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Abstract

The past years have seen a great progress of deep generative models, including Generative
Adversarial Networks (GANs). Notably, they can synthesize high-resolution images, sometimes
indistinguishable from real images. Deep generative models were also at the root of empirical
successes such as music generation or molecular discovery. However, we lack a fundamental
understanding of the capabilities and limitations of deep generative models. In this thesis,
we first characterize a model misspecification of generative models with connected output
distributions, such as GANs or normalizing flows. Indeed, such models can not perfectly fit a
target distribution composed of several disconnected modes. We analyse theoretically their best
achievable performance in the setting of disconnected target distribution, and which geometrical
structure can allow them to achieve best performance. Moreover, we propose methods that
improve the performance of GANs by making them more amenable for disconnected data
modelling.

In the second part of the thesis, we aim to improve image editing techniques thanks to deep
generative models. First, we leverage a pre-trained unconditional generative model and show
that it can perform a wide range of image editing tasks without re-training. Second, we build on
adversarial learning to improve virtual try-on models, which consist in replacing the clothing
item on an image of a person.

Key-words: GANs, generative models, adversarial training, image editing.

Résumé

Les dernières années ont vu de grands progrès des modèles génératifs profonds, et notamment
des Réseaux Adversaires Génératifs (GANs). Ils peuvent notamment synthétiser des images
haute résolution indiscernables des images réelles. Les modèles génératifs profonds ont égale-
ment été à l’origine de succès empiriques tels que la génération de musique ou la découverte
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moléculaire. Cependant, nous manquons d’une compréhension fondamentale des capacités
et des limites des modèles génératifs profonds. Dans cette thèse, nous caractérisons d’abord
une limitation des modèles génératifs modélisant une distribution connexe, tels que les GANs
ou les flots normalisés. En effet, de tels modèles ne peuvent pas s’adapter parfaitement à une
distribution cible composée de plusieurs modes déconnectés. Nous analysons théoriquement
leur meilleure performance réalisable dans le cadre de distributions cibles déconnectées, et nous
présentons une structure géométrique leur permettant d’atteindre une performance optimale.
De plus, nous proposons des méthodes pour améliorer les GANs en les rendant plus adaptés à
la modélisation de données déconnectées.

Dans la deuxième partie de la thèse, nous visons à améliorer les techniques d’édition
d’images grâce aux modèles génératifs profonds. Tout d’abord, nous nous appuyons sur un
modèle génératif non conditionnel et pré-entraîné, et montrons qu’il peut effectuer une large
variété de tâches d’édition d’images sans réentraînement. Deuxièmement, nous nous appuyons
sur l’apprentissage adversaire pour améliorer les modèles de cabine d’essayage virtuel, qui
consistent à remplacer l’article vestimentaire sur une image d’une personne.

Mots-clés: GANs, modèles génératifs, entraînement adversaire, édition d’images.
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Chapter 1

Introduction

Contents
1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis outline and contributions . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Goals

The goal of this thesis is to understand and develop the capabilities of deep generative models
for natural image generation and manipulation. Generative modelling has applications in
several areas of machine learning, such as semi-supervised learning or adversarial robustness.
Generative modelling aims at learning the distribution of data by having access to a discrete set
of samples.

Learning natural image distributions with deep generative models. Learning the underly-
ing distribution of natural images is a great tool for designing principled algorithms. However,
natural images distributions are composed of very different visual modalities. For example,
take the example of a dataset composed of animals and vehicles. It is very likely impossible to
naturally interpolate between these two types of images. How do deep generative models handle
these discontinuities and this multi-modality? We present new results on this questions in
chapter 3. Specifically, in section 3.2, we characterize the limitations of deep generative models
on multi-modal distributions and propose a heuristic method to improve pre-trained Generative



2 Introduction

Adversarial Networks (GANs). In section 3.3, we propose a new analysis of the latent space of
deep generative models. We prove that there exists an optimal geometric structure that partitions
the Gaussian latent space of generative models. Moreover, we demonstrate experimentally that
the appearance of this structure is positively correlated with the performance of such models,
and that it can be enforced. In section 3.4, we derive a learning-based method that models a
rejection mechanism in the latent space of pre-trained GANs. Interestingly, it allows to model
disconnectedness in the generated distribution.

Leveraging deep generative models for image manipulation. Image manipulation en-
compasses a wide range of tasks, from scribble-based editing to image denoising or virtual
try-on. It has exciting applications, such as creating intelligent virtual assistants for artists
or developing tools for e-retailers that increase client engagement. However, it suffers from
inherent difficulties: 1) their objective might be ill-defined, and tough to define; 2) the ideal data
for these tasks might be complex and costly to collect. In section 4.2 we leverage a mask-based
training objective and show that it allows to learn a single generative model able to tackle
various image editing tasks, like image inpainting and image composition. In chapter 4.3, we
approach the virtual try-on task with a teacher-student strategy, augmented with adversarial
training, that allows to train the student model on a ideal synthetic dataset created by the teacher
model.

1.2 Motivations

The development of deep learning methods for natural image generation and manipulation is
motivated by a wide range of applications, from molecular generation in biology (Prykhodko
et al., 2019) to designing SDE solvers in physics (Yang et al., 2020b). We present some of the
main applications below.

Arts and advertising. The creation and editing of visual content is a highly valued skill,
particularly in digital advertising, where visually appealing content is key. However, the
process of creating product catalogues can be both expensive and complex, particularly when
dealing with large and heavy furniture items. Furthermore, image editing demands extensive
human expertise and knowledge of professional software. Therefore, the development of smart
and automatic image editing techniques would greatly benefit marketing teams by expediting
the process of transforming advertising ideas into visually appealing content. Additionally,
automatic image editing has the potential to enhance advertising personalization. For instance,
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in Figure 1.1, a virtual try-on system is showcased, which would enable e-shoppers to try on
clothing items on a picture of themselves.

Fig. 1.1 Virtual try-on: this task consists in warping a clothing image on the image of a person.
It has the potential to improve the user experience in e-shopping, since it would allow users to
try clothing items on a picture of themselves.

Intelligent virtual assistants have the potential to transform the way artists work, revolu-
tionizing the creation process of artworks through either pure generation or human-guided
iterative procedures. This innovation has already sparked significant interest, with AI-designed
artworks selling for high prices in 2018. Recently, large text-to-image generation models,
such as Parti (Yu et al., 2022) and Stable Diffusion (Rombach et al., 2022), have achieved
impressive performances, as demonstrated in Figure 1.2. Such models have been leveraged
by some artists to create generated animation movies. These developments suggest that the
potential of intelligent virtual assistants is vast and that they could accelerate the art creation
process.

Reducing the need for labels with deep generative models. Early successes in deep
learning were achieved through large-scale supervised learning, which is time-consuming and
demanding of significant human resources. However, this approach is not feasible, or at least
very costly, for challenging tasks that require detailed annotations, such as image segmentation,
which necessitates per-pixel labeling. Deep generative modelling has demonstrated that it
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Fig. 1.2 Text-to-image generation and editing: Hertz et al. (2023) introduce a method to
improve the generated images from text-to-image models, specifically Stable Diffusion in this
instance. The process involves generating an image from a given text using Stable Diffusion
and allowing the user to refine the generated image by modifying the prompt. This can be
achieved by adjusting the intensity of a descriptor (such as crowded or fluffy), adding new text,
or modifying existing words.

can enhance the capabilities of deep learning models with minimal labeling by learning the
underlying data structure without accessing any labels. For instance, Li et al. (2022) employed
deep generative models to generate large-scale datasets with pixel-wise annotations of objects
in images. However, the mechanisms that support the separation of data modes in the latent
and feature space of deep generative models are not fully understood. Therefore, we argue
that a better comprehension of these mechanisms could enable even more effective use of deep
generative models in this context.

Fig. 1.3 Reducing the need for labels: Li et al. (2022) exploit deep generative models to
construct large-scale datasets with pixel-wise annotations for image segmentation. During
training, the model has only access to a few images with pixel-wise segmentation masks.
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Enhancing adversarial robustness with deep generative models. Deep learning models
used for discriminative tasks such as image classification or image segmentation have a well-
known lack of robustness. For instance, adversarial attacks are a highly studied phenomenon in
which the output of a classifier is modified by adding a small, imperceptible amount of noise
to an image. Surprisingly, a deep learning-based classifier can even be fooled by modifying a
single pixel of an image. Fortunately, there have been several proposed defense algorithms that
leverage deep generative models. The intuition behind this approach is that adversarial attacks
use the low-dimensional manifold structure of the data and send adversarial points to unseen
portions of the data space. By utilizing deep generative models, we can project the attacked
images back to the data manifold. For example, Song et al. (2018) use neural density estimators
(PixelCNN), while Samangouei et al. (2018) leverage Generative Adversarial Networks to
improve the robustness of deep learning-based classifiers.

1.3 Context

In recent years, the field of deep learning has undergone rapid progress, particularly in the
development of deep generative models. GANs were invented in 2014 (Goodfellow et al.,
2014), and represent a significant breakthrough in the application of deep neural networks for
learning probability distributions and synthesizing images. Initially, these models were only
used for grayscale 32×32 images. A few years later, Brock et al. (2019) successfully extended
GANs to class-conditional synthesis on ImageNet (Deng et al., 2009) and Karras et al. (2018,
2019a) scaled GANs to high-resolution 1024×1024 images using multi-scale approaches and
specific architectural design.

This thesis seeks to address and overcome the limitations of deep generative models,
specifically Generative Adversarial Networks (GANs), on multi-modal target distributions.
Additionally, we aim to employ these models to derive smarter algorithms for image editing.
Several factors have contributed to these developments. First, the availability of large-scale
datasets in computer vision has been increasing. Second, Graphics Processing Units (GPUs),
used for computing deep learning experiments, have become more efficient and easier to use.
This progress in performance is known as Huang’s law, which posits that GPUs are advancing
at a faster rate than standard Central Processing Units (CPUs). At Criteo AI Lab, we have
access to a cluster with nodes consisting of two NVIDIA Tesla V100 GPUs with 16GB of
RAM. For larger experiments, we also have access to a large machine with eight NVIDIA Tesla
V100 GPUs, each with 32GB of RAM. Third, open-source libraries such as PyTorch (Paszke
et al., 2019) or Tensorflow (Abadi et al., 2016) have greatly facilitated the prototyping of deep
learning models. In this thesis, PyTorch was utilized for the majority of the experimental
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work. Finally, the progress of deep generative models has been driven by both fundamental
and applied research, including the development of new layers, architectures, or optimization
methods. The code for recent methods is often open-sourced, along with the pre-trained model
weights. All of these factors have facilitated rapid progress in deep generative models and have
yielded impressive results, such as large-scale text-to-image synthesis (refer to Figure 1.2).

1.4 Challenges

When tackling the goals presented above (learning image generation and editing with deep
neural networks), we face two main challenges.

Multi-modality and high diversity of natural image distributions. Looking from a histori-
cal perspective, initial computer vision datasets consisted of only a small number of classes
with limited intra-class variability, such as black-and-white digits (LeCun et al., 1998). How-
ever, benchmark datasets have grown increasingly complex over time, with current large-scale
datasets often containing more than a thousand classes, such as ImageNet with 21k classes
(Deng et al., 2009). Consequently, such datasets exhibit high variability and diversity in the
underlying and unknown target distribution. However, when working with such complex
distributions, deep generative models may have two potential drawbacks. These models may
occasionally overlook some modes, resulting in the well-known phenomenon of mode collapse,
or they may generate low-quality data points that are located between data modes.

Lack of data for learning-based image editing. The success of deep learning models arise
from well-defined training objectives optimized over large sets of training data. However, in the
case of image editing tasks, such ideal combination of datasets and proper training objectives
are often nonexistent. For instance, consider the task of scribble-based image editing, where
a user edits an image with scribbles and the objective of the model is to produce a realistic
final image while taking the user’s scribbles into account. The ideal dataset for this task would
comprise input images with scribbles and their corresponding edited versions. Unfortunately,
constructing such a dataset would require a significant investment of time and effort from
professional graphic designers. As a result, a supervised learning approach to this problem
becomes infeasible. Instead, in this thesis, we investigate the use of pre-trained generative
models to project images with scribbles onto the manifold of real images, thus offering a viable
solution.



1.5 Thesis outline and contributions 7

1.5 Thesis outline and contributions

We present the thesis outline along with the contributions:
Chapter 2: Related work. we provide a comprehensive overview of the various approaches

for deep generative modelling. Specifically, we discuss the different families of models,
including Generative Adversarial Networks, Autoregressive Models, and Score-Based Models.
Additionally, we present standard techniques for manipulating images using deep neural
networks.

Chapter 3: Learning multi-modal distributions with deep generative models. In this
chapter, we focus on the challenge of learning multi-modal distributions with push-forward
generative models such as GANs and VAEs. We make three distinct contributions in this area:

• Section 3.2: learning disconnected manifolds: a no GANs’ land. We formalize the
fundamental tradeoff that GANs face when learning multi-modal data, and propose a
novel solution to this problem. Indeed, since GANs have a connected output distribution,
they either fit all modes of the data and generate low-quality points, either ignore all but
one mode and generate only good quality points. Thus, we give an upper-bound on the
maximum attainable precision of GANs. This upper-bound depends on the Lipschitz
constant of the generator, on the number of modes in the data and on the minimal
distance between modes. Moreover, building on our theoretical analysis, we propose
the ‘Jacobian-Based Truncation’ method for GANs. This approach involves rejecting
samples with the highest Jacobian Frobenius Norm of the generator. This resulted in the
following publication:

Ugo Tanielian, Thibaut Issenhuth, Elvis Dohmatob, and Jérémie Mary. Learning
disconnected manifolds: a no gan’s land. (2020) In International Conference on Machine
Learning (ICML).

• Section 3.3: unveiling the latent space geometry of push-forward generative models.
We derive a new theoretical analysis on the problem of learning disconnected manifolds
with deep generative models formulated as push-forward models of a Gaussian latent
distribution (such as GANs or VAEs). We study the role of the latent space geometry
on the performance of such push-forward generative models. Notably, we prove a
sufficient condition for their optimality: generators that structure their latent space with a
specific geometry called ‘simplicial cluster’ are optimal. We show that this also verified
experimentally with GANs. The more GANs cluster the data modes in linear regions, the
better their performance. Additionally, we propose a truncation method that enforces a
‘simplicial cluster’ structure and improves performance of GANs. This work resulted in
the following publication:
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Thibaut Issenhuth, Ugo Tanielian, Jérémie Mary, David Picard. Unveiling the latent-
space geometry of push-forward generative models. (2023) International Conference on
Machine Learning (ICML).

• Section 3.4: latent reweighting for GANs. Drawing from the preceding analysis,
we present a novel approach for enhancing the quality of pre-trained GANs through a
learning-based method. Specifically, we introduce an additional network that predicts
importance weights from latent vectors, with the objective function of this network
being adversarial. Our approach offers several advantages, as latent importance weights
can be assigned zero values, allowing the generated distribution to model disconnected
distributions effectively. Moreover, as the re-sampling mechanism occurs in the latent
space, our approach is computationally efficient and can be rapidly executed at inference
time. This work resulted in the following publication:

Thibaut Issenhuth, Ugo Tanielian, David Picard, Jérémie Mary. Latent reweighting, an
almost free improvement for GANs. (2022) IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV).

Chapter 4: image editing with deep neural networks. This chapter focuses on the
development of deep learning methods that can perform image editing tasks without requiring
direct supervision. We present two contributions. The first concerns a generalist model for
image editing, and the second is designed for image-based virtual try-on:

• Section 4.2: EdiBERT: a generative model for image editing. The first section of
this chapter introduces a novel approach that enables multiple image editing tasks to be
performed using a single trained model. To achieve this, we utilize a training objective
that shares similarities with most editing tasks - generating a highly realistic image
from a low-quality input. Our proposed approach, named EdiBERT, is a bi-directional
transformer that re-samples image patches conditioned on the entire input image. Trained
with a single generic objective, EdiBERT outperforms other multi-task editing methods,
such as GANs’ inversion. This method is particularly well-suited for tasks that lack
large-scale conditional datasets, such as image composition or scribble-based editing.
This chapter is based on the following publication:

Thibaut Issenhuth, Ugo Tanielian, Jérémie Mary, David Picard. EdiBERT: a generative
model for image editing. (2022) Transactions on Machine Learning Research (TMLR).

• Section 4.3: a parser-free virtual try-on. The virtual try-on task poses a significant
challenge due to the lack of an ideal dataset, resulting in a complex pipeline comprising
multiple neural networks for human parsing, pose estimation, image warping, and image
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composition. The pipeline is computationally intensive, with pre-processing steps (human
parsing and pose estimation) adversely impacting the final image quality since it masks
important information in the input image. To address these limitations, we propose an
adversarial teacher-student paradigm that eliminates the pre-processing steps during
inference. Our approach reduces the inference time for virtual try-on significantly while
improving the image quality.

Thibaut Issenhuth, Clément Calauzènes, and Jérémie Mary. Do not mask what you
do not need to mask: a parser-free virtual try-on. (2020) In European Conference on
Computer Vision (ECCV).

Chapter 5: Conclusion. We summarize the contributions of this thesis and outline future
directions of research, such as exploring the neural collapse phenomenon in deep generative
models or investigating the latent space properties of score-based models.





Chapter 2

Related work

In this chapter, we present and discuss the recent advances in deep generative modelling, before
reviewing the use of deep neural networks for image editing. This part assumes basic knowledge
on machine learning and deep learning, which can be found for example in (Goodfellow et al.,
2016).

2.1 Deep generative modelling

In this section, we provide an overview of the various families of deep generative models
employed in this thesis, highlighting their inherent challenges and limitations with regards to
the questions that we adress in this thesis. For an in-depth and comprehensive presentation of
deep generative models, interested readers can refer to the works of Murphy (2023) or Tomczak
(2022).

A deep generative model is a parametric family of probability distribution pθ , where θ ∈Θ

are the parameters of a neural network. It is trained to fit a target distribution µ⋆ which
is only accessible through an empirical distribution µ⋆

n , i.e. a dataset of training samples
X = (x1, . . . ,xn) where xi ∈RD and n is the number of samples in the dataset. During training,
it is optimized to minimize a distance (or divergence) D between the empirical distribution and
the modelled probability distribution pθ :

θ
⋆ = min

θ∈Θ
D(µ⋆

n , pθ ). (2.1.1)

The choice of D varies depending on the family of deep generative model. For instance,
Wasserstein GANs employ a Wasserstein distance as D (Arjovsky and Bottou, 2017; Gulrajani
et al., 2017), while auto-regressive models rely on a Kullback-Leibler (KL) divergence.
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Fig. 2.1 The evolution of images generated by GANs, from their invention in 2014 to recent
developments in 2020. Source: (Zhang et al., 2021a, Figure 2.1.7).

Another notable difference between deep generative models is the way they model proba-
bility distributions. Push-forward generative models, whose denomination was introduced by
Salmona et al. (2022), are a broad class of deep generative models that learn a push-forward
mapping from a simple latent distribution γ , typically a Gaussian or Uniform distribution, to
the modeled distribution, denoted by pθ = Gθ ♯γ . The generator Gθ is a neural network with
parameters θ , and ♯ represents the push-forward operator. GANs, VAEs, and normalizing flows
are all examples of push-forward generative models, while score-based and diffusion models
are classified as indirect push-forward generative models.

In contrast, auto-regressive models do not belong to the push-forward generative model
class. Auto-regressive models utilize the decomposition pθ (x) = ∏i pθ (xi|x⩽i), where x ∈Rd .
Sampling in auto-regressive models is performed iteratively by sampling the 1-dimensional
conditional distributions with a multinomial distribution. Unlike push-forward generative
models, auto-regressive models do not possess a latent distribution γ . The lack of latent space
makes them challenging to reuse for purposes other than sampling, such as inverse problems
with generative models.

2.1.1 Families of deep generative models

2.1.1.1 Generative adversarial networks

GANs, proposed in Goodfellow et al. (2014), were the first family of deep generative models
able to sample high-quality image even at high-resolution of 1024×1024 (Karras et al., 2018).
On Figure 2.1, we can observe the fast progress of the quality of GANs’ generated images.
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GANs are based on an adversarial game between a generator network Gθ :Rd →RD and
a discriminator network Dφ :RD→R. The discriminator tries to distinguish real from fake
images, while the generator tries to fool the discriminator. More formally, GANs rely on a
minimax optimization procedure:

min
θ∈Θ

max
φ∈Φ

Ex∼µ⋆
n ,z∼γ [ f1

(
Dφ (x)

)
+ f2

(
Dφ (Gθ (z)

)
] (2.1.2)

where f1(x) = log(x) and f2(x) = 1− log(x). Under the assumptions of an optimal discrimina-
tor, this procedure is shown to minimize the Jenson-Shannon divergence between the empirical
distribution and the generator’s distribution. Surprisingly, Goodfellow et al. (2014) found that
instead of minimizing f2

(
Dφ (Gθ (z))

)
in the generator step, minimizing − f1

(
Dφ (Gθ (z))

)
pro-

duced better results and reduced mode collapse. This approach is known as the non-saturating
loss.

One of the primary challenges researchers faced was stabilizing the GANs training proce-
dure. One significant observation was that, using this formulation, training the discriminator to
optimality results in a discriminator with 100% accuracy and zero gradients for the generator
(Arjovsky and Bottou, 2017). This led to the development of Wasserstein GANs (Arjovsky
et al., 2017), where f1(x) = f2(x) = x and discriminators are restricted to 1-Lipschitz functions.
Initially, enforcing the discriminator to be 1-Lipschitz was achieved by clipping weights. Later,
gradient penalty (Gulrajani et al., 2017), spectral normalization (Miyato et al., 2018), and
adversarial regularization (Terjék, 2020) were introduced. However, it was later discovered
that Wasserstein GANs could not converge, even on simple one-dimensional cases (Mescheder
et al., 2018). The standard formulation of GANs with gradient regularization on the discrimina-
tor leads to a better-behaved optimization procedure. Overall, gradient regularization of the
discriminator was critical to stabilizing the GANs’ training.

A second crucial challenge is the learning of multi-modal distributions. In the seminal
paper of GANs (Goodfellow et al., 2014), the mode collapse issue was already mentioned. On
the opposite, when there is no mode collapse and all target modes are represented, another
problem arises: images are sampled in-between modes and they are unrealistic. Indeed, as
brought to the fore by Khayatkhoei et al. (2018), there is most often no realistic interpolation
between two modes of image datasets, e.g. between a car and a dog. This is a density
misspecification problem (Roth et al., 2017): in the case of multi-modal and disconnected target
distribution, there exists no parameters θ ∈Θ such that µθ = µ⋆. A solution is to use mixture
distributions as latent space (Gurumurthy et al., 2017), or mixture of generators (Khayatkhoei
et al., 2018). However, this introduce additional hyper-parameters and can thus complicate
the training procedure. Another line of work considers rejection mechanisms from pre-trained
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GANs, leveraging the discriminator scores (Azadi et al., 2019; Tanaka, 2019) or the generator’s
curvature (Arvanitidis et al., 2018; Humayun et al., 2022).

2.1.1.2 Variational auto-encoders

Variational auto-encoders (VAEs) (Kingma and Welling, 2014; Kingma et al., 2019) are
another family of push-forward generative model, based on a likelihood training objective.
However, training a latent variable model with a likelihood objective is not direct. Indeed,
the modelled probability pθ requires an intractable computation: pθ (x) =

∫
z pθ (x,z)dz. The

solution proposed by Kingma and Welling (2014) is to use variational inference, which resorts
to approximating the posterior pθ (z|x) with a stochastic encoder network qφ (z|x). The log-
likelihood can then be written:

log pθ (x) = Eqφ (z|x)[log pθ (x|z)]−DKL
(
qφ (z|x)| p(z)

)
+DKL

(
qφ (z|x)| pθ (z|x)

)
(2.1.3)

where DKL is the KL-divergence term.
Since the true posterior pθ (z|x) is unknown, this formulation is still not tractable. However,

the last term which involves pθ (x|z) is positive and can be dropped. This gives the Evidence
Lower Bound (ELBO), which is the objective function of VAEs: log pθ (x)⩾LELBO(x;θ ,φ) =

Eqφ (z|x)[log pθ (x|z)]−DKL
(
qφ (z|x)| p(z)

)
.

Furthermore, choosing p(z) and qφ (z|x) to be Gaussian distributions allows to get a closed-
form expression of the KL-divergence term. Most often, p(z) is a standard Normal distribution
with a zero mean vector and identity covariance matrix. The encoder network thus predicts the
mean vector µqφ

(x) and diagonal covariance matrix σqφ
(x) of a Gaussian distribution. Since

qφ is a Gaussian distribution, a final challenge is to back-propagate the reconstruction term
Eqφ (z|x)[log pθ (x|z)] to the encoder. This is achieved via the reparametrization trick, which
consists in sampling from ε ∼N(0, I) and computing x′ = σqφ

(x)⊙ ε +µqφ
(x), where ⊙ is an

element-wise product.
Variational auto-encoders have achieved good image synthesis quality, as we observe in

Figure 2.2, thanks to hierarchical approaches (Ranganath et al., 2016; Kingma et al., 2016;
Vahdat and Kautz, 2020). The idea behind hierarchical variational models is to separate latent
variables into different groups, so that the prior distribution has more expressiveness. However,
variational model continue to lag behind GANs in terms of sampling quality.

Finally, alternative regularization methods have been proposed, such as the use of a discrim-
inator to enforce a specific prior distribution on the encoded data points (Tolstikhin et al., 2018;
Makhzani et al., 2015). Interestingly, this method allows to use a deterministic encoder, and
the regularization term is applied to the aggregate posterior rather than individual samples.
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Fig. 2.2 Image generations from a variational auto-encoder with a deep and hierarchical
architecture. Figure from Vahdat and Kautz (2020).

2.1.1.3 Auto-regressive models

Auto-regressive models are a family of models based on the maximization of the data log-
likelihood. An auto-regressive model adopts a sequence modelling approach, and models
probability distribution with the following decomposition:

pθ (x) = ∏
i

pθ (xi|x<i) (2.1.4)

This assumes to pre-define an order on the data. Although this decomposition makes sense for
natural language processing, where sentences have a natural order, it is however less natural
on images, where pixels reside on a two-dimensional plane. Generally, a simple ‘raster-scan’
order is adopted, where pixels are processed sequentially row by row, moving from left to right
and from the top of the image to the bottom.

A seminal work of autoregressive models for images was PixelCNN (Van den Oord et al.,
2016; Van Den Oord et al., 2016), which proposed a deep auto-regressive neural network
for images. Notably, they proposed masked convolutions, allowing each pixel to only access
information from the previous ones. However, a limit of auto-regressive model for images
is the large number of pixels, e.g. 106 for an image of resolution 1024× 1024. To make
auto-regressive models more efficient, Van Den Oord et al. (2017) derive a two-stage approach.
In the first stage, an auto-encoder compresses images into sequences of discrete elements. In
the second stage, an auto-regressive model learns the distribution of the sequences of discrete
elements. This lead to high-quality results with the adoption of the transformer architecture
(Vaswani et al., 2017) as an auto-regressive model (Esser et al., 2021b). This approach is shown
in Figure 2.3. A great advantage of such approaches is their very stable training, which allows
an easier scaling of models with overparametrized models and large-scale datasets.

A line of research has focused on getting rid of the arbitrary ordering of sequences, following
the path of BERT (Devlin et al., 2018) where the objective is to reconstruct masked sequences.
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Fig. 2.3 Two-stage approach with discrete auto-encoder and auto-regressive models, parameter-
ized with a transformer in this case. Source: Esser et al. (2021b).

Notably, MaskGIT (Chang et al., 2022) achieved state-of-the-art synthesis results by training a
transformer to reconstruct masked sequences, and generating samples with a parallel decoding
scheme. This was then extended to a large text-to-image model (Chang et al., 2023).

2.1.1.4 Diffusion and score-based models

Diffusion models (Sohl-Dickstein et al., 2015) are based on an iterative process that maps data to
noise, and consists in learning the reverse process with a neural network. In the first years, they
received less attention than other deep generative models. However, recent work by (Ho et al.,
2020) has revived interest in diffusion models by drawing a fundamental connection between
score-based models (Song and Ermon, 2019; Song et al., 2020) and diffusion models. The
first score-based generative model (Song and Ermon, 2019) builds upon two key ingredients:
learning the score s(x) = ∇x log p(x) of a distribution µ⋆ with denoising autoencoders (Vincent,
2011), and Langevin sampling.

First, Vincent (2011) showed that the following simple denoising objective allows to learn
the score of a distribution:

L(θ) = Ex∼µ⋆
n ,x̃∼qσ (x)[∥sθ (x̃)−

x̃− x
σ2 ∥

2
2] (2.1.5)

where sθ is a neural network with parameters θ , x are samples from the target distribution, and
x̃ are noisy samples x̃ = x+ ε with ε ∼N (0,σ2I).

Second, Langevin sampling allows to draw samples from a given distribution µ⋆ when
having access to ∇x log µ⋆(x). It is a Monte-Carlo Markov Chain (MCMC) composed of the
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Fig. 2.4 From left to right, the text-conditioning of the generated images are: "A braing riding
a rocketship heading towards the moon"; "A robot couple fine dining with Eiffel Tower in the
background"; "A small cactus wearing a straw hat and neon sunglasses in the Sahara desert.";
"A photo of a Corgi dog riding a bike on Time Squares. It is wearing sunglasses and a beach
hat.". Source: https://imagen.research.google/.

following update steps: xt+1 = xt + ε∇x log µ⋆(x)+
√

2εzt , where zt is a standard Gaussian
random variable.

Score-based models, introduced in Song and Ermon (2019) and further developed in Song
et al. (2020), rely on a hierarchy of Gaussian noise variances σ1 < · · ·< σL to generate high-
quality images. An efficient training strategy is to use a single neural network conditioned to
the noise level sθ (x,σi). For sampling, an annealing Langevin strategy is proposed, which runs
Langevin MCMC with the highest noise level σL and gradually reduces the noise level until
the lowest level σ1 is reached. Building upon these ideas, Song et al. (2021) propose using an
infinite number of noise scales, effectively reversing a continuous-time stochastic process. This
approach allows for new numerical stochastic differential equation solvers to be derived (Song
et al., 2021; Karras et al., 2022).

In conjunction with architectural improvements and large-scale training, score-based and
diffusion models have achieved state-of-the-art image quality in unconditional (Karras et al.,
2022; Dhariwal and Nichol, 2021) and text-to-image models (Saharia et al., 2022). This can be
observed in Figure 2.4. The superiority of these models over GANs is not yet fully understood,
although it seems that the training objective (L2 loss) contributes to their stability, ease of
optimization, and scalability. A notable feature of score-based and diffusion models is their
iterative sampling procedure, which involves L forward passes on the score network to generate
one image. This could contribute to their greater expressive power compared to models that
rely on a single forward pass.

https://imagen.research.google/


18 Related work

2.1.2 Evaluating deep generative models

The evaluation of deep generative models is a critical yet often neglected problem. The
machine learning pipeline relies heavily on optimizing metrics, whether for learning the
model’s parameters or estimating the optimal hyperparameters. However, many generative
models are trained with a differentiable loss function that does not directly reflect their ultimate
objectives, namely distribution fitting and sample quality. Even when log-likelihood evaluation
is possible, it may not necessarily correlate with other objectives such as sample quality, as
noted by Theis et al. (2016). Also, it is worth noting that the value of deep generative models
lies in their ability to generalize, which is essential for generating unseen samples or testing the
likelihood of unseen data.

Standard metrics and their flaws. The initial efforts to evaluate deep generative models,
particularly GANs which do not have likelihood estimates, led to the development of the
Inception Score (IS) (Salimans et al., 2016) and the Fréchet Inception Distance (FID) (Heusel
et al., 2017). IS leverages a pre-trained Inception classifier to compute the probability of classes
per sample. It is minimized when samples are diverse and the sample-wise class distributions
are peaked. On the other hand, the FID also utilizes the Inception Net as a feature extractor
but only compares target and generated distributions, assuming they are Gaussian, using the
Fréchet Distance. However, FID has been shown to have several limitations, such as the false
assumption of Gaussianity for multimodal datasets (Luzi et al., 2023) and the potential for
misleadingly high scores when there is a high intra-class variation and poor coverage by the
generative model (Kynkäänniemi et al., 2019).

Metrics based on support estimation. To solve this issue, another line of work developed
precision and recall metrics for generative models. These metrics have gained traction due
to their clarity and interpretability. Intuitively, precision measures the quality of generated
samples, while recall measures the mode coverage of the generated samples. The first precision
and recall metric was proposed by Sajjadi et al. (2018). However, the algorithm had limitations,
relying on clustering and discrete probability comparison, which does not account for situations
with intra-cluster variability. To address this issue, Kynkäänniemi et al. (2019) developed an
improved precision and recall metric by directly approximating the real and generated supports
with k-nearest neighbor spheres around samples. Precision and recall can then be defined per
sample. Precise samples are generated sampled that fall within the approximated support of
data samples. Figure 2.5 provides an illustration of this metric. However, Naeem et al. (2020)
found that the improved precision and recall metrics are sensitive to outliers and proposed
density and coverage metrics.
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Fig. 2.5 (Left) Illustration of two distributions, where the blue one Pr is the target distribution
and the red one Pg is the generated one. (Middle) Precision corresponds to the proportion
of generated points that fall in the approximated support of the target distribution. (Right)
Recall corresponds to the proportion of real points that fall in the approximated support of the
generated distribution. Figure from Kynkäänniemi et al. (2019).

What about generalization? While the aforementioned methods provide ways to assess
the quality of generative models, they fail to evaluate their generalization abilities. Suppose
we compute the test-FID or the test-Precision and Recall, which would compare generated
samples to test samples. A good score obtained using these metrics does not indicate good
generalization abilities since using the training set (instead of generated samples) also yields a
great score. To address this issue, Alaa et al. (2022) proposed a new metric called authenticity
that measures the proportion of generated points that are very similar to training data, thereby
providing a heuristic evaluation of a model’s generalization abilities.

2.2 Image editing with deep neural networks

In this section, we provide an overview of modern methods for image editing using deep neural
networks. First, we discuss neural network architectures that are particularly well-suited for
image editing tasks. Next, we describe training techniques for image editing tasks that can be
classified into two categories: supervised and unsupervised.

To begin, let us define image editing more precisely. Image editing involves mapping a
given source image Is to a realistic image Ir, given some user-defined conditioning C. The
function that we aim to learn is of the form fθ (Is,C), which can be stochastic or deterministic
depending on the type of Is and C. The conditioning C can take various forms, including
image-based and text-based conditioning.

Image-based conditioning encompasses a wide range of tasks, such as image inpainting or
scribble-based editing. Additionally, image-based virtual try-on, which involves inserting a
clothing item onto an image of a person, can also be classified as image editing with image-
based conditioning.
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Text-based conditioning involves editing an image based on a natural language prompt.
This task was introduced in Figure 1.2 in the Introduction. With the advent of large-scale
text-to-image generation models, we can expect image editing with text-based conditioning to
achieve high levels of quality in the coming months or years.

2.2.1 Specific neural architectures for image editing

In this part, we describe two neural network architectures that are well suited for image
editing tasks, namely U-Nets (Ronneberger et al., 2015) and spatial transformers (Jaderberg
et al., 2015). Some tasks, such as virtual try-on, are based on the combination of these two
architectures.

2.2.1.1 U-Nets

U-Nets, first introduced by Ronneberger et al. (2015), were initially designed for image
segmentation but have proven to be particularly effective for image-to-image operations due
to two key properties. Firstly, they incorporate multi-scale processing of the image, and
secondly, they conserve high-resolution information. The first part of a U-Net consists of a
series of convolutional blocks Ci, which are intertwined with down-sampling operations D.
Given an input image x, the hidden layers x1 = C1(x), x2 = C2(D(x1)), and x3 = C3(D(x2))

are defined. The second part of the network involves convolutional blocks intertwined with
up-sampling operations U , and concatenation of image tensors using the cat() function. The
U-Net combines low-resolution and high-resolution information by employing the operation
x4 =C4

(
cat

(
x2;U(x3)

))
, which is sequentially performed until reaching the input resolution

of the image x.
U-Nets have proven to be crucial for the success of several deep image editing models,

including CycleGAN (Zhu et al., 2017) and virtual try-on models (Han et al., 2018; Wang et al.,
2018a). The primary advantage of U-Nets is their strong inductive bias towards preserving fine-
grained, high-resolution details in images. This feature is particularly important for maintaining
the quality of the source image, which is critical in image editing.

2.2.1.2 Spatial transformers for image warping

The Spatial Transformer Network (Jaderberg et al., 2015) is a module designed to enable differ-
entiable image sampling. It allows spatial image manipulation, such as affine transformation, in
a differentiable manner. Moreover, the parameters of the spatial transform are predicted by the
neural network. Its primary purpose is to aid neural networks in learning invariance to complex
geometric transformations, including translation, rotation, scaling, and warping. Originally
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Fig. 2.6 The spatial transformer module allows to spatially transform feature maps in a differen-
tiable manner. From an input feature map U , the module predicts the parameters θ of a spatial
transform, which is then transformed into a sampling grid Tθ (G), where G is the regular base
sampling grid. Tθ (G) is then used to re-sample pixels from the input feature map U , which
gives the output feature map V . Figure from Jaderberg et al. (2015).

included in image classification and recognition networks, Spatial Transformer Networks have
proven effective in enhancing the robustness of such networks to geometrical variations. An
illustration of the Spatial Transformer Network module is presented in Figure 2.6. An impor-
tant development of the Spatial Transformer Network concerns tasks that require attention
mechanisms, such as geometric matching. In this context, Spatial Transformer Networks are
learned to align two different images (Rocco et al., 2017).

For image editing, spatial transformer networks are particularly useful in tasks requiring
object insertion. For example, in human pose transfer, it is used to warp the person features
towards the target pose (Dong et al., 2018). In the virtual try-on task, spatial transformer
networks are leveraged to deform the clothing item before inserting it on the person image
(Wang et al., 2018a).

2.2.2 Supervised approaches

In the following, we present various supervised techniques for training deep neural networks
in image editing tasks. The common thread among these methods is the reliance on extensive
labelled datasets, which both facilitate their success and constrain their applicability. We will
see that, among these methods, there are different levels of supervision required, from fully
paired to unpaired datasets. These approaches benefit from the extensive history of supervised
learning with deep neural networks, which has led to the refinement of crucial components
such as loss functions, architectures, and initialization. However, their effectiveness is limited
by the unavailability or high cost of data collection for some image editing tasks.
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2.2.2.1 Regression-based methods

One of the most direct approaches for learning image editing with deep neural networks is
through regression-based methods. To illustrate this, let us consider a dataset consisting of a set
of source images, X = (I1

s , . . . , I
N
s ), and their corresponding target images, Y = (I1

t , . . . , I
N
t ). A

neural network, denoted as fθ , is trained on this dataset to minimize the following loss function:

L =
1
N

N

∑
i=1

D
(

fθ (Ii
s), I

i
t
)

(2.2.1)

Here, D is a function that measures the distance between images, and can be specified as
L1 or L2 loss. Recent studies have shown that using perceptual loss (Zhang et al., 2018) can
result in better-guided image editing or synthesis models. Perceptual loss involves computing
the L2 distance in the feature space of a pre-trained deep neural network, typically the VGG
network (Simonyan and Zisserman, 2014).

As previously mentioned, this setting is often limited due to the requirement of collecting
pairs of source and target images, (Ii

s, I
i
t ), which can be a challenging and time-consuming

process. To address the issue of limited data, synthetic data creation can be employed in
some cases. For instance, a synthetic dataset can be combined with a supervised regression-
based objective to achieve virtual try-on tasks (Han et al., 2018) or scribble-based editing (Liu
et al., 2021). However, creating synthetic data typically requires careful design and significant
engineering effort.

2.2.2.2 Cycle-based methods

Suppose we have two datasets, one consisting of apples and the other of oranges, and we
wish to learn an image editing model that can transform an apple to an orange, and vice
versa. Unfortunately, we do not have access to explicit pairs of source and target images that
demonstrate these transformations, making it impossible to use a regression objective. One
solution is to use cycle-based methods (Zhu et al., 2017), which leverage adversarial training
and cycle-consistency to learn the mapping between two unpaired datasets.

The idea of cycle-based methods is illustrated in Figure 2.7, and has been applied to domain
adaptation (Hoffman et al., 2018), unsupervised object insertion (Zhan et al., 2019), and virtual
try-on tasks (Ge et al., 2021).

2.2.2.3 Conditional distribution modelling

If we have access to pairs of data and the target function f ⋆(Is,C) is stochastic, the most
successful approach is typically to model the conditional distribution pθ (It |Is,C), where It is
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Fig. 2.7 The Cycle GAN approach consists in combining an adversarial objective with a
cycle-consistency constraint to learn a mapping between unpaired datasets. The adversarial
loss enforces G to map an image Is from domain X to an image with properties of domain Y ,
while F maps from X to Y . The cycle-consistency constraint enforces the mapping to keep
information about the original image Is. Figure from Zhu et al. (2017).

the target image, Is is the source image, and C is the conditioning. Standard deep generative
modeling techniques, such as GANs or auto-regressive models, can be used to model conditional
distributions. Depending on the approach and base architecture, incorporating conditions into
the modeled distribution pθ may require more or less adaptation. For example, when using
auto-regressive transformers, the conditioning can be simply concatenated to the input sequence.
In contrast, when using GANs and a style-based generator (Karras et al., 2019b), a more careful
adaptation of the generator and discriminator is often necessary. For instance, Co-Modulated
GANs (Zhao et al., 2020) present an adaptation of StyleGAN for image inpainting.

This approach can be very effective for tasks that fulfill two conditions: 1) the ease of data
collection; and 2) the stochastic nature of the target function f ⋆(Is,C). The image inpainting
task satisfies both of these conditions, and state-of-the-art results have been achieved through
conditional distribution modelling. Some approaches rely on conditional GANs, such as
Co-Modulated GANs (Zhao et al., 2020). Others use conditional auto-regressive models, as
proposed in Peng et al. (2021). More recently, some approaches have been based on diffusion
models (Lugmayr et al., 2022).

2.2.3 Unsupervised approaches: leveraging pre-trained generative mod-
els

In unsupervised approaches, a prevalent strategy is to rely on pre-trained generative models and
adopt an inverse problem viewpoint. The fundamental assumption is that the source images
Is in most editing tasks are perturbed and noisy. For example, in the image inpainting task, Is

corresponds to a realistic image I that has been distorted by zeroing out an area defined by a
binary mask m. Consequently, we have Is = I⊙m, where ⊙ denotes the element-wise product.
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The underlying idea can be cast under the Maximum A Posteriori view:

It = argmax
x

p(x| Is) = argmax
x

p(Is|x)p(x) (2.2.2)

where the prior distribution p(x) is estimated with a deep generative model, and the conditional
distribution p(Is|x) is approximated with a distance between the two images x and Is.

In GANs, the inversion of edited images Is into the latent space of a pre-trained GAN can
be accomplished by minimizing the distance D between the generated image Gθ (z) and the
edited image Is:

It = Gθ (z⋆) where z⋆ = argmin
z

D(Gθ (z), Is) (2.2.3)

The optimal latent code z⋆ can be obtained through optimization or by using an encoder
network that maps images to their corresponding latent codes. These two methods can be com-
bined, as proposed in the seminal work of GANs’ inversion by Zhu et al. (2016). This generic
approach has been adapted to new generator architectures like StyleGAN, as demonstrated
in subsequent works. For instance, Abdal et al. (2019, 2020) use an optimization procedure
over an intermediate feature space of StyleGAN, while Richardson et al. (2021) and Tov et al.
(2021) design a specific encoder architecture that maps images into the intermediate features of
StyleGAN. Figure 2.8 illustrates an example of GANs inversion.

Recently, the concept of inverting generative models has also proven to be effective in the
context of diffusion and score-based models. The work by Kawar et al. (2022) has demonstrated
the efficacy of pre-trained diffusion probabilistic models in solving inverse problems, such
as deblurring or inpainting. In a similar vein, Meng et al. (2022) has shown that pre-trained
generative models can facilitate image editing tasks. By judiciously controlling the noise
that is added to the image, these models can convert sketches into realistic images, perform
image inpainting or scribble-based editing using mask guided Langevin dynamics. Despite
the success of diffusion models in solving inverse problems, their long sampling procedure
is a significant limitation, requiring many forward passes on a neural network. Chung et al.
(2022) have endeavored to reduce the number of iterations required in inverse problems, which
remains a challenging task. Finally, Couairon et al. (2023) propose a text-based editing method
based on diffusion models. Interestingly, it removes the burden of giving a mask as input to the
editing algorithm by automatically generating a mask.

Attribute editing after inversion. Another approach for image editing is to combine image
inversion with latent space traversal. The first step involves a standard inversion procedure,
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Fig. 2.8 Inverting images with scribbles in the latent space of GANs allow to recover realistic
images that still takes into account the user-input (scribbles). Figure from Abdal et al. (2020).

Fig. 2.9 The latent space of GANs allow image editing along the main factors of variation in a
disentangled manner. Figure from Shen et al. (2020).

which can be formulated as follows:

Ĩs = Gθ (z⋆) where z⋆ = argmin
z

D(Gθ (z), Is) (2.2.4)

Here, Ĩs is an approximation of the source image Is generated by the GAN. The primary objective
of this procedure is to derive z⋆, which corresponds to the latent vector associated with Ĩs. This
vector z⋆ can then be utilized to perform attribute editing by following specific directions in
the latent space. Previous studies have demonstrated that the latent space of GANs contains
interpretable and disentangled control directions (Voynov and Babenko, 2020; Härkönen et al.,
2020). Consequently, the inversion process can be integrated with attribute modifications in
GANs’ latent space, leading to straightforward image attribute editing procedures (Shen et al.,
2020). Figure 2.9 illustrates the outcomes of such a procedure. Finally, Grechka et al. (2021)
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design a method that provides a tradeoff between reconstruction quality and editability of the
latent vector.

The task of attribute editing can be facilitated through the natural language interaction
between a user and an editing system. Notably, recent research has proposed utilizing the CLIP
model (Radford et al., 2021), which evaluates the alignment between text and image, in combi-
nation with text-to-image diffusion models (Kim et al., 2022), or with unconditional StyleGAN
(Patashnik et al., 2021). Interestingly, Couairon et al. (2022) encodes and manipulates images
in the latent space of CLIP. These approaches have demonstrated promising results in enabling
users to control and manipulate various attributes of an image, such as changing its background
or altering its facial expressions, by providing textual descriptions.
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Learning multi-modal distributions with
deep generative models
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3.1 Introduction

In this chapter, our focus is on the learning of multi-modal target distributions with deep
generative models, specifically, with a class of deep generative models called "push-forward
generative models". These models encompass a broad range of deep generative models,
including GANs, VAEs, and normalizing flows, but exclude auto-regressive models. Push-
forward generative models represent a distribution pθ as the push-forward of a latent distribution
γ by a neural network Gθ , which is denoted as pθ = Gθ ♯γ . In this chapter, we demonstrate that
push-forward generative models are susceptible to misspecifications when learning multi-modal
target distributions. When employing standard design choices of latent distribution and neural
network, the hypothesis family of generative distributions pθ exclusively comprises connected
distributions. Consequently, when attempting to cover all modes of the target distribution, the
generative distribution necessarily samples in between the target modes, which raises several
fundamental questions. For instance, what is the best achievable performance for push-forward
generative models? How can we optimize the structure of the latent space such that low-quality



28 Learning multi-modal distributions with deep generative models

points are present only in small proportion? And how can we develop principled rejection
mechanisms that enhance pre-trained models?

In Section 3.2, we present an upper bound on the precision of push-forward generative
models when the target distribution is made of disconnected modes. This result is derived from
the Gaussian isoperimetric inequality, which states that among all sets with a given Gaussian
measure, half-spaces have the minimal Gaussian perimeter or Gaussian boundary measure.
Furthermore, we leverage this analysis to develop a truncation method that enhances pre-trained
GANs by removing samples where the generator has a high Jacobian Frobenius norm.

In Section 3.3, we expand upon our analysis and demonstrate the existence of an optimal
geometry for the latent space. This optimal structure, referred to as a "simplicial cluster", is
based on a recent mathematical breakthrough by Milman and Neeman (2022) that solves the
Gaussian isoperimetric problem for partitions with more than two subsets. This result enables us
to demonstrate that the simplicial cluster structure is also optimal for push-forward generative
models learning disconnected target distributions. Furthermore, we propose a way to enforce
this structure in the latent space of GANs and show that it leads to improved performance.

In Section 3.4, we present a novel method for learning a rejection mechanism in pre-trained
GANs. This method is based on adversarial learning of importance weights. Modelling
importance weights requires respecting certain constraints on the neural network’s output. To
enforce these constraints, we introduce regularization terms to the objective function. We
provide two algorithms for sampling from these importance weights, which can be combined.
We conduct experiments to demonstrate that this approach outperforms other learning-based
post-processing methods for pre-trained GANs.
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3.2 Learning disconnected manifolds: a no GAN’s land

Abstract. Typical architectures of push-forward generative models make use of a unimodal
latent/input distribution transformed by a continuous generator. This includes GANs, VAEs and
normalizing flows. Consequently, the modeled distribution always has connected support which
is cumbersome when learning a disconnected set of manifolds. We formalize this problem
by establishing a "no free lunch" theorem for the disconnected manifold learning stating an
upper-bound on the precision of the targeted distribution. This is done by building on the
necessary existence of a low-quality region where the generator continuously samples data
between two disconnected modes. Finally, we derive a rejection sampling method based on the
norm of generator’s Jacobian and show its efficiency on several generators including BigGAN.

3.2.1 Introduction

Push-forward generative models such as GANs (Goodfellow et al., 2014) provide a very
effective tool for the unsupervised learning of complex probability distributions. For example,
Karras et al. (2019b) generate very realistic human faces while Yu et al. (2017) match state-of-
the-art text corpora generation. Despite some early theoretical results on the stability of GANs
(Arjovsky and Bottou, 2017) and on their approximation and asymptotic properties (Biau et al.,
2020), their training remains challenging. More specifically, GANs raise a mystery formalized
by Khayatkhoei et al. (2018): how can they fit disconnected manifolds when they are trained to
continuously transform a unimodal latent distribution? While this question remains widely
open, we will show that studying it can lead to some improvements in the sampling quality
of GANs. Indeed, training a GAN with the objective of continuously transforming samples
from an unimodal distribution into a disconnected requires balancing between two caveats. On
one hand, the generator could just ignore all modes but one, producing a very limited variety
of high quality samples: this is an extreme case of the well known mode collapse (Arjovsky
and Bottou, 2017). On the other hand, the generator could cover the different modes of the
target distribution and necessarily generates samples out of the real data manifold as previously
explained by Khayatkhoei et al. (2018).

As brought to the fore by Roth et al. (2017), there is a density mis-specification between
the true distribution and the model distribution. Indeed, one cannot find parameters such that
the model density function is arbitrarily close to the true distribution. To solve this issue,
many empirical works have proposed to over-parameterize the generative distributions, as for
instance, using a mixture of generators to better fit the different target modes. Tolstikhin et al.
(2017) rely on boosting while Khayatkhoei et al. (2018) force each generator to target different
sub-manifolds thanks to a criterion based on mutual information. Another direction is to add
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(a) Heatmap of the generator’s Jaco-
bian norm. White circles: quantiles of
the latent distribution N (0, I).

(b) Green: target distribution. Coloured dots:
generated samples colored w.r.t. the Jacobian
Norm using same heatmap than (a).

Fig. 3.1 Learning disconnected manifolds leads to the apparition of an area with high gradients
and data sampled in between modes.

complexity in the latent space using a mixture of Gaussian distributions (Gurumurthy et al.,
2017).

To better visualize this phenomenon, we consider a simple 2D motivational example where
the real data lies on two disconnected manifolds. Empirically, when learning the distribution,
GANs split the Gaussian latent space into two modes, as highlighted by the separation line
in red in Figure 3.1a. More importantly, each sample drawn inside this red area in Figure
3.1a is then mapped in the output space in between the two modes (see Figure 3.1b). For
the quantitative evaluation of the presence of out-of-manifold samples, a natural metric is the
Precision-Recall (PR) proposed by Sajjadi et al. (2018) and its improved version (Improved
PR) (Kynkäänniemi et al., 2019). A first contribution of this section is to formally link them.
Then, taking advantage of these metrics, we lower bound the measure of this out-of-manifold
region and formalize the impossibility of learning disconnected manifolds with standard GANs.
We also extend this observation to the multi-class generation case and show that the volume of
off-manifold areas increases with the number of covered manifolds. In the limit, this increase
drives the precision to zero.

To solve this issue and increase the precision of GANs, we argue that it is possible to remove
out-of-manifold samples using a truncation method. Building on the work of Arvanitidis et al.
(2018) who define a Riemaniann metric that significantly improves clustering in the latent
space, our truncation method is based on information conveyed by the Jacobian’s norm of the
generator. We empirically show that this rejection sampling scheme enables us to better fit
disconnected manifolds without over-parametrizing neither the generative class of functions
nor the latent distribution. Finally, in a very large high dimensional setting, we discuss the
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advantages of our rejection method and compare it to the truncation trick introduced by Brock
et al. (2019).

In a nutshell, our contributions are the following:

• We discuss evaluation of GANs and formally link the PR measure (Sajjadi et al., 2018)
and its Improved PR version (Kynkäänniemi et al., 2019).

• We upper bound the precision of GANs with Gaussian latent distribution and formalize
an impossibility result for disconnected manifolds learning.

• Using toy datasets, we illustrate the behavior of GANs when learning disconnected
manifolds and derive a new truncation method based on the Jacobian’s Frobenius norm
of the generator. We confirm its empirical performance on state-of-the-art models and
datasets.

3.2.2 Related work

Fighting mode collapse. Goodfellow et al. (2014) were the first to raise the problem of
mode collapse in the learning of disconnected manifolds with GANs. They observed that when
the generator is trained too long without updating the discriminator, the output distribution
collapses to a few modes reducing the diversity of the samples. To tackle this issue, Salimans
et al. (2016); Lin et al. (2018) suggested feeding several samples to the discriminator. Srivastava
et al. (2017) proposed the use of a reconstructor network, mapping the data to the latent space
to increase diversity.

In a different direction, Arjovsky and Bottou (2017) showed that training GANs using
the original formulation Goodfellow et al. (2014) leads to instability or vanishing gradients.
To solve this issue, they proposed a Wasserstein GAN architecture Arjovsky et al. (2017)
where they restrict the class of discriminative functions to 1-Lipschitz functions using weight
clipping. Pointing to issues with this clipping, Gulrajani et al. (2017); Miyato et al. (2018)
proposed relaxed ways to enforce the Lipschitzness of the discriminator, either by using a
gradient penalty or a spectral normalization. Albeit not exactly approximating the Wasserstein’s
distance (Petzka et al., 2018), both implementations lead to good empirical results, significantly
reducing mode collapse. Building on all of these works, we will further assume that generators
are now able to cover most of the modes of the target distribution, leaving us the problem of
out-of-manifold samples (a.k.a. low-quality pictures).

Generation of disconnected manifolds. When learning complex manifolds in high dimen-
sional spaces using deep generative models, Fefferman et al. (2016) highlighted the importance
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of understanding the underlying geometry. More precisely, the learning of disconnected man-
ifold requires the introduction of disconnectedness in the model. Gurumurthy et al. (2017)
used a multi-modal entry distribution, making the latent space disconnected, and showed better
coverage when data is limited and diverse. Alternatively, Khayatkhoei et al. (2018) studied the
learning of a mixture of generators. Using a mutual information term, they encourage each
generator to focus on a different submanifold so that the mixture covers the whole support.
This idea of using an ensemble of generators is also present in the work of Tolstikhin et al.
(2017) and Zhong et al. (2019), though they were primarily interested in the reduction of mode
collapse.

In this section, we propose a truncation method to separate the latent space into several
disjoint areas. It is a way to learn disconnected manifolds without relying on the previously
introduced over-parameterization techniques. As our proposal can be applied without retraining
the whole architecture, we can use it successfully on very larges nets. Close to this idea, Azadi
et al. (2019) introduced a rejection strategy based on the output of the discriminator. However,
this rejection sampling scheme requires the discriminator to be trained with a classification loss
while our proposition can be applied to any generative models.

Evaluating GANs. The evaluation of generative models is an active area of research. Some
of the proposed metrics only measure the quality of the generated samples such as the Inception
score Salimans et al. (2016) while others define distances between probability distributions.
This is the case of the Frechet Inception distance Heusel et al. (2017), the Wasserstein distance
Arjovsky et al. (2017) or kernel-based metrics Gretton et al. (2012). The other main caveat
for evaluating GANs lies in the fact that one does not have access to the true density nor the
model density, prohibiting the use of any density based metrics. To solve this issue, the use
of a third network that acts as an objective referee is common. For instance, the Inception
score uses outputs from InceptionNet while the Fréchet Inception Distance compares statistics
of InceptionNet activations. Since our work focuses on out-of-manifold samples, a natural
measure is the PR measure (Sajjadi et al., 2018) and its Improved PR version (Kynkäänniemi
et al., 2019), extensively discussed in the next section.

In the following, alongside precise definitions, we exhibit an upper bound on the precision
of GANs with high recall (i.e. no mode collapse) and present a new truncation method.

3.2.3 Our approach

We start with a formal description of the framework of GANs and the relevant metrics. We
later show a "no free lunch" theorem proving the necessary existence of an area in the latent
space that generates out-of-manifold samples. We name this region the no GAN’s land since
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any data point sampled from this area will be in the frontier in between two different modes.
We claim that dealing with it requires special care. Finally, we propose a rejection sampling
procedure to avoid points out of the true manifold.

3.2.3.1 Notations

In the original setting of Generative Adversarial Networks (GANs), one tries to generate
data that are “similar” to samples collected from some unknown probability measure µ⋆. To
do so, we use a parametric family of generative distribution where each distribution is the
push-forward measure of a latent distribution γ and a continuous function modeled by a neural
network.

Assumption 1 (γ Gaussian). The latent distribution γ is a standard multivariate Gaussian.

Note that for any distribution µ , Sµ refers to its support. Assumption 1 is common for
GANs as in many practical applications, the latent variable defined on a low dimensional space
Rd is either a multivariate Gaussian, either a uniform distribution on a compact.

The measure µ⋆ is defined on a subset E of RD (potentially a highly dimensional space),
equipped with the norm ∥ · ∥. The generator has the form of a parameterized class of functions
from Rd (a space with a much lower dimension) to E, say G = {Gθ : θ ∈Θ}, where Θ ⊆Rp

is the set of parameters describing the model. Each function Gθ thus takes input from a d-
dimensional space variable Z (Z is associated with probability distribution γ) and outputs “fake”
observations with distribution µθ . Thus, the class of probability measures P = {µθ : θ ∈Θ}
is the natural class of distributions associated with the generator, and the objective of GANs is
to find inside this class of candidates the one that generates the most realistic samples, closest
to the ones collected from the unknown distribution µ⋆.

Assumption 2. Let L > 0. The generator Gθ takes the form of a neural network whose Lipchitz
constant is smaller than L, i.e. for all (z,z′), we have ∥Gθ (z′)−Gθ (z)∥⩽ L∥z− z′∥.

This is a reasonable assumption, since Virmaux and Scaman (2018) present an algorithm
that upper-bounds the Lipschitz constant of deep neural networks. Initially, 1-Lipschitzness
was enforced only for the discriminator by clipping the weigths Arjovsky et al. (2017), adding
a gradient penalty Gulrajani et al. (2017); Roth et al. (2017); Petzka et al. (2018), or penalizing
the spectral norms Miyato et al. (2018). Nowadays, state-of-the-art architectures for large scale
generators such as SAGAN Zhang et al. (2019) and BigGAN Brock et al. (2019) also make use
of spectral normalization for the generator.
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3.2.3.2 Evaluating GANs with Precision and Recall

When learning disconnected manifolds, Srivastava et al. (2017) proved the need of measuring
simultaneously the quality of the samples generated and the mode collapse. Sajjadi et al. (2018)
proposed the use of a PR metric to measure the quality of GANs. The key intuition is that
precision should quantify how much of the fake distribution can be generated by the true
distribution while recall measures how much of the true distribution can be re-constructed by
the model distribution. More formally, it is defined as follows:

Definition 3.2.1. (Sajjadi et al., 2018) Let X ,Y be two random variables. For α,β ∈ (0,1], X is
said to have an attainable precision α at recall β w.r.t. Y if there exists probability distributions
µ,νX ,νY such that

Y = β µ +(1−β )νY and X = αµ +(1−α)νX .

The component νY denotes the part of Y that is “missed” by X , whereas, νX denotes the
"noise" part of X . We denote ᾱ (respectively β̄ ) the maximum attainable precision (respectively
recall). Th. 1 of Sajjadi et al. (2018) states:

X
(
SY

)
= ᾱ and Y

(
SX

)
= β̄ .

Improved PR metric. Kynkäänniemi et al. (2019) highlighted an important drawback of the
PR metric proposed by Sajjadi et al. (2018): it cannot correctly interpret situations when a large
numbers of samples are packed together. To better understand this situation, consider a case
where the generator slightly collapses on a specific data point, i.e. there exists x ∈ E,µθ (x)> 0.
We show in Appendix A.1.1 that if µ⋆ is a non-atomic probability measure and µθ is highly
precise (i.e. α = 1), then the recall β must be 0.

To solve these issues, Kynkäänniemi et al. (2019) proposed an Improved Precision-Recall
(Improved PR) metric built on a nonparametric estimation of support of densities.

Definition 3.2.2. (Kynkäänniemi et al., 2019) Let X ,Y be two random variables and DX ,DY

two finite sample datasets such that DX ∼ Xn and DY ∼ Y n. For any x ∈ DX (respectively for
any y ∈ DY ), we consider (x(1), . . . ,x(n−1)), the re-ordening of elements in DX \ x given their
euclidean distance with x. For any k ∈N and x ∈ DX , the precision αn

k (x) of point x is defined
as:

α
n
k (x) = 1 ⇐⇒ ∃y ∈ DY ,∥x− y∥⩽ ∥y(k)− y∥.

Similarly, the recall β n
k (y) of any given y ∈ DY is:

β
n
k (y) = 1 ⇐⇒ ∃x ∈ DX ,∥y− x∥⩽ ∥x(k)− x∥.



3.2 Learning disconnected manifolds: a no GAN’s land 35

Improved precision (respectively recall) are defined as the average over DX (respectively DY )
as follows:

α
n
k =

1
n ∑

xi∈DX

α
n
k (xi) β

n
k =

1
n ∑

yi∈DY

β
n
k (yi).

A first contribution is to formalize the link between PR and Improved PR with the following
theorem:

Theorem 3.2.1. Let X ,Y two random variables with probability distributions µ and ν . Assume
that both µ and ν are associated with uniformly continuous probability density functions
fµ and fν . Besides, there exists constants a1 > 0,a2 > 0 such that for all x ∈ E we have
a1 < fµ⋆(x)⩽ a2 and a1 < fµθ

(x)⩽ a2 for some c > 0. Also, (k,n) are such that k
log(n) →+∞

and k
n → 0. Then,

α
n
k → ᾱ in probability and β

n
k → β̄ in probability.

This theorem, whose proof is delayed to Appendix A.1.2, underlines the nature of the
Improved PR metric: the metric compares the supports of the modeled probability distribution
µθ and of the true distribution µ⋆. This means that Improved PR is a tuple made of both
maximum attainable precision ᾱ and recall β̄ (e.g. Theorem 1 of Sajjadi et al. (2018)). As
Improved PR is shown to have a better performance evaluating GANs sample quality, we use
this metric for both the following theoretical results and experiments.

3.2.3.3 Learning disconnected manifolds

In this section, we aim to stress the difficulties of learning disconnected manifolds with standard
GANs architectures. To begin with, we recall the following lemma.

Lemma 3.2.1. Assume that Assumptions 1 and 2 are satisfied. Then, for any θ ∈Θ , the support
Sµθ

is connected.

There is consequently a discrepancy between the connectedness of Sµθ
and the disconnect-

edness of Sµ⋆ . In the case where the manifold lays on two disconnected components, our next
theorem exhibit a no free lunch theorem:

Theorem 3.2.2. ("No free lunch" theorem) Assume that Assumptions 1 and 2 are satisfied.
Assume also that true distribution µ⋆ lays on two equally measured disconnected manifolds
distant from a distance D > 0. Then, any estimator µθ that samples equally in both modes

must have a precision ᾱ such that ᾱ + D√
2πL

e
−Φ−1( ᾱ

2 )2

2 ⩽ 1, where Φ is the c.d.f. of a standard
normal distribution.

Besides, if ᾱ ⩾ 3/4, ᾱ ≲ 1−
√

2
π

W ( D2

4L2 ) where W is the Lambert W function.
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The proof of this theorem is delayed to Appendix A.1.3. It is mainly based on the Gaussian
isoperimetric inequality (Borell, 1975; Sudakov and Tsirelson, 1978) that states that among all
sets of given Gaussian measure in any finite dimensional Euclidean space, half-spaces have
the minimal Gaussian boundary measure. If in Figure 3.1, the generator has thus learned the
optimal separation, it is not known clear how to enforce such geometrical properties in the
latent space. We will show, in the next section, a method that indeed enforces a well-structured
latent space.

In real world applications, when the number of distinct sub-manifolds increases, we expect
the volume of these boundaries to increase with respect to the number of different classes
covered by the modeled distribution µθ . Going in this direction, we better formalize this
situation, and show an extended "no free lunch theorem" by expliciting an upper-bound of the
precision ᾱ in this broader framework.

Assumption 3. The true distribution µ⋆ lays on M equally-measured disconnected components
at least distant from some constant D > 0.

This is likely to be true for datasets made of symbol designed to be highly distinguishable
(e.g. digits in the MNIST dataset). In very high dimension, this assumption also holds for
complex classes of objects appearing in many different contexts (e.g. the bubble class in
ImageNet, see Appendix).

To better apprehend the next theorem, note Am the pre-image in the latent space of mode m
and Ar

m its r-enlargement: Ar
m := {z ∈Rd | dist(z,Am)≤ r}, r > 0.

Theorem 3.2.3. (Generalized "no free lunch" theorem) Assume that Assumptions 1, 2, and
3 are satisfied, and that the pre-image enlargements Aε

m, with ε = D
2L , form a partition of the

latent space with equally measured elements.
Then, any estimator µθ with recall β̄ > 1

M must have a precision ᾱ at most 1+x2

x2 e−
1
2 ε2

e−εx

where x = Φ−1(1− 1
β̄M

) and Φ is the c.d.f. of a standard normal distribution.

Theorem 3.2.3, whose proof is delayed to Appendix A.1.4, states a lower-bound the
measure of samples mapped out of the true manifold. We expect our bound to be loose since no
theoretical results are known, to the best of our knowledge, on the geometry of the separation
that minimizes the boundary between different classes (when M ⩾ 3). Finding this optimal cut
would be an extension of the honeycomb theorem Hales (2001). In Appendix A.1.4.2 we give
a more technical statement of Theorem 3.2.3 without assuming equality of measure of the sets
Aε

m.
The idea of the proof is to consider the border of an individual cell with the rest of the

partition. It is clear that at least half of the frontier will be inside this specific cell. Then, to
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(a) WGAN 4 classes: visualisation of
∥JG(z)∥F .

(b) WGAN 9 classes: visualisation of
∥JG(z)∥F .

(c) WGAN 25 classes: visualisation of
∥JG(z)∥F .

(d) Precision w.r.t. D (mode distance) and
M (classes).

Fig. 3.2 Illustration of Theorem 3.2.3. If the number of classes M→ ∞ or the distance D→ ∞,
then the precision ᾱ → 0. We provide in appendix heatmaps for more values of M.
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get to the final result, we sum the measures of the frontiers contained inside all of the different
cells. Remark that our analysis is fine enough to keep a dependency in M which translates
into a maximum precision that goes to zero when M goes to the infinity and all the modes are
covered. More precisely, in this scenario where all pre-images have equal measures in the latent
space, one can derive the following bound, when the recall β̄ is kept fixed and M increases:

ᾱ
M→∞

⩽ e−
1
2 ε2

e−ε

√
2log(β̄M) where ε =

D
2L

. (3.2.1)

For a fixed generator, this equation illustrates that the precision ᾱ decreases when either the
distance D (equivalently ε) or the number of classes M increases. For a given ε , ᾱ converges
to 0 with a speed O( 1

(β̄M)
√

2ε
). To better illustrate this asymptotic result, we provide results

from a 2D synthetic setting. In this toy dataset, we control both the number M of disconnected
manifolds and the distance D. Figure 3.2 clearly corroborates (3.2.1) as we can easily get the
maximum precision close to 0 (M = 25, D = 27).

3.2.3.4 Jacobian-based truncation (JBT) method

The analysis of the deformation of the latent space offers a grasp on the behavior of GANs. For
instance, Arvanitidis et al. (2018) propose a distance accounting for the distortions made by
the generator. For any pair of points (z1,z2)∼ Z2, the distance is defined as the length of the
geodesic d(z1,z2) =

∫
[0,1] ∥JGθ

(γt)
dγt
dt ∥dt where γ is the geodesic parameterized by t ∈ [0,1] and

JGθ
(z) denotes the Jacobian matrix of the generator at point z. Authors have shown that the use

of this distance in the latent space improves clustering and interpretability. We make a similar
observation that the generator’s Jacobian Frobenius norm provides meaningful information.

Indeed, the frontiers highlighted in Figures 3.2a, 3.2b, and 3.2c correspond to areas of low
precision mapped out of the true manifold: this is the no GAN’s land. We argue that when
learning disconnected manifolds, the generator tries to minimize the number of samples that do
not belong to the support of the true distribution and that this can only be done by making paths
steeper in the no GAN’s land. Consequently, data points Gθ (z) with high Jacobian Frobenius
norm (JFN) are more likely to be outside the true manifold. To improve the precision of
generative models, we thus define a new truncation method by removing points with highest
JFN.

However, note that computing the generators’s JFN is expensive to compute for neural
networks, since being defined as follows,

∥JGθ
(z)∥2

F =
m

∑
i=1

n

∑
j=1

(
∂Gθ (z)i

∂ z j

)2

,
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it requires a number of backward passes equal to the output dimension. To make our truncation
method tractable, we use a stochastic approximation of the Jacobian Frobenius norm based on
the following result from Rifai et al. (2011):

∥JGθ
(z)∥2 = lim

N→∞
σ→0

1
N

N

∑
εi

1
σ2∥Gθ (z+ εi)−Gθ (z)∥2,

where εi ∼∼N (0,σ2I and I is the identity matrix of dimension d. The variance σ of the noise
and the number of samples are used as hyper-parameters. In practice, σ in [1e−4;1e−2] and
N = 10 give consistent results.

Based on the preceding analysis, we propose a new Jacobian-based truncation (JBT)
method that rejects a certain ratio of the generated points with highest JFN. This truncation
ratio is considered as an hyper-parameter for the model. We show in our experiments that our
JBT can be used to to detect samples outside the real data manifold and that it consequently
improves the precision of the generated distribution as measured by the Improved PR metric.

3.2.4 Experiments

In the following, we show that our truncation method, JBT, can significantly improve the
performances of generative models on several models, metrics and datasets. Furthermore,
we compare JBT with over-parametrization techniques specifically designed for disconnected
manifold learning. We show that our truncation method reaches or surpasses their performance,
while it has the benefit of not modifying the training process of GANs nor using a mixture
of generators, which is computationally expensive. Finally, we confirm the efficiency of our
method by applying it on top of BigGAN (Brock et al., 2019).

Except for BigGAN, for all our experiments, we use Wasserstein GAN with gradient penalty
(Gulrajani et al., 2017), called WGAN for conciseness. We give in Appendix A.3 the full details
of our experimental setting. The use of WGAN is motivated by the fact that it was shown
to stabilize the training and significantly reduce mode collapse (Arjovsky and Bottou, 2017).
However, we want to emphasise that our method can be plugged on top of any generative model
fitting disconnected components.

3.2.4.1 Evaluation metrics

To measure performances of GANs when dealing with low dimensional applications - as with
synthetic datasets - we equip our space with the standard Euclidean distance. However, for high
dimensional applications such as image generation, Brock et al. (2019); Kynkäänniemi et al.
(2019) have shown that embedding images into a feature space with a pre-trained convolutional
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classifier provides more semantic information. In this setting, we consequently use the euclidean
distance between the images’ embeddings from a classifier. For a pair of images (a,b), we
define the distance d(a,b) as d(a,b) = ∥φ(a)−φ(b)∥2 where φ is a pre-softmax layer of a
supervised classifier, trained specifically on each dataset. Doing so, they will more easily
separate images sampled from the true distribution µ⋆ from the ones sampled by the distribution
µθ .

We compare performances using Improved PR (Kynkäänniemi et al., 2019). We also report
the Marginal Precision which is the precision of newly added samples when increasing the
ratio of kept samples. Besides, for completeness, we report FID (Heusel et al., 2017) and recall
precise definitions in Appendix A.2.2. Note that FID was not computed with InceptionNet, but
a classifier pre-trained on each dataset.

3.2.4.2 Synthetic dataset

We first consider the true distribution to be a 2D Gaussian mixture of 9 components. Both the
generator and the discriminator are modeled with feed-forward neural networks.

Interestingly, the generator tries to minimize the sampling of off-manifolds data during
training until its JFN gets saturated (see Appendix A.2.3). One way to reduce the number of
off-manifold samples is to use JBT. Indeed, off-manifold data points progressively disappear
when being more and more selective, as illustrated in Figure 3.3c. We quantitatively confirm
that our truncation method (JBT) improves the precision. On Figure 3.3d, we observe that
keeping the 70% of lowest JFN samples leads to an almost perfect precision of the support of
the generated distribution. Thus, off-manifold samples are in the 30% samples with highest
JFN.

3.2.4.3 Image datasets

We further study JBT on three different datasets: MNIST (LeCun et al., 1998), FashionMNIST
(Xiao et al., 2017) and CIFAR10 (Krizhevsky et al., 2009). Following (Khayatkhoei et al.,
2018) implementation, we use a standard CNN architecture for MNIST and FashionMNIST
while training a ResNet-based model for CIFAR10 (Gulrajani et al., 2017).

Figure 3.4 highlights that JBT also works on high dimensional datasets as the marginal
precision plummets for high truncation ratios. Furthermore, when looking at samples ranked by
increasing order of their JFN, we notice that samples with highest JFN are standing in-between
manifolds. For example, those are ambiguous digits resembling both a "0" and a "6" or shoes
with unrealistic shapes.
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(a) WGAN - 2500 samples (b) WGAN 90% JBT.

(c) WGAN 70% JBT. (d) 97% confidence intervals .

Fig. 3.3 Mixture of 9 Gaussians in green, generated points in blue. Our truncation method
(JBT) removes least precise data points as marginal precision plummets.

To further assess the efficiency of our truncation method, we also compare its performances
with two state-of-the-art over-parameterization techniques that were designed for disconnected
manifold learning. First, Gurumurthy et al. (2017) propose DeliGAN, a reparametrization trick
to transform the unimodal Gaussian latent distribution into a mixture. The different mixture
components are later learnt by gradient descent. For fairness, the re-parametrization trick is used
on top of WGAN. Second, Khayatkhoei et al. (2018) define DMLGAN, a mixture of generators
to better learn disconnected manifolds. In this architecture, each generator is encouraged to
target a different submanifold by enforcing high mutual information between generated samples
and generator’s ids. Keep in mind that for DeliGAN (respectively DMLGAN), the optimal
number of components (respectively generators) is not known and is a hyper-parameter of the
model that has to be cross-validated.

The results of the comparison are presented in Table 3.1. In both datasets, JBT 80 %
outperforms DeliGAN and DMLGAN in terms of precision while keeping a reasonnable recall.
This confirms our claim that over-parameterization techniques are unnecessary. As noticed
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(a) MNIST dataset. (b) F-MNIST dataset. (c) CIFAR10 datatset.
Fig. 3.4 For high levels of kept samples, the marginal precision plummets of newly added
samples, underlining the efficiency of our truncation method (JBT). Reported confidence
intervals are 97% confidence intervals. On the second row, generated samples ordered by their
JFN (left to right, top to bottom). In the last row, the data points generated are blurrier and
outside the true manifold.

Table 3.1 JBT x% means we keep the x% samples with lowest Jacobian norm. Our truncation
method (JBT) matches over-parameterization techniques. ± is 97% confidence interval.

MNIST Prec. Rec. FID

WGAN 91.2±0.3 93.7±0.5 24.3±0.3

WGAN JBT 90% 92.5±0.5 92.9±0.3 26.9±0.5

WGAN JBT 80% 93.3±0.3 91.8±0.4 33.1±0.3

W-Deligan 89.0±0.6 93.6±0.3 31.7±0.5

DMLGAN 93.4±0.2 92.3±0.2 16.8±0.4

F-MNIST
WGAN 86.3±0.4 88.2±0.2 259.7±3.5

WGAN JBT 90% 88.6±0.6 86.6±0.5 257.4±3.0
WGAN JBT 80% 89.8±0.4 84.9±0.5 396.2±6.4

W-Deligan 88.5±0.3 85.3±0.6 310.9±3.1

DMLGAN 87.4±0.3 88.1±0.4 253.0±2.8
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(a) House finch. (b) Parachute. (c) Bubble.
Fig. 3.5 On the first row, per-class precision-recall curves comparing Brock et al. (2019)’s
truncation trick and our truncation method (JBT), on three ImageNet classes generated by
BigGAN. We show better results on complex and disconnected classes (e.g. bubble). Reported
confidence intervals are 97% confidence intervals. On the second row, generated samples
ordered by their JFN (left to right, top to bottom). We observe a concentration of off-manifold
samples for images on the bottom row, confirming the soundness of JBT.

by Kynkäänniemi et al. (2019), we also observe that FID does not correlate properly with the
Improved PR metric. Based on the Frechet distance, only a distance between multivariate
Gaussians, we argue that FID is not suited for disconnected manifold learning as it approximates
distributions with unimodal ones and looses many information.

3.2.4.4 Spurious samples rejections on BigGAN

Thanks to the simplicity of JBT, we can also apply it on top of any trained generative model.
In this subsection, we use JBT to improve the precision of a pre-trained BigGAN model
(Brock et al., 2019), which generates class-conditionned ImageNet (Krizhevsky et al., 2012)
samples. The class-conditioning lowers the problem of off-manifold samples, since it reduces
the disconnectedness in the output distribution. However, we argue that the issue can still exist
on high-dimensional natural images, in particular complex classes can still be multi-modal
(e.g. the bubble class). The bottom row in Figure 3.5 shows a random set of 128 images for
three different classes ranked by their JFN in ascending order (left to right, top to bottom). We
observe a clear concentration of spurious samples on the bottom row images.
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To better assess the Jacobian based truncation method, we compare it with the truncation
trick from Brock et al. (2019). This truncation trick aims to reduce the variance of the latent
space distribution using truncated Gaussians. While easy and effective, this truncation has
some issues: it requires to complexify the loss to enforce orthogonality in weight matrices of
the network. Moreover, as explained by Brock et al. (2019) "only 16% of models are amenable
to truncation, compared to 60% when trained with Orthogonal Regularization". For fairness
of comparison, the pre-trained network we use is optimized for their truncation method. On
the opposite, JBT is simpler to apply since 100% of the tested models were amenable to the
proposed truncation.

Results of this comparison are shown in the upper row of Figure 3.5. Our method can
outperform their truncation trick on difficult classes with high intra-class variation, e.g. bubble
and house finch. This confirms our claim that JBT can detect outliers within a class. However,
one can note that their trick is particularly well suited for simpler unimodal classes, e.g.
parachute and reaches high precision levels.

3.2.5 Conclusion

In this section, we provide insights on the learning of disconnected manifolds with push-forward
generative models. Our analysis shows the existence of an off-manifold area with low precision.
We empirically show on several datasets and GAN models that we can detect these areas and
remove samples located in between two modes thanks to a newly proposed truncation method.

However, we do not have yet a clear idea of the geometrical structure of a generator’s latent
space. When there are two modes in the target distribution, it is clear that the best way to
split the latent space is to use half-spaces (according to the standard Gaussian isoperimetric
inequality). But when there are more than two modes, what is an optimal geometrical structure?
In the next section, we provide an explicit characterization of an optimal latent space geometry.
Moreover, we investigate if this structure is indeed learned by generative models, and if it is
possible to enforce it.
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3.3 Unveiling the latent space geometry of push-forward
generative models

Abstract. Many deep generative models are defined as a push-forward of a Gaussian measure
by a continuous generator, such as Generative Adversarial Networks (GANs) or Variational
Auto-Encoders (VAEs). This work explores the latent space of such deep generative models. A
key issue with these models is their tendency to output samples outside of the support of the
target distribution when learning disconnected distributions. We investigate the relationship
between the performance of these models and the geometry of their latent space. Building
on recent developments in geometric measure theory, we prove a sufficient condition for
optimality in the case where the dimension of the latent space is larger than the number of
modes. Through experiments on GANs, we demonstrate the validity of our theoretical results
and gain new insights into the latent space geometry of these models. Additionally, we propose
a truncation method that enforces a simplicial cluster structure in the latent space and improves
the performance of GANs.

3.3.1 Introduction

GANs (Goodfellow et al., 2014) and VAEs (Kingma and Welling, 2014) have shown great
capacities to generate photorealistic images (Karras et al., 2021; Vahdat and Kautz, 2020). These
two models are also helpful for diverse tasks such as image editing (Shen et al., 2020; Wu et al.,
2021) or unsupervised image segmentation (Abdal et al., 2021; Zoran et al., 2021). GANs and
VAEs rely on learning a Lipschitz-continuous transformation from a low dimensional Gaussian
space. As such, they have been described as push-forward generative models (Salmona et al.,
2022). According to the same taxonomy, score-based models can be defined as indirect
push-forward generative models since they result from the composition of a large number of
transformations and are trained with an auxiliary denoising objective.

The present section aims at making a step towards a better understanding of push-forward
generative models such as GANs. In particular, the goal is to shed light on the latent space
of these architectures, and to stress how it impacts the performance of both GANs and VAEs.
If empirical studies such as Donahue and Simonyan (2019) have suggested the emergence
of simple geometrical structure in the latent space of GANs, there is still a poor theoretical
understanding of how generators organize their latent space.

To better understand the latent space of generative models, the setting of disconnected
distributions learning is enlightening. Experimental and theoretical works (Khayatkhoei et al.,
2018; Salmona et al., 2022) have shown a fundamental limitation of push-forward generative
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models. Since the modeled distribution is connected, some areas of its support are necessarily
mapped outside the true data distribution. However, when covering several modes of a dis-
connected distribution, generators still try to minimize the numbers of samples lying outside
the true modes (e.g. the purple area on the right of Figure 3.6). In other words, generators
aim at minimizing the measure of the existing borders between the modes in the latent space.
Considering a Gaussian latent space, finding such minimizers is closely linked to Gaussian
isoperimetric inequalities (Ledoux, 1996) where the goal is to derive the partitions that split
a Gaussian space with minimal Gaussian-weighted perimeters. Most notably, a recent result
(Milman and Neeman, 2022) shows that, as long as the number of components m in the partition
and the number of dimensions d of the Gaussian space are such that m≤ d +1, the optimal
partition is a ‘simplicial cluster’: a Voronoi diagram with equidistant seeds, see left of Figure
3.6 for m = 3 and d = 3.

In this section, we demonstrate the effectiveness of applying simplicial clusters to the latent
space of push-forward generative models. We show both experimentally and theoretically
that generators with a latent space structured as a simplicial cluster minimize the occurrence
of out-of-distribution generated samples. Using the precision metric (Sajjadi et al., 2018;
Kynkäänniemi et al., 2019), we show that generators with a simplicial cluster latent space
achieve optimal precision levels and provide both an upper and a lower bound on their precision.
Our experiments reveal that GANs with higher performances tend to organize their latent space
as simplicial clusters. More importantly, we illustrate that enforcing this ‘simplicial structure’
with a truncation method can boost GANs’ performance. Interestingly, simplicial clusters are
highly similar to the ‘simplex Equiangular Tight Frames’ observed in the last-layer features of
deep classification networks (Papyan et al., 2020). This study stresses that they also naturally
emerge in deep push-forward generative models. Our contributions are the following:

• We are the first to build on the latest results from Gaussian isoperimetric inequalities by
Milman and Neeman (2022) in the study and understanding of push-forward generative
models.

• We present a new theoretical analysis, providing both an upper bound on the precision
of push-forward generative models. We demonstrate that generators with a latent space
organized as a simplicial cluster have an optimal precision, with lower bounds that
decrease in

√
m logm, where m is the number of modes.

• Experimentally, we verify that GANs tend to structure their latent space as simplicial
clusters’ by exploring two properties of the latent space: linear separability and convexity
of classes. Also, we analyse the impact of latent space dimension on GANs, and reveal a
positive correlation between GANs’ performance and latent space geometry.
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Fig. 3.6 Illustration of the capability of GANs to discover an optimal geometry of the latent
space. On the left, the propeller shape represents a partition of 3D Gaussian space with the
smallest Gaussian-weighted perimeter (Figure from Heilman et al. (2012)). On the right, we
show the 3D Gaussian latent space of a GAN trained on three classes of MNIST. Each area
colored in blue, green, or red corresponds to samples in one of the three classes. Using a
pre-trained classifier, we highlight in purple the samples with low-confidence, and observe
that the partition reached by the GAN (right) is close to optimality (left), as the latent space
partition is similar to the intersection of the propeller on a sphere.

• Finally, we show that enforcing a simplicial structure into GANs’ latent space can boost
their performance and outperforms other boosting methods.

3.3.2 Related Work

3.3.2.1 Notation

Data. We consider a target distribution µ⋆ defined on a Euclidean space RD, which may be a
high-dimensional space, and equipped with the Euclidean norm ∥ · ∥. We use Sµ to represent
the support of any distribution µ .

Push-forward generative models. We consider the set of L-Lipschitz continuous functions,
denoted as GL, from the latent space Rd to the high-dimensional space RD. The primary goal
of each generator in this set is to produce realistic samples. The distribution in the latent space,
defined on Rd , is assumed to be Gaussian and is represented as γ . For each generator G ∈ GL,
we associate the push-forward distribution (or image distribution) of γ by G, and denote it
G♯γ , where ♯ denotes the push-forward operator. In the context of generative models, each
distribution G♯γ is now a candidate distribution to represent µ⋆.

The Lipschitzness assumption on GL is reasonnable: Virmaux and Scaman (2018) have
shown the lipschitzness of deep neural networks, and have developed an algorithm that can
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upper-bound their Lipschitz constant. While deep neural networks can have high Lipschitz
constants, it is possible to constrain this in practice by techniques such as clipping the neural
network’s parameters (Arjovsky et al., 2017), penalizing the discriminative functions’ gradient
(Gulrajani et al., 2017; Kodali et al., 2017; Wei et al., 2018; Zhou et al., 2019), or penalizing
the spectral norms (Miyato et al., 2018). Large-scale generators such as SAGAN (Zhang
et al., 2019) and BigGAN (Brock et al., 2019) also make use of spectral normalization for the
generator.

3.3.2.2 Generative models and disconnected distributions

The phenomenon of misspecification in continuous generative models, while primarily studied
in the context of GANs, is also relevant to other families such as VAEs or normalizing flows
(Salmona et al., 2022). This issue has been investigated both experimentally (Khayatkhoei et al.,
2018) and theoretically (Salmona et al., 2022). The problem stems from a fundamental trade-
off: continuous generators can either cover all modes, resulting in out-of-manifold samples, or
generate only high-quality samples, neglecting some modes. To address this, various methods
have been proposed, such as training disconnected distributions (Gurumurthy et al., 2017;
Khayatkhoei et al., 2018) or deriving rejection mechanisms from pre-trained generators (Azadi
et al., 2019; Humayun et al., 2022).

Empirical studies have provided valuable insights into the structure of the latent space of
generative models. For example, Karras et al. (2019b) demonstrate that binary attributes are
linearly separable in the Gaussian latent space and even more separable in an intermediate
latent space. Similarly, Shen et al. (2020) find that face attributes are separated by hyperplanes
in the latent space.Arvanitidis et al. (2018) and Chen et al. (2018a) view the latent space of
generative models with a Riemannian perspective.

While these findings provide valuable insights into the latent space structure of generative
models, they may not be sufficient for a comprehensive understanding of the latent space
geometry. For instance, In section 3.2, we stress the relevance of this problem by showing that
the precision of GANs can converge to 0 when the number of modes or the distance between
them increases. In this section, we take a step towards a deeper understanding of the behavior
of push-forward generative models and reveal an optimal latent space configuration when the
number of modes m and the dimension of the latent space d are such that m≤ d +1.

3.3.2.3 Evaluating generative models

When learning disconnected manifolds, Sajjadi et al. (2018) illustrated the need for measures
that simultaneously evaluate both the quality (Precision), and the diversity (Recall) of the
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generated samples. However, Kynkäänniemi et al. (2019) pointed out an important limitation
of the PR metric: it cannot accurately interpret situations when large numbers of samples are
packed together. They propose an Improved PR metric based on the non-parametric estimation
of manifolds to correct this.

Improved PR metric. Informally, for a generator G, precision (αG) quantifies the proportion
of generated samples that can be approximated with true samples, while recall (βG) measures
the proportion of true samples that can be approximated with generated ones. Applying this to
GANs, using the target distribution µ⋆ and modeled distribution G♯γ , the Improved PR metric
was shown, by Theorem 3.2.1, to be asymptotically equivalent to:

α
n
G →n→∞

αG = G♯γ
(
Sµ⋆

)
and β

n
G →n→∞

βG = µ
⋆
(
SG♯γ

)
,

where Sµ⋆ denotes the support of µ⋆ and n is the number of samples. However, Naeem et al.
(2020) have shown that the Improved PR metric (Kynkäänniemi et al., 2019) is sensitive
to outlier samples of both the target and the generated distribution. To correct this and fix
the overestimation of the manifold around real outliers, Naeem et al. (2020) propose the
Density/Coverage metric.

Density/Coverage. Instead of counting how many fake samples belong to a real sample
neighborhood, density counts how many real sample neighborhoods contain a generated
sample. On the other hand, coverage counts the number of real sample neighborhoods that
contain at least one fake sample.

In the next analysis both theoretical and experimental, we use both notions of precision and
density defined above.

3.3.3 Simplicial Structure in Push-Forward Generative Models

The goal is to gain a deeper understanding of the latent space of push-forward generative
models and identify which ones possess the highest precision under certain conditions. As
previously mentioned, push-forward generative models map a unimodal Gaussian distribution γ

through a Lipschitz-continuous function, represented by a generator G. As a result, the modeled
generative distribution G♯γ necessarily has a connected support.

In cases where the target distribution µ⋆ contains disconnected manifolds, generators have
to generate fake data points that fall outside of the true manifold. This prompts the question:
given that a generator samples data points from each of the distinct modes, what is the maximum
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precision that it can achieve? To begin with, let’s consider a target distribution µ⋆ composed of
m disconnected modes.

Assumption 4 (Disconnected manifolds). The target distribution µ⋆ consists of m disconnected
spheres Si, i ∈ [1,m] of equal measure (with centers Xi and radius ri). Additionally, the spheres
satisfy the two following properties:

• Small individual radius: each radius ri satisfies

ri < min
j

∥Xi−X j∥
2

. (3.3.1)

• Each distance ∥Xi−X j∥ satisfies:

min
k∈[1,m],k ̸=i, j

∥(Xi +X j)/2−Xk∥>
∥Xi−X j∥

2
. (3.3.2)

We believe that the assumption of disconnectedness is a reasonable one, particularly for
multi-class datasets such as MNIST LeCun et al. (1998), CIFAR10 Krizhevsky et al. (2009), or
STL10 Coates et al. (2011). To validate this property, we run a pre-trained CLIP (Radford et al.,
2021) on the dataset, identify a certain number of clusters using a K-means algorithm, and
further test the disconnectedness of these modes by training a linear classifier. The accuracy on
these datasets is 98.1% on MNIST, 93.9% on CIFAR10, and 92.7% on STL10.

The second point in (3.3.2) has a direct impact on the location of the data points X1, . . . ,Xm.
Specifically, it implies that each cell in the Voronoi diagram with seeds X1, . . . ,Xm shares a side
with all the other cells. In other words, the dual graph of this Voronoi diagram is complete. This
assumption, which is further discussed with specific examples in Figure 3.7, can be justified by
the concentration of distances in high-dimensional spaces: all the modes are roughly at equal
distance (Beyer et al., 1999; Aggarwal et al., 2001). Furthermore, a recent work by Papyan
et al. (2020) has shown that embeddings of deep neural networks trained for classification tend
to collapse around means that are equidistant and maximally equiangular to one another. By
using these embedded representations to measure distance, the target distribution would thus
easily satisfy Assumption 4. Projected GANs (Sauer et al., 2021) is really close to this idea as
the authors show the effectiveness of leveraging a pre-trained classifier when training GANs:
instead of directly discriminating images, the discriminator is trained on features extracted
from the classifier.

Throughout the rest of the section, we define the set of well-balanced generators as those
mapping an equal number of data points to each mode of the data distribution:
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Definition 3.3.1. A generator G is well-balanced if for all spheres, we have G♯γ(S1) = . . .=

G♯γ(Sm).

Considering well-balanced generators is reasonable as many empirical improvements such
as WGAN-GP (Gulrajani et al., 2017) or BigBiGAN (Donahue and Simonyan, 2019) have
significantly reduced mode collapse. GANs generate diverse output distributions on datasets
such as CIFAR10, CIFAR100, and ImageNet. To validate the use of well-balanced generators,
we conducted a small experiment and evaluated the proportion of each class generated by
GANs on MNIST and CIFAR10. On MNIST, the minimum proportion of a class is 9.2 and
the maximum 10.9, while on CIFAR10 it is 8.3 and 11.9 (in %). The variance-to-mean ratio is
equal to 0.03 for MNIST and 0.22 for CIFAR10.

3.3.3.1 Precision and the associated partition

Now that we have defined the prerequisites for both the data and the model, we propose to
establish a connection between the latent space partition and the precision of a generator. We
create a link between the set of generators from Rd to RD and the set of partitions in the latent
space. Specifically, for each given partition in Rd , there exists a set of associated generators
defined as follows:

Definition 3.3.2. For a given partition A = A1, . . . ,Am on Rd , we say that G is associated to
A if: for all i ∈ [1,m], for all z ∈ Ai, i = argmin

j∈[1,m]

∥G(z)−X j∥.

Each given generator G is associated with a unique partition A in Rd . The geometry of
the associated partition A plays a key role in explaining the behavior and performance of the
generator G. We are interested in maximizing the precision of generative models. Points in
the intersection of two cells Ai∩A j,(i, j) ∈ [1,m]2 are equidistant from Xi and X j and thus do
not belong to any of these modes (since bot ri and r j < ∥Xi−X j∥/2 according to Assumption
4). Additionally, due to the generator’s Lipschitzness, there is a small neighborhood around
the boundary such that any points in this neighborhood are mapped out of the target manifold.
This region in the latent space thus reduces the precision. For a given ε > 0, we now define the
epsilon-boundary of the partition A as follows.

Definition 3.3.3. For a given partition A = {A1, . . . ,Am} ofRd and a given ε ∈R⋆
+, we denote

∂ εA the ε-boundary of A , defined as follows.

∂
εA =

m⋃
i=1

(
∪ j ̸=i A j

)ε\
(
∪ j ̸=i A j

)
,
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where Aε corresponds to the ε-extension of set A. The following lemma makes the connec-
tion between the precision of a generator αG and its associated partition A .

Lemma 3.3.1. Assume that Assumption 4 is satisfied and A be a partition in Rd . Then, any
generator G ∈ GL associated with A verifies:

αG ⩽ 1− γ(∂ εminA ). (3.3.3)

where εmin = mini, j ∥Xi−X j∥/L.

Interestingly, this result holds independently of the partition A . It highlights that the
geometry of the partition gives an upper-bound on the precision of the generator. Consequently,
to properly determine this bound on the precision levels of generative models, one might be
interested in determining the measure of this epsilon-boundary ∂ εA . By using the result from
Lemma 3.3.1, we can derive an upper-bound on the precision that depends on D,L and m:

Corollary 3.3.1. Assume that Assumption 4 is satisfied, m ⩽ d +1. Then, there exists L with
L ⩾ D

√
log(m), such that for any well-balanced generator G ∈ GL:

αG ⩽ 1− εmin
√

logm e−3/2 (3.3.4)

where εmin = mini, j ∥Xi−X j∥/L. In particular, the result in (3.3.4) gives an interesting
insight when training GANs on a finite number of modes. Theorem 3.2.3 showed a similar
result but for the asymptotic case when the number of modes increases:

αG
m→∞

⩽ e−
1
8 ε2

mine−εmin
√

log(m)/2. (3.3.5)

3.3.3.2 Optimality for push-forward generative models

To exhibit generative models with optimal precision levels, one must look at partitions with
the smallest epsilon-boundary measures γ(∂ εA ). We argue that this is tightly connected to
the theoretical field of Gaussian isoperimetric inequalities. Isoperimetric inequalities link the
measure of sets with their perimeters. More specifically, these inequalities highlight minimizers
of the perimeter for a fixed measure, e.g. the sphere in an euclidean space with a given Lebesgue
measure. In the Gaussian space, Borell (1975) and Sudakov and Tsirelson (1978) show that
in a finite-dimensional case, among all sets of a given measure, half-spaces have a minimum
Gaussian perimeter. More formally, for any Borel set A in Rd and a half-space H, if we have
γ(A)⩾ γ(H), then γ(Aε)⩾ γ(Hε) for any ε > 0, where Aε denotes the ε-extension of A.

The Gaussian multi-bubble conjecture was formulated when looking for a way to partition
the Gaussian space in m parts, with the least-weighted boundary. It was recently proved by
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Milman and Neeman (2022) who showed that the best way to split a Gaussian space Rd in m
clusters of equal measure, with 2 ⩽ m ⩽ d +1, is by using ‘simplicial clusters’ obtained as the
Voronoi cells of m equidistant points in Rd . Convex geometry theory tells us that each cell is a
convex cone, whose borders are hyperplanes going through the origin of Rd . We note A ⋆ any
partition corresponding to this optimal configuration, see Figure 3.6 for m = 3.

In the following theorem, we apply this result to the understanding of GANs. We make
the connection between optimal generators (when m ⩽ d + 1) in levels of precision and the
partition A ⋆ derived in Milman and Neeman (2022).

Theorem 3.3.1 (Optimality of generators with simplicial cluster latent space.). Assume that
Assumption 4 is satisfied and m⩽ d+1. For any δ > 0, there exists C large enough (independent
of δ ) and L ⩾ D

√
m
√

π log(Cm), and a well-balanced generator G⋆ ∈ GL associated with A ⋆

such that for any other well-balanced generator G ∈ GL, we have:

αG⋆ ⩾ αG−δ (3.3.6)

Moreover, if m ⩽ d, noting εmax = maxi, j ∥Xi−X j∥/L:

αG⋆ ⩾ 1− εmax
√

m log(Cm), (3.3.7)

Theorem 3.3.1 shows that when L is large enough, the bound in (3.3.4) is almost tight, and
thus that the given generator based on the simplicial partition A ⋆ is almost optimal. However,
it is not clear whether those are the only generators with optimal precision. The proof is delayed
in Appendix B.1.

What if Assumption 4 is not verified? This assumption is needed for the definition of a
well-balanced generator associated with A ⋆ as in Theorem 3.3.1. As shown in Figure 3.7, the
latent space configuration obtained by the GANs for 3 almost equidistant points (1st row) and 3
almost aligned data points (2nd row). We see that in the later case, the Voronoi partition of the
target data points does not verify Assumption 4, and the optimal latent structure is not known.
We observe in this specific case that it is made of two parallel hyperplanes, much different from
A ⋆ defined by Milman and Neeman (2022) (1st row).

What if the dimension m > d + 1? The position of the different spheres could be such
that Assumption 4 is no longer valid. Second, since the result from Milman and Neeman
(2022) does not hold, the optimal partition of the Gaussian space in m equal cells is unknown.
In this generalized context, GANs could hint at the optimal partition geometry. Figure 3.8
stresses examples when training GANs from R2 to Rm with m equidistant modes. This
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Fig. 3.7 Illustration of the impact of the geometry of data modes on the latent space of GANs.
The left column shows the modes (X1,X2,X3) from the target distribution and the generated
points (small blue dots). In the middle, we plot the Voronoi diagram generated from (X1,X2,X3).
On the right column, we show the boundaries in the GANs latent space with heatmaps of the
norm of the gradient of the generator. In the first row, when the data satisfies Assumption 4,
GANs achieve the optimal configuration. However, when the data modes do not satisfy this
assumption, as seen in the second row, this is no longer the case.

gives some insights on how to divide the Gaussian space into m equitable areas with least
Gaussian-weighted perimeter.

What if the modes do not have equal measure? The fact that each mode has equal measure
in the target distribution might not be verified for unbalanced datasets. First, the optimality of
simplicial clusters holds because the multi-bubble theorem is still valid. However, the lower-
bound (Equation 3.3.7) does not hold. Additionally, the upper-bound from Corollary 3.3.1 can
be relaxed. Consider w1, . . . ,wm ∈Rm the weights of the different modes, and wmin = min

i
wi,

the upper-bound becomes:

αG ⩽ 1−mεminwmin
√

log(1/wmin) e−3/2.

We observe that this upper-bound might not be tight anymore since it depends on the minimum
of the weights wmin.
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Fig. 3.8 Extension of the multi-bubble conjecture when m > d +1. We depict the partition of
the R2 latent space of a GAN that maps to m equidistant points in Rm, with m = 4,6,12. Each
colored cell maps to a distinct data point in Rm.

3.3.4 Improving generative models

Our proposed theoretical analysis offers valuable insights into the optimal structure of the latent
space for push-forward generative models. We demonstrate that by leveraging this structure, it
is possible to design GANs with improved performance. To achieve this, we enforce a simplicial
cluster structure in the latent space of GANs during training using a novel rejection sampling
procedure called simplicial cluster truncation that can be combined with a mutual-information
loss. Note that modifying the latent space distribution of other generative models, such as
VAEs or score-based models, is a more complex task.

Simplicial cluster truncation. Let us denote a simplicial cluster (Milman and Neeman, 2022)
as (u1, . . . ,um) | ui ∈Rd . The rejection sampling procedure, based on Theorem 3.3.1, involves
sampling a latent vector z from γ and accepting it if max

i∈[1,...,m]
(z ·ui)> τ , where both τ and m are

considered as hyper-parameters. This defines a new latent space distribution where the density
is high near the unit vectors ui, i ∈ [1,m]. As a result, the boundaries of the simplicial cluster,
which are points with high distances to the centers of Voronoi cells, are rejected. The threshold
parameter τ determines the ε value. With this method, the boundaries between different modes
are never sampled, leading to a disconnected latent space. This approach can improve the
learning of disconnected manifolds by injecting disconnectedness into the modeled generative
distribution. Additionally, the use of a geometrical structure that is particularly well suited to
separate several modes (Papyan et al., 2020) enhances the performance.

Mutual-information loss. The rejection sampling procedure might not be sufficient for the
generator to properly use the different clusters of its latent space. To encourage the simplicial
cluster structure, we also optimize the mutual information between generated samples and the
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Table 3.2 Validation of linear separability (LogReg Acc.) and convexity (Convex Acc.) in
GAN latent spaces. The results align with the predictions of Corollary 3.3.1, where a linearly
separable and convex structure of the latent space indicates a high precision. The architecture
Transformer refers to the TransGAN model from Jiang et al. (2021). The supervised classifiers
used as oracles haves test-accuracies of 80.2% on CIFAR-10 and 61.8% on CIFAR-100.

Dataset Architecture Latent dim Precision (↑) LogReg Acc. (↑) Convex Acc. (↑)
100 Gauss. MLP 100 75.5 78.5 87.2
MNIST CNN 64 93.2 90.4 98.7
CIFAR-10 ResNet 64 66.8 65.3 75.2
CIFAR-10 Transformer 256 72.8 70.7 84.3
CIFAR-100 ResNet 64 64.3 30.5 42.1
CIFAR-100 Transformer 64 64.2 26.5 39.2

corresponding cluster (Khayatkhoei et al., 2018). The loss is applied at the beginning of the
training and is then dropped.

3.3.5 Experiments

In the following experiments, we validate our theoretical analysis and derive insights for GANs
trained on toy and image datasets. We verify: 1) that the latent space geometry of GANs
has similar properties than simplicial clusters; 2) that increasing the latent space dimension
(d +1 > m) can help improve GANs, as highlighted in the theoretical section; 3) that GANs’
performance is correlated with their latent space geometry; 4) that the proposed simplicial
cluster truncation method is effective and boost GANs’ performance.

In the following experiments, we train WGANs with gradient penalty (Arjovsky et al.,
2017; Gulrajani et al., 2017). For mixture of Gaussians, generator and discriminator are MLP
networks. For MNIST, the generator and discriminator are standard convolutional architectures.
On CIFAR-10, CIFAR-100 , and STL-10, we use either a Resnet-based (He et al., 2016)
convolutional architecture with self-modulation in the generator (Chen et al., 2018b), either
the transformer-based architecture from Jiang et al. (2021). To evaluate the performance of
GANs, we use both the precision (Kynkäänniemi et al., 2019), the FID (Heusel et al., 2017),
and the density/coverage (Naeem et al., 2020). We use a dataset-specific classifier to extract
image features on MNIST, and InceptionNet pre-trained on ImageNet for CIFAR-10, CIFAR-
100 and STL-10. Implementation details are given in Appendix B.2 and code is provided in
Supplementary Material.
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3.3.5.1 Linear separability and convexity

According to Milman and Neeman (2022), the optimal configuration in the latent space is
obtained as the Voronoi cells of m equidistant points in Rd , if m≤ d +1. This means that if
GANs reach this optimal configuration, each of the cells must be convex polytopes and have the
following properties: 1) the boundaries of a cell are flat; 2) each cell is convex. To investigate
this, we use a labeled dataset and assess whether a simple linear model (e.g., multinomial
logistic regression) can map latents to labels. If the cells in the latent space are bounded by
hyperplanes, then, using the hyperplane separation theorem, the linear model is expected to be
a good predictor of a generated sample’s label.

We use a standard multi-class labeled dataset. Gθ is a pre-trained generator and Cφ is a
pre-trained classifier considered as an oracle. Using Gθ and Cφ , we construct a dataset of latent
vectors z ∈ Rd and their associated labels y = Cφ (Gθ (z)). On CIFAR-10/100, similarly to
Razavi et al. (2019), only data points with a confidence threshold of 0.7 or higher are accepted.
This dataset is later split into 100k training points and 10k test points. We use multinomial
logistic regression to learn the mapping from latent vectors z to their labels y. We can see
in Table 3.2, that the LogReg Accuracy reaches high levels: 90% on MNIST and 70% on
CIFAR-10. For the Convex accuracy, we draw two random latent vectors z0 and z1 that belong
to the same class, and check whether linear interpolations in the latent space also belong to
the same class, that is Cφ (Gθ (z0)) =Cφ (Gθ (z0)) = λ ×Cφ (Gθ (z0))+ (1−λ )×Cφ (Gθ (z1))

for λ ∈ [0,1]. Interestingly, we see in Table 3.2 a correlation between the Logreg and Convex
accuracy and the precision metric: the more the latent space behaves like a simplicial cluster,
the higher the precision. For a qualitative evaluation, we show this phenomenon in Figure 3.9
and stress that linear interpolations conserve the image class.

3.3.5.2 Impact of the latent space dimension

To evaluate the impact of the latent space dimension, we train GANs with latent space dimension
ranging from 2 to 128 on several datasets. In Figure 3.10, we exhibit two phases in the
performance of GANs when changing the number of latent dimensions. For a fixed architecture,
and a given dataset, we observe the existence of an optimal latent space dimension d⋆. When
d < d⋆ the precision or density of the model falls significantly. Interestingly, when d > d⋆,
the precision becomes constant: overparameterizing the model does not bring a significant
improvement. As expected, we observe in Figure 3.10 that the maximum precision/density
depends on the complexity of the dataset and its number of modes: the more complex the
dataset, the lower the precision. This is also coherent with our theoretical results from both
Corollary 3.3.1 and Theorem 3.3.1.
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Fig. 3.9 Visualization of the convexity of classes in the latent space of GANs trained on
CIFAR-10. The plot shows that latent linear interpolations within a class preserve the class
label.

An interesting problem was also brought to the fore by Roth et al. (2017). When training
GANs two different issues can arise: 1) dimensional misspecification where the true and
modeled distributions do not have density functions w.r.t. the same base measure, and 2) density
misspecification, where GANs try to fit a disconnected manifold with a unimodal distribution.
To isolate the density misspecification studied in this section, we train a conditional GAN with a
low-dimensional latent space Rd (e.g. R5 in our setting), so that the dimension of the generated
manifold is at most 5. We later collect a dataset of synthetic generated samples Synthetic CIFAR-
10, and train unconditional GANs with varying latent space dimensions. Figure 3.10 shows
that GANs converge to the same limits for Precision and Density on Synthetic CIFAR-10 and
CIFAR-10. This shows that the performance is more impacted by the density misspecification
(trying to fit a disconnected target distribution with a connected one) rather than the dimensional
misspecification.

3.3.5.3 The latent geometry and GANs’ performance

We investigate the relationship between the performance of GANs and their latent space
geometry. To do so, we train many generators with different capacities (increasing width),
and study how it impacts both the latent geometry and the performance. The results in
Figure 3.11 reveal a strong positive correlation between the performance of GANs and the
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Fig. 3.10 Performance of GANs with regard to the number of modes and latent space dimensions.
As the number of modes and latent space dimension increases, we observe an improvement in
Precision (left) and Density (right), with a saturation point beyond a certain threshold.

Fig. 3.11 Study of the correlation between GANs’ performance and their latent space geometry.
This is done by increasing the width of the generator (w ∈ {32,64,128,256,512}) in a fixed
training setting on the CIFAR-10 and CIFAR-100 datasets. The results reveal a positive
correlation between GANs’ performance (measured by Precision and Density) and the linear
separability and convexity of their latent space (measured by LogReg and Convex Accuracy).
Confidence intervals are computed on 10 checkpoints of a training.

linearity/convexity of the latent space: the better the GANs perform, the more linearly separable
and convex the latent space is. Indeed, the Pearson correlation between Precision and LogReg
Accuracy is 0.98 on CIFAR-10, and 0.94 on CIFAR-100. Interestingly, overparametrization
was known to help push-forward generative models in their optimization procedure (Balaji
et al., 2021) and in increasing their Lipschitz constant (Salmona et al., 2022). We demonstrate
here that it can help GANs in reaching an optimal latent space structure, resulting in improved
performance.

3.3.5.4 Impact of the simplicial truncation method

Finally, we aim to improve GANs performance by using our theoretical results (Theorem 3.3.1).
This is done by truncating the latent Gaussian distribution, as discussed in Section 3.3.4, so
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Table 3.3 Improving GANs with simplicial cluster latent space. JBT stands for the Jacobian-
based truncation from section 3.2; DeliG. for latent space with mixture of Gaussians (Guru-
murthy et al., 2017); simp. for our proposed truncation method with simplicial cluster. These
results demonstrate that generators with a simplicial cluster latent space consistently outperform
the baseline generator in Precision/Density, and most of the times outperforms other boosting
methods (DeliGAN and JBT).

Dataset/Model FID
↓

Prec.
↑

Rec.
↑

Dens.
↑

Cov.
↑

CIFAR-10
TransGAN 8.9 72.8 62.6 79.3 79.3
TransGAN + JBT 8.8 73.3 61.2 85.7 81.1
TransGAN + DeliG. 9.8 74.6 58.6 93.2 80.0
TransGAN + simp. 9.2 74.9 59.2 96.4 82.6

CIFAR-100
TransGAN 15.2 64.2 63.1 53.4 66.0
TransGAN + JBT 15.0 64.8 62.9 53.6 66.2
TransGAN + DeliG. 15.9 63.5 62.2 52.6 64.4
TransGAN + simp. 15.1 65.6 61.5 56.3 66.4

STL-10 (32x32)
TransGAN 10.5 75.7 60.1 87.5 83.0
TransGAN + JBT 11.0 78.1 57.6 99.3 83.8
TransGAN + DeliG. 10.5 76.0 60.2 85.5 81.5
TransGAN + simp. 10.0 77.8 60.1 94.1 83.5

that the generator structures its latent space with a simplicial cluster geometry. Note that the
rejection threshold used at inference time can be higher than the one used at training time,
since we have observed that higher rejection thresholds can help us increase both the precision
and density of the models. The results in Table 3.3 demonstrate that the use of this truncation
method can improve the density and precision of GANs, without lowering the coverage nor the
FID. This simplicial-based truncation has thus proved to be effective at removing off-manifold
samples and can help improve push-forward generative models.

3.3.6 Conclusion

In conclusion, this section takes a step towards a better understanding of push-forward gen-
erative models. When the latent space dimension is large enough, we prove the existence
of an optimal latent space geometry, called ‘simplicial clusters’. Through experiments, we
demonstrate that generative models with sufficient capacity tend to conform to this optimal
geometry and also that enforcing this latent structure can improve GANs’ performance. Our
analysis has potential to drive further research on generative models with both theoretical and
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practical implications, such as developing new models that favor the emergence of such clusters
in both latent and feature spaces. Similarly to what has been done in classification (Papyan
et al., 2020), studying thoroughly the feature space of deep generative models is also an open
question.

While our theoretical analysis demonstrates the existence of optimal generators, we were
unable to prove their uniqueness. This limitation is associated with identifying partitions with
the lowest ε-boundary measures in the Gaussian space, which is a challenging and unresolved
problem in geometric measure theory. This could be a topic for future work.

Another challenge is to learn principled truncation method for pre-trained GANs. Indeed, in
section 3.2, we use a heuristic method to filter generated samples. In this section, the truncation
is based on the intuition that the generator naturally exploits the latent space structure. However,
we have no guarantee that our truncation method will improve the performance of the generative
model. In some cases, . In the next section, we investigate learning-based approaches to improve
pre-trained GANs. Specifically, we propose a method that relies on an adversarial mechanism
to learn importance weights in the latent space of a pre-trained GAN.
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3.4 Latent reweighting, an almost free improvement for
GANs

Abstract. Standard formulations of GANs, where a continuous function deforms a connected
latent space, have been shown to be misspecified when fitting different classes of images. In
particular, the generator will necessarily sample some low-quality images in between the classes.
Rather than modifying the architecture, a line of works aims at improving the sampling quality
from pre-trained generators at the expense of increased computational cost. Building on this,
we introduce an additional network to predict latent importance weights and two associated
sampling methods to avoid the poorest samples. This idea has several advantages: 1) it provides
a way to inject disconnectedness into any GAN architecture, 2) since the rejection happens
in the latent space, it avoids going through both the generator and the discriminator, saving
computation time, 3) this importance weights formulation provides a principled way to reduce
the Wasserstein’s distance to the target distribution. We demonstrate the effectiveness of our
method on several datasets, both synthetic and high-dimensional.

3.4.1 Introduction

GANs (Goodfellow et al., 2014) are an effective way to learn complex and high-dimensional
distributions, leading to state-of-the-art models for image synthesis in both unconditional
(Karras et al., 2019b) and conditional settings (Brock et al., 2019). However, it is well-known
that a single generator with an unimodal latent variable cannot recover a distribution composed
of disconnected sub-manifolds (Khayatkhoei et al., 2018). This leads to a common problem
for practitioners: the existence of very low-quality samples when covering different modes.
This is formalized in section 3.2 and 3.3, where we provide impossibility theorems on the
learning of disconnected manifolds with standard formulations of GANs. Fitting a disconnected
target distribution requires an additional mechanism inserting disconnectedness in the modeled
distribution. A first solution is to add some expressivity to the model: Khayatkhoei et al.
(2018) propose to train a mixture of generators, while Gurumurthy et al. (2017) make use of a
multi-modal latent distribution.

A second line of research relies heavily on a variety of Monte-Carlo algorithms, such as
Rejection Sampling (Azadi et al., 2019) or Metropolis-Hastings (Turner et al., 2019). Monte-
Carlo methods aim at sampling from a target distribution, while having only access to samples
generated from a proposal distribution. Using the previously learned generative distribution as
a proposal distribution, this idea was successfully applied to GANs. However, one of the main
drawbacks is that Monte-Carlo algorithms only guarantee to sample from the target distribution
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LatentRS

LatentGA

Fig. 3.12 Overview of the proposed method. GANs tend to produce poor images for unlucky
draws of the latent variable (top row, left). We introduce importance weights wϕ(z) in the
latent space that allow us to use rejection sampling and accept a given latent variable z with
probability Pa(z) ∝ wϕ(z) (LatentRS, top row), or to perform a simple gradient ascent over the
importance weight (LatentGA, bottom row), leading to better images. Both strategies can be
combined for improved image quality. Images generated with StyleGAN2 trained on LSUN
Church.

under strong assumptions. First, we need access to the density ratios between the proposal and
target distributions or equivalently to a perfect discriminator (Azadi et al., 2019). Second, these
methods are efficient only if the support of the proposal distribution fully covers the one of the
target distribution. This is unlikely to be the case when dealing with high-dimensional datasets
(Arjovsky and Bottou, 2017).

To tackle this issue, we propose a novel method aiming at reducing the Wasserstein distance
between the previously trained generative model and the target distribution. This is done via
the adversarial training of a third network that learns importance weights in the latent space.
Note that this network does not aim at increasing the support of the proposal distribution but
at re-weighting the latent distribution, under a Wasserstein criterion. Thus, these importance
weights define a new distribution in the latent space, from which we propose to sample with
two complementary methods: latent rejection sampling (latentRS) and latent gradient ascent
(latentGA). To better understand our approach, we illustrate its efficiency with simple examples.
On the top of the Figure 3.12, we show samples coming from a pre-trained StyleGAN2 (Karras
et al., 2019b) and their respective acceptance probability (latentRS). At the bottom, we exhibit
a sequence of generated images while following a gradient ascent on the learned importance
weights (latentGA).

Our contributions are the following:
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• We propose a novel approach that trains a neural network to directly modify the latent
space of a GAN. This provides a principled way to reduce the Wasserstein distance to
the target distribution.

• We show how to sample from this new generative model with different methods: latent
Rejection Sampling (latentRS), latent Gradient Ascent (latentGA), and latentRS+GA, a
method that leverages the complementarity between the two previous solutions.

• We run a large empirical comparison between our proposed methods and previous
approaches on a variety of datasets and distributions. We empirically show that all of
our proposed solutions significantly reduce the computational cost of inference. More
interestingly, our solutions propose a wide span of performances ranging from latentRS,
optimizing speed, that matches state-of-the-art almost for free (computational cost divided
by 15) and latentRS+GA (computational cost divided by 3) that outperforms previous
approaches.

Notation. Before moving to the related work section, we shortly present the notation
needed in the section. The goal of the generator is to generate data points that are “similar” to
samples collected from some target probability measure µ⋆. The measure µ⋆ is defined on a
potentially high-dimensional space RD, equipped with the euclidean norm ∥ · ∥. We call µn

the empirical measure. To approach µ⋆, we use a parametric family of generative distribution,
where each distribution is the push-forward measure of a latent distribution Z and a continuous
function modeled by a neural network. In most applications, the random variable Z defined on a
low-dimensional space Rd is either a multivariate Gaussian distribution or uniform distribution.
The generator is a parameterized class of functions from Rd to RD, say G = {Gθ : θ ∈Θ},
where Θ ⊆ Rp is the set of parameters describing the model. Each function Gθ takes input
from Z and outputs “fake” observations with distribution µθ = Gθ ♯Z. On the other hand, the
discriminator is described by a family of functions from RD to R, say D = {Dα : α ∈ Λ},
Λ ⊆RQ. Finally, for any given distribution µ , we note Sµ its support.

3.4.2 Related Work

Goodfellow et al. (2014) already stated that when training vanilla GANs, the generator could
ignore modes of the target distribution: this is called mode collapse. A significant step towards
understanding this phenomenon was made by Arjovsky and Bottou (2017) who explained
that the standard formulation of GANs leads to vanishing or unstable gradients. The authors
proposed the Wasserstein GANs (WGANs) architecture (Arjovsky et al., 2017) where, in
particular, discriminative functions are restricted to the class of 1-Lipschitz functions. WGANs
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aim at solving the following:

sup
α∈A

inf
θ∈Θ

Ex∼µ⋆ Dα(x)−Ez∼γ Dα(Gθ (z)) (3.4.1)

3.4.2.1 Learning disconnected manifolds with GANs: training and evaluation

The broader drawback of standard GANs is that, since any modeled distribution is the push-
forward of a unimodal distribution by a continuous transformation, it has a connected support.
This means that when the generator covers multiple disconnected modes of the target dis-
tribution, it necessarily generates samples out of the real data manifold Khayatkhoei et al.
(2018). Consequently, any thorough evaluation of GANs should assess simultaneously both
the quality and the variety of the generated samples. To solve this issue, Sajjadi et al. (2018)
and Kynkäänniemi et al. (2019) propose a Precision/Recall metric that aims at measuring both
the mode dropping and the mode inventing. The precision refers to the portion of generated
points that belongs to the target manifold, while the recall measures how much of the target
distribution can be reconstructed by the model distribution.

Building on this metric, we highlighted the trade-off property of GANs deriving upper-
bounds on the precision of standard GANs in section 3.2 and 3.3. To solve this problem, a
common direction of research consists in over-parameterizing the generative model. Khay-
atkhoei et al. (2018) enforce diversity by using a mixture of generators, while Gurumurthy et al.
(2017) suggests that a mixture of Gaussians in the latent space is efficient to learn diverse and
limited data. Similarly, Balaji et al. (2020) propose importance weights that aim at robustifying
the training of GANs and make it less sensitive to the target distribution’s outliers.

3.4.2.2 Improving the quality of GANs post-training

Another line of research consists in improving the sampling quality of pre-trained GANs.
Tanaka (2019) designed Discriminator Optimal Transport (DOT), a gradient ascent driven by a
Wasserstein discriminator to improve every single sample. Similarly, Che et al. (2020) follow a
discriminator-driven Langevin dynamic.

Another well-studied possibility would be to use Monte-Carlo (MC) methods (Robert and
Casella, 2013). Following this path, Azadi et al. (2019) were the first to use a rejection sampling
method to improve the quality of the proposal distribution µθ . The authors use the fact that the
optimal vanilla discriminator trained with binary cross-entropy is equal to µ⋆/(µ⋆+µθ ). Thus,
a parametric discriminator Dα : RD→ [0,1] can be used to approximate the density ratios rα

as follows:
rα(x) :=

µ⋆(x)
µθ (x)

=
Dα(x)

1−Dα(x)
. (3.4.2)
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This density ratio can then be plugged in the Rejection Sampling (RS) algorithm. Doing so,
it can be shown that sampling from µθ and accepting samples probabilistically is equivalent
to sample from the target distribution µ⋆. The acceptance probability of a given sample x is
Pa(x) =

rα (x)
k . This is valid as long as there is a constant k ∈R+ such that µ⋆(x)≤ kµθ (x) for

all x.
Turner et al. (2019) use similar density ratios and derive MH-GAN, by using the independent

Metropolis-Hasting algorithm (Hastings, 1970). Finally, Grover et al. (2019) use these density
ratios rα as importance weights and perform discrete sampling relying on the Sampling-
Importance-Resampling (SIR) algorithm (Rubin, 1988). Given X1, . . . ,Xn ∼ µn

θ
, we have:

µ
SIR
θ ,α (Xi) =

rα(Xi)
n
∑
j=1

rα(X j)
. (3.4.3)

Note that these algorithms all rely on similar density ratios and differ by the acceptance-
rejection scheme chosen. Interestingly, in RS, the acceptance rate is not controlled, but we are
guaranteed to sample from µ⋆. Conversely, with SIR and MH, the acceptance rate is a chosen
parameter, but we are sampling from an approximation of the target distribution.

3.4.2.3 Drawbacks of density-ratio-based methods

Even though these methods have the advantage of being straightforward, they suffer from one
main drawback. In practice, because both the target and the proposal manifold do not have full
dimension in RD (Fefferman et al., 2016), (Arjovsky and Bottou, 2017, Lemma 3) show that
it is highly likely that µθ (Sµθ

⋂
Sµ⋆) = 0 and µ⋆(Sµθ

⋂
Sµ⋆) = 0. Consequently, when dealing

with high-dimensional datasets, the proposal distribution µθ and the target distribution µ⋆

might intersect on a null set. Thus, one would have rα(x) = 0 almost everywhere on Sµθ
. In

this setting, the assumptions of MC methods are broken, and these algorithms will not allow
sampling from µ⋆. This is shown in Figure 3.13.

In order to correct this drawback, our method proposes to avoid the computation of density
ratios from a classifier and to directly learn how to re-weight the proposal distribution. Our
proposed scheme aims at minimizing the Wasserstein distance to the empirical measure while
controlling the range of these importance weights.

3.4.3 Adversarial Learning of Latent Importance weights

Similar to previous works, our method aims at improving the performance of a generative model,
post-training. We assume the existence of a WGAN model (Gθ ,Dα) pre-trained using (3.4.1).
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The pushforward generative distribution µθ is assumed to be an imperfect approximation of
the target distribution. The goal is now to learn how to redistribute the mass of the modeled
distribution so that it best fits the target distribution.

3.4.3.1 Definition of the method

To improve the sampling quality of our pre-trained GANs, we propose to learn an importance
weight function that directly learns how to avoid low-quality images and focus on very realistic
ones. More formally, we over-parameterize the class of generative distributions and define
a parametric class Ω = {wϕ ,ϕ ∈ Φ} of importance weight functions. Each function wϕ

associates importance weights to latent space variables and is defined from Rd to R+. For a
given latent space distribution γ and a network wϕ , a new measure γϕ is defined on Rd:

for all z ∈Rd , dγ
ϕ(z) = wϕ(z)dγ(z) (3.4.4)

Using this formulation, we can prove the following lemma:

Lemma 3.4.1. Assume that Eγ wϕ = 1, then the measure γϕ is a probability distribution
defined on Rd .

Consequently, we now propose a new modeled generative distribution µ
ϕ

θ
, the pushforward

distribution µ
ϕ

θ
= Gθ ♯γ

ϕ . The objective is to find the optimal importance weights wϕ that
minimizes the Wasserstein distance between the true distribution µ⋆ and the new class of
generative distributions. The proposed method can thus be seen as minimizing the Wasserstein
distance to the target distribution, over an increased class of generative distributions. Denoting
by Lip1 the set of 1-Lipschitz real-valued functions on RD, i.e.,

Lip1 =
{

f :RD→R :
| f (x)− f (y)|
∥x− y∥

⩽ 1, (x ̸= y) ∈ (RD)2},
we want, given a pre-trained model µθ , to solve:

argmin
ϕ∈Φ

W (µ⋆,µ
ϕ

θ
) = argmin

wϕ∈Ω

sup
D∈Lip1

Eµ⋆D−Eµ
ϕ

θ

D

= argmin
wϕ∈Ω

sup
D∈Lip1

Eµ⋆D−Eµθ
wϕD

The network wϕ , parameterized using a feed-forward neural network, thus learns how to
redistribute the mass of µθ such that µ

ϕ

θ
is closer to µ⋆ in terms of Wasserstein distance.

Similarly to the WGANs training, the discriminator Dα approximates the Wasserstein distance.
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Dα and wϕ are trained adversarially, whilst keeping the weights of Gθ frozen, using the
following optimization scheme:

inf
ϕ∈Φ

sup
α∈Λ

Ex∼µ⋆Dα(x)−Ez∼Z wϕ(z)×Dα(Gθ (z)) (3.4.5)

Note that our formulation can also be plugged on top of any objective function used for GANs.

3.4.3.2 Optimization procedure

However, as in the field of counterfactual estimation, a naive optimization of importance
weights by gradient descent can lead to trivial solutions.

1. First, if for example, the Wasserstein critic Dα outputs negative values for any generated
sample, the network wϕ could simply learn to avoid the dataset and output 0 everywhere
(Swaminathan and Joachims, 2015a).

2. Second, another problem comes from the fact that (3.4.5) can be minimized not only by
putting large importance weights wϕ(z) on the examples with high likelihoods Dα(G(z))
but also by maximizing the sum of the weights: this is the propensity overfitting (Swami-
nathan and Joachims, 2015b).

3. For the objective defined in (3.4.5) to be a valid Wasserstein distance minimization
scheme, the measure µ

ϕ

θ
must be a probability distribution, i.e. Eγwϕ = 1.

To tackle this, we first add a penalty term in the loss to enforce the expectation of the importance
weights to be close to 1. This is similar to the self-normalization proposed by Swaminathan
and Joachims (2015b). However, one still has to cope with the setting where the distribution γϕ

collapses to discrete data points:

Theorem 3.4.1. Given a pre-trained generative distribution µθ absolutely continuous with
respect to the Lebesgue measure on RD. Let Φ be the non-parametric class of continuous
functions satisfying Eγwϕ = 1. We have that:

W (µn,
1
n

n

∑
i=1

δ (X̃i))⩽ inf
ϕ∈Φ

W (µn,µ
ϕ

θ
)

where δ refers to the Dirac probability distribution and X̃i = argmin
x∈Sµθ

∥x−Xi∥.

For clarity, the proof is delayed in Appendix. Intuitively, this theorem shows that the best
way to approximate the empirical measure µn would be by considering a mixture of Diracs with
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each mode being the projection of a training data point on the support of the learned manifold
Sµθ

. The network wϕ could thus be tempted to approximate this mixture of Diracs defined in
Theorem 3.4.1 and collapse on some specific latent data points. This could lead to an increased
time complexity at inference (see (Azadi et al., 2019, Section 3)). More importantly, this would
mean a mode collapse and a lack of diversity in the generated samples.

To avoid such cases where small areas of z have really high wϕ(z) values (mode collapse),
we enforce a soft-clipping on the weights (Bottou et al., 2013; Grover et al., 2019). Note that
this constraint on wϕ(z) could also be implemented with a bounded activation function on
the final layer, such as a re-scaled sigmoid or tanh activation. Finally, we get the following
objective function for the network wϕ :

sup
ϕ∈Φ

Ez∼Z wϕ(z)
(
Dα(Gθ (z))−∆

)︸ ︷︷ ︸
discriminator reward

−λ1
(
Ez∼Zwϕ(z)−1

)2︸ ︷︷ ︸
self-normalization

−λ2Ez∼Z max
(
0,(wϕ(z)−m)

)2︸ ︷︷ ︸
soft-clipping

, (3.4.6)

where ∆ = minz∼Z Dα(G(z)). λ1, λ2, and m are hyper-parameters (values displayed in Ap-
pendix). For more details, we refer the reader to Algorithm 1.

3.4.3.3 Sampling from the latent importance weights

Given a pre-trained generator Gθ and an importance network wϕ , we now present the three
proposed sampling algorithms associated with our model:

1) Latent Rejection Sampling (latentRS, Algorithm 2). The first proposed method aims at
sampling from the newly learned latent distribution γϕ defined in (3.4.4). Since the learned
importance weights are capped by m defined in (3.4.6), this setting fits in the Rejection Sampling
(RS) algorithm (Robert and Casella, 2013). Any sample z∼ γ is now accepted with probability
Pa(z) = wϕ(z)/m. Interestingly, by actively capping the importance weights as it is done in
counterfactual estimation (Bottou et al., 2013; Faury et al., 2020), one controls the acceptance
rates Pa(z) of the rejection sampling algorithm:

Eγ Pa(z) =
∫
Rd

wϕ(z)
m

dγ(z) =
1
m
.

2) Latent Gradient Ascent (latentGA). Inspired from (Tanaka, 2019, Algorithm 2), we
propose a second method, latentGA, where we perform gradient ascent in the latent space
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Algorithm 1: Adversarial learning of wϕ

1 Require: Data µn, Prior Z, Gen. Gθ , Disc. Dα , number of Dα updates nd ,
soft-clipping param. m, regularization weights λ1 and λ2, batch size b;

2 while ϕ has not converged do
3 for i = 0, ...,nd do
4 Sample real data {xi}b

i=1 ∼ µn;
5 Sample latent vectors {zi}b

i=1 ∼ Z ;
6 EMD← 1

b ∑
b
i=1 Dα(xi)−wϕ(zi)Dα(Gθ (zi));

7 GP← Gradient-Penalty(Dα ,x,Gθ (z));
8 gradα ← ∇α(−EMD+GP) ;
9 Update α with gradα ;

10 end
11 Sample {zi}b

i=1 ∼ Z ;
12 ∆ ←mini[Dα(Gθ (zi))] ;
13 EMD← 1

b ∑
b
i=1 w(zi)[Dα(Gθ (zi))−∆ ];

14 Rnorm← ([1
b ∑

b
i=1 w(zi)]−1)2 ;

15 Rclip← 1
b ∑

b
i=1 max(0,wϕ(zi)−m)2 ;

16 gradϕ ← ∇ϕ(EMD+λ1Rnorm +λ2Rclip) ;
17 Update ϕ with gradϕ ;
18 end

Algorithm 2: LatentRS
1 Requires: Prior Z, Gen. Gθ , Importance weight network wϕ , maximum importance

weight m;
2 while True do
3 Sample z∼ Z ;
4 Sample α ∼ Uniform[0,1] ;
5 if wϕ (z)

m ≥ α then
6 break;
7 end
8 end
9 x← Gθ (z);

Result: Selected point x
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(see the algorithm in Appendix). For any given sample in the latent space, we follow the path
maximizing the learned importance weights. This method is denoted latentGA. Note that the
learning rate and the number of updates used for this method are hyper-parameters that need to
be tuned.

3) Combining latentRS with Gradient Ascent (latent RS+GA, see Appendix). Finally, we
propose to combine sequentially both methods. In a first step, we avoid low-quality samples
with latentRS. Then, we use latentGA to further improve the remaining generated samples. See
algorithm in Appendix.

3.4.3.4 Advantages of the proposed approach

We now discuss two advantages of our method compared to previous density-ratio-based
Monte-Carlo methods.

Computational cost. By using sampling algorithms in the latent space, we avoid going
through both the generator and the discriminator, leading to a significant computational speed-
up. This is of particular interest when dealing with high-dimensional spaces, since we do not
need to pass through deep CNNs generator and discriminator (Karras et al., 2019b). In the next
experimental section, we observe a computational cost decreased by a factor of 10.

Monte-Carlo methods do not properly work when the support Sµθ
does not fully cover the

support Sµ⋆ . To better illustrate this claim, we consider a simple 2D motivational example
where the real data lies on four disconnected manifolds. We start with a proposal distribution
(in blue) that does not fully recover the target distribution (Figure 3.13a). In this setting, we
see in Figure 3.13b that the discriminator’s density-ratio-based methods (Azadi et al., 2019)
avoids half of the proposal distribution, while our proposed method learns a very different
re-weighting (see Figure 3.13c).

This illustration is important since (Arjovsky and Bottou, 2017, Theorem 2.2) have shown
that in high-dimension the intersection Sµ⋆

⋂
Sµθ

is likely to be a negligible set under µθ .
Knowing that Sµθ

does not fully recover Sµ⋆ , there is thus no theoretical guarantee that using a
sampling algorithm will improve the estimation of µ⋆. On the opposite, our method looks for
the optimal re-weighting of µθ under a well-defined criterion: the Wasserstein distance. This
results in a better fit of the real data distribution (see next section).
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(a) Synthetic WGAN:
real samples in green
and fake ones in blue.

(b) MC method optimiz-
ing for a precision crite-
rion (Azadi et al., 2019).

(c) Optimizing for
Wasserstein criterion
with latentRS (ours ⋆ ).

(d) Heatmap of the wϕ

in the latent space (in
the blue areas, wϕ=0).

Fig. 3.13 Synthetic experiment mimicking the setting of GANs in high-dimension, where data
and generated manifolds are close but do not perfectly intersect. While DRS only selects the
intersection of manifolds and ignores the rest, the latent importance weights define a rejection
mechanism that minimizes the Wasserstein distance. For conciseness, WGAN stands for
WGAN-GP.

3.4.4 Experiments

In this section, we illustrate the efficiency of the proposed methods, latentRS, latentGA, and
latentRS+GA on both synthetic and natural image datasets. On image generation tasks, we
empirically stress that latentRS slightly surpasses density-ratio-based methods with respect
to the Earth Mover’s distance while reducing the time complexity by a factor of around 10.
The use of latentGA also gives interesting experimental visualizations and improves image
quality. More importantly, when combined, we show that latenRS+GA surpasses the concurrent
methods, while still being less computationally intensive. Finally, we show results with different
models such as Progressive GAN (Karras et al., 2018) and StyleGAN2 (Karras et al., 2020b).

3.4.4.1 Evaluation metrics

To measure the performances of GANs when dealing with low-dimensional applications, we
equip our space with the standard Euclidean distance. However, for the case of image generation,
we follow Brock et al. (2019); Kynkäänniemi et al. (2019) and consider the euclidean distance
between embeddings of a pre-trained network, that convey more semantic information. Thus,
for a pair of images (a,b), we define the distance d(a,b) as d(a,b) = ∥φ(a)−φ(b)∥2 where
φ is a pre-softmax layer of a supervised classifier. On MNIST and F-MNIST, the classifier is
pre-trained on the given dataset. On CelebA and LSUN Church, we use VGG-16 pre-trained
on ImageNet.

To begin with, we report the FID (Heusel et al., 2017). We also compare the performance
of the different methods with the Precision/Recall (PR) metric (Kynkäänniemi et al., 2019). It
is a more robust version of the Precision/Recall metric, which was first applied in the context
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Table 3.4 Comparison of latentRS with concurrent methods on two synthetic datasets in the
same setting as DOT (Tanaka, 2019). Our method enables a consistent gain in EMD, surpassing
other methods on Swiss Roll and slightly behind DOT on Mixture of 25 Gaussians. For
conciseness, WGAN stands for WGAN-GP.

EMD EMD
Swiss Roll 25 Gaussians

WGAN 0.030±0.002 0.044±0.001

WGAN: DRS 0.036±0.004 0.038±0.002

WGAN: SIR 0.037±0.003 0.041±0.001

WGAN: DOT 0.029±0.003 0.035±0.002
WGAN: latentRS (⋆) 0.025±0.002 0.036±0.001

of GANs by Sajjadi et al. (2018). Finally, we approximate the Wasserstein distance using
the Earth Mover’s Distance (EMD) between generated and real data points. This measure is
particularly suited to the study of WGANs, since it is linked to their objective function. Letting
X = {x1, . . . ,xn} and Y = {y1, . . . ,yn} be two collections of n data points and S be the set of
permutations of [1,n], the Earth Mover’s distance between X and Y is defined by:

EMD(X ,Y ) = min
σ∈S

n

∑
i=1
∥xi− yσi∥

3.4.4.2 Synthetic datasets

To begin the experimental study, we test our method on 2D synthetic datasets in the same
setting as Tanaka (2019). Table 3.4 compares the latentRS method with previous approaches on
the Swiss roll dataset and on a mixture of 25 Gaussians. We see that the network wϕ efficiently
redistributes the pre-trained distribution µθ since EMD(µn,µ

ϕ

θ
) is significantly smaller than

EMD(µn,µθ ).

3.4.4.3 Image datasets

Implementation of baselines. We now compare latentRS, latentGA, and latentRS+GA with
previous works leveraging discriminator’s information on high-dimensional data. In particular,
we implemented a wide set of post-processing methods for GANs: DRS (Azadi et al., 2019),
MH-GAN (Turner et al., 2019), SIR (Grover et al., 2019) and DOT (Tanaka, 2019). DRS,
MH-GAN and SIR use the same density ratios, and we did not see significant differences
between those three methods in our experiments. Consequently, for the following experiments,
we compare our algorithms to SIR and DOT. For SIR, we take the discriminator at the end
of the adversarial training, fine-tune it with the binary cross-entropy loss and select the best
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Prec. Rec. EMD FID Inference
(↑) (↑) (↓) (↓) (ms)

CelebA 128x128
ProGAN 74.2±0.9 60.7±1.4 25.4±0.1 11.30±0.02 3.6
ProGAN: SIR 79.5±0.4 57.3±1.0 24.9±0.2 12.01±0.04 49.0
ProGAN: DOT 81.3±1.0 52.9±1.4 25.0±0.1 11.01±0.03 67.6
ProGAN: latentRS (⋆) 80.4±0.9 55.7±1.0 24.7±0.1 10.77±0.04 4.5
ProGAN: latentRS+GA (⋆) 83.3±1.0 52.7±0.9 24.5±0.1 10.75±0.04 20.5

LSUN Church 256x256
StyleGAN2 55.6±1.2 62.4±1.1 23.6±0.1 6.91±0.02 11.7
StyleGAN2: SIR 60.5±1.4 58.1±1.3 23.4±0.1 7.36±0.01 130.0
StyleGAN2: DOT 67.4±1.4 48.3±1.0 23.1±0.1 6.85±0.02 196.7
StyleGAN2: latentRS (⋆) 63.3±0.7 57.7±1.0 23.1±0.1 6.31±0.02 16.2
StyleGAN2: latentRS+GA (⋆) 72.6±1.1 43.2±1.3 22.6±0.1 6.27±0.03 43.2

Table 3.5 latentRS+GA is the best performer, and latentRS matches SOTA with a significantly
reduced inference cost (by an order of at least 10). ± is 97% confidence interval. Inference
refers to the time in milliseconds needed to compute one image on a NVIDIA V100 GPU.

model in terms of EMD. Overall, we explicitly follow the framework used by Azadi et al.
(2019); Grover et al. (2019): we keep the gradient penalty (Gulrajani et al., 2017), spectral
normalization (Miyato et al., 2018) during fine-tuning and do not include an explicit mechanism
to calibrate the classifier.

Description of datasets and neural architectures. We first consider two well-known
image datasets that are MNIST (LeCun et al., 1998) and FashionMNIST (F-MNIST). We
follow Khayatkhoei et al. (2018) and use a standard CNN architecture composed of a sequence
of blocks made of 3x3 convolution layer and ReLU activations with nearest neighbor upsam-
pling. For these datasets, the discriminator is trained using the hinge loss with gradient penalty
(Hinge-GP). Finally, the architecture used for the network wϕ is very simple: an MLP with 4
fully-connected layers and ReLU activation (with a width = 4×d).

CelebA (Liu et al., 2015) is a large-scale dataset of faces covering a variety of poses. We
use a pre-trained model of Progressive GAN (Karras et al., 2018) at 128x128 resolution. The
discriminator is trained using a Wasserstein loss with gradient-penalty. Also, the architecture
used for the network wϕ is really standard: a 5 hidden-layer MLP with a width of the same size
than the latent space dimension.

LSUN Church (Yu et al., 2015) is a dataset of church images with a lot of variety. We use
a pre-trained model of StyleGAN2 (Karras et al., 2020b) at 256x256 resolution. Similarly to
the CelebA dataset, the discriminator is trained using a Wasserstein loss with gradient-penalty.
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Fig. 3.14 Visualization of the trade-off between the time spent to generate an image and its
average precision. Interestingly, latentRS+GA has the best Pareto front. Left: ProGAN trained
on CelebA. Right: StyleGan2 trained on LSUN Church.

Also, the architecture used for the network wϕ is a 3 hidden-layer MLP with width equal to
the latent space dimension. Note that the StyleGAN architecture already contains an 8-layer
MLP network Mθ :Rd →Rd that transforms a latent space variable to an intermediate latent
variable (Karras et al., 2019b). We consequently leverage this pre-trained Mθ and train the
network wϕ on top of it.

Results. The main results of this comparison are shown in Table 3.5 and Figure 3.14.
On all studied datasets, our latentRS+GA outperforms every other method on the EMD with
lower computational cost. Interestingly, latentRS achieves good performance on FID while
being more than 15 times faster. Figure 3.14 is particularly interesting since it gives a good
visualization of the trade-off between computational cost and quality of the generated samples.
On this experiment ran on CelebA and LSUN, we observe that latentRS+GA can achieve a
significantly better precision than both SIR and DOT while being much faster. Interestingly,
even though these datasets are high-dimensional, contain only one-class, and wϕ has a low
capacity, our proposed methods still produce interesting results.

To visualize the efficiency of the proposed method, Figure 3.15 shows generated samples
along with their acceptance probabilities. As expected, we observe that higher acceptance
probabilities correlate with higher quality images. Figure 3.16 stresses how generated images
improve when performing latent gradient ascent on the importance weights. Finally, we provide
more qualitative results and details on the experiments in supplementary material.
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Pa(z) = 0.00Pa(z) = 0.05Pa(z) = 0.68Pa(z) = 0.73Pa(z) = 0.00Pa(z) = 0.08Pa(z) = 0.57Pa(z) = 0.73

Pa(z) = 0.00Pa(z) = 0.04Pa(z) = 0.38Pa(z) = 0.69Pa(z) = 0.00Pa(z) = 0.06Pa(z) = 0.58Pa(z) = 0.69

Fig. 3.15 Images drawn from the generative model and their acceptance probabilities with the
latentRS algorithm, given by the network wϕ . As expected, the quality of images correlates
with higher acceptance rates on all datasets: MNIST, F-MNIST, CelebA, and LSUN.

Fig. 3.16 Gradient ascent on latent importance weights (latentGA): the quality is gradually
improved as we move to larger importance weights. Each image is generated only for visualiza-
tion, and one can run this gradient ascent directly in the latent space using wϕ . Interestingly,
this gradient ascent only involves a simple MLP network which is computationally cheap.
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3.4.5 Conclusion

This section deals with improving the quality of pre-trained GANs. Conversely to concurrent
methods which leverage the discriminator at inference time, we propose to train adversarially
a neural network which learns importance weights in the latent space of GANs. These latent
importance weights are then used with two complementary sampling methods: latentRS and
latentGA. We experimentally show that this latent reweighting consistently enhances the quality
of the pre-trained model. When these two methods are combined in latentRS+GA, it surpasses
concurrent post-training methods while being less computationally intensive.
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Image editing with deep neural networks
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4.1 Introduction

Designing learning algorithms for image editing using deep neural networks is a challenging
task due to the scarcity of target data. Ideally, supervised learning would be the optimal
approach to address image editing. This would enable the use of a standard pipeline for
supervised deep learning, starting with the collection of a labeled dataset. In image editing
tasks, the input data, denoted as X , is usually composed of a source image, Is, and a conditioning
variable, C, where X = [Is,C]. Meanwhile, the target data represents the image to be produced,
denoted as It . However, collecting labeled datasets for image editing tasks is often not feasible,
as it can be prohibitively expensive. For instance, in the virtual try-on task discussed in Section
4.3, Is denotes the source image of the person, C denotes the clothing item image, and It
represents the image of the person in the exact pose as Is, wearing the clothing item from C.

In this chapter, we present two original contributions enabling image editing tasks to be
performed without complete supervision. In Section 4.2, we demonstrate the ability to address
various image editing tasks, such as local denoising, image inpainting, image compositing, or
scribble-based editing, using a single training objective and model per dataset. This training
objective, inspired by BERT (Devlin et al., 2018), a widely-used unsupervised pretraining
objective for large language models, involves predicting masked sequences. We demonstrate
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its superior performance in image editing compared to other generic methods such as GANs’
inversions.

In Section 4.3, we leverage adversarial training and a teacher-student distillation mechanism
to enhance image-based virtual try-on algorithms. The conventional pipeline for virtual try-on
entails supervised training, where the input image Is is a masked image Is = M(It), with M as
a masking operator that hides the clothing item. We demonstrate that this standard pipeline,
coupled with adversarial training, can guide a student model that takes unmasked images Is as
input, thereby outperforming the teacher model and achieving state-of-the-art performance at
the time of publication.
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4.2 EdiBERT: a generative model for image editing

Abstract Advances in computer vision are pushing the limits of image manipulation, with
generative models sampling highly-realistic detailed images on various tasks. However, a
specialized model is often developed and trained for each specific task, even though many
image edition tasks share similarities. In denoising, inpainting, or image compositing, one
always aims at generating a realistic image from a low-quality one. In this section, we aim
at making a step towards a unified approach for image editing. To do so, we propose Ed-
iBERT, a bidirectional transformer that re-samples image patches conditionally to a given
image. Using one generic objective, we show that the model resulting from a single training
matches state-of-the-art GANs inversion on several tasks: image denoising, image comple-
tion, and image composition. We also provide several insights on the latent space of vector-
quantized auto-encoders, such as locality and reconstruction capacities. The code is available
at https://github.com/EdiBERT4ImageManipulation/EdiBERT.

4.2.1 Introduction

Denoising Completion Compositing Scribble-edit Crossover

Fig. 4.1 Using a single and straightforward training, EdiBERT can tackle a wide variety of
different tasks in image editing. In this image, the top row is the input, while the second and
third rows are different samples from EdiBERT, showing realism, consistency, and variety.

https://github.com/EdiBERT4ImageManipulation/EdiBERT
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Significant progress in image generation has been made in the past few years, thanks
notably to Generative Adversarial Networks (GANs) (Goodfellow et al., 2014). For example,
the StyleGAN architecture (Karras et al., 2019b, 2020b) yields state-of-the-art results in data-
driven unconditional generative image modeling. Empirical studies have also shown the
usefulness of GANs’ architecture when it comes to image manipulation. By following specific
directions in the latent space, one can modify an image attribute such as gender, age, the pose
of a person (Shen et al., 2020), or the angle (Jahanian et al., 2019). However, since the whole
picture is generated from a Gaussian vector, changing some undesired elements while keeping
the others frozen is difficult. To solve this problem, edition algorithms involving optimization
procedures have been proposed (Abdal et al., 2019, 2020) but with one main caveat: the
results are not convincing when manipulating complex visuals (Niemeyer and Geiger, 2021)
(cf. experimental section for visual results).

Independently, Van Den Oord et al. (2017) propose VQVAE, a promising latent represen-
tation by training an encoder/decoder using a discrete latent space. The authors demonstrate
the possibility to embed images in sequences of discrete tokens borrowing ideas from vector
quantization (VQ), paving the way for the generation of images with autoregressive transformer
models (Ramesh et al., 2021; Esser et al., 2021b). Building on this litterature, we argue that
one of the benefits of this representation is that each token in the sequence is mostly coding for
a localized patch of pixels (see section 4.2.3.4), thus opening the possibility for an efficient
localized latent edition.

Aiming to build a unified approach for image manipulation, we propose a method that
leverages both the spatial property of the discrete vector-quantized representation and the use
of model that performs attention on the whole image. To do so, we train a bi-directionnal
transformer network based on ideas from the language model BERT (Devlin et al., 2018),
naming EdiBERT the resulting model. During training, EdiBERT tries to recover the original
tokens of a perturbed sequence through a bidirectional attention schema. In computer vision,
this approach has mainly been studied in the context of self-supervised representation learning
(Bao et al., 2022; He et al., 2022). We advocate that training a single model using this generic
objective provides a sounded way to obtain a model able to tackle several editing tasks. Finally,
to practically handle these tasks, we also derived two different sampling algorithms: one
dedicated for image denoising and editing, and a second one for inpainting.

To better visualize the abilities of EdiBERT after a single training, we show in Figure 4.1
that the same model can now be used in many different image manipulation tasks such as
denoising, inpainting (or completion), compositing, and scribble-based editing.

To sum up, our contributions are the following:
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+ We analyze the VQ latent representations and illustrate their spatial properties, and show
how to improve the reconstruction capabilities of VQGAN, using a post-processing
procedure that better recovers the pixel content outside of the edited region.

+ We show how to derive two different sampling algorithms from a single bidirectional
transformers: one for the task of image denoising where the locations of the edits
are unknown, and a second one for inpainting or image compositing where the mask
specifying the area to edit is known.

+ Finally, we show that using this generic simple training algorithm along with its compan-
ion post-processing allow us to achieve competitive results on various image manipulation
tasks.

4.2.2 Related work

We start by introducing transformer models for image generation. Then, we motivate the use of
the VQ representation and bidirectional models for image manipulation.

4.2.2.1 Autoregressive image generation

The use of autoregressive transformers in the field of generative modeling (Parmar et al., 2018)
has been made possible by two simultaneous research branches. First, the extensive deployment
of attention mechanisms such as non-local means algorithms (Buades et al., 2005), non-local
neural networks (Wang et al., 2018b), and also attention layers in GANs (Zhang et al., 2019;
Hudson and Zitnick, 2021). Second, the development of both classifiers and generative models
sequentially inferring pixels via autoregressive convolutional networks such as PixelCNN (Van
Den Oord et al., 2016; Van den Oord et al., 2016). The self-attention mechanism (Vaswani
et al., 2017), which now become ubiquitous in computer vision, is quickly recalled here: a
sequence X ∈ RL×d , where L is length of the sequence, is mapped by a position-wise linear
layer to a query Q ∈ RL×dk , a key K ∈ RL×dk and a value V ∈ RL×dv . The self-attention layer
is then:

attn(Q,K,V ) = softmax(
QKt
√

dk
)V ∈ RL×dv (4.2.1)

If autoregressive transformers allow a principled log-likelihood estimation of the data,
attention layers have a complexity scaling with the square of the sequence length, a clear
bottleneck to scale to high-resolution images. To reduce the size of these sequences, Van
Den Oord et al. (2017) proposed the use of discrete representation. In this framework, an
encoder E, a decoder D, and a codebook/dictionary Z are learned simultaneously to represent
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images with a single sequence of tokens. Esser et al. (2021b) later trained an autoregressive
model on these token sequences, stressing that high-capacity transformers can generate realistic
high-resolution images. The framework consists of three steps:

1. Training simultaneously a set of encoder/decoder/codebook (E,D,Z), by combining re-
construction, commitment and adversarial losses. The reconstruction loss is a perceptual
distance (Zhang et al., 2018). The commitment loss (Van Den Oord et al., 2017) pushes
the codebook towards the output of the encoder using a quantization loss. The adversarial
loss is the Vanilla GANs loss defined in (Goodfellow et al., 2014). The training objective
becomes :

E⋆,D⋆,Z⋆ = argmin
E,D,Z

[Lrec.(E,D,Z)+Lcommit.(E,Z)+λLadv.({E,D,Z})]. (4.2.2)

2. Training an autoregressive transformer to maximize the log-likelihood of the encoded
sequences.

3. At inference, sampling a sequence with the transformer and decoding it with the decoder
D.

This vector-quantized representation was later improved by Yu et al. (2021a) and used by Yu
et al. (2022) to create PARTI, a state-of-the-art text-to-image generative model. Interestingly,
our work EdiBERT builds on top of the first step of VQGAN, and also requires the training of
the triplet (E,D,Z) following (4.2.2).

4.2.2.2 Bidirectional attention

The main property of autoregressive models is that they only perform attention on previous
tokens, making them inadequate when dealing with image manipulation (Esser et al., 2021a).
Some works alleviate this bias in different ways. Yang et al. (2019) learn an autoregressive
model on random permutations of the ordering. Cao et al. (2021) propose a model where
missing tokens are inferred autoregressively, conditionally to the set of kept tokens. Similarly,
Wan et al. (2021) use an auto-regressive procedure conditioned on the masked image, while
Yu et al. (2021b) use BERT training with [MASK] tokens and Gibbs sampling. If this setting
is ideal for tasks with masked tokens such as inpainting, it makes it ill-posed for scribble-
editing and insertion without existing paired datasets. On the opposite, our EdiBERT tackles
all tasks without any need for supervision. Finally, Esser et al. (2021a) train ImageBART, a
multinomial diffusion process (Hoogeboom et al., 2021) in the discrete latent space of VQGAN.
Each generated sequence is conditioned on the previous one and performs attention to the
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whole image. However, this method is computationally heavy since it requires making N×L
inferences, where N is the number of generated sequences and L is the number of tokens in
the sequence. A more efficient way to perform bidirectional attention for image generation
has been proposed in MaskGIT (Chang et al., 2022). MaskGIT consists of training with a
BERT-like objective (Devlin et al., 2018) on sequences randomly perturbed with [MASK]
tokens, and generating images with a parallel decoding scheme. Similarly, Zhang et al. (2021b)
propose to use a masking-based strategy to perform conditional image editing with bidirectional
attention mechanisms. However, they still require specific conditional data to learn their model
editing model. We argue that by performing bidirectional attention over all the tokens and
learning with a denoising objective (tokens perturbed by randomization instead of [MASK]
tokens), it is possible to train a single model tackling many editing tasks.

4.2.2.3 Unifying image manipulation

Initially, image manipulation methods were implemented without any trainable parameters.
Image completion was tackled using nearest-neighbor techniques along with a large dataset of
scenes (Hays and Efros, 2007). As to image insertion, blending methods were widely used,
such as the Laplacian pyramids (Burt and Adelson, 1987). In recent years, image manipulation
has benefited from the advances of deep generative models. A first line of work has consisted
of gathering datasets of corrupted and target images to train conditional generative models.
By doing so, one can therefore learn a mapping from any corrupted image to a real one. For
example, Liu et al. (2021) proposes an encoder-decoder architecture for sketch-guided image
inpainting. However, in all cases, a dataset with both types of images is required, therefore
limiting the applicability.

To avoid this dependency, a second idea - known as GAN inversion methods - leverages
pre-trained unconditional GANs. They work by projecting edited images on the manifold of
real images learned by the pre-trained GAN. It can be solved either by optimization (Abdal
et al., 2019, 2020; Daras et al., 2021), or with an encoder mapping to the latent space (Chai
et al., 2021; Richardson et al., 2021; Tov et al., 2021). Pros of these GAN-based methods
are that one benefits from the outstanding properties of StyleGan, state-of-the-art in image
generation. However, these methods rely on a task-specific loss function that needs to be
defined and optimized. More recently, another line of research is based on the development of
score-based models (Song et al., 2020): Meng et al. (2022) use Langevin dynamics for image
edition, and (Esser et al., 2021a) combine discrete diffusion models (Hoogeboom et al., 2021;
Austin et al., 2021) with the discrete vector-quantized representations from VQGANs.
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4.2.3 Motivating EdiBERT for image editing

This section gives a global description of the proposed EdiBERT model. We start with notations
before describing the different steps leading to the BERT-based edition.

4.2.3.1 Discrete auto-encoder VQGAN

Let I be an image with width w, a height h, and a number c of channels. I thus belongs to
Rh×w×c. Let (E,D,Z) be respectively the encoder, decoder, and codebook defined in VQVAE
and VQGAN (Van Den Oord et al., 2017; Esser et al., 2021b). The codebook Z consists of a
finite number of tokens with fixed vectors in an embedding space: Z = {t1, . . . , tN} with tk ∈Rd

and N being the cardinality of the codebook.
For any given image I, the encoder E outputs a vector E(I)∈RL×d , which is then quantized

and reshaped into a sequence s of length L as follows:

s = (arg min
z∈Z

∥E(I)1− z∥, . . . ,arg min
z∈Z

∥E(I)L− z∥)) = QZ(E(I)), (4.2.3)

where E(I)l = E(I)l,: ∈ Rd is the feature vector of E(I) at position l, and QZ refers to the
quantization operation using the codebook Z. Recall that, after the quantization step, one
gets a sequence composed of L codebook elements, thus s ∈ ZL. After we feed the codebook
embeddings to the decoder D, the reconstructed image becomes Î = D(QZ(E(I))).

Let’s note D , the available image dataset. From a pre-trained encoder E and codebook Z,
one can transform the image dataset D into a dataset of token-sequences DS := {QZ(E(I)), I ∈
D}. When learning transformers on sequences of tokens, the practitioner is directly working
with DS.

4.2.3.2 Learning sequences with autoregressive models

The following sections aim at motivating the training objective for the EdiBERT model. To
begin with, let pθ be a transformer model parameterized with Θ trained on DS. For each
position i in s, we note pi

θ
(.|s), the modeled distribution of tokens conditionally to s.

When training an autoregressive transformer on the discrete sequences of tokens DS

(Esser et al., 2021b), one needs to compute the likelihood pθ (s) of each given sequence
s = (s1, . . . ,sL) ∈DS as follows:

pθ (s) =
L

∏
i=1

pi
θ (si|s<i), with s<i = (s1, . . . ,si−1). (4.2.4)
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Fig. 4.2 The 2D selection and randomization strategy for the training of our bidirectional
transformer: EdiBERT is trained on sequences where localized patch of tokens have been
perturbed.

Conditional distributions pi
θ
(si|s<i) are computed using a causal left-to-right attention mask.

The final objective of the autoregressive model is to find the best set of parameters within Θ :

arg max
θ∈Θ

Es∈Ds log pθ (s). (4.2.5)

Limitations of the model. If this setting is well suited for unconditional image generation,
it is ill-posed for image manipulation tasks, as shown by Esser et al. (2021a). In the case of
scribble-based editing, or inpainting, one wants to resample tokens conditionally to the whole
image, so that the model has all the information at its disposal.

4.2.3.3 A unique training objective for EdiBERT.

Let us define the training objective for EdiBERT. For a sequence s = (s1, ...,sL), a function ϕ

randomly selects a subset of k indices {ϕ1, ...,ϕk} where ϕk < L. At each selected position ϕi,
a perturbation is applied on the token sϕi . We attribute a random token with probability p, or
keep the same token with probability 1− p. Consequently, the perturbed token s̃ϕi becomes:

s̃ϕi = U(Z) with probability p,

s̃ϕi = sϕi with probability 1− p,



88 Image editing with deep neural networks

where U(Z) refers to the uniform distribution on the space of tokens Z. Similarly to Bao et al.
(2022), the sampling function ϕ is defined with a 2D selection strategy, and the positions are
selected by drawing random 2D rectangles, see in Figure 4.2. Contrarily to Bao et al. (2022)
and Devlin et al. (2018), we only use random tokens from the codebook but no [MASK] tokens.
We argue this setting corresponds more to the cases of denoising and editing, where tokens
have to be sampled conditionally to an entire perturbed sequence.

Let us now call s̃=(s1, . . . , s̃ϕ1, . . . , s̃ϕk , . . . ,sL) the perturbed sequence, and D̃s = {s̃, s∈D}
the perturbed dataset. The training of EdiBERT optimizes the following objective :

arg max
θ∈Θ

Es̃∈D̃s

1
k

k

∑
i=1

log pi
θ (sϕi|s̃). (4.2.6)

Contrary to (4.2.5), we note that the objective in (4.2.6) does not require a causal left-to-right
attention. Instead, the attention can be performed over the whole input sequence.

Sampling from EdiBERT: Wang and Cho (2019) show that it is possible to generate realistic
samples with a BERT model starting with random initialization. However, compared with
standard autoregressive language models, the authors stress that BERT generations are more
diverse but of slightly worse quality. Building on the findings of Wang and Cho (2019), we do
not aim to use BERT for pure unconditional sequence generation but rather improve an already
existing sequence of tokens. In our defined EdiBERT model, for any given position i ∈ s, a
token will be sampled according to the multinomial distribution pi

θ
(.|s).

4.2.3.4 On the locality of Vector Quantization encoding

In this section, we argue that one of the main advantages of EdiBERT comes from the VQ
latent space proposed by Van Den Oord et al. (2017) where each image is encoded in a discrete
sequence of tokens. In this section, we illustrate with simple visualizations the property of
this VQGAN encoding. We explore the spatial correspondence between the position of the
token in the sequence and a set of pixels for the encoded image. We aim at answering the
following question: do local modifications of the image lead to local modifications of the latent
representation and vice versa?

Modifying the image. To answer this question, images are voluntarily perturbed with grey
masks (i−→ im). Then, we encode the two images, quantize their representation using a pre-
trained codebook, and plot the distance between the two latent representations: ∥QZ(E(i))−
QZ(E(im))∥2

2. The results are shown in the first row in Figure 4.3. Due to the large receptive
field of the encoder, tokens can be influenced by distant parts of the image: the down-sampled
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Modifying the latent space via the image

Modifying the image via the latent space

Fig. 4.3 Each token in the sequence is tied to a small spatial area in the decoded image. In
the 1st row: we voluntarily perturb images and display the variations among the tokens in
the latent space. The heatmaps represent the distance (red is high) between the tokens of the
original image and the tokens of the perturbed image. In the 2nd row: we stress how collages
of images can easily be done with this discrete latent representation: third and fourth images
are generated by the decoder from a latent space collage.

mask does not recover all of the modified tokens. However, tokens that are largely modified are
either inside, or very close to the down-sampled mask.

Modifying the latent space. To understand the correspondence between tokens and pixels,
we stress how one can easily manipulate images using the discrete latent space. In Figure
4.3, we show that cutting a specific area of a source image to insert it in a different location
of another image is possible only by replacing the corresponding tokens in both sequences.
This spatial correspondence between VQGANs’ latent space and the image is interesting for
localized image editing tasks, i.e. tasks that require modifying only a subset of pixels without
altering the other ones.

4.2.3.5 On the reconstruction capabilities of Vector Quantization encoding

A limit of the framework resides in the use of the vector quantization operation and the induced
loss of information. Indeed, we observe in Figure 4.4 that VQGAN struggles to reconstruct high-
frequency details, for example complex backgrounds on FFHQ dataset (Karras et al., 2019b).
To improve the reconstruction capabilities of VQGANs, we propose a simple optimization
procedure over the latent space vectors.
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Original. VQGAN + optim.
(av. LPIPS
= 0.085)

VQGAN.
(av. LPIPS
= 0.232)

Id-GAN
(av. LPIPS
= 0.164)

I2SG †++
(av. LPIPS
= 0.345)

Fig. 4.4 Comparison of reconstruction capabilities of VQGAN + optimization to two GANs
inversion methods such as Id-GAN (Zhu et al., 2020) and I2SG†++ (Abdal et al., 2020).
Averaged LPIPS are computed on the validation set FFHQ.
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Fig. 4.5 Analysis of reconstruction capabilities of VQGAN. On the left, we see that both the L1
and perceptual loss (LPIPS) between original and reconstructed images significantly decrease
when optimizing LPIPS over the latent vectors of VQGAN. This may be a consequence of a
higher number of dimensions spanned by the latent vectors (on the right), after the optimization
(allowing for more complex reconstructions).

The objective is to find the latent vectors that minimize the LPIPS (Zhang et al., 2018)
between the target image and the decoded reconstruction. We initialize the procedure from the
output of the encoder E(I), and optimize the objective with gradient descent. Figure 4.4 shows
how this procedure improves the inversion capabilities of VQGAN to make it better than GAN
inversion methods (Abdal et al., 2020). A potential explanation of the limited reconstruction
capabilities of VQGAN is displayed in Figure 4.5: the latent vectors of the codebook might
suffer from a very low rank. The optimization procedure seems to solve this since the latent
vectors span much more dimensions of the embedding space after a few hundred optimization
steps.

4.2.4 Image editing with EdiBERT

Baselines. For each task, we run comparisons with baselines and state-of-the-art models based
on GANs inversion methods. On FFHQ, we compare to ImageStyleGAN2++ (Abdal et al.,
2020) on pre-trained StyleGANs: StyleGAN2 (Karras et al., 2020b) and StyleGAN2-ADA
(Karras et al., 2020a). Besides, we run the solution proposed by Chai et al. (2021) where
a StyleGAN2 model is inverted using a trained encoder. Finally, we use In-Domain GAN
(Zhu et al., 2020), a hybrid method combining an encoder with an optimization procedure
minimizing reconstruction losses. We also compare to Co-Modulated GANs (Zhao et al., 2020),
a conditional GAN for inpainting.

Metrics. We follow the work of Chai et al. (2021) and use metrics assessing both fidelity
and distribution fitting. The masked L1 metric (Chai et al., 2021) measures the closeness be-
tween the generated image and the source image outside the edited areas. The density/coverage
metrics (Naeem et al., 2020) are robust versions of precision/recall metrics. Intuitively, density
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Fig. 4.6 Image denoising with EdiBERT: the color in the 4 different heatmaps is proportional
to the negative likelihood of the token. Tokens with a lower likelihood appear in red in the
heatmap and have a higher probability of being sampled and edited. Consequently, conditional
distributions output by EdiBERT are an efficient tool to detect anomalies and artifacts in the
image.

measures fidelity while coverage measures diversity. Finally, the FID (Heusel et al., 2017)
quantifies the distance between generated and target distributions. Moreover, we perform a user
study on FFHQ image compositing. More details and quantitative results on LSUN Bedroom
are presented in Appendix.

4.2.4.1 Localized image denoising

Image denoising aims to improve the quality of a pre-generated image or improve a locally per-
turbed one. The model has to work without information on the localization of the perturbations.
This means we need to find and replace the perturbed tokens with more likely ones to recover a
realistic image. Thus, given a sequence s = (s1, . . . ,sL), we want to:

1. Detect the tokens that do not fit properly in the sequence s.

2. Change them for new tokens increasing the likelihood of the new sequence.

We desire a significantly more likely sequence with as few as possible token amendments.
To do so, we measure the likelihood of each token si based on the whole sequence s, aiming to
compute p(si|s), and replace the least-probable tokens considering them independently. That is,
we propose to use the conditional probability output by the model in order to detect and sample
the less likely odd tokens. Some examples of image denoising are presented in Figure 4.6, and
we observe that EdiBERT is able to detect artifacts and replace them with more likely tokens.
The full algorithm is given in the Algorithm 3.
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Ref. image EdiBERT ⋆ LC I2SG † ++ Com-GAN

Fig. 4.7 Image inpainting comparisons on FFHQ. EdiBERT performs better than inversion
methods such as LC (Chai et al., 2021) and I2SG (Abdal et al., 2020). Note that Com-GAN
(Zhu et al., 2020) is specialized for image inpainting and was trained on pair datasets (masked
image, target image), it can not perform other image editing tasks.
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Algorithm 3: Image denoising
1 Requires: Sequence (s1, . . . ,sL), BERT model pθ , number of iterations T ;
2 for iterations in [0,T] do
3 Compute pi = logit(−pi

θ
(si|s)),∀i ∈ [1,L] ;

4 Sample p∼ (p1, . . . , pl) (less likely position);
5 Sample t ∈ Z ∼ pp

θ
(·|s) ;

6 Insert sampled token: si← t ;
7 end
8 Image← Decoder(s);

Result: Image

4.2.4.2 Image inpainting

In this setting, we have access to a masked image im ∈ Rh×w×c along with the location
of the binary mask m ∈ Rh×w. im has been obtained by masking an image i ∈ Rh×w×c as
follows: im = i⊙m with ⊙ pointwise multiplication. The goal of image inpainting is to
generate an image î that is both realistic (high density) and conserves non-masked parts, that is
î⊙ (1−m) = i⊙ (1−m).

Among the different tasks in image manipulation, image inpainting stands out. Indeed,
when masking a specific area of an image, one shall not consider the pixels within the mask
to recover the target image. The image inpainting task thus requires specific care to reach a
state-of-the-art performance; this is why we added five different elements to our approach, and
validated these elements with visual results in Figure 4.8.

1. Randomization: to erase the mask influence, the tokens within the mask are given
random values.

2. Dilation of the mask: as shown in Figure 4.3, some tokens outside of the down-sampled
mask in the latent space are also impacted by the mask on the image. Modifying only
tokens inside the down-sampled mask might not be enough and could lead to images
with irregularities on the borders. As a solution, we apply a dilation on the down-sampled
mask and show in Figure 4.8 that it helps better blend the target image’s completion since
the boundaries are removed.

3. Spiral ordering: since there is no pre-defined ordering of positions in EdiBERT, one can
look for an optimal sampling of positions. We argue that by sampling positions randomly,
one does not fully leverage the spatial location of the mask. Instead, we propose a spiral
ordering that goes from the border to the inside of the mask. Qualitative and quantitative
results in Figure 4.8 and Table 4.2 confirm the advantage of this ordering.
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4. Periodic image collage: to preserve fidelity to the original image, we periodically
perform a collage between the masked image and the decoded image. We observed in
Figure 4.8, that without this collage trick, the reconstruction can diverge too much from
the input image.

5. Online optimization on latent sequences: to improve fidelity to the masked image
im, the final stage of the algorithm consists in an optimization procedure on the latent
sequence s ∈ Rh×w×d . The objective function is defined as:

L = Lp
(
(D(s)− im)⊙m

)
+Lp

(
(D(s)−D(s0))⊙ (1−m)

)
(4.2.7)

where Lp is a perceptual loss (Zhang et al., 2018), and s0 is the initial sequence from
EdiBERT. Intuitively, the first term enforces the decoded image to get closer to the
masked image im, while the second term is a regularization enforcing the decoded image
to stay similar to the completion proposed by the transformer’s likelihood. We illustrate
in Figure 4.5 and Figure 4.8 that the optimization leads to a better-preserved source
image.

Analyzing the results: we see from Table 4.1 and Figure 4.7 that the specialized method
com-GAN (Zhao et al., 2020) outperforms non-specialized methods on image inpainting. This
was expected since it is the only method that has been trained specifically for this task. Note
that the trained model co-mod GAN cannot be used in any other image manipulation task.
Compared with the non-specialized method, EdiBERT always provides better fidelity to the
source image (lower Masked L1) and realism (best FID and top-2 density). An ablation study
is available in Table 4.2 and validates our choices. Finally, more details regarding the sampling
algorithm for the task of inpainting are given in Appendix.

4.2.4.3 Image composition

In this setting, we have access to a non-realistically edited image ie ∈ Rh×w×c. The edited
image ie is obtained by a composition between a source image is ∈ Rh×w×c and a target image
it ∈Rh×w×c. The target image can be a user-drawn scribble or another real image in the case of
image compositing. Besides, pixels are edited inside a binary mask m ∈ Rh×w, which indicates
the areas modified by the user. Thus, the final edited image is computed pointwise as:

ie = is⊙m+ it⊙ (1−m). (4.2.8)



96 Image editing with deep neural networks

Masked EdiBERT (a) (b) (c) (d) (e)

Fig. 4.8 Ablation study for inpainting. Components removed are (a) optimization, (b) dilation,
(c) randomization, (d) collage, (e) spiraling (random order instead). Optimization improves
fidelity to the source image, while the other components help increase image quality.

Table 4.1 Image inpainting and compositing on FFHQ 256× 256. Com-GAN is a model
specific for image inpainting, ID-GAN handles several editing tasks but not inpainting, while
other methods handle both. I2SG†++ refers to Abdal et al. (2020) with a better GAN backbone
(Karras et al., 2020a), LC to Chai et al. (2021), Com-GAN to Zhu et al. (2020), ID-GAN to
Zhu et al. (2020).

Inpainting Compositing

Masked L1 ↓FID ↓Dens. ↑Cover. ↑Masked L1 ↓Dens. ↑User study ↑
I2SG++ 0.0767 23.6 0.99 0.88 0.0851 0.77 -
I2SG†++ 0.0763 22.1 1.25 0.91 0.0866 1.07 8.3%

LC 0.1027 27.9 1.12 0.84 0.1116 1.00 14.8%
EdiBERT ⋆ 0.0290 13.8 1.16 0.98 0.0307 0.94 61.2%

Com-GAN 0.0086 10.3 1.42 1.00 - - -
ID-GAN - - - - 0.0570 0.75 15.7%



4.2 EdiBERT: a generative model for image editing 97

Image composition aims to transform an edited image ie to make it more realistic and faithful
without limiting the changes outside the mask. We note the source image is outside the mask
and the edits of the target image im for the inserted elements in the edition mask. Three tasks
fall under this umbrella: scribble-based editing, image compositing, and image crossovers.

Results of image compositing on FFHQ are presented in Table 4.1 and Figure 4.9. EdiBERT
always has the lowest masked L1. We also present the results from a user study in Table 4.1.
30 users were shown 40 original and edited images, along with four results (EdiBERT and
baselines). They were asked which one is preferable, accounting for both fidelity and realism.
The survey shows that on average, users prefer EdiBERT over competing approaches. We give
more visual results along with the detailed answers of the user study in Appendix.

Table 4.2 Inpainting: Ablation study on the components of EdiBERT sampling algorithm.
EdiBERT (1st row) shows the best tradeoff between fidelity (masked L1) and quality (FID,
density/coverage).

Ordering Optim- Random- Collage Dilation Masked FID Density Coverage
ization ization L1 ↓ ↓ ↑ ↑

Spiral ✓ ✓ ✓ ✓ 0.0201 19.4 1.14 0.96
Random ✓ ✓ ✓ ✓ 0.0206 20.7 1.13 0.95
Spiral X ✓ ✓ ✓ 0.0299 20.3 1.20 0.94
Spiral ✓ X ✓ ✓ 0.0198 20.5 1.26 0.92
Spiral ✓ ✓ X ✓ 0.0252 19.9 1.11 0.95
Spiral ✓ ✓ ✓ X 0.0197 23.3 0.96 0.91

4.2.5 Discussions

EdiBERT is a bidirectional transformers model that can tackle multiple editing tasks from one
single training. One of the key elements of the proposed method is that it does not require
having access to paired datasets (source, target), or unpaired image datasets. This property
shows how flexible EdiBERT is and why it can be easily applied to different tasks. Overall, the
proposed framework is simple and tractable: 1) train a VQGAN (Esser et al., 2021b), 2) train
an EdiBERT model following the objective defined in (4.2.6).

Interestingly, for simple applications, one can directly train EdiBERT based on the repre-
sentations output by the VQGAN pre-trained on ImageNet. However, for more complex data
or when dealing with multiple domains, one might have to train a specialized codebook, which
requires a large auto-encoder and a lot of data. Another EdiBERT’s drawback is related to
the core interest of image editing. Since the tokens are predominantly localized, EdiBERT is
perfectly suited for small manipulations that only require amending a few numbers of tokens.



98 Image editing with deep neural networks

Source Composite EdiBERT (⋆) ID-GAN I2SG†++

Source Composite EdiBERT (⋆) ID-GAN I2SG

Fig. 4.9 Scribble-based editing and image compositing: comparison with ID-GAN (Zhu et al.,
2020) and I2SG (Abdal et al., 2019). EdiBERT preserves better the fidelity to the source image
while being also able to fit the inserted object properly. This confirms the quantitative results in
Table 4.1, EdiBERT seems to be leading in both fidelity and realism.
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However, some manipulations such as zooms or rotations require changing large areas of the
source image. In these cases, modifying a large number of tokens might be more demanding.

4.2.6 Conclusion

In this section, we demonstrated the possibility to perform several editing tasks by using the
same pre-trained model. The proposed framework is simple and aims at making a step towards
a unified model able to do any conceivable manipulation task on images. An exciting direction
of research would be to extend the editing capabilities of EdiBERT to global transformations
(e.g. zoom, rotation).
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4.3 A parser-free virtual try-on

Abstract. The 2D virtual try-on task has recently attracted a great interest from the research
community, for its direct potential applications in online shopping as well as for its inherent
and non-addressed scientific challenges. This task requires fitting an in-shop cloth image on
the image of a person, which is highly challenging because it involves cloth warping, image
compositing, and synthesizing. Casting virtual try-on into a supervised task faces a difficulty:
available datasets are composed of pairs of pictures (cloth, person wearing the cloth). Thus,
we have no access to ground-truth when the cloth on the person changes. State-of-the-art
models solve this by masking the cloth information on the person with both a human parser
and a pose estimator. Then, image synthesis modules are trained to reconstruct the person
image from the masked person image and the cloth image. This procedure has several caveats:
firstly, human parsers are prone to errors; secondly, it is a costly pre-processing step, which
also has to be applied at inference time; finally, it makes the task harder than it is since the
mask covers information that should be kept such as hands or accessories. In this section, we
propose a novel student-teacher paradigm where the teacher is trained in the standard way
(reconstruction) before guiding the student to focus on the initial task (changing the cloth). The
student additionally learns from an adversarial loss, which pushes it to follow the distribution
of the real images. Consequently, the student exploits information that is masked to the teacher.
A student trained without the adversarial loss would not use this information. Also, getting rid
of both human parser and pose estimator at inference time allows obtaining a real-time virtual
try-on.

4.3.1 Introduction

A photo-realistic virtual try-on system would provide a significant improvement for online
shopping. Whether used to create catalogs of new products or to propose an immersive
environment for shoppers, it could impact e-commerce and open the door for automated
image-editing possibilities.

Earlier work addresses this challenge using 3D measurements and model-based methods
(Guan et al., 2012; Hahn et al., 2014; Pons-Moll et al., 2017). However, these are, by nature,
computationally intensive and require expensive material, which would not be acceptable at
scale for shops. Recent works aim to leverage deep generative models to tackle the virtual
try-on problem (Dong et al., 2019; Han et al., 2018; Jetchev and Bergmann, 2017; Wang et al.,
2018a). CAGAN (Jetchev and Bergmann, 2017) is a U-net based Cycle-GAN (Zhu et al.,
2017) approach. However, this method fails to generate realistic results since such networks
cannot handle large spatial deformations. In VITON (Han et al., 2018), the authors recast the
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Reference Target Human CP-VTON T-WUTON S-WUTON
person cloth parsing (ours) (ours)

Fig. 4.10 Typical failure cases of the human parser. On the two first rows, it does not segment
the person properly. On the third row, it masks the handbag which we would like to preserve in
a virtual try-on. CP-VTON and our T-WUTON, which rely on the parsing information, are not
robust to a bad parsing. However, the student model S-WUTON which is distilled from the
human parser, pose estimator and T-WUTON, can preserve the person’s attributes and does not
rely on the parsing information.

virtual try-on as a supervised task. They propose to use a human parser and a pose estimator to
mask the cloth in the person image and construct an agnostic person representation p⋆. The
human parser allows segmenting the upper-body and the cloth, while the pose estimator locates
the keypoints (i.e. shoulders, wrists, etc.) of the person. Then, with p⋆ and the image of the
original cloth c on a white background, they train a model in a fully supervised fashion to
reconstruct p. Namely, they propose a coarse-to-fine synthesis strategy with shape context
matching algorithm (Belongie et al., 2002) to warp the cloth on the target person. To improve
this model, CP-VTON (Wang et al., 2018a) incorporates a convolutional geometric matcher
(Rocco et al., 2017), which learns geometric deformations (i.e. thin-plate spline transform
(Bookstein, 1989)) that align the cloth with the person. State-of-the-art models are based on
the supervised formulation of the virtual try-on task, which has some drawbacks. Human
parsers and pose estimators are trained on other datasets and thus fail in some situations (see
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Figure 4.10, two first rows). Retraining them on fashion datasets would require similar labels of
semantic segmentation or unsupervised domain adaptation methods. Even though they would
still be imperfect. Moreover, for a virtual try-on, one wants to preserve person’s attributes like
handbags or jewels. When constructing p⋆, these person’s attributes are masked and can not be
preserved, such as the partially masked handbag on the third row of Figure 4.10. Finally, the
human parsing and pose estimation are the wall clock bottleneck of the pipeline.

In our work, we distill (Hinton et al., 2015) the standard pipeline of virtual try-on composed
of human parser, pose estimator, and synthesis modules in the synthesis modules. Namely, we
train a student synthesizer with the outputs of a pre-trained standard virtual try-on pipeline.
To force the student to use information that is masked to the teacher, we also train the student
with an adversarial loss. The distillation process allows us to remove the need for human
parsing and pose estimation at inference time, which improves image quality and speeds up
the computations from 6FPS to 77FPS. In Figure 4.10, we show visual results of a baseline
CP-VTON, our teacher model T-WUTON and our student model S-WUTON. Since S-WUTON
does not rely on human parsing, it is robust to parsing errors and preserves a person’s attributes
such as fingers or handbags.

Additionally, to build an efficient teacher model, we propose an improved architecture for
virtual try-on, a Warping U-Net for a Virtual Try-On (WUTON). Our architecture is composed
of two modules: a convolutional geometric matcher (Rocco et al., 2017) and a U-net generator
with a siamese encoder, where the former warps the feature maps of the latter. The architecture
is trained end-to-end, which leads to high-quality synthesized images.

We demonstrate the benefit of our method with several experiments on a virtual try-on
dataset, with quantitative and visual results, and a user study.

4.3.2 Problem statement and related work

Given the 2D images p ∈ Rh×w×3 of a person and c ∈ Rh×w×3 of a clothing item, we want to
generate the image p̃ ∈ Rh×w×3 where a person p wears the cloth c. The task can be separated
in two parts : the geometric deformation T required to align c with p, and the refinement that
fits the aligned cloth c̃ = T (c) on p. These two sub-tasks can be modelled with learnable neural
networks, i.e. spatial transformers networks ST N (Jaderberg et al., 2015; Rocco et al., 2017)
that output parameters θ = ST N(p,c) of geometric deformations, and conditional generative
networks G that give p̃ = G(p,c,θ).

Because it would be costly to construct a dataset with {(p,c), p̃} triplets, previous works
(Han et al., 2018; Wang et al., 2018a) propose to use an agnostic person representation p⋆ ∈
Rh×w×c where the clothing items in p are hidden but identity and shape of the persons are
preserved. p⋆ is built with pre-trained human parsers and pose estimators : p⋆ = h(p). These
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triplets {(p⋆,c), p} allow to train for reconstrution. (p⋆,c) are the inputs, p̃ the output and p
the ground-truth. We finally have the conditional generative process :

p̃ = G( h(p)︸︷︷︸
agnostic person

, c︸︷︷︸
cloth

, ST N(h(p),c)︸ ︷︷ ︸
geometric transform

) (4.3.1)

Although it eases the training of G, h is a bottleneck in the virtual try-on pipeline. We will
show that we can train a student model with synthetic triplets {(p,c), p̃}, where p̃ comes from
our pre-trained teacher generative model in Eq. 4.3.1. This allows to remove the need for h at
inference time for the student model:

p̂ = Gs( p︸︷︷︸
original person

, c︸︷︷︸
cloth

, ST Ns(p,c)︸ ︷︷ ︸
geometric transform

) (4.3.2)

where Gs and ST Ns are the student modules and p̂ the generated image.

Conditional image generation. Generative models for image synthesis have shown impres-
sive results with adversarial training (Goodfellow et al., 2014). Combined with deep networks
(Radford et al., 2015), this approach has been extended to conditional image generation in
Mirza and Osindero (2014) and performs increasingly well on a wide range of tasks. However,
as noted by Alami Mejjati et al. (2018), these models cannot handle large spatial deformations
and fail to modify the shape of objects, which is necessary for a virtual try-on.

Appearance transfer. Close to the virtual try-on task, some research focus on human appear-
ance transfer. Given two images of different persons, the goal is to transfer the appearance of a
part of the person A on the person B. Approaches using pose and appearance disentanglement
(Lorenz et al., 2019; Ma et al., 2018) fit this task but others are specifically designed for it.
SwapNet (Raj et al., 2018) is a dual path network which generates a new human parsing of
the reference person and region of interest pooling to transfer the texture. In Wu et al. (2019),
the method relies on DensePose information (Güler et al., 2018), which provides a 3D surface
estimation of a human body, to perform a warping and align the two persons. The transfer is
then done with segmentation masks and refinement networks. However, the warping relies on
matching source and target pose, which is not feasible for the virtual try-on task.

Virtual try-on. Most of the approaches for a virtual try-on system come from computer
graphics and rely on 3D measurements or representations. Drape (Guan et al., 2012) learns
a deformation model to render clothes on 3D bodies of different shapes. Hahn et al. (2014)
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use subspace methods to accelerate physics-based simulations and generate realistic wrinkles.
ClothCap (Pons-Moll et al., 2017) aligns a 3D cloth-template to each frame of a sequence of
3D scans of a person in motion. However, the use of 3D scans is expensive and thus not doable
for online users.

The task we are interested in is the one introduced in CAGAN (Jetchev and Bergmann,
2017) and further studied by VITON (Han et al., 2018) and CP-VTON (Wang et al., 2018a),
which we defined in the problem statement. In CAGAN, the auhtors propose a cycle-GAN
approach that requires three images as input: the reference person, the cloth worn by the
person and the target in-shop cloth. Thus, it limits its practical uses. To facilitate the task,
VITON introduces the supervised formulation of the virtual try-on, as described above. Their
pipeline separates the task in sub-tasks: constructing the agnostic person representation (i.e.
mask the area to replace but preserve body shape), warping the cloth and compositing the final
image. Based on the agnostic person representation p⋆ and the cloth image c, the VITON model
performs a generative composition between the warped cloth and a coarse result. The warping is
done with a non-parametric geometric transform (Belongie et al., 2002). To improve this model,
CP-VTON incorporates a learnable geometric matcher ST N (Rocco et al., 2017). The ST N is
trained to align c on p with a L1 loss on paired images. However, the L1 loss is overwhelmed
with the white background and the solid color parts of clothes. Thus, it faces difficulties to align
patterns and to preserve inner structure of the cloth. In VTNFP (Yu et al., 2019) and ClothFlow
(Han et al., 2019), a module generating the new human parsing is added. It allows to better
preserve body parts and edges, but at an increased computational cost. Moreover, ClothFlow
(Han et al., 2019) replaces the TPS warping by a dense flow from the target cloth to the person.
All these recent works (Han et al., 2018; Wang et al., 2018a; Han et al., 2019; Yu et al., 2019)
rely on pre-trained human parser and pose estimator.

Recent work MG-VTON (Dong et al., 2019) extends the task to a multi-pose virtual try-on
system, where they also change the pose of the reference person. Similarly to (Dong et al.,
2018; Yu et al., 2019; Dong et al., 2019), they add a module generating the new human parsing,
based on input and target pose information.

4.3.3 Our approach

Our task is to build a virtual try-on system that is able to fit a given in-shop cloth on a reference
person. In this work, we build a virtual try-on that does not rely on a human parser nor a pose
estimator for inference. To do so, we use a teacher-student approach to distill the standard
virtual try-on pipeline composed of human parser, pose estimator, and synthesis module in the
synthesis module.
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In Section 4.3.3.1, we detail the architecture of our synthesis module WUTON. It is trainable
end-to-end and composed of two existing modules: a convolutional geometric matcher ST N
(Rocco et al., 2017) and a U-net (Ronneberger et al., 2015) with siamese encoder whose skip
connections from the cloth encoder to the decoder are deformed by ST N. We then explain its
training procedure in the standard supervised setting, which gives the teacher T-WUTON.

We finally explain our distillation process. Once the first generative model is trained,
the pipeline {h,T-WUTON} becomes a teacher model for a student model S-WUTON by
constructing synthetic triplets {(p,c), p̃}. These serve to supervise the training of S-WUTON,
which hence does not need a human parser to pre-process the image and construct the agnostic
person representation. Importantly, S-WUTON also learns from an adversarial loss so it does
not only follow the teacher’s distribution and it can learn to preserve a person’s attributes.

4.3.3.1 WUTON architecture
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Fig. 4.11 The teacher T-WUTON : our proposed end-to-end warping U-net architecture.
Dotted arrows correspond to the forward pass only performed during training. Green arrows
are the human parser, red ones are the loss functions. The geometric transforms share the same
parameters but do not operate on the same spaces. The different training procedure for paired
and unpaired pictures is explained in Section 4.3.3.2.

Our warping U-net is composed of two connected modules, as shown in Figure 4.11. The
first one is a convolutional geometric matcher, which has a similar architecture as (Rocco et al.,
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2017; Wang et al., 2018a). It outputs the parameters θ of a geometric transformation, a TPS
transform in our case. This geometric transformation aligns the in-shop cloth image with the
reference person. However, in contrast to previous work (Dong et al., 2019; Han et al., 2018;
Wang et al., 2018a), we use the geometric transformation on the feature maps of the generator
rather than at a pixel-level. Thus, we learn to deform the feature maps that pass through the
skip connections of the second module, a U-net generator which synthesizes the output image
p̃.

The architecture of the convolutional geometric matcher is taken from CP-VTON (Wang
et al., 2018a), which reuses the generic geometric matcher from Rocco et al. (2017). It is
composed of two feature extractors F1 and F2, which are standard convolutional neural networks.
The local vectors of feature maps F1(c) and F2(p⋆) are then L2-normalized and a correlation
map C is computed as follows:

Ci jk = F1i, j(c) ·F2m,n(p⋆) (4.3.3)

where k is the index for the position (m, n). This correlation map captures dependencies
between distant locations of the two feature maps, which is useful to align the two images. C is
the input of a regression network, which outputs the parameters θ and allows to perform the
geometric transformation Tθ . We use TPS transformations (Bookstein, 1989), which generate
smooth sampling grids given control points. Each scale of the U-net is transformed with the
same parameters θ .

The input of the U-net generator is also the tuple of pictures (p⋆,c). Since these two
images are not spatially aligned, we cannot simply concatenate them and feed a standard
U-net. To alleviate this, we use two different encoders E1 and E2 processing each image
independently and with non-shared parameters. Then, the feature maps of the in-shop cloth
E1(c) are transformed at each scale i: E i

1(c) = Tθ (E i
1(c)). Then, the feature maps of the two

encoders are concatenated and feed the decoder at each scale. With aligned feature maps, the
generator is able to compose them and to produce realistic results. Feature maps warping was
also proposed in Dong et al. (2018); Siarohin et al. (2018). We use instance normalization
in the U-net generator, which is more effective than batch normalization (Ioffe and Szegedy,
2015) for image generation (Ulyanov et al., 2017).

4.3.3.2 Training procedure of the teacher model

We will now detail the training procedure of T-WUTON, i.e. the data representation and the
different loss functions of the teacher model.



4.3 A parser-free virtual try-on 107

While previous works use a rich person representation with more than 20 channels repre-
senting human pose, body shape and the RGB image of the head, we only mask the upper-body
of the reference person. Our agnostic person representation p⋆ is thus a 3-channel RGB image
with a masked area. We compute the upper-body mask from pose and body parsing information
provided by a pre-trained neural network from Liang et al. (2019). Precisely, we mask the areas
corresponding to the arms, the upper-body cloth and a bounding box around the neck.

Using the dataset from Dong et al. (2019), we have pairs of in-shop cloth image ca and
a person wearing the same cloth pa. Using a human parser and a human pose estimator, we
generate p⋆a. From the parsing information, we can also isolate the cloth on the image pa and
get ca,p, the cloth worn by the reference person. Moreover, we get the image of another in-shop
cloth cb. The inputs of our network are the two tuples (p⋆a,ca) and (p⋆a,cb). The outputs are
respectively (p̃a,θa) and (p̃b,θb).

The cloth worn by the person ca,p allows us to guide directly the geometric matcher with a
L1 loss:

Lwarp = ∥Tθa(ca)− ca,p∥1 (4.3.4)

The image pa of the reference person provides a supervision for the whole pipeline. Similarly
to CP-VTON (Wang et al., 2018a), we use two different losses to guide the generation of the
final image p̃a, the pixel-level L1 loss ∥p̃a− pa∥1 and the perceptual loss (Johnson et al., 2016).
We focus on L1 losses since they are known to generate less blur than L2 for image generation
(Zhao et al., 2016). The latter consists of using the features extracted with a pre-trained neural
network, VGG (Simonyan and Zisserman, 2014) in our case. Specifically, our perceptual loss
is:

Lperceptual =
5

∑
i=1
∥φi(p̃a)−φi(pa)∥1 (4.3.5)

where φi(I) are the feature maps of an image I extracted at the i-th layer of the VGG network.
Furthermore, we exploit adversarial training to train the network to fit cb on the same agnostic
person representation p⋆a, which is extracted from a person wearing ca. This is only feasible
with an adversarial loss, since there is no available ground-truth for this pair (p⋆a,cb). Thus,
we feed the discriminator with the synthesized image p̃b and real images of persons from the
dataset. This adversarial loss is also back-propagated to the convolutional geometric matcher,
which allows to generate much more realistic spatial transformations. We use the relativistic
adversarial loss (Jolicoeur-Martineau, 2019) with gradient-penalty (Arjovsky et al., 2017;
Gulrajani et al., 2017), which trains the discriminator to predict relative realness of real images
compared to synthesized ones. Finally, we optimize with Adam (Kingma and Ba, 2014) the
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Fig. 4.12 S-WUTON: our training scheme allowing to remove the need for a human parser
at inference time. We use human parser and pre-trained T-WUTON to generate synthetic
ground-truth for a student model S-WUTON.

following objective function:

L = λwLwarp +λpLperceptual +λL1L1 +λadvLadv (4.3.6)

4.3.3.3 Training procedure of the student model

We propose to use a teacher-student approach to distill the pipeline composed of {h,T-WUTON}
in a single student WUTON (S-WUTON). Indeed, our pre-trained T-WUTON is able to gener-
ate realistic images and geometric deformations of clothes on images pre-processed by h. We
leverage it and use it as a way to construct generated triplets {(pa,cb), p̃b}, where p̃b is the
image synthesized by T-WUTON. With this pre-trained model, we can supervise the training
of a student model S-WUTON. This allows to train the student model on the initial task of
changing the cloth rather than reconstructing the upper-body. The student model has the exact
same architecture than T-WUTON but different inputs and ground-truth. Hence, its inputs
are (pa,cb), where pa is the non-masked image of a person. Having this non-masked image
as input, the student model does not need a human parser for pre-processing images. The
ground-truth of S-WUTON are the outputs of T-WUTON, for both the warped cloth Tθ (cb)

and the final synthesized image p̃b. The training scheme of the student model S-WUTON is
shown in Figure 4.12.

More precisely, let us define the inputs-outputs of the teacher and student model: (p̂b,φ) =

S-WUTON(pa,cb) and (p̃b,θ)=T-WUTON(h(pa),cb). Then, the loss functions of S-WUTON
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are:
Lwarp = ∥Tφ (cb)−Tθ (cb)∥1 (4.3.7)

Lperceptual =
5

∑
i=1
∥φi(p̂b)−φi(p̃b)∥1 (4.3.8)

L1 = ∥ p̂b− p̃b∥1 (4.3.9)

Finally, the total loss of the student model is:

L = λwLwarp +λpLperceptual +λL1L1 +λadvLadv (4.3.10)

The adversarial loss Ladv is independant from T-WUTON. Here, we also use the relativistic
loss with gradient penalty on the discriminator. The real data consists of images of persons
from the dataset pa, and the fake data corresponds to the synthesized images p̂b. Notice that
without the adversarial loss, it would be a standard teacher-student setting, where the student
is only guided by the outputs of the teacher. In our case, the discriminator (i.e. Ladv) helps
S-WUTON to be close to the real data distribution, and not only to the teacher’s distribution. As
shown by the ablation study in Section 4.3.4.6, it is an important component and is necessary
to make S-WUTON exploit the components that are masked from T-WUTON (e.g. hands).

4.3.4 Experiments and analysis

We first describe the dataset. We then compare our approach with CP-VTON (Wang et al.,
2018a), a current state-of-the-art for the virtual try-on task. We present visual and quantitative
results proving that S-WUTON achieves state-of-the-art results, and that the distillation process
allows to improve image quality. We show that this stands for several metrics, and with a user
study. We then provide a comparison of the runtime of virtual try-on algorithms on a Tesla
NVIDIA V100 GPU. The teacher-student distillation allows to decrease the runtime by an order
of magnitude. Finally, we outline the importance of the adversarial loss in our teacher-student
setting.

We also show some visual comparisons with recent work VTNFP (Yu et al., 2019). Images
are taken from their paper. However, since their model is not available, we could not compute
the other metrics. We provide more visual comparisons with VTNFP and ClothFlow (Han
et al., 2019) in supplementary material.
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Ref. Target CP- T-WUT- S-WUTON Ref. Target CP- VTNFP S-WUTON
person cloth VTON ON(ours) (ours) person cloth VTON (ours)

Fig. 4.13 On the left side, comparison of our method with CP-VTON (Wang et al., 2018a).
For fairness, the two methods are trained on the same dataset and on the same agnostic person
representation p⋆. More examples are provided in supplementary material. On the right side,
comparison with recent work VTNFP. Except for S-WUTON’s column, images are taken from
their paper.

4.3.4.1 Dataset

For copyright issues, we can not use the dataset from VITON (Han et al., 2018) and CP-VTON
(Wang et al., 2018a). Instead, we leverage the Image-based Multi-pose Virtual try-on dataset.
This dataset contains 35,687/13,524 person/cloth images at 256x192 resolution. 4175 pairs are
kept for test so the cloth was not seen during training. A random shuffle of these pairs produces
the unpaired person/cloth images. For each in-shop cloth image, there are multiple images of a
model wearing the given cloth from different views and in different poses. We remove images
tagged as back images since the in-shop cloth image is only from the front. We process the
images with a neural human parser and pose estimator, specifically the joint body parsing and
pose estimation network (Liang et al., 2019).

4.3.4.2 Visual results

Visual results of our method and CP-VTON are shown in Figure 4.13. On the left side, images
are computed from models trained on MG-VTON dataset, with p⋆t−wuton representation for
T-WUTON and CP-VTON for fairness. On the right side, images are taken from VTNFP paper
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(Yu et al., 2019). There, CP-VTON and VTNFP were trained on the original dataset from
VITON, and CP-VTON uses p⋆cp−vton. More images from S-WUTON are provided in Figure
4.10 and Figure 4.15.

CP-VTON has trouble to realistically deform and render complex patterns like stripes
or flowers. Control points of the Tθ transform are visible and lead to unrealistic curves and
deformations on the clothes. Also, the edges of cloth patterns and body contours are blurred.

Firstly, our proposed T-WUTON architecture allows to improve the baseline CP-VTON.
Indeed, our method generates spatial transformations of a much higher visual quality, which
is specifically visible for stripes (1st row). It is able to preserve complex visual patterns of
clothes and produces sharper images than CP-VTON and VTNFP on the edges. Secondly, we
can observe the importance of our distillation process with the visual results from S-WUTON.
Since it has a non-masked image as input, it is able to preserve body details, especially the
hands. Moreover, as shown in Figure 4.10, S-WUTON is robust to a bad parsing and preserves
a person’s attributes that are important for the virtual try-on task.

Generally, our method generates results of high visual quality while preserving the charac-
teristics of the target cloth and of the person. However, VTNFP can surpass S-WUTON when
models are crossing arms (4th row, right side), which is sometimes a failure case of our method.
Note that this is not general, since on (3rd row, right side) and (4th row, left side) in Figure 4.13
and on the two last columns in Figure 4.14, models are crossing arms and S-WUTON manages
to nicely compose the arms with the occluded cloth.

4.3.4.3 Quantitative results

Table 4.3 Quantitative results on paired setting (LPIPS and SSIM) and on unpaired setting (IS
and FID). ± reports std. dev. T-WUTON and S-WUTON are our proposed models. The two
last lines (methods with ⋆) are the results presented in ACGPN (Yang et al., 2020a). However,
it has to be taken carefully since the experiments are conducted on another dataset.

Method LPIPS (↓) SSIM (↑) IS (↑) FID (↓)
Real data 0 1 3.135 0
CP-VTON (A) 0.182±0.049 0.679±0.073 2.684 37.237
CP-VTON (B) 0.131±0.058 0.773±0.088 2.938 16.843
T-WUTON 0.101±0.047 0.799±0.089 3.114 9.877
S-WUTON NA NA 3.154 7.927
VTNFP⋆ NA 0.803 2.784 NA
ACGPN⋆ NA 0.845 2.829 NA
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To further evaluate our method, we use four different metrics. Two are designed for the
paired setting, that does not allow us to evaluate S-WUTON (because the input image is not
masked), and one is for the unpaired setting. The first one for the paired setting is the linear
perceptual image patch similarity (LPIPS) developed in Zhang et al. (2018), a state-of-the-art
metric for comparing pairs of images. It is very similar to the perceptual loss we use in training
(see Section 4.3.3.2) since the idea is to use the feature maps extracted by a pre-trained neural
network to quantify the perceptual difference between two images. Different from the basic
perceptual loss, they first unit-normalize each layer in the channel dimension and then learn a
rescaling that match human perception.

Such as previous works, we also use the structural similarity (SSIM) (Wang et al., 2004) in
the paired setting, inception score (IS) (Salimans et al., 2016) and Fréchet Inception Distance
(FID) (Heusel et al., 2017) in the unpaired setting. CP-VTON (A) (Wang et al., 2018a) refers
to CP-VTON trained with their agnostic person representation p⋆cp−vton (20 channels with RGB
image of head and shape/pose information), while CP-VTON (B) refers to CP-VTON trained
with p⋆t−wuton. Results are reported in Table 4.3.

4.3.4.4 User study

We perform A/B tests on 7 users. Each one has to vote 100 times between CP-VTON and
S-WUTON synthesized images, given reference person and target cloth. The user is asked to
choose for the most realistic image, that preserves both person and target cloth details. The
selected 100 images are a random subset of the test set in the unpaired setting. This subset is
sampled for each user and is thus different for each user. There is no time limit for the users.

Let us denote p the probability that an image from S-WUTON is preferable to an image from
CP-VTON. The users choose our method 88% of the time. In terms of statistical significance,
it means that we can say p > 0.85 with a confidence level of 98.7%.

ClothFlow and VTNFP also performed user studies where they compare to CP-VTON. The
authors respectively report that users prefer their method 81.2% and 77.4% of the time. Note
that the experiment was not performed in the same setting (dataset, number of users, number of
pictures per user).

4.3.4.5 Runtime analysis

In Table 4.4, we compare the runtime of our method to CP-VTON, ClothFlow and VTNFP.
Note that the running times are estimated on a NVIDIA V100 GPU. For the human parsing and
pose estimation networks, we use state-of-the-art models from Liang et al. (2019). These are
based on shared neural backbones for the two tasks, which accelerates the computations.
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Table 4.4 Comparison of runtime of state-of-the-art architectures for virtual try-on. The time is
computed on a NVIDIA Tesla V100 GPU.

CP-VTON VTNFP ClothFlow T-WUTON S-WUTON

Parsing + pose 168ms 168ms 168ms 168ms 0ms
Try-on 9ms >9ms >0ms 13ms 13ms
Total 177ms >177ms >168ms 181ms 13ms

The try-on architecture of T-WUTON and S-WUTON is slightly slower than that of CP-
VTON, due to the non-shared encoder and the warping at each scale of the U-Net. However,
with S-WUTON we remove the wall clock bottleneck of virtual try-on system, which is the
human parsing and pose estimation. Doing so, we decrease by an order of magnitude the
runtime of virtual try-on algorithms, from 6FPS to 77FPS.

We include comparisons with VTNFP and ClothFlow in the Table 4.4. Indeed, both models
use human parsing and pose estimation. For VTNFP, they add a module on top of CP-VTON
architecture, so their try-on architecture takes at least 9ms per image. For ClothFlow, the use of
human parser and pose estimator gives a lower bound on the total runtime.

4.3.4.6 Impact of the adversarial loss in the teacher-student setting

Table 4.5 Comparison of IS and
FID scores of S-WUTON and S-
WUTON without the adversarial
loss.

λadv = 0 λadv = 1

IS 2.912 3.154
FID 12.620 7.927

We show the impact of the adversarial loss on S-WUTON.
We train a variant student model S-WUTON without the
adversarial loss. We provide a comparison of synthesized
images in Figure 4.14, and IS and FID scores in Table 4.5.
The adversarial loss on the student model is a constraint to
make the student model closer to the real data distribution
and to not only follow the teacher’s distribution. Without
the adversarial loss, the student model does not preserve
person’s attributes, even though they are not masked.

4.3.5 Conclusion

In this work, we propose a teacher-student setting to distill the standard virtual try-on pipeline
and refocus on the initial task: changing the cloth of a non-masked person. This leads to a
significant computational speed-up and largely improves image quality. Importantly, this allows
to preserve person’s attributes such as hands or accessories, which is necessary for a virtual
try-on.
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Reference

Target cloth

S-WUTON w/o adv.

S-WUTON

Fig. 4.14 Visual comparison of the student model with and without the adversarial loss. In-
terestingly, the student model without the adversarial loss can not exploit information that is
masked to the teacher, e.g. arms and hands.
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Fig. 4.15 Our student model S-WUTON generates high-quality images and preserves both
person’s and cloth’s attributes.





Chapter 5

Conclusion

5.1 Summary of contributions

In this thesis, we contribute to a better understanding of the behavior of deep generative
models on disconnected distributions, which are prevalent in real-world datasets containing
various classes and modes. This research setting is crucial for advancing deep generative
models. Chapter 3 formalizes a fundamental limitation of some generative models, such as
GANs and VAEs, that generate samples outside the target modes because of the continuous
generated distribution and disconnected target distribution. Based on our analysis, we propose
a truncation method that improves sampling quality. Second, we demonstrate that when dealing
with disconnected distribution, there exists an optimal geometry of the latent space which
minimizes the proportion of generated samples lying outside the target modes. This geometry
is characterized by linearity and convexity of the different regions and can be enforced in
GANs to enhance their performance. Finally, to keep on reducing these off-manifold generated
samples, we define a rejection mechanism from pre-trained generators. To do so, we train an
MLP network to predict importance weights in the latent space. This method can be used on top
of any pre-trained generator and helps select latent space areas corresponding to high-quality
samples. Our findings highlight the importance of considering the multi-modal nature of data
to design methods that improve the sampling quality of deep generative models.

The second research axis focuses on developing generative models for image editing
purposes with a view to reducing the need for supervised data, which is often expensive to
collect. Our work demonstrates that the use of deep generative models can be effective in this
direction. In section 4.2, we propose a transformer-based generative model that handles various
editing tasks such as local denoising, image inpainting, and scribble-based editing. The model
is trained with a self-supervised objective of predicting randomized tokens, enabling it to learn
how to modify parts of an image conditionally to the whole image. In section 4.3, we address
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the image-based virtual try-on task and propose a teacher-student approach with adversarial
learning to create an ideal synthetic dataset with unmasked input images. We show that this
approach outperforms the suboptimal method of relying on pre-trained neural networks for
human segmentation and human parsing.

Furthermore, the questions and contributions of this thesis bring interesting future research
questions. We detail some of them below.

5.2 Future work

The approaches and methods developed in this thesis can shed light on recent developments
in deep learning and deep generative modelling. This opens the way for future research. We
describe below some interesting ideas that would be interesting follow-ups:

Disconnected latent space versus disconnected function modelling. In this thesis, we have
operated under the assumption that neural networks are Lipschitz and continuous functions. To
improve the sampling quality of generative models, we focused on designing the latent space
and derived methods to make it non-connected, such as through different types of truncation.
However, an alternative approach would be to model disconnected functions directly. This
raises the question of what design choices can be made to model disconnected functions.
One promising direction for investigation is the use of Sparse Mixture-of-Experts (SMoE)
models, which have achieved impressive performance on large-scale discriminative tasks in
Natural Language Processing (Shazeer et al., 2017; Fedus et al., 2021) and, more recently, in
Computer Vision (Riquelme et al., 2021). Some theoretical advances have suggested that their
disconnected nature may be responsible for their strong performance on datasets with multiple
clusters (Chen et al., 2022). Exploring the use of SMoE layers for push-forward generative
models, both theoretically and experimentally, would be of great interest, as it would enable
these models to design disconnected distributions and overcome issues of misspecification.
This opens up exciting possibilities for future research in generative modeling.

Latent space of score-based models. In this work, particularly in Section 3.3, we have
demonstrated the structured nature of GANs’ latent space. When learning multimodal data,
different modes are clustered in linear regions of the latent space, and linear interpolations
between generated samples follow a reasonably smooth path on the data manifold. In contrast,
in score-based models, the interpolations are much more chaotic, and the latent space has
less structure. This raises a fundamental question: why do score-based models achieve better
performance than GANs? Several hypotheses can be proposed. First, the iterative generation
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procedure of score-based models could make their Lipschitz constant greater than that of
GANs. In fact, most attempts to distill these models show that performance decreases as the
number of generation steps decreases (Salimans and Ho, 2022). Second, the latent space has
the same dimension as the data space, making it more difficult to structure due to common
issues in high-dimensional problems. Finally, the objective function, which is a simple L2
loss, may be more stable and have a better optimization landscape, leading to better-trained
networks. Further investigation is required to fully understand the reasons behind the superior
performance of score-based models over GANs.

Neural collapse in deep generative models. In Section 3.3, we establish a connection
between the neural collapse phenomenon and the latent space of push-forward generative
models. The neural collapse denotes the geometric structure that emerges in the final layer
of deep classification networks upon achieving zero training loss. Notably, Papyan et al.
(2020) have demonstrated that features in the ante-penultimate layer tend to converge towards
class means, which are arranged in a regular simplex configuration featuring equidistant and
maximum equiangular relationships. If we consider the class means as the seeds of a Voronoi
partition, they would form a simplicial cluster that represents the optimal partition of the latent
space derived in Section 3.3.

In our work, we limit the analysis of this geometrical structure to the latent space of deep
generative models. However, if this structure arises in the latent space, it is very likely to be
propagated through the layers of the generator. Is the generator further separating the modes in
its feature space? This seems like a reasonable hyptohesis. First, this would explain methods
using feature space of generators as a feature extractor for tasks such as image segmentation.
Second, it could allow to exploit the feature space geometrical structure to design rejection
mechanisms. We have some preliminary evidence for this. When learning latent importance
weights in Section 3.4, we used the intermediate feature space of StyleGAN and it gave good
performance for predicting sample quality. However, as we go through the generator’s layers,
up-sampling layers increase the dimensionality of the features, and we approach the data
manifold which often has a highly non-linear structure. Thus, this study would raise some
technical challenges.
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Appendix A

A.1 Technical results

A.1.1 Highlighting drawbacks of the Precision/Recall metric

Lemma A.1.1. Assume that the modeled distribution µθ slightly collapses on a specific data
point, i.e. there exists x ∈ E,µθ (x) > 0. Assume also that µ⋆ is a continuous probability
measure and that µθ has a recall β = 1. Then the precision must be such that α = 0.

Proof. Using Definition 3.2.1, we have that there exists µ such that

µ⋆ = αµ +(1−α)νµ⋆ and µθ = µ.

Thus, 0 = µ⋆(x)⩾ αµ(x) = αµθ (x). Which implies that α = 0.

A.1.2 Proof of Theorem 3.2.1

The proof of Theorem 3.2.1 relies on theoretical results from non-parametric estimation of the
supports of probability distribution studied by Devroye and Wise (1980).

For the following proofs, we will require the following notation: let ϕ be a strictly
monotonous function be such that lim

n→∞

ϕ(n)
n = 0 and lim

n→∞

ϕ(n)
log(n) = ∞. We note B(x,r)⊆ E, the

open ball centered in x and of radius r. For a given probability distribution µ , Sµ refers to its
support. We recall that for any x in a dataset D, x(k) denotes its k nearest neighbor in D. Finally,
for a given probability distribution µ and a dataset Dµ sampled from µn, we note Rmin and
Rmax the following:

Rmin = min
x∈E
∥x− x(ϕ(n))∥, Rmax = max

x∈E
∥x− x(ϕ(n))∥. (A.1.1)

In the following lemma, we show asymptotic behaviours for both Rmin and Rmax.
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Lemma A.1.2. Let µ be a probability distribution associated with a uniformly continuous
probability density function fµ . Assume that there exists constants a1 > 0,a2 > 0 such that for
all x ∈ E, we have a1 < fµ(x)⩽ a2. Then,

Rmin −→
n→∞

0 a.s. and Rd
min −→n→∞

∞ a.s.

Rmax −→
n→∞

0 a.s. and Rd
max −→n→∞

∞ a.s.

Proof. We will only prove that Rmax −→
n→∞

0 a.s. and and Rd
min −→n→∞

∞ a.s. as the rest follows.
The result is based on a nearest neighbor result from Biau and Devroye (2015). Considering

the ϕ(n) nearest neighbor density estimate f ϕ(n)
n based on a finite sample dataset Dµ , Theorem

4.2 states that if fµ is uniformly continuous then:

sup
x∈E
∥ f ϕ(n)

n (x)− fµ(x)∥→ 0.

where f ϕ(n)
n (x) = ϕ(n)

nVd∥x−xϕ(n)∥d with Vd being the volume of the unit ball in Rd .

Let ε > 0 such that ε < a1/2. There exists N ∈N such that for all n ⩾ N, we have, almost
surely, for all x ∈ E:

a1− ε ⩽ f ϕ(n)
n (x)⩽ a2 + ε

a1− ε ⩽
ϕ(n)

nVd∥x− xϕ(n)∥d ⩽ a2 + ε

Consequently, for all n ⩾ N, for all x ∈ E almost surely:

∥x− xϕ(n)∥⩽
(

ϕ(n)
nVd(a1− ε)

)1/d

Thus, sup
x∈E
∥x− xϕ(n)∥→ 0 a.s..

Also, almost surely

n∥x− xϕ(n)∥d ⩾
ϕ(n)

Vd(a2 + ε)

Thus, inf
x∈E
∥x− xϕ(n)∥→ ∞ a.s..

Lemma A.1.3. Let µ,ν be two probability distributions associated with uniformly continuous
probability density functions fµ and fν . Assume that there exists constants a1 > 0,a2 > 0 such
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that for all x ∈ E, we have a1 < fµ(x) ⩽ a2 and a1 < fν ⩽ a2. Also, let Dµ ,Dν be datasets
sampled from νn,µn. If µ is an estimator for ν , then

(i) for all x ∈ Dµ , α
n
ϕ(n)(x) →n→∞

1supp(ν)(x) in proba.

(ii) for all y ∈ Dν , β
n
ϕ(n)(y) →n→∞

1supp(µ)(x) in proba.

Proof. We will only show the result for (i), since a similar proof holds for (ii).
Thus, we want to show that

for all x ∈ Dµ , α
n
ϕ(n)(x) →n→∞

1supp(ν)(x) a. s.

First, let’s assume that x /∈ Sν . Biau and Devroye (2015, Lemma 2.2) have shown that

lim
n→∞
∥x(ϕ(n))− x∥= inf{∥x− y∥ | y ∈ Sν} a.s.

As Sν is a closed set - e.g. (Kallenberg, 2006) - we have

lim
n→∞
∥x− x(ϕ(n))∥> 0 a.s.

and
for all y ∈ Dν , lim

n→∞
∥y− y(ϕ(n))∥= 0 a.s.

Thus, lim
n→∞

αn
ϕ(n)(x) = 0 a.s..

Now, let’s assume that x ∈ Sν . Using Definition 3.2.2, the precision of a given data point x
can be rewritten as follows:

α
n
ϕ(n)(x) = 1 ⇐⇒ ∃y ∈ Dν ,x ∈ B(y,∥y− y(ϕ(n))∥)

Using notation from (A.1.1), we note

Rmin = min
y∈
∥y− y(ϕ(n))∥, Rmax = max

y∈E
∥y− y(ϕ(n))∥.

It is clear that : ⋃
y∈Dν

B(y,Rmin)⊆ Sn
ν ⊆

⋃
y∈Dν

B(y,Rmax), (A.1.2)

where Sn
ν =

⋃
y∈Dν

B(y,∥y− y(ϕ(n))∥)).
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Besides, combining Lemma A.1.2 with Devroye and Wise (1980, Theorem 1), we have
that:

ν(Sν∆
⋃

y∈Dν

B(y,Rmin))−→
n→0

0 in proba.

ν(Sν∆
⋃

y∈Dν

B(y,Rmax))−→
n→0

0 in proba.

where ∆ here refers to the symmetric difference.
Thus, using (A.1.2), it is now clear that, µ(Sν∆Sn

ν)→ 0 in probability. Finally, given x∈ Sµ ,
we have µ(x ∈ Sn

ν) = ν(αn
ϕ(n)(x) = 1)→ 1 in probability.

We can now finish the proof for Theorem 3.2.1. Recall that ᾱ = µ
(
Sν

)
and similarly,

β̄ = ν
(
Sµ

)
.

Proof. We have that

|αn
ϕ(n)− ᾱ|= |1

n ∑
xi∈Dµ

α
n
ϕ(n)(xi)−

∫
E
1x∈Sν

µ(dx)|

Then,

|αn
ϕ(n)− ᾱ|= |1

n ∑
xi∈Dµ

(αn
ϕ(n)(xi)−1xi∈Sν

)

+
(1

n ∑
xi∈Dµ

1xi∈Sν
−

∫
E
1x∈Sν

µ(dx)
)
|

= |Exi∼µn(α
n
ϕ(n)(xi)−1xi∈Sν

) (A.1.3)

+
(
Eµn1Sν

−Eµ1Sν

)
| (A.1.4)

where µn is the empirical distribution of µ . As µn converges weakly to µ almost surely (e.g.
Dudley (2004, Theorem 11.4.1)) and since 1x∈Sν

is bounded, we can bound (A.1.4) as follows:

lim
n→∞

Ex∼µn1x∈supp(µ)−Ex∼µ1x∈supp(µ) = 0 a. s.

Now, to bound (A.1.3), we use the fact that for any x ∈ Dµ , the random variable αn
ϕ(n)(x)

converges to 1x∈Sν
in probability (Lemma A.1.3) and that for all x ∈Dµ , both αn

ϕ(n)(x)⩽ 1 and
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1x∈Sν
⩽ 1. Consequently, using results from the weak law for triangular arrays, we have that

lim
n→∞

1
n ∑

xi∈Dµ

(αn
ϕ(n)(xi)−1xi∈Sν

) = 0 in proba.

Finally,
|αn

ϕ(n)− ᾱ| →
n→∞

0 in proba.,

which proves the result. The same proof works for lim
k→∞

β n
k = β̄ .

A.1.3 Proof of Theorem 3.2.2

This proof is based on the Gaussian isoperimetric inequality historically shown by Borell
(1975); Sudakov and Tsirelson (1978).

Proof. Let µ⋆ be a distribution defined on E laying on two disconnected manifolds M1 and
M2 such that µ⋆(M1) = µ⋆(M2) =

1
2 and d(M1,M2) = D. Note that for any subsets A⊆ E and

B⊆ E, d(A,B) := inf
(x,y)∈A×B

∥x− y∥.

Let G−1
θ
(M1) (respectively G−1

θ
(M2) be the subset in Rd be the pre-images of M1 (respec-

tively M2).
Consequently, we have for all k ∈ [1,n]

γ(G−1
θ
(M1)) = µθ (M1) = γ(G−1

θ
(M2))⩾

ᾱ

2

We consider (G−1
θ
(M1))

ε (respectively (G−1
θ
(M2))

ε ) the ε enlargement of G−1
θ
(M1) (re-

spectively G−1
θ
(M2) where ε = D

2L . We know that (G−1
θ
(M1))

ε
⋂
(G−1

θ
(M2))

ε = /0.
Thus, we have that:

γ
(
(G−1

θ
(M1))

ε
)
+ γ

(
(G−1

θ
(M2))

ε
)
⩽ 1

Besides, by denoting Φ the function defined for any t ∈R by Φ(t) =
∫ t
−∞

exp(−t2/2)√
2π

ds, we have
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γ
(
(G−1

θ
(M1))

ε
)
+ γ

(
(G−1

θ
(M2))

ε
)
⩾ 2Φ

(
Φ
−1(

α

2
)+ ε

)
(using Theorem 1.3 from Ledoux (1996))

⩾ α +
2ε√
2π

e−Φ−1(α

2 )
2/2

(since Φ
−1(

α

2
)+ ε < 0 and Φ convex on ]−∞,0])

Thus, we have that

α +
2ε√
2π

e−Φ−1(α

2 )
2/2 ⩽ 1

Thus, by noting

α
⋆ = sup{α ∈ [0,1] | α +

2ε√
2π

e
−Φ−1(α

2 )2

2 ⩽ 1},

we have our result.
For α ⩾ 3/4. By noting α = 1− x, we have

Φ
−1(

α

2
) =

√
2πx
2

+O(x3)

And, e
−Φ−1(α

2 )2

2 = e
−πx2

4 +O(e−x4
)

Thus, 1− x+
2ε√
2π

e
−πx2

4 +O(e−x4
)⩽ 1

⇐⇒ x ⩾
2ε√
2π

e
−πx2

4 +O(e−x4
)

=⇒ x ⩾

√
2
π

W (ε2)

where W is the product log function. Thus, α ⩽ 1−
√

2
π

W (ε2).

As an example, in the case where ε = 1, we have that W (1) ≈ 0.5671, x > 0.4525 and
α < 0.5475.

A.1.4 Proof of Theorem 3.2.3

A.1.4.1 Equitable setting

This result is a consequence of Theorem A.1.1 that we will assume true in this section.
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We consider that the unknown true distribution µ⋆ lays on M disjoint manifolds of equal
measure. As specified in Section 3.2.3, the latent distribution γ is a multivariate Gaussian
defined on Rd . For each k ∈ [1,M], we consider in the latent space, the pre-images Ak.

It is clear that A1, . . . ,AM are pairwise disjoint Borel subsets of Rd . We denote M̄, the
number of classes covered by the estimator µθ , such that for all i ∈ [1,M̄], we have γ(Ai)> 0.
We know that M̄ ⩾ Mβ̄ > 1.

For each i ∈ [1,M̄], we denote Aε
i , the ε-enlargement of Ai. For any pair (i, j) it is clear that

Aε
i
⋂

Aε
j = 0 where ε = D

2L (D being the minimum distance between two sub-manifolds and L
being the Lipschitz constant of the generator).

As assumed, we know that Aε
i , i ∈ [1,M̄] partition the latent space in equal measure, conse-

quently, we assume that

n

∑
i=1

γ(Aε
i ) = 1 and γ(A1) = . . .= γ(AM̄) = 1/M̄ (A.1.5)

Thus, we have that

ᾱ =
M̄

∑
i=1

γ(Aε
i ) = 1− γ(∆−ε(Aε

1, . . . ,A
ε

M̄))

Using Theorem A.1.1, we have

γ(∆−ε(Aε
1, . . . ,A

ε
n))⩾ 1− 1+ x2

x2 e−
1
2 ε2

e−εx

Thus, ᾱ ⩽
1+ y2

y2 e−
1
2 ε2

e−εy

where y = Φ−1
(

1−maxk∈[M̄] γ(A
ε
k)
)
= Φ−1( M̄−1

M̄ ) and Φ(t) =
∫ t
−∞

exp(−t2/2)√
2π

ds.

Knowing that M̄ ⩾ β̄M we have that

Φ
−1(1− 1

M̄
)⩾ Φ

−1(1− 1
β̄M

)

We conclude by saying that the function x 7→ 1+x2

x2 e−εx is decreasing for x > 0. Thus,

ᾱ ⩽
1+ y2

y2 e−
1
2 ε2

e−εy (A.1.6)

where y = Φ−1(1− 1
β̄M

) and Φ(t) =
∫ t
−∞

exp(−t2/2)√
2π

ds.
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For further analysis, when M̄→ ∞, refer to subsection A.1.5 and note using the result in
(A.1.14) that one obtains the desired upper-bound on ᾱ

ᾱ
M̄→∞

⩽ e−
1
2 ε2

e−ε

√
2log(M̄)

A.1.4.2 More general setting

As done previously, we denote M̄, the number of classes covered by the estimator µθ , such
that for all i ∈ [1,M̄], we have γ(Ai)> 0. We still assume that M̄ > 1. However, we now relax
the previous assumption made in (A.1.5) and assume the milder assumption that there exists
w1, . . . ,wM ∈ [0,1]M such that for all m ∈ [1,M],γ(Aε

m) = wm, ∑m wm ⩽ 1 and max
i∈[1,M]

wm =

wmax < 1.

Consider, A∁ =
(⋃M̄

i=1 Aε
i

)∁
and denote wc = γ(A∁)⩽ 1− ᾱ . Consequently, we have

n

∑
i=1

γ(Aε
i )+ γ(A∁) = 1

γ(∆−ε(Aε
1, . . . ,A

ε
M,A∁))+

M

∑
i=1

γ(Aε
i ) = 1− γ(A∁)

ᾱ = 1−w∁− γ(∆−ε(Aε
1, . . . ,A

ε
M,A∁))

In this setting, it is clear that A1, . . . ,AM̄,A∁ is a a partition of Rd under the measure γ .
Using, result from Theorem A.1.1, we have

γ(∆−ε(Aε
1, . . . ,A

ε
M,A∁))⩾ 1− 1+ x2

x2 e−
1
2 ε2

e−εx

where x = Φ−1
(

1−max(w∁,wmax)
)

and Φ(t) =
∫ t
−∞

exp(−t2/2)√
2π

ds.
Finally, we have that

ᾱ ⩽
1+ x2

x2 e−
1
2 ε2

e−εx−w∁ (A.1.7)

In the case where γ(A∁) = 0, we find a result similar to (A.1.6).

A.1.5 Lower-bounding boundaries of partitions in a Gaussian space

Notations and preliminaries Given ε ≥ 0 and a subset A of euclidean space Rd = (Rd,∥·−·
∥), let Aε := {z∈Rd | dist(z,A)≤ ε} be its ε-enlargement, where dist(z,A) := infz′∈A ∥z′−z∥2
is the distance of the point z ∈ Rd from A. Let γ be the standard Gaussian distribution in Rd
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and let A1, . . . ,AK be K ≥ 2 pairwise disjoint Borel subsets of Rd whose union has unit (i.e
full) Gaussian measure ∑

K
k=1 wk = 1, where wk := γ(Ak). Such a collection {A1, . . . ,AK} will

be called an (w1, . . . ,wK)-partition of standard d-dimensional Gaussian space (Rd,γ).
For each k ∈ [[K]], define the compliment A−k := ∪k′ ̸=kAk′ , and let ∂−εAk := {z ∈ Ak |

dist(z,A−k)≤ ε} be the inner ε-boundary of Ak, i.e the points of Ak which are within distance
ε of some other Ak′ . For every (k,k′) ∈ [[K]]2 with k′ ̸= k, it is an easy exercise to show that

∂
−εAk∩∂

−εAk′ = /0 (A.1.8)

∂
−εAk∩A−k = /0

Aε
−k = ∂

−εAk∪A−k

Now, let ∆−ε(A1, . . . ,AK) := ∪K
k=1∂−εAk be the union of all the inner ε-boundaries. This is

∆−ε(A1, . . . ,AK) the set of points of ∪K
k=1Ak which are on the boundary between some two

distinct Ak and Ak′ . We want to find a lower bound in the measure γ(∆−ε(A1, . . . ,AK)).

Theorem A.1.1. Given K ≥ 4 and w1, . . . ,wK ∈ (0,1/4] such that ∑
K
k=1 wk = 1, we have the

bound:

inf
A1,...,AK

γ(∆−ε(A1, . . . ,AK))≥ 1− 1+ x2

x2 e−
1
2 ε2

e−εx

where the infinimum is taken over all (w1, . . . ,wk)-partitions of standard Gaussian space
(Rd,γ), and x := Φ−1 (1−maxk∈[[M]]wk

)
.

Proof. By (A.1.8), we have the formula

γ(∆−ε(A1, . . . ,AK)) =
K

∑
k=1

γ(∂−εAk) (A.1.9)

=
K

∑
k=1

γ(Aε
−k)− γ(A−k). (A.1.10)

Let w−k := γ(A−k) = 1−wk, and assume w−k ≥ 3/4, i.e wk ≤ 1/4, for all k ∈ [[K]].
For example, this condition holds in the equitable scenario where wk = 1/K for all k.
Now, by standard Gaussian Isoperimetric Inequality (see Boucheron et al. (2013) for

example), one has

γ(Aε
−k)≥Φ(Φ−1(γ(A−k)+ ε)

= Φ(Φ−1(1−wk)+ ε). (A.1.11)
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Using the bound x
1+x2 ϕ(x)< 1−Φ(x)< 1

x ϕ(x) ∀x > 0 where ϕ is the density of the standard
Gaussian law. We can further find that

Φ(Φ−1(1−wk)+ ε)≥ 1−wk
1+Φ−1(1−wk)

2

Φ−1(1−wk)2 ×

e−
1
2 ε2

e−εΦ−1(1−wk)

≥ 1−wk
1+ x2

x2 e−
1
2 ε2

e−εx > 0 (A.1.12)

(since the function x 7→ 1+ x2

x2 e−εx is decreasing for x > 0)

where x := mink∈[[K]]Φ
−1(1−wk) = Φ−1 (1−maxk∈[[K]]wk

)
≥Φ−1(3/4)> 0.67. Combining

(A.1.9), (A.1.11), and (A.1.12) yields the following

γ(∆−ε(A1, . . . ,AK))≥
K

∑
k=1

(
1−wk

1+ x2

x2 e−
1
2 ε2

e−εx

− (1−wk))
)

=
K

∑
k=1

(
1− 1+ x2

x2 e−
1
2 ε2

e−εx
)

wk

= 1− 1+ x2

x2 e−
1
2 ε2

e−εx,

Asymptotic analysis In the limit, it is easy to check that in the case where maxk∈[[K]]wk −→ 0,

we have that x−→∞. In this setting, we thus have 1+x2

x2 −→ 1 and can now derive the following
bound:

inf
A1,...,AK

γ(∆−ε(A1, . . . ,AK))
maxk∈[[K]] wk→0
−→ 1− e−

1
2 ε2

e−εx.

Equitable scenario In the equitable scenario where wk = 1/K for all k, we have

inf
A1,...,AK

γ(∆−ε(A1, . . . ,AK))⩾ 1− 1+ x2

x2 e−
1
2 ε2

e−εx

where x = Φ−1(1−1/K). When K ≥ 8 we have:

Φ
−1(1−1/K)⩾

√
2log

(
K (q(K)2−1)√

2πq(K)3

)
(A.1.13)

where q(K) =
√

2log(
√

2πK).
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Consequently, we have when K→ ∞, the following behavior:

γ(∆−ε(A1, . . . ,AK))
K→∞

⩽ 1− e−
1
2 ε2

e−ε
√

2log(K) (A.1.14)

Proof of the inequality (A.1.13). Set p := 1/K. First, for any x > 0, we have the following
upper: ∫

∞

x
e−y2/2dy =

∫
∞

x

y
y

e−y2/2dy≤ 1
x

∫
∞

x
ye−y2/2dy =

e−x2/2

x
.

For a lower bound:∫
∞

x
e−y2/2dy =

∫
∞

x
y
ye−y2/2dy = e−x2/2

x −
∫

∞

x
1
y2 e−y2/2dy

and ∫
∞

x

1
y2 e−y2/2dy =

∫
∞

x

y
y3 e−y2/2dy≤ e−x2/2

x3

and combining these gives

∫
∞

x
e−y2/2dy≥

(
1
x
− 1

x3

)
e−x2/2.

Thus
1√
2π

(
1
x
− 1

x3

)
e−x2/2 ≤ 1−Φ(x)≤ 1√

2π

1
x

e−x2/2,

from where

1√
2π

(
1

Φ−1(1− p)
− 1

Φ−1(1− p)3

)
e−Φ−1(1−p)2/2 (A.1.15)

≤ p≤ 1√
2π

1
Φ−1(1− p)

e−Φ−1(1−p)2/2 (A.1.16)

Using (A.1.16), when Φ−1(1− p)≥ 1 (that is p ⩽ 0.15 or equivalently K ≥ 8), we have the

following upper bound Φ−1(1− p)⩽ q(p) where q(p) :=
√

2log(
√

2π/p). Then, injecting
q(p) in (A.1.15):

1√
2π

(
1

q(p)
− 1

q(p)3

)
e−Φ−1(1−p)2/2 ≤ p.
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Now when q(p)≥ 1 you have:

e−Φ−1(1−p)2/2 ≤
√

2π pq(p)3

q(p)2−1

and

Φ
−1(1− p)≥

√
2log

(
q(p)2−1√
2π pq(p)3

)
.

There is one additional requirement on p which is simply that the argument of the log should
be ≥ 1 i.e. q(p)2−1≥

√
2π pq(p)3, which is true as soon as K ≥ 8.

A.2 Complementary experiments

A.2.1 Visualization of Theorem 3.2.3

To further understand and illustrate Theorem 3.2.3, we propose in Figure A.1, an interesting vi-
sualization where we plot the manifold learned by a WGANs architecture and its corresponding
latent space configuration. As expected, we observe that when the number of distinct modes
increase, the number of data generated out of the manifolds increase too.
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WGAN 4 classes:
visualisation of ∥JG(z)∥F .

Green blobs: true densities.
Dots: generated points.

WGAN 9 classes:
visualisation of ∥JG(z)∥F .

Green blobs: true densities.
Dots: generated points.

WGAN 3 classes:
visualisation of ∥JG(z)∥F .

Green blobs: true densities.
Dots: generated points.

Fig. A.1 Learning disconnected manifolds: visualization of the gradient of the generator (JFN)
in the latent space and densities in the output space.

A.2.2 Definition of the different metrics used

In the sequel, we present the different metrics used in Section 3.2.4 of the paper to assess
performances of GANs. We have:

• Improved Precision/Recall (PR) metric Kynkäänniemi et al. (2019): it has been presented
in Definition 3.2.2. Intuitively, Based on a k-NN estimation of the manifold of real (resp.
generated) data, it assesses whether generated (resp. real) points belong in the real (resp.
generated) data manifold or not. The proportion of generated (resp. real) points that are
in the real (resp. generated) data manifold is the precision (resp. recall).
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• the Hausdorff distance: it is defined by

Haus(A,B) = max
{

max
a∈A

min
b∈B
∥a−b∥,max

b∈B
min
a∈A
∥a−b∥

}
Such a distance is useful to evaluate the closeness of two different supports from a metric
space, but is sensitive to outliers because of the max operation. It has been recently used
for theoretical purposes by Pandeva and Schubert (2019).

• the Frechet Inception distance: first proposed by Dowson and Landau (1982), the Frechet
distance was applied in the setting of GANs by Heusel et al. (2017). This distance
between mutlivariate Gaussians compares statistic of generated samples to real samples
as follows

FID = ∥ν⋆−νθ∥2 +Tr
(
Σ⋆+Σθ +2(Σ⋆Σθ )

1
2
)

where X⋆ = N (ν⋆,Σ⋆) and Xθ = N (νθ ,Σθ ) are the activations of a pre-softmax layer.
However, when dealing with disconnected manifolds, we argue that this distance is not
well suited as it approximates the distributions with unimodal one, thus loosing many
information.

The choice of such metrics is motivated by the fact that metrics measuring the performances of
GANs should not rely on relative densities but should rather be point sets based metrics.

A.2.3 Saturation of a MLP neural network

In Section 3.2.4.2, we claim that the generator reduces the sampling of off-manifold data points
up to a saturation point. Figure A.2 below provides a visualization of this phenomenon. In this
synthetic case, we learn a 9-component mixture of Gaussians using simple GANs architecture
(both the generator and the discriminator are MLP with two hidden layers). The minimal
distance between two modes is set to 9. We clearly see in Figure A.2d that the precision
saturates around 80%.

A.2.4 More results and visualizations on MNIST/F-MNIST/CIFAR10

Additionally to those in Section 3.2.4.3, we provide in Figure A.3 and Table A.1 supplementary
results for MNIST, F-MNIST and CIFAR-10 datasets.
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Samples after 5k training steps. Samples after 50k training steps.

Samples after 100k training steps. Evolution of the precision ᾱ dur-
ing training.

Fig. A.2 Learning 9 disconnected manifolds with a standard GANs architecture.
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Fig. A.3 Visualization of our truncation method (JBT) on three real-world datasets. From top
to bottom: MNIST, F-MNIST and CIFAR-10. Left column: examples of data points selected
by our JBT with a truncation ratio of 90% (we thus removed the 10% highest gradients). Right
column: examples of data points removed by our JBT with a truncation ratio of 90% (these are
the 10% highest gradients data points).
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Fig. A.4 For high levels of kept samples, the marginal precision plummets of newly added
samples, underlining the efficiency of our truncation method (JBT). Reported confidence
intervals are 97% confidence intervals. On the second row, generated samples ordered by their
JFN (left to right, top to bottom). In the last row, the data points generated are blurrier and
outside the true manifold.

Table A.1 Scores on MNIST and Fashion-MNIST. JFN stands for Jacobian Frobenius norm. ±
is 97% confidence interval.

MNIST Prec. Rec. F1 Haus. FID EMD

WGAN 91.2±0.3 93.7±0.5 92.4±0.4 49.7±0.2 24.3±0.3 21.5±0.1
WGAN 90% JFN 92.5±0.5 92.9±0.3 92.7±0.4 48.1±0.2 26.9±0.5 21.3±0.2
WGAN 80% JFN 93.3±0.3 91.8±0.4 92.6±0.4 50.6±0.4 33.1±0.3 21.4±0.4
W-Deligan 89.0±0.6 93.6±0.3 91.2±0.5 50.7±0.3 31.7±0.5 22.4±0.1
DMLGAN 93.4±0.2 92.3±0.2 92.8±0.2 48.2±0.3 16.8±0.4 20.7±0.1

Fashion-MNIST
WGAN 86.3±0.4 88.2±0.2 87.2±0.3 140.6±0.7 259.7±3.5 61.9±0.3
WGAN 90% JFN 88.6±0.6 86.6±0.5 87.6±0.5 138.7±0.9 257.4±3.0 61.3±0.6
WGAN 80% JFN 89.8±0.4 84.9±0.5 87.3±0.4 146.3±1.1 396.2±6.4 63.3±0.7
W-Deligan 88.5±0.3 85.3±0.6 86.9±0.4 141.7±1.1 310.9±3.1 60.9±0.4
DMLGAN 87.4±0.3 88.1±0.4 87.7±0.4 141.9±1.2 253.0±2.8 60.9±0.4

CIFAR10
WGAN 74.3±0.5 70.3±0.4 72.3±0.5 334.7±3.5 634.8±4.6 151.2±0.2
WGAN 90% JFN 76.0±0.7 69.4±0.5 72.5±0.6 318.1±3.7 631.3±4.5 150.7±0.2
WGAN 80% JFN 76.9±0.5 68.6±0.5 72.5±0.5 323.5±4.0 725.0±3.5 150.1±0.3
W-Deligan 71.5±0.7 69.8±0.7 70.6±0.7 328.7±2.1 727.8±3.9 154.0±0.3
DMLGAN 74.1±0.5 65.7±0.6 69.7±0.6 328.6±2.7 967.2±4.1 152.0±0.4
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A.2.5 More results on BigGAN and ImageNet

In Figure A.5, we show images from the Bubble class of ImageNet. It supports our claim of
manifold disconectedness, even within a class, and outlines the importance of studying the
learning of disconnected manifolds in generative models. Then, in Figure A.6 and Figure A.7,
we give more exemples from BigGAN 128x128 class-conditionned generator. We plot in the
same format than in 3.2.4.4. Specifically, for different classes, we plot 128 images ranked
by JFN. Here again, we see a concentration of off-manifold samples on the last row, proving
the efficiency of our method. Example of classes responding particularly well to our ranking
are House Finch c, Monnarch Butterfly e or Wood rabbit c. For each class, we also show an
histogram of JFN based on 1024 samples. It shows that the JFN is a good indicator of the
complexity of the class. For example, classes such as Cornet (see Figure A.7e) or Football
helmet (see Figure A.7a) are very diverse and disconnected, resulting in high JFNs.

Fig. A.5 Images from the Bubble class of ImageNet showing that the class is complex and
slightly multimodal.
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’Black swan’ class.

0 25 50 75 100 125
Jacobian Frobenius Norm

= 51
= 13

’Black swan’ class histogram.

’House finch’ class.

0 25 50 75 100 125
Jacobian Frobenius Norm

= 47
= 14

’House finch’ class histogram.

’Monarch butterfly’ class.

0 25 50 75 100 125
Jacobian Frobenius Norm

= 46
= 11

’Monarch butterfly’ class histogram.

Fig. A.6 Images from BigGAN class-conditional generator, along with an histogram of class-
specific Jacobian Frobenius Norms.
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’Football helmet’ class.

0 25 50 75 100 125
Jacobian Frobenius Norm

= 73
= 13

’Football helmet’ class histogram.

’Wood rabbit’ class.

0 25 50 75 100 125
Jacobian Frobenius Norm

= 33
= 10

’wood rabbit’ class histogram.

’Cornet’ class.

0 25 50 75 100 125
Jacobian Frobenius Norm

= 68
= 20

’Cornet’ class histogram.
Fig. A.7 Images from BigGAN class-conditional generator, along with an histogram of class-
specific Jacobian Frobenius Norms.
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A.3 Supplementary details

We now provide the different network’s architecture used and their corresponding hyperparam-
eters.

Table A.2 Models for Synthetic datasets

Operation Feature Maps Activation

G(z): z∼N (0,1) 2
Fully Connected - layer120 ReLU
Fully Connected - layer220 ReLU

D(x)
Fully Connected - layer120 ReLU
Fully Connected - layer220 ReLU

Batch size 32
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam: β1 = 0.5β2 = 0.5

For DeliGan, we use the same architecture and simply add 50 Gaussians for the reparametriza-
tion trick. For DMLGAN, we re-use the architecture of the authors.
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Table A.3 WGAN for MNIST/Fashion MNIST

Operation KernelStrides Feature MapsActivation

G(z): z∼ N(0, Id) 100
Fully Connected 7×7×128
Convolution 3×3 1×1 7×7×64 LReLU
Convolution 3×3 1×1 7×7×64 LReLU
Nearest Up Sample 14×14×64
Convolution 3×3 1×1 14×14×32 LReLU
Convolution 3×3 1×1 14×14×32 LReLU
Nearest Up Sample 14×14×64
Convolution 3×3 1×1 28×28×16 LReLU
Convolution 5×5 1×1 28×28×1 Tanh

D(x) 28×28×1
Convolution 4×4 2×2 14×14×32 LReLU
Convolution 3×3 1×1 14×14×32 LReLU
Convolution 4×4 2×2 7×7×64 LReLU
Convolution 3×3 1×1 7×7×64 LReLU
Fully Connected 1 -

Batch size 256
Leaky ReLU slope 0.2
Gradient Penalty weight10
Learning Rate 0.0002
Optimizer Adam β1 : 0.5β2 : 0.5
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Table A.4 DMLGAN for MNIST/Fashion MNIST

Operation KernelStrides Feature MapsBNActivation

G(z): z∼ N(0, Id) 100
Fully Connected 7×7×128 -
Convolution 3×3 1×1 7×7×64 - Leaky ReLU
Convolution 3×3 1×1 7×7×64 - Leaky ReLU
Nearest Up Sample 14×14×64 -
Convolution 3×3 1×1 14×14×32 - Leaky ReLU
Convolution 3×3 1×1 14×14×32 - Leaky ReLU
Nearest Up Sample 14×14×64 -
Convolution 3×3 1×1 28×28×16 - Leaky ReLU
Convolution 5×5 1×1 28×28×1 - Tanh

Encoder Q(x), Discriminator D(x) 28×28×1
Convolution 4×4 2×2 14×14×32 - Leaky ReLU
Convolution 3×3 1×1 14×14×32 - Leaky ReLU
Convolution 4×4 2×2 7×7×64 - Leaky ReLU
Convolution 3×3 1×1 7×7×64 - Leaky ReLU
D Fully Connected 1 - -
Q Convolution 3×3 7×7×64 Y Leaky ReLU
Q Convolution 3×3 7×7×64 Y Leaky ReLU
Q Fully Connected ng = 10 - Softmax

Batch size 256
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam β1 = 0.5β2 = 0.5
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Table A.5 WGAN for CIFAR10, from Gulrajani et al. (2017)

Operation Kernel Strides Feature Maps BNActivation

G(z): z∼ N(0, Id) 128
Fully Connected 4×4×128 -
ResBlock [3×3]×21×1 4×4×128 Y ReLU
Nearest Up Sample 8×8×128 -
ResBlock [3×3]×21×1 8×8×128 Y ReLU
Nearest Up Sample 16×16×128-
ResBlock [3×3]×21×1 16×16×128Y ReLU
Nearest Up Sample 32×32×128-
Convolution 3×3 1×1 32×32×3 - Tanh

Discriminator D(x) 32×32×3
ResBlock [3×3]×21×1 32×32×128- ReLU
AvgPool 2×2 1×1 16×16×128-
ResBlock [3×3]×21×1 16×16×128- ReLU
AvgPool 2×2 1×1 8×8×128 -
ResBlock [3×3]×21×1 8×8×128 - ReLU
ResBlock [3×3]×21×1 8×8×128 - ReLU
Mean pooling (spatial-wise)- - 128 -
Fully Connected 1 - -

Batch size 64
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam β1 = 0.β2 = 0.9
Discriminator steps 5
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Table A.6 DMLGAN for CIFAR10, from Gulrajani et al. (2017)

Operation Kernel Strides Feature Maps BNActivation

G(z): z∼ N(0, Id) 128
Fully Connected 4×4×128 -
ResBlock [3×3]×21×1 4×4×128 Y ReLU
Nearest Up Sample 8×8×128 -
ResBlock [3×3]×21×1 8×8×128 Y ReLU
Nearest Up Sample 16×16×128-
ResBlock [3×3]×21×1 16×16×128Y ReLU
Nearest Up Sample 32×32×128-
Convolution 3×3 1×1 32×32×3 - Tanh

Encoder Q(x), Discriminator D(x) 32×32×3
ResBlock [3×3]×21×1 32×32×128- ReLU
AvgPool 2×2 1×1 16×16×128-
ResBlock [3×3]×21×1 16×16×128- ReLU
AvgPool 2×2 1×1 8×8×128 -
ResBlock [3×3]×21×1 8×8×128 - ReLU
D ResBlock [3×3]×21×1 8×8×128 - ReLU
D Mean pooling (spatial-wise) 2×2 1×1 128 -
D Fully Connected 1 - -
Q ResBlock [3×3]×21×1 8×8×128 - ReLU
Q Mean pooling (spatial-wise) 2×2 1×1 128 -
Q Fully Connected ng = 10 - Softmax

Batch size 64
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam β1 = 0.β2 = 0.9
Discriminator steps 5





Appendix B

B.1 Technical results: proofs

B.1.1 Proof of Lemma 3.3.1

We want to show that generator G ∈ G A
L is such that αG ⩽ 1− γ(∂ εminA ), where

∂
εminA =

m⋃
i=1

(
∪ j ̸=i A j

)εmin\
(
∪ j ̸=i A j

)
.

Proof by contradiction.
Assume a generator G such that there exists z ∈ ∂ εminA and i ∈ [1,m] such that G(z) ∈

Mi. Since G is associated with A , we have using Definition 3.3.2, that there exists z′ and
j ∈ [1,m], j ̸= i such that ∥z− z′∥< εmin/2 and j = argmin

k∈[1,m]

∥G(z′)−Mk∥. Thus, we have:

∥G(z)−G(z′)∥⩾ d(G(z′),Mi),

⩾ d(Mi,Mi)/2,

⩾ Dmin/2.

And,
∥G(z)−G(z′)∥
∥z− z′∥

> Dmin/εmin,

> L.

This contradicts G being in G A
L .
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B.1.2 Proof of Corollary 3.3.1.

Let L,D be such that L ⩾ D
√

log(m). Let’s prove that for any well-balanced generator G ∈ GL,
we have:

αG ⩽ 1− εmin
√

logm e−3/2.

Using the method from Schechtman (2012), we have the measure of the border of cell i:

γ

((
∪ j ̸=i A j

)ε\
(
∪ j ̸=i A j

))
⩾

1√
2π

∫ t+ε

t
e−s2/2ds,

⩾
ε√
2π

e−(t+ε)2/2,

⩾
ε
√

logm
m

e−εt−ε2/2,

⩾
ε
√

logm
m

e−ε
√

logm−ε2/2.

In first line, t is such that 1√
2π

∫
∞

t e−s2/2ds = 1/m. In third line, we use
√

logm≤ t ≤
√

2logm).
Thus:

γ(∂ εminA ) =
m

∑
i=1

γ

((
∪ j ̸=i A j

)ε\
(
∪ j ̸=i A j

))
⩾ εmin

√
logm e−εmin

√
logm−ε2

min/2.

Thus, we have

αG ⩽ 1− γ(∂ εminA ),

⩽ 1− εmin
√

logm e−εmin
√

logm−ε2
min/2.

Moreover, using εmin =
D
L and L ⩾ D

√
logm, so we get εmin

√
logm ⩽ 1:

αG ⩽ 1− εmin
√

logm e−3/2.

Proof of Corollary 3.3.1 with wi (non-equal measure of modes). Let L,D be such that
L ⩾ D

√
log(m). Let’s prove that for any well-balanced generator G ∈ GL, we have:

αG ⩽ 1−mwminεmin
√

log1/wmin e−3/2.
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Using the method from Schechtman (2012), we have the measure of the border of cell i:

γ

((
∪ j ̸=i A j

)ε\
(
∪ j ̸=i A j

))
⩾

1√
2π

∫ t+ε

t
e−s2/2ds,

⩾
ε√
2π

e−(t+ε)2/2,

⩾ wminε
√

log1/wmine−εt−ε2/2,

⩾ wminε
√

log1/wmine−ε
√

log1/wmin−ε2/2.

In first line, t is such that 1√
2π

∫
∞

t e−s2/2ds = wmin. In third line, we use
√

log1/wmin ≤ t ≤√
2log1/wmin).
Thus:

γ(∂ εminA ) =
m

∑
i=1

γ

((
∪ j ̸=i A j

)ε\
(
∪ j ̸=i A j

))
⩾ mwminεmin

√
log1/wmin e−εmin

√
log1/wmin−ε2

min/2.

Thus, we have

αG ⩽ 1− γ(∂ εminA ),

⩽ 1−mwminεmin
√

log1/wmin e−εmin
√

log1/wmin−ε2
min/2.

Moreover, using εmin =
D
L and L ⩾ D

√
log1/wmin, so we get εmin

√
log1/wmin ⩽ 1:

αG ⩽ 1−mεminwmin
√

log1/wmin e−3/2.

B.1.3 Proof of Theorem 3.3.1

Let µ⋆ be the target distribution. We know that µ⋆ lays on m disconnected components
contained in spheres Si, i ∈ [1,m]. We note Mi, i ∈ [1,m] the centers, and ri the radius of each
sphere. We also assume that the spheres verify Assumption 4. For each pair (i, j) ∈ [1,m]2, we
define Xi j ∈ Si and X ji ∈ S j the points verifying

Xi j = argmin
x∈Si

d(x,S j) and X ji = argmin
x∈S j

d(x,Si).

We consider the optimal partition A ⋆ in the Gaussian latent space. For each given latent
point z ∈Rd , we define:

Nz = { j ∈ [1,m],z ∈ Aε
j}.

We then distinguish two different cases:
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A2 A3

A1

∂ εA3

Latent space Output space

M2 M3

M1

Fig. B.1 An optimal generator maps a 2D latent space to a 2D output space with three modes
(M1,M2,M3). The latent space has an optimal ‘simplicial cluster’ geometry. In the latent space,
all the ε-boundaries intersect each other in the gray circle, which is mapped in the output space
in the convex hull of the three modes.

1. |Nz|= 1: the point z belongs to the interior of a single cell, z ∈ A−ε

i .

2. |Nz|⩾ 2: the point z is in the neighborhood of at least two different cells.

Interestingly, a point can only belong at most to the interior of one cell, but it can be at the
intersection of several boundaries. We are now ready to define the optimal generator.

First, we set

G(z) = Xi, j for all z ∈ {z ∈Rd, |Nz|= 2,z ∈ A−ε

i ∩Aε
i ∩Aε

j where Nz = {i, j}}.

Second, we define the generator in the interior of the cells, i.e. Nz = {i}. For each z ∈ A−ε

i

and for a given unit vector u∈Rd , we assume that the generator is constant along the parametric
line z = k×u,k ∈R.

Finally, we define the generator when z does not belong to the interior of any cell, i.e.
|Nz|⩾ 2:

G⋆
ε(z) = ∑

i∈[1,m]
∑
j ̸=i

wi, j(z) Xi, j 1 j∈Nz 1i∈Nz (B.1.1)

where

wi, j(z) =
d(z,(Aε

i )
∁)

∑i∈[1,m]∑ j ̸=i d(z,(Aε
j)
∁) 1 j∈Nz 1i∈Nz

where d(z,A) = mina∈A ∥z−a∥. An illustration of the optimal generator is given in Figure B.1.
When z belongs to the intersection of two ε-boundaries, Gε(z) is a simple linear combination
of 2 points. It is only when |Nz| ⩾ 3 that more complex samples are generated. A simple
illustration of G⋆

ε for d = 2 and m = 3 is given in Figure B.1. Interestingly, one can also show
that the image of G⋆

ε is equal to the convex hull of the Diracs Xi, i ∈ [1,m]. In particular, there
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exists a particularly interesting neighborhood ν of 0 where G⋆
ε(ν) is equal to the whole convex

hull of the points Xi, i ∈ [1,m].

Proof that G⋆
ε is well-balanced. We recall that a generator is well-balanced if we have

G♯γ(M1) = . . .= G♯γ(Mm). By construction (B.1.1), we have that for any i ∈ [1,m]

∥G⋆
ε(z)−Xi∥= ∥∑

k ̸=i
wk(Xk−Xi)∥,

= D× (1−wi).

So, for any z ∈ Ai, we have that

i = argmin
j∈[1,m] w j

= argmin
j∈[1,m] ∥G(z)−X j∥

Thus G⋆
ε is associated with the optimal partition A ⋆, .

Besides, for a given radius r of the different modes, since everything is symmetrical,
we have that γ({z ∈ Rd,∥G(z)−X1∥ ⩽ r} = . . . = γ({z ∈ Rd,∥G(z)−Xm∥ ⩽ r}. Thus, the
generator is well-balanced.

Showing that G⋆
ε⋆ is in GL. It is clear that when |Nz|= 1, we have that G⋆

ε(z) is a L-Lipshitz
continuous function.

Now, assume that |Nz| ⩾ 2. Consider z,z′ such that Nz = N′z. Let α = (α1, . . . ,αm) and
β = (β1, . . . ,βm) be two vectors, both in Rm, such that for all i ∈ [1,m]:

αi =
d(z,(Aε

i )
∁)

∑ j∈Az d(z,(Aε
j)
∁)

and βi =
d(z′,(Aε

i )
∁)

∑ j∈Az d(z′,(Aε
j)
∁)

We have that

∥G(z)−G(z′)∥= ∥(1−∑
i̸=1

αi)X1− (1−∑
i ̸=1

βi)X1 +∑
i ̸=1

αiXi−∑
i̸=1

βiXi∥

= ∥∑
i ̸=1

(αi−βi)(X1−Xi)∥

⩽ max
(i, j)∈[1,m]2

∥Xi−X j∥ ∥α−β∥,

⩽ max
(i, j)∈[1,m]2

∥Xi−X j∥ ∥h(z)−h(z′)∥,
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where h is the function from Rd →Rm defined as:

h(z) = (
d(z,(Aε

1)
∁)

∑i∈Az d(z,(Aε
i )

∁)
, . . . ,

d(z,(Aε
m)

∁)

∑i∈Az d(z,(Aε
i )

∁)
).

We can write h = f ◦g with f the function defined from Rd →Rm by

f (z) =
(

d(z,(Aε
1)

∁), . . . ,d(z,(Aε
k)

∁)
)
,

and g the function defined on Rm \{0} by

g(z) =
z
∥z∥1

We have that f is a
√

m-Lipschitz functions (given that z 7→ d(z,(Aε
m)

∁) is 1-Lipschitz).
Besides, we know that outside the ball Bε/2(0), the function g is (2/ε)-Lipschitz. Since it is
clear that for every point z such that |Nz|⩾ 2, we have that | f (z)|⩾ ε/2. Finally, the function h
is 2
√

m
ε

-Lipschitz. Thus, we have that:

∥G⋆
ε(z)−G⋆

ε(z
′)∥⩽ 2D

√
m

ε
∥z− z′∥,

with D = maxi, j ∥Xi−X j∥,(i, j) ∈ [1,m]2, i ̸= j.
Now, by noting εmax =

D
L , and considering ε⋆ = 2

√
m εmax, we have:

∥G⋆
ε⋆(z)−G⋆

ε⋆(z
′)∥⩽ L∥z− z′∥.

Now, consider two latent vectors z,z′ in the same cell A−ε

i . There exists i ∈ [1,m], and a
pairs ( j, j′) ∈ [1,m]2 (note that j could be equal to j′) such that G(z) = Xi, j and G(z′) = Xi, j′ .
Using a similar reasoning as before, we can show that:

∥G⋆
ε⋆(z)−G⋆

ε⋆(z
′)∥⩽ L∥z− z′∥,

with D = 2maxi∈[1,m] ri.
We can now conclude on the Lipschitzness of G⋆ on Rd .

Proving that: for m ⩽ d+1, for any δ > 0, if L is large enough, then, for any well-balanced
G ∈ GL, we have αG⋆

εmax
⩾ αG−δ . Let G be a well-balanced generator and A the partition

associated with G. Let us first define the gaussian boundary measure Pγ of a partition A of
Rd . For partitions with smooth boundaries, it coincides with the (d−1)-dimensional gaussian
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measure of the boundary, defined as follows:

Pγ(A ) = liminfε→0
γ(∂ εA )− γ(A )√

2/πε

Moreover, for sets with smooth boundaries, we have from Federer (2014, Theorem 3.2.29):

liminfε→0
γ(∂ εA )− γ(A )√

2/πε
= limε→0

γ(∂ εA )− γ(A )√
2/πε

Let us denote A ⋆, the optimal partition defined in Milman and Neeman (2022), based
on simplicial clusters. A⋆ is a standard partition where γ(A⋆

1) = . . . = γ(A⋆
m) for all i, and

∑i γ(Ai) = 1. By the multi-bubble theorem (Milman and Neeman, 2022), simplicial clusters
(such as A ⋆) are the unique minimizers of the gaussian isoperimetric problem, thus:

Pγ(A
⋆)⩽ Pγ(A )

limε→0
γ(∂ εA ⋆)

ε
⩽ limε→0

γ(∂ εA )

ε

LA ⩽ LA ⋆

where LA = limε→0
γ(∂ εA ⋆)

ε
and LA ⋆ = limε→0

γ(∂ εA ⋆)
ε

.
Then, for any δ > 0, there exists ε ′ > 0 such that, for any ε < ε ′,

|γ(∂
εA ⋆)

ε
−LA ⋆|< δ , |γ(∂

εA )

ε
−LA |< δ and LA ⋆ ⩽ LA

Thus, for any δ > 0, there exists ε ′ > 0 such that, for any ε < ε ′,

γ(∂ εA ⋆)⩽ γ(∂ εA )+2δε (B.1.2)

Besides, we know that
αG ⩽ 1− γ(∂ εminA )

Consequently, we have that:

αG ⩽ 1− γ(∂ εminA )

⩽ 1− γ(∂ εminA ⋆)+2δεmin using (B.1.2).

Now, by construction of G⋆
εmax

, we have that

αG⋆
εmax

⩾ 1− γ(∂ εmaxA ⋆).
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Consequently,

αG ⩽ 1− γ(∂ εminA ⋆)+2δεmax + γ(∂ εmaxA ⋆)− γ(∂ εmaxA ⋆)

⩽ αG⋆
ε
+2δεmax + γ(∂ εmaxA ⋆)− γ(∂ εminA ⋆)

⩽ αG⋆
ε
+2δεmax + γ(∂ εmaxA ⋆)−2LA ⋆εmax− γ(∂ εminA ⋆)+2LA ⋆εmin +2LA ⋆(εmax− εmin)

⩽ αG⋆
ε
+4δεmax +2LA ⋆εmax,

⩽ αG⋆
ε
+ εmax(4δ +2LA ⋆).

We conclude by choosing L big enough such that εmax is strictly smaller than δ

4δ+2LA ⋆
.

Proving the lower-bound 3.3.7 of Theorem 3.3.1. Let’s consider Gε⋆ defined using (B.1.1)
and ε⋆ = 2

√
mεmax. The precision of G⋆

ε⋆ is thus such that:

αG⋆
ε⋆
⩾ 1− γ(∂ ε⋆A ).

However, since ∂ εA ⊂
⋃n

i=1 Aε
i , we have that for any ε:

γ(∂ εA )⩽
n

∑
i=1

γ(Aε
i ).

Using results from Schechtman (2012, Proposition 1), when m≤ d, there exists C large enough,
such that

γ(Aε⋆

i )⩽
ε⋆

m

(√
π log(Cm)

)
.

Thus, we have
αG⋆

ε⋆
⩾ 1− ε

⋆
√

π log(Cm),

To have αG⋆
εmax

⩾ 0, we must have ⋆ ⩽ 1/
√

π log(Cm). This is the case since we have

⋆ = 2D
√

m/L and L ⩾ D
√

m
√

π log(Cm),

where D = maxi, j ∥Xi−X j∥.
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Table B.1 GANs training details on MNIST

Operation Kernel Strides Feature Maps Activation

Generator G(z)
z∼ N(0, I) dim(z)
Fully Connected 7×7×128
Convolution 3×3 1×1 7×7×64 LReLU
Convolution 3×3 1×1 7×7×64 LReLU
Nearest Up Sample 14×14×64
Convolution 3×3 1×1 14×14×32 LReLU
Convolution 3×3 1×1 14×14×32 LReLU
Nearest Up Sample 14×14×32
Convolution 3×3 1×1 28×28×16 LReLU
Convolution 3×3 1×1 28×28×1 Tanh

D(x) 28×28×1
Convolution 4×4 2×2 14×14×512LReLU
Convolution 3×3 1×1 14×14×512LReLU
Convolution 4×4 2×2 7×7×512 LReLU
Convolution 3×3 1×1 7×7×512 LReLU
Fully Connected 1 -

Batch size 256
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate Discriminator1×10−4

Learning Rate Generator 5×10−5

Disciminator steps 2
Optimizer Adam β1 : 0.5β2 : 0.5

B.2 Experiments

B.2.1 Implementation details

First, let us note that we share our code in Supplementary Material for reproducibility.

Training. We use the Wasserstein loss with gradient-penalty on interpolations of fake and
real data. At each iteration, the discriminator is trained 2 steps and the generator 1 step with
Adam optimizer. The batch size is 256. The learning rate of the discriminator is two times
larger (Heusel et al., 2017), i.e. 5×10−5 for the generator and 1×10−4 for the discriminator.
GANs are trained for 80k steps on MNIST and for 100k steps on CIFAR datasets. Architectures
of generator and discriminator are described in Table B.1 and Table B.2.
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Table B.2 GANs training details on CIFAR datasets. BN stands for batch-normalization.

Conditional
Operation Kernel Strides Feature Maps BN Activation

Generator G(z)
z∼ N(0, Id) 128
Fully Connected 4×4×128 -
ResBlock [3×3]×21×1 4×4×128 Y ReLU
Nearest Up Sample 8×8×128 -
ResBlock [3×3]×21×1 8×8×128 Y ReLU
Nearest Up Sample 16×16×128-
ResBlock [3×3]×21×1 16×16×128Y ReLU
Nearest Up Sample 32×32×128-
Convolution 3×3 1×1 32×32×3 - Tanh

Discriminator D(x) 32×32×3
ResBlock [3×3]×21×1 32×32×256- ReLU
AvgPool 2×2 1×1 16×16×256-
ResBlock [3×3]×21×1 16×16×256- ReLU
AvgPool 2×2 1×1 8×8×256 -
ResBlock [3×3]×21×1 8×8×256 - ReLU
ResBlock [3×3]×21×1 8×8×256 - ReLU
Mean spatial pooling - - 256 -
Fully Connected 1 - -

Batch size 256
Gradient Penalty weight 10
Learning Rate Discriminator1×10−4

Learning Rate Generator 5×10−5

Discriminator steps 2
Optimizer Adam β1 = 0.β2 = 0.999
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For TransGAN (Jiang et al., 2021), we follow the implementation from the authors available
at https://github.com/VITA-Group/TransGAN. TransGAN is trained with a WGAN-GP loss, 4
discriminator steps for 1 generator step, and Adam optimizer with a learning rate of 10−4.

Evaluation. For evaluation metrics, we follow the setting proposed by the authors. For FID
(Heusel et al., 2017), we use 50k real images and 50k fake images. For precision, recall, density
and coverage (Kynkäänniemi et al., 2019; Naeem et al., 2020), we use 10k real images and 10k
fake images with nearest-k= 5.

GPUs. For all datasets, the training of GANs was run on NVIDIA Tesla V100 GPUs (16 GB).
The training of ResNet GANs for 100k steps on CIFAR takes around 30 hours. For TransGAN
models, the training is done for 250k steps on two NVIDIA Tesla V100 GPUs, which takes
around 35×2 = 70 GPU hours.

https://github.com/VITA-Group/TransGAN
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B.2.2 Correlation between latent space geometry and GANs’ perfor-
mance (Details for Section 3.3.5.3)

We present the full results of this study in Table B.3.
Table B.3 Correlation between GANs’ performance and their latent space geometry. Increasing
the capacity of GANs tend to structure their latent space in simplicial clusters (better LogReg
accuracy) and improve their performance on precision, density and coverage. Confidence
intervals are computed on several sets of generated/training points from a given generator.

Dataset Width
LogReg
Acc. ↑

Convex
Acc. ↑ FID ↓ Prec. ↑ Rec. ↑ Dens. ↑ Cov. ↑

CIFAR-10
(Resnet)

32 53.4 ± 0.5 61.1 ± 0.3 28.3 ± 0.6 63.2 ± 0.6 58.6 ± 0.9 66.3 ± 1.5 61.3 ± 1.1
64 60.7 ± 0.5 72.1 ± 0.6 20.6 ± 0.3 65.7 ± 0.5 62.0 ± 0.6 71.4 ± 1.7 71.5 ± 1.0
128 63.4 ± 0.4 73.1 ± 0.6 17.0 ± 0.3 65.9 ± 0.4 64.5 ± 0.9 71.2 ± 1.5 74.6 ± 0.9
256 65.0 ± 0.4 75.4 ± 0.4 16.1 ± 0.3 66.4 ± 0.5 66.2 ± 1.0 72.3 ± 1.5 75.6 ± 1.0
512 65.3 ± 0.6 75.2 ± 0.7 16.1 ± 0.3 66.8 ± 1.0 66.1 ± 1.3 72.8 ± 2.9 76.1 ± 1.4

CIFAR-100
(Resnet)

32 20.3 ± 0.1 28.1 ± 0.5 28.3 ± 0.3 53.4 ± 0.7 63.5 ± 0.8 44.5 ± 1.3 56.1 ± 1.2
64 23.7 ± 0.9 33.4 ± 0.5 23.4 ± 0.3 59.9 ± 0.5 64.6 ± 0.7 57.6 ± 1.7 67.6 ± 0.5
128 28.4 ± 0.3 39.1 ± 0.7 21.1 ± 0.4 61.6 ± 0.4 63.8 ± 0.5 62.2 ± 1.0 70.2 ± 0.5
256 29.9 ± 0.5 41.8 ± 0.6 21.0 ± 0.4 62.3 ± 0.6 65.6 ± 0.6 62.7 ± 2.0 70.1 ± 0.9
512 30.5 ± 0.5 42.1 ± 0.5 19.7 ± 0.4 64.3 ± 0.8 64.8 ± 0.8 66.8 ± 1.9 72.2 ± 0.6
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B.2.3 Details on simplicial truncation method (Details for Section 3.3.5.4)

We provide here more details about our truncation method. First, the rejection sampling in the
latent space Rd of GANs procedure is the following:

• Define hyper-parameters threshold τ , number of clusters N, latent space dimension d.

• Initialize N equidistant points in {(u0, . . . ,uN) | ui ∈Rd}. This can be done easily when
N ≤ d.

• When sampling latent vectors z ∈ Rd , compute a softmax over the negative distances
between z and ui: pi(z) = e−d(z,ui)

∑ j e−d(z,u j)
. Then, z is selected if max

i

(
pi(z)

)
> τ .

Second, we add a classification loss to encourage the generator to use this latent structure.
This loss is motivated by the need to maximize mutual information between the latent cluster
and the modes of the generator Khayatkhoei et al. (2018), and can be written as:

Lc =−Ez∼γ [lnqφ

(
i(z)|Gθ (z)

)
]

where qφ is parametrized by a second classification head added to the discriminator; i(z) =
argmax

i

(
pi(z)

)
is the index of the latent cluster of the sample. This loss is added during training,

at each step of generator’s and discriminator’s training, during the first 20 epochs. It is then
dropped, since we noticed that it harms the GANs performance if it is kept until the end of the
training.

Training hyper-parameters: for N = 10, we use a latent dimension of d = 64 and training
threshold of τ = 0.135; for N = 100, we use d = 128 and τ = 0.08.

During inference, if the generator has properly learned to use the different clusters of the
latent space, we observe that augmenting the threshold τ leads to an increased density and
precision.

We present full results in Table B.4 and Figure B.2.
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Table B.4 Density/Coverage curves comparing TransGAN and boosting methods for multi-
modal datasets and different threshold ratios. Our simplicial truncation method (TransGAN +
simp.) consistently outperforms the TransGAN and TransGAN + DeliGAN baselines.

Dataset Model FID Prec Rec Dens. Cov.

CIFAR-10

TransGAN 8.9 ± 0.1 72.8 ± 0.862.6 ± 0.779.3 ± 0.979.3 ± 1.2

TransGAN + 90% JBT 8.7 ± 0.1 73.0 ± 0.661.9 ± 0.883.5 ± 1.780.0 ± 1.6
TransGAN + 80% JBT 8.8 ± 0.1 73.3 ± 0.861.2 ± 1.085.7 ± 2.881.1 ± 0.6

TransGAN + DeliGAN N=10 9.8 ± 0.1 74.6 ± 0.858.6 ± 0.993.2 ± 2.880.0 ± 0.6

TransGAN + lin. N=10
(0.23,0.23) 9.2 ± 0.1 73.1 ± 1.161.9 ± 1.278.1 ± 2.779.4 ± 0.9
(0.23,0.29) 9.2 ± 0.1 73.7 ± 0.861.5 ± 1.283.4 ± 3.379.8 ± 0.5
(0.23,0.31) 9.3 ± 0.1 74.0 ± 0.561.0 ± 0.786.1 ± 1.881.3 ± 0.7
(0.23,0.4) 9.8 ± 0.1 75.1 ± 0.859.8 ± 1.289.5 ± 1.680.5 ± 1.2

TransGAN + simp. N=10
(0.135,0.135) 9.0 ± 0.1 72.9 ± 0.561.8 ± 0.982.7 ± 1.980.4 ± 0.7
(0.135,0.14) 9.0 ± 0.1 74.2 ± 1.560.7 ± 1.088.5 ± 3.181.3 ± 1.4

(0.135,0.1445) 9.3 ± 0.1 75.3 ± 0.658.8 ± 0.898.6 ± 1.382.9 ± 0.5

CIFAR-100

TransGAN 15.2 ± 0.164.2 ± 0.563.1 ± 0.953.4 ± 1.366.0 ± 1.1

TransGAN + 90% JBT 15.1 ± 0.264.8 ± 1.062.9 ± 1.353.6 ± 2.466.2 ± 1.4
TransGAN + 80% JBT 14.8 ± 0.265.4 ± 1.761.7 ± 1.255.0 ± 4.065.6 ± 2.3

TransGAN Deligan 10 15.9 ± 0.263.5 ± 0.862.2 ± 0.752.6 ± 1.364.4 ± 0.6
TransGAN DeliGAN 100 15.3 ± 0.164.2 ± 0.561.9 ± 0.952.6 ± 0.665.9 ± 0.8

TransGAN + simp. N=10
(0.135,0.135) 15.1 ± 0.165.1 ± 0.662.3 ± 0.555.6 ± 0.667.1 ± 0.5
(0.135, 0.14) 15.1 ± 0.164.8 ± 0.261.1 ± 0.555.3 ± 1.366.8 ± 1.1

(0.135,0.1445) 15.1 ± 0.165.6 ± 1.361.5 ± 0.856.3 ± 1.566.4 ± 1.4

STL-10 (32x32)

TransGAN 10.5 ± 0.175.7 ± 0.660.1 ± 0.887.5 ± 1.983.0 ± 0.2

TransGAN + 90% JBT 10.5 ± 0.176.9 ± 0.758.8 ± 0.591.9 ± 1.982.1 ± 0.8
TransGAN + 80% JBT 11.0 ± 0.178.1 ± 0.357.6 ± 1.399.3 ± 2.883.8 ± 0.7

TransGAN DeliGAN 10 12.1 ± 0.174.2 ± 1.260.2 ± 0.581.5 ± 1.579.6 ± 0.8
TransGAN DeliGAN 100 10.5 ± 0.276.0 ± 0.560.2 ± 1.685.5 ± 2.881.5 ± 1.4

TransGAN + simp. N=100
(0.08,0.08) 10.1 ± 0.176.5 ± 0.960.2 ± 0.890.0 ± 1.783.0 ± 0.5
(0.08,0.15) 10.0 ± 0.176.9 ± 0.859.9 ± 0.691.4 ± 1.183.8 ± 0.3
(0.08,0.20) 10.0 ± 0.177.8 ± 0.659.8 ± 0.894.1 ± 0.983.5 ± 0.8
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Fig. B.2 Density/Coverage curves comparing TransGAN and boosting methods for multi-modal
datasets and different threshold ratios. Our simplicial truncation method (TransGAN + simp.)
consistently outperforms the TransGAN and TransGAN + DeliGAN baselines.
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B.2.4 Impact of the number of modes: a synthetic example (Details for
Section 3.3.5.2)

To illustrate our theoretical results, we propose to vary the number of modes of the data
distribution. On real-world data, the number of modes is set but usually unknown, and
removing/adding classes as a proxy for modes usually does not give insightful results since
some classes can be much more complex than others. We thus use a synthetic setting, where
we can easily control both the number of modes and their complexity. Figure B.3 stresses
that as the number of modes increase, the precision decrease. Interestingly, using large latent
space dimension can relieve the problem, even if the latent space dimension is clearly below
that of the target. Recall the two problems that arise when training GANs: i) dimensional
misspecification where the true and modeled distributions do not have density functions w.r.t.
the same base measure, and ii) density misspecification, where GANs try to fit a disconnected
manifold with a unimodal disitribution. From the results we conclude that:

• With very low latent space dimensions, both problems i) and ii) have to be addressed and
this leads to poor precision as the number of modes increases.

• With larger latent space dimensions, the problem i) is less of a burden even when there is
a clear dimensional misspecification and thus the GANs’ performance is more tied to
problem ii).

Fig. B.3 Training on a mixture of Gausians in R100 with varying number of modes and varying
latent space dimension. The bigger the number of modes, the lower the precision. Increasing
the latent space dimension helps up to a limit depending on the number of modes.



Appendix C

C.1 Proof of Lemma 3.4.1

Let’s prove that Eγϕ = 1. We have that:∫
Rd

1γ
ϕ(dz) =

∫
Rd

wϕ(z)γ(dz) = 1,

by assumption. Consequently, the measure γϕ is a well-defined probability distribution on Rd .

C.2 Proof of Theorem 3.4.1

It is clear that the network wϕ is a density function with respect to the distribution γ defined on
Rd . Consequently, the measure µ

ϕ

θ
is absolutely continuous with respect to µθ and thus with

respect to the Lebesgue measure.
We start the proof by stating that for any absolutely continuous distribution µ

ϕ

θ
, there

exists an optimal transport T ϕ

θ
, (Pratelli, 2007, Theorem B), such that W (µn,µ

ϕ

θ
) =

∫
RD ∥x−

T ϕ

θ
(x)∥dµ

ϕ

θ
Hartmann and Schuhmacher (2020). Recall that for any x ∈ RD, there exists

Xi ∈ [1,n] such that T ϕ

θ
(x) = Xi. Since µ

ϕ

θ
is absolutely continuous, there exists a ball B(z,r)

centered in z ∈Rd with radius r > 0 such that µ
ϕ

θ
(B(z,r))> 0 and, we have:

1. there exists i ∈ [1,n] such that for all x ∈ B(z,r), T ϕ

θ
(x) = Xi,

2. for all x ∈ B(z,r), ∥x−Xi∥> ∥Xi− X̃i∥, recall that X̃i = argmin
z∈Rd

∥Xi−Gθ (z)∥.
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Consequently, we have:

W (µn,µ
ϕ

θ
) =

∫
RD
∥x−T ϕ

θ
(x)∥µϕ

θ
(dx)

=
∫
RD\B(z,r)

∥x−T ϕ

θ
(x)∥µϕ

θ
(dx)+

∫
B(z,r)

∥x−T ϕ

θ
(x)∥µϕ

θ
(dx)

>
∫
RD\B(z,r)

∥x−T ϕ

θ
(x)∥µϕ

θ
(dx)+

∫
B(z,r)

∥Xi− X̃i∥µϕ

θ
(dx)

⩾
∫
RD\B(z,r)

∥T̃ ϕ

θ
(x)−T ϕ

θ
(x)∥µϕ

θ
(dx)+

∫
B(z,r)

∥Xi− X̃i∥µϕ

θ
(dx)

(where T̃ ϕ

θ
(x) = min

z∈Rd
∥z−T ϕ

θ
(x)∥)

=
1
n

n

∑
i=1
∥Xi− X̃i∥

=W (µn,
1
n

n

∑
i=1

δ (X̃i)),

where δ refers to the Dirac probability distribution.
Finally, when taking the infinimum over all continuous functions ϕ , we have that:

W (µn,
1
n

n

∑
i=1

δ (X̃i))⩽ inf
ϕ∈Φ

W (µn,µ
ϕ

θ
)

C.3 Evaluation details

Precision recall metric. For the precision-recall metric, we use the algorithm from Khay-
atkhoei et al. (2018). Namely, when comparing the set of real data points (x1, ...,xn) with the
set of fake data points (y1, ...,yn):

A point xi has a recall r(xi) = 1 if there exists y j, such that ∥xi− y j∥ ≤ ∥y j− y j(k)∥, where
y j(k) is the k-nearest neighbor of n. Finally, the recall is the average of individual recall:
1
n ∑i r(xi).

A point yi has a precision p(yi) = 1 if there exists x j, such that ∥yi− x j∥ ≤ ∥x j− x j(k)∥,
where x j(k) is the k-nearest neighbor of n. Finally, the precision is the average of individual
precision: 1

n ∑i p(xi).
Parameters. For all datasets, we use k = 3 (3rd nearest neighbor). For MNIST and

F-MNIST, we use a set of n = 2048 points. For CelebA and LSUN Church, we use a set of
n = 1024 points. This is also valid for the EMD. For FID, we use the standard protocol with
n = 50000 points and Inception Net. We run 10 evaluations of each metric (each evaluation is
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done with a different set of random points), report the average and the 97% confidence interval
by considering that we have 10 i.i.d. samples from a normal distribution.

C.4 Sampling algorithms: latentRS, latentGA, and laten-
tRS+GA

We present here the three sampling algorithms associated with our importance weight function
wϕ . See Section C.5 for details on the hyper-parameters used in latentGA and latentRS+GA.

Algorithm 4: LatentRS
1 Requires: Prior Z, Gen. Gθ , Importance weight network wϕ , maximum importance

weight m;
2 while True do
3 Sample z∼ Z ;
4 Sample α ∼ Uniform[0,1] ;
5 if wϕ (z)

m ≥ α then
6 break;
7 end
8 end
9 x← Gθ (z);

Result: Selected point x

Algorithm 5: Latent Gradient Ascent (latentGA)
1 Requires: Prior Z, number of dimensions of the prior d, Gen. Gθ , Importance weight

network wϕ , number of steps N, step size ε;
2 Sample z∼ Z ;
3 for n = 1 : N do
4 gradz← ∇zwϕ(z) ;
5 if Z == N (0, I) and d >> 1 then
6 ## Projection step for high-dimensional gaussians ## ;
7 gradz← gradz− (gradz · z)z/

√
d ;

8

9 end
10 z← z+ ε ∗gradz ;
11 end
12 x← Gθ (z);

Result: Selected point x
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Algorithm 6: Latent RS+GA
1 Requires: Prior Z, Number of dimensions of the prior d, Gen. Gθ , Importance weight

network wϕ , maximum importance weight m, number of steps N, step size ε;
2 while True do
3 Sample z∼ Z ;
4 Sample α ∼ Uniform[0;1] ;
5 if wϕ (z)

m ≥ α then
6 break;
7 end
8 end
9 for n = 1 : N do

10 gradz← ∇zwϕ(z) ;
11 if Z = N (0, I) and d >> 1 then
12 ## Projection step for high-dimensional gaussians ## ;
13 gradz← gradz− (gradz · z)z/

√
d ;

14

15 end
16 z← z+ ε ∗gradz ;
17 end
18 Compute x = Gθ (z);

Result: Selected point x
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C.5 Hyper-parameters.

SIR Grover et al. (2019): Model selection: we fine-tune with a binary cross-entropy loss
the discriminator from the end of the adversarial training and select the best model in terms
of EMD. We tested with/without regularizing the discriminator during the fine-tuning (with
gradient penalty or spectral normalization). Without regularization, the performance drops fast.
Best results are obtained by regularizing the discriminator, thus we report these results.

We use then use Sampling-Importance-Resampling algorithm. In SIR, we sample N points
from the generator, compute their importance weights according density ratios, and accept one
of them (each point is accepted with a probability proportional to its importance weight). The
hyper-parameter of SIR algorithm is N. Results for grid search on N are shown below in Table
C.2 and Table C.3. In Table 3.5, results are shown with N = 10.

DOT Tanaka (2019): Model selection: we fine-tune with the WGAN-GP loss the dis-
criminator from the end of the adversarial training and select the best model in terms of EMD,
when running DOT. We perform a projected gradient descent as described in Tanaka (2019)
with SGD. Hyper-parameters are the number of steps Nsteps and the step size ε . We made the
following grid search: Nsteps = [2,5,10,50] and ε = [0.01,0.05,0.1]. Results for grid search
on Nsteps are shown below in Table C.2 and Table C.3. In Table 3.5, results are shown with
Nsteps = 10 and ε = 0.05 or ε = 0.01 depending on the dataset (we select the best one).

Training of wϕ : For MNIST and F-MNIST, we use the same hyper-parameters: λ1 = 10,
λ2 = 3 and m = 3. wϕ is a standard MLP with 4 hidden layers, each having 400 nodes (4x
dimension of latent space), and relu activation. The output layer is 1-dimensional and with a
relu activation. The learning rate of the discriminator is 4 ∗ 10−4, the learning rate of wϕ is
10−4. The two networks are optimized with Adam algorithm, where we set β = (0.5,0.5). We
use 1 step of importance weight optimization for 1 step of discriminator optimization.

For Progressive GAN on CelebA (128x128), we use: λ1 = 20, λ2 = 5 and m = 3. wϕ is
a standard MLP with 4 hidden layers, each having 512 nodes (1x dimension of latent space),
and leaky-relu activation (0.2 of negative slope). The output layer is 1-dimensional and with
relu activation. Since we do not have the pre-trained discriminator, we first train a WGAN-GP
discriminator between ProGAN and CelebA images for 500 steps, and then start the adversarial
training of wϕ . The learning rate of the discriminator is 10−4, the learning rate of wϕ is 10−5.
The two networks are optimized with Adam algorithm, where we set β = (0.,0.999). During
optimization, we perform iteratively 3 wϕ updates and 1 discriminator’s updates.

For StyleGAN2 on LSUN Church (256x256), we use: λ1 = 30, λ2 = 5 and m = 2. wϕ is
a standard MLP with 3 hidden layers, each having 512 nodes (1x dimension of latent space),
and leaky-relu activation (0.2 of negative slope). The output layer is 1-dimensional and with a
relu activation. Since we do not have the pre-trained discriminator, we first train a WGAN-GP
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discriminator between StyleGAN2 and LSUN Church images for 500 steps, and then start
the adversarial training of wϕ . The learning rate of the discriminator is 10−4, the learning
rate of wϕ is 10−5. The two networks are optimized with Adam algorithm, where we set
β = (0.,0.999). During optimization, we perform 3 wϕ updates for 1 discriminator’s updates.

LatentRS: Once the network wϕ is trained (see above), there is no hyper-parameter for
latentRS algorithm.

LatentGA and latentRS+GA: We use the same neural network than in LatentRS. The
hyper-parameters for this method are similar to DOT: number of steps of gradient ascent
Nsteps and step size ε . With the model selected on LRS, we make the following grid search:
Nsteps = [2,5,10,50] and ε = [0.01,0.05,0.1]. Best results were obtained with ε = 0.05 on all
datasets. Results for grid search on Nsteps are shown below in Table C.2 and Table C.3. In
Table 3.5, results are shown with Nsteps = 10 and ε = 0.05.
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C.6 Comparisons with concurrent methods on synthetic and
real-world datasets

In this section, we provide more quantitative results: a comparison of SIR, DOT, SIR, LatentRS
and latentRS+GA on MNIST and F-MNIST in Table C.1; an ablation study on the impact of
number of points (respectively gradient ascent steps) in SIR (respectively DOT, latentGA and
latentRS+GA), on ProGAN trained on CelebA in Table C.2 and StyleGAN2 trained on Lsun
Church in Table C.3.

Table C.1 latentRS+GA is the best performer and latentRS matches SOTA with a significantly
reduced inference cost (by an order of at least 10). FID was computed using the same dataset-
specific classifier used for the Precision/Recall metric. ± is 97% confidence interval. Inference
refers to the time in milliseconds needed to compute one image on a NVIDIA V100 GPU.

Prec. (↑) Rec. (↑) EMD (↓) FID (↓) Inference (ms)

MNIST
Hinge-GP 87.4±0.9 94.6±0.4 24.9±0.3 53.6±7.2 0.7
HGP: SIR 88.8±1.0 94.3±0.5 24.2±0.2 38.7±3.1 10.0
HGP: DOT 89.5±0.6 94.0±0.3 24.8±0.2 43.3±3.4 15.7
HGP: latentRS (⋆) 89.0±0.4 94.7±0.7 24.1±0.3 36.3±3.2 1.6
HGP: latentRS+GA (⋆) 91.8±1.0 92.8±0.4 23.4±0.2 38.2±3.8 8.6

F-MNIST
Hinge-GP 86.4±0.6 86.8±0.6 68.6±0.4 598.9±55.5 0.7
HGP: SIR 86.6±1.1 88.0±0.5 68.0±0.5 499.6±31.1 10.0
HGP: DOT 88.7±0.6 86.6±0.7 67.7±0.5 508.3±45.7 15.7
HGP: latentRS (⋆) 86.8±0.8 87.5±0.9 67.6±0.6 438.3±50.2 1.6
HGP: latentRS+GA (⋆) 88.4±0.7 86.8±0.7 67.0±0.9 475.5±58.5 8.6
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Table C.2 Comparison of the proposed methods (latentRS, latentGA, and latentRS+GA) with
concurrent methods on ProgressiveGan (CelebA 128x128). For this specific study, we explore
different computational budgets for SIR, DOT, latentGA, and latentRS+GA. latentRS+GA
enables a consistent gain in both EMD and precision for a reasonable computational overhead.

CelebA 128x128 Precision Recall EMD Inference Time

ProGAN 74.2±0.9 60.7±1.4 25.4±0.1 3.6

ProGAN: SIR (n=2) 78.2±1.0 58.4±1.3 25.0±0.1 9.8
ProGAN: SIR (n=5) 79.3±0.6 57.6±1.3 24.9±0.1 24.5
ProGAN: SIR (n=10) 79.5±0.4 57.3±1.0 24.9±0.2 49.0
ProGAN: SIR (n=50) 80.2±1.0 57.4±1.4 25.0±0.1 245.0

ProGAN: DOT (n=2) 78.2±1.1 58.6±1.1 24.9±0.1 16.4
ProGAN: DOT (n=5) 80.0±1.0 56.0±1.1 24.8±0.1 35.6
ProGAN: DOT (n=10) 81.3±1.0 52.9±1.4 25.0±0.1 67.6
ProGAN: DOT (n=50) 82.3±0.7 52.1±1.3 25.0±0.1 323.6

ProGAN: latentGA (n=2) (⋆) 76.7±1.2 59.4±0.9 25.2±0.1 5.2
ProGAN: latentGA (n=5) (⋆) 77.8±1.2 58.4±0.7 25.1±0.1 7.6
ProGAN: latentGA (n=10) (⋆) 78.9±1.2 57.4±0.7 25.0±0.1 11.6
ProGAN: latentGA (n=50) (⋆) 84.1±1.2 49.0±1.3 24.8±0.1 43.6

ProGAN: latentRS+GA (n=2) (⋆) 81.2±0.8 55.3±1.5 24.7±0.1 6.1
ProGAN: latentRS+GA (n=5) (⋆) 82.1±0.7 54.3±1.2 24.6±0.2 8.5
ProGAN: latentRS+GA (n=10) (⋆) 83.3±1.0 52.7±0.9 24.5±0.1 12.5
ProGAN: latentRS+GA (n=50) (⋆) 89.2±0.8 36.1±0.7 25.0±0.1 44.5

ProGAN: latentRS (⋆) 79.3±1.0 56.5±1.2 24.8±0.2 4.5
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Table C.3 Comparison of the proposed methods (latentRS, latentGA, and latentRS+GA) with
concurrent methods on StyleGAN2 (LSUN Church 256x256). For this specific study, we
explore different computational budgets for SIR, DOT, latentGA, and latentRS+GA. laten-
tRS+GA enables a consistent gain in both EMD and precision with a reasonable computational
overhead.

LSUN Church (256x256) Precision Recall EMD Inference Time

StyleGAN2 55.6±1.2 62.4±1.1 23.6±0.1 11.7

StyleGAN2: SIR (n=2) 58.5±0.7 60.7±1.3 23.5±0.1 26.0
StyleGAN2: SIR (n=5) 59.8±1.1 59.0±1.2 23.5±0.1 65.0
StyleGAN2: SIR (n=10) 60.5±1.4 58.1±1.3 23.4±0.1 130.0
StyleGAN2: SIR (n=50) 61.2±1.2 57.8±0.9 23.4±0.1 650.0

StyleGAN2: DOT (n=2) 60.4±1.4 57.0±1.1 23.4±0.1 48.7
StyleGAN2: DOT (n=5) 64.1±0.9 52.2±1.0 23.2±0.1 104.2
StyleGAN2: DOT (n=10) 67.4±1.4 48.3±1.0 23.1±0.1 196.7
StyleGAN2: DOT (n=50) 68.8±0.9 37.0±1.1 23.6±0.1 937.7

StyleGAN2: latentGA (n=2) (⋆) 58.2±1.0 61.4±1.2 23.4±0.1 17.1
StyleGAN2: latentGA (n=5) (⋆) 61.1±0.9 58.5±1.1 23.2±0.1 25.2
StyleGAN2: latentGA (n=10) (⋆) 64.6±0.9 55.9±1.5 23.0±0.1 38.7
StyleGAN2: latentGA (n=50) (⋆) 69.9±1.1 47.2±1.4 22.8±0.1 146.7

StyleGAN2: latentRS+GA (n=2) (⋆) 66.3±1.2 54.8±1.3 23.0±0.1 21.6
StyleGAN2: latentRS+GA (n=5) (⋆) 69.6±1.0 50.6±0.9 22.8±0.2 29.7
StyleGAN2: latentRS+GA (n=10) (⋆) 72.6±1.1 43.2±1.3 22.6±0.1 43.2
StyleGAN2: latentRS+GA (n=50) (⋆) 78.6±1.2 34.1±0.9 22.6±0.1 151.2

StyleGAN2: latentRS (⋆) 63.3±0.7 57.7±1.0 23.1±0.2 16.2
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Table C.4 Inference time for one pass of different computational graphs. With the acceptance
rate of the different methods, it allows to compute the runtime of these methods.

Inference Time

MNIST/F-MNIST 28x28
Generator 0.7
Generator + Discriminator 1.0
∇zD(G(z)) (gradient for latent DOT) 1.5
Network wϕ (⋆) 0.3
∇zW (z) (gradient for latent GA on IW) (⋆) 0.7

CelebA 128x128
ProGAN Generator 3.6
ProGAN Generator + Discriminator 4.9
ProGAN ∇zD(G(z)) (gradient for latent DOT) 6.4
ProGAN Network wϕ (⋆) 0.3
ProGAN: ∇zW (z) (gradient for latent GA on IW) (⋆) 0.8

LSUN Church 256x256
StyleGAN2 Generator 11.7
StyleGAN2 Generator + Discriminator 13.0
StyleGAN2 ∇zD(G(z)) (gradient for latent DOT) 18.5
StyleGAN2 Network wϕ (⋆) 1.5
StyleGAN2: ∇zW (z) (gradient for latent GA on IW) (⋆) 2.7
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C.7 Qualitative results of latentGA.
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Fig. C.1 Gradient ascent on latent importance weights (latentGA), on StyleGAN2 trained on
LSUN Church.
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Fig. C.2 Gradient ascent on latent importance weights (latentGA), on StyleGAN2 trained on
LSUN Church.
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Fig. C.3 Gradient ascent on latent importance weights (latentGA), on Progressive GAN trained
on CelebA.



Appendix D

D.1 Implementation details

The code for the implementation of EdiBERT is available on GitHub at the following link
https://github.com/EdiBERT4ImageManipulation/EdiBERT.

A pre-trained model on FFHQ is available on a linked Google Drive. Notebooks to showcase
the model have also been developped.

D.1.1 Training hyper-parameters

We use the same architecture than Esser et al. (2021b) for both VQGAN and transformer. On
LSUN Bedroom and FFHQ, we use a codebook size of 1024. For the transformer, we use a
model with 32 layers of width 1024.

To train the transformer with 2D masking strategy, we generate random rectangles before
flattening Q(E(I)). The height of rectangles is drawn uniformly from [0.2×h,0.5×h]. Simi-
larly, the width of rectangles is drawn uniformly from [0.2×w,0.5×w]. In our experiments,
since we work at resolution 256×256 and follow the downsampling factor of 4 from Esser
et al. (2021b), we have h = w = 256/16 = 16.

Tokens outside the rectangle are used as input, to give context to the transformer, but not for
back-propagation. Tokens inside the rectangle are used for back-propagation. prand = 90% of
tokens inside the mask are put to random tokens, while psame = 1− prand = 10% are given their
initial value. Although we did not perform a large hyper-parameter study on this parameter, we
feel it is an important one. The lower prand, the more the learned distributions pi

θ
(.|s) will be

biased towards the observed token si. However, setting prand = 1 leads to a model that diverges
too fast from the observed sequence.

https://github.com/EdiBERT4ImageManipulation/EdiBERT
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D.1.2 Inference hyper-parameters

D.1.2.1 Image inpainting.

We set the number of epochs to 2, collage frequency to 4 per epoch, top-k sampling to 100,
dilation to 1, and number of optimization steps to 200. We apply a gaussian filter on the mask
for the periodic image collage.

Additionally, we use these two implementation details. 1) We use two latent masks:
the latent down-sampled mask latent_mask1, and the dilated mask latent_mask2, obtained
by a dilation of latent_mask1. The randomization is done with latent_mask1, such that no
information from the unmasked parts of the image is erased. However, the selection of
positions that are re-sampled by EdiBERT is done with latent_mask2. 2) At the second epoch,
we randomize the token value, at the position that is being replaced. This is only done for
image inpainting.

D.1.2.2 Image compositing.

We set the number of epochs to 2, collage frequency to 4 per epoch, top-k sampling to 100,
dilation to 1, and number of optimization steps to 200. We apply a gaussian filter on the
mask for the periodic image collage. Contrarily to inpainting, we do not randomize such that
EdiBERT samples stay closer to the original sequence.

The full algorithm is presented below in Algorithm 7.

D.2 Additional experimental results

We give additional comparisons on FFHQ and LSUN Bedroom, for the following tasks: image
inpainting in Table D.1, image crossovers in Table D.2, and image composition in Table D.3.
All these experiments are run on the test-set of EdiBERT. Note that concurrent methods based
on StyleGAN2 were trained on the full dataset, which advantages them.

Inpainting. We use 2500 images. On FFHQ, we provide results for free-form masks and
rectangular masks. The height of rectangular masks is drawn uniformly from [0.4×h,0.6×h]
with h = 256, and similarly for the width. For non-rectangular masks generations, we follow the
procedure of Chai et al. (2021): we draw a binary mask at low-resolution 6×6 and uspsample
it to 256×256 with bilinear interpolation.

The ablation study in Table 4.2 of main paper is performed on free-form masks. Results in
Table 4.1 of main paper are on rectangular masks. On LSUN Bedroom, we provide results for
rectangular masks.
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Algorithm 7: Image inpainting/composition
1 Requires: Masked (or edited) image im, mask m, Encoder E, Decoder D, BERT model

pθ , epochs e, periodic collage c, optimization steps optim_steps;
2 s← Q(E(im));
3 latent_mask← get_mask_in_latent_space(m);
4 if task is inpainting then
5 s← s× latent_mask+ rand× (1− latent_mask);
6 end
7 for e in [0,epochs] do
8 for p in chosen_order(latent_mask) do
9 Sample token t ∈ Z ∼ pp

θ
(·|s) ;

10 Insert sampled token: sp← t ;
11 if p%c=0 (collage) then
12 Encode image post-collage: s← E(im⊙m+D(s)⊙ (1−m));
13 end
14 end
15 end
16 s0← s ;
17 for i in [0, optim_steps]: do
18 L = Lp

(
(D(s)− im)⊙m

)
+Lp

(
(D(s)−D(s0))⊙ (1−m)

)
;

19 s← s+ ε ∗Adam(∇sL,s) ;
20 end
21 Image← Decoder(s);

Result: Image
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Crossovers. We generate 2500 crossovers from random pairs of images, on both FFHQ
and LSUN Bedroom.

Editing/Compositing. We create small datasets of 100 images from the test set of EdiBERT
for FFHQ scribble-based editing, FFHQ compositing and LSUN Bedroom compositing. A user
study on FFHQ compositing is presented in main paper with statistically significant number
of votes. We also provide some metrics in D.3. Because of the small size of the dataset, we
only report masked L1 and density. For density, the support of the real distribution is estimated
with 2500 real points, and density is averaged over the individual density of the 100 generated
images.

Table D.1 Image inpainting.

Masked L1 ↓ FID ↓ Density ↑ Coverage ↑
FFHQ: rect. masks
I2SG++ (Abdal et al., 2020) 0.0767 23.6 0.99 0.88
I2SG†++ (Abdal et al., 2020) 0.0763 22.1 1.25 0.91
LC (Chai et al., 2021) 0.1027 27.9 1.12 0.84
EdiBERT (⋆) 0.0290 13.8 1.16 0.98
Co-mod. GAN (Zhao et al., 2020) 0.0128 4.7 1.24 0.99

FFHQ: free-form masks
I2SG++ (Abdal et al., 2020) 0.0440 22.3 0.92 0.89
I2SG†++ (Abdal et al., 2020) 0.0435 21.1 1.17 0.91
LC (Chai et al., 2021) 0.0620 27.9 1.22 0.85
EdiBERT (⋆) 0.0201 19.4 1.14 0.96
Com-GAN (Zhao et al., 2020) 0.0086 10.3 1.42 1.00

LSUN Bedroom: rect. masks
I2SG (Abdal et al., 2019) 0.1125 50.2 0.04 0.04
MaskGIT (Chang et al., 2022) 0.0209 11.4 1.09 0.96
EdiBERT (⋆) 0.0288 11.3 0.89 0.97
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Table D.2 Image crossover.

Masked L1 ↓ FID ↓ Density ↑ Coverage ↑
FFHQ
I2SG++ (Abdal et al., 2020) 0.1141 29.4 0.97 0.78
I2SG†++ (Abdal et al., 2020) 0.1133 26.9 1.35 0.82
ID-GAN (Zhu et al., 2020) 0.0631 23.2 0.88 0.83
LC (Chai et al., 2021) 0.1491 31.9 1.17 0.77
EdiBERT (⋆) 0.0364 19.7 1.05 0.88

LSUN Bedroom
I2SG (Abdal et al., 2019) 0.1123 45.7 0.12 0.20
ID-GAN (Zhu et al., 2020) 0.0682 21.4 0.35 0.57
EdiBERT (⋆) 0.0369 12.4 0.64 0.84

Table D.3 Image editing.

Masked L1 ↓ Density ↑
FFHQ scribble-edits
I2SG++ (Abdal et al., 2020) 0.7811 0.91
I2SG†++ (Abdal et al., 2020) 0.0777 1.11
ID-GAN (Zhu et al., 2020) 0.0461 0.79
LC (Chai et al., 2021) 0.1016 1.14
EdiBERT (⋆) 0.0281 0.96

FFHQ compositing
I2SG++ (Abdal et al., 2020) 0.0851 0.77
I2SG†++ (Abdal et al., 2020) 0.0866 1.07
ID-GAN (Zhu et al., 2020) 0.0570 0.75
LC (Chai et al., 2021) 0.1116 1.00
EdiBERT (⋆) 0.0307 0.94

LSUN Bedroom compositing
I2SG (Abdal et al., 2019) 0.1285 0.25
ID-GAN (Zhu et al., 2020) 0.0484 1.45
EdiBERT (⋆) 0.0247 1.49
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D.3 Baselines

We use the implementation and pre-trained models from the following repositories.
ID-GAN (Zhu et al., 2020): https://github.com/genforce/idinvert_pytorch, which has pre-

trained models on FFHQ 256x256 and LSUN Bedroom 256x256.
I2SG++ and I2SG†++(Karras et al., 2020b,a; Abdal et al., 2020):

https://github.com/NVlabs/stylegan2-ada-pytorch. We tested projections with the following
pre-trained models on FFHQ: StyleGAN2 (Karras et al., 2020b) at resolution 256x256, and
StyleGAN2-Ada (Karras et al., 2020a) at resolution FFHQ 1024x1024. For evaluation, we
downsample the 1024x1024 generated images to 256x256.

LC (Chai et al., 2021): https://github.com/chail/latent-composition. We use the pre-trained
encoder and StyleGAN2 generator, for FFHQ at resolution 1024x1024. For evaluation, we
downsample the 1024x1024 generated images to 256x256.

Com-GAN (Zhao et al., 2020): https://github.com/zsyzzsoft/co-mod-gan. We use the pre-
trained network for image inpainting on FFHQ at resolution 512x512. We downsample the
generated images to 256x256 for evaluation.

MaskGIT (Chang et al., 2022): https://github.com/google-research/maskgit. We use the
tokenizer and transformer trained for conditional image generation and editing on ImageNet
256x256. To perform comparisons with EdiBERT on LSUN Bedroom Image Inpainting, we
condition the transformer to the ImageNet class ‘843: studio couch, day bed’.

D.4 Qualitative results on image compositon

We present more examples of image compositions, with image compositing and scribble-based
editing on FFHQ and LSUN Bedroom in Figure 4.9, D.1, and D.2.

Preservation of non-masked parts. Thanks to its VQGAN auto-encoder, EdiBERT
generally better conserves areas outside the mask than GANs inversion methods. This is
particularly visible for images with complex backgrounds on FFHQ (Figure D.1, 5th and last
rows).

Insertion of edited parts. Since EdiBERT is a probabilistic model and the tokens inside
the modified area are resampled, the inserted object can be modified and mapped to a more
likely object given the context. It thus generates more realistic images, but can alter the fidelity
to the inserted object. For example, on row 1 of Figure D.2, the green becomes lighter and
the perspective of the inserted window is improved. Although it can be a downside for image
compositing, note that this property is interesting for scribble-based editing, where the scribbles
have to be largely transformed to get a realistic image. Contrarily, GANs inversion methods

https://github.com/genforce/idinvert_pytorch
https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/chail/latent-composition
https://github.com/zsyzzsoft/co-mod-gan
https://github.com/google-research/maskgit
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tend to conserve the inserted object too much, even if it results in a highly unrealistic generated
image. We can observe this phenomenon on last row of Figure D.1.
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Source Composite EdiBERT ID-GAN I2SG†++
Fig. D.1 Image compositing and scribble-based editing on FFHQ. ID-GAN refers to, while
I2SG†++ refers to Abdal et al. (2020) with the backbone from Karras et al. (2020a).
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Source Composite EdiBERT ID-GAN I2SG
Fig. D.2 Image compositing on LSUN Bedroom. ID-GAN refers to Zhu et al. (2020), and I2SG
to Abdal et al. (2019).
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Source Composite EdiBERT ID-GAN I2SG
Fig. D.3 Image compositing on LSUN Bedroom. ID-GAN refers to Zhu et al. (2020), I2SG to
Abdal et al. (2019).
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Masked EdiBERT MaskGIT (Chang et al.,
2022)

Fig. D.4 Comparisons of image inpainting on LSUN Bedroom between EdiBERT and MaskGIT.
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D.5 Survey on FFHQ image compositing

The survey was presented as a Google Form with 40 questions. For each question, the user
was shown 6 images: Source, Composite, EdiBERT, ID-GAN (Zhu et al., 2020), I2SG†++
(Abdal et al., 2019) based on pre-trained network from Karras et al. (2020a), LC (Chai et al.,
2021). The different generated images were referred as Algorithm 1, ..., Algorithm 4. The user
was asked to vote for its preferred generated image, by taking into account realism and fidelity
criterions. The user had no time limit for the poll. 30 users answered our poll. We provide the
detailed answers for each image in Table D.4.
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Table D.4 Detailed results of the user study. Each line corresponds to an image, with the
associated number of votes per method.

EdiBERT ID-GAN LC I2SG†++
(Zhu et al., 2020) (Chai et al., 2021) (Abdal et al., 2019)

17 5 7 1
15 1 8 6
22 4 1 3
19 4 5 2
22 0 4 4
6 7 8 9

21 1 5 3
23 1 4 2
20 5 5 0
11 13 6 0
27 0 3 0
12 3 3 12
16 4 6 4
25 2 1 2
18 8 1 3
8 13 9 0

26 0 4 0
7 0 21 2

14 9 1 6
27 0 1 2
11 19 0 0
14 9 4 3
16 14 0 0
21 1 3 5
8 2 18 2

19 3 3 5
22 7 0 1
23 2 1 4
18 0 2 10
27 2 1 0
22 2 1 5
24 0 5 1
3 25 2 0

28 0 2 0
24 0 6 0
27 0 3 0
27 1 2 0
22 7 1 0
9 15 6 0

14 0 14 2

Total 735: 61.25% 189: 15.75% 177: 14.75% 99: 0.0825%
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E.1 Implementation details

Convolutional geometric matcher. To extract the feature maps, we apply five times one
standard convolution layer followed by a 2-strided convolution layer which downsamples the
maps. The depth of the feature maps at each scale is (16,32,64,128,256). The correlation map
is then computed and feeds a regression network composed of two 2-strided convolution layers,
two standard convolution layers and one final fully connected layer predicting a vector θ ∈R50.
We use batch normalization Ioffe and Szegedy (2015) and relu activation. The parameters of
the two feature maps extractors are not shared.

Siamese U-net generator. We use the same encoder architecture as in the convolutional
geometric matcher, but we store the feature maps at each scale. The decoder has an architecture
symmetric to the encoder. There are five times one standard convolution layer followed by a
2-strided deconvolution layer which upsamples the feature maps. After a deconvolution, the
feature maps are concatenated with the feature maps passed through the skip connections. In
the generator, we use instance normalization, which shows better results for image and texture
generation Ulyanov et al. (2017), with relu activation.

Discriminator. We adopt the fully convolutional discriminator from Pix2Pix Isola et al.
(2017), but with five downsampling layers instead of three in the original version. Each of it
is composed of: 2-strided convolution, batch normalization, leaky relu, 1-strided convolution,
batch normalization, leaky relu.

Adversarial loss. We use the relativistic formulation of the adversarial loss Jolicoeur-
Martineau (2019). In this formulation, the discriminator is trained to predict that real images
are more real than synthesized ones, rather than trained to predict that real images are real and
synthesized images are synthesized. We also use gradient penalty on the discriminator.

Optimization. We use the Adam optimizer Kingma and Ba (2014) with β1 = 0.5, β2 =

0.999, a learning rate of 10e−3 and a batch size of 8. Also, we use λp = λL1 = λw = λadv = 1.
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Hardware. We use a NVIDIA Tesla V100 with 16GB of RAM. The training takes around
2 days for T-WUTON, and around 3 days for S-WUTON. For inference, S-WUTON processes
∼77 frames per second.

E.2 More visual examples on the importance of distillation

In Figure E.1, we show more visual results proving the soundness of our teacher-student
approach. Visually, our student model solves two kinds of problems: it is robust to human
parser errors; it preserves important information that is masked to the standard virtual try-ons
(hands, skin, handbags).
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Reference Target Human CP-VTON T-WUTON S-WUTON
person cloth parsing (ours) (ours)

Fig. E.1 Visual results proving the importance of the student-teacher approach. It is robust to
parsing errors and preserves person’s attributes such as arms, hands, and handbags.
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E.3 Ablation studies on T-WUTON

Reference Target CP-VTON T-WUTON T-WUTON w. T-WUTON T-WUTON not
person cloth (ours) paired Ladv w/o Ladv end-to-end

Fig. E.2 Impact of loss functions on T-WUTON: The unpaired adversarial loss function
improves the performance of T-WUTON in the case of significant shape changes from the
source cloth to the target cloth. Specifically, when going from short sleeves to long sleeves, it
tends to gum the shape of the short sleeves. With the paired adversarial loss, we do not observe
this phenomenon since the case never happens during training. Without the adversarial loss,
images are blurry and less sharp. Finally, the end-to-end training is key to realistic geometric
deformations (see last column).

To investigate the effectiveness of T-WUTON’s components, we perform several ablation
studies. In Figure E.2, we show visual comparisons of different variants of our approach:
S-WUTON and T-WUTON; T-WUTON with an adversarial loss on paired data (i.e. the
adversarial loss is computed with the same synthesized image as the L1 and VGG losses);
T-WUTON without the adversarial loss; T-WUTON without back-propagating the loss of the
synthesized images (L1,Lperceptual,Ladv) to the geometric matcher.

The results in Figure E.2 as well as FID and LPIPS metrics in Table E.1 show the importance
of our end-to-end learning of geometric deformations. When the geometric matcher only
benefits from Lwarp, it only learns to align c with the masked area in p⋆. However, it does
not preserve the inner structure of the cloth. Back-propagating the loss computed on the
synthesized images p̃ alleviates this issue. The quantitative results of IS and SSIM scores on



E.3 Ablation studies on T-WUTON 211

Table E.1 Ablation studies on T-WUTON. Quantitative metrics on paired setting (LPIPS and
SSIM) and on unpaired setting (IS and FID). For LPIPS and FID, the lower is the better. For
SSIM and IS, the higher is the better. ± reports std. dev.

Method T-WUTON W/o Ladv Paired Ladv Not end-to-end

Paired Ladv ✓
Unpaired Ladv ✓ ✓
End-to-end ✓ ✓ ✓
LPIPS 0.101 ± 0.047 0.107 ± 0.049 0.099 ± 0.046 0.112 ± 0.053
SSIM 0.799 ± 0.089 0.799 ± 0.088 0.800 ± 0.089 0.799 ± 0.089
IS 3.114 ± 0.118 2.729 ± 0.091 3.004 ± 0.091 3.102 ± 0.077
FID 9.877 13.020 8.298 11.125

the not end-to-end variant show that these metrics are less suited to the virtual try-on task than
LPIPS.

The adversarial loss generates sharper images and improves the contrast. This is confirmed
by the LPIPS, IS and FID metrics in Table E.1 and with visual results in Figure E.2. With the
unpaired adversarial setting, the system better handles large variations between the shape of
the cloth worn by the person and the shape of the new cloth. On metrics in the paired setting
(LPIPS and SSIM), the best model is the variant using adversarial loss on paired data, which is
logical. However, visual investigation suggests that the unpaired adversarial loss is better in the
real use case of our work (see Figure E.2).
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