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Glossary

Symbol Meaning
R Reflection matrix

RM Reflection matrix in a common midpoint basis
RD Reflection matrix in a de-scan basis
Γ Reflectivity matrix
G Propagation matrix

RPSF Reflection Point Spread Function
T and T̂ Transmission matrix and its estimator

D Distortion matrix
C Correlation matrix
δC Perturbation of C

||δT̂||2 Bias intensity of T-matrix estimator
i Input basis coordinate
o Output basis coordinate
lc Confocal filter size

ITR Iterative Time Reversal
IPR Iterative Phase Reversal
W(n) Wave-front of the ITR process at iteration n

rm Common midpoint
rp Central point of a spatial window
rc Confocal point

∆ρ = ρout − ρin Distance between input and output focusing points
D(∆ρ) De-scan window function

Table 1: List of symbols for matrix imaging.
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Symbol Meaning
× Matrix product
◦ Hadamard product
⊛ Convolution product
† Transpose conjugate of a matrix
⊤ Matrix transpose
ˆ Estimator of a physical quantity

SVD Singular Value Decomposition
U(i) ith right singular vector of a matrix
V(i) ith left singular vector of a matrix
σi ith singular value of a matrix

⟨...⟩ Ensemble average
⟨... | ...⟩ Scalar product

Table 2: Mathematical symbols.
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Symbol Meaning
I Image
H Point Spread Function matrix

r = (x, y, z) Focal point
ρ = (x, y) Transverse coordinate

λc Wavelength at the central frequency
fs Sampling frequency
c0 Speed-of-sound hypothesis

u = (ux, uy, 0) Transducer position
δρ0 Transverse ideal resolution
t Time
γ Medium reflectivity

θ/k Plane wave/Fourier basis
Nu Number of transducers
fc Central frequency
β Antisymmetric rate of a matrix

θmax Directivity of transducers
δθ Plane wave sampling

∆u = (∆ux, ∆uy) Probe dimension
C Coherence factor
fc Central frequency

A(−3dB) Area above 1/2 on RPSF amplitude
δρ(−3dB) RPSF resolution

C RPSF contrast
αS Single scattering rate
αM Multiple scattering rate
αN Electronic noise rate
W Spatial average window function

NW Number of resolution cells in W
w = (wx, wy, wz) Dimension of W

τ Time-of-flight
∆τ Time delay
A Apodization term of synthetic aperture

Table 3: List of general symbols.
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General Introduction
Our ability to see is the oldest imaging system, in which the eye focuses optical light reflected
from objects onto the retina. Subsequently, various imaging systems have emerged that go
beyond what the human eye can see.

In the specific case of medical imaging, there are several modalities with their respective
advantages and drawbacks. Optics suffers from lack of penetration, but offers sharp resolution
down to the nanometer range. Computed X-ray tomography is invasive, but provides detailed
internal images of the body. Magnetic resonance imaging is generally considered as the holy grail
of medical imaging because it is noninvasive, and its resolution is limited only by the strength
of the magnetic field. However, it is a quite expensive and voluminous apparatus. Moreover,
the object under examination must remain static during a long imaging sequence, and it often
requires the injection of a contrast agent.

In this context, ultrasound imaging offers a number of advantages thanks to its noninvasive
nature and flexibility. Indeed, it is one of the best-resolved clinical imaging modalities, capable
of providing real-time images to a depth of several centimeters with a relatively inexpensive
and portable system. Mimicking the biological radar used by dolphins or bats, an ultrasound
image is generated by echolocation. From this image, other tissue parameters such as blood
velocity or tissue stiffness can be extracted. Recently, thanks to a super-resolution technique,
namely Ultrasound Localization Microscopy (ULM), it has even become possible to generate
images of the vascular network with a resolution of a few micrometers by intravenous injection
of microbubbles. This approach is considered as a real breakthrough for functional imaging.

The construction of an ultrasound image is essentially based on two hypotheses: (i) a global
constant speed of sound in the medium and (ii) a single scattering assumption. For in vivo
imaging, they are approximately valid for most applications. However, in scenarios where these
assumptions do not hold, the quality of image reconstruction in terms of contrast and resolution
is severely compromised by several factors. First, the spatial variations in the speed of sound
distort the wave fronts as the wave propagates through the medium, reducing the quality of
the focusing process and thus the resolution of the image. These aberrations can hamper the
ultrasound diagnosis. In addition, multiple scattering, usually neglected in ultrasound, can
drastically degrade the image contrast, especially at large depths.

Thanks to the growing capacities of data storage and computation, a matrix approach to
wave propagation has emerged over the years. In the specific case of imaging, it is based on
the acquisition of the medium’s reflection matrix, which contains the impulse response between
each transmitter and each receiver of the multi-element technology used to illuminate and receive
the backscattered wave-field under study. This matrix contains all the information of a static
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medium in reflection, so that any adaptive focusing experiment can be performed numerically in
post-processing without having to repeat a time-consuming physical process. This approach is
very general and applies not only to ultrasound, but also to optical microscopy, radar or seismic
imaging. Only the experimental acquisition differs from field to field.

This work targets the building block of image generation by an ultrasound scanner. It
therefore precedes image processing tools that can be further used to highlight certain parameters
of an already generated image. While the generation of an ultrasound image is based on a
process of simultaneous focusing at input and output on each point of the image, matrix imaging
consists in decoupling the input and output focal points in order to scan aberrations and multiple
scattering.

Mathematically, this can be done by the projection of the reflection matrix onto a focused
basis. Physically, it consists in the synthesis of virtual transmitters and receivers located inside
the medium. In the specific case of ultrasound imaging, this matrix can be used to compensate
for aberrations, resulting in a close to ideal image in terms of resolution and contrast. In exper-
iments with linear transducer arrays, the method has been successfully validated to compensate
aberrations in vivo [Lambert, 2022a; Bendjador, 2020; Chau, 2019] and also to quantify multiple
scattering [Lambert, 2020b; Lambert, 2022b].

Nevertheless, because these results were obtained with 1D ultrasound probes for 2D imaging
applications, they provide only a one-dimensional field control, limiting the benefits of aberration
compensation. The richness of the reflection matrix lies in the use of the largest possible number
of degrees of freedom. Therefore, the goal of this work is to extend the study of the reflection
matrix along several dimensions. First, it is transposed from 2D to 3D imaging, thereby allowing
a much finer compensation of aberrations, with applications to transcranial imaging whether it
be in a standard or ULM imaging mode. Second, the temporal degrees of freedom are exploited
to characterize the acoustic response of the scatterers, paving the way towards quantitative
ULM imaging. Finally, the spatio-temporal degrees of freedom offered by the focused reflection
matrix are exploited to optimize focusing parameters such as the focal length or the speed of
sound model to: (i) compensate for axial aberrations (defocus) in ultrasound images; (ii) map
the speed of sound and obtain a quantitative image of biological tissues. The speed-of-sound is
for instance a relevant bio-marker for a certain number of liver diseases.

In Chapter 1, the basics of ultrasound imaging are presented. First, wave propagation and,
in particular, focusing are described using Fourier analysis. The main limitations of ultrasound
imaging and the strategies to overcome them are examined.

Chapter 2 introduces the general matrix formalism of wave propagation, which goes beyond
conventional imaging. In particular, it has been successfully used in previous work to quantify
focusing quality and local multiple scattering in ultrasound imaging. In addition, a method for
correcting aberrations in vivo is presented based on the results of previous work.

In Chapter 3, this framework is extended from 2D to 3D imaging using a matrix array of
transducers. Experimental results are presented, and images with enhanced contrast and close
to ideal resolution are presented, even in the difficult case of transcranial imaging. Finally, it is
shown that the gain in image quality for aberration correction is larger when the correction can
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be performed in both dimensions of the imaging probe, which is the case with 3D imaging.
In Chapter 4, we show how matrix imaging can be fruitful for other imaging modalities by

considering the example of transcranial ULM. On the one hand, it allows a fine compensation
of aberrations induced by the skull to improve the contrast and eliminate artifact of ULM
images. On the other hand, it exploits the temporal degrees of freedom of the reflector to
make ULM quantitative by tracking the resonance frequency of micro-bubbles, a quantity that
is related, in principle, to local pressure in vessels. In particular, we show that our matrix
imaging framework can be easily combined with other ultrasound modalities and demonstrate
this claim with Ultrasound Localization Microscopy in a transcranial in vivo experiment in sheep.
Furthermore, we show that microbubbles can also be a promising tool for tracking intra-arterial
pressure by using matrix imaging to track their resonance frequency. All the results presented in
this chapter are the results of two fruitful collaborations with other academic teams, the groups
of Olivier Couture and Patrick Tabeling.

In Chapter 5, we exploit the spatio-temporal degrees of freedom of the reflection matrix to
tackle axial aberrations which affect ultrasound images. The reflection matrix actually provides
an auto-portrait of the focusing process. Using the extreme sensitivity of the Gouy phase
shift at the focusing plane, we exploit this physical phenomenon for a sharp estimation and
compensation of defocus at any point of the medium. We first show the advantages of this
technique in multi-layered media before turning to in vivo imaging.

In Chapter 6, a similar approach is used to map the speed of sound inside the medium,
resulting in an image freed from for axial aberrations, on which distances can be accurately
measured. Beyond conventional ultrasound imaging, the speed-of-sound is a potential bio-marker
for a certain number of disease. Its mapping therefore opens a route towards quantitative
ultrasound matrix imaging.
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Chapter 1
Ultrasound Imaging

Ultrasound imaging is a non-invasive imaging technique that uses ultrasound waves
to examine an unknown medium. By physically or numerically focusing the waves
at any point in the field of view, an image of the reflectivity of the medium can be
obtained. Basic principles from echolocation to conventional ultrasound imaging
are presented, with emphasis on a Fourier analysis applied to wave propagation.
Finally, the fundamental limitations affecting the quality of an image and the current
strategies to overcome them are presented.
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1. Introduction

1 Introduction

Following Paul Langevin’s research on echolocation [Langevin, 1920], ultrasound imaging is an
imaging technique that emerged in 1942 [Dussik, 1942] and is currently widely used in the clinic
to investigate and diagnose pathologies based on the generation of an ultrasound image. Even
though it offers a relatively low resolution (∼ 0.1 − 1 mm), it is still an undeniable imaging
modality for radiology, mainly because of its real-time capability and portability. Another
major advantage is that this imaging technique is non-invasive, relying only on the propagation
of ultrasound waves throughout the body.

Basically, an unknown medium is first insonified with ultrasonic waves. The spatial variations
in the density and speed-of-sound of the medium inside the body result in secondary scattered
and/or reflected waves that propagate back to the probe. However, the reflected wave field
recorded by an ultrasonic probe does not provide a direct image of the medium. Usually, an
inverse problem is formulated to select the appropriate echoes for a given point by calculating
the time-of-flight of the wave from the probe to that point, assuming a constant speed-of-sound
in the medium. An image of the reflectivity of the medium is obtained, taking into account
both the contribution of speed-of-sound and density. In other words, an anatomical image of a
particular body part can be created, which can be used to study medical pathologies. In addition,
various other ultrasound imaging modalities can be derived from such a map to characterize,
for example, blood flow velocity (Doppler) or tissue stiffness (elastography).

The generation of a conventional ultrasound image is mainly based on two hypotheses: (i)
a constant background speed-of-sound in the medium and (ii) a single scattering assumption.
However, these two strong hypotheses are generally not true for in vivo imaging, because succes-
sive tissue layers can cause spatial variations in the speed-of-sound and also multiple scattering
events. In other words, as the ultrasound wave propagates, it experiences spatial variations in
the speed of sound that distort its wavefront, resulting in a degradation of the image resolution.
This detrimental effect is referred to as aberration. This is the case, for example, when a thick
layer of fat results in a poorly resolved and low-contrast image because the speed of sound varies
between the fat and the target organ [Zhang, 2018]. In addition, the signal-to-noise ratio is
drastically reduced due to the attenuation of layers such as the skull, which makes the feasibility
of transcranial imaging in adult subjects an active research topic from a clinical perspective.
Finally, the axial dimension displayed in a medical ultrasound scanner is nothing more than
an estimate based on the assumption of the speed-of-sound. Therefore, distance measurements
used to monitor the size of malignant tumors or to detect chromosomal abnormalities during
pregnancy [Nicolaides, 1992] may be highly biased in such cases.

This first chapter introduces the basic principle of echolocation from pulse-echo detection to
ultrasound imaging applications and its evolution over the years. Then, some notes on Fourier
analysis of wave propagation are given to describe the fundamental limitations of ultrasound
imaging, the key idea being that ultrasound imaging is based on a focusing process of waves. Fi-
nally, all factors affecting the quality of ultrasound imaging are examined, and current techniques
to circumvent their effects are presented.
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Figure 1.1: Properties of a piezoelectric transducer. (A) Sketch of a single transducer ex-
cited by an electrical pulse. Example of a (B) time response and its corresponding (C) frequency
spectrum of a matrix array of transducers [see Table 3.1], as specified by the manufacturer (Ver-
mon). (D) Numerical simulation of the directivity pattern for a transducer of size δu = 0.5 mm
with a central frequency fc = 3 MHz, assuming a speed-of-sound c = 1540 m/s.

2 Conventional ultrasound imaging

In this first section, we introduce the building blocks of conventional ultrasound imaging. After
describing the key physical properties of a piezoelectric transducer that allow an ultrasonic wave
to insonify an unknown medium and record the corresponding backscattered reflected wave-
field, we introduce the principle of echolocation, which was originally introduced in underwater
acoustics for sonar imaging to detect submarines [Langevin, 1920] and then extend it to the use
of an ultrasonic probe to produce an image of the reflectivity of an unknown medium.

2.1 Piezoelectric transducer

A piezoelectric transducer, usually made of lead zirconate titanate (PZT) in medical imaging, is
the most important element of any ultrasound imaging device, as it enables the conversion of an
electrical signal into a pressure change and inversely thanks to the piezoelectric effect. In other
words, it is both a transmitter and a receiver, so it allows not only the generation of ultrasound
waves, but also the recording of the time dependence of the pressure wave field at a given point.
It is characterized by the following key parameters:

– its spectral responses [Fig. 1.1C], characterized by its central frequency fc, which is directly
related to the thickness of the piezoelectric crystal [Szabo, 2004], and its spectral band-
width ∆f , which defines the minimum and maximum available frequencies. In medical
ultrasound imaging, its value ranges from 1 to 20 MHz;

– its directivity pattern [Fig. 1.1D], which is related to its size. The smaller the transducer
compared to the wavelength, the more it radiates in all directions, resulting in an isotropic
directivity pattern. Conversely, a large transducer radiates in a specific direction.

4



2. Conventional ultrasound imaging

Figure 1.2: Pulse-echo detection. (A) A single transducer transmits a diverging wave into
a medium containing three strong reflectors (nylon rod). (B) When the wave interacts with a
strong reflector, a secondary scattered wave is generated that propagates back to the transducer,
where the time dependence of the pressure wave field is recorded. (C, D) Real part and intensity
of the recorded wave field, respectively. Three peaks can be seen, clearly indicating the presence
of the strong reflectors. The attenuation in the medium explains the decrease in the energy
trough time. The experiment is investigated in a tissue mimicking phantom (CIRS, Model
054GS).

2.2 Pulse-echo detection

The simplest way to gain information about an unknown medium is to use a plane transducer
that emits a short pulse [Fig. 1.2A], which ideally can be described by the Dirac distribution
δ(t), where t is time. In practice, however, the pulse has a finite duration [Fig. 1.1B], which
is directly inversely proportional to the spectral bandwidth δtpulse = 1/∆f . This electrical
pulse is converted into a pressure pulse, so that a diverging wave is generated, provided that an
impedance match between the transducer and the medium is ensured. This is done, for example,
with ultrasound gel when examining human soft tissues.

When the wave encounters a reflector [Fig. 1.2B], i.e. a change in the density and/or speed-
of-sound of the medium, a secondary diverging waves is generated. Some examples of acoustic
impedance values defined by the product of density and sound velocity of the medium can be
found in [Table. 1.1]. The transducer thus allows the echoes backscattered by the medium
heterogeneities recorded in the so-called Radio Frequency (RF) signal [Fig. 1.2C]. To reduce
the dynamic range of such a signal and make its tiny fluctuations more visible, it is usually
displayed on a logarithmic scale [Fig. 1.2D]. In this simple experiment, three echoes are clearly
visible, so three reflectors can be detected. This is the principle of echolocation introduced by
Paul Langevin in underwater acoustics to detect enemy submarines [Langevin, 1920].
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Tissue/Material Speed-of-sound [m/s] Density [kg.m−3] Impedance [Mrayls]
Human tissues

Breast 1510 1020 1.54
Liver 1578 1050 1.657

Skull/bone 3000 2310 3.9
Ultrasound phantom

Zerdine gel 1540 1000 1.54
Nylon 2600 1114 2.3

Other materials
Water (at 20 °C) 1480 1000 1.483
Water (at 60 °C) 1550 1000 1.55

PZT-5A 4350 7.75 33.71

Table 1.1: Ultrasound properties of various human tissues and materials. Values are
extracted from [Duck, 1990; Fry, 1978; Ogawa, 2013].

2.3 Ultrasound probe

Even though the above method is characterized by a good temporal resolution directly related
to the duration of the pulse, it suffers from a poor signal-to-noise ratio (SNR). A strategy to
improve this ratio could be to use a convex transducer to increase the energy deposited in the
focal point. To increase flexibility, this simple method can be implemented with an ultrasound
probe consisting of multiple transducers [Fig. 1.3A] regularly spaced that can be controlled
independently of each other, as described in [Fig. 1.3B]. A converging wave that focuses on the
desired focal point can be generated by applying time-delays to each transducer of the probe
[Fig. 1.4A]:

∆τ(uin, r, c0)︸ ︷︷ ︸
Time-delay

= τ(uin, r, c0)︸ ︷︷ ︸
Time-of-flight

− z

c0
=
√

(x − ux)2 + (z − uz)2

c0
− z

c0
, (1.1)

where u = (ux, uy, uz) denotes a transducer, r = (x, y, z) refers to the target focal point, c0 is
the speed-of-sound hypothesis of the medium and the subscript “in” denotes the propagation of
the transmitted wave.

This approach is much more flexible because we can focus at any point of the medium. The
improvement in SNR depends directly on the number of transducers Nu. This number ranges
from 128 or 256 for conventional 1D probes to 1024 for matrix arrays of transducers. In addition,
1D ultrasonic probes usually use an acoustic lens [see blue part in Fig. 1.3C] to focus at a certain
depth in the elevation plane (y-plane) such that propagation remains constrained in a plane,
thus increasing the energy of wave propagation in that imaging plane (x, z). In addition, the
geometry of the probe can be adapted to a specific anatomical part. Convex probes, for example,
are characterized by transducers that are aligned along a specific radius, greatly increasing the
field-of-view and allowing imaging of relatively large organs such as the liver.
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2. Conventional ultrasound imaging

Figure 1.3: Sketch of a linear ultrasound probe. (A) Commercial linear probe [Extracted
from Hologic website]. (B) Sketch of the main components of an ultrasound probe. (C) Three-
dimensional view. The acoustic lens enables the study of wave propagation in a plane with a
resolution called the elevation plane.

2.4 Numerical focusing

Interestingly, the reflected wavefronts contain much more information that can be combined to
further increase the signal-to-noise ratio at the focal point. Assuming that we focus at a given
point r and that we have recorded the reflected wavefront at each transducer in time, this wealth
of information can be stored in a matrix s = [s(uout, t)]. The propagation time-of-flight to go
from r to uout is also given by (Eq. 1.1). Thus, the received channels [Fig. 1.4B] can be delayed
to align the recorded wavefronts associated to the focal point [Fig. 1.4C]. By summing the
individual channels [Fig. 1.4D], the signal emanating from this point is significantly amplified.
Mathematically, this can be expressed as follows:

s′(r, t, c0) =
∑
uout

s(r, uout, t + ∆τ(uout, r, c0)), (1.2)

where s′ is the delayed and summed signal. Assuming that the origin of time t = 0 is set when
the transmitted wave is generated, so that the transmitted wave reaches the focal point at z/c0.
The value of I at the ballistic time (t = 2z/c0) directly holds an estimation of the reflectivity
at this very point [Fig. 1.4E]:

I(r, c0) =s′(r, t = 2z/c0, c0) (1.3)
=
∑
uout

s(r, uout, τ(uout, r, c0)), (1.4)

where I is the image of the reflectivity.

2.5 Reflectivity map

To create an image, this process can be repeated for each focal point. However, this is a
time-consuming process because a physical focusing process is required for each point of the
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Figure 1.4: Conventional B-mode in ultrasound imaging. (A) A focused beam is generated
for emission by appropriately delaying the individual transducers of the probe. The focusing
process here is physical. (B) The backscattered wavefronts are recorded on each transducer of
the probe. (C) A numerical focusing process is performed by applying the same appropriate
time delays to align the wavefront coming from the targeted focal point. (D) A coherent sum is
then performed whose value at the ballistic time corresponds to one pixel of the image. (E) Each
pixel is thus a complex value containing both phase and amplitude information. (F) Example
of a liver ultrasound image of a healthy volunteer. The intensity of the image is displayed in a
logarithmic scale. The brightest part corresponds to the interface of the liver.

medium and the assumption of a static medium may not be guaranteed, resulting in possible
motion artifacts. However, it is possible to take advantage of the finite size of the field of view
created by the focusing process, which distributes energy not only at the focal spot rin but also
above and below the focal depth; this is the so-called depth-of-field. Using appropriate time
delays τ(rin, r, c0), an image can thus be obtained from focused beams. Iterative scanning in the
transverse direction, called B-mode imaging, with few input focal spots thus enables the recovery
of real-time imaging capabilities. Such data can be stored in a new matrix R = [R(rin, uout, t)],
that we will refer to the reflection matrix in the following. Thus, the previous equation becomes:

I(r, c0) =
∑
rin

∑
uout

R(rin, uout, τ(rin, r, c0)︸ ︷︷ ︸
Input focusing

+ τ(uout, r, c0)︸ ︷︷ ︸
Output focusing

). (1.5)

The intensity of the ultrasound image is then usually displayed on a logarithmic scale to reduce
the dynamic range and make the structures more visible. An example of a liver image in a
normal subject is shown in [Fig. 1.4F]. The vessels are associated with dark areas in the image
because they contain scatterers that are much less echogenic compared to the soft tissues of the
liver, meaning that they exhibit lower impedance fluctuations.

The imaging process is thus the result of a double focusing process, namely confocal imag-
ing, in which the waves are focused either physically or numerically at the same point at emis-
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sion and at reception. It is clear that the reconstructed image depends directly on the constant
speed-of-sound hypothesis c0. In order to quantify the fundamental limitations of this method,
especially in terms of contrast and resolution, it is necessary to introduce some basics of wave
propagation that can be well described by a Fourier analysis.

3 Fourier analysis of wave propagation

To better understand the fundamental limits of the reconstructed image I, it is necessary to
recall some memories of wave propagation. In particular, we will see that the Fourier analysis
is an indispensable tool for describing wave propagation.

A wave can be defined as the propagation of a perturbation of a field through space (r) and
time (t). In this way, the spatio-temporal dependence of a particular parameter of the medium
is studied. In ultrasound imaging, the field under consideration is the pressure field, which can
be considered as a scalar value, unlike other wave fields such as the electromagnetic or elastic
waves, where the vector nature of the wave must be taken into account.

The pressure perturbation oscillates in the longitudinal direction, i.e. in the direction of
propagation, which is characteristic of compressional waves.

3.1 The d’Alembert equation

Assuming a homogeneous medium, the propagation of ultrasonic waves is described by the
d’Alembert equation:

∆p(r, t) − 1
c2

∂2p(r, t)
∂t2 = S(r, t), (1.6)

where p is the scalar pressure field, ∆ is the Laplacian operator, c is the speed of sound of the
medium and S a source term. This equation underlies fundamental physical properties. First,
its second order derivative with respect to time makes it invariant by time reversal [Fink,
1992]. Second, we can use the Green’s formalism to show that the self-adjoint property of the
Laplacian operator implies the spatial reciprocity of wave propagation. Indeed, the Green’s
function G(r, rA, t) is the solution of the d’Alembert equation when the source is a unique point
located at rA emitting an infinitely short pulse, i.e. S(r, t) = δ(r − rA)δ(t). The roles of the
transmitter and a receiver located at r can be reversed: The signal recorded from rA to r is the
same as the signal recorded from r to rA.

Without any source term, a solution of the wave equation is the monochromatic plane wave,
which can be expressed as follows:

p(r, t) = A0. exp(−i (ωt + k.r + ϕ0)︸ ︷︷ ︸
Phase

), (1.7)

where A0 is the amplitude, ω = 2πf is the pulsation, k is the wave vector, and ϕ0 is a phase
reference. The norm of the wave vector is given by 2π/λ, where λ is the wavelength defined by
the ratio between the speed of sound and the frequency λ = c/f . Considering a biological tissue
composed mainly of water (c ∼ 1540 m/s), the associated wavelength for a frequency of fc = 3
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Figure 1.5: Huygens-Fresnel principle and diffraction theory. The Huygens-Fresnel prin-
ciple states that the propagation of a wave can be considered as an infinite sum of secondary
waves at any instant. (A) Example of a plane wave decomposed into a sum of aligned virtual
secondary sources. (B) The Huygens-Fresnel theorem can be used to explain the diffraction of a
plane wave by an object whose size is on the order of the wavelength. (C) Snell-Descartes’ laws
apply to interfaces between two media, i.e. objects whose size is much larger than the wave-
length. An incident plane wave results in a tilted transmitted wave (refraction) and a reflected
wave whose wavevector points in the opposite direction.

MHz is about 0.5 mm. Spatial and temporal oscillations of a plane wave can be linked by the
dispersion relation ∥k∥ = ω/c.

3.2 Huygens Fresnel principle

Another important feature of the d’Alembert equation is linearity and the resulting superposi-
tion principle. Originally formulated as the Huygens-Fresnel principle, it states that a wave can
be decomposed into an infinite sum of secondary waves. In other words, each instant of wave
propagation can be viewed as the emission of an infinite number of diverging waves lying on the
wavefront of the propagation, as shown in [Fig. 1.5A] for the particular case of a plane wave.

This remarkable view of wave propagation explains why, on the one hand, a small scatterer
(or a pinhole) whose size is smaller than the wavelength diffracts, radiates, or scatters in all
directions of space [Fig. 1.5B]. On the other hand, if we consider a boundary surface, i.e. an
object whose shape is much larger than the wavelength, the wave is reflected in a single direc-
tion [Fig. 1.5C]. Moreover, the transmitted wave is diffracted according to the Snell-Descartes
law. Thus, there are different scattering regimes depending on the size of the objects under
consideration, where λ is the relevant observable to be compared.

3.3 Fourier analysis

Combing linearity with (Eq. 1.7), each solution of the d’Alembert equation can be expressed as
follows:

p(r, t) =
∫ ∫

dωdkpF (k, ω) exp(−j(ωt + kr)), (1.8)
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where pF is the spatio-temporal Fourier transform of the pressure field p. Thus, Fourier analysis
seems to be a suitable tool for describing wave propagation. Mathematically, it is a change of
basis that projects experimental data into an abstract space, that provides a different view on
experimental data.

A first use of the Fourier transform can be made when considering the Dirac distribution
whose Fourier transform is a constant. In other words, a perfect pulse results in a flat response
in the Fourier domain and is thus associated with an infinite frequency range. However, the
wave generated in ultrasound imaging has a finite duration, reducing the available frequencies
in the so-called spectral bandwidth, such that ∆f = 1/δtpulse. Using the dispersion relation
and assuming a constant speed of sound in the medium, this quantity thus defines the axial
resolution δz0 of an ultrasound image:

δz0 = c0δtpulse = c0/∆f. (1.9)

Such signals are called broadband because they represent a sum over a certain frequency
range.

3.4 Coherence and interferences

The key concept behind the Huygens-Fresnel principle is wave coherence, which describes the
ability of two waves to interfere with each other. Mathematically, this property can be described
by considering two waves p1 and p2 and looking at the intensity of the wave field:

|p1(r, t) + p2(r, t)|2 = |p1(r, t)|2 + |p2(r, t)|2︸ ︷︷ ︸
Incoherent

+ p1(r, t)p∗
2(r, t) + p∗

1(r, t)p2(r, t)︸ ︷︷ ︸
Coherent

, (1.10)

where pn(r, t) = An exp(jϕn(r, t)) is the pressure wave-field associated to the wave of subscript
“n” with An its amplitude and ϕn its phase.

The resulting intensity is not only the result of the two intensities, namely the incoherent
term, but also the contribution of a coherent term describing the interference between the two
waves. In other words, the phase of the wave field is determinant, since it can lead to constructive
interference when two waves are in phase (A2

1 +A2
2 +2A1A2), or to destructive interference when

two waves are out of phase (A2
1 + A2

2).
In contrast to optical imaging, where coherence is only guaranteed under certain conditions

(coherent source such as laser, or secondary sources like in the experience of Young’s slits)
and thus applies to a spatially and temporally limited coherence length, ultrasonic sources are
characterized by a much larger coherence length, which we will consider infinite in the following.

3.5 Random wave-field and speckle pattern

When considering a random wave field, this property of interference leads to random patterns.
In ultrasound imaging, these so-called speckle patterns generally form the background of the
ultrasound image, since the medium consists of a random distribution of unresolved scatterers
that can be modelled by a random reflectivity γ(r).
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Figure 1.6: Ultrafast imaging in a random medium. (A) A single plane wave insonifies
a tissue-mimicking phantom made of randomly distributed and under-resolved scatterers. (B)
Real part of the raw radio-frequency (RF) signals. A coherent wavefront appears clearly and
is associated with the nylon rod. (C) Corresponding ultrasound image. A random wave-field
results in a random pattern, called speckle.

We will now consider the generation of a speckle pattern by a tissue-mimicking phantom
insonified by a partial plane wave [Fig. 1.6A]. This can be done by emitting a pulse simultane-
ously with each transducer of the probe [Bruneel, 1977; Lu, 1997; Sandrin, 1999]. Albeit simple,
it was considered as a real breakthrough at that time because it allows a much larger field of
view with a smaller number of insonifications compared to previously focused beams, resulting
in an ultrafast frame rate of several kHz.

The ultrasound phantom consists of an ultrasound gel composed of unresolved scatterers and
some bright targets made of nylon rods. The backscattered reflected wavefronts are recorded on
each transducer of the ultrasound probe and shown in [Fig. 1.6B].

Two features stand out clearly in [Fig. 1.6B]. First, a coherent wavefront associated with
a bright reflector appears. Second, the background wave-field shows random fluctuations due
to the random reflectivity of the medium. After beamforming, an ultrasound image can be
obtained. Thus, the background corresponds to a random speckle pattern, and the bright target
can be detected with a sharp resolution [Fig. 1.6C].

3.6 The focusing process

This experiment can be used to better illustrate the numerical focusing process described earlier.
When the wave reaches the reflector, a secondary wave propagates back to the probe, and its
corresponding wave-field is captured by the ultrasonic probe. The corresponding wavefronts are
shifted in time with respect to each channel of the probe due to the geometry. The numerical
focusing process consists of applying appropriate time-delays (or equivalent phase shifts at the
central frequency) to realign the wavefronts with respect to each channel. Doing so, a coherent
sum at the ballistic time results in a strong amplification of the signal emanating from
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Figure 1.7: The focusing process. (A) A plane wave light passing through an optical lens
results in a focused wave at the output due to the radius curvature of the lens. (B) This process
is very similar to the time delay of echoes coming from a single targeted focal point and recorded
on each transducer of an ultrasound probe. (C) Mathematically, the focusing process consists
of aligning the phases of all partial wave, which are combined to form the total wave.

that point. This principle is called beamforming in ultrasound imaging and can be viewed as
a numerical focusing process in which a wave is not physically focused in the medium, but is
virtually focused in post-processing.

The geometric time-delays to be applied [Fig. 1.7B] are very similar to the radius of curvature
of an optical lens, which causes an optical path difference such that a plane wave passing through
a lens gives rise to a converging wave that focuses in the so-called focal plane [Fig. 1.7A]. Thus,
the focusing process can be regarded as a Fourier transform connecting the far-field (plane
wave basis or k-space) and the focal plane (real space). Mathematically, the focusing process
corresponds to the phase alignment of each individual partial wave recorded by each transducer
[Fig. 1.7C] to maximize the energy at a particular time and point, called the focus. The focusing
process, whether physical or numerical, is at the heart of ultrasound imaging to maximize the
signal emanating from any focal point in the field-of-view.

However, the amplification of the focusing process is inherently limited by the so-called
isochronous volume [Mallart, 1994]. It is defined as the spatial area from which echoes, that will
contribute to the acoustic signal at a given time-of-flight, come from. For a given source-receiver
couple, the isochronous curve is an arc of ellipse whose foci are the source and the receiver and
whose width is c0δt [Fig. 1.8A]. The corresponding isochronous volume follows the shape of this
ellipse, with a thickness δz0. When considering the focused beamforming process, the acoustic
signal will result from echoes coming from each individual isochronous volume associated with
each transmitter-receiver couple [Fig. 1.8B]. Thus, instead of summing only the contribution of
the targeted focal point where all isochronous volumes overlap, one pixel of the ultrasound image
results from the summation of echoes coming from each isochronous volume at the ballistic time,
thus reducing the gain in signal-to-noise ratio provided by the beamforming process.

13



Chapter 1. Ultrasound Imaging

Figure 1.8: Isochronous volume. (A) Isochronous volume associated to a single emitter
(orange), receiver (green) and a focal point. The associated ballistic time has multiple solutions
that describes an ellipse. (B) Complete set of isochronous curves, V, associated with all the
emitters & receivers and the same time echo. Inspired from [Mallart, 1994].

Figure 1.9: Numerical aperture and Point Spread Function (PSF). (A) The aperture
of an imaging system defines the maximum angle of insonification that reaches the targeted
focal point. (B) Flat aperture function in k−space. This space can be considered as a plane
wave basis or a far-field basis. (C) The Fourier transform of the aperture function defines the
Point Spread Function of the system, which determines the transverse resolution of the imaging
system. In other words, it defines the limit of the system for distinguishing two points. The
most common method of defining resolution is the Rayleigh criterion, i.e. the full width at half
maximum. (D) Point Spread function in 3D imaging.

3.7 Resolution and Point Spread Function (PSF)

The observed size of the bright target in [Fig. 1.6C] does not correspond to the actual size of
the object, but to the resolution of the imaging system. In the axial direction it is limited by the
duration of the emitted pulse, while in the transverse direction it is limited by the wavelength
and the size of the imaging system, more precisely by its numerical aperture.

The angular aperture refers to the angular range ∆θ = θmin + θmax observed from a given
focal point, as described in [Fig. 1.9A]. Thus, the angular aperture function is rectangular in the
k-space [Fig. 1.9B], where the transverse wave vector kx is related to the angle of a plane wave
according to the relation kx = ∥k∥ sin(θ). Interestingly, the focal plane (r) and the far-field (k),
are related by a spatial Fourier transform. Thus, the Fourier transform of the angular aperture is
a cardinal sinus in the focal plane that defines the impulse response of an imaging system, better
known as the Point Spread Function (PSF) [Fig. 1.9C]. Its size determines the transverse
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resolution of an imaging system, defined by its ability to distinguish two point-like objects at
the same depth. The transverse resolution of an imaging system δx0 is thus given by the first
zero of the cardinal sinus function:

δx0 = λ

2NA
= λ

2 sin(∆θ/2) . (1.11)

Using a matrix array of transducers, the PSF of a 3D imaging system is thus the product of
two cardinal sinuses, as depicted in [Fig. 1.9D].

In a paraxial approximation, i.e. for a point located far away from the probe (z ≫ λ) and
along the propagation axis, and the previous equation can be simplified as follows:

δx0 ≈ λz

∆ux
, (1.12)

where ∆ux is the size of the probe and z is the depth of the focusing point. It is important to
note that only the focusing process at the output was considered here, with a single transmitted
plane wave at the input.

Conversely, the size of the transducer implies a certain range of spatial frequencies (or angles)
that defines its pattern of directivity. Thus, a transducer of size λ emits in all directions [blue
curve in Fig. 1.10A, D], while a transducer of size 20λ emits preferentially in one direction and
thus generates a quasi-plane wave [green curve in Fig. 1.10B, D].

3.8 Shannon criterion & aliasing effect

The considerations in the previous section refer to the continuous access to real space. However,
the use of an ultrasound probe leads to a spatial sampling of the wave-field in the transducer
plane, which also corresponds to a sampling of the k-space. Mathematically, the aperture
function of an ultrasound probe is the convolution of a Dirac comb that accounts for the regular
position of each transducer, known as the pitch and noted δu, and a rectangular window that
accounts for the size of each transducer δu′ = δu − κ, where κ is the spacing distance between
two elements. Mathematically, the aperture function A of a finite probe made of N transducers
can be written:

A(x) = Πδu′(x)︸ ︷︷ ︸
Transducer size

x
⊛

(
N∑
n

δ(x − nδu)
)

︸ ︷︷ ︸
Sampling

, (1.13)

where Πδu′ is a rectangular window function of size δu′ and
x
⊛ denotes a spatial convolution.

Thus, the maximum spatial frequency kx that can be correctly detected according to the Shan-
non’s criterion must satisfy the following expression:

2
(

kx

2π

)
≤ 1

δu
. (1.14)
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Figure 1.10: Grating lobes and aliasing effect. (A, B) Aperture function of a single
transducer of size λ and 20λ, respectively. (C) Aperture function of an ultrasound probe.
(D) Directivity pattern in each case. These are numerical simulations obtained with a central
frequency fc = 7.5 MHz, c = 1540 m/s.

Assuming a central wavelength λc = c/f such that kx = 2π/λc sin(θ), it can be reformulated as
follows:

sin(θ) ≤ λc

2δu
. (1.15)

Thus, this condition is always satisfied if δu ∼ λc/2 which is the case for phased-array probes.
Phased-array probes are thus characterized by a small aperture, with a large angular field-of-
view. They are particularly suitable for trans-costal imaging, where bones should be avoided as
much as possible. However, for linear probes characterized with a pitch of δu ∼ λc, Shannon’s
criterion cannot be always satisfied, and grating lobes may appear. For example, if a plane wave
is transmitted with an angle of 30◦, energy at θ = −30◦ is also transmitted. Such grating lobes
are shown in [red curve in Fig. 1.10D].

Spectral aliasing can also occur in the time domain. To satisfy the Shannon criterion,
the most naive approach is to set the sampling frequency fs to at least twice the maximum
frequency of the transducers’ spectral bandwidth. However, there are some strategies to reduce
the sampling frequency of a recording system in order to reduce the amount of data. In the
specific case of ultrasound imaging, one technique is IQ modulation (see Appendix 7) [Kirkhorn,
1999]. Briefly, this can be used to demodulate the RF signal so that the spectrum is shifted to
the zero frequency as follows:

sIQ(t) = sRF(t). exp(−2iπfct). (1.16)

After applying a low-pass filter, the signal can be down-sampled at a sampling frequency equal
to the spectral bandwidth, drastically reducing the amount of collecting data. In this way, the
signals from IQ demodulation are directly complex values containing both phase and amplitude
information. One strategy for accessing the complex information in the real RF signals is to
keep only the positive frequency. In the following, we will only consider complex signals.
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4 Ultrasound imaging today

Originally, ultrasound imaging used focused beams to physically scan an unknown medium,
namely B-scan. Although ultrasound imaging is the fastest clinical imaging modality, its con-
ventional frame rate is limited because it requires multiple focused ultrasound beams distributed
over a limited portion of the field of view to image the medium. Therefore, it is not sufficient
to capture the rapid fluctuations of biological tissue.

4.1 Ultrafast imaging

The ability to generate an ultrasound plane wave was introduced to increase the frame rate
[Bruneel, 1977; Lu, 1997; Sandrin, 1999], namely ultrafast ultrasonic imaging [Tanter, 2014].
This increased frame rate of about a thousand frames per second represented a paradigm shift
at the time because, in conjunction with fast parallel processing [Delannoy, 1979], it can reveal
previously hidden information about tissue and blood motion. In particular, this new technology
paved the way for ultrafast Doppler imaging [Hansen, 2009; Bercoff, 2011; Osmanski, 2012b;
Ekroll, 2013; Yiu, 2013] and ultrafast contrast imaging [Couture, 2009; Couture, 2011; Couture,
2012], but also for new ultrasound imaging modalities such as functional ultrasound imaging of
brain activity [Macé, 2011; Mace, 2013] or even shear wave elastography [Bercoff, 2003; Bercoff,
2004]. The latter is based on tracking the tissue displacement induced by a shear wave in the
medium to extract the shear wave velocity, which can eventually be converted into a shear
modulus map to characterize the stiffness of tissues.

4.2 Synthetic focusing

Moreover, it is possible to use the total number of available spatial degrees of freedom at the
input, which is nothing else than the number of transducers N, associated with the same num-
ber of available plane waves. Therefore, it is possible to use successive series of plane wave
insonifications [Fig. 1.11A] that forms a basis in the k-space and focus them synthetically, i.e.
numerically, on a given point [Fig. 1.11C] [Montaldo, 2009]. It should be noted that the angle
of the plane waves depends on the medium speed of sound (see. Appendix 8). An example is
shown in the carotid artery of a healthy volunteer. This is the principle of coherent compound-
ing, which corresponds to a numerical focusing process at the input and thus produces a large
contrast enhancement, as shown in [Fig. 1.11D]. Note that there is always a tradeoff between
contrast and frame rate: The contrast of the ultrasound image scales as the number Nin of plane
wave insonifications, while the frame rate scales as 1/Nin.

4.3 Confocal imaging

Coherent compounding leads not only to a large contrast enhancement, but also to an improve-
ment in resolution, which we will quantify later. This double focusing process at the input and
output is the ultrasound equivalent of optical confocal imaging.
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Figure 1.11: Synthetic focusing or coherent compounding. Carotid imaging of a healthy
volunteer (A) A plane wave can be generated by appropriately delaying the individual trans-
ducers and assuming a constant speed-of-sound in the medium. (B) A single plane wave can be
used to reconstruct an ultrasound image of the medium. (C) The coherent summation of the
individual images can be viewed as a numerical focusing process at the input, resulting in a (D)
contrast-enhanced image. Adapted from [Montaldo, 2009].

Main steps in ultrasound imaging

In general, ultrasound imaging can be summarized in the following three steps:

– (i) insonification of the medium with a successive number of ultrasound waves,
referred to as iin. In the next chapter, various insonification bases will be presented;

– (ii) recording of the backscattered wavefronts at each transducer uout of the probe;

– (iii) an image is then generated by applying appropriate time-delays to numerically
focus on the same point both at emission and reception. Such an operation can
be performed with a Delay-And-Sum (DAS) algorithm, which can be expressed
mathematically as follows:

I(r) =
∑
iin

∑
uout

A(iin, uout, r)s(iin, uout, τ(iin, r) + τ(uout, r)), (1.17)

where A is an apodization factor that takes into account the directivity of the transducers.

In a single scattering regime, this quantity is an estimation of the complex reflectivity at any
point of the medium convoluted with an imaging Point Spread Function:

I(r) = γ(r)
r
⊛ [Hin(r).Hout(r)]︸ ︷︷ ︸

PSFconf(r)

, (1.18)

where PSFconf denotes the confocal imaging PSF, which is the product of the input and output
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4. Ultrasound imaging today

Figure 1.12: Confocal imaging. Conventional ultrasound imaging is equivalent to confocal
imaging when all available spatial degrees of freedom available (i.e. the square number of trans-
ducers) are used. (A) Schematically, it refers to focusing on the same point during transmission
and reception. (B) In the k-space, the aperture function of such a system is the convolution
of the input and output imaging systems, resulting in a triangular function. (C) In the focal
space, it corresponds to the product of the input and output PSF.

PSFs Hin/out(r). In the k-space, the previous equation can be reformulated as follows:

I(k) = γ(k).
[
Hin(k)

k
⊛ Hout(k)

]
. (1.19)

Hence, the angular support of the resulting confocal image has a triangular shape of width
4k0 sin(θ) in the k-space. It means that the minimum details that can be discerned on the
ultrasound image scale as δx0/2.

Methods such as structured illumination aim to make the angular aperture function rect-
angular to access high spatial frequency with a higher signal-to-noise ratio, thus increasing the
resolution by a factor of 2 [Gustafsson, 2000; Ilovitsh, 2018]. However, these techniques rely
on the demodulation of a specific pattern that is sent to the medium and must be well known,
which is not the case when the medium is heterogeneous. For this reason, such techniques are not
explored in this work, and the fundamental resolution limit we target is the confocal resolution.

4.4 Various set of imaging modality

Ultrasound imaging includes various imaging techniques based on the complex reflectivity map
I, which contains information about both the amplitude and phase of the wave-field.

4.4.1 Image of reflectivity

The most common imaging modality corresponds to the intensity of the complex field that
provides an image of anatomical structures, such as the kidney in [Fig. 1.13A]. It is usually
represented in a logarithmic scale as follows:

IdB(r) = 10log10

(
|I(r)|2

)
. (1.20)
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Figure 1.13: Different modalities of ultrasound imaging. Each imaging modality in ul-
trasound imaging is based on the ability to reconstruct a map of the reflectivity of an unknown
medium. (A) Example of ultrasound reflectivity image of the kidney. (B) Example of color
Doppler imaging in the carotid artery. (C) Example of an elastography map in a 2-month-old
child to visualize a liver nodule. Extracted on Supersonic Imagine website. (D) Example of
super-resolved images of blood vessels in rat brain using Ultrasound Localization Microscopy
(ULM). Extracted from [Errico, 2015].

4.4.2 Doppler imaging

Other imaging modalities can be built from the complex image to study the dynamics of bi-
ological tissue with ultrafast imaging. For this purpose, multiple images I(r, tp) are created
at different times tp. The complex images are then filtered to extract only the signals that
correspond to what is moving in the field of view. The filtered images are noted I(filt).

In the past, high-pass filters along the time dimension have been used to extract blood motion
based on the different characteristics of tissue and blood motion [Bjaerum, 2002; Yoo, 2003].
However, such filters are not optimal because they assume that the spectral features of blood
and tissue motion do not overlap. However, this assumption does not hold for vessels with low
flow velocities, which affects accuracy when reconstructing small vessels or when tissue motion
is strong, such as in cardiac applications. One solution to overcome this problem is to exploit
not only the temporal but also the spatial features of tissue and blood motion using singular
value decomposition (SVD) [Ledoux, 1997; Kruse, 2002; Lovstakken, 2006; Yu, 2010], the full
potential of which can be unlocked thanks to ultrafast plane wave acquisition [Demene, 2015;
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5. In vivo imaging and its limitations

Baranger, 2018]. Such a mathematical operator is described in more detail in Chapter 2 (see
Section 3.3.1).

Whatever the type of filter used to enhance the signal coming from a moving target in the
field-of-view, the image of vessels can be obtained by simply summing the intensity of all images
as follows:

PW (r) =
∑
tp

∣∣∣I(filt)(r, tp)
∣∣∣2 . (1.21)

This is what is known as the Power Doppler image. One can go even further by tracking
the Doppler shift caused by moving blood cells to create a velocity map known as Color Flow
Imaging, the expression of which writes [Demené, 2014]:

CD(r, t′
p, ωp) =

∣∣∣∣∣∣
∑
tp

I(filt)(r, tp)Wt(tp − t′
p) exp(iωptp)

∣∣∣∣∣∣
2

(1.22)

where Wt is a Hann window function centered around zero. An example of such an imaging
modality in the carotid artery is shown in [Fig. 1.13B].

4.4.3 Shear wave imaging

In the particular case of shear wave elastography [Fig. 1.13C], a movie of the shear wave can be
made by looking at the phase-shift between two successive images:

SWE(r, tp) = arg [I(r, tp)I∗(r, tp + δtp)] . (1.23)

4.4.4 Ultrasound Localization Microscopy

A more recent approach, namely Ultrasound Localization Microscopy (ULM), based on the
detection and tracking of isolated microbubbles, even allows imaging of vessels at a resolution
ten times below the diffraction limit [Fig. 1.13D]. This mode will be described in more detail in
Chapter 4 when it is used to generate super-resolved and aberration-free images of sheep brain
subjects.

5 In vivo imaging and its limitations

Each ultrasound imaging modality depends on the ability to reconstruct a map of the medium’s
reflectivity. In this section, we present the main limitations that affect the quality of the image
and the strategies to overcome them.

The construction of an ultrasound image is essentially based on two hypotheses: (i) A global
constant speed of sound c0 in the medium and (ii) a single scattering assumption [green path
in Fig. 1.14]. For in vivo imaging, however, these hypotheses are far from true and the quality
of the reconstruction in terms of contrast and resolution is therefore greatly impacted by the
following factors:
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– (i) the spatial variations in the speed-of-sound lead to wavefront distortion during
propagation [White, 1968; White, 1978; Marcus, 1975; Banjavic, 1978; Halliwell, 1978;
Foster, 1979; Mast, 1997; Mast, 1998] and thus time delay errors during beamforming.
These adverse effects are the so-called aberrations, which reduce both the resolution
and contrast of the image. Note that aberrations also account for refraction phenomena
occurring at tissue interfaces. However, such detrimental effects can be compensated if
one is able to estimate them;

– (ii) the absorption impacts the amplitude of the wave through propagation and can thus
drastically reduce the signal-to-noise ratio (SNR) at deep depth. Attenuation which de-
fines the loss of energy of the wave of a medium is the combination of scattering, absorption
and specular reflection. The two first phenomena are characterized by an extinction length
le, which is defined as follows:

1
le

= 1
ls

+ 1
la

, (1.24)

where ls is the scattering mean free path, i.e. the mean distance between two scattering
events, and la is the absorption mean free path. In a single scattering regime, the scat-
tering mean free path can be considered much larger than la, and the attenuation can be
attributed entirely to the absorption. Attenuation is often expressed in dB/cm/MHz be-
cause it depends strongly on frequency [Duck, 1990; Bamber, 2005]. Thus, when designing
the spectral characteristics of an ultrasound probe, a compromise must be made between
penetration depth and resolution. In any case, the attenuation is compensated for using a
time gain compensation function (TGC), so that a homogeneous background intensity is
seen over the entire field-of-view;

– (iii) the reverberation of the transmitted wave in a particular layer can lead to ghost
image replicas of a given object in the reconstructed image, and is thought to be responsible
for the ultrasound clutter that affects image quality in e.g. echocardiography [Fatemi,
2019]. Reverberation is associated with multiple reflections and is thus a special case of
multiple scattering;

– (iv) the multiple scattering, which occurs upstream the focal plane, is usually considered
a major problem for imaging because the deterministic relationship between the echo travel
time and the position of the scatterer is no longer valid. In practice, it is the result of a
random walk process [red path in Fig. 1.14] and therefore appears as a coherent noise that
reduces image contrast. The use of the Born expansion [Born, 1926], which decomposes
each scattering event, can well describe a strongly scattering medium, but it is mainly
limited to numerical simulations because it requires a perfect knowledge of the medium
with the position and diffraction pattern of each scatterer. Long neglected in ultrasound
imaging, multiple scattering is, for instance, the main cause of imaging failure in the lung,
where the strong concentration of air droplets causes strong scattering. In this particular
case, recent work suggests that the diffusion constant may be an interesting bioindicator
for the diagnosis of specific pathologies [Mohanty, 2017; Aubry, 2008b]. In addition, recent
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Figure 1.14: Single and multiple scattering. Single scattering refers to a scattering path in
which the originally emitted wave is diffracted only once before reaching the receiver. Multiple
scattering refers to all scattering paths that involve multiple scattering events before returning
to the receiver. Multiple scattering is usually considered a detrimental effect in imaging because
it appears as coherent noise in the ultrasound RF signal. Thus, it is not trivial to decompose
all scattering events, unless the medium is already fully characterized.

studies have quantified the multiple scattering rate locally [Lambert, 2022b] and show that
it is far from negligible, even in cases such as the liver. A preliminary work performed by
Antton Goïcoechea during his post-doc at the Institut Langevin show that the scattering
mean free path in this case is of the order of about 20 mm [Goïcoechea, 2023];

– (v) the motion during a long acquisition will affect resolution if no effort is made to
compensate for it. Motion may refer to probe motion, tissue motion (also called clutter),
and out-of-plane motion. This may account for the lower resolution range of images based
on plane wave compounding compared to conventional focused beams. In addition, this
may also affect the method described in the following chapter, where the reflection matrix
of the medium, i.e. the inter-element responses of the probe, requires a relatively long
acquisition with N insonifications.

Transcranial imaging, which today is mainly limited to Color Doppler, can be considered the
most difficult case of ultrasound imaging because it combines all the adverse effects mentioned
above and described in [Fig. 1.15]. A plane wave passing through the cranial layer is distorted
[Fig. 1.15A], which severely affects the PSF and thus resolution at any point in the brain [Fig.
1.15B]. In addition, reverberations can occur in the cranial layer, resulting in ghost artifacts
in the image and severely affecting reconstruction at shallow depths, as demonstrated in a
head phantom experiment using a phased array probe [Fig. 1.15C]. Furthermore, multiple
scattering may occur due to the porosity of the cranial layer, which consists of an irregular
arrangement of cortical and trabecular bone (diploë), varying greatly from person to person and
position to position. Last but not least, the cranial layer leads to a strong attenuation of the
transmitted wave [Pinton, 2012] and thus to a very low signal-to-noise ratio, which has limited
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Figure 1.15: Challenge in transcranial ultrasound imaging. (A) Adverse effects of a
plane wave transmitted through the cranial layer. First, the strong index fluctuations in the
cranial layer distort the wavefront at the output. Second, the highly varying porosity from
one individual to another and from one position to another can lead to multiple scattering.
Reverberations artifacts can also occur in the cranial layer, resulting in ghost echoes of the
initial wavefront. Last but not least, the attenuation by the cranial layer drastically reduces
the energy passing through the cranial layer and thus drastically affects the signal-to-noise ratio
of the transcranial image. (B) The focusing process is severely compromised. Distortion of
the wavefront results in an aberrated focal spot, leading to a sharp decrease in resolution. (C)
Head phantom imaging experiment with a phased-array probe. Reverberations in the skull layer
give rise to ghost replicas at shallow depths. (D) Poorly resolved and low contrasted in vivo
transcranial image of a healthy volunteer, superimposed on the Doppler image.

brain ultrasound imaging to low-frequency ultrasound probes (∼ 1 MHz).
Since this is the most important topic of this work, an overview of the adverse effects of

spatial variations in the speed of sound and the current strategies for resolving them will now
be presented.
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5.1 Manifestations of the aberrations

In medical ultrasound imaging, aberrations are mainly due to a mismatch between the hypothesis
of the speed of sound used for beamforming and the actual speed-of-sound in the medium
[Anderson, 1998]. This is the case, for example, in transcranial imaging, where the porosity of
the cranial layer leads to strong lateral variations of the speed of sound, which in turn can lead to
higher transverse aberrations. The effects of such an incorrect hypothesis during beamforming
are examined in the simple case of using a linear array to image a tissue mimicking phantom
[Fig. 1.16B], with a constant speed-of-sound (cp = 1540 m/s). First, the reconstructed image
shows lower overall contrast compared to the ideal image [Fig. 1.16A], which is evident at large
depths where the bright spots are no longer visible. Also, the image of each target (nylon rod)
is characterized by a larger transverse size. Last but not least, the overall image is shifted
upward. The reason for this effect becomes clear when considering the calculated time-of-flight
for a given point in both cases [Fig. 1.16C]. A change in the speed-of-sound results in a shift
of the time-of-flight, which shifts the image upward compared to the ideal image. This is the
case, for example, when imaging the liver, as the ultrasound wave passes through layers of fat
and muscle before reaching the organ. The difference between these two time-of-flights directly
provides the time-error for that point, which can be expressed as a phase shift (at the central
frequency) between the individual transducers.

In the following, we will discriminate between transverse and axial effects of aberrations.
Transverse aberrations account for a transverse spreading and distortion of the focal spot. Axial
aberrations result in an incorrect axial positioning of scatterers in the ultrasound image. Trans-
verse aberrations will be tackled in Chapter 3 and 4 while axial ones will be investigated in
Chapter 5 and 6.

To quantify the strength of the aberrations and thus their effect on the image, one can
examine the root-mean-square of the time delay error. Various studies have examined numerous
anatomical parts, and found values between 23 and 60 ns RMS, for example, in the human breast
[Trahey, 1991; Freiburger, 1992; Gauss, 2001; Gauss, 1997]. Time errors can also be expressed
as phase delays, since the effects of aberrations directly depends on the frequency range of the
experiment [Davros, 1985; Nock, 1989].

5.2 Focusing quality

Another approach to evaluate the strength of aberrations is to examine the focusing quality
across the image. To this end, the ratio between the coherent intensity and the total incoherent
intensity of an input focused beam can be studied, which defines the coherence factor C [Mallart,
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Figure 1.16: Effect of an incorrect speed-of-sound hypothesis. (A, B) Example of re-
constructed confocal image assuming a correct (c0 = 1540 m/s) and an incorrect (c0 = 1400
m/s) speed-of-sound, respectively. (C) Delays calculated in each case to focus at a given point,
(x, z) = (0, 30) mm. (D) Time difference between the two delays expressed either as a phase-shift
(ϕ = 2πfc∆t) or a number of wavelength (Nλc = ϕ

2π ), with fc = 7.5 MHz the central frequency.
The speed-of-sound hypothesis has a great impact on both the resolution and the contrast of the
image. In addition, an incorrect speed-of-sound induce a shift of the image since the depth-axis
depends on the speed-of-sound hypothesis. This can be seen directly on the time-delay that are
shifted with respect to each other.

1994; Hollman, 1999] that can be expressed as follows:

C(r) = 1
Nuout

Coherent︷ ︸︸ ︷∣∣∣∣∣∑uout

s′(uout, r)
∣∣∣∣∣
2

∑
uout

∣∣s′(uout, r)
∣∣2

︸ ︷︷ ︸
Incoherent

, (1.25)

where s′(uout, r) = s(r, uout, τ(uout, r, c0)) are the realigned signal associated with the focusing
point r. In the speckle, any realization of disorder, i.e. any speckle grain, is the result of a
random process. Speckle fluctuations should thus be smoothed out by a spatial average over the
coordinate r, i.e. over different realizations of speckle grain.

Based on the Matrix Imaging formalism described in Chapter 2, Lambert et al. [Lambert,
2020b; Lambert, 2022b] introduced another focusing criterion that appears to be a more sensitive
parameter for studying local focusing quality. First, the confocal character of the focusing
criterion measurement enables a better transverse resolution of the focusing quality. Second,
the focusing criterion allows us to distinguish between single scattering, multiple scattering, and
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noise, so that the measurement of focusing quality can be based only on the contribution of
single scattering, whereas the coherence factor cumulates the three effects [Lambert, 2022b].

5.3 Adaptive focusing

To solve these problems and improve the focusing quality, several methods have been developed
over the years, known as adaptive focusing. It was introduced many years ago in astronomy
to correct for the aberrations of starlight as it passes through the atmosphere [Babcock, 1953;
Labeyrie, 1970; Muller, 1974; Roddier, 1999]. The distortion of the wavefront was measured,
and a feedback loop with deformable mirrors was set up to compensate for its effects, which is
better known as adaptive optics. This idea was later transposed to ultrasound imaging, where
adaptive focusing can be applied by changing the time-delays of the transducer to compensate
for the time-delay error caused by an aberrating layer.

This concept is shown schematically in [Fig. 1.17]. Assuming a medium with a constant and
known speed of sound, the time-delay law for focusing on a given point is known [Fig. 1.17A]
resulting in a PSF, whose size is predicted by diffraction theory. However, if spatial variations
in the speed of sound occur due to an aberrating layer, the wavefront will be distorted after
passing through the aberrating layer, resulting in a degraded focal point [Fig. 1.17B] and thus
affecting the resolution of the image. Adaptive focusing can be seen in the light of time reversal
when considering a point source, namely a guide star, from which the distorted wavefronts can
be measured on the ultrasound probe [Fig. 1.17C]. The latter can also be used as a time reversal
mirror [Fink, 1992] to refocus the wave in the medium, as if the wave was playing the movie of
its propagation in the reverse direction. In other words, time reversal, allows focusing at the
exact same position of the source, with a diffraction-limited resolution [Fig. 1.17D].

5.3.1 Extraction of the aberration law

Although the principle of adaptive focusing appears simple, its complexity lies in the estimation
of the aberration law, since ultrasound imaging does not necessarily contain a guide star, such
as a source or a strong reflector, but rather random scatterers that produce a speckle pattern.

A first set of adaptive focusing techniques in ultrasound is based on the optimization
of a particular image parameter [Hirama, 1982; Nock, 1989]. An example is the iterative
addition of small time-delays at each transducer to maximize the speckle brightness of the image.
The main drawback of this method is that it is time-consuming, and convergence problems can
appear.

A second type of adaptive focusing technique examines the spatial correlations of the re-
aligned received signals [Flax, 1988; Mallart, 1994; Montaldo, 2011; Måsøy, 2005]. Interestingly,
the authors even show that it was possible to extract such distorted wavefronts in the speckle,
which can be considered a real breakthrough, since from a physical point of view it means that
they were able to artificially create a virtual guide star or a coherent virtual reflector in a random
medium.

One strategy for using time reversal, regardless of the medium under study, may be to use

27



Chapter 1. Ultrasound Imaging

Figure 1.17: Adaptive focusing in ultrasound imaging. (A) Cylindrical delays are applied
to each transducer to generate a converging wave, resulting in a focal spot limited by the
diffraction. (B) Applying the same cylindrical law to an aberrated medium results in a distorted
wavefront and thus an aberrated focal spot whose resolution is greatly reduced compared to the
ideal case. (C) Assuming a point source at the focus, a distorted wavefront can be measured
directly on the probe. (D) Time-reversal or phase conjugation of such a wavefront leads to a
perfect cylindrical law at the output, resulting in a diffraction limited focal spot. Inspired from
[Lambert, 2020c].

a priori information about the medium, such as other imaging techniques like Computed
Tomography, which provides a map of the density and speed of sound that can be used to simulate
the wave-field generated by a virtual source within the medium [Aubry, 2003]. However, this
is mainly limited to ultrasound brain therapy and requires precise positioning of the probe.
When moving from therapy to imaging, one can take advantage of iterative time reversal and
the singular value decomposition of its operator. Those approaches are described in more detail
in Chapter 2 [Montaldo, 2004; Aubry, 2001; Robert, 2005].

5.3.2 Isoplanicity

Let us now assume that we are able to extract the aberration law at a given point. We now
describe its range of validity, especially with respect to spatial stability [Fig. 1.18A]. Such a
focusing law can be decomposed into the sum of two terms:

– (i) a geometric component related to the specific position of a given point;

– (ii) a distorted component associated with the aberration.

One can assume that focused waves propagating towards neighboring points see the same
medium heterogeneities. They are only shifted or tilted due to geometric consideration [Fig.
1.18B]. This is the near-field phase screen model [ODonnell, 1988], where aberrations are assumed
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to occur only in the plane of the transducer and generate spatially-invariant distorted focal spots
in the medium.

However, this assumption is far from true in in vivo imaging and generally applies only to a
limited area called the isoplanatic patch [Babcock, 1953; Labeyrie, 1970; Muller, 1974; Roddier,
1999]. In other words, aberrations can be spatially distributed and require an iterative process
to correct their effects in each isoplanatic patch supported by the field-of-view.

Thus, the size of the isoplanatic patch is a crucial parameter that must be considered if
distributed aberrations are to be fully corrected. It thus determines the computational time
required to correct the entire field-of-view. Mertz et al. [Mertz, 2015] have shown that the size
of the isoplanatic patch lp can be derived from the correlation length lk of the far-field aberrating
phase screen:

lp = 2lk√
1 + 2σ2

k

, (1.26)

where σk is the standard deviation of the normal distribution. The physical meaning of (Eq.
1.26) is that the more complex the aberration, the higher the spatial frequencies it contains and
the smaller the isoplanatic patch (i.e. the smaller its correlation length).

It is also important to note that the decomposition of the aberrations in terms of spatial
frequencies depends on the choice of basis, as their effects may vary from one basis to another.
Although aberrations in ultrasound imaging were originally studied in the transducer basis,
other bases may be more appropriate for correction. For example, aberrations generated by
multilayered media are better described using the plane wave (far-field) basis, since they are
invariant by translation in this basis [Lambert, 2022a]. More generally, the optimal basis would
naively be the plane of the aberrating layer [Fink, 1997; Kwon, 2023]. However, the usual picture
of aberration as a near- or mid-field phase screen, associated with a well-defined aberrating layer,
is too simple to describe the reality of in vivo imaging, when the entire medium contributes to
the distortion of the wavefronts.

Only few studies have reported experimental values in ultrasound imaging, with results that
vary widely from one study to another. They range from a few lambdas to a few centimeters.
Liu et al. [Liu, 1998] used a point-like target placed in ex vivo abdominal tissue and achieved
measurement of isoplanatic patch of size of about 16.7 mm transversely and 39 mm axially. Dahl
et al. measured spatial stability in the breast, liver, and thyroid [Dahl, 2005] and found values
ranging from 0.4 to 1.1 mm in the transverse direction with double values in the axial direction.
Several studies for the skull also show that the spatial stability of aberration is larger in the
axial direction than in the transverse direction [Vignon, 2008; Robin, 2023].

Thus, the numerous adaptive focusing techniques described previously should ideally be re-
peated for each point in the field-of-view and therefore require an iterative and time-consuming
physical process to correct spatially distributed aberrations [Måsøy, 2005; Montaldo, 2011].
Recently, thanks to a drastic increase in terms of computational power and memory capac-
ity, spatially distributed aberrations can now be addressed by adaptive focusing techniques
in post-processing. Indeed, synthetic focusing allows the extraction of the aberration law in
post-processing without iteration of a physical and time-consuming experiment. The “LAPAC”
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Figure 1.18: Isoplanicity. (A) An adaptive wavefront that focuses perfectly at a targeted point
can be decomposed as the sum of a distorted and a geometrical component. If the geometrical
part is associated to the position of the focal point, the distorted component describes the
aberration seen from a spatial area called the isoplanatic patch. In other words, the same
distorted wavefront is associated to several neighboring focal points such that (B) a simple
tilt of the geometrical component allow to focus perfectly on a neighboring focal point. (C)
However, when tilt is too high, or equivalently when considering a too far focal point, the
adaptive wavefront will not be adapted, resulting in an aberrated focal spot. Inspired from
[Lambert, 2020c].

method [Chau, 2019], which refers to “locally-adaptive phase aberration correction”, combines
previous state-of-the-art methods [Gauss, 2001; Silverstein, 2003] and enables correction of aber-
rations both in transmit and receive, resulting in a 10% contrast improvement in vivo. At the
Langevin institute, inspired by the seminal work of Robert et al. [Robert, 2005] on the time
reversal operator, a “distortion matrix approach” has been developed by Lambert et al. [Lam-
bert, 2020c; Lambert, 2022a; Lambert, 2020a]. It will be described in details in Chapters 2, 3
and 4.

The transfer of adaptive focusing techniques for real-time imaging has already shown its ad-
vantages [Rigby, 2000; Måsøy, 2022], and the implementation of such computationally intensive
methods therefore depends on computational power.
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5.4 Speed-of-sound: the holy grail

At last, another range of adaptive focusing techniques are based on speed of sound estimates that
appear particularly relevant in situation like transcranial imaging where the skull layer induces
a large difference of speed of sound as compared to the brain. In such a case, segmentation of
the cranial layer with a global estimation of the speed of sound may help to correct for refraction
events using ray tracing that solves the eikonal equation [Smith, 1986; Yasuda, 2019; Lindsey,
2014]. The difficulty in this case lies in the estimation of a local speed of sound map that is an
active research topic.

Today, there are mainly two types of methods for extracting local speed-of-sound estimates.
The first set of techniques is founded on the improvement of a quality criterion with regard to
the beamforming speed-of-sound. Then, the local speed of sound is determined by solving an
inverse problem [Jakovljevic, 2018]. A second set of techniques examines the local phase-shifts
between various insonification directions on the grounds that each insonification direction is
affected differently by the medium’s heterogeneities [Jaeger, 2015a]. This topic will be better
described in Chapter 6 where a method to recover an integrated speed-of-sound map will be
presented.

Since it enables the extraction of the perfect time-of-flight connecting each transducer to each
focusing point to provide a close-to-ideal image of the medium [Vyas, 2012; Augustin, 2021; Ali,
2022], the extraction of spatial variations in wave velocity could indeed be considered the holy
grail of imaging. Both older and recent studies also demonstrate that its quantification could be
utilized as a bioindicator to identify abnormal soft tissue characteristics [Bamber, 1979; Sehgal,
1986], such as malignant tumors or hepatic steatosis [Imbault, 2017; Imbault, 2018; Dioguardi
Burgio, 2019].

6 Conclusion

Ultrasound imaging is widely used by radiologists to investigate and diagnose pathologies because
it is non-invasive and can be performed in real-time. It is based on the backscattered echoes of
ultrasound waves propagating through an unknown medium. An ultrasound image is generated
by a double focusing process both at emission and reception.

However, the reconstruction is not always optimal because it is based on strong hypothe-
ses about the medium (homogeneous speed-of-sound and single scattering). Every ultrasound
imaging modality is thus affected by speed-of-sound heterogeneities that induce aberrations and
multiples scattering that generate an incoherent background on the ultrasound image. In recent
years, numerous strategies have been developed to correct aberrations by adaptive focusing.

In the next chapter, we present a general matrix framework adapted to ultrasound imaging
that has already shown promising results not only in ultrasound but also in other fields of wave
physics such as optics, seismic imaging, and radar. It is based on recording the reflection matrix
of the medium, which holds all the information available on the medium. This reflection matrix
yields much more information than a conventional ultrasound image, and its projection onto
suitable bases can be used not only to compensate for aberrations, but also to quantify multiple
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scattering or even to map the speed-of-sound.
In Chapter 3, matrix imaging is extended to 3D imaging using ultrasound matrix arrays,

which can drastically increase the available number of spatial degrees of freedom, and its advan-
tages over 2D imaging are discussed in a transcranial imaging experiment on a head phantom.

In Chapter 4, contrast imaging with microbubbles is examined. First, it is shown how matrix
imaging can be combined with other ultrasound modalities. In the specific case of Ultrasound
Localization Microscopy, transcranial preclinical experiments were performed in sheep subjects
in which both super-resolved and aberration-corrected images of cerebral vessels were obtained.
Second, preliminary results on the measurement of the resonance frequency of monodisperse
bubbles are presented, which could have potential application in blood pressure measurement.

In Chapters 5 and 6, a paradigm shift will be made, as we will now investigate the axial
dimension to extract and map local defocus due to spatial variations in the speed of sound in
vivo. This approach seems to be relevant not only for the particular case of multilayered media,
but also allows local mapping of the integrated speed of sound and thus promising results for
the extraction in vivo of the local sound velocity.
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Chapter 2
Matrix imaging

Matrix imaging is introduced here to go beyond conventional imaging. By recording
the reflection matrix of an unknown medium, aberrations, multiple scattering, and
spatial variations in the speed-of-sound can be studied. Such quantitative parameters
of the medium can indeed be determined by projecting such a matrix onto suitable
bases. The strength of this approach lies in its general formalism, which can be
applied to any field of wave physics where an unknown, static and linear medium
is studied using a multi-element technology. In this section, ultrasound imaging is
used as a playground to demonstrate all possible applications of matrix imaging.

Objectives
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Chapter 2. Matrix Imaging

1 Introduction

In wave physics, a matrix formalism is particularly appropriate when the wave-field can be
controlled by transmission or reception arrays of N independent elements. Since an inhomoge-
neous medium can be treated as one realization of a random process, some aspects of random
matrix theory may be fruitfully applied to wave control and transport through complex media
[Beenakker, 1997; Rotter, 2017]. Beyond a fundamental study of wave propagation in complex
media, a matrix formalism can be fruitful for many applications. Indeed, the transmission or
reflection matrix contains all the information accessible on the medium. A set of post-processing
operations can then be applied to extract the relevant information as a function of the problem
considered, without the need for any iterative physical procedure.

The strength of such a matrix formalism lies in its generality, which extends beyond the realm
of ultrasound imaging and can be applied to any multi-element technology that records backscat-
tered reflected wavefronts of an unknown medium. The main differences between each field lie
in the experimental acquisition of the reflected wave-field: array of transducers in acoustics
[Langevin, 1920], spatial light modulators and camera in optics, geophones network in seismic
imaging, [Dennison, 1953] or phased array antennas in radar.

Historically, it was mainly studied in transmission because it was originally used to describe
wave propagation through heterogeneous media for the purpose of communication and focusing
through scattering media [Moustakas, 2000; Foschini, 1998; Tanter, 2001; Derode, 2003b; Popoff,
2010a; Kim, 2012; Papadopoulos, 2012; Čižmár, 2012; Popoff, 2010b]. It was later extended to
detection experiments in a reflection configuration [Prada, 1996; Aubry, 2009b; Popoff, 2011;
Badon, 2016; Blondel, 2018] before turning lately to imaging [Kang, 2017; Badon, 2020; Lambert,
2020c; Velichko, 2020; Touma, 2021], where aspects such as aberrations and multiple scattering
are addressed in an epi-detection configuration. Today, matrix imaging has reached a point
where it can be used for quantitative imaging, not only to image the reflectivity of a medium,
but also to extract bio-indicators such as the multiple scattering rate or the speed of sound. Over
the past five years, the group of A. Aubry is developing a universal and non-invasive reflection
matrix approach for wave imaging and characterization in scattering media.

In this chapter, we will first introduce the matrix formalism in a transmission configuration
and then extend this formalism to a reflection configuration, since in most ultrasound imaging
applications we only have access to one side of the medium.

The starting point of ultrasound matrix imaging (UMI) is the recording of the reflection
matrix of the medium. Historically, such a matrix was originally recorded in the canonical basis,
i.e. by recording the impulse responses between each transducer of an ultrasound probe [Prada,
1996; Aubry, 2009b]. Later, it was shown that the reflection matrix even allows synthesizing
virtual sources and detectors at any point in the medium by applying appropriate delay laws
at the input or output of the matrix to perform numerical focusing of the ultrasound data in
post-processing [Robert, 2008a].

The reflection matrix can thus be studied in several bases, of which we will focus on the
following three: (i) the transducer basis, in which the reflection matrix is recorded on reception

34



2. The transmission matrix (T)

and which is particularly suitable for compensating for aberrations caused by lateral variations
in the speed of sound at the surface of the medium; (ii) the plane wave basis, which is often
used as the transmission basis for recording the reflection matrix and which is most suitable
for correcting for aberrations caused by axial variations in the speed of sound; (iii) the focused
basis in which the ultrasound image is generated and which allows local quantification of the
focusing quality and multiple scattering. The focused reflection matrix plays a central role in
matrix imaging, as it is the most important component of the UMI framework.

In recent work, the projection of such a matrix onto a dual basis, i.e. the distortion matrix
[Lambert, 2020c; Lambert, 2022a], has been considered as a key quantity in the UMI framework
for compensating aberrations. In short, it allows revealing hidden spatial correlations that can
be used to extract the transmission matrix that connects each sensor to any point of the field
of view and whose estimation is the main objective of matrix imaging. Once this is known, an
ideal focusing process can be performed in post-processing to produce an image of the medium
that is free of aberration problems and even multiple scattering.

2 The transmission matrix (T)

Before dealing with the transmission matrix inside the medium, we will describe the transmission
matrix that can be measured on both sides of the medium. In the past, this matrix has been
studied thanks to the development of antenna arrays in electromagnetism and transducer arrays
in acoustics. After defining the concept, we will see how it can be acquired before enumerating
its main properties and describing the advances it has enabled in terms of applications.

Among the most important properties of the transmission matrix are the bimodal distribu-
tion [Dorokhov, 1984; Beenakker, 1997; Gérardin, 2014] and its correlations [Goetschy, 2013;
Hsu, 2017], which allow one to describe wave transport through diffusive media and to quantify
the performances of “multiple input multiple output” (MIMO) communications [Foschini, 1998;
Derode, 2003b]. However, here, we only investigate the extent to which it can be used for
focusing in disordered media.

2.1 Definition

We consider here a heterogeneous medium with a plane at the entrance of the medium char-
acterized by the coordinate (ui) and a plane at the exit of the medium characterized by the
coordinate (uj). Assuming that propagation through a complex scattering medium is linear
and invariant by translation (i.e. static medium), any output beam E(T)

out (uj , t) of the sample
can be related to the entrance field Ein(ui, t) by the transmission operator T such that:

E(T)
out (uj , t) =

∫ +∞

−∞
dui

[
Ein(ui, t)

t
⊛ T (ui, uj , t)

]
, (2.1)

where
t
⊛ denotes a convolution product over time and the superscript (T ) refers to “transmission”.

35



Chapter 2. Matrix Imaging

Figure 2.1: The multi-spectral transmission matrix acquired in ultrasound imaging.
The impulse responses are recorded between each emitter at the input and each receiver at the
output. This wealth of information is stored in the so-called transmission matrix, denoted T.

2.2 Acquisition

In practice, as any multi-element technology only provides a discrete control and measure of
the wave-front on a finite number of emitters (uin) and receiver (uout), the definition of the
transmission matrix T can be derived from (Eq. 2.1) such that:

E
(T)
out (uout, t) =

∑
uin

[
Ein(uin, t)

t
⊛ T(uin, uout, t)

]
. (2.2)

In ultrasound imaging, the transmission matrix can be acquired using two arrays of piezoelectric
transducers placed on each side of the medium. A transducer uin emits a short pulse such that
the emitted wave-field can be written:

Ein(uin, t) ≡ Ein(ui = uin, t) = δ(t)δ(ui − uin), (2.3)

where δ is the Dirac distribution, and the transmitted wave-field E
(T)
out (uout, t) is recorded for a

given receiver uout [Fig. 2.1A]. Repeating this process for each pair (uin, uout), we obtain the
full transmission matrix of the medium [Fig. 2.1B].

In the time Fourier domain, (Eq. 2.2) becomes a simple matrix product:

E(T)
out(uout, ω) = E⊤

in(uin, ω) × T(ω), (2.4)

where ⊤ stands for matrix transpose and ω = 2πf is the pulsation, with f the frequency.
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2. The transmission matrix (T)

Figure 2.2: Time-reversal & spatio-temporal inverse filter. (A) One half-skull is located
between the image plane and the array of 127 transducers. (B) Directivity patterns obtained
by time reversal through pure water (green line), time-reversal (purple line), inverse filter (blue
line) and cylindrical law (red line). Extracted from [Aubry, 2001].

2.3 Matrix operations for wave control

The transmission matrix is a powerful tool for predicting the wave-field at a given output surface
when the incident wave-field at a given input surface is known. Interestingly, the inversion of
the transmission matrix directly provides the input wave-field to be applied to obtain a desired
output field (e.g. to perform focusing) so that:

E⊤
in(uin, ω) = E(T)

out(uout, ω) × T−1(ω). (2.5)

However, matrix inversion is far from trivial unless the T−matrix is unitary such that
T−1 = T† († stands for transpose conjugate), which is not verified if information is lost through
propagation (e.g. in the presence of absorption) or if the transmitted wave-field is incompletely
recorded. A comparison between phase-conjugation (using T†) and inverse filter (using T−1)
was performed in early transcranial imaging experiments [Tanter, 2000; Tanter, 2001; Aubry,
2001; Montaldo, 2004]. In particular, the authors have shown that time-reversal (equivalent to
phase conjugation in the time domain) can compensate for the aberration caused by the cranial
layer, but not for attenuation. Only when a spatio-temporal inverse filter is used can a similar
contrast be obtained as without the aberrating layer [blue curve in Fig. 2.2B].

Beyond ultrasound imaging, the transmission matrix has also been investigated with mi-
crowaves between arrays of antennas or with light using wave front shaping devices and cameras.
In optics, the experimental setups are far more complex because they involve interferometric
measurements that require fine alignment of the optical components to detect both the am-
plitude and the phase of the electromagnetic wave-field, quantities that an ultrasound probe
provides directly thanks to its lower frequency range.

In optics, such a matrix was experimentally measured for the first time in 2010 [Popoff,
2010a] and was used to focus anywhere at the output of the medium, while an iterative approach
requires a lengthy optimization process [Vellekoop, 2007] that must be repeated for each target
point. The matrix approach can be used not only to turn any scattering medium into a lens,
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Chapter 2. Matrix Imaging

but also to simulate the response of the medium to any incident wave in post-processing. This
property comes into play especially in reflection, when we try to focus in the scattering medium
rather than through it.

3 The reflection matrix (R)

Although some imaging techniques rely on the transmission of a wave through a complex medium
(e.g. ultrasound tomography for breast imaging [Glover, 1977b; Greenleaf, 1987; Glover, 1977a]),
non-invasive imaging is usually performed in a configuration in which only one side of the medium
is accessible. In this case, a reflection matrix can be recorded, and a similar mathematical
formalism can be applied.

3.1 Definition & acquisition

The reflection matrix

Assuming linear propagation through a static medium, the reflection matrix, noted R, is
defined by an equation similar to the previous one (Eq. 2.2), but with the emitter and
receiver located on the same side of the medium [Fig. 2.3], so that:

E
(R)
out (uout, t) =

∑
uin

[
Ein(uin, t)

t
⊛ R(uin, uout, t)

]
, (2.6)

where the superscript (R) now refers to “reflection”.

This equation re-writes in the Fourier domain as follows:

E
(R)
out (uout, ω) = E⊤

in(uin, ω) × R(ω). (2.7)

As before, the R−matrix can be captured by recording the impulse responses between each
emitter and receiver. The individual elements of the reflection matrix can be expressed in this
way as Ruu(t) ≡ [R(uin, uout, t)], where the subscript “uu” denotes the transducer basis for
both emission and reception. Such an acquisition refers to the canonical basis. Interestingly, the
R−matrix can even be passively recorded using coda-wave cross-correlations. This approach has
revolutionized the field of seismology for the last twenty years [Weaver, 2002; Campillo, 2003;
Derode, 2003a; Chaput, 2012; Colombi, 2014].

3.2 Physical interpretation

The main difference between the reflection and transmission matrices is that only back-scattered
wave-fronts are detected in an epi-detection configuration. In other words, the ballistic wave
cannot be recorded, and only the secondary back-scattered waves are captured by the reflection
matrix.

In an epi-detection configuration and under a single scattering assumption, a wave insonifies
the medium and interacts with the short-scale heterogeneities of the medium and generate
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3. The reflection matrix (R)

Figure 2.3: The multi-spectral reflection matrix acquired in ultrasound imaging. The
impulse responses are recorded between each emitter at the input and each receiver at the
output, both located on the same side of the medium. All this wealth of information is stored
in the so-called reflection matrix, denoted R.

secondary waves propagating in the opposite direction of propagation. Mathematically, this
process can be written as follows:

Ruu(ω) = G⊤
in(ω) × Γ(ω) × Gout(ω), (2.8)

where Γ = [γ(r, ω)] is a diagonal matrix that accounts for the medium reflectivity and Gin/out(ω) =
[G(r, uin/out, ω)] are the Green matrices describing the propagation of the incident and reflected
waves, respectively, inside the medium. In terms of matrix coefficients, the previous equation
writes:

R(uin, uout, ω) =
∫

dr′Gin(uin, r′, ω)γ(r′, ω)Gout(uout, r′, ω). (2.9)

In the presence of a stronger scattering regime, a Born development [Born, 1926] of the
reflection matrix can be performed to grasp the multiple scattering events undergone by the
wave during its propagation inside the medium [Brütt, 2022]. However, its application is usually
limited to numerical simulations, since it requires an exact knowledge of the medium, which is
by definition impossible in the case of an unknown medium.

3.3 Pioneering works

In this section, we present some pioneering work based on the reflection matrix acquired in the
canonical basis, Ruu(t) ≡ [R(uin, uout, t)]. Its applications initially concerned the detection of
hidden objects in complex scattering media, before being transposed to imaging experiments.
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Chapter 2. Matrix Imaging

3.3.1 The DORT method

Historically and as part of the Ph.D. thesis of Claire Prada, one of the first applications of
the reflection matrix approach was to gain mathematical insight into the iterative time reversal
process.

An iterative time-reversal (ITR) experiment consists in insonifying an unknown medium
with an arbitrary wave-front E(0)

in = [E(0)
in (uin, ω)], typically a plane wave [Fig. 2.4A], and record-

ing the reflected wave-field E(0)
out, as depicted in [Fig. 2.4B1], such that:

E(0)
out(ω) =

[
E(0)

in (ω)
]⊤

× Ruu(ω). (2.10)

This wave-field is time-reversed and back-emitted into the medium as shown in [Fig. 2.4B2]
such that E(1)

in =
[
E(0)

out

]∗
. The reflected wave-field is recorded once again such that:

E(1)
out(ω) =

[[
E(0)

in (ω)
]†

× R∗
uu(ω)

]
× Ruu(ω), (2.11)

and the process can be iterated, resulting in the following equation at the nth-step:

E(n)
out(ω) =

[
E(0)

in (ω)
]†

× [R∗
uu(ω) × Ruu(ω)]n . (2.12)

The operator [R∗
uu(ω) × Ruu(ω)] is the so-called time-reversal operator. As the reflection

matrix is symmetric thanks to spatial reciprocity (i.e. R⊤ = R), the former equation can be
re-written as:

E(n)
out(ω) =

[
E(0)

in (ω)
]†

×

R†
uu(ω) × Ruu(ω)︸ ︷︷ ︸

C(ω)


n

, (2.13)

where C is the covariance matrix of the reflection matrix, that can be diagonalized as follows:

C(ω) =U†(ω) × Σ(ω) × U(ω) (2.14)
C(u, u′, ω) =

∑
i

U∗
i (u, ω)σi(ω)Ui(u′, ω), (2.15)

where Σ is a diagonal matrix containing the eigenvalues σi in descending order: σ1 > σ2 > .. >

σN . U is a unitary matrix that contain the orthonormal set of eigenvectors, Ui(ω) = [Ui(u, ω)].
Interestingly, for n → ∞, the ITR process converges towards a time-reversal invariant that is
nothing other than the first eigenvector [Fig. 2.4C]:

lim
n→∞

[
E(n)

out(u, ω)
]

=
[∑

u′

σn
1 (ω)E(0)∗

in (u′, ω)U∗
1 (u′, ω)

]
︸ ︷︷ ︸

scalar

U1(u, ω) (2.16)

∝ U1(u, ω). (2.17)
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3. The reflection matrix (R)

Figure 2.4: Iterative Time Reversal & DORT method. (A) A plane wave insonifies
the medium. (B) Backscattered wavefronts are recorded, time-reversed and sent back to the
medium. This process is iterated and (C) converges towards the wavefront that focuses perfectly
on the brightest reflector, which is nothing more than the first invariant of the time reversal
operator R∗ ×R. (D) DORT method applied to focus on two wires through an aberration layer.
Experimental transmission of the two first eigenvectors of the time reversal operator. Adapted
from [Prada, 1996].

The iterative time reversal is thus the physical counterpart to the power method used in
mathematics to determine an eigenvector of a matrix. This pioneering work demonstrates the
strength of the matrix formalism to simulate in post-processing a complex set of wave propaga-
tion experiments through the medium, in order to learn how to focus inside it. Here, a tedious
focusing process (iterative time reversal) is simply done by performing an SVD of the reflection
matrix. This SVD can even do better than iterative time reversal, since higher order eigenvec-
tors provide the time reversal invariants that enable us to focus on each target of the medium
[Fig. 2.4D]. This is the principle of the DORT method (French acronym for “decomposition of
the time reversal operator”) [Prada, 1994; Prada, 1996; Prada, 2003].

However, the DORT method applies only to a single scattering regime. To tackle a stronger
scattering regime, Aubry and Derode used characteristic field correlations of the reflection ma-
trix, showing a new interest in a matrix approach of wave propagation.

3.3.2 Random matrix theory to overcome multiple scattering

These input-output correlations in the reflection matrix were studied to distinguish between
singly- and multiply-scattered echoes [Aubry, 2009b]. The experimental set-up under study,
immersed in water, was a scattering medium made of randomly distributed steel rods between
an ultrasound probe and a target. The canonical reflection matrix R is acquired [as shown in
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Figure 2.5: Far-field analysis of the reflection matrix in a random scattering medium.
(A) Recording of the canonical reflection matrix in a scattering medium made of randomly
distributed cylinders. (B) At short times, the contribution of single scattering dominates, so
that long-range correlations, typical of the memory effect, are observed along its diagonals.
(C) At long times, when the contribution of multiple scattering dominates, the matrix exhibits
a random feature. In both cases, spatial reciprocity ensures the symmetry of the matrices.
Extracted and adapted from [Aubry, 2008a].

Fig. 2.5A], time-gated and then projected in the frequency domain as follows:

R(uin, uout, z, ω) =
∫

dtR(uin, uout, t) Wt(t − 2z

c0
)︸ ︷︷ ︸

Time gating

exp(jωt), (2.18)

where Wt(t − 2z
c0

) is a Hann time window centered around the ballistic time corresponding to
the depth z assuming a global speed-of-sound c0 in the medium.

At a given frequency, this matrix exhibits strong differences at short and long times that can
be directly attributed to different scattering regimes. Even though symmetry is ensured in both
cases due to spatial reciprocity of wave propagation, the first matrix extracted at short times
exhibits much larger range correlations [Fig. 2.5B], that can be understood when looking at its
theoretical expression in a paraxial approximation [Aubry, 2009a]:

R(uin, uout, z, ω) ∝ Γrand
exp(i2ωz/c0)

z
exp

(
iω

(uin − uout)2

4zc0

)
︸ ︷︷ ︸

deterministic term

, (2.19)

where Γrand is a random term and z is the depth.
Interestingly, the deterministic term depends only on the difference between the position of

the input and output transducers, which explains the long-range correlations along the anti-
diagonals of the matrix. This observation is typical of the memory effect, which was first
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experimentally demonstrated in a transmission configuration [Freund, 1988; Feng, 1988] by
tilting the angle of incidence of an expanded laser beam and observing the spatial shift of the
speckle pattern at the output of a scattering medium. This effect can be generalized in reflection
[Katz, 2014; Stern, 2019] and its correlation length, i.e. the area over which it remains valid, is
nothing but the isoplanatic angle. The isoplanatic angle is inversely proportional to the average
distance between the first and the last scattering event experienced by the wave in the medium: it
is therefore long-range for single/recurrent scattering and short-range for conventional multiple
scattering [Aubry, 2014; Brütt, 2022]. Unfortunately, this correlation length decreases with
depth as multiple scattering becomes more important, resulting in only short-range correlations
whose size is roughly equivalent to a single speckle grain. Hence, the reflection matrix becomes
fully random at long time, as described in [Fig. 2.5C].

Based on this observation, the authors have developed a filter that removes the contribution
of multiple scattering in the reflection matrix. Interestingly, they even show how the DORT
method, which originally failed in the multiple scattering regime, could benefit from this filter
to detect objects embedded inside or hidden behind strongly scattering media [Aubry, 2009a;
Aubry, 2009b].

Moreover, this observation is at the heart of a computational adaptive focusing technique
developed in optics to correct aberrations in optical microscopy [Yoon, 2020; Kang, 2017; Kwon,
2023]. In a nutshell, the authors developed an iterative algorithm to restore the long-range
correlations along the anti-diagonals of R to achieve imaging of biological tissues at depths
larger than 100 µm, a regime where optical imaging usually fails due to aberrations and multiple
scattering.

3.3.3 From detection to imaging

The DORT method described in (Section 3.3.1) is not adapted for clinical ultrasound imaging,
as it only enables selective focusing on targets of a sparse scattering medium (i.e. containing
only a few reflectors).

However, it has been shown that the aberration law can be extracted in a completely ran-
dom medium generating ultrasound speckle by performing spatial cross-correlations on adjacent
transducers [ODonnell, 1988], as shown in [Fig. 2.6A]. From a physical point of view, this
demonstration is particularly noteworthy because it shows that an artificial guide-star can be
built even in a random medium (i.e. without the presence of a strong reflector).

Inspired by this work, the DORT method was then extended to input focused beams [Robert,
2005], namely the fDORT method, and to the case of random media for clinical imaging ap-
plications [Fig. 2.6B]. A set of focused beams is used to generate different virtual sources
[Robert, 2008b] at different points rin = (xin, zin) such that a partial reflection matrix is stored
as Rp(rin, uout, t).

To coherently sum each input beam, the associated received signals must first be delayed so
that each input focal point is virtually de-scanned, i.e. brought to the same reference position,
using the following time delay law ∆τfDORT(rin, uout, c0) = |uout − xin|2/(c0zin) [Robert, 2007].
Subsequently, time-gating to select echoes from different depths and a Fourier transform are
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performed similarly as in (Eq. 2.18):

RfDORT([xin, z]︸ ︷︷ ︸
rf

, uout, ω) =
∫

dt Rp(rin, uout, t + ∆τfDORT(rin, uout, c0))︸ ︷︷ ︸
Realigned signals

Wt(t − 2z

c0
)︸ ︷︷ ︸

Time gating

exp(jωt).

(2.20)
Each point rf = (xin, z) provides a different realization of disorder and their spatial correlations
can be studied through the correlation matrix of RfDORT as follows:

CfDORT(uout, uout
′, ω) = ⟨RfDORT(rf, uout, ω)RfDORT(rf, u′

out, ω)W(rf − rp)⟩rf , (2.21)

where W is a spatial average window that consider only neighboring points around a central
point rp.

If each input focal point rf belongs to the same isoplanatic patch and the correlation matrix
converges towards its ensemble average (i.e. a sufficient number of realization of disorder are
considered), CfDORT is of rank 1 and the corresponding singular vector V1 = [V1(uout)] directly
yields the aberration law T (uout) [Varslot, 2004; Måsøy, 2005]. In other words, an artificial
guide-star, located in the barycenter of the considered rin points, can be extracted thanks to
a singular value decomposition RfDORT that enables us to perform a coherent average of input
focal spots to synthesize a virtual guide star. Subsequently, the process must be repeated by
applying the phase conjugates of the aberration laws to achieve better focusing, reduce the size
of the guide star, and thus improve the estimation of the aberration laws

This iterative feature is the major drawback of this method, as it requires physical focusing
inside the medium to create a virtual guide star for each isoplanatic area of the medium, which
is a time-consuming process. Inspired by a previous work that used decoupled Gaussian beams
at emission and reception to probe the diffuse halo in a random medium [Aubry, 2008a], we
introduce, in the next section, a general formalism for projecting the R−matrix onto a focused
basis. In particular, we will go beyond a simple time-gating to better select the echoes coming
from a given focal point. In addition, the aberration correction process is fully achieved numer-
ically, so that more robust results can be obtained compared to an iterative physical focusing
process!
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Figure 2.6: Using spatial correlations to build an artificial guide-star from random
scatterers. (A) Absolute value of cross-correlation measure of delays for case of collection of
random scatterers insonified with unfocused transmitter. Extracted from [ODonnell, 1988]. (B)
Extension of the DORT method to focused beams, denoted fDORT. Each input focal spot can
be seen as a virtual source within the medium. A singular value decomposition of RfDORT is
performed to provide a coherent combination of each virtual source, thereby creating an artificial
guide star that can be leveraged to measure an aberration phase law. Inspired from [Robert,
2008b].

4 Ultrasound Matrix Imaging

In the following, the fundamentals of Ultrasound Matrix Imaging (UMI), currently under de-
velopment in the group of Alexandre Aubry at the Institut Langevin, are presented. First, the
different insonification modes (besides the canonical basis) for recording the reflection matrix
are presented, which are of particular interest to achieve a higher SNR and frame rate, and
are therefore more suitable for in vivo imaging. Next, we introduce the focused basis, which
is the cornerstone of current matrix imaging methods. Its projection onto a number of differ-
ent bases allows not only quantification of focusing quality, multiple scattering and noise rates
[Lambert, 2020b; Lambert, 2022b], or spatial variations in the speed-of-sound [Lambert, 2020b],
but also extraction of local aberration phase laws [Lambert, 2020c; Lambert, 2022a], leading
to an estimate of the transmission matrix that connects each transducer of the probe to any
point of the medium. The individual steps of the matrix imaging process are presented and
validated using a controlled phantom experiment. As a proof-of-concept, the entire procedure
is then applied to an in vivo imaging experiment.
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4.1 R−matrix acquisition

UMI starts with the acquisition of a three-dimensional reflection matrix, using a set of insonifi-
cations identified by the vector iin:

Riu(t) = [R(iin, uout, t)] , (2.22)

where Riu(t) refers to the R-matrix expressed in the i-basis at the input and the u-basis at the
output for a given time t. R(iin, uout, t) refers to one of its coefficients.

For a probe made of Nu transducers, the complete reflection matrix consists of Ni insoni-
fications and thus forms a matrix of size N2

uNt, where Nt is the number of time samples.
Furthermore, the medium is considered as static throughout the Ni insonifications. Assuming
a sampling frequency fs and a frequency bandwidth ∆f , the number of temporal degrees of
freedom contained in R is of about Nt∆f/fs and the number of spatial degrees of freedom is
NiNu ≤ N2

u .

4.1.1 Insonification bases

Different bases can be used to insonify an unknown medium, which are most appropriate with
regard to the imaging configuration and/or conditions:

– converging waves (rin) were first used in clinical ultrasound imaging using several fo-
cused beams [Fig. 2.7A]. Their advantage lie in the higher energy deposition at the focal
point than with other types of insonification, which is particularly suitable for transcranial
therapy, for example [Aubry, 2003]. However, for imaging, they provide a relatively low
frame-rate;

– diverging waves (uin) through a single transducer emission [Fig. 2.7B], which refers to the
canonical basis and was originally developed to introduce the matrix imaging formalism
[Prada, 1994]. Although it does not require assumptions about the speed-of-sound in
the medium, such insonification provides very low SNR as only a single transducer is
used for each emission. Virtual sources [Provost, 2014] placed above the probe (vin) [Fig.
2.7D] can be a solution to use multiple transducers and seem to be particularly relevant for
ultrafast imaging with small apertures probes, such as phased array ones, used in particular
for cardiac or transcranial imaging, or even matrix arrays of transducers to perform 3D
imaging over a large field-of-view.

– plane waves (θin) [Fig. 2.7C], which originally led to ultra-fast [Sandrin, 1999; Tanter,
2014] and shear-wave imaging [Bercoff, 2004; Sandrin, 1999; Sandrin, 2002; Bercoff, 2003]
because they allow imaging of a much larger field-of-view with a reduced number of in-
sonifications compared with focused beams.

It should be emphasized that the transducer basis corresponds to a collection of vectors which
are not linearly independent, and therefore is not a basis in the strict sense. In the following,
the terms bases will nevertheless be used to refer to these different categories of wave fronts.
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Figure 2.7: Insonification bases in ultrasound imaging. (A) Focused emission were his-
torically used in early B-mode images to provide sufficient SNR. (B) Single-transducer emission
was introduced to provide a mathematical framework to the iterative-time reversal experiment.
However, it provides a very poor signal-to-noise ratio as it only uses one transducer. (C) Plane
wave emission was introduced to increase the field of view with a smaller number of emissions,
resulting in ultrafast imaging. (D) Virtual sources were introduced as a compromise between
single transducer emission and plane waves, as they allow firing with multiple transducers and
are less directive than a plane wave (i.e. provide a larger field of view). (E) Regardless of the
emission base, the backscattered wavefronts are recorded at each transducer of the ultrasonic
probe (i.e. in the transducer base).

In ultrafast imaging, the R−matrix is only partially recorded at the input, since we only
use a few plane waves or virtual sources to achieve a sufficient frame-rate for the intended
applications. On the contrary, in the following, all the results presented are obtained using a
full sequence of plane waves, which does not meet the requirements for ultrafast acquisition.
Nevertheless, we will see how ultrafast acquisition can still take advantage of matrix imaging in
Chapter 4.

4.1.2 Description of experiments

To introduce the UMI framework, a controlled 2D imaging experiment on a tissue mimicking
phantom (CIRS, Model 050GSE) experiment is investigated. A linear probe is placed directly in
contact with an ultrasound phantom [Fig. 2.8A]. This phantom (speed of sound: cp ∼ 1540 m/s)
is composed of a random distribution of unresolved scatterers which generate ultrasonic speckle
characteristic of human soft tissues. The system also contains regularly spaced nylon filaments,
and, at a depth of 30 mm, a 10 mm-diameter hyperechoic cylinder, containing a higher density
of unresolved scatterers.

The reflection matrix is recorded in the plane wave basis: Rθu(t) ≡ [R(θin, uout, t)] [Fig.
2.8B]. The characteristics of the probe and sequence parameters are described in [Table. 2.1].
In particular, a set of 81 plane waves is generated by applying steered time-delays to each
transducer ux of the probe:

∆τ(θin, ux) = ux sin(θin)/c0. (2.23)
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Chapter 2. Matrix Imaging

Figure 2.8: Tissue-mimicking phantom experiment. (A) A linear ultrasound probe is
placed directly in contact with a tissue-mimicking phantom and raw data are recorded using an
ultrafast ultrasound scanner (Aixplorer®, Supersonic Imagine / Hologic), thus forming the (B)
reflection matrix of the medium.

Parameters Value

Probe

Type Linear

Number of transducers Transmit N
(Tx)
u = 256

Receive N
(Rx)
u = Nuout = 128

Transducer pitch δu = 0.2 mm (≈ λ at c0 = 1540 m/s)

Aperture Transmit ∆u
(Tx)
x = 51.2 mm

Receive ∆u
(Rx)
x = 25.6 mm

Central frequency fc = 7.5 MHz
Bandwidth ∆f = [2 − 10] MHz

Acquisition

Electronic hardware Aixplorer®, Supersonic Imagine
Speed-of-sound hypothesis c0 = 1540 m/s

Plane wave angles
Maximum θ

(max)
in = 40◦ (calculated at c0)

Pitch δθin = 1◦ (calculated at c0)
Number Nθin = 81

Emitted signal Burst of two half periods of fc
Sampling frequency fs = 30 MHz
Recording time ∆t = 137 µs

Table 2.1: Acquisition of the reflection matrix, Rθu(t) ≡ [R(θin, uout, t)], in a phantom
imaging experiment. Acquisition was performed by Laura Cobus.

2D UMI is then applied to the in vivo imaging experiment of a human calf performed by
William Lambert [Lambert, 2022b]. Similar to the phantom experiment, the reflection matrix is
recorded based on plane wave insonifications. The characteristics of the probe and acquisition
sequence parameters are described in [Table. 2.2].

Note that in both experiments, the reflection matrix is only partially recorded, since the
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number of insonification Nθin is somewhat smaller than the number of transducers Nuout . In
other words, the input basis is incomplete, but that does not change the results presented in
this chapter. The consequences of an incomplete input basis are examined in Chapter 3 (see
Section 3.3).

Parameters Value

Probe

Type Linear
Number of transducers Nu = Nuout = 192
Transducer pitch δu = 0.2 mm (≈ λ at c0 = 1580 m/s)
Aperture ∆ux = 38.4 mm
Central frequency fc = 7.5 MHz
Bandwidth ∆f = [2 − 10] MHz

Acquisition

Electronic hardware Supersonic™ Mach-30, Supersonic Imagine
Speed-of-sound hypothesis c0 = 1580 m/s

Plane wave angles
Maximum θin = 25◦ (calculated at c0)
Pitch δθin = 0.5◦ (calculated at c0)
Number Nθin = 101

Emitted signal Burst of three half periods of fc
Pulse Repetition Frequency 1 kHz
Sampling frequency fs = 40 MHz
Recording time ∆t = 80 µs

Table 2.2: Acquisition of the reflection matrix, Rθu(t) ≡ [R(θin, uout, t)], for an in vivo
human calf imaging experiment [Lambert, 2020a]. Acquisition was performed by William
Lambert.

4.2 Projection in the focused basis

In conventional imaging, the usual method to build an ultrasound image is to numerically focus
the ultrasound data at the same location in emission and reception for any point in the field-of-
view, using a Delay-And-Sum algorithm (DAS). Interestingly, the projection of the R−matrix
onto a focused basis can be viewed as an extended and more general beamforming process in
which the input and output focal points are decoupled. A focused reflection matrix can be built,
which is the cornerstone of matrix imaging. This matrix has been studied in detail in previous
works that are not limited to ultrasound imaging [Lambert, 2020c; Lambert, 2020b; Lambert,
2022b; Lambert, 2022a; Brütt, 2022], but also finds applications in other fields of wave physics,
such as optics [Badon, 2020; Najar, 2023; Balondrade, 2023] or seismic imaging [Blondel, 2018;
Touma, 2021], again showing the numerous applications of such a general approach to wave
propagation.

4.2.1 Numerical focusing or beamforming

In previous works [Lambert, 2020b; Lambert, 2020c], the projection of the R−matrix into the
focused basis was performed in the frequency domain, using monochromatic and homogeneous
Green’s functions (constant speed-of-sound c0) in order to focus numerically at different points
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at the input rin = (xin, z) and the output rout = (xout, z). Under a matrix formalism, it writes:

Rrr(ω) = [Rxx(z, ω)] = G(in)∗
0 (ω) × Riu(ω) × G(out)†

0 (ω), (2.24)

where G(in/out)
0 are the homogeneous propagation matrices defined as follows:

G
(in)
0 =Ain(iin, rin) exp(iωτ(iin, rin, c0)), (2.25)

G
(out)
0 =Aout(uout, rout) exp(iωτ(uout, rout, c0)), (2.26)

where Ain and Aout are apodization factors that limit the extension of the synthetic aperture at
the input and output. This synthetic aperture is dictated by the transducers’ directivity [Perrot,
2021]. If no synthetic aperture is used (i.e. ∀(iin, rin, uout, rout), Ain/out = 1), the propagation
matrices should check G0 × G†

0 = G†
0 × G0 = I in the far-field, where I is the identity matrix.

To recover the axial resolution corresponding to the frequency bandwidth for each depth of
the field-of-view, a sum over the frequencies, which can be seen as an inverse Fourier transform
or a time-gating process at the ballistic time (t = 0 in the focused basis), is performed:

Rxx(z) =
∑
ω>0

Rxx(z, ω), (2.27)

where only the positive frequencies are considered in the sum to recover the analytic signal
(amplitude and phase), as would be the case with a Hilbert transform.

However, building the focused reflection matrix in the frequency domain based on (Eq. 2.24
& 2.27) is particularly time-consuming because it involves a huge amount of RAM (either on
CPU or GPU) to store each monochromatic Green matrices that can reach high dimensions.
Since it is not trivial to parallelize this process, we prefer to perform such processing in the time
domain.

Projection of the R-matrix in the focused basis

In terms of matrix coefficients, the injection of (Eqs. 2.25 & 2.26) into (Eqs. 2.24 & 2.27)
leads to the projection of the reflection matrix in the focused basis [Lambert, 2020b]:

RF (rin, rout) =
∑
iin

∑
uout

A(iin, rin, uout, rout)︸ ︷︷ ︸
synthetic aperture

R (iin, uout, τ(iin, rin) + τ(uout, rout)) , (2.28)

where A is the product of the input and output apodization factors that limit the synthetic
aperture and R is the analytical signal of the reflection matrix.

Note: To simplify notations in the following, we will omit the index F and refer to the
focused reflection matrix as R instead of RF . More generally, the reflection matrix will
be referred to as R, regardless of the base in which it is expressed.

It is important to note that the IQ signal is considered in (Eq. 2.28), i.e. the complex value
of the R-matrix, to access both the amplitude and phase of the wave-field. Hence, the focused
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R−matrix can be built in the time domain via a conventional delay-and-sum beamforming
scheme that consists in applying appropriate time-delays in order to focus at different points at
input rin = (xin, z) and output rout = (xout, z). In the different bases, those time delays write:

Transducer basis: τ(u, r) = |u − r|
c0

=
√

(x − ux)2 + z2

c0
, (2.29)

Plane wave basis: τ(θ, r) = [x sin θx + z cos θx] /c0, (2.30)

Virtual source basis : τ(v, r) = |v − r|
c0

=
√

(x − vx)2 + (z − vz)2

c0
, (2.31)

Technical note: Practically, an additional time delay τorigin(iin) must be considered in (Eq.
2.28) when plane waves or virtual sources are involved, in order to set the same time origin for
each insonification, so that a coherent compounding can be achieved.

4.2.2 Mathematical expression and physical interpretation

Mathematically, the focused reflection matrix can be expressed by injecting (Eq. 2.8) in (Eq.
2.24), resulting in:

Rxx(ω) = H⊤
in(ω) × Γ × Hout(ω), (2.32)

with Hin/out = Gin/out × G†
0 the focusing matrices whose coefficients Hin/out(r, rin/out, ω) cor-

respond to the transmit and receive point spread functions (PSF), that is to say the spatial
amplitude distribution of the wave-field in the focal plane when trying to focus at rin/out. In
terms of matrix coefficients, (Eq. 2.27) re-writes:

R(rin, rout, c0) =
∫ ∫

dωdr′Hin(rin, r′, ω, c0)γ(r′)Hout(rout, r′, ω, c0). (2.33)

The physical meaning of the focused R-matrix can be understood in light of the concept of
virtual sources (or transducers in the specific case of acoustics) introduced in previous work
[Robert, 2008b]. The transmitted energy is focused on the input focal point, rin, which can
be considered as a virtual source. Similarly, the output focal point, rout, can be seen as a
virtual receiver embedded in the medium, synthesized by selecting the time-echoes emanating
from its vicinity. However, the concept of virtual transducers is purely didactic, as they do not
act as active energy sources. Moreover, such virtual transducers are strongly directional, either
downward for rin and upward for rout [Lambert, 2022b].

We now make an isoplanatic assumption. This means that the input and/or output PSFs
can be considered to be spatially invariant: Hin/out(r, rin/out) = Hin/out(r − rin/out). We will
come back to the range of validity of this approximation later. Under this assumption and in the
single scattering regime, the focused R−matrix coefficients can be expressed as follows [Lambert,
2020b]:

R(xin, xout, z) =
∫

dxγ(x, z) Hin(x − xin, xin, z)Hout(x − xout, xout, z)︸ ︷︷ ︸
Imaging PSF

. (2.34)
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Figure 2.9: Focused R−matrix, RPSF & focusing criterion. Results corresponds to
the tissue mimicking phantom experiment [Table. 2.1]. (A, D) Confocal image and (B, C)
amplitude of the focused reflection matrix at time t = 32.5µs for a correct and an incorrect speed-
of-sound hypothesis (c0 = 1530 m/s and c0 = 1450 m/s), respectively. (E) RPSF extracted in
both cases (red: incorrect speed-of-sound, green: correct speed-of-sound) and compared to the
theoretical diffraction limit whose support is delimited by black vertical lines. (F) Focusing
criterion as a function of the speed-of-sound hypothesis. Inspired from [Lambert, 2020b].

4.2.3 Confocal imaging

In a single scattering regime, the energy is expected to be near the diagonal of the focused
reflection matrix (i.e. xin = xout).

Confocal imaging

Hence, each pixel of the main diagonal of Rxx(z) provides the transverse cross-section of
the confocal ultrasound image I at depth z, as described in [Fig. 2.9A-B]:

I(r) = |R(rin = rout)|2 = |R(xin, xout = xin, z)|2 , (2.35)

where r = rin = rout is the confocal point.

The combination of (Eq. 2.28) and (Eq. 2.35) leads to a classical DAS algorithm where
numerical focusing is performed at the same point at emission and reception:

I(r) =

∣∣∣∣∣∣
∑
iin

∑
uout

A(iin, uout, r)R(iin, uout, τ(iin, r) + τ(uout, r))

∣∣∣∣∣∣
2

. (2.36)
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Figure 2.10: The de-scan focused basis. (A) The de-scan focused basis with respect to the
output focusing points: RD(∆x′, xout), with ∆x′ = xin−xout. (B) The focused basis R(xin, xout).
(C) The de-scan focused basis with respect to the input focusing points: RD(xin, ∆x), with
∆x = xout − xin. (D-F) Experimental data in the speckle regime acquired in a tissue mimicking
phantom [Table 2.1]. (G) Schematic view of the input and output focal spots.

From another point-of-view, the diagonal feature of the focused R−matrix is the near-field
equivalent in the real space of the far-field memory effect described earlier [Fig. 2.5B], the real
and k-space being linked by a two-dimensional spatial Fourier transform.

From this general point of view, different change of bases can be performed either to reduce
the amount of data or to probe with better accuracy the quality of focusing at each point.

4.3 The de-scan focused basis

The sparsity of such matrices suggests that only the responses between adjacent focal points
appear relevant. Thus, instead of storing the responses between all pairs (xin, xout), it is less
data-intensive to store them in a de-scan basis [RD(∆x, x, z)] ≡ [R(xin, xout, z)], as described in
[Fig. 2.10A, D, C and F]. Mathematically, it consists of the following change of variables [Fig.
2.10G]: [

xin

xout

]
︸ ︷︷ ︸

Focused basis

→
[

x

∆x

]
=
[

xin

xout − xin

]
︸ ︷︷ ︸

De-scan basis

, (2.37)

where x = xin and ∆x = xout − xin.
We use the term “de-scan” because the output (xout) is scanned with respect to the input

(xin). Thus, it is a change of representation in which the reflection matrix is rearranged so that
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all input focal points are brought to the same location.
These considerations also apply to the recording of the R−matrix and can drastically re-

duce the amount of stored data, since at a given time and for a given transducer uin only the
neighboring transducers uout are relevant (according to their directivity).

4.4 Focusing quality

The wealth of the focused reflection matrix lies in its off-diagonal elements (i.e. xin ̸= xout),
which provide much more information than just the confocal image. In other words, the focused
reflection matrix uses all the spatial degrees of freedom available in the previously acquired
reflection matrix, while conventional imaging only uses a small portion of the available informa-
tion. We now show how to quantify aberrations in ultrasound speckle (without any guide star)
by investigating the off-diagonal elements of Rxx(z).

4.4.1 RPSF & common midpoint basis

Although the de-scan basis allows a reduction in the amount of data stored, it is not the optimal
basis to probe the focusing quality locally because it does not center the input and output
around the same point. To this end, a change of variables is applied to go from the focused basis
to a common midpoint basis: [

xin

xout

]
︸ ︷︷ ︸

Focused basis

→
[

xm

∆x

]
=
[

xin+xout
2

xout − xin

]
︸ ︷︷ ︸
Common midpoint basis

. (2.38)

This change of variables has been studied in previous works to obtain super-resolved images,
namely pixel reassignment [Müller, 2010; Sheppard, 2013; Sommer, 2021]. It is described
schematically in [Fig. 2.11] and in our case simply consists in extracting each anti-diagonal
of the focused reflection matrix Rxx(z), as follows:

RM({xm, z}︸ ︷︷ ︸
rm

, ∆x) = R

(
xm − ∆x

2 , xm + ∆x

2 , z

)
, (2.39)

where RM refers to the reflection matrix in a common midpoint basis and rm = (xm, z) is the
common midpoint of the input and output focal spots spaced by a distance ∆x = xout − xin.

Its averaged intensity profile provides what we call the “reflection point spread function”,

RPSF (rm, ∆x) =
〈∣∣RM(r′

m, ∆x)
∣∣2 W(r′

m − rm)
〉

r′
m

, (2.40)

where ⟨.⟩ denotes a spatial average.
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Figure 2.11: Common midpoint representation. Switching from the (A) focused basis to
the (B) common midpoint representation corresponds to a 45◦ rotation of the focused reflection
matrix. Index “1” shows a schematic representation of such a transformation, while index “2”
shows experimental ultrasound data in speckle of an ultrasound phantom with a linear probe.
Note that the change from the focused to the common midpoint representation implies two
new sampling grids, represented by solid and dashed lines. (C) Schematic representation of
the position of the input xin and the output xout focal spots, spaced by ∆x and their common
midpoint xp. (C) Extracted RPSF by spatial averaging over all midpoints xm at depth z = 30
mm.

Reflection Point Spread Function (RPSF)

In the speckle regime (random reflectivity), this quantity directly probes the local
focusing quality [Fig. 2.9E] as its ensemble average scales as an incoherent convolution
between the input and output PSFs [Lambert, 2020b] (see. Appendix 4.3):

RPSF (rm, ∆x) ∝
(

|Hin|2
∆x
⊛ |Hout|2

)
(rm, ∆x). (2.41)

In the specular regime (scatterer larger than the wavelength), reflectivity can be as-
sumed constant and (Eq. 2.41) is slightly modified as follows (see. Appendix 4.3):

RPSF (rm, ∆x) ∝
∣∣∣∣Hin

∆x
⊛ Hout

∣∣∣∣2 (rm, ∆x). (2.42)

The effects of aberrations in the focused reflection matrix are presented experimentally in a
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speckle area of the tissue mimicking phantom [Fig. 2.9C]. Assuming an incorrect speed-of-sound
during the beamforming process leads to a spread of the energy off the diagonal elements. An
example of RPSF assuming a correct or an incorrect speed-of-sound hypothesis is presented in
[Fig. 2.9E]. Interestingly, the width of the RPSF can directly be an indicator of the focusing
quality at any point of the medium.

The theoretical expression of the RPSF (Eqs. 2.41 and 2.42) shows the advantages of moving
to a common midpoint basis, since it depends equally on the input and output aberrations, which
is relevant to construct a focusing criterion that scales equally according to the input and output
aberrations.

4.4.2 The focusing criterion

A focusing criterion [Lambert, 2020b] has thus been introduced to compare the experimental
transverse resolution measured on the RPSF to the ideal one predicted by the diffraction theory
at each point of the medium:

F (r) = δx0(r)
δx(r) , (2.43)

where δx is the experimental resolution of the RPSF (extracted on its full width at half maximum
amplitude) and δx0 the theoretical diffraction limit defined as follows:

δx0(z) ∼ λc

2 sin {arctan [∆ux/(2z)]} , (2.44)

with ∆ux the lateral extension of the probe, λc the central wavelength and z the depth. The
ideal resolution can be evaluated more precisely and locally at any point by numerically modeling
(equation 2.41) but at a cost of a longer computation time.

The authors showed that the focusing criterion was a more sensitive criterion to probe
the focusing quality than the coherence factor [Mallart, 1994] as depicted in [Fig. 2.13D-E].
Here, the focusing criterion shows that aberrations are more important on the left-hand side
of the image, whereas the coherence factor only show a global value through the image. This
increase in contrast can be explained by the fact that the focusing criterion, unlike the coherence
factor, discriminates the effect of aberrations from multiple scattering and noise contributions.
Moreover, while the coherence factor is computed from a single sided focusing process, the gain
in transverse resolution is achieved by the decoupling of the input and output in the case of UMI.
Thus, the focusing criterion appears to be a relevant observable to scan the local variations of
the focusing quality.

Besides, the focusing criterion can also be used as an optimization parameter to retrieve
the speed-of-sound of the medium [Lambert, 2020b] as presented in [Fig. 2.9F]. Repeating this
process for all the point in the medium could thus lead to a speed-of-sound map of an unknown
medium c(r). This aspect will constitute the main topic of Chapter 6.

The slight difference between the optimal value of the speed-of-sound (ĉ = 1530 m/s) and
the manufacturer’s value (cp = 1540 m/s) is attributed to the acoustic lens of the probe, which
is not taken into account here, leading to an underestimation of the speed of sound at shallow
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depths. To avoid such a bias, one strategy could be to determine both the thickness and the
speed of sound of the acoustic lens and to model a two-layer medium in the beamforming process.
Assuming a paraxial approximation, another simpler strategy might be to shift the focal plane
by the same value for each point in the medium, as we will show in Chapter 5.

4.5 Multiple scattering quantification

Experimental measurement of the RPSF can also be used to investigate the relative part of the
multiple scattering. To do so, the normalized RPSF intensity profile can be decomposed as the
sum of three contributions [Lambert, 2022b]:

⟨RPSF⟩(r, ∆x) = αS(r)RPSF0(r, F (r)∆x)︸ ︷︷ ︸
Single scattering

+ αM(r)ÎM (r, ∆x)︸ ︷︷ ︸
Multiple scattering

+ αN(r)︸ ︷︷ ︸
Electronic noise

, (2.45)

where αS(r), αM(r), and αN(r), are the respective rates of local single scattering, multiple
scattering, and noise.

The first term accounts for the single scattering contribution and assumes that, on average,
aberrations reduce the effective numerical aperture. The spatial dependence of F is thus a re-
scaled version of the diffraction-limited profile RPSF0(r, ∆x) that would be obtained in absence
of aberrations. The second term accounts for the diffusive halo of multiple scattering, modeled
here as a Gaussian profile [Aubry, 2007], such that ÎM (r, ∆x) = exp

[
−∆x2/(2σM (r)2)

]
, with

σM its spatial extent. At last, the third term accounts for electronic noise, modeled here as a
constant background. As presented in [Fig. 2.12], the free parameters {F, αS, αM, σM } are then
estimated through a fitting procedure of the RPSF.

The authors applied this approach to extract locally the relative part of the multiple scat-
tering and the electronic noise in the in vivo case of the human calf, as shown in [Fig. 2.13B-C].
This experimental result suggests that multiple scattering that is usually discarded in ultrasound
imaging is far from being negligible in in vivo imaging. Even more, recent studies suggest that
the extraction of scattering parameters such as the diffusion constant [Aubry, 2007] can con-
stitute a new biomarker that could be used to detect pathologies such as the lung parenchyma
[Mohanty, 2017].

However, at large depths, multiple scattering and noise are difficult to discriminate since
they both give rise to a flat plateau in the RPSF. In the next chapter, a new estimator based on
spatial reciprocity of wave propagation, that can be observed directly on the symmetry of the
R−matrix, will be introduced to estimate the rate of multiple scattering even at large depths
and applied in transcranial imaging.

4.6 Adaptive focusing

Going beyond focusing quality or multiple scattering quantification, matrix imaging even allows
the extraction of local aberration laws, thus giving access to the transmission matrix T that
connects each transducer of the probe to any focal point of the medium. From the focused
reflection matrix, another matrix can be extracted numerically that emphasizes the isoplanatic
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Figure 2.12: Validation of the fitting process (Eq. 2.45) on the RPSF intensity profile.
Result of the fit at z = 33 mm in the low speckle regime: the fit parameters are F = 0.96,
αM = 5.5% and σM = 3.4 mm. Extracted from [Lambert, 2022b].

Figure 2.13: Focusing quality and multiple scattering for in vivo imaging of a human
calf. Mapping of local focusing quality and multiple scattering in the calf imaging experiment.
(A) Ultrasound image of the calf. (B) Noise rate αN(r). (C) Multiple scattering rate αM(r). (D)
F -factor. (E) C−factor. In (B, C) yellow areas correspond to a weak SNR and high multiple
scattering rate, respectively. In (D, E) blue and yellow areas correspond to a high and low
quality of focus, respectively. In (D), gray areas highlights location where the estimation of the
focusing criterion is not reliable because the incoherent background is too high (αN+αM > 0.75).
Extracted from [Lambert, 2022b].

correlations of the focused reflection matrix, namely the distortion matrix. Such a matrix,
which was experimentally introduced in optics during Amaury Badon’s PhD [Badon, 2020],
contains the aberrations of the reflected wavefront for each point in the medium and can be used
to numerically correct the reflection matrix from aberrations. This procedure was successfully
applied to optics [Badon, 2020; Barolle, 2021; Najar, 2023], acoustics [Lambert, 2022a], seismic
imaging [Touma, 2021] and is currently investigated for radar imaging. In this section, the basics
framework of the aberration correction process are presented and further applied to the human
calf experiment.
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4.6.1 The phase-screen model

Aberration has been modelled in the past as a phase screen in the transducers plane, T(u).
However, this simple model is not sufficient to describe a medium with spatially distributed
aberrations. In this section, the aberrations are modelled as a phase-screen that depends on the
position and is expressed in terms of a basis c, which is not necessarily the transducer plane,
since it is nontrivial in which basis the isoplanicity is maximized [Mertz, 2015]. In other words,
assuming such aberration, the Green’s function of the medium can be expressed as a correction
to the homogeneous model such that:

G(r, c) = G0(r, c)︸ ︷︷ ︸
Homogeneous

◦ T(r, c)︸ ︷︷ ︸
Aberrations

, (2.46)

where ◦ denotes a Hadamard product (i.e. an element-wise matrix product). Thus, the
T−matrix contains the spatial variations of the wavefront distortions, i.e. the transmission ma-
trix of the medium that connects each transducer (when c = u) to each point in the field-of-view.
The next section shows how this matrix can be estimated using the “distortion matrix frame-
work” [Badon, 2020; Lambert, 2020c; Touma, 2021], and used to compensate the R−matrix of
aberrations.

First, we will introduce the general transmission matrix formalism, which is the holy grail
of imaging as it connects each input wave-field to any point in the field-of-view.

4.6.2 The distortion matrix

Aberration compensation in the UMI framework, using the distortion matrix concept [Lambert,
2020c; Lambert, 2022a], consists in the following steps:

– projecting the focused R−matrix either at input (Rcr) or output (Rrc) in a correction
basis [Fig. 2.14B];

– extracting wave distortions exhibited by R when compared to a reference matrix that
would have been obtained in an ideal homogeneous medium of wave velocity c0 [Fig.
2.14C]. The resulting distortion matrix D contains the aberrations induced when focusing
on any point r, expressed in the correction basis;

– An estimation of the transmission matrix T̂in/out can be made [Fig. 2.14D-E] through a
time reversal analysis very similar to the one described in the fDORT method [Robert,
2005], that consists in a singular value decomposition of D. The great difference is that
every step is now performed numerically and iterated at input and output;

– A better estimation of the Green function Ĝin/out can be performed and be further used
to correct the R−matrix.
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Figure 2.14: Time-reversal analysis of the distortion matrix. (A) Each input focused
insonification gives rise to a tilted reflected wave front. (B) After far-field projection, each wave
field is stored along a line of Rxk(z). (C) By removing the geometrical tilt (dashed black line in
B) of each reflected wave front, a set of distortion matrices Dxk(z) is obtained at each depth z.
These matrices are concatenated to yield a full-field distortion matrix D that is equivalent to a
reflection matrix but with input focal spots Hin(x − xin) virtually shifted at the same location
(D) Its correlation matrix C mimics the time-reversal operator associated with a virtual specular
reflector of scattering distribution |Hin(x)|2 (E) The normalized correlation matrix C makes the
virtual reflector point like. Its SVD then yields the transmission matrix over each isoplanatic
patch contained in the field-of-view. Ultrasound data in panel B & C show the phase of the
reflection matrix and the distortion matrix at depth z = 30 mm. Extracted from [Lambert,
2020c].

4.6.3 Physical interpretation

This process of subtracting the geometric component to build the D−matrix is equivalent to the
one described in [Montaldo, 2011], which consists of de-scanning each focal spot as if it came
from the same location, thus increasing the spatial correlations between each reflected wavefront.
In this context, we can note that the de-scan focused reflection matrix RD defined in (Section
4.3) is not only an interesting matrix for memory optimization, but also the Fourier transform
of the D-matrix (see Appendix 5.2).

The SVD applied to the D-matrix enables a realignment in phase (coherent combination)
of each input focal spot to synthesize a virtual guide star (or coherent reflector) [Fig. 2.14D].
Mathematically, this assertion can be proved by considering the correlation matrix C = D × D†

of D. The correlation matrix can be expressed as follows (see. Appendix 5.1):

C ∝ G†
out × ΓHin × Gout, (2.47)

where ΓHin is diagonal, and its coefficients are directly proportional to the input focal spot
|Hin(x)|2. ΓHin is equivalent to a scattering matrix associated with a virtual coherent reflector
whose scattering distribution corresponds to the input focal spot intensity |Hin(x)|2 and C is
analogous to a reflection matrix associated with a single scatterer of reflectivity |Hin(x)|2 as
shown in [Fig. 2.14D].

In the asymptotic case where we suppose a perfect input focal spot so that Hin(x) = δ(x),
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(Eq. 2.47) becomes:

C ∝ T̂†
out × Γδ × T̂out. (2.48)

In contrast to the operator ΓHin of (Eq. 2.47), Γδ is a scattering matrix associated with a
point-like (diffraction-limited) reflector at the origin [Fig. 2.14E]. A reflection matrix associated
with such a point-like reflector is of rank 1. The phase of the first eigenvalue of the correlation
matrix directly holds the aberration transmittance Tout(o) ≡ exp

(
jarg

[
U(1)

out(o)
])

and the
propagation matrix can be updated according to (Eq. 2.46).

The correction process is thus a simple phase conjugation of the time-gated reflection ma-
trix. It is equivalent to an application of time delays on the ultrasound data, such that
∆ti = arg(U)/(2πfc), with fc the central frequency. Weighting the aberration compensation
with the absolute value [Bendjador, 2020] of the singular vector would be hazardous as it would
act as a low-pass filter on the data and thus would alter the resolution of the ultrasound image.

4.6.4 Input and Output iteration

The process described above is not restrained to the output, and can be applied similarly at
the input. Iterative correction can thus be performed on both sides as described in [Fig. 2.15].
The simple case of an incorrect speed-of-sound hypothesis during beamforming is investigated in
the tissue mimicking phantom. Aberrations are clearly visible on the focused reflection matrix,
where the energy spreads well beyond the confocal signal xin = xout (or ∆x = 0 in a de-scan
basis). A first correction is applied at the input that allows to bring back energy in the vicinity
of the confocal signal. However, the diffraction-limit is not reached and the symmetry of the
matrices is lost [Fig. 2.15B2]. It is only when correcting in a second step at the output that the
diffraction limit is reached and that symmetry of the matrices is ensured.

4.6.5 Bias on the transmission matrix estimator T̂

Besides, the fact that the first eigenspace of the correlation matrix directly holds the aberration
transmittance relies on several strong hypotheses (see Appendix 5.1):

Assumptions for extracting the aberration law

– Isoplanetism is ensured such that each output focal points r considered for building
the correlation matrix is associated to the same distorted wavefronts;

– A sufficient number of resolution cells is considered so that the correlation
matrix of D converges towards its ensemble average C → ⟨C⟩ [Varslot, 2004; Måsøy,
2005];

– A perfect diffraction-limited focal spot (Hin = δ), or equivalently, a point-like
virtual guide star, is considered.
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Figure 2.15: Iteration of the correction process at the input and the output. Results
presented here are in the tissue mimicking phantom and assuming an incorrect speed-of-sound
hypothesis during numerical focusing. The correction process is investigated through the dis-
tortion matrix approach. (A) Original reflection matrix present aberrations as energy spreads
well beyond the confocal signal. (B) A first correction is applied only at the input. (C) A
second correction is applied at the output. Resolution is close to the diffraction limit after the
correction process.

The first two hypotheses constitute the following dilemma: On the one hand, the local spatial
average window W should be as small as possible to grasp the rapid variations of the RPSFs
across the field of view. On the other hand, the convergence of the correlation matrix is only
guaranteed if the spatial window W is much larger than the size of the focal spot [Lambert,
2020c; Lambert, 2022a]. This condition indicates that a gradual compensation of aberrations
shall be favored rather than a direct partition of the field-of-view into small boxes [Yoon, 2020].
An optimal UMI process should proceed as follows: first, compensate for input and output wave
distortions at a large scale to reduce the size of the guide star; then, decrease the size of the
spatial window W and improve the resolution of the T−matrix estimator. In other words, an
iterative correction on gradually reduced patches allows us to address higher spatial frequencies
of aberrations associated with smaller isoplanatic areas. The whole process can be iterated,
leading to a multi-scale compensation of wave distortions. A new criterion based on
spatial reciprocity will be introduced in the next chapter to monitor the convergence of the
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correlation matrix. In other words, spatial reciprocity will provide an objective criterion to
know at what point the reduction of the patch W and more generally the correction process
should be stopped.

The third hypothesis of a point-like virtual guide star is a strong hypothesis which is any-
thing but true, and thus introduces a strong bias due to the blurring of the guide star because
aberrations and multiple scattering also affect its quality. In practice, the finite size of the guide
star limits the estimation of the aberration law to a reduced angular support when performing
a singular value decomposition. In previous work, ΓHin was made pointlike by normalizing the
correlation matrix (i.e. taking only the phase). However, this method inherently increases the
noise, especially for large wavevectors. To circumvent this issue, a new algorithm, designed
by Arthur Le Ber and inspired both by the iterative time-reversal experiment and the CLASS
algorithm [Yoon, 2020], will be presented in the next chapter.

The aberration correction process based on the distortion matrix is very similar to the method
described in [Bendjador, 2020] where the main difference lies in the application of the SVD on
the beamformed data for different insonifications. Although performing the SVD just before
a coherent compound of beamformed images is attractive for real-time imaging, the process
remains very partial as: (i) alternating aberration correction in transmit and receive modes is
required in order to gradually reduce the blurring of the virtual guide star and reduce the bias
made on the estimation of the aberration transmittance; (ii) performing aberration correction in
different bases (plane wave, transducer, intermediate plane [Mertz, 2015]) is needed to address
all kind of aberrations in the medium; (iii) preforming a multi-scale analysis is necessary to
ensure at best the isoplanicity condition at each step of the process.

4.6.6 In vivo results

The D-matrix framework was successfully applied to several in vivo experiments using linear
ultrasound probes with plane wave insonifications [Lambert, 2022a]. Here, the results are pre-
sented in the particular case of a human calf imaging experiment. The local aberration laws are
shown for several spatial regions of the field-of-view. This set of aberration phase laws forms
the transmission matrix of the medium [Fig. 2.16]. This wealth of information is further used to
produce images with a far better contrast, as shown in [Fig. 2.17B-C]. In addition, resolution is
greatly enhanced when comparing the focusing criterion before and after the correction process
[Fig. 2.17A, D].
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Figure 2.16: Estimation of T̂ in the in vivo case of a human calf. (A-G) Aberrations
phase laws associated to several areas displayed in the (H) confocal image. Subscript “1” and
“2” stands for plane-wave and transducer basis, respectively. The blue and red curve stands for
input and output, respectively. Extracted from [Lambert, 2020a].

Figure 2.17: Results of the aberration correction process applied to the in vivo case
of the human calf. (A) Focusing criterion superimposed to the corresponding conventional
ultrasound image. (B) Conventional multi-focus image. (C) Corrected multi-focus image after
the matrix imaging process. (D) Focusing criterion superimposed to the corrected image. The
ultrasound images have been normalized by their mean intensity. Extracted from [Lambert,
2020a].
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5 Summary

Key concepts in Matrix Imaging

Non-invasive Ultrasound Matrix Imaging (UMI) could be sum up [Fig. 2.18] to these two
following key concepts:

– Information about a static, linear medium is acquired in a reflection matrix that
records the impulse responses between each emitter and each receiver of a given
multi-element technology:

Rio(t) ⇔ Rio(ω), (2.49)

where i and o account for emission and reception bases.

– While decoupling input and output, the R−matrix is then projected onto vari-
ous suitable bases to extract local quantitative parameters that characterize the
medium, as described in [Table 2.3].

In particular, projecting the R−matrix in a focused basis allow to locally probe the focusing
quality, the multiple scattering rate or even allow performing speed-of-sound measurements.
The projection of the R−matrix in a dual basis can be investigated to extract local distortions
of the reflected wavefronts and thus estimate the transmission matrix T linking any element of
the probe to any point of the medium. Numerical adaptive focusing can thus be performed to
reach contrast-enhanced images with close to diffraction limit resolution.

Symbol Adapted for
Acquisition Rio(t) = [R(iin, oout, t)] Data recording

Focused basis Rxx(z) Focusing quality and multiple
scattering quantification [Lambert, 2022b]

Far-field basis Rkk(z) Specular/speckle discrimination [Lambert, 2020c]
and global aberration correction [Yoon, 2020]

Dual basis Rcr/Dcr and Rrc/Drc
T̂−matrix and

local adaptive correction [Lambert, 2022a]

Table 2.3: Different bases for the R−matrix.
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Figure 2.18: A summary of Ultrasound Matrix Imaging framework & its applica-
tions. Adapted from [Lambert, 2022b; Lambert, 2020c; Lambert, 2020b; Lambert, 2022a;
Aubry, 2008a].
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6 Conclusion

The general formalism of matrix imaging has been successfully applied to 2D ultrasound imag-
ing. Pioneering work led to its establishment with academic experiments that incorporated
mathematical insights into physical experiments. More recently, it has been successfully applied
to local characterization of an unknown medium, allowing extraction of the transmission matrix
connecting any transducer to any point in the medium, even in the ultrasound speckle, resulting
in contrast-enhanced and near diffraction-limited ultrasound images.

With this in mind, the main objective of the following work is to explore all degrees of
freedom of ultrasound wave propagation by recording the reflection matrix.

To this end, UMI is extended to 3D imaging in Chapter 3, using a matrix array of transducers
that provide a much larger number of spatial degrees of freedom than conventional probes. In
parallel, new elements are introduced to make the correction process more robust. An iterative
algorithm that outperforms SVD and a spatial reciprocity-based criterion for monitoring the
spatial convergence of this new method are presented. In addition, the difficult case of trans-
cranial imaging, where not only a high level of aberration but also a large attenuation due
to absorption, multiple scattering and reverberation in the cranial layer occurs, is addressed.
Finally, we demonstrate how UMI can be easily combined with ultra-fast imaging, and show its
relevance in the specific case of Ultrasound Localization Microscopy using an in vivo experiment
on trans-cranial imaging in sheep subjects.

Another way to increase the number of degrees of freedom lies in the way the focused re-
flection matrix is constructed. So far, only the responses between emitted and received focal
spots located at the same depth, i.e. only transverse responses, have been studied. In Chap-
ter 4, we propose to scan the responses axially in both depth and time to build a generalized
spatio-temporal focused reflection matrix. This matrix will be leveraged for specific target char-
acterization such as bubbles by probing their spectral ultrasonic response.

Although the concept of the distortion matrix allows a full compensation of transverse aber-
rations, it does not provide an ideal image of the medium reflectivity. Indeed, the position of
each scatterer remains uncertain, since it depends on the speed-of-sound hypothesis made during
beamforming. In Chapter 5, we will show how the focused R-matrix allows us to estimate the
local axial defocus for each point, resulting from the error between the true and the assumed
speed-of-sound. In addition, spatial variations in the speed-of-sound can be studied for any
point in the medium, resulting in images with a much higher accuracy of distances (see Chapter
6).
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Chapter 3
From 2D to 3D matrix imaging

Switching from 2D to 3D imaging drastically increases the number of available spa-
tial degrees of freedom. This not only leads to a strong enhancement of contrast
and resolution in the elevation plane, but also allows a better control of wavefronts
and thus a finer correction of aberrations. We will first extend our matrix approach
to 3D imaging in a controlled phantom experiment before turning to the difficult
case of transcranial imaging.

Objectives
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1 Introduction

Thanks to the increasing capacity of data storage devices and computers, 3D imaging has become
an active research topic as it allows scanning a volume instead of a plane and therefore holds
much more information than conventional B-mode imaging with a 1D array of transducers, that
restricts the control of the ultrasonic wave-field over two-dimensions (one-dimensional space
and time). First, 3D imaging enables a volumetric visualization of tissues, which is particularly
suitable for ultrasound imaging modes such as Doppler or elastography. Blood flow can be
tracked with a much higher accuracy and propagation of shear-waves can be detected not only
in the transverse direction, but in all spatial directions. This feature is important to study the
shear anisotropy of the medium. In addition, 3D imaging is less operator-dependent because it
does not depend on the angular position of the probe.

Besides, although it gave rise to striking results in optical microscopy [Kang, 2017; Badon,
2020; Yoon, 2020; Kwon, 2023; Najar, 2023] or seismic imaging [Blondel, 2018; Touma, 2021],
the experimental demonstration of matrix imaging has been, so far, limited with ultrasonic
waves [Lambert, 2020c; Bendjador, 2020; Sommer, 2021; Lambert, 2022a]. Indeed, the first
proof-of-concept experiments employed a linear array of transducers. Yet, aberrations in the
human body are 3D-distributed and a 1D control of the wave-field is not sufficient for a fine
compensation of wave-distortions.

In this chapter, we first extend Ultrasound Matrix Imaging (UMI) to 3D imag-
ing using a fully populated matrix array of transducers [Ratsimandresy, 2002; Provost, 2014;
Provost, 2015]. The overall method is validated by means of a well-controlled experiment of
a tissue-mimicking phantom, first without aberrations and then by combining ex vivo porcine
tissues as an aberrating layer on top. Thanks to its great number of spatial degrees of free-
dom, 3D imaging provides a higher density of independent speckle grains, which controls the
spatial resolution of the transmission matrix estimator T̂ [Lambert, 2022a] that connects each
transducer to each voxel of the field-of-view. A more local correction can thus be reached,
compared to 2D imaging

In these experiments, we will also introduce new elements that make our correction frame-
work more robust. Inspired by the CLASS method developed in optical microscopy [Kang, 2017;
Yoon, 2020], aberrations will be compensated by a novel iterative phase reversal (IPR) algo-
rithm that is more efficient than a singular value decomposition (SVD) [Robert, 2008a; Lambert,
2020c; Bendjador, 2020]. Unlike previous work, the convergence of this algorithm is ensured by
examining the spatial reciprocity between input and output. This new criterion acts as
a guide star to ensure that the spatial averaging is sufficient to converge properly towards the
transmission matrix T, and thus indicates at what point we should stop the correction process.

Then, we will address the difficult case of transcranial imaging on a controlled head
phantom whose skull induces a strong attenuation, aberration, and multiple scattering of the
ultrasonic wave-field, phenomena that UMI can quantify independently of each other [Lambert,
2020b; Lambert, 2022b].
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Figure 3.1: Schematic views of various methods for 3D ultrasound imaging. (A) Linear
array, (B) matrix array, (C) sparse array and (D) Row-Column Array (RCA).

2 3D ultrasound imaging

Volumetric images were first obtained by mechanically scanning the elevation plane (y-plane)
of 1D arrays (linear, phase or curve) [Huang, 2017] either by translation [Dabrowski, 2001; Guo,
1996] as described in [Fig. 3.1A], rotation [Tong, 1996; Downey, 1996] or a tilt [Gilja, 1995;
Delabays, 1995]. However, wave propagation is still recorded in a plane (i.e. projected along the
y-axis) and therefore does not provide as much information as a 3D control of the wave-field,
whether it be physically or in post-processing. Hence, great efforts were made to improve the
flexibility of aperture and focusing in the elevation dimension by 1.25, 1.5 and 1.75D arrays
[Wildes, 1997; Fernandez, 2003] before 2D matrix arrays could be fabricated.

Using a fully populated matrix array of transducers [Fig. 3.1B] [Ratsimandresy, 2002;
Savord, 2003] is theoretically the easiest way to take advantage of wave propagation in all
directions of space. When combined with Matrix Imaging, their huge amount of data is a real
gold-rush for wavefront shaping. However, real-time imaging and post-processing still remain
major challenges and are highly dependent on current advances in central and graphics processors
(CPU & GPU). In addition, this means difficult manufacture of the many electronic wires that
must be connected independently to each transducer, as well as complex hardware design to
drive the transducers of the probe simultaneously.

The use of sparse arrays [Fig. 3.1C] [Roux, 2018; Roux, 2016; Davidsen, 1993; Diarra,
2013; Austeng, 2002] can be a solution for less cumbersome electronics, but comes at the price
of a reduced active surface area (i.e. lower sensitivity) and also induces side-lobes. Another
approach to reduce the number of channels is to use micro-beamforming [Blaak, 2009; Lok, 2018]
to partially beamform the ultrasound data before recording. However, this solution intrinsically
degrades the accuracy of the focusing process. Recently, much focus has been placed on Row-
Column-Array probes (RCA) [Flesch, 2017] to drastically reduce the number of channels by
using complete rows of transducers in emission and columns in reception, and inversely [Fig.
3.1D]. This reduces the number of channels from N2 to 2N but at the cost of a degraded PSF
compared to a matrix array of transducers.

In this chapter, we intend to take full advantage of the benefits of 3D imaging, which lie in
its high spatial degrees of freedom (i.e. the number of input and output channels). Hence, we
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will use a fully populated matrix array of transducers [Ratsimandresy, 2002], referred to as P1,
manufactured by Vermon and whose characteristics are described in [Table 3.1] and [Fig. 3.2].
It is important to note that the probe is divided into 4 blocks of 256 elements, with 3 deadlines
between each block [Fig. 3.2C]. This provides a slightly larger aperture, but also side-lobes in
that direction.

The electronic hardware used to drive the probe was developed by Supersonic Imagine (mem-
ber of Hologic group) in the context of collaboration agreement with the Institut Langevin. It
allows it to emit with all elements (1024 transducers) and record with half of the probe (512
transducers). Two insonifications are then required to record a complete acquisition over all
received channels of the probe. Commercial electronic hardware for controlling matrix array
probes such as Vantage Research Ultrasound Systems (Verasonics) is based on multiplexed elec-
tronics [Hara, 2005] that use only a maximum of 256 transducers simultaneously. This implies
to recombine synthetic apertures to emulate an insonification that would use all the elements of
the probe. This means both a lower SNR and a lower frame-rate than our system, which would
correspond to a synchronized combination of 4 commercial Verasonics systems at the same time.

Number of transducers Nu = 32 × 32 = 1024 (with 6 dead elements)
Geometry (y-axis) 3 inactive rows between each block of 256 elements

Transducer
Pitch δu = 0.5 mm (≈ λ at c = 1540 m/s)
Kerf 50 µm
Width 0.4 mm

Aperture (active surface) ∆u =
(

∆ux

∆uy

)
=
(

16.3 mm
17.8 mm

)
Central frequency fc = 3 MHz
Bandwidth (at −6dB) 80%→ ∆f = [1.8 − 4.2] MHz
Transducer directivity θmax = ±31◦ at c = 1540 m/s
Acoustic lens None
Impedance matching layer 0.3 mm of silicone

Maximum voltage
(

+
−

)
[Volts] Vmax =

(
50
140

)
Volts

Table 3.1: Matrix array datasheet P1.
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Chapter 3. From 2D to 3D imaging

Figure 3.2: Probe characteristics (P1). (A) Electronic hardware used to drive the (B) 2D
matrix probe. (C) Position of transducers separated in 4 blocks of 256 elements regularly spaced
by 0.5 mm. (D) Average impulse response and corresponding (E) spectrum provided by the
manufacturer (Vermon).

Figure 3.3: Matrix imaging of a tissue mimicking phantom. (A, B) Schematic of the
experiment. (C) Maximum Intensity Projection (MIP) of the confocal volume. (D, E) Axial
and transverse cross-section, respectively. (F) Local RPSFs in the speckle.

3 Phantom experiment without aberrations

Before tackling more imaging complex media, matrix imaging framework is first extended to 3D
imaging of a controlled tissue mimicking phantom (CIRS, Model 054GS) presenting no aberra-
tions. The probe (P1) is directly placed in contact with the phantom and impedance matching
is done with water [Fig. 3.3 A, B]. The phantom (speed of sound: cp = 1540 m/s) is composed
of random distribution of unresolved scatterers which generate ultrasonic speckle characteristic
of human tissues. The system also contains nylon filaments placed at regular intervals, with
a point-like cross-section, and, at a depth of 40 mm, a 10 mm-diameter hyperechoic cylinder,
containing a higher density of unresolved scatterers.

3.1 Reflection matrix acquisition

3D Ultrasound Matrix Imaging (UMI) starts with the acquisition of the reflection matrix (or
R−matrix) using the matrix array of transducers P1. Depending on the experiment performed,
different insonification bases can be used.
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3. Phantom experiment without aberrations

Figure 3.4: Reflection matrix acquisition. (A) The R-matrix can be acquired in the (A1)
transducer, (A2) plane-wave or (A3) virtual sources basis in transmit and (B) recording the
back-scattered wave-field on each transducer in the receive mode.

3.1.1 Canonical/Transducer basis

The R-matrix can be acquired in the transducer basis using successive single transducer emis-
sions (uin) [Fig. 3.4A1], i.e. by acquiring the impulse responses between each transducer of the
probe (uin → uout). This set of wave-fields forms a reflection matrix acquired in the canonical
basis, Ruu(t) ≡ [R(uin, uout, t)]. Although this matrix contains all the information accessible
in an epi-detection configuration (i.e. in reflection) without making assumptions about the
static medium, it suffers from a poor Signal-to-Noise Ratio (SNR) because it involves only one
transducer for each emission.

3.1.2 Plane wave basis

To improve the signal-to-noise ratio, the R-matrix can be acquired using a set of plane waves [Mon-
taldo, 2009] [Fig. 3.4A2]. For each plane wave of angles of incidence θin = (θin

(x), θin
(y)), the

time-dependent reflected wave field is recorded by each transducer uout. This set of wave-fields
forms a reflection matrix acquired in the plane wave basis, Rθu(t) = [R(θin, uout, t)]. Since
the transducer and plane wave bases are related by a simple Fourier transform at the central
frequency

R(kin, uout, t) =
∑
uin

R(uin, uout, t) exp(juin.kin), (3.1)

the array pitch δu and probe dimension ∆u dictates the sampling of the k-space as follows:

Aperture: ∆k =2π

δu
, (3.2)

Pitch: δk = 2π

max([∆ux; ∆uy] = 2π

∆uy
, (3.3)

and each wavevector k can finally be associated with a single plane wave as follows:

k(x/y) = 2π

λc
sin(θ(x/y)), (3.4)
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Figure 3.5: Plane wave insonification. (A) A plane wave is generated by applying appro-
priate time-delays upon each transducer of the probe. (B) Plane wave basis represented in the
Fourier space. The white spot corresponds to the plane wave generated in pannel (A). (C)
Placing virtual sources far away from the probe (here on a radius of 60 m) is equivalent to
generate plane waves.

with λc = c0/fc the central wavelength. A set of 1225 plane waves [Fig. 3.5B] are thus generated
by applying appropriate time delays τ(θin, uin) to each transducer uin = (ux, uy) of the probe
[Fig. 3.5A]:

τ(θin, uin) = [ux sin θx + uy sin θy]/c0. (3.5)

3.1.3 Virtual sources basis

Another insonification basis, that provides a higher field-of-view compared to plane waves, con-
sists in insonifying the medium with diverging waves associated with virtual sources located
above the probe [Provost, 2014] [Fig. 3.4A3] such that:

v =


vx

vy

vz

 = − R
kc


kx

ky√
k2

c − k2
x − k2

y

 , (3.6)

with R the curvature radius of the virtual sources and kc = 2π
λc

the wave-number at the cen-
tral frequency. This set of wave-fields forms a reflection matrix acquired in a virtual sources’
basis, Rvu(t) ≡ [R(vin, uout, t)]. A set of 1225 diverging waves are thus generated by applying
appropriate time delays τ(vin, uin) to each transducer uin = (ux, uy) of the probe:

τ(vin, uin) =
|vin − uin| − min

uin
[|vin − uin|]

c0
. (3.7)

A virtual source spreads over multiple couples (kx, ky) in the k−space except when R is
large enough to be associated with a single plane wave [Fig. 3.5C].
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3.2 The focused reflection matrix

Whatever the insonification sequence, the reflectivity of a medium at a given point r can be
estimated in post-processing by a coherent compound of incident waves delayed to virtually
focus on this point, and coherently summing the echoes recorded by the probe coming from that
same point [Fig. 3.6A]. UMI basically consists in decoupling the input (rin) and output (rout)
focusing points [Fig. 3.6B] as follows:

rin =


xin

yin

zin

 =
(

ρin

zin

)

rout =


xout

yout

zout

 =
(

ρout

zout

)


︸ ︷︷ ︸

Focused basis R

↔



r =


x

y

z

 =
(

ρ

z

)

r + ∆ρ =


x + ∆x

y + ∆y

z

 =
(

ρ + ∆ρ

z

)


︸ ︷︷ ︸

De-scan basis RD

(3.8)

with r a focal point designated by its Cartesian coordinates, ρ = (x, y) its transverse coordinates
and ∆ρ = ρout − ρin the distance between the input and output focusing points. Subscripts
“in” and “out” denotes the input and output propagation, respectively.

By applying appropriate time delays to the transmission (uin/θin/vin) and reception (uout)
channels, Ruu(t), Rθu(t) and Rvu(t) can be projected at each depth z in a focused basis, thereby
forming a broadband focused reflection matrix:

Rrr(z) ≡ [R({xin, yin}︸ ︷︷ ︸
ρin

, {xout, yout}︸ ︷︷ ︸
ρout

, z)]. (3.9)

The focused R−matrix is built in the time domain via a conventional delay-and-sum beam-
forming scheme that consists in applying appropriate time-delays in order to focus at different
points at input (rin) and output (rout):

R(ρin, ρout, z) =
∑
iin

∑
uout

A({iin, rin}, {uout, rout})︸ ︷︷ ︸
synthetic aperture

R (iin, uout, τ(iin, rin) + τ(uout, rout)) , (3.10)

where i = u, θ or v accounts for the insonification basis. A is an apodization factor that
limits the extent of the synthetic aperture at emission and reception. This synthetic aperture is
dictated by the transducers’ directivity θmax ∼ 30◦ [Perrot, 2021]. In the different insonification
bases, the time delays write:

Transducer basis: τ(u, r) = |u − r|
c0

=

√
(x − ux)2 + (y − uy)2 + z2

c0
, (3.11)

Plane wave basis: τ(θ, r) =
(

x sin θx + y sin θy + z
√

1 − sin2 θx − sin2 θy

)
/c0, (3.12)

Virtual source basis: τ(v, r) = |v − r|
c0

=

√
(x − vx)2 + (y − vy)2 + (z − vz)2

c0
, (3.13)
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with c0 = 1540 m/s the speed-of-sound hypothesis corresponding to the tissue mimicking phan-
tom. An additional time ∆τorigin(iin) must be considered in (Eq. 3.10) when plane-waves or
virtual sources are involved, in order to set the same time origin for each insonification, so that
a coherent compounding can be achieved.

The novelty compared to previous work is that now, instead of just scanning focal points on a
1D line (X), 3D imaging enables to reach the responses between virtual emitters & receivers along
a plane (XY). Since the focal plane is bi-dimensional, each matrix Rρρ(z) has a four-dimension
structure: R({xin, yin}, {xout, yout}, z). Rρρ(z) is thus concatenated in 2D as a set of block
matrices to be represented graphically [Fig. 3.6E]. In such a representation, every sub-matrix
of R corresponds to the reflection matrix between lines of virtual transducers located at yin and
yout, whereas every element in the given sub-matrix corresponds to a specific couple (xin, xout)
[Fig. 3.6C]. Each coefficient R(xin, yin, xout, yout, z) corresponds to the complex amplitude of the
echoes coming from the point rout = (xout, yout, z) in the focal plane when focusing at the point
rin = (xin, yin, z) (or conversely, since Rρρ(z) is a symmetric matrix due to spatial reciprocity).

Computational note

As 3D imaging induces a huge amount of data, dealing with the complete focused reflection
matrix becomes drastically time-consuming. As a consequence, instead of storing the
responses between all the couples [R(ρin, ρout, z)], we prefer to store it in a de-scan basis
[RD(∆ρ, ρ, z)] as described in the (equation 3.8). This explains why the edges of [Rxx(z)]
are not examined in [Fig. 3.6C]. Since the focused reflection matrix is a sparse matrix,
the useful information is close to the confocal signal. We only need to scan far enough
away from the confocal signal to probe potential aberrations.

This basis was introduced during the Ph.D. of William Lambert [Lambert, 2020a] with
linear arrays (2D imaging) and becomes necessary for 3D imaging.

3.2.1 Confocal imaging

As already shown with 2D UMI, each pixel of the main diagonal of Rρρ(z) [Fig. 3.6E] provides
the transverse cross-sections of the confocal ultrasound image:

I(ρ, z) = |R(ρin = ρout, z)|2 = |RD(∆ρ = 0, ρ, z)|2, (3.14)

with rc = (ρ, z) the confocal point. [Fig. 3.3C] shows the 3D confocal volume of the tissue
mimicking phantom using Maximum Intensity Projection (MIP). Examples of B-scan (XZ) and
C-scan (XY) are also displayed [Fig. 3.3D,E]. Interestingly, nylon thread is detected only under
the probe, whereas ultrasound speckle can be detected over a larger field-of-view [Fig. 3.3E].
This highlights the difference between specular and under-resolved scatterers. Specular reflection
is induced by objects whose shape is much larger than the wavelength (e.g. nylon thread). For a
given incident plane wave, the reflected echo takes place in a single direction, whose orientation
is dictated by the Snell-Descartes law. If the specular reflector is off-axis, only a small part of
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3. Phantom experiment without aberrations

Figure 3.6: 3D Ultrasound Matrix Imaging (UMI). (A) Confocal imaging consists in a
simultaneous focusing of waves at input and output. (B) In UMI, the input (rin) and output
(rout) focusing points are decoupled. (C, E) Focused R−matrix recorded by 1D and 2D probes,
respectively. (D) UMI enables a quantification of aberrations by extracting a local RPSF (dis-
played here in amplitude) from each antidiagonal of Rρρ(z).

the reflected wave-field can be captured by the probe. On the contrary, in the speckle regime,
unresolved scatterers isotropically back-scatter energy in all directions of space and can therefore
be detected at much greater off-axis distances than specular reflectors.

3.2.2 Focusing quality & RPSF

We now show how to quantify aberrations in ultrasound speckle (without any guide star) by
investigating the antidiagonals of Rρρ(z). In particular, all the theoretical expressions shown
in the previous chapter for 2D imaging can be applied to 3D imaging, so that the transverse
coordinate, previously x, now becomes ρ = (x, y). In the single scattering regime, the focused
R−matrix coefficients can thus be expressed as follows [Lambert, 2020b]:

R(ρin, ρout, z) =
∫

dρHin(ρ − ρin, ρin, z)γ(ρ, z)Hout(ρ − ρout, ρout, z), (3.15)

with Hin/out, the input/output point spread function (PSF); and γ the medium reflectivity.
This last equation shows that each pixel of the ultrasound image (diagonal elements of Rρρ(z))
results from a convolution between the sample reflectivity and an imaging PSF which is itself a
product of the input and output PSFs.

The off-diagonal points in Rρρ(z) can be exploited for a quantification of the focusing quality
at any pixel of the ultrasound image. By extracting each antidiagonal of Rρρ(z), the focused
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reflection matrix is expressed in a common midpoint representation RM as follows:

RM({ρm, z}︸ ︷︷ ︸
rm

, ∆ρ) = R(ρm − ∆ρ/2︸ ︷︷ ︸
ρin

, ρm + ∆ρ/2︸ ︷︷ ︸
ρout

, z). (3.16)

In the speckle regime (random reflectivity), this quantity directly probes the local focusing
quality as its ensemble average scales as an incoherent convolution between the input and output
PSFs [Lambert, 2020b]:

RPSF (rm, ∆ρ) ∝
(

|Hin|2
∆ρ
⊛ |Hout|2

)
(rm, ∆ρ). (3.17)

In practice, this ensemble average is performed by a local spatial average. The field-of-view is
divided into spatial regions W(r − rm) that are defined by their central midpoint rm = (ρm, zm)
and their spatial extension w = (wρ, wz) = ({wx, wy}, wz). A local average of the back-scattered
intensity can then be performed in each region:

RPSF (rm, ∆ρ) =
〈∣∣RM(r′

m, ∆ρ)
∣∣2 W(r′

m − rm)
〉

r′
m

, (3.18)

where W(r′
m − rm) = 1 for |ρ′

m − ρm| < wρ/2 and |z′
m − zm| < wz/2, and zero otherwise.

[Fig. 3.3F] shows local RPSFs in a transverse plane of speckle, where side-lobes are observed
in the y−axis. This effect is due to the irregular sampling of the transducer plane, since matrix
arrays consist of four blocks of 256 elements, separated here by a distance of 0.6 mm [Fig. 3.2C1].

3.3 Sampling at the input

In addition to a higher SNR, plane waves [Montaldo, 2009] or virtual sources [Provost, 2014]
insonifications are required to track the dynamics of biological tissues, whether it be for vas-
cular imaging (ultrafast Doppler & ULM) or elastography because they provide a much higher
frame-rate than the canonical basis. However, ultrafast imaging implies a partial recording of
the reflection matrix as it involves the insonification of the medium by a few plane waves (which
is necessary to consider the medium fixed between this set of plane waves). An incomplete
insonification basis induces a bad sampling of the k-space, leading to aliasing in the focal plane
when performing the coherent compound of beamformed images [Fig. 3.7]. Indeed, the com-
bination of beamformed images obtained for each plane wave insonification can be seen as a
Fourier transform (k → r). Thus, to avoid spatial aliasing, the coefficients Rρρ(z) associated
with a transverse distance |ρout − ρin| larger than the superior bound ∆ρmax ∼ λc/(2δθ) (Shan-
non criterion) should be filtered via a confocal filter.
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Figure 3.7: Insonification sequence. (A-E) Representation of different plane wave insonifi-
cation sequence in the k−space. (F-J) Aliasing effect exhibited by the RPSFs due to incom-
pleteness of insonification sequence displayed in panels (A-E), respectively. These RPSFs have
been measured in a speckle area of a tissue-mimicking phantom.

Input sampling consideration

Hence, the number of independent incident waves Nin needed to correct aberrations should
scale as the number of resolution cells NW over which the RPSF spreads. In other words,
the R−matrix can be down-sampled at the input to shorten the acquisition time, provided
that aliasing artifacts do not overlap with the RPSF.
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4 Phantom experiment with aberrations

A second experiment is performed to introduce aberrations into the tissue mimicking phantom.
A 12-mm thick pork chop is placed on top of the phantom. It is immersed in water to ensure
its acoustical contact with the probe and the phantom. Since the pork chop contains a part of
muscle tissue (cm ≈ 1560 ± 50 m/s [Goss, 1978]) and a part of fat tissue (cf ≈ 1480 ± 10 m/s), it
acts as an aberrating layer. This experiment mimics the situation of abdominal in vivo imaging,
in which layers of fat and muscle tissues generate strong aberration and scattering at shallow
depths.

4.1 Reflection matrix acquisition

The reflection matrix is acquired by recording the impulse response between each transducer of
the probe (P1) using IQ modulation with a sampling frequency fs = 6 MHz. To that aim, each
transducer uin emits successively a sinusoidal burst of three half periods at the central frequency
fc. For each excitation uin, the back-scattered wave-field is recorded by all probe elements uout

over a time length ∆t = 139 µs. This set of impulse responses is stored in the canonical reflection
matrix Ruu(t) = [R(uin, uout, t)].

4.2 Manifestations of the aberrations

The focused reflection matrix Rρρ(z) is built numerically from the reflection matrix Ruu(t)
according to equations (3.10 & 3.11) and assuming the speed-of-sound of the phantom (cp = 1540
m/s).

4.2.1 In the confocal image

The corresponding 3D image I(r) is displayed in [Fig. 3.8B] using Maximum Intensity Projec-
tion (MIP). Spatial variations of the speed-of-sound in fat and muscle give rise to aberrations
that decrease both the contrast and resolution of the confocal image, especially under the fat
layer, where the speed-of-sound error is the greatest. Longitudinal and transverse cross-sections
illustrate these effects by highlighting the distortion exhibited by the image of the deepest nylon
rod [Fig. 3.8C, D].

4.2.2 In the RPSFs

[Fig. 3.9A] displays the mean RPSFs with their associated focusing criterion [Lambert, 2020b],
in an area of speckle at depth z = 30 mm. Here, an analog of the focusing criterion is extracted
with a fit, where each RPSF is fitted (in amplitude) with the following Gaussian model:

f(a, b) = a exp(−x2

2σ2
0

) exp(−y2

2σ2
0

) + b, (3.19)
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Figure 3.8: Pork chop experiment. (A) Schematic of the experiment (B) MIP volume, (C)
longitudinal and (D) transverse cross-section of the conventional confocal volume (i.e. before
any correction).

where (a, b) are the free parameters while σ0(z) = δρ0(z)√
2log(2)

is constrained to the theoretical
diffraction limit [black dashed line in Fig. 3.9C]:

δρ0(z) ∼ λc

2 sin {arctan [∆u/(2z)]} , (3.20)

with ∆u the lateral extension of the probe. The coefficient of determination r2 of the fit is
an indicator of good agreement between ideal and experimental resolution, and thus a direct
quantitative criterion of the focusing quality. In practice, this Gaussian model provides a quick
way to compare the experimental RPSF with the ideal case predicted by the diffraction theory.
However, better accuracy can be obtained by fitting or comparing with the theoretical expression
of (Eq. 3.17).

The focusing criterion shows that aberrations from muscle (lower left) to fat (upper right)
becomes increasingly important. This indicates that the aberrations are spatially distributed
in multiple isoplanatic patches and therefore require local correction. In addition, [Fig. 3.9C]
clearly shows a distorted RPSF which spreads well beyond the diffraction limit. This RSPF also
exhibits a strong anisotropy that could not have been grasped by 2D UMI.

4.2.3 Contrast & resolution

Contrast and resolution are evaluated by means of the RPSF. Equivalent to the full width at
half maximum commonly used in 2D UMI, the transverse resolution δρ is assessed in 3D based
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Figure 3.9: RPSFs analysis in the pork chop experiment. (A) Transverse RPSFs in the
speckle and corresponding (B) focusing criterion associated to each RPSF expressed here as
the coefficient of determination r2 of a Gaussian fit with the expected diffraction limit. (C)
Experimental data of the RPSF associated to the black box in panel (A). (D) Resolution
δρ(−3dB) extracted on the amplitude of the RPSF (equation 3.21). (E) Contrast C extracted
on the intensity of the RPSF (equation 3.23). (F) Scattering rates evaluated through the anti-
symmetry rate β of the R−matrix (equation 3.26).

on the area A(−3dB) at half maximum of the RPSF amplitude:

δρ(−3dB) =
√

A(−3dB)/π. (3.21)

The contrast, C, is computed locally by decomposing the normalized RPSF, noted RPSF ,
as the sum of three components [Lambert, 2022b]:

RPSF (rp, ∆ρ) = RPSF (rp, ∆ρ)
RPSF (rp, ∆ρ = 0) = αS(rp) + αM(rp) + αN(rp)︸ ︷︷ ︸

αB(rp)

. (3.22)

αS is the single scattering component that corresponds to a confocal peak. αM is a multiple
scattering contribution that gives rise to a diffuse halo; αN corresponds to electronic noise, which
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results in a flat plateau. A local contrast can then be deduced from the ratio between αS and
the incoherent background αB = αM + αN,

C(rp) = αS(rp)
αB(rp) = 1 − αB(rp)

αB(rp) . (3.23)

4.2.4 Single & multiple scattering rates

As described in [Lambert, 2022b], the single scattering, multiple scattering and noise rates can
be directly computed from the decomposition of the RPSF with a fitting procedure (Eq. 3.22).
However, at large depths, multiple scattering and noise are difficult to discriminate since they
both give rise to a flat plateau in the RPSF. In that case, the spatial reciprocity can be
invoked to differentiate their contribution. The multiple scattering component actually gives
rise to a fully symmetric R-matrix, while electronic noise is associated with a fully random
matrix. The relative part of the two components can thus be leveraged by computing the degree
of anti-symmetry in the R−matrix (see Appendix 4.4). To that aim, the R-matrix is first
projected onto its antisymmetric subspace at each depth as follows:

R(A)
ρρ (z) =

Rρρ(z) − R⊤
ρρ(z)

2 , (3.24)

where the superscript ⊤ stands for matrix transpose. In a common midpoint basis, (Eq. 3.24)
writes:

R(A)
M (rm, ∆ρ) = RM(rm, ∆ρ) − RM(rm, −∆ρ)

2 . (3.25)

A local anti-symmetric rate β can be computed as follows:

β(rp) =

〈∣∣∣R(A)
M (rm, ∆ρ)

∣∣∣2 W(rm − rp)D(∆ρ)
〉

[rm,∆ρ]〈
|RM(rm, ∆ρ)|2 W(rm − rp)D(∆ρ)

〉
[rm,∆ρ]

, (3.26)

where D(∆ρ) is a de-scan window function that eliminates the confocal peak such that the
computation of β is only made by considering the incoherent background. Typically, we chose
D(∆ρ) = 1 for ∆ρ > 6δρ0(z), and zero otherwise.

Assuming equipartition of the electronic noise between its symmetric and antisymmetric
subspace, the multiple scattering rate αM and noise ratio αN can then be deduced:

αM(rp) = (1 − 2β(rp)) αB(rp), (3.27)
αN(rp) = 2β(rp)αB(rp). (3.28)

In this experiment, single scattering largely dominates, as shown in [Fig. 3.9F]. In order
to validate such a method for evaluating the multiple scattering rate, an experiment could be
carried out in which the reflection matrix of a highly scattering medium is recorded several
times and then averaged. The multiple scattering rate should remain the same with or without
averaging, while the noise rate should decrease after averaging.
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4.3 Aberration correction

Aberration compensation in the UMI framework is performed using the distortion matrix
concept. Introduced for 2D UMI [Lambert, 2020c; Lambert, 2022a], it is now extended to 3D
imaging and consists of the following steps:

– projecting the focused R−matrix either at input or output in a correction basis [Fig.
3.10B, G];

– extracting wave distortions exhibited by R when compared to a reference matrix that
would have been obtained in an ideal homogeneous medium of wave velocity c0 [Fig.
3.10C, H].

The resulting distortion matrix D = [D(c, r)] contains the aberrations induced when focusing
on any point (r), expressed in the correction basis (c). Finally, an estimation of the transmission
matrix T̂ ≡ [T̂ (c, r)] can be made and further used to correct the R−matrix from aberrations

4.3.1 The distortion matrix

First, the focused reflection matrix Rρρ(z) [Fig. 3.10A, F] is projected onto a dual basis c at
the output Rρc ≡ [R(ρin, cout, z)] [Fig. 3.10B, G]:

Rρc(z) = Rρρ(z) × G0(z), (3.29)

where × stands for a matrix product and G0 the homogeneous Green’s matrix predicted by
the propagation model. In the transducer basis (c = u), its coefficients correspond to the
z−derivative of the Green’s function [Lambert, 2022a]:

G(u)
0 (ρ, u) = zeikc|u−r|

4π|u − r|2
, (3.30)

where kc is the wavenumber at the central frequency. In the Fourier basis (c = k), G0 simply
corresponds to the Fourier transform operator [Lambert, 2020c]:

G(k)
0 (ρ, k) = exp(jk.ρ) = exp(j[kxx + kyy]). (3.31)

At each depth z, the reflected wave-fronts contained in Rρc are then decomposed into the
sum of a geometric component G0, that would be ideally obtained in absence of aberrations,
and a distorted component that corresponds to the gap between the measured wave-fronts and
their ideal counterparts [Fig. 3.10C] [Lambert, 2020c; Lambert, 2022a]:

Dρc(z) = G∗
0(z) ◦ Rρc(z), (3.32)

where the symbol ◦ stands for a Hadamard product and ∗ for complex conjugate. Drc =
[Dρc(z)] = [D(ρin, cout, z)] is the so-called distortion matrix. Note that the same operations
can be performed by exchanging input and output to obtain the input distortion matrix Dcr.
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Figure 3.10: Distortion Matrix framework (Pork chop experiment). (A) The focused reflec-
tion matrix R(rin, rout) is projected in a (B) dual basis R(rin, uout) that contains the aberrated
wavefronts (in the transducer basis uout) associated to each focal point (rin). The geometrical
component is removed to assess only the (C) distorted part of the wavefronts D(rin, uout). (D)
A time reversal analysis (SVD or IPR) is then performed to extract the aberration law associated
to all the focusing point rin, assuming isoplanetism. (G-I) Experimental data corresponding to
(B-D). (E) Green functions are then corrected, thus providing a diffracted-limited resolution
at the output. (F, J) RPSF before and after correction, respectively. This framework can then
be applied similarly to the input.

4.3.2 Time reversal analysis of the correlation matrix

The next step is to exploit local correlations in Drc to extract the T-matrix. To that aim, a set
of correlation matrices Cout(rp) shall be considered between distorted wave-fronts in the vicinity
of each point rp in the field-of-view:

Cout(rp) = [C(cout, c′
out, rp)] =

〈
D(rin, cout)D∗(rin, c′

out)W(rin − rp)
〉

rin
. (3.33)
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An equivalent operation can be performed at input in order to extract a local correlation matrix
Cin(rp) from the input distortion matrix Dcr. In terms of matrix, it writes:

Cout =D†
rc × Drc, (3.34)

Cin =Dcr × D†
cr. (3.35)

In previous works on 2D UMI [Lambert, 2020c; Lambert, 2022a], the T-matrix was estimated
by performing a singular value decomposition of Drc:

Drc = V†
in × Σ × Uout, (3.36)

or, equivalently, the eigenvalue decomposition of Cout (see Appendix 12):

Cout = U†
out × Σ2 × Uout, (3.37)

where Σ is a diagonal matrix containing the singular values σi in descending order: σ1 > σ2 >

.. > σN . Uout and Vin are unitary matrices that contain the orthonormal set of output and
input eigenvectors, U(i)

out = [U (i)
out(cout)] and V(i)

in = [V (i)
in (rin)].

The reason of this eigenvalue decomposition can be intuitively understood by considering the
asymptotic case of a point-like input focusing beam, Hin(ρ) → δ(ρ). Assuming the correlation
matrix converges to its ensemble average ⟨C⟩, it can be expressed as follows (see Appendix 5.1):

⟨Cout⟩ ∝ T†
out × Γδ × Tout, (3.38)

where Γδ is a scattering matrix associated with a point-like (diffraction-limited) reflector centered
at the origin. (Eq. 3.37) thus becomes C(cout, c′

out) = Tout(cout)T∗
out(c′

out). Drc is then of rank
1 and the first output singular vector U(1)

out yields an estimation of the aberration transmittance,
T̂out. The updated Green functions can be deduced:

Ĝout(cout, rp) = T̂out(cout)G0(cout, rp). (3.39)

4.3.3 Iterative Phase Reversal (IPR)

However, in reality, the input PSF, Hin, is of course far from being point-like. The spectrum of
Drc displays a continuum of singular values [Fig. 3.11D]. The effective rank of Cout is shown to
scale as the number of resolution cells covered by the input PSF Hin [Lambert, 2022a]:

Mδ ∼ (δρin/δρ0)2, (3.40)

where δρin is the spatial extension of the input PSF. The amplitude of the corresponding eigen-
vectors U(i)

out depends on the exact shape of the virtual guide star, that is to say, on aberrations
induced by the incident wave-front.

[Fig. 3.11E and F] show the modulus of two first eigenvectors, U(1)
out and U(2)

out. They
clearly show a complementary feature. While U(1)

out is associated with the fat layer, U(2)
out maps
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Figure 3.11: Iterative Time Reversal versus Iterative Phase Reversal. (A) The first
step of ITR and IPR corresponds to the following fictitious experiment: Insonifying the medium
by an arbitrary wave-front (here a plane wave) using an array of transducers and recording the
reflected wave-front with the same probe. (B) The ITR process consists in time-reversing this
wave-front in post-processing and sending it back into the medium, recording again the reflected
wave-front, and so on. (C) The IPR process is similar but normalizes the amplitude of the
time-reversed wavefront at every iteration. (D) Singular value distribution of Drc for a box W
of dimension w = (wx, wy, wz) = (2, −5, 2) mm centered around point rp = (3, −5.5, 23) mm.
(E, F) Modulus of the two first eigenvectors U(i)

out. (G) Modulus of the vector Cout × T̂out. (H)
Delimitation of muscle and fat over the probe surface. (I-K) Phase of U(1)

out, U(2)
out and T̂out.

onto the muscle part of the pork chop [Fig. 3.11H]. This result can be understood by the
discontinuity of the speed-of-sound between the muscle and fat parts of the pork chop that
breaks the spatial invariance and isoplanicity. As a consequence, the SVD process tends to
converge onto eigenstates associated with the most isoplanatic components of Drc.

This property is not satisfactory in the present case, since each eigenvector only covers a
part of the probe aperture. In other words, the phases of U(1) [Fig. 3.11I] and U(2) [Fig.
3.11J] are only satisfying estimators of T over some parts of the probe. Therefore, they cannot
independently lead to an aberration compensation over the full numerical aperture.
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To circumvent that problem, one can take advantage of the analogy with iterative time
reversal (ITR). The eigenvector U(1)

out can actually be seen as the result of the following fictitious
experiment that consists in insonifying the virtual scatterer by an arbitrary wave-front and
recording the reflected wave-field [Fig. 3.11A]. This wave-field is time-reversed and back-emitted
towards the virtual scatterer [Fig. 3.11B]. This process can then be iterated many times and
each step can be mathematically written as:

σW(n+1) = Cout × W(n), (3.41)

with W(n), the wave-front at iteration n of the ITR process and σ, the scatterer reflectivity.
ITR is shown to converge towards a time-reversal invariant that is nothing other than the first
eigenvector, U(1)

out = lim
n→+∞

W(n).
To optimize the estimation of aberrations over the full probe aperture, the idea of Arthur

Le Ber was to modify the ITR/SVD process by still re-emitting a phase-reversed wave-field but
with a constant amplitude on each probe element [Fig. 3.11C]. In practice, this operation is
performed using the following IPR algorithm:

Ŵ(n+1)
out = exp

[
j arg

{
Cout × Ŵ(n)

out

}]
, (3.42)

where Ŵ(n)
out is the estimator of Tout at the nth iteration of IPR. Ŵ(0)

out is an arbitrary wave-front
that initiates IPR (typically a plane wave). T̂out = limn→∞ Ŵ(n)

out is the result of this IPR
process. In practice, the IPR process converge after about N = 200 iterations. Unlike ITR, IPR
equally addresses each angular component of the imaging process to reach a diffraction-limited
resolution. [Fig. 3.11G] illustrates this fact by showing the modulus of Cout × T̂out. Compared
with U(1)

out [Fig. 3.11E] and U(2)
out [Fig. 3.11F], it clearly shows that the phase-reversed invariant

T̂out simultaneously addresses each angular component of the aberrated wave-field. T̂out is thus
a much better estimator of the T−matrix [Fig. 3.11K] than the aberration phase laws extracted
by the SVD process [Fig. 3.11I and J].

When applied to the whole field-of-view, the IPR algorithm is mathematically equivalent to
the CLASS algorithm developed in optical microscopy [Kang, 2017]. However, the IPR algorithm
is much more efficient for a local compensation of aberrations. For IPR, the angular resolution δθ

of the aberration phase law is only limited by the angular pitch of the plane wave insonification
basis or the pitch δu of the transducer array in the canonical basis: δθI ∼ δu/λ. With CLASS,
the resolution δθC of the aberration law is governed by the size of the spatial window W on
which the focused reflection matrix is truncated: δθC ∼ z/wρ. It can be particularly detrimental
when high-order aberrations and small isopalanatic patches are targeted.

4.3.4 Correction

This iterative phase reversal algorithm, repeated for each point rp, yields an estimator T̂out

of the T-matrix. Its digital phase conjugation enables a local compensation of aberrations
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4. Phantom experiment with aberrations

Figure 3.12: Correction in the transducer (u) versus plane wave (k) basis in the pork
chop experiment. A one-step correction among all the transverse plane is investigated in
two different area : speckle (orange box) and strong reflector (green box). (A, B, E) Original
images and RPSFs. Black boxes show relevant areas of the field-of-view for comparison. (C, F)
Correction in the plane wave basis. (D, G) Correction in the transducer basis.

[Fig. 3.10J]. The focused R−matrix can be updated as follows:

R(corr)
ρρ (z) = Rρc(z) × Ĝ†

out(z), (3.43)

where the symbol † stands for transpose conjugate. The same process is then applied to the
input correlation matrix Cin for the estimation of the input Green functions Gin = Hin × G0.

4.3.5 Choice of correction basis (k or u)

Now, the influence of the correction basis (far-field k or transducer u) is investigated in two
particular areas [Fig. 3.12]: speckle (random reflectivity due to under-resolved scatterers) and
strong reflector (nylon rod). The correction is applied only once at the input and then at the
output, considering a patch whose transverse dimension matches the size of the probe. In the
speckle region [Fig. 3.12B, C, D], the correction is only partial in both cases, since isoplanicity is
not verified in the entire transverse plane as shown by the RPSFs. However, the transducer basis
still provides a better correction than the plane-wave basis, as can be seen in the black boxes in
panels C and D. In the strong reflector region [Fig. 3.12E, F, G], the correction in the transducer
basis allows the nylon filament to return to its straight shape. In contrast, the correction in the
plane wave basis does not properly correct the aberrations, making the nylon filament even less
straight than before. This suggests that the transducer basis is better at correcting aberrations
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in this experiment, since it ensures a higher isoplanetism. This was to be expected, since the
aberrator (pork chop) is located under the probe and exhibits transverse variations in the speed
of sound that are strongly anisoplanatic in the plane wave basis. Subsequently, the aberrations
in this experiment will be corrected only in the transducer basis.

4.3.6 Spatial convergence of the T̂−matrix

The 3D distribution of the speed-of-sound breaks the spatial invariance of input and output PSFs.
A full-field compensation of aberrations as performed by original adaptive focusing techniques
does not allow a fine compensation of aberrations, as described in [Fig. 3.12D]. Access to the
transmission matrix T = [T(u, r)] linking each transducer and each medium voxel is required
rather than just an estimation of a single aberration transmittance T(u). To that aim, a local
correlation matrix C(rp) (Eq. 3.33) should be considered around each point rp over a sliding
box W(r). The choice of its spatial extension w is subject to the following dilemma:

Spatial extension dilemma

On the one hand, the spatial window W should be as small as possible to grasp the
rapid variations of the RPSFs across the field of view. On the other hand, these areas
should be large enough to encompass a sufficient number of independent realizations of
disorder [Lambert, 2022a]. More quantitatively, the bias made on our T-matrix estimator
at the output actually scales as (see Appendix 5.3):

||δT̂out(u, r)||2 ∼ 1
C2

inNW
. (3.44)

C is the so-called coherence factor, already introduced in Chapter 1, which is a direct
indicator of the focusing quality [Mallart, 1994], but that also depends on the multi-
ple scattering rate and the noise background [Lambert, 2022b]. NW is the number of
diffraction-limited resolution cells in each spatial window. This expression is more precise
than the one presented in Chapter 2 (see Section 4.6.5) because it also takes into account
the effects of noise and multiple scattering, which will also affect the estimation of T.

To study experimentally this convergence of our estimator, the evolution of estimated input
and output aberration phase laws, T̂in/out(u, rp), is investigated at a given point rp for different
box size w. T̂in is supposed to converge for a sufficiently large box size (NW = 100) and this
asymptotic value can be considered as the reference Tin in the following. The evolution of the
normalized scalar product,

⟨T̂in|Tin⟩ =

∣∣∣T̂†
in × Tin

∣∣∣√
∥T̂in∥2∥Tin∥2

= N−1
u

∣∣∣T̂†
in × Tin

∣∣∣ , (3.45)

as a function of NW shows the convergence of the IPR process [Fig. 3.13D]. The error made
on the aberration phase law, ||δT̂||2/2 = 1 − ⟨T̂in|Tin⟩, can be deduced and the scaling law of
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4. Phantom experiment with aberrations

Figure 3.13: Convergence of the UMI process towards the T-matrix. (A) Spatial
window W(r) used to compute C(rp) at point rp = (5, −5, 41) mm. (B,C) Extracted input
and output aberration laws, respectively. (D) Scalar products, ⟨T̂in|Tin⟩(rp) (blue curve) and
⟨T̂in|T̂out⟩(rp) (orange curve), versus the number of resolution cells NW . (E) Corresponding bias
intensity, ||δT̂||2 (blue curve), compared with its estimator ε (orange curve) based on spatial
reciprocity, as a function of NW . The plot is in log-log scale and the theoretical power law
(Eq. 3.44) is shown for comparison with a dashed black line.

(Eq. 3.44) with respect to NW is checked [Fig. 3.13E].
The question that arises now is how we can, in practice, know if the convergence of T̂ is

fulfilled without any a priori knowledge on T. An answer can be found by comparing the
estimated input and output aberration phase laws in [Fig. 3.13]. For a sufficiently large box
(NW > 50), T̂in and T̂out are almost equal, while, for a small box (NW <20), a large discrepancy
can be found between them. Thus, their scalar product ⟨T̂in|T̂out⟩ is a relevant observable
for monitoring the convergence of our estimator T̂. Its evolution actually closely follows the
scalar product between T̂in and Tin previously investigated [Fig. 3.13D], which means that the
parameter, ε = 1 − ⟨T̂in|T̂out⟩, is a reliable estimator of the bias intensity ||δT̂||2/2 [Fig. 3.13E].
In the following, spatial reciprocity will thus be used as a guide star for assessing the convergence
of the UMI process.

This inverse scaling of the bias with NW demonstrates the advantage of 3D UMI with re-
spect to 2D since NW ∼ wd, with d the imaging dimension. For a given precision, 3D UMI
provides a better spatial resolution for our T−matrix estimator. This superiority is demon-
strated by [Fig. 3.13C3,C4] that shows a much better agreement between T̂in and T̂out for a
3D box [Fig. 3.13A3] than for a 2D patch of equal dimension w [Fig. 3.13A4]. [Fig. 3.14] also
demonstrates this superiority. When considering a subdivision of the field-of-view in 2D-planes
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Figure 3.14: Estimation of T̂ on 2D or 3D patches (Pork chop experiment, z = 46 mm). (A,
B) Plane or cube subdivision of the field-of-view with their corresponding (C, D) aberration
laws and (E, F) corrected RPSFs, respectively. The correction is applied to a neighboring up-
stream region to avoid any bias between the T̂−estimation and the correction process, assuming
isoplanetism between the two areas.

[Fig. 3.14A], the convergence of the T̂−matrix is not ensured [Fig. 3.14C] leading to an imper-
fect correction of RPSFs [Fig. 3.14E]. Subdivision in cubes [Fig. 3.14B] allows us to average over
sufficient resolution cells, leading to diffraction limited resolution [Fig. 3.14F]. The correction is
applied to a neighboring upstream region to avoid any bias between the estimation of T and
the correction process, assuming isoplanetism between the two areas.

4.3.7 Multi-scale compensation of wave distortions

The dependence of the bias intensity ||δT̂||2 with the coherence factor C is also crucial, since
it indicates that a gradual compensation of aberrations shall be favored rather than a direct
partition of the field-of-view into small boxes [Yoon, 2020]. An optimal UMI process should
proceed as follows: first, compensate for input and output wave distortions at a large scale to
increase the coherence factor C; then, decrease the size of the spatial window W to improve
the resolution of the T−matrix estimator. The whole process can be iterated, leading to a
multi-scale compensation of wave distortions.

[Fig. 3.15] demonstrates the benefit of a multi-scale analysis of wave distortions with a
gradual decrease of spatial windows W at each step of the UMI process [Fig. 3.15A]. To that
aim, this aberration correction scheme is compared with a direct estimation of the T−matrix over
the smallest patches W [Fig. 3.15D]. The estimated transmission matrices T̂ differ in both cases
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Figure 3.15: Multi-scale versus direct local analysis of wave distortions (pork chop
experiment, z = 29 mm). (A) Representation of the spatial windows used at each step of
UMI. (B) Aberration phase laws T̂multi-scale extracted by a multi-scale analysis. (C) RPSFs
after multi-scale aberration compensation. (D) Representation of the spatial windows used for
a direct local compensation of wave distortions. (E) Aberration phase laws T̂direct extracted by
a local analysis of D. (F) RPSFs after local aberration compensation.

[see comparison between Fig. 3.15B and E] especially under the fat layer. The RPSFs obtained
after phase conjugation of T̂ demonstrate the benefit of the multi-scale analysis [Fig. 3.15C]
compared with a direct local investigation of wave distortions [Fig. 3.15F]. The fat area is
actually the most aberrated in the field-of-view. The initial coherence factor C is thus much
smaller in this area, which induces a strong bias on T̂ when wave distortions are investigated
over a reduced isoplanatic patch. On the contrary, a multi-scale analysis enables a gradual
enhancement of this coherence factor in this area and finally leads to an unbiased estimation of
T.

To ensure the convergence of the IPR algorithm, several iterations of the aberration correc-
tion process are thus performed while reducing the size of the patches W with an overlap of
50% between them. Three correction steps are performed, as described in [Table 3.2] and [Fig.
3.16A-C]. At each step, the correction is performed both at input and output. Each step gives
access to higher spatial frequencies of the aberration phase laws that generally exhibit a smaller
isoplanatic length [Fig. 3.16E-G].

Technical note: The T̂−matrix [Fig. 3.16D] denotes the cumulated aberration laws that
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Correction step (i) 1◦ 2◦ 3◦

Number of transverse patches 1 × 1 2 × 2 4 × 4
wρ = (wx, wy) [mm] 16 12 8

wz [mm] 3 3 3

Table 3.2: Size of the correction patches W in the pork chop expriment.

combine the Ŵ(i)−matrix associated to each step (i) of the correction process [Fig. 3.16E-G]:

T̂in/out =
∏

i

Ŵ(i)
in/out. (3.46)

Correction of the R−matrix (equation 3.43) is applied only if spatial reciprocity is ensured at
each step, i.e. if the scalar product ⟨Ŵ(i)

in |Ŵ(i)
out⟩ is larger than 0.9 (see Appendix 5.4).

The result of 3D UMI is displayed in [Fig. 3.16]. It shows the evolution of the T̂−matrix at
each step [Fig. 3.16E-G] and the corresponding local RPSFs [Fig. 3.16I-K]. The comparison with
the initial and full-field maps of RPSFs [Fig. 3.16H] highlights the benefit of a local compensation
via the T̂−matrix, with a diffraction-limited resolution reached everywhere. The local aberration
phase laws exhibited by T̂ perfectly match with the distribution of muscle and fat in the pork
chop.

4.3.8 Contrast & resolution enhancement

The comparison of the final 3D image and its cross-sections [Fig. 3.17A2, B2, C2] with their
initial counterparts [Fig. 3.17A1, B1, C1] shows the success of the UMI process, in particular
for the deepest nylon rod, which has retrieved its straight shape. [Fig. 3.17D, E] shows the
performance of UMI by comparing the RPSFs before and after aberration compensation. In the
most aberrated area (top right of the field-of-view), the resolution is improved by almost
a factor two, while the contrast is increased by 4.2 dB.

4.4 Computational insights

While the UMI process is close to real-time for 2D imaging (i.e. for linear, curve or phased
array probes), 3D UMI (using a fully populated matrix array of transducers) is still far from it
[see Tab. 3.3] as it involves the processing of much more ultrasound data. Even if computing a
confocal 3D image only requires a few minutes, building the focused R−matrix from the raw
data takes a few hours (on GPU with CUDA language) while one step of aberration correction
only lasts for a few minutes. All the post-processing was realized with Matlab (R2021a) on
a working station with 2 processors @2.20GHz, 128Go of RAM, and a GPU with 48 Go of
dedicated memory.
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Figure 3.16: Iteration and subdivision (Pork chop experiment). (E-G) Aberration laws
Ŵ(i)

in/out and (I-K) corrected RPSFs corresponding to each (A-C) step of correction (yellow
box). (D) Cumulated aberration laws T̂in/out (Eq. 3.46). (H) Original RPSFs.
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Figure 3.17: Enhancement of the confocal volume and RPSFs after UMI process in
the pork chop experiment. (A) MIP volume. (B, C) Longitudinal and transverse cross-
section, respectively. (D) Maps of local RPSFs (z = 29 mm). (E) A single RPSF extracted in
the most aberrated area of the field-of-view. Subscript “1” and “2” corresponds to before and
after the UMI process, respectively.
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2D imaging 3D imaging
Number of channels [Input × Output] 32 × 32 ≈ 103 1024 × 1024 ≈ 106

Field-of-view (∆x, ∆y, ∆z) (20, 0, 80) mm (20, 20, 80) mm
Data Time Data Time

R-matrix acquisition Ruu(t) 6 Mo 8 ms 6 Go 260 ms
Confocal image I(r) 53 ko 5.1 ms 2.2 Mo 1.3 min

Matrix Imaging Focused R−matrix: Rρρ(z) 2.2 Mo 15 ms 3.6 Go 2.3 h
Estimation of T̂ & correction 0.15 s 4.5 min

Table 3.3: Computational insights. Here, we compare the typical amount of data and
computational time at each post-processing step of UMI. The comparison between 2D and 3D
imaging is made using a single line of transducers versus all the transducers of our matrix array.
In both cases, the pixel/voxel resolution is fixed at 0.5 mm, which corresponds approximately
to one wavelength. The maximum distance between the input and output focusing points is set
to 10 mm. The estimation of T is here investigated without a multi-scale analysis on a single
iteration at input and output.
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5 Transcranial imaging

We will now address the challenging case of transcranial imaging, where the cranial layer not
only induces large aberrations and reverberation artifacts, but also multiple scattering, absorp-
tion, wave mode conversion [Jing, 2021; Clement, 2004], and strong attenuation [Pinton, 2012;
Hölscher, 2008], typically between 2 − 3 dBcm−1MHz−1 [White, 1978], resulting in a very low
signal-to-noise ratio. As a result, transcranial ultrasound imaging is currently limited clinically
to poorly resolved Doppler imaging. Yet, emerging aberration correction methods, such as the
distortion matrix approach, suggest that images of the brain could be obtained with much bet-
ter contrast and resolution, from which all existing ultrasound imaging modalities could benefit
(B-mode, Doppler, elastography, ULM, etc.). Its success would mean a new way of imaging
the brain that does not require radiation as in X-ray computed tomography (CT-scan) neither
a long acquisition as in magnetic resonance imaging (MRI). Transcranial ultrasound imaging
could therefore potentially be used for cancer detection or even real-time detection of cerebral-
vascular accidents. In this section, we will apply the distortion matrix framework to an imaging
experiment on an adult head phantom.

Existing methods allow focusing through the skull, but require either a priori informa-
tion about the medium, such as skull layer segmentation [Mozaffarzadeh, 2021], density map
extracted with a CT-scan [Aubry, 2003; Tiennot, 2019], or an ultrasound guide star in the
field-of-view (e.g. microbubble contrast agent or the presence of a strong reflector) [Demené,
2021].

In this first experiment, we aim to demonstrate the advantages of Matrix Imaging for cor-
recting aberrations in transcranial imaging without prior information about the medium
other than a global speed-of-sound hypothesis c0. In other words, matrix imaging allows the
estimation of the transmission matrix T̂ in transcranial imaging not only for strong reflectors
but also for under resolved scatterers (speckle).

5.1 Head phantom characteristics

The adult head phantom reproduces the characteristics of an adult human head [Table 3.4].
To quantify the enhancement before and after correction, the manufacturer (True Phantom
Solutions) was asked to place small spherical targets made of bone-mimicking material inside
the brain. They are arranged crosswise, evenly spaced in the 3 directions with a distance of 1
cm between two consecutive targets, and their diameter increases with depth: 0.2, 0.5, 1, 2, 3
mm [Fig. 3.18].

Speed-of-sound Density Attenuation
[m/s] [g/cm3] @2.25 MHz [dB/cm]

Cortical bone 3000 ± 30 2.31 6.4 ± 0.3
Trabecular bone 2800 ± 50 2.03 21 ± 2

Brain tissue 1400 ± 10 0.99 1.0 ± 0.2
Skin tissue 1400 ± 10 1.01 1.7 ± 0.2

Table 3.4: Head phantom characteristics.
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Figure 3.18: Head phantom schematics. (A, B) Coronal and sagittal view of the head
phantom (C-F) Perspective, coronal, sagittal and transverse view of the brain. Small spherical
targets made of bones have been placed in the brain as a 3D cross-shaped with increasing
diameters : 0.2 , 0.5, 1, 2, 3mm. These schematics were provided by the manufacturer (True
Phantom Solutions).

5.2 R−matrix acquisition

Ultrasound acquisition was performed jointly with Justine Robin while she was a post-doc at
the Langevin Institute. The matrix array P1 is placed slightly above the temporal window of the
head phantom [Fig. 3.23A]. Impedance matching is performed with acoustic gel. To improve
the signal-to-noise ratio, the reflection matrix is recorded in the plane wave basis Rθu(t) ≡
[R(θin, uout, t)] [Montaldo, 2009]. A set of 1225 plane waves are thus generated according to
(equation 3.2, 3.3 & 3.4, 3.5) and assuming the speed-of-sound in the brain mimicking tissue
(c0 = 1400 m/s). Acquisition was repeated 10 times and averaged to improve the SNR.

Skull thickness is of about 6 mm on average at the position where the probe is placed and
the first spherical target is located at z ≈ 20 mm depth, while the center of the cross is at z ≈ 40
mm depth. The transverse size of the head is of about 14 cm.
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Figure 3.19: Aberrations and multiple scattering quantification in the head phantom.
(A) Single scattering (green), multiple scattering (blue) and noise (red) rate at z = 32 mm (B)
Single scattering, multiple scattering, and noise rates as a function of depth. (C, D) Maps of
local RPSFs (in amplitude) before and after correction, respectively, at three different depths
z = 20, 32 and 60 mm. Black boxes in panel (A) and (C2) corresponds to the same area.

5.3 Focusing quality

Before any correction, we quantify the problems of aberrations, multiple scattering, and noise by
examining the RPSFs. To this end, the focused reflection matrix Rρρ(z) is still built numerically
in the time domain, according to (equation 3.10, 3.11 & 3.12) and assuming the speed-of-sound
of the brain mimicking tissue (c0 = 1400 m/s).

The RSPFs are characterized by a high proportion of incoherent background. This is due
to multiple scattering events in the skull and electronic noise, whose relative weight can be
estimated by examining the spatial reciprocity through the symmetry of the R-matrix (equation
3.26). [Fig. 3.19B] shows the depth evolution of the single and multiple scattering contributions,
as well as electronic noise. While single scattering dominates at shallow depths (z < 20 mm),
multiple scattering quickly reaches 35% and remains relatively constant until electronic noise
increases, so that the three contributions are almost equal at depths of 75 mm. Beyond the depth
evolution, 3D imaging even allows the study of multiple scattering in the transverse plane, as
shown in [Fig. 3.19A]. Two areas are examined, marked with black boxes, corresponding to the
RPSFs shown in [Fig. 3.19C2] (z = 32 mm). In the center, the RPSFs exhibits a low background
due to the presence of a spherical target, resulting in a single scattering rate of 90%. The
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5. Transcranial imaging

Figure 3.20: Confocal filter in transcranial imaging. (A, D) Output aberration phase laws
T̂out extracted without and with a confocal filter. (B, E) Normalized scalar products ⟨T̂in|T̂out⟩
without and with a confocal filter, respectively. (C, F) RPSFs obtained with UMI without and
with a confocal filter. (G) Box plot corresponding to the panels (B, E). Experimental data
shown in this figure correspond to the head phantom experiment at depth z = 50 mm.

second box on the right, however, is characterized by a much higher background, leading to a
multiple-to-single scattering ratio slightly larger than one. This high level of multiple scattering
highlights the difficult task of trans-cranial imaging with ultrasonic waves.

The incoherent background exhibited by the original RPSFs [Fig. 3.19C] drastically affects
the coherence factor C, which, in return, gives rise to a strong bias on the T−matrix estimator
(Eq. 3.44). Hence, our criterion based on spatial reciprocity between the input and output
estimation of the transmission matrix ⟨T̂in|T̂out⟩ is therefore far from being verified over the
entire field of view, as shown in [Fig. 3.20B].

5.4 Confocal filter

In order to overcome these detrimental effects, an adaptive confocal filter can be applied to the
focused R−matrix to reduce the incoherent background [Lambert, 2022a].

R(filt)
ρρ (z) = R(ρin, ρout, z) exp

(
−|ρout − ρin|2

2lc(z)2

)
. (3.47)
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This filter has a Gaussian shape, with a width lc(z) that scales as 3δρ0(z) [Lambert, 2022a]. The
application of a confocal filter drastically improves the correlation between input and output
aberration phase laws [Fig. 3.20E], proof that a satisfying convergence towards the T−matrix
is obtained.

Technical note: The confocal filter is applied to a duplicate of the R−matrix to estimate
the T̂− matrix. However, the unfiltered R−matrix is corrected to preserve all useful
information about the medium (i.e. spatial frequencies) at each step of correction.

5.5 Estimation of T̂

A similar UMI procedure is now applied to this experiment. However, given the multi-layered
configuration in this experiment, the D−matrix is examined in the plane wave basis (k) [Lam-
bert, 2020c]. Six correction steps are performed as described in [Table 3.5].

[Fig. 3.21] shows the evolution of the RPSF during the UMI process applied to the head
phantom experiment. A gradual enhancement of the focusing process is observed at each step
of UMI, which enables an estimation of the T−matrix at a higher resolution. Correction is
stopped if spatial reciprocity ⟨T̂(i)

in |T̂(i)
out⟩ does not reach 0.9 at each step of correction (i).

Correction step (i) 1◦ 2◦ 3◦ 4◦ 5◦ 6◦

Number of transverse patches 1 × 1 2 × 2 3 × 3 4 × 4 5 × 5 6 × 6
wρ = (wx, wy) [mm] 20 15 13.3 10 8 6.6

wz [mm] 5.5 5.5 5.5 5.5 5.5 5.5

Table 3.5: Parameters of UMI in the head phantom experiment.

[Fig. 3.22A] shows the T̂−matrix obtained at different depths in the brain phantom. Its
spatial correlation function displayed in [Fig. 3.22B] provides an estimation of the isoplanatic
patch size: 5 mm in the transverse direction and 2 mm in depth. This rapid variation of
the aberration phase law across the field of view confirms a posteriori the necessity of a local
compensation of aberrations induced by the skull. It also confirms the importance of 3D UMI
with a fully sampled 2D array, as previous work recommended that the array pitch should
be no more than 50% of the aberrator correlation length to properly sample the corresponding
adapted focusing law [Lacefield, 2002]. If the size of the isoplanatic patch is consistent with values
obtained in previous work for breast, liver, and thyroid [Dahl, 2005], the values in transcranial
imaging appear higher here. In contrast to previous studies [Dahl, 2005; Robin, 2023], the
correlation length in the axial dimension appears to be much smaller.

5.6 Resolution enhancement

The phase conjugate of the T̂−matrix at input and output enables a fine compensation of
aberrations. A set of corrected RPSFs are shown in [Fig. 3.19D]. The comparison with their
initial values demonstrates the success of 3D UMI: a diffraction-limited resolution is obtained
almost everywhere [Fig. 3.21C], whether it be in ultrasound speckle or in the neighborhood of
bright targets, at shallow or high depths, which proves the versatility of UMI. The correction
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5. Transcranial imaging

Figure 3.21: Multi-scale compensation of wave distortions in the head phantom. (A)
Successive patches used to perform a multi-scale analysis of wave distortions. (B) Radial profile
of the RPSF amplitude at each step for three different depths (z = 20, z = 32 and z = 60 mm).
(C) Resolution δ(−3dB) as a function of depth. Initial resolution (red line) and its value after
UMI (green line) are compared with the ideal (diffraction-limited) resolution (Eq. 3.20). At large
depth (red dashed line), initial resolution can not be extracted as the incoherent background is
larger than 1/2 as shown in panel (B3).

process leads to a drastic increase of the transverse resolution of more than a factor 8 for z > 40
mm [Fig. 3.21C].

The performance of 3D UMI is also striking when comparing the three-dimensional image of
the head phantom before and after UMI. [Fig. 3.23B and C, respectively]. The different targets
were initially strongly distorted by the skull, and are now resolved with UMI. In particular,
the first target, located at z = 19 mm and originally duplicated, has recovered its true shape.
In addition, two targets laterally spaced by 10 mm are observed at 42 mm depth, as expected
[Fig. 3.23A]. The image of the target observed at 54 mm depth is also drastically improved
in terms of contrast and resolution but is not found at the expected transverse position. One
potential explanation is the size of this target (2 mm diameter) larger than the resolution cell.
The guide star is thus far from being point-like, which can induce an uncertainty on the absolute
transverse position of the target in the corrected image.

5.7 2D versus 3D imaging

Finally, an isolated target can be leveraged to highlight the gain in contrast provided by 3D UMI
with respect to its 2D counterpart. To that aim, a linear 1D array is emulated from similar raw
data by collimating the incident beam in the y-direction [Fig. 3.24]. To that aim, cylindrical
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Figure 3.22: Estimation of the transmission matrix in the head phantom. (A) Aber-
ration laws T̂(ρ) at 3 different depths : (A1) z = 20 mm, (A2) z = 32 mm, (A3) z = 60 mm.
(B) Correlation function of the T̂-matrix in the (xz) and (xy) plane, respectively. We attribute
the side-lobes along the y-axis (B2) to the inactive rows separating each block of 256 elements
of the matrix array.

time delays are applied at input and output:

τ ′(θ(s), s, z) = s sin θ(s) + z cos θ(s)

c0
, (3.48)

τ ′(u(s), s, z) =

√
(s − u(s))2 + z2

c0
, (3.49)

with s = x or y, depending on our focus plane choice.
The focused R−matrix is still built in the time domain but using this time the following

delay-and-sum beamforming:

R(2D)(yin, yout, z) =
∑
θin

∑
uout

R

θin, uout, τ ′(θ(y)
in , yin, z) + τ ′(u(y)

out, yout, z)︸ ︷︷ ︸
2D beamforming along (y-z)-plane

+ τ ′(θ(x)
in , xf, zf) + τ ′(u(x)

out, xf, zf) − 2zf/c0︸ ︷︷ ︸
Cylindrical law to focus at (xf, zf)

 .

(3.50)

The images displayed in [Fig. 3.24B1,C1] are obtained by synthesizing input and output beams
collimated in the (y, z)−plane by focusing on a line located at (xf = 0 mm, zf = 37.25 mm),
thereby mimicking the beamforming process by a conventional linear array of transducers.

The ultrasound image is displayed before and after 2D UMI in [Fig. 3.24B1 and C1], re-

104



5. Transcranial imaging

Figure 3.23: Ultrasound Matrix Imaging (UMI) of the head phantom. (A) Top and
oblique views of the experimental configuration. Image credits: Harryarts and kjpargeter on
Freepik. (B, C) Original and UMI images, respectively.

spectively. The radial average of the corresponding focal spots is displayed in [dashed lines in
Fig. 3.24D]. Even if 2D UMI enables a diffraction limited resolution, the contrast gain G is quite
moderate (G2D ∼ 8dB). As it scales as the number of degrees of freedom, 3D UMI provides a
much stronger enhancement of the target echo of about G3D ∼ 18 dB [Fig. 3.24B2,C2 and solid
lines in D].

Hence, [Fig. 3.24] demonstrates the necessity of a 2D ultrasonic probe for trans-cranial
imaging. Indeed, the complexity of wave propagation in the skull can only be harnessed with a
3D control (x, y, t) of the incident and reflected wave fields.

5.8 Perspectives

Although these results are striking, they were obtained in a phantom experiment, and some
additional studies need to be performed to improve the robustness of our method.

First, the size of the confocal filter (Eq. 3.47) was set here to a fixed and arbitrary value
at each step of the correction process. However, an optimal value for each correction step (i.e.
each spatial window W) could be investigated using spatial reciprocity as a guide star.

A complementary approach to multi-scale analysis is to perform the correction in different
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correction planes between the probe and the focusing plane [Kwon, 2023], but it is only efficient
if those correction planes belong to different depth-of-fields.

Then, as the major challenge in transcranial imaging lies in its severe attenuation, one
perspective of this work is to use the T̂−matrix in a second acquisition to better focus physically
in the medium to increase the signal-to-noise ratio. Eventually, the distortion matrix framework
could even be applied once again to correct remaining aberrations.

Besides, since a large error is made in the skull layer assuming a constant speed-of-sound,
Matrix Imaging could greatly benefit from skull segmentation methods [Mozaffarzadeh, 2021]
and more generally speed-of-sound mapping [Jaeger, 2022; Ali, 2021] when building the focused
reflection matrix (Eq. 3.10) in order to get better estimates of distances. However, segmentation
of the skull is anything but trivial, as one must account for numerous reverberations that make
estimating skull thickness difficult.

These reverberations have been omitted in this work, but drastically pollute the image at
shallow depths (z < 20 mm). To cope with this issue, a poly-chromatic approach to matrix
imaging is required. Indeed, the aberration compensation scheme proposed through this chapter
is equivalent to a simple application of time delays on each transmit and receive channel. On
the contrary, reverberation compensation requires the tailoring of a complex spatio-temporal
adaptive (or even inverse) filter. To that aim, 3D UMI provides an adequate framework to
exploit, at best, all the spatio-temporal degrees of freedom provided by a high-dimension array
of broadband transducers.

Finally, some challenges remain for in vivo brain imaging. To date, UMI has only been
applied to a static medium, whereas biological tissue is usually in motion, especially in vascu-
lar imaging where reflectivity changes rapidly over time due to blood flow. Indeed, many 3D
imaging modes are designed to image blood flow, such as transcranial Doppler imaging [Ivance-
vich, 2008] or ULM [Bertolo, 2021; Chavignon, 2022]. These methods are strongly sensitive to
aberrations [Demené, 2021; Soulioti, 2020], and their coupling with matrix imaging would be
rewarding to increase the signal-to-noise ratio and improve the image resolution, not only in the
vicinity of bright reflectors [Robin, 2023], but also in ultrasound speckle.
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6. Conclusion

Figure 3.24: 2D versus 3D matrix imaging of a head phantom. (A) Aberration law
extracted with (A1) 2D or (A2) 3D UMI for a target located at z = 38 mm. (B, C) Original
and corrected images of the same target. Subscript “1” and “2” stands for 2D and 3D UMI,
respectively. (D) Imaging PSF before (red) and after (green) 2D (dotted line) and 3D (solid
line) UMI.

6 Conclusion

In this chapter, Matrix Imaging was successfully extended to 3D ultrasound imaging. Aberra-
tions were compensated both in an academic experiment and in the difficult case of transcranial
imaging, which presents high attenuation and a high degree of multiple scattering. In addi-
tion, several features were introduced to make our correction procedure more robust. First, the
extraction of aberration laws is now performed with a new algorithm (IPR) that allows us to re-
duce the size of the virtual reflector on which the aberration law is extracted without increasing
the noise. In addition, a new criterion based on spatial reciprocity was introduced to monitor
the convergence of our estimate of T̂. Finally, a comparison between 2D and 3D imaging was
performed, showing that a large contrast gain can be obtained with 3D imaging.

Interestingly, ultrasound imaging of tissues is generally discarded for the brain because of
the strong aberrations and reverberations. Interestingly, UMI can open a new route towards
quantitative imaging of the brain, as a matrix framework can also enable the mapping of phys-
ical parameters such as the speed-of-sound [Jaeger, 2015a; Imbault, 2017; Jakovljevic, 2018;
Lambert, 2020b], attenuation and scattering coefficients [Aubry, 2011; Brütt, 2022], or fiber
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anisotropy [Papadacci, 2014; Rodriguez-Molares, 2017]. Those various observables can be ex-
tremely enlightening for brain tissue characterization.

In the next chapter, the localization and characterization of microbubbles will be examined in
light of matrix imaging. First, it will be shown how matrix imaging can be combined with other
ultrasound modalities. In the specific case of ultrasound localization microscopy, transcranial
imaging experiments are performed in vivo to produce super-resolved images of sheep brain
vessels. Matrix imaging is exploited to remove artifacts due to aberrations and increase the
contrast of the ULM image. We will then use the temporal degrees of freedom of the reflection
matrix to track the resonance frequency of monodisperse microbubbles. These two experiments
are the result of a collaboration with two other academic laboratories.
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Chapter 4
Matrix imaging for microbubbles localization
and characterization

The use of microbubbles in ultrasound imaging is not only an excellent tool for
contrast-enhanced imaging, but can also be leveraged to produce super-resolved im-
ages. This is the principle of the dynamic imaging method called Ultrasound Local-
ization Microscopy (ULM). Using in vivo transcranial imaging experiments on sheep
brains, we demonstrate how such a technique can benefit from matrix imaging. In a
first part, a local compensation of aberrations induced by the skull is shown to dras-
tically eliminate artifacts that generally pollute the ULM image. In a second part,
a preliminary study shows how matrix imaging paves the way towards quantitative
ULM. Using monodisperse microbubbles in a phantom experiment, the temporal
degrees of freedom of the reflection matrix are exploited to track the resonance fre-
quency of such oscillating objects. Their observation is of utmost importance as it
could potentially lead to intra-arterial blood pressure measurements and be of great
use in monitoring strokes or heart attacks.
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1 Introduction

The use of microbubbles in ultrasound imaging is widespread [Versluis, 2020; Tarighatnia, 2022;
Liu, 2014]. Due to their high impedance mismatch compared to soft tissues, they were initially
used as contrast agents. Clinically, they are injected intravenously, and their detection on the
ultrasound image allows the visualization of vessels with a contrast enhancement of 20 to 30 dB.
Another key property of microbubbles is their oscillatory nature, which makes them resonant
objects and thus act as acoustic sources as they make the pressure vary over time. Fortunately,
their resonance frequency, which depends directly on their diameter, matches the frequency range
of most commercially available ultrasound probes. Finally, the real-time capability of ultrasound
imaging allows these contrast agents to be distinguished directly and more accurately from the
static part of the tissues.

For example, microbubbles can be used to monitor the development of a malignant tumor
by quantifying blood flow throughout the angiogenesis process. In addition, new classes of
microbubbles have shown promising results in ultrasound therapy to improve the specificity of
drug delivery with encapsulated molecules or conjugated nanoparticles. They could also be used
to improve the opening of the blood-brain barrier to enhance delivery of therapeutics to brain
tumors.

More recently, microbubbles have even been used to produce super-resolved images of vessels,
using a similar idea developed several years earlier in fluorescence microscopy [Betzig, 2006;
Rust, 2006]. The principle of Ultrasound Localization Microscopy [Errico, 2015] is that isolated
microbubbles, if they can be tracked over an extended period of time, can be localized with an
accuracy no longer dictated by diffraction limit, resulting in a significant improvement of the
resolution by a factor of about ten compared with standard ultrasound images. In recent years,
it has found numerous applications in functional imaging, and also in clinical imaging, whether
to produce transcranial images with much higher resolution and more contrast than current
Doppler modalities [Demené, 2021] or to monitor coronary flow in the heart [Demeulenaere,
2022]. However, microbubble tracking relies on examining the focal spot associated with each
bubble in the ultrasound image. It can therefore be severely affected by wave distortions caused
by the cranial layer, for example. Such a method could benefit greatly from adaptive focusing
to increase the bubble detection rate and localize them with higher accuracy. ULM would be
able to distinguish smaller, micrometer-sized vessels with fewer reconstruction artifacts.

In addition, clinically approved contrast agents such as Sonovue refer to shell-coated mem-
branes with large polydispersity, meaning that their size is not controlled and typically ranges
from 1 to 10 µm [Stride, 2020]. This property is advantageous in that it can be adapted to
any ultrasound probe, but it can also be considered as a disadvantage if one wishes to opti-
mize the benefits of such a contrast agent on the image. In fact, since the resonance frequency
of such objects directly depends on their size and on the local pressure [Minnaert, 1933], the
use of polydisperse bubbles leads to a broad spectrum [Tremblay-Darveau, 2014a]. Monodis-
perse microbubbles [Segers, 2018] could thus be used not only to produce a higher contrasted
image [Stride, 2020], but also to monitor the evolution of pressure over time [Fairbank, 1977;
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Tremblay-Darveau, 2014b; Segers, 2018].
In this chapter, microbubbles are first used to map cerebral vessels in sheep using Ultrasound

Localization Microscopy. In particular, we show how matrix imaging can be coupled with ULM
by recording the reflection matrix prior to the ultrafast sequence used for super-resolution. In
this experiment, we show that aberrations due to the cranial layer are at least partially corrected,
resulting in an image with a significantly improved contrast and fewer reconstruction artifacts.
We then present preliminary results of an academic experiment in which we measured the
resonance frequency of monodisperse bubbles. These results may suggest that such frequency-
matched contrast agents could be used to measure blood pressure and thus provide a quantitative
tool for detecting or monitoring cerebrovascular accidents. Both works are the result of academic
collaboration with the group of Olivier Couture for the ULM project and the group of Patrick
Tabeling for the monodisperse bubble project.

2 Combining Ultrasound Localization Microscopy with Matrix
Imaging

In this first section, we will show how other ultrasound imaging modalities based on ultrafast
acquisitions can take advantage of Matrix Imaging. We will demonstrate this statement by
considering the specific case of Ultrasound Localization Microscopy (ULM) in the framework
of transcranial imaging experiments performed on anesthetized sheep. This work is the result
of collaboration with the team of Olivier Couture (Laboratoire d’Imagerie Biomédicale, Paris,
France). In particular, all experiments described in this section were performed by Antoine
Coudert, who was, at that time, a PhD student in that group [Coudert, 2023]. The post-
processing of ultrasound data and the analysis of the results were performed jointly.

2.1 Principle of Ultrasound Localization Microscopy

Recently, a new ultrasound imaging modality known as Ultrasound Localization Microscopy
(ULM) [Errico, 2015] has paved the way to produce ultrasound images with a sub-diffraction
resolution [Fig. 1.13D]. Inspired by research in the field of optics [Betzig, 2006; Rust, 2006] which
was awarded the Nobel Prize in Chemistry in 2014, ULM represents its acoustic counterpart.
Isolated microbubbles previously injected intravenously into the bloodstream are localized and
tracked over time, so that resolution is no longer limited by the diffraction limit [gray ellipses in
Fig. 4.1A], but by the ability to localize the center of their associated PSFs [red crosses in Fig.
4.1A] [Desailly, 2015]. The vessels can then be reconstructed from an ultrafast sequence that
captures the fluid motion of the bubbles over time. In particular, this technique improves the
resolution of the images by a factor of about ten, resulting in resolution down to the micrometer
scale. Not only does it allow for more detailed imaging of many organs, it is seen as a real
breakthrough in the field of functional imaging [Fig. 4.1B], since it allows the mapping of the
complex vascular networks in the brain of small animals such as rat or mice [Demené, 2017;
Deffieux, 2018; Bertolo, 2021].
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Figure 4.1: Principle & applications of Ultrasound Localization Microscopy (ULM).
(A) Isolated microbubbles are localized and tracked over time to produce an image of vessels
down to the micrometer scale (extracted from [Errico, 2015]). (B) Functional imaging in the
rat brain after whiskers stimulation (extracted from [Renaudin, 2022]) (C) Coronary flow of an
ex vivo rat heart before and after ligation of LAD artery (extracted from [Demeulenaere, 2022])
(D) 2D in vivo transcranial Doppler versus ULM in the human brain (extracted from [Demené,
2021]).

Historically, ULM imaging has long been limited to 2D imaging, which poses several issues
such as [Couture, 2018]:

– Projection of vessels (3D structures) onto a plane (2D), resulting in blurred vessels;

– Non-optimal tracking of microbubbles entering and leaving the filed-of-view;

– In the presence of aberrations, not only is the sensitivity to detect bubbles lower, which
affects the contrast of the super-resolved image, but also the accuracy in localizing bubbles,
where high side-lobes of a degraded PSF can cause artifacts such as duplication of vessels
[Xing, 2023; Robin, 2023].
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Recent advances in 3D imaging with matrix arrays have made it possible to overcome these
problems. For example, coronary flow can be tracked in the ex vivo rat heart [Fig. 4.1C]
[Demeulenaere, 2022] or even brain flow in transcranial 3D imaging of the rat brain [Chavignon,
2022]. ULM imaging has even been successfully used in transcranial clinical imaging of the
adult human brain [Fig. 4.1D] [Demené, 2021], where aberration correction is critical [Soulioti,
2020; Robin, 2023]. However, this previous work was limited to conventional 2D imaging with
a phased array (1D probe), and the correction process was based on the presence of guide stars
(e.g. microbubbles) in the field of view [Robin, 2023]. Corresponding RF data from these specific
guide stars directly provide the aberration law. However, if the isoplanatic assumption is not
verified, the low concentration of guide stars prevents from a fine compensation of aberrations.
In addition, extracting the aberration law directly from the microbubble signal may not be
optimal because the corresponding PSF may have large sidelobes in a highly aberrating medium,
leading to a large uncertainty regarding the localization of its center. Moreover, the estimate
of the output aberration law in such an ultrafast acquisition is biased by the poor focusing at
the input. In other words, such an estimation of aberration does not benefit from the iterative
improvement of the focusing process made possible by matrix imaging at both input and output
(see Chapter 2, Section 4.6.4).

Here we will show that ULM imaging can take advantage of 3D UMI to extract local adaptive
focusing laws not only in the presence of a strong reflector, but also in the presence of random
speckle. A preclinical experiment is performed on an anesthetized sheep to obtain a transcranial
super-resolved volume, free from aberrations.

2.2 Transcranial sheep experiment

The study was performed on a pool of 6 sheep, where the goal was first to demonstrate the
ability of ULM to image cerebral vessels in large animals. Correct positioning of the probe in
front of the brain was a real key point, and only in the last three sheep was ULM successfully
performed as part of Antoine’s PhD thesis [Coudert, 2023]. In this section, we present the
coupling of these experiments with matrix imaging, using a similar formalism as described in
the previous chapter to compensate for aberrations.

2.2.1 Ultrasound probe characteristics

Antoine Coudert performed the experiments using a different matrix array (P2) with the prop-
erties described in [Table 4.1]. In particular, a lower frequency is used to better penetrate the
cranial layer, but at the expense of a lower resolution. In addition, a single multiplexed elec-
tronic system from Verasonics [Hara, 2005] is now used to drive the probe. This allows the use
of less complex electronics than before, but has the disadvantage that only synthetic apertures
(i.e. one block of 256 elements at a time) can be used, which reduces both frame rate and SNR.
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Number of transducers 32 × 32 = 1024 (with 5 dead elements)
Geometry (y-axis) 3 inactive rows between each block of 256 elements
Pitch δu = 0.55 mm (≈ λ/2 at c = 1540 m/s)

Aperture ∆u =
(

∆ux

∆uy

)
=
(

17.6 mm
19.3 mm

)
Central frequency fc = 1.56 MHz
Bandwidth 60% → [1 − 2] MHz
Transducer directivity θmax = 64◦ at c = 1540 m/s

Table 4.1: Matrix array datasheet P2.

Figure 4.2: Multi-sequences acquisition (Sheep experiment). (A) Successive imaging se-
quences. (B) MRI TOF to image vessels. (C) Transcranial Power Doppler. (D) Estimation
of the T−matrix thanks to 3D UMI. (E) Super-resolved ULM-image. (F) Micro CT scan of
the sheep skull. The duration of the acquisition of the R-matrix was not optimized in this
experiment and can be in principle drastically shortened.

2.2.2 From static to dynamic matrix imaging

As described in Chapter 3 (Section 3.3), the number of insonifications required for UMI scales as
the number of resolution cells covered by the RPSF [Fig. 3.7]. As the aberration level through
the skull is important, the uncorrected RPSFs are much larger than the diffraction limit. This
means that the insonification basis should be fully sampled, limiting 3D UMI to a compounded
frame-rate of only a few hertz, which is much too slow for ultrafast imaging [Tanter, 2014].

One solution to directly implement 3D UMI for dynamic imaging is to design an acquisition
sequence in which the fully sampled R−matrix is acquired prior to the following ultrafast acqui-
sition, where the insonification basis can be drastically down-sampled. The T̂−matrix obtained
from the R−matrix can then be used to correct the ultrafast acquisition in post-processing.
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Figure 4.3: Virtual sources insonification. R−matrix acquired in a set of spherical diverg-
ing wave associated with (A) virtual sources above the probe (blue spot). (B) Time delays
associated to a single diverging wave (white spot in panel A).

2.2.3 Multi-sequence acquisition

Prior to ultrasound acquisitions, other imaging modality are performed while the sheep is anes-
thetized [Fig. 4.2A]. First, MRI sequences provide ground-truth images of the entire brain
anatomy, in particular the vessels [Fig. 4.2B]. Then, microbubbles (Sonovue, Bracco, Italy
[Schneider, 1999]) are injected to provide enhanced contrasted Doppler ultrasound images, which
are used to properly position the probe in front of the main brain vessels [Fig. 4.2C].

Then, the reflection matrix is captured using a set of synthetic spherical waves: Rvu(t) ≡
[R(vin, uout, t)], where the vector vin indicates the position of the corresponding virtual sources
[Fig. 4.3]. However, due to a technical problem, the complete acquisition of the reflection matrix
took an unusually long time. To shorten the acquisition time, the reflection matrix was acquired
only partially with 324 virtual sources (instead of 1225 as in previous experiments), which are
located on a radius of 39.5 mm (Eq. 3.6). However, since we want to compensate for aberrations
located below the probe and at great depths, large transverse wave-vectors, such as ∥k∥ > kc/2,
are not required because they do not reach the target field-of-view. It is important to point out
that in future experiments the acquisition of the fully sampled reflection matrix should not take
much longer than one second, rather than 5 minutes as here [Fig. 4.2A].

Then, microbubbles are injected again to perform ultrafast acquisition for ULM imaging
[Fig. 4.2E]. Acquisition is performed by a hybrid sequence of 3 cylindrical waves emitted si-
multaneously by the entire probe and 2 spherical waves decomposed by panels to achieve a
volume rate of 209 Hz. Each pulse consists of 2 cycles with a voltage of 60 V. After 40 seconds
of acquisition, a bolus of 1.75 ml (i.e. a single rapid injection) of Sonovue microbubbles was
injected every minute for the next seven following minutes. As only few insonifications are used,
the partial reflection matrix is acquired Rp(iin, uout, t, tp), where tp denotes each frame of the
ultrafast sequence.

Finally, the sheep is euthanized, and the skull is removed to perform a micro-CT scan
[Fig. 4.2F]. Interestingly, it shows the great complexity of transcranial imaging, with an inho-
mogeneous distribution of cortical and trabecular bone of different thickness in the transverse
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Figure 4.4: Multi-scale analysis of wave distortions in a sheep brain experiment. (A)
Single scattering, multiple scattering and noise rate as a function of depth. (B, C) RPSFs
before and after the UMI process at three different depths. Each RPSF is displayed in a de-scan
range that varies from −15 to +15 mm in both x and y direction (D) Evolution of the radial
profile of the RPSF at each step of UMI for three different depths. (E) Evolution of resolution
enhancement as a function of depths at each step of UMI process.

direction.

2.2.4 Extracting the T̂−matrix

The focused reflection matrix Rρρ(z) is still built numerically in the time domain, according to
equations (3.10, 3.11 & 3.13) and assuming a speed-of-sound of c0 = 1540 m/s in the brain. The
same UMI procedure as the one described in the previous section is now applied to this exper-
iment. Similar to the previous head phantom experiment, the RPSFs exhibit large transverse
aberrations and high background [Fig. 4.4B], which is due to strong attenuation and multiple
scattering. It appears that multiple scattering is more important in the z = 35 mm region [Fig.
4.4A], which is associated with a region of the field of view with less echogenic signals, as shown
by looking at the confocal image in [Fig. 4.6A].

Unlike the previous chapter, however, the T̂−matrix is extracted here in the transducer basis,
since it will be used to correct aberrations directly on the raw ultrafast data that are already
expressed in this basis. The gradual reduction of the field-of-view partition as described in [Table
4.2] in conjunction with the use of a confocal filter with parameters similar to those described
in the previous chapter ensures the convergence of the IPR process. The spatial reciprocity
⟨T̂(i)

in |T̂(i)
out⟩ is checked to be larger than 0.95 at each correction step. As in the previous section,

the transmission matrix T̂(u, r) linking each transducer to each voxel of the field-of-view can be
extracted [Fig. 4.5]. At a depth of z = 17 mm, the support of the aberration laws varies from
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Figure 4.5: T̂−matrix estimation in the sheep brain experiment. Aberration laws at
three different depths: (A) z = 17 mm, (B) z = 35 mm and (C) z = 59 mm.

one area to the other, because the directivity of the transducers has a greater effect at shallow
depths.

Correction step (i) 1◦ 2◦ 3◦ 4◦ 5◦ 6◦

Number of transverse patches 1 × 1 2 × 2 3 × 3 4 × 4 5 × 5 6 × 6
wρ = (wx, wy) [mm] 30 22.5 20 15 12 10

wz [mm] 2.5 2.5 2.5 2.5 2.5 2.5

Table 4.2: Parameters of UMI in the sheep experiment.

Phase conjugation of T̂ leads to focusing laws that give rise to a drastic enhancement of
RPSFs in [Fig. 4.4C], leading to a resolution enhancement by about a factor 2 [Fig. 4.4E]. UMI
image associated with this first static acquisition without any bubbles shows a great enhancement
of resolution and contrast [Fig. 4.6B] compared with the conventional 3D volume extracted
before the correction process [Fig. 4.6A].

Nevertheless, the diffraction limit is not reached, as shown in [Fig. 4.4E]. It is very likely that
this is due to the anisoplanatic nature of the experimental data, as shown by the drastic spatial
variations of the RPSF in [Fig. 4.4B3]. Hence, highest order aberrations, which are associated
with a smaller correlation length, cannot be extracted [Lambert, 2022a]. Such aberrations cannot
be captured in this case due to the high value of the spatial criterion we have set.

In fact, not only is the R-matrix not fully captured, but it is not acquired in the same bases
at the input and output, which affects our spatial reciprocity criterion. Here we have chosen
a higher criterion than in the previous chapter to extract only low-order aberration laws that
are more robust over time and can then be applied to ULM imaging. Since the high-frequency
components of the aberrations change significantly over time, we limited our analysis to the
lowest-order aberrations by setting a more restrictive spatial reciprocity criterion. Nevertheless,
a more detailed study is needed to investigate the influence of the spatial reciprocity criterion
on the extracted aberration laws and find its optimal value.
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Figure 4.6: Effect of correction on the R−matrix acquisition. Confocal image (A) before
and (B) after correction.

2.2.5 Time stability of the T̂−matrix

To investigate the overall time stability of the aberration, the R−matrix was recorded twice
at three-hour intervals while the experiment was fixed. The first acquisition was made at t1 =
10h32min [Fig. 4.7A] and the second at t2 = 13h32min [Fig. 4.7B]. The spatial aberration
maps are shown for three different depths. The differences between the aberration phase laws
acquired at t1 and t2 are quite obvious and show that this long ULM experiment, even if it was
faster than three hours, can be quite sensitive to temporal variations in the aberrations. These
results can be quantified by considering the scalar product ⟨T̂(t1)|T̂(t2)⟩ of the aberrations laws
between these two times [Fig. 4.7C]. The stability of the aberration phase laws exhibits large
variations in both the transverse and axial directions. However, a general trend is that this
stability is higher at greater depths. This stability is affected by either probe motion, tissue
motion, or out-of-plane motion. In any case, we are much more sensitive to motion at shallow
depths than at great depths, which is due to the geometrical spreading of the wave, or in other
words, because the size of the resolution cell scales with depth.

Although the ultrafast sequence necessarily requires at least few seconds or few minutes to
capture the flow of microbubbles, the duration of the R−matrix acquisition can be drastically
reduced, as it is limited only by the number of insonifications required (Nθin = 324) and the
multiplexed electronics that require multiple insonifications to synthesize a diverging wave, re-
sulting in a theoretical duration of 136 ms (for a field of view of 80 mm depth and a speed of
sound c0 = 1540 m/s), instead of 5 min as described in [Fig. 4.2].
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Figure 4.7: Time stability of the transmission matrix. The reflection matrix was acquired
at two different time t1 = 10h32min and t2 = 13h32min while the position of the probe was
kept at the same position. (A, B) Aberration law extracted at time t1 and t2, respectively. (C)
Scalar product between the two. Each row refers to a different depth z = 30, 40 and 50 mm.

2.2.6 Reconstruction of super-resolved ULM image

The image associated with each frame is then constructed using a conventional delay-and-sum
algorithm with appropriate time delays at the input and output:

I(r, tp) =
∑
iin

∑
uout

Rp(iin, uout, τ(iin, r) + τ(r, uout), r, tp). (4.1)

Low-pass filtering with a sliding average window along the tp-dimension allows extraction of
only the moving part of the film, i.e. the blood stream containing the microbubbles. The
microbubbles are first detected in each frame by their corresponding PSF on the image I. Then
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Figure 4.8: Enhancement of bubbles detection and tracking with UMI. (A, B) Detec-
tion and tracking of bubbles before and after correction, respectively. (C) Number of bubbles
detected as a function of time.

the center of each PSF is localized, as shown by the red circles in [Fig. 4.8A]. Here, localization is
based on radial centers of symmetry [Heiles, 2019; Parthasarathy, 2012], where the center of PSF
is found using a gradient algorithm, thus assuming a Gaussian shape of PSF. Aberrations thus
directly affect the localization of microbubbles and can lead to artifacts in the reconstruction.
For example, a single microbubble affected by aberrations may have high side lobes that could
be detected as two different microbubbles during reconstruction. By tracking each detected
bubbles over time, it is then possible to reconstruct their trajectories over all the entire duration
of the sequence, as displayed in color lines of [Fig. 4.8A]. The number of bubbles detected over
time is shown in [red line in Fig. 4.8C] where the different peak corresponds to each injection
of microbubbles. Finally, a super-resolved image IULM(r) is obtained by counting the number
of microbubbles crossing each voxel of the field-of-view.

Such an image is displayed from different angles in [Fig. 4.9A, C, E, G]. A typical structure
of the cerebral vessels can be seen even before adaptive focusing. This structure is known as the
circle of Willis [Kalsoum, 2014] which is represented schematically in [Fig. 4.10A] and can be
seen as the main intersection of vessels in the brain. However, part of it seems to be duplicated
[Fig. 4.9C], probably due to aberrations. These kinds of artifacts have already been observed
in transcranial imaging both in mouse [Xing, 2023] and human [Robin, 2023] brain.

2.2.7 Super-resolved image free from aberrations

The transmission matrix T̂(u, r) previously extracted with UMI can now be used to correct
aberrations in the data obtained during the ultrafast sequence. Due to time constraints related
to the end of the PhD, we only corrected the output basis. However, since only a few waves
are used to insonify the brain, the output correction (uout) has a much larger impact. The
correction is applied directly as a phase-shift on the raw data of the ultrafast sequence for each
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Figure 4.9: Impact of Matrix Imaging on ULM images. 3D images displayed as maximum
intensity projections (A, C, E, G) before and (B, D, F, H) after compensation of aberrations.
The circle of Willis is located around z = 40 − 45 mm. The same dynamic is displayed for all
images.

part of the field of view:

R(corr)
p (iin, uout, t, r, tp) = Rp(iin, uout, t, r, tp) ◦ T̂∗(uout, r), (4.2)

where ◦ stand for a Hadamard product. The ULM image is then created by a post-processing
process similar to that described earlier.

First, about 10% additional microbubbles are detected at a given time throughout the acqui-
sition, as shown in [green curve in Fig. 4.8C]. Then the comparison of the ULM images with and
without UMI is shown in [Fig. 4.9]. The corrected images have a higher contrast, the structures
appear brighter and smaller vessels are visible. In addition, the original duplication of the vessel
is now corrected [Fig. 4.9D]. This feature can be understood when comparing the detection of
the lower white box in [Fig. 4.8A & B], where originally three bubbles were detected, while
after correction only one can be seen, confirming that detection and tracking was not optimal
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Figure 4.10: Comparison of MRI and ULM images. (A) Organization of the human
cerebral circulation This panel is extracted from [Mamo, 2015]. (B, C) MRI TOF (gray
scale) superimposed to the ULM image (red/yellow scale) before and after matrix correction of
aberrations, respectively.

without adaptive focusing. Furthermore, the super-resolved images better match the anatomical
structures of the sheep vascular networks extracted by MRI, as shown by [Fig. 4.10B and C].

2.3 Perspectives

Here we presented a solution for combining ULM with matrix imaging using multi-sequence
acquisition. However, this may not be the only solution. If ultrafast 3D UMI acquisition is
possible (in cases with lower aberrations or at shallow depths), rapid decorrelation of speckle
observed in blood flow may be an opportunity because it provides numerous speckle realizations
in a given voxel. Therefore, a high-resolution T−matrix could be in principle extracted without
spatial averaging and without any isoplanicity assumption [Zhao, 1992; Osmanski, 2012a]. In
other words, time averaging (tp) would replace spatial averaging (r), and the T̂−matrix could
be extracted directly from the ultrafast sequence rather than from a previous static sequence as
described in this section.

Recent studies suggest that combining a large matrix array with a multi-lens diffracting
layer [Favre, 2022; Favre, 2023] may help to increase the sensitivity and thus the signal-to-noise
ratio in transcranial ULM imaging. However, this method involves poor sampling of the input
and output basis (δu ∼ 4λ) and therefore introduces significant grating lobes in the PSF of the
system. As shown by the preliminary work of Elsa Giraudat in seismic imaging [Giraudat, 2023],
who used a poorly sampled network of geophones to create a corrected image of La Soufrière
volcano, matrix imaging can help compensate for the sparsity of such arrays.

Recent work suggests that ULM imaging could help in the detection and classification of
cerebrovascular accidents. For example, it would be possible to distinguish between ischemic
and hemorrhagic strokes in the early phase [Chavignon, 2022]. Therefore, another perspective
of this work within the doctoral thesis of Louise Denis in Olivier Couture’s group is to conduct
a pilot study on individuals who have recently suffered a cerebrovascular accident.
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3 Towards intra-arterial pressure measurement

In the previous experiment, commercially approved Sonovue bubbles [Schneider, 1999] were used
to perform ultrasound localization microscopy experiments in the brain. However, such contrast
agents have a wide range of diameters, leading to a broad frequency spectrum. Therefore, such
contrast agents are not optimized for a particular probe because a number of microbubbles do
not oscillate at a frequency within the spectral bandwidth of the probe. The use and fabrica-
tion of monodisperse microbubbles could lead to a better signal-to-noise ratio and thus better
contrast. According to Minnaert’s law [Minnaert, 1933], their resonance frequency is directly
proportional to their size. Moreover, older and recent work shows that tracking this resonance
frequency could potentially lead to in vivo pressure measurement [Fairbank, 1977; Tremblay-
Darveau, 2014a; Segers, 2018]. This could be a real advantage when combined with ULM,
for example, to obtain not only super-resolved images of the blood vessel velocity field but also
quantitative measurements of blood pressure that could be leveraged to better detect or monitor
cerebrovascular accidents.

In this side project, the resonance frequency of monodisperse microbubbles is investigated
using ultrasound matrix imaging. Monodisperse microbubbles were prepared in the group of
Patrick Tabeling (Institut Pierre Gilles de Gennes, ESPCI Paris, PSL) by Ugur Soysal and
Pedro Nieckele Azevedo as described in [Soysal, 2022] in the framework of a collaboration with
Arnaud Tourin and Mathias Fink. An academic experiment was performed jointly with Ugur
Soysal, Pedro Nieckele Azevedo and Justine Robin on a Doppler flow tissue mimicking phantom
(CIRS, Model ATS 524). The resonance frequency of monodisperse microbubbles was extracted
with UMI and then compared with clinically approved polydisperse bubbles (Sonovue).

3.1 Microfluidic to produce monodipserse microbubbles

The Rayleigh-Plesset equation is usually the starting point for physical modeling of symmetri-
cally coated microbubbles. It leads to the famous equation of a driven harmonic oscillator with
a resonance frequency f0 [Minnaert, 1933], which scales as follows:

f0 ∝
√

pA

R0
, (4.3)

where R0 is the bubble radius and pA is the ambient pressure.
Nowadays, microfluidics can produce very monodisperse bubbles. However, to transport

and preserve them, they need to be freeze-dried without compromising their quality, which is
currently difficult. In this case, the uncontrolled dynamics of the freeze-drying process leads
to ripening, coalescence and rearrangement processes that reduce monodispersity. The main
obstacle to the use of monodisperse microfluidic bubbles in clinical studies is freeze-drying with-
out deterioration. Recent research by Soysal et al. [Soysal, 2022] has succeeded in producing
freeze-dried monodisperse microbubbles generated by microfluidics for a variety of applications,
including ultrasound contrast agents protected with a nanometric PVA shell without compro-
mising monodispersity. In this work, they propose an entirely new class of contrast agent in the
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Figure 4.11: Microfluidic generation of monodisperse 5 µm in diameter PVA mi-
crobubbles. (A) Monodisperse bubbles were generated in the central channel located between
river channels and after the gas channel. Bubbles exited the device without any coalescence.
(B) Freshly generated bubbles were collected in a monolayer manner on a glass slide. The inset
shows the size distribution of the collected bubbles showing average sizes, standard deviation,
and CV are 5.4 µm, 0.3 µm, and 5.%, respectively. (C) Re-suspended and floating bubbles in
DI water and their size distributions (insets) show the average diameters of the bubbles as 5.4
µm (standard deviation of 0.3 and CV of 5.5 %). Extracted and adapted from [Soysal, 2022].

form of a stable lyophylisate that can be transported anywhere for months, resuspended and
used immediately in clinical settings. Such results are presented in [Fig. 4.11]. Microbubbles are
produced using microfluidic channels [Fig. 4.11A] and further analyse to control their monodis-
persity [Fig. 4.11B]. Then, an example of resuspended monodisperse microbubbles show that
monodispersity is ensured through the freeze-dried process [Fig. 4.11C].

In this section, we aim to study the resonance frequency of such monodisperse microbubbles
using ultrasound matrix imaging. Monodisperse microbubbles with a diameter of 5.4 µm were
prepared in Patrick Tabeling’s team (Institut Pierre Gilles de Gennes, ESPCI Paris, PSL) by
Ugur Soysal and Pedro Nieckele Azevedo as described in [Soysal, 2022].

3.2 Description of the experiment

The experiment consists of injecting such bubbles into a Doppler tissue mimicking phantom
consisting of tubes surrounded by a gel that mimics the properties of human soft tissues. The
bubbles are manually injected into flowing deionized water in a tube with a 8 mm diameter.
Here, we aim to take advantage of the motion to filter out the static part of the field to enhance
the signal backscattered by the microbubbles. To this end, we design an ultrafast acquisition in
which the partial reflection matrix Rp(θin, uout, t, tp) is recorded with the parameters described
in [Table 4.3] as the microbubbles flow through the tube. Each frame tp is formed by means of
a 25 plane waves compounding. The flow rate is set manually and therefore cannot be properly
controlled. Thus, the acoustic pressure is unknown.
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Figure 4.12: Microbubbles characterization experiment. DI water is injected manually
(uncontrolled flow) in a tube of 8-mm diameter of a tissue mimicking phantom. Re-suspended
mono-disperse bubbles [Soysal, 2022] are injected manually in the tube and an ultrasound movie
of 20 seconds is recorded using the matrix array P1 with parameters described in [Table 4.3].

Parameters Value

Plane wave angles at λc

(
θx

θy

)
[◦]

(
−10 5 0 5 10
−10 5 0 5 10

)
Number of plane waves 25

Frame-rate [Hz] 2
Number of frames 40

Duration [sec] 20
Voltage [Volts] 10

Table 4.3: Ultrasound sequence parameters for the dynamic phantom experiment.

3.2.1 Extracting microbubbles signal

To enhance the signal associated with the microbubbles, we first subtract the mean average of
the complex IQ-signals as follows:

R(flow)
p = Rp − ⟨Rp⟩tp , (4.4)

where R(flow)
p is the filtered matrix containing the signal from the flowing microbubbles.

Such effects are visible when viewing the confocal volume associated with a given frame tp

[Fig. 4.13]. The confocal image associated with the raw data only allows visualization of the
two echoes coming from the edges of the tube, but not the observation of bubbles [Fig. 4.13A].
Creating the confocal image after removing the static component allows a drastic enhancement
of dynamic scatterers in the field of view during the acquisition. In this case, this dynamic signal
mainly corresponds to the microbubbles [Fig. 4.13B]. It can be seen that the signal outside the
tube describes an ellipse [Fig. 4.13B3], which is nothing but the isochronous volume whose
time of flight matches with the scatterers inside the tube. Although a spatial average seems
to be sufficient in this case, this is not always sufficient in vivo, and more accurate filtering
can be achieved using singular value decomposition to decompose the time-dependence of the
R-matrix into three subspaces: (i) static, (ii) moving, and (iii) noise part of the field of view
[Demene, 2015; Baranger, 2018].
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Figure 4.13: Confocal volume with and without filtering the static part. (A) Confocal
volume without filtering static part. The signal corresponds to the edges of the tube. (B)
Confocal volume obtained after filtering the static part of the signal. The remaining signal
corresponds to moving microbubbles in the tube. Interestingly, what remains outside the tube
corresponds to the isochronous volume, which correspond to the bubble echo times. Subscripts
“1”, “2” and “3” correspond to cross-sections in all directions of space, while subscript “4”
corresponds to a MIP volume.

3.2.2 Velocity field in the tube

Looking at the successive frames [Fig. 4.14A-C], we can see that the bubbles appear to move
faster in the center (solid line) than near the tube wall (dashed line). By cross-correlating
adjacent frames, the experimental velocity field in the tube can be extracted, using a common
particle image velocimetry (PIV) algorithm. The velocity distribution in the tube appears
typical of a Poiseuille flow [Fig. 4.14D].
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Figure 4.14: Velocity field in the tube. (A-C) B-scan images at each seconds in the tube
with its associated (D) velocity field extracted through a particle image velocimetry (PIV)
algorithm.

3.3 Exploiting the temporal degrees of freedom

Our goal now is to study the spectral responses of these microbubbles. Matrix imaging seems
to be a suitable tool for this purpose. However, the focused R-matrix described in the previous
chapter was limited to scanning input and output focal spots located at the same depth (zin =
zout). In other words, only the transverse dependence of the R-matrix was investigated. Since
the frequency or time dependence of the microbubbles occurs in the axial dimension, we need
to go a step further and perform an axial study of the focused R matrix.

To this end, the focused reflection matrix is extended here to study its time dependence by
adding a time shift δt with respect to ballistic time [Lambert, 2020a]. The beamforming process
can thus be updated as follows:

R(ρin, ρout, z, δt) =
∑
iin

∑
uout

R (iin, uout, τ(iin, rin, c0) + τ(uout, rout, c0) + δt) , (4.5)

where the assumed sound velocity here corresponds to the phantom c0 = 1450 m/s. As the
reflection matrix was acquired only partially, aliasing may appear in the transverse direction
and only the confocal signal will now be studied (ρin = ρout = ρ), such that the focused
reflection matrix is reduced to the spatio-temporal confocal matrix:

Rc = [Rc(r, δt)] = [R(ρin = ρout, z︸ ︷︷ ︸
r

, δt)], (4.6)

with r = (ρ, z) is the focal point under study. Mathematically, it can be expressed as follows
(see Appendix 4.1):

Rc(r, δt) =
∫

dr′
(

γ(r′, δt)
δt
⊛ Hin(r, r′, δt)

δt
⊛ Hout(r, r′, δt)

)
. (4.7)

First, we will give some physical intuitions about the information contained into this new matrix.
On the one hand, for a random scattering medium, each time shift corresponds to a different
isochronous volume in the medium. This aspect will be described in the next chapter. On
the other hand, reflectivity of a sparse scattering medium made of isolated scatterers can be
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expressed as follows:
γ(r, t) =

∑
i

δ(r − ri)B(ri, t), (4.8)

with B(ri, t) the time response of each point-like reflector. Injecting (Eq. 4.8) in (Eq. 4.7) leads
to:

Rc(r, δt) =
∑

i

B(ri, δt)
δt
⊛
(

Hin(ri, r, δt)
δt
⊛ Hout(ri, r, δt)

)
, (4.9)

or, in the frequency domain,

Rc(r, ω) =
∑

i

B(ri, ω) (Hin(ri, r, ω)Hout(ri, r, ω)) . (4.10)

Hence, provided that one can estimate the spectral response of the system Hin(ri, r, ω)Hout(ri, r, ω),
the confocal matrix can grasp the spectral response of each acoustic reflector B(ri, ω).

3.3.1 Spectral analysis of the most echogenic bubble

First, the frequency response of the most echogenic microbubbles in the field of view is studied by
computed its time Fourier transform R(rb, ω) [blue curve in Fig. 4.15B], where rb is the position
of these microbubbles. Their spectrum has a large spectral bandwidth, which is nothing but the
spectral bandwidth of the transducer. Since we assume that the oscillations of the microbubbles
occur after the ballistic time, i.e. after the direct echo (first echo on the surface of the bubble),
one strategy to highlight the bubble resonant effects is to filter the direct echo with a time filter
constructed as follows:

Rfilt(rb, δt) = R(rb, δt)Wt(δt), (4.11)

with Wt(δt) a time window defined as follows:

Wt(δt) =


0 for δt < 0µs;
1
2

(
1 − cos(1

2πδt)
)

for δt ∈ [0; 2]µs;
1 for δt > 2µs.

(4.12)

The effect of such a filter is shown in [orange curve in Fig. 4.15]. The spectral response is shifted
toward the lower frequencies, indicating that we have succeeded in at least partially removing
the influence of the transducer response on our frequency analysis.

3.3.2 Statistical approach

We will now perform the same procedure described previously, but globally for all points located
in the tube. An average spectrum Stube associated to the tube can thus be extracted as follows:

Stube(ω) =
〈∣∣∣∣∫ +∞

−∞
dδtR(flow)

p (r, ω)Wt(δt) exp(iωδt)
∣∣∣∣2 Wtube(r)

〉
r

, (4.13)

with Wtube a logical window that select only focal point in the tube. The spectral shape of Stube

shows a similar slight shift to the lower frequencies [blue curve in Fig. 4.16E]. However, in order
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Figure 4.15: Frequency analysis of the most echogenic bubbles. (A) Time response of
the most echogenic bubble in the field-of-view. A filter (Eq. 4.12) can be applied to remove the
direct echo of the microbubble (orange curve). (B) Frequency spectrum of the original (blue
curve) and filtered (orange curve) bubble response.

to better filter the spectral responses of the transducer, similar treatment can be applied to the
unfiltered Rp matrix and locally averaging the spectral responses in the speckle located at the
same depth of the tube as described in [red circle 4.16B] as follows:

Sspeckle(ω) =
〈∣∣∣∣∫ +∞

−∞
dδtRp(r, ω)Wt(δt) exp(iωδt)

∣∣∣∣2 Wspeckle(r)
〉

r
. (4.14)

A better estimation of the microbubbles frequency response can be obtained by dividing the two
obtained spectrum as follows:

ŜMonodisperse(ω) = Stube(ω)
Sspeckle(ω) . (4.15)

A peak appears at the exact resonance frequency of the monodisperse microbubble, f0 ≈ 1.2
MHz, as shown in [green curve 4.16E].

The same experiment with the same post-processing was then performed with polydisperse
Sonovue bubbles and resulted in a broader frequency response as shown in [blue curve in Fig.
4.17]. This suggests that the use of monodisperse bubbles in conjunction with ultrasound matrix
imaging could be a relevant tool to track the resonance frequency of monodisperse microbubbles
and indirectly the intra-arterial blood pressure [Fairbank, 1977; Tremblay-Darveau, 2014a].

3.4 Perspectives

Although these results are very promising, they need to be nuanced and further experiments
should be performed to validate the whole method. First, the deconvolution step (4.15) is
subject to a large uncertainty, since we are dividing by something close to zero at the edges
of the bandwidth. To remove this uncertainty, we can examine microbubbles with a resonance
frequency that fits better in the middle of the spectral bandwidth of the transducer than at
the edges. Moreover, the physics of the bubbles depends on many parameters that we cannot
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Chapter 4. Matrix imaging for microbubbles localization and characterization

Figure 4.16: Extraction of the resonance frequency of monodisperse microbubbles.
(A, C) 3D confocal volumes and (B, D) 2D cross-sections of I and I(flow), respectively. (E)
Frequency spectrum associated to the phantom speckle (red curve) and the tube (blue curve). A
deconvolution is performed to extract the resonance of the monodisperse bubbles (green curve).

Figure 4.17: Spectral analysis of poly- and mono-disperse microbubbles. The green
curve is the spectral analysis of the monodisperse PVA microbubbles whose production process
is described in [Fig. 4.11]. The blue curve is assigned to the polydisperse Sonovue microbubbles.

properly control in this preliminary study:

– acoustic pressure, for example, can affect the nonlinear responses of the bubbles. In this
experiment, the lowest possible voltage (10 Volts) was applied to the transducers, but the
probe has not been yet calibrated, and therefore the corresponding acoustic pressure is
not known;
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– the presence of neighboring bubbles in such an experiment may lead to multiple scattering.
Such effects could be exploited, for example, when considering isolated microbubbles in
the tube rather than a bubble cloud as in this case. In addition, multiple scattering caused
by microbubbles could be investigated by a complete acquisition of the R-matrix when
the flow is stopped. Thus, a procedure similar to the one described in the previous chapter
could be used to quantify the multiple scattering caused by microbubbles;

– the response of the bubbles may be altered by their local environment, e.g. by the presence
of the vessel/tube surface [Versluis, 2020];

– the flow rate was not controlled in this experiment and its value was not known. The use
of a syringe pump operating at a constant flow rate would eliminate this problem.

With all these considerations, new experiments could be performed to validate the method and
possibly use it to track intra-arterial blood pressure.

4 Conclusion & Perspectives

In this chapter, we have shown that the time-dependence of the focused reflection matrix has
been exploited for tracking the resonance frequency of monodisperse bubbles and indirectly the
local pressure. This observation could be applied to intra-arterial measurements and would
thus provide a new imaging method for the investigation and monitoring of cerebral vascular
accidents.

Moreover, we show that other ultrasound imaging techniques, such as Ultrasound Localiza-
tion Microscopy, can be easily combined with Matrix Imaging to at least partially compensate
for aberrations. In this particular case, we have shown that matrix imaging was a real asset to
detect a higher number of microbubbles, resulting not only in contrast enhancement of the ULM
image, but also in elimination of artifacts caused by the skull (duplicated vessels, false detection
of bubbles, etc.).

Even though transverse aberrations can be compensated for with the distortion matrix ap-
proach, the position of the scatterers in the image still depends on the speed-of-sound hypothesis
assumed during beamforming. In the next chapter, we will now consider the effects of aberra-
tions due to variations in the speed of sound in the axial dimension. Matrix imaging will be
shown to provide the self-portrait of wave focusing at any point, including in the speckle. This
key observation can then be used to extract a local map of the defocus across the ultrasound
image. Such a map can then be leveraged for an axial compensation of aberrations.
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Chapter 5
Matrix compensation of axial aberrations

For a given speckle grain (fixed isochronous volume), we will examine the evolution
of the RPSF not only in the transverse direction but also in the axial dimension.
In this way, we will obtain a self-portrait of the local focusing process, from
which we can determine a shift in the focal plane (defocus) at any point in the
image. By correcting this focus shift, we can compensate for the axial aberrations
of the ultrasound image. We will show that this method is particularly relevant for
multilayered media.

Objectives
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1. Introduction

1 Introduction

The reflection matrix approach considered until now is an appropriate tool to compensate for
the transverse effects of aberrations, but the current formalism is not sufficient to account for
the axial distortions of the ultrasound image. Indeed, axial variations of the speed-of-sound can
lead to a mismatch between the focusing plane (where the wave is spatially focused) and the
isochronous volume (area where singly-scattered echoes come from) at a given echo time t [Fig.
5.2A]. This phenomenon results in aberrations known as defocus in optics [Labiau, 2009] and to
a bad scaling of the axial dimension of the ultrasound image.

In ultrasound, a compensation of a focus defect has already been realized in Ultrasound
Localization Microscopy in presence of a strong and isolated scatterer [Diamantis, 2018]. Here
we want to show how to perform this operation in ultrasonic speckle. To this end, we will exploit
the principle of the RPSF presented in the previous chapters, but this time studying its axial
dependence (and not only lateral).

In practice, this will be done by axially scanning the input and output focal points, for a
given isochronous volume (i.e. working at a fixed echo time). The RPSF can be studied globally
by averaging it incoherently over the field of view. The optimal focusing defect is then the one
that minimizes the lateral extension of the RPSF, or equivalently maximizes the confocal signal,
which also corresponds to an optimization of the focal curvature for a given speckle grain.
However, it is also possible to combine the RPSFs in a coherent manner using a Singular Value
Decomposition. One then obtains a self-portrait of the amplitude and phase of the focused wave.
In particular, one can then take advantage of the Gouy phase jump [Feng, 2001], i.e. the sign
change of the phase of a wave at the focal point, to produce an estimator that outperforms other
intensity-based methods.

A global correction of the focus defect is valid through multi-layer media, which induce a
constant focus defect. When the layer is homogeneous and translation invariant, this method
appears to be simpler than existing refraction-based methods [Mozaffarzadeh, 2022; Greco De
Sousa, 2007; Smith, 1986]. In a more general case where 3D spatially distributed aberrations
occur, the defocus change for each point of the image and thus requires a local study of the
RPSFs.

In addition to provide a significant improvement of the contrast and the resolution of the
image, it makes it possible, in a multi-layered media, to measure absolute relative positions
between the scatterers by re-scaling the z-axis of the image. Also, this step of compensation of
axial aberrations can be seen as a preliminary step to the compensation of transverse aberrations
[Fig. 5.2A].

In this chapter, we will first describe the different steps of the method using an experiment
on an ultrasound phantom without aberrations. Then we will apply the method to the case of
a multi-layered imaging experiments. We will show both theoretically and experimentally that
the global correction of the focus defect allows correcting the aberrations of the image in the
whole field of view. We will take advantage of this example to illustrate the fact that an axial
compensation of aberrations allows making less restrictive the condition between the number of

133



Chapter 5. Matrix compensation of axial aberrations

Figure 5.1: Ultrasound imaging in a homogeneous medium. Assuming that we know the
constant speed-of-sound of the medium, (A) geometric time delays allow focusing on a given
point at the input. (B) Echoes emanating from the same point can be similarly delayed so that
the wavefronts can be aligned and thus coherently summed. In this case, the sum is optimal
because the isochronous volume coincides with the focal plane.

insonifications and the level of aberrations. Finally, we will tackle the case of in vivo imaging
by highlighting the need for a local study of RSPF and a local correction of a focus defect.

2 From transverse to axial aberrations

First, the differences between transverse and axial effects are examined. Suppose we know the
speed of sound of a homogeneous medium [Fig. 5.1]. The application of geometric time-delays
at both the input and the output allows the selection of echoes originating from the isochronous
volume which matches the focal depth. A conventional delay and sum algorithm allows coherent
summation of the individual channels, resulting in image resolution limited by diffraction.

However, if we consider a medium with spatially distributed aberrations [Fig. 5.2], the
focusing process is severely affected at both the input and the output. First, the wavefront
of the ultrasound wave is distorted as it passes through the aberrating layer, resulting in a
degradation of the transverse PSF and thus a reduction in resolution. Even more, the imaging
plane associated with the isochronous volume of the target point, no longer coincides with the
focal plane [Fig. 5.2A]. The same considerations can be applied to the output, eventually leading
to a global failure of the focusing process when a delay and sum algorithm is applied [Fig. 5.2B].
Such aberrations, due to the variation of the speed of sound in the axial direction, result in an
image with incorrect positioning of the individual scatterers of the field of view.

We now consider a general procedure for beamforming the R−matrix, in which the input
and output focal spots are still located at the same depth (zin = zout), so that both experience
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2. From transverse to axial aberrations

Figure 5.2: Adverse effects of aberrations in ultrasound imaging. We consider the case
where spatial variations in the speed of sound affect the focusing process. (A) First, wavefronts
are distorted due to the transverse variations in wave velocity, resulting in a degradation of
the transverse PSF in the focal plane. In addition, axial variations in wave velocity lead to
a mismatch between the position of the isochronous volume and the focal plane. Such axial
aberrations effect leads to a shift in the true position of the scatterer under study. (B) The
same considerations can be applied to reception, so that the delay and sum algorithm fails to
coherently sum the targeted echoes from the isochronous volume.

the same transverse aberrations. Mathematically, it can be formulated for the general case of
3D imaging as follows:

R(ρin, ρout, z, t, c0) =
∑
iin

∑
uout

R (iin, uout, t + ∆τ(iin, ρin, t, z, c0) + ∆τ(uout, ρout, t, z, c0)) ,

(5.1)
where ∆τ denotes a time delay, resulting from the difference between the calculated time-of-flight
and the time to reach the focal depth:

∆τ(iin/uout, ρ, z, c0)︸ ︷︷ ︸
Time delays

= τ(iin/uout, ρ, z, c0)︸ ︷︷ ︸
Time of flight

−z/c0, (5.2)

where c0 denotes the speed-of-sound hypothesis, which is considered constant in the following
of this chapter. Its dependence is investigated in Chapter 6.

In conventional imaging, two considerations are then made to produce an image: (i) only
the confocal signal is examined (ρin = ρout) and (ii) the imaging plane matches the coherence
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volume (i.e. the isochronous volume) such that z = c0t/2. The extension of the first point
has already been discussed earlier (see Chapters 2 and 3) by decoupling the input and output
focal spots. Now we want to explore the decoupling between the imaging plane and the echo
travel time to make the focal plane coincide with the coherence volume even in the presence of
aberrations [Fig. 5.2]. To this end, three strategies can be explored:

– either by shifting the coherence volume (t + δt) in time to a fixed focal plane (z = c0t/2)
[Fig. 5.3A]. This consideration is thus similar to the one presented in the previous chapter
on bubble characterization;

– either by shifting the depth (z +∆z) to bring the focal plane to the fixed coherence volume
(t = 2z/c0), as shown in [Fig. 5.3B];

– either by scanning the speed of sound hypothesis (c0) to bring the focal plane to the fixed
coherence volume (t = 2z/c0). This method will be presented in the next chapter.
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3. Scanning the axial dimension with time

Figure 5.3: Scanning in time or in depth the RPSF. (A) The coherence volume (t + δt) is
shifted by scanning the time-shift, δt, while the focal depth (z = c0t/2) is fixed (at both input
and output). (B) The imaging plane (zi = z + ∆z) is shifted by scanning the focal depth ∆z at
fixed echo time (t = 2z/c0). This second process is equivalent to scanning the focal curvature
for a fixed echo time. Each column is associated with a different value of time shift δt or focal
depth ∆z. Panel B is inspired by [Perrot, 2021].

3 Scanning the axial dimension with time

First, we will examine the first option, which scans time. The time-dependent focused R−matrix
can be formed by considering an additional time shift δt with respect to the ballistic time, while

137



Chapter 5. Matrix compensation of axial aberrations

the focal depth is fixed at z = c0t/2, so that:

R(ρin, ρout, z = c0t/2, t + δt). (5.3)

For the sake of clarity of notation, let us then consider the following change of variables:

[RD(ρ, ∆ρ, z, δt)] = [R(ρin, ρout, c0t/2, t + δt︸ ︷︷ ︸
ti

)], (5.4)

which can be expressed mathematically as follows:
ρin

ρout

z

ti

 →


ρ

∆ρ

z

δt

 =


ρin

ρout − ρin

z

ti − t

 . (5.5)

First, we consider the simple case of imaging an ultrasound phantom with a linear probe
without an aberration layer [Fig. 5.4A1] with the parameters described in [Table. 2.1]. A
line of the focused R−matrix reshaped into RD = [RD({ρ, z}, {∆ρ, δt})] defined in (Eq. 5.4)
is shown [Fig. 5.4C1], i.e. for a speckle grain defined by its spatial coordinates (ρ, z). This
panel represents nothing but a new visualization of the focused R-matrix, where the transverse
dimension refers to the de-scan variable ∆ρ and the axial dimension refers to the time-shift δt

with respect to ballistic time.
One can already see that the size of the transverse RPSF is minimized at the expected time

δt = 0 µs. However, it exhibits some random fluctuations as other speckle grains contribute to
the signal below and above the focal plane. A local incoherent spatial average (intensity) can
be performed to smooth the speckle fluctuations [Fig. 5.4D1] and the energy maximum occurs
along the confocal signal (∆ρ = 0 mm).

We now explore the possibility of extracting a defocus (or axial shift) that occurs in a multi-
layered medium. To this end, a layer of water was added between the probe and the phantom
[Fig. 5.4A2]. Similarly, an incoherent average allows smoothing the randomness of the individual
speckle grains, and a maximum energy can be observed at a time other than δt = 0 µs. Thus,
scanning in time the RPSF, or more generally the study of the time dependence of the focused
R−matrix allows us to construct a self-portrait of the focusing process, as the time shift with
respect to the ballistic time is thus directly connected with the actual position of the focal
plane zf = z + ∆z, where ∆z = c0δt/2. Unfortunately, this approach, although very elegant,
has two major drawbacks, namely the attenuation shown in [Fig. 5.4D] and the influence of
neighboring strong reflectors. For these two reasons, scanning in time the RPSF is subject to
severe limitations that makes it very limited and insufficient to properly estimate a defocus in
biological tissues.
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3. Scanning the axial dimension with time

Figure 5.4: Scanning in time the RPSF. (A) Schematic representation of the experiment.
(B) Conventional ultrasound image. (C) RD({x, z}, {∆x, δt}) for a single speckle grain (x, z) =
(−5, 25) mm, shown as a yellow dot. (D) Incoherent average over multiple adjacent speckle
grains, using a rectangular window of size wr = 1 mm. The first row corresponds to a phantom
experiment with no aberrating layer. The second row corresponds to the case where there is
a water layer between the probe and the phantom. The parameters of both acquisitions are
identical and are described in [Table. 2.1].
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4 Scanning in depth the RPSF

To overcome attenuation, we now investigate the second option, that consists in examining
echoes backscattered at a fixed echo time t, corresponding to the ballistic depth zi = c0t/2
[see blue line in Fig. 5.3B]. The input and output focal spots are still located at the same depth
(zin = zout = zi), so that they both experience the same transverse aberrations. An axial shift
∆z of these focal spots is then considered with respect to the ballistic depth zi such that the
focused R−matrix is expressed as follows:

R(ρin, ρout, z = c0t/2 + ∆z, t). (5.6)

Similarly than before, we consider the following change of variables:

[RD(ρ, ∆ρ, ∆z, t)] = [R(ρin, ρout, z, t)] (5.7)

which can be expressed mathematically as follows:
ρin

ρout

z

t

 →


ρ

∆ρ

∆z

t

 =


ρin

ρout − ρin

z − c0t/2
t

 . (5.8)

Physically, scanning the focal depth z of the input and output focal spots can be seen as scanning
the focal curvature on the RF data as depicted in [Fig. 5.3B]. Conventional imaging thus
corresponds to confocal imaging (∆ρ = 0) with the reference curvature (∆z = 0) such that:

Iconf(ρ, t) = |RD(ρ, ∆ρ = 0, ∆z = 0, t)|2. (5.9)

Generally the time axis is converted into a depth axis zi = c0t/2 [blue axis in Fig. 5.3] but we
have to keep in mind that the axial dimension of a conventional ultrasound image is dictated by
the constant speed-of-sound hypothesis made during beamforming.

5 Spatial averaging

We study here the same phantom experiment described earlier in Chapter 2 [Table. 2.1]. One
line of the focused R−matrix reshaped in RPSF = [RD({ρ, t}, {∆ρ, ∆z})] defined in (Eq. 5.7)
is shown [Fig. 5.5A], i.e. for a speckle grain defined by its spatio-temporal coordinates (ρ, t) (see
Appendix 11). Even though the focusing process can be observed with an intensity maximum
close to the reference point (∆z = 0, ∆ρ = 0), it still exhibits some fluctuations since other
speckle grains contribute to the signal when the focal spot is enlarged at large defocus. As with
the RPSF defined in the previous chapters, a local spatial average can be performed to smooth
the speckle fluctuations and investigate quantitatively the focusing process.
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5. Spatial averaging

Figure 5.5: Bi-dimensional RPSF in the speckle (Tissue mimicking phantom experiment).
(A) Modulus of RPSF for one speckle realization. (B) Incoherent mean RPSFinc. (C, D)
Modulus and imaginary part of mean coherent RPSFcoh, respectively. (E) Axial derivative of
the imaginary part. (F, G) Phase and imaginary part of the confocal signal (∆x = 0 mm).
(H) Axial evolution of the RPSFs.

5.1 Incoherent RPSF

The most direct way is to perform a local average of the intensity of the focused wave-field to
obtain a bi-dimensional RPSF as follows:

RPSFinc(ρ, t, ∆ρ, ∆z) =
√

⟨|RPSF (ρ′, t′, ∆ρ, ∆z)|2W(ρ′ − ρ, t′ − t)⟩[ρ′,t′], (5.10)

where W(ρ′ − ρ) = 1 for |ρ′ − ρ| < wρ/2 and |t′ − t| < wt/2, and zero otherwise. An example
of such an RSPF is shown in [Fig. 5.5B]. It is noteworthy that it has a more symmetrical shape
in the axial dimension compared with time scanning method presented in the previous section
[Fig. 5.4D1]. This illustrates the robustness of a depth scan with respect to attenuation. A local
defocus can then be extracted by finding the maximum of the RPSF [blue curve in Fig. 5.5H]
for any point of the field of view:

∆ẑinc(ρ, t) = argmax
[∆z,∆ρ]

{RPSFinc(∆ρ, ∆z, ρ, t)} . (5.11)
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The ∆ẑ observed in [blue line in Fig. 5.5H] is close to 0 because we are in a reference
experiment where the speed of sound considered in the propagation model corresponds to the
speed of sound in the phantom. However, the RPSF has a significant background associated
with multiple scattering that can occur before the focal plane. A coherent approach may be
interesting to eliminate this incoherent background, as we will now see.

5.2 Coherent RPSF

Similar to the distortion matrix presented in Chapters 2 and 3, where an SVD is used to
phase-align each focal point so that a coherent virtual guide star can be synthesized, here
we take advantage of the SVD to phase-align each spatio-temporal focal point (ρ, t) so that
we can extract what is coherent between each realization of disorder (assuming isoplanetism).
Concretely, a coherent mean can be performed through a singular value decomposition of the
reshaped matrix RPSF = [RD({ρ, t}, {∆ρ, ∆z})]:

RPSF = V† × Σ × U, (5.12)

which, in terms of matrix coefficients, writes

RPSF ({ρ, t}, {∆ρ, ∆z}) =
∑

i

V ∗
i (ρ, t)σiUi(∆ρ, ∆z), (5.13)

where Σ is a diagonal matrix containing the singular values σi in descending order: σ1 > σ2 >

.. > σN . U and V are unitary matrices that contain the orthonormal set of output and input
eigenvectors, Ui = [Ui(∆ρ, ∆z)] and Vi = [Vi(ρ, t)]. The first singular vector U1 directly
provides an estimation of the coherent RPSF:

RPSFcoh(∆ρ, ∆z) ≡ U1(∆ρ, ∆z). (5.14)

It thus provides a lower background as shown in [Fig. 5.5C] than the incoherent RPSF [Fig.
5.5B] so that a local defocus can be extracted with a much better accuracy [orange curve on
Fig. 5.5H]:

∆ẑcoh(ρ, t) = argmax
[∆z,∆ρ]

{|RPSFcoh(∆ρ, ∆z, ρ, t)|2}. (5.15)

The uncertainty of this estimator ∆ẑ(coh) is given by the ratio between the depth of field of the
imaging system (2λ/NA2) and the root square of the number of speckle grains NW covered by
the space-time window W (see Appendix 10):

δ
(coh)
∆ẑ ∼ 2λ

(NA)2√
NW

, (5.16)

with NA the numerical aperture of the imaging system. Thus, it is in the interest of the
coherent RPSF to consider a very large number of independent speckle grains, but in practice
W is limited by isoplanetism. Therefore, a trade-off between precision and resolution must be
made in estimating ∆z (the same trade-off as in estimating aberration laws in Chapter 3).
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Figure 5.6: Three-dimensional RPSF in the speckle (Tissue mimicking phantom experi-
ment). (A) 3D view and (B, C) 2D cross-sections of the coherent RPSF, respectively. “1” and
“2” refers to the imaginary part and the amplitude of the RPSF, respectively. (D) Gouy phase
jump of 2π. (E) Transverse cross-section of the RPSF at the focal plane.

5.3 Gouy phase jump

To obtain a more reliable estimator of ∆ẑcoh, one can also look at the phase of the coherent
confocal spot [Fig. 5.5F]. The latter shows indeed a phase jump of π at the level of the focusing
plane. The coherent confocal spot indeed cumulates the Gouy phase jumps (≈ π/2 in a 2D
configuration) induced by the focusing processes at input and output. Interestingly, similar
results can be obtained in 3D imaging using a matrix array of transducers (P1) and similar
acquisition described in Chapter 3 (see Section 3), except that the Gouy phase jump reaches 2π

as expected when adding one dimension to the problem [Fig. 5.6D]. Thus, the self-portrait of
a three-dimensional wave in the speckle with an amplitude maximum supported by the Gouy
phase jump can be extracted [Fig. 5.6A, B, C and E].

These Gouy phase jumps occur where the transverse confinement of the focused waves is
minimal. It is therefore a more reliable estimator of the defocus than the axial evolution of the
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incoherent RPSF [Fig. 5.5B] or the amplitude of the coherent PSF [Fig. 5.5C] which can be
also sensitive to the geometric decay of the focused wave with depth. To increase the sensitivity
of the method, one can also combine the two previous observables, modulus and phase of the
RPSF, by examining the imaginary part of the latter [Fig. 5.5D]. Its point of inflection (i.e. the
maximum of its axial derivative) provides a new estimator of the defocus [Fig. 5.5E]:

∆ẑgouy(ρ, t) = argmax
∆z

{|∂∆zIm[RPSFcoh(∆ρ = 0, ∆z, ρ, t)]|} . (5.17)

The comparison between each estimator will be examined in more detail in the next chapter
when the speed of sound will be examined instead of the axial shift ∆z.

6 Application to imaging in multi-layered media

We will now present a first application of the extraction of such a defocus estimation in multi-
layered media. Indeed, scanning the time-delay curvature through the focusing depth is particu-
larly suitable for the following situation: Imaging a tissue whose sound velocity c is homogeneous
and equal to the velocity model (c = c0) but whose ultrasound image is degraded by the presence
of several tissue layers of different velocity cl upstream of it.

6.1 Phantom experiments

The results of three in vitro experiments are now presented. The first experiment consists of a
reference imaging experiment of an ultrasound phantom (CIRS, Model 050GSE) [Fig. 5.7B1],
previously described in Chapter 2 [Table 2.1]. In the second experiment, an aberrating water
layer (cl = 1480 m.s−1, Fig. 5.7B2) is introduced between the probe and the phantom. The
acquisition parameters are given in [Table 2.1]. In the third experiment, an aberrating Plexiglas
plate (cl = 2690 m.s−1, Fig. 5.7B3) is examined. This last acquisition was performed with
another ultrasound sequence described in [Table 5.1] which explains the decrease in resolution
in the image [Fig. 5.7C3] compared to [Fig. 5.7C1 and C2].

Although the velocity model c0 coincides well with the speed-of-sound in the phantom, the
water layer degrades the resolution of the ultrasound image compared with the reference image,
as evidenced by the impaired resolution of the bright spots and the poorer speckle contrast [Fig.
5.7C2] compared to the reference image [Fig. 5.7C1]. Due to a higher contrast between the
phantom and Plexiglas in terms of speed-of-sound, compared to the phantom, the ultrasound
image exhibits strong aberrations in the third experiment [Fig. 5.7C3].

Local defocus are extracted using the estimator described in (Eq. 5.11) which is based on
the study of the incoherent RPSF. Interestingly, it is homogeneous among the phantom layer
[Fig. 5.7A]. Finally, a corrected image can be extracted in the target layer by compensating
each point with the extracted defocus [Fig. 5.7D]:

Icorr(ρ, t) = |RD(ρ, t, ∆ρ = 0, ∆z = ∆ẑlayer|2. (5.18)
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6. Application to imaging in multi-layered media

6.2 A constant defocus

To understand the nature of the aberration induced by a different sound velocity layer, and in
particular the constant value of the defocus, we take up the analogy between beamforming and
time-reversal experiment [Fig. 5.8]. A scatterer s at depth zs is insonified by a plane wave [Fig.
5.8A] and associated with echo time [Fig. 5.8B]:

ts = (zs − zl)
c0

+ zl
cl

. (5.19)

It therefore appears at the depth zi in the image [Fig. 5.8C]:

zi = 1
2c0ts = zs + zl(

c0
cl

− 1). (5.20)

Figure 5.7: Compensation of defocus in multi-layered media. (A) Estimated defocus in
(B) the three multilayered experiments. (C, D) Original and corrected image after compen-
sation of the estimated defocus displayed in (A), respectively. The subscript “1”, “2” and “3”
account for the experiment number.
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Parameters Value

Probe

Type Linear
Number of transducers Nu = Nuout = 192
Transducer pitch δu = 0.2 mm (≈ λ at c0 = 1580 m/s)
Aperture ∆ux = 38.4 mm
Central frequency fc = 5.625 MHz
Bandwidth ∆f = [2 − 10] MHz

Acquisition

Electronic hardware Aixplorer®, Supersonic Imagine
Speed-of-sound hypothesis c0 = 1540 m/s

Plane wave angles
Maximum θin = 10◦ (calculated at c0)
Pitch δθin = 1◦ (calculated at c0)
Number Nθin = 21

Emitted signal Burst of three half periods of fc
Sampling frequency fs = 22.5 MHz
Recording time ∆t = 102 µs

Table 5.1: Acquisition of the reflection matrix, Rθu(t) ≡ [R(θin, uout, t)], when a Plex-
iglas plate is placed between the probe and a tissue mimicking phantom (CIRS,
Model 054GS).

Above all, the image of the scatterer is highly aberrated due to the mismatch between the
velocity model and the sound velocity distribution upstream of the scatterer. Under a paraxial
approximation, the position of the focusing plane is indeed given by:

zf = zi + ∆z, (5.21)

with
∆z =

(
cl
c0

− c0
cl

)
zl. (5.22)

The parameter ∆z can be seen as a defocus [Fig. 5.8C]. Remarkably, the defocus ∆ẑlayer does
not depend on the position zs of the scatterer if c0 = c, so that it is constant and can be easily
estimated by spatially averaging all points located in the target medium.

6.3 An optimization step before the distortion matrix

Compensating a defocus can thus be seen as a first optimization step before targeting remaining
transverse aberrations thanks to the distortion matrix approach [Fig. 5.2A]. We can now propose
a general procedure to compensate for aberrations:

– (i) First, the concavity (∆z) at each spatio-temporal point (ρ, t) is optimized, allowing the
compensation of low-order aberrations. We will see in the next chapter that concavity can
also be optimized with the speed of sound hypothesis (c0).

– (ii) Higher order aberrations, characterized by a much more complex shape, are then
compensated for using the distortion matrix framework (see Chapters 2, 3 and 4).

This optimization step becomes crucial when dealing with a reduced set of insonifications,
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6. Application to imaging in multi-layered media

i.e. a partial recording of the reflection matrix [Fig. 5.9].
To illustrate this assertion, the same Plexiglas experiment studied in a previous work [Lam-

bert, 2020c] is investigated with a similar acquisition described in [Table. 2.1]. An incoherent
RPSF is extracted in the echogenic structure indicated by the white box in panel A, either using
81 plane-waves [Fig. 5.9B] or with a down-sampled input basis with only 9 angles [Fig. 5.9C].
With this reduced set of insonifications, aliasing appears in the transverse direction (∆x) and
the distortion matrix approach applied with a reference curvature (∆z = 0) would be hazardous.
The application of a defocus allows avoiding aliasing induced by a reduced number of insonifica-
tions, before examining potential remaining transverse aberrations with the distortion matrix,
for example.

This proof-of-concept is interesting from an academic point of view but remains quite limited
as it only considers the case of a transverse invariant aberrating layer. In practice, this is
never strictly the case. For example, in brain imaging, is characterized by porosity and skull
thickness inhomogeneities. In liver imaging, ultrasound should propagate through an irregular

Figure 5.8: A multilayered experiment (Plexiglas on a tissue mimicking phantom). (A)
Plane wave emission in a bilayer medium with speed of sound (cl, ct) (B) Recording of backscat-
tered echoes associated to a strong reflector s (C) Time reversal in a medium of speed-of-sound
ct (D) Change of curvature on time-reversed signal so that the ballistic time matches the focus
(E) Schematic of an experiment where a Plexiglas layer is placed between a tissue mimicking
phantom and the probe. (F) RPSF in the tissue mimicking phantom (G, H) Original and
corrected image after changing the focusing curvature, respectively.
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Chapter 5. Matrix compensation of axial aberrations

Figure 5.9: Effect of a reduce set of insonifications on the RPSF. (A) Confocal image.
(B, C) Incoherent RPSF associated with the white box in panel (A) using 81 plane waves or 9
plane waves, respectively.

arrangement of adipose and muscle layers before reaching the organ.
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7 Application to in vivo imaging

A single defocus is, however, not sufficient to compensate for spatially distributed aberrations
that occur in vivo. Nevertheless, a local defocus map can be extracted and further used to apply
a different axial shift for each focal point.

[Fig. 5.10] considers an in vivo ultrasound imaging experiment on a liver, in which an
irregular arrangement of adipose and muscular tissues impairs the quality of the ultrasound
image [Fig. 5.11A]. Ultrasound sequence parameters are described in [Table 5.2].

Parameters Value

Probe

Type Curve
Curvature radius Ru = 60 mm
Number of transducers Nu = Nuout = 192
Angular transducer pitch δΘu = 0.32◦

Aperture ∆Θu = 60◦

Central frequency fc = 3.5 MHz
Bandwidth ∆f = [1 − 6] MHz

Acquisition

Electronic hardware Aixplorer®, Supersonic Imagine
Speed-of-sound hypothesis c0 = 1540 m/s

Plane wave angles
Maximum θin = 20◦ (calculated at c0)
Pitch δθin = 1◦ (calculated at c0)
Number Nθin = 41

Sampling frequency fs = 26.7 MHz
Recording time ∆t = 235 µs

Table 5.2: Acquisition of the reflection matrix, Rθu(t) ≡ [R(θin, uout, t)], in a difficult-
to-image patient liver.

The method described above is extended to the case of a curved probe, which amounts to
replacing the Cartesian coordinates (x, z) with polar coordinates (Θ, R), R playing the same
role as the depth/curvature (z) with a linear array. The method is applied using the estimator
described in (Eq. 5.11) which corresponds to the incoherent RPSF.

[Fig. 5.10B] shows the map of the estimated defocus at each point in the image. In contrast
to previous academic experiments, this defocus is not homogeneous over the field of view. This
is mainly due to the lateral variations of the sound velocity in the aberrating layers, which result
in a rather large lateral variation of the focus defect. The axial variation of the focus defect in
the liver is related to the mismatch between the velocity model c0 and the velocity of sound c(r)
in the liver.

A corrected image can thus be obtained by compensating locally each defocus:

I(corr)(ρ, t) = |RD(ρ, t, ∆ρ = 0, ∆ẑ(ρ, t))|2. (5.23)

As a result, the confocal signal is largely enhanced with a speckle brightness improved of about
5 dB [Fig. 5.11A,B]. As a consequence, some structure appears more clearly, such as the muscle
fibers [Fig. 5.11C] or the veins [Fig. 5.11D] inside the liver. Resolution enhancement can be
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evaluated directly on the focused reflection matrix [Fig. 5.12A,B] at the ballistic time. The
transverse RPSF shows a resolution enhancement of about a factor 2 [Fig. 5.12C].

Assuming an infinite probe, no refraction and under a paraxial approximation, the defocus
map can even be translated into an integrated speed-of-sound imaging map [Lambert, 2020a].
However, a huge bias remains as it relies on strong assumptions. A more convenient method to
map the speed-of-sound is proposed in the next Chapter.

Figure 5.10: Local defocus map in an in vivo imaging of a difficult-to-image patient
liver. (A) Confocal image and (B) local defocus map.
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Figure 5.11: Compensation of local defocus on the liver image of a difficult-to-image
patient liver. (A, B) Original and corrected image, respectively. (C-E) Zoom on specific areas
of the field of view containing either muscle fibers or veins. The subscripts “1” and “2” stands
for before and after local defocus correction, respectively. Ultrasound images are normalized by
the global maximum between the two images.

Figure 5.12: Effect of local defocus compensation on transverse focused reflection
matrices. (A, B) Focused reflection matrix before and after correction (corresponding to
t = 77.9 µs), respectively. (C) Spatial averaged anti-diagonals.

8 Conclusion & Perspectives

In this chapter, we have shown that it was possible to map a local defocus even in a random
medium by finding the optimal focal curvature for each point in the field-of-view. The attenu-
ation in the medium was overcome by scanning the depth of input and output focal points at
each echo time. This appears to be particularly relevant for multi-layered media, where a single
defocus can be compensated to produce a close to ideal image. In addition, we have presented
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an application of local defocus correction in an in vivo imaging experiment of a difficult-to-image
patient liver. Such a local compensation of defocus allows producing a better contrasted and
resolved image than a conventional B-mode. This correction can be considered as a preliminary
step before addressing the higher order aberrations through the distortion matrix approach.

In the next chapter, we will show that a similar method can be applied by scanning the
speed-of-sound hypothesis instead of the focal depth. In this way, a map of the integrated
speed-of-sound can be extracted. It results in an ultrasound image whose axial dimension is
dictated by the true depth of scatterers and no longer by the echo time, as this is usually the
case in conventional B-mode.
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Chapter 6
Reflection matrix approach for
speed-of-sound tomography

Extending the method described in the previous chapter, the speed of sound at any
point in the medium can now be estimated. Such a parameter is not only of interest
as a biomarker, but its mapping can also be used to produce near-ideal images with
better accuracy on distance measurements.
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Chapter 6. Reflection matrix approach for speed-of-sound tomography

1 Introduction

Quantitative imaging goes beyond a simple image of medium reflectivity. It consists in mapping
physical parameters that control wave propagation or scattering inside the medium. Exam-
ples include Doppler imaging, which quantifies the velocity of red-blood cells, or elastography
[Bercoff, 2004], which measures the stiffness of tissues. In the latter, known as shear wave elas-
tography, a shear wave is generated in the medium and its propagation is monitored by means
of ultrafast imaging [Sandrin, 1999; Montaldo, 2009; Tanter, 2014]. From this movie of wave
propagation, the shear wave velocity can be extracted locally. It provides a map of the shear
modulus that describes the stiffness of soft tissues. This observable enables the detection of
abnormalities such as malignant tumors [Samani, 2007; Fung, 1993].

Mapping the speed-of-sound of longitudinal waves used for ultrasound imaging is even a
greater challenge and an active research topic. As shear wave velocity, older studies show that
its quantification could be used as a bioindicator to detect abnormal soft tissues characteristics
[Bamber, 1979; Sehgal, 1986] such as malignant tumors [Ozmen, 2015; Ruby, 2019] or hepatic
steatosis [Imbault, 2017; Imbault, 2018; Dioguardi Burgio, 2019]. The latter occurs, for example,
when fat droplets accumulate in the liver and reduce the effective speed-of-sound of the medium,
since fat tissue has a lower sound velocity (c0 = 1480 m/s) than liver tissue (c0 = 1600 m/s)
[Bamber, 1981; Chen, 1987; Duck, 1990]. However, it should be emphasized that an accuracy
of at least 1% (≈ 10 m/s) must be achieved to provide quantitative results [Robinson, 1991].

Even more, retrieving the spatial variations of longitudinal wave velocity can be considered
as the holy grail of imaging, since it allows the extraction of the optimal time-of-flight
connecting each transducer to each point of the medium to produce a close-to-ideal image of the
medium. In a transmission configuration, Traditional Ultrasonic Computed Tomography applies
this concept in reverse by exploiting the ballistic time echoes, that can be used to minimize
the eikonal equation using Fermat’s principle, resulting in a tomography of the speed-of-sound
of the medium [Duric, 2007; Hormati, 2010; Li, 2010; Huthwaite, 2011; Hu, 2022; Johnson,
2007; Perez-Liva, 2020; Greenleaf, 1975; Glover, 1977b; Greenleaf, 1975; Glover, 1977b; Duric,
2007; Wiskin, 2007; Lavarello, 2008; Lavarello, 2009; Hormati, 2010; Li, 2010; Huthwaite, 2011;
Ali, 2019]. This method can be considered as a very similar problem to CT-scan reconstruction
using the Radon transform, but here refraction must also be considered. However, such a method
cannot be applied to a reflection configuration where only backscattered echoes are recorded.

Currently, there are two main groups of methods for determining the local speed-of-sound of
longitudinal waves of an unknown medium in an epi-detection configuration. The first group of
methods is based on the optimization of an image quality criterion with respect to the hypothesis
of the speed-of-sound established during beamforming. Repeating this process for each point
can lead to a map of the integrated speed-of-sound of the medium, that takes into account all
heterogeneities between a point and the probe. Then, an inversion problem is formulated and
solved to determine the local speed-of-sound [Jakovljevic, 2018]. A second group of methods
estimates the local phase-shifts between different insonification directions [Jaeger, 2015a], as-
suming that each insonification direction is subject to different heterogeneities of the medium.
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Again, an inverse problem is then solved to determine the local speed-of-sound of the medium.
Such a map of local speed-of-sound can be used to correct aberrations [Stahli, 2021; Rau, 2019]
or even for a more complex beamforming algorithm [Vyas, 2012; Augustin, 2021; Ali, 2022] to
improve both the focusing quality and the estimation of the position of each scatterer, resulting
in a near-ideal image.

In this chapter, we transfer the optimization-based method for extracting a local defocus
described in the previous chapter to the local estimation of the integrated speed-of-sound of an
unknown medium. In other words, instead of scanning the focal curvature through the depth
of the focal spot, we directly scan the speed-of-sound hypothesis. This wealth of information is
particularly interesting because it allows us not only to locally compensate for low-order trans-
verse aberrations due to speed-of-sound errors at each point, but also to provide an ultrasound
image whose axial dimension is no longer dictated by the echo time but by the depth itself.
This feature may represent a major advance in ultrasound, since it allows a much more accurate
measurement of distances in ultrasound images. Indeed, many ultrasound diagnoses rely on
distance measurements, such as the monitoring of fetal growth or the detection of chromosomal
abnormalities in obstetrics [Nicolaides, 1992].

After a more detailed presentation of the state of the art on the topic, the implications of
an incorrect speed-of-sound hypothesis are explored in a phantom experiment to better explain
the problem we face. Our method for extracting a speed-of-sound map is then validated in both
numerical simulations and phantom experiments before being extended to liver imaging of a
difficult-to-image patient.

2 State of the art

2.1 Pioneering works

The first studies dedicated to estimating the speed of sound measurements in reflection were
obtained by placing several probes on the same side of the medium. It was noticed that any
mismatch between the wave velocity model c0 and the speed-of-sound distribution c(r) induced
a deterioration of the image, and more precisely, a shift of the objects as a function of the
observation angle. [Carpenter, 1977; Robinson, 1982; Ophir, 1986; Kontonassios, 1987; Shattuck,
1989]. This displacement was then used to estimate the speed of sound in the medium. This
method, called crossed-beam tracking, was later adapted using synthetic apertures within a
single probe [Kondo, 1990; Krucker, 2004; Céspedes, 1992]. Another approach, using only a
single transducer, was to study the time-of-flight shifts along the propagation axis when the
medium is axially compressed [Ophir, 1990].

Inspired from tomographic methods in seismology, another approach is to estimate the time-
of-flight directly from the raw RF signals by examining the correlations between the receiving
channels. The speed of sound can then be estimated using a fit performed either in the spatial
[Anderson, 1998] or temporal [Pereira, 2002] domain.
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2.2 Integrated speed of sound

Thanks to the increasing capacity of data storage and computations, a much straightforward
approach has been to optimize a given parameter of the medium as a function of the beamform-
ing speed of sound hypothesis, resulting in an estimation of the effective speed-of-sound of the
medium. Numerous set of parameters, such as the coherence factor [Imbault, 2017; Dioguardi
Burgio, 2019], the speckle or strong reflector brightness [Benjamin, 2018; Zubajlo, 2018; Napoli-
tano, 2006; Cho, 2009; Yoon, 2012; Yoon, 2011] or the deconvolution process with a given dataset
of PSFs [Shin, 2010], have been studied. More recently, a local focusing criterion derived from
the focused reflection matrix was optimized as a function of speed of sound [Lambert, 2020b] as
described in Chapter 2.

All these methods can be used to determine the integrated speed of sound cint (also called
average, mean, effective, or global in previous works), which accounts for all spatial variations
from the probe to a given focal point. It is very important to distinguish it from the local
speed-of-sound of the medium, denoted cloc, which directly accounts for the spatial dependence
of the speed of sound.

1st order eikonal equation

In a multi-layered medium, cloc(z) and cint(z) can be related as follows:

z

cint(z) =
∫ z

0

dz′

cloc(z′) . (6.1)

2.3 Local speed-of-sound: an inverse problem

Since the goal is to determine the local speed of sound at any point in the field of view, several
methods use the above indicators to first extract a map of the integrated speed of sound and
then derive a map of the local speed of sound by formulating an inverse problem. In the case
of multi-layered media, such an inverse problem is equivalent to a numerical differentiation of
(Eq. 6.1). Jakovljevic et al. [Jakovljevic, 2018] used a gradient algorithm to estimate the local
axial speed-of-sound in layered media from global estimates based on the indicator described by
Anderson et al. [Anderson, 1998]. The method was then improved using the coherence factor to
estimate global speed-of-sound [Ali, 2021; Telichko, 2022]. Byram et al. [Byram, 2012] use the
indicator introduced by Anderson et al. [Anderson, 1998] to estimate the mean speed of sound.
By calculating the time of flight between virtual detectors embedded in the medium, the local
speed of sound can then be derived.

In parallel, the method of crossed beam-tracking [Kondo, 1990] has been generalized to the
case of data acquired with linear and convex probes emitting a series of plane or diverging waves
[Jaeger, 2015a; Jaeger, 2015b; Stähli, 2020; Rau, 2021; Sanabria, 2018a; Stahli, 2019; Jaeger,
2022; Sanabria, 2018b; Jaeger, 2022]. The method, namely Computed Ultrasound Tomography
in Echo mode (CUTE), consists in examining, for each point of the field-of-view, the phase shift
δϕ of each image pixel between different insonifications θin. Then, an inverse problem, relating
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these phase-shifts to the local speed-of-sound, is formulated and solved. Although this method
has already shown promising results, its main limitation lies in its inherent angular dependence
[Podkowa, 2020], which limits its application mainly to the estimation of the speed of sound
in the lateral direction. Furthermore, its robustness decreases, as the numerical aperture, with
depth.

Regardless of the method used, the inverse problem to derive a map of the local speed-of-
sound is ill-posed, as there are multiple solutions for a given phase-shift map or a given integrated
speed-of-sound map. To circumvent this problem, a regularization method must be employed
[Stahli, 2021; Ali, 2018; Ali, 2019; Sanabria, 2020].

It can be noticed, that most of the above-mentioned methods does not account for refraction
events and thus assume a medium with relatively slow variations of speed-of-sound. When tar-
geting more complex media such as transcranial imaging, refraction has to be taken into account
in order to retrieve a spatially resolved map without artifacts. Beuret et al. [Beuret, 2020] have
extended the CUTE method by taking into account refraction. More recently, Heriard et al.
[Hériard-Dubreuil, 2023] have provided an angular-based method, that accounts for refraction,
both at input and output.

At last, with the rapidly growing advances in artificial intelligence (AI), a new set of methods
based on deep convolutional neural networks has emerged [Feigin, 2020]. The development of
such algorithms requires a large training dataset, which can be generated using open-source
software such as Field II [Jensen, 1991] or k-wave [Treeby, 2010]. However, it is important
to keep in mind that even though the results of AI methods are very promising, it is a black
box with an inherent bias due to the quality and the specificity of each training data set. In
other words, it strongly depends on the accuracy with which a particular in vivo medium is
numerically modelled.

3 Effects of an incorrect speed-of-sound hypothesis

Before presenting our new optimization-based estimator, we describe the effects of an incorrect
speed-of-sound hypothesis on a reconstructed ultrasound image. For simplification, let us con-
sider a homogeneous medium with velocity c. As in the previous chapter, an analogy between
numerical beamforming and a physical time-reversal experiment is explored to illus-
trate these detrimental effects [Fig. 6.1]. Indeed, the beamforming process can be seen as the
digital counterpart of a time reversal experiment in which one would try to refocus the backscat-
tered wave of a scatterer s in a medium of speed-of-sound c in a new medium of speed-of-sound
c0:

– A plane wave (θin = 0◦) is emitted by an ultrasound probe at t = 0 µs in a medium of
velocity c [Fig. 6.1A]. Its interaction with the scatterer s gives rise to a backscattered
wave that propagates towards the probe and upon which the acoustic field is recorded
from t = 0 µs [Fig. 6.1B] ;

– The recorded echoes are then time-reversed (t → −t) and re-emitted either into a medium
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of velocity c0 = c [Fig. 6.1C] or into a medium of velocity c0 > c [Fig. 6.1D].

In the first case (c0 = c), the focusing of the re-emitted wave occurs at the ballistic time
t = 2zs

c and at the same spatial coordinates as the scatterer (zs). In other words, the focusing
plane zf coincides with the imaging plane zi = c0t/2 associated with the ballistic time t. Hence,
in the second case where c0 > c (or c0 < c), the focusing of the wave takes place upstream (or
downstream) at a depth:

zf = c

c0
zs, (6.2)

under the paraxial approximation, while the isochronous volume associated with the target’s
time-of-flight appears downstream (or upstream) of the focal plane:

zi = 1
2c0t = zs

c0
c

. (6.3)

Thus, the ultrasound image makes the scatterer appear at the wrong depth (zi ̸= zs) and
its image is degraded because the focal plane does not match the imaging plane associated with
the isochronous volume of the scatterer (zi ̸= zf) [Fig. 6.1D]. This thought experiment shows
that the mismatch between the model and real speed-of-sound induces a defocus. In optics,
this corresponds to the case where the imaging plane (zi) of the camera does not match the
coherence plane (zf) of the target object, resulting in a blurred image. Here, the impact of a
velocity mismatch was considered at the output, but the same reasoning applies to the input by
spatial reciprocity.

The phantom experiment previously described in Chapter 2 is examined to illustrate such
detrimental effects [Fig. 6.1E], with sequence parameters described in [Table. 2.1]. [Fig. 6.1F]
shows the ideal image obtained while assuming the correct speed-of-sound during beamforming
(c0 = c). [Fig. 6.1G] shows the image obtained while assuming an incorrect speed-of-sound
c0 > c during beamforming. As describe before, the dissociation between the spatial focus
(zf) and the isochronous volume (zi = 1

2c0t) leads to a widened and distorted focal spot and
thus a poor transverse resolution of each bright spot. Furthermore, scatterers appear at the
wrong depth so that there is an uncertainty for each ultrasound image on the axial dimension
of the image which is governed by the echo time t and which makes any distance measurement
hazardous.
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Figure 6.1: Analogy between numerical beamforming and a physical time reversal
experiment. (A) Plane wave emission and (B) recording of backscattered echoes in a medium
of velocity ct. (C, D) Time reversal in a medium of same (c0 = ct) or different (c0 ̸= ct)
speed-of-sound, respectively. (E) Schematic of a tissue mimicking phantom experiment. (F,
G) Beamforming with correct or incorrect speed-of-sound, respectively.

4 Scanning the speed-of-sound model

In the same spirit of the method described in the previous chapter, the focal curvature is now
controlled directly via the velocity model c0 to investigate the defocus described in [Fig. 6.1].
To this end, the focused R−matrix is now built for a range of speed of sound models (c0), while
the emitted and received focal spots are considered at the expected ballistic depth (zin = zout =
c0t/2) following (Eq. 5.1):

RD(ρ, t, ∆ρ, c0) = R(ρin, ρout, z = c0t/2, t, c0). (6.4)

The dependence of the focused R-matrix on the speed of sound assumption is now explicit.
The R-matrix is now reshaped as a two-dimensional matrix as RPSF = [RD({ρ, t}, {∆ρ, c0})],
where each line represents a realization of the RPSF as a function of the velocity model c0 for
a speckle grain characterized by its transverse position ρ and the echo time t, as shown in [Fig.
6.2A].
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Figure 6.2: Scan of the RPSF as a function of wave velocity model in ultrasound
speckle (Tissue mimicking phantom experiment). (A) Modulus of RPSF for one speckle real-
ization at (x, t) = (0 mm, 42.9 µs). (B) Incoherent RPSF. (C, D) Modulus and imaginary part
of the coherent RPSF, respectively. (E) Derivative of the imaginary part of the coherent RPSF.
(F, G) Phase and imaginary part of the confocal component of the coherent RPSF (∆x = 0
mm). (H) Confocal component of each estimator. The blue curve is the incoherent RPSF. The
orange curve is the modulus of the coherent RPSF. The yellow curve is the complex derivative
of the coherent RPSF. The purple curve is the derivative of the imaginary part of the coherent
RPSF. Spatial average is here performed with a window of size (Wx, Wt) = (10 mm, 1.3 µs).

Even though the focusing process can be observed with an intensity maximum close to the
confocal point (∆ρ = 0 mm) and a speed-of-sound value c0 = cp, some fluctuations due to the
random reflectivity of the sample emerge when we are out-of-focus (c0 ̸= cp).

5 Spatial averaging

As in the previous chapter, a local average of the RSPF can be performed in various ways to
smooth out these fluctuations.

5.1 Incoherent

The most direct way is to perform an incoherent average of the RPSF around each point (ρ, t)
of the image:

RPSFinc(ρ, t, ∆ρ, c0) =
√

⟨|RPSF (ρ′, t′, ∆ρ, c0)|2W(ρ′ − ρ, t′ − t)⟩[ρ′,t′]. (6.5)
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5. Spatial averaging

A direct estimation of the integrated speed-of-sound can be obtained by considering the value
of c0 that maximizes the incoherent RPSF at this point [Blue curve on Fig. 6.2H]:

ĉ
(inc)
int (ρ, t) = argmax

[c0,∆ρ]
{RPSFinc(∆ρ, c0, ρ, t)} . (6.6)

Here, the speed-of-sound of the phantom is determined to be ĉ
(inc)
int = 1534 m/s, which is a

deviation of about 4% compared to the manufacturer’s value (cp = 1540 m/s).
When considering only the confocal component (∆ρ = 0) of the RPSF, this estimator is

quite similar to the one proposed by [Perrot, 2021]. However, the authors maximize this quantity
for the whole field-of-view and only extracted a mean speed-of-sound. Yet, the speed-of-sound
often display a complex distribution in soft tissues.

In practice, a speed-of-sound map is extracted using a spatio-temporal Gaussian kernel,
whose size directly limits the computational time. In addition, faster computing can be reached
when only investigating the confocal component of the RPSF (∆ρ = 0). However, precision may
be lower at the edges of the field-of-view because the focal spot may be tilted. The influence of
the core size is investigated in an experiment where a layer of water is placed between the probe
and the phantom [Fig. 6.3], with sequence parameters described in [Table. 2.1]. Without aver-
aging [Fig. 6.3B], the reconstruction of the speed-of-sound map is quite noisy due to the speckle
fluctuations [Fig. 6.2A]. By increasing the size of the kernel, this detrimental effect can be over-
come, but the presence of strong reflectors can still bias the result in their vicinity [Fig. 6.3C1].
Finally, with an empirical size of 5λ in this experiment [Fig. 6.3D2], a continuous integrated
speed-of-sound map can be extracted [Fig. 6.3D1]. This map is an estimator of the effective
speed-of-sound (not the local one), since it cumulates all the speed-of-sound inhomogeneities
experienced by the wave as it travels from the probe to a given focal point. Even though this
particular experiment is transversely invariant, the recovered map is two-dimensional and not
restricted to the axial dimension, as we will see further.

5.2 Coherent

To improve the accuracy of our speed-of-sound estimator, a coherent RPSF can be extracted
through a singular value decomposition of RPSF = [RD({ρ, t}, {∆ρ, c0})]:

RPSF = V† × Σ × U, (6.7)

where Σ is a diagonal matrix containing the singular values σi in descending order: σ1 > σ2 >

.. > σN . U and V are unitary matrices that contain the orthonormal set of output and input
eigenvectors, Ui = [Ui(∆ρ, c0)] and Vi = [Vi(ρ, t)]. The first singular vector thus constitutes
the coherent RPSF [Fig. 6.2C,D]:

RPSFcoh(∆ρ, c0, ρ, t) ≡ U1(∆ρ, c0, ρ, t). (6.8)
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Chapter 6. Reflection matrix approach for speed-of-sound tomography

Figure 6.3: Influence of spatial averaging on the estimation of the integrated speed-
of-sound. The results shown here correspond to an imaging experiment of a tissue mimicking
phantom (cp = 1540 m/s) through a layer of water (cw ≈ 1480 m/s). (A) Confocal image
(B, C, D) Extracted speed-of-sound map from the incoherent RPSF without averaging and by
averaging with a Gaussian kernel of standard deviation of 2 and 5 lambda, respectively.

An example of the coherent RPSF is presented in [Fig. 6.2C], which shows an amplitude with a
much lower background than the incoherent RPSF [orange curve on Fig. 6.2H]. An estimation
of the integrated speed-of-sound can thus be extracted by considering the speed-of-sound c0 that
maximizes the coherent RPSF:

ĉ
(coh)
int = (ρ, t) = argmax

[c0,∆ρ]
{|RPSFcoh(∆ρ, c0, ρ, t)|} . (6.9)

In the light of (equation 5.16), the coherent RPSF is expected to give a much better sensitivity
than the incoherent RPSF for estimating the speed-of-sound.

Similar to the method described in the previous chapter, it is also possible to observe the
double Gouy phase jump at the focus [Fig. 6.2F]. The origin of the Gouy phase shift lies in the
transverse confinement of the focused wave-field [Feng, 2001], which therefore depends on the
numerical aperture. The influence of the input numerical aperture is therefore studied in [Fig.
6.4]. For a single plane wave (θin = 0◦), the estimation of the speed-of-sound fails with both the
incoherent and coherent RPSF [red curve in Fig. 6.4A, C]. As the numerical aperture increases,
the slope of the Gouy phase jump becomes steeper [Fig. 6.4B], resulting in a sharper peak when
considering the coherent RPSF [green curve in Fig. 6.4C]. In addition, it is very likely that the
variations observed in [Fig. 6.4C] in the estimate of the integrated sound velocity are due to the
acoustic lens in front of the probe, whose velocity is much lower and to which the large angles
would be more sensitive. Effects of the acoustic lens are described in more details in (Section
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5. Spatial averaging

Figure 6.4: Influence of the input numerical aperture on axial RPSFs. (A) Amplitude
of the confocal component of the incoherent RPSF. (B) Phase of the confocal component of
the coherent RPSF. (C) Derivative of the imaginary part of the coherent RPSF. The three are
shown as a function of the wave velocity model c0. Numerical aperture increases from red to
green. Results presented here are in a tissue mimicking phantom with parameters described in
[Table. 2.1]. The selected point is located at (x, t)=(0 mm, 42.9 µs) and the average window is
(Wx, Wt)=(20 mm, 2.6 µs).

6).
An even better estimator of cint can thus be built by combining both the phase and the

amplitude of the coherent RPSF. To this end, the axial derivative of the imaginary part [Fig.
6.2D] appear to be a relevant observable as its confocal component is characterized by a steep
slope as shown in [Fig. 6.2G]. A new estimator can thus be constructed:

ĉ
(gouy)
int (ρ, t) = argmax

c0
{|∂c0Im[RPSFcoh(∆ρ = 0, c0, ρ, t)]|} . (6.10)

As it combines both an amplitude and phase information, it constitutes a sharp estimator of
the position of the focal plane, as illustrated in [Fig. 6.2E].

5.3 Comparison between the different estimators

To compare all the estimators presented so far, we now consider only the confocal component,
as shown in [Fig. 6.5]. Although the derivation of the imaginary part of the coherent RPSF
[green line in Fig. 6.5] appears to be more accurate in this case, the singular value decomposition
may introduce a bias with respect to the phase reference of the wave-field. To eliminate this
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Figure 6.5: Comparison of each speed-of-sound estimator. Results presented here are
obtained in the tissue mimicking phantom at (x, t) = (0 mm, 32.5 µs) and the average window
is (Wx, Wt)=(15 mm, 0 µs). The blue curve refers to the amplitude of the incoherent RPSF. The
orange curve refers to the amplitude of the coherent RPSF. The yellow curve refers to the square
value of the focusing criterion, defined in (equation 2.43), as a function of the speed-of-sound
hypothesis. The purple curve refers to the complex derivative of the coherent RPSF. The green
curve refers to the derivative of the imaginary part of the coherent RPSF.

bias, the complex derivative of the coherent RPSF may be a solution [purple line in Fig. 6.5].
However, such numerical differentiation-based estimators also exhibit a larger noise background,
which can be reduced by prior smoothing, but may also affect their accuracy. Therefore, a more
in-depth study is needed to compare the robustness of each estimator with respect to noise. To
this end, their behavior with respect to the number of resolution cells in each spatial window
W has to be investigated.

Another important aspect is the time processing required for each estimator. First, only the
confocal component can be studied to reduce the computational time. Second, as the coherent
estimator is based on an SVD for each point, it appears drastically time-consuming, compared
to the incoherent RPSF whose spatial average can be calculated in a quite fast way by spatial
convolution. Although the study of the coherent RPSF takes much more time, it appears to be
a more accurate estimator and can be relevant when one wants to extract a value of the speed
of sound at a particular point with higher accuracy.

Finally, we now compare our estimator (Eq. 6.10) based on the Gouy phase shift and the
estimator based on the normalized focusing criterion (Eq. 2.43) introduced in Chapter 2 [yellow
line in Fig. 6.5]. Interestingly, the estimator based on the Gouy phase jump [green line in Fig.
6.5] is more accurate by a factor of about

√
2 than the focusing criterion. To compare the two

on the same basis, the square of the focusing criterion was plotted. It can be emphasized that
while the focusing criterion appears to be a robust and sensitive estimator of the speed of sound,
it inherently requires the scanning of both the transverse axis (∆ρ ̸= 0) and the velocity model,
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which is quite computational intensive.

6 A corrected image with better distances accuracy

Such a local map of the integrated speed-of-sound can be used directly for local correction of
axial aberrations by optimizing the focusing law parametrized by c0 so that the focal plane zf

coincides with the imaging plane zi = c0t/2 [Fig. 6.1C-D]:

Icorr(ρ, t) =
∣∣∣RD(ρ, ∆ρ = 0, t, c0 = ĉ

(gouy)
int (ρ, t))

∣∣∣ 2. (6.11)

Assuming no refraction, i.e. straight paths of wave propagation, the speed-of-sound map
can finally be used to position each spatio-temporal point r = (ρ, t) with better accuracy such
that the estimation of their axial position is given by:

ẑ(ρ, t) = 1
2 ĉint(ρ, t)t. (6.12)

To validate the method, multi-layered experiments are now performed with a phantom, with
parameters described in [Tab. 2.1]. In the first experiment, the probe is directly placed in
contact with the tissue phantom (homogeneous medium) [Fig. 6.6A1]. The integrated speed-
of-sound shows a deviation at shallow depths compared to the manufacturer’s value (cp = 1540
m/s) [Fig. 6.6B1]. We attribute this difference to the acoustic lens of the probe, which needs
to be taken into account for more robust measurements. In any case, (Eq. 6.11) can be used to
obtain a corrected image showing an improvement in resolution at shallow depths, as indicated
by the reflector marked with yellow arrows in [Fig. 6.6D1].

Adding a layer of water between the probe and the tissue mimicking phantom [Fig. 6.6A2]
leads to an image presenting a small defocus and a degraded resolution when looking at its bright
spots [Fig. 6.6C2]. Integrated speed-of-sound can be estimated using (Eq. 6.6) based on the
study of the incoherent RPSF [Fig. 6.6B2]. As expected, the estimated speed-of-sound matches
the water speed-of-sound (cw = 1480 m/s) at first depth and then tends towards the speed-
of-sound of the phantom as the depth increases. The corrected image shows a clear resolution
enhancement and accuracy on distances is recovered as the distance between the two deepest
strong reflectors matches the manufacturer value of 1 cm [Fig. 6.6D2].
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Figure 6.6: Speed-of-sound estimation in two multilayered phantom experiments.
(A) Schematic of the experiments. (B) Speed-of-sound estimation as a function of the depth.
(C) Original image displayed with a depth axis scaling as z(t) = 1

2c0t and with c0 = 1540 m/s
(D) Corrected image displayed with a corrected depth axis ẑ(x, t) = 1

2 ĉint(x, t)t. “1” refers to
the experiment in which the probe is in contact with the phantom. “2” refers to the case where
a layer of water is added between the two.
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7 From an integrated to a local speed of sound map

The speed-of-sound map that we manage to extract refers to an integrated speed-of-sound cint.
In other words, it takes into account all the spatial variations of the local speed-of-sound cloc seen
from the probe to a given focal point. To recover the local speed-of-sound across the medium,
we need to perform an inversion of (Eq. 6.1) and for this we take up the method developed in
the following article by Jakovljevic et al. [Jakovljevic, 2018], which is described in (Appendix
6). Note that the above inversion method is based on a very strong approximation that the
integrated speed of sound at a point cint(x, z) depends only on the upward axial values of the
local velocity cloc(x, z′ < z).

The local speed of sound can thus be extracted in the phantom experiment, as shown in
[green curve in Fig. 6.6B2]. However, this method is anything but optimal, as strong fluctua-
tions around the expected phantom sound velocity can be observed. Here, the regularization
of the inverse problem was performed by spatially smoothing the recovered integrated sound
velocity map before estimating the local sound velocity. However, more robust regularization
approaches can also be explored to obtain a more accurate local sound velocity map. Some of
these approaches are presented by Ali et al. [Ali, 2019].

8 Numerical validation

The phantom experiments have made it possible to illustrate and qualitatively validate the
method in the case of a homogeneous or multi-layered medium. However, there are some effects
such as the acoustic lens that prevent quantitative validation. To fill this gap, we are now
conducting a numerical study that allows quantitative validation and shows the limits of the
method, especially in the case of transverse variations in the speed of sound.

Four multilayered media are simulated using the open-source k-wave software [Treeby, 2010]
with the parameters described in [Tab. 6.1]. We then apply our method to retrieve the inte-
grated speed of sound [Fig. 6.7B] based on the study of the incoherent RPSF and with average
parameters described in [Table. 6.1]. The local speed-of-sound can be derived [Fig. 6.7C],
resulting in corrected images with more accurate distances [Fig. 6.7E].

First, a control simulation is investigated in a homogeneous medium (see Appendix 9). The
integrated and local speed-of-sound are found to be homogeneous, and the corrected image
shows no enhancement as the original image is already close to optimal (i.e. diffraction limited
resolution).

For a bi-layered medium with a horizontal interface [Fig. 6.7A], translating the integrated
speed-of-sound [Fig. 6.7B] into an estimated local speed-of-sound [Fig. 6.7C] allows better
definition of the separation between the two layers and more accurate determination of the
speed-of-sound of the second layer. After averaging such map laterally, the axial evolution is
also shown to better illustrate the accuracy of the method [Fig. 6.7F]. As previously described
in the phantom experiment, the integrated speed of sound matches the value of the speed of
sound of the first layer (c = 1700 m/s) at first depths and then tends to the speed-of-sound of the
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Parameters Value

Probe

Type Linear
Number of transducers Nu = Nuout = 376
Transducer pitch δu = 0.2 mm (< λ/2 at c0)
Aperture ∆ux = 77 mm
Central frequency fc = 3 MHz
Bandwidth ∆f = [1.8 − 4.7] MHz

Acquisition

Speed-of-sound hypothesis c0 = 1540 m/s

Plane wave angles
maximum θin = 40◦ (calculated at c0)
pitch δθin = 2◦ (calculated at c0)
number Nθin = 41

Medium
Speed-of-sound map see [Fig. 6.7A]

Density mean ⟨ρ⟩ = 1 kg.m−3

standard deviation σρ = 0.01 kg.m−3

Analysis Average window lateral Wx = 2.2 mm
axial Wt = 2.9 µs

ĉint estimator Incoherent RPSF (Eq. 6.6)

Regularization Smoothing of ĉint
lateral W(s)

x = 1.1 mm
axial W(s)

t = 1.4 µs

Table 6.1: Acquisition and analysis parameters of the numerical simulations. The
reflection matrix, Rθu(t) ≡ [R(θin, uout, t)], is generated using K-wave software.

second medium (c = 1540 m/s). Taking the corrected image according to (Eq. 6.11) leads to a
diffraction-limited image. In addition, using (Eq. 6.12) to correctly position each pixel provides
a better estimate of distances across the image, as seen by the slightly downshifted interface,
which now perfectly matches the true sound speed map, as shown by the yellow dashed line in
[Fig. 6.7D and E].

However, the integrated speed-of-sound map that we can obtain is two-dimensional and
therefore contains much more information than just axial variations of the speed of sound. To
demonstrate this point, we thus perform a numerical simulation, in which the interface is now
titled [Fig. 6.8A1]. Such lateral variations can be captured by the RSPF, as shown by the
lateral variation of the integrated speed-of-sound [Fig. 6.8B1]. Its inversion allows us to recover
the tilted shape of the interface consistent with ground truth, as shown by the gray dashed
lines [Fig. 6.8C1]. It can be emphasized that lateral variations can be extracted in the local
speed of sound map even if the inversion model is based only on the axial derivative. This
experiment demonstrates the wealth of information provided by the integrated speed of sound
map. In addition, the corrected image [Fig. 6.8E1] shows both better resolution, as indicated
by the strong reflectors, and better contrast than the original image [Fig. 6.8D1]. The left part
of the interface cannot be reached because the reflection cannot be detected by the probe due
to Snell-Descartes laws.

In a last case, we examine the limitations of our method by considering a medium with both
a horizontal and a vertical interface [Fig. 6.8A2]. Even though the speed of sound map shows
good agreement at the edges [Fig. 6.8C2], leading to a better estimation of the interface in the
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corrected image [Fig. 6.8E2], our method fails in the middle due to the vertical interface [Fig.
6.8A2]. It should be noted, however, that this extreme case with a large lateral discontinuity is
not very representative of the usual media studied in ultrasound imaging. In any case, this was
to be expected, since our inversion approach is based only on axial variations of the integrated
speed-of-sound. A more sophisticated inverse problem must be formulated to account for the
oblique paths of wave propagation. Moreover, one can be guided by state-of-the-art methods
that use insonifications from multiple angles to reconstruct the speed of sound map [Jaeger,
2015a]. In the future, it will be significant to extend our estimator to include the sub-aperture
at emission and reception so that the angular dependence of the RPSF can be used to map the
local speed-of-sound. Other, more sophisticated methods can account for the oblique trajectories
and refraction phenomena of the incident and reflected waves. These can be used to invert the

Figure 6.7: Numerical simulation of a bi-layered medium using K-wave software. (A)
Speed-of-sound map simulated. (B, C) Integrated and local speed-of-sound estimation, respec-
tively. (D) Original image. (E) Corrected image with each pixel reassigned to its estimated
position. (F) Axial profile of the integrated and local speed of sound after lateral averaging
of each map. Numerical simulations were performed using K-wave software with parameters
described in [Table. 6.1].
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integrated sound speed map obtained by our method.

Figure 6.8: Numerical simulations of a medium presenting lateral variations of the
speed-of-sound. (A) Speed-of-sound map simulated. (B, C) Integrated and local speed-
of-sound estimation, respectively. (D) Original image. (E) Corrected image with each pixel
reassigned to its estimated position. “1” refers to a bi-layered medium with an oblique interface.
“2” refers to the extreme case of a medium presenting both lateral and axial variations of the
speed of sound. Numerical simulations were performed using K-wave software with parameters
described in [Table. 6.1].
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9 Clinical application: a difficult to image patient liver

Now that our matrix method for speed-of-sound tomography has been investigated by means of
numerical simulations and phantom experiments, we apply it to in vivo imaging. As a proof-
of-concept, we consider a liver imaging experiment, as this is a multi-layered configuration in
which our method is supposed to succeed. To show how interesting our method is for medical
diagnosis, we test our approach on the patient’s ultrasound data already processed in Chapter 5,
whose acquisition sequence was described in [Table 5.2]. As this patient is potentially suffering
from a steatosis, the measurement of the liver speed-of-sound is critical for diagnosis purpose
[Imbault, 2017].

The conventional image (c0 = 1540 m/s) is displayed in [Fig. 6.9A]. It shows a low contrast
due to the huge layer of fat at shallow depths. The detection of a steatosis disease that may
manifest as a bright speckle in absence of aberrations [Mehta, 2008; Dasarathy, 2009] is thus
impossible from this ultrasound image.

An integrated speed-of-sound map ĉint(ρ, t) is obtained [Fig. 6.9C] from a local analysis of
the incoherent RPSF whose parameters are given in [Tab. 6.2]. The speed of sound has a very
low value in the first fat layer (∼ 1400 m/s). At a depth of z = 30 mm, it suddenly increases,
which is due to the presence of muscle fibers, as can be seen on the confocal image. The value
of the integrated sound velocity remains constant inside the liver.

The integrated speed-of-sound can provide a corrected image [Fig. 6.9B] using (equation
6.11). The confocal signal is clearly enhanced, as a large improvement in speckle brightness can
be observed. The interfaces between tissues exhibit much better lateral coherence, especially
at shallow depths, where the variations in the speed of sound are most drastic and their effects
on the image are most pronounced. The correction of axial aberrations is also accompanied by
a drastic reduction in transverse aberrations, and thus a significant improvement in transverse

Figure 6.9: Speed-of-sound mapping in an in vivo imaging experiment of a difficult-
to-image patient liver. (A, B) Original and corrected image, respectively. (C) Integrated
and (D) local speed-of-sound reconstruction.
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Parameters Value

Analysis Average window lateral WΘ = 6 ◦

axial Wt = 7.8 µs
ĉint estimator Incoherent RPSF (Eq. 6.6)

Regularization Smoothing of ĉint
lateral W(s)

Θ = 2.4 ◦

axial W(s)
t = 2.3 µs

Table 6.2: Analysis parameters for extracting the speed-of-sound in an in vivo imag-
ing experiment of a difficult-to-image patient liver.

Figure 6.10: Effect of speed-of-sound correction on transverse focused reflection ma-
trices. (A, B) Focused reflection matrix before and after correction (corresponding to t = 90.9
µs), respectively. (C) RPSF before (red curve) and after correction (green curve).

resolution and image contrast. This is confirmed when looking at the focused reflection matrix
[Fig. 6.10A, B] that clearly shows that energy is brought back in the vicinity of the diagonal
coefficients. An improvement in resolution by a factor of about two is emphasized by the
transverse spreading of the RPSF [Fig. 6.10C]. The integrated speed-of-sound can also be used
to reassign each pixel of the image to its true depth [Fig. 6.11]. As an example, we consider the
distance between two speckle spots at the extremity of the red and green arrows in [Fig. 6.11
B and C], respectively. The distance between these two points was overestimated by 3 mm in
the original image. This observation emphasizes the benefit that a reassignment of the pixels in
depth could offer for ultrasound diagnosis.

Finally, the inversion of the integrated speed-of-sound ĉint(ρ, t) shown in [Fig. 6.9C] gives
an estimator ĉloc(ρ, t) of the local sound velocity map c(r) shown in [Fig. 6.9D]. This local
sound velocity map shows the different tissue layers in the liver imaging experiment, especially
the fat layer and the muscle tissue, which show particularly contrasted sound velocities. The
measurement of sound velocity in the liver is crucial for the detection of diseases such as steatosis
[Imbault, 2017]. The speed of sound measured here in the patient’s liver is particularly low:
c ≈ 1450 m.s−1. In a healthy liver, the value is around 1600 m.s−1. This patient is therefore
probably suffering from steatosis.
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Figure 6.11: Accurate distances in an in vivo imaging experiment of a difficult-to-
image patient liver. (A) Repositioning map based on integrated speed-of-sound map. (B)
Corrected image only such that Rref(t) = 1

2creft. (C) Both re-positioned and corrected image
such that R̂(Θ, t) = 1

2cint(Θ, t)t, where (R, Θ) refers to polar coordinates.

10 Perspectives

In this work, sound velocity maps were obtained in vivo using the confocal component of the
incoherent RPSF. The reason for this was mainly processing time, since a moving average window
can be formulated quite easily by spatial convolution. Although the study of the coherent RPSF
at each point takes much more time because it requires an SVD at each point, it is still a more
accurate estimator and can be relevant when one wants to extract a value of the speed of sound
at a particular point with higher accuracy.

This method is very similar to the method described in the previous chapter. Although
the former method, which is based on the estimation of a defocus, seems to be relevant for
multilayered media with constant axial defocus, the present method, which maps the speed of
sound, seems to be more general since it directly provides a better estimate of the effective speed
of sound, which directly leads to a higher accuracy in determining the position of the individual
scatterers. Similarly, using the integrated sound velocity map for correction can be seen as
an initial optimization method that corrects axial aberrations at each point before using the
distortion matrix approach to capture the remaining higher order frequencies of the aberrations.

11 Conclusion

In this chapter, we have presented a new optimization-based method for extracting the integrated
speed-of-sound map of an unknown medium. Our criterion is based on a self-portrait of the
focusing process provided by the matrix imaging framework. The wave-field probed by virtual
transducers at neighbor locations are combined through an SVD process to provide a coherent
image of the local focusing process. The corresponding RPSF exhibits a Gouy phase shift and
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a maximum amplitude when the wave velocity model is optimal. From this observable, an
estimator of the integrated wave velocity has been built.

Besides directly generating images with better contrast and higher resolution, it allows posi-
tioning the depth of each scatterer with greater accuracy and thus to better evaluate the distance
across ultrasound images. Even more, the differentiation of the integrated wave velocity allows
an estimation of the local speed-of-sound. The method was validated by both simulations and
phantom experiments before being applied in an in vivo clinical experiment that consisted in
imaging the liver of a difficult-to-image patient. Our quantitative matrix imaging method allows
better visualization of structures such as muscle fibers or veins, but also the measurement of an
abnormally low speed-of-sound, characteristic of hepatic steatosis.

Although the coherent RPSF appears to be more accurate than its incoherent counterpart,
it still needs to be precisely quantified and some additional studies need to be performed to
determine both the robustness of each observable with respect to noise and their spatial resolu-
tion. In addition, the method must be compared to other state-of-the-art methods that optimize
the speed of sound based on other quality criteria. The method described here is different from
an angular approach that relies on phase mismatch between different insonification angles, i.e.
distinct transverse wave vectors. The method described by Jaeger et al. [Jaeger, 2015a] is well
suited for measuring lateral variations in the speed of sound, but it introduces a large bias on the
absolute value of the measured velocity. Nevertheless, the latter method seems to complement
our method, and it seems necessary to combine them. To this end, the matrix approach, which
allows easy switching between the plane wave basis and the focused basis, seems to be an ideal
tool for this fruitful combination. Moreover, the inversion of the problem could be both more
accurate and more robust if oblique paths, refraction and a more robust regularization method
were considered.

Finally, the perspective of this work will be to use the local speed-of-sound map as a new
forward model to obtain a novel ultrasound image free of transverse and axial aberrations.
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The main goal of this work was to extend the study of the reflection matrix along several
dimensions to finely compensate for aberrations and produce quantitative ultrasound images.

First, ultrasound matrix imaging was extended from 2D to 3D imaging using a matrix array
of transducers. Experimental results in transcranial imaging were presented, providing an image
with higher contrast and resolution, and a comparison with 2D imaging was made. It was then
shown how matrix imaging can be easily combined with other imaging modalities in the specific
case of Ultrasound Localization Microscopy. In this case, more bubbles can be detected and
tracked, resulting in a higher contrast image with higher resolution and fewer reconstruction
artifacts. These results were obtained in vivo in sheep. Second, the temporal degrees of freedom
were used to characterize the acoustic response of monodisperse microbubbles, paving the way for
a possible measurement of intra-arterial pressure in vivo. Last but not least, the spatio-temporal
degrees of freedom of the focused reflection matrix have been used to optimize parameters such
as the focal distance or the speed of sound, to correct axial aberrations (defocus) in ultrasound
images, and map the speed of sound for quantitative imaging of biological tissues.

A first direct application of this work is the future integration of matrix imaging into Hologic’s
ultrasound platform. Although striking results were obtained in this manuscript, obtaining the
same results in real time is a very different problem, as it requires a large amount of computing
power. Even though 2D imaging is nearly real-time [Table 3.3], it is illusory today to transfer
this method to real-time 3D imaging using a matrix array of transducers. To solve this problem,
the use of sparse array or, more recently, RCA probes seems very promising, as they drastically
reduce the number of channels and thus the required computational power. Another approach
is to place a scattering medium directly behind the ultrasound probe to practically increase the
effective aperture of the probe [Derode, 1995] and thus convert temporal degrees of freedom into
spatial ones [Lemoult, 2010] for imaging large volumes with a limited number of transducers.

Another limitation of matrix imaging is the relatively long time required to acquire the
fully sampled reflection matrix, while assuming a static medium. The method is therefore very
sensitive to “undesirable” motion, such as operator-induced probe motion, out-of-plane motion,
and also tissue motion (e.g. in cardiac imaging). Matrix imaging could therefore benefit from
state-of-the-art methods to compensate for such movements.

If tissue motion can be considered a problem, it could also be considered a key parameter
for obtaining biological information about the medium. Thus, a major challenge is to extend
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matrix imaging to dynamic imaging. A first approach for using matrix imaging to capture the
dynamics of biological tissue would be to reduce the number of insonifications, i.e. to perform
ultrafast imaging by recording only a partial reflection matrix. However, this comes at the cost of
aliasing artifacts in the focal plane [see Chapter 3, Section 3.3] and a break in symmetry between
input and output. Such acquisitions directly affect the quality of several criteria presented in
this thesis, e.g. for monitoring the convergence of the aberration law [see Chapter 3, Section
4.3.6] or for evaluating multiple scattering rates [see Chapter 3, Section 4.2.4]. Furthermore,
since the degree of aberration through the skull is very important in transcranial imaging, the
illumination base should be scanned almost completely if one wants to optimize the focusing
process, which limits the compounded frame rate to a few hertz.

Still, in cases with fewer aberrations, we can imagine that matrix imaging could take advan-
tage of ultrafast dynamic imaging to exploit, for example, fast decorrelation in vessels, leading
to numerous realizations of the disorder at the same point [Osmanski, 2012a]. In other words,
temporal averaging would replace spatial averaging. In principle, this could lead to an even
more localized estimate of the transmission matrix, since no isoplanatic assumption would be
made.

Another approach to extend matrix imaging to ultrafast in vivo imaging was presented in
this work using successive insonification sequences [see Chapter 4, Section 2]. First, a static
acquisition was performed to capture the fully sampled reflection matrix of the medium and
extract local aberration laws. These estimates were then used to compensate for aberrations in
a second ultrafast sequence, in which the insonification basis was drastically reduced to properly
track microbubbles. In this particular case, the recording of the reflection matrix is actually
much faster than the long recording time of several minutes required for microbubble tracking,
and is therefore not a major limitation here. It should be emphasized that such a framework has
been presented for the specific case of Ultrasound Localization Microscopy, but can be similarly
applied to other ultrasound imaging modalities.

The results presented for characterizing bubbles seem promising, but require further inves-
tigation to validate them. Furthermore, the exploitation of temporal degrees of freedom can
be used not only to characterize resonant objects, but also to tailor spatio-temporal focusing
laws in order to compensate multiple reverberations that generally occur in transcranial brain
imaging at shallow depths. This aspect is currently being investigated by Elsa Giraudat as part
of her PhD thesis.

As for mapping the speed of sound, our method can be improved in various ways. First, the
robustness of our new coherence-based estimators with respect to noise needs to be investigated.
Then, the development of propagation models based on the speed-of-sound map is needed to
refine the solution of the inverse problem and determine the local sound velocity from its inte-
grated counterpart. Our method must be compared, or even combined, with the most modern
methods of ultrasound imaging [Jaeger, 2015a] or even recent advances in applied mathematics
[Borcea, 2023; Borcea, 2022a; Borcea, 2022b] used to determine the local speed-of-sound map
of an unknown medium. In addition, our method can be combined with recent methods that
generate high-resolution images from local speed-of-sound estimates [Ali, 2022]. Such a com-
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bination could even be iterated to converge not only to an ideal image in terms of resolution,
but also to better position each individual scatterer, leading to optimal distance measurements.
This aspect will be explored in Emma Brenner’s PhD thesis on the specific clinical case of breast
imaging.

More generally, matrix imaging has been applied only to linear imaging. However, har-
monic imaging is a great tool that is widely used in the clinic, for example, to better detect
microbubbles or to achieve better contrast in cardiac imaging. In this context, the richness of
the reflection matrix must be explored to extract all valuable information related to nonlinear
wave propagation. For this reason, a matrix approach for harmonic imaging is currently being
developed by Thibaud Vernier as part of his PhD thesis.

Last but not least, matrix imaging is a general framework that applies not only to ultrasound,
but also to other fields of wave physics where a multi-element technology is used to study an
unknown medium. It has already demonstrated its advantages in seismic imaging [Blondel,
2018; Touma, 2021; Giraudat, 2023], in optical imaging [Badon, 2020; Barolle, 2021; Najar,
2023; Balondrade, 2023], and is currently being investigated for radar imaging applications as
part of Hussam Hanouni’s PhD thesis. Given the ever-increasing computational and storage
capabilities, matrix imaging has so far shown only a fraction of its potential in the field of wave
imaging.
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Appendix

1 Notations

Basis Symbol Adapted for
Acquisition basis Riu(t) = [R(iin, uout, t)] Data recording

Focused basis Rρρ(z) = [R(ρin, ρout, z)] Focusing quality and multiple
Common midpoint RM(z) = [R(∆ρ, ρm, z)] scattering quantification [Lambert, 2022b]

Rcr = [R(cin, rout)]

Local aberration compensation [Lambert, 2022a]

Dual basis Dcr = [D(cin, rout)]
(input) Cin = [C(cin, c′

in)]
T̂in = [T̂ (cin, rp)]

Rrc = [R(rin, cout)]
Dual basis Drc = [D(rin, cout)]
(output) Cout = [C(cout, c′

out)]
T̂out = [T̂ (rp, cout)]

Table 9.3: Matrix notations.

2 Fourier transform convention

The time Fourier transform is defined as follows :

R(ω) =
∫

dtR(t) exp(+jωt), (9.13)

R(t) =
∫

dωR(ω) exp(−jωt). (9.14)

The spatial Fourier transform is defined as follows:

R(k) =
∫

dρR(ρ) exp(+jkρ) =
∫ ∫

dxdyR(x, y) exp(+j [kxx + kyy]), (9.15)

R(ρ) =
∫

dkR(k) exp(−jkρ) =
∫ ∫

dkxdkyR(kx, ky) exp(−j [kxx + kyy]). (9.16)
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3 Discrete Fourier transform

In practice, only discrete Fourier transform are performed numerically. This implies a good
sampling of both real and k-space in order to define a unitary change of basis. Assuming a real
sampling defined with a given gap (or pitch) and a given extension (or aperture), the k-space
is defined as the inverse of these two quantities such that the extension dictates the pitch and
inversely:

Extension : ∆k = 1
δx

, (9.17)

Gap : δk = 1
∆x

. (9.18)

To define a unitary change of basis (i.e. no loss of information and no aliasing effects), the
number of sampling points should be the same in both space, Nx = Nk and the matrix that
defines the change of basis should verify G × G† = G† × G = I, I being the identity matrix.

Figure 9.12: Discrete Fourier transform.
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4 R−matrix in the focused basis

4.1 The general spatio-temporal focused reflection matrix

Projection in the focused basis consists in the following:

Rrr(δt) =
∑
ω

at ω︷ ︸︸ ︷[
G∗

0 × Ruu × G†
0

]
exp(−iωδt), (9.19)

=
∑
ω

[
G∗

0 × GT
in × Γ × Gout × G†

0

]
exp(−iωδt), (9.20)

=
∑
ω

[(
Gin × G†

0

)⊤
× Γ ×

(
Gout × G†

0

)]
exp(−iωδt), (9.21)

=
∑
ω

[
H⊤

in × Γ × Hout
]

exp(−iωδt), (9.22)

with Hin/out = Gin/out × G†
0 the input and output point spread function (PSF) and G0 is the

homogeneous focusing matrices defined as follows:

G(in)
0 =Ain(iin, rin) exp(iωτ(iin, rin, c0)), (9.23)

G(out)
0 =Aout(uout, rout) exp(iωτ(uout, rout, c0)). (9.24)

In the canonical basis
G0(u, r, c0, ω) = A(u, r) exp

(
iω

|u − r|
c0

)
. (9.25)

In terms of coefficients it writes:

R(rin, rout, δt, c0) =
∫ ∫

dωdr′Hin(rin, r′, ω, c0)γ(r′)Hout(rout, r′, ω, c0) exp(−iωδt), (9.26)

=
∫ ∫

dωdr′Hout(rout, r′, ω, c0)γ(r′) exp(jωδt)
∫

dtHin(rin, r′, t, c0) exp(iωt),

(9.27)

=
∫ ∫

dtdr′Hin(rin, r′, t, c0)γ(r′)
∫

dωHout(rout, r′, t, c0) exp (−iω(δt − t)) ,

(9.28)

=
∫ ∫

dtdr′Hin(rin, r′, t, c0)γ(r′)Hout(rout, r′, δt − t, c0), (9.29)

R(rin, rout, δt, c0) =
∫

dr′γ(r′)
(

Hin
δt
⊛ Hout

)
(rin, rout, r′, c0, δt). (9.30)

General expression of the focused R-matrix

In a de-scan basis (rin, rout) → (r, ∆r), (Eq. 9.30) rewrites :

RD(r, ∆r, δt, c0) =
∫

dr′γ(r′)
(

Hin
δt
⊛ Hout

)
(r, ∆r, r′, c0, δt) (9.31)
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4.2 Frequency or Time beamforming

In previous work [Lambert, 2020a] the focused R−matrix was built in the frequency domain as
follows:

Rrr(δt) =
∑
ω

[[
G(in)

0

]∗
× Riu ×

[
G(out)

0

]†]
︸ ︷︷ ︸

at ω

exp(−iωδt). (9.32)

In terms of matrix coefficients, (Eq. 9.32) becomes:

R(rin, rout, δt) =
∑
iin

∑
uout

A(iin, rin, uout, rout)
∑
ω

R (iin, uout, ω) exp(−iω[τ(iin, rin) + τ(uout, rout) + δt]),

(9.33)

=
∑
iin

∑
uout

A([iin, rin], [uout, rout])︸ ︷︷ ︸
synthetic aperture

R (iin, uout, τ(iin, rin) + τ(uout, rout) + δt) ,

(9.34)

which is nothing but a DAS algorithm where input and output focal spots have been decoupled.

4.3 RPSF expression

At the ballistic time (δt = 0 µs) and at a given depth and assuming isoplanetism, the focused
R−matrix can be expressed as follows :

R(ρin, ρout, z) =
∫

dρHin(ρ − ρin, z)γ(ρ, z)Hout(ρ − ρout, z). (9.35)

4.3.1 Speckle regime

〈
|Rρρ|2

〉
=⟨RρρR∗

ρρ⟩, (9.36)

=
∫ ∫

dρdρ′Hin(ρ − ρin)H∗
in(ρ′ − ρin) ⟨γ(ρ)γ∗(ρ′)⟩︸ ︷︷ ︸

⟨|γ|2⟩δ(ρ−ρ′)

Hout(ρ − ρout)H∗
out(ρ − ρout).

(9.37)

It comes: 〈
|Rρρ|2

〉
(ρin, ρout) ∝

∫
dx|Hin(ρ − ρin)|2|Hout(ρ − ρout)|2. (9.38)

A change of variable (ρ′ = ρ − ρin) leads to:

〈
|Rρρ|2

〉
(ρin, ρout) ∝

∫
dx|Hin(ρ)|2|Hout(x + ρin − ρout)|2. (9.39)
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Then by moving to a common midpoint basis, it comes:

⟨RPSF ⟩(∆ρ) =
〈
|Rρρ|2

〉
(ρp − ∆ρ

2 , ρp + ∆ρ

2 ), (9.40)

⟨RPSF ⟩(∆ρ) ∝
∫

dρ|Hin(ρ)|2|Hout(ρ − ∆ρ)|2, (9.41)

⟨RPSF ⟩(∆ρ) ∝
(

|Hin|2
∆ρ
⊛ |Hout|2

)
(∆ρ). (9.42)

4.3.2 Specular regime

At a given depth, a specular reflector can be considered with a constant reflectivity γ such that:

R(ρin, ρout, z) =γ

∫
dρHout(ρ − ρout, ρin, z)Hin(ρ − ρin, ρin, z), (9.43)

=γ

(
Hin

∆ρ
⊛ Hout

)
(∆ρ), (9.44)

(9.45)

which leads to:
⟨RPSF ⟩(∆ρ) = |γ|2

∣∣∣∣(Hin
∆ρ
⊛ Hout

)
(∆ρ)

∣∣∣∣2 . (9.46)

4.4 Discriminate multiple scattering from electronic noise

We consider here the mean background of the de-scan focused reflection matrix for a given point
rp:

B(∆ρ, rp) = ⟨R(∆ρ, r)D(∆ρ)W(r − rp)⟩r, (9.47)

where D(∆ρ) is a de-scan window function that eliminates the confocal peak and W is a spatial
average window function around the targeted focal point rp.

The background can be decomposed as the sum of a fully symmetric matrix associated to
multiple scattering (due to spatial reciprocity) and a fully random matrix associated to the
electronic noise as follows:

B︸︷︷︸
Background

= M︸︷︷︸
Multiple scattering

+ N︸︷︷︸
Noise

. (9.48)

Projecting the B−matrix onto its antisymmetric subspace directly holds the antisymmetric part
of the electronic noise such that:

B(A) = B − B⊤

2 = N(A). (9.49)

Assuming equipartition of the electronic noise onto its symmetric and antisymmetric subspace,
it comes:

∥B(A)∥2 = ∥N(A)∥2 = 1
2∥N∥2. (9.50)
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The norm of the background can be expressed as follows:

∥B∥2 = ∥M∥2 + ∥N∥2 + 2 ⟨M|N⟩︸ ︷︷ ︸
∼0

. (9.51)

The multiple scattering rate αM can be deduced by combining equations (9.50) & (9.51):

αM = ∥M∥2

∥B∥2 =1 − 2 ∥B(A)∥2

∥B∥2︸ ︷︷ ︸
β

, (9.52)

with β the antisymmetric rate of the B−matrix.
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5 R−matrix in a dual basis

5.1 Time reversal analysis of the D−matrix

In this section, we recall the distortion formalism that was introduced by Lambert et al. [Lam-
bert, 2020c; Lambert, 2020a]. At a given depth, the distortion matrix built in the plane wave
basis (c = k) writes:

Dxk = T∗
0 ◦
[
HT

in × Γ × Tout
]

, (9.53)

which can be written in terms of coefficients:

D(xin, kout) = exp(−jkinxin)
∫

dxHin(x, xin)γ(x)Gout(kout, x), (9.54)

=
∫

dxHin(x, xin)γ(x)Gout(kout, x − xin). (9.55)

Correlations are studied along the output focal spots Ckk = D†
xk ×Dxk. In terms of coefficients,

it writes:
C(kout, k′

out) =
∫

dxinD∗(xin, kout)D(xin, k′
out). (9.56)

Assuming that the correlation matrix converges towards its ensemble average (i.e. a sufficient
number of resolution cells are considered) and assuming a speckle regime (i.e. ⟨γ(x)γ(x′)⟩ =
δ(x − x′)) the equation becomes:

⟨C(kout, k′
out)⟩ ∝

∫ ∫
dxoutdxG∗

out(kout, x − xin)|Hin(x, xin)|2Gout(k′
in, x − xin). (9.57)

Assuming isoplanetism, i.e. Hin(x, xin) = Hin(x − xin), it comes:

⟨C(kout, k′
out)⟩ ∝

∫
dxG∗

out(kout, x)|Hin(x)|2Gout(k′
out, x), (9.58)

that can be written in a matrix formalism as follows:

⟨Ckk⟩ ∝ G†
out × ΓHin × Gout, (9.59)

where ΓHin is a diagonal matrix whose coefficients are proportional to |Hin(x)|2. ⟨Ckk⟩ is
equivalent to a reflection matrix associated with a virtual reflector of reflectivity |Hin(x)|2.

In the simple case where we suppose a perfect input focal spot so that Hin(x) = δ(x), it
comes:

⟨C(kout, k′
out)⟩ ∝

∫
dxT∗

out(kout, x)Tout(k′
out, x). (9.60)

And assuming a far field phase screen to describe the aberration, Gout(kout, x) = G0(kout, x)T(kout),
where T stands for the distortion part of the wavefront, the correlation matrix writes:

⟨C(kout, k′
out)⟩ ∝ T∗(kout)T(k′

out), (9.61)
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or in a matrix formalism:

⟨C⟩ ∝ T†
out × Γδ × Tout. (9.62)

In contrast to the matrix ΓHin , Γδ is a diagonal matrix associated with a point-like (diffraction-
limited) reflector at the origin. The correlation matrix associated with such a point-like reflector
is of rank 1 so that the first singular vector of the correlation matrix holds the distorted wavefront
T(kout) = U1(kout).

5.2 De-scan basis & distortion matrix

Considering the Fourier transform of the de-scan focused reflection matrix directly provides the
distortion matrix in the plane wave basis:

F[∆x](RD) =
[
G0(k(x)

out, ∆x)
]

× [RD(∆x, xin)] , (9.63)

=
∑
∆x

exp(jk
(x)
out∆x)RD(∆x, xin), (9.64)

=
∑
xout

exp(jk
(x)
out[xout − xin])R(xout, xin), (9.65)

= exp(−jk
(x)
outxin)

∑
xin

exp(jk
(x)
outxout)R(xout, xin), (9.66)

=
[
G∗

0(k(x)
out, xin)

]
◦
[
R(k(x)

out, xin, z)
]

, (9.67)

=D(k(x)
out, xin). (9.68)

5.3 Bias on T̂

In practice, the T−matrix estimator is still impacted by the blurring of the synthesized guide
star and the presence of diffusive background and/or noise. Therefore, the whole process shall be
iterated at input and output in order to gradually refine the guide star and reduce the bias on our
T−matrix estimator. Moreover, the spatial window W over which the C−matrix is computed
shall be gradually decreased in order to address the high-order aberration components, the latter
one being associated with smaller isoplanatic patches.

To understand the parameters controlling the bias δT̂out between T̂out and Tout, one can
express T̂out as follows:

T̂out = exp
(
jarg

{
Cout × T̂out

})
= Cout × T̂out

||Cout × T̂out||
. (9.69)

T̂out can be expressed, at first order, as the sum of its expected value Tout and a perturbation
term δT̂out:

T̂out = ⟨Cout⟩ × Tout
||⟨Cout⟩ × Tout||︸ ︷︷ ︸

=Tout

+ δCout × Tout
||⟨Cout⟩ × Tout||︸ ︷︷ ︸

≃δT̂out

. (9.70)
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The bias intensity can be expressed as follows:

||δT̂out||2 = T†
out × δC†

out × δCout × Tout

T†
out × ⟨Cout⟩† × ⟨Cout⟩ × Tout

. (9.71)

The numerator of the last equation can be expressed as follows:

T†
out × δC†

out × δCout × Tout = N2
u⟨|δC(c, c′)|2⟩ = N2

u |C(c, c)|2/NW , (9.72)

with Nu the number of transducers. The denominator of (Eq. 9.71) can be expressed as follows:

T†
out × ⟨Cout⟩† × ⟨Cout⟩ × Tout = M2

∣∣∣∣∣∑c
Tin

c
⊛ Tin(c)

∣∣∣∣∣
2

. (9.73)

The bias intensity is thus given by:

||δT̂out(c)||2 =

∣∣∣∣Tin
c
⊛ Tin(0)

∣∣∣∣2
NW

∣∣∣∣∑c Tin
c
⊛ Tin(c)

∣∣∣∣2 . (9.74)

In the last expression, we recognize the ratio between the coherent intensity (energy deposited
exactly at focus) and the mean incoherent input intensity. This quantity is known as the
coherence factor in ultrasound imaging [Mallart, 1994; Robert, 2008a]:

Cin =
∑

c Tin
c
⊛ Tin(c)

Tin
c
⊛ Tin(0)

= |Hin(ρ = 0)|2

∆ρ−2
max

∫
dρ|Hin(ρ)|2

. (9.75)

In the speckle regime and for a 2D probe, the coherence factor C ranges from 0, for strong
aberrations and/or multiple scattering background, to 4/9 in the ideal case [Silverstein, 2001].
The bias intensity can thus be rewritten as:

||δT̂out||2 = 1
C2

inNW
. (9.76)

This last expression justifies the multi-scale analysis proposed in Chapter 3. A gradual increase
of the focusing quality, quantified by C, is required to address smaller spatial windows that scale
as NW . Following this scheme, the bias made of our T−matrix estimator can be minimized.

5.4 Correction procedure workflow

[Fig. 9.13] shows a workflow summarising the various steps of the UMI procedure for performing
adaptive focusing using the “distortion matrix approach”.
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Figure 9.13: Flowchart of the UMI process.

5.5 Correcting random-phase artefacts

If the scattering distribution is too complex, the aberration law extracted with IPR or SVD
may have a linear phase ramp that causes the associated field of view to shift laterally when
correcting the R−matrix [Lambert, 2020a]. To avoid such artifacts, the value of the linear phase
ramp can be estimated by projecting the aberration law into the focal space. The lateral shift
can be estimated and further used to compensate for such artifacts before the aberration law
is used to correct the R−matrix. Here, we show how such artifacts can be removed when the
aberration law T(kx) is extracted in the far-field basis (k). First it is projected in the focal space
by means of a Fourier transform:

HT(∆x) =F[∆x](T(kx)) (9.77)
=
∑
kx

T(kx) exp(jkx∆x). (9.78)
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5. R−matrix in a dual basis

Then, the maximum of its auto-convolution can be used to find the spatial shift associated with
the phase-ramp:

∆x(∡) = argmax
(

|HT
∆x
⊛ HT|2

)
. (9.79)

The aberration law can thus be updated as follows:

T′(kx) = T(kx) exp(−jkx∆x(∡)), (9.80)

with T′ the aberration law free from any phase ramp artifact.
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6 From the integrated to the local speed-of-sound

The obtained integrated speed-of-sound map, ĉint, can be used to estimate a local speed-of-sound
map, ĉloc. To this end, we need to perform an inversion of (Eq. 6.1) and for this we take up
the method developed in the following article by Jakovljevic et al. [Jakovljevic, 2018]. Under a
paraxial approximation and assuming that the speed of sound is a piecewise constant function
between discretized depths, such as zn = ndz with n ∈ {0, 1, ..., N}, (Eq. 6.1) leads to:

zσint(z) =
∫ z

0
σloc(z′)dz′, (9.81)

⇒ ndzσint(zn) =
n∑

i=1
σloc(zi)dz, (9.82)

⇒ σint(zn) = 1
n

n∑
i=1

σloc(zi), (9.83)

where σloc = 1/ĉloc and σint = 1/ĉint are the local and integrated slowness maps, respectively.
(Eq. 9.83) defines the following system of equations for n ∈ {1, ..., N}:



σint(z1) = σloc(z1);
σint(z2) = 1

2(σloc(z1) + σloc(z2));
σint(z3) = 1

3(σloc(z1) + σloc(z2) + σloc(z3));
...

σint(zN ) = 1
N

∑N
i=1 σloc(zi),

(9.84)

which can be written in terms of matrix coefficients as follows:

1 0 0 ... 0
1
2

1
2 0 ... 0

1
3

1
3

1
3 ... 0

... ... ... ... ...
1
N

1
N

1
N ... 1

N


︸ ︷︷ ︸

A

×



σloc(z0)
σloc(z1)
σloc(z2)

...

σloc(zN )


︸ ︷︷ ︸

Sloc

=



σint(z0)
σint(z1)
σint(z2)

...

σint(zN )


︸ ︷︷ ︸

Sint

. (9.85)

Since the A-matrix is triangular, its inversion is possible and leads to the following relation:

Sloc = A−1 × Sint. (9.86)

The inversion of the A-matrix can be determined directly as follows:

Hypothesis : ≈dzσloc(zn)︷ ︸︸ ︷∫ zn

zn−1
σloc(z′)dz′ =

∫ zn

0
σloc(z′)dz′ −

∫ zn−1

0
σloc(z′)dz′; (9.87)

⇒ dzσloc(zn) =nσint(zn)dz − (n − 1)σint(zn−1)dz; (9.88)
⇒ σloc(zn) = − (n − 1)σint(zn−1) + nσint(zn). (9.89)
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6. From the integrated to the local speed-of-sound

(Eq. 9.89) defines another system of equations:


σloc(z1) = σint(z1);
σloc(z2) = −σint(z1) + 2σint(z2);
σloc(z3) = −2σint(z2) + 3σint(z3);
...

σloc(zN ) = −(N − 1)σint(zN − 1) + Nσint(zN ).

(9.90)

which, in a matrix formalism, directly leads to (Eq. 9.86) with:

A−1 =



1 0 0 ... 0 0
−1 2 0 ... 0 0
0 −2 3 ... 0 0
... ... ... ... ... ...

0 0 0 ... −(N − 1) N


. (9.91)

.
It should be emphasized that (Eq. 9.89) shows that the local speed of sound can be found

directly by knowing two successive values of the integrated speed of sound. In other words, it
shows that the same inversion, i.e. the same matrix defined in (Eq. 9.91), can be used even if
z0 ̸= 0.

Note that the above-mentioned inversion method relies on a very strong approximation that
the integrated sound velocity at a point c(x, z) depends only on the value of the local velocity
c(x, z′ < z). More sophisticated methods can take into account the oblique trajectories and
refraction phenomena of the incident and reflected waves.
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7 IQ demodulation to compress the data

In ultrasound imaging, there are two main methods to capture the time dependence of the
wave-field:

– either the sampling frequency is at least twice the maximum frequency of the spectral
bandwidth. This mode is called RF and refers to radio-frequency signals;

– either the signal is demodulated before recording so that the spectral bandwidth is shifted
towards the zero frequency [Fig. 9.14]. In this way, the sampling frequency can be dras-
tically reduced, with a value at least equal to the spectral bandwidth. In this mode, the
recorded signals are called IQ, where I stands for in-phase and Q for phase quadrature,
and are directly complex values [Kirkhorn, 1999].

Figure 9.14: Principle of IQ demodulation.
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8. Changing the assumed angles during beamforming

8 Changing the assumed angles during beamforming

Assuming a set of Nin plane waves are generated by applying appropriate time delays ∆τ(θin, ux)
to each transducer ux of the probe:

∆τ(θin, ux) = ux sin(θin)
cacq

, (9.92)

with cacq the assumed speed-of-sound of the medium during the acquisition.
This set of acoustic responses is stored in a reflection matrix Rθu(t) ≡ [R(θin, uout, t)].

Conventional beamforming consists in applying appropriate time-delays to focus at the same
point both at the input and the output:

I(r) =
∑
θ

(0)
in

∑
uout

A([θ(0)
in , uout, r])︸ ︷︷ ︸

synthetic aperture

R
(
θ

(0)
in , uout, τ(θ(0)

in , r, c0) + τ(uout, r, c0)
)

, (9.93)

with τ(θ, x, z) and τ(ux, x, z) the cylindrical time-of-flights, A an apodization factor that limit
the extent of the synthetic aperture and θ

(0)
in the assumed angles during beamforming (following

Snell-Descartes law):

θ
(0)
in = arcsin

(
c0

cacq
sin(θin)

)
, (9.94)

with c0 the speed-of-sound hypothesis made during beamforming.
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9 Numerical simulation of a homogeneous medium

Figure 9.15: Numerical simulation of a homogeneous medium. (A) Speed-of-sound map
simulated. (B, C) Integrated and local speed-of-sound estimation, respectively. (D) Original
image. (E) Corrected image with each pixel reassigned to its estimated position. Numerical
simulations were performed using K-wave software with parameters described in [Table. 6.1].
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10. Uncertainty on the defocus estimation

10 Uncertainty on the defocus estimation

To examine the bias of our estimator defined in (Eq. 5.17) in Chapter 5, we first decompose the
RPSF evaluated at a given depth as follows:

|RPSF |(z) = |RPSF |(z = 0) +
(

∂2|RPSF |
∂z2

)
z=0

z2

2 . (9.95)

From this equation, one can extract the incertitude of the estimation of the axial defocus:

δz =
√√√√ 2∆|RPSF |∣∣∣∂2|RP SF |

∂z2

∣∣∣
z=0

. (9.96)

The expression of the Gaussian beams can then be used to extract the uncertainty on our
estimators:

|RPSFcoh|: δz(coh) = 2z

N
1/4
in

, (9.97)

|∂∆zIm[RPSFcoh]|: δz(Gouy) =
√

2
3

z

N
1/4
in

, (9.98)

where Nin is the number of focusing point considered for the spatial average.
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11 Matrix representation

An example of restructuring a 4-dimensional matrix into a 2-dimensional matrix is shown in
[Fig. 9.16].

Figure 9.16: Four-dimensional matrix representation. A four-dimensional matrix
RD(ρ, t, ∆ρ, ∆z) is rearranged into a two-dimensional matrix RPSF = [RD({ρ, t}, {∆ρ, ∆z})]
as given in (Chapter 5, Section 5). As shown in the colors, a line corresponds to the RPSF
of a single spatio-temporal point (ρ, t) of the medium, which in turn can be rearranged in two
dimensions (∆ρ, ∆z) so that it can be visualized as an image.
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12. Eigenvalue and Singular Value Decomposition

12 Eigenvalue and Singular Value Decomposition

The relation between the singular value decomposition (SVD) of a rectangular matrix and the
eigenvalue decomposition (EVD) of its left and right correlation matrices is shown in [Fig. 9.17].

Figure 9.17: Eigenvalue and Singular Value Decomposition.
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MOTS CLÉS

Imagerie ultrasonore ; Imagerie 3D ; Imagerie transcrânienne ; Imagerie matricielle ; Tomographie de la

vitesse du son ; Focalisation adaptative ; Aberrations.

RÉSUMÉ

L’échographie est une technique d’imagerie très utilisée en medecine, notamment car elle est non invasive. Elle consiste

à insonifier un milieu avec une onde ultrasonore et à enregistrer les échos rétrodiffusés par les hétérogénéités du milieu

au moyen d’une sonde ultrasonore. En appliquant des retards temporels appropriés à chaque canal d’émission et de

réception, il est possible d’obtenir une image de la reflectivité du milieu. Cette approche repose sur des hypothèses

fortes que sont une vitesse du son constante et un régime de diffusion simple. En pratique, ces hypothèses sont loin

d’être vérifiées. En effet, les variations spatiales de la vitesse du son en tout point du champ de vision déforment le front

d’onde, ce qui impacte considérablement le processus de focalisation et donc la résolution de l’image. Dans ce travail,

ces limites fondamentales sont étudiées et résolues en enregistrant la matrice de réflexion du milieu, qui contient toute

l’information disponible sur le milieu étudié. Alors que la génération d’une image ultrasonore est basée sur un processus

de focalisation simultanée en entrée et en sortie sur chaque point de l’image, l’imagerie matricielle consiste à découpler

les points focaux d’entrée et de sortie afin de pouvoir examiner les aberrations et la diffusion multiple en tout point.

Plus précisément, l’objectif de cette étude est d’exploiter tous les degrés de liberté disponibles dans cette matrice pour

étendre l’imagerie matricielle ultrasonore à plusieurs dimensions : (i) dans le domaine spatial en passant de l’imagerie 2D

à l’imagerie 3D avec des applications à l’imagerie transcrânienne ; (ii) en exploitant les degrés de liberté temporels pour

caracteriser la réponse spectrale d’objets résonants tel que les microbulles ; (iii) réaliser un autoportrait du processus de

focalisation de l’onde en tout point du milieu ; (iv) exploiter la sensibilité du déphasage de Gouy au niveau du plan de

focalisation pour sonder la défocalisation et compenser les aberrations axiales ; (v) cartographier la vitesse du son pour

obtenir une image quantitative des tissus biologiques.

ABSTRACT

Ultrasound is a widely used imaging technique in medicine, especially because it is non-invasive. It consists in probing a

medium with an ultrasonic wave and recording the echoes backscattered by the medium heterogeneities with an ultrasonic

probe. By applying appropriate time delays to each transmit and receive channel, it is possible to obtain an image of the

medium reflectivity. Ultrasound imaging relies on strong assumptions such as a constant speed of sound and only a

single scattering regime. In practice, these assumptions are far from being fulfilled. The spatial variations in sound

velocity distort the wavefront, which significantly impacts the focusing process and thus the image resolution. In this

work, these fundamental limitations are addressed and solved by recording the reflection matrix, which contains all the

information available on the medium of interest. While the generation of an ultrasound image is based on a process of

simultaneous input and output focusing on each point of the image, matrix imaging consists in decoupling the input and

output focal points in order to scan aberrations and multiple scattering. Specifically, the aim of this study is to exploit all

the degrees of freedom available in this matrix to extend this approach in several dimensions: (i) in the spatial domain by

moving from 2D to 3D imaging with applications to transcranial imaging; (ii) by exploiting the temporal degrees of freedom

to characterize the spectral response of resonant objects such as microbubbles; (iii) by performing an auto-portrait of the

wave focusing process at any point of the medium; (iv) by using the sensitivity of the Gouy phase shift at the focusing plane

to probe the defocus and compensate for axial aberrations; (v) by mapping the speed-of-sound to obtain a quantitative

image of biological tissues.

KEYWORDS

Ultrasound imaging; 3D imaging; Transcranial imaging; Matrix imaging; Speed-of-sound tomography; Adap-

tive focusing; Aberrations.
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