s, t). The proof for the general case follows
exactly the same lines as the proof below. The considered SPDE is[

∂

∂t
+ 1
c

(κ2 − ∆) + 1
c
γ ·∇

]
X(s, t) = τ√

c
W (s, t). (3.8)

For the discretization of the temporal derivative in Equation (3.8), we opt for the
implicit Euler scheme, which considers the differential equation

∂X(t)
∂t

= f(t,X),

with initial value X(1) = X(t0). The method produces a sequence {X(k)}NT
k=1, such

that X(k) approximates X(t0+kdt), where dt is the time step size. The approximation
reads

X(k+1) = X(k) + dtf(t(k+1), X(k+1)). (3.9)

In the specific case of Equation (3.8), the implicit Euler discretization step reads

X(k+1)(s) −X(k)(s) + dt

[1
c

(κ2 − ∆) + 1
c
γ ·∇

]
X(k+1)(s) =

√
dtτ√
c
W

(k+1)
S (s), (3.10)

where W (k+1)
S (s) is a spatial white noise obtained by integrating out the temporal

white noise. In fact, the cumulative time-integral process between 0 and a > 0,∫ a
0 W (s, t)dt, is a purely spatial Gaussian white noise multiplied by the standard

deviation of the temporal increment, which is equal to 1/
√
a, hence the

√
dt in the

right-hand side term.
For ease of notation, we denote X(k+1) = X(k+1)(s), X(k) = X(k)(s) and WS =

W
(k+1)
S (s), since the spatial noise is independent of the temporal step k.

At each time step of the temporal discretization, a spatial Finite Element Method
method is applied. In our case, we use the continuous Galerkin with Neumann bound-
ary condition. The weak form of Equation (3.10) is∫

Ω
X(k+1)v d s + dt

c

(∫
Ω
κ2X(k+1)v d s −

∫
Ω

∆X(k+1)v d s +
∫

Ω
γ ·∇X(k+1)v d s

)
=

=
∫

Ω
X(k)v d s +

√
dtτ√
c
WS(v), ∀v ∈ V, (3.11)
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where V is the Hilbert space in which we search the solution and WS(v) is the white
noise applied to the test function v.

By applying Green’s first identity, i.e., by writing∫
Ω

∆X(k+1)v d s = −
∫

Ω
∇X(k+1) · ∇v d s +

∫
∂Ω
v · (∇X(k+1) · n̂) dσ ,

with n̂ being the normal vector on the boundary, and by simplifying the second term
thanks to the Neumann boundary condition, we obtain∫

Ω
X(k+1)v d s + dt

c

(∫
Ω
κ2X(k+1)v d s +

∫
Ω

∇X(k+1) · ∇v d s +
∫

Ω
γ ·∇X(k+1)v d s

)
︸ ︷︷ ︸

A(X(k+1),v)

=
∫

Ω
X(k)v d s︸ ︷︷ ︸

C(X(k),v)

+
√
dtτ√
c
WS(v)︸ ︷︷ ︸

E(v)

, ∀v ∈ V.

Let Vh be the space of finite element solutions spanned by the basis functions
{ψi}NS

i=1. The Galerkin method allows us to find an approximated solution X
(k+1)
h ∈

Vh ⊂ V to the SPDE, such that

A(X(k+1)
h , vh) = C(X(k)

h , vh) + E(vh) ∀vh ∈ Vh. (3.12)

The functions X(k+1)
h , X(k)

h and vh are linear combinations of the basis functions,
with

X
(k+1)
h =

NS∑
i=1

x
(k+1)
i ψi; X

(k)
h =

NS∑
i=1

x
(k)
i ψi; vh =

NS∑
i=1

viψi.

Because of the linearity in the first argument of A(·, ·) and C(·, ·), we get

NS∑
i=1

A(ψi, vh)x(k+1)
i =

NS∑
i=1

C(ψi, vh)x(k)
i + E(vh), ∀vh ∈ Vh, (3.13)

where

A(ψi, vh) = M(ψi, vh) + dt

c
(K(ψi, vh) + B(ψi, vh))

C(ψi, vh) = M(ψi, vh),

with K(ψi, vh) = κ2M(ψi, vh) + G(ψi, vh). Here, M and G are the mass and stiffness
operators, respectively M(v, w) =

∫
Ω vw d s and G(v, w) =

∫
Ω ∇v · ∇w d s. B is the

advection operator, i.e., B(v, w) =
∫

Ω γ ·∇vw d s. Finally, E is the operator of the
form E(v) =

√
dtτ√
c
WS(v).

Since any vh can be written as a linear combination of basis functions, the formu-
lation (3.13) is equivalent to

NS∑
i=1

A(ψi, ψj)x(k+1)
i =

NS∑
i=1

C(ψi, ψj)x(k)
i + E(ψj), ∀j. (3.14)
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We define M = [Mij ]NS
i,j=1 = [M(ψi, ψj)]NS

i,j=1, G = [Gij ]NS
i,j=1 = [G(ψi, ψj)]NS

i,j=1,
B = [Bij ]NS

i,j=1 = [B(ψi, ψj)]NS
i,j=1 the mass, stiffness and advection matrices, respec-

tively.
E(ψj) is a Gaussian random variable with expectation 0 and covariance equal to

Cov(E(ψi), E(ψj)) = dtτ2

c
Cov [WS(ψi),WS(ψj)]

= dtτ2

c

∫
Ω
ψiψj d s = dtτ2

c
Mij ,

by following the definition of white noise in Equation (2.1).
If z(k+1) is a (NS)-Gaussian vector such that z(k+1) ∼ N (0, INS

), x(k+1) is the
vector containing the values {x(k+1)

i }NS
i=1 and x(k) is the vector containing the values

{x(k)
i }NS

i=1, then the sparse linear system corresponding to Equation (3.14) reads

M x(k+1) + dt

c
(K + B)x(k+1) = M x(k) +

√
dtτ√
c

M1/2 z(k+1), (3.15)

where K = κ2 M + G and M1/2 is any matrix such that M1/2 M1/2 = M.
When the spatial noise is colored, i.e. ZS(s), the right-hand side operator ES(v)

becomes
ES(ZS , v) =

√
dtτ√
c

∫
Ω
ZSv d s

and it satisfies

ES(ZS,h, vh) =
NS∑
i=1

M(ψi, vh)zS,i.

Hence,

NS∑
i=1

A(ψi, ψj)x(k+1)
i =

NS∑
i=1

C(ψi, ψj)x(k)
i +

NS∑
i=1

M(ψi, ψj)zS,i, ∀j.

If zS = {zS,i}NS
i=1 has precision matrix equal to QS , then the sparse linear system is

M x(k+1) + dt

c
(K + B)x(k+1) = M x(k) +

√
dtτ√
c

M L>
S z(k+1), (3.16)

where z(k+1) ∼ N (0, INS
) and LS is the Cholesky decomposition of Q−1

S .

Remark 3.3.1. When the diffusion term includes an anisotropy matrix H, i.e., when
∆ is replaced by ∇ · H ∇, the stiffness operator becomes G(v, w) =

∫
Ω H ∇v · ∇w d s,

and the stiffness matrix changes consequently.

Remark 3.3.2. The elements of the matrices M, G, B and K are non-zero only for
pairs of basis functions which share common triangles. This implies that the matrix
(M +dt

c (K + B)) is sparse and that Equation (3.7) can be solved by LU decomposition
(Turing, 1948) in an efficient way.
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Remark 3.3.3. The discretization error introduced by the scheme (3.12) is defined by

E
(k)
h = e

(k)
h + p

(k)
h ,

where
e

(k)
h = X

(k)
h − ΠhXtk

, p
(k)
h = ΠhXtk

−Xtk

for 1 ≤ k ≤ NT .
For k ∈ {1, . . . , NT }, the error e(k)

h is the difference between the approximated
solution given by the scheme and the elliptic projection Πh(·) on Vh of the exact
solution at time kdt. The error p(k)

h is the difference between the projection of the
exact solution on Vh at time kdt and the exact solution at kdt. We have the following
covergence result (Boulakia et al., 2015):√

E(||E(k)
h ||2) ≤ K(h+

√
dt), (3.17)

where K is a constant.

3.3.1 Stabilization of the unsteady advection-dominated SPDE

When the advection term is too strong with respect to the diffusion term in Equation
(2.27), advection-domination occurs. In the framework outlined above, when α = 1,
the asymmetric matrix

[
M +dt

c (K + B)
]

becomes ill-conditioned, which induces os-
cillations and unstable solutions for the continuous Galerkin approximation. Specif-
ically, the advection-domination occurs when the Péclet number Peh = ‖γ‖h

2λ > 1,
where λ is the coefficient of the isotropic Laplacian operator (see, for example,
Mekuria and Rao (2016) or Quarteroni (2008, Chapter 5)).

We saw in Section 3.2 that one possible solution is to decrease the diameter h, i.e.,
to refine the triangulation, until the advection no longer dominates on the element-
level, with Peh < 1. However, in many cases this is not a feasible solution because it
would increase the number of vertices beyond computation limits. Another solution,
adopted here, is to introduce a stabilization term. Many stabilization approaches
are possible, some being more accurate than others (see Section 3.3.1 or Quarteroni
(2008, Chapter 5)). In our case, we opt for the Streamline Diffusion (SD) stabilization
approach (Hughes and Brooks, 1981), considered as a good trade-off between accuracy
and computational complexity. Essentially, the SD approach consists in stabilizing
the advection by introducing an artificial diffusion term along the advection direction.
The following proposition presents the stabilized solution to (2.27).

Proposition 3.2. Assume the same hypotheses as in Proposition 3.1 with α = 1.
The solution to Equation (2.27) in presence of Streamline Diffusion stabilization is

(
M +dt

c
(K + B + S)

)
x(k+1) = M x(k) + τ̃

√
dt√
c

M1/2 z(k+1), (3.18)
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where S = [Sij ]NS
i,j=1 is the matrix of the Streamline Diffusion stabilization operator

S, such that
Sij = S(ψi, ψj) = h‖γ‖−1

∫
Ω

(γ ·∇ψi)(γ ·∇ψj) d s ,

and τ̃ = τ
(
|H +h‖γ‖−1 γ γ>|

)−1/4
(|H|)1/4. When the noise on the right-hand side

of Equation (2.27) is colored in space, the discretization becomes

(
M +dt

c
(K + B + S)

)
x(k+1) = M x(k) + τ̃

√
dt√
c

M L>
S z(k+1),

where z(k+1) and LS are as in Proposition 3.1.

The proof of the discretized equation follows the same reasoning as that of Propo-
sition 3.1 with the addition of the matrix S. The Streamline Diffusion approach can
be seen as a perturbation of the original SPDE (Bank et al., 1990). Indeed, by mak-
ing the classical hypothesis of Neumann boundary condition on Ω and by using the
Green’s first identity, we get∫

Ω
(γ ·∇X(k+1))(γ ·∇v) d s = −

∫
Ω

∇ · (γ γ>)∇X(k+1)v d s .

As a consequence, the original SPDE (2.27) can be rewritten with an additional
diffusion term as[

∂

∂t
+ 1
c

[
κ2 − ∇ ·

(
H +h‖γ‖−1 γ γ>

)
∇ + γ ·∇

]]
X(s, t) = τ√

c
Z(s, t). (3.19)

The term (h‖γ‖−1 γ γ>) acts as an anisotropic “diffusion” matrix that is added to
the anisotropy matrix H of the original diffusion. This extra diffusion stabilizes the
advection directed along the direction γ. By following the proof of Proposition 2.1,
we find that the marginal variance of the spatial field X(·, t) of Equation (3.19) is
equal to

σ2 = τ2Γ(αtot − d/2)
Γ(αtot)2(4π)d/2κ2(αtot−d/2)|H +h‖γ‖−1 γ γ>|1/2

.

For the variance to be equal to the variance in Proposition 2.1, τ must be replaced
by τ̃ = τ

(
|H +h‖γ‖−1 γ γ>|

)1/4
(|H|)−1/4.

3.3.2 Spatio-temporal GMRF approximation

Proposition 3.3. In presence of an advection-dominated flow and a spatio-temporal
white noise on the right-hand side of Equation (2.27), the discretized vector x(k+1) on
the mesh T at each time step is the solution to the following equation:

x(1) ∼ N (0,Σ),

x(k+1) = D x(k) + E z(k+1), (3.20)
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where

D =
(

M +dt

c
(K + B + S)

)−1
M,

E = τ̃
√
dt√
c

(
M +dt

c
(K + B + S)

)−1
M1/2, (3.21)

and z(k+1) ∼ N (0, INS
) is independent of x(1), . . . ,x(k+1). In presence of a spatio-

temporal noise colored in space on the right-hand side of Equation (2.27), the matrix
E reads

E = τ̃
√
dt√
c

(
M +dt

c
(K + B + S)

)−1
M L>

S ,

where LS is defined in Proposition 3.1.

Proof. Starting from Equation (3.18), which represents the numerical scheme for the
advection-diffusion spatio-temporal SPDE with stabilization, it is straightforward to
obtain (3.20).

When the SPDE is not advection-dominated, which implies that no stabilization
term is needed, Equation (3.21) is replaced by the similar equation where the matrix
S is deleted and τ̃ is replaced by τ .

Σ, which is the covariance matrix of the spatial trace x(1) at the first time step,
can be taken to be equal to any admissible positive definite matrix. The closer Σ is
to the covariance CS of X(·, t), the faster the stationary solution is obtained. When
the hypotheses of Proposition 2.1 are satisfied, an efficient option is to choose Σ as
the Matérn covariance of Equation (2.29).

To obtain fast inference and prediction computations, the precision matrix of the
spatio-temporal discretized solution x1:NT

= [x(1), . . . ,x(NT )]> must be sparse. For
this reason M is replaced by the diagonal matrix M̃, where M̃ii = 〈ψi, 1〉 (Lindgren
et al., 2011). This technique is called mass lumping and is common practice in FEM
(Quarteroni, 2008, Chapter 5). From now on, we always use the diagonal matrix M̃,
but for ease of reading, it will still be denoted M.

Proposition 3.4. Let x1:NT
= [x(1), . . . ,x(NT )]> be the vector containing all spatial

solutions until time step NT of Equation (3.20). The global precision matrix Q of the
vector x1:NT

of size (NSNT , NSNT ) reads

Q =



Σ−1 + D> F−1 D − D> F−1 0 . . . 0

− F−1 D F−1 + D> F−1 D − D> F−1 . . . ...
... . . . . . . . . . 0
... . . . − F−1 D F−1 + D> F−1 D − D> F−1

0 . . . 0 − F−1 D F−1


,

(3.22)
where F = E E>.
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Proof. Let us denote x1:NT
= [x(1), . . . ,x(NT )]> the vector containing all spatial so-

lutions until time step NT . Then,

x1:NT
= R

(
x(1)

z2:NT

)
,

with z2:NT
= [z(2), . . . , z(NT )]> and

R =



INS
0 0 0 . . . 0

D E 0 0 . . . 0
D2 D E E 0 . . . 0
... . . . . . . . . . . . . ...
... . . . . . . . . . . . . 0
... . . . . . . D2 D E


.

R has a block structure which allows easy computation of its inverse

R−1 =



INS
0 0 0 . . . 0

− E−1 D E−1 0 0 . . . 0
0 − E−1 D E−1 0 . . . 0
... . . . . . . . . . . . . ...
... . . . . . . . . . . . . 0
0 . . . . . . 0 − E−1 D E−1


.

The precision matrix of x1:NT
is thus

Q = R−1>


Σ−1 0 . . . 0

0 INS
. . . 0

... . . . . . . ...
0 0 . . . INS

R−1 .

By denoting F = E E>, the global precision matrix reads

Q =



Σ−1 + D> F−1 D − D> F−1 0 . . . 0

− F−1 D F−1 + D> F−1 D − D> F−1 . . . ...
... . . . . . . . . . 0
... . . . − F−1 D F−1 + D> F−1 D − D> F−1

0 . . . 0 − F−1 D F−1


.
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By replacing the values of D and F and by defining J =
[
M +dt

c (K + B + S)
]
, we

obtain

Q = c

τ2dt



Σ−1 + QS − QS M−1 J 0 . . . 0

− J> M−1 QS J> M−1 QS M−1 J + QS − QS M−1 J . . . ...
... . . . . . . . . . 0
... . . . − J> M−1 QS J> M−1 QS M−1 J + QS − QS M−1 J
0 . . . 0 − J> M−1 QS J> M−1 QS M−1 J


.

3.3.3 Sparsity pattern of the precision matrix

Here, we report two examples of sparsity patterns of the spatio-temporal precision
matrix, computed with NS = 52 and NT = 5 and NS = 202 and NT = 5 respectively.
The sparsity is due both to the discretization in space with the FEM and to the use
of the implicit Euler scheme.

Figure 3.2: Sparsity pattern of precision matrix. Left: NS = 52 and
NT = 5; Right: NS = 202 and NT = 5.
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Chapter 4

Simulation

Résumé
Dans ce chapitre, nous présentons des méthodes destinées à générer des simu-

lations non conditionnelles de champs Gaussiens spatio-temporels stationnaires solu-
tions de la classe d’EDPS d’advection-diffusion présentée au chapitre précédent. La
principale méthode utilisée est la discrétisation aux Éléments Finis en espace et aux
Différences Finies en temps. Nous comparons cette méthode à une méthode spectrale
basée sur l’approximation de la transformée de Fourier du champ par la transformée
de Fourier rapide. Enfin, nous montrons comment la domination d’advection influ-
ence la solution de l’EDPS et comment une méthode de stabilisation peut résoudre ce
problème.

In this chapter we present some examples of non-conditional simulation of sta-
tionary spatio-temporal Gaussian fields, solutions to the unsteady advection-diffusion
SPDE (2.27). The main method that will be used is the FEM/FDM discretization
described in Section 3.3. We will compare this method to a spectral method based
on the approximation of the Fourier Transform of the field by Fast Fourier Trans-
form. Finally, we will show how the advection-domination influences the solution of
the SPDE (2.27) and how the Streamline Diffusion stabilization can tackle this issue.
Some implementation details are available in Appendix A.1.

4.1 Simulation of spatio-temporal SPDEs

We consider the advection-diffusion SPDE (2.27) with d = 2. The spatio-temporal
domain Ω × [1, T ] of X(s, t), with Ω ⊂ R2, is discretized in space with a triangulation
T with NS nodes and discretized in time by means of NT regular time steps. This
space-time discretization is denoted T ′ = T × {T/NT , . . . , T}.

When considering the SPDE (2.27) on a spatial bounded domain Ω, one has
to choose some boundary conditions. Lindgren et al. (2011) and Khristenko et al.
(2019) showed that, when Neumann boundary conditions are used, one can obtain a
satisfactory solution to SPDE (2.3) on Ω by using a domain Ω̃ that is extended by a
distance which is at least two times the practical correlation range r =

√
8(αtot − 1)/κ

outside the domain of interest Ω. They further showed that the error between the
covariance of the solution and the covariance of the solution inside the domain Ω
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decreases exponentially as r increases. We chose to use the same practical framework.
When αtot ≤ 1, r cannot be computed; in this case, we consider that r =

√
0.8/κ.

A non-conditional simulation of the spatio-temporal Gaussian vector x1:NT
on the

discretized domain T ′ with known precision matrix Q as in Equation (3.22) can be
obtained through

x1:NT
= L z, (4.1)

where z is a NSNT vector with independent zero-mean, unit variance and normally
distributed random components, and L is a matrix such that (Gentle, 2009)

L L> = Q−1 . (4.2)

Since Q−1 is not known, we can compute Qchol as the Cholesky decomposition
of the precision matrix Q. Then, the simulated vector x1:NT

is computed as the
solution of the linear system Q>

chol x1:NT
= z. Two performance issues arise from this

approach. First, the computation of the Cholesky decomposition of Q is intractable
for large problems or when the matrix is not sparse enough; then, once computed,
this decomposition must be stored, and is used to solve a linear system. Both these
tasks get increasingly expensive as the size or the filling of Qchol increases.

However, we know that, by construction of Q, we only need to store the sparse
spatial matrices of the tridiagonal block structure, which results in a cheaper storage.
Likewise, a non-conditional simulation of the spatio-temporal field X(s, t) on the
discretized domain T ′, i.e., the vector x1:NT

, can be obtained by solving the sparse
linear system (3.20) governing the field in space and updating the Euler scheme at
each time step. In this case, only sparse (NS , NS) spatial matrices are used, which
reduces the computational cost.

The convergence of the spatio-temporal field to the stationary solution obtained
from the theory is observed by comparing the empirical spatio-temporal covariance
with the theoretical one.

First, we compare the empirical covariance of the spatial trace with the theoretical
covariance of the corresponding spatial model, when it exists (see Proposition 2.1).
In Figure 4.1 we show the spatial trace of the stationary solution of an advection-

diffusion SPDE with α = 1, αS = 0, κ = 0.1, c = 1, γ = [1, 0]>, H =
[
1 1
1 4

]
,

at 4 time steps separated by 4dt. The solution is the approximated field obtained
with the FEM/FDM approach detailed in Section 3.3. We remark how the anisotropic
matrix influences the form of the spatial field, giving an elongated vertical dependence
structure, and how the spatial field moves to the right due to the advection term.

Now, we restrict ourselves to the purely isotropic diffusive SPDE (γ = [0, 0] and
H = I) with κ = 0.3, c = 1, τ = 1, and we compare the spatio-temporal models
obtained with different combinations of α and αS . The combinations are summarized
in Table 4.1, along with the marginal spatial variance and the value of the practical
range (when available) computed from the results of Proposition 2.1. The models (A)
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Figure 4.1: Spatial trace at 4 time steps (separated by 4dt) of the sim-
ulation of advection-diffusion SPDE for α = 1, αS = 0, κ = 0.1, c = 1,

γ = [1, 0]>, H =
[
1 1
1 4

]
.
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and (B) are separable models.

Model name α αS σ2 r =
√

8ν/κ

(A) 0 2 0.442 9.428
(B) 0 4 18.193 16.330
(C) 1 0 / /
(D) 2 0 0.442 9.428
(E) 1 2 2.456 13.333
(F) 2 2 18.193 16.330

Table 4.1: Different diffusive models obtained with combinations of α
and αS , along with corresponding marginal spatial variance and practical

range.

In Figures 4.2 and 4.3 we plot the experimental spatio-temporal variograms of
the simulations of the diffusive SPDE models with the parameters of Table 4.1. The
plots show that the marginal variance is slightly underestimated.

4.2 Comparison FEM/FDM with spectral method

Understanding the marginal properties of the model which is solution to the SPDE
is important, as they provide additional information about the process. We already
know that the covariance can be directly computed from the spectral density, even
though this is not always possible analytically. We consider the spectral density of
the nonseparable model in order to compute the space-time covariance and marginal
spatial and temporal ones as well.

An approximation of the covariances of X, solution to the advection-diffusion
SPDE (2.27), can be obtained using a procedure related to the classical development
on Fourier basis, for which the computations can be efficiently obtained through
the use of the Fast Fourier Transform (FFT), as proved by Sigrist et al. (2015) and
Carrizo Vergara (2018). This method can be applied to any evolution equation pre-
sented in Section 2.2.6. We refer to Carrizo Vergara (2018, Chapter 6) for a detailed
exposition of the method.

As an illustration of the method, in Figure 4.4 we plot the marginal spatial and
temporal covariance functions obtained with the FFT approach from the SPDE (2.27)
with α = 0, αS = 2, κ = 0.1, τ = 1, c = 0.2, along with the theoretical covariances of
the separable model with spatial covariance equal to a Matérn with ν = αS−1 = 1 and
temporal covariance equal to an exponential with scale c (see Proposition 2.1). We
note that the spatial and temporal covariances computed with the FFT approximation
fit well the theoretical covariances.

In Figure 4.5 we plot the marginal spatial covariance functions obtained with both
the FEM/FDM and FFT approaches from the SPDE (2.27) with spatio-temporal
white noise (αS = 0), κ = 0.5, τ = 1, c = 1. α is set to α1 = 2 and α2 = 3 in
order to obtain a Matérn spatial trace with ν1 = 1 and ν2 = 2, respectively. The
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Figure 4.2: Spatio-temporal variogram maps of simulation of models of
Table 4.1. Top row: (A), (B). Middle row: (C), (D). Bottom row: (E), (F).



50 Chapter 4. Simulation

Figure 4.3: Spatio-temporal variogram of simulation of models of Table
4.1. Top row: (A), (B). Middle row: (C), (D). Bottom row: (E), (F).
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Figure 4.4: Separable spatio-temporal model (αS = 2, α = 0, κ = 0.1,
τ = 1, c = 0.2, γ = 0). Left: spatial trace obtained with FFT and
theoretical Matérn covariance (ν = αS − 1 = 1). Right: temporal trace

obtained with FFT and theoretical exponential covariance.

Figure 4.5: Covariances of stationary spatial trace of nonseparable spatio-
temporal model (αS = 0, κ = 0.5, τ = 1, c = 1, γ = 0) computed with
FEM/FDM (“discretized”), FFT and theoretical Matérn. Left: α = 2,

hence ν = 1. Right: α = 3, hence ν = 2.

theoretical marginal variance and practical range, computed from Equation (2.29),
are σ2

1 = 0.159 and r1 = 5.657 (and σ2
2 = 0.318 and r2 = 8). These values are well

retrieved by both the approximation approaches, with a little error for the variances
estimated by the FEM/FDM approach. This is visible in the first star on the left,
which is lower than the dashed and solid lines at the same abscissa. We already
remarked that the marginal variances were slightly underestimated in Figure 4.3.
This is probably due to the discretization in space, which, being a bit coarse here,
smooths the behavior at the origin.

4.3 Simulation of advection-diffusion SPDEs as shifted
diffusion SPDEs

In the following, we illustrate with simulations the result of Section 2.3.3, i.e., the fact
that the result of the advection-diffusion SPDE is equal to a shifted solution of the
classical diffusion SPDE. We consider the solution of the advection-diffusion SPDE
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with α = 1, αS = 0, dt = 1, τ = 1, c = 1, κ = 0.3 and γ = [1, 0]>, along with the
solution of the corresponding diffusion SPDE (with same parameters α, αS , κ, τ and
c), which has been computed on a larger grid, so that we can shift the solution along
the x-axis of an interval dx = dtγx = 1 every time step.

In Figure 4.6, we plot the covariance function of the solutions of the advection-
diffusion SPDE between 4 following time steps, when the simulation has already
converged. We remark how the higher values of the covariance map follow the direc-
tion [1, 0]>, as expected from the advection term with velocity parameter γ = [1, 0]>.
In Figure 4.7, we plot the covariance function of the solutions of the purely diffusive
SPDE with the same parameters, after being shifted along the x-axis of an interval
dx = dtγx = 1 every time step. Moreover, in Table 4.2, we report the mean and the
standard devation of the differences between the two experimental spatial covariances
(shifted diffusion SPDE and corresponding advection-diffusion SPDE) over 4 follow-
ing time steps. We note that the plots are very similar and the differences very small,
which empirically illustrates the result of Section (2.3.3).

time steps t1,t1 t1,t2 t1,t3 t1,t4

mean (std) ×10−3 1.19 (4.54) -0.41 (4.91) 0.86 (3.61) -1.60 (4.12)

Table 4.2: Mean (std) ×10−3 of differences between experimental spatial
covariances over 4 following time steps with shifted diffusion SPDE and

corresponding advection-diffusion SPDE.

4.4 Simulation of advection-dominated SPDEs

In the following, we simulate a spatio-temporal field from the SPDE (2.27) when the
advection term is dominant with respect to the diffusive term (see Section 3.3.1. We
consider the solution of the SPDE (2.27) with α = 1, αS = 0, dt = 1, τ = 1, c = 1,
κ = 0.3 and γ = [0, 5]>. We plot in Figure 4.8 the spatial trace of the solution to the
SPDE at 4 following steps. We remark how the strong advection coming from the left
side influences the spatial trace, causing problems in the solution. To better capture
the amplitude of the fluctuations, we report here the average variance over 50 time
steps. In the purely diffusive case, the average variance is 0.147, in the not stabilized
advection-dominated case it is 0.958, while in the stabilized advection-dominated case
it is 0.167. In Figure 4.9 we plot the same spatial traces but with the introduction
of the Streamline Diffusion stabilization term into the FEM. We note that now the
solution is stable and we remark the influence of the stabilization term on the diffusive
behavior. Indeed, the additional diffusive term h/‖γ‖∇ · γ γ> ∇X in the SPDE is
visible as an anisotropic covariance structure that the spatial trace clearly shows.
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Figure 4.6: Experimental spatial covariance over 4 following time steps
of the simulation of advection-diffusion SPDE for κ = 0.3, τ = 1, c = 1,

α = 1 and γ = [0, 1]>.
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Figure 4.7: Experimental spatial covariance over 4 following time steps
of the simulation of diffusion SPDE for κ = 0.33, α = 1, τ = 1 and c = 1,

shifted at each time step of dx = 1 on the x-axis.
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Figure 4.8: Advection-dominated SPDE. Spatial trace at 4 time steps
(separated by dt = 1) of the simulation of advection-diffusion SPDE for
α = 1, αS = 0, κ = 0.3, τ = 1, c = 1, γ = [5, 0]>, without stabilization.



56 Chapter 4. Simulation

Figure 4.9: Stabilized advection-dominated SPDE. Spatial trace at 4 time
steps (separated by dt = 1) of the simulation of advection-diffusion SPDE
for α = 1, αS = 0, κ = 0.3, τ = 1, c = 1, γ = [5, 0]>, with Streamline

Diffusion stabilization.
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Chapter 5

Estimation, prediction and
conditional simulation

Résumé
Dans ce chapitre nous nous intéressons au problème de l’estimation des paramètres

d’un modèle statistique où la partie aléatoire est la solution d’une EDPS d’advection-
diffusion. Il s’agit d’inférer les propriétés statistiques du processus à partir de données
spatio-temporelles partiellement observées et bruitées. Nous présentons une approche
basée sur la maximisation de la vraisemblance. Les calculs s’appuient sur la décompo-
sition de Cholesky de matrices creuses ou, dans le cas de grands jeux de données, sur
des approches dites “matrix-free”, qui ne font intervenir que des produits matrices-
vecteurs. Puis, nous présentons la prédiction spatio-temporelle et la simulation con-
ditionnelle par krigeage. Enfin, nous étudions les techniques proposées sur un jeu de
données simulées.

This section presents an efficient implementation for parameter estimation, spatio-
temporal prediction and conditional simulation within the spatio-temporal SPDE
framework. We consider the advection-diffusion SPDE (2.27) with d = 2, α = 1, H =
I (isotropic diffusion) and colored noise in space with αS = 2. Similar computations
can be generalized to other values of αS such that αS/2 is integer or to anisotropic
diffusion.

The spatio-temporal domain Ω × [1, T ] is discretized in space with a triangulation
T with NS nodes and discretized in time by means of NT regular time steps. This
space-time discretization is denoted T ′ = T × {T/NT , . . . , T}. At each time step
k = 1, . . . , NT there are n(k) observations scattered in the spatial domain Ω. There
is thus a total of n =

∑NT
k=1 n

(k) spatio-temporal data collected in the vector y1:NT
=

[(y(1))>, . . . , (y(NT ))>]>.
We consider a statistical model with fixed and random effects. The fixed effect

is a regression on a set of covariates and the random effect is modeled as the FEM
discretization of a random field described by the SPDE (2.27) with the addition of a
random noise:

y1:NT
= η b +A> x1:NT

+σ0 ε, (5.1)
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Figure 5.1: Left: Triangulated mesh T with NS = 52 and nobs = 5 scat-
tered data (blue). Right: spatial projection matrix A>

S between scattered
points and points T (size (n,NS)).

where b is the vector of q fixed effects and η is a (n, q) matrix of covariates with [η]jk =
ηk(sj , tj), j = 1 . . . , n and k = 1, . . . , q. The matrix A is the (NSNT , n) projection
matrix between the points in T ′ and the data, and ε is a standard Gaussian random
vector with independent components, independent of x1:NT

. When the observation
locations do not change during the time window, A A> is a (NSNT , NSNT ) block-
diagonal matrix with all (NS , NS) equal blocks.

In the left panel of Figure 5.1, we represent a square spatial domain [1, 2] × [1, 2],
discretized in space with a triangulation T with NS = 52, and nS = 5 scattered ob-
servations (in blue). In the right panel, we show the sparsity pattern of the projection
matrix A>

S between T and the scattered data. For each row i of the matrix A>
S , three

values are different from 0: they correspond to the three vertices of the triangle in
which the i-observation is located. For example, the first and the last rows correspond
to the two blue points in the bottom right part of the spatial domain. Indeed, they
share two common vertices. The values of the matrix are the coefficients of a convex
combination (the barycentric interpolation) of the values of the discretized field at
each one of the three vertices. In Figure 5.2 we present the sparsity pattern of the
matrix AS A>

S which is the diagonal block of the spatio-temporal matrix A A> with
NT = 5, when the observation locations do not change with time.

5.1 Estimation of the parameters

The parameters of the SPDE are estimated using Maximum Likelihood. We collect
the parameters of the SPDE in the vector θ> = [κ, γ1, γ2, c, τ ], while all the parame-
ters of the statistical model are collected in ψ> = [θ>,b>, σ0]. Following (5.1), y1:NT

is a Gaussian vector with expectation η b and covariance matrix

Σy1:NT
= A> Q−1(θ) A +σ2

0 In,
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Figure 5.2: Left: spatial matrix AS A>
S (size (NS , NS) with NS = 52).

Right: spatio-temporal block-diagonal matrix A A> (size (NSNT , NSNT )
with NT = 5).

where Q(θ) is a precision matrix of size (NSNT , NSNT ) depending on the parameters
θ. For ease of notation, we use Q instead of Q(θ). The log-likelihood is equal to

L(ψ) = −n

2 log(2π) − 1
2 log|Σy1:NT

| − 1
2(y1:NT

−η b)> Σ−1
y1:NT

(y1:NT
−η b). (5.2)

We use the Broyden, Fletcher, Goldfarb, and Shanno optimization algorithm (No-
cedal and Wright, 2006), that makes use of the first and second-order derivatives of
the objective function. The gradients of the log-likelihood function (5.2) with respect
to the different parameters included in ψ are approximated with finite differences. We
now propose a computationally efficient formulation of each term of the log-likelihood
(5.2).

Proposition 5.1. In the framework outlined above, we have

log|Σy1:NT
| = n log σ2

0 − log|Q| + log|Q +σ−2
0 A A>|. (5.3)

Proof. To compute log|Σy1:NT
|, let us consider the augmented matrix

Σc =

 Q−1 Q−1 A
A> Q−1 Σy1:NT

 . (5.4)

Hence,

Qc = Σ−1
c =

(
Q +σ−2

0 A A> −σ−2
0 A

−σ−2
0 A> σ−2

0 I

)
. (5.5)

Using block formulas, we have

log|Σc| = − log|Qc| = − log|Q| + n log σ2
0,
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and

log|Σc| = log|Σy1:NT
| + log|Q−1 − Q−1 A Σ−1

y1:NT
A> Q−1|

= log|Σy1:NT
| − log|Q +σ−2

0 A A>|,

where the last equality is a consequence of the Woodbury identity. This leads to the
result.

Proposition 5.2. The term log|Q| in Equation (5.3) can be computed with the
computationally efficient formula

log|Q| = log|Σ−1| + (NT − 1) log|F−1|, (5.6)

where Σ−1 is the precision matrix of the spatial trace x(1) at the first time step, and

F−1 = c

τ̃2dt
(M +dt

c
(K + B + S))> M−1 QS M−1(M +dt

c
(K + B + S)),

where QS is the precision matrix of the discretized spatial noise ZS defined in Propo-
sition 3.1.

Proof. Following Powell (2011), let NN = [Ni j]Ni,j=1 be a (nN, nN) matrix, which is
partitioned into N blocks, each of size (n, n). Then the determinant of NN is

|NN | =
N∏

k=1
|α(N−k)

kk |,

where α(k) is defined by

α
(0)
ij = Nij

α
(k+1)
ij = α

(k)
ij − α

(k)
i,N−k(α(k)

N−k,N−k)−1α
(k)
N−k,j , k ≥ 1.

Q is a block-matrix organized as NN . Hence, the formula for |Q| is

|Q| = |Σ−1||F−1|N−1. (5.7)

Applying the logarithm, we obtain Equation (5.6).

Remark 5.1.1. Note that F−1 is a (NS , NS) sparse, symmetric and positive definite
matrix. The computation of its determinant can be obtained by Cholesky decompo-
sition of F−1.

We here report how the log-determinant of a matrix N is computed by Cholesky
decomposition. We have

log|N| = log|Nchol N>
chol| = 2 log

(
n∏

i=1
Nchol,ii

)
= 2

n∑
i=1

log(Nchol,ii),
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since Nchol is a triangular matrix, whose determinant is the product of the diagonal
elements.

The term log|Q +σ−2
0 A A>| requires a detailed analysis. The term σ−2

0 A A>

is an (NSNT , NSNT ) diagonal block matrix, whose (NS , NS) blocks are sparse (see
Figure 5.2). The computation of log|Q +σ−2

0 A A>| is not as straightforward as in the
case of log|Q|, because there is no way of reducing the computation to purely spatial
matrices. Depending on the sizeNSNT , we can either apply a Cholesky decomposition
of the (NSNT , NSNT ) matrix (Q +σ−2

0 A A>) or the matrix-free approach proposed
in Pereira et al. (2022), here sketched. The logarithm function is first approximated
by a Chebyschev polynomial P (·) (Chebyshev, 1853), then the Hutchinson’s estimator
(Hutchinson, 1990) is used to obtain a stochastic estimate of tr[P (Q +σ−2

0 A A>)].
The method is detailed in Section 5.2.

Concerning the computation of the quadratic term of the log-likelihood, we can
work with the more convenient expression obtained thanks to the Woodbury formula

Σ−1
y1:NT

= σ−2
0 In −σ−4

0 A>(Q +σ−2
0 A A>)−1 A .

Hence

(y1:NT
−η b)> Σ−1

y1:NT
(y1:NT

−η b) = σ−2
0 (y1:NT

−η b)> I(y1:NT
−η b)

− σ−4
0 (y1:NT

−η b)> A>(Q +σ−2
0 A A>)−1 A(y1:NT

−η b).

The second term can be computed either by Cholesky decomposition or using the Con-
jugate Gradient (CG) method, outlined in Section 5.2.1. This latter method solves
N v = w with respect to v and computes vsol = w> v, with N = (Q +σ−2

0 A A>)
and w = A(y1:NT

−η b). In this case, it is useful to find a good preconditioner for
the matrix (Q +σ−2

0 A A>) to ensure fast convergence of the CG method. We found
that a temporal block Gauss-Seidel preconditioner (Young, 1971, Chapter 3) was a
good choice in this case (see Section 5.2.2).

5.2 Matrix-free methods

In computational mathematics, a matrix-free method is an algorithm for solving
a linear system of equations that does not store the coefficient matrix explicitly,
but accesses the matrix by evaluating matrix-vector products. Such methods are
preferable when the system matrix is so large that storing and manipulating it would
cost too much of memory and computing time, even with the use of methods for
sparse matrices. Many iterative methods allow for a matrix-free implementation.

We will benefit from these methods for the computation of the terms of the log-
likelihood to obtain fast computations even for very large matrices Q, i.e., large
NSNT . Some implementation details are available in Appendix A.1.
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5.2.1 Conjugate Gradient method

Suppose we want to solve the system of linear equations

N x = b

for the vector x, where the known (n, n) matrix N is symmetric, positive-definite,
and real, and b is known as well. We denote the unique solution of this system by
x?. The Conjugate Gradient (CG) method (Hestenes and Stiefel, 1952) is an iterative
method that allows us to approximately solve systems where n is so large that the
direct method would take too much time. It is in this sense a matrix-free method.

The solution x? is the unique minimizer of the following quadratic function

f(x) = 1
2 x> N x − x> b, x ∈ Rn . (5.8)

The idea behind the CG method is to take the approximated solution xk at each
iteration k along always different search directions p0,p1, . . . ,pn−1. We take the
first basis vector p0 to be the negative of the gradient of f at x = x0, leading to
p0 = b − N x0, which is also equal to the residual r0 = b − N x0. The direction
at iteration k + 1 is constructed by conjugation of all the residuals ri = b − N xi

for i ≤ k. At each iteration, the residual rk is orthogonal to the previous search
directions, so it is guaranteed to produce a new, linearly independent search direction
unless the residual is zero, in which case the problem is solved. The conjugation
constraint is an orthonormal-type constraint, which makes the algorithm an example
of Gram-Schmidt orthonormalization. The number of iterations K can be either set
a priori or chosen by defining an error tolerance. The algorithm is detailed in 1.

Algorithm 1 Conjugate Gradient

Require: Matrix N ∈ Rn ×Rn. Vector b ∈ Rn.

Ensure: The approximated solution xK ≈ x of N x = b.

Set x0 = 0, r0 = b

Set p0 = r0

for k = 1, 2, . . . ,K do
Compute a step length αk = r>

k−1 rk−1

p>
k−1 N pk−1

Update the approximate solution xk = xk−1 +αk pk−1

Update the residual rk = rk−1 −αk N pk−1

Compute a gradient correction factor βk = r>
k rk

r>
k−1 rk−1

Set the new search direction pk = rk +βk pk−1

end for

The algorithm seems to require storage of all previous searching directions and



5.2. Matrix-free methods 63

residual vectors, as well as many matrix-vector multiplications, leading to expen-
sive computations. However, we can show that this is not true. We define Pk =
span{p0, . . .pk−1} the k-dimensional subspace spanned by the searching directions
until iteration k−1. Since the searching vectors are built from the residuals, the sub-
space Rk = span{r0, . . . rk−1} is equal to Pk. In fact, as each residual is orthogonal
to the previous search directions, it is also orthogonal to the previous residuals, i.e.,
r>

i rj = 0 for i 6= j. Recalling that pk belongs to Pk+1, this fact implies that each
new subspace Pk+1 is formed from the union of the previous subspace Pk and the
subspace N Pk. Hence,

Pk = span{p0,N p0,N2 p0, . . . ,Nk−1 p0}

= span{r0,N r0,N2 r0, . . . ,Nk−1 r0}

This subspace is a Krylov subspace, as it is created by repeatedly applying a
matrix to a vector, and it has a good property: since N Pk is included in Pk+1, the
fact that the next residual rk+1 has to be orthogonal to Pk+1 implies that rk+1 has
to be N-orthogonal to Pk. Gram-Schmidt conjugation becomes easy, because rk+1

is already N-orthogonal to all the previous search directions except pk. Hence, it is
no longer necessary to store old search vectors to ensure the N-orthogonality of new
search vectors. This feature is what makes CG a matrix-free approach, because both
the space complexity and time complexity per iteration are reduced from O(n2) to
O(m), where m is the number of nonzero entries of N.

The condition number of a problem measures how sensitive the answer is to
perturbations in the input data and to roundoff errors made during the solution
process (Demmel, 1987). A problem with a low condition number is said to be
well-conditioned, while a problem with a high condition number is said to be ill-
conditioned. The condition number with respect to inversion of a nonsingular square
matrix N is

κ(N) = ‖N‖
∥∥∥N−1

∥∥∥.
For a condition number κ(N), it turns out that the CG algorithm converges in
O(
√
κ(N)) iterations. However, in practice, the CG algorithm often converges faster

than predicted by this upper bound.

5.2.2 Gauss-Seidel preconditioner

The general concept behind a preconditioner is to reduce the condition number of
an ill-conditioned matrix to obtain less sensitive solutions to a linear system. Given
a linear system N x = b, we want to find the matrix PR and/or PL such that
the condition number of N P−1

R (right preconditioner) or P−1
L N (left preconditioner)

or P−1
L N P−1

R is lower than that of N, and that we can easily solve PL w = g or
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PR w = g for any g. If this matrix exists, then we can solve the systems

N P−1
R y = b, PR x = y (right preconditioner)

PL y = b, P−1
L N x = y (left preconditioner)

P−1
L N P−1

R y = P−1
L b, PR x = y (two-side preconditioner)

instead of N x = b.
Let us consider only the two-side preconditioner. The following reasoning can be

adapted easily to any other type of preconditioner, by setting PL = I for a right
preconditioner and PR = I for a left preconditioner. The preconditioned CG method
converges in O(

√
κ(P−1

L N P−1
R )). Since this condition number is lower than the

condition number of N, this implies fewer iterations to converge. However, each
iteration is more expensive, due to the extra cost of computing PR x = y or PL y = b.
This computation does not need to be explicit; it is only necessary to be able to
compute the effect of applying P−1 to a vector, i.e., it is matrix-free.

Intuitively, preconditioning is an attempt to stretch the quadratic form (5.8) to
make it appear more spherical, so that the eigenvalues are close to each other. The
best choice for a preconditioner would be of course PR = I and PL = N (or vice-
versa), since in this case the condition number of P−1

L N P−1
R would be equal to 1

and the quadratic form would be perfectly spherical; however, this does not make
life easier, because N is ill-conditioned and the solution of PL y = b would still be a
problem. The simplest preconditioner is a diagonal matrix D whose diagonal entries
are identical to those of N (i.e., PR = I and PL = D). The process of applying this
preconditioner, known as Jacobi preconditioning, is equivalent to scaling the quadratic
form along the coordinate axes (by comparison, the perfect preconditioner PL = N
scales the quadratic form along its eigenvector axes). A diagonal matrix is trivial to
invert, but is often only a mediocre preconditioner.

Another possibility is to use other iterative methods as preconditioners, such as
the Gauss-Seidel method or the SOR(ω) method (Successive over-relaxation) (Young,
1954).

A more elaborate preconditioner is the incomplete Cholesky preconditioning. In-
complete Cholesky factorization is a variant of the Cholesky decomposition in which
little or no fill is allowed; N is approximated by the product L̃L̃>, where L̃ might be
restricted to have the same pattern of nonzero elements as N; other elements of L are
thrown away. To use PL = L̃L̃> as a preconditioner, the solution to L̃L̃> y = b is
computed by backsubstitution, i.e., the inverse of L̃L̃> is never explicitly computed.
Unfortunately, incomplete Cholesky preconditioning is not always stable.

The preconditioner that we will use in this work is the Gauss-Seidel (GS) precon-
ditioner, whose matrix form is here detailed. Given the matrix N, we have

N = L? + D + U?,
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where D is the diagonal of N and L? and U? are the lower-triangular part and
upper-triangular part with zero on the diagonal, respectively. One iteration of the
GS method reads

xk+1 = xk −(L? + D)−1(N xk − b)

and we refer to the preconditioner PL = L? + D (and PR = I) as Gauss-Seidel
preconditioner. A good property of this preconditioner is that ρ(I −(L? + D)−1 N) <
1, where ρ is the spectral radius, i.e., for a positive definite matrix the GS method
always converges. The preconditioned Conjugate Gradient method is described in
Algorithm 2.

In the specific case of the precision matrix Q +σ−2
0 A A>, all the blocks on the

diagonal are equal (except the first and the last one), and the same occurs also
on the upper and lower diagonals. For this reason, the Gauss-Seidel preconditioner
PL can be divided in NT temporal blocks PL = [PL,1, . . . ,PL,NT

] with the follow-
ing properties. For the first time step, PL,1 = D1 = Q(1,1) +σ−2

0 AS A>
S , where

(1, 1) is the index of the temporal block in the matrix Q. For the time steps
i = 2, . . . , NT −1, PL,i = L?

i + Di = Q(i,i−1) + Q(i,i) +σ−2
0 AS A>

S , and the matri-
ces Ni are equal for all i. Finally, for the last temporal step, PL,NT

= L?
NT

+ DNT
=

Q(NT ,NT −1) + Q(NT ,NT ) +σ−2
0 AS A>

S , which is different from the previous blocks.
This means that only a few number of spatial matrices must be stored and that
the computation of PL y = b can be obtained by computing PL,j yj = bj for each
temporal block j = 1, . . . , NT of the matrix and of the vectors, before reconstructing
the vector y by stacking all yj . This leads to NT sparse systems of size (NS , NS),
that can be solved with a LU decomposition (Turing, 1948) of the matrix PL,j , by
remarking that the matrix PL,j is not symmetric.

Algorithm 2 Preconditioned Conjugate Gradient

Require: Matrix N ∈ Rn ×Rn. Left preconditioner P ∈ Rn ×Rn. Vector b ∈ Rn.

Ensure: The approximated solution xK ≈ x of N x = b.

Set x0 = 0, r0 = b

Compute r̃0 s.t. P r̃0 = r0

Set p0 = r̃0

for k = 1, 2, . . . ,K do
Compute a step length αk = r>

k−1 r̃k−1

p>
k−1 N pk−1

(where P r̃k−1 = rk−1)
Update the approximate solution xk = xk−1 +αk pk−1

Update the residual rk = rk−1 −αk N pk−1

Solve P r̃k = rk

Compute a gradient correction factor βk = r>
k r̃k

r>
k−1 r̃k−1

(where P r̃k−1 = rk−1)
Set the new search direction pk = r̃k + βk pk−1 (where P r̃k = rk)

end for
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5.2.3 Chebyshev algorithm

Approximating a function applied to a matrix can be performed in three steps using
a Chebyshev algorithm (Fox and Parker, 1972; Higham, 2008). First, an interval
[a, b] that contains all the eigenvalues of the matrix is defined. Then a polynomial
approximation of the function over [a, b] is derived using Chebyshev sums (Chebyshev,
1853; Clenshaw, 1955). Finally, the matrix operation is applied to this polynomial
instead of the original function, using an iterative method that only involves matrix-
vector products. The first step is done by considering the following property for
symmetric matrices.

Theorem 5.1. (Gerschgorin circle theorem (Gerschgorin, 1931)) Any eigenvalue λ
of a symmetric matrix N ∈ Rn ×Rn satisfies

λ ∈
⋃

i∈[1:n]
[Nii − ri, Nii + ri] ,

where ri =
∑

i 6=j |Nij |. Hence, all the eigenvalues of N are contained in the interval

[
min

i∈[1,n]
(Nii − ri), max

i∈[1,n]
(Nii + ri)

]
, i ∈ [1, n], j ∈ [1, n].

If N is positive (semi)definite, then a = 0 is a lower bound of its eigenval-
ues. Consequently, the interval for the eigenvalues of Q +σ−2

0 A A> can be taken
as
[
0,maxi∈[1,n]

∑n
j=1|(Q +σ−2

0 A A>)ij |
]

(if the diagonal elements of Q +σ−2
0 A A>

are non-negative). A different lower bound must be found for the functions that are
not defined at 0, such as the logarithm. In our case, we will set a lower bound close to
0, i.e., a = 0.001. For all the tests where we could compute the eigenvalues directly,
this bound was found to be adapted.

The second step, consisting in finding a polynomial approximation of the function,
is obtained by computing the Chebyshev sum of the function. The Chebyshev poly-
nomials of the first kind are a set of orthogonal polynomials defined as the solutions
to the Chebyshev differential equation and denoted Tn(x). They are obtained from
the recurrence relation

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x) − Tn−1(x).

(5.9)

The Chebyshev polynomials are important in approximation theory because the
roots of Tn(x), which are also called Chebyshev nodes, are used as matching points for
optimizing polynomial interpolation. The resulting interpolation polynomial provides
an approximation that is close to the best polynomial approximation to a continuous
function under the maximum norm.
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The last step of the algorithm is outlined in Algorithm 3. This approach can
be considered as a matrix-free algorithm. Indeed, it does not actually require the
operator N to be stored in memory. Rather, it relies only on the product between
the operator and vectors. This property is clearly desirable in a context where the size
of the vectors and matrices may be so large that any gain in memory is appreciated.

Algorithm 3 Chebyshev algorithm

Require: Matrix N ∈ Rn ×Rn. Vector x ∈ Rn. A set of Chebyshev coefficients
c0, . . . , cm ∈ R for the function h(N).

Ensure: The product y = Ph(N) x =
(

1
2c0T0(N) +

∑m
k=1 ckTk(N)

)
x, approxima-

tion of h(N) x.

Set u(−2) = u(−1) = u = y = 0
P = 2

a−b N − b+a
b−a I

Set u(−2) = x

Set u(−1) = P x

Set y = 1
2 u(−2) +c1 u(−1)

for k = 2, . . . ,m do

u = P u(−1) − u(−2)

y = y +ck u

u(−2) = u(−1)

u = u(−1)

end for

This algorithm is used to approximately compute log
(
Q +σ−2

0 A A>
)
. In fact,

log
(
Q +σ−2

0 A A>
)

needs to be computed by spectral decomposition of Q +σ−2
0 A A> =

U> Λ U, which is computationally expensive for large matrices. We know that
f(Q +σ−2

0 A A>) = U> f(Λ) U, but, when f is a polynomial such that f(x) =
P (x) =

∑p
i=1 aix

i, the function applied to the matrix Q +σ−2
0 A A> becomes

P (Q +σ−2
0 A A>) =

p∑
i=1

ai(Q +σ−2
0 A A>)i.

For this reason, it is useful to approximate the function f(·) = log(·) by a polynomial
P on an interval that contains all the eigenvalues {λi}NSNT

i=1 of Q +σ−2
0 A A>. The

chosen interval [a, b] must be positive. More details are available in Pereira and
Desassis (2019).

5.2.4 Hutchinson’s estimator

The Hutchinson’s estimator is an unbiased estimator for the trace of a matrix (Hutchin-
son, 1990). Consider the term tr(N). This can be approximated with the Hutchinson’s
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estimator as
tr (N) ≈ 1

m

m∑
j=1

z>
j N zj , (5.10)

where zj is a vector of independent Gaussian random elements or zj = 2I(u > 0.5)−1
for u ∼ U(0, 1) such that zj is a vector of independent random elements -1 or 1 of
equal probability (the Rademacher distribution). The approximation gets better
as m increases, but even a few number of terms in the sum allows finding a good
approximation of the trace.

This result implies that we do not have to compute the eigenvalues of the matrix
N when it is computationally demanding, but we can only use matrix-vector multi-
plication between N and the vectors zj . In our case, this approximation is used to
approximately compute tr[P (Q +σ−2

0 A A>)].

5.3 Prediction by Kriging

Under a Gaussian assumption, optimal prediction is the conditional expectation, also
known in the geostatistics literature as kriging. We detail here two prediction settings:
space-time interpolation and temporal extrapolation.

In the space-time interpolation setting, the spatio-temporal vector x1:NT
is pre-

dicted on the entire spatial mesh during the time window [1, T ], i.e. on T ′, using
the data y1:NT

defined in Equation (5.1). The kriging predictor is directly read from
Equation (5.5):

x?
1:NT

= E(x1:NT
| y1:NT

) = σ−2
0 (Q +σ−2

0 A A>)−1 A(y1:NT
−ηb̂). (5.11)

The computation of (5.11) requires the resolution of a system with matrix (Q +σ−2
0 A A>),

as detailed in Section 5.1. The conditional variance, also called kriging variance, is

Var(x1:NT
|y1:NT

) = (Q +σ−2
0 A A>)−1.

The computation of the diagonal of an inverse matrix is not straightforward when
only the Cholesky decomposition of the matrix is available. Among the existing meth-
ods there is the Takahashi recursive algorithm described in Takahashi et al. (1973)
and Erisman and Tinney (1975). Another way of computing the kriging variance is
through conditional simulations, as detailed in Section 5.4.

In the temporal extrapolation setting, the vector x(NT +1) is predicted at time step
(NT + 1) on T using all the data available until time T , i.e. from y1:NT

. Following
Equation (3.20), we have

x(NT +1) = D x(NT ) + E z(NT +1), (5.12)
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where z(NT +1) is a standardized Gaussian vector. The kriging predictor x?(NT +1) is

x?(NT +1) = E(x(NT +1) | y1:NT
) = DE(x(NT ) | y1:NT

) = D x?(NT ), (5.13)

where x?(NT ) is extracted from x?
1:NT

. The same procedure can be iterated to predict
x at further time steps.

5.4 Conditional simulations

To perform a conditional simulation, we use the conditional kriging paradigm pre-
sented below. This approach relies on the fact that kriging predictors and kriging
residuals are uncorrelated (independent under Gaussian assumption, see Chilès and
Delfiner (1999, Chapter 7)). First, a non-conditional simulation x(NC)

1:NT
is performed

on the spatio-temporal grid T ′. From this simulation, kriging residuals

r1:NT
= E

(
x1:NT

| A> x(NC)
1:NT

)
− x(NC)

1:NT

are computed over the entire spatio-temporal grid T ′. The conditional expectation
is computed using the method presented in the previous section. In a second step,
these independently generated residuals are added to the usual kriging of the data to
get the conditional simulation

x(C)
1:NT

= x∗
1:NT

+ r1:NT
.

Conditional simulations at further time steps are obtained by iteratively comput-
ing x(C)

NT +k using the propagation equation (5.12) with k ≥ 1. Multiple independent
realizations of conditional simulations can then be used to compute approximate
conditional variances or other quantities, such as probability maps of threshold ex-
ceedance.

5.5 Simulation study

Several tests will be carried out to validate the estimation technique with both meth-
ods (Cholesky and matrix-free).

We report here some results regarding the estimation of the parameters θ> =
[κ, γ1, γ2, c, τ ] for a spatio-temporal model simulated with the SPDE (2.27). We set
H = I, α = 1 and αS = 2. The spatial domain is the [0, 30]2 square with a grid
triangulation of NS = 900 spatial points. The time window is [1, 10] with unit time
step and NT = 10. The nS = 100 observations are randomly located into the spatial
domain and their position do not change during the NT time steps (hence n = 1000).
Since the sizes of both the dataset and the spatio-temporal mesh are reasonable, we
report the estimations computed with both the Cholesky decomposition approach
and the matrix-free approach.
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As initial values, we use estimated values obtained from the variograms of the
spatial and temporal traces of the process. Specifically, the initial value for κ is the
estimated scale parameter of a Matérn covariance function with smoothness param-
eter ν = α + αS − 1 = 2 considering independent temporal repetitions, the initial
value for c is deduced from the estimated parameter of nS independent repetitions of
AR(1) processes of length NT and τ2 is computed from Equation (2.29) with σ2 being
the empirical variance computed on the data. Finally, the initial value for γ is the
null vector. The parameters for the matrix-free approach are set to the following: the
order of the Chebychev polynomial to approximate the logarithm is set to 30 and the
number of terms in the sum of the Hutchinson’s estimator is set to 10. The results
are reported in Table 5.1. They show that all parameters are accurately estimated
with both the approaches. In almost all cases, the true value of the parameter is
within the mean ± 2 standard deviations interval. We remark how the matrix-free
approach takes more time to estimate the parameters. This is due to the iterative
computations, that increase the computational time. However, we know that the
benefit of the matrix-free approach is the possibility of applying it to much larger
spatio-temporal meshes, where the Cholesky decomposition cannot be applied at all.

method κ γ1 γ2 c τ average time (s)

correct 0.5 2 2 1 1
Cholesky 0.610 (0.047) 2.354 (0.515) 2.325 (0.421) 1.037 (0.218) 1.072 (0.040) 194

Matrix-free 0.483 (0.029) 1.904 (0.178) 1.906 (0.147) 1.027 (0.046) 0.998 (0.024) 960

correct 0.7 1 -1 2 0.5
Cholesky 0.695 (0.067) 1.056 (0.659) -1.134 (0.631) 2.090 (0.352) 0.503 (0.022) 172

Matrix-free 0.669 (0.052) 0.967 (0.123) -1.164 (0.142) 1.954 (0.118) 0.485 (0.013) 863

Table 5.1: Mean (and standard deviation) of ML estimates θ̂
>

=
[κ̂, γ̂1, γ̂2, ĉ, τ̂ ] over 50 simulations for two different subsets of advection-
diffusion model parameters and two different estimation approaches

(Cholesky decomposition and matrix-free approach).
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Chapter 6

Applications

Résumé
Dans ce chapitre nous présentons une application de la méthode aux EDPS

d’advection-diffusion détaillée dans les chapitres précedents pour la prédiction spatio-
temporelle à court terme de données de radiation solaire et de vitesse de vent. Nous
montrons la flexibilité de la méthode et son interprétation statistique et physique.

6.1 Spatio-temporal statistics for environmental data

Environmental data are usually characterized by spatial, temporal, and spatio-temporal
correlations. Capturing these dependencies is extremely important to model the un-
derlying phenomena precisely. We propose to apply the SPDE methodological frame-
work developed in the previous chapters to predict a spatio-temporal field on a fine
mesh using spatially irregularly spatial data measured at regular time steps. Our ap-
proach should be able to reduce the computational demand of geostatistical methods
without giving up a precise description of the spatio-temporal dependencies.

We will consider two different datasets: first, a solar radiation dataset of few
spatial data (99 stations) sparse over a pretty small region (160 km2) measured every
minute; then, a wind speed dataset of 53333 spatial data measured every hour coming
from a numerical simulation over the entire territory of Saudi Arabia (2.15 million
km2). In both cases, the objective is the short-term forecast at 1,2 and 3 time steps
ahead on a fine spatial grid.

6.2 Application to a solar radiation dataset

The approach detailed in the previous chapters is now applied to a solar radiation
dataset for which experts agree on the presence of advection due to Western prevailing
winds transporting clouds from one side of the domain to the other. The HOPE
campaign (Macke et al., 2017) recorded Global Horizontal Irradiance (GHI) (also
called SSI, Surface Solar Irradiance) over a 10 × 16 km2 region in West Germany
near the city of Jülich from April 2 to July 2, 2013. The sensors were located at 99
stations located as pictured in Figure 6.1 and GHI was recorded every 15 seconds. A
detailed description of the campaign can be found in Macke et al. (2017).
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Figure 6.1: Stations capturing GHI over the spatial domain.

Figure 6.2: GHI G and Clear Sky Index Kc for 4 different stations on
May 28, 2013.

The dataset was cleaned for outlying values and non-operating sensors, and the
temporal resolution was reduced from 15 seconds to 1 minute. Figure 6.2 (left panel)
shows GHI as a function of time (in minute, during a full day – May 28, 2013) at 4
different stations. These stations, represented in color in Figure 6.1, are located at the
border of the domain, far from each other. The GHI starts close to 0, increases after
sunrise, peaks at midday and tends to 0 at sunset. The maximal theoretical amount of
irradiance reaching the sensor follows an ideal concave curve. The divergence between
the measured irradiance and the optimal curve can be slight or important, depending
on the presence of clouds. One can see on this example that the evolution among the
4 stations is similar, with variations accounting for spatio-temporal variations of the
clouds.

A first preprocessing was made in order to stationarize the phenomenon, in collab-
oration with researchers from the OIE Center of Mines Paris, who made the datasets
and their preprocessing codes available for our work.

Oumbe et al. (2014) showed that the solar irradiance at ground level, GHI (de-
noted G for short from now on), computed by a radiative transfer model can be
approximated by the product of the irradiance under clear atmosphere (called Clear
Sky GHI, or Gc) and a modification factor due to cloud properties and ground albedo
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Figure 6.3: Histogram of Kc over 20 time steps.

only (Clear Sky Index, or Kc, Beyer et al. (1996)):

G ' GcKc. (6.1)

The error made using this approximation depends mostly on the solar zenith angle,
the ground albedo and the cloud optical depth. In most cases, the maximum errors
(95th percentile) on global and direct surface irradiances are less than 15 Wm−2 and
less than 2 to 5 % in relative value, as recommended by the World Meteorological
Organization for high-quality measurements of the solar irradiance (Oumbe et al.,
2014). Practically, it means that a model for fast calculation of surface solar irradiance
may be separated into two distinct and independent models: a deterministic model
for G, under clear-sky conditions, as computed according to Gschwind et al. (2019),
considered as known in this study, and a model for Kc, which accounts for cloud
influence on the downwelling radiation and is expected to change in time and space.
Kc is modeled as a random spatio-temporal process and will be the subject of our
analysis. Figure 6.2 (right panel) shows the variable Kc corresponding to the variable
G shown on the left panel. In general, Kc lies between 0 and 1, but in rare occasions,
values above 1 can be observed. This phenomenon is called overshooting (Schade
et al., 2007) and is due to light reflection by surrounding clouds.

A time window of 20 minutes around 4 p.m. on May 28, 2013 is extracted with
observations every minute at the 73 stations with well recorded values. Parameters
are estimated on this 20-minute window using the method described in Section 5.1.
The spatio-temporal grid contains NT = 20 one-minute time steps, from t = 1 to
t = 20 and NS = 900 regular spatial mesh points.

6.2.1 Estimation and prediction

Six different models are fitted to the data and used for prediction: 3 models with
advection (called “adv-diff”) and 3 models without advection (called “diff”) obtained
by setting γ = 0. Both groups contain the three following sub-models: (i) a model
with diffusion included only in the stochastic forcing term, with a Matérn spatial trace
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with ν = 1; (ii) a nonseparable model whose spatial trace has no known closed form
expression for the covariance function (the closed form exists only if α + αS > d/2,
where d = 2 in this case, see Proposition 2.1); (iii) a nonseparable model with a
Matérn spatial trace with ν = 2. In the general model of Equation (2.27) they
correspond respectively to (α, αS) = (0, 2), (1, 0), (1, 2). The parameters of the SPDE
are estimated for each model separately. The results are reported in Table 6.1.

The log-likelihoods of the models that include advection are within a range of
variations of 10 log-likelihood units and are between 34 and 80 units larger than those
with diffusion only. As a point of comparison, if all spatio-temporal dependencies were
ignored, the BIC penalization for the advection parameters would be 2 ln(1460) '
14.5. These results indicate strong evidence in favor of models with advection, but
no significant differences among them. The parameters vary substantially from one
model to the other, but it must be remembered that, when considered independently,
their physical interpretation is model dependent. Some combinations are interpretable
however. For example, following Proposition 2.1, the overall variance is equal to
(8π)−1τ2κ−2 (or (8π)−1τ2κ−2|I +h‖γ‖−1 γ γ>|−1/2 in the stabilized case) when αtot =
α + αS = 2 and it is equal to (16π)−1τ2κ−4 (or (16π)−1τ2κ−4|I +h‖γ‖−1 γ γ>|−1/2)
when αtot = 3. Accordingly, the estimated standard deviations for models (1), (3), (4)
and (6) are equal to 0.160, 0.119, 0.174 and 0.199 respectively, with the experimental
standard deviation being equal to 0.184. The advection-diffusion models (1) and (3)
are advection-dominated, hence the formula for the variance is the stabilized one. For
the same models, the practical ranges computed as

√
8ν/κ (Lindgren et al., 2011) are

equal to 1.915, 3.079, 2.281 and 4.255 respectively. Notice that among pairs of models
that differ by the presence or absence of advection, the estimated range is larger for
those without advection in an attempt to account for the larger correlation distance
due to transport.

Model α αS log-likelihood κ̂ γ̂1 γ̂2 ĉ τ̂ σ̂0 b̂

(1) adv-diff 0 2 2587 1.477 9.642 -5.382 11.659 2.254 0.052 0.570
(2) adv-diff 1 0 2577 0.237 4.718 -0.928 9.315 0.458 0.045 0.598
(3) adv-diff 1 2 2579 1.299 17.325 -8.442 41.017 3.072 0.058 0.574
(4) diff 0 2 2507 1.240 0 0 12.558 1.081 0.059 0.569
(5) diff 1 0 2545 0.246 0 0 6.594 0.436 0.047 0.577
(6) diff 1 2 2512 0.940 0 0 34.607 1.248 0.064 0.580

Table 6.1: Estimated parameters and log-likelihood for 6 different models
from all data on a 20-minute window.

We then perform prediction with two different validation settings containing 80%
of conditioning data and 20% of validation data. In the first case (called “Uniform”)
the validation locations are uniformly randomly selected. In the second case (called
“South-East”) the validation locations are located downwind (i.e. South-East) with
respect to the estimated advection direction. See Figure 6.4 for a representation of
the validation settings.

Recall that a time window containing 20 time-steps, from T = 1 to T = 20,
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Figure 6.4: Validation settings: Uniform (left) and South-East (right).

has been selected. For each validation setting and from T = 11 to T = 20, three
prediction configurations using conditioning data from time (T−9) to T are computed
and compared to the real values, allowing us to compute a Root Mean Square Error
(RMSE) validation score. First, the kriging is performed spatially only (hereafter
referred to as “S” kriging). Second, a temporal extrapolation is computed at the
conditioning locations at time horizons (T + 1), (T + 2) and (T + 3) (“T1”, “T2”,
“T3” kriging). Third, the spatio-temporal prediction is computed at the validation
locations at time horizons (T+1), (T+2) and (T+3) (“ST1”, “ST2”, “ST3” kriging).
We thus have a total of 6 models × 2 validation settings × 3 prediction configurations.
RMSEs are averaged over the 10 repetitions. Results are shown in Table 6.2.

For all tested validation settings and prediction configurations, the models with
advection show better RMSE scores than models without advection. This result
is a confirmation of the results already observed on log-likelihoods. Models with
advection have similar prediction scores in the prediction configurations S and T,
model (1) having slightly better performances in the configuration S. In the T and
ST configurations, models (2) and (3) have in general quite similar RMSEs, except
in the South-East setting with ST configuration where model (2) is clearly the best
model. In this case, prediction is made in a space-time domain lying downstream
with respect to the advection. It is thus expected that the model best representing
the underlying physics should lead to the best prediction performances.

An example of prediction maps on T at time horizons (T +1), (T +2) and (T +3)
is reported in Figure 6.5, along with the observed values (black contoured dots). The
white contoured dots are the locations used for validation in the Uniform setting.
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Figure 6.5: Predictions of Kc at (T + 1), (T + 2) and (T + 3) with model
(3) (“adv-diff” with α = 1 and αS = 2). The black contoured dots are
the conditioning locations and the white contoured dots are the validation

locations for the Uniform setting.

Figure 6.6: Real Kc, mean of conditional simulations of Kc and ±2σ
envelope at time horizons T, (T + 1), (T + 2), . . . , (T + 6). Left: orange

station. Right: green station.

6.2.2 Conditional simulations

Figure 6.6 shows 100 conditional simulations of Kc computed at time T = 11 and
horizons (T + 1), (T + 2), . . . , (T + 6) with the advection-diffusion model (3). Two
validation stations have been selected: one in the North-West part of the domain
(the orange star in the left panel of Figure 6.4) and one in the South-East part
of the domain (the green star in the right panel of Figure 6.4). Given that there
is an advection from North-West to South-East, it is therefore expected that the
advection-diffusion model should be able to transport the information. The mean of
the 100 simulations and the envelopes corresponding to twice the pointwise standard
deviation have also been represented, along with the true values. As expected, most
of the conditional simulations lie within the envelopes in both cases and at all time
horizons. The remarkable result is that the variance of the conditional simulations at
the green station is smaller than that at the orange one at every time step, especially
when the time horizon increases. This is due to the advection term in model (3), able
to propagate information from North-West to South-East.
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Uniform

Model α αS S (min,max)

(1) adv-diff 0 2 0.088 (0.052,0.127)
(2) adv-diff 1 0 0.103 (0.064,0.142)
(3) adv-diff 1 2 0.102 (0.062,0.134)
(4) diff 0 2 0.119 (0.074,0.140)
(5) diff 1 0 0.094 (0.060,0.131)
(6) diff 1 2 0.110 (0.066,0.132)

Model α αS T1 (min,max) T2 (min,max) T3 (min,max)

(1) adv-diff 0 2 0.095 (0.067,0.120) 0.146 (0.111,0.186) 0.181 (0.131,0.236)
(2) adv-diff 1 0 0.071 (0.046,0.090) 0.093 (0.054,0.124) 0.102 (0.060,0.143)
(3) adv-diff 1 2 0.072 (0.046,0.093) 0.095 (0.054,0.127) 0.104 (0.055,0.144)
(4) diff 0 2 0.094 (0.058,0.123) 0.137 (0.091,0.181) 0.166 (0.102,0.231)
(5) diff 1 0 0.079 (0.058,0.098) 0.108 (0.082,0.135) 0.124 (0.099,0.158)
(6) diff 1 2 0.083 (0.054,0.108) 0.110 (0.077,0.149) 0.125 (0.085,0.180)

Model α αS ST1 (min,max) ST2 (min,max) ST3 (min,max)

(1) adv-diff 0 2 0.105 (0.067,0.144) 0.147 (0.106,0.193) 0.179 (0.140,0.231)
(2) adv-diff 1 0 0.091 (0.052,0.131) 0.103 (0.062,0.161) 0.110 (0.071,0.165)
(3) adv-diff 1 2 0.085 (0.050,0.127) 0.094 (0.058,0.142) 0.100 (0.061,0.157)
(4) diff 0 2 0.123 (0.072,0.186) 0.150 (0.081,0.237) 0.170 (0.116,0.257)
(5) diff 1 0 0.104 (0.070,0.153) 0.122 (0.095,0.181) 0.131 (0.095,0.187)
(6) diff 1 2 0.108 (0.073,0.153) 0.126 (0.085,0.188) 0.134 (0.082,0.199)

South-East

Model α αS S (min,max)

(1) adv-diff 0 2 0.103 (0.051,0.138)
(2) adv-diff 1 0 0.105 (0.045,0.158)
(3) adv-diff 1 2 0.109 (0.054,0.149)
(4) diff 0 2 0.134 (0.092,0.181)
(5) diff 1 0 0.136 (0.067,0.187)
(6) diff 1 2 0.140 (0.085,0.192)

Model α αS T1 (min,max) T2 (min,max) T3 (min,max)

(1) adv-diff 0 2 0.095 (0.065,0.122) 0.142 (0.106,0.185) 0.172 (0.121,0.228)
(2) adv-diff 1 0 0.074 (0.045,0.099) 0.097 (0.065,0.128) 0.109 (0.069,0.148)
(3) adv-diff 1 2 0.074 (0.049,0.097) 0.096 (0.062,0.122) 0.106 (0.061,0.139)
(4) diff 0 2 0.090 (0.063,0.116) 0.128 (0.097,0.167) 0.154 (0.113,0.209)
(5) diff 1 0 0.081 (0.057,0.105) 0.111 (0.090,0.147) 0.128 (0.100,0.169)
(6) diff 1 2 0.084 (0.056,0.109) 0.109 (0.086,0.152) 0.123 (0.091,0.176)

Model α αS ST1 (min,max) ST2 (min,max) ST3 (min,max)

(1) adv-diff 0 2 0.102 (0.081,0.121) 0.158 (0.130,0.180) 0.210 (0.160,0.241)
(2) adv-diff 1 0 0.079 (0.044,0.119) 0.075 (0.039,0.127) 0.070 (0.038,0.132)
(3) adv-diff 1 2 0.090 (0.052,0.121) 0.099 (0.056,0.149) 0.109 (0.057,0.172)
(4) diff 0 2 0.128 (0.092,0.157) 0.165 (0.112,0.195) 0.199 (0.116,0.236)
(5) diff 1 0 0.107 (0.050,0.201) 0.100 (0.042,0.223) 0.094 (0.0380,0.217)
(6) diff 1 2 0.114 (0.060,0.204) 0.111 (0.058,0.229) 0.108 (0.059,0.223)

Table 6.2: Averaged RMSE computed at 10 successive time steps for
6 different models, 2 validation settings (Uniform and South-East) and 3
prediction configurations (S, T and ST); see text for details. In each case,

the best score among the models is in bold font.

6.2.3 Discussion

A reliable and fast short-term prediction of solar radiation is not only interesting for
environmental research, but also for the management of the electrical network in the
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context of the increase of renewable energies in the energy mix. The evolution of solar
radiation during a short period (from one minute to one hour) is essentially generated
by the movement of clouds on the considered spatial domain. This phenomenon is
governed by advection and diffusion processes. We therefore took this phenomenon
into account by our statistical approach based on physical SPDEs.

On the HOPE dataset, we have shown that the advection-diffusion model de-
veloped in the PhD presented better prediction performances compared to simpler
models, while remaining computationally fast. An in-depth analysis of the HOPE
solar radiation dataset, along with the OIE research team of Mines Paris, must be
undertaken. We conceive possible transformations of the dataset, which is not per-
fectly Gaussian, or modifications of our current approach, in order to adapt the
spatio-temporal SPDE approach to this specific dataset. This work will eventually
be left to a new PhD project.

6.3 Application to a wind speed dataset

The SPDE approach is now applied to a wind speed dataset, already analyzed by
means of several prediction techniques in Huang et al. (2022). The choice of this
dataset is due to a collaboration with Marc Genton and the Spatio-Temporal Statis-
tics and Data Science (STSDS) research group of the King Abdullah University
of Science and Technology (KAUST) during a 5-week-long scientific visit there in
October-November 2022.

The data are hourly high-resolution simulations from the Weather Research and
Forecasting model (WRF; Skamarock et al. (2008)) over the territory of Saudi Ara-
bia. WRF was simulated from 2013 to 2016 by Giani et al. (2020). The hourly wind
field on a 2.15 million km2 wide country is extremely difficult to model, due especially
to the nonlinear dynamics implied by the topographic characteristics of the spatial
domain (two coastal areas, mountain ranges and sandy and rocky deserts) and by the
massive amount of data in space and time. Standard statistical approaches such as the
autoregressive integrated moving average (ARIMA) model are effective in capturing a
short-range linear dependence; machine learning approaches, such as artificial neural
networks, are more adapted to capture nonlinear dynamics because of their flexibility
and the possibility of defining a recursive structure (recurrent neural networks, RNNs)
for temporal data. The downside of RNNs is that their inference is very challenging,
due to the high dimensionality of the parameter space and the impossibility to di-
rectly apply the iterative gradient computations of traditional neural networks. To
reduce the computational cost of the inference, Jaeger (2001) proposed the echo state
networks (ESNs), which is grounded on the use of sparse, random matrices instead
of the dense unknown ones of RNNs. In ESNs the inputs of the neural networks are
mapped to high-dimensional hidden states through fixed nonlinear dynamics. These
hidden states consider sequential linkages and thus allow for a nonlinear transforma-
tion of the input history. In order to reduce the spatial dimensionality of the ESNs
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by preserving the spatial variability, one could use a dimensionality reduction tech-
nique, such as the empirical orthogonal function (EOF) method (grounded on the
eigenvectors of the spatial covariance matrix of the space-time data) or the principal
component analysis (PCA). Another possibility to reduce the spatial dimension is
to consider only a small collection of knots and to recover the entire field by spatial
interpolation.

Huang et al. (2022) proposed a dimensionally reduced ESN model, describing the
dynamics of a spatial field through a set of knots, some of which are sampled on
a fix grid and others sampled in areas with complex patterns. The spatio-temporal
forecast was then obtained by using the ESN for temporal forecast and a spatial inter-
polation approach for spatial prediction. To reflect the spatially varying dependence
structure dictated by the different topographical features in Saudi Arabia, they used
a nonstationary Matérn covariance function (Paciorek and Schervish, 2006) fitted to
data with the R package convoSPAT (Risser and Calder, 2017).

The model was compared to other approaches, including ARIMA, EOF-based
ESN, Fixed Rank Kriging (FRK) (Cressie and Johannesson, 2008; Zammit-Mangion
and Cressie, 2021) and the persistence forecast, i.e., the field where the values at each
spatial location at 1,2 and 3 steps ahead are set to the last known values at the same
location. The ESN method proposed by Huang et al. (2022) was found to have the
best prediction score (MSE) among the analyzed methods at 2 and 3 steps ahead,
even though it takes into account only a subset of observations.

Here, we will apply the SPDE approach on a regular triangulation of NS = 402 =
1600 spatial knots by using the entire set of observations as known data. These are
nS = 53333 values. The predictions will be “short-term”, at 3 steps ahead, i.e., 3 hours
ahead. We do not pretend to obtain better performances than the ESN proposed by
Huang et al. (2022), since Huang et al. (2022) already proved that their deep learning
approach is capable of capturing the nonlinear temporal dynamics of the dataset.
We only want to illustrate how the spatio-temporal advection-diffusion SPDE model
works on an environmental dataset to point out the advantages and disadvantages of
the methodology. For this reason, and also for computational reasons, we will restrict
the temporal domain to a day, i.e., 24 temporal measurements (in particular, January
2, 2016).

We refer to Huang et al. (2022, Section 3) for the preprocessing of the dataset.
The dynamics of the square root of the wind speed is described in his deterministic
part by a harmonics depending on the spatial locations and in his random part by the
multiplication of a spatially varying scaling coefficient by a residual spatio-temporal
random field Y (s, t), which has unit variance at each location. The square root
applied to the wind speed transforms the right-skewed distribution of the wind speed
to normality (Gneiting, 2002). In this work we treat the spatio-temporal random field
Y (s, t) as defined in Equation (1.1) and apply the estimation and prediction approach
developed in Chapter 5.

In Figure 6.7 (left panel) we plot the entire set of observations over the spatial
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Figure 6.7: Left: spatial locations of WRF wind simulations over the
entire spatial domain. Right: topography of Saudi Arabia.

Figure 6.8: Wind residuals during January 2, 2016 at 6 different spatial
locations.

domain, where we pick 6 locations in different areas of the domain to assess the
behavior of the wind. The right panel shows the topography of Saudi Arabia. Figure
6.8 shows the wind residual at the 6 picked locations; we remark that the evolution
over 24 hours changes depending on the spatial location, with some similar behaviors
for stations not far from the west border of the country, i.e., the Red Sea coast
(stations 0 (blue), 5000 (green) and 15650 (red)). Figure 6.9 shows the evolution of
the wind residual over 24 hours during 4 following days for each of the 6 stations. It
is quite hard to define if some behaviors occur repetitively at each station. It seems
that station 15650 and station 35000 show a daily quasiperiodic behavior, with low
and high values of wind residuals approximately at the same hours of the day every
day. The other stations are much harder to analyze. It can be noted that when the
wind residual is at its highest in the south of Saudi Arabia (station 5000 on day 3),
it is not the case in the north of the country (station 50000 on day 3) and vice-versa.

6.3.1 Estimation and prediction

The parameters of the statistical model, including the parameters of the SPDE (2.27),
are estimated at each time steps from the known values at the spatial observations
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Figure 6.9: Wind residuals at 6 different spatial locations during January
1-4, 2016.

during the 5 hours before. The spatio-temporal predictions at 1,2 and 3 hours ahead
are then obtained by kriging and by application of three Euler steps, as described in
Section 5.3.

Different advection-diffusion SPDE models are tested and compared to the per-
sistence model (where y(T +3) = y(T +2) = y(T +1) = y(T )) and the FRK model pre-
dictions, obtained with the R package FRK. Fixed Rank Kriging (Cressie and Jo-
hannesson, 2008; Zammit-Mangion and Cressie, 2021) is a scalable spatio-temporal
modelling and prediction framework based on the use of a spatial random effects
(SRE) model, in which a zero-mean random process is decomposed using a linear
combination of spatio-temporal basis functions with random weights plus a term that
captures the random process fine-scale variations. The number of basis functions de-
fines the dimensionality reduction and the computational efficiency of the prediction.
This method results in a nonstationary spatio-temporal field, which is a good asset
with respect to the stationary SPDE model.

Table 6.3 reports the MSE of the different models. The results show a better
performance of all the SPDE models with respect to the persistence prediction for
2 and 3 hours ahead, and similar performances to FRK. The best SPDE model are
models (2) and (3), i.e., the advection-diffusion models that result in nonseparable
spatio-temporal fields.

Figure 6.10 shows the forecasted wind residuals at (T + 1), (T + 2) and (T + 3)
with model (3) and Figure 6.11 shows the difference between the MSE of model (3)
and the MSE of the persistence model. The main remark is that model (3) is not
good at predicting the value of the wind residual in a region in the South-West part
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of the country. This area is characterized by high mountains (see right panel of
Figure 6.7); this topographic feature results in a stronger wind with respect to other
regions, but the SPDE model, which is stationary, cannot really capture this behavior.
A nonstationary model would certainly have better predictive performances in this
specific area. We refer to Chapter 7 for some first results about the nonstationary
extension of the spatio-temporal SPDE approach.

We know that the SPDE model performance depends on the number of mesh
points used in the triangulation, and on their position. We thus perform a test with
a higher number of mesh points (NS = 502 and NS = 602), always on a regular
grid. We remark in Table 6.4 that the MSE decreases with the increase of NS and
we presume that the function is decreasing with the number of mesh points. Since
we know that the topographic features influence the spatial dependence structure, we
decide to test a custom-made mesh, made of NS = 3273, where the majority of the
points are located on the mountain areas of the map (see Figure 6.13). The results
of the estimation with this irregular mesh gives the best predictive results for (T + 1)
and (T + 2). This improvement can be observed especially in the mountain areas by
looking at the map of the difference between the MSEs of the SPDE model and the
persistence model in Figure 6.12. The yellow areas clearly visible in Figure 6.11 are
now much less evident.

Model α αS T+1 T+2 T+3

(1) adv-diff 0 2 0.312 0.526 0.738
(2) adv-diff 1 0 0.309 0.521 0.719
(3) adv-diff 1 2 0.311 0.519 0.724
(4) diff 0 2 0.312 0.533 0.749
(5) diff 1 0 0.310 0.528 0.738
(6) diff 1 2 0.314 0.528 0.734
(7) persistence 0.244 0.544 0.806
(8) FRK 0.420 0.546 0.696

Table 6.3: Average MSE at (T+1), (T+2), (T+3) from nS = 53333
observations during 24 hours. Persistence, FRK, and various SPDE models
(2.27) with different combinations of α and αS , with or without advection,

and NS = 402. The best score among the models is in bold font.

Model α αS NS T+1 T+2 T+3

adv-diff 1 2 402 0.311 0.519 0.724
adv-diff 1 2 502 0.293 0.512 0.723
adv-diff 1 2 602 0.281 0.507 0.721
adv-diff 1 2 3273 (custom-made) 0.256 0.506 0.732

Table 6.4: Average MSE at (T+1), (T+2), (T+3) from nS = 53333
observations during 24 hours. Advection-diffusion SPDE model (2.27) with
α = 1 and αS = 2, and NS = 402, NS = 502, NS = 602 and custom-made

mesh. The best score among the different meshes is in bold font.
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Figure 6.10: Predictions of W at (T +1), (T +2) and (T +3) with model
(3) (“adv-diff” with α = 1 and αS = 2).

Figure 6.11: Difference between MSE of model (3) (regular mesh with
NS = 900) and MSE of persistence model at (T + 1), (T + 2) and (T + 3).

Figure 6.12: Difference between MSE of model (3) (handmade mesh with
NS =) and MSE of persistence model at (T + 1), (T + 2) and (T + 3).

Figure 6.13: Handmade mesh to capture complex topographic areas (the
spatial domain is given in km× km).



84 Chapter 6. Applications

6.4 Concluding remarks

The amount of environmental data has recently dramatically increased, making clas-
sical geostatistical approaches to fail in most cases (see the “big n problem”, Section
1.4).

On the one hand, the generality of the SPDE approach we propose, and its adapt-
ability to large datasets, favors its application to a wide class of environmental and
geoscience data (wind, fine particle concentration, water resources, etc.). We pointed
out the advantages of this method in terms of estimation and predictive performances
on two different environmental datasets.

On the other hand, there have been several attempts to apply deep learning tech-
niques to environmental problems. In the specific case of wind forecasting (Section
6.3), the predictive approach based on echo state networks proposed by Huang et al.
(2022) seems to obtain better forecast performances. This is due especially to the fact
that the complexity of the dataset resides mainly in the temporal dynamics, that deep
neural networks usually capture well, and in the nonstationary spatial dependence
structure, that the current advection-diffusion SPDE model cannot reproduce.

When using deep learning techniques, researchers have generally transposed meth-
ods from computer vision to environmental raster data, coming from satellites for
earth observation or from climate models outputs. Nevertheless, especially at the
local scales, it is preferable to work with direct ground measurements, i.e., on a set of
irregular points in space. Indeed, ground data are more precise than satellite data and
climate models output, generally with a higher temporal sampling frequency of the
phenomena under study and without missing data. The direct adaptation of models
coming from traditional deep learning is more complex in the case of spatio-temporal
data collected over sparsely distributed measurement stations, as it is the case of the
solar radiation dataset analyzed in Section 6.2.

The developments of the nonstationary SPDE approach (see Chapter 7) and of
computationally faster techniques for estimation and prediction will probably lead to
the possibility of applying the SPDE approach to more complex scenarios, both on the
already studied datasets and on new datasets. For example, the comparison between
the methods applied to the wind speed dataset would be more interesting when the
nonstationary behavior will be captured also by the SPDE approach. Indeed, the
SPDE approach should improve its predictive performances, especially in the areas
with complex topographic characteristics. This extension will be left for future work.
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Chapter 7

Generalization to nonstationary
fields

Résumé
Dans ce chapitre, nous proposons une généralisation du modèle d’EDPS spatio-

temporelle d’advection-diffusion pour les champs spatio-temporels non stationnaires.
Nous passons d’abord en revue les techniques les plus utilisées pour traiter les non
stationnarités en statistiques spatiales et proposons ensuite une manière d’étendre
notre cadre méthodologique pour la simulation, l’estimation et la prédiction d’EDPS
avec des paramètres variant dans l’espace et/ou dans le temps. Ce travail est encore
en cours.

We here sketch a possible generalization of the unsteady advection-diffusion SPDE
model to nonstationary spatio-temporal fields. We first review the most used tech-
niques to tackle nonstationarities in the spatial statistics community and then propose
a way of extending our methodological framework for simulation, estimation and pre-
diction of SPDEs with spatially and/or temporally varying parameters. This work is
still ongoing.

7.1 Nonstationarity: state of the art

In the nonstationary case, the covariance function can no longer be expressed as a
simple function of the distance between the points as in Equation (1.2). Instead,
it has an expression that depends on both the location and the relative position of
the considered pair of points. The first challenge that appears is to determine the
expression of this covariance function from the observed data. One of the ways to
tackle this problem is by imposing that the random field can be modeled in a way
that allows incorporating the prior structural information about the field. In general,
the different methods try to derive an expression of the covariance function for any
pairs of points in the domain. A detailed review of the methods used to model
nonstationary random fields is available in Fouedjio (2017). We here sketch the more
popular approaches in the case of a spatial field.
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7.1.1 Space deformation

An early approach is the deformation method (Sampson and Guttorp, 1992). A non-
stationary field observed on a spatial domain can be turned into a stationary one
after applying a (nonlinear) deformation to the domain. The problem is thus refor-
mulated in a stationary framework after deformation. The covariance function of the
nonstationary process is written as the composition of a stationary covariance model
with a deformation function. This approach has been further developed in Schmidt
and O’Hagan (2003), Schmidt et al. (2011), Bornn et al. (2012) and Fouedjio et al.
(2015). The characterization of the deformation function can be made through a set
of parametrized functions which are fitted to the data by minimizing an objective
function (Perrin and Senoussi, 2000). These approaches are computationally expen-
sive, which limit their applicability for large-scale datasets. Moreover, they do not
allow to easily take into account prior structural information about the nonstationar-
ity. Indeed, they all seek to directly characterize the overall deformation while only
considering the location and the value of the data points.

Zammit-Mangion et al. (2022) tackled the computational problem, by expressing
spatial processes with nonstationary and anisotropic covariance structure as ones that
have stationary and isotropic covariance structure on a warped spatial domain as in
Sampson and Guttorp (1992), but modeling the injective warping function through
a composition of multiple elemental injective functions in a deep-learning framework.
They employed approximate Bayesian methods to make inference with these models
using recent methodological and technological advances in deep learning and deep
Gaussian processes.

7.1.2 Convolution model

Another approach is the kernel convolution method (Higdon et al., 1999; Paciorek and
Schervish, 2006; Kleiber and Nychka, 2012; Fouedjio et al., 2016). The idea behind
the method is that a nonstationary field at a given point of the spatial domain can
be seen as the result of the spatial convolution over the domain of a deterministic
function, called kernel function, with a white noise. The kernel functions defining the
process covariance can easily be made spatially varying; they control the anisotropic
behavior of the process in a small neighborhood of each point. With this method,
even the smoothness of the spatial field can vary across space, which is not the case
for the space deformation approach. The downside of this framework is that only the
information of the anisotropy at each point is taken into account in their covariance,
and not the overall structure of the anisotropy, which in practice might influence the
covariance.
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7.1.3 Dimension expansion

Bornn et al. (2012) proposed a different idea to model nonstationarity which assumed
that the nonstationary process is a projection of a stationary process in higher di-
mensions. They justified their dimension augmentation procedure by stating that a
realization of a nonstationary Gaussian process in Rd may be interpreted as a real-
ization of a stationary field in Rd+p for p > 0 under appropriate moment constraints.

7.1.4 Computational complexity

All the methods mentioned above involve the covariances between any pair of lo-
cations. This means standard implementations are infeasible for large datasets. In
general, increasing the degree of flexibility in the covariance structure requires increas-
ing the number of parameters. The common isotropic Matérn covariance functions
are parametrized through 3 parameters: marginal variance, range, and smoothness.
Flexible models can have dozens or even hundreds of parameters. This implies that
the estimation of these parameters can be hard and computationally cumbersome.
There exist some ways to overcome these computational issues (Heaton et al., 2019).
An appealing way to reduce dimensionality is to describe the covariance structure
through covariates (Ingebrigtsen et al., 2014; Schmidt et al., 2011; Risser and Calder,
2017).

7.1.5 Spatio-temporal nonstationarity

Compared to the vast literature for modeling nonstationarity in space, nonstation-
arity in both space and time is studied much less extensively. Ma (2002) derived
nonstationary space-time covariance functions by applying a spatially and tempo-
rally varying kernel to stationary covariance functions. Garg et al. (2021) extended
the idea of convolution processes by Higdon et al. (1999) and Paciorek and Schervish
(2006) to model a nonstationary spatio-temporal Gaussian process. Set in a Bayesian
framework, Sigrist et al. (2012) proposed a dynamic nonstationary spatio-temporal
model for short term precipitation by linking the advection parameter, describing the
horizontal transport of rainfall, of the convolution kernel to an external wind vec-
tor, measured independently of precipitation. Huang and Hsu (2004) extended Wikle
and Cressie (1999) to develop a space-time Kalman filter where the spatio-temporal
covariance function depends on covariates. Shand and Li (2017) proposed modeling
nonstationarity in both space and time for a spatio-temporal process by applying the
dimension expansion technique described in Bornn et al. (2012). The computational
cost of all these methods remains the main problem.
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7.2 Nonstationarity in the unsteady advection-diffusion
SPDE

One of the main advantages of the SPDE approach is that it directly gives rise to com-
putationally efficient models and easily enables Gaussian random field models with
spatially and/or temporal varying parameters, by offering a framework where depen-
dence structures can be motivated from physical properties of the spatial process.
Lindgren et al. (2011) noted that the deformation method for nonstationary models
(Sampson and Guttorp, 1992) can be reformulated as a nonstationary SPDE in the
special case of deformations within a plane. However, for deformations into a higher
dimensional space the two approaches differ considerably. Since the nonstationary pa-
rameters control the local anisotropy, they must be defined on the discretization mesh.
From a technical point of view, having spatially and temporal dependent parameters
only changes the elements of the precision matrix of the Markov representation of the
Gaussian random field.

Ingebrigtsen et al. (2014) introduced a parametric model with explanatory vari-
ables in the parameters that define the SPDE model, which results in a nonstationary
spatial model. They used knowledge about the spatial process to parameterize the
nonstationary dependence structure, leading to a model that can be interpreted, and
they could speed up computations by sampling from the model with a fully Bayesian
inference thanks to the SPDE–GMRF–INLA link.

Pereira (2019) defined generalized Gaussian fields on Riemannian manifolds that
ally the ease of taking into account fields of local anisotropies (as the convolution
model by Paciorek and Schervish (2006)) to the definition of covariance functions
that assimilate them as a whole (as the space deformation model by Sampson and
Guttorp (1992)). Their approach allowed to easily take into account local anisotropies
in a global model of covariance. However, they lost the closed-form expression of the
covariance model, which can only be computed numerically.

Hu et al. (2022) introduced spatial nonstationarity as a SPDE governed by a
spatially varying metric tensor that is a combination of general functions and spatial
covariates though a function which is either linear or nonlinear (neural network).
Compared to a model with no covariate (Fuglstad and Castruccio, 2020), the function
allows to incorporate external information about the local variation not captured by
the large scale general basis functions.

Nonstationary fields can thus be defined by letting the parameters (κ2(s, t), τ(s, t),
c(s, t) and γ(s, t)) in the unsteady advection-diffusion SPDE (2.27) be space-time
dependent. This generalization implies only minimal changes to the method used in
the stationary case concerning the simulation, but needs more work when it must
be applied to inference and prediction. We can also incorporate models of spatially
varying anisotropy by replacing the Laplacian operator ∇·H ∇ with the more general
operator ∇ · H(s, t)∇, where H depends on space and/or time.
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The introduction of those nonstationarities in the simulation, inference and pre-
diction approaches is the next big target of this work. This generalization could be
useful for those phenomena where anisotropies are clearly present, for example for
wind velocity fields. We here consider only the spatial nonstationarity. Indeed, we
consider that the temporal nonstationarity can be removed by dividing the temporal
domain in short time windows, where all the parameters of the SPDE can be consid-
ered temporally invariant, leading to stationarity in time on the temporal subdomain.

7.2.1 Simulation

Including spatially varying parameters into the non-conditional simulation approach
detailed in Chapter 4 is quite straightforward. Since the simulation relies on the
FEM/FDM discretization of the spatio-temporal SPDE, if we consider that the pa-
rameters do not vary in space inside a single triangle of the triangulation, the nu-
merical solution of the SPDE is obtained with the same approach where the spatially
varying parameters possibly change from one triangle to the other, but are constant
on a single triangle. With any possible parameterization on the variables κ(s), γ(s),
τ(s) and H(s), it is sufficient to know their values on each triangle and use those in
the solution of the spatial sparse system (3.7).

Here we report two different examples of spatio-temporal fields simulated from the
SPDE with spatially varying parameters. We present a diffusion SPDE with varying
κ(s) and an advection-diffusion SPDE with varying γ(s). Both simulations show the
nonstationary pattern in the spatial field. In Figure 7.1 we plot the spatial trace of
the two spatio-temporal fields after 20 time steps of temporal simulation.

Figure 7.1: Nonstationary spatial trace given by spatially varying κ(s) =
s2/200 (left) and spatially varying γ(s) = [−0.5(s2 − 50), 0.5(s1 − 50)]>
(right). The other parameters are set to κ = 0.33, c = 1, τ = 1, dt = 1,

h = 1.
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7.2.2 Estimation

Introducing nonstationarity in the estimation technique needs to take into account
the more complex structures derived by the space-time varying parameters. Different
possible ways of including nonstationarities into the estimation technique can be en-
visaged, such as a parameterization of the parameters based on global basis functions
and on external covariates or a spatio-temporal moving neighborhood integrated into
an interpolation approach.

We here consider that the only spatially varying parameter in the advection-
diffusion SPDE (2.27) is the advection vector γ. This choice is made based on two
considerations: first, because the spatially varying diffusion has already been con-
sidered in several papers (Lindgren et al., 2011; Fuglstad et al., 2015; Berild and
Fuglstad, 2023); second, because we think that the advection field in environmental
datasets could be the main source of a nonstationary behavior. The complex behav-
iors of the advection field should be taken into account in the statistical model to
obtain better predictive performances.

As a first illustrative example, we assume that the advection field is a rotation
around a point on the spatial domain and parameterize the 2-dimension advection
vector as γ(s) = [−v1(s2 − x1), v2(s1 − x2)]>, where v1, v2, x1, x2 are 4 parameters
to estimate. v1 and v2 define the velocity of the rotation, while x1 and x2 define the
point (x1, x2) on the spatial domain around which the rotation occurs. After setting
the 4 parameters of the spatially varying advection vector and all the other constant
parameters of the SPDE, we simulate the spatio-temporal field solution to the SPDE
over the spatio-temporal domain [0, 30] × [0, 30] × [1, 10], with a triangulation of
NS = 302 spatial points and NT = 10 time steps. We pick nS = 300 spatial locations,
uniformly selected over the spatial domain and consider their values as known. We
then estimate the parameters of the model from these observations and report the
results of 10 different simulations in Table 7.1. We remark that the parameters are
pretty well estimated; only the parameter κ is slightly overestimated. This means
that the model is able to capture the rotational nonstationary dependence structure.

v1 v2 x1 x2 κ c τ avg time (s)

true 0.5 0.5 12 18 0.7 1.5 1
estimated 0.570 (0.057) 0.517 (0.072) 12.198 (0.534) 18.403 (0.688) 0.824 (0.060) 1.601 (0.160) 1.043 (0.036) 254

true -0.3 -0.3 15 15 0.5 2 1
estimated -0.323 (0.038) -0.311 (0.044) 14.942 (0.946) 15.386 (0.915) 0.695 (0.048) 2.139 (0.164) 1.031 (0.029) 257

Table 7.1: Mean (and standard deviation) of ML estimates θ̂
>

=
(κ̂, v̂1, v̂2, x̂1, x̂2, ĉ, τ̂) over 10 simulations for two different subsets of non-

stationary advection-diffusion model parameters (rotational advection).

However, it is not always possible to know a priori the structure of the nonsta-
tionarity, nor to parameterize it by a few parameters as in this case. If we do not
have any information about the form of the nonstationarity, we can parameterize the
space dependence of the velocity vector γ through a finite number of parameters by
using basis functions. Let g : R2 → R denote a generic function that we want to
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expand in a basis, and let p > 0 be the number of basis functions. We use basis
splines similarly to Fuglstad et al. (2015) and set

g(s) = f(s)>αg,

where αg ∈ Rp, and f(s) = (f1(s), . . . , fp(s))> is a p-dimensional vector with the basis
functions evaluated at location s. If the domain D is rectangular, we can construct a
basis as a tensor product of two one-dimensional B-splines. This means that p = m2,
where m > 0 is the number of basis functions used in each dimension. We use clamped
splines where the derivative is 0 at each boundary.

LetBx,i denote the i-th basis function of the second-order basis in the x-dimension,
and similarly By,j for the y-dimension. The resulting two-dimensional basis is then

fij(s) = Bx,i(s1)By,j(s2), s = (s1, s2)> ∈ D,

for all combinations i, j ∈ {1, . . . ,m}. This means that αg ∈ Rm2 , and m2 parameters
must be estimated for each of the arguments of the velocity vector γ.

We use m = 3, hence p = m2 = 9, for a total of 18 parameters for the two functions
γ1(·) and γ2(·). We use the same parameters of the second rotation example, obtain a
simulation with rotational advection field and estimate the parameters of the model
(the constant ones and the p = 18 parameters of the B-splines basis functions) from
nS = 300 observations. The constant parameters are well estimated. In Figure 7.2
we plot the two-dimensional basis made of 3 clamped B-splines on each axis on the
spatial domain [0, 30] × [0, 30]. The elements γ1(s) and γ2(s) of the advection vector
are represented on this basis. To determine if the advection field is well estimated, we
plot the advection field recovered from the estimation with B-splines and compare it
to the original one in Figure 7.3. We remark that the rotation is well retrieved, even
if the center point and the intensity are slightly different.

Figure 7.2: 2D clamped B-splines basis in which are represented the
spatially varying parameters γ1(s) and γ2(s).
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Figure 7.3: Rotational advection field. Top row: simulated field (γ(s) =
[0.3(s2 − 15),−0.3(s1 − 15)]>). Bottom row: estimated field with parame-

terization based on B-splines.

7.3 Concluding remarks

Letting the spatial and spatio-temporal models be more flexible through nonstation-
ary covariance functions is vital to be able to describe complex dependence structures.
This flexibility can be obtained in the SPDE approach by making the parameters of
the equation to be spatially and/or temporally varying. This extension is easily in-
troduced in the simulation of SPDE models, but needs more work when it comes to
estimation of the parameters. We have proposed two different ways to estimate a
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spatially varying advection vector: first, a parameterization of the vector based on
prior information about the structure of the nonstationarity, then a global parameter-
ization based on a basis made of clamped B-splines over the two-dimensional domain.
In both case, the spatial field of the advection vector is well captured by the esti-
mation technique. However, both parameterization are based on a small number of
parameters (4 and 18 respectively). The implementation details of the nonstationary
extension are available in Appendix A.1.

As the number of parameters to be estimated increases with the complexity of
the spatial nonstationarity, the likelihood maximization becomes harder. Moreover, in
our specific case, the gradients of the log-likelihood are obtained by finite differences.
This computation is cumbersome for numerous parameters. A solution would be to
compute the analytical gradients of the log-likelihood, as sketched briefly in Appendix
A.2.

Another possible approach to deal with spatially and/or temporally varying pa-
rameters is to use neural networks for parameter estimation. This kind of estimation
approach has already been proposed by Zammit-Mangion et al. (2022).

More work is needed to obtain proper results about the estimation of nonstation-
ary fields in the SPDE approach, and to determine if the extension to nonstationary
fields is interesting for prediction performances on environmental datasets as the ones
we have considered in this thesis. However, the promising results we have shown tell
us that we are going in the right direction.
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Chapter 8

Other contributions

Résumé
Dans ce chapitre nous présentons deux autres contributions de la thèse. Tout

d’abord, nous présentons la généralisation entièrement non séparable de la classe
de Gneiting des fonctions de covariance spatio-temporelles multivariées. Nous dis-
cutons de la précision de l’inférence et de la prédiction du modèle proposé sur un
ensemble de données météorologiques trivariées, en la comparant à un modèle plus
parcimonieux. Le principal atout de l’approche proposée est la possibilité d’obtenir
des modèles entièrement non séparables dans un cadre multivarié. Ensuite, nous
présentons des méthodes d’estimation et de prédiction approchées pour les données
spatiales et spatio-temporelles, motivées par l’objectif de trouver le bon compromis
entre la capacité prédictive et la complexité de calcul pour les grands jeux de données
spatiales et spatio-temporelles. Certaines de ces méthodes se sont avérées efficaces
pour l’estimation des paramètres et la prédiction dans le contexte de la “Compétition
de statistique spatiale pour les grands jeux de données” organisée par la King Abdullah
University of Science and Technology (KAUST) en 2021 et 2022.

In this chapter, we present two other contributions made as a PhD student. First,
we present the fully nonseparable generalization of the Gneiting class of multivariate
space-time covariance functions (Allard et al., 2022). We discuss the fitting and pre-
dictive scores of the proposed model on a weather trivariate dataset, by comparing it
to a more parsimonious model. The main potential of the proposed approach is the
possibility to obtain entirely nonseparable models in a multivariate setting. Then,
we present some methods for approximate estimation and prediction for spatial and
spatio-temporal data, motivated by the objective of reaching a trade-off between sta-
tistical efficiency and computational complexity for large spatial and spatio-temporal
datasets. Some of these methods proved to be effective for parameter estimation and
prediction in the context of the “Spatial Statistics Competition for Large Datasets”
organized by the King Abdullah University of Science and Technology (KAUST) in
2021 and 2022.
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8.1 Fully nonseparable Gneiting covariance functions for
multivariate space-time data

In this section, we report the main points of the paper Allard et al. (2022) co-authored
with Denis Allard and Xavier Emery during my PhD, and available as Supplementary
Material in S.1. We broaden the well-known Gneiting class of space-time covariance
functions by introducing a very general parametric class of fully nonseparable direct
and cross-covariance functions for multivariate random fields, where each component
has a spatial covariance function from the Matérn family with its own smoothness
and scale parameters and, unlike all currently available models, its own correlation
function in time. The application of the proposed model is illustrated on a weather
trivariate dataset over France. Our new model yields better fitting and better pre-
dictive scores compared to a more parsimonious model with common temporal cor-
relation function. In particular, I participated in the construction of the estimation
technique, in the coding of the application of the proposed approach to real data, in
the general discussions with the co-authors and in the final editing of the paper.

8.1.1 Introduction and background material

An increasing amount of multivariate data indexed by Euclidean space-time coor-
dinates are available in numerous scientific and engineering applications, including
atmospheric and environmental sciences, geosciences, as well as geological and min-
ing engineering. For statisticians analyzing these data, one of the key issues is to
model the space-time dependence structure not only for each variable separately, but
also across the variables. This requires versatile models that can account for different
scale and smoothness parameters for each variable, and yet whose parameters can be
accurately estimated. Bourotte et al. (2016) proposed valid multivariate space-time
classes based on Matérn and Cauchy spatial covariance functions, inspired by the
multivariate Matérn model in Gneiting et al. (2010) and Apanasovich et al. (2012).
For both classes, each variable has its own scale and own degree of smoothness in
space, while allowing for some degree of cross-correlation. However, in this construc-
tion, the marginal temporal correlation function is identical for all variables, which,
as discussed in Bourotte et al. (2016), was already seen as a restrictive assumption
because it was found that the time correlations of the three variables in the analyzed
dataset were different from one variable to the other. To account for different time
correlations, space-time linear models of coregionalizations can be proposed, as in
Rouhani and Wackernagel (1990), De Iaco et al. (2003), Choi et al. (2009) or Finazzi
et al. (2013). However, there are two major drawbacks to this construction. First,
the smoothness of any component of the multivariate field is restricted to that of
the roughest underlying univariate field (Gneiting et al., 2010). Second, the num-
ber of parameters to be estimated increases quickly as the number of components
of the model increases, thus raising issues of robustness and over-fitting. Gelfand
et al. (2005) Apanasovich and Genton (2010), Rodrigues and Diggle (2010), Ip and
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Li (2016) and Gelfand (2021) introduced Bayesian dynamic, latent dimension, convo-
lution and spectral approaches, respectively, to build valid matrix-valued space-time
covariance functions with entries that can have different smoothness parameters. Re-
cent comprehensive accounts of space-time univariate and multivariate covariance
modeling can be found in Chen et al. (2021) and in Porcu et al. (2021).

We consider a multivariate space-time random field X(s, t) = [Xi(s, t)]pi=1 defined
in Rd × R, where d is the space dimension and p the number of random field compo-
nents, each being real-valued. Without loss of generality, we assume that all random
field components are centered, i.e. E[Xi(s, t)] = 0 ∀(s, t) ∈ Rd × R, ∀i = 1, . . . , p. It
will also be assumed that the multivariate random field X(s, t) is second-order sta-
tionary, so that its covariance functions exist and depend only on the space-time lag
(h, u) ∈ Rd × R (Chilès and Delfiner, 1999):

Cij(h, u) = Cov(Xi(s, t), Xj(s + h, t+ u)), (8.1)

for any pair i, j = 1, . . . , p, ∀(s, s + h) ∈ Rd × Rd and ∀(t, t + u) ∈ R × R. The
functions Cij are called direct covariance functions when i = j and cross-covariance
functions otherwise. The matrix-valued covariance function C, which associates each
space-time lag (h, u) with the (p, p) matrix C(h, u) = [Cij(h, u)]pi,j=1, is positive
semidefinite in Rd × R.

The separability and nonseparability concepts were defined in Section 1.2 for
each Cij(h, u) such that i = j. The separability functions (see Equation (1.3))
are sii(h, u), for all i = 1, . . . , p. A matrix-valued space–time covariance func-
tion is said to be a proportional model when it is obtained as the product of a
(p, p) covariance matrix R and a univariate space–time correlation function ρ, i.e.
C(h, u) = R ρ(h, u), ∀(h, u) ∈ Rd×R. It is proportional-in-time if CT (u) = R ρT (u)
and proportional-in-space if CS(h) = R ρS(h), ∀(h, u) ∈ Rd × R. Bourotte et al.
(2016) proposed nonproportional matrix-valued space-time covariance functions in
which the purely spatial part is a nonproportional model but the purely temporal
part is a proportional model, i.e., the model is proportional-in-time but not in space.

Instead, we build valid and flexible parametric classes of matrix-valued space–time
covariance functions such that both the spatial and temporal components are nonpro-
portional. Such matrix-valued space-time covariances are referred to as being fully
nonseparable. The proposed class of multivariate space-time covariance functions with
Matérn spatial traces is of the form

Cij(h, u) = σij(u)M(h; rij(u), νij(u)), (h, u) ∈ Rd × R, i, j = 1, . . . , p, (8.2)

where M(·; r, ν) denotes the univariate Matérn covariance function with scale and
smoothness parameters r and ν, i.e., M(h; r, ν) = CM

ν (r‖h‖) , where CM is the unit
variance and scale Matérn covariance function defined in (2.5). In order to build
multivariate models that are neither proportional in space nor in time, an essential
building block is to define admissible and relevant temporal matrix-valued covariances
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of the form [(γij(u) + 1)−d/2]pi,j=1.

8.1.2 A general fully nonseparable Gneiting-Matérn class

Consider a p-variate temporal random field X(t) = [Xi(t)]pi=1, t ∈ R. Under the
assumption that the direct and cross-increments are jointly stationary, the matrix-
valued pseudo-variogram η = [ηij ]pi,j=1 is defined as (Papritz et al., 1993)

ηij(u) = 1
2Var

[
Xi(t+ u) −Xj(t)

]
, (8.3)

for all t, u ∈ R and any pair i, j = 1, . . . , p. Notice that the pseudo-variogram has
nonnegative entries and is not necessarily an even function. For any i = 1, . . . , p,
ηii (direct variogram of Xi) is a conditionally negative semidefinite function (ηii �c

0), i.e., such that
∑p

i=1
∑p

j=1 ωi ωj ηij ≤ 0, ∀ω1, . . . , ωp ∈ R such that
∑p

i=1 ωi = 0
(Chilès and Delfiner, 1999). Necessary and sufficient conditions for a matrix-valued
function to be a pseudo-variogram are provided in Dörr and Schlather (2021).

Theorem 8.1. Let ν, b2 and a2 be (p, p) symmetric conditionally negative semidefi-
nite matrices, all with positive entries, such that a2 −ν �c 0. Let u 7→ ρ(u) be a (p, p)
matrix-valued covariance function on R and let u 7→ η(u) be a (p, p) matrix-valued
pseudo-variogram on R. Denoting R(u) = [rij(u)]pi,j=1 and σ(u) = [σij(u)]pi,j=1, the
matrix-valued function C : (h, u) 7→ [Cij(h, u)]pi,j=1 with

Cij(h, u) = σij(u) M(h; rij(u), νij), (h, u) ∈ Rd × R,

is positive semidefinite in Rd × R for

R(u) =
√
αη(u) + a2

βη(u) + b2 and σ(u) = ρ(u)Γ(ν) exp(ν)

(αη(u) + a2)ν
(
βη(u) + b2

)d/2 , (8.4)

where α and β are nonnegative.

Corollary 8.1. Let ν, b2, a2, η, α and β be as in Theorem 8.1. Let τ be a (p, p)
symmetric real matrix. The matrix-valued function C : (h, u) 7→ [Cij(h, u)]pi,j=1 with

Cij(h, u) = τij

(βηij(u) + b2
ij)d/2(αηij(u) + a2

ij)νij
M

h;

√√√√αηij(u) + a2
ij

βηij(u) + b2
ij

, νij

 , (8.5)

is positive semidefinite in Rd × R if the matrix τe−ν/Γ(ν) is positive semidefinite.

We refer to Allard et al. (2022) for a proof and more mathematical details. The
matrix-valued space-time covariance function (8.5) is of Gneiting-Matérn type. When
α = 0, accounting for the fact that exp(−ν) is positive semidefinite, the models in
(8.4) and (8.5) generalize the Gneiting-Matérn model (Bourotte et al., 2016)

CM
ij (h, u) = σiσjρij

(γ(u) + 1)d/2 M
(

h; rij

(γ(u) + 1)1/2 , νij

)
, (h, u) ∈ Rd × R. (8.6)
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If, furthermore, the direct variograms ηii are increasing functions for i = 1, . . . , p,
the scale parameters rii(u) = aii(βηii(u) + b2

ii)−1/2 decrease as u increases. The
space-time direct correlations are thus higher than what would happen for a sepa-
rable space-time covariance function, i.e., they are positively nonseparable. When
β = 0 and under the same monotonicity assumption for the direct variograms, the
scale parameters rii(u) =

√
αηii(u) + a2

ii/bii increase with u. This a very original fea-
ture, since for all Gneiting-type spatio-temporal models of our knowledge, the scale
parameter decreases with u. Applying the same reasoning as above, the resulting
space-time direct covariances are thus negatively nonseparable. When α and β are
both positive, the model is positively or negatively space-time nonseparable, depend-
ing on the relative values of the other parameters involved in R(u). However, in the
common case where ηij(u) → ∞ as u → ∞, R(u) asymptotically tends to a matrix
with all elements equal to

√
α/β. The space-time covariance is thus asymptotically

separable as |u| → ∞.

8.1.3 Application to a weather dataset

Data and parameterization

We now illustrate the model presented in Section 8.1.2 on a weather dataset consisting
of three daily variables (solar radiation R, temperature T, and humidity H) recorded
at 13 stations in Western France from 2003 to 2012. We shall compare a specific fully
nonseparable multivariate model (FULL), as proposed in (8.5), to a Proportional-In-
time (PIT) model as in (8.6). Both models will be applied to residuals, after centering
in time and space, in order to filter out any seasonal and regional effect. For each
of the three variables, the separability index S(h, u) = C(h, u)C(0, 0) −CS(h)CT (u)
was computed. Empirical covariances were derived from the space-time empirical
variograms computed with the function EVariogram from the package GeoModels
(Padoan and Bevilacqua, 2015), using spatial bins of 50 m. Since the variograms have
been computed on residuals, C(0, 0) = 1 and the separability index must be in the
interval [−1, 1], with S(h, u) = 0 indicating separability of C(h, u). These analyses
showed clearly that the residuals are uniformly positively space-time nonseparable for
| h | ≤ 500 m and u ≤ 3, which is actually often the case for climate variables. The
parameter α in (8.5) is thus set to α = 0. For identifiability reasons, we further set
β = 1 and b2

ij = 1 −R0
ij with maxi{Rii(0)} < 1.

The pseudo-variogram η needs to be specified. For the unbounded part common
to all components, we choose γ0(u) = (1 + |cu|2a)b − 1, u ∈ R, with c > 0, 0 < a ≤ 1
and 0 ≤ b ≤ 1, for ease of comparison with Bourotte et al. (2016). This variogram
is reminiscent of the generalized Cauchy covariance model that will also be used for
R: Rij(u) = AiAj(1 + |ru|2λ)−b, u ∈ R, with r > 0, 0 < λ < 1 and 0 ≤ Ai < 1
for i = 1, . . . , p, and where for the sake of parsimony the parameter b is set identical
to the parameter b in γ0. In this parameterization, the space–time nonseparability
parameter b acts both inside and outside the Matérn function M, implying a constant
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perfect correlation in time if b = 0. Following Gneiting (2002) and Bourotte et al.
(2016), a reparameterization is thus useful. Multiplying the above equation by the
temporal covariance function ρ̃ij(u) =

[
(1 + c|u|2a)δ −AiAj(1 + r|u|2λ)−δ

]−1
with

0 ≤ δ ≤ 1 leads to the parametric family that will be used in the rest of this section.
The parameterization is further simplified by setting τii = σ2

i a
2νii
ii (1 − A2

i )2 and, for
i 6= j, τij = ρij

√
τiiτjj , with [ρij ]i,j=1,...,p being a correlation matrix. With this

parameterization, the matrix τ is positive semidefinite by construction. Finally, the
model reads

Cij(h, u) = 1
(1 + |cu|2a)δ −AiAj(1 + |ru|2λ)−δ

ρija
−2νij

ij
√
τiiτjj

(1 + |cu|2a)b −AiAj(1 + |ru|2λ)−b

× M
(

h; aij

[(1 + |cu|2a)b −AiAj(1 + |ru|2λ)−b]1/2 , νij

)
, (8.7)

with (h, u) ∈ Rd × R and i, j = 1, . . . , p. The model in (8.7) provides interpretable
parameters for a fully nonseparable Gneiting-Matérn model.

Estimation

Composite likelihood methods have proven efficient in the context of spatio-temporal
data, with less time-consuming steps and good asymptotic properties (Bevilacqua
et al., 2012). Pairwise Likelihood (PL) is the product of marginal Gaussian likelihoods
computed on all pairs {Zi(sα, tα), Zj(sβ, tβ)} such that | sα − sβ | ≤ dm and |tα −
tβ| ≤ tm, where i, j = 1, . . . , p and α, β = 1, . . . , N . The data analyzed here are
standardized residuals after centering for spatial and temporal trends. We thus set
σi = 1, for i = 1, . . . , p. There is a total of p(p + 2) + 6 parameters to estimate,
where p is the number of variables. Here p = 3, leading to a total of 21 parameters.
PL was maximized sequentially in subspaces of the parameter space corresponding to
blocks of related parameters, while keeping all other parameters fixed to the values
previously attained. Finally b̂ is the value of b among {0, 0.1, . . . , 0.9, 1} corresponding
to the highest maximized PL. To perform the maximization in the subspaces of the
parameter space, we used the package nlminb implemented in R with lower and upper
bounds for the parameters when mathematically necessary.

All 13 stations were used to estimate the parameters of both the FULL and PIT
models. Figure 8.1(left) shows the maximum log-PL as a function of the separa-
bility parameter b for the fully nonseparable Gneiting-Matérn model, referred to as
FULL. The maximum is reached for b̂ = 0.1 with log PLFULL(θ̂b=0.1) = −933 337.6.
For comparison purpose, PL was also maximized for the PIT model, i.e. when
a = 0. For this simpler model, log PLPIT(θ̂b) is monotonically decreasing from
−933 961.3 to −934 072.6 as b varies from 0 to 1. FL was also computed for these
two models (remember that FL is easy to compute but very long to optimize):
log FLFULL(θ̂b=0.1) = −2 652.7 and log FLPIT(θ̂b=0.1) = −2 819.1, indicating strong
evidence in favor of the more complex model, considering that the number of data
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is moderate with a total of 10 independent repetitions of 1209 correlated data. As a
point of comparison, the (BIC) penalization to the full likelihood of the more complex
model is equal to 2.5 ln(12090) ' 23.5.

Looking at the temporal marginals, the models show very different behaviors –
as we expected. Figure 8.1(right) displays the temporal empirical covariances for
variables R and H with their fitted models. Thanks to the flexibility of the FULL
model, the temporal covariance functions fit the empirical values for both variables. In
contrast, the unique covariance function of the PIT model lies somewhere between the
empirical covariances of the two variables, thus being unable to provide a satisfactory
fit to any of them. Table 8.1 reports the estimated parameters maximizing PL for both
models. It is interesting to note that the parameter λ is equal 0 in the FULL model,
thus implying a sort of temporal nugget effect, visible on the temporal covariances
in Figure 8.1(right). Figure 8.2 shows the spatial (at time lag u = 0) and spatio-
temporal covariances (at time lags u = 1, 2) for all variables and pairs of variables.
The empirical covariances between all pairs of stations and the FULL model with
estimated parameters from Table 8.1 are shown. Overall, the fit is good. On the
top left panel representing the covariance function for the variable R, the very high
smoothness of the covariance function near the origin is clearly visible.

Temporal parameters
c a r λ δ A1 A2 A3

FULL 0.528 0.993 0.341 0.0 1.000 0.871 0.608 0.646
PIT 4.31 0.997 N/A N/A 0.638 0 0 0

Spatial parameters
a1 a2 a3 ν1 ν2 ν3

FULL 15.8 10−3 6.4 10−3 12.4 10−3 3.76 0.69 0.51
PIT 18.9 10−3 8.2 10−3 17.0 10−3 1.61 0.71 0.53

Correlation parameters PL
ρ12 ρ13 ρ23

FULL −0.124 −0.330 −0.099 −933 337.6
PIT −0.151 −0.324 −0.103 −933 961.3

Table 8.1: PL parameter estimates for the weather dataset with dm =
250 km, tm = 2 days. FULL: fully nonseparable model as in (8.7) with
b = 0.1. PIT: simplified Proportional-In-Time model with b = 0. The

indices 1, 2 and 3 refer to R, T and H, respectively.

Prediction

We consider two different prediction settings. In the first setting, called Spatial In-
terpolation , prediction of the three variables at a validation station at day t is made
knowing the trivariate data at the 11 estimation stations at day t, t − 1 and t − 2.
In the second setting, called Temporal Prediction, prediction is made with data from
days t−1 and t−2 only at all 13 stations (estimation and validation stations). Other
settings, such as Spatio-temporal prediction (using data at 11 stations from days t−1
and t − 2 for predicting at the 2 validations stations at day t) is possible, but not
shown here because they are less common in practical situations. Predictions are
computed from January 3 to January 31. In the Gaussian framework, the conditional
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Figure 8.1: Left: PL as a function of the space-time separability pa-
rameter b. Right: (R,H) temporal correlation functions. PIT model with
unique direct correlation (positive) and cross-correlation (negative) in dot-
ted lines. FULL model with direct correlation (positive) for R and H in
solid and dotdashed lines, respectively, and cross-correlation (negative) in

longdashed line. Squares: empirical correlations.

expectation is the best linear unbiased prediction, also called (co)kriging in the geo-
statistics literature, while the conditional covariance matrix is the covariance matrix
of the cokriging errors. The conditional variances are identical for all days, since the
configuration of the conditioning data remains identical. The two models (FULL and
PIT) are compared by means of the Root Mean Square Error (RMSE), the Mean
Absolute Error (MAE), the Continuous Ranked Probability Score (CRPS) and the
Logarithmic Score (LogS). Table 8.2 reports our results. As a benchmark, we also
report the scores obtained with a trivial prediction where all predicted values are set
to the expectation (equal to 0) and all variances to the theoretical variance (equal to
1).

RMSE MAE CRPS LogS
R T H R T H R T H R T H

Spatial interpolation
FULL 0.746 0.582 0.864 0.587 0.464 0.732 0.427 0.335 0.509 0.268 0.015 0.393
PIT 0.751 0.584 0.864 0.593 0.462 0.731 0.430 0.335 0.509 0.271 0.010 0.393

Temporal prediction
FULL 0.919 0.837 0.813 0.784 0.706 0.667 0.531 0.482 0.470 0.421 0.329 0.311
PIT 0.933 0.835 0.825 0.780 0.714 0.684 0.537 0.483 0.479 0.437 0.331 0.330

Trivial interpolation
0.933 0.893 0.919 0.801 0.777 0.782 0.540 0.521 0.538 0.439 0.403 0.443

Table 8.2: Prediction scores at the validation stations at day t, using ML
estimates. FULL: fully nonseparable model as in (8.7) with b = 0.1. PIT:
simplified Proportional-In-Time model with b = 0. The best scores among

FULL or PIT are shown in bold font.

For illustration purpose, Figure 8.3 shows the predictions of the three variables
from January 3 to January 31, 2003 at one station (Le Rheu) following the Spatial
Interpolation setting. The predicted residuals were back-transformed to the original
scales to be compared to the real values. An envelope of ±2 conditional standard
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Figure 8.2: Empirical and fitted spatial-temporal correlation at u = 0
(black solid lines and circles), u = 1 (blue dashed lines and squares) and

u = 2 (red dotdashed lines and triangles).

deviations was added to the plot.

8.1.4 Concluding remarks

We have proposed new parametric classes of matrix-valued covariance functions for
multivariate spatio-temporal random fields, where each component has its own smooth-
ness and scale parameter in space and its own correlation function in time. Our con-
structions generalize the Gneiting class of space-time covariance functions and are
fully nonseparable, in the sense that they are space-time nonseparable and that they
are neither proportional-in-space nor proportional-in-time. This is a major improve-
ment to most of the models proposed up to date (with the exceptions of the models
in Dörr and Schlather (2021) and Porcu et al. (2022)), where the marginal temporal
correlation function is identical for all the variables, which is overly restrictive. The
main ingredient for achieving this has been the use of pseudo-variograms, as multi-
variate analogous of Bernstein functions as pointed out by Dörr and Schlather (2021)
and Qadir and Sun (2022) in their discussion.

The main class proposed in Section 8.1.2 allows for a general behavior for the
spatial scale parameter as a function of the time lag u, depending on the values taken
by the parameters. It is well known that the Gneiting class of models is positively
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Figure 8.3: Predictions of R, T and H at Le Rheu from January 3 to
January 31, 2003 following the Spatial Interpolation setting. Predictions
(continuous line), real values (dots) and envelope of ±2 conditional stan-

dard deviations (colored ribbon).

nonseparable. A very original feature of our construction is that the models can
be negatively nonseparable or asymptotically separable as |u| → ∞. Since these
models are continuous over Rd ×R, their application is not limited to data organized
as regular records at measurement stations. More complex designs are in principle
possible, such as irregular or incomplete records, heterotopic designs or even mobile
measurement devices. We hope to see applications of our models to such datasets in
a near future.

From a statistical point of view, the main challenge is to find the right balance
between the flexibility of the model, which must be able to account for the com-
plex interactions between space and time across several variables, and the number of
parameters that should remain interpretable and not too numerous. More complex
models should only be preferred if supported by the data. The dataset analyzed in
this work is of moderate size with 10 independent repetitions of 13 × 31 = 403 space-
time trivariate data. Its analysis has shown that our model improves the fitting and
the predictive performances over the more parsimonious model in Bourotte et al.
(2016), in particular when the time dimension is important for prediction. In Section
8.1.3, it was shown that the maximum PL difference is around 600. Combined with
the improved prediction scores in time, this provides evidence in favor of our new
model for this dataset. The analysis of other datasets, in particular with more spatial
locations, is necessary for confirming this first result.
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Estimating the parameters of a parametric model such as the one in Section 8.1.3
is a challenge. Here, we have used Pairwise Likelihood because it was proven efficient
on the proportional-in-time model in Bourotte et al. (2016). It is however relatively
slow: reaching convergence with our optimization algorithm and the function nlmbinb
takes typically several hours on a recent laptop computer. There is thus certainly
room for improvement for an easier use of such complex models. At the cost of
even larger computing times, composite likelihood with larger sets of elements than
pairs and full likelihood might be interesting options for a more accurate estimation
of the parameters, considering the complex interactions between space, time and the
variables. Conducting a thorough comparison of several likelihood approaches was out
of the scope of this work and left for future research. In our opinion, more interesting
improvements can be expected by using Vecchia Gaussian process approximation
(Katzfuss and Guinness, 2021). We are looking forward to (multivariate) spatio-
temporal versions of the GpGp package.

All the models presented in this work can easily be generalized to Rd ×R`, where
` is an integer greater than one. Other constructions based on characterizations
established in Porcu et al. (2022) are also possible. Extensions of our models to
other spaces that are of interest in environmental sciences, atmospheric sciences and
geosciences, such as a sphere crossed with an Euclidean space (Sd × R`), are left to
further research.
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8.2 Spatial and spatio-temporal statistics for large datasets

In this section we discuss a project of my PhD related to the approximate approaches
for parameter estimation and prediction for spatial and spatio-temporal data. In
particular, we examine the participation of the RESSTE team in 2021 and 2022
to the “Spatial Statistics Competition for Large Datasets” organized by the King
Abdullah University of Science and Technology (KAUST) located in Thuwal, Saudi
Arabia. The RESSTE team was composed of 4 researchers from Mines Paris and
INRAE Avignon (Denis Allard, Thomas Romary, Thomas Opitz and myself). We
present the techniques and reasoning that led the team to rank in the first positions
in both the editions of the competition.

The interest in approximate approaches is also motivated by the other research
projects of the PhD, where those techniques were either part of the approach itself
(the GMRF approximation of the random fields solution to the SPDE, see Chapter
3) or were found to be necessary to reduce the computational cost of the maximum
likelihood (the pairwise likelihood used in Section 8.1).

8.2.1 State of the art

Most of the prediction approaches and estimation techniques for spatial and spatio-
temporal data that have been proposed in the last decade are motivated by reaching
a compromise between statistical efficiency and computational complexity (Porcu
et al., 2021). This is due to the fact that massive (and/or multivariate) data sets
are now available. The main estimation techniques for massive spatial datasets were
gathered and reviewed by Sun et al. (2012). They include, among others, covari-
ance matrix tapering, composite likelihoods, spectral techniques, and approximation
of the random field with a GMRF. Estimation methods for space(–time) covariances
for large data are conceptually similar to classical approaches, but they have to deal
with intractable computation of likelihoods. It is statistically difficult to decide which
method is the best, because approximating covariance functions with computationally
tractable ones is a form of deliberate misspecification of the true underlying covari-
ance structure. For example, in the covariance tapering framework (Furrer et al.,
2006; Kaufman et al., 2008), a direct product of the true covariance function and
a compactly supported correlation function is used. Composite likelihood methods
(Varin et al., 2011) are built on the consideration of the likelihood function as a prod-
uct of marginal or conditional densities. Low-rank approximation methods (Banerjee
et al., 2008; Cressie and Johannesson, 2008) project the entire random process to a
low-dimensional space and use the low-rank representation to approximate the orig-
inal process. Spectral methods rely on truncation of the spectral expansion, hence
on the loss of information on the geometric properties of the associated random field.
Finally, Markov random fields coupled with SPDEs (Lindgren et al., 2011; Rue et al.,
2009) approximate a continuous process with a process defined over a mesh for which
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the conditional distributions only depend on neighbors, leading to sparseness of the
precision matrix.

The Spatio-Temporal Statistics and Data Science (STSDS) department of KAUST
launched the first KAUST “Spatial Statistics Competition for Large Datasets” to the
international spatial statistics community in 2021, followed by the second and third
editions in 2022 and 2023. Several teams from all over the world participated in
the competition, 21 in 2021 and 14 in 2022. The STSDS team has been exploiting
the modern High-Performance Computing (HPC) systems to make large-scale exact
computation of likelihoods possible and to allow processing larger data sizes more
easily than before. They considered that the lack of large-scale exact computation
has led to an inefficient assessment of spatial modeling approximation methods in
the last decades. Indeed, on the one hand, every research group has used different
datasets to assess the proposed methods; on the other hand, the few comparative
studies have been limited to small and medium-sized datasets. Thus, they decided
to assess the methods developed worldwide based on generated synthetic datasets
and on the true and the exact estimated parameters, obtained with the ExaGeoStat
software they have been developing (Abdulah et al., 2018). This software can deal
with millions of locations, by relying on parallel linear algebra libraries to allow fast
and efficient computation of the log-likelihood function and by using modern runtime
systems to make the code portable on the different parallel architectures, including
GPUs. ExaGeoStat has been coupled with a rich class of covariance models to obtain
exact parameter estimation and predictions for large-scale spatial and spatio-temporal
data, see e.g. Salvaña and Genton (2021).

In the end, the goal of the competition was to achieve a comprehensive compar-
ison between as many different methods as possible for parameter estimation and
prediction on massive datasets.

8.2.2 2021 Edition

The 2021 edition of the “Spatial Statistics Competition for Large Datasets” featured
4 sub-competitions. The objective was to evaluate existing approximation methods
on large spatial datasets. A collection of large synthetic datasets (100K/1M data) was
generated from a set of real models using ExaGeoStat and each dataset was split into
training and validation sets. The selected models covered disparate spatial properties
to ensure a fair comparison between all competing methods. All the details on the
datasets and on the scoring rules, and the main methods used by the participants
are available in Huang et al. (2021). The RESSTE team was ranked first at 3 sub-
competitions out of the 4 proposed.

In sub-competitions 1a and 1b, 16 datasets of 100K data each were generated from
a Gaussian spatial field with a Matérn covariance function as defined in (8.2). The goal
was to estimate the parameters of the covariance function from 90K training data and
to make spatial predictions at 10K test locations. The four parameters determining
the covariance structure are the partial sill σ2, the range 1/r > 0, the smoothness

https://cemse.kaust.edu.sa/stsds/2021-kaust-competition-spatial-statistics-large-datasets
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ν > 0, and the nugget τ2. Different smoothness scenarios were considered, from
smooth to rough, and, by varying the range parameter, different resulting effective
range were proposed, for weak, medium, and strong dependence. The 16 datasets thus
covered a wide variety of covariance properties. The Mean Loss of Efficiency (MLOE)
and Mean Misspecification of the Mean Square Error (MMOM) were used to evaluate
the performances of the parameter estimation in the sub-competition 1a. MLOE
characterizes the average loss of prediction efficiency when the approximated model
is used for predictions instead of the true model. MMOM characterizes the average
misspecification of the mean square error when calculated under the approximated
model. RMSE was used to evaluate the prediction accuracy in the sub-competition
1b.

As RESSTE team, we opted here for block approaches, which satisfy the following
principles: (i) in each block, the estimation (by maximum likelihood) or the prediction
(by kriging) is optimal; (ii) the blocks should be as large as possible while taking into
account the computational problems; (iii) the blocks are assumed to be independent
to each other. The approximation lies entirely in (iii), and it is easy to understand
that (ii) is the key to success. We ranked first in the sub-competition 1b, related to
spatial prediction, and third in the parameter estimation of sub-competition 1a. An
approximation approach proposed by another team that gave good results in terms of
parameter estimation and spatial prediction was the Vecchia approximations method
detailed below. Generally, the parameter estimation was more difficult when the
process was smoother (higher smoothness parameter) and had stronger dependence
(higher effective range). Even if we did not find the best estimates of the parameters,
however our prediction approach gave better results than the other teams (even those
that ranked first and second in the sub-competition 1a) and than the exact kriging
obtained with ExaGeoStat without any approximation. One possible reason is that
the approximation of the other teams was inadequate in kriging, even though the
underlying model they used was more accurate. This implies that both the model
inference and the number of neighbors considered are important for local kriging
predictions.

The datasets for sub-competitions 2a and 2b were univariate non-Gaussian spatial
data on a unit square containing 100K and 1M observations respectively. Without
giving the information about the generating process to the participants in the compe-
tition, the data were generated by the Tukey g-and-h random fields (Xu and Genton,
2017), which generalize Gaussian random fields to account for skewness and heavy
tails. For a generated Gaussian field X(s), the Tukey g-and-h random process T (s)
is defined by marginal transformation at each location s as

T (s) = ξ + ω
egX(s) − 1

g

ehX2(s)

2 ,

where ξ and ω are the location and scale parameters, respectively, g controls the
skewness and h ≥ 0 determines the tail-heaviness. They chose two sets of values g and
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h to consider random processes with medium and strong departure from Gaussianity.
RMSE was used to evaluate the prediction accuracy in the sub-competitions 2a and
2b.

To process these data, we first considered several methods, either from more clas-
sical geostatistical analyses or from machine learning techniques. We recognized the
data distribution, as being generated by the Tukey g-and-h random fields. We thus
transformed the data into Gaussian data by estimating the parameters of the Tukey
g-and-h transformation and by using the inverse transform, we then estimated the
parameters of the Gaussian model and finally obtained the predictions by kriging
before transforming the data back with the direct transform. The estimation of the
parameters and the prediction were done with the R package GpGp which uses the
Vecchia approximations (Vecchia, 1988). The principle of these approximations is
similar to that implemented in the composite likelihood methods. The computa-
tions are based on the Cholesky factor of the inverse covariance matrix which can be
computed explicitly and is sparse by construction. They therefore allow numerically
efficient inference and prediction. The GpGp library provides an implementation of
the Vecchia approximation that uses an elaborate method for ordering and clustering
data into conditionally independent blocks (Guinness, 2018; Katzfuss et al., 2020).
We obtained the best predictive scores in both the sub-competitions 2a and 2b.

Full details on the methods that we used are provided in the Discussion on “Com-
petition on Spatial Statistics for Large Datasets” (Allard et al., 2021), available as
Supplementary Material in S.2.

8.2.3 2022 Edition

The 2022 edition of the “Spatial Statistics Competition for Large Datasets” featured
6 sub-competitions. The objective was to evaluate existing approximate prediction
methods on large univariate and multivariate spatial and spatio-temporal datasets.
A collection of large synthetic datasets (100K/1M data) was generated from a set of
real models (2 univariate models, 2 spatio-temporal models, 2 bivariate models) using
ExaGeoStat and each dataset was split into training and validation sets. The models
exhibited spatial nonstationarity. All the details on the datasets and on the scoring
rules, and the main methods used by the participants, are available in Abdulah et al.
(2022).

We already know that the computation of the log-likelihood is prohibitive for
large sample size NS of spatial data, as the complexity of computing the inverse
of the covariance matrix is O(N3

S) and requires O(N2
S) memory. This computation

becomes even more expensive when considering the multivariate and spatio-temporal
case because the sample size becomes pNSNT , where p is the number of spatial
variables and NT is the number of time points.

We participated in the sub-competitions 1a and 1b (univariate spatial data): we
used the R package GpGp described in the previous section for parameter estimation
and spatial prediction. We noted that the nonstationary structure changed from one

https://cemse.kaust.edu.sa/stsds/2022-kaust-competition-spatial-statistics-large-datasets
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area to the other in the spatial domain. We therefore decided to split the spatial do-
main with different splitting configurations and fit an isotropic or anisotropic Matérn
model for each considered region. The selection of the best splitting configuration
and the best Matérn model was made by cross-validation. The option with the lowest
mean square prediction error values was then finally chosen. The RESSTE team was
ranked first in the sub-competition 1a and third in the sub-competition 1b. The team
that obtained the best prediction accuracy in 1b adopted a deformation technique to
map the locations from the original space to a latent space depending on two variables
r = √

sx + sy and θ = tan−1
(√

sy/sx

)
, where the data were assumed to be station-

ary. The prediction was performed using a deep feed-forward neural network model
with two inputs (r and θ), four hidden layers, and one output (the objective function,
i.e., the mean square predictive error). They used the Adam optimizer (Kingma and
Ba, 2015) for the optimization of the objective function.

The spatio-temporal datasets of the sub-competition 2a and 2b were generated
with 1K and 10K locations, and 100 time-slots. The spatio-temporal models were
nonseparable, with different spatial and temporal dependencies. The teams were
asked to make predictions in three different scenarios of leaving out space-time points:
random spatial locations with all times left out (RS), random locations in space/time
left out (RST) and all spatial locations left out on the last 10 time coordinates (T10).

We first performed an exploratory data analysis step and found that the data were
generated from a positively non-separable space-time kernel. We then chose a covari-
ance function from the Gneiting class, with a Matérn spatial covariance and a Cauchy
temporal covariance. Due to the size of the given datasets, we used a block-composite
likelihood to estimate the spatial and temporal parameters separately. Then, we used
the estimated parameters to fit the space-time model and estimate the full set of pa-
rameters. To predict at the test locations we applied ordinary kriging conditioned
on a subset of nearest data points in space and 3 preceding, current, and 3 following
time-slots in time. We were ranked third in both the sub-competitions, but with a
RMSE quite lower than the first one. Our results were good for the first two predic-
tion scenarios (RS and RST), but not so good for the third scenario (T10). Indeed,
the third scenario could be considered more like a multivariate time series forecast,
where kriging is not necessarily the best prediction technique. The winning team, in
fact, proposed a deep neural network for spatio-temporal predictions, by using basis
functions to capture the spatio-temporal dependence. They used regression for the
spatial interpolation step and they trained a long-short term memory network for the
temporal forecast step. Their results for the first two predictive scenarios were worse
than ours, but the LSTM made their temporal forecasts much more precise.

8.2.4 Concluding remarks

For decades, the “big n problem” in spatial data has been an active research area due
to the challenges engendered by the real datasets, which often contain millions of ob-
servations, such as remote sensing data or numerical model outputs. Those datasets
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are sometimes multivariate and/or spatio-temporal and need efficient methods for
their prediction, both in the spatial interpolation and in the temporal forecasting
frameworks. The competitions proposed by KAUST in the last years are a great tool
to provide a unified framework for evaluating the performances of existing approxi-
mation methods and for suggesting future research paths. We appreciated the fact
that dozens of research teams participated worldwide, each one proposing different
techniques. Some of them proved to be great in some contexts and worse in others,
and all the pros and cons of each method are now comparable in terms of prediction
accuracy on the same synthetic datasets.

The computational time was never compared in the proposed competitions, be-
cause the execution time of each participating team on different machines was not
directly comparable. However, this matter should be taken into account to better
evaluate a given approach. In fact, often researchers and companies do not own ma-
chines that are able to treat massive datasets, or they do not want to use excessively
consuming techniques for sustainable reasons. Sometimes, as we have shown in the
previous sections, approximate methods have similar performances to exact methods
with a much lower computation cost, which is a great asset for a thoughtful research
tool.

The spatial and spatio-temporal models proposed in the first two editions of the
“Spatial Statistics Competition for Large Datasets” are only a small part of possible
and more challenging models. Assessing the results of the approximate methods
proposed worldwide on real environmental datasets, that show different behaviors
and dependence structures, could be a great tool to choose the best approach for
each peculiar type of data. Another option would be to choose a benchmark dataset
that at least presents a variety of issues that arise in practice. Another important
point to take into account is the experimental design: in both the competitions the
data were point data. It could be interesting to evaluate if the predictive performances
of the methods change in presence of gridded data or clustered data. The case of gap
filling, i.e., large areas with missing data, should also be considered.

This year, KAUST hosts a third competition that focuses on the construction of
confidence and prediction intervals, instead of point estimation and prediction. The
datasets were generated from stationary Gaussian random fields with an isotropic
Matérn covariance function, with designs of irregularly spaced locations. The team
RESSTE does not participate in the 2023 competition, but the results will certainly
be interesting to get useful insights on approximate methods on those datasets.

There is still room for improvement in spatial statistics to obtain more efficient
approximated methods for large spatial and spatio-temporal datasets, and this is a
significant goal for the research community.
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Chapter 9

Discussion and perspectives

Résumé
Dans ce dernier chapitre, nous resumons les résultats de la thèse en détaillant

les contributions principales. Ensuite, nous proposons des pistes de recherche futures
liées aux méthodes presentées.

9.1 Discussion

This dissertation explored some approaches to deal with spatio-temporal data in
environmental science. Here we make some concluding remarks on the proposed
approaches and propose interesting perspectives for future work.

The spatio-temporal SPDE approach based on unsteady advection-diffusion equa-
tions that we have proposed in Chapter 2 combines elements of physics, numerical
analysis and statistics. It can be seen as a first step toward physics-informed geo-
statistics, which introduces physical dynamics into a statistical model, accounting
for possible hidden structures governing the evolution of the spatio-temporal phe-
nomenon. The different terms of the SPDE (advection, diffusion) directly influence
the spatio-temporal dependencies of the process, by controlling its variability in space
and time. Compared to spatio-temporal models built on covariance functions such as
the Gneiting class (Gneiting, 2002), we gain in interpretability since the parameters
of the model can be linked to the physical coefficients of SPDEs.

In Chapter 3 we showed that it is possible to build an accurate space-time approx-
imation of the process driven by the advection-diffusion SPDE using a combination
of FEM in space and implicit Euler scheme in time. We dealt with the advection-
domination flow, by introducing a stabilization technique in the discretization ap-
proach. It leads to sparse structured linear systems. We obtained promising results
for the simulation (Chapter 4), the estimation and the prediction (Chapter 5) of pro-
cesses both in terms of precision and speed. When the size of the spatio-temporal
mesh is moderate, direct matrix implementation is possible. We showed how matrix-
free methods can be implemented in order to obtain scalable computations even for
very large meshes. The application to the solar radiation and to the wind speed
datasets (Chapter 6) demonstrated that the nonseparable advection-diffusion model
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exhibited the best prediction performances on phenomenona that are governed by
advection and diffusion processes.

The main results of these chapters are available in the arXiv paper Clarotto et al.
(2022).

One of the main advantages of the SPDE formulation is that it is easy to gen-
eralize it to nonstationary settings. Nonstationary fields can be defined by letting
the parameters of the advection-diffusion SPDE (κ(s, t), γ(s, t), etc.) be space-time-
dependent. This generalization implies only minimal changes to the method used
in the stationary case concerning non-conditional simulations, but needs more work
for estimation and prediction, since the maximum likelihood approach becomes much
more expensive. We can also incorporate models of spatially varying anisotropy by
modifying the general operator ∇ · H(s, t)∇ with a nonstationary anisotropic ma-
trix H(s, t). The introduction of nonstationarities could allow us to better describe
phenomena where local variations are clearly present, such as in the case of wind
speed on complex topographic regions (see Section 6.3.1). The generalization of the
approaches by Fuglstad et al. (2015) and Pereira et al. (2022) are being investigated
and generalized to the spatio-temporal framework. A first sketch of ongoing work
was presented in Chapter 7.

Further work is necessary to better assess the prediction accuracy and the compu-
tational complexity. Applications to larger and more complex datasets, in particular
using the matrix-free approach, will be considered. Comparison to models expressing
the advection in a Lagrangian framework (Ailliot et al., 2011; Benoit et al., 2018b;
Salvaña and Genton, 2021) should also be performed. A frequentist maximum like-
lihood was implemented. As a follow-up work, it would be interesting to implement
this space-time model as part of a Bayesian hierarchical construction, possibly within
the INLA/SPDE framework (Rue et al., 2009; Krainski et al., 2018).

The models and the methodological framework developed in this thesis were im-
plemented in Python by making use of the FEniCS library (Logg et al., 2012; Alnaes
et al., 2015) for the task of computing the FEM solution of (S)PDEs. The implemen-
tation details are available in Appendix A.1.

A short-term goal is to implement the methods in open-source softwares, in par-
ticular in the library gstlearn (Python, R, C++) developed by the Geostatistics
team of Mines Paris, where most of the building blocks of the proposed method are
already present, and in the library R-INLA (Lindgren and Rue, 2015). Some spatio-
temporal models, such as the DEMF model described in Section 2.2.8, are already
implemented in R-INLA; extending this class of models with the unsteady advection-
diffusion SPDE model would be interesting and would only require the coding of the
ingredients that make our model different from DEMF (such as the FEM advection
matrix, the stabilization, etc.). Linking our model to the INLA framework would
benefit from all the tools already available in the library, such as the possibility of
managing non-Gaussian models and Bayesian hierarchical models. Moreover, the
model would be accessible to other research groups willing to model spatio-temporal
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datasets with advection.
Another perspective is the development of computationally efficient algorithms for

inference and prediction. We envisage the possibility of introducing parallelization
using MPI sub-communicators as a way of obtaining faster computations in maximum
likelihood estimation and prediction. We showed in Section 8.2 that some research
teams in the spatial statistics community are already dealing with parallel codes
and using modern runtime systems to allow efficient computations for dense matrices
(Abdulah et al., 2018). Thus, we presume that extending these techniques to sparse
matrices could be very useful for future applications, not only in the SPDE framework.

Another interesting consequence of defining the models through local stochastic
partial differential equations is that the SPDEs still make sense when Rd is replaced
by a space that is only locally flat. We can define nonstationary Gaussian fields
on manifolds, and still obtain a GMRF representation. Important improvements
were obtained in the spatial case (Pereira et al., 2022). The generalization to space-
time processes could be explored further. Possible generalization to spatio-temporal
SPDEs with a fractional exponent in the diffusion term could also be considered. A de-
velopment of the methods proposed by Bolin and Kirchner (2020) and Vabishchevich
(2015) should be explored.

A further interesting direction is the extension of the approach to new SPDEs
able to better describe some peculiar physical phenomena. The current approach
allows finding a sparse structure of the precision matrix of a space-time field solution
of any SPDE that can be written as a sum of differential operators. If we had any
information about the physics of a given spatio-temporal phenomenon we want to
model, we could replace the advection-diffusion SPDE by another SPDE closer to
the true physical equation of the process. An example could be the modeling of the
motion of sea waves by the wave equation, as recently proposed in Henderson et al.
(2023).

The contributions detailed in Chapter 8 enlarge the view on spatio-temporal mod-
eling and prediction. The class of multivariate space-time covariance functions that
we have proposed in Allard et al. (2022) (see Section 8.1 and Supplementary Material
S.1) allows a generalization of the Gneiting class of space-time covariance functions
to fully nonseparable functions, i.e., functions that are space-time nonseparable and
that are neither proportional-in-space nor proportional-in-time. This is a major im-
provement to most of the models proposed up to date, where the marginal temporal
correlation function is identical for all the variables, which is an overly restrictive
hypothesis. The model we have proposed is continuous over Rd ×R, hence it is not
restricted to a regular design of observations. More complex designs are in principle
possible, such as irregular or incomplete records, heterotopic designs or even mobile
measurement devices. We hope to see applications of our model to such datasets in
a near future.

This work allowed me to see in practice how important it is to find a good trade-off
between the flexibility of a multivariate spatio-temporal model, which must be able
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to account for the complex interactions between space and time across several vari-
ables, and the number of parameters of the model, which should remain interpretable
and not too numerous. A large number of parameters results in a time-consuming
estimation, which often needs to be tackled with approximate techniques, such as the
pairwise likelihood method that we used in our application. More efficient methods
for parameter estimation probably exist (see for example the recent approaches by
Lenzi et al. (2023) and Sainsbury-Dale et al. (2023)): finding the best one for this
type of model would inevitably lead to faster computations and possible applications
to larger datasets. In general, we should bear in mind that a more complex model
should only be preferred if it is supported by the data.

Participating in the “Spatial Statistics Competition for Large Datasets” proposed
by the King Abdullah University of Science and Technology (KAUST) in 2021 and
2022 (see Section 8.2) was a great way to get to know the current trends in spatial and
spatio-temporal statistics for massive datasets, to propose approximate methods for
parameter estimation and prediction and compare them with those of several statistics
teams worldwide, to work in a research team and to enjoy a healthy competition. It
was really important for my education, because it was the first scientific project where
I was a researcher at the same level as the other members of the team and where my
scientific ideas counted as much as theirs. Moreover, due to the good ranking of the
RESSTE team in both the editions of the competition, I had the chance to spend a
visiting period of 5 weeks at KAUST, working in the STDSD research group, under
the supervision of Marc Genton, and to participate in the KAUST Workshop on
Statistics in November 2022. During this research visit, I worked in collaboration
with Marc Genton on applications of the SPDE method to a dataset analyzed in
his team (wind speed in Saudi Arabia, see Section 6.3) and on comparisons with
alternative methods. I participated in the daily activities of the team (team and
department seminars, workshops...) and I exchanged with researchers from the other
statistics teams (Håvard Rue, David Bolin, Ying Sun, Raphaël Huser) on topics of
common interest, that could possibly lead to future collaborations.

We are increasingly interested in deep statistical learning for spatio-temporal envi-
ronmental data. Although none of the works we have presented in this thesis make use
of such methods, the interest of the scientific community in spatio-temporal statistics
on this subject is growing and some approaches have already proven to be effec-
tive and efficient on large spatio-temporal datasets (Zammit-Mangion et al., 2022;
Huang et al., 2022; Hu et al., 2022). We remark that, especially when we deal with
a nonlinear temporal dynamics as it was the case for the wind data (see Section 6.3),
deep neural networks are able to better capture a complex dynamics. As another
example, we envisage to use deep learning methods to infer nonstationarities in the
SPDE framework, hoping to obtain faster and more accurate estimations than with
classical optimization methods. More generally, we intend to take advantage of the
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predictive capabilities and computational speed of deep statistical learning to deal
with high-dimensional spatio-temporal datasets.
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Appendices

A.1 Implementation

We here sketch the main implementation features of the methodology proposed in
the dissertation. The main points of the implementation concern the following pro-
cedures:

• Simulation of (S)PDE models (including the unsteady advection-diffusion model
with and without stabilization);

• Estimation of SPDE model parameters;

• Prediction and conditional simulations of spatio-temporal SPDE models applied
to real data;

• Nonstationary extension of the approach.

Reproducible scripts will be made available at http://github.com/luciclar/
ST_advdiff_SPDE by October 2023.

A.1.1 Simulation

As detailed in Chapter 4, the simulation of SPDE models is based on the discretization
approach of Section 3.3. The discretization based on the FEM in space and the FDM
in time is obtained by coding the implicit Euler scheme directly in Python and by
approximately solving the purely spatial SPDE at each time step by finite elements.

This last task is made using the FEniCS software (Logg et al., 2012; Alnaes et al.,
2015). FEnICS is an open-source software that allows for automated ways of imple-
menting the FEM code for partial differential equations from the variational formu-
lation of a differential equation. Using the FEnICS platform in Python we implement
the spatial (S)PDE by writing the weak form detailed in Equation (3.11). We set
the parameters of the SPDE and the parameters of the numerical approximation
(size of the spatial domain and of the time window, mesh structure, mesh size h,
boundary conditions). The FEM matrices (mass matrix M, lumped mass matrix
M̃, stiffness matrix G (isotropic or anisotropic), advection matrix B and Stream-
line Diffusion stabilization matrix S, defined in Section 3.3) are computed by FEnICS
and stored as sparse matrices with the package scipy.sparse.coo_matrix. The
rest of the implementation is made in Python, by using the sparse matrices retrieved
from FEnICS. For the noise term it is sufficient to sample a Gaussian standard vec-
tor and to apply the corresponding multiplicative matrix. The LU decomposition of

http://github.com/luciclar/ST_advdiff_SPDE
http://github.com/luciclar/ST_advdiff_SPDE
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the sparse matrix in the left-hand side of system (3.7) is made using the function
scipy.sparse.linalg.splu. Concerning the sparse global precision matrix Q de-
fined in Equation (3.22), either we store it in the default Python sparse format (not
necessarily the most convenient format in our specific case) or we store each of its
building blocks (3 different blocks for the diagonal and 1 block for the upper and
lower diagonal) in a sparse format itself.

Simulations of a spatio-temporal field, solution to the SPDE, are obtained by
setting the parameters of the SPDE to estimated or chosen values. The features of
the covariance structures of those fields are studied by means of comparisons with
known covariance functions (the Matérn, the exponential) and with the Fourier basis
functions approximation, detailed in Section 4.2 and coded entirely in Python.

A.1.2 Estimation

The estimation approach proposed in Chapter 5 is implemented in Python by coding
the different functions necessary to compute the terms of the log-likelihood function.

First, the projection matrix A is created from the mesh defined in FEnICS and
the locations of the data points.

The matrix-free methods (matrix-vector multiplication for block-structured ma-
trices, temporal-block Gauss-Seidel preconditioner, Chebyschev approximation of the
logarithm function, Hutchinson’s estimator of the trace) are coded from scratch. The
matrix-vector multiplication for block-structured matrices and the temporal-block
Gauss-Seidel preconditioner are coded using the functools.partial function and by
coding the single operations between each block in a custom-made function. Then,
both matrix-free methods are transformed to the LinearOperator format by using the
function scipy.sparse.linalg.LinearOperator. The Conjugate Gradient method
is available in the function scipy.sparse.linalg.cg, where the matrix-free product
and the matrix-free preconditioner are input in the LinearOperator format.

The code allows switching from the direct matrix implementation based on the
Cholesky decomposition of the spatio-temporal matrices (obtained with the func-
tion scipy.sparse.linalg.cholesky) to the matrix-free approach, when the spatio-
temporal mesh is too large for the Cholesky decomposition. The maximization of the
log-likelihood is made with the scipy.optimize package with the BFGS method.

The variogram fit for defining the initial values of the simulation study is obtained
with the Python library gstlearn.

A.1.3 Prediction and application to real dataset

The spatial meshes are constructed using the FEniCS implemented mesh function,
either in the default mode or by editing it to obtain more complex meshes.

The ML optimization is obtained by using the functions detailed in the previous
section.
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The kriging and the conditional simulations are coded in Python by following the
schemes detailed in Section 5.3 and 5.4.

The plots are made with matplotlib.

A.1.4 Nonstationarity

The simulation approach in the nonstationary extension of the SPDE model is ob-
tained by including spatially varying parameters in the SPDE with the Expression
function available in FEniCS. The corresponding spatial FEM matrices are then ob-
tained.

The estimation approach is similar to the one detailed above, but includes more
parameters in the case of the parameterization of the advection vector with a de-
fined function of with the B-splines basis. The basic B-splines are computed by
scipy.interpolate.BSpline. The 2D B-splines basis is custom-made.
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A.2 Analytical gradient of the log-likelihood

We here sketch the analytical formula of the different terms of the gradient of the
log-likelihood 5.2, reported here:

L(ψ) = −n

2 log(2π) − 1
2 log|Σy1:NT

| − 1
2(y1:NT

−η b)> Σ−1
y1:NT
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can rewrite the equation above as
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−µ)>A>Q−1
C AA>Q−1

C A(y1:NT
−µ)

= −σ−2
0 µ>

CAA>µC

Hence, finally, the gradient of the log-likelihood with respect to θi is

∂

∂θi
L(ψ) = 1

2tr
(

(Q−1 − Q−1
C )∂Q

∂θi

)
− 1

2µ
T
C

(
∂Q
∂θi

)
µC , (A.1)

and the gradient with respect to σ−2
0 is

∂L(ψ)
∂ log

(
σ−2

0

) =n

2 − 1
2tr

(
Q−1

C σ−2
0 AA>

)
− σ−2

0
2 (y1:NT

−µ)T(y1:NT
−µ)+

− σ−2
0
2 µT

CAA>µC

(A.2)

We remark that in Equation (A.1), we need to compute the derivative of Q with
respect to θi. By calling J =

(
M +dt

c (K + B + S)
)
, we recall that the matrices D

and F, which are the building blocks of the precision matrix Q and were defined in
Section 3.3.2, satisfy

D = J−1 M,

F−1 = c

τ2dt
J> M−1 QS M−1 J,

D> F−1 = c

τ2dt
QS M−1 J .

When computing the derivative of Q with respect to θi, we can work on each block
of the matrix. We observe that the derivative of the first temporal block Q(1,1) is

∂

∂θi
Q(1,1) = c

τ2dt

∂QS

∂θi
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The derivative of the upper diagonal blocks Q(i,j) for j = i+ 1 is

∂

∂θi
Q(i,j) = ∂

∂θi

c

τ2dt
(− D> F−1) = ∂

∂θi

c

τ2dt

(
− QS M−1 J

)
=

= − c

τ2dt
M−1

(
∂QS

∂θi
J +QS

∂ J
∂θi

)
,

and similarly for the transposed blocks Q(i,j) for i = j + 1. For the blocks on the
diagonal, Q(i,i) for 2 ≤ i ≤ NT − 1, we have

∂

∂θi
Q(i,i) = ∂

∂θi

c

τ2dt

(
J> M−1 QS M−1 J +QS

)
=

= 2 c

τ2dt

(
∂ J
∂θi

)>
M−1 QS M−1 J + J> M−1

(
∂QS
∂θi

)
M−1 J +∂QS

∂θi
,

and for the last diagonal block Q(NT ,NT ), the last term in the above expressions is
removed.

The derivatives that arise from the previous equations are those of QS and J.
If the parameter controls part of the temporal range, e.g., τ or c, the derivative of
the former is zero, and the derivative of the latter is a simple derivative of one of its
matrix terms. If the parameter is part of the diffusion, then we have

∂QS

∂θi
= 2

(
∂K
∂θi

)>
M−1 K,

so we would have further nested derivatives here.
We don’t go into further details, but there is an analytical way of computing

those gradients for each parameter θi. If we were also able to compute those gra-
dients with respect to each of the parameters parameterizing any spatially and/or
temporally varying parameters field, we could obtain analytical formulas even in the
case nonstationary SPDE models. This extension is left for future work.
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a b s t r a c t

We broaden the well-known Gneiting class of space–time co-
variance functions by introducing a very general parametric
class of fully nonseparable direct and cross-covariance func-
tions for multivariate random fields, where each component
has a spatial covariance function from the Matérn family with
its own smoothness and scale parameters and, unlike most of
currently available models, its own correlation function in time.
We present sufficient conditions that result in valid models
with varying degrees of complexity and we discuss the param-
eterization of those. Continuous-in-space and discrete-in-time
simulation algorithms are also given, which are not limited
by the number of target spatial coordinates and allow tens of
thousands of time coordinates. The application of the proposed
model is illustrated on a weather trivariate dataset over France.
Our new model yields better fitting and better predictive scores
in time compared to a more parsimonious model with a common
temporal correlation function.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

An increasing amount of multivariate data indexed by Euclidean space–time coordinates
is available in numerous scientific and engineering applications, including atmospheric and
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environmental sciences, geosciences, as well as geological and mining engineering. For statisticians
analyzing these data, one of the key issues is to model the space–time dependence structure
not only for each variable separately, but also across the variables. This requires versatile models
that can account for different scale and smoothness parameters for each variable, and yet whose
parameters can be accurately estimated. Bourotte et al. (2016) proposed valid multivariate space–
time classes based on Matérn and Cauchy spatial covariance functions, inspired by the multivariate
Matérn model in Gneiting et al. (2010) and Apanasovich et al. (2012). For both classes, each
variable has its own scale and own degree of smoothness in space, while allowing for some degree
of cross-correlation. However, in this construction, the marginal temporal correlation function is
identical for all variables, which, as discussed in Bourotte et al. (2016), was already seen as a
restrictive assumption because it was found that the time correlations of the three variables in
the analyzed dataset were different from one variable to the other. To account for different time
correlations, space–time linear models of coregionalizations can be proposed, as in Rouhani and
Wackernagel (1990), De Iaco et al. (2003), Choi et al. (2009) or Finazzi et al. (2013). However,
there are two major drawbacks to this construction. First, the smoothness of any component of
the multivariate field is restricted to that of the roughest underlying univariate field (Gneiting
et al., 2010). Second, the number of parameters to be estimated increases quickly as the number
of components of the model increases, thus raising issues of robustness and over-fitting. Gelfand
et al. (2005), Apanasovich and Genton (2010), Rodrigues and Diggle (2010), Ip and Li (2016)
and Gelfand (2021) introduced Bayesian dynamic, latent dimension, convolution and spectral
approaches, respectively, to build valid matrix-valued space–time covariance functions with entries
that can have different smoothness parameters. Recent comprehensive accounts of space–time
univariate and multivariate covariance modeling can be found in Chen et al. (2021) and in Porcu
et al. (2021).

In this work, we propose new classes of matrix-valued space–time covariance functions with
Matérn spatial traces that allow, for each variable, different correlation functions in time and
different smoothness and scale parameters in space. Our main contribution is to establish sufficient
validity conditions for a very general class of covariance functions of the type

Cij(h, u) = σij(u)M(h; rij(u), νij(u)), (h, u) ∈ Rd
× R, i, j = 1, . . . , p,

where M(·; r, ν) denotes a univariate Matérn covariance function with scale and smoothness
parameters r and ν. We give several constructions that offer newmodeling possibilities, in particular
negatively nonseparable covariance functions.

The outline of the paper is the following. Section 2 provides the necessary background material
on matrix-valued space–time covariance functions and on matrix-valued pseudo-variograms. Sec-
tion 3 proposes a first, parsimonious construction based on the substitution approach presented
in Allard et al. (2020), while Section 4 proposes a more general, fully nonseparable, multivariate
Gneiting–Matérn class. Section 5 shows how this model can be implemented on a trivariate weather
dataset and improves the fitting and prediction performances over an existing more parsimonious
model. Concluding remarks follow in Section 6. Other general forms of the Gneiting–Matérn model
together with simulation algorithms, technical lemmas and proofs are given in appendices.

2. Background material

Throughout this work, we use roman letters for scalars and bold letters for vectors, matrices and
matrix-valued functions. In particular, 0 and 1 denote vectors or matrices of all-zeros and all-ones
of appropriate dimension, respectively. Also, all matrix operations (product, ratio, power, square
root, exponential, etc.) are understood as elementwise.

2.1. Some matrix definitions and notation

For a = [aij]
p
i,j=1 a symmetric real matrix, we write a ⪰ 0 (resp. a ⪯ 0) to indicate that a

is positive (resp. negative) semidefinite, i.e.,
∑p

i=1
∑p

j=1 ωi ωj aij ≥ 0 (resp. ≤ 0),∀ω1, . . . , ωp ∈ R.
Likewise, a ⪰c 0 (resp. a ⪯c 0) indicates that a is conditionally positive (resp. negative) semidefinite,

2
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i.e.,
∑p

i=1
∑p

j=1 ωi ωj aij ≥ 0 (resp. ≤ 0),∀ω1, . . . , ωp ∈ R such that
∑p

i=1 ωi = 0. A conditionally
null definite matrix is both conditionally positive and conditionally negative semidefinite. An
addition separable (a-separable) matrix is such that 2aij = aii+ajj for all i, j = 1, . . . , p, and a product
separable (p-separable) matrix is such that a2ij = aiiajj for all i, j = 1, . . . , p. It is straightforward to
prove that any a-separable matrix is conditionally null definite and that any p-separable matrix
with nonnegative entries is positive semidefinite, see Appendix D.1.

2.2. Matrix-valued space–time covariance functions

We consider a multivariate space–time random field Z(s, t) = [Zi(s, t)]
p
i=1 defined in Rd

× R,
where d is the space dimension and p the number of random field components, each being real-
valued. A space–time coordinate will be denoted (s, t), with s ∈ Rd and t ∈ R. For the sake of light
notation, the Euclidean norm of h will be denoted |h|. Without loss of generality, we assume that
all random field components are centered, i.e., E[Zi(s, t)] = 0 ∀(s, t) ∈ Rd

× R, ∀i = 1, . . . , p. It
will also be assumed that the multivariate random field Z(s, t) is second-order stationary, so that
its covariance functions exist and depend only on the space–time lag (h, u) ∈ Rd

× R (Chilès and
Delfiner, 2012):

Cov(Zi(s, t), Zj(s + h, t + u)) = Cij(h, u), (1)

for any pair i, j = 1, . . . , p, ∀(s, s + h) ∈ Rd
× Rd and ∀(t, t + u) ∈ R × R. The functions

Cij are called direct covariance functions when i = j and cross-covariance functions otherwise.
The matrix-valued covariance function C , which associates each space–time lag (h, u) with the
p × p matrix C (h, u) =

[
Cij(h, u)

]p
i,j=1, is positive semidefinite in Rd

× R, that is, for any finite

collection of space–time coordinates (sk, tk)Nk=1, the matrix
[
[Cij(sl − sk, tl − tk)]

p
i,j=1

]N
k,l=1

is positive
semidefinite (Wackernagel, 2003). Setting u = 0 in (1) defines the purely spatial matrix-valued
covariance function C S(h) := C (h, 0). Likewise, C T (u) := C (0, u) is a purely temporal matrix-valued
covariance function.

A matrix-valued space–time covariance function is space–time separable if it is the elementwise
product of a matrix-valued spatial covariance function with a matrix-valued temporal covariance
function, i.e., when Cij(h, u) = Cij(0, 0)−1 CS,ij(h) CT ,ij(u) for all i, j = 1, . . . , p. The direct covariance
Cii is said to be positively (resp. negatively) space–time nonseparable if Sii(h, u) = Cii(h, u)Cii(0, 0)−
CS,ii(h) CT ,ii(u) ≥ 0 (resp. ≤ 0) for all (h, u) ∈ Rd

×R (Rodrigues and Diggle, 2010; De Iaco and Posa,
2013). The functions Sii(h, u) will be referred to as separability functions. Their empirical versions
can be used as exploratory tools to characterize the type of nonseparability in a dataset.

A matrix-valued space–time covariance function is said to be a proportional model when it is
obtained as the product of a p × p covariance matrix R and a univariate space–time correlation
function ρ, i.e., C (h, u) = R ρ(h, u), ∀(h, u) ∈ Rd

× R. It is proportional-in-time if C T (u) = R ρT (u)
and proportional-in-space if C S(h) = R ρS(h), ∀(h, u) ∈ Rd

× R. Bourotte et al. (2016) proposed
nonproportional matrix-valued space–time covariance functions in which the purely spatial part
is a nonproportional model but the purely temporal part is a proportional model, i.e., the model
is proportional-in-time but not in space. In this work, we will build valid and flexible parametric
classes of matrix-valued space–time covariance functions such that both the spatial and temporal
components are nonproportional. Such matrix-valued space–time covariances are referred to as
being fully nonseparable.

2.3. The Gneiting class of space–time covariance functions

We first restrict ourselves to the univariate setting, i.e., p = 1. We thus choose to drop
temporarily the use of subscripts for the ease of notation. The Gneiting class of spatio-temporal
covariance functions was originally presented in Gneiting (2002). For an easier exposition of our
results, we follow (Allard et al., 2020) and consider the extended class of functions of the form

C(h, u) =
1

(γ (u) + 1)d/2
ϕ

(
|h|

2

γ (u) + 1

)
, (h, u) ∈ Rd

× R, (2)
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which is a second-order stationary covariance function for any continuous and completely mono-
tone function ϕ on [0,∞) if and only if the function γ : R → [0,∞) is a variogram on R, i.e., a
conditionally negative semidefinite function (Chilès and Delfiner, 2012). The Gneiting class of spatio-
temporal covariances thus involves two functions ϕ and γ : the former is associated with the spatial
structure, since CS(h) = ϕ(|h|

2), whereas the latter is associated with the temporal structure, with
CT (u) = (γ (u) + 1)−d/2. Notice that CT (u) → 0 as |u| → ∞ if and only if γ (u) is unbounded. From
a modeling point of view, the formulation (2) offers more flexibility than the original formulation
in Gneiting (2002) and provides a direct geostatistical interpretation in the temporal dimension.
Examples of such classes include the Gneiting–Matérn and Gneiting–Cauchy covariance functions, in
the cases where ϕ(|h|

2) is the Matérn or the Cauchy spatial covariance, respectively. The expression
of the Matérn covariance is

M(h; r, ν) =
21−ν

Γ (ν)
(r|h|)ν Kν (r|h|) , h ∈ Rd, (3)

where r > 0 is a scale parameter (1/r is called the range), ν > 0 is a smoothness parameter
and Kν denotes the modified Bessel function of the second kind of order ν. With α, r > 0, the
Cauchy covariance is C(h; r, α) =

(
1 + r|h|

2)−α , h ∈ Rd. Rodrigues and Diggle (2010) and De Iaco
and Posa (2013) showed that the Gneiting class of covariance functions (2) cannot accommodate
negative nonseparability.

2.4. Proportional-in-time multivariate Gneiting classes

Going back to the multivariate setting, Bourotte et al. (2016) proposed classes of matrix-
valued space–time covariance functions that are extensions of the Gneiting class in (2), where
the completely monotone real-valued function ϕ is replaced by a matrix-valued function ϕ =

[ϕij]
p
i,j=1, with each component ϕij having specific parameters. In particular, they showed that the

Gneiting–Matérn space–time model CM
=
[
CM
ij

]p
i,j=1

with

CM
ij (h, u) =

σiσjρij

(γ (u) + 1)d/2
M
(
h;

rij
(γ (u) + 1)1/2

, νij

)
, (h, u) ∈ Rd

× R, (4)

is a valid second-order stationary matrix-valued covariance function if, for all i, j = 1, . . . , p,

2r2ij = r2ii + r2jj ; 2νij = νii + νjj; ρij = βij
Γ (νij)

Γ (νii)1/2Γ (νjj)1/2
rνiiii r

νjj
jj

r
2νij
ij

, (5)

where Γ is the gamma function, β =
[
βij
]p
i,j=1 is a correlation matrix and rii, νii > 0 for i = 1, . . . , p.

Using matrix notations, the model in (4) is valid if the matrices ν = [νij]
p
i,j=1 and r2 = [r2ij ]

p
i,j=1

have positive entries and are a-separable, and if ρ r2ν/Γ (ν) ⪰ 0, with ρ = [ρij]
p
i,j=1. Similarly, the

Gneiting–Cauchy space–time model CC
=
[
CC
ij

]p
i,j=1

with

CC
ij (h, u) =

σiσjρij

(γ (u) + 1)d/2
C
(
h;

rij
(γ (u) + 1)1/2

, αij

)
, (h, u) ∈ Rd

× R, (6)

is a valid matrix-valued covariance function if, for all i, j = 1, . . . , p,

2r−1
ij = r−1

ii + r−1
jj , 2αij = αii + αjj, ρij = βij

Γ (αij)
Γ (αii)1/2Γ (αjj)1/2

r
αij
ij

(rαiiii r
αjj
jj )1/2

, (7)

with rii, αii > 0 for i = 1, . . . , p and β = [βij]
p
i,j=1 a positive semidefinite matrix. The sufficient

conditions in (7) are thus that α and r−1 are a-separable and ρ r−α/Γ (α) ⪰ 0. Proofs are given
in Bourotte et al. (2016). Setting h = 0 in both cases, the entries of the associated temporal
matrix-valued covariance functions are

CM
ij (0, u) = CC

ij (0, u) =
σiσjρij

(γ (u) + 1)d/2
, u ∈ R.

4
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As discussed in Section 2.2, these are proportional-in-time models, since they are the product
of a covariance matrix with a single time correlation function ρT (u) = (γ (u) + 1)−d/2. In order
to build multivariate models that are neither proportional in space nor in time, an essential
building block is to define admissible and relevant temporal matrix-valued covariances of the form
[(γij(u) + 1)−d/2

]
p
i,j=1. To address this point, matrix-valued pseudo-variograms are now introduced.

2.5. Matrix-valued pseudo-variograms

Consider a p-variate temporal random field Z(t) = [Zi(t)]
p
i=1, t ∈ R. Under the assumption

that the direct and cross-increments are jointly stationary, the matrix-valued pseudo-variogram
η = [ηij]

p
i,j=1 is defined as in Papritz et al. (1993)

ηij(u) =
1
2
Var
[
Zi(t + u) − Zj(t)

]
, (8)

for all t, u ∈ R and any pair i, j = 1, . . . , p. Notice that the pseudo-variogram has nonnegative
entries and is not necessarily an even function. For any i = 1, . . . , p, ηii (direct variogram of Zi) is
a conditionally negative semidefinite function (Chilès and Delfiner, 2012). Necessary and sufficient
conditions for a matrix-valued function to be a pseudo-variogram have been provided in Dörr and
Schlather (2021).

3. Parsimonious Gneiting–Matérn and Gneiting–Cauchy multivariate models

In this section, we construct matrix-valued space–time covariance functions that are neither
proportional in space nor in time. The construction is based on the substitution approach proposed
in Allard et al. (2020) for simulating univariate space–time Gaussian random fields with Gneiting-
type covariance functions. It also uses the integral representation of completely monotone functions.
Compared to the model in (4), the univariate variogram is generalized into a matrix-valued pseudo-
variogram, as defined in (8). This construction is less general than the class that will be presented
in Section 4, but it is more direct and parsimonious.

Theorem 1. Let σ = [σij]
p
i,j=1 be a symmetric positive semidefinite matrix, u ↦→ η(u) = [ηij(u)]

p
i,j=1 be a

matrix-valued pseudo-variogram on R, and t ↦→ ϕ(t) = [ϕij(t)]
p
i,j=1 be a matrix of completely monotone

functions on [0,∞) such that ϕij(t) =
∫

∞

0 e−rt (fii(r)fjj(r))1/2dr, where fii and fjj are probability density
functions on (0,∞). Then, the matrix-valued function C : (h, u) ↦→ [Cij(h, u)]

p
i,j=1 with

Cij(h, u) =
σij

(ηij(u) + 1)d/2
ϕij

(
|h|

2

ηij(u) + 1

)
, (h, u) ∈ Rd

× R, (9)

is positive semidefinite in Rd
× R.

The following two examples generalize (4) and (6) with a matrix-valued pseudo-variogram η
instead of a univariate variogram γ .

Example 1 (Gneiting–Matérn Model). Let fii : r ↦→ Γ (νii)−1(rii/2)2νii r−νii−1 exp(−r2ii/(4r)) be the
probability density of an inverse gamma distribution on (0,∞) with shape parameter νii > 0 and
scale parameter r2ii/4 > 0. Based on the fact that an inverse gamma mixture of Gaussian covariances
is a Matérn covariance (Emery and Lantuéjoul, 2006), the direct and cross-covariances are found to
belong to the Gneiting–Matérn family:

Cij(h, u) =
Γ (νij)√

Γ (νii)Γ (νjj)

rνiiii r
νjj
jj

r
2νij
ij

σij

(ηij(u) + 1)d/2
M
(
h;

rij
(ηij(u) + 1)1/2

, νij

)
, (10)

with 2νij = νii + νjj, 2r2ij = r2ii + r2jj and M the Matérn covariance defined in (3).
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Example 2 (Gneiting–Cauchy Model). Let fii : r ↦→ Γ (αii)−1 exp(−r/rii) r
−αii
ii rαii−1 be a gamma

probability density on (0,∞) with shape parameter αii > 0 and scale parameter rii > 0. Based on the
fact that a gamma mixture of Gaussian covariances is a Cauchy covariance (Emery and Lantuéjoul,
2006), the direct and cross-covariances are found to belong to the Gneiting–Cauchy family:

Cij(h, u) =
Γ (αij)√

Γ (αii)Γ (αjj)

r
αij
ij

rαii/2ii r
αjj/2
jj

σij

(ηij(u) + 1)d/2
C
(

h
(ηij(u) + 1)1/2

; rij, αij

)
, (11)

with 2αij = αii + αjj, 2r−1
ij = r−1

ii + r−1
jj and C the Cauchy covariance defined above.

The advantage of this construction is that it is easy to understand and that it is straightforward
to simulate realizations of the multivariate random field Z , as shown in Appendix B. However, an
implicit assumption is that ϕij(t) =

∫
∞

0 e−tr fij(r)dr , with fij being p-separable: fij = f 1/2ii f 1/2jj . This is
a parsimonious parameterization, but also a restrictive condition. In Section 4, we propose a more
general construction that encompasses the model presented in Example 1.

4. A general fully nonseparable Gneiting–Matérn class

We now present a very general class of matrix-valued space–time covariance functions that are
neither proportional in space nor in time. Their purely spatial part belongs to the Matérn family.
The key of our construction (see Appendix D.2) is to convert a p-variate spatio-temporal random
field at finitely many (say, nT ) time coordinates into a (p × nT )-variate spatial random field, and to
find conditions ensuring that the latter has a multivariate Matérn covariance function for any choice
of nT , based on the results established in Emery et al. (2022). More general classes of space–time
covariance functions, with the spatial smoothness parameter depending on the temporal lag, can be
elaborated in a similar way, based on findings by Gneiting et al. (2010), Apanasovich et al. (2012)
and Emery et al. (2022) (see Theorem 3 in Appendix A).

4.1. Main result

Theorem 2. Let ν, b2 and a2 be p × p symmetric conditionally negative semidefinite matrices, all with
positive entries, such that a2

− ν ⪯c 0. Let u ↦→ ρ(u) be a p × p matrix-valued covariance function on
R and let u ↦→ η(u) be a p×p matrix-valued pseudo-variogram on R. Then, the matrix-valued function
C : (h, u) ↦→ [Cij(h, u)]

p
i,j=1 with

Cij(h, u) = σij(u)M(h; rij(u), νij), (h, u) ∈ Rd
× R,

is positive semidefinite in Rd
× R for

r(u) = [rij(u)]
p
i,j=1 =

√
αη(u) + a2

βη(u) + b2 and

σ(u) = [σij(u)]
p
i,j=1 =

ρ(u)Γ (ν) exp(ν)(
αη(u) + a2

)ν (
βη(u) + b2)d/2 ,

(12)

where α and β are nonnegative.

Corollary 1. Let ν, b2, a2, η, α and β be as in Theorem 2. Let τ be a p × p symmetric real matrix. The
matrix-valued function C : (h, u) ↦→ [Cij(h, u)]

p
i,j=1 with

Cij(h, u) =
τij

(βηij(u) + b2ij)d/2(αηij(u) + a2ij)
νij

M

⎛⎝h;

√αηij(u) + a2ij
βηij(u) + b2ij

, νij

⎞⎠ , (h, u) ∈ Rd
× R,

(13)

is positive semidefinite in Rd
× R if the matrix τe−ν/Γ (ν) is positive semidefinite.

6
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The matrix-valued space–time covariance function (13) is of Gneiting–Matérn type. The sufficient
conditions on its parameters call for several comments.

1. A sufficient condition for a2
− ν ⪯c 0 is that a2

⪯c 0 and ν is a-separable (see the technical
lemmas in Appendix D.1). This more restrictive condition is also found in Apanasovich et al.
(2012) and Bourotte et al. (2016). Even though a-separability is not necessary, it is convenient
because it is easy to satisfy. From a statistical point of view, it reduces the number of
parameters from p(p + 1)/2 to p and therefore leads to a more parsimonious model.

2. The conditional negative semidefiniteness condition on a2 is similar to that in Apanasovich
et al. (2012) in a spatial context. It is weaker than the a-separability condition in (5) that
applies to the Gneiting–Matérn model in Bourotte et al. (2016).

3. Since ν ⪯c 0, the matrix exp (−ν) is positive semidefinite (see Appendix D.1). Hence, based on
the Schur product theorem, a sufficient condition for τe−ν/Γ (ν) to be positive semidefinite
is that τ/Γ (ν) is positive semidefinite.

4. The positive semidefiniteness condition on τ only depends on the smoothness parameters
ν. In contrast, the positive semidefiniteness condition (5) in Bourotte et al. (2016) – also
necessary in the parsimonious approach presented in Section 3 – depends on both ν and
r(u), which is a stronger condition. Theorem 2 therefore offers more flexibility for modeling
multivariate space–time data.

The Gneiting–Matérn class (12) is quite versatile. The space–time properties depend very much
upon the values of α and β . Obviously, if α = β = 0, the model is purely spatial. In this context,
by setting b to be the all-ones matrix, the condition on σ reduces to the condition of Theorem 3B
in Emery et al. (2022).

When α = 0, accounting for the fact that exp(−ν) and all p-separable matrices with nonnegative
entries are positive semidefinite (see technical lemmas in Appendix D.1), the models in (12) and (13)
generalize the Gneiting–Matérn model (4). If, furthermore, the direct variograms ηii are increasing
functions for i = 1, . . . , p, the scale parameters rii(u) = aii(βηii(u)+ b2ii)

−1/2 decrease as u increases.
The space–time direct correlations are thus higher than what would happen for a separable space–
time covariance function, i.e., they are positively nonseparable. When β = 0 and under the same
monotonicity assumption for the direct variograms, the scale parameters rii(u) =

√
αηii(u) + a2ii/bii

increase with u. This a very original feature, since for all Gneiting-type spatio-temporal models of
our knowledge, the scale parameter decreases with u. Applying the same reasoning as above, the
resulting space–time direct covariances are thus negatively nonseparable. When α and β are both
positive, the model is positively or negatively space–time nonseparable, depending on the relative
values of the other parameters involved in r(u). However, in the common case where ηij(u) → ∞

as u → ∞, r(u) asymptotically tends to a matrix with all elements equal to
√
α/β . The space–time

covariance is therefore asymptotically separable as |u| → ∞.
This model covers thus a large variety of nonseparability situations. When analyzing multivariate

space–time data, an exploratory analysis can reveal the type of nonseparability that best describes
the dataset, offering the possibility to set α = 0 (resp. β = 0) if uniformly positive (resp. negative)
nonseparability is established. This point will be illustrated in Section 5.

4.2. Models for unbounded pseudo-variograms

The temporal structure is parameterized by a matrix-valued pseudo-variogram η : u ↦→

[ηij(u)]
p
i,j=1. As discussed in Section 2.3, it is critical that this pseudo-variogram is unbounded for

the direct and cross-covariances Cij(h, u) tends to 0 as |u| → ∞. On the one hand, Chen and
Genton (2019) showed that the well-known linear model of coregionalization cannot be used
to construct matrix-valued pseudo-variograms with different diagonal entries, which is required
for a fully nonseparable multivariate model. On the other hand, in Papritz et al. (1993) it is
shown that, for a matrix-valued pseudo-variogram η, the following large distance behavior holds:
lim|u|→∞ ηij(u)/ηii(u) = 1, for any pair i, j = 1, . . . , p. In other words, all entries of a matrix-valued
pseudo-variogram must have the same behavior for a very large lag separation u.
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Building valid unbounded matrix-valued pseudo-variograms with different diagonal entries
(direct variograms) is still an open question. As a simple model for this, we propose the following
construction, which is a straightforward generalization of the bivariate construction of Oesting
et al. (2017). Let us define Wi(u) = Y0(u) + Yi(u), u ∈ R, where Y1, . . . , Yp are second-order
stationary random fields with direct and cross-covariance functions R : u ↦→ [Rij(u)]

p
i,j=1 and Y0 is

an independent intrinsic random field with unbounded variogram γ0. Then, the pseudo-variogram
of W = [Wi]

p
i=1 is such that ηij(u) = γ0(u) + (Rii(0) + Rjj(0))/2 − Rij(u), u ∈ R. In matrix notation, a

valid class of unbounded matrix-valued pseudo-variogram is thus

η(u) = γ0(u)1 + R0
− R(u), u ∈ R, (14)

where R is any matrix-valued covariance function and R0 is the a-separable matrix with entries
R0
ij = (Rii(0) + Rjj(0))/2.
A more general model consists in defining Wi(u) = Y0(u + δi) + Yi(u), u ∈ R and δi ∈ R, which

leads to the pseudo-variogram η(u) = [γ0(u + δi − δj)]
p
i,j=1 + R0

− R(u), u ∈ R.

4.3. Illustration

We illustrate the flexibility of our proposed model in the univariate and bivariate case. We
focus specifically on the nonseparability feature. In the univariate setting (p = 1) the space–time
covariance function (13) is a generalization of the usual Gneiting class with

C(h, u) =
1

(βη(u) + b2)(αη(u) + a2)ν
M

⎛⎝h;

√
αη(u) + a2

βη(u) + b2
, ν

⎞⎠ , (15)

where η is a variogram. While the Gneiting class is uniformly positively nonseparable (Rodrigues
and Diggle, 2010), the model in (15) allows for different nonseparability situations, depending on
the values of parameters α, β, a and b, as discussed above. Fig. 1 shows the contour plots for the
space–time correlation function (15) for different values of these parameters.

In the bivariate case, we will consider the general model in Corollary 1 with ν11 = 1.5,
ν12 = ν21 = 1 and ν22 = 0.5; τ11 = τ22 = 1 and τ12 = τ21 = 0.75. For these values, the
condition τe−ν/Γ (ν) ⪰ 0 is verified. We will consider the same nonseparability scenarios as in
Fig. 1, i.e., (α, β) being successively equal to (1, 1) (separable), (0, 1) and (1, 0) (resp. positively and
negatively nonseparable) and (0.3, 0.7). We further set γ0(u) = 0.5|u|, Rij(u) = AiAj(1 + 0.5|u|)−1

with A1 = 0.8 and A2 = 0.5, and aij = bij = 1 − R0
ij. Simulations (see Supplementary Material) are

performed on a 200 × 200 grid covering the square [0, 2]×[0, 2] (d = 2) with 20 regular times steps
in the interval [0, 0.2]. We used the spectral approach given in Section Appendix C (Algorithm 3)
with M = 20,000 cosine waves whose frequencies are drawn from the spectral density of a Matérn
covariance function with ν = 0.5 and r = 2.

5. Application to a weather dataset

5.1. Introduction

We now illustrate the use of the fully nonseparable multivariate Gneiting–Matérn model pro-
posed in (13) on a weather dataset consisting of three daily variables (solar radiation R, temperature
T, and humidity H) recorded at nS = 13 stations in Western France from 2003 to 2012. In order
to restrict ourselves to data being stationary in time, we only analyze data recorded in January. In
order to filter out any seasonal and regional effect, the daily values are first centered in time and
space according to

ỹi(s, t) = yi(s, t) − yi(·, t) − yi(s, ·) + yi(·, ·), i = 1, 2, 3,

where yi(·, t), yi(s, ·) and yi(·, ·) are the spatial average at day t , temporal average at location s and
overall average of the ith variable, respectively. These centered values are then standardized every

8
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Fig. 1. Contour plots for the space–time covariance (15) with η(u) =
√

|u|, ν = 1.5, a2 = b2 = 1: separability
((α, β) = (1, 1), upper left), positive nonseparability ((α, β) = (0, 1), upper right), negative nonseparability ((α, β) = (1, 0),
lower left) and general nonseparability ((α, β) = (0.7, 0.3), lower right).

day t according to zi(s, t) = ỹi(s, t)/Si(t) with S2i (t) the experimental variance of the ith variable at
day t .

We thus have 10 repetitions of 13 × 31 of trivariate standardized vectors, which will be supposed
independent. For a detailed exposition of this dataset, we refer to a previous analysis (Bourotte
et al., 2016) which has shown that a Proportional-In-Time (PIT) multivariate Gneiting–Matérn
model improved the fitting and the prediction scores as compared to a model with a separable
spatio-temporal covariance function. In this analysis, we shall compare a specific fully nonseparable
multivariate model (FULL), as proposed in (13), to the PIT model.

For each of the three variables, the separability function Sii(h, u) = Cii(h, u)Cii(0, 0)−CS,ii(h)CT ,ii(u)
was computed. Empirical covariances were derived from the space–time empirical variograms
computed with the function EVariogram from the package CompRandFld (Padoan and Bevilacqua,
2015), using spatial bins of 50 m. Since the variograms have been computed on residuals, the
separability function must be in the interval [−1, 1], with S(h, u) = 0 indicating separability of
C(h, u). Fig. 2 shows the separability function of all variables at the first three time steps. Without
having to compute a formal test for separability as for example in Mitchell et al. (2006), it is
clear from these plots that the residuals are uniformly positively space–time nonseparable for

9
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Fig. 2. Separability function S(h, u) computed at u = 1 (blue solid lines), u = 2 (red dashed lines) and u = 3 (green
dotted lines).

|h| ≤ 500 m and u ≤ 3, which is actually often the case for climate variables. The same analysis was
performed using other values for the spatial bins and similar results (not shown) were consistently
obtained.

5.2. Model specification

Given the positive nonseparability of the residuals, and in light of the discussion in Section 4,
the parameter α in (13) is set to α = 0. The temporal structure is described by a matrix-valued
unbounded pseudo-variogram as given in (14). Since d = 2 here, the entries of the matrix-valued
covariance function read:

Cij(h, u) =
τija

−2νij
ij

βηij(u) + b2ij
M

⎛⎝h;
aij√

βηij(u) + b2ij
, νij

⎞⎠ , (h, u) ∈ Rd
× R, (16)

with the condition that τe−ν/Γ (ν) ⪰ 0. Setting h = 0 and u = 0 in (16), one gets the generic
entry Cij(0, 0) = τija

−2νij
ij /(β[R0

ij − Rij(0)] + b2ij) of the collocated covariance matrix. For identifiability
reasons, we further set β = 1 and b2ij = 1 − R0

ij with maxi{Rii(0)} < 1. The matrix b2 is
thus conditionally negative definite, as required. As a consequence, we get the simpler expression
Cij(0, 0) = τija

−2νij
ij /[1 − Rij(0)].

The pseudo-variogram η needs to be specified. For the unbounded part common to all compo-
nents we choose γ0(u) = (1 + |cu|2a)b − 1, u ∈ R with c > 0, 0 < a ≤ 1 and 0 ≤ b ≤ 1, for
ease of comparison with Bourotte et al. (2016), also advocated in Gneiting (2002). This variogram
is reminiscent of the generalized Cauchy covariance model that will also be used for R: Rij(u) =

AiAj(1+ |ru|2λ)−b, u ∈ R, with r > 0, 0 < λ < 1 and 0 ≤ Ai < 1 for i = 1, . . . , p, and where for the
sake of parsimony the parameter b is set identical to the parameter b in γ0. Notice that the matrix
[AiAj]

p
i,j=1 is p-separable and has nonnegative entries, thus it is positive semidefinite. R is therefore

a valid matrix-valued covariance function. The covariance model that we obtain is

Cij(h, u) =
τija

−2νij
ij

(1 + |cu|2a)b − AiAj(1 + |ru|2λ)−b

×M

(
h;

aij[
(1 + |cu|2a)b − AiAj(1 + |ru|2λ)−b

]1/2 , νij
)
, (h, u) ∈ Rd

× R.

10
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In the above parameterization, the space–time nonseparability parameter b acts both inside and
outside the Matérn function M, implying a constant perfect correlation in time if b = 0. Follow-
ing Gneiting (2002) and Bourotte et al. (2016), a reparameterization is thus useful. Multiplying the
above equation by the temporal covariance function ρ̃ij(u) =

[
(1 + c|u|2a)δ − AiAj(1 + r|u|2λ)−δ

]−1

with 0 ≤ δ ≤ 1 leads to the parametric family that will be used in the rest of this section. In order
to get Cii(0, 0) = σ 2

i , we set τii = σ 2
i a

2νii
ii (1−A2

i )
2 and, for i ̸= j, τij = ρij

√
τiiτjj, with [ρij]

p
i,j=1 being a

correlation matrix. With this parameterization, the matrix τ is positive semidefinite by construction.
Finally, the fully nonseparable multivariate Gneiting–Matérn covariance model reads

Cij(h, u) =
1

(1 + |cu|2a)δ − AiAj(1 + |ru|2λ)−δ
ρija

−2νij
ij

√
τiiτjj

(1 + |cu|2a)b − AiAj(1 + |ru|2λ)−b

×M

(
h;

aij[
(1 + |cu|2a)b − AiAj(1 + |ru|2λ)−b

]1/2 , νij
)
, (17)

with (h, u) ∈ Rd
× R and i, j = 1, . . . , p. The model in (17) provides interpretable parameters for a

fully nonseparable Gneiting–Matérn model:

• The collocated covariance matrix [Cij(0, 0)]
p
i,j=1 has elements

Cij(0, 0) = ρijσiσj
aνiiii a

νjj
jj

a
2νij
ij

(1 − A2
i )(1 − A2

j )

(1 − AiAj)2
, (18)

which simplify to Cii(0, 0) = σ 2
i if i = j. This is the elementwise product of a covariance

matrix [ρijσiσj]
p
i,j=1 with a weight matrix whose elements are ratios combining the other

parameters. Notice that the quantities σia
νii
ii appearing in (18) are the square roots of the micro-

ergodic quantities that can be consistently estimated by Maximum Likelihood under a Gaussian
assumption in an infill asymptotics setting (Zhang, 2004).

• The vector A = [Ai]
p
i=1 describes the multivariate aspect of the temporal covariance function.

When Ai = 0 for i = 1, . . . , p, the above model reduces to the model in Bourotte et al. (2016,
Equation 9), up to a slight reparameterization.

• The temporal parameters are, on the one hand, (c, a) that characterize the common part
of the temporal covariance function and, on the other hand, (r, λ,A) that characterize the
multivariate part of it. The parameters (c, r) are scale parameters, while (a, λ) are shape
parameters relating to the regularity at the origin of CT ,ij(u). Note that the parameters (b, δ)
act on both parts of the temporal covariance function.

• The parameter b, which appears in both the spatial and temporal terms, is the separability
parameter. It can vary from b = 0 (separability) to b = 1 (full spatio-temporal nonseparability).

• The spatial parameters are the scale matrix a, with a2
⪯c 0, and the smoothness matrix ν,

which must verify a2
− ν ⪯c 0. For simplicity, and for a fair comparison to Bourotte et al.

(2016), a2 and ν will be chosen as a-separable. The two above conditions on a and a2
− ν are

thus always verified.

5.3. Estimation of the parameters

Recall that the data analyzed here are standardized residuals after centering for spatial and
temporal trends. We thus set σi = 1, for i = 1, . . . , p. There is a total of p(p + 2) + 6 parameters
to estimate, where p is the number of variables. Here p = 3, leading to a total of 21 parameters.
Compared to the model in Bourotte et al. (2016), our more flexible model contains only 6 additional
parameters describing the multivariate nature of the temporal covariance. Let us denote θ the vector
of all parameters, and letΘ be the space of parameters for which the model (17) is valid. Optimizing
a likelihood function in Θ is not straightforward. First, the space Θ has a complex shape owing to
the positive semidefiniteness condition on τe−ν/Γ (ν). Second, employing blindly an optimization
function to maximize the likelihood in the high-dimensional space Θ is likely to fail. As a way to
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alleviate this problem, the likelihood was maximized sequentially in subspaces of Θ corresponding
to blocks of related parameters, while keeping all other parameters fixed to the values previously
attained.

Maximum likelihood estimation requires inverting a 1209 × 1209 matrix each time a parameter
is updated, which is prohibitively expensive considering the very large number of calls entailed
by the optimization in a 21-dimensional space. Composite likelihood methods have been found
to be efficient in the context of spatio-temporal data, with less time-consuming steps and good
asymptotic properties (Bevilacqua et al., 2012). Pairwise Likelihood (PL) is the product of marginal
Gaussian likelihoods computed on all pairs with a spatial separation less than dm and a temporal
separation less than tm, where dm and tm are fixed thresholds. On a simulation study mimicking the
sampling design of the dataset, it was shown in Bourotte et al. (2016) that, for the smoothness and
scale parameters, Pairwise Likelihood (PL) provides estimates with only a slight loss in efficiency
as compared to a Full Likelihood (FL) approach, with a significant gain in terms of computation.
Moreover, for prediction, the difference between PL and FL was found very small on all tested
prediction scores. We have therefore decided to estimate the parameters of our model using PL in
this same way. We have set dm = 250 km and tm = 2 days because these values have been shown
to minimize the trace of the estimated covariance matrix, thus providing optimal estimation for all
parameters (Bourotte et al., 2016). The following procedure for maximizing the likelihood builds on
the one presented in Bourotte et al. (2016), which was proven to be efficient.

1. The p×p marginal empirical covariance matrix with elements ĉij, i, j = 1, . . . , p is computed.
2. The separability parameter b, known to be difficult to estimate, is successively fixed to

0, 0.1, . . . , 1.
3. For every fixed value of b:

(a) Initial temporal parameters (c, a, r, λ, δ,A) are estimated by maximizing the PL for the
temporal covariance model C T . Using (17) and (18), one gets

CT ,ij(u) =
1

(1 + |cu|2a)δ − AiAj(1 + |ru|2λ)−δ
ĉij(1 − AiAj)2

(1 + |cu|2a)b − AiAj(1 + |ru|2λ)−b
.

(b) Using the estimates Â from the previous step, initial spatial parameters (a, ν) are
estimated by maximizing the PL for the spatial matrix-valued covariance C S with
entries

CS,ij(h) = ĉij M

⎛⎜⎝h;
aij(

1 − ÂiÂj

)1/2 , νij
⎞⎟⎠ .

(c) The temporal parameters are updated, considering all other parameters fixed, by
maximizing the PL of the multivariate spatio-temporal model (17).

(d) The spatial parameters are updated, considering all other parameters fixed by maxi-
mizing the PL of the multivariate spatio-temporal model (17).

(e) Steps (c)–(e) are iterated until a stopping criterion is reached.

In steps 3.(a) to 3.(d), the optimization is performed by calling the R function nlminb. At each
iteration of the optimization, the estimate ρ̂ is computed using (18) given â, ν̂, Â, and the definite
positiveness of ν̂ and τ̂e−ν̂/Γ (ν̂) are enforced. Iterations are stopped when PL is increased by less
than 1 unit after one iteration from (c) to (e). Finally, b̂ is the value of b among {0, 0.1, . . . , 0.9, 1}
corresponding to the highest maximized PL. To perform the maximization in the subspaces of Θ ,
we used the package nlminb implemented in R with lower and upper bounds for the parameters
when mathematically necessary. In addition, for the sake of numerical stability, the smoothness
parameter ν was upper bounded at 6.0 – which was never reached.

All 13 stations were used to estimate the parameters of both the FULL and PIT models. Fig. 3(left)
shows the maximum log-PL as a function of the separability parameter b for the fully nonsep-
arable Gneiting–Matérn model, referred to as FULL. The maximum is reached for b̂ = 0.1 with
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Fig. 3. Left: PL as a function of the space–time separability parameter b. Right: (R, H) temporal correlation functions. PIT
model with unique direct correlation (positive) and cross-correlation (negative) in dotted lines. FULL model with direct
correlation (positive) for R and H in solid and dotdashed lines, respectively, and cross-correlation (negative) in longdashed
line. Squares: empirical correlations.

Table 1
PL parameter estimates for the weather dataset with dm = 250 km, tm = 2 days. FULL: fully nonseparable model as in
(17) with b = 0.1. PIT: simplified Proportional-In-Time model with b = 0. The indices 1, 2 and 3 refer to R, T and H,
respectively.

Temporal parameters

c a r λ δ A1 A2 A3

FULL 0.528 0.993 0.341 0.0 1.000 0.871 0.608 0.646
PIT 4.31 0.997 N/A N/A 0.638 0 0 0

Spatial parameters

a1 a2 a3 ν1 ν2 ν3

FULL 15.8 10−3 6.4 10−3 12.4 10−3 3.76 0.69 0.51
PIT 18.9 10−3 8.2 10−3 17.0 10−3 1.61 0.71 0.53

Correlation parameters PL

ρ12 ρ13 ρ23

FULL −0.124 −0.330 −0.099 −933 337.6
PIT −0.151 −0.324 −0.103 −933 961.3

log PLFULL(θ̂b=0.1) = −933 337.6. For comparison purpose, PL was also maximized for the PIT
model, i.e., when A = 0. For this simpler model, log PLPIT(θ̂b) is monotonically decreasing from
−933 961.3 to −934 072.6 as b varies from 0 to 1. FL was also computed for these two models
(remember that FL is easy to compute but very long to optimize): log FLFULL(θ̂b=0.1) = −2 652.7
and log FLPIT(θ̂b=0.1) = −2 819.1, indicating strong evidence in favor of the more complex model,
considering that the number of data is moderate with a total of 10 independent repetitions of 1209
correlated data. As a point of comparison, the (BIC) penalization to the full likelihood of the more
complex model is equal to 2.5 ln(12090) ≃ 23.5.

Looking at the temporal marginals, the models show very different behaviors — as we expected.
Fig. 3(right) displays the temporal empirical covariances for variables R and H with their fitted
models. Thanks to the flexibility of the FULL model, the temporal covariance functions fit the
empirical values for both variables. In contrast, the unique covariance function of the PIT model lies
somewhere between the empirical covariances of the two variables, thus being unable to provide
a satisfactory fit to any of them. Table 1 reports the estimated parameters maximizing PL for both
models. It is interesting to note that the parameter λ is equal to 0 in the FULL model, thus implying
a sort of temporal nugget effect, visible on the temporal covariances in Fig. 3(right). Fig. 4 shows the
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Fig. 4. Empirical and fitted spatial–temporal correlation at u = 0 (black solid lines and circles), u = 1 (blue dashed lines
and squares) and u = 2 (red dotdashed lines and triangles).

spatial (at time lag u = 0) and spatio-temporal covariances (at time lags u = 1, 2) for all variables
and pairs of variables. The empirical covariances between all pairs of stations and the FULL model
with estimated parameters from Table 1 are shown. Overall, the fit is good. On the top left panel
representing the covariance function for the variable R, the very high smoothness of the covariance
function near the origin is clearly visible.

5.4. Prediction

We consider two different prediction settings. In the first setting, prediction of the three variables
at a validation station at day t is made knowing the trivariate data at the other 12 estimation
stations at day t , t −1 and t −2, each station being used as validation station in turn. This setting is
called Spatial Interpolation because data from the same day at different locations are used (as well as
data from previous days). In the second setting, prediction is made with data from days t−1 and t−2
only at all 13 stations. In this second setting, called Temporal Prediction, purely temporal covariances
are thus introduced. The first setting corresponds to interpolation at an ungauged location while the
second setting corresponds to the classical one-day ahead forecast. Predictions are computed from
January 3rd to January 31st since the two previous days must be used as conditioning data. In the
Gaussian framework, the conditional expectation is the best linear unbiased prediction, also called
(co)kriging in the geostatistics literature, while the conditional covariance matrix is the covariance
matrix of the cokriging errors (Chilès and Delfiner, 2012). The conditional variances are identical
for all days since the configuration of the conditioning data remains identical.

The two models (FULL and PIT) are compared by means of four scores: the Mean Square Error
(MSE), the Mean Absolute Error (MAE), the Continuous Ranked Probability Score (CRPS) and the
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Table 2
MSE, MAE, CRPS and LogS of predicted values. ‘‘FULL’’: fully nonseparable model as in (17) with b = 0.1 and ML estimators.
‘‘PIT’’: simplified Proportional-In-Time model with b = 0 and ML estimators. ‘‘All 0s’’: trivial prediction with 0. The best
scores among FULL or PIT are shown in bold font.

MSE MAE CRPS LogS

R T H R T H R T H R T H

Spatial interpolation

FULL 0.594 0.482 0.814 0.574 0.508 0.714 0.412 0.371 0.505 0.188 0.091 0.382
PIT 0.585 0.490 0.814 0.570 0.508 0.716 0.409 0.371 0.505 0.157 0.092 0.381

Temporal prediction

FULL 0.903 0.757 0.708 0.790 0.705 0.673 0.542 0.493 0.475 0.449 0.361 0.329
PIT 0.943 0.763 0.722 0.795 0.717 0.684 0.553 0.497 0.481 0.474 0.367 0.342

Trivial prediction

All 0s 0.923 0.923 0.923 0.805 0.801 0.783 – – – – – –

Estimation standard deviations for FULL

0.0194 0.0176 0.0173 0.0091 0.0088 0.0087 – – – – – –

Logarithmic Score (LogS) (Gneiting and Raftery, 2007). The first two scores, MSE and MAE, compare
the conditional expectation to the true value. The other two scores, CRPS and LogS, assess not only
the prediction but the prediction variance as well. They both measure the discrepancy between the
predictive cumulative distribution function and the true value. More details can be found in Gneiting
and Raftery (2007). Table 2 reports our results. As a benchmark, we also report the scores obtained
with a trivial prediction where all predicted values are set to the expectation equal to 0. Since no
prediction variance is attached in this trivial setting, CRPS and LogS are not available. Recall that
lower scores indicate a better adequacy between the model and the data and that the first three
scores are bounded from below by 0 whilst LogS is unbounded.

For variables R and T, Spatial Interpolation is more accurate than Temporal Prediction. For
variable H, the situation is reverse, in relation with the fact that the associated MSE is close to
that of the trivial prediction. Usually, spatial correlations are higher than one-day-ahead temporal
correlations, but for H the spatial correlation are much weaker than for R and T (see Fig. 4). In the
Spatial Interpolation setting, the two models can hardly be distinguished: the validation scores are
often equal, and when they are not, they are extremely close.

In the Temporal Prediction setting however, the FULL model clearly outperforms PIT for all
variables and for all scores, in accordance with the fact that the FULL model is able to better fit
the data in time thanks to the extra parameters in the temporal matrix-valued covariance function.
In this setting, we also computed the standard deviations of the squared and absolute prediction
errors for the FULL model (those of the PIT model are very close) and divided them by

√
11310,

where 11310 = 13 × 10 × 29 × 3 is the total number of predictions. From this, we see that the
MSE score difference is larger than twice this value for variable R. In addition, the absolute error is
smaller with FULL than with PIT for 6151 predictions out of 11310, which represents 54.4% of the
predictions. As a matter of comparison, the centered 99% interval of a binomial random variable
with probability of success 0.5 and sample size 11310 is [5518, 5792]. The improvement brought
by the FULL model as compared to the PIT model can thus be considered as significant.

For illustration purpose, Fig. 5 shows the predictions of the three variables from January 3rd
to January 31st 2003 at one station (Le Rheu) following the Spatial Interpolation setting. The
predicted residuals were back-transformed to the original scales to be compared to the real values.
An envelope of ±2 conditional standard deviations was added to the plot.

6. Concluding remarks

We have proposed new parametric classes of matrix-valued covariance functions for multivariate
spatio-temporal random fields, where each component has its own smoothness and scale parameter

15

154 Supplementary material



D. Allard, L. Clarotto and X. Emery Spatial Statistics 52 (2022) 100706

Fig. 5. Predictions of R, T and H at Le Rheu from January 3rd to January 31st 2003 following the Spatial Interpolation
setting. Predictions (continuous line), real values (dots) and envelope of ±2 conditional standard deviations (colored
ribbon).

in space and its own correlation function in time. Our constructions generalize the Gneiting class
of space–time covariance functions and are fully nonseparable, in the sense that they are space–
time nonseparable and that they are neither proportional-in-space nor proportional-in-time. This
is a major improvement to most of the models proposed up to date (with the exceptions of
the models in Dörr and Schlather, 2021 and Porcu et al., 2022), where the marginal temporal
correlation function is identical for all the variables, which is overly restrictive. The main ingredient
for achieving this has been the use of pseudo-variograms, as multivariate analogous of Bernstein
functions as pointed out in Dörr and Schlather (2021) and Qadir and Sun (2022) in their discussion
sections.

The main class proposed in Section 4 allows for a general behavior for the spatial scale parameter
as a function of the time lag u, depending on the values taken by the parameters. It is well
known that the Gneiting class of models is positively nonseparable. A very original feature of
our construction is that the models can be negatively nonseparable or asymptotically separable
as |u| → ∞. Since these models are continuous over Rd

× R, their application is not limited to
data organized as regular records at measurement stations. More complex designs are in principle
possible, such as irregular or incomplete records, heterotopic designs or even mobile measurement
devices. We hope to see applications of our models to such datasets in a near future.

From a statistical point of view, the main challenge is to find the right balance between the
flexibility of the model, which must be able to account for the complex interactions between space
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and time across several variables, and the number of parameters, that should remain interpretable
and not too numerous. More complex models should only be preferred if supported by the data.
The dataset analyzed in this work is of moderate size with 10 independent repetitions of 13 ×

31 = 403 space–time trivariate data. Its analysis has shown that our model improves the fitting
and the predictive performances over the more parsimonious model in Bourotte et al. (2016), in
particular when the time dimension is important for prediction. In Section 5.3, it was shown that
the maximum PL difference is around 600. Combined with the improved prediction scores in time,
this provides evidence in favor of our new model for this dataset. The analysis of other datasets, in
particular with more spatial locations, is necessary for confirming this first result.

Estimating the parameters of a parametric model such as the one in Section 5 is a challenge.
Here, we have used Pairwise Likelihood because it was proven efficient on the proportional-in-
time model in Bourotte et al. (2016). It is however relatively slow: reaching convergence with
our optimization algorithm and the function nlmbinb takes typically several hours on a recent
laptop computer. There is thus certainly room for improvement for an easier use of such complex
models. At the cost of even larger computing times, composite likelihood with larger sets of
elements than pairs and full likelihood might be interesting options for a more accurate estimation
of the parameters, considering the complex interactions between space, time and the variables.
Conducting a thorough comparison of several likelihood approaches was out of the scope of this
work and left for future research. In our opinion, more interesting improvements can be expected
by using Vecchia’s Gaussian process approximation (Katzfuss and Guinness, 2021). We are looking
forward to (multivariate) spatio-temporal versions of the GpGp package.

In Appendix A we have proposed even more general constructions where both the spatial scale
and spatial smoothness parameters can vary with the time lag u. We have also designed (see
Appendix C) computationally efficient algorithms for simulating Gaussian random fields with these
covariance functions, which are not restricted in the number of target spatial coordinates and allow
tens of thousands of time coordinates, hence are applicable to large-scale space–time prediction
problems.

All the models presented in this work can easily be generalized to Rd
×Rℓ, where ℓ is an integer

greater than one. Other constructions based on characterizations established in Porcu et al. (2022)
are also possible. Extensions of our models to other spaces that are of interest in environmental
sciences, atmospheric sciences and geosciences, such as a sphere crossed with an Euclidean space
(Sd

× Rℓ), are left to further research.

Appendix A. General forms of Gneiting–Matérn covariances with temporal-lag dependent pa-
rameters

The following theorem provides sufficient validity conditions for a nonseparable matrix-valued
space–time covariance function in which the spatial direct and cross-covariances belong to the
Matérn family, with collocated correlation coefficients, scale and/or smoothness factors that depend
on the temporal lag. The proof follows the line of that of Theorem 2 and is based on the sufficient
validity conditions for matrix-valued spatial Matérn models given in Gneiting et al. (2010, Theorem
1), Apanasovich et al. (2012, Theorem 1) and Emery et al. (2022, Theorems 1, 2, 3). Also, the spectral
algorithm given in Appendix C can be adapted to simulate space–time random fields having such a
covariance.

Theorem 3. Let d, p be positive integers, r and ν be positive real numbers. Let µ0, ν0 and ψ0 be p × p
symmetric conditionally negative semidefinite matrices, the first two ones with positive entries and the
last one with nonnegative entries. Also, let u ↦→ µ(u) − µ0, u ↦→ ν(u) − ν0 and u ↦→ ψ(u) − ψ0 be
p × p matrix-valued pseudo-variograms in R and u ↦→ ρ(u) be a p × p matrix-valued covariance in R.
Then, the matrix-valued function C : (h, u) ↦→ σ(u)M(h; r(u), ν(u)) = [σij(u)M(h; rij(u), νij(u))]

p
i,j=1

with (h, u) ∈ Rd
× R and M the Matérn covariance defined in (3), is positive semidefinite in Rd

× R if
one of the following sets of sufficient conditions holds:
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(A) r(u) =

√
ψ(u)+ν(u)
µ(u) and σ(u) = ρ(u)r(u)−2ν(u)Γ (ν(u)) exp(ν(u))µ(u)−ν(u)−d/2

(B) r(u) = r
√
ψ(u) + ν(u) and σ(u) = ρ(u)Γ (ν(u)) exp(ν(u))

( r(u)
r

)−2ν(u)

(C) r(u) =

√
ν(u)
µ(u) and σ(u) = ρ(u)r(u)dΓ (ν(u)) exp(ν(u))ν(u)−ν(u)−d/2

(D) ν(u) ≤ ν, r(u) =
√
µ(u) and σ(u) = ρ(u) Γ (ν(u))

Γ (ν(u)+d/2)

[
Γ (νii(u)+νjj(u)+d/2)

rij(u)2ν+νii(u)+νii(u)

]p
i,j=1

(E) ν(u) = ν1, r(u) = µ(u) and σ(u) = ρ(u)r(u)−⌊
d+1+3⌈2ν⌉

2 ⌋

(F) r(u) = r1 and σ(u) = ρ(u) Γ (ν(u))
Γ (ν(u)+d/2)

(G) νij(u) =
νii(u)+νjj(u)

2 , r(u) = r1 and σ(u) =
ρ(u)Γ (ν(u))
Γ (ν(u)+d/2)

[√
Γ (νii(u)+d/2)Γ (νjj(u)+d/2)

Γ (νii(u))Γ (νjj(u))

]p
i,j=1

,

with ⌊·⌋ and ⌈·⌉ standing for the floor and ceil functions.

Appendix B. A simulation algorithm for parsimonious models

We provide a simulation algorithm for the parsimonious Gneiting–Matérn and Gneiting–Cauchy
multivariate models of Section 3.

A realization of a p-variate zero-mean random field Z = [Zi]
p
i=1 with approximate Gaussian

distribution and with covariance as in (10) can be constructed from the standardized sum of a
large number M of independent copies of basic random fields, each of which depending only on
two random variables R and Φ , two random vectors V and Ω and a temporal p-variate random
field W . This is summarized in Algorithm 1 hereinafter, where ⟨·, ·⟩ stands for the usual scalar
product in Rd, R ∼ f is the short notation for ‘‘R is distributed according to the distribution f ’’,
U(0, 2π ) is the uniform distribution on (0, 2π ), Nd(0,Σ ) is the d-dimensional normal distribution
with expectation 0 and variance–covariance matrix Σ , and Id is the d× d identity matrix. We refer
to Arroyo and Emery (2021) for criteria on the choice of the distribution f .

The multivariate random field W can be simulated with Algorithm 2 hereinafter, which is
applicable as long as the number of target time coordinates is not too large (in practice, up to a few
tens of thousands), so that the positive semidefinite square root matrix can be computed (Horn
and Johnson, 2013, Theorem 7.2.6). For larger numbers, iterative methods based on Gibbs sam-
pling (Lantuéjoul and Desassis, 2012; Arroyo and Emery, 2020) can be used instead. Alternatively, for
pseudo-variograms in the class presented in Section 4.2, W can be constructed by combinations of
stationary Gaussian random fields and intrinsic random fields with Gaussian increments, for which
discrete (Dietrich and Newsam, 1997; Stein, 2002) and continuous (Emery et al., 2016; Arroyo and
Emery, 2017) spectral simulation algorithms are available.

Appendix C. A spectral simulation algorithm

A realization of a p-variate Gaussian random field Z = [Zi]
p
i=1 with zero mean and matrix-valued

covariance function as in Theorem 2 can be constructed with a central limit approximation, by
rescaling the sum of a large number M of independent copies of basic random fields. Specifically,
let us consider that Z is to be simulated on a grid of nS nodes in Rd crossed with a grid of nT nodes
t1, . . . , tnT in R. Let q = p nT and, for ω ∈ Rd, define the q × q matrix F (ω) = [[Fi,m;j,n(ω)]

p
i,j=1]

nT
m,n=1

whose generic entry is the spectral density of the Matérn covariance h ↦→ σij(umn)M(h; rij(umn), νij),
with umn = tm − tn, evaluated at ω (Chilès and Delfiner, 2012):

Fi,m;j,n(ω) = σij(umn)
π

d
2 2d Γ

(
νij +

d
2

)
rij(umn)d Γ (νij)

(
1 +

|2πω|
2

r2ij (umn)

)−
d
2 −νij

.

In the same way as in the proof of Theorem 2 given in Appendix D.2, the p-variate random field
Z to simulate at the nS × nT target nodes of Rd

× R can be viewed as a q-variate random field
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Algorithm 1 Substitution simulation algorithm

Require: Admissible Matérn or Cauchy parameters as given in Theorem 1
Require: Admissible pseudo-variogram η
Require: A probability density function f on (0,∞) whose support contains the supports of

f1, . . . , fp
Require: A large integer M
1: Initialize Zi(s, t) = 0, ∀i and at each target space–time coordinate (s, t) ∈ Rd

× R
2: for m = 1 to M do
3: Simulate R ∼ f
4: Simulate Ω ∼ Nd(0, Id)
5: Simulate Φ ∼ U(0, 2π )
6: Simulate V ∼ Np(0, σ)
7: At each target time coordinate t , simulate a p-variate random field W = [Wi]i=1,...,p with

stationary Gaussian direct and cross-increments, with zero mean and pseudo-variogram η
8: for each target space–time coordinate (s, t) do
9: Compute

Zi(s, t) = Zi(s, t) +

√
2
M

√
fi(R)
f (R)

Vi cos
(

√
2R ⟨Ω, s⟩ +

|Ω |
√
2
Wi(t) +Φ

)
, i = 1, . . . , p

10: end for
11: end for

Algorithm 2 Matrix decomposition algorithm

Require: Admissible pseudo-variogram η
Require: Set of time coordinates t1, . . . , tnT targeted for simulation
1: Calculate the (p nT ) × (p nT ) variance–covariance matrix (Papritz et al., 1993, Eq. 6)

CW = [[ηi1(tm) + η1j(−tn) − ηij(tm − tn)]
p
i,j=1]

nT
m,n=1

2: Simulate X ∼ Np nT (0, Ip nT )
3: Compute W = [[Wi(tn)]

p
i=1]

nT
n=1 = C1/2

W X, with C1/2
W the positive semidefinite square root of CW

Y at nS nodes of Rd with a multivariate Matérn covariance with parameters
[
[rij(umn)]

p
i,j=1

]nT
m,n=1

,[
[νij]

p
i,j=1

]nT
m,n=1

and
[
[σij(umn)]

p
i,j=1

]nT
m,n=1

. The simulation can be done by means of the continuous
spectral algorithm presented in Emery et al. (2016), which relies on importance sampling and
on the square root decomposition of the q × q positive semidefinite matrix F (Ω ) evaluated at a
random vector Ω . In addition to parameters verifying the conditions of Theorem 2, a probability
density function g that does not vanish on Rd is thus required to define Ω . This is summarized in
Algorithm 3, where ⟨·, ·⟩ stands for the usual scalar product in Rd, R ∼ f is the short notation
for ‘‘R is distributed according to the distribution f ’’ and U(0, 2π ) is the uniform distribution
on (0, 2π ).

The spectral simulation algorithm is applicable when q is not too large, say, less than a few tens
of thousands, so that the square root decomposition of the spectral density matrix F (Ω ) can be
achieved. There is no such restriction on the number of spatial nodes nS , which can be much higher,
insofar as the simulation in space is achieved in a continuous manner by using cosine waves that
can be computed at as many coordinates as desired. We refer to Arroyo and Emery (2021) for a
proper choice of the distribution g .
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Algorithm 3 Spectral simulation algorithm

Require: Admissible parameters for ν, b2 and a2

Require: Admissible pseudo-variogram η
Require: A probability density function g not vanishing on Rd

Require: A large integer M
1: Initialize Y (sk) = 0 for each target spatial coordinate sk, k = 1, . . . , nS
2: for m = 1 to M do
3: Simulate Ω ∼ g
4: Compute the positive semidefinite square root H(Ω ) of matrix 2F (Ω )/g(Ω )
5: Simulate Φ ∼ U(0, 2π )
6: Simulate a random integer Q uniformly distributed in {1, . . . , q}
7: for each target spatial coordinate sk do
8: Compute

Y (sk) = Y (sk) +

√
q
M

H(Ω;Q ) cos(2π⟨Ω, sk⟩ +Φ)

where H(Ω;Q ) denotes the Q -th column of H(Ω )
9: end for

10: end for
11: Z := re-ordering of Y into a p-variate random field at nS × nT space–time coordinates

Appendix D. Technical lemmas and proofs

D.1. Technical lemmas

Lemma 1. Let a = [aij]
p
i,j=1 be a real, symmetric conditionally negative semidefinite matrix. Then, there

exist random variables Y1, . . . , Yp such that:

aij =
ai + aj

2
+

1
2
Var(Yi − Yj), i, j = 1, . . . , p.

Proof. The matrix b = [bij]
p
i,j=1 with bij = aip + apj − aij − app is positive semidefinite (Berg et al.,

1984, Chapter 3, Lemma 2.1). Let Y1, . . . , Yp be Gaussian random variables with variance–covariance
matrix b. Then

1
2
Var(Yi − Yj) =

bii + bjj
2

− bij = aij −
aii + ajj

2
, i, j = 1, . . . , p. □

Property 1. A matrix is conditionally null definite if and only if it is a-separable.

Property 2. All p-separable matrices with nonnegative entries are positive semidefinite.

Property 3. If a ⪯c 0, then exp (−ta) ⪰ 0 for all t ≥ 0.

Property 4. If a ⪯c 0 and b is a-separable, with a and b of size p× p, then a+ b ⪯c 0 and a− b ⪯c 0.
In particular, 1 − b ⪯c 0, where 1 is the all-ones matrix of size p × p.

Proof. The fourth property derives from the first one, which can be proven by using Lemma 1,
and from the fact that the sum of two conditionally negative (positive) semidefinite matrices is
still conditionally negative (positive) semidefinite. For a proof of the second and third properties,
see Berg et al. (1984, Chapter 3, Property 1.9 and Theorem 2.2). □

Lemma 2. Let C : u ↦→ [Cij(u)]
p
i,j=1, u ∈ R, be the matrix-valued covariance function of a p-variate

second-order stationary random field Y in R. Then, for any positive integer nT and real values t1, . . . , tnT ,
the matrix C0 = [[Cij(tm − tn)]

p
i,j=1]

nT
m,n=1 is positive semidefinite.
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Proof. It is immediate because C0 is the variance–covariance matrix of the random vector
[Y (tn)]

nT
n=1. □

Lemma 3. Let a = [aij]
p
i,j=1 be a conditionally negative semidefinite matrix and η : u ↦→ [ηij(u)]

p
i,j=1,

u ∈ R, be the matrix-valued pseudo-variogram (dependent only on the lag vector u) of a multivariate
random field Y = [Yi]

p
i=1 in R with stationary direct and cross-increments. Then, for any positive integer

nT and real values t1, . . . , tnT , the matrix η0 = [[aij + ηij(tm − tn)]
p
i,j=1]

nT
m,n=1 is conditionally negative

semidefinite.

Proof. Let Λ = [[λm,i]
p
i=1]

nT
m=1 be a real vector with entries adding to zero. Define Λ̃ = [̃λi]

p
i=1 and

C̃0 = [[Ci,j;m,n]
p
i,j=1]

nT
m,n=1 with

λ̃i =

nT∑
m=1

λm,i, i = 1, . . . , p

and

Ci,j;m,n = Cov(Yi(tm) − Y1(t1), Yj(tn) − Y1(t1)), i, j = 1, . . . , p, m, n = 1, . . . , nT .

Then:
nT∑

m=1

nT∑
n=1

p∑
i=1

p∑
j=1

λm,iλn,j[aij + ηij(tm − tn)]

=

nT∑
m=1

nT∑
n=1

p∑
i=1

p∑
j=1

λm,iλn,j[aij +
1
2
Var(Yi(tm) − Y1(t1) + Y1(t1) − Yj(tn))]

=

nT∑
m=1

nT∑
n=1

p∑
i=1

p∑
j=1

λm,iλn,j[aij + ηi1(tm − t1) + ηj1(tn − t1)

− Cov(Yi(tm) − Y1(t1), Yj(tn) − Y1(t1))]

=

⎛⎝ nT∑
n=1

p∑
j=1

λn,j

⎞⎠( nT∑
m=1

p∑
i=1

λm,i ηi1(tm − t1)

)
+

( nT∑
m=1

p∑
i=1

λm,i

)⎛⎝ nT∑
n=1

p∑
j=1

λn,j ηj1(tn − t1)

⎞⎠
+

p∑
i=1

p∑
j=1

λ̃ĩλjaij −
nT∑

m=1

nT∑
n=1

p∑
i=1

p∑
j=1

λm,iλn,j Ci,j;m,n.

Since the entries ofΛ add to zero, the first two terms in the last equality are zero, while the last two
terms are negative or zero since, on the one hand, the entries of Λ̃ add to zero and a is conditionally
negative semidefinite and, on the other hand, C̃0 is a variance–covariance matrix, hence positive
semidefinite. □

D.2. Proofs

Proof of Theorem 1. The proof is constructive and based on an extension of the substitution
approach proposed in Allard et al. (2020). Consider the p-variate space–time random field Z =

[Zi]
p
i=1 defined as

Zi(s, t) =

√
2fi(R)
f (R)

Vi cos
(

√
2R ⟨Ω, s⟩ +

|Ω |
√
2
Wi(t) +Φ

)
, (s, t) ∈ Rd

× R,

where R is a nonnegative random variable with a probability density f whose support contains that
of f1, . . . , fp, V = [Vi]

p
i=1 is a centered Gaussian random vector with covariance matrix σ = [σij]

p
i,j=1,

Ω is a standard Gaussian random vector with d independent components, Φ is a uniform random
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variable in (0, 2π ), and Wi, i = 1, . . . , p, are random fields on R whose direct and cross-increments
are second-order stationary, characterized by the matrix-valued pseudo-variogram η, and Gaussian.
The random variable R, the random vectors Ω , Φ and V and the random field W = [Wi]

p
i=1 are

independent.
Following Allard et al. (2020, Theorem 3), it is straightforward to show that, for any i, j =

1, . . . , p, Zi and Zj have a zero mean and that the covariance function between Zi and Zj is

E[Zi(s, t)Zj(s′, t ′)]

=
σij

(2π )d/2

∫
∞

0

∫
Rd

√
fi(r)fj(r) cos(

√
2r ⟨ω, s − s′

⟩) exp
(

−|ω|
2 ηij(t − t ′) + 1

2

)
dωdr

=
σij

(ηij(t − t ′) + 1)d/2
ϕij

(
|s − s′

|
2

ηij(t − t ′) + 1

)
, (s, t) ∈ Rd

× R, (s′, t ′) ∈ Rd
× R.

The cross-covariance between Zi and Zj depends only on the spatial and temporal lags h = s − s′

and u = t − t ′. Accordingly, the random field Z is second-order stationary with zero mean and
covariance function C : (h, u) ↦→

[
Cij(h, u)

]p
i,j=1, with Cij(h, u) given as in Theorem 1. □

Proof of Theorem 2. Without loss of generality, let us consider a regular design of nS × nT space–
time coordinates (s1, t1), . . ., (snS , t1), . . . , (snS , tnT ) ∈ Rd

× R. Define umn = tm − tn, hkl = sk − sl
and

M = [[[σij(umn)M(hkl; rij(umn), νij)]
nS
k,l=1]

p
i,j=1]

nT
m,n=1.

For C to be a positive semidefinite function, we need to show that M is positive semidefinite for
any such design in Rd

× R. This can be done by viewing the p-variate spatio-temporal random
field at nT time coordinates as a q-variate spatial random field, with q = p nT , and using the
sufficient validity conditions for multivariate spatial Matérn models given in Emery et al. (2022).
Specifically, if one sets ψ(u) = βη(u) + b2, under the conditions of Theorem 2, the q × q matrices[
[ψij(umn)]

p
i,j=1

]nT
m,n=1

and
[
[r2ij (umn)ψij(umn) − νij]

p
i,j=1

]nT
m,n=1

are conditionally negative semidefinite
(see Lemma 3). Furthermore, the matrix[

[σij(umn)e−νij rij(umn)2νijψij(umn)νij+d/2/Γ (νij)]
p
i,j=1

]nT
m,n=1

=
[
[ρij(umn)]

p
i,j=1

]nT
m,n=1

is positive semidefinite (see Lemma 2). Hence, according to Emery et al. (2022, Theorem 2B),
the matrix-valued function h ↦→ σij(umn)M(h; rij(umn), νij) is the covariance function of a q-
variate random field Y = [Yv]

q
v=1 in Rd. M is therefore positive semidefinite since it is the

variance–covariance matrix of the random vector [[Yv(sk)]
nS
k=1]

q
v=1. □

Proof of Corollary 1. In Theorem 2, ρ(u) must be a matrix-valued covariance function. Here, we
set ρ(u) = ρ, for all u ∈ R. By comparing (13) with (12), it is thus required that τe−ν/Γ (ν) = ρ is
a positive semidefinite matrix. □

Appendix E. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.
spasta.2022.100706.

Space–time simulations of the proposed model with the parameters described in Section 4.3.
We used Algorithm 3 with M = 20,000 cosine waves. The density g is the spectral density of a
Matérn covariance function with ν = 0.5 and r = 2. All simulations have been obtained with the
same seed for random number generation. They are thus comparable, except in terms of space–time
non-separability.
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Discussion on “Competition on Spatial
Statistics for Large Datasets”

Denis Allard , Lucia Clarotto, Thomas Opitz, and Thomas Romary

We discuss the methods and results of the RESSTE team in the competition on spa-
tial statistics for large datasets. In the first sub-competition, we implemented block
approaches both for the estimation of the covariance parameters and for prediction using
ordinary kriging. In the second sub-competition, a two-stage procedure was adopted.
In the first stage, the marginal distribution is estimated neglecting spatial dependence,
either according to the flexible Tuckey g and h distribution or nonparametrically. In
the second stage, estimation of the covariance parameters and prediction are performed
using Kriging. Vecchias’s approximation implemented in the GpGp package proved to
be very efficient. We then make some propositions for future competitions.

KeyWords: Composite likelihood; Block likelihood; Block approach; Tuckey g and h;
Vecchia’s approximation.

1. INTRODUCTION

We congratulate the authors for organizing such a great and challenging competition. Our
team brings together researchers from two French groups that have long-standing collabo-
rations: the BioSP research unit at INRAE and the Geostatistics team at Mines ParisTech
(formerly known as Ecole des Mines de Paris). They both belong to the RESSTE network1

funded by INRAE. RESSTE organizes scientific animation around models, methods and
algorithms for spatiotemporal data, and it fosters collaborations between statisticians and
other scientists sharing interest in spatial and spatiotemporal data. Forced to be physically
distant due to the Covid-19 sanitary crisis, we set up an efficient working environment
with the help of collaborative online platforms for code, text and vivid discussions. We
were thus able to contribute to all sub-competitions, including with multiple submissions
for sub-competition 2. We enjoyed very much participating to this exercise. In addition to

Authors have contributed equally and are listed in alphabetical order.

D. Allard (B) and T. Opitz, Biostatistics and Spatial Processes (BioSP), INRAE, 84914 Avignon, France
(E-mail: denis.allard@inrae.fr). L. Clarotto and T. Romary, MINES ParisTech, PSL University, Centre de Geo-
sciences, 77300 Fontainebleau, France.
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congratulate Huang, Sameh, Ying, Hatem, David and Marc for the excellent organization,
we sincerely wish to thank them for the nice moments it brought to the four of us.

2. COMPETITION 1: BLOCK APPROACHES FOR GAUSSIAN
PROCESSES

Data are known to have been generated from a Gaussian process with Matérn covariance
function. Maximum likelihood (ML) would thus be the most efficient estimation method,
and conditional expectation, also referred to as Kriging, is optimal for prediction. However,
due to the size of the dataset, neither full ML nor unique neighborhood Kriging can be
achieved, at the exception of ExaGeoStat. Efficient approximations must be sought. Here,
we have opted for block approaches that satisfy the following principles: (i) in each block,
estimation (ML) or prediction (Kriging) is optimal; (ii) blocks should be as large as possible
while taking into account computational issues; (iii) blocks are assumed to be independent
among each other. The approximation lies entirely in point (iii), and it is easy to understand
that (ii) is the key for achieving goodperformances.What “large”means has slightly different
meaning for estimation and for prediction. As regards estimation, some parameters control
local properties, while others are global. Therefore, blocks for estimation need to have a large
spatial extent. For plug-in Kriging, only local information is necessary. Prediction blocks
are thus local, containing as many data points as possible. Details are provided below.

2.1. ESTIMATION

First, a rough estimation of the parameters was performed on each dataset with weighted
least squares fits for experimental variograms using the package RGeostats. These esti-
mates, from which an approximate effective range ER = β̂

√
12ν̂ was computed, allowed

us to gain a general picture of the experimental design similar to that shown in Table 1 in
Huang et al. (2021). In particular, ER was clearly close to the size of the domain for some
datasets.

In a second stage, estimation of the parameters was performed using a maximum com-
posite block-likelihood (BL) method. Blocks are characterized by their size (number of data
points, ND), shape and location of the data within the blocks. Nugget (τ 2 ≥ 0) and smooth-
ness (ν > 0) are local parameters, whilst range (β > 0) and sill (σ 2 > 0) are non-local.
When τ 2 = 0, Zhang (2004) showed that the only quantity that can be efficiently estimated
in an in-fill asymptotic framework is σ 2β−2ν . Efficient estimation of all parameters thus
requires a “large domain” framework that allows sampling small distances for estimating τ 2

and ν, and intermediate to large distanceswith respect to ER for estimatingβ andσ 2. In each
block, the sub-sample must be built so as to sample all distances from 0 to a multiple of the
practical range. Data separated by a distance larger than 2 to 3 times the practical range are
useless for estimating nugget, regularity and range parameters and can be excluded. Here,
blocks were disks with a radius set to 1.5ER, centered on a regular B × B grid covering the
domain. ND points were then sampled at random within each disk with a weight decreasing
linearly from the center (where it is equal to 1) to the edge of the disk (where it is equal to 0).
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After some experiments, the final setting was B = 15 and ND = 500. For datasets G4/G12,
when the smoothness parameter is large, the covariance matrix was seen as singular in R; in
these cases, ND was set to 400. The function nlbmin was used for minimizing the nega-
tive log-BL. Initial values for the optimization were given by the WLS estimates of the first
stage. Since blocks are random, this operation is repeated 5 times for each dataset. For each
parameter, the average of the estimates was computed. This average is the final estimate.

2.2. PREDICTION

A “local unique neighborhood” technique is adopted, in which Kriging is performed at
all locations belonging to the same block using a common neighborhood. To this end, a
K × K regular grid is defined on the domain, and one Kriging system is built for each mesh
of that grid, hereafter referred to as target block. The neighborhood of a given target block
is a disk of radius 1.5

√
2/K , so that all data belonging to the 3× 3 meshes surrounding the

center of the target block are part of the Kriging system. Smaller K yields higher precision
but is computationally more demanding. Larger K leads to smaller neighborhood and lower
precision. Computing time decreases rapidly as K increases, roughly at a K−4 rate. A good
trade-off between performance and speed was obtained with K = 31. The average number
of training data per Kriging system was therefore around 1200.

2.3. DISCUSSION

Overall these block approaches performed relatively well, ranking fourth and second
in sub-competitions 1a and 1b, respectively. It is noticeable that in sub-competition 1b the
plug-in block Kriging described above was only outperformed by ExaGeoStat using the true
model, whereas ExaGeoStat with the estimated parameters performed slightly less well. As
expected, we experienced some difficulties for the simultaneous estimation of β, ν and
σ 2 for smooth GPs with large effective range, i.e., when ν > 0.6 and ER > 0.1. G4 is
particularly poorly estimated, with simultaneous underestimation of the sill (σ̂ 2 = 1.2092)
and underestimation of the range (β̂ = 0.0486), resulting in a high MMOM and RMSE—
even though MLOE is relatively small. Estimating ν when the regularity is high in the
presence of a nugget is very challenging (G12, G13 and G15), as can be seen in Figures 2
and S1. In these cases, the poor estimation translated into high RMSEs for plug-in Kriging.

3. COMPETITION 2: TRANS-GAUSSIAN MODELS

In this competition, the generating mechanism of the data was supposed to be unknown.
Therefore, we first explored marginal distributions of the data using tools such as boxplots
and histograms to check if a Gaussian model for the marginal distributions makes sense. If
not, we followed the well-established statistical practice of using a marginally transformed
Gaussian model. This approach, among which the Box–Cox transformation is the most
popular representative, allows accommodating data features such as heavier-than-Gaussian
tails or asymmetry of upper and lower tails.
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Table 1. Mean, minimal and maximal value of the datasets of competition 2

Dataset Min Mean Max

2a1 −7.1426 1.5141 36.0287
2a2 −7.3185 2.2249 126.789
2b1 −3.2676 0.0652 4.1168
2b2 −7.2361 1.504 37.1778

Figure 1. Histograms of the datasets of competition 2 with superimposed Gaussian density when adequate .

3.1. EXPLORATION OF THE DATA

The first step of the solution to sub-competitions 2a and 2b is related to the exploratory
analysis of the dataset. Some statistical quantities such as the mean, the minimum and
maximum values (Table 1) were computed along with the histograms for each of the four
datasets (Fig. 1a). It is clearly visible that only one of the four datasets (2b1) could be
considered as marginally Gaussian distributed. The histograms of the other three datasets
(2a1, 2a2, 2b2) present heavy tails toward high values. This fact is highlighted also by the
maximal values of the datasets, which are extremely far from the mean if compared to
the corresponding minimum values, showing asymmetry of tails. These insights suggest
that the non-Gaussian datasets could be transformed to Gaussian models before applying
geostatistical inference and prediction. Various types of transformations were inspected as
reported in the next section.

3.2. TRANSFORMED MARGINS

3.2.1. Tukey g and h Transform

A flexible parametric marginal transform of Gaussian variables was proposed by
J.W. Tukey and is known as the g and h distribution (Jorge and Boris 1984). It has been
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recently studied for spatial Gaussian fields by Xu and Genton (2017). Tukey g and h trans-
formation function is strictly monotonic and defined as follows:

τg,h(x) =
{

1
g (exp(gx) − 1) exp

(
hx2/2

)
, g �= 0,

x exp
(
hx2/2

)
, g = 0,

x ∈ R, h ≥, g ∈ R. (1)

Given a standard Gaussian variable W , the Tukey g and h distribution is constructed as

Z = β0 + β1τg,h(W ),

with parameters to control location (β0), scale (β1), asymmetry (g) and tail heaviness (h).
No external predictor variables were provided for the dataset, and visually we could

not detect any other trends or anisotropies in the data. Therefore, we used a stationary and
isotropic Tukey g and h random field model, which is obtained by applying the transfor-
mation (1) to a standard Gaussian random field with the Matérn covariance. We estimated
the four parameters for each of the fields through the independence likelihood (neglecting
spatial dependence) using the R library OpVaR; histograms of data after the inverse trans-
formation to the standard Gaussian margins are shown in Figure 1b and correspond well to
the superposed standard Gaussian density.

3.2.2. Nonparametric Transform

The estimation of the parameters of the Tukey g and h transform relies on an approximate
parameter estimation procedure described below, which may conduct to underestimation or
overestimation of the transformation parameters. Therefore, we also investigated the use of
simple nonparametric transforms, namely a log transform for datasets 2a1 and 2b2 and a
log-log transform for dataset 2a2. Their adequacy was checked by a visual inspection of the
histograms of the transformed data (not represented here), in particular their symmetry.

3.3. ESTIMATION AND PREDICTION

Joint estimation of marginal and dependence parameters can be useful to allow for trans-
fer of information between the models for margins and dependence, and for very accurate
assessment of uncertainty in estimates. However, two-step approaches with separate estima-
tion of marginal parameters, followed by marginal transformation to the standard Gaussian
scale and estimation of the Gaussian correlation function, have the advantage of being more
robust. In particular, they allow for the combination of different estimation techniques for
margins and dependence. We here adopt two-step approaches. In the first step, which is
common to two of our three approaches, we implement two substeps: (1) estimation of
the marginal parameters β0, β1, g, h using the independence likelihood (i.e., by neglecting
spatial dependence); (2) marginal transformation to the standard Gaussian scale using the
parameters estimated in substep 1. In the last approach, we used a nonparametric transform.
The following two subsections detail estimation after transformation of data to the standard
Gaussian margins.
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3.3.1. Bootstrap Approach

This approach is designed to run fast with moderate computing resources, such as those
available on a personal computer. We proceed as follows using the pretransformed data:

1. Bootstrap estimations (25 samples) ofMatérn correlationparameters usingmarginally
pretransformed data: subsampling (without replacement) of 500 observations, and
estimation of the scale and shape parameters of the Matérn correlation function.

2. The final estimated Matérn correlation parameters are set to the median of the boot-
strap estimates.

3. Simple Kriging prediction is performed on the standard Gaussian scale by using k
nearest neighbors of observed locations around the location to predict.

4. Standard Gaussian predictions are transformed back to the original scale by using
the direct Tukey g and h transformation in (1) with parameters estimated in Step 1.

We have used validation data to choose among several values k = 25, 50, 100 of nearest
neighbors in Step 5. The implementation was realized using the R library CompRandFld

for estimation of covariance parameters and Kriging.

3.3.2. GpGp

Vecchia approximations are a particular case of composite likelihood methods. They
can also provide an approximation of the parent Gaussian process (Katzfuss and Guinness
2021). The computations are based on the Cholesky factor of the inverse covariance matrix
that can be computed explicitly and that is sparse by construction. Therefore, they allow for
numerically efficient inference and prediction. The package GpGp proposes an implemen-
tation of a Vecchia approximation that uses an elaborate way to order and group the data
into conditionally independent blocks (Guinness 2018). It also provides an implementation
of the Fisher scoring algorithm for the ML estimation of the parameters (Guinness 2021).
We have used this package for parameter estimation and prediction for marginally pretrans-
formed data in datasets 2a1, 2a2 and 2b2, or directly for dataset 2b1. Then, the predictions
were transformed back into their original scale. The only parameter to be set is the number
of neighbors to be considered in the groups for estimation and prediction. It has been set by
trial and error regarding the prediction performances on out-of-sample validation data.

3.4. VALIDATION

After transformation of the marginals (either through a nonparametric approach or
through Tukey g and h), two parameters had to be set for the Vecchia approximation
approach: the number of neighbors in the estimation step, ne, and the number of neigh-
bors in the prediction step, n p. A holdout validation method was used to define the best ne
and n p. Each time 70000 (resp. 700000) data were selected as training points in the datasets
of sub-competition 2a (resp. 2b), and RMSE was computed over the 20000 (resp. 200000)
remaining points. The values of ne and n p leading to the best RMSE were ne = 50 for
datasets in 2a, ne = 30 for datasets in 2b and n p = 100 for all datasets. In the bootstrap
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Table 2. Submissions of the RESSTE team for competition 2

Submission Margins (except 2b1) Estimation+Prediction Rank 2a Rank 2b

Tukey-g-h-trans-bootstrap Tukey g-h Bootstrap (3.3.1) 5 6
Tukey-g-h-trans-GPGP Tukey g-h GpGp (3.3.2) 1 1 (ties)
nonpara-trans-GPGP Non-parametric GpGp (3.3.2) 2 (ties) 1 (ties)

approach (Sect. 3.3.1), the size of the nearest neighbor Kriging neighborhood was set to 25
(Table 2).

3.5. DISCUSSION

Several methods were initially considered to treat the datasets of sub-competitions 2a
and 2b, coming either from more classical geostatistical analyses or from machine learning
techniques. Data-based methods such as random forests and neural networks, even when
the spatial coordinates were combined with the addition of local features (mean/min/max
values computed on K nearest neighbors), led to meager results in prediction.

Regarding competition 2, the type of point prediction to use depends on the score to be
optimized. The conditional mean is known to minimize mean-squared error (MSE), and it
corresponds to Kriging predictions. However, when marginal transformations are involved,
the transformed conditional mean prediction is not equal to the conditional mean on the
transformed scale. When the target is to minimize mean absolute errors, then conditional
medians provide optimal predictions. With Gaussian data, conditional means and medians
coincide. To compute conditional medians, we can simply transform data to the Gaussian
scale, predict on the Gaussian scale, and then transform back to the original data scale.
In competition 2, the target score was MSE. Due to very small prediction variances on
the Gaussian scale, we found only very small differences between conditional median and
conditional mean predictions on the non-Gaussian marginal scale of the original data. In
some approaches (e.g., the bootstrap approach), we have therefore submitted marginally
transformed Gaussian Kriging predictions.

4. FUTURE DIRECTIONS

This competition has explored different methods for the estimation of the parameters, and
for the prediction (Kriging), of Gaussian and Tukey g and h trans-Gaussian random fields.
Among these methods, several have achieved very good performance, as shown in Huang
et al. (2021). More challenging setups than classical point data could also be considered,
such as preferential sampling or the addition of location errors. An interesting question is
whether the methods described in this paper would be efficient on gridded data, or whether
grid-specific approaches would perform better. In particular, the case of gap filling (large
areas without observations) could also be investigated.
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Future competitions could also considermore challenging types of trans-Gaussianmodels
arising in the analysis of agricultural, biological and environmental data, such as zero-inflated
data, count data andother discrete data, or compositional data.Non-Gaussianmargins arising
from non (trans-)Gaussian random fields such as skew-Gaussian, skew-elliptical or max-
stable random fields could also be considered.

Another very interesting extension would be to increase the dimensionality of the data by
considering multivariate random fields, spatiotemporal random fields, or both. In different
communities, such as machine learning, sensitivity analysis and uncertainty quantification,
Gaussian processes are used in high-dimensional spaces. Testing the methods that have
been developed successfully in spatial statistics to the problems faced by these communities
offers interesting perspectives.

To provide a more realistic setting of real data analyses, future comparisons of prediction
methods could also explore nonstationary settings with trend functions that may depend on
external predictors, and with nonstationary covariance functions.
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RÉSUMÉ

L'introduction de modèles statistiques inspirés de la physique des phénomènes sous-jacents et numériquement efficaces

est d'un intérêt croissant pour la prédiction de processus spatio-temporels en sciences environnementales. Les grands

jeux de données spatio-temporelles nécessitent de nouvelles méthodes numériques efficaces. L'approche par Equations

aux Dérivées Partielles Stochastiques (EDPS) s'est avérée efficace pour l'estimation et la prédiction dans un contexte

spatial. Nous présentons ici une EDPS d'advection-diffusion avec une dérivée de premier ordre en temps qui définit une

grande classe de modèles spatio-temporels non séparables. On construit une approximation de la solution de l'EDPS par

un champ aléatoire Markovien Gaussien en discrétisant la dérivée temporelle par la méthode des différences finies (Euler

implicite) et en résolvant l'EDPS spatiale par la méthode des éléments finis (Galerkin continu) à chaque pas de temps. La

technique de stabilisation "Streamline Diffusion" est introduite lorsque le terme d'advection domine la diffusion. Des méth-

odes de calcul efficaces sont proposées pour estimer les paramètres de l'EDPS et pour prédire le champ spatio-temporel

par krigeage, ainsi que pour effectuer des simulations conditionnelles. L'approche est appliquée à des jeux de données

de rayonnement solaire et de vitesse du vent. Ses avantages et ses limites sont examinées, et de nouvelles perspectives

de travail sont envisagées, notamment afin de proposer une extension dans un cadre non stationnaire. On présente

également un travail portant sur la généralisation non séparable de la classe de Gneiting des fonctions de covariance

spatio-temporelles multivariées. Le principal potentiel de l'approche est la possibilité d'obtenir des modèles entièrement

non séparables dans un cadre multivarié, et les avantages sont illustrés sur un ensemble de données météorologiques

trivariées. De plus, on propose une analyse de méthodes d'estimation et de prédiction approximées pour les données

spatiales et spatio-temporelles, motivée par l'objectif de parvenir à un compromis entre l'efficacité statistique et la com-

plexité computationnelle. Ces méthodes se sont avérées efficaces pour l'estimation des paramètres et la prédiction dans

le contexte de la "Compétition de statistiques spatiales pour les grands jeux de données" organisée par la King Abdullah

University of Science and Technology (KAUST) en 2021 et 2022. Enfin, d'autres pistes de recherche sont envisagées et

examinées.

ABSTRACT

In the task of predicting spatio-temporal fields in environmental science using statistical methods, introducing statistical

models inspired by the physics of the underlying phenomena that are numerically efficient is of growing interest. Large

space-time datasets call for new numerical methods to efficiently process them. The Stochastic Partial Differential Equa-

tion (SPDE) approach has proven to be effective for the estimation and the prediction in a spatial context. We present

here the unsteady advection-diffusion SPDE which defines a large class of nonseparable spatio-temporal models. A

Gaussian Markov random field approximation of the solution to the SPDE is built by discretizing the temporal derivative

with a finite difference method (implicit Euler) and by solving the spatial SPDE with a finite element method (continu-

ous Galerkin) at each time step. The Streamline Diffusion stabilization technique is introduced when the advection term

dominates the diffusion. Computationally efficient methods are proposed to estimate the parameters of the SPDE and

to predict the spatio-temporal field by kriging, as well as to perform conditional simulations. The approach is applied to

solar radiation and wind speed datasets. Its advantages and limitations are discussed, and new perspectives for future

work are envisaged, especially involving a nonstationary extension of the approach. As a further contribution of the PhD,

the nonseparable generalization of the Gneiting class of multivariate space-time covariance functions is presented. The

main potential of the approach is the possibility to obtain entirely nonseparable models in a multivariate setting, and this

advantage is shown on a weather trivariate dataset. Finally, a review of some methods for approximate estimation and

prediction for spatial and spatio-temporal data is proposed, motivated by the objective of reaching a trade-off between

statistical efficiency and computational complexity. These methods proved to be effective for parameter estimation and

prediction in the context of the "Spatial Statistics Competition for Large Datasets" organized by the King Abdullah Univer-

sity of Science and Technology (KAUST) in 2021 and 2022. Lastly, possible further research directions are discussed.

KEYWORDS

Geostatistics; Spatio-temporal modeling; Numerical analysis; SPDE; Environmental statistics.
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