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Abstract

Following the last IPCC report, the urge to act against climate change has become more pregnant
than ever. In order to reduce the impact of human activities on climate, cities stand at a
crossroads. With 55% of the world population living in urban areas [1], cities are responsible
for a majority of the world energy consumption but represent also an important political power
to shift toward an ecological transition. Thus, cities such as London [2] or New-York [3] have
set ambitious environmental goals, both aiming to be carbon-neutral by 2050. To achieve such
targets, reducing energy consumption in buildings is an important leverage. For instance, in
France, buildings accounted for 45% of the national final energy consumption in 2015 [4].

In order to help decision makers choose the best energy saving measures for buildings at the
urban scale, the scientific community developed decision-aiding tools among which lie the urban
building energy models (UBEM) [5]. An UBEM is able to compute energy consumption for each
building of a district or a city and thus enables decision-makers to have a clear understanding of
the impacts of different energy saving measures such as buildings refurbishment or flexibility.

However, to ensure that UBEM provide a real aid in the decision-making process, their accuracy
should be verified through a thorough validation process. Even though great efforts have been
made to elaborate validation procedures for building energy models [6, 7], further work is required
to take into account UBEM particularities (models and enrichment processes) into the validation
process. UBEM should also be assessed in their general conditions of use, and not only on
synthetic districts as proposed by Saelens et al. [8], to verify how they perform in real life
decision-making process. Examples of comparison between measurements and UBEM results
can be found in the scientific literature [9, 10], but such examples often lack reproducibility,
the validation dataset being rarely available. Indicators used to assess UBEM performances
can also vary greatly from a study to another, thus preventing inter-model comparisons. A
standardization of the UBEM assessment process would then help compare different UBEMs
and surely lead to improvements in urban building energy modelling fields.

The main research question tackled in this thesis can be described as follows: How to verify
the adequacy of UBEM to the decision process they are used for?

This main research question leads to several other questions that will be discussed in this thesis
dissertation:

• What are the decision processes UBEM are involved in and which UBEM outputs should
be assessed in each use case ?

• How to develop a comprehensive and generic validation framework for UBEM ?

A validation framework composed of an assessment stage and a diagnostic stage has been de-
veloped and is presented in this dissertation. An application of this assessment framework is
proposed on use cases for which open data can be used to compose a validation dataset. The
assessment stage and the diagnostic stage are then described in depth for this set of use cases
along with the statistical tools designed to assess and analyse the UBEM performance.
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The proposed assessment framework has been designed to be applicable to a large range of UBEM
and to a large range of use cases, but future works should verify its applicability to a broader
range.
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Résumé

Suite au dernier rapport du GIEC, le besoin d’agir contre le changement climatique est devenu
plus prégnant que jamais. Afin de réduire l’impact des activités humaines sur le climat, les
villes sont des acteurs incontournables. Avec 55% de la population mondiale vivant dans des
zones urbaines [1], les villes sont responsables de la majorité des consommations énergétiques
mondiales mais représentent également un pouvoir politique important pour s’orienter vers une
transition écologique. Ainsi, des villes comme Londres [2] ou New-York [3] ont fixé des objectifs
environnementaux ambitieux, visant toutes deux à être neutres en carbone d’ici 2050. Pour
atteindre ces objectifs, la réduction de la consommation d’énergie dans les bâtiments est un
levier important. Par exemple, en France, les bâtiments représentaient 45% des consommations
nationales d’énergie finale en 2015 [4].

Afin d’aider les décideurs à choisir les meilleures mesures d’économie d’énergie pour les bâtiments
à l’échelle urbaine, la communauté scientifique a développé des outils d’aide à la décision parmi
lesquels figurent les outils de simulation énergétique urbaine (Urban Building Energy Model,
UBEM) [5]. Un UBEM est capable de calculer les consommations d’énergie pour chaque bâtiment
d’un quartier ou d’une ville et permet ainsi aux décideurs d’avoir une compréhension claire des
impacts de différentes mesures d’économie d’énergie telles que la rénovation de certains bâtiments
ou la mise en place d’actions d’effacement des consommations.

Cependant, pour s’assurer que les UBEM fournissent une aide réelle au processus de prise de
décision, leur exactitude doit être vérifiée par un processus de validation approfondi. Même si de
nombreux travaux de recherche ont permis d’élaborer des procédures de validation pour les mod-
èles de simulation énergétique des bâtiments [6, 7], des travaux supplémentaires sont nécessaires
pour prendre en compte les particularités des UBEM (modèles et processus d’enrichissement)
dans le processus de validation. Les UBEM doivent également être évalués dans leurs conditions
générales d’utilisation, et pas seulement sur des quartiers synthétiques, comme le proposent Sae-
lens et al. [8], ceci afin de vérifier leur performance dans le processus de décision réel. Des
exemples de comparaison entre les mesures et les résultats d’UBEM peuvent être trouvés dans
la littérature scientifique [9, 10], mais ces exemples manquent souvent de reproductibilité, le jeu
de données de validation étant rarement disponible. Les indicateurs utilisés pour évaluer les per-
formances des UBEM peuvent également varier fortement d’une étude à l’autre, ce qui empêche
les comparaisons inter-modèles. Une standardisation du processus de validation des UBEMs
aiderait alors à comparer les différents UBEMs et conduirait sûrement à des améliorations dans
les domaines de la modélisation énergétique des bâtiments à l’échelle urbaine.

La principale question de recherche abordée dans cette thèse peut donc être décrite comme suit
: Comment vérifier l’adéquation des UBEM au processus de décision pour lequel ils
sont utilisés ?

Cette question de recherche principale mène à plusieurs autres questions qui seront discutées
dans ce manuscrit :

• Quels sont les processus de décision dans lesquels les outils de simulation énergétique ur-
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baine sont impliqués et quelle sortie de ces outils doit être évaluée dans chaque cas d’usage
?

• Comment développer un cadre de validation complet et générique pour les outils de simu-
lation énergétique urbaine ?

Un processus de validation composé d’une étape d’évaluation et d’une étape de diagnostic a
été développé et est présenté dans cette thèse. Une application de ce processus de validation
est proposée sur des cas d’usages pour lesquels des données accessibles librement peuvent être
utilisées pour composer un jeu de données de validation. L’étape d’évaluation et l’étape de
diagnostic sont ensuite décrites en profondeur pour cet ensemble de cas d’usages de même que
les outils statistiques sélectionnés pour évaluer et analyser les performances des UBEM.

Le cadre d’évaluation proposé a été pensé pour être applicable à un large éventail d’UBEM et à
un large éventail de cas d’usages, mais des travaux futurs devraient vérifier son applicabilité à
un éventail plus large.
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CHAPTER 1. URBAN BUILDING ENERGY MODELS AS DECISION-SUPPORT
TOOLS: OVERVIEW AND THESIS APPROACH

1.1 Urban Building Energy Models: specificities and challenges

In the sixth IPCC assessment report [14], the decade to come has been identified as critical in
the fight against climate change. A sharp decrease in global energy consumption and greenhouse
gas emissions is required to prevent more environmental crises.

Cities are responsible for 75% of global primary energy consumption [15] and this share is likely
to increase with the raise of the world population living in urban areas [1]. Cities are then key
players of the ecological transition due to their high energy consumption, but also due to their
high energy-saving and adaptability potentials. For instance, it would be possible in many cities
to develop district heating and cooling networks using renewable energy to cover the heating
and cooling needs of offices and dwellings. District cooling networks would namely offer a viable
solution to the urban heat island effect that many cities experience during heat waves and would
help protect the elderly and fragile people from intense heat.

Another reason for cities being a cornerstone of the ecological transition is their political power.
Cities are able to implement environmentally friendly policies in a number of different fields such
as waste management, biodiversity preservation, water management or energy consumption in
buildings. London [2], New-York [3] and Paris [16] have then set ambitious plans to drastically
reduce their energy and greenhouse gas emissions by 2050. In order to achieve such goals, reducing
energy consumption in buildings seems to be a keystone. In France, for example, tertiary and
residential sectors represented 45% of the national final energy consumption in 2015 [4].

To help cities reduce energy consumption in buildings, decision-aiding tools have been developed
by the scientific community among which are the Urban Building Energy Models (UBEM).
Urban Building Energy Models (UBEM) have been under development for more than fifteen
years in order to address the question of energy transition in buildings at large spatial scale [5].
They are decision-support tools that model the energy behaviour of the buildings of
a district in order to help decision makers arbitrate between different energy scenarios. A large
diversity of models is used to compute the energy consumption of buildings in UBEM tools. It
ranges from very detailed thermal models such as Energy Plus [17] to data-driven models [18].
The type of decision-processes that UBEM are intended to assist are also very diverse such as
assessing the energy savings due to buildings retrofitting or evaluating the indoor comfort during
a heat wave.

Independently of the decision-process or the physical model used, the data collection to
parameterize a UBEM is often a challenging issue. For example, the heated volume of
each building is a typical input of UBEM. Although having this piece of information for a single
building may seem trivial, it is a much more complex question to address when it comes to
collect the information for hundreds of buildings at once. Most of UBEM inputs share this same
issue. For instance, it is extremely rare to know precisely the insulation level, the window type
or the roof slope of each building in a district. In order to overcome this lack of information,
researchers have developed strategies to fill in missing data with technical surveys and sets of
hypotheses. This practice is called data enrichment process. This data enrichment process,
while necessary, may impair UBEM results and jeopardize their usefulness. Indeed, this process
brings an error that is not yet well quantified.

Although the validation of building energy models taken individually has already been discussed
extensively in several projects such as the PASSYS project [6] or the BESTEST [7], the UBEM
have not yet benefitted from a similar validation framework. This means that there is no common
framework to ensure that a UBEM provides a real aid to the decision-making process. The aim
of this thesis is then to develop a validation framework dedicated to UBEM in order to verify
their reliability. This validation methodology needs to take into account the enrichment process
and assess UBEM performances on real buildings to verify the fitness for use of these tools. The
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main research question addressed in this manuscript is then: How to verify the adequacy of
UBEM to the decision process they are used for?

To tackle this research question, it is first necessary to define clearly the perimeter of UBEM by
specifying their features and their modelling purpose. To this end, a comprehensive overview of
UBEM is provided below, as well as a review of the decision-making processes in which UBEM
are involved.

1.2 Urban Building Energy Models: main features and simula-
tion processes

1.2.1 Perimeter of a UBEM tool

Urban Building Energy Models can be defined as decision-support tools that are capable to
model energy consumption at the building scale for several buildings at once (the number of
buildings being simulated can range from ten buildings to the entire national building stock).
The simulation process found in UBEM is summarized Figure 1.1. It is composed of three main
steps:

1. Collection of available data: the available data describing each building to model is col-
lected.

2. Enrichment process: the missing input data is filled thanks to statistical surveys and sets
of hypotheses.

3. Physical modelling: the energy behaviour of each building is simulated thanks to a physical
model.

Available data

UBEM tool

Enrichment 
process

Physical model

Figure 1.1: UBEM perimeter

Since the data enrichment process is inherent to UBEM and given that it could deeply alter the
results obtained by a tool, a UBEM is defined in this manuscript as a set of a given physical
model coupled with a specific enrichment process, as illustrated Figure 1.1.

Each step of the simulation process is now discussed more in depth in the following sections.

1.2.2 Physical models in UBEM

To simulate the energy behaviour of each building, the core of any UBEM tool is composed of
a physical model. This physical model is often an assemblage of several sub-models modelling
different aspects of the building’s energy behaviour. These sub-models can be sorted into four
categories: occupancy, systems, weather and envelop. The way to model the phenomena related
to each of these categories can be very different from one UBEM to another. A review of the
main approaches found in each category is then provided hereafter.

3



CHAPTER 1. URBAN BUILDING ENERGY MODELS AS DECISION-SUPPORT
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1.2.2.1 Occupancy modelling

The modelling of occupants in UBEM aims to take into account diverse phenomena such as
blind and window opening, a change in the heating set point or the use of electric appliances. A
comprehensive review of occupancy models found in UBEM has been provided by Happle et al.
[19]. The authors break down the type of occupancy models into three categories:

• Deterministic and space-based models;

• Stochastic and space-based models;

• Stochastic and person-based models.

Person-based approaches allocate an occupancy scenario to each occupant of the building [20]
while space-based approaches allocate an occupancy scenario to a whole area of the building
based on its usage. Person-based approaches are interesting to couple UBEM with other tools
such as agent-based transport models. Such coupling between a UBEM tool and a transport
model was realised by Robinson et al. [21] using the UBEM tool CitySIM. Stochastic approaches
are generally favoured over deterministic approaches when the diversity’s representation is of
great importance. For instance, when it comes to designing a district heating network, a good
representation of the diversity in the simulated load profile is a cornerstone and deterministic
approaches may not suffice.

1.2.2.2 Energy systems modelling

At the district scale, not only heating, ventilation and air conditioning (HVAC) systems inside
buildings need to be modelled, but also district networks such as district heating networks or
power grids, as described by Allegrini et al. [22]. Allegrini et al. also highlight the key role
of cities for renewable energies deployment. UBEM should then be able to identify renewable
energies potentials and pinpoint the match of these resources with the local demand. Such models
have been implemented by Fonseca et al. [23] in a UBEM, City Energy Analyst (CEA).

1.2.2.3 Weather and climate modelling

Frayssinet et al. [24] describe the different types of urban climate models that may be used with
UBEM. At the scale of the city, urban canopy models take into account a simple geometry of
the buildings and calculate the air temperature and wind speed within the city. A more detailed
approach is proposed using computational fluid dynamics, but this approach is often considered
too expensive in computing resources. The simplest approach but also the most widespread
is to use measured weather data from a weather station near the city and to interpolate them.
Frayssinet et al. advocate for the use of more detailed models. This seems particularly reasonable
if UBEM are to be used to study the urban heat island effect.

1.2.2.4 Thermal modelling

A common starting point for UBEM development has often been to use building energy model
(BEM) to simulate more than one building and then add complementary models. However, BEM
are detailed models and as such, are computationally expensive. Other approaches have then
been applied to lower the computation time of models such as resistance-capacitance models or
data-driven models.
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Detailed models are a natural choice to build UBEM upon BEM. This strategy was implemented
by Reinhart et al. [25] in UMI, by Hong et al. [26] in CityBES or by Polly et al. [27] in
UrbanOpt. These three UBEM rely on EnergyPlus [17], a BEM used worldwide and that has
a massive users community. Existing BEM have already benefitted from users’ feedbacks and,
for most of them, a thorough validation process has been carried out. However, BEM require a
substantial amount of inputs and although it is possible to parallelize the computation process
(each building may be calculated using a different processor), the computation cost remains high
as stated by Hong et al. [28].

To tackle these two issues (computation cost and high number of inputs), resistance-capacitance
models have been developed for UBEM. This approach was chosen by Garreau et al. [11] in
Dimosim, by Berthou et al. [29] in Smart-E, by Fonseca et al. [23] in CEA and by Robinson et
al. [21] in CitySim. These four UBEM tools use a resistance-capacitance model parameterized
based on wall layers’ descriptions. These models present the advantage of lowering computation
cost and allow the computation of interactions among buildings like solar shading. However,
if the number of layers used to describe the thermal boundaries of buildings is too small, such
models can be inaccurate when looking at short time-scale processes.

A third approach quite different can also be found in the scientific literature: using black box
models. In this case, the data-driven model generally does not require models from the other
categories (weather, system and occupancy) nor an enrichment process. For this reason, this
type of models is not considered in the rest of this manuscript even though the validation
framework should be applicable to this type of UBEM as well. Future work should verify that
the proposed validation framework is suitable to such models. An example of this approach is
given by Kontokosta and Tull [18]: a predictive model of buildings energy consumption in New-
York is implemented based on measured annual energy consumption. Three different algorithms
are used and the performances of the algorithms are compared. One of the drawbacks of such
approach is the inability of the model to be used outside of its training scope. In Kontokosta and
Tull [18], the model is trained on energy consumption of buildings larger than 50,000 square feet.
It then struggles to accurately predict energy consumption for smaller buildings. Furthermore,
such models require measured energy consumption data at fine spatial and time scales and such
data are often difficult to obtain due to privacy.

Putting aside the data-driven models, the common inputs for the physical model in a UBEM
tool are detailed in Table 1.1.

1.2.3 Data available at the building scale

Independently of the chosen models, finding all this information to parameterize the physical
model is challenging. When parameterizing an UBEM tool, information is required for every
building that is to be simulated, such as the heated volume, the walls layer description or the
number of occupants. Since this information is rarely fully available, more affordable data are
collected and required information is derived from this partial dataset thanks to the enrichment
process. The data sources often found in an UBEM case study are presented in the first columns
of Table 1.2 along with the information they provide, and the required parameters usually derived
from it. They are generally used by UBEM modellers, and provide information at the building
scale for almost every building that one aims to simulate.

The information provided at building scale provided by each source is detailed in the second
column. It appears quite often that the provided information is not an input directly required
by the physical model of the UBEM, but it is often used in the enrichment process to fill in
missing parameters. For instance, the tax assessment records provide the construction year of
each building. The construction year is not an input required by the physical model of the
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Wall U-value
Roof U-value
Floor U-value
Windows U-value
Thermal inertia

Thermal properties

Windows-to-wall ratio

Systems

Heating system
Cooling system
Domestic Hot Water (DHW) system
Heating and cooling systems efficiencies
DHW system efficiency
Ventilation system
Heating set point
Cooling set point
Heated volume
Cooled volume
DHW draw off
Air-change rate
Number of occupants

Occupancy

Number, type and energy class of appliances

Outdoor conditions

Outdoor temperature
Humidity
Wind speed
Solar radiation
Solar shading

Table 1.1: Common inputs for the physical model of an UBEM tool.

UBEM, but thanks to the different thermal regulations that have evolved over time, it enables
the modeller to choose a U-value for the walls of the buildings that reflects the construction type
of each building.

Some pieces of information in the table can be retrieved from different sources, such as the wall
U-value or the windows-to-wall ratio which are provided by the Energy Performance Certificates
in some cases and which are derived from the construction year in other cases. This is due to
the fact that Energy Performance Certificates are not available for every building (in France
for instance only ten million out of 36 million dwellings display an EPC [35]). When this data
source is unavailable, these inputs are then retrieved from another source during the enrichment
process.

In that respect, the enrichment process is somehow the first modelling step of any UBEM as it
makes the transition between the available information and the required parameters.
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Data source Available
information

Parameters required
by the physical

model

Tax assessment record
[30]

Construction year
and/or refurbishment
year

Wall U-value
Roof U-value
Floor U-value

Window U-value
Windows-to-wall ratio

Heating system
DHW system

Total floor area Heated volume
Building location Building location
Building volume Heated volume
Solar shading Solar shading
Adjacent walls Share of adiabatic walls

Geographic Information
System database
[31–33] Building location Building location

Energy Performance
Certificates (EPC) [34]

Wall U-value Wall U-value
Roof U-value Roof U-value
Floor U-value Floor U-value

Window U-value Window U-value
Heating system Heating system
DHW system DHW system

Windows-to-wall ratio Windows-to-wall ratio
Outdoor temperature Outdoor temperature

Humidity Humidity
Solar radiation Solar radiation

Closest weather station
[30]

Wind speed Wind speed

Incomplete sources of information

Number of occupants
Number, type and

performance class of
appliances

Heating and cooling
systems efficiencies

DHW system efficiency
Cooling system

Heating/cooling set
point

Air-change rate

Table 1.2: Data sources available for UBEM parameterisation.
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1.2.4 Enrichment processes in UBEM

The enrichment process consists of filling in the missing input parameters required by the physical
model based on available information. Various approaches stand out from the UBEM review.

A first common step is the creation of groups of buildings. These groups of buildings are
often refered to as archetypes in the scientific literature. The main strategies to do so are
reviewed by Goy et al. [36] and can be grouped in two main categories:

• Supervised approaches;

• Unsupervised approaches.

The supervised approaches generally create categories based on the features’ values of the build-
ings such as the construction year or the building’s usage. Examples of this approach can be
found in Rosser et al. [37], in Cerezo-Davila et al. [38] and in Wang et al. [39].

The unsupervised approaches are based on machine-learning techniques that automatically create
clusters of buildings with similar properties. Such approach was favoured by Pasichnyi et al. [40],
Garrison and New [41], De Jaeger et al. [42] and Ledesma et al. [43].

Once the segmentation of the buildings to simulate has been done, the second step of the enrich-
ment process consists in attributing the thermal properties, occupancy schedules and
all the other missing inputs to each category.

This parameters allocation can be done using different levels of complexity as depicted Figure
1.2.

x n1 x n2 x n3

Figure 1.2: Existing approaches for the parameters’ allocation step during the enrichment
process

The simplest approach is to compute the energy consumption for a given building and then to
multiply it by the number of buildings in the category (or by the total floor area of the buildings
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in the category). An example of such simple approach is provided by Nagpal and Reinhart [44]
but to compare it to a more complex UBEM.

The second approach is to take into account the geometry of each building but to provide each
building of the same category with the exact same parameters for thermal properties, schedule
occupancy and so on. With this approach, there is almost no diversity in the energy consumption
within a same class of buildings. An example of this approach can be found in Cerezo et al. [38].

The third approach consists in considering each unknown parameter as a random variable. There-
fore, a probability distribution function is allocated to each class of building for each parameter.
The missing parameters for each building of the class are then sampled from these probability
distributions. De Jaeger [45] offers a good example of this practice. Such approach can also be
found in Schetelat et al. [46].

Lastly, the fourth approach shares a common basis with the previous one, modelling each un-
known variable with a probability distribution functions, but takes into account measurements
available for each building to update its probability distributions. This approach was well intro-
duced by Cerezo et al. [38] and by Sokol et al. [9], and can be found more recently in Gholami
et al. [47].

All of these approaches can be found in UBEM tools and can influence the results obtained
with the physical model. For this reason, this step of the simulation should be assessed on the
same basis as the physical model to verify UBEM’s adequacy to any decision-making process.

1.3 Urban Building Energy Models: modelling purposes and decision-
making processes

As it was highlighted above, UBEM are decision support tools. As such, they intervene in
decision-making processes. Depending on the decision at stake, different UBEM outputs will be
used to inform the decision and these outputs will have a various influence on the final decision.
The validation framework dedicated to UBEM should then help to verify that a tool is well-suited
to the decision-making process it is expected to support by validating the output at stake in the
decision-making process and by verifying that it achieves a level of confidence high enough with
regard to its impact on the decision process.

A review of the main UBEM use cases found in the scientific literature is proposed Table 1.3.
Each use case corresponds to a decision process, and the output at stake in each case has been
identified along with its impact on the final decision. When possible, the accuracy expected for
the UBEM output used in the decision process was assessed as well.
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Use cases KPI
Spatial
resolu-
tion

Range of
simulation
time step

Decision-
making

indicator

Required
accu-
racy

Impact of the
KPI on the

final decision

Stakeholders
interested in
the use case

Tools
/

Papers

Development
of a district
heating or
cooling
network

Identification
of potentials
for a district

heating
network

Heat density
(yearly heating
demand divided
by the area of

study)

Building
scale 10 min - 1 hour Same as

KPI

20
kWh/m2/year

[48]
++

City managers,
urban planners,
heating network

managers

[31, 33]

Sizing of a
district
heating
network

Fluid velocity,
pressure drop,
load profiles

District
and

build-
ing

scale

10min Investment
cost

High
[49] +++

Urban planners,
heating network

managers
[19]

Development
of renewable
energies at
the district
scale

Identification
of potential
renewable
sources

(waste heat,
solar, etc.)

Yearly energy
potential, share

of renewable
energies

District
and

build-
ing

scale

10 min - 1 hour Same as
KPI ++

Energy utilities,
city managers,
urban planners

[21, 23,
28, 30,

44]

Sizing of the
power grid
to integrate
renewable
sources

Load profiles,
voltage and
electrical
intensity

District
and

build-
ing

scale

10 min High +++ Grid operators,
energy utilities
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Use cases KPI
Spatial
resolu-
tion

Range of
simulation
time step

Decision-
making

indicator

Required
accu-
racy

Impact of the
KPI on the

final decision

Stakeholders
interested in
the use case

Tools
/

Papers

Urban energy plan-
ning

Yearly energy
demand

(including
cooling,

heating, electric
appliances and

lighting,
domestic hot

water,
industrial
processes)

District
scale 1 hour

Levelized
cost of

energy and
total

annual
costs;
CO2-

equivalent
emissions

and
percentage

of
renewables

used

Low +
Energy utilities,
city managers,
urban planners

[21, 23,
28]

Future energy use
(example: electric
vehicle)

Load profiles Building
scale 1 hour Same as

KPI Medium ++ Grid operators,
energy utilities [28, 31]

Energy regulation
and certification
programs

Yearly energy
demand

(primary or
final)

District
scale 1 hour - 1 day

Set of
indicators
defined in
the certifi-

cation
process

Low + City managers

Performance mea-
surement and veri-
fication (IPMVP)

Yearly energy
consumption

and load
profiles

Building
scale 1 hour Same as

KPI High ++

Heating
networks

managers, city
managers

[50]
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Use cases KPI
Spatial
resolu-
tion

Range of
simulation
time step

Decision-
making

indicator

Required
accu-
racy

Impact of the
KPI on the

final decision

Stakeholders
interested in
the use case

Tools
/

Papers

Energy
flexibility

Demand-
response
measures

Load profiles,
indoor

temperature

Building
scale

10 min to 1
hour

Same as
KPI ++

Grid operators,
heating
networks

managers, city
managers,
utilities

[51, 52]

Modification
of the

setpoint
temperature
for heating /

cooling

Hourly load
profiles

District
scale

10 min to 1
hour

Same as
KPI ++

Heating
networks

managers, grid
operators,

energy utilities

[30]

Urban heat
island effect

Vulnerability
to heat
waves

Indoor air
temperature,

Building
scale

10 min to 1
hour

Same as
KPI +++

City managers,
cooling

networks
managers

[19, 28]

Impact of
AC in

buildings or
cool

materials on
UHI

Outdoor
temperature,

energy demand

District
scale

10 min to 1
hour

Same as
KPI High +++ Utilities, grid

operators [28]

Analysis of
building
retrofit

Building
envelope
retrofit

Yearly energy
consumption

Building
scale 1 hour

Estimation
of payback
time [53]

Low + City managers

[19, 21,
26, 31,
33, 44,
53, 54]

Load profile District
scale

10 min to 1
hour High ++

Grid operators,
utilities, city

managers
[28]

Building
cooling /
heating
system
retrofit

Yearly final
energy

consumption

Building
scale

10 min to 1
hour

Estimation
of payback
year [53]

Low +
Grid operators,
utilities, city

managers

[21, 26,
31, 53]
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Use cases KPI
Spatial
resolu-
tion

Range of
simulation
time step

Decision-
making

indicator

Required
accu-
racy

Impact of the
KPI on the

final decision

Stakeholders
interested in
the use case

Tools
/

Papers

Upgrade of
electronic

devices and
lighting

Yearly final
energy

consumption

Building
scale

10 min to 1
hour

Estimation
of payback
year [53]

Low +
Grid operators,
utilities, city

managers

[21, 26,
31, 44,
53, 54]

Table 1.3: Review of UBEM use cases
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CHAPTER 1. URBAN BUILDING ENERGY MODELS AS DECISION-SUPPORT
TOOLS: OVERVIEW AND THESIS APPROACH

A use case is discussed here as an example: the identification of potentials for a district heating
network. For this use case, a relevant KPI is the heat density (defined as the buildings yearly
heating demand divided by the area of study). The KPI is a UBEM’s output which is essential
in the decision-making process for the given use case. A spatial resolution for the KPI is also
reported here. In this example, the resolution is set at the building scale. This means that for
this use case, the level of accuracy of the KPI should be studied at the building scale. In some
cases, the KPI may not be the only indicator considered in the decision-making process. For
example, the KPI may help to calculate a payback time and the decision-maker will take his
decision based on this economic indicator. In this case the payback time will be regarded as the
“final indicator”. The accuracy expected on the KPI and the role it plays on the final decision
are also assessed in this table in a qualitative way. The column assessing the impact of the KPI
on the final decision was filled using the following legend:

• +: The KPI is not steering the decision-making process, other indicators (economic indi-
cators for example) are used;

• ++: The KPI is steering the decision-making process based upon the relative value of the
KPI;

• +++: The KPI is steering the decision-making process based upon the exact value of the
KPI.

The weight of the KPI on the final decision therefore emphasizes the need for the UBEM to be
sufficiently accurate. Finally, the key players that could be the decision-makers in each use case
were also reviewed since they are the final beneficiaries of the UBEM tools.

It can be noticed that the KPI presented in Table 1.3 are mostly limited to two usual physical
quantities: annual energy consumption and load profiles. However, depending on the use cases,
the accuracy expected from the KPI may vary. For example, for the annual energy consumption,
in the use case “Identification of potential renewable sources”, it should be accurate at the building
scale while in the use case “Urban energy planning”, it needs to be accurate only at the district
scale and not necessarily at the building scale. Furthermore, if the impact of the same KPI on
decision-making in both use cases is compared, it seems that the KPI in “Urban energy planning”
has a lower influence on the decision-making process than it does in the use case “Identification
of potential renewable sources”. Working per use case enables then to ensure that the KPI is
fitted for the decision-making process of each use case.

1.4 Thesis approach and structure of the manuscript

In order to assess the adequacy of UBEM to each decision-making process identified in this
chapter, a validation framework dedicated to UBEM was developed in this thesis and is presented
in this manuscript.

As it was previously highlighted, the aim of this thesis is to contribute to the development of
a validation framework enabling to verify the adequacy of UBEM to their use cases.

To do so, a state of the art on validation is required to identify the strengths and the
weaknesses of the existing works on the topic. This state of the art is introduced in Chapter 2
The existing validation procedures dedicated to Building Energy Models such as the BESTEST
were namely discussed and the examples of validation applied to UBEM that can be found in the
literature were reviewed. Based on this state of the art, a validation procedure dedicated
to UBEM could be developed and is introduced at the end of the Chapter 2.
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To test the proposed validation procedure, it was applied to a first UBEM and to a
first set of use cases. The ad hoc validation of a physcial model and an enrichment process
is then discussed in Chapter 3 along with the choice of a set of use cases and the creation of a
validation dataset.

The way to assess UBEM on this first set of use cases was then questioned. It was namely ar-
gued that uncertainty should be taken into account in the validation process. The quantification
of uncertainty for the given use cases is then discussed in Chapter 4 and metrics to properly
assess UBEM are proposed. To ensure that the proposed framework is well-suited, it is also
applied to three different UBEM.

A validation procedure should always offer a diagnostic stage. The approach chosen to identify
UBEM weaknesses is then discussed in Chapter 5.

15



CHAPTER 1. URBAN BUILDING ENERGY MODELS AS DECISION-SUPPORT
TOOLS: OVERVIEW AND THESIS APPROACH

16



Chapter 2

Urban Building Energy Models and
Validation

Contents
2.1 Validation: a state of the art . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Validation at the building scale . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Validation at the urban scale . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 A need for a new validation framework . . . . . . . . . . . . . . . . . 28
2.2.1 Research questions addressed in this thesis . . . . . . . . . . . . . . . . 29
2.2.2 UBEM validation framework: a proposal . . . . . . . . . . . . . . . . . . 30

17



CHAPTER 2. URBAN BUILDING ENERGY MODELS AND VALIDATION

Introduction

As discussed in the previous chapter, Urban Building Energy Models (UBEM) are complex
decision-aiding tools evolving in an uncertain environment. Such uncertain context could cast
a doubt on UBEM reliability. To ensure that UBEM provide a real aid in the decision-making
process they are used for, a thorough validation procedure should be applied to each UBEM tool.

Since many UBEM have been built upon Building Energy Models (BEM), a review of validation
procedures for BEM is proposed here, followed by a state of the art on UBEM validation. The
aim of this literature review at both building and urban scales is to identify the existing validation
approaches and to understand the relationship between BEM validation and UBEM validation.

This literature review also helped to refine the scientific questions addressed in this thesis. These
research questions are then presented in this chapter, along with a proposal for a validation
framework.

2.1 Validation: a state of the art

2.1.1 Validation at the building scale

Among the ten most important challenges in building energy modelling, Hong et al. [55] identified
the building energy performance gap as one of the first issues to tackle. With an increasing need
to reduce energy consumption in buildings, BEM are thus expected more than ever to provide
accurate prediction of buildings energy performances. However, as described by the authors,
the building energy behaviour predicted by BEM often falls quite far from reality. A first step
towards reducing this performance gap is BEM validation.

Much work has already been carried out in this area over the past thirty years. From these
research works have arisen validation standards such as the BESTEST benchmark [7, 56] and
the PASSYS method [6]. A common agreement that arose from the research projects on BEM
validation is that BEM are complex tools, relying upon hundreds of parameters, making it very
difficult to test every possible parameter configuration. Instead, Jensen [6], in the PASSYS
method, offered to break down the validation process into two parts:

- Validation of single processes;

- Validation of the whole model.

This approach is presented in depth in Figure 2.1. It is interesting to note that three techniques
can be found in both the single process validation and the whole model validation:

- The sensitivity studies;

- The inter-model comparison;

- The empirical validation.

These three techniques play on two levels that are both of equal importance in a validation
methodology:

• An assessment part: A validation methodology should provide first a framework to test
the tool, along with metrics to properly quantify its performances.
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Figure 2.1: Validation method developed in the PASSYS project [6]

• A diagnosis part: A validation methodology should then enable modellers to identify
where the weaknesses of a tool originate from.

The inter-model comparison and the empirical validation play a role in the assessment step, but,
when used jointly, can also provide insights on the diagnosis step. The sensitivity studies help
understand inputs influence on outputs variations, thus being an important part of the tools
diagnosis.

A similar idea of two-fold validation is proposed in the approach developed by Del Barrio and
Guyon [57] and in the BESTEST benchmark [7], the BESTEST being even defined as "Building
Energy Simulation Test and Diagnostic Method" by the authors. When looking back at the
distinction presented by Jensen [6] between the single processes validation and the whole process
validation, the latter could be identified to the assessment part of the validation methodology
while the former (single process) could be identified to the diagnosis part, validation of single
processes being helpful to identify weaknesses of each tool.

We offer to discuss here first the techniques found in the literature for BEM assessment and then
the techniques related to BEM diagnosis.
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2.1.1.1 BEM validation: the assessment step

In the assessment step of BEM validation, two main techniques emerge from the scientific liter-
ature: the inter-model comparison and the empirical validation.

Inter-model comparison Comparing the results of one BEM to results obtained on the same
test case with another BEM is a fairly simple way to start assessing the tool performances. Most
of the times, major discrepancies are found among results of different tools. Investigating these
discrepancies enables then to identify strong suits and weaknesses of each BEM. Such approach
is encouraged in the BESTEST benchmark which provides a set of fully characterized test cases
to do so. Other examples of inter-model comparison can be found in Ryan and Sanquist [58]
and in Bontemps et al. [59]. A drawback of such technique is that no ground truth is provided,
thus making it difficult to assess whether one tool is more valid than another in practice. This
drawback can be avoided by selecting for the inter-model comparison at least one BEM already
validated against empirical data.

Empirical validation Contrarily to the inter-model comparison, the empirical validation pro-
vides a ground truth thanks to measurements on real buildings, although such measurements
contain a large share of uncertainty. Ryan and Sanquist [58] identified two types of empirical
validation applied to BEM: the idealised validation and the realistic validation.

The idealised validation consists in comparing BEM results to measurements taken on test
cells where all parameters are well known. Spitz applied such idealised validation in her thesis
[60] where she used the INCA houses to assess EnergyPlus [61]. The INCA houses are experimen-
tal houses built and operated by the National Institute for Solar Energy in Le Bourget du Lac,
France. The thermophysical parameters of these houses are well known and operating param-
eters such as operative temperature are well monitored. Uncertainties related to the occupant
behaviour are not considered as the houses are uninhabited. Similar work was led by Palomo Del
Barrio and Guyon [62] on the ETNA building, an experimental building designed and operated
by Electricité de France (EDF) in the Paris region. Such idealised validation enables to reduce
uncertainty on most parameters and thus to identify some issues related to the physical model
and its numerical implementation. However, as highlighted by Ryan and Sanquist [58], it does
not take into account realistic conditions of use of buildings and thus does not assess the ability
of BEM to accurately take into account other more uncertain parameters such as occupants
behaviour.

Realistic validation on the contrary is a comparison between models and measurements per-
formed on operating buildings, thus accounting for real conditions of use. Examples of this
approach can be found in [58]. Such approach is critical to reduce the building performance gap
identified by Hong et al. [55].

To do so, taking into account uncertainty in the empirical validation is of the utmost importance
as advocated by Palomo Del Barrio and Guyon [57]. Whether working on idealised or realistic
validation, uncertainty should always be accounted for. Propagating uncertainty through the
model enables the modeller to retrieve a distribution of the output to study instead of a single
value. Likewise, the reference value is replaced by an uncertainty band. The validation process
would then consist in comparing the uncertainty bands of both measurements and BEM results
and their overlapping would assess the tool validity.

When taking a step back and looking at validation of physical models in general, uncertainty is
regarded as the cornerstone of most validation processes [63]. With this in mind, a comprehensive
review of uncertainty analysis in the building energy modelling field was proposed by Tian et
al. [64]. The authors acknowledge a fair spread of uncertainty analysis techniques among the
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BEM community namely due to mature techniques in the uncertainty analysis field and to easy
to implement techniques such as Monte-Carlo sampling. However, the uncertainty quantification
of some complex parameters such as occupancy remains difficult and further work should be led
on this aspect.

2.1.1.2 BEM validation: the diagnosis step

The uncertainty quantification enables to implement a strong diagnosis tool: the sensitivity
analysis. The sensitivity analysis is defined by Saltelli et al. as "the study of how uncertainty
in the output of a model (numerical or otherwise) can be apportioned to different sources of
uncertainty in the model input" [65]. Depending on the techniques considered, it enables to
answer several questions such as:

- Which input has the greatest influence on the output ? And consequently, for which input
should we reinforce the quality of data collection ?

- Which input could be set to a fix value ?

- Are there inputs that are highly correlated ?

Examples of sensitivity analysis applied to building energy models are provided by Goffart et al
[66], Bontemps [67] and by Spitz [60]. In the case of Bontemps [67] and Spitz [60], sensitivity
analysis is used within the framework of empirical validation. It enables thus to test the model
and identify the contribution of each uncertain parameters to the output variation.

A similar approach, although not completely characterized as a sensitivity analysis, can be found
in the BESTEST benchmark [56]. Several test cases, with an increasing level of complexity, are
proposed, thus enabling to assess which part of the model could be erroneous.

A slightly different diagnostic approach is offered by Palomo Del Barrio and Guyon [57]. The au-
thors proposed to proceed first with a principal components analysis (PCA) to study parameters
correlation and second, with a parameters’ optimisation to compare original parameter values
with optimal ones. The parameters optimisation should enable to identify parameters that need
to vary the most in order for the BEM results to match the available measurements.

In this part, we highlighted the maturity level reached for BEM validation. As UBEM are more
recent tools, their validation has not yet been the focus of as many research projects. This topic
is discussed hereafter.

2.1.2 Validation at the urban scale

2.1.2.1 An overview of UBEM validation specificities

When thinking about UBEM validation, one can wonder what the differences are with BEM
validation. A first obvious one is the spatial scale. Since UBEM are designed to model several
buildings in parallel, there is a question on the number of buildings that should be considered
through the validation process. Should the modellers assess their tools on one, ten or a thou-
sand buildings ? A connected question is the aggregation level at which one should analyse a
tool results during the validation process: should it be checked building per building or at the
aggregated scale of a district or a city ? A second major difference with BEM is the enrichment
process inherent to UBEM. This enrichment process brings an additional share of uncertainty
and may jeopardize the reliability of UBEM if not properly assessed.
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Assessed outputs Validation data

Authors Validation
type Outputs Spatial

scale UA1 Metrics Location Open
data

Nb of
items Timestep Spatial

scale

Saelens et al.
[8]

Inter-model
comparison

Annual heat de-
mand Building No None

Idealized
ditrict tested
with a
Belgium
climate

YesHeating peak
power
Overheating

Nageler et al.
[68]

Empirical vali-
dation

Heating demand
and DHW de-
mand

Aggregated
by building
type and
at building
scale

No PE
ME

RMSE
ESD
MAE

Gleisdorf No 69 Year Building

Wang et al.
[39]

Empirical vali-
dation

Annual gas con-
sumption

Postcode
scale Yes APE

CVRMSE
Amsterdam Yes 84 Year Postcode

Heated volume
Archetypes cate-
gorization
U-values
Window area

Dochev et al.
[69]

Inter-model
comparison

Heat demand

District
and
building

No SMAPE Berlin No

Annual energy
consumption Building

Areas Usage

Nagpal et al.
[44]

Empirical and
Inter-model
comparison

Annual energy
consumption Building No R2 Cambridge,

USA No 100 Year Building

Energy savings
Building
and Cam-
pus

Individual energy
saving strategies Building

RNRMSE 2 Hour Building
1 Uncertainty Analysis
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Assessed outputs Validation data

Authors Validation
type Outputs Spatial

scale UA1 Metrics Location Open
data

Nb of
items Timestep Spatial

scale

CVRMSE
MBE 34 Hour District

Nageler et al.
[70]

Empirical and
Inter-model
comparison

Heating load
profile

Building
and
district

No

R2

Annual heating
energy demand
Annual cooling
energy demandFonseca et al.

[71]
Inter-model
comparison Annual primary

total energy de-
mand

Stock Yes RSS Portugal No 170000 Year
Distribution
at the
sample
scale

Annual heating
consumption
Annual cooling
demand
Peak heating de-
mandWalter et al.

[72]

Empirical and
Inter-model
comparison Peak cooling de-

mand

Building No None Lausanne,
Switzerland No 1 Year Building

PE

Sokol et al. [9]
Empirical and
Inter-model
comparison

Monthly gas
and electricity
consumption

Building Yes CVRMSE Cambridge,
USA No 2263 Month Building

Kolmogorov-
Smirnov test
AE
RE
RMSE
threshold
CVRMSE

Garrison et al.
[41]

Empirical
validation

15-min electricity
consumption
profiles

Building No

NMBE

East
Tennessee and
Georgia

No 178000 15 min Building

1 Uncertainty Analysis
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Assessed outputs Validation data

Authors Validation
type Outputs Spatial

scale UA1 Metrics Location Open
data

Nb of
items Timestep Spatial

scale

AE
MBEYang et al.

[73]
Empirical
validation

Annual gas
consumption Postcode No

CVRMSE
Leiden Yes 1292 Year Postcode

Taniguchi et
al. [74]

Empirical vali-
dation

Hourly electricity
consumption Sample No None Kansai region,

Japan No 1 Hour

1237 ag-
gregated
house-
holds

Widen et al.
[10]

Empirical vali-
dation

Hourly electricity
consumption Household No NVF Sweden No 13 Hour Household

MBEFischer et al.
[75]

Empirical
validation

Hourly electricity
consumption Household No Correlations Germany No 430 Hour Household

Peak value
RMSEFischer et al.

[76]

Empirical and
Inter-model
comparison

Heating and
DHW energy
consumption

Household No
R2

Germany No 10 Hour Household

Annual electricity
consumption

Fonseca et al.
[31]

Empirical and
Inter-model
comparison

Annual heating
consumption Building No PE Switzerland No 23 Annual Building

Annual cooling
consumption

Bünning et al.
[77]

Empirical and
Inter-model
comparison

Heating load pro-
file Building No R2 Switzerland No 4 15 min Building

PE
Energy Reference
Area District MAPE

APENouvel et al.
[78]

Empirical and
Inter-model
comparison Annual Heating

Demand Building

Yes

MPE

Ludwisbrug,
Germany No 28 Year Building

Todeschi et al.
[79]

Empirical and
Inter-model
comparison

Annual space
heating consump-
tion

Building Yes MAE Fribourg,
Switzerland No 198 Hour Building

1 Uncertainty Analysis
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scale UA1 Metrics Location Open
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Nb of
items Timestep Spatial
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MAPE
Table 2.1: Review of validation attempts

1 Uncertainty Analysis

Acronym Full expression

AE Absolute Error
APE Absolute Percentage of Error
CVRMSE Coefficient of Variation of the Root Mean Square Error
ESD Empirical Standard Deviation
MAE Maximum Absolute Error
MAPE Maximum Absolute Percentage of Error
MBE Mean Bias Error
ME Mean Error
MPE Mean Percentage of Error
NMBE Normalized Mean Bias Error
NVF Normalized Variation Factor
PE Percentage of Error
RE Relative Error
RMSE Root Mean Square Error
RNRMSE Range Normalized Root Mean Square Error
RSS Residual Sum of Squares
R2 Coefficient of determination
SMAPE Symmetrical Mean Absolute Percentage of Error
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An overview of the main papers related to the topic is proposed in Table 2.1, pointing out the
specificities of UBEM validation attempts.

In this table, the focus was set mainly on the assessment part of the validation process and the
reviewed assessment approaches are discussed hereafter. However, as stated for BEM validation,
a comprehensive validation process should not only assess tools’ performances but also offer a
diagnosis step to identify the tools’ weaknesses. The diagnosis step as found in the literature is
then discussed in a following section.

2.1.2.2 UBEM assessment

As described in Table 2.1, two main approaches are found for UBEM assessment: empirical
validation and inter-model comparison. Empirical validation is the most widely spread practise
and inter-model comparison is often combined with empirical validation and rarely led on its own.
The empirical validation attempts are discussed here first, followed by inter-model comparisons
attempts.

Empirical validation Out of the 19 papers reviewed in Table 2.1, 16 papers perform an em-
pirical validation. Although the majority of the reviewed papers can be put into this category,
significant differences can be observed among these papers when taking a closer look.

First, when considering the size of the validation dataset used in the empirical valida-
tion process, it ranges from a single building [72] to 178,000 buildings [41], and the majority of
the papers discuss the validity of their models over a validation dataset of less than a hundred
buildings. Since UBEM are bottom-up tools, the modellers are often interested in analysing the
results of their tools building per building. However, when considering a validation dataset of
less than hundred buildings, the statistical representativeness of the conclusions drawn from the
validation process could be called into question. There is no guarantee that such a small valida-
tion dataset enables to test the UBEM tool on its full range of use, thus leaving blind corners in
the validation process. Although it seems rather difficult to create a validation dataset enabling
to fully test a UBEM tool, the authors should at least tend towards this aim and identify the
limitations of their validation dataset regarding the generalization of their results. More gener-
ally, a validation dataset is a sample retrieved from a larger population, and, as for any sample,
its representativeness with respect to some key parameters must be verified.

Secondly, a large variety of metrics can be found for the tools’ assessment, and it seems
that no agreement has been reached yet on this topic among researchers. However, several
metrics can be found quite frequently such as:

• The Percentage of Error (PE);

• The Root Mean Square Error (RMSE);

• The Coefficient of Variation of the Root Mean Square Error (CVRMSE);

• The Coefficient of Determination (R2).

An agreement on which metrics to use in the validation process would help compare results
among different studies, and thus would enable the comparison of UBEMs performances.

This lack of agreement can also be found when considering inter-model comparison, though to
a lesser extent since inter-model comparison frameworks have often been built through interna-
tional workgroups.
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Enabling to compare results among different papers would strengthen the validation process
of UBEM tools as would do the availability of the validation dataset. As stated in Table
2.1, most of the papers reviewed do not make the validation dataset used in their study public.
Thus, Malhotra et al. [80] identified that 95% of the papers published in the UBEM field lack
replicability. Such trend is worrying and a thorough validation framework of UBEM should work
against such practices by ensuring the complete replicability of the validation procedure.

Another striking point when reviewing validation papers is the lack of studies taking into
account the uncertainty surrounding UBEM tools in their validation process. Although the
modelling of uncertainty in the validation process of physical models should be a standard prac-
tise as advocated by Moser and Oliver [63], it is not yet the case for UBEM. However, a few
recent works have been observed on the topic of uncertainty modelling such as the thesis of Ina
De Jaeger [45] that offered a method to model uncertainty on UBEM inputs data. Prataviera
et al. [81] presented a similar approach for uncertainty modelling but studied a dynamic output
conversely to Ina De Jaeger who studied mainly annual heating energy. Such trend towards
inclusion of uncertainty modelling in the UBEM validation process should be encouraged.

Inter-model comparison There are fewer examples of inter-model comparison in the liter-
ature. However, the DESTEST proposed by Saelens et al. [8] deserves to be discussed more
extensively here. This validation framework is the result of a group project, IBPSA Project 1,
that gathered modellers from different backgrounds to create a virtual district to compare tools’
performances on both buildings and energy systems modelling. The virtual district is at the
moment composed of 16 identical buildings. These buildings are as simple as possible and simu-
lations were run to compare performances of five different UBEM tools, some working under the
Modelica environment and some working under other coding environments. The aim of a very
simple test case was to easily identify the origin of discrepancies among tools. However, even
this first step appeared to be quite challenging. A second test case to assess the modelling of
district heating networks was also developed, and a variety of test cases of increasing complexity
should be proposed in future works.

One of the main achievements of this project is to have had researchers from different back-
grounds sitting around the table and defining together a validation framework. The proposed
DESTEST is thus of great interest to compare performances of several models and to test single
processes used in UBEM. However, it does not consider the uncertainty surrounding UBEM in
their real conditions of use, and the limitations of this approach are similar to the ones identified
by Ryan and Sanquist [58] for the BESTEST.

Other examples of inter-model comparison are found in the literature, namely to assess the
validity of individual modules against a baseline. Such approach can be found in Rosser et al.
[37] where the authors compare different geometry simplification processes, in Happle et al. [82]
where the authors study the influence of different air infiltration models and in Chapman et
al. [83] where the authors assess the performances of a stochastic occupancy model against a
deterministic approach. A more comprehensive framework to assess the models level of details
to be used within UBEM has been developed by Enora Garreau in her thesis and the reader is
referred to her manuscript for more information on the topic [84].

2.1.2.3 UBEM diagnosis

Conversely to the assessment step, the diagnosis step of the validation process is barely discussed
in the literature. A typical example of this trend is provided in the review conducted by Fennell et
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al. [85]. The authors selected the top hundred most cited papers containing the terms: "(energy
AND building AND model) AND (uncertainty OR sensitivity OR probabilistic OR stochastic)
AND (city OR building stock)". Among these hundred papers, only fourteen actually undertook
an uncertainty or sensitivity analysis at the district or city scale.

Furthermore, when a sensitivity analysis is carried out, the authors often limit themselves to
a single building as it is the case in Todeschi et al. [79]. Such practise could lead to wrong
conclusions since it limits the type of parameters accounted for during the sensitivity analysis.
For instance, in the case of Todeschi et al., the most influential parameter identified by the authors
was the ventilation rate but when comparing to another sensitivity analysis led by Booth et al.
[86], there is no agreement on the result. Booth et al. identified the fraction of heated space as
the most influential parameter. Such disagreement can be explained by several facts such as a
difference in the studied model or a different way to model the uncertainty, but working on a
different perimeter certainly do not help to reach common conclusions.

Quite close from a sensitivity analysis although different, Nouvel et al. [78] studied the influence
of several levels of knowledge on the computed annual heating demand. The authors studied
thus the impact of the geometry level of detail and the influence of ignoring a heated basement
or attic on the predicted heating demand. Such work calls into question the impact of the input
data quality and tries to assess its consequences on the UBEM performances.

Along with the quality of input data, the enrichment process should be put under the spotlight
during the validation process, to challenge the hypotheses made at this step of the simulation
and to understand how it influences the results. A good example of validation of the enrichment
process alone is offered by Rosser et al. [87]. The authors assessed the performances of a machine-
learning algorithm to predict buildings age when unknown. They used common techniques of
model selection and model evaluation from the machine learning field to assess the performances
of their enrichment process. Among these techniques are the cross-validation for the model
selection and the validation on a sample, different from the training sample. The latter is
namely a good practice from which the UBEM field would greatly benefit. At the moment, the
distinction between the dataset used for the training of the model and the dataset used to assess
the model performances is not well acknowledged within the UBEM community. This distinction
is of great importance since it enables to verify how well a model behaves when faced with data
outside from its training set. Such aspect is particularly critical to enable the generalization of the
results obtained through the validation process. A counter-example is provided by Garrison and
New [41] where the authors used the same measurements to categorize buildings into archetypes
and to assess the performances of the energy simulation of these archetypes.

2.2 A need for a new validation framework

We discussed above the importance of validation for BEM and identified two main steps in
a validation process: the assessment of BEM performances and the diagnosis of BEM
weaknesses. Several techniques were identified to contribute to the assessment step such as inter-
model comparison and empirical validation. The critical role of uncertainty was also discussed
along with its appropriation by the BEM community. Regarding the diagnosis step of a BEM
validation process, sensitivity analysis, parameters optimisation and the BESTEST test cases
were discussed.

When considering UBEM, a lot of research has been carried out on empirical validation and a
little less on inter-model comparison. Regarding empirical validation, the generalization of the
results is not very robust yet, namely due to the size of the used validation datasets, a lack
of common metrics, the non-disclosure of the validation datasets and the lack of uncertainty
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modelling. When looking at inter-model comparison, an interesting, though limited for now,
work has been proposed within the IBPSA Project 1 workgroup. Similar workgroups should be
encouraged on UBEM empirical validation and would help to reach an agreement on metrics and
validation datasets constitution.

Regarding the diagnosis of UBEM weaknesses, there is still a long way to go. Thus, uncertainty
analysis is still emerging, although good examples have been set by De Jaeger [45] and by
Prataviera et al. [81], and sensitivity analysis is almost inexistent among the UBEM community,
as stated by Fennell et al. [85].

To summarize, a lot of existing work deals with parts of the UBEM validation process, but no
comprehensive framework has been developed so far. Such validation framework should account
for the whole simulation process, including the quality of the input data and the enrichment
process. Furthermore, requirements should be set to ensure that the validation dataset is large
and diverse enough to test the UBEM tools on their full range of use. The opening of such
dataset would also improve the replicability of the validation procedure.

In order to overcome the challenges identified above, the goal of this thesis is to put forward a
first full validation framework.

The proposed framework was developed to be as comprehensive as possible and to be applicable
to the majority of the existing UBEM tools that were reviewed in Chapter 1. The scope of
this research work is introduced in the next section and the proposed validation framework is
presented afterwards.

2.2.1 Research questions addressed in this thesis

UBEM are first and foremost decision support tools. They were thus developed to help decision
makers arbitrate among several choices. Their validation should then be considered from this
viewpoint. Likewise, the main research question driving this thesis work is: How to verify the
adequacy of UBEM to the decision process they are used for?

This main question gives way to two sub-questions:

• What are the different decision processes UBEM are involved in ?

• How to develop a comprehensive and generic validation framework for UBEM ?

These two questions are discussed hereafter.

2.2.1.1 What are the different decision processes UBEM are involved in ?

A review of UBEM use cases has been proposed in Chapter 1. In this review, the different
decision processes were identified as well as the UBEM outputs each decision process relies on.
A certain level of confidence is expected from the UBEM output in each decision process and
was assessed in Chapter 1 as well. This level of confidence should also be accounted for in the
validation of UBEM tools. Thus, the validation framework should enable to assess the outputs
used in the decision process and to verify whether these outputs are robust enough to achieve
the desired level of confidence. Such a requirement forces to test the tools under their conditions
of use since a large part of the outputs uncertainty may be caused by the input data and the
enrichment process. Ideally, the validation framework should be the same for all the use cases
even though a validation procedure should be led separately for each decision process.
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2.2.1.2 How to develop a comprehensive and reusable validation framework for
UBEM ?

As highlighted above, the validation framework should enable to test the tools under their real
condition of use. With this in mind and based on the literature review discussed previously, a
list of requirements for a comprehensive validation framework can be drawn:

• Work on the full simulation chain, including the enrichment process;

• Take into account the existing uncertainty at each step of the simulation;

• Create a validation dataset large and diverse enough to provide statistically representative
results;

• Make the validation datasets publicly available;

• Define metrics to assess UBEM tools;

• Provide indicators for the diagnosis of UBEM weaknesses.

As a result of the work carried out during this PhD to answer these research questions, a proposal
for a validation framework has emerged, verifying the list of requirements developed above. This
validation framework is presented below.

2.2.2 UBEM validation framework: a proposal

The proposed validation framework is introduced Figure 2.2. It can be broken down in several
steps that are discussed here.

The first step of the validation framework consists in ad hoc validation of the two main com-
ponents of each UBEM tool:

• Ad hoc validation of the enrichment process,

• Ad hoc validation of the physical model.

To validate the enrichment process, an approach similar to the one proposed by Rosser et al.
[87] should be followed. The authors used techniques from the machine learning field, namely
cross-validation, to assess the performances of their enrichment process. This practise is a good
way to verify the ability of an enrichment process to provide accurate results beyond its training
set.

When considering the validation of the physical model, existing procedures provided by both the
BESTEST [56] and the DESTEST [8] should be followed. The BESTEST should enable to fully
test the building energy modelling part, while the DESTEST should help assess performances of
submodels specific to UBEM such as district heating networks.

The ad hoc validations of the tools used in this manuscript is presented Chapter 3.

The second step of the validation framework is to review the UBEM use cases and to
identify the different outputs at stake in the decision process. These outputs are the Key
Performance Indicators (KPI) that will be assessed throughout the validation procedure. For
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each use case and each linked decision process, a certain level of accuracy is expected on the
KPI. This level of accuracy should be identified and fixed at this step. Ideally, this threshold
should be fixed through exchanges with the concerned decision-makers.

Several use cases may have the same KPI although with a different expected accuracy. These
use cases should be grouped together for the following steps of the validation procedure until the
assessment step. At the assessment step, the expected accuracy will be taken into account, thus
differentiating the use cases.

The third step consists in creating a validation dataset to assess a given KPI. This vali-
dation dataset should verify several key points that are:

• Measurements of the KPI should be available for every building of the validation dataset.
This would enable to study the validity of the outputs at different spatial scales ranging
from the single building to the building stock.

• The validation dataset should contain enough buildings to be statistically representative of
the building stock to which the modellers aim to apply the UBEM. Such representative-
ness is not always easy to assess but the distribution of some general parameters such as
the building usage or the year of construction should be compared between the validation
dataset and the targeted building stock. Limitations of the validation dataset should thus
be assessed and taken into account when looking at the validation results.

• There should be as much descriptive information available at the building scale as possible.
For instance, each selected building should display an Energy Performance Certificate which
would describe the thermal properties and the heating and Domestic Hot Water (DHW)
systems of the considered building. Having information at the disaggregated scale of the
building enables to analyse more precisely the error and potentially to identify groups of
buildings for which the UBEM fails to accurately simulate their energetic behaviour.

• The validation dataset should be made public to ensure the replicability of the validation
procedure. This is a non-trivial question since the opening of private data is generally
challenging if not impossible. Therefore, the validation dataset should be built upon ex-
isting public datasets as much as possible. Even though privacy concerns often hinders
the opening of datasets, a general trend towards open data can be observed in Europe.
For instance, in France, annual electricity and gas consumptions were made available at
district scale at first and recently became available at the address scale [88]. Examples of
similar datasets in the Netherlands can be found in several articles [39, 73]. It seems that
such data are at the moment available only at the district scale, but one can hope that it
will follow the same trend as in the case of France. Similarly, annual energy consumption
data are already available at the building scale in the US as described by Kontokosta and
Tull [18]. Regarding energy consumption data at a finer time scale, there is still a long
way to go to make such datasets public, and a thorough consideration should be given to
this question and to the related privacy issues. However, it is already possible in many
countries to access these data for research purpose only. Alternatively, researchers could
use virtual data sets like the one developed by Neale et al. [89]. The main limitation is
then the prior validation of the virtual data set.

The construction of such validation dataset is discussed more extensively in Chapter 3.

The fourth step is the quantification of the uncertainty surrounding the UBEM sim-
ulation. This step is critical since a poor consideration of uncertainty could bias the rest of the
validation procedure.
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As explained by Walker et al. [90], uncertainty is often divided into two categories : epistemic
and aleatory uncertainties. The former refers to uncertainty due to a lack of knowledge whereas
the latter corresponds to the inherent variability of an object such as the occupants’ behaviour
in a building. Both types of uncertainty are often combined. For instance, when modelling the
buildings of a district, the number of occupants per building is unknown (epistemic uncertainty)
but, even if it was known, there would remain an uncertainty related to the occupants’ behaviour
(aleatory uncertainty). The representation of aleatory uncertainty is generally accepted as a
probability distribution [91]. However, as highlighted by Oberkampf et al. [91], the representation
of the epistemic uncertainty is still subject to discussions. The authors advocated thus to use the
Dempster-Shafer theory to model it. Other possibilities include fuzzy theory, possibility theory
and classical probability theory. For the sake of simplicity and to facilitate the appropriation
of uncertainty analysis methods throughout the UBEM field, the representation of epistemic
uncertainty is done with probability distributions in this PhD work.

Another question arises when modelling epistemic uncertainty as probability distribution: how
to model the relationship among the different uncertain parameters? In the case of UBEM,
it is quite likely that uncertain parameters are related to each other. For instance, a recent
building would surely have a low U-value for its walls but also for its roof and windows. Such
relationship should then be accounted for in the uncertainty quantification step. To do so, Ina De
Jaeger [45] offered to use copulas in a first attempt to account for relationships among uncertain
variables in the UBEM field. However, the copulas do not seem to be the most appropriate tool
since it does not work well for discrete variables [92]. Therefore, it could not be used to model
some important relationships such as the relationship between the heating system of buildings
(discrete variable) and the walls U-value (continuous variable). Another approach is proposed
here, based on Bayesian Networks as introduced by Schetelat et al. [46]. This approach will
be discussed more in depth in Chapter 4. More generally, the definition of probability density
functions to model uncertain parameters is challenging and good practices introduced by the
Joint Committee for Guides in Metrology should be followed [93].

Once a probability density function has been assigned to each parameter, these probability
density functions must be sampled thanks to a sampling algorithm. A review of the different
sampling algorithms for independent variables is provided by Saltelli et al. [65]

Since the results of an uncertainty analysis always depend on the way the uncertainty was mod-
elled [94], all UBEM tools tested on a same validation dataset should benefit from the same
uncertainty quantification. The code defining the probability density functions as well as the
selected sampling methods should then be shared among modellers to encourage inter-models
comparison. Such practice would reinforce replicability and would help challenge the uncertainty
quantification process.

The fifth step consists in propagating the uncertainty through the whole UBEM simula-
tion. It consists in simulating each combination of uncertain parameters obtained at the previous
step. This should then enable to obtain the distribution of the KPI selected for the validation
process. This step may be computationally expensive but is unavoidable to properly assess the
UBEM performances. At this step, a convergence study should be led by varying the number of
simulated samples in order to ensure that the rest of the analysis will be done on a consistent
distribution of the KPI.

The sixth step is then to assess the obtained KPI distribution against the measurements.
To do so, metrics must be defined to properly quantify the error. The UBEM perfor-
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mances should then be assessed at the building scale but also at the scale of the whole validation
dataset. Although different metrics could be used depending on the studied KPI, the same set
of metrics should always be used to assess the same KPI.

At this point, the value of the metrics should enable to verify whether the assessed UBEM is
accurate enough for the decision process that was considered initially. The different use cases
and their respective level of accuracy should then be considered separately.

The seventh step finally offers to gain a better understanding regarding the UBEM
weaknesses and the causes for the observed discrepancies between UBEM results and mea-
surements. At this step, it would be interesting to lead a sensitivity analysis. However, since
correlations among variables were accounted for during the uncertainty quantification, classical
sensitivity analysis techniques cannot be used here as explained by Saltelli et al. [65]. Other
statistical indicators are then introduced to identify relationships among uncertain parameters
and the error at both the building scale and the scale of the whole validation dataset. Such
indicators are detailed in Chapter 5.

Conclusion

This chapter presented the state of the art of BEM and UBEM validation. Although the first
one benefits from many years of research on validation, a performance gap remains that current
validation procedures struggle to close.

Regarding UBEM validation, various attempts are found in the literature, but there is a clear
lack of a unified validation procedure. Furthermore, the existing attempts often lack replicability
and generalization of their results due to too small and unavailable validation datasets. For
these reasons, the focus of this PhD work was set on developing a comprehensive validation
framework, aiming to unite the different approaches found within the UBEM field. The research
questions addressed in this manuscript were then discussed and a proposal for a UBEM validation
framework was presented here.

To verify to what extent the proposed validation framework is well suited to UBEM validation, it
was applied to a first set of use cases. The chosen use cases and the construction of the associated
validation dataset is presented in the next chapter.
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Figure 2.2: Validation framework for UBEM: a proposal
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CHAPTER 3. APPLICATION OF THE VALIDATION FRAMEWORK TO A FIRST
SET OF USE CASES

Introduction

In order to legitimate the validation framework presented in the previous chapter, this framework
was applied to a first set of use cases and to a first set of UBEM tools.

In this third chapter, the three first steps of the validation framework are then discussed:

• The ad hoc validation of the physical model and of the enrichment process;

• The identification of use cases and their related outputs for which UBEM tools should and
could be validated;

• The creation of a validation dataset designed to test the selected outputs.

The ad hoc validation procedure for the physical model is detailed here on DIMOSIM [11], a
bottom-up model that was already used in several research projects. Regarding the enrichment
process, classical validation procedures from the machine learning field are applied to Qiriel [95],
a tool dedicated to the enrichment process.

Next, the set of use cases selected for this first application of the validation framework is intro-
duced. These use cases were selected mainly based on data availability and on the simplicity of
the outputs to assess.

Finally, the creation of the validation dataset required to validate UBEM on the chosen use cases
is detailed.

3.1 Ad hoc validation of both the physical model and the enrich-
ment process

In this manuscript, the proposed validation framework is applied to three different tools, among
which is DIMOSIM [11], combined with a specific enrichment process, Qiriel [95]. As DIMOSIM
was the most advanced tool for engineering applications among the three tools evaluated in
Chapter 4, the ad hoc validation of the physical model required in the validation process is
detailed on this model.

DIMOSIM is presented hereafter along with the results it obtained on both the BESTEST and
the DESTEST. Qiriel is then introduced and the ad hoc validation procedure of this enrichment
process is discussed.

3.1.1 DIMOSIM: a bottom-up physical simulation tool

3.1.1.1 Presentation of DIMOSIM

DIMOSIM is a modular tool whose aim is to allow simulation of energy systems from the scale
of the building to that of an entire city. A comprehensive presentation of DIMOSIM and a
detailed description of its composition is provided by Garreau et al. in [11]. A brief review of its
main abilities is provided hereunder, but the reader is referred to this paper for a more detailed
presentation of the tool.

DIMOSIM consists in a Python package which is programmed in an object-oriented structure.
The different key objects found in DIMOSIM and their relationships are presented in Figure 3.1.
This structure enables to simulate energy behaviour of buildings with different level of details
and to study the results at different scales ranging from a single thermal zone to a whole district.
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Figure 3.1: Object structure in DIMOSIM [11].

DIMOSIM falls in a rather detailed category of RiCj (electrical-thermal analogy) models and its
thermal model is presented in Figure 3.2. This configuration enables DIMOSIM to adjust to the
level of information available and to the use case. For instance, it is possible to group together
all the walls during the calculation when detailed results are not required, thus reducing the
computation time.

DIMOSIM has already been applied to a large variety of projects, as described by Garreau et
al. [11], among which are the study of urban heat island effect, the study of district heating
networks or the creation of a metamodel for optimization of refurbishment choices. Moreover,
PowerDIS, a web-based software is currently developed by Efficacity, a French institute for cities
energy transition, to offer a user interface to DIMOSIM which shall help engineering firms and
urban policy-makers to use this UBEM in their day-to-day projects.

3.1.1.2 Ad hoc validation of DIMOSIM

The ad hoc validation of a complex physical model such as DIMOSIM can be manyfold.

First, the BESTEST benchmark [7] has been applied to DIMOSIM to verify how the thermal
model behaves in regard to BEM. The results were presented by Garreau et al. in [11] and are
displayed Figure 3.3. DIMOSIM provides results that are satisfactory enough since it always
performs within the range of values obtained by all BESTEST candidates.

Second, DIMOSIM was used within the IBPSA Project One and tested on the proposed DESTEST
[8]. The DESTEST test cases were two-fold.

The first test case consists in simulating a cubical building and to compare computed heating
power and air temperature among the different tools. These results were presented for a week in
March under a Belgian climate and are reproduced here in Figure 3.4. Although, discrepancies
among models are noticeable, DIMOSIM behaves within the average and provides acceptable
results.

The second test case consists in assessing the ability of the different UBEM tools to model a
district heating network by comparing the thermal losses obtained by each tool. Once again,
DIMOSIM provides results that are satisfactory and no major discrepancy is observed with the
other tools.

Third, Enora Garreau, in her thesis [84], studied the level of parsimony that should be im-
plemented in UBEM tools and challenged several sub-models implemented in DIMOSIM thus
helping to identify the most parsimonious sub-models to apply for the modelling of solar masks,
thermal zones and district heating networks. This increased again the level of confidence one
can have in DIMOSIM.

Finally, DIMOSIM has been used on many projects and often compared to measured consump-
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tions in buildings and districts. This is still not enough to consider the tool as fully validated, but
it helps increase the confidence in the overall robustness of the tool. All in all, the robustness of
DIMOSIM and its proper behaviour when considering idealised evaluation frameworks has been
well established and all these arguments are considered sufficient for the ad hoc validation of the
physical model.
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Figure 3.2: RiCj thermal zone model used in DIMOSIM [11].
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Figure 3.3: Results obtained by DIMOSIM on the BESTEST benchmark [11].

Figure 3.4: Results obtained by several UBEM on the DESTEST [8].
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3.1.2 An enrichment process: Qiriel

In order to provide inputs parameters to DIMOSIM, an enrichment process must be used. In
this thesis, we used a specific tool to do so: Qiriel [95]. Qiriel is presented more extensively
hereafter and a procedure for its ad hoc validation is then discussed.

3.1.2.1 Presentation of Qiriel

During a UBEM simulation, the enrichment process consists in filling in missing variables. This
can be reframed as a prediction problem where we try to predict a set of variables [x1, x2, .., xn] for
each building of our sample. If we consider a single building, we would like to avoid the enrichment
process to predict always the same values: as detailed in Chapter 1, such deterministic approach
risks to lack the diversity of the building stock, and it could not account for the uncertainty
introduced at this step. The aim is then to predict a probable set of variables [x1, x2, .., xn]. To
do so, the enrichment process should model the joint probability P (x1, x2, .., xn). Working with
the joint probability ensures to properly model the variables relationships and to account for
their interdependencies.

A joint probability can always be factorised as follows:

P (x1, x2, .., xn) = P (x1)P (x2|x1)...P (xn|xn−1, ..., x2, x1) (3.1)

With P (A|B) being the conditional probability of A knowing B, as defined in the Bayes formula:

P (A|B) =
P (A ∩B)

P (B)
with P (B) ̸= 0 (3.2)

A Bayesian network [96] is a way to simplify Equation 3.1 by writing:

P (xi|xi−1, ..., x2, x1) = P (xi|Ai) (3.3)

With Ai being a reduced number of parents.

Replacing [xi−1, ..., x2, x1] by a subset Ai implies to make assumptions regarding variables inde-
pendencies. These independency hypotheses should be carefully examined upon the construction
of a Bayesian network.

A joint probability modelled with a Bayesian network can then be factorised as displayed in
Equation 3.4.

P (x1, x2, .., xn) =
n∏

i=1

P (xi|Ai) (3.4)

This factorisation can be graphically represented through a directed acyclic graph. In this graph,
each node is a variable and the edges display the connection of each variable xi to its Ai parents.

An example of a Bayesian network is proposed in Figure 3.5.

It represents the joint probability P (HeatingEnergy, ConstructionY ear,WallsUvalue) which
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Figure 3.5: Example of a Bayesian network.

is factorised in this network as:

P (HeatingEnergy, ConstructionY ear,WallsUvalue) =

P (WallsUvalue|ConstructionY ear,

HeatingEnergy)

× P (ConstructionY ear)P (HeatingEnergy)
(3.5)

We assumed here that the variables ConstructionY ear and HeatingEnergy are independent
of each other, otherwise the term P (ConstructionY ear) would have been replaced by the term
P (ConstructionY ear|HeatingEnergy). With the two variables being considered independent
of each other, both terms are equal (from the definition provided in the Bayes formula 3.2).

Such modelling of the joint probability enables to easily adjust the probabilities to the available
knowledge we have on each building. With the example network, if we know that a build-
ing is heated with gas, the walls U value will be sampled from the probability distribution
P (WallsUvalue|ConstructionY ear,HeatingEnergy = gas) which is different from P (WallsUvalue|
ConstructionY ear,HeatingEnergy). Taking into account the available information should then
reduce the prediction error at the building level.
The training of a Bayesian network consists then in discovering the structure of the network
(i.e. making hypotheses on the variables’ independency) and in computing the probability tables
depicted in Figure 3.5. Once the network has been trained, a sampling algorithm must be used
to retrieve set of probables values from the modelled joint probability. To do so, it is common
to use a Monte Carlo Markov Chain algorithm such as the Gibbs sampling algorithm.
To summarize, Bayesian networks are a way to model joint probabilities and to offer a graphical
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representation of these joint probabilities. It relies on a set of hypotheses regarding variables
independencies. It was chosen to be used in Qiriel since it enables to:

• Represent the diversity of the building stock and account for uncertainty;

• Take into account the variables dependencies;

• Adjust the prediction to the available description of the building.

The reader interested in gaining a finer understanding of Bayesian networks is referred to the
course note of Ermon and Kuleshov [96] and to the book of Koller and Friedman [97].

In our case, we used different datasets to train different networks. The structure discovery
algorithm used to create a Bayesian network from a dataset is not detailed here, but several
examples are provided in the references cited above. The training sets we used are:

• Fichiers Détail Logement (FDL) - INSEE [98]: The FDL are an extract of the French
census located at the IRIS scale. The IRIS are an administrative division of the French
territory. Each IRIS is at most the scale of a single city and generally includes around
2000 inhabitants. Each row of the database consists in the description of an anonymised
dwelling for which the number of dwellings it represents is provided as well as its IRIS
location. For each row, the following parameters are provided:

– The construction period;

– The heating energy;

– The type of dwelling (collective housing or single houses);

– The number of occupants;

– The professional status of the occupants;

– The status of the dwelling’s occupants (Owner or tenant);

– The number of rooms of the dwelling;

– The social housing status of the dwelling (whether it is or not part of the social housing
stock);

– The type of heating systems (collective or individual);

– The surface of the dwelling provided as a range (e.g. between 30 and 40 m2).

• PHEBUS - MTE [99]: The PHEBUS database is the result of a survey led in 2013
during which 5000 households were interviewed and listed their electrical appliances along
with their energy performances. Contrarily to the two other databases presented here, this
dataset is not publicly available.

• Energy Performance Certificates (EPC) - ADEME [35]: The realisation of an
EPC is mandatory since 2012 when renting or selling a dwelling. The aim of the EPC is to
provide a framework to compare buildings thermal quality regardless of its occupancy. All
these EPC have been gathered by ADEME and have recently become publicly available.
Almost 10 million EPC’s have been gathered so far, providing an interesting picture of the
French residential building stock. However, these EPC present several flaws.

First, until July 2021, two different methods were used to rank buildings erected respec-
tively before and after 1948. Buildings built before 1948 were assessed on energy bills only,
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while buildings constructed after 1948 were assessed through a regulatory thermal model.
For buildings assessed through the regulatory thermal model, their thermal properties had
to be reported by the diagnostician. These data provide then a valuable outlook of thermal
properties for buildings built after 1948.

Second, the EPC being used as a selling argument, some of them are biased to increase the
building’s value. Major discrepancies can thus be found within a same EPC or between
different EPC made on the same building.

This database is therefore interesting because of its size but is certainly not flawless and
should be used cautiously. The following variables are used to train a Bayesian network
dedicated to the prediction of buildings thermal properties:

– The period of construction;
– DHW and heating systems types;
– Ventilation system;
– Insulation position (indoor or outdoor);
– Floor U-value;
– Roof U-value;
– Walls U-value;
– Windows U-value;
– Windows-to-wall ratio;
– Building’s inertia type.

3.1.2.2 Ad hoc validation of Qiriel

In this part, the focus is now set on the ad hoc validation of Qiriel. The aim is to propose a
framework that could be adjusted to other enrichment processes. Following the path opened by
Rosser et al. [87], a cross-validation approach was applied here. The cross-validation consists in
taking a part of the dataset for the model training and to use the other part to test the model
performances. Schetelat et al. [46] proposed statistical indicators in order to assess Bayesian
networks performances, but these indicators could be used in a broader extent to assess any
enrichment process. These indicators are:

• The log-loss;

• The Relative Information Gain (RIG);

• The loss of Mutual Information.

The log-loss The log-loss is a way to assess the performances of a probabilistic classifier,
such as the Bayesian networks, when predicting single features. Its principle is to compare the
probability of a predicted output to belong to a given category to the probability of the actual
output to belong to the same category.

Its formula is provided Equation 3.6 with H being the cross-entropy function, P (yobs) the prob-
ability of the actual output and P (ŷ) the probability of the predicted output.

H(P (yobs), P (ŷ)) =
1

n

n∑
i=1

−P (yobs) logP (ŷi)

=
1

n

n∑
i=1

− logP (ŷi = yobs,i)

(3.6)
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The proposed simplification in Equation 3.6 is explained by the probability of the actual output
which can be written as:

P (yobs = Ck) =

{
1 if yobs = Ck

0 if yobs ̸= Ck

(3.7)

When the probability to predict the right category is high, the log-loss is close to zero. If the
Bayesian network was a perfect classifier, the log-loss would be equal to zero.

The Relative Information Gain The RIG is a way to compare the performances of the
classifier to random chance. If the relative information gain is positive, the considered classifier
retrieves more information from the provided inputs than random chance. This type of metrics is
particularly interesting in our case since we would like predictions to be fitted to the information
we already know on each building. The Relative Information Gain is defined as per Equation
3.8.

RIG =
H(P (y))−H(P (yobs), P (ŷ))

H(P (y))
(3.8)

The loss of mutual information The mutual information (MI) is a mathematical tool to
assess the relationship between two variables. It is quite similar to a correlation coefficient with
the main difference that the correlation coefficient looks for a linear relationship between two
variables whereas the mutual information looks for any kind of relationship. This main difference
is illustrated Figure 3.61.

The mutual information of two variables X and Y is a measure of the difference between the
joint distribution P(X,Y) and the factored distribution P(X)P(Y), these two distributions being
equal if and only if X and Y are independent of each other. To compare two distributions p and
q, we use the Kullback-Leibler divergence presented Equation 3.9.

DKL(p∥q) =
m∑
j=1

pj log
pj
qj

= H(p, q)−H(p)

(3.9)

The mutual information of two variables X and Y is then defined as :

MI(xi, yj) = DKL(P (xi, yj)∥P (yi)× P (yj)) (3.10)

The mutual information is then used to assess how well the Bayesian network represents the
relationships among the variables. To do so, we compare the mutual information computed
on the training dataset to the mutual information computed on the predicted data. A loss
of mutual information indicates that the Bayesian network does not properly reproduce the
correlation structure of the variables.

1Since the mutual information is defined for categorical variables only, the proposed values of the normalised
mutual information were computed after a discretisation of both variables. The value of the normalised mutual
information could vary depending on the number of categories retained in the discretisation process.
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Figure 3.6: Comparison between the normalised mutual information and the Pearson
coefficient.

Application to Qiriel As described previously, Qiriel is made of three Bayesian networks:

• One trained on the Fichiers Détail Logement (FDL) to predict the number of occupants
per dwelling;

• One trained on Phebus to predict the number and the types of electrical appliances per
dwelling;

• One trained on the Energy Performance Certificates (EPC) to predict the buildings thermal
properties.

Each individual network should be assessed through cross-validation with the three indicators
described above. This process is illustrated here on the network trained on EPC, but results
obtained with the two other networks are provided in Appendix.

A dataset of 100,000 EPCs was sampled from the full database. To create this sample, we
first selected EPCs from collective housing only since the rest of the work presented in this
manuscript is applied solely to collective housing. As it will be described later, the main reason
for this choice is the lack of energy consumption measurements for single houses due to privacy
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concerns. We then reduced the database to EPCs for which there were no missing values since
the graph structure discovery algorithm does not handle well missing values. Beyond these two
first criteria, we finally sampled EPCs to respect the building stock distributions regarding three
parameters:

• The distribution of the construction years;

• The distribution of the heating energy carriers;

• The geographical distribution of buildings.

Among these 100,000 EPCs, 80,000 were sampled to train the Bayesian network and the other
20,000 were used subsequently to test the network. This process was repeated five times in total,
with different training and test sets sampled each time. It enables to study the variation of the
log-loss and the RIG when using different (though similar) training sets. This practice is known
as 5-fold cross-validation.

The graph structure obtained after the training is depicted in Figure 3.7.

U window

Heating system

DHW system

inertia
Wall insulation position

Windows-to-wall ratio

U wall

Floor insulation position

U floor

Roof insulation position
U roof

Ventilation system

Construction year

Figure 3.7: Bayesian network obtained by training on EPCs.

When testing the network, we kept the construction year as evidence, and we predicted all the
other features.

The log-loss and relative information gain obtained for each feature are presented in Table 3.1
and the loss of mutual information is depicted Figure 3.8.

When considering the RIG obtained for each feature, the overall result is satisfactory. Two
features (Roof insulation and Inertia) have a mean value standing slightly below zero which
means that for these features, the network does not retrieve well information from the evidences
that can be provided. Luckily, the other features display a RIG above zero, thus illustrating the
interest of working with such algorithm instead of a simpler approach.

A validation framework is often expected to provide threshold value for this kind of indicators
as it is the case with the BESTEST for instance. This kind of threshold should be fixed through
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Log-loss RIG

Heating system 1.99 (±0.16) 0.02 (±0.09)
DHW system 1.65 (±0.03) −0.01 (±0.02)
Ventilation system 1.20 (±0.04) 0.24 (±0.03)
Inertia 1.56 (±0.03) 0.01 (±0.03)
Wall insulation position 0.95 (±0.08) 0.23 (±0.08)
Floor insulation position 1.19 (±0.05) 0.04 (±0.05)
Roof insulation position 1.26 (±0.03) −0.01 (±0.03)
U wall 1.80 (±0.06) 0.22 (±0.03)
U floor 0.76 (±0.02) 0.07 (±0.04)
U roof 0.82 (±0.03) 0.02 (±0.06)
U window 1.85 (±0.07) 0.04 (±0.04)
Windows-to-wall ratio 2.34 (±0.02) 0.00 (±0.00)

Table 3.1: Single feature performances assessment.

a workgroup dedicated to the topic. For the moment, a temporary threshold is arbitrarily set
with the network being considered compliant if the RIG is above zero for the majority of the
features.

The performances of the network at the features scale can also be illustrated thanks to the
marginal distributions of these features as shown Figure 3.9.

On this figure, the marginal distributions of the features in the training set are depicted in blue,
the distributions as encoded in the network are depicted in orange and the distributions obtained
by sampling the network are in green. There is an overall agreement between the three marginal
distributions, although a discrepancy can be observed between the distribution of the building’s
inertia obtained via sampling and the two other distributions.

This discrepancy is a default linked to the sampler algorithm used to retrieve probable values
from the network since it is not visible in the network distribution (i.e. the tables of probability
encoded during the training of the network) which is depicted in orange. In this case, we
used the Gibbs sampling algorithm [13], which is a well-known Monte Carlo Markov Chain
algorithm. However, the error noticed on the building’s inertia should not jeopardize the rest of
the simulations, and the performances at the feature scale are then deemed acceptable.

We can now turn our attention to the loss of mutual information presented Figure 3.8. In this
figure, a positive value between two parameters indicates that the two parameters are modelled
with a weaker relationship in the Bayesian network than what they actually have in the training
set. On the contrary, a negative value corresponds to a relationship between two parameters
that has been exacerbated in the Bayesian network.

In the case displayed Figure 3.8, the mutual information loss seems pretty low for most features.
The highest loss is observed between the wall U-value and the construction year. This means
that the relationship between these two variables is not entirely accounted for by the Bayesian
network, although a link is visible in the network structure (Figure 3.7). As the walls U-value
is also linked to many other parameters, the specific influence of the construction year may be
depreciated by the other variables. Since the mutual information loss is not very high even in
this case, we consider the network as suitable for the rest of the study. Similarly to what was
done for the RIG, an arbitrary threshold is proposed for the mutual information loss at 0.1 in
absolute value.

As a conclusion, this cross-validation procedure has thus ensured that results provided by Qiriel
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Figure 3.8: Mutual Information loss.

are consistent with the available data, ensuring that there is no major issues with the used
enrichment process.
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3.2 Choice of the use cases

3.2.1 Lessons learnt from a first test case on a French department

During the study of a first test case, the annual electricity and gas consumptions were computed
for residential buildings of a hundred districts with two UBEM tools, DIMOSIM and Smart-E
[29]. Results have been presented in a paper [100] presented at uSIM 2020, and which is provided
in Appendix. The computed consumptions were compared to actual consumptions measured at
the district scale2.

The consumptions simulated by DIMOSIM and Smart-E are depicted against the measured
consumptions in Figure 3.10.

Figure 3.10: Annual measured and simulated consumptions of gas and electricity obtained for
100 districts.

It appears that on this test case, DIMOSIM overestimated the consumption while Smart-E
tended to underestimate it. We tried to explain the error with global factors characterizing the
districts such as the percentage of buildings heated with gas or the total residential floor area.
However, when studying correlations between these factors and the error as depicted Figure 3.11,
it was difficult to discriminate between the global factors to identify the most influencing ones
and when some global factors stood out it was difficult to explain why.

The only information available at the building scale was then the building geometry and con-
struction year. The rest of the parameters were inferred through the enrichment process.

From this experience, we learned two lessons.

First, we drew the conclusion that having information at the building scale in the validation
dataset is of the utmost importance in order to be able to explain the observed error. This
point is crucial even when the UBEM tool may not be accurate at the building scale. Having
information at the building scale enables to recompose aggregated information at any spatial

2When this PhD project started, there were not as much data publicly available in France as there are now.
Thus, annual electricity and gas consumptions provided by the DLE were available only at district scale when
it is now available for buildings containing ten dwellings or more. In the same trend, the energy performance
certificates (EPC) database was not available by then.
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Figure 3.11: Correlation coefficients between the error and several input parameters.

scale.

Secondly, this first attempt taught us that uncertainty needed to be quantified. There are so
many sources of uncertainty in a UBEM simulation that if it is not properly accounted for, it will
be all the more difficult to explain the observed error and conclusions could simply be pointless.

3.2.2 A choice driven by the data availability

The use cases selected to apply the proposed validation framework were chosen based, first and
foremost, on data availability. For instance, the data available to describe the buildings thermal
properties are almost inexistent for tertiary buildings whereas there is the EPC database to
describe residential buildings. Generally speaking, there is a data shortage when it comes to
understand energy consumption in tertiary buildings. For this reason, we decided to work only
on residential buildings.

As discussed in Chapter 2, a validation dataset should be large enough to test the tools on
most of their range of use and should provide with measurements taken on operating buildings.
Furthermore, to ensure the replicability of the validation procedure, publicly available data should
be used. In France, only the Données Locales de l’Énergie (DLE) matched all these criteria.
The DLE provide the annual gas and electricity consumptions for French residential buildings
containing at least ten dwellings. Such datasets are also available for industrial and tertiary
buildings. The measurements are provided at the address scale, which means that a building
is identified thanks to its address. Working on annual consumption to start the validation also
seems wise as it is the simplest output that a UBEM tool can provide, and thus enables to treat
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the basic use case of UBEM. Once this output is validated, the validation procedure could tackle
use cases requiring outputs of increasing complexity.

The use cases treated in this manuscript were thus selected based on their associated KPI: the
annual gas and electricity consumptions at the building scale. The corresponding use cases were
identified:

• Identifying buildings to first retrofit in a district;

• Evaluating the energy saving of a group of buildings being retrofitted;

• Assessing the potential for the extension of a district heating network.

3.3 Creation of a validation dataset

A validation dataset was created based on available databases to assess UBEM performances on
the chosen KPI and use cases. The databases that were used to create this validation dataset
are presented hereafter. These databases were joined together in a national buildings database
which is presented afterwards. Finally, an outlook on the buildings selected in the validation
dataset is provided.

3.3.1 Available databases

3.3.1.1 BD TOPO®

The BD TOPO® [101] is a 2.5D database providing the location, the geometry and the height
of every building in France. Relative to the CityGML framework [102], this database provides a
LoD 1 of the French building stock. Its accuracy regarding the geometry and the height of each
building varies depending on how the information was acquired (LiDAR data, orthophotography)
but is generally comprised between 1m and 2.5m. These uncertainties due to a lack of accuracy
add up to other uncertainties related to the definition of a building. For instance, the building
footprint given by the BD TOPO® often comprises the balcony and the dependences. However,
this database enables to retrieve the buildings’ layout of a district or a city and thus to identify
the adjacencies between buildings as well as the solar masks.

This database is updated via aerial photographs gradually covering the whole French territory,
so that each land plot is updated every three to four years.

3.3.1.2 Fichiers Fonciers

The Fichiers Fonciers (FF) [103] are French tax records related to buildings. They are associated
to an administrative division of the French territory, the administrative plots, each tax file being
located in one administrative plot. It contains the following information regarding the buildings
that are located within the perimeter of the plot:

• Total floor area,

• Construction year,

• Number of dwellings,

• Number of dwellings that are part of social housing,
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• Number of dwellings that are empty,

• Walls materials,

• Roof material.

These data are not publicly disclosed but can be obtained for research purposes. It is the only
data source that provides the construction year of every building in France. Among all the
databases described here, the Fichiers Fonciers are often deemed to be the most reliable and are
generally used as ground truth.

3.3.1.3 Données Locales de l’Énergie

The Données Locales de l’Énergie (DLE) are annual electricity and gas consumptions that are
provided for residential buildings with more than ten dwellings and for tertiary and industrial
buildings consuming more than 50MWh per year. To locate these buildings, a postal address
is given. The DLE are the measurements against which we aim to validate the UBEM annual
consumption. The public disclosure of these data has been enforced by law, which obliges every
distribution system operator such as Enedis or GRDF to collect these data and to publish them.
Since this obligation is quite recent at the building scale (it was previously mandatory to disclose
these data at the IRIS scale), some distribution system operators struggle to provide the data.
For instance, when considering gas consumption for residential buildings, only a very small
number is provided compared to what is expected. A better national coverage of these data
should progressively be achieved.

3.3.1.4 The Energy Performance Certificates

This database was already introduced in Section 3.1.2.1, but it is worth to mention here that
each EPC is located thanks to the building address. Furthermore, during the audit, only sur-
faces in contact with the outdoor environment are reviewed. If an EPC is made in a dwelling
which is located at an intermediate floor of a collective housing building, it will not contain any
information on floor and roof thermal properties. To retrieve properties for a whole building,
several EPC must often be grouped together.

For the creation of the validation dataset, we selected buildings for which it was possible to
have information on all thermal properties. Having access to this level of detail should help the
modeller with the error analysis during the validation process.

3.3.1.5 Joining these databases: a non-trivial problem

In order to create a validation dataset, we would like to join together all these databases in order
to have all the information associated to the building geometry. However, there is no common
identifier between these databases, thus making the joint difficult.

The BD TOPO® can be joined to the Fichiers Fonciers via a spatial joint between the buildings
footprints and the administrative plots. However, when there are several buildings footprints
within a single administrative plot, the association of the information to the right building
geometry becomes very challenging. When it comes to join the Données Locales de l’Énergie
and the EPCs, the difficulty level increases. In both databases, buildings are identified via
their postal address. However, the postal address is not a straightforward way to identify a
building. A postal address must first be translated to geographic coordinates through a step
called "geocoding". Once geographic coordinates have been obtained, it may be located far from
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the corresponding building. Examples of confusions that can occur is presented in Figure 3.12.
In this picture, the numbers above the blue points are the real building address number that
were manually checked thanks to Google StreetView whereas the numbers above the red points
are what we get with the address geocoding. In this case, we can see that it seems to be working
pretty well for buildings 5, 7 and 9 that are in the top left corner of the picture. However,
if we look at the buildings 24, 26, 28 and 30 in the center and in the bottom right corner, it
seems almost impossible to automatically associate the red points with the blue ones without
any additional information.

Figure 3.12: Example of buildings addressing issues.

This issue of buildings addressing is quite well known within the building stock modelling commu-
nity [104]. A way to solve this issue would be to create a unique and national building identifier
as it already exists in other countries (a great example has been set by Switzerland [105]). Work
is ongoing in France to follow the same path and a first trial should be proposed before the end
of 20223.

3.3.1.6 Base de Données Nationale des Bâtiments (BDNB): a step toward joining
databases

An important work has been led by the CSTB within the GoRénove project4 to join the databases
mentioned above. One of the goals of this project was to create a national database characterizing
the existing residential buildings with as much information as possible at the building scale. This
database was then to be used to give a first estimate of the energy savings and the financial gains
that one could get with retrofitting a given building.

The team project put a lot of effort on improving the join of the previously mentioned databases,
both spatially and at the address level. They developed a methodology for this join which is
publicly available on a Gitlab project [106]. Most of the joined databases are open dataset so
the part of the BDNB relying on these data is open too. However, information related to the
Fichiers Fonciers is considered sensitive and should not be made public, but may be available for
research purposes.

This PhD project closely followed the development of the BDNB, and it was then decided to
sample the validation dataset used in this manuscript from the BDNB.

3https://eig.etalab.gouv.fr/defis/batid/
4https://programmeprofeel.fr/projets/go-renove/
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3.3.2 Presentation of the obtained validation dataset

To create the validation dataset, we selected buildings from the BDNB for which a geometry
was provided. We also restrained our dataset to residential buildings with no mixed usages.
Working on purely residential buildings should reduce the number of assumptions made during
the modelling process and thus help to identify where the error can come from at the diagnosis
step.

Then, we selected buildings for which the geocoding step (i.e. the addressing of the building)
was reliable. This constraint was set in order to avoid uncertainties due to information allocation
on the wrong building.

After that, we retained buildings for which annual electricity consumption was available.

Finally, we kept buildings that had an EPC with all the thermal properties filled: this left only
1200 buildings for the validation dataset.

The number of remaining buildings in the BDNB at each step is presented on a Sankey diagram
Figure 3.13.

Figure 3.13: Sankey diagram of the buildings available to create a validation dataset.

The availability of the annual electricity consumption seems to be a major bottleneck in the
proposed buildings’ selection. This is not surprising since the availability of the DLE at the
address level is recent and many buildings are still missing in the database. It is hoped that
more data will be available in the future, which would remove this bottleneck.

Among the buildings that matched our criteria, we removed buildings with a height set to zero,
and we removed buildings for which there was an unexplainable difference between the geometry
provided by the BD TOPO® and the surface provided by the Fichiers Fonciers. It left us with
1200 buildings that were selected as the validation dataset.

These buildings are evenly spread across the French territory and the distribution of some pa-
rameters such as the construction year and the heating energy were checked and presented in
Figure 4.

The annual electricity consumption distribution presents two peaks, the first one arround 25kWh/m2

corresponds to the consumption of appliances for dwellings that are not heated with electricity
whereas the second peak would be more likely dwellings heated with electricity. The same pat-
tern is noticeable on the gas distribution, although it is less clear. In this case, it corresponds to
dwellings using gas for cooking only versus dwellings using gas as heating energy.

When considering the distribution of the construction years obtained in the validation dataset
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against the distribution provided by the Fichiers Fonciers, it can be noticed that there is a lower
representation of recent buildings in our validation dataset. The influence of this difference
should be accounted for when trying to scale the validation results to the building stock.

When considering the distribution of heating energies, it seems that a fair panel of each heating
energy is represented in the validation dataset.

Regarding the geometry characteristics of the selected buildings, the validation dataset is char-
acterised by an average total floor area of 1075m2 and an average height of 15m. The median
number of dwellings per building is 15 which corresponds to an average collective building of
four to five storeys.

Conclusion

To conclude, we discussed in this chapter the ad hoc validation of a model, DIMOSIM, along
with the ad hoc validation of a given enrichment process, Qiriel.

In the case of DIMOSIM, we used existing frameworks such as the BESTEST and the DESTEST
to assess the model performances, but we also acknowledge the fact that the model has already
been used in many studies and several theses as an endorsement of the model overall validity.

Regarding Qiriel, we presented this enrichment process built upon Bayesian networks, and we
proposed a framework commonly used in the Machine Learning field and several metrics to as-
sess its performances. This framework should enable to test other enrichment processes and to
compare their strengths and weaknesses.

We also discussed the available databases and chose a set of use cases based on data avail-
ability. The retained outputs that will be assessed in the next chapter are then the annual
electricity and gas consumptions at the building level.

Then, we created a validation dataset to assess these two outputs based on publicly available
databases. The obtained validation dataset is made of 1200 collective housing buildings for which
information regarding their thermal properties and their systems was available. Nonetheless,
due to data availability, the obtained validation dataset shows a small though noticeable bias
compared to the national building stock, and such bias should be kept in mind when studying
the results of the validation procedure.

This validation dataset is used in the next chapter to assess the performances of several UBEM
tools.
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Geographical distribution across France of the buildings selected in the validation dataset
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Figure 3.14: Dashboard of presentation of the validation dataset.
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Introduction

In this chapter, the evaluation stage of the proposed validation framework is discussed more in
depth.

As advocated in Chapter 2, the assessment of a tool should never be done without accounting
for the uncertainty surrounding the tool. The quantification of the uncertainty related to the
chosen use cases and to the validation dataset is then described extensively in a first section.

The propagation of the uncertainty is applied to a very simple UBEM, Simply, in the second
section of this chapter. By doing so, the focus is set solely on the description of the assessment
procedure and on the associated metrics.

Once the metrics have been introduced with Simply, the assessment procedure is applied to two
other tools, Calomel and Dimosim in the last section.

4.1 Quantifying the existing uncertainty

As recalled above, the uncertainty surrounding UBEM must be accounted for during the val-
idation process. The quantification of the uncertainty is the first and most critical step of an
uncertainty analysis. At this step, the modeller must decide how to represent uncertainty and
the hypotheses made here will have consequences on the observed results.

In this section, a brief introduction to uncertainty quantification is provided before applying it
to UBEM and to the considered validation test case.

4.1.1 Introduction to the uncertainty quantification

As explained in Chapter 2, the uncertainty may be modelled using different mathematical theo-
ries, but the classical approach of probability theory has been retained for the work presented in
this thesis. There exists also two types of uncertainty quantification, forward and inverse [64],
but we focus solely here on forward uncertainty quantification since the inverse uncertainty quan-
tification would not serve the process presented here. In the rest of this manuscript, uncertainty
quantification refers strictly to forward uncertainty quantification.

Within this framework, the uncertainty quantification may be split into two main steps that are:

1. Allocating a probability density function (pdf) to each uncertain variable;

2. Sampling the probability density function.

To discuss the key concepts of these two steps, let us consider an example model, Y = f(X) with
X = (x1, x2, x3) ∈ R3, on which one wishes to perform an uncertainty analysis. The uncertainty
analysis consists in this case in defining a probability density function, pX for X and then in
propagating it through the model f in order to obtain the probability density function of Y, pY .

Allocating a probability density function The first step of the uncertainty quantification
is then the definition of pX .

To do so, the information available on X should be accounted for, but so should be the information
available on Y. For instance, if Y is defined only on R+, the definition of pX should be made in
order to avoid having Y = f(X) < 0.

60



CHAPTER 4. EVALUATION: ASSESSING THE FITNESS FOR PURPOSE OF
UBEM

Furthermore, the probability density function of X should be defined in such a way as to maximize
the uncertainty on X to ensure that the uncertainty analysis leaves no blind spots.

A common practise in the uncertainty quantification field to yield a probability density function
complying with the constraints mentioned above is to use the Maximum Entropy Principle [94].
This principle relies on the Shannon entropy, defined Equation 4.1, which was first introduced
in the Information Theory field [107].

H(X) = −
n∑

i=1

−P (xi) log(P (xi)) with X a discrete random variable

Or

H(X) = −
∫
Rn

pX(x) log(pX(x))dx with X a continuous random variable

(4.1)

This mathematical function, when applied to pX , provides a measure of the uncertainty of X.
Thus, looking for the maximum of the Shannon entropy for pX is equivalent to maximizing the
uncertainty of X and, the constraints identified on X help restraining the definition space of pX
that is explored during the maximisation process.

When considering the definition of pX with X being a random vector like in the proposed ex-
ample, the dependencies among the variables should be assessed too. For instance, back to the
proposed example, if x1 and x2 are dependent but x3 is independent of them, the probability
density function can be simplified as pX(X) = px1,x2(x1, x2)·px3(x3). In this case, the probability
density functions of (x1, x2) and of x3 can be investigated separately.

When considering single independent variables, a review of the probability density functions
obtained by the Maximum Entropy Principle for classical constraints is provided in the first
supplement of the Guide in Metrology [93]. A usefull example is the case when the modeller only
knows in which interval the variable lies. In this case, the probability density function should
always be a uniform law defined on the given interval.

When considering dependent variables, the approach proposed in this manuscript is to use
Bayesian networks to simplify joint probability distributions, as described in Chapter 3.

Sampling the probability density functions Once the probability density functions (for
continuous random variables) or the probability distributions (for discrete random variables)
have been defined, procedures to draw samples from them must be defined.

Most programming languages provide the user with a pseudo-random generator whose func-
tion is to generate purely random number between 0 and 1. Such a pseudo-random generator
then provides samples from a uniform law defined on the interval [0, 1]. From these random
numbers, random variables following almost any kind of probability law can be generated. This
approach is presented as inverse-transform method by Rubinstein and Kroese [12] and use the
cumulative distribution function associated to any random variable X. A cumulative distribution
function (cdf) FX of a random variable X is defined as:

FX(x) = P (X ≤ x) (4.2)

For continuous random variables, the following relationship between the cumulative distribution
function and the probability density function stands, as long as the cumulative distribution
function is differentiable:

pX(x) =
dFX(x)

dx
(4.3)
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The cumulative distribution function of any random variable is non-decreasing and lies within
the interval [0, 1]. These two properties enable to draw a random number, u, from a uniform law
defined on [0, 1] and to derive from there a sample x from the random variable X:

x = F−1
X (u) (4.4)

This method is illustrated Figure 4.1.

Figure 4.1: Inverse transform method applied to continuous and discrete random variables
(reproduced from [12])

Randomly sampling from the interval [0, 1] then enables to generate random sample from any
distribution. Since the aim of the generated samples is to be used for uncertainty propagation,
the modellers are often interested in exploring the inputs’ probability distribution in the most
efficient way in order to reduce the number of simulations. To do so, many sampling methods have
been developed to efficiently explore the interval [0, 1]. A review of these methods is provided
by Saltelli et al. [65] and includes:

• One-at-a-time sampling;

• Fractionnal factorial sampling;

• Latin Hypercube sampling;

• Multi-variate stratified sampling;

• Quasi-Random sampling.

In the rest of this manuscript, we use the Latin Hypercube sampling approach to draw realizations
of independent variables. This choice was due to the large penetration of this sampling technic
in the literature [38, 108, 109] and to its efficiency in exploring a probability distribution.

Regarding the realizations of dependent variables, it is common to use Markov Chain Monte
Carlo algorithms to draw samples of joint distributions. The relationship between the predicted
values is naturally taken into account by such processes. In the case of Bayesian networks, the
Gibbs sampler, which belongs to the family of Markov Chain Monte Carlo algorithms, was chosen
to retrieve realizations from the trained networks based on available information. A presentation
of this algorithm is provided by Murphy in [13].

4.1.2 Uncertainty quantification applied to UBEM

In most physical models, uncertainty quantification consists in considering uncertainty for input
parameters. In the case of UBEM, the uncertainty is located at two different steps of the
simulation chain, as depicted Figure 4.2: a share of uncertainty originates from the available
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data and another share of uncertainty comes from the enrichment process. The uncertainty on
both available and enriched data must then be accounted for, although the two may be treated
slightly differently. In the following of this section, the uncertainty related to the validation
dataset introduced Chapter 3 is detailed and the uncertainty quantification for UBEM common
inputs parameters is discussed.

4.1.2.1 Uncertainty related to the validation dataset

First, let us discuss here the uncertainty pertaining to the validation dataset. The validation
dataset used here was made thanks to a join between five main sources. Uncertainty linked to
each of these sources is discussed hereafter.

Fichiers Fonciers This database is deemed to be the most reliable one. Thus, there is no
uncertainty considered on the information it provides. For instance, the construction year is
deemed to be always true. This hypothesis could be questioned if more detailed data were
available but since, to the author’s knowledge, this is not the case, the Fichiers Fonciers are
considered a reference when it comes to describe the French residential building stock. However,
some data were too partial to be used. For instance, the walls material is often provided but
with no indication regarding its thickness nor its insulation level, therefore a U-value cannot be
retrieved from there, and this information was not used.

Weather data The weather data used for this validation procedure were retrieved from the
closest weather station to each building. The weather at the precise location of the building
may be rather different, namely due to urban heat island effect. Since the modelling of such
phenomena is a complex research question on itself, the uncertainty on these weather data is not
considered here. However, offering a way to easily take into account such uncertainty would be
a great addition to the proposed validation procedure.

BD TOPO® The BD TOPO® provides the height and footprint of every building of the
validation dataset. However, this geometry is precise only up to a certain point. The level
of accuracy is provided in the BD TOPO® documentation [101] for both the height and the
building footprint. It is quite likely that both uncertainties are linked to each other, but having
no way to quantify this relationship, these data were considered independent of each other. The
uncertainty on each parameter is then modelled through a uniform law on the interval [value –
accuracy, value + accuracy] where the value is the building’s value provided by the BD TOPO®.
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Figure 4.2: Locating uncertainty along the simulation chain64
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Energy Performance Certificates The Energy Performance Certificates (EPC) database
consists in the gathering of 9 million EPC made since 2012. The quality of the provided in-
formation is questionable and varies depending on the considered variables. For instance, the
heating and the DHW systems are often considered as almost reliable since these systems can be
seen by the diagnostician who makes the EPC. However, the information may still be inaccurate
due to a refurbishment and a change of the heating system after the diagnostician’s visit. Other
parameters such as the U-value of the walls are often pure guesses or estimated based on an
abacus since the diagnostician generally does not have access to detailed drawings of the build-
ing. The assumption made in this manuscript is that EPC may be very wrong when considered
individually but still provide a good picture of the building stock thermal properties. For this
reason, EPC were used to train a Bayesian network which is used in the enrichment process and
to quantify uncertainty. To assess the influence of these data of questionable quality, simulations
with different level of details retrieved from the EPC were made:

• Level 0: No information was retrieved from the EPC at the building scale;

• Level 1: The heating, DHW and ventilation systems are retrieved from the EPC of each
building;

• Level 2: All information available in EPC are taken into account for each building.

In this chapter, we introduce results obtained for the simulation run with a Level 1 of data
availability. The results obtained with Level 0 and Level 2 are discussed in Chapter 5.

Données Locales de l’Énergie The Données Locales de l’Énergie (DLE) are the measure-
ments against which UBEM outputs are to be validated. These measurements are collected by
electricity and gas distribution system operators thanks to smart meters, but may sometimes
be rebuilt with their own models. Furthermore, the information is located at the address scale,
allowing for error when it comes to allocate these consumptions to a building. However, as there
was no better data available and no way to properly model the uncertainty on this database,
the measurements were used as is, without further modelling of their uncertainty. The main
hypothesis made here is that there is no major bias in this database.

4.1.2.2 Uncertainty quantification applied to common inputs parameters for UBEM
tools

Once the uncertainty related to the databases used in the validation dataset has been assessed,
the uncertainty on inputs parameters that are commonly required by UBEM tools can be quan-
tified. This uncertainty quantification is split into two steps, following the existing steps of the
simulation chain. First, uncertainty on inputs retrieved directly from data available on each
building is quantified. Second, uncertainty on inputs obtained through the enrichment process
is discussed.

Inputs retrieved directly from the available data The inputs retrieved directly from the
available data are:

• The roof area: the roof area is retrieved from the building footprint which is provided by
the BD TOPO®. Uncertainty on this value is computed in several steps. First, the BD
TOPO® provides a value in meter for the accuracy of the footprint. Second, a value α is
sampled from a uniform law defined on the interval [−accuracy,+accuracy]. Third, this
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value α enables to obtain an error coefficient ϵ = α
Longest edge of the footprint which scales up

or down the footprint, and consequently the roof area.

• The walls area: The uncertainty associated to the walls area comes from two sources:
the uncertainty on the footprint and the uncertainty on the height. The uncertainty on the
footprint is considered as discussed above. The uncertainty on the height of the building
is modelled through a uniform law defined on the interval [height − accuracy, height +
accuracy]. Since the walls area is computed by multiplying the footprint perimeter by the
building’s height, the uncertainty is computed likewise.

• The heating system: In this chapter, we consider this piece of information as certain.
The heating system of each building is provided by its EPC, but two common cases can
lead to a wrong heating system:

– The building underwent a refurbishment and the heating system has changed since
the diagnostician’s visit;

– Different heating systems exist within the same building. This is especially the case
for old buildings where parts of the dwellings are heated with individual gas boilers
while the rest of the dwellings have electric heaters.

This type of uncertainty is not considered in this chapter where the simulations were run
with the Level 1 of data availability. In the next chapter, uncertainty on heating system is
taken into account through the Bayesian network trained on EPC.

• The DHW system: Same assumptions as for the heating system.

• The outdoor air temperature: This piece of information is retrieved from the closest
weather station and, as discussed above, no uncertainty is considered yet on this parameter.

• The solar gains: As for the outdoor air temperature, no uncertainty is considered at the
moment on the solar gains.

Inputs obtained through the enrichment process When considering the uncertainty
quantification of inputs obtained through the enrichment process, two categories can be dis-
tinguished: the inputs that are deemed independent of the others and those that are not. Input
parameters are considered independent of each other if the mutual information computed on
existing data indicates no relationship or if there is not enough data available to quantify the
relationship with the other parameters. The uncertainty quantification associated to the inde-
pendent inputs is detailed first, followed by the uncertainty quantification of dependent inputs.

Uncertainty associated to independent inputs

• The building heated volume: To model the uncertainties of the heated volume, the
uncertainty on the building geometry presented above is retrieved. Then, the uncertainty
related to the occupation status of the building is quantified before applying a heated ratio
on the occupied surfaces. The occupation status is provided by the Fichiers Fonciers: for
each dwelling of the building, it says whether it is a vacation home, a primary residence
or a vacancy. When a dwelling is vacant, it is considered not heated. When a dwelling is
a primary residence, it is assumed to be fully occupied. In the case of a vacation home,
the occupancy rate is computed thanks to the French Time of Use survey [110]. In this
survey led in 2010, people filled in a diary with a time step of 10 minutes. When surveyed
people had a vacation home, they were asked to provide with a rough estimation of the
annual number of days they spent there. Once the annual occupation status of the building
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is computed, a heated ratio is drawn from a uniform law defined on the interval [0.4, 1.].
This interval is arbitrarily chosen and this modelling of uncertainty could be challenged
since the heated ratio is likely to be linked to the total floor area of the building. However,
there was no available data to properly confirm this hypothesis.

Once the occupation rate and the heated ratio have been computed, these two ratios
multiply and are applied to the whole geometry of the building as a scale factor. The
building geometry is shrunk accordingly to the total heated ratio, and the physical model
is then applied to this shrunken geometry.

• The total floor area: The uncertainty on the total floor area is obtained by combining
the uncertainty on the building footprint area with the uncertainty on the number of floors
since the total floor area is computed by multiplying these two values. The number of
floors is obtained by dividing the height drawn when computing the uncertainty on the
walls area by a floor height. This floor height is sampled from a uniform law defined on
the interval [2.5, 3.5].

• The heating and DHW systems’ efficiency: The systems efficiencies are sampled from
uniform law whose definition interval relied on the heating and DHW systems provided by
the EPC. These intervals are presented in Table 4.1 and Table 4.2.

Heating system System efficiency

Electric heater [0.99, 1.0]
Standard gas boiler [0.75, 0.9]
Air-air heat pump [2., 3.]
Condensing gas boiler [0.85, 0.95]
Air-water heat pump [2., 3.]
Standard oil boiler [0.75, 0.9]
Condensing oil boiler [0.85, 0.95]

Table 4.1: Heating system’s efficiency

DHW system System efficiency

Electric water heater [0.7, 0.9]
Gas boiler [0.75, 0.9]
Oil boiler [0.75, 0.9]
Thermodynamic water heater [2., 3.]

Table 4.2: DHW system’s efficiency

• The air-change rate: The air-change rate accounts here for the air changes due to both
infiltration and ventilation. Its uncertainty is modelled with a lognormal law as advised by
Nazaroff [111].

• The heating set point temperature: The heating set point is drawn from a database
of measured indoor temperature. Since they are measured temperatures, the average tem-
perature on the first thousand values of the annual profile was taken in order to assess
the set point without being influenced by the inertia of the building in which the measure
was taken. This database of measured indoor temperature was built during the PECOIC
project [112]. One of the drawbacks of this database is that none of the profiles presents a
lowering of the set point at night. Uncertainty on this practise should be accounted for in
future works.
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• The DHW needs: The PECOIC project [112] gathered DHW draw-off profiles from
previous monitoring campaigns and provided draw-off profiles depending on the number of
occupants of the dwelling. However, in order to use these profiles, the number of occupants
of each dwelling needs to be assessed. To do so, Qiriel is used to sample a number of
occupants from a Bayesian network. This Bayesian network is trained thanks to the Fichiers
Détails Logements (FDL) [98] of the French census and takes into account the known
dwelling’s surface. Once the number of occupants has been drawn, a profile corresponding
to the household size is sampled from the PECOIC database.

• The appliances electricity consumption: The uncertainty on the electricity consump-
tion of appliances is modelled thanks to a monitoring campaign, Panel ElecDom [113], that
followed the electricity consumption of appliances in a hundred French dwellings represen-
tative of France. Annual electricity consumption for appliances were provided in the final
report, and a profile is drawn from this database for each simulation.

• The internal gains: In order to model the uncertainty on the internal gains, a ratio of
conversion is applied to the electricity consumption of appliances. This ratio is drawn from
a uniform law defined on the interval [0.7, 1.2], the value above 1 enabling to account for
the metabolic gains that are due to the occupants. This interval is set arbitrarily due to
a lack of scientific publications to provide a better interval, but it could be challenged in
future works.

Uncertainty associated to dependent inputs The inputs that are deemed dependent are:

• The walls U-value;

• The roof U-value;

• The windows U-value;

• The windows-to-wall ratio.

Uncertainty on these inputs is modelled through the Bayesian network trained on EPC that
was introduced in Figure 3.7 in Chapter 3. Predictions of these inputs for a given building are
sampled from the Bayesian network parameterized with the evidences gathered for this build-
ing. Thus, the samples are taken from a probability distribution conditioned to the information
available on that building.

The hypotheses taken at this step of uncertainty quantification are summarized in Table 4.3.
In this table, U([·, ·]) symbolizes a uniform law.

4.2 Applying the validation procedure to a simple UBEM

4.2.1 Simply, a simplistic physical model to introduce the proposed validation
process

In this chapter as well as in Chapter 5, we use a simplistic physical model to introduce the main
concepts proposed in this validation framework. The aim is thus to set the focus on the proposed
procedure and metrics before applying them to more complex UBEM tools such as Dimosim.

This simplistic physical model is called Simply in the rest of this manuscript.

The model used to compute the heating needs in Simply is introduced Equation 4.5.
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Inputs retrieved directly from the available data
Variable Source Uncertainty modelling

Roof area BD TOPO® Footprint× U([−accuracy; +accuracy])
Walls area BD TOPO® Footprint× U([−accuracy; +accuracy])× U([height− accuracy;height+ accuracy])

Heating system EPC No uncertainty
DHW system EPC No uncertainty

Outdoor air temperature Weather files No uncertainty
Solar gains Weather files No uncertainty

Inputs retrieved from the enrichment process
Independent inputs

Variable Uncertainty modelling

Building heated volume U([0.4, 1])× ratiooccupation
Total floor area height

U([2.5,3.5]) ×AreaFloor

Heating system efficiency Uniform law
DHW system efficiency Uniform law

Air-change rate Lognormal law
Heating set point Drawn from measured indoor temperature (PECOIC)

DHW needs Drawn from measured DHW consumptions (PECOIC)
Appliances electricity consumption Drawn from measured appliances consumptions (Panel ElecDom)

Internal gains Appliances electricity consumption ×U([0.7, 1.2])
Dependent inputs

Walls U-value

Bayesian network trained on EPC
Floor U-value
Roof U-value

Windows U-value
Windows-to-walls ratio

Table 4.3: Hypotheses retained for the uncertainty quantification
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φheat = (Tsetpoint − Toutside) · UAglobal − 0.3 · φsolar ·Awindow − φgains ·ATotalF loor (4.5)

With the following parameters:

- φheat: The hourly heating needs;

- Tsetpoint: The heating set point temperature;

- Toutside: The outside air temperature;

- UAglobal = Uwall ·Awall +Uroof ·Aroof +Uwindow ·Awindow +AirChangeRate · Vbldg · ρair ·
(Cpair ·3600) where AirChangeRate is in volume per hour, ρair is the air density in kg.m−3

and Cpair is the specific heat of air in J.kg−1.K−1;

- φsolar: The solar gains; in this case, it is simply the sum of direct and diffuse radiations to
which was added the arbitrary coefficient 0.3 that accounts for the solar masks;

- Awindow: The windows’ area of the building;

- φgains: The internal gains; in this case, an arbitrary (although realistic) value in W.m−2;

- ATotalF loor: The total floor area of the building.

The heating needs are computed at an hourly time step for each building of the sample using
Equation 4.5. Then, the total annual electricity and gas consumptions of each building are
obtained by assigning an efficiency rate to each building’s heating system. Other consumptions
considered are those related to the domestic hot water (DHW) and to the electrical appliances.
In both cases, an arbitrary value is provided as an input to the model in W.m−2.h−1.

The complete model of Simply is displayed Equation 4.6 for the electricity consumptions and
Equation 4.7 for the gas consumptions.

φtotelec = δheatelec · φheat · rheatingSystem + δDHWelec
· φDHW · rDHWsystem + φapp (4.6)

φtotgas = δheatgas · φheat · rheatingSystem + δDHWgas · φDHW · rDHWsystem (4.7)

With the following parameters:

- φtotelec : Total annual electricity consumption;

- φtotgas : Total annual gas consumption;

-

δheatelec =

{
1 if the building is heated with electricity
0 otherwise

-

δheatgas =

{
1 if the building is heated with gas
0 otherwise

- φheat: Hourly heating needs;

- rheatingSystem: Heating system efficiency;
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-

δDHWelec
=

{
1 if the DHW is heated with electricity
0 otherwise

-

δDHWgas =

{
1 if the DHW is heated with gas
0 otherwise

- φDHW : DHW needs;

- rDHWsystem: DHW system efficiency;

- φapp: Electricity consumption of appliances.

The inputs required by Simply to compute the outputs assessed in the validation procedure are
summarized Table 4.4.

Thermal properties and systems

Walls U-value
Roof U-value
Windows U-value
Air-change rate
Set point temperature
Heating system
Heating system efficiency
DHW system
DHW system efficiency
Roof area
Windows-to-wall ratio
Building heated volume
Total floor area

Building geometry

Walls area

Weather data Outdoor air temperature
Solar gains
DHW needs
Appliances electricity consumptionOthers
Internal gains

Table 4.4: Simply input parameters

4.2.2 Applying the assessment step to Simply

Now that Simply has been introduced, it is used in this section to detail the assessment step of
the validation framework.

Such assessment is made at two spatial scales:

• The building scale: How does the tool perform when considering the results building per
building ?

• The sample scale: How does the tool behave when considering the entire validation dataset
?
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We first present the metrics used to assess the performances at the building scale by applying
them to a building retrieved from the validation dataset. Then, we define the metrics used to
assess the performance of the tool at the sample scale.

4.2.2.1 Validation at the building scale

Presentation of the selected building The building selected to introduce the metrics at
the building scale is located in the city of Rennes and is depicted Figure 4.3.

Figure 4.3: Test building randomly sampled from the validation dataset - Picture taken from
Google Maps

The main properties of this test building are provided in Table 4.5.

Postal
adress

Construction
year

Total
floor area

(m2)

Number
of

dwellings

Heating &
DHW
system

4 Square
Armand de
la Rouërie

35700
Rennes

1982 2901 36 Standard
gas boiler

Table 4.5: Main properties of the test building

Distributions of gas and electricity consumptions obtained for the test building The
uncertainty quantification described Section 4.1 allowed the generation of one hundred sets of
input parameters for the considered model. The annual gas and electricity consumptions obtained
each time by Simply are presented Figure 4.4.

On this figure, the actual measurements of gas and electricity annual consumptions obtained
thanks to the DLE are depicted in red. The distributions of consumptions obtained with Simply
for both electricity and gas are not centred around these values, thus indicating a modelling bias
of the tool for this given building.

The variations observed on the computed electricity and gas annual consumptions are due to
the variation of the input parameters through the uncertainty quantification. An illustration of
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Figure 4.4: Distributions of the annual gas and electricity consumptions obtained by Simply on
the test building

this phenomenon is provided in Figure 4.5. In this figure, the hypotheses that were made at the
uncertainty quantification step should be visible on the marginal distributions of the parameters.
If not, this reveals a problem in the numerical implementation of the uncertainty quantification.
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Figure 4.5: Variation of the annual gas consumption with respect to the heated ratio and to the
air-change rate

This kind of representation when applied to all the uncertain parameters is a first step towards
the diagnosis step of the validation procedure since it enables to identify uncertain variables that
have a great impact on the computed consumptions. The diagnosis step is discussed more in
depth in Chapter 5, but it is interesting at this step to provide this type of representations to
enable the modeller to verify that the uncertainty quantification is not off grounds.

Metrics applied to the annual consumptions distributions Once the modeller has checked
thanks to Figures 4.4 and 4.5 that the model behaves as expected, metrics to properly quantify
its error should be defined.
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First, let us define the Percentage of Error (PE) as per Equation 4.8.

PE(x) =
xestimated − xmeasured

xmeasured
· 100 (4.8)

The distributions of the percentage of error obtained on both the gas and electricity annual
consumptions are depicted Figure 4.6.
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Figure 4.6: Distributions of the percentage of error obtained by Simply on the annual gas and
electricity consumptions of the test building

We define then the residual obtained at the building scale, µbldg, as the median of the
distribution of the percentage of error. Similarly, we define the standard deviation obtained
at the building scale, σbldg, as per Equation 4.9.

σbldg =

√√√√ 1

n− 1
·

n∑
i=1

(PEi − µbldg)2

with n the number of values in the distribution

(4.9)

When considering the annual electricity consumptions distribution obtained for the test building,
Simply displays a residual µbldgelec of -17% and a standard deviation, σbldgelec , of 27%. Although
a slightly better residual, µbldggas , of -12% is obtained for the gas, the standard deviation, σbldggas ,
is higher (38%). This means that the distribution of the error on the gas consumptions is more
centred than the distribution of the error on electricity consumptions, but it is also more spread
out, thus having more configurations for which the error is very large.

4.2.2.2 Validation at the sample scale

Now that metrics have been defined to quantify the results at the building level, attention can
be turned to the sample level.

The distribution of the annual electricity and gas consumptions obtained at the sample scale are
depicted in Figure 4.7.

In this case, the distribution depicted for Simply is the distribution of the median consumption
obtained on each building. When considering the distribution of the DLE for electricity, two
groups of buildings can be identified:

• those heated with electricity;
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Figure 4.7: Distributions of the annual electricity and gas consumptions obtained at the sample
scale

• those which consume electricity only for their appliances.

This trend is reproduced in a more pronounced way by Simply.

When considering the gas, it appears that Simply tends to compute higher gas consumptions
than the DLE.

Bias and standard deviation at the sample scale Since a metric, µbldg, was defined to
assess the residual at the building scale, the distribution of the residual obtained on each building
of the sample is depicted for both gas and electricity on Figure 4.8.

Both distributions seem to be almost centred around zero, but to properly assess this bias
a metric, µsample, is defined as the median value of these residuals distributions. A
standard deviation coefficient, σsample, is also defined in the same way as σbldg. When
considering electricity, µsampleelec is worth 5% and σsampleelec is worth 105%. This means that
the residual displayed by Simply on each building of the validation dataset has an almost unbiased
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Figure 4.8: Distributions of the residual on the annual electricity and gas consumptions
obtained at the sample scale

distribution, but this same distribution displays a very high standard deviation meaning that
many buildings have a median percentage of error that is very far from zero.

Regarding gas, the bias, µsamplegas , is much higher with a value of 22%, and the standard
deviation, σsamplegas , with a value of 125%, is even higher than the standard deviation obtained
for electricity. The highest value of µsamplegas indicates namely that Simply tends to overestimate
the consumptions related to the heating and DHW needs. This corroborates the observation
made on Figure 4.7.

The very high values displayed by both σsamplegas and σsampleelec indicate that the model adequacy
to the buildings real behaviours can vary a lot depending on the selected buildings. The reasons
for such behaviour are investigated at the diagnosis step in Chapter 5.

The HPD region and the empirical coverage The two metrics introduced above enable to
give a good picture of the residuals distribution. However, these metrics do not allow a threshold
to be easily set to create a category of buildings for which the model is considered wrong. Such
threshold should be fixed while considering the level of confidence required by the use case.

Another metric is then introduced based on the Highest Posterior Density (HPD) region. This
mathematical tool is comparable to a confidence interval and its use through the validation pro-
cess is encouraged by Moser and Oliver [63]. A clear definition is provided by Murphy [13] and
is depicted Figure 4.9. The main principle is that the distributions obtained after an uncertainty
propagation can be regarded as probability densities. The highest posterior density region for a
given level of confidence α computes then the region of these densities with the most probable
points that gather (1− α) · 100 of the total mass of the given pdf.

It is then possible to compute an HPD region for each building of the validation dataset. An
example is provided in Figure 4.10 where the HPD region obtained for the test building studied
in the previous part is displayed.

It can be noticed that, in this case, the measured consumptions of gas and electricity both lie in
the HPD region computed for a confidence level of 95%. The HPD region enables then to set a
threshold regarding the UBEM performance on a given building: the measurement is contained
in the HPD region or the measurement is out of the HPD region.

Following this idea, an additional metric is proposed at the sample scale: the empirical cover-
age. The empirical coverage is simply the percentage of buildings of the validation dataset for
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Figure 4.9: Difference between central interval (a) and HPD region (b) for a multimodal pdf -
figure taken from Murphy [13]
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Figure 4.10: HPD region computed for a confidence level of 95% on the annual gas and
electricity consumptions of the test building

which the measured value lies within the HPD region. For an HPD region computed for a level
of confidence of 95%, the empirical coverage should be around 95%, that is to say that around
95% of the buildings should have their measured value within their HPD region. Normally, the
computed value of the empirical coverage should always be equal or below the given level of
confidence. Otherwise, it would reveal a misrepresentation of the uncertainty.

This metric enables then to assess how a tool behaves with regard to a given level of confi-
dence.

In the case of Simply, it displays an empirical coverage of 61% for the electricity and of 82% for
the gas for a level of confidence of 95%.

Figure 4.11 offers an illustration of the empirical coverage applied to the validation dataset.

On this figure, the median consumption obtained for each building along with its HPD region
is displayed by a dot and a line. Points for which the measurements lie within the HPD region
(the line intersects the first bisector) are set in blue whereas the buildings that do not comply
with this requirement are set in red.

When taking a closer look at the results on electricity, two trends can be identified:

• A first group of points can be found below the first bisector with a common median value
for the computed electricity consumption. These buildings are buildings using electricity
for appliances only, and the common median value comes from the way uncertainty on
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Figure 4.11: Distribution of the computed consumptions with a level of confidence of 95% in
regard with the DLE

appliances consumptions was modelled (thanks to the Panel ElecDom survey [113]).

• A second group of points lie above the first bisector. These points surely identify to
buildings heated with electricity. This would indicate that Simply overestimate the heating
needs of the buildings.

In both cases, part of the error on these buildings could come from the fact that each building was
considered having a single energy carrier for heating. Since it is not always the case as explained
previously (dwellings of the same buildings can be heated with electricity and with gas), it would
explain an overestimation of the electricity consumptions when building were considered heated
with electricity only and an underestimation of the electricity consumption in the other case.

A similar finding on heating needs can be retrieved from the gas distribution.

The results presented Figure 4.11 are the results obtained when computing an HPD region
with a level of confidence of 95% but it is interesting to study the performance of the tool when
considering different levels of confidence. Thus, the results obtained for three other levels of
confidence (80%, 60% and 50%) are displayed Figure 4.12.
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Figure 4.12: µbldg and the HPD region of each building against its DLE
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On this figure, it appears clearly that the number of buildings for which the measurement does
not fall in the HPD region increases rapidly when the level of confidence decreases. This trend
is summarized by the evolution of the empirical coverage obtained for the four different level of
confidence depicted in Figure 4.13.
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Figure 4.13: Evolution of the empirical coverage for different levels of confidence

Here, the four values displayed for both gas and electricity should always be as close as possible
to the first bisector since it would mean that, for a given level of confidence α, the tool obtains
an empirical coverage close to α.

It appears clearly on this figure that Simply performs better when predicting the annual consump-
tions of gas than the consumptions of electricity. Since the gas consumptions take into account
solely the heating and DHW needs, this illustrates a rather good behaviour of the thermal model
implemented in Simply.

4.2.2.3 A convergence study to verify the consistency of the results

The results discussed in the previous section have been obtained as a result of an uncertainty
analysis. This uncertainty analysis was run with one hundred configurations for each building of
the validation dataset. This sample size is quite small compared to what is usually recommended
for uncertainty analysis [114].

In any case, a convergence study should always be led hand in hand with an uncertainty analysis
as advocated by Soize [94]. Since Simply requires less computation time than other tools such
as Dimosim, the convergence study is conducted in this manuscript on this tool only and the
conclusions are applied as is to the other tools reviewed in the next part. Nonetheless, a thorough
modeller should verify that the convergence stands for each tool in the validation process.

The results obtained by Simply on this convergence study are introduced Figure 4.14.

On this figure, the empirical coverage obtained for four levels of confidence is plotted against
the number of samples used in the uncertainty analysis. Although there is a distinct difference
between the results obtained with 1500 samples and the results obtained with 100 samples, there
is no major shift of the trend. It appears here that the uncertainty analysis is rapidly converging,
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Figure 4.14: Evolution of the empirical coverage obtained by Simply for different number of
samples

and even if better and more robust results could be obtained with a higher number of samples,
the choice to use only 100 samples is deemed acceptable.

Now that the main steps of the assessment stage of the validation procedure have been de-
tailed, the same method can be applied to other UBEM tools. A recap of the main steps is
proposed hereafter before tackling the assessment of two other UBEM tools.
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4.2.2.4 Summary of the assessment step applied to Simply

1. Select two KPI: the annual gas and electricity consumptions at the building scale.

2. Define a validation dataset to assess these KPIs:

3. Quantifying and propagating uncertainty:

• Defining probability density functions to characterize the inputs uncertainty;
• Sampling the pdf;
• Running the simulation for each sample.

4. Computing the distribution of the percentage of error for each building:
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5. Retrieving the residual, µbldg, obtained on each building.

6. Computing the bias, µsample and the standard deviation, σsample obtained by the tool at
the sample scale.
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7. Computing the HPD region for each building:
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8. Computing the empirical coverage.

9. Interpreting the three main indicators:

• µsample;

• σsample;

• The empirical coverage.
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4.3 Applying the validation procedure to other UBEM tools

Now that metrics have been defined for the assessment step, the proposed validation methodology
can be applied to other tools.

In this section, the results obtained at the assessment step by two UBEM tools, Calomel and
Dimosim, are presented. Dimosim was introduced in Chapter 3, and Calomel is a regulatory
model used in the French EPC framework.

These two tools were chosen for different reasons. Regarding Dimosim, it is a well-established
UBEM tool, and it seemed particularly interesting to test the validation framework on an his-
torical UBEM. When considering Calomel, it enabled to test the validation framework with a
model that is more detailed than Simply but still less detailed than Dimosim. It seemed thus
interesting to study the validation of tools with different levels of detail.

A brief introduction to Calomel is provided in the next part before discussing the results obtained
at both the building level and the validation dataset level.

4.3.1 Brief description of Calomel

As mentioned above, Calomel is a regulatory model, therefore, many standard assumptions are
made regarding parameters such as the heating set point or the occupancy. All these assumptions
are described extensively in Calomel’s documentation [115].

Moreover, Calomel normally predicts only gas and electricity consumptions that are related to
the heating and DHW needs. As the DLE measure consumptions from all uses, the consumption
of household appliances has been added to the electricity consumption calculated with Calomel
as was done previously for Simply.

A comparison of the main inputs parameters required by Simply and Calomel is provided in
Table 4.6. The main difference is that the air-change rate, the set point temperature and the
DHW needs cannot be changed in Calomel since these are not exposed parameters that the
modeller can easily modify.

4.3.2 Introducing the results on the test building

The distributions of the annual gas and electricity consumptions obtained by Dimosim, Calomel
and Simply on the test building are displayed Figure 4.15.

When taking a closer look at the distributions obtained for the annual electricity consumption,
the three distributions seem to shift from the left to the right with Simply underestimating the
consumptions, Dimosim overestimating the consumptions by the same order of magnitude as
Simply and Calomel widely overestimating the consumptions. A similar behaviour can be ob-
served on the gas distributions.

The metrics defined in section 4.2.2.1 to assess the performances of UBEM tools at the building
scale are now to be applied to the three tools.

First, the distribution of the percentage of error obtained on the test building by each tool is
computed and displayed Figure 4.16.

The residual, µbldg, for the electricity ranges from −17% for Simply to 64% for Calomel with
Dimosim having an in-between value of 21%. For the gas, all tools show a better performance
with lower absolute value of the residual. When considering the standard deviations obtained
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Simply Calomel

Thermal properties
and systems

Walls U-value
Roof U-value
Windows U-value
Air-change rate Cannot be changed
Set point temperature Cannot be changed
Heating system
Heating system efficiency Cannot be changed
DHW system
DHW system efficiency Cannot be changed
Roof area
Windows-to-wall ratio
Building heated volume
Total floor area

Building geometry

Walls area

Weather data Outdoor air temperature
Solar gains
DHW needs Cannot be changed
Appliances electricity con-
sumption Manually added as for SimplyOthers
Internal gains Manually added as for Simply

Table 4.6: Comparison of the input parameters required by both Simply and Calomel

on gas and on electricity, the standard deviation obtained by the tools are generally higher for
the gas than for the electricity.

Results obtained on the test building by the three tools are summarized Table 4.7.
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Simply
20

17
102

89 -17 26 -12 39
Calomel 33 130 64 11 28 32
Dimosim 25 108 21 16 7 59

Table 4.7: Results obtained with the three tools on the test building
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Figure 4.15: Distributions of the annual gas and electricity consumptions obtained by Simply,
Calomel and Dimosim on the test building
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Figure 4.16: Distributions of the percentage of error obtained by Simply, Calomel and Dimosim
on the annual gas and electricity consumptions of the test building
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4.3.3 Introducing the results on the entire validation dataset

The focus is now set on the tools performances at the scale of the entire validation dataset. First,
the distribution of the residuals obtained on all buildings by each tool is plotted Figure 4.17.
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Figure 4.17: Distributions of the residuals obtained on the validation dataset by Simply,
Calomel and Dimosim

The distributions obtained by the three tools for the annual electricity consumptions are almost
centred in zero with a bias, µsampleelec , of 5% for Simply, 7% for Dimosim and 16% for Calomel.
When looking at the residual distribution obtained on the gas, median values, µsamplegas , range
from −21% for Dimosim to 55% for Calomel. In the case of the distribution obtained by Dimosim
for the gas, 36 buildings (i.e approximately 3% of the validation dataset) display a residual of
−100%. These buildings are buildings for which a gas measurement was provided by the DLE
but for which no gas consumption was computed by the tool. These are usually buildings for
which there was a wrong allocation of the heating system during the model parameterization.
This phenomenon does not appear for Calomel and Simply since they retrieve the information
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on the heating system from different parameters of the EPC. The bias obtained by Dimosim on
the gas would probably be closer to zero if this phenomenon was corrected.

Taking a closer look at the standard deviation on the gas, it ranges from 49% for Dimosim
to 127% for Calomel, with Simply displaying an intermediate value of 98%. There is a large
gap between the standard deviation obtained by Simply and the one obtained by Dimosim. It
reveals that the residual distribution obtained by Dimosim is less spread out than the residual
distribution obtained with Simply. Dimosim should then give way to fewer buildings with very
high residuals.

As was done in Section 4.2.2.2, the HPD region was computed for each building simulated
with each tool, along with the empirical coverage of each tool.

The HPD region and the median consumptions computed by each tool on each building are
displayed Figure 4.18.
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Figure 4.18: Distributions of the median consumptions and HPD region obtained by Simply,
Calomel and Dimosim with a 95% confidence level

The empirical coverage was also computed for different confidence level for all the tools and the
results are plotted Figure 4.19.

When looking at the empirical coverage obtained for the electricity consumptions, Dimosim and
Simply are very close to each other and closer to the first bisector than Calomel, thus displaying a
better performance than Calomel on this given metric. Surprisingly enough, Simply outperforms
all the other tools on the gas consumptions. This result can be seen as quite surprising given the
very low level of detail of this model. However, as it is a very simple thermal model, it requires
less input data than Dimosim and may therefore be less prone to divergence due to missing or
uncertain data. A more detailed analysis of these differences is carried on at the diagnosis step
of the validation framework which is discussed in the next chapter.

To finish with, the results obtained by the three tools at the sample level are summarized in
Table 4.8
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Figure 4.19: Evolution of the empirical coverage for different confidence levels for Simply,
Calomel and Dimosim

Empirical
coverage -
electricity

Empirical
coverage -

gas

µsampleelec

(%)
σsampleelec

(%)
µsamplegas

(%)
σsamplegas

(%)

Simply 0.61 0.81 5 105 22 98
Dimosim 0.58 0.75 7 75 -21 49
Calomel 0.41 0.53 16 78 55 127

Table 4.8: Results obtained with the three tools at the sample level

Conclusion

In this chapter, the assessment stage of the validation methodology was detailed.

It starts with the quantification of the uncertainty. This first step consists in identifying the
uncertainty related to the data used in the validation dataset, and in defining probability distri-
butions representing the uncertainty on each input parameters. Distinction was made between
independent and correlated inputs.

Once the uncertainty has been quantified, its propagation consists in running the model for
each set of input parameters. Metrics to assess the obtained results are then first defined at
the building scale before being studied at the sample scale. Thus, we defined the residual at
the building scale, µbldg, which is the median value of the distribution of the percentage of er-
ror obtained on each building. Two metrics were defined at the sample scale to quantify the
distribution of the residuals obtained on the entire validation dataset: the bias, µsample, and
the standard deviation, σsample. Finally, to assess the behaviour of the tool with regard to the
expected confidence level, a last metric, the empirical coverage, was defined.

The validation procedure was then applied to two other tools: Dimosim and Calomel. The
metrics defined above were applied to these two tools and enabled an inter-model comparison
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between Simply, Dimosim and Calomel.

Dimosim and Simply display better results on the electricity annual consumptions than Calomel,
while Simply takes the lead on the gas annual consumptions.

The assessment stage defined in this chapter has made it possible to quantitatively evaluate
UBEM tools, but a validation procedure cannot be limited to the assessment of the models and
must also propose indicators to help the modellers in the diagnosis of their tools’ weaknesses.
The diagnosis stage of the validation procedure is then presented in the next chapter.
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Introduction

In the previous chapter, a procedure to assess UBEM tools based on uncertainty was introduced
along with a set of metrics to properly quantify the tools performances. These metrics enabled
to give a score to each tested tool. This score is rarely as high as the modeller would expect.
A stage of diagnostic is then necessary following the assessment stage to understand where the
weaknesses of the tools are located and how to improve the tools’ score.

Several reasons could explain a bad score, among which are the following:

• The input data is of poor quality ("garbage in, garbage out");

• The enrichment process is faulty;

• The physical model is faulty;

• The hypotheses made for the uncertainty quantification are inappropriate.

These reasons can be grouped in three error sources:

• the data;

• the UBEM itself ;

• the application of the validation framework.

It is difficult to distinguish between these three sources, but to help gain some clarity on the
subject, several sub-questions can be studied :

1. Is it possible to identify parameters that have an influence on the error at the
sample scale?

2. Is it possible to identify parameters driving the error for each building?

3. Is it possible to identify groups of buildings with a similar error behaviour?

None of these questions can strictly distinguish between the three error sources by itself, but the
results obtained for each one when compared with the others should help identify trends and
to understand if one of the sources (the data, the UBEM or the application of the validation
framework) is more responsible for the error than the two others.

The results obtained by Simply, Calomel and Dimosim are studied in the light of these three
sub-questions. Since the same validation procedure was applied to the three tools with the same
enrichment process, the comparison of the behaviour displayed by each of these tools on each of
the sub-questions should help understand more precisely the influence of the physical model on
the error.

UBEM users are often faced with different levels of data availability from one case study to
another, therefore modifying the way the physical model of the UBEM is parameterized. To
understand how this change in the model’s parameterization can influence the results of a UBEM,
a study is led here with different levels of data availability. The approach chosen here was to
remove the uncertainty from the data that was deemed available, therefore this study also enables
to question the way the validation framework was applied, namely by challenging the uncertainty
quantification step.
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5.1 Presentation of the diagnostic stage applied to Simply

The Percentage of Error (PE) was defined in the Chapter 4 to measure the error made by the
tool for each simulated configuration of a given building. Distributions of percentage of error
were obtained for each building such as the one displayed in Figure 5.1.
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Figure 5.1: Distributions of the percentage of error obtained by Simply on the annual gas and
electricity consumptions for the test building

Each of these distributions was characterized thanks to two metrics:

• µbldg, the residual defined as the median of the distribution of the percentage of error;

• σbldg, the standard deviation of the distribution of the percentage of error.

Studying these two metrics should help enlighten the three questions mentioned above and
provide some insights regarding the behaviour of the tool towards the error.

5.1.1 Identification of parameters influencing the error at the sample scale

In this part, we try to identify parameters characterizing the error obtained on the whole vali-
dation dataset. To do so, the distribution of residuals obtained on the whole sample is studied.
The variation of the residual from one building to another should be explained by parameters
that characterize each building such as the energy carrier for heating or the construction year.

To identify a potential relationship between the residual and these parameters, the mutual infor-
mation was computed between the residuals obtained by Simply for all buildings of the validation
dataset and the main characteristics of each building. Some parameters characterizing a build-
ing were deemed uncertain in the validation procedure, such as the walls U-value. Since the
distribution of the walls U-value used for the uncertainty propagation may differ from one build-
ing to another, each building was characterized by the mean of its walls U-values used in the
uncertainty propagation. The same approach was applied to the main uncertain parameters.

The mutual information obtained between the residuals, for both electricity and gas, and the
characteristics of the buildings is shown in Figure 5.2.

Two parameters exhibit a value of mutual information with the residual that is much higher than
the other parameters: the energy carrier for heating and the energy carrier for DHW.

This means that there is a noticeable relationship between these two parameters and the residual,
and that the variation of the residual could be explained based on the values of these two
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Figure 5.2: Mutual information computed between the residual, µbldg, and buildings
characteristics

parameters. This insight is illustrated in Figure 5.3. On this graph, the values of µbldg have
been plotted against the values of the two influential parameters and against the values of a
non-influential parameter (the unified degree-days). The difference of influence on the error is
clearly visible between the energy carrier for heating and DHW and the unified degree-days.
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Figure 5.3: Relationship between uncertain parameters and the residual
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This first step, the identification of parameters influencing the error at the sample scale, has then
enabled to identify two buildings characteristics that could play a role in the error: the energy
carrier for heating and the energy carrier for DHW. Regarding these two parameters, they were
considered as certain during the uncertainty quantification. The energy carrier for heating and
the energy carrier for DHW are provided by the EPC of each building and are generally regarded
as the most reliable information that can be retrieved from the EPC since diagnosticians that
make the EPC have generally access to the heating and DHW systems of the dwelling they
survey.

At this stage, the influence of these two parameters on the error could be explained by two
different causes:

• The heating and the DHW energy carriers provided by the EPC are not consistent with
the actual consumptions of gas and electricity provided by the DLE;

• The UBEM displays an error that depends on the part of the model that drives the energy
consumption.

Considering that the data is in this case regarded as quite reliable, the error is most likely to
come from the second cause. This hypothesis is conforted by the Figure 5.3 where the residual
distribution for electricity for buildings heated with gas seems to be much narrower than the one
for buildings heated with electricity. This would mean that the part of the tool modelling the
consumptions of appliances generates a smaller error than the part modelling the heating needs.

In order to understand more precisely what explains the error, the parameters influencing the
error for each building are then studied.

5.1.2 Identification of parameters influencing the error at building scale

Now that parameters have been identified at the sample scale as influencing the distribution of
the residuals, a focus is offered here to understand what explains the variation of the percentage
of error displayed by each building such as the one presented Figure 5.1.

Identifying parameters influencing the error is usually done using classical approaches of sensi-
tivity analysis. However, since the correlations among input parameters were taken into account
during the uncertainty quantification, these approaches are not applicable as is here [65]. Instead,
the mutual information is used to identify parameters with the greatest influence on the error.
The procedure used to identify influencing parameters for each building is first introduced on the
test building that was used in Chapter 4. Next, it is applied to every building of the validation
dataset.

5.1.2.1 Identifying parameters with an influence on the error for a given building

The distributions of the percentage of error obtained with Simply on the test building for elec-
tricity and gas consumptions is provided in Figure 5.4 as a reminder. As it was detailed in
Chapter 4, the test building is located in Rennes, France, and its heating and DHW needs are
covered thanks to a standard collective gas boiler (see Table 4.5 for a summary of its properties).

With this in mind, the goal is now to identify uncertain parameters explaining the variation of
the distributions depicted in Figure 5.4.

To do so, the mutual information between the percentage of error obtained for each simulated
configuration of the building and the values of the uncertain parameters for the same configura-
tion is computed.
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Figure 5.4: Distributions of the percentage of error obtained by Simply on the annual gas and
electricity consumptions of the test building

The results are shown in Figure 5.5. The reader attention is drawn to the fact that the mutual
information presented here is not normalised unlike mutual information tables presented before.
This means that there is no upper bound for the possible values of mutual information. The
normalisation enables to set an upper bound at 1 for the mutual information which makes it easier
to analyse when considering a mutual information vector by itself. However, the normalisation is
made based on the dataset used to compute the mutual information and is therefore dependent
on the dataset related to each individual building.

Since it would be interesting to compare the ranking of the parameters influencing the most the
error from one building to another, it requires to work with non-normalised mutual information
in order to be able to compare the obtained values among the buildings of the validation dataset.
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Figure 5.5: Mutual information between the percentage of error and uncertain parameters

When working with non-normalised mutual information, it may be harder to discriminate be-
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tween meaningful parameters and random noise. In this case, the modeller’s knowledge of the
model should be used to set a threshold.

For instance, when looking at Figure 5.5, the percentage of error on electricity is highly linked
to the heated ratio. Since the test building is not heated with electricity, it may seem surprising
at first. However, the value provided for appliances consumption is in kWh/m2/year and is then
multiplied by the total floor area of the building to obtain the actual electricity consumption
related to appliances. The total floor area depends on the heated ratio which scales up or down
the building geometry at the beginning of the simulation. This explains why this heated ratio
appears with such a high value of mutual information.

Conversely, since the building is not heated with electricity, Equation 4.6 clearly shows that
the heating system efficiency cannot influence the electricity consumption (there is no auxiliary
consumptions considered by Simply). On this vector of mutual information, it can then be
determined that values below 0.23 are the image of random noise and should not be considered.
This threshold is linked to this particular vector of mutual information, but its value would likely
be different for another vector.

When looking at the vector of mutual information obtained for the error on the gas consumptions,
the four most influencing parameters are:

1. The air-change rate;

2. The walls U-value;

3. The windows U-value;

4. The heated ratio.

This seems well appropriate since the building is heated with gas.

As described for the vector for electricity, it is also possible here to define a lower bound below
which the mutual information values are random noise. In the case of Simply, the floor U-value
is not a parameter of the model as it can be seen Equation 4.5. The values of mutual information
below 0.12 may then be considered in this example as random noise.

For this given building, the parameters that seem to drive the error are pretty consistent with
influencing parameters that can be found in the literature when sensitivity analysis is applied
to Building Energy Models. This conclusion would indicate that the physical model behaves as
expected and that the error comes from the fact that the main parameters are not well known.
In this case, the error could originate from the input data, from the enrichment process or from
the way uncertainty was modelled.

5.1.2.2 Identifying parameters with an influence on the error for every building of
the validation dataset

Now that a procedure to identify parameters influencing the error for a given building has been
described, it can be applied to every building in the validation dataset. By doing so, it should
be possible to reinforce the conclusion outlined above or to discard it.

The mutual information values obtained by all buildings between the percentage of error and
uncertain parameters are displayed in Figure 5.6.

Since the energy carrier for heating was identified in section 5.1.1 as a parameter strongly in-
fluencing the residual, the buildings were separated based on their heating energy carrier. The
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Figure 5.6: Mutual information between the percentage of error on the electricity and gas
consumptions and the uncertain parameters for all buildings of the validation dataset

distribution of values obtained by all buildings of the validation dataset for the mutual infor-
mation between the percentage of error and each uncertain parameter enables then to identify
parameters influencing the error, depending on the heating energy carrier of the buildings.

For instance, it appears that the heated ratio is the parameter with the greatest influence on
the error on electricity consumptions for all the buildings that are not heated with electricity.
Conversely, the error on electricity consumptions is mainly influenced by the walls U-value for
the buildings that are heated with electricity.

When looking at the vector of mutual information obtained for the error on the gas consumptions,
very high values of mutual information can be observed for the DHW needs for buildings heated
with electricity. It probably corresponds to buildings not heated with gas but for which the
energy carrier for DHW is gas. In this case, it seems normal to have a high link between the
error on the gas consumptions and the DHW needs.

5.1.3 Identification of buildings with a similar behaviour towards the error

To go further in the analysis, groups of buildings with a similar behaviour towards the error are
identified. Parameters with the greatest influence on the error could then be determined for each
group of buildings.

To create groups of elements within a dataset, it is a common practise to reduce the dimensional-
ity in order to be able to visualise the dataset in a 2D plane. To do so, the well-known approach
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of Principal Components Analysis (PCA) was selected. Two main reasons dictated this choice:

• The eigenvectors obtained through a PCA and used to project the dataset in a space of
reduced dimension are a linear combination of the input parameters that can be interpreted;

• The PCA is a well-known approach, already used in the building energy modelling field
(such as in [57]), and using a common statistical tool should help with the diffusion of the
proposed validation framework.

The main idea behind the PCA is to create a new basis of vector and to identify the share of
variation of the dataset explained by each vector of the new basis. If a few vectors explain the
majority of the dataset variation, it is possible to reduce the number of vectors of the basis to
the ones that are deemed meaningful, and thus to reduce the dimension of the space in which
the dataset is projected. To verify that, the eigenvalues associated with each eigenvector of the
new basis are plotted in Figure 5.7. These values are directly interpretable as the share of the
dataset variation explained by each associated vector [116]. It seems then legitimate to reduce
the number of eigenvectors to two in this case.
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Figure 5.7: Share of variance explained by the first five eigenvectors obtained via PCA

The projection of the dataset in the plane formed by the first two eigenvectors obtained with the
PCA are displayed in Figure 5.8.
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Figure 5.8: Projection of the mutual information table on the two-dimension space obtained via
PCA - coloured based on the heating energy carrier

Each point in the scatter plot corresponds to a vector of mutual information for a given building.
When looking at Figure 5.8 displaying the error on the electricity consumptions, the colour
scheme clearly highlights two groups: buildings heated with electricity and buildings not heated
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with electricity. It may be noticed that electrically heated buildings are located on the left-hand
side of the first eigenvector axis, whereas the other buildings are mainly located on the right-hand
side of this axis.

It is interesting then to take a look at the eigenvectors which are a linear combination of the
initial parameters. The eigenvectors obtained for electricity and gas are displayed Figure 5.9.
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Figure 5.9: Eigenvectors obtained via PCA

Let us first analyse the results obtained with the PCA for the error on the electricity consump-
tions. Among the two eigenvectors, the first one explains the highest part of the variance of the
vectors of mutual information. It is then studied first.

This first eigenvector displays values that are both positive and negative. The parameters with
positive values characterise the buildings located along the positive side of the first eigenvector
axis. On the contrary, the parameters with negative values characterise the buildings located
along the negative side of the axis.

Back to the ranking of uncertain parameters in the first eigenvector obtained for electricity, there
is one very high positive value: the heated ratio. This means that buildings that are not heated
with electricity have an error on the electricity consumptions linked to the heated ratio. Since
the heated ratio influences greatly the building total floor area which is in turn used to compute
the electricity consumption for appliances in Simply, this result is considered convincing.

Regarding parameters with negative values, the four most important ones are:
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• The walls U-value;

• The DHW needs;

• The air-change rate;

• The windows U-value.

These four parameters have then an influence on the error on the electricity consumptions for
electrically heated buildings. This seems plausible too, considering the thermal model used in
Simply.

Let us consider now the second eigenvector obtained for electricity, it explains a lower part of the
variance, but it may nonetheless provide interesting insights. In this case, only two parameters
stand out: the DHW needs with a positive value and the walls U-value with a negative value. To
explain these two values it is worthy to look at the scatter plot with a different colour scheme.
In Figure 5.10, the buildings have been coloured depending on the energy carrier for domestic
hot water instead of the energy carrier for heating.
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Figure 5.10: Projection of the mutual information table on the two-dimension space obtained
via PCA - coloured based on the DHW energy carrier

A subgroup of buildings appears when comparing Figure 5.10 and Figure 5.8: buildings heated
with gas but using electricity as energy carrier for domestic hot water. These buildings are lo-
cated in the top left corner of the scatter plot obtained for electricity, and it seems then normal
for these buildings to have an error on the electricity consumption influenced by the DHW needs.
For the buildings electrically heated and using electricity for DHW, it seems that the walls U-
value is still the most influencing parameter.

The focus is now set on the analysis of the PCA applied to the error on gas consumptions.
In this case, two groups of buildings are also visible although the buildings are not evenly di-
vided between these two groups. The first eigenvector for the gas displays the same kind of
values as the second eigenvector for electricity: the DHW needs and the walls U-value have high
absolute value though with opposite signs. It seems that the small group of buildings located on
the right-hand side of the scatter plot have an error on gas consumptions mainly explained by
the DHW needs. The conclusion is not as clear as it was for electricity since there is no clear
difference between Figure 5.8 and Figure 5.10 on the energy carrier used for heating or DHW.
This group of buildings may correspond to a group of buildings with very low heating needs and
for which the error on gas consumptions would be mainly driven by the DHW needs.

In addition, the second eigenvector displays positive values for the air-change rate and the roof
U-value, and negative values for the walls U-value and the DHW needs. This could illustrate a
variety of behaviour towards the error within the group of buildings heated with gas.
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The analysis led here indicates no major issue as to the behaviour of the physical model: the
parameters influencing the error for each group of buildings seem quite natural given the com-
mon characteristics of each group of building. This would then put the blame on the data, on
the enrichment process or on the way uncertainty was modelled, i.e. the way the validation
framework was applied. Applying the same analysis to other tools and with different levels of
data availability should help distinguish between these possibilities.

5.1.4 Summary of the diagnostic stage applied to Simply

In this section, the diagnostic stage of the validation framework developed in this manuscript
was introduced and applied to a first UBEM tool, Simply.

This diagnostic stage articulates itself around three main points:

1. Identifying parameters that have an influence on the error at the sample scale;

2. Identifying parameters driving the error for each building;

3. Identifying groups of buildings with a similar behaviour towards the error.

These three points should help identify which cause is the most responsible for the error between
the data, the UBEM and the application of the validation framework.

When studying the parameters with an influence on the error at the sample scale, the energy
carrier for heating and the energy carrier for DHW stood out. This indicated that the UBEM
has a different behaviour towards the error depending on the part of the model at stake.

The parameters driving the error at the building scale were then identified for each building of
the validation dataset. They are quite distinct depending on the heating energy carrier of the
buildings.

Groups of buildings with similar behaviour towards the error could then be defined. The buildings
naturally grouped by heating and DHW energy carriers and parameters with an influence on the
error could be retrieved for each group.

The parameters obtained are quite consistent with the expected energy behaviour of each building
depending on the heating energy carrier. This would indicate that the physical model behaves in
an appropriate way for each group of buildings and that the error is more likely then to originate
from the data, from the enrichment process or from the uncertainty quantification.

5.2 Applying the diagnostic stage to other tools

Now that the diagnostic procedure has been introduced, it can be applied to Calomel and Di-
mosim, and results obtained for the three tools can be compared. As it was done for Simply,
the parameters influencing the error at the sample scale are studied first. Then, the parameters
influencing the error at the building scale are identified and groups of buildings with similar
behaviour towards the error are distinguished.

5.2.1 Identification of parameters influencing the error at the sample scale

In this part, the distribution of residual obtained on the whole validation dataset is studied. The
mutual information between the residual and the buildings characteristics is computed for the
three tools and the results are provided Figure 5.11.
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Figure 5.11: Mutual information computed between the residual and building’s characteristics

When looking at the mutual information obtained for the error on the gas consumptions, the
three tools display a very similar behaviour; all depicting high values of mutual information
between the heating energy carrier and the residual and between the DHW energy carrier and
the residual.

However, there is no such thing when considering the values of mutual information obtained for
the residual on electricity consumptions. The values of mutual information displayed by both
Calomel and Dimosim are all very low and no parameter stands out. It is then difficult to draw
any conclusion regarding the parameters that could influence the median error on electricity for
these two tools. The next steps are all the more important in this case, and should help gain a
better understanding of these tools’ behaviour.

5.2.2 Identification of parameters influencing the error at building scale

As it was explained above, a vector of mutual information is computed for each building between
the uncertain parameters characterizing the building and the percentage of error. These vectors
are depicted for the whole validation dataset and for the three tools in Figure 5.12 and in Figure
5.13. Once again, the buildings were split and coloured depending on their heating energy carrier.

It can be noticed immediately that the three tools display very different values of mutual infor-
mation. For instance, for the error on the electricity consumptions, Simply displays a high value
of mutual information between the percentage of error and the heated ratio for buildings that
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are not heated with electricity whereas, in the case of Calomel and Dimosim, it is the appliances
consumptions factor that stands out. As for the gas, the strongest relationship with the error
seems to come from the walls U-value for Simply and Calomel while the air-change rate seems
to be more influential in the case of Dimosim.

5.2.3 Identification of buildings with a similar behaviour towards the error

In order to determine groups of buildings with a similar behaviour towards the error, a principal
component analysis is performed for each tool. The results obtained by the three tools are
summarized in Figure 5.14 and in Figure 5.15.

The first observation that can be done on this figure is that the results of the PCA is very
different from one tool to another. In most cases, the two first eigenvectors explain a great share
of the initial dataset variance, but in two cases, for Calomel on the error on electricity and for
Dimosim on the error on gas, the second eigenvector should not be considered since the associate
share of explained variance is too low.

When focusing on the results obtained for electricity, Dimosim displays three groups of buildings,
the two most important ones being the buildings heated with electricity and the buildings heated
with gas. These two groups are spread almost perpendicular to each other. The group of elec-
trically heated buildings is spread along the second eigenvector axis while the group of buildings
heated with gas is spread along the first eigenvector axis. Two similar groups can be noticed for
Calomel, but their spread is solely explained by the first eigenvector, their distribution along the
second axis being meaningless since the share of variance explained by the second eigenvector is
negligible. In the case of Simply, a similar trend to the one observed for Dimosim is noticeable
although less pronounced.

When considering the values of the eigenvectors obtained for electricity, the appliances’ con-
sumption stands out at first glance from the first eigenvectors of Dimosim and Calomel, while it
is the heated ratio for Simply. When considering the second eigenvectors, the DHW needs stand
out for both Dimosim and Simply. The complete absence of this parameter in the eigenvectors
obtained with Calomel is a good signal since the DHW needs could not be modified in Calomel
as explained in Chapter 4 (see section 4.3.1 for more details). This parameter being kept at a
pre-set value in this tool, it could not explain the variance of the error obtained by Calomel at
building scale.

The attention is now turned to the error on gas. The scatter plots obtained for Dimosim and
Simply are very similar to one another while the points displayed for Calomel seem more randomly
spread out. The first eigenvectors obtained for both Dimosim and Simply show the highest
value for the same parameter (the DHW needs). However, the similarity stops there. Simply
displays then high values for the walls U-value, followed by the windows U-value, whereas for
Dimosim, the air-change rate and the heated ratio take jointly the second rank. When looking
at the eigenvectors obtained for Calomel, they both display high absolute values for the thermal
parameters (walls, floor, roof U-values and insulation position).
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Figure 5.12: Vectors of mutual information between uncertain parameters and percentage of
error obtained on electricity consumptions for the buildings of the validation dataset and for

three UBEM
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Figure 5.13: Vectors of mutual information between uncertain parameters and percentage of
error obtained on gas consumptions for the buildings of the validation dataset and for three

UBEM
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Taking a step back, this analysis of the error on both gas and electricity enabled to identify three
configurations of buildings that could have a different behaviour towards the error. First, thanks
to the PCA applied to the three tools for the error on electricity consumptions, two groups of
buildings could be distinguished:

• Buildings for which the appliances consumption drives the error on electricity;

• Buildings for which the thermal needs drive the error on electricity.

Next, with the PCA applied to the error on gas, the category of buildings whose thermal needs
were identified as driving the error on energy consumption could be subdivided into two cate-
gories:

• Buildings for which the error on the energy consumption is driven by the DHW needs;

• Buildings for which the error on the energy consumption is driven by the heating needs.

This behaviour observed for the gas can also be noticed for the error on electricity once the
buildings for which the error is driven by the appliances’ consumption have been set aside. For
instance, the same order of influencing parameters (DHW needs, air-change rate, heated ratio)
is visible in the second eigenvector for electricity and the first eigenvector for gas obtained with
Dimosim.

For these three configurations of buildings, the parameters with the greatest influence on the
error could be determined. These results are summarized in Table 5.1.

Parameters influencing the error on
Electricity consumption Gas consumption

Buildings
with error
on energy
consump-

tion
driven by:

Simply Calomel Dimosim Simply Calomel Dimosim

Appliances
consump-

tions

Heated
ratio

Appliances
consump-

tion

Appliances
consump-

tion - - -

DHW
needs

DHW
needs n/a

DHW
needs

DHW
needs n/a

DHW
needs

Heating
needs

Walls
U-value

Walls
U-value

Air-change
rate and
Heated
ratio

Walls
U-value

Walls
U-value

Air-change
rate and
Heated
ratio

Table 5.1: Results obtained thanks to the analysis on the error variance

The group of buildings for which the variance of the error was driven by the DHW needs could
not be studied for Calomel since this tool does not allow for the parameterisation of DHW needs
making it impossible to analyse the uncertainty on this input.

The diagnostic stage applied to the three tools enabled then to identify groups of buildings
with a similar behaviour towards the error and to identify influencing input parameters for each
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group. Among the reasons indicated in introduction of this chapter that could explain the tools’
deviation from reality, this diagnostic stage enabled to rule out at least one of them. Since the
identified trends were pretty similar from one tool to another, it indicates that the main error is
likely to originate from another source than the physical models. The remaining causes for the
error are then:

• The data quality;

• The enrichment process;

• The way uncertainty was accounted for.

It is rather difficult to rule out the data quality since it is difficult to obtain a reference that
could enable to characterize the quality level of the data. However, it is possible to study how
the enrichment process and the uncertainty modify the tools’ behaviour. The impact of these
two processes are on the model parameterisation. In order to study the impact of the model
parameterisation, the assessment and the diagnostic procedures were applied to the three tools
for two other levels of available input data. This work is introduced hereafter.

5.3 Studying the influence of different levels of detail on the tools
performances

In this section, the impact of data availability on UBEM performances is discussed. To do so,
simulations were run using Simply for three levels of data availability. For each of these levels,
an increasing share of information was retrieved from the validation dataset. The information
taken into account for each level and for each input parameter is detailed in Table 5.2.

It can be summarized as follows:

• Level 0: no information is retrieved from the EPC available on each building;

• Level 1: the heating and DHW systems of each building are retrieved from the available
EPC;

• Level 2: the heating and DHW systems, the roof, walls and windows U-value and the
windows-to-wall ratio are retrieved for each building from the available EPC (i.e. there is
no uncertainty modelled on these parameters).

The results displayed in the previous sections were obtained for the level 1 of data availability.

The share of uncertainty is then reduced when the level of data availability increases and so is
the influence of the enrichment process since more and more parameters are known and thus not
set through the enrichment process.

A first analysis of the evolution of the electricity and gas consumptions obtained for the three
levels of data availability is discussed below before applying the validation procedure.
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Figure 5.14: Results of principal components analysis applied to vectors of mutual information
for the error on electricity consumptions for Simply, Calomel and Dimosim
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Figure 5.15: Results of principal components analysis applied to vectors of mutual information
for the error on gas consumptions for Simply, Calomel and Dimosim
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ratio Unknown Unknown Retrieved from the building’s

EPC - no uncertainty
Building heated

volume
Retrieved from BD TOPO®

with uncertainty
Retrieved from BD TOPO®

with uncertainty
Retrieved from BD TOPO®

with uncertainty

Total floor area Retrieved from BD TOPO®
with uncertainty

Retrieved from BD TOPO®
with uncertainty

Retrieved from BD TOPO®
with uncertainty

Building
geometry

Walls area Retrieved from BD TOPO®
with uncertainty

Retrieved from BD TOPO®
with uncertainty

Retrieved from BD TOPO®
with uncertainty

Weather data
Outdoor air
temperature

Retrieved from weather file - no
uncertainty

Retrieved from weather file - no
uncertainty

Retrieved from weather file - no
uncertainty

Solar gains Retrieved from weather file - no
uncertainty

Retrieved from weather file - no
uncertainty

Retrieved from weather file - no
uncertainty

DHW needs Unknown Unknown Unknown
Appliances
electricity

consumption
Unknown Unknown Unknown

Others
Internal gains Unknown Unknown Unknown

Table 5.2: Known and uncertain parameters for the three levels of data availability
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5.3.1 Evolution of the simulated consumptions with regard to data availabil-
ity

In this section, a first outlook of the simulated consumptions obtained with Simply for each
building and for each level of data availability is discussed. To do so, the distribution of the
mean and of the standard deviation of the consumptions obtained for each building and for each
level of data are displayed Figure 5.16.
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Figure 5.16: Evolution of the mean and standard deviation of the consumptions obtained for
each building between the three levels of data availability

First, as expected, the standard deviation of the consumptions obtained on each building de-
creases rapidly when more information is added. This is reassuring regarding the quality of the
uncertainty quantification.

Then, it can be noticed that the distribution of the mean consumptions is more spread out when
shifting from the level 0 of data availability to the level 1. This phenomenon is a natural conse-
quence of the knowledge or lack of knowledge of the heating and DHW systems and highlights
the proper modelling of uncertainty on these two parameters. It is easier to understand when
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Figure 5.17: Evolution of the gas and
electricity consumptions obtained for a

building heated with electricity
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Figure 5.18: Evolution of the gas and
electricity consumptions obtained for a

building heated with gas

considering the energy consumptions displayed by two buildings, one heated with electricity and
one heated with gas. As displayed Figure 5.17, the mean of the electricity consumptions obtained
for the building heated with electricity increases when switching from level 0 to level 1. Similarly,
the mean of the gas consumptions decreases for this same building. This is due to the fact that
for level 0, the heating and DHW systems are unknown. Thus, for some configurations, the
buildings will have electric heater and for other configuration, it will have a gas boiler. The av-
erage of the electricity consumptions on all the configurations is then naturally lower than in the
case where all the configurations are set with a electric heater. Conversely, it can be seen Figure
5.18, that the mean electricity consumption for a building heated with gas decreases whereas its
mean gas consumption increases when switching from level 0 to level 1. The differences of the
mean consumptions between level 0 and level 1 for these two buildings explain, when generalized
to the whole sample, the fact that distribution of mean consumptions appears to be more spread
out in level 1 than in level 0.

Looking back at Figure 5.16, the distribution of mean consumptions obtained at level 2 seems to
be shifted towards the high consumptions compared to the distribution obtained at level 1. The
difference between the two levels lies in the thermal properties: in level 1, the walls, roof and
windows U-value are not fixed and a probable set of values is sampled from a Bayesian network
trained on the database of EPC for each building configuration whereas in level 2, these values
are kept fixed for all the configurations of a given building. This difference challenges then the
enrichment process used here. When comparing the two distributions of mean consumptions,
they should be similar as long as the training set used to train the Bayesian network is similar
to the validation dataset. The two datasets are compared in Figure 5.19. A bias is visible with
an over-representation of old buildings in the validation dataset compared to the training set.
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Figure 5.19: Comparison between the validation dataset and the training set used to train the
Bayesian network
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This difference induces more poor values of U-values at level 2 compare to level 1 which explains
higher mean consumptions for the level 2.

Now that the evolution of the consumptions obtained by Simply on the three levels of data avail-
ability has been discussed, the assessment procedure can be applied to each set of simulations.
The variation of performances displayed by Simply from one level of data availability to another
could then be assessed. The conclusions of this study are introduced in the following section.

5.3.2 Assessment stage applied to three levels of data availability

The metrics introduced in Chapter 4 were applied here to the consumptions obtained with Simply
for the three levels of detail. The distributions of the residuals obtained for the three levels on
electricity and gas are displayed respectively in Figure 5.20 and Figure 5.21.
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Figure 5.20: Distributions of residuals obtained with Simply for the three levels of data
availability on electricity
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Figure 5.21: Distributions of residuals obtained with Simply for the three levels of data
availability on gas

Looking at the distributions of residuals obtained for electricity, the three distributions are
almost centred around zero. It seems that the quantity of available data has then no impact
on the median of these distributions, µsample. However, the standard deviation of these same
distributions, σsample, seems to be more sensitive to the data availability: it decreases between
level 0 and level 1, but increases between level 1 and level 2. This behaviour is quite surprising,
it would have been expected for the standard deviation to decrease gradually when the quantity
of available data increases. On the contrary, it is observed here an increase of the standard
deviation between level 1 and level 2, meaning that there are more buildings with a high residual
when the thermal properties are retrieved directly from the EPC available for each building
than when uncertainty is modelled on thermal properties. Two main reasons could explain this
phenomenon:

• The EPC provide a good picture of the building stock but taken individually, each EPC
struggles to adequately describe the building it is supposed to assess.

• By fixing the thermal properties and thus reducing the modelled uncertainty, another bias
is revealed that was not visible before.
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It is at the moment difficult to arbitrate between these two possibilities and both should be kept
under the spotlights for the rest of the analysis.

When it comes to the residual distributions for gas, a clear improvement of the bias, µsample,
is visible between level 0 and level 1, and it stabilizes between level 1 and level 2. Regarding
the standard deviation, it steadily increases from level 0 to level 2. This trend would advocate
in favour of the second reason (another bias) explaining the behaviour of standard deviation on
electricity: with more parameters set to a fixed value, a bias becomes more visible. The argument
behind is that the difference between level 0 and level 1 is the heating and DHW systems which
are known for each building in level 1. The heating and DHW systems are the parameters that
should be the most reliable among all the data provided by the EPC since these systems are
reviewed by the auditors making the EPC of the building. An increase in standard deviation
between level 0 and level 1 is then more likely to originate from a bias being revealed rather than
from issues on all EPC regarding the buildings heating and DHW systems.

Since the level of data availability changes the number of parameters that are deemed uncertain,
it is interesting to compare the HPD region obtained by the buildings between the three levels.
This comparison is shown Figure 5.22. As it was done in Chapter 4, each point represents the
median of the computed consumptions for a building plotted against its DLE and the vertical
line displays the associated HPD region. The buildings for which the DLE lies within the HPD
region (i.e. the vertical line intersects the first bisector) are set in blue whereas buildings for
which the DLE is outside the HPD region are set in red.

It appears on this figure that the number of buildings for which the DLE is outside the HPD region
increases when switching from level 0 to level 1 and from level 1 to level 2. In the meantime, it
seems that the simulated consumptions have a stronger correlation with the actual consumption
provided by the DLE when the level of data availability increases. For instance, when looking at
the graph displaying HPD regions for electricity with a level 0 of data availability, the electricity
consumptions computed with Simply seem to have the same distribution independently of the
real consumptions provided by the DLE. However, when considering the same graph for level
2, a bias is clearly visible, but it also seems that the simulated consumptions increase when the
consumptions provided by the DLE increase.

To properly quantify this phenomenon, the mutual information between the median simulated
consumptions and the DLE has been computed for electricity and gas for each level of data
availability. The results are presented in Table 5.3

MI - Electricity MI - Gas

Level 0 0.03 0.04
Level 1 0.20 0.07
Level 2 0.19 0.09

Table 5.3: Mutual information between measurements and simulated consumptions for the
three levels of data availability

A steady increase of the mutual information between the simulated and measured gas consump-
tions can be noticed. Considering electricity, a huge increase in mutual information is visible
between level 0 and level 1, but it then deteriorates between level 1 and level 2. This means that
the uncertainty is so high at level 0 that it completely dominates the simulated consumptions
making the tool unable to adequately simulate each building. The buildings all show a very
large variation in simulated consumptions, which artificially increases the number of buildings
catching the DLE within their HPD region, but this shows that with so little information avail-
able, the modellers should never try to simulate consumptions at building scale without taking
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uncertainty into account, as a single simulation for each building would most likely be wrong.

This conclusion is reinforced by the empirical coverage computed for the three levels of data
availability and presented Figure 21.

The empirical coverage obtained for the level 0 for electricity displays a value above the first
bisector for the confidence level of 80% which indicates a complete domination of the results by
the uncertainty. As expected after reviewing Figure 5.22, the empirical coverage is also better
for level 1 than for level 2.

In order to gain a better understanding of the differences between the three levels of data avail-
ability that have been assessed here, the diagnostic stage is applied to the three sets of simulation
in the following section.

5.3.3 Diagnostic stage applied to three levels of data availability

5.3.3.1 Identification of parameters influencing the error at the sample scale

As it was done previously, the diagnostic stage starts with the identification of the parameters
that influence the most the error at the sample scale. The mutual information between the
residuals and characteristics of each building was computed for the three levels of data availability
and the results are presented Figure 5.24.

The heating and DHW systems stand out as influencing parameters for both level 1 and level
2. However, since these two parameters were deemed uncertain at level 0, their influence on the
simulations at level 0 cannot be assessed here. It can be noticed that no other parameter takes
the lead at level 0 to explain the residuals. It is not surprising given the homogeneity of the
consumptions distributions noticed in Figure 5.22.
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Figure 5.22: µbldg and the HPD region of each building against its DLE for three levels of data
availability
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Figure 5.24: Mutual information between the residual and building’s characteristics for three
levels of data availability
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5.3.3.2 Identification of parameters influencing the error at building scale

This first analysis on the residual is followed by an analysis of the variance of the error at building
scale. Vectors of mutual information were computed for each building between the percentage
of error and the uncertain parameters. These vectors are depicted for the three levels of details
and for gas and electricity on Figure 5.25 and Figure 5.26.

The colour scheme in this case is based on the real heating energy carrier of each building.
Looking at the vectors obtained for level 0, it appears clearly that buildings display the same
kind of mutual information independently of their heating energy carrier. This makes sense as
this parameter was deemed unknown at this level. However, it can be noticed for this same level
that all buildings display a very high value for mutual information between their percentage of
error and the heating system and between the percentage of error and DHW system. In this
case too, the heating and DHW energy carriers drive the error. Comparing level 1 and level 2,
there is no clear difference at this point. Influencing parameters observed for level 2 seems to be
in the same ranking as they were for level 1.

5.3.3.3 Identification of buildings with a similar behaviour towards the error

To verify the trends highlighted above, a PCA was run for each level of data availability and the
results are introduced hereafter in Figure 5.27 and in Figure 5.28.

It can be noticed immediately that the results of the PCA are very different in level 0 from
what they are for level 1 and level 2. In levels 1 and 2, groups of buildings based on the heating
energy carrier are clearly visible whereas the buildings seem more randomly spread out in the
plane for level 0. Studying the eigenvectors, the heating and DHW systems stand out as the
most influencing parameters in the first eigenvectors for gas and electricity obtained at level 0
by Simply. However, the parameters identified as influencing in section 5.1.2.2, the DHW needs,
the walls U-value and the heated ratio, are noticeable in the second eigenvector for electricity of
level 0. On the contrary, they do not stand out at all in the eigenvectors obtained at level 0 for
the gas. It is interesting to see that they appear then clearly even in the eigenvectors obtained at
level 1, once the heating and the DHW systems have been fixed. Similarly, the walls U-value is
kept at a fixed value in level 2 which reveals two other influencing parameters behind the DHW
needs and the heated ratio: the set point temperature and the air-change rate.

These parameters could then explain the bias highlighted in Figure 5.22 for level 2. Having a
better knowledge of the DHW needs, the appliances consumptions, the set point temperature
and the air-change rate could then improve the results obtained for level 2.

To strengthen this insight, the same work was led on Calomel and Dimosim, and the results are
displayed in the following section.

5.3.4 Comparing the influence of different levels of details on three tools’
performances

In this part, the aim is not so much to study each tool’s results in depth, but rather to analyse
whether the trends identified above are confirmed when applying the same procedure to other
tools. For this reason, not all figures related to Calomel and Dimosim’s results will be introduced
here, but the reader who would like to study in detail the results of each of these tools will find
all the required figures in the Appendix.

First, the HPD region along with the residual obtained by Dimosim and Calomel for each building
are plotted against their DLE for the three levels of data availability in Figure 5.29 and Figure
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Figure 5.25: Vectors of mutual information between uncertain parameters and percentage of
error on electricity consumption obtained for the buildings of the validation dataset and for

three levels of data availability
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Figure 5.26: Vectors of mutual information between uncertain parameters and percentage of
error on gas consumption obtained for the buildings of the validation dataset and for three

levels of data availability
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Figure 5.27: Results of principal components analysis applied to vectors of mutual information
for the error on electricity consumption for three levels of data availability
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Figure 5.28: Results of principal components analysis applied to vectors of mutual information
for the error on gas consumption for three levels of data availability
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5.30. The apparition of a bias, becoming stronger as the level of data availability increases,
is immediately visible for Calomel whereas the trend is less distinct for Dimosim. Since fewer
parameters are considered uncertain in Calomel’s simulations, the HPD region displayed by each
building is significantly smaller than the one displayed in the case of Dimosim. Consequently,
the number of buildings for which the HPD region does not intersect with the DLE is higher for
Calomel than for Dimosim. It is especially visible for the gas for the level 2 of data availability
where almost all the buildings simulated with Calomel display a DLE outside the HPD region.
In this case, uncertainty was modelled on only three input parameters for Calomel while it was
modelled on nine parameters for Dimosim.

Mutual information between residuals and buildings characteristics was then computed for both
Calomel and Dimosim, and results are displayed respectively Figure 5.31 and Figure 5.32.

In both cases, there is no significant parameters standing out to explain the residuals obtained
on electricity. However, the heating and the DHW systems both are significant when it comes
to the residual on gas for levels 1 and 2. Regarding level 0 of data availability, no parameter
appears to have an influence on the residual. As it was observed for Simply, the HPD region
and the residual obtained with Dimosim for each building seem to be completely independent of
the actual measured consumption of the building which explains that no significant parameters
was identified here. However, when looking at the values obtained with Calomel for electricity,
two groups of buildings are to be distinguished: a group of buildings with a residual around 25
kWh/m2 and another group with residuals contained in the interval [30kWh/m2, 200kWh/m2].
This phenomenon comes from the way the uncertainty was modelled on the heating and DHW
systems. These systems were predicted from a Bayesian network for each configuration of each
building, based on what was known from the building (in this case, the construction year). The
probability distribution of having heating system fuelled with gas or with electricity is then
slightly different from a building to another depending on the construction year. Some buildings
have then a higher probability to have a heating system fuelled with electricity than to have a
heating system with a different energy carrier. These buildings are then the ones with a residual
contained in the interval [30kWh/m2, 200kWh/m2]. It is most likely that this phenomenon
would be visible for Simply and Dimosim as well if their bias was as important as the one shown
by Calomel.

Since the study on the residuals proved to be insufficient to explain the error at level 0, vectors
of mutual information were computed between the percentage of error of each building and its
uncertain parameters for both Calomel and Dimosim. The results are shown respectively Figures
5.33 and 5.34 and Figures 5.35 annd 5.36.
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Figure 5.29: µbldg and the HPD region of each building obtained with Calomel against its DLE
for three levels of data availability
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Figure 5.30: µbldg and the HPD region of each building obtained with Dimosim against its DLE
for three levels of data availability
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Figure 5.31: Mutual information between the residual obtained with Calomel and buildings
characteristics for three levels of data availability
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Figure 5.32: Mutual information between the residual obtained with Dimosim and buildings
characteristics for three levels of data availability
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It can be noticed for both tools that the heating and the DHW systems seem to influence
greatly the percentage of error for the level 0 on both gas and electricity. However, focussing
on electricity, it appears that the appliances consumptions also stands out for Calomel. A same
trend is visible for Dimosim although with a lower intensity.

Looking at the vectors of mutual information obtained for the level 2, three parameters are
noticeable as having an influence on the error on gas: the heated ratio, the air-change rate and
the DHW needs. The two first were also noticeable for Simply. On the contrary, none of the
three remaining uncertain parameters used in Calomel seem to impact the error. This would
indicate that the bias highlighted on this tool originates from parameters that were kept outside
this uncertainty analysis.

To push further the analysis, a PCA was run on the vectors of mutual information obtained for
Calomel and Dimosim. The results are presented in Figures 5.37 and 5.38 and in Figures 5.39
and 5.40.

The same trend as the one observed on the scatter plots for Simply is also apparent here for
Calomel and Dimosim: the points seem randomly spread in the plane at level 0 while two groups
of buildings are clearly discernible at level 1 and level 2. The distribution of the points in the
plane is also very similar between level 1 and level 2 for all tools.

Apart from that, the results obtained with Calomel for level 2 are not of much help, the PCA
being even unnecessary in this case since the dimension of the vectors of mutual information is
already small in this case.

In spite of that, the results obtained with Dimosim are similar to what was observed for Simply:
once parameters with an influence on the error at the inferior level of data availability are set at
a fixed value thanks to observations available on each building, other parameters influencing the
error can be revealed. In the case of the error on gas consumptions with Dimosim, the heated
ratio and the air-change rate are then highlighted in the second eigenvector for obtained for the
level 2 of data availability once the thermal properties have been set to a fixed value.

The analysis conducted on Calomel and Dimosim enabled then to identify trends similar to the
one that were noticed for Simply: a bias reveals itself when the level of data availability increases
and the level of uncertainty decreases. This bias is explained by parameters for which data is
unavailable such as the DHW needs and the appliances consumptions. It also shows that having
thermal properties of buildings does not suffice to adequately simulate the annual electricity and
gas consumptions at the building scale.

135



CHAPTER 5. DIAGNOSIS: UNDERSTANDING THE WEAKNESSES OF UBEM

Heatin
g syste

m

DHW
syste

m

Appliances
consumptio

ns

Ventila
tio

n syste
m

Walls
U-value

Roof U-value

Windows U-value

Windows-t
o-wall ratio

Heated
ratio

Heig
ht

Floor U-value

Walls
insulatio

n positi
on

Build
ing’s inert

ia

Roof insulatio
n positi

on

Floor insulatio
n positi

on
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
I

w
it

h
th

e
P

E

Electricity - Level 0

Energy carrier for heating

Gas

Electricity

Other

Appliances
consumptio

ns

Walls
U-value

Roof U-value

Windows U-value

Floor U-value

Windows-t
o-wall ratio

Heated
ratio

Heig
ht

Walls
insulatio

n positi
on

Roof insulatio
n positi

on

Build
ing’s inert

ia

Floor insulatio
n positi

on
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
I

w
it

h
th

e
P

E

Electricity - Level 1

Energy carrier for heating

Gas

Electricity

Other

Appliances
consumptio

ns

Heated
ratio

Heig
ht

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
I

w
it

h
th

e
P

E

Electricity - Level 2

Energy carrier for heating

Gas

Electricity

Other

Figure 5.33: Vectors of mutual information between uncertain parameters and percentage of
error on electricity consumptions obtained for the buildings of the validation dataset with

Calomel and for three levels of data availability
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Figure 5.34: Vectors of mutual information between uncertain parameters and percentage of
error on gas consumptions obtained for the buildings of the validation dataset with Calomel

and for three levels of data availability
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Figure 5.35: Vectors of mutual information between uncertain parameters and percentage of
error on electricity consumptions obtained for the buildings of the validation dataset with

Dimosim and for three levels of data availability
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Figure 5.36: Vectors of mutual information between uncertain parameters and percentage of
error on gas consumptions obtained for the buildings of the validation dataset with Dimosim

and for three levels of data availability
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Figure 5.37: Results of principal components analysis applied to vectors of mutual information
obtained for error on electricity consumptions with Calomel for three levels of data availability
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Figure 5.38: Results of principal components analysis applied to vectors of mutual information
obtained for error on gas consumptions with Calomel for three levels of data availability
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Figure 5.39: Results of principal components analysis applied to vectors of mutual information
obtained for error on electricity consumptions with Dimosim for three levels of data availability
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Figure 5.40: Results of principal components analysis applied to vectors of mutual information
obtained for error on gas consumptions with Dimosim for three levels of data availability
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Conclusion

A diagnostic procedure was introduced in this chapter to help understand the error displayed by
UBEM tools at the assessment step of this validation framework.

The aim of this procedure was to distinguish between three main possible causes for the error:

• the data;

• the UBEM;

• the way the validation framework was applied.

To help understand which one of these three causes could be the most influential one, three
aspects were studied:

1. The parameters with an impact on the error at the sample scale were retrieved;

2. The parameters explaining the variation of the error for each building were identified;

3. Groups of buildings with a similar behaviour towards the error were defined.

It was then identified that buildings with the same energy carrier for heating and for DHW have
a similar behaviour towards the error. Parameters driving the error for each group of buildings
were identified thanks to a PCA.

The same procedure was applied to three tools that all displayed a similar behaviour. This
enabled to discard the physical model as one of the cause of error.

In order to identify between the three remaining sources of error (the data quality, the enrichment
process and the uncertainty quantification) the most influent one, another survey was led with a
varying level of data availability. Although this survey did not permit to fully assess the influence
of data quality, it enabled to study the impact of the model parameterisation. Indeed, with more
data available, the level of uncertainty that was accounted for decreases (once the value for a
parameter is known, no uncertainty is accounted for in this case) along with the influence of the
enrichment process (since the value of the parameter is known, the enrichment process is not
required for this input anymore). Thus, if the error decreases when the level of data availability
increases, it implies that the enrichment process is biased and generates a large part of the error.
On the contrary, if the error is not impacted by the addition of information, it implies that the
physical model used is not sensitive to the new information.

In this case, it appeared that the uncertainty quantification was completely driving the tool
behaviour when almost no information was retrieved from the dataset. Then, when more in-
formation becomes available, a clear although biased relationship between the simulated and
measured consumptions appears. This bias seems to be mostly driven by parameters for which
no information was available: the DHW needs and the appliances consumptions. In this case, it
implies that the uncertainty quantification on these parameters was not well adjusted. Having
more information on these parameters should then help improve significantly the results obtained
by the three tools.
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Conclusion and main contributions

As it was described at the beginning of this manuscript, Urban Building Energy Models are
decision-support tools that are designed to assist cities in their energy transition. In order
to ensure that these tools provide a real aid to the decision process, their reliability must be
challenged. A validation framework dedicated to UBEM was then developed in this thesis to
verify their fitness for purpose.

UBEM are defined as decision-support tool able to model energy consumptions at the building
scale for a hundred to several thousands of buildings (Chapter 1). In most cases, UBEM suffer
from data scarcity which makes impossible to know all the inputs required by the physical model
for the simulation of the buildings’ energy behaviour. To overcome this issue, several strategies
are implemented and are identified as the enrichment process. At this stage, many hypotheses
are made which risk to jeopardize the final results provided by the UBEM.

Regarding the physical models used in UBEM, several levels of model complexity can be found
from one tool to another. The two most common approaches are the use of an existing Building
Energy Model or the use of a Resistance-Capacitance model.

The tools found in the UBEM field are then very diverse and so are the decision-making processes
they are involved in. A review of the most common use cases was provided in this chapter. The
UBEM outputs used in the decision-making process for each use case were identified along with
the weight they have on the final decision and the preciseness which is then expected from these
outputs.

Since many UBEM use a BEM as their physical model, it was interesting to study the validation
frameworks existing for BEM (Chapter 2). These tools have benefitted from several research
projects on the topic such as the BESTEST or the PASSYS project. Although validation ap-
proaches such as the BESTEST are very interesting to identify parts of the models that could
be faulty, they do not enable to test the tools under their real conditions of use.

Regarding the validation of UBEM, a project was launched to create a DESTEST with the
same approach as the BESTEST. A synthetic district was then created and several UBEM were
compared on this test case. Such approach is interesting to identify weaknesses in numerical
implementations and to compare intrinsic performances of the physical models. However, it does
not permit to test the whole UBEM since it leaves aside the enrichment process, all parameters
being perfectly known. Examples of empirical validation applied to UBEM can also be found in
the scientific literature, but they are rarely replicable, and there is a lack of a common framework
enabling the comparison of results from one paper to another.

In order to overcome the identified limitations in UBEM validation, a validation framework was
then proposed. The proposal is to validate UBEM per use case and to assess the output on real
data while taking into account the uncertainty surrounding the simulation. As a reminder, this
validation framework is described in Figure 6.1.

The method used for the ad hoc validation of the enrichment process and the physical model was
then discussed in Chapter 3. The ad hoc validation of the enrichment process uses common
practise from the machine learning field while the ad hoc validation of the physical model is
based on the BESTEST and DESTEST.

A first set of use cases were then chosen for a first application of the validation framework. This
choice was made based on the databases that were publicly available and that provided energy
measurements for a large number of buildings. The UBEM outputs selected were then the annual
electricity consumption and the annual gas consumption at the building scale.

The creation of a validation dataset to assess UBEM on the chosen use cases was then described.
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Next, the evaluation stage of the validation framework was detailed in Chapter 4. It starts
with the presentation of the uncertainty quantification. This step is of the utmost importance
since it influences all the results of the validation process, and it must be adapted to every new
validation dataset. Then, the whole evaluation procedure was introduced on a very simple tool,
Simply. Indicators were proposed to assess the tool performances such as the residual and the
empirical coverage. The evaluation stage was then applied to Calomel and Dimosim, and the
results obtained by the three tools were compared.

In order to gain a better understanding of the error, a diagnostic stage was proposed in Chapter
5. The aim of this procedure was to distinguish between three main possible causes for the error:
the data; the UBEM and the way the validation framework was applied.

To help understand which one of these three causes could be the most influential, three aspects
were studied:

1. The parameters with an impact on the error at the sample scale were retrieved;

2. The parameters explaining the variation of the error for each building were identified;

3. Groups of buildings with a similar behaviour towards the error were defined.

It was then identified that buildings with the same energy carrier for heating and for DHW have
a similar behaviour towards the error. Parameters driving the error for each group of buildings
were identified thanks to a PCA.

The same procedure was applied to three tools that all displayed a similar behaviour. This
enabled to discard the physical model as one of the causes of error.

In order to identify between the three remaining sources of error (the data quality, the enrichment
process and the uncertainty quantification) the most influent one, another survey was led with a
varying level of data availability. Although this survey did not permit to fully assess the influence
of data quality, it enabled to study the impact of the model parameterisation.

It appeared that the uncertainty quantification was completely driving the tool behaviour when
almost no information was retrieved from the dataset. Then, when more information becomes
available, a clear although biased relationship between the simulated and measured consumptions
appears. This bias seems to be mostly driven by parameters for which no information was
available: the DHW needs and the appliances consumptions. In this case, it implies that the
uncertainty quantification on these parameters was not well adjusted. Having more information
on these parameters should then help improve significantly the results obtained by the three
tools.

Outlook

As it was highlighted above, a validation framework dedicated to UBEM was proposed in this
thesis and applied to a first set of use cases and to three different tools. However, several aspects
of the work presented here would require more research.

First, as explained above, the uncertainty quantification influences greatly the results of the
validation procedure, and, as such, this step should be challenged by further research works.
The hypotheses selected to model uncertainty on each input variable could then be examined
and their impact on the final results could be studied. For instance, no uncertainty was considered
on the parameters related to the weather but the uncertainty on parameters such as the outdoor
temperature is probably high, namely in urban area due to the urban heat island effect. Modelling
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uncertainty on the outdoor temperature would then help assess the tools under more realistic
conditions and would enable to assess the influence of this given parameter on the error.

Second, only a specific enrichment process, Qiriel, was studied in this manuscript. It would be
interesting to test the same physical models with different approaches for the enrichment process.
It would namely be interesting to study the tools performances when the enrichment process is
based on deterministic archetypes.

Third, in order to understand how robust are the results obtained here by the three tools, it
would be interesting to run the validation framework for the same use cases and for the same
tools but with a completely different validation dataset. Similar databases as the one used to
create the validation dataset used in this manuscript are available in most European countries
and in the USA. It would be possible then to create similar validation datasets and to study the
evolution of the tools performances from one validation dataset to another.

Lastly but more importantly, the validation framework applied here to assess tools performances
on annual energy consumptions at the building scale should be adapted to the assessment of
dynamic outputs such as electric load profiles or thermal load profiles. The general method as
introduced Chapter 2 should be applicable as is, but the indicators provided here are well-fitted
to the evaluation of static outputs only, and other indicators should be proposed in the case of
dynamic outputs.

To summarize, this thesis started the development of a validation framework dedicated to UBEM.
Many of the tools weaknesses were highlighted along with the influence of uncertainty on the
value displayed by a UBEM output. Every modeller should always keep in mind that even
though a tool has been tested through a validation framework, it should never be considered
as entirely validated, especially in the case of UBEM where so much uncertainty can interfere.
The results provided by a UBEM should then always be taken with caution and an indication
on the uncertainty level should always be provided with the results themselves. Ultimately,
understanding and addressing the weaknesses of UBEM would help these tools to provide more
adequate and reliable support to decision-makers in the decision-making process for which they
are used.
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Use case 1
 KPI A

Accuracy level A

Use case 2
 KPI A

Accuracy level B

Use case 3
 KPI A

Accuracy level C

Use case 4
 KPI B

Accuracy level A'

Creating a 
validation dataset

Quantifying 
uncertainty on 
available data

Propagating 
uncertainty through 
UBEM simulation
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between measured 
KPI and UBEM 

output
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Does the UBEM output 
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use case?

Use case n
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Accuracy level Y'

Ad hoc validation of the enrichment 
process

Ad hoc validation of the physical model
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Figure 6.1: Validation framework for UBEM: a proposal
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Résumé long en français

Chapitre 1 : Panorama des outils de simulation énergétique ur-
baine

Introduction

Avec 75% des consommations mondiales d’énergie primaire concentré dans les zones urbaines
[15], les villes ont rapidement été identifiées comme des acteurs incontournables de la transition
écologique. Elles disposent notamment d’un pouvoir politique suffisant pour implémenter de
nombreuses mesures en faveur de l’environnement dans de nombreux domaines tels que la gestion
des déchets, la gestion de l’eau, la biodiversité ou encore les consommations d’énergie. Il semble
d’ailleurs que les bâtiments soient un angle d’attaque particulièrement intéressant pour réduire
les consommations d’énergie.

Pour aider les villes à réduire les consommations d’énergie liées aux bâtiments, des outils d’aide à
la décision ont été développés par la communauté scientifique parmi lesquels se trouvent les outils
de simulation énergétique urbaine aussi appelés UBEM pour Urban Building Energy Models. Les
UBEM sont des outils d’aide à la décision capables de modéliser les consommations d’énergie à
l’échelle bâtiment sur des échelles spatiales allant généralement du quartier à la ville. L’objectif
est donc d’aider les décideurs à arbitrer entre plusieurs scénarios énergétiques en modélisant
l’impact de chaque scénario sur les consommations d’énergie des bâtiments.

Afin de modéliser le comportement énergétique de chaque bâtiment, les outils de simulation én-
ergétique urbaine utilisent pour beaucoup des modèles de simulation thermique dynamique du
bâtiment, mais peuvent aussi avoir recours à des modèles de machine learning ou à des modèles
physiques simplifiés. Quel que soit le type de modèle choisi, l’obtention des données nécessaires à
l’instanciation des outils reste la plupart du temps problématique. Par exemple, s’il est générale-
ment possible de connaître précisément pour un bâtiment donné le type d’isolant installé ainsi
que la qualité des vitrages, il est rare de disposer de toutes ces informations pour tout un quartier
ou pour toute une ville. Pour palier le manque de données précises décrivant chaque bâtiment,
des stratégies ont été développées afin de compléter les informations manquantes pour la simu-
lation à l’aide d’enquêtes nationales. Ce processus est qualifié ici de processus d’enrichissement
des données.

Si l’enrichissement des données est nécessaire pour permettre de modéliser plusieurs centaines de
bâtiments à la fois, les hypothèses faites à cette étape risquent de nuire à la qualité des résultats
obtenus en sortie de simulation par les outils de simulation énergétique urbaine. Il est donc
important de vérifier que malgré toutes les hypothèses faites, les outils de simulation énergétique
urbaine fournissent des résultats suffisamment fiables au regard des processus de décision dans
lesquels ils sont impliqués.

L’objectif de cette thèse est donc de développer un processus de validation perme-
ttant de vérifier l’adéquation des UBEM aux processus de décision dans lesquels ils
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sont utilisés.

Pour cela, il est nécessaire de dresser tout d’abord un panorama complet des outils de simulation
énergétique urbaine puis de se pencher sur les différents processus de décision dans lesquels ces
outils sont impliqués.

Panorama des outils de simulation énergétique urbaine

Les outils de simulation énergétique urbaine ont donc été définis comme des outils d’aide à
la décision capable de modéliser le comportement énergétique de plusieurs bâtiments en même
temps. La procédure de simulation implémentée dans les outils de simulation énergétique urbaine
est présentée Figure 1.

Données 
disponibles

UBEM
Enrichissement 

des données
Modèle 

physique

Figure 1: Principales étapes de simulation pour les outils de simulation énergétique urbaine

Elle se compose de trois grandes étapes :

1. Collecte des données disponibles pour décrire chaque bâtiment à modéliser;

2. Enrichissement des données manquantes à l’aide d’enquêtes nationales;

3. Modélisation du comportement physique de chaque bâtiment.

Les données disponibles à l’échelle bâtiment sont généralement assez similaires d’un cas à l’autre
et contiennent souvent la géométrie du bâtiment et son année de construction. Pour ce qui est
de la modélisation du comportement physique du bâtiment, cela fait généralement intervenir
plusieurs modèles interconnectés modélisant quatre grands phénomènes : l’occupation, la météo,
les systèmes et l’enveloppe du bâtiment. Pour chacune de ces catégories, différents niveaux de
détail de modèles peuvent être utilisés dans les UBEM.

De même, différentes approches existent pour le processus d’enrichissement des données permet-
tant de représenter les bâtiments avec une diversité plus ou moins importante suivant l’approche
choisie.

Processus de décisions associés aux outils de simulation énergétique urbaine

Une revue des processus de décisions associés aux outils de simulation énergétique urbaine est
présentée en détail dans ce chapitre et est synthétisée Figure 2.

La plupart des cas d’usages des outils de simulation énergétique urbaine, ainsi que les processus
de décision associés, découlent de la volonté des villes d’agir face au changement climatique.
Pour chaque cas d’usage identifié Figure 2, la sortie de l’outil de simulation énergétique urbaine
utilisée dans le processus de décision a été identifiée. En outre, la fiabilité de la sortie attendue au
regard du processus de décision associé a également été évaluée. En effet, suivant le cas d’usage,
l’impact de la sortie d’un UBEM sur la décision finale peut beaucoup varier et le niveau d’attente
quant à la fiabilité de la sortie n’est donc pas le même.
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Chapitre 2 : Les outils de simulation énergétique urbaine et la
validation

Etat de l’art de la validation appliquée aux outils de simulation thermique
dynamique du bâtiment

Puisque de nombreux outils de simulation énergétique urbaine s’appuient sur des outils de simu-
lation thermique dynamique (STD) du bâtiment, il semblait pertinent de commencer par réaliser
un état de l’art des procédures de validation existant pour les outils de STD du bâtiment.

Parmi les projets de recherche les plus célèbres dans le domaine, la procédure BESTEST [7, 56]
permet d’évaluer les outils sur un cas test synthétique parfaitement décrit. Plusieurs variantes
de ce cas-test existent, permettant ainsi de tester différentes parties des outils et d’isoler de
potentielles faiblesses.

Un autre projet similaire, le projet PASSYS [6], propose de découper la procédure de validation
en deux grandes parties :

• La validation de chaque process pris indépendamment ;

• La validation du modèle dans son ensemble.

Cette approche permet ainsi de procéder à la fois à l’évaluation du modèle mais également au
diagnostic des faiblesses potentielles de l’outil.

Cependant, aucun de ces deux projets ne présente une validation empirique sur des bâtiments
réels. Cet aspect est étudié par Del Barrio et Guyon [57] qui proposent notamment de prendre
en compte l’incertitude entourant les outils de STD du bâtiment dans la validation.

Si ces approches de validation utilisées à l’échelle bâtiment sont très intéressantes pour construire
une procédure de validation des outils à l’échelle urbaine, elles ne sont pas suffisantes pour évaluer
les UBEM puisqu’elles ne prennent pas en compte le processus d’enrichissement des données.

Etat de l’art de la validation appliquée aux outils de simulation énergétique
urbaine

Concernant la validation appliquée aux UBEM, de nombreux exemples de validation empirique
peuvent être trouvés dans la littérature scientifique. Néanmoins, on observe pour l’évaluation
d’une même sortie beaucoup de métriques différentes ce qui rend impossible la comparaison des
résultats d’un article à l’autre. Par ailleurs, les exemples de validation empirique présents dans
la littérature sont souvent dépourvus de cadre méthodologique et les jeux de données utilisés
dans l’exercice de validation ne sont généralement pas mis à disposition, empêchant ainsi de
reproduire les résultats présentés.

Si l’on s’intéresse à la comparaison inter-modèles, un groupe de travail a entrepris de créer un
DESTEST [8] à l’image des BESTEST. Ce DESTEST est composé d’un quartier virtuel de seize
bâtiments strictement identiques reliés par un réseau de chaleur. Si ce cas-test permet d’étudier
les performances de composantes propres aux UBEM telle que la modélisation d’un réseau de
chaleur, cette approche ne prend pas en compte le processus d’enrichissement des données et ne
permet donc pas d’évaluer les outils dans leurs conditions réelles d’utilisation.

Par ailleurs, on trouve très peu d’analyses de sensibilité appliquées aux UBEM comme le soulig-
nent Fennell et al. [85]. Cela signifie que l’étape de diagnostic liée à tout processus de validation
est encore très peu développée pour les outils de simulation énergétique urbaine.
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Proposition d’un cadre méthodologique pour la validation des outils de simu-
lation énergétique urbaine

Afin de dépasser les limitations constatées lors de l’état de l’art, un cadre méthodologique pour
la validation des UBEM est proposé dans cette thèse et est décrit Figure 3.

La méthode proposée se décompose en plusieurs étapes:

1. La validation ad hoc du processus d’enrichissement et du modèle physique : il s’agit
d’évaluer a priori les deux principaux composants d’un UBEM. L’évaluation a priori du
modèle physique se fait à l’aide des BESTEST et des DESTEST tandis que l’évaluation
a priori du processus d’enrichissement peut se faire à l’aide de techniques classiques de
machine learning comme proposé par Rosser et al. [87].

2. La revue des cas d’usages des UBEM et l’identification des sorties à évaluer pour vérifier
la fiabilité des outils sur chaque cas d’usage.

3. La création d’un jeu de validation : une fois qu’il a été décidé d’appliquer la méthode
de validation pour évaluer une sortie précise d’un UBEM, un jeu de données devrait être
construit afin de permettre d’évaluer la sortie choisie (aussi appelée KPI pour Key Priority
Indicator). Ce jeu de données de validation doit fournir des données mesurées de la sortie
à évaluer ainsi qu’une description aussi précise que possible des bâtiments sur lesquels le
KPI a été mesuré.

4. La quantification de l’incertitude : afin d’évaluer les UBEM dans leur contexte d’utilisation,
l’incertitude qui les entoure doit être prise en compte. La façon de modéliser l’incertitude
sur les différents paramètres est décidée à l’étape de quantification de l’incertitude et peut
avoir un grand impact sur les résultats obtenus après propagation de cette incertitude.

5. La propagation de l’incertitude : à l’étape précédente, plusieurs jeux de paramètres ont été
obtenus pour chaque bâtiment afin de prendre en compte l’incertitude qui existe sur les
paramètres d’entrée. Chacune de ces jeux de paramètres est ensuite utilisés pour simuler
le comportement énergétique du bâtiment ce qui permet d’obtenir une distribution des
valeurs possibles du KPI étudié.

6. L’évaluation du KPI : l’erreur faite par l’outil sur la sortie que l’on cherche à évaluer est
quantifiée à l’aide d’une métrique définie a priori.

7. Le diagnostic des faiblesses de l’outil : Le but de cette étape est d’identifier les paramètres
responsables de l’erreur observée à l’étape précédente.
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Use case 1
 KPI A

Accuracy level A

Use case 2
 KPI A

Accuracy level B

Use case 3
 KPI A

Accuracy level C

Use case 4
 KPI B

Accuracy level A'

Creating a 
validation dataset

Quantifying 
uncertainty on 
available data

Propagating 
uncertainty through 
UBEM simulation
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KPI and UBEM 
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Figure 3: Proposition d’un cadre méthodologique pour la validation des outils de simulation
énergétique urbaine
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Chapitre 3 : Application du cadre méthodologique de validation à
un premier ensemble de cas d’usages

Validation ad hoc du modèle physique et du processus d’enrichissement

La validation ad hoc est présentée ici pour Dimosim qui est un UBEM déjà largement utilisé
et pour Qiriel, un outil dédié au processus d’enrichissement des données basé sur des réseaux
bayésiens. La validation ad hoc de Dimosim se fait en évaluant ses résultats sur les BESTEST
ainsi que sur le DESTEST. Dans les deux cas, Dimosim présente des performances comparables
aux outils de sa catégorie. Pour la validation ad hoc de Qiriel, les métriques proposées par
Schetelat et al. [46] ont été appliquée dans un contexte de validation croisée comme proposé par
Rosser et al. [87].

Choix de cas d’usages pour appliquer la méthode proposée

Afin de tester la méthode proposée, un ensemble de cas d’usages basés sur le même indicateur ont
été sélectionnés. Cette sélection s’est faite à partir des données disponibles afin de pouvoir utiliser
autant que possible des données publiques pour la création du jeu de données de validation. Les
KPI retenus ont donc été la consommation annuelle de gaz et d’électricité à l’échelle bâtiment.
Des mesures de ces deux grandeurs sont fournies par les Données Locales de l’Énergie pour tous
les bâtiments résidentiels de plus de 10 logements ou consommant plus de 200 MWh par an. Les
cas d’usages correspondant à ces deux indicateurs sont les suivants :

• Identification de bâtiments à rénover en priorité sur un quartier ;

• Évaluation des économies d’énergie réalisées grâce à la rénovation d’un groupe de bâtiments
;

• Évaluation du potentiel d’extension d’un réseau de chaleur.

Création d’un jeu de données de validation

Afin de créer un jeu de données de validation sur lequel tester les deux KPI sélectionnés, plusieurs
bases de données ont été utilisées :

• La BD TOPO® : une cartographie en 2.5D de tous les bâtiments du territoire français.
Cette base de données permet ainsi d’obtenir une géométrie grossière de chaque bâtiment
(emprise au sol et hauteur) et de déterminer les murs mitoyens de chaque bâtiment ainsi
que les masques solaires.

• Les fichiers fonciers : il s’agit d’informations collectées par le ministère des Finances afin de
faire payer la taxe foncière. De nombreuses informations sont fournies à la parcelle cadas-
trale contenant le bâtiment telles que le nombre de locaux du bâtiment, l’usage spécifique
de chaque local ou encore l’année de construction du bâtiment.

• Les diagnostics de performance énergétique (DPE) : cette base de données mise à disposi-
tion par l’ADEME réunit tous les DPE réalisés depuis 2012. Un DPE est un audit d’un
logement réalisé par un diagnostiqueur certifié et obligatoire lors de la vente ou de la lo-
cation d’un bien immobilier. Les DPE fournissent des renseignements sur les systèmes de
chauffage et d’ECS installés ainsi que sur les propriétés thermiques du bâti. Malheureuse-
ment tous les bâtiments en France ne dispose pas à l’heure actuelle d’un DPE et ceux
collectés depuis 2012 montrent certains biais.
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• Les Données Locales de l’Énergie : Cette base de données contient les consommations
annuelles de gaz et d’électricité localisées à l’adresse pour les bâtiments résidentiels de
plus de dix logements ou pour les bâtiments tertiaires et industriels consommant plus de
50MWh par an. Elle est mise à jour chaque année par les gestionnaires de réseaux de
distribution.

Un travail de croisement de ces bases de données a été réalisé par le CSTB afin de créer la BDNB,
la Base de Données Nationale des Bâtiments. De cette base, un jeu de validation a été extrait
contenant 1200 bâtiments résidentiels.

Une présentation synthétique de ce jeu de données de validation est présenté Figure 4.
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Geographical distribution across France of the buildings selected in the validation dataset
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Figure 4: Présentation du jeu de données de validation retenu pour la suite du manuscrit
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Chapitre 4 : Évaluation des outils de simulation énergétique ur-
baine

Ce chapitre présente l’étape d’évaluation proposée dans la procédure de validation. Dans l’approche
proposée ici, les outils sont évalués en prenant en compte les incertitudes entourant les données
disponibles pour leur paramétrage.

La première étape consiste donc à quantifier l’incertitude sur les données d’entrée.

Quantification de l’incertitude

L’approche choisie dans ce manuscrit pour la quantification de l’incertitude est l’approche prob-
abiliste dans laquelle l’incertitude sur une variable est représentée à l’aide d’une distribution de
probabilité. La quantification de l’incertitude se décompose alors en deux étapes :

1. La définition des distributions de probabilité associées à chaque variable incertaine ;

2. L’échantillonnage des distributions de probabilités pour générer des jeux de variables prob-
ables.

Pour la définition des distributions de probabilité, les variables indépendantes sont séparées des
variables corrélées. En effet, dans les données d’entrée d’un outil de simulation énergétique
urbaine, certaines variables sont liées et ne devraient pas être prédites indépendamment. Par
exemple, la valeur du coefficient de transmission thermique du toit est souvent lié au coefficient de
transmission thermique des murs puisque pour les bâtiments récents ces deux valeurs devraient
être assez basses. De même, il serait peu réaliste de prédire beaucoup de bâtiments avec une
valeur Umur plus faible que Utoit.

Les distributions de probabilité associées à ces variables corrélées sont alors représentées par
des distributions multivariées qui peuvent engendrer des problèmes de grande dimension. Pour
modéliser ces distributions multivariées, il a été choisi dans ce manuscrit d’utiliser des réseaux
bayésiens. Les réseaux bayésiens permettent en effet de simplifier ces distributions multivariées
en faisant certaines hypothèses d’indépendances.

Pour échantillonner le réseau bayésien et prédire des jeux de variables probables, une méthode
de chaîne de Markov par Monte Carlo, l’échantillonneur de Gibbs, est utilisée.

La dépendance ou non de deux variables est quant à elle étudiée à l’aide de l’information mutuelle,
un outil statistique similaire au coefficient de corrélation mais étudiant l’ensemble des relations
entre deux variables et non seulement les relations linéaires.

L’incertitude sur l’ensemble des données d’entrée habituellement requises par un UBEM est ainsi
définie en s’appuyant sur des enquêtes nationales ou sur des règles tirées de la littérature.

Application de la procédure d’évaluation à un outil simplifié, Simply

Afin de mettre l’accent sur la méthode proposée, celle-ci est appliquée dans un premier temps à
un UBEM créé pour l’occasion, Simply, et dont le modèle physique est extrêmement simple.

La méthode d’évaluation proposée permet d’évaluer les outils à l’échelle de chaque bâtiment mais
également à l’échelle de tout l’échantillon de validation.

Évaluation à l’échelle bâtiment A l’échelle bâtiment, on évalue l’écart entre la donnée
mesurée et les valeurs calculées par l’outil à l’aide du pourcentage d’erreur. Comme chaque
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bâtiment a été simulé avec une centaine de configurations différentes obtenues lors de la quan-
tification de l’incertitude, on obtient une distribution de valeurs pour le pourcentage d’erreur.
Cette distribution du pourcentage d’erreur est caractérisée par le résidu qui est la valeur médiane,
µbldg, et par l’écart type.

Évaluation à l’échelle de tout l’échantillon de validation Le processus décrit au-dessus
est appliqué à tous les bâtiments de l’échantillon. On obtient ainsi entre autre une distribution
des résidus qui caractérise le comportement de l’outil sur tout l’échantillon de validation.

En outre, il est possible de définir pour chaque bâtiment l’équivalent d’un intervalle de confiance
: la HPD région. On peut alors évaluer pour chaque bâtiment si la valeur mesurée se trouve dans
l’intervalle de confiance (HPD région) des valeurs calculées avec l’outil. En comptant à l’échelle
de tout l’échantillon de validation le pourcentage de bâtiments pour lesquels la donnée mesurée
est dans la HPD région, on obtient un indicateur synthétique caractérisant la performance de
l’outil : la couverture empirique.

Etude de convergence Comme les résultats sont obtenus suite à une analyse d’incertitude,
il est important de vérifier que la convergence des calculs a bien été atteinte. Une analyse de
convergence a donc été menée avec Simply pour s’assurer de la fiabilité des résultats obtenus.

Application de la procédure d’évaluation à trois outils

La procédure d’évaluation présentée ci-dessus est appliquée à deux autres outils, Calomel et
Dimosim, qui présentent un niveau de détail croissant de leur modèle physique.

Dimosim obtient de très bonnes performances sur la modélisation des consommations d’électricité
tandis que Simply semble être plus ajusté que les deux autres outils sur les consommations de
gaz.

Chapitre 5 : Diagnostic, comprendre les faiblesses des UBEM

Dans le chapitre précédent, une procédure d’évaluation des outils UBEM basée sur l’incertitude
a été introduite ainsi qu’un ensemble de métriques permettant de quantifier correctement les
performances des outils. Ces métriques ont permis d’attribuer un score à chaque outil testé.
Ce score est rarement aussi élevé que ce que le modélisateur pourrait attendre. Une étape de
diagnostic est alors nécessaire suite à l’étape d’évaluation pour comprendre où se situent les
faiblesses des outils et comment améliorer le score de l’outil. Plusieurs raisons peuvent expliquer
un mauvais score, dont notamment :

- Les données d’entrée sont de mauvaise qualité ("garbage in, garbage out") ;

- Le processus d’enrichissement est défectueux ;

- Le modèle physique est défectueux ;

- Les hypothèses faites pour la quantification de l’incertitude sont inappropriées.

Ces raisons peuvent être regroupées en trois sources d’erreur principales :

- les données ;
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- l’UBEM lui-même ;

- l’application du cadre de validation.

Il est difficile de faire la distinction entre ces trois sources, mais pour aider à clarifier le sujet,
plusieurs sous-questions peuvent être étudiées :

1. Est-il possible d’identifier les paramètres qui ont une influence sur l’erreur à l’échelle de
l’échantillon ?

2. Est-il possible d’identifier les paramètres influençant l’erreur pour chaque bâtiment ?

3. Est-il possible d’identifier des groupes de bâtiments ayant un comportement similaire vis-
à-vis de l’erreur ?

Aucune de ces questions ne permet de distinguer strictement les trois sources d’erreur en soi,
mais les résultats obtenus pour chacune d’elles lorsqu’elles sont comparées aux autres devraient
permettre d’identifier des tendances et de comprendre si l’une des sources (les données, l’UBEM
ou l’application du cadre de validation) est davantage responsable de l’erreur que les deux autres.
Les résultats obtenus par Simply, Calomel et Dimosim sont étudiés à la lumière de ces trois sous-
questions. Etant donné que la même procédure de validation a été appliquée aux trois outils
avec le même processus d’enrichissement, la comparaison du comportement affiché par chacun
de ces outils sur chacune des sous-questions devrait permettre de comprendre plus précisément
l’influence du modèle physique sur l’erreur.

Les utilisateurs d’UBEM sont souvent confrontés à différents niveaux de disponibilité des données
d’une étude de cas à l’autre, ce qui modifie la façon dont le modèle physique de l’UBEM est
paramétré. Pour comprendre comment ce changement dans le paramétrage du modèle peut
influencer les résultats d’un UBEM, une étude est menée avec différents niveaux de disponibilité
des données. L’approche choisie ici a été de ne pas modéliser d’incertitude sur les données jugées
disponibles.

Identification des paramètres qui ont une influence sur l’erreur à l’échelle de l’échantillon
A cette étape, l’information mutuelle entre le résidu obtenu pour chaque bâtiment et les carac-
téristiques principales du bâtiment est calculée. Il ressort que l’énergie de chauffage ainsi que
l’énergie d’ECS influencent l’erreur observée.

Identification des paramètres qui ont une influence sur l’erreur à l’échelle du bâti-
ment Pour chaque bâtiment, un vecteur d’information mutuel entre le pourcentage d’erreur et
les paramètres incertains est calculé.

Création de groupes de bâtiments avec un comportement similaire face à l’erreur
Une analyse en composantes principales (ACP) est réalisée sur les vecteurs d’information mutuelle
calculés précédemment. Cela permet d’identifier des groupes de bâtiments qui se distinguent par
leur énergie de chauffage et leur énergie d’ECS. Pour chacun de ces groupes, les paramètres avec
le plus d’influence sur l’erreur sont identifiés.

Application du diagnostic aux autres outils

L’étape de diagnostic appliquée aux trois outils a permis d’identifier des groupes de bâtiments
ayant un comportement similaire vis-à-vis de l’erreur et d’identifier les paramètres d’entrée in-
fluents pour chaque groupe. Parmi les raisons indiquées en introduction de ce chapitre qui
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pourraient expliquer l’écart des outils par rapport à la réalité, cette étape de diagnostic a permis
d’en écarter au moins une. En effet, les tendances identifiées étant assez similaires d’un outil à
l’autre, cela indique que l’erreur principale est susceptible de provenir d’une autre source que les
modèles physiques. Les causes restantes de l’erreur l’erreur sont alors :

- La qualité des données ;

- Le processus d’enrichissement ;

- La façon dont l’incertitude a été prise en compte.

Il est assez difficile d’exclure la qualité des données puisqu’il est difficile d’obtenir une référence
qui pourrait permettre de caractériser le niveau de qualité des données. Cependant, il est possi-
ble d’étudier comment le processus d’enrichissement et l’incertitude modifient le comportement
des outils. L’impact de ces deux processus porte sur le paramétrage du modèle. Afin d’étudier
l’impact du paramétrage du modèle, les procédures d’évaluation et de diagnostic ont été ap-
pliquées aux trois outils pour deux autres niveaux de données d’entrée disponibles. Ces travaux
sont présentés ci-après.

Étude de l’influence du niveau de données disponibles sur les performances
des UBEM

Des simulations ont été réalisées avec les trois outils pour trois niveaux de données disponibles et
les résultats comparés. Bien que cette enquête n’ait pas permis d’évaluer pleinement l’influence
de la qualité des données, elle a permis d’étudier l’impact du paramétrage du modèle. En effet,
avec plus de données disponibles, le niveau d’incertitude pris en compte diminue (une fois que la
valeur d’un paramètre est connue, aucune incertitude n’est prise en compte dans ce cas) ainsi que
l’influence du processus d’enrichissement (puisque la valeur du paramètre est connue, le processus
d’enrichissement n’est plus nécessaire pour cette entrée). Ainsi, si l’erreur diminue lorsque le
niveau de disponibilité des données augmente, cela implique que le processus d’enrichissement
est biaisé et génère une grande partie de l’erreur. Au contraire, si l’erreur n’est pas impactée
par l’ajout d’informations, cela implique que le modèle physique utilisé n’est pas sensible aux
nouvelles informations.

Il est apparu que la quantification de l’incertitude pilotait complètement le comportement de
l’outil lorsque presque aucune information n’était extraite du jeu de données. Ensuite, lorsque
plus d’informations sont disponibles, une relation claire, bien que biaisée, apparaît entre les
consommations simulées et mesurées. Ce biais semble être principalement dû à des paramètres
pour lesquels aucune information n’était disponible : la consommation d’eau chaude sanitaire
(ECS) et les consommations des appareils électroménagers. Dans ce cas, cela implique que la
quantification de l’incertitude sur ces paramètres n’est pas bien ajustée. Disposer d’informations
sur ces paramètres devrait alors permettre d’améliorer significativement les résultats obtenus par
les trois outils.

Chapitre 6 : Conclusions et perspectives

Comme il a été souligné ci-dessus, un cadre de validation dédié aux UBEMs a été proposé dans
cette thèse et appliqué à un premier ensemble de cas d’usages et à trois outils différents. Cepen-
dant, plusieurs aspects du travail présenté ici nécessiteraient des recherches supplémentaires.

Premièrement, comme expliqué ci-dessus, la quantification de l’incertitude influence grandement
les résultats de la procédure de validation et, en tant que telle, cette étape devrait être remise en
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question par d’autres chercheurs. Les hypothèses retenues pour modéliser l’incertitude sur chaque
variable d’entrée pourraient alors être examinées et leur impact sur les résultats finaux pourrait
être évalué. Par exemple, aucune incertitude n’a été considérée sur les paramètres liés à la météo,
mais l’incertitude sur des paramètres tels que la température extérieure est probablement élevée,
notamment en zone urbaine en raison de l’effet d’îlot de chaleur urbain. La modélisation de
l’incertitude sur la température extérieure permettrait d’évaluer les outils dans des conditions
plus réalistes et ainsi d’évaluer l’influence de ce paramètre sur l’erreur.

Deuxièmement, seul un processus d’enrichissement spécifique, Qiriel, a été étudié dans ce manuscrit.
Il serait intéressant de tester les mêmes modèles physiques avec différentes approches pour le
processus d’enrichissement. Il serait notamment intéressant d’étudier les performances des outils
lorsque le processus d’enrichissement est basé sur des archétypes déterministes.

Troisièmement, afin de comprendre la robustesse des résultats obtenus ici par les trois outils, il
serait intéressant d’exécuter le processus de validation pour les mêmes cas d’usages et pour les
mêmes outils, mais avec un ensemble de données de validation complètement différent. Des bases
de données similaires à celle utilisée pour créer l’ensemble de données de validation utilisé dans
ce manuscrit sont disponibles dans la plupart des pays européens et aux Etats-Unis. Il serait
donc possible de créer des ensembles de données de validation similaires et d’étudier l’évolution
des performances des outils d’un ensemble de données de validation à l’autre. Enfin, et c’est le
plus important, le cadre de validation appliqué ici pour évaluer les performances des outils sur les
consommations annuelles d’énergie à l’échelle du bâtiment doit être adapté à l’évaluation de sor-
ties dynamiques telles que les courbes de charge électrique ou les courbes de charge de chauffage.
La méthode générale telle qu’introduite au chapitre 2 devrait être applicable telle quelle, mais
les indicateurs fournis ici sont bien adaptés à l’évaluation des sorties statiques uniquement, et
d’autres indicateurs doivent être proposés dans le cas de sorties dynamiques.

En résumé, cette thèse a initié le développement d’un cadre de validation dédié aux UBEM. De
nombreuses faiblesses des outils ont été mises en évidence ainsi que l’influence de l’incertitude sur
la valeur affichée par une sortie UBEM. Chaque modélisateur devrait toujours garder à l’esprit
que même si un outil a été testé à travers un cadre de validation, il ne doit jamais être considéré
comme entièrement validé, en particulier dans le cas des UBEM où tant d’incertitudes peuvent
interférer. Les résultats fournis par un UBEM doivent donc toujours être pris avec précaution et
une indication sur le niveau d’incertitude doit toujours être fournie avec les résultats eux-mêmes.
En fin de compte, comprendre et traiter les faiblesses des UBEM aiderait ces outils à fournir
un soutien plus adéquat et plus fiable aux décideurs dans le processus de prise de décision pour
lequel ils sont utilisés.
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Appendices to chapter 3

Ad hoc validation of the Bayesian network trained on PHEBUS
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Figure 1: Bayesian network obtained by training on PHEBUS.
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Log-loss RIG

Nb of combined fridges 1.08 (±0.02) 0.01 (±0.02)
Nb of freezers 1.12 (±0.03) 0.10 (±0.03)
Nb of TV 1.49 (±0.02) 0.02 (±0.01)
Nb of computers 1.23 (±0.01) 0.04 (±0.01)
Nb of internet boxes 0.76 (±0.03) 0.13 (±0.04)
Nb of chargers 2.28 (±0.04) 0.11 (±0.02)
Nb of hobs 1.06 (±0.02) −0.00 (±0.02)
Nb of dryers 0.90 (±0.01) 0.06 (±0.02)
Nb of washing machines 0.34 (±0.03) 0.06 (±0.09)
Nb of dish washers 0.88 (±0.04) 0.13 (±0.04)
Nb of ovens 0.72 (±0.03) 0.02 (±0.05)
Nb of simple fridges 1.09 (±0.01) 0.03 (±0.01)

Table 1: Single feature performances assessment for the appliances network.
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Figure 2: Mutual Information loss obtained for the appliances network.
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Ad hoc validation of the Bayesian network trained on the Fichiers
Détail Logement

Construction
year

Type of
heating
system

Heating energy
carrier

Social housing
status

Nb of
occupantsNb of

rooms

Occupant
status

Surface

Type of
district

Type of
dwelling

Nb of
workers

Nb of occ
in employement Nb of occ

≤ 17

Nb of occ
≥ 19

Nb of occ
≥ 65

Nb of
students

Figure 4: Bayesian network obtained by training on the census.

Log-loss RIG

Nb of workers 1.743858 0.02
Nb of occ in employement 1.793517 0.02
Nb of occ ≤ 17 years old 1.387179 0.03
Nb of occ ≤ 19 years old 1.283674 0.07
Nb of occ ≤ 65 years old 1.092516 0.03
Nb of students 1.366321 0.03
Nb of occupants 1.797292 0.07

Table 2: Single feature performances assessment for the census network.
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Figure 5: Mutual Information loss obtained for the census network.
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Abstract

Cities need to drastically reduce their energy con-
sumption in order to fight climate change. To help
them implement efficient energy saving measures, ur-
ban building energy models (UBEM) have been de-
veloped. A large amount of input data is required
to model buildings at an urban scale and that in-
formation is often missing. To overcome this lack
of model input data, data enrichment approaches
including archetypes and calibration processes have
been used, resulting in errors in the generated data
which are not always well quantified. The aim of
this paper is to develop a methodology of validation
for UBEM that takes into account a data enrichment
process. The proposed approach is to split the vali-
dation process into several parts based on UBEM use
cases. UBEM outputs and enriched data to be val-
idated are selected for each use case and the fitness
for purpose of the model is then verified against mea-
sured data. This validation method has been tested
on a specific use case: the prediction of yearly elec-
tricity and gas consumptions of dwellings aggregated
at the district scale. It has been applied to two dif-
ferent UBEM tools: Smart-E and Dimosim. Smart-E
uses its own hypothesis for data completion while a
specific tool, Qiriel, is used to infer missing data for
Dimosim. The simulation of one hundred districts
(90 000 dwellings) located in the French department
of Seine-et-Marne and the comparison to measured
data enabled to study the error distribution of both
UBEM tools. Further work should be led at smaller
spatial and time scales.

Introduction

With an urgent need to act against climate change,
more and more cities set ambitious environmental
targets. In order to achieve such goals, reducing en-
ergy consumption in buildings seems to be a keystone.
In France, for example, tertiary and residential sec-
tors represented 45% of the national final energy con-
sumption in 2015 (ADEME, 2015). To assist in lower-
ing these consumptions at the city scale, urban build-
ing energy models (UBEM) have been developed over
the last fifteen years (Reinhart and Cerezo Davila,

2016). UBEM compute the energy consumption of
every building in a district and take into account in-
teractions among them, like, for example, solar shad-
ing. The aim of UBEM is to provide cities with guid-
ance to reduce final energy consumption not only for
some specific buildings but also at the scale of a whole
district.
However, the benefits brought by UBEM are balanced
with certain challenges that may jeopardize their re-
liability.
A first challenge is the data enrichment process. It
is much more difficult to gather data required for the
simulation of one hundred buildings than for a single
one. Information is often missing and assumptions
must then be made. This practice of data enrich-
ment creates an error that is not yet well-quantified.
A second challenge is to take into account new phe-
nomena that appear at the district scale, like the phe-
nomenon of urban heat islands.
Finally, although a building energy model (BEM) has
to be precise for each building it simulates, this is not
necessarily the case for a UBEM. It may be acceptable
for a UBEM to be statistically correct at the scale of
a district but to be rather inaccurate at the scale of
a single building. The challenge is then to identify
the spatial and time scales on which the UBEM is
reliable.
A thorough validation process would enable to ver-
ify the reliability of UBEM and would give them
more credits as decision-support tools for cities. How-
ever, such validation process is not yet implemented
within the UBEM research community and is there-
fore needed.
The aim of this paper is to present a validation
methodology designed specifically for UBEM. This
methodology is described in the next section before
being applied to two UBEM tools in a second section.
Results obtained by the two UBEM tools throughout
the validation process are then being discussed.

Development of a validation methodol-
ogy for urban building energy models

Most UBEM stem from building energy models
(BEM). However, at the difference with the BEM,
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there is no consensus yet on their validation. In this
section, we review the existing validation attempts
that can be found in the literature and we draw a list
of requirements for a validation methodology. Then,
we describe a first proposal of validation methodology
based on UBEM use cases.

Existing attempts of validation

BEM validation

Building energy model can be seen as a cornerstone
of UBEM. Therefore it seems natural to look at the
existing validation process implemented for BEM.
A lot of research has been carried on BEM validation
among which were the BESTEST and the PASSYS
project.
In the BESTEST (Judkoff and Neymark, 2013), sev-
eral sets of perfectly described buildings are pro-
vided and inter-comparison of models are computed
on these well-known buildings. In addition, some em-
pirical validation has been proposed with measure-
ments on test cells.
Jensen (1995) gives a precise description of the
methodology developed within the PASSYS project.
The proposal is to split up the validation process into
two main parts: the validation of single processes and
the validation of the whole model. Jensen encourages
namely to use analytical verification for single process
validation and to use empirical validation for whole
model validation.
The validation of thermal models used within UBEM
through one of these two validation methods would
not suffice to consider a UBEM tool as properly val-
idated for several reasons:

� Additional physics and additional energy sys-
tems are modelled at the urban scale;

� An enrichment process is often used as a prior to
UBEM and needs to be validated as well;

� It may be acceptable for UBEM to be accurate
only at certain spatial scales, larger than the
building scale.

However, some principles from these methodologies
should be used as guidance for the development of a
UBEM validation methodology. For example, sepa-
rating single process validation and the whole model
validation as advised by Jensen (1995) is of great in-
terest for UBEM as well. Furthermore, in the same
idea as the PASSYS project, the aim of the present
work is to develop a validation methodology rather
than validating a single tool.
Regarding validation attempts on UBEM, two ap-
proaches have been observed so far: comparative val-
idation and empirical validation.

Comparative validation

Inter-model comparison has started within two inter-
national research projects, the IEA Annex 60 (Wet-
ter, 2017) and the IBPSA Project 1 (Saelens et al.,
2019) which is still ongoing. In both projects, the

taken approach is quite similar to the BESTEST
(Judkoff and Neymark, 2013). A synthetic district
has been designed to serve as a District Energy Sim-
ulation Test (DESTEST). Several UBEM tools are
being tested on this DESTEST and their results are
compared. This setup enables to control all the sim-
ulation parameters and thus proceed with the sin-
gle process validation as advocated by Jensen (1995).
However, since the district used is not real, it is not
possible to compare the obtained results with mea-
sured data nor to test the enrichment process used
by each UBEM tool.

Empirical validation

The aim of empirical validation is to ensure that
UBEM tools represent the real-life urban projects
accurately. However, such process is made difficult
due to a lack of data at district and urban scales.
Some examples can be found in the literature like
in Sokol et al. (2017) or in Fonseca and Schlueter
(2015). These attempts give a first idea of UBEM per-
formances on real projects. However, datasets used
in these validation processes are rarely publicly avail-
able thus preventing other research teams from going
through the same validation process. Furthermore,
there is no agreement so far on the metrics to be
used to measure the error on UBEM outputs. This
prevent the reader from comparing results obtained
in different papers.
Nonetheless, some requirements can be drawn from
these existing attempts of UBEM validation.

Requirements for a UBEM validation methodology

Some lessons can be learned from this brief literature
review and it can be summarized as follows. A valida-
tion methodology dedicated to UBEM should comply
with the following requirements:

� Specifying the spatial and time scales on which
a given UBEM tool is reliable;

� Defining metrics to properly measure the
UBEMs accuracy throughout the validation pro-
cess;

� Identifying the error generated by the model set-
ting;

� Ensuring applicability and replicability of the
methodology in different contexts (country,
building sector etc.);

� Proposing test cases to apply the developed val-
idation method.

A first proposal of methodology is presented hereafter
based on these requisites.

A validation method based on UBEM’s use
cases

The methodology developed here offers to inventory
UBEMs use cases and to identify, for each use case,
critical UBEM outputs. The aim is to verify that
the outputs of interest for each use case are accu-
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rate enough to provide a real aid to the decision-
maker. Such outputs of interest are called key per-
formance indicators (KPI) in the rest of the paper.
Once use cases and KPI have been identified, valida-
tion datasets are used in order to study, for each use
case, the error distribution on the KPI. This method-
ology is described in Figure 1.
In an ideal case, several batches of measured data
would be available, enabling to obtain an error dis-
tribution for each KPI of each use case and UBEM
tool. The main idea behind this search for an er-
ror distribution is to provide the UBEM user with a
confidence interval on the KPI, depending on the use
case. UBEM use cases and corresponding KPI for
validation were identified through a literature review
that is not presented in this paper. Although, the
main use cases are listed below:

� Development of renewable energies at the district
scale;

� Energy flexibility;

� Performance measurements and verification;

� Buildings retrofitting;

� Study of the urban heat island effects and its
impact on indoor comfort;

� Future energy use;

� Urban energy planning.

Future works should properly define metrics for each
use case and for each KPI in order to measure the
error on the KPI accurately.
A drawback brought by the proposed validation
methodology is the need for large validation datasets
when such datasets are often hard to find. For ex-
ample, if the aim of the study is an error distribution
at the district scale at least hundred districts with
measured data would be needed to obtain this distri-
bution. To tackle this issue, it is proposed to start the
validation process with use cases for which additional
data are available. Then, we could study in what
extend such use cases could give some bounds for
the error distribution of use cases with less validation
data. For instance, if the annual energy consump-
tion of a building is accurate, it does say something
about its annual load profile. Furthermore, more and
more energy disclosure laws are being implemented
in western countries, giving the opportunity to access
large buildings energy consumptions databases. Ex-
amples of these energy disclosure laws can be found
in France but also in other countries like in the USA
(Kontokosta and Tull, 2017).

Application of the proposed methodol-
ogy to two UBEM tools

Validation framework

A first use case was chosen to apply and test the pro-
posed validation methodology. This use case can be
described as territorial energy diagnosis. It consists
in being able to give an accurate outlook of a district

energy consumption. In this study, the annual elec-
tricity and gas consumptions of residential buildings
were studied at the district scale. This use case may
be seen as a preliminary study for other use cases
since a first step for UBEM is to provide accurate
representation of existing consumptions before evalu-
ating different scenarios like the retrofitting of build-
ings or the development of renewable energies. The
choice of this use case was also driven by the publicly
available datasets.
This use case was applied on the French department
of Seine-et-Marne at the scale of the IRIS. The IRIS
is an administrative division of the French territory.
Each IRIS gathers around 2000 inhabitants. All resi-
dential buildings located in about a hundred of IRIS
were simulated over a year and their annual elec-
tricity and gas consumptions aggregated at the IRIS
scale were compared to measured data. Simulations
were completed with two different UBEM tools, Di-
mosim (Riederer et al., 2015) and Smart-E (Berthou
et al., 2015), both relying on automated data enrich-
ment processes, and results were compared. This case
study deals only with the residential sector since less
databases are available for the simulation of the ter-
tiary sector in France. Datasets used for the simula-
tion and for the validation are presented hereafter.

Simulation datasets

Three databases were used for simulation:

� BD TOPO® (IGN, 2019) This database pro-
vides a map of the whole French territory where
each building is described by a footprint and a
height. Additional information is also given per
building such as:

– Building function (residential, commercial,
etc.)

– Construction year
– Number of floors
– Number of dwellings

Though the footprint and the height are given for
every building, the additional information is not
always available. This additional information is
obtained through a joint between tax record files
and the map. Information is missing when the
joint has not been successful. The BD TOPO®
is not publicly available yet but it can be granted
for free for any research project. It should be-
come completely public by 2022.

� PHEBUS (Conseil National de l’Information
Statistique, 2013): This database is built upon
a survey completed in 2013 for 5000 households
and for each household, their appliances and
their energy bills were reported. Following this
first step, energy performance audits were com-
pleted in 2000 out of these 5000 households.

� Fichiers Détails logements (FDL) (INSEE,
2016): This database originates from the pop-
ulation census. Each row corresponds to 1 to



uSIM2020 - Building to Buildings: Urban and Community Energy Modelling, November 12th, 2020

Figure 1: Proposed validation methodology

5 dwellings with identical properties. The pre-
cise location of these dwellings is unknown but
the zipcode of the IRIS where they are located
is provided on each row. Information contained
in this database includes:

– Dwelling’s number of occupants;
– Socio-professional status of the household;
– Surface category of the dwelling;
– Type of dwelling (individual housing or col-

lective housing);
– Construction year of the building;
– Main heating energy;
– Main heating system type (centralized or

decentralized).

Validation dataset

The validation dataset employed for this use case is
the Données Locales de l’Energie database (SDES,
2020). This database originates from a French law for
the ecological transition that makes compulsory for
energy suppliers to disclose annual energy consump-
tions data aggregated at the IRIS scale and detailed
by sector. Annual electricity and gas consumption of
the residential sector are thus available at the IRIS
scale. These data are publicly-available and are up-
dated every year. The related disclosure law was re-
cently amended compelling energy suppliers to pub-
lish energy consumption data at the building scale,
given some privacy threshold for the residential sec-
tor. These datasets requires some preprocessing but
are of great interest for the validation of UBEM.

Two different UBEMs, one validation process

The proposed validation method aims to be appli-
cable to a large range of UBEM. Two first UBEM
tools were used here to test this method: Dimosim

(Riederer et al., 2015) and Smart-E (Berthou et al.,
2015). These tools are very different from each other.
A first difference comes from the data enrichment pro-
cess. Smart-E uses internal hypotheses to complete
missing data while Dimosim is coupled with a tool de-
signed for the enrichment process: Qiriel (Ansanay-
Alex et al., 2016).
A second difference comes from the datasets used as
inputs data and as parameters. Dimosim takes as
input data the geometry of the buildings retrieved
from BD TOPO® and then tries to assess thermal
properties and household characteristics thanks to
PHEBUS and FDL. Conversely, Smart-E takes as in-
put data the description of households provided by
FDL that includes the surface of the dwellings but
not the geometry of the buildings and then tries to
allocate façade areas and roof areas thanks to BD
TOPO®. BD TOPO® and FDL both give infor-
mation on dwellings but since FDL comes from the
census, it is anonymized to prevent identifying the
households and the buildings. Therefore, the link be-
tween these two databases is not straightforward and
assumptions must be made. Furthermore, informa-
tion provided by these databases is not always consis-
tent. For example, the number of dwellings recorded
in BD TOPO® and FDL is different.
A third difference is the number of thermal zones de-
fined for the simulation. Several thermal zones per
building can be defined in Dimosim but for the sake
of simplicity only one thermal zone per building was
used in this case. Smart-E uses two thermal zones
per dwelling by default, one for the heated space and
one for the non heated space.
Booth et al. (2012) identified the most influential pa-
rameters on housing stock modelling uncertainties.
The mean value of these parameters distributions
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used for each UBEM tool in this study are summa-
rized in Table 1. These values are the average on
all the simulated dwellings weighted by the dwellings
surfaces. These mean values have been displayed to
illustrate the difference of parameterization between
the two tools. For example, the share of dwellings
heated with gas and the share of dwellings heated
with electricity vary from an IRIS to another and are
often slightly different between Dimosim and Smart-
E due to different enrichment processes.

Table 1: Influential parameters on results uncertainty

Parameters Dimosim Smart-E
Fraction of space heated 100 % 77 %
Heating temperature set-
point (C)

19.6 19.6

Share of dwellings with
gas as heating energy

48.3 % 50.6%

Share of dwellings with
electricity as heating en-
ergy

38.2 % 35.7 %

Efficiency of electric
heaters

1.0 1.0

Efficiency of gas boilers 0.78 0.69
Window U-value
(W/m2K)

3.21 2.69

Wall U-value (W/m2K) 0.96 1.38
Window-to-wall ratio 0.25 0.15
Air-change rate (including
infiltrations and ventila-
tion) (vol/h)

0.6 0.52

Number of simulated
dwellings

89876 93717

Average surface per
dwelling (m2)

105 92

Results & Discussion
KPI and metrics

The proposed methodology was tested on 93 IRIS
(around 90000 dwellings), all located in the French
department of Seine-et-Marne. The studied KPI in
this case were the annual electricity and gas con-
sumptions at the IRIS scale but also the annual ther-
mosensitivity for gas and electricity at the IRIS scale.
The thermosensitivity is defined as the increase of
electricity or gas consumption due to the decrease
of the outdoor temperature. Its estimation for each
tool was done following the methodology provided
with the DLE (ENEDIS et al., 2018). Measured data
were available in the DLE for each of these KPI and
for each IRIS. The error on annual consumption and
thermosensitivity was measured through a percentage
of error (PE) defined in Equation 1.

PEX =
XSimulated −Xmeasured

Xmeasured
· 100 (1)

The results are presented in Figures 2 and 4.

Analysing the error distribution with respect
to input data

The error distribution obtained with Dimosim on
annual consumptions is shifted toward the positive
values, meaning that Dimosim mainly overestimates
the electricity and gas consumptions. Conversely,
Smart-E tends to underestimate these consumptions.
In absolute values, Dimosim seems to generate a
greater error than Smart-E on this particular use
case. This performance gap could come from the fact
that Smart-E is calibrated in order to fit national elec-
tricity consumptions while there is no similar process
in Dimosim.
Regarding the error on the thermosensitivity, it seems
that Dimosim also overestimates this phenomenon for
both gas and electricity. An hypothesis is then that
Dimosim overestimates the heating needs in general.
When comparing inputs parameters between Smart-
E and Dimosim, the fraction of space heated looks
like a good candidate to help reducing this error. In
order to confirm this hypothesis, simulations should
be run again with a different space-heated ratio and
results should then be compared.
When taking a closer look at the error generated by
Smart-E, the error on the electrical thermosensitivity
seems surprisingly high compare to the error on the
annual electricity consumption. In order to get a bet-
ter understanding of all these error distributions and
to try to explain phenomenon like the one observed
on the thermosensitivity for Smart-E, an analysis of
the correlation between the error and a large set of
inputs parameters have been completed.
Correlations were estimated through the Pearson cor-
relation coefficient. This coefficient is defined in equa-
tion 2 for two variable X and Y, where cov(X,Y) is
the covariance of X and Y, σX is the standard de-
viation of X and σY is the standard deviation of Y.
A coefficient of 1 indicates a linear relationship be-
tween variables while a coefficient close to 0 indicates
that there is no linear relationship (but a non-linear
relationship is still possible between variables).

ρX,Y =
cov(X,Y )

σX · σY
(2)

Coefficient correlations between the percentage of
error on annual gas and electricity consumptions, gas
thermosensitivity and electrical thermosensitivity
and inputs parameters are presented in Figure 3.

In general, the obtained coefficients are quite low,
most of them being below 0.5 in absolute value. It is
then difficult to draw influential parameters from this
study. However, some trends can be identified. Thus,
the two UBEM tools seem to behave quite differently
in terms of error. Smart-E presents a coefficient of
0.64 between the percentage of error on the gas con-
sumption and the one on the electricity consumption
but such correlation does not appear for Dimosim.
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Figure 2: Annual measured and simulated consumptions of gas and electricity

Figure 3: Correlation coefficients between the error and several input parameters

Furthermore, the higher coefficients can be found for
Smart-E between the percentages of error (gas and

electricity) and the window and wall U-values. In
Dimosim, a relatively high correlation is observed be-
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Figure 4: Percentage of error on annual energy consumptions and on thermosensitivity

tween the percentage of error on electricity and the
share of dwellings using electricity as heating energy.
Finally, a mild correlation between Dimosim and
Smart-E errors was identified as well, questioning the
quality of databases used for simulation and valida-
tion and the error they might bring in.
Thus, this analysis enabled to identify levers to re-
duce the overall error of both tools.
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Conclusion

A methodology of validation designed specifically for
UBEM was presented in this paper. This method
aims to verify that UBEM are accurate enough to
provide a real aid in the decision-making process. To
do so, the validation procedure is broken down based
on UBEM use cases and error distributions are stud-
ied for KPI of each use cases.
This method was tested with two first UBEM tools on
a French test case. The analysis of the obtained error
distributions enabled to identify weaknesses of both
UBEM tools and hence improve their performances.
The development of this methodology is still ongoing
and future work should be carried on UBEM outputs
at smaller spatial and time scales. The error analysis
and the identification of critical inputs parameters in
the output error generation should also be strengthen.
Lastly, an important step would be to verify the ap-
plicability of the methods to a large range of UBEM
tools. Since the available datasets for simulation in-
fluence greatly the enrichment process and UBEM
behaviour in general, it would be of great interest
to apply this methodology in other countries than
France and with other UBEM tools as well. The au-
thors would then be very interested in collaborating
with other research teams on this topic.
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Appendices to chapter 5

Results obtained with Calomel for three different levels of data
availability
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Figure 7: Evolution of the mean and standard deviation of the consumptions obtained with
Calomel for each building between the three levels of data availability
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Figure 10: µbldg and the HPD region of each building against its DLE for three levels of data
availability for Calomel
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Figure 11: Evolution of the empirical coverage depending on the data availability for Calomel
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Figure 12: Mutual information between the residual and building’s characteristics for three
levels of data availability for Calomel
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Results obtained with Dimosim for three different levels of data
availability
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Figure 13: Vectors of mutual information between uncertain parameters and percentage of
error on electricity consumption obtained for the buildings of the validation dataset and for

three levels of data availability with Calomel
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Figure 14: Vectors of mutual information between uncertain parameters and percentage of
error on gas consumption obtained for the buildings of the validation dataset and for three

levels of data availability with Calomel
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Figure 15: Results of principal components analysis applied to vectors of mutual information
for the error on electricity consumption for three levels of data availability obtained for Calomel
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Figure 16: Results of principal components analysis applied to vectors of mutual information
for the error on gas consumption for three levels of data availability obtained for Calomel

201



µ0 µ1 µ2

0

50

100

150

200

250

300

350

400

M
ea

n
co

n
su

m
p

ti
on

s
in

kW
h

/m
2

Electricity - Mean consumptions

µ0 µ1 µ2

0

50

100

150

200

250

300

350

400

M
ea

n
co

n
su

m
p

ti
on

s
in

kW
h

/m
2

Gas - Mean consumptions

σ0 σ1 σ2

0

25

50

75

100

125

150

175

200

S
ta

n
d

ar
d

d
ev

ia
ti

on
in

kW
h

/m
2

Electricity - Consumptions standard deviation

σ0 σ1 σ2

0

25

50

75

100

125

150

175

200

S
ta

n
d

ar
d

d
ev

ia
ti

on
in

kW
h

/m
2

Gas - Consumptions standard deviation

Figure 17: Evolution of the mean and standard deviation of the consumptions obtained with
Dimosim for each building between the three levels of data availability
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Figure 18: Distributions of residuals obtained with Dimosim for the three levels of data
availability on electricity
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Figure 19: Distributions of residuals obtained with Dimosim for the three levels of data
availability on gas
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Figure 20: µbldg and the HPD region of each building against its DLE for three levels of data
availability for Dimosim
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Figure 21: Evolution of the empirical coverage depending on the data availability for Dimosim
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Figure 22: Mutual information between the residual and building’s characteristics for three
levels of data availability for Dimosim
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Figure 23: Vectors of mutual information between uncertain parameters and percentage of
error on electricity consumption obtained for the buildings of the validation dataset and for

three levels of data availability with Dimosim
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Figure 24: Vectors of mutual information between uncertain parameters and percentage of
error on gas consumption obtained for the buildings of the validation dataset and for three

levels of data availability with Dimosim
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Figure 25: Results of principal components analysis applied to vectors of mutual information for
the error on electricity consumption for three levels of data availability obtained for Dimosim
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Figure 26: Results of principal components analysis applied to vectors of mutual information
for the error on gas consumption for three levels of data availability obtained for Dimosim
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MOTS CLÉS

Simulation énergétique urbaine, validation

RÉSUMÉ

Afin d’aider les décideurs à choisir les meilleures mesures d’économie d’énergie pour les bâtiments à l’échelle urbaine,
la communauté scientifique a développé des outils d’aide à la décision parmi lesquels figurent les outils de simulation
énergétique urbaine (UBEM). Un UBEM est capable de calculer les consommations d’énergie pour chaque bâtiment
d’un quartier ou d’une ville et permet ainsi aux décideurs d’avoir une compréhension claire des impacts de différentes
mesures d’économie d’énergie telles que la rénovation de certains bâtiments ou la mise en place d’actions d’effacement
des consommations.
Cependant, pour s’assurer que les UBEM fournissent une aide réelle au processus de prise de décision, leur exactitude
doit être vérifiée par un processus de validation approfondi. La principale question de recherche abordée dans cette thèse
peut donc être décrite comme suit : Comment vérifier l’adéquation des UBEM au processus de décision pour lequel ils
sont utilisés ?
Un processus de validation composé d’une étape d’évaluation et d’une étape de diagnostic a été développé et est
présenté dans cette thèse. Une application de ce processus de validation est proposée sur des cas d’usages pour
lesquels des données accessibles librement peuvent être utilisées pour composer un jeu de données de validation.
L’étape d’évaluation et l’étape de diagnostic sont ensuite décrites en profondeur pour cet ensemble de cas d’usages de
même que les outils statistiques sélectionnés pour évaluer et analyser les performances des UBEM.
Le cadre d’évaluation proposé a été pensé pour être applicable à un large éventail d’UBEM et à un large éventail de cas
d’usages, mais de futurs travaux futurs devraient permettre de vérifier son applicabilité à une plus large échelle.

ABSTRACT

In order to help decision makers choose the best energy saving measures for buildings at the urban scale, the scientific
community developed decision-aiding tools among which lie the urban building energy models (UBEM). A UBEM is able
to compute energy consumptions for each building of a district or a city and thus enables decision-makers to have a clear
understanding of the impacts of different energy saving measures such as buildings refurbishment or flexibility.
However, to ensure that UBEM provide a real aid in the decision-making process, their accuracy should be verified through
a thorough validation process. The main research question tackled in this thesis can then be described as follows: How
to verify the adequacy of UBEM to the decision process they are used for?
A validation framework composed of an assessment stage and a diagnostic stage has been developed and is presented
in this dissertation. An application of this assessment framework is proposed on use cases for which open data can be
used to compose a validation dataset. The assessment stage and the diagnostic stage are then described in depth for
this set of use cases along with the statistical tools selected to assess and analyse the UBEM performances.
The proposed assessment framework has been thought to be applicable to a large range of UBEM and to a large range
of use cases, but future works should verify its applicability on a broader range.

KEYWORDS

Urban-scale Building Energy Modeling, Validation
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