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THÈSE DE DOCTORAT
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Abstract

In recent years, the field of robotics has undergone substantial progress, particularly in the pursuit

of creating robots capable of effortlessly interacting with humans in intricate environments. Cen-

tral to this aim is the need for robots to comprehend their surroundings, foresee human actions,

and adjust their movements in response. In this thesis, we explore the challenge of improving a

robot’s abilities in scene understanding, human motion forecasting and synthesis, and the appli-

cation of acquired human motion knowledge to robot movements.

In the opening part of this thesis, we explore the enhancement of a robot’s ability to understand

its surroundings on multiple levels. We introduce an innovative framework that enables robots to

autonomously identify and segment objects in open-world environments using self-training (pub-

lished at CVF/IEEE ICCV2021). By leveraging deep learning techniques, our approaches enable

robots to efficiently learn from their surroundings and recognize previously unseen objects. In

addition to object discovery, we introduce a method to improve the robot’s monocular depth es-

timation capabilities (published at CVF/IEEE CVPR2020). This enhancement further refines the

robot’s understanding of its environment by providing a more accurate representation of depth in-

formation from a single-camera viewpoint. Together, these advancements strengthen the robot’s

adaptability and performance in navigating complex and dynamic situations.

In the second part, we focus on improving the robot’s ability to understand and predict human

motion. We present two distinct methods that investigate either historical human motions (pub-

lished at CVF/IEEE WACV2023) or observed partial joint movements (published at CVF/IEEE

CVPR2023) as a basis for accurately anticipating human motion. These enhancements enable

robots to collaborate more effectively with humans by foreseeing their motions, thereby playing

a crucial role in fostering safe and efficient human-robot interactions.

In the third and concluding part of this thesis, we tackle the challenge of converting learned

human motion into robot movements. We introduce a method designed to adapt human grasp

demonstrations for use with any multi-fingered grippers, allowing robots to intuitively and ef-

fectively manipulate objects (published at IEEE IROS 2022). By integrating kinematic mapping

and optimization techniques, our approach guarantees that the adapted grasps are both physically

viable and resilient, empowering robots to carry out intricate manipulation tasks in environments

centered around human interaction.

By combining and integrating the three components proposed in this thesis, we seek to substan-

tially enhance a robot’s capacity to interact with humans in complex environments. Our proposed
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enhancements, including improved scene understanding, accurate human motion prediction, and

effective grasp adaptation capabilities, are aimed at empowering robots to engage in more seam-

less, safe, and efficient human-robot collaborations across various domains and applications. Col-

lectively, these advancements lay the foundation for developing more sophisticated and intuitive

robotic systems that can adapt to the dynamic and evolving nature of human environments.
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Résumé

Le domaine de la robotique a connu récemment des progrès considérables, notamment dans la

recherche visant à créer des robots capables d’interagir sans effort avec les humains dans des

environnements complexes. Au cœur de cet objectif se trouve la nécessité pour les robots de

comprendre leur environnement, d’anticiper les actions humaines et d’ajuster leurs mouvements

en conséquence. Dans cette thèse, nous explorons le défi d’améliorer les capacités d’un robot en

matière de compréhension de scène, de prévision et de synthèse du mouvement humain, et de

l’application des connaissances acquises sur le mouvement humain aux mouvements des robots.

Dans la première partie de cette thèse, nous explorons l’amélioration de la capacité d’un robot

à comprendre son environnement à plusieurs niveaux. Nous présentons un cadre novateur qui

permet aux robots d’identifier et de segmenter les objets de manière autonome dans des environ-

nements ouverts en utilisant l’auto-apprentissage (publié à CVF/IEEE ICCV2021). En tirant parti

des techniques d’apprentissage profond, nos approches permettent aux robots d’apprendre effi-

cacement de leur environnement et de reconnaı̂tre des objets jamais vus auparavant. En plus de

la découverte d’objets, nous introduisons une méthode pour améliorer les capacités d’estimation

de profondeur monoculaire du robot (publiée à CVF/IEEE CVPR2020). Cette amélioration affine

davantage la compréhension de l’environnement par le robot en fournissant une représentation

plus précise des informations de profondeur à partir d’un point de vue à une seule caméra. En-

semble, ces avancées renforcent l’adaptabilité et les performances du robot dans la navigation de

situations complexes et dynamiques.

Dans la deuxième partie, nous nous concentrons sur l’amélioration de la capacité du robot

à comprendre et à prédire le mouvement humain. Nous présentons deux méthodes distinctes

qui étudient soit les mouvements humains historiques (publiée à CVF/IEEE WACV2023), soit

les mouvements articulaires partiels observés (publiée à CVF/IEEE CVPR2023) comme base

pour anticiper avec précision le mouvement humain. Ces améliorations permettent aux robots de

collaborer plus efficacement avec les humains en prévoyant leurs mouvements, jouant ainsi un

rôle crucial dans la promotion d’interactions sûres et efficaces entre humains et robots.

Dans la troisième et dernière partie de cette thèse, nous abordons le défi de convertir les mou-

vements humains appris en mouvements de robots. Nous introduisons une méthode conçue pour

adapter les démonstrations de préhension humaine à l’utilisation avec n’importe quel préhenseur

à plusieurs doigts, permettant aux robots de manipuler intuitivement et efficacement les ob-

jets (publié à IEEE IROS 2022). En intégrant les techniques de cartographie cinématique et

d’optimisation, notre approche garantit que les préhensions adaptées sont à la fois physiquement



6

viables et résilientes, permettant aux robots d’effectuer des tâches de manipulation complexes

dans des environnements axés sur l’interaction humaine.

En combinant et en intégrant les trois composants proposés dans cette thèse, nous cherchons à

améliorer considérablement la capacité d’un robot à interagir avec les humains dans des environ-

nements complexes. Nos améliorations proposées, notamment une meilleure compréhension de la

scène, une prédiction précise du mouvement humain et des capacités d’adaptation de préhension

efficaces, visent à donner aux robots la possibilité de s’engager dans des collaborations homme-

robot plus fluides, sûres et efficaces dans divers domaines et applications. Collectivement, ces

avancées posent les bases pour le développement de systèmes robotiques plus sophistiqués et in-

tuitifs capables de s’adapter à la nature dynamique et en constante évolution des environnements

humains.
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16 Chapter 1: Introduction

1.1 MOTIVATION

In recent times, the increasing integration of robots into various aspects of modern life has

made it necessary for them to be able to interact with humans in complex environments.

Achieving this goal requires that robots possess the ability to comprehend their surround-

ings, anticipate human actions and subsequently adapt their movements. Hence, there is

a need for research in improving a robot’s capabilities in areas such as scene understand-

ing, human motion forecasting and synthesis, as well as the application of human motion

knowledge to robot movements. When robots possess a deep understanding of their en-

vironment and humans, they can work harmoniously with humans and guarantee safety,

efficiency, and effectiveness. Such research is essential for fostering effective human-

robot collaboration across several industries and applications, including manufacturing,

healthcare, autonomous driving, entertainment etc.

Manufacturing. The utilization of collaborative robots in modern manufacturing facil-

ities has become more prevalent, with these machines working alongside human work-

ers. Enhancing their scene understanding capabilities is crucial in enabling collaborative

robots to accurately recognize unseen objects, predict human movements, and prevent un-

safe actions. This ultimately promotes a safer work environment while simultaneously en-

hancing production line efficiency. Furthermore, the application of human motion knowl-

edge enables collaborative robots to execute tasks in a more intuitive and coordinated

manner, consequently fostering seamless human-robot collaboration.

Healthcare. In healthcare settings, accurate identification of medical instruments, pa-

tients, and other pertinent objects is fundamental to the success of subsequent treatments.

To this end, it is imperative that robots possess strong scene understanding capabilities and

the capacity to navigate complex home environments. Enhanced human motion forecast-

ing abilities enable robots to anticipate medical professionals’ actions, thereby offering

timely and precise assistance. Additionally, robots can serve as essential aides in physi-

cal therapy and rehabilitation, as they can replicate human movements to guide patients
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Figure 1.1: Human-robot interaction in complex environment. (a) shows a case for robot
working with human in industries, image from [256]. (b) shows a case for healthcare
robot helping people, image from [190]. (c) shows a case for autonomous driving where
the self-driving cars need to discover and identify the emerging objects, image from [179].
(d) shows a case for augmented reality, image from [186].

through exercises and monitor their progress.

Autonomous driving. Autonomous driving technology heavily relies on the integration

of scene understanding and human motion forecasting capabilities. Advanced scene un-

derstanding is a critical component that facilitates accurate environmental perception by

vehicles, enabling them to detect and identify previously unseen obstacles, pedestrians,

and other vehicles on the road. Human motion forecasting, on the other hand, enables ve-

hicles to predict pedestrian behavior, adjust their speed, and take evasive measures when

required. The significance of these capabilities cannot be overstated, as they are crucial

for guaranteeing the safety of both autonomous vehicle passengers and other road users.
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Entertainment and leisure. In recent times, the growing prevalence of entertainment

applications in Augmented Reality (AR) has heightened the importance of the ability to

discover and reconstruct unseen objects. Current AR devices have the capacity to capture

only a small portion of human joints, the ability to synthesize full-body movements can

significantly enhance the realism of the virtual environment, promoting greater immersion

and more realistic interactions.

1.2 CHALLENGES AND GOALS

There are multiple challenges faced by robots when attempting to interact with humans in

complex environments. These challenges must be addressed to enable seamless human-

robot collaboration across various domains.

Object localization in unfamiliar environments. A primary challenge for robots inter-

acting with humans in complex settings is the ability to locate previously unseen objects

in new environments. To navigate and operate efficiently, robots must be capable of accu-

rately localizing objects, even if they have not encountered them before. This requires the

development of advanced object recognition algorithms and machine learning techniques

that can generalize from prior experiences and adapt to novel situations.

In-depth understanding of human motions for forecasting and synthesis. To facil-

itate effective interaction with humans, robots must possess a profound understanding

of human motions. This knowledge is crucial for accurately forecasting human actions

and synthesizing human motion during the interaction. Developing algorithms and mod-

els that can capture the intricacies of human movement presents a significant challenge.

Furthermore, robots must be able to adapt their predictions and responses in real-time as

human behaviors evolve during the interaction.

Transferability of human demonstration to diverse robot types and sizes. Robots

come in various shapes, sizes, and configurations, presenting another challenge for human-
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robot interaction. Current methods predominantly focus on transferring human demon-

strations to a specific type of robot, limiting their applicability across diverse robotic

platforms. It is essential to develop methods and techniques that can transfer human

demonstrations to any robots, irrespective of its type or size. This requires the creation of

robust and adaptable frameworks that can generalize across different robot architectures,

taking into account factors such as kinematic constraints, control methods, and sensor

modalities.

Therefore, in this thesis, our objective is to develop sophisticated machine learn-

ing techniques capable of addressing the aforementioned challenges, thereby facilitating

seamless human-robot collaboration. By focusing on the development of these advanced

methods, we aspire to enhance the efficacy, intuitiveness, and adaptability of robots, en-

abling them to effectively interact with humans in a multitude of complex environments.

1.3 CONTRIBUTIONS

Considering the aforementioned challenges, we begin with tackling the problem of monoc-

ular depth estimation, as depth information is an essential component of perception and

scene understanding. We propose a novel method that enhances the reconstruction ac-

curacy and occlusion boundary localization of existing monocular depth estimation tech-

niques while maintaining low computational costs, thus providing a generalizable so-

lution. Due to the absence of a suitable dataset for evaluating occlusion boundary re-

construction, we have undertaken the task of manually annotating a dataset to facilitate

the evaluation of our proposed method. Additionally, we have investigated the problem

of detecting and segmenting previously unseen objects in an open-world setting with-

out the need for supplementary labeled data. In such scenarios, new object classes may

emerge, and traditional detection or instance segmentation approaches necessitate the use

of additional labeled data for training. To overcome this challenge, we have introduced

a framework that employs a pre-trained instance segmentation model to automatically

generate high-quality pseudo-labels, which can be utilized to enhance the model’s perfor-
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mance on unseen object classes. Through the meticulous design of benchmarks, we have

demonstrated the effectiveness of our proposed method in addressing the central issues of

monocular depth estimation and object detection in complex environments.

Subsequently, our research concentrates on enhancing the understanding of human

motion. Specifically, we have devised a novel approach to address the challenge of hu-

man motion prediction. Our proposed method, consisting of merely fully connected lay-

ers and layer normalization, outperforms all previous state-of-the-art approaches and is

characterized by its lightweight design and ease of integration into mobile devices for

rapid inference. Expanding on this work, we have further confronted the issue of motion

synthesis based on sparse input signals. In particular, our approach seeks to synthesize

full-body movements, conditioned on a subset of available joint positions and rotations.

To accomplish this, we have devised a novel framework inspired by the aforementioned

network, capable of synthesizing plausible human motions with high speed and minimal

memory consumption. By augmenting our comprehension of human motion prediction

and synthesis, we can bolster the abilities of robots to collaborate more effectively with

humans across various industries and applications. These advancements pave the way for

innovative methods of streamlining operations, minimizing errors, and boosting produc-

tivity.

Finally, we have directed our research efforts towards addressing the challenge of

transferring human demonstrations to robot actions. In particular, we have proposed a

multi-step, optimization-based approach for transferring grasping techniques from hu-

man demonstrations to arbitrary multifingered robotic grippers. This approach enables

robots to grasp objects with human-like dexterity, broadening their capabilities. More-

over, we have developed novel metrics to quantify the similarity between human and

robot grasps, thereby providing a more accurate assessment of the transferability of grasp-

ing techniques. To ensure the real-world applicability of our proposed method, we have

utilized an Allegro gripper mounted on a Panda arm for experimental validation.

Through these advancements, we aim to facilitate the seamless transfer of human

demonstrations to diverse robot types and sizes, further enhancing human-robot collabo-
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ration across a wide array of industries and applications. To summarize, the contributions

of this thesis are as follows:

• We first tackle the scene understanding problem, proposing a novel method that en-

hances reconstruction accuracy. This includes manually annotating a dataset and

developing a framework that generates high-quality pseudo-labels for object detec-

tion and segmentation in open-world settings.

• The study focuses on human motion prediction and synthesis, devising a lightweight

method that outperforms previous approaches and can be integrated into mobile de-

vices. This approach synthesizes full-body movements based on sparse input signals,

facilitating better human-robot collaboration across industries and applications.

• Lastly, the research tackles the challenge of transferring human demonstrations to

robot actions, proposing a multi-step, optimization-based approach for transferring

grasping techniques to multifingered robotic grippers. This includes developing

novel metrics to quantify similarity between human and robot grasps and testing

the approach on a real-world robot setup.

1.4 MANUSCRIPT STRUCTURE

This manuscript is organized as follows. In Part I, we introduce our approaches for en-

hancing monocular depth estimation accuracy in Chapter 3 and generating pseudo-labels

for unseen classes from unlabeled videos in Chapter 4; Part II introduces the methods we

propose for human motion prediction in Chapter 5 and synthesis 6; Part III presents a

multi-step optimization based method for transferring human grasp to any multifingered

robotic grippers grasp in Chapter 7. Chapter 8 concludes the thesis.
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1.5 PUBLICATIONS AND SUBMISSIONS

This section lists the papers I published during my Ph.D. In the first part of this thesis, we

mainly discuss two papers related to scene understanding:

• [221] Michael Ramamonjisoa, Yuming Du, Vincent Lepetit. Predicting sharp and

accurate occlusion boundaries in monocular depth estimation using displacement

fields. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

2020.

• [58] Yuming Du, Yang Xiao, Vincent Lepetit. Learning to Better Segment Objects

from Unseen Classes with Unlabeled Videos. In IEEE/CVF International Confer-

ence on Computer Vision (ICCV) 2021.

Then, in the second part, we discuss two papers related to human motion understand-

ing:

• [85] Wen Guo, Yuming Du, Xi Shen, Vincent Lepetit, Xavier Alameda-Pineda,

Francesc Moreno-Noguer. Back to MLP: A Simple Baseline for Human Motion Pre-

diction. In IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)

2023.

• [56] Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Art-

siom Sanakoyeu. Avatars Grow Legs: Generating Smooth Human Motion from

Sparse Tracking Inputs with Diffusion Model. In IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR) 2023.

In the last part of this thesis, we discuss our paper for transferring human knowledge

to robot:

• [57] Yuming Du, Philippe Weinzaepfel, Vincent Lepetit, Romain Brégier. Multi-

Finger Grasping Like Humans. In IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) 2022.
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Besides, we have won two championships on the Unidentified Video Objects (UVO)

workshop for open-world object segmentation on image-track and video-track 1 and cre-

ated a dataset for evaluating occlusion boundaries based on the NYUv2 dataset [233].

There are also some other works which are not discussed in this thesis:

• [195] Van Nguyen Nguyen, Yuming Du, Yang Xiao, Michael Ramamonjisoa, Vin-

cent Lepetit. PIZZA: A Powerful Image-only Zero-Shot Zero-CAD Approach to

6DoF Tracking. In International Conference on 3D Vision (3DV) 2022.

• [215] Georgy Ponimatkin, Nermin Samet, Yang Xiao, Yuming Du, Renaud Mar-

let, Vincent Lepetit. A Simple and Powerful Global Optimization for Unsupervised

Video Object Segmentation. In IEEE/CVF Winter Conference on Applications of

Computer Vision (WACV) 2023.

• [275] Yang Xiao, Yuming Du, Renaud Marlet. PoseContrast: Class-Agnostic Ob-

ject Viewpoint Estimation in the Wild with Pose-Aware Contrastive Learning. In

International Conference on 3D Vision (3DV) 2021.

1https://sites.google.com/view/unidentified-video-object/
2021-iccv-workshop-program/challenge-intro

https://sites.google.com/view/unidentified-video-object/2021-iccv-workshop-program/challenge-intro
https://sites.google.com/view/unidentified-video-object/2021-iccv-workshop-program/challenge-intro
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In this section we review the existing works related to this thesis. Section 2.1 and

Section 2.2 include the related works for the Part I. In Section 2.1 we review monocular

depth methods and the methods that are used to refine the estimated depth. In Section 2.2

we review the instance segmentation methods for images and videos, which can be used to

generate masks on unlabeled videos. Section 2.3 includes the related works for the Part II,

where we review the methods for human motion prediction and human motion synthesis.

Section 2.4 includes the related works for Part III, where we review the methods for robot

grasping simulation and transferring human grasp demonstration to robot gripper grasp.

2.1 MONOCULAR DEPTH ESTIMATION

Monocular depth estimation is a specialized task in the field of computer vision that re-

volves around deducing the depth or distance information of various elements within a

scene, based solely on one single image. This effectively involves gauging the distance

of different objects in the scene from the perspective of a single camera lens. The sig-

nificance of monocular depth estimation spans a wide range of applications. It plays a

crucial role in 3D reconstruction, a process vital for creating detailed and realistic digital

representations of objects or environments. In the realm of augmented reality, it serves to

seamlessly integrate virtual elements into the real world. Moreover, it holds a key position

in autonomous driving systems where understanding the depth of objects is paramount

for safe navigation. Furthermore, in robotics, depth estimation assists robots in efficiently

navigating their environment. Despite its broad applications, monocular depth estimation

is inherently challenging. It demands the model to comprehend and decode intricate re-

lationships between the various objects in a scene and their corresponding depth values.

Additionally, the task is further complicated by various influencing factors such as the

prevalent lighting conditions, occlusions where one object might partially hide another,

and the texture of the objects, each of which can alter the perceived depth information.
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2.1.1 MONOCULAR DEPTH ESTIMATION (MDE)

Monocular depth estimation (MDE) has been a topic of extensive research due to its prac-

tical and fundamental importance. With the emergence of deep learning methods and

large-scale datasets, MDE has experienced significant progress, with both supervised and

self-supervised approaches being explored. To address the issue of scale ambiguity dis-

cussed in [60], multi-scale deep learning methods have been widely employed to learn

depth priors, as they are capable of extracting global context from images [59]. This

approach has been continually refined and improved, with the development of more so-

phisticated and deeper architectures [228, 95, 137]. Ordinal regression was proposed as

an alternative approach to direct depth regression in MDE [70]. This method achieved

state-of-the-art performance on popular MDE benchmarks such as NYUv2-Depth [233]

and KITTI [72], and has been further extended in [141].

2.1.2 OCCLUSION BOUNDARIES IN DEPTH MAPS

Occlusion boundaries in an image are areas where the depth changes abruptly and markedly.

They essentially delineate the regions where one object overlaps or obscures another, re-

sulting in a significant variation in depth. An example of occlusion boundaries is shown in

Figure 2.1. Occlusion boundaries present a significant and persistent challenge in dense

reconstruction from images for several reasons. For instance, in stereo reconstruction,

pixels within the vicinity of occluding boundaries may be concealed in one image but vis-

ible in the other, thereby complicating pixel matching. Over the years, various solutions

have been proposed to address this issue, including approaches such as those described

in [71, 107, 121, 73]. In this thesis, we focus on recent techniques employed in monoc-

ular depth estimation to enhance the reconstruction of occlusion boundaries. Despite the

numerous advancements made in MDE, improving occlusion boundary reconstruction

remains a crucial and challenging problem. Our work aims to address this challenge by

introducing a novel approach that enhances the sharpness and localization accuracy of

occlusion boundaries in depth maps.
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(a) (b) (c)

Figure 2.1: The figure shows an example of the desired results for monocular depth
estimation and occlusion boundary estimation. (a) displays the input RGB image. (b)
shows the ground truth depth image. (c) shows the ground truth occlusion boundaries of
the depth image. Images from [217].

2.1.3 OCCLUSION BOUNDARIES REFINEMENT METHODS

A variety of techniques exist that strive to enhance the accuracy of occlusion boundaries in

predicted depth images. Broadly, these can be classified into two main categories, based

on their reliance on post-processing procedures. One category employs post-processing,

tweaking the generated depth images after initial prediction. In contrast, the other cate-

gory incorporates strategies that do not depend on post-processing, focusing instead on

improving the accuracy during the training.

Many methods focus on improving the occlusion boundaries during the training, ordi-

nal regression [70, 141] has been shown to enhance occlusion boundary sharpness, How-

ever, our experiments indicate that these boundaries are often inaccurately located in the

image. Another approach to improving the sharpness of object and occlusion boundaries

in MDE is through loss function design. L1-loss and its variants, such as the Huber and

BerHu estimators [202, 303], have become popular alternatives to L2 since they tend

to penalize discontinuities less. However, this solution is not perfect and inaccuracies or

smoothness in occlusion boundaries may persist [119]. To further enhance the reconstruc-

tion quality of occlusion boundaries, previous work has explored depth gradient matching

constraints [59] and depth-to-image gradient constraints [96, 79]. However, for the latter,

occlusion boundaries do not always correspond to strong image gradients, especially in ar-
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eas with texture gradients. Constraints explicitly based on occlusion boundaries have also

been proposed [286, 285, 222], leading to performance improvements in occlusion bound-

ary reconstruction quality. Our work complements all of the aforementioned approaches,

as we demonstrate that our method can enhance the localization and reconstruction of

occlusion boundaries in all state-of-the-art deep learning-based MDE methods.

For the post-processing methods, several previous works have utilized the post-processing

potential of Conditional Random Fields (CRFs) to refine depth map predictions. These

methods generally define pixel-wise and pair-wise loss terms between pixels and their

neighbors using an intermediate predicted guidance signal, such as geometric features

[262] or reliability maps [97]. An initially predicted depth map is then refined by per-

forming CRF inference, sometimes iteratively or using cascades of CRFs [280, 281]. Al-

though these methods help improve initial depth predictions and yield qualitatively more

appealing results, they typically under-perform state-of-the-art non-CRF MDE methods

and are computationally more expensive. An alternative option for depth refinement is

to use image enhancement methods, which may not necessarily explicitly target occlu-

sion boundaries, but can potentially serve as alternative solutions to our proposed ap-

proach. Bilateral filtering is a popular method for image enhancement, particularly as a

denoising method that preserves image contours. Although it was historically limited to

post-processing due to its computational complexity, recent work has successfully made

bilateral filters reasonably efficient and fully differentiable [153, 272]. These recent meth-

ods have been successful when applied in downsampling-upsampling schemes but have

not yet been used in the context of MDE. Guided filters [94] have been proposed as a

simpler alternative version of the bilateral filter. Our experiments show that both guided

and bilateral filters can sharpen occlusion boundaries thanks to their use of the image for

guidance. However, they sometimes produce false depth gradient artifacts. The bilat-

eral solver [13] formulates the bilateral filtering problem as a regularized least-squares

optimization problem, allowing fully differentiable and much faster computation. How-

ever, we demonstrate in our experiments that our end-to-end trainable method compares

favorably against this method, both in terms of speed and accuracy.
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2.1.4 DATASETS WITH IMAGE CONTOURS

Several datasets of image contours or occlusion boundaries already exist. Popular datasets

for edge detection training and evaluation have focused on perceptual boundaries [180,

181, 7] or object instance boundaries [61]. However, these datasets often lack anno-

tation of the occlusion relationship between two regions separated by the boundaries.

Other datasets [225, 101, 102, 263] have annotated the occlusion relationship between ob-

jects, but they do not contain ground truth depth information. The NYUv2-Depth dataset

[233] is a popular MDE benchmark that provides ground truth depth information. Sev-

eral methods for instance boundary detection have benefited from this depth information

[86, 53, 276, 87, 47] to improve their performance on object instance boundary detec-

tion. The above cited datasets all lack annotations for object self-occlusion boundaries

and are sometimes inaccurately annotated. Our NYUv2-OC++ dataset provides manual

annotations for occlusion boundaries on top of NYUv2-Depth for all 654 test images. As

discussed in [222], even though it is a tedious task, manual annotation is much more re-

liable than automated annotation that could be obtained from depth maps. This dataset

enables the simultaneous evaluation of depth estimation methods and occlusion boundary

reconstruction, like the 100-image iBims dataset [131], but is larger and has been widely

used for MDE evaluation.

2.2 INSTANCE SEGMENTATION FOR IMAGES AND VIDEOS

Instance segmentation, a task in the realm of computer vision, revolves around the de-

tection, distinction, and separation of individual objects. This includes the precise delin-

eation of each object’s boundaries and assigning a unique identifier or label to each dis-

tinct entity. In the case of an image, the ultimate objective of instance segmentation is to

create a comprehensive pixel-level map of the image. In this detailed segmentation map,

each pixel is meticulously allocated to a particular object instance, resulting in a visual

representation where every object is distinctly identified and segmented. Analogously,

in the case of a video, the instance segmentation aims to create a pixel-level map that is
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consistent across time. In this section, we first provide an overview of recent works on

instance segmentation from color images, then we survey several works on video object

segmentation. An example of these two tasks are shown in Figure 2.2

2.2.1 IMAGE-LEVEL INSTANCE SEGMENTATION

The use of Deep Learning has recently significantly improved the performance of in-

stance segmentation, with top-down solutions occupying top ranks in various bench-

marks [93, 33, 130]. These methods typically follow a detect-then-segment pipeline to

generate instance mask based on the generated object proposals. The way to generate

object proposals is critical. Some works [93, 106, 212, 35] are anchor-based, which gen-

erate object proposals with the help of pre-defined anchors of different scales and shapes.

Others are anchor-free [32, 295, 278], which remove the need of anchor and generate ob-

ject proposals by regressing object bounding boxes directly from the feature maps for the

whole image. Alternatively, bottom-up approaches assign pixels to objects by clustering

the feature embedding predicted for each pixel [10, 129, 45, 198, 142, 37, 158]. Unlike

top-down approaches which need non-maximum-suppression (NMS) to remove redun-

dant detections, bottom-up approaches eliminate the NMS as there is no overlap among

the predictions of bottom-up approach. Additionally, some recent approaches [265, 266]

propose to directly predict the instance masks, without dependency on proposals or pixel-

embedding. However, the performances of both bottom-up and direct methods are lagging

behind top-down methods on most benchmarks.

2.2.2 VIDEO OBJECT SEGMENTATION

There are several settings for video object segmentation (VOS). This thesis monstly re-

lated to the One-Shot, Zero-Shot video object segmentation. Zero-Shot VOS can be also

considered as saliency-based video object segmentation. One-Shot VOS methods aim to

segment objects in a video when ground truth segmentation is available for a frame. These

methods typically warp the provided segmentation to other frames [24, 151, 264]. How-

ever, they require manual annotations and cannot generate new predictions if new objects
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Figure 2.2: The figure shows an example of the instance segmentation for images and
videos. The first row displays the instance segmentation task for single RGB images, im-
ages from [93]. The second row shows the desired output for video instance segmentation
task, images from [284].

appear. Some Zero-Shot methods [39, 199, 255, 257] are trained with video labels on

seen classes and can generalize to unseen classes, but video labeling is labor-intensive.

Some methods search for salient regions in videos [36, 42, 44, 63, 113, 132, 168, 204], as

salient regions tend to correspond to objects. However, saliency prediction has two major

limitations for our purpose: (a) it can be fooled by non-salient camouflaged objects, and

(b) it merges adjacent objects into a single salient region, whereas we aim to identify them

individually.

2.2.3 SELF-LEARNING ON UNLABELED DATA FOR SEGMENTATION TASKS

Recently, several methods have been proposed to explore self-supervision using unla-

beled static images. These include data distillation [218], unlabeled images from the

web [152], consistency across image flipping [116], or an estimate of the uncertainty of

prediction [194]. While these approaches are compelling, unlabeled videos are readily

available and have the potential to yield more reliable results. In our experiments, we

compare our method against the most representative methods and demonstrate that our

approach achieves significantly better performance. Another approach involves grouping

pixels with similar colors or image features in a bottom-up manner to generate masks [21,

82, 160, 211, 270]. However, this approach can be easily influenced by local textures or
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colors, and some of these methods have only been tested on synthetic images. In contrast,

our approach is much more robust as it starts from a pre-trained instance segmentation

model. Similar to our approach, some methods leverage unlabeled videos for urban scene

segmentation [34] and face and human detection [120]. However, these works focus only

on enhancing model performance on existing classes and do not consider novel classes.

In contrast, our approach addresses the problem of detecting and segmenting objects from

new classes without any human intervention. Another related work is [200], which uses

stereo video data with depth information to reconstruct a static background, and object

proposals are generated from the foreground regions by subtraction. While this is an in-

teresting approach, it requires depth data and static backgrounds, which are not always

available in real-world scenarios.

2.3 HUMAN MOTION PREDICTION AND SYNTHESIS

Human motion understanding involves the interpretation and recognition of human ac-

tions from observed motion data. With the advancement of computer vision and machine

learning technologies, it has become a critical factor in the creation of intelligent systems.

In this thesis, we mainly focus on two subdomains of human motion understanding, which

is human motion prediction and human motion synthesis. An example of human predic-

tion and human synthesis is shown in Figure 2.3.

2.3.1 HUMAN MOTION PREDICTION

Human motion prediction is framed as a sequence-to-sequence task, where the past ob-

served motion serves as input to predict the future motion sequence. Traditional meth-

ods explore human motion prediction using nonlinear Markov models [143], Gaussian

Process dynamical models [260], and Restricted Boltzmann Machine [242]. These ap-

proaches have demonstrated effectiveness in predicting simple motions but struggle to

predict complex and long-term motions [69]. In the era of deep learning, human motion

prediction has achieved tremendous success with the use of deep networks, including Re-
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Figure 2.3: The figure shows an example of the human motion prediction and human
motion synthesis. The first row displays pipeline of human motion prediction, where
historical observed motion sequences are used to predict future motion, image from [183].
The second row shows human motion synthesis task, image from [261].

current Neural Networks (RNNs) [69, 111, 182, 159, 40], Graph Convolutional Networks

(GCNs) [178, 177, 84, 172, 43, 149, 148], and Transformers [177, 5, 26].

RNN-based human motion prediction. Due to the inherent sequential structure of hu-

man motion, some works address 3D human motion prediction using recurrent models.

[69] proposed an encoder-decoder framework to embed human poses, and an LSTM

to update the latent space and predict future motion. [111] manually encoded the se-

mantic similarity between different parts of the body and forwarded them via structural

RNNs. However, these two methods suffer from discontinuity, and they are only trained

on action-specific models, i.e., a single model is trained for a specific action. [182]

studied multi-actions instead of action-specific models, i.e., training a single model for

multiple actions, which allows the network to exploit regularities across different actions

in large-scale datasets. This approach has been widely adopted by most of the subsequent

works. They also introduced a residual connection to model velocities instead of abso-
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lute values to have smoother predictions. Nevertheless, the above-mentioned methods

suffer from multiple inherent limitations of RNNs. First, as a sequential model, RNNs

are difficult to parallelize during training and inference. Second, memory constraints pre-

vent RNNs from exploring information from farther frames. Some works alleviate this

problem by using RNN variants [159, 40], sliding windows [22, 23], convolutional mod-

els [98, 145], or adversarial training [83], as described in the following sections. However,

their networks are still complex and have a large number of parameters.

GCN-based human motion prediction. Recent works on human motion prediction

have adopted Graph Convolutional Networks (GCNs) to better encode the spatial con-

nectivity of human joints by building the human pose as a graph. Mao et al. [178] used a

stack of blocks consisting of GCNs, non-linear activation, and batch normalization to en-

code spatial dependencies and DCT to encode temporal information. Lebailly et al. [139]

used a multi-scale temporal input embedding, applying various sized convolutional layers

for different input sizes to have different receptive fields in the temporal domain. Mao

et al. [177] improved temporal encoding by cutting past observations into sub-sequences

and using an attention mechanism to find similar previous motion sub-sequences in the

past with the current observations. Ma et al. [172] proposed two GCN variants to extract

spatial and temporal features and built a multi-stage structure with an encoder and de-

coder in each stage. During training, the model is trained with intermediate supervision

to progressively refine the prediction. Other works [43, 149, 148] extended the graph of

human pose to multi-scale versions across the abstraction levels of human pose.

Attention-based human motion prediction. Recently, some works have explored the

use of attention mechanisms and transformers for human motion prediction. Mao et al.

[177] introduced an attention mechanism to capture temporal relations, while Aksan et

al. [5] used a combination of spatial and temporal attention to model pairwise relations

between joints. Cai et al. [26] proposed a transformer-based architecture that progres-

sively predicts the DCT coefficients of target joints based on the kinematic tree, using a

memory-based dictionary to preserve global motion patterns in the training data. These
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approaches offer promising results and show the potential of attention-based models in

human motion prediction.

2.3.2 HUMAN MOTION SYNTHESIS

Early works in human motion synthesis rose under the task of future motion prediction.

Works around this task saw various modeling approaches ranging from sequence to se-

quence models [69] to graph modeling of each body part [112]. These supervised models

were later replaced by generative methods [83, 145] based on Generative Adversarial

Networks (GANs) [81]. These approaches tend to diverge from realistic motion and re-

quire access to all body joint positions, making them impractical for avatar animation in

VR [88]. A second family of motion synthesis methods revolves around character control.

In this setting, character motion must be generated according to user inputs and environ-

mental constraints, such as the virtual environment properties. This research direction

has practical applications in the field of computer gaming, where controller input is used

to guide character motion. Taking inspiration from these constraints, [267] formulated

motion synthesis as a control problem by using a GAN architecture that takes direction

and speed input into account. Similar efforts are found in [237], where the method learns

fast and dynamic character interactions that involve contacts between the body and other

objects, given user input from a controller. These methods are impractical in a VR setting,

where users want to drive motion using their real body pose instead of a controller.

Diffusion models [235, 100, 197] are a class of likelihood-based generative models

based on learning progressive noising and denoising of data. Diffusion models have re-

cently have garnered significant attention in the field of image generation [49] due to

their ability to significantly outperform popular GAN architectures [122, 20] and is bet-

ter suited for handling a large amount of data. Furthermore, diffusion models can support

conditional generation, as evidenced by the classifier guidance approach presented in [49]

and the CLIP-based text conditional synthesis for diffusion models proposed in [196].

More recently, concurrent works have also extended diffusion models to motion synthe-

sis, with particular focus on the text-to-motion task [294, 126, 244]. However, these
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models are both complex in architecture and require multiple iterations at inference time.

This hinders them unsuitable for real-time applications like VR body tracking. We cir-

cumvent this problem by designing a custom and efficient diffusion model. To the best of

our knowledge, we present the first diffusion model solely purposed for solving motion

reconstruction from sparse inputs. Our model leverages a simple MLP architecture, runs

in real-time, and provides accurate pose predictions, particularly for lower bodies.

2.3.3 MOTION TRACKING FROM SPARSE TRACKING INPUTS

The generation of full-body poses from sparse tracking signals of body joints has be-

come an area of considerable interest within the research community. For instance, recent

works such as [105] have demonstrated the ability to track full bodies using only 6 IMU

inputs and employing a bi-directional LSTM to predict SMPL body joints. Addition-

ally, in [283], a similar approach is used to track with 4 IMU inputs, specifically the

head, wrists, and pelvis. However, in the practical HMD setting, only 3 tracking sig-

nals are typically available: the head and 2 wrists. In this context, AvatarPoser [117]

provides a solution to the 3-point problem through the use of a transformer-based ar-

chitecture. Other methods attempt to solve sparse input body tracking as a synthesis

problem. To that extent, Aliakbarian et al. [6] proposed a flow-based architecture derived

from [51], while Dittadi et al. [52] opted for a Variational Autoencoder (VAE) method.

While more complex methods have been developed that involve Reinforcement Learning,

as seen in [269, 287], these approaches may struggle to simultaneously maintain accu-

rate upper-body tracking while generating physically realistic motions. In summary, all

methods presented in this section either require more than three joints input or face diffi-

culties in accurately predicting full body pose, particularly in the lower body region. Our

proposed method, on the other hand, utilizes a custom diffusion model and employs a

straightforward MLP-based architecture to predict full body pose with a high degree of

accuracy, while utilizing only three IMU inputs.
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2.4 ROBOT GRASPING SIMULATION

The ever-advancing domain of robotics persistently aspires to foster systems that harmo-

niously blend into human-oriented environments and proficiently accomplish tasks tra-

ditionally carried out by humans. An essential element of this assimilation hinges on

the robot’s capacity to emulate human manipulation skills, especially the grasping and

handling of objects. Robot grasp simulation is an area of research focused on the compu-

tational modeling and prediction of the success rates of diverse grasp strategies within a

simulated, virtual context. This capability to faithfully replicate robot grasping is critical

to the efficient implementation of robotic systems across an extensive range of sectors.

Successfully simulating robot grasping paves the way for safer, more reliable, and more

effective robots, propelling our ability to automate and enhance an array of human-centric

tasks. An example of robot grasping simulation is shown in Figure 2.4

2.4.1 GRASP PREDICTION

Predicting potential grasps for a given object is a classical research topic, as demonstrated

by the seminal GraspIt! simulator [189]. Recent approaches [170, 271, 253, 167, 157]

have predominantly focused on learning-based techniques, with some approaches [239,

271] incorporating reachability constraints in the scene.

2.4.2 GRASPING FROM DEMONSTRATION

Learning from demonstration is also an important paradigm in robotics [214, 16, 8, 219].

It aims at teaching a particular task to a robot from a few examples of a human performing

a similar task. Most current approaches for learning from demonstration in the context

of object manipulation focus on complex manipulation tasks with simple parallel-jaw

grippers [296, 230]. On the contrary, we focus in this study on simpler manipulation

tasks (static grasping) but with more complex multi-fingered grippers – that could allow

more advanced grasps and manipulations.
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Figure 2.4: The figure shows an example of the grasp simulation in NVIDIA’s Isaac Gym
environment, image from [175].

2.4.3 POSE RETARGETING

A solution to transfer a human grasp demonstration to a robotic gripper it to define some

fixed correspondences between the human hand and the robotic gripper. DexPilot [90]

and DexMV [216] use some handcrafted motion retargeting techniques to do so. Simi-

larly, ContactTransfer [138] relies on fixed correspondences between the surface of the

human hand and the robotic gripper. The applicability of such approaches is arguably

limited however because the human hand and the gripper may have significantly different

characteristics in practice.

There are some approaches trying to predict robotic grasps sharing similar contact

areas with the object as in the human demonstration, without requiring explicit corre-

spondences between fingers of the human and the robot. [302] proposes to annotate

functional parts of the objects – i.e., where humans would grasp the object or not – to

generate potential grasps for these objects. Recently, ContactGrasp [18] was proposed

and uses GraspIt! [189] to generate a set of grasps that are iteratively refined and reranked

such that the contact areas of the gripper on the object become closer to the ones of the

human grasp. This approach has several drawbacks however. First, it is about 40 times

slower than our method as it has to generate and refine hundreds of grasp candidates each
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time. Second, GraspIt! mainly generates power grasps, and thus the refined grasps have

similar properties. Third, by focusing only on contact areas, ContactGrasp can produce

grasps in which the gripper is occluding some important parts for the affordance of the

grasped object. In comparison, our proposed optimization approach is faster and leads

to grasps more similar to human ones, thanks to a simple yet effective initialization and

thanks to additionally taking into account the grasp orientation.
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PART I:

SCENE UNDERSTANDING
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In this part of the thesis, we tackle the scene understanding problem, with the specific

aim of enhancing object localization capabilities in unfamiliar environments - a scenario

frequently encountered by robots. Our approach to this challenge is twofold. Firstly,

we aim to increase the precision of occlusion boundaries in the anticipated depth, a step

that could potentially assist robots in more effectively distinguishing regions of interest

from the undesired background. Secondly, we aspire to boost the quality of detection in

scenarios involving previously unseen classes. This would equip robots with the capacity

to identify objects from images or videos, even when such objects were not part of the

original training dataset.

This part includes two chapters, in the Chapter 3, we introduce a generalist method

to improve monocular depth estimation method, instead of relying on various forms of

filtering or predict an additive residual depth map, we learn to predict, given a depth

map predicted by some reconstruction method, a 2D displacement field able to re-sample

pixels around the occlusion boundaries into sharper reconstructions. In addition, for eval-

uation, we manually annotated a high-quality occlusion boundaries dataset.

In the Chapter 4, we propose a Bayesian framework to improve the instance segmen-

tation methods using only unlabeled videos. Specifically, our framework is designed to

automatically create such a training set: Our method starts from a set of object proposals

and relies on (non-realistic) analysis-by-synthesis to select the correct ones by performing

an efficient optimization over all the frames simultaneously. Our method can generate a

high-quality training set which significantly boosts the performance of segmenting objects

of unseen classes.



CHAPTER 3

DISPLACEMENT FIELDS FOR DEPTH

REFINEMENT
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In this chapter, we introduce our innovative method for predicting a corrective two-

dimensional displacement field for depth refinement. This approach aims to re-sample

pixels in the vicinity of occlusion boundaries, resulting in sharper, more precise recon-

structions. Occlusion boundaries serve as crucial indicators for object recognition, pro-

viding significant insights into the structure and position of the object. As we will demon-

strate, harnessing these insights could potentially pave the way for the discovery of new

objects within the reconstructed scene.

3.1 INTRODUCTION

Monocular depth estimation (MDE) is a task that involves predicting a depth map from a

single input image. MDE has attracted significant interest due to its potential applications

in various computer vision tasks, such as scene understanding, robotic grasping, and aug-

mented reality. In recent years, Deep Learning approaches have been extensively used

to tackle this problem, with many supervised learning-based methods proposed, such as

[60, 137, 70, 59] using deep convolutional neural networks. Self-learning-based meth-

ods, including [79, 279, 213], have also been developed. These approaches have shown

impressive results, making MDE a highly active research field.

Despite recent advances in Monocular Depth Estimation, as shown in Figure 3.1, the

reconstruction of occlusion boundaries in predicted depth maps remains a challenging

task. These boundaries correspond to depth discontinuities that occur along object sil-

houettes [123, 240]. Accurate reconstruction of these contours is crucial for applications

such as handling partial occlusions between real and virtual objects in Augmented Reality

(AR), and for object understanding, as illustrated in Figure 3.2. Therefore, we consider

this direction of research particularly important. MDE has shown good generalization

performance to unseen objects and categories, and improving occlusion boundary recon-

struction could lead to promising research in unsupervised object discovery.

In our work, we present a novel approach for enhancing smooth occlusion boundaries

in images. Our method not only enhances the sharpness of these boundaries but also im-
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(a) (b) (c) (d)

Figure 3.1: The figure shows the results of our occlusion boundary (OB) refinement
approach. (a) displays the input image. (b) shows the ground truth depth from NYUv2-
Depth. (c) shows the predicted depth using the approach described in [222]. Finally, (d)
presents the refined depth using our pixel displacement method.

proves their localization. Our approach leverages a differentiable module that takes an

initial depth map produced by an existing depth prediction method and re-samples it to

obtain more precise occlusion boundaries. Additionally, our method can incorporate a

color image as input to provide further guidance information and achieve even better con-

tour localization. To achieve this, we train a deep network to predict a 2D displacement

field, which is applied to the initial depth map. This is in contrast to previous approaches,

such as those described in [115, 297], which predict residual offsets for depth values.

Our experiments demonstrate that predicting displacements instead of residuals produces

sharper occluding boundaries. Our approach is complementary to existing methods, and

our experiments show that it consistently improves the localization and reconstruction of

occlusion boundaries.

To evaluate the performance of existing MDE methods and our proposed method in re-

constructing occlusion boundaries, we manually annotated the occlusion boundaries in all

images of the NYUv2 test set. Selected annotations can be found in Fig. 3.3. We used the

metrics introduced by [131] to assess the accuracy of occlusion boundary reconstruction

and localization in predicted depth maps. Our experimental results demonstrate that our

proposed method quantitatively improves the localization accuracy of all state-of-the-art

MDE methods, while maintaining or even improving their overall depth reconstruction

performance on two benchmark datasets.

In the rest of this chapter, we begin by presenting our proposed approach for enhanc-
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(a) (b) (c) (d)

Figure 3.2: Application of our depth map refinement to 3D object extraction. (a-b) and
(c-d) are two point cloud views of our extracted object. The left column shows point
clouds extracted from the initially predicted depth image while the right one shows the
result after using our depth refinement method. Our method suppresses long tails around
object boundaries, as we achieve sharper occlusion boundaries.

ing occlusion boundaries in depth maps. Next, we provide detailed descriptions of our

experiments and results, demonstrating the effectiveness of our method in improving the

performance of state-of-the-art MDE methods. Please refer to our project page for video

and poster.

3.2 DISPLACEMENT FIELDS

In this section, we present our occlusion boundary refinement method. Firstly, we hypoth-

esize that the structure of predicted depth maps around occlusion boundaries should have

a certain pattern, and we derive a model that can transform this structure into the expected

one. We then verify our hypothesis using a hand-crafted method. Based on this model,

we propose an end-to-end trainable module that can resample the pixels of an input depth

map to restore its sharp occlusion boundaries.

Occlusion boundaries are characterized by regions in the image where the depth ex-

hibits sharp and large variations, while other regions tend to vary much more smoothly.

Due to the relatively small proportion of such sharp regions, neural networks often predict

over-smoothed depths in the vicinity of occlusion boundaries.

We propose a method to recover sharp and accurately located occlusion boundaries by

resampling pixels in the predicted depth map. This resampling can be formalized as:

https://michaelramamonjisoa.github.io/projects/DisplacementFields
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Figure 3.3: Samples of our NYUv2-OC++ dataset, which extends NYUv2-OC from
[222]. The selected highlighted regions in red rectangles emphasize the high-quality and
fine-grained annotations.

∀p ∈ Ω, D(p)← D(p+ δp(p)) , (3.1)

where D is a depth map, p denotes an image location in domain Ω, and δp(p) a 2D

displacement that depends on p. This formulation enables the stitching together of depth

values on both sides of occlusion boundaries, replacing the over-smoothed depth values.

Another option to improve depth values would be to predict an additive residual depth,

which can be formalized as, for comparison:

∀p ∈ Ω, D(p)← D(p) + ∆D(p) . (3.2)

We argue that updating the predicted depth D̂ using predicted pixel shifts to recover sharp

occlusion boundaries in depth images works better than predicting the residual depth. We

validate this assertion through experiments presented below on toy problems and on real

predicted depth maps in Section 3.5.

To first validate our assumption that a displacement field δp(p) can improve the recon-

structions of occlusion boundaries, we estimate the optimal displacements using ground

truth depth for several predicted depth maps as:

∀p ∈ Ω, δp∗ = argmin
δp: p+δp ∈N (p)

(D(p)− D̂(p+ δp))2 . (3.3)

In simpler terms, the problem can be solved by finding the optimal displacement δp∗ for
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Refinement results using the gold standard method described in Section 3.2
to recover the optimal displacement field (best seen in color). (a) is the input RGB im-
age with superimposed NYUv2-OC++ annotation in green and (d) its associated Ground
Truth depth. (e) is the prediction using [137] with pixel displacements δp from Eq. (3.3)
and (f) the refined prediction. (b) is the horizontal component of the displacement field
δp∗ obtained by Eq. (3.3). Red and blue color indicate positive and negative values re-
spectively. (c) is the horizontal component δx of displacement field δp∗ along the dashed
red line drawn in (b,c,d,e).

each pixel that reconstructs the ground truth depth map D from a predicted depth map

D̂. To achieve this, we solve Eq. (3.3) by performing an exhaustive search of δp for all

pixels p within a neighborhood N (p) of size 50 × 50. Qualitative results are shown in

Fig. 3.4. The depth map obtained by applying this optimal displacement field is clearly

much better.

Drawing from our model, we suggest learning the pixel displacements in predicted

depth images using CNNs. The pipeline of our approach is demonstrated in Fig. 3.7:

Given a predicted depth image D̂, our network predicts a displacement field δp to resam-

ple the image locations in depth map D̂ according to Eq. (3.1). This approach can be

implemented with the help of the Spatial Transformer Network [110]. Using image guid-

ance can potentially enhance the precision of occlusion boundaries in refined depth maps

and also enable the detection of edges that were not visible in the initial predicted depth
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map D̂. Nonetheless, it is worth mentioning that our network can still operate without

image guidance.

3.3 SIMPLIFIED 1D PROBLEM

To confirm that the displacement fields δp outlined in Section 3.2 can be learned, we

begin by defining a toy problem in 1D. In this 1D toy problem, as depicted in Fig. 3.5,

we model the signals D to be reconstructed as piecewise continuous functions, generated

as sequences of basic functions such as step, affine, and quadratic functions. These sam-

ples demonstrate significant discontinuities at junctions and smooth variations elsewhere,

which is a feature similar to real depth maps. We subsequently convolve the D signals

with randomly-sized Gaussian kernels (blurring) to obtain their smooth versions D̂. This

gives us a training set T of (D̂,D) pairs.

We use T to train a network f(.; Θf ) of parameters to predict a displacement field:

min
Θf

∑
(D̂,D)∈T

∑
p

L
(
D(p)− D̂

(
p+ f(D̂; Θf )(p)

))
. (3.4)

and a network g(.; Θg) of parameters to predict a residual depth map:

min
Θg

∑
(D̂,D)∈T

∑
p

L
(
D(p)− D̂(p) + g(D̂; Θg)(p)

)
, (3.5)

where L(.) is some loss. In our experiments, we evaluate the l1, l2, and Huber losses.

As depicted in Fig. 3.5, we observed that predicting a residual update causes severe

artifacts around edges, such as overshooting effects. We contend that these problems arise

because the residual CNN g is trained on regions where the values of D̂ and D differ, even

away from edges, thus promoting network g to also correct these regions. Conversely, our

method does not produce overshooting effects as it does not modify the local range of

values around edges.

It is worth noting that even when we permit D̂ and D to have slightly different values
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Figure 3.5: Comparison between displacement and residual update learning. Both resid-
ual and displacement learning can predict sharper edges, however residual updates often
produce artifacts along the edges while displacements update does not.

in non-edge regions - which simulates residual error between predicted and ground truth

depth, our method still converges to a satisfactory solution when contrasted to the residual

CNN.

We extend our approach validation from 1D to 2D, where the 1D signal is substituted

with 2D images composed of various polygons of different values. We perform the same

operation of smoothing the images and then employ our network to retrieve the original

sharp images from the smoothed ones. We observed analogous results in 2D: The residual

CNN consistently produces artifacts.

To learn how to generate sharper depth predictions using displacement fields, we first

trained our method in a similar fashion to the toy problem described in Section 3.3. While

this already improves the quality of occlusion boundaries of all depth map predictions, we

demonstrate that we can achieve further improvement in quantitative results by training

our method using predictions from an MDE algorithm on the NYUv2-Depth dataset as

input and the corresponding ground truth depth as target output. We contend that this way,

the network learns to correct more complex distortions of the ground truth than Gaussian

blurring. We used the predictions of [222] to demonstrate this. We demonstrate that this

not only enhances the quality of depth maps predicted by [222], but also improves the
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Figure 3.6: (a) Detailed architecture of our displacement field prediction network. Details
on the Depth and Guidance encoders are provided in Sections 3.4.1 and 3.4.2 respectively.
(b) Details of the ResUpConv block used in our displacement field decoder.

performance of all other available MDE algorithms. Although training our network using

the predictions of other algorithms on the NYUv2 could further enhance their results, not

all of them provide their code or their predictions on the official training set. Lastly, our

method is fully differentiable.

3.4 NETWORK ARCHITECTURE

In Fig. 3.6, we elaborate on the architecture of our network, which comprises two en-

coders, one for Depth and an optional one for Guidance. We adopt a single decoder that

combines the corresponding outputs of the Depth and Guidance encoders using residual

blocks and skip connections. We provide complete details of each block in the subsequent

sections.

3.4.1 DEPTH ENCODER

Our Depth encoder follows a standard architecture with a sequence of four down-convolutions,

labeled D-DownConv. The D-DownConv blocks consist of a convolution layer with a 3x3

kernel, followed by a 2x2 MaxPooling layer, and a LeakyReLU [173] activation function.
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The convolution layers of the D-DownConv blocks have 32, 64, 128, and 256 channels,

respectively. All blocks employ batch normalization, are initialized using Xavier [77]

initialization, and use a LeakyReLU [173] activation function.

3.4.2 GUIDANCE ENCODER

Our Guidance encoder is comprised of a series of four down-convolutions, as in [95],

labeled G-DownConv. It is similar to the D-DownConv block described in 3.4.1, except

that it uses ReLU [78] activations and batch normalization for the convolution layers. The

convolution layers have 32, 64, 128, and 256 channels, respectively.

3.4.3 DISPLACEMENT FIELD DECODER

The displacement field decoder is composed of a sequence of four ResUpConv blocks

described in Fig 3.4.4, followed by a convolution block OutConv.

3.4.4 RESUPCONV

The ResUpConv block is the primary component of our decoder. It combines depth and

guidance features at multiple scales using skip connections. The architecture of this block

is described in Fig 3.6. Guidance features are refined using a 3x3 residual convolution

layer [95], denoted ResConv3x3. All blocks use batch normalization, LeakyReLU [173]

activation, and filter weights are initialized using Xavier initialization.

3.4.5 OUTPUT LAYERS

The final output block, OutConv, comprises two Conv3x3 layers with batch normalization

and ReLU [78] activation, followed by a simple 3x3 convolution layer without batch

normalization or activation. The number of channels for these layers are 32, 16, and 2,

respectively. The weights are initialized using Xavier initialization.
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Figure 3.7: Our proposed pipeline for depth edge sharpening. The dashed lines define
the optional guidance with RGB features for our shallow network.

3.5 EXPERIMENTS

In this section, we begin by detailing our implementation and outlining the metrics used to

evaluate the reconstruction of occlusion boundaries and the accuracy of depth prediction.

We then present the results of the evaluation of our method on the outputs of various MDE

methods.

3.5.1 IMPLEMENTATION DETAILS

We implemented our network using the Pytorch framework [205]. We trained our net-

work on the output of a state-of-the-art MDE method [222], using Adam optimization

with an initial learning rate of 5e-4 and weight decay of 1e-6, and the poly learning rate

policy [298], for 32k iterations on the NYUv2 dataset [233]. This dataset consists of 1449

pairs of RGB and depth images, split into 795 samples for training and 654 for testing,

with a batch size of 1. The input images were resized with scales [0.75, 1, 1.5, 2] and then

cropped and padded to 320× 320. We attempted to learn on the raw depth maps from the

NYUv2 dataset, but it was unsuccessful. This is likely due to the fact that missing data

occurs mostly around occlusion boundaries. Therefore, dense depth maps are required,

and we use [144] to inpaint the missing data in the raw depth maps.
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(a) (b)

Figure 3.8: Occlusion boundary evaluation metrics based on the Chamfer distance, as
introduced in [131]. The blue lines represent the ground truth boundaries, the red curve
the predicted boundary. Only the boundaries in the green area are taken into account dur-
ing the evaluation of accuracy (a), and only the yellow area are taken into account during
the evaluation of completeness (b). (a) The accuracy is evaluated from the distances of
points on the predicted boundaries to the ground truth boundaries. (b) The completeness
is evaluated from the distances of points on the ground truth boundaries to the predicted
boundaries.

3.5.2 EVALUATION OF MONOCULAR DEPTH PREDICTION

As in previous work [60, 59, 137], we assess the quality of monocular depth predictions

using the following metrics: Root Mean Squared Linear Error (Rlin), mean absolute rel-

ative error (rel), mean log10 error (log10), Root Mean Squared Log Error (Rlog), and the

accuracy under threshold (σi < 1.25i, i = 1, 2, 3).

3.5.3 EVALUATION OF OCCLUSION BOUNDARY ACCURACY

To evaluate the accuracy of occlusion boundaries (OB), we adopt the depth boundary

errors proposed by Koch et al. [131]. The boundaries are first extracted using a Canny

edge detector [28] with predefined thresholds on a normalized predicted depth image.

Following the method of Koch et al., we evaluate the accuracy ϵa and completion ϵc

of predicted occlusion boundaries. Specifically, ϵa is calculated as the average Chamfer

distance in pixels [64] from the predicted boundaries to the ground truth boundaries, while

ϵc is calculated as the average Chamfer distance from the ground truth boundaries to the

predicted boundaries. These computations are illustrated in Fig. 3.8.
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Depth error (↓) Depth accuracy (↑) OBs (↓)
Method Refine rel log10 Rlin Rlog σ1 σ2 σ3 ϵa ϵc

Eigen et al. [60] - 0.234 0.095 0.760 0.265 0.612 0.886 0.971 9.936 9.997
✓ 0.232 0.094 0.758 0.263 0.615 0.889 0.971 2.168 8.173

Laina et al. [137] - 0.142 0.059 0.510 0.181 0.818 0.955 0.988 4.702 8.982
✓ 0.140 0.059 0.509 0.180 0.819 0.956 0.989 2.372 7.041

Fu et al. [70] - 0.131 0.053 0.493 0.174 0.848 0.956 0.984 3.872 8.117
✓ 0.136 0.054 0.502 0.178 0.844 0.954 0.983 3.001 7.242

Ramamonjisoa - 0.116 0.053 0.448 0.163 0.853 0.970 0.993 3.041 8.692
and Lepetit [222] ✓ 0.117 0.054 0.457 0.165 0.848 0.970 0.993 1.838 6.730

Jiao et al. [119] - 0.093 0.043 0.356 0.134 0.908 0.981 0.995 8.730 9.864
✓ 0.092 0.042 0.352 0.132 0.910 0.981 0.995 2.410 8.230

Yin et al. [290] - 0.112 0.047 0.417 0.144 0.880 0.975 0.994 1.854 7.188
✓ 0.112 0.047 0.419 0.144 0.879 0.975 0.994 1.762 6.307

Table 3.1: Evaluation of our method on the output of several state-of-the-art methods on
NYUv2. Our method significantly improves the occlusion boundaries metrics ϵa and ϵc
without degrading the other metrics related to the overall depth accuracy. These results
were computed using available depth maps predictions (apart from Jiao et al. [119] who
sent us their predictions) within the image region proposed in [60]. (↓: Lower is better; ↑:
Higher is better).

NYUv2 dataset We evaluate the performance of our method by refining the predictions

of several state-of-the-art methods [60, 137, 70, 222, 119, 290]. Our network is trained

on the NYUv2 depth dataset, which contains 795 labeled images for training, along with

their corresponding RGB images used as guidance. To enable a fair comparison, we

evaluate only the pixels inside the crop defined in [60] for all methods. Table 3.1 presents

the evaluation of refined predictions of various methods using our network. Our proposed

network significantly improves the occlusion boundary accuracy of all methods without

compromising the global depth estimation accuracy. We also include qualitative results

of our refinement method in Fig. 3.9.

iBims dataset We applied our method, which was trained on the NYUv2 dataset, to

refine the predictions of various methods [60, 59, 137, 156, 147, 155, 222] on the iBims

dataset [131]. Our results, presented in Table 3.2, show that our network significantly

improves the accuracy and completeness metrics for the occlusion boundaries of all pre-

dictions on this dataset as well.
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(a) (b) (c) (d) (e) (f)

Figure 3.9: Refinement results using our method (best seen in color). From left to right:
(a) input RGB image with NYUv2-OC++ annotation in green, (b) SharpNet [222] depth
prediction, (c) Refined prediction, (d) Ground truth depth, (e) Horizontal and (f) Vertical
components of the displacement field. Displacement fields are clipped between ±15 pix-
els. Although SharpNet is used as an example here because it is currently state-of-the-art
on occlusion boundary accuracy, similar results can be observed when refining predictions
from other methods.

3.5.4 COMPARISON WITH OTHER METHODS

To demonstrate the efficiency of our proposed method, we compare it with existing fil-

tering methods [247, 94, 13, 272]. We use the predictions of [60] as input and compare

the accuracy of depth estimation and occlusion boundaries for each method. For filters

with hyperparameters, we test each filter with a range of hyperparameters and select the

best-refined results. For the Fast Bilateral Solver (FBS) [13] and the Deep Guided Filter

(GF) [272], we use their default settings from the official implementation. We keep the

same network architecture for both the cases with and without Deep GF and train them

with the same learning rate and data augmentation.

As shown in Table 3.3, our method achieves the best accuracy for occlusion bound-

aries. Finally, we compare our method against the additive residual prediction method

discussed in Section 3.2. We keep the same U-Net architecture, but replace the displace-

ment operation with an addition as described in Eq. (3.2), and show that we obtain better

results. We argue that the performance of the deep guided filter and additive residual are

lower due to generated artifacts which are discussed in Section 3.3. In Table 3.4, we also
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Depth error (↓) Depth accuracy (↑) OB (↓)
Method Refine rel log10 Rlin σ1 σ2 σ3 ϵa ϵc

Eigen et al. [60] - 0.32 0.17 1.55 0.36 0.65 0.84 9.97 9.99
✓ 0.32 0.17 1.54 0.37 0.66 0.85 4.83 8.78

Eigen and Fergus - 0.30 0.15 1.38 0.40 0.73 0.88 4.66 8.68
(AlexNet) [59] ✓ 0.30 0.15 1.37 0.41 0.73 0.88 4.10 7.91

Eigen and Fergus - 0.25 0.13 1.26 0.47 0.78 0.93 4.05 8.01
(VGG) [59] ✓ 0.25 0.13 1.25 0.48 0.78 0.93 3.95 7.57

Laina et al. [137] - 0.26 0.13 1.20 0.50 0.78 0.91 6.19 9.17
✓ 0.25 0.13 1.18 0.51 0.79 0.91 3.32 7.15

Liu et al. [156] - 0.30 0.13 1.26 0.48 0.78 0.91 2.42 7.11
✓ 0.30 0.13 1.26 0.48 0.77 0.91 2.36 7.00

Li et al. [147] - 0.22 0.11 1.09 0.58 0.85 0.94 3.90 8.17
✓ 0.22 0.11 1.10 0.58 0.84 0.94 3.43 7.19

Liu et al. [155] - 0.29 0.17 1.45 0.41 0.70 0.86 4.84 8.86
✓ 0.29 0.17 1.47 0.40 0.69 0.86 2.78 7.65

Ramamonjisoa - 0.27 0.11 1.08 0.59 0.83 0.93 3.69 7.82
and Lepetit [222] ✓ 0.27 0.11 1.08 0.59 0.83 0.93 2.13 6.33

Table 3.2: Evaluation of our method on the output of several state-of-the-art methods on
iBims dataset.

compare the computational efficiency of the network against reference depth estimation

and refinement methods.

3.5.5 LOSS FUNCTIONS FOR DEPTH PREDICTION

In Table 3.5, we show the influence of different loss functions. We apply the Pytorch

official implementation of l1, l2, and the Huber loss. The Disparity loss supervises the

network with the reciprocal of depth, the target depth ytarget is defined as ytarget =

M/yoriginal, where M here represents the maximum of depth in the scene. As shown

in Table 3.5, our network trained with l1 loss achieves the best accuracy for the occlusion

boundaries.
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Depth error (↓) Depth accuracy (↑) OB (↓)
Method rel log10 Rlin Rlog σ1 σ2 σ3 ϵa ϵc

Baseline [60] 0.234 0.095 0.766 0.265 0.610 0.886 0.971 9.926 9.993

Bilateral Filter [247] 0.236 0.095 0.765 0.265 0.611 0.887 0.971 9.313 9.940

GF [94] 0.237 0.095 0.767 0.265 0.610 0.885 0.971 6.106 9.617

FBS [13] 0.236 0.095 0.765 0.264 0.611 0.887 0.971 5.428 9.454

Deep GF [272] 0.306 0.116 0.917 0.362 0.508 0.823 0.948 4.318 9.597

Residual 0.286 0.132 0.928 0.752 0.508 0.807 0.931 5.757 9.785

Our Method 0.232 0.094 0.757 0.263 0.615 0.889 0.971 2.302 8.347

Table 3.3: Comparison with existing methods for image enhancement, adapted to the
depth map prediction problems. Our method performs the best for this problem over all
the different metrics.

Method SharpNet [222] VNL [290] Deep GF[272] Ours

FPS - GPU 83.2 ± 6.0 32.2± 2.1 70.5 ± 7.5 100.0 ± 7.3
FPS - CPU 2.6 ± 0.0 * 4.0 ± 0.1 5.3 ± 0.15

Table 3.4: Speed comparison with other reference methods implemented using Pytorch.
Those numbers were computed using a single GTX Titan X and Intel Core i7-5820K
CPU. using 320x320 inputs. Runtime statistics are computed over 200 runs.

3.5.6 GUIDANCE IMAGE

We investigate the impact of different types of guidance images. To extract the features

of the guidance images, we employ an encoder with the same architecture as the depth

encoder, but with all Leaky ReLU activations replaced by standard ReLU activations [78].

We fuse the guidance and depth features using skip connections from the guidance and

depth decoder, respectively, at comparable scales.

Table 3.6 presents the impact of different choices for the guidance image. The edge

images are generated by accumulating the detected edges using a series of Canny detectors

with varying thresholds. As depicted in Table 3.6, using the original RGB image as

guidance yields the highest accuracy. Conversely, using the grayscale image as guidance

produces the lowest accuracy since information is lost during the conversion process.

However, using the Canny edge detector can help mitigate this issue, as the network
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Depth error (↓) Depth accuracy (↑) OB (↓)
Method rel log10 Rlin Rlog σ1 σ2 σ3 ϵa ϵc

Baseline [60] 0.234 0.095 0.766 0.265 0.610 0.886 0.971 9.926 9.993

l1 0.232 0.094 0.758 0.263 0.615 0.889 0.971 2.168 8.173
l2 0.232 0.094 0.757 0.263 0.615 0.889 0.971 2.302 8.347
Huber 0.232 0.095 0.758 0.263 0.615 0.889 0.972 2.225 8.282
Disparity 0.234 0.095 0.761 0.264 0.613 0.888 0.971 2.312 8.353

Table 3.5: Evaluation of different loss functions for learning the displacement field. The
l1 norm yields the best results.

Depth error (↓) Depth accuracy (↑) OB (↓)
Method rel log10 Rlin Rlog σ1 σ2 σ3 ϵa ϵc

Baseline [60] 0.234 0.095 0.760 0.265 0.612 0.886 0.971 9.936 9.997

No guidance 0.236 0.096 0.771 0.268 0.608 0.883 0.969 6.039 9.832
Gray 0.232 0.094 0.757 0.263 0.615 0.889 0.972 2.659 8.681
Binary Edges 0.232 0.094 0.757 0.263 0.615 0.889 0.972 2.466 8.483
RGB 0.232 0.094 0.758 0.263 0.615 0.889 0.971 2.168 8.173

Table 3.6: Evaluation of different ways of using the input image for guidance. Simply
using the original color image works best.

obtains superior results when switching from grayscale images to binary edge maps.

3.6 CONCLUSION

We have demonstrated that by predicting a displacement field to resample depth maps, we

can substantially enhance the reconstruction accuracy and the localization of occlusion

boundaries for any existing method of monocular depth prediction. Additionally, we have

created a new dataset that provides precisely labeled occlusion boundaries to evaluate

our approach. Beyond evaluating occlusion boundary reconstruction, this dataset should

be an extremely valuable resource for future methods to learn more accurate occlusion

boundary detection.
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As shown in Chapter 3, Occlusion boundaries offer valuable cues for object discovery.

However, their utility can be limited in situations where multiple objects are in close

proximity in the foreground, necessitating methods capable of distinct instance separation.

In this chapter, we put forward a novel Bayesian approach aimed at enhancing instance

segmentation methods for unseen classes using unlabeled videos. Our method starts with

a set of object proposals and employs an analysis-by-synthesis approach to select the

correct ones. This process involves an efficient optimization carried out across all frames

simultaneously. By employing this strategy, we demonstrate that our method can generate

a high-quality training set, which considerably enhances the performance of segmenting

objects from previously unseen classes. Thus, we believe that our method could open the

door for open-world instance segmentation using abundant Internet videos.

4.1 INTRODUCTION

Instance segmentation models are capable of predicting the masks of objects of known

classes in query images [93, 245, 265], providing valuable information for many down-

stream applications, such as scene understanding [76, 229] and robot grasping [259, 277,

288]. However, existing instance segmentation methods have limited performance on new

classes [48]. This is a significant obstacle to the development of autonomous systems op-

erating in open worlds, where there will always be objects that do not belong to known

classes. The ability to detect and segment these objects would be a crucial starting point

for learning to grasp and manipulate them.

As depicted in Figure 4.1, our objective is to enhance the performance of instance

segmentation models on static images containing objects from new classes automati-

cally, without human intervention. This is distinct from previous works that aim to re-

duce the manual labeling burden for object segmentation by solely employing bounding

boxes [104, 134, 300] or developing few-shot techniques [65, 282], which still necessitate

human intervention for new classes.

More precisely, we do not aim to predict the categories of new objects, but instead
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Figure 4.1: Our objective is to train an instance segmentation model to localize and
segment objects from new classes without human labeling, beginning with a model trained
on a specific set of classes. To achieve this, we employ unlabeled videos, which provide
an abundant source of data. Our method automatically detects and selects object masks
in the videos. We subsequently use the selected masks to retrain the initial model, which
enables it to localize and segment objects from the new classes in still frames without
losing performance on the old ones.

concentrate on robustly localizing and accurately segmenting them. In this sense, our

work is more closely related to recent object discovery methods that strive to segment

objects without manual segmentation labels by grouping pixels based on certain crite-

ria [21, 82, 160, 211, 270]. However, these approaches are still vulnerable to low-level

perturbations in color, lighting, or texture, making them rather fragile.

Our approach relies on unlabeled video sequences since such videos can be obtained

effortlessly while providing rich information. The concept of using videos for self-

supervision is not novel [44, 114, 151, 168, 264, 268]. In this work, we utilize video

sequences to automatically generate masks for the objects present in their frames. Em-

ploying these masks to train an instance segmentation model should enhance its perfor-

mance on new objects visible in the videos, even in the absence of human intervention.

Although we provide the videos in our experiments, it is possible to envision a system

that captures videos autonomously.

Unfortunately, our preliminary experiments revealed that state-of-the-art video seg-

mentation methods [63, 169, 204, 151, 255] were inadequate for our purposes. Con-
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sequently, we developed our own method for automatically creating object masks from

videos. It should be noted that our task is slightly different from video segmentation

methods, which aim to keep track of objects across consecutive frames. Our goal, on

the other hand, is to precisely localize and segment the objects in each frame. Similar

to some video segmentation methods [169], we commence with mask hypotheses for the

objects visible in the videos, obtained via a pre-trained class-agnostic instance segmen-

tation. This model generalizes to some extent to objects from unseen classes, but at the

cost of introducing numerous false positives [201]. Figure 4.2 demonstrates that when the

confidence threshold is lowered, both the detections of objects from unseen classes and

incorrect detections are accepted.

However, it is possible to filter the incorrect masks using information provided by

the videos. Some methods [38, 146, 169, 187, 209] rely on tracklets to track and filter

the masks. We argue that such an approach is suboptimal, particularly for our objec-

tive, for two reasons: firstly, image background is underutilized despite being valuable

for indicating the absence of objects; secondly, optical flow is not employed to its full

potential, despite providing strong cues about moving objects in videos. To fully leverage

the background and motion information across unlabeled video frames, we developed a

(non-realistic) analysis-by-synthesis approach. We derive an objective function within

a Bayesian framework, incorporating a non-overlapping constraint. The objective func-

tion comprises three loss terms and is designed to explore the background and motion

information to remove incorrect masks and select masks that are temporally consistent

throughout the video. The non-overlapping constraint acknowledges that one pixel can

belong to, at most, one object in the image and helps to eliminate some false positives.

Furthermore, we present a two-stage optimization algorithm to optimize this objective

function efficiently.

To assess the efficacy of our approach, we created a novel dataset named Unseen-

VIS based on the YouTube Video Instance Segmentation (YouTube-VIS) dataset [284],

which contains objects that are not part of COCO classes. We began with the raw masks

generated on the training portion of Unseen-VIS using a class-agnostic Mask R-CNN
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Score > 1.0 Score > 0.5 Score > 0.1 Score > 0.01

Figure 4.2: The class ‘tortoise’ does not belong to COCO classes. By decreasing the
confidence score threshold of Mask R-CNN [93] trained on COCO, we can eventually
localize and segment all the tortoises at the price of introducing many false positives. We
filter these false positives using unlabeled video data.

pretrained on the COCO dataset and applied our method to automatically select the ap-

propriate masks. We demonstrate that utilizing these masks enhances the performance

of Mask R-CNN on the test set of Unseen-VIS without compromising performance on

COCO classes. Please refer to our project page for more videos.

To summarize our contributions:

• We propose a Bayesian method to generate high-quality masks on unlabeled videos

containing unseen classes;

• We create a benchmark to evaluate the quality of generated masks on unlabeled

videos;

• We demonstrate on our benchmark that our proposed method can be used to improve

the performance of an instance segmentation model on unseen classes.

4.2 GLOBAL OPTIMIZATION

As discussed in Section 4.1, our goal is to improve the performance of a pre-trained class-

agnostic instance segmentation on unseen classes. Our pipeline consists of three steps:

• Mask Generation: We use our baseline instance segmentation network on unlabeled

videos containing unseen classes for mask generation;

• Mask Selection: We apply our method to automatically select the correct masks on

unlabeled videos;

• Model Refinement: We use our generated masks to fine-tune or retrain our baseline

network to boost its performance on unseen classes.

https://dulucas.github.io/gbopt/
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In this section, we present our baseline instance segmentation network and our ap-

proach for automatically selecting high-quality masks by exploring video information.

As we will demonstrate in the following sections, our approach is highly efficient com-

pared to exhaustive search and requires few easy-to-tune hyper-parameters.

4.2.1 BASELINE NETWORK FOR MASK GENERATION

To generate masks from unlabeled videos, we utilize a class-agnostic Mask R-CNN [93]

with a ResNet-50-FPN [154] backbone as our baseline network. As in previous work [201],

we refer to this class-agnostic Mask R-CNN as “MP R-CNN” for Mask Proposal R-CNN,

as it generates mask proposals regardless of object classes. Note that in practice, Mask R-

CNN can be replaced by any other trainable instance segmentation method. As mentioned

in Section 4.1, the instance segmentation network may assign low confidence scores for

some correct detections of unseen classes. Therefore, during the mask generation stage,

we set the confidence score threshold to 0 to obtain as many detections as possible.

4.2.2 MASK SELECTION

Given a video of T frames, we start from a set of mask candidatesMt = {Mt,1..Mt,N}

for each frame It obtained using our baseline network, with N the number of masks

candidates in It. To select the mask candidates that actually correspond to objects, we

exploit the following cues and constraint:

• The “Background cue”: Segmenting typical backgrounds such as sky or grass gives

us a cue about where the objects are;

• The “Flow cue”: The optical flow between consecutive frames gives us a cue about

the moving objects;

• The “Consistency cue”: The selected masks should be consistent not only between

consecutive frames, but also over long sequences;

• The “Non-overlapping constraint”: An additional constraint that is usually over-

looked is that the masks should not overlap: Ideally, one pixel in the image can

belong to at most one mask.
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As we will show in the following sections, each cue corresponds to a loss term in the

final objective function. Each of them and the non-overlapping constraint contribute to re-

moving the false positives, as will be demonstrated by our ablation study in Section 4.5.5.

To combine these cues to select the correct masks in a given video sequence, we rely

on a Bayesian framework. This selection problem can be formalized as maximizing the

probability of the detected masks given the frames of the video:

P
(
C1, ..,CT |I1, .., IT

)
, (4.1)

where Ct is a set of binary random variables, with Ct,i = 1 corresponding to the

event that the mask Mt,i is selected and 0 that it is not. By applying Bayes’ theorem, the

problem becomes the maximization of:

P
(
I1, .., IT |C1, ..,CT

)
P
(
C1, ..,CT

)
. (4.2)

To keep both the image and optical flow cues, we use a Product-of-Experts [99] with

cliques made of two consecutive images to model the first term as:

P
(
I1, .., IT |C1, ..,CT

)
∝

∏
t

P
(
It, It+1|C1, ..,CT

)
. (4.3)

We make the standard assumptions that the successive states (the Ct) follow a Markov

process, and that the measurements at time t (the It) depend only upon the current state

(Ct). We denote δt,i the realization of the random binary variable Ct,i (thus δt,i ∈ {0, 1})

and ∆t = {δt,1, .., δt,N} the realization of Ct. After standard derivations, the optimization

problem becomes:

arg max{∆1,..,∆T }P (C0)
∏
t

P
(
It, It+1|Ct,Ct+1

)
P (Ct+1|Ct) . (4.4)

P
(
It, It+1|Ct,Ct+1

)
is high when the image likelihoods P

(
It|Ct

)
and P

(
It+1|Ct+1

)
are

high and when the object motions between It and It+1 are consistent with states Ct and
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Ct+1. P
(
It, It+1|Ct,Ct+1

)
is thus directly proportional to:

P
(
It|Ct

)
P
(
It+1|Ct+1

)
P
(
Ft|It, It+1,Ct,Ct+1

)
, (4.5)

where Ft is the optical flow for the pair of frames (It, It+1). After taking the log of

Eq. (4.4), the optimization problem can be written as:

arg min{∆1,..,∆T }
∑

t

(
λILI

(
It,∆t) +

λFLF

(
Ft, It, It+1,∆t,∆t+1

)
+

λpLp(∆t,∆t+1)
)
,

(4.6)

under the non-overlapping constraint that will be detailed below. λI , λF , and λp are

weights. We take λI = λF = 1 and λp = 0.5 in all our experiments. Ft represents the

optical flow for the pair of frames (It, It+1). ∆t = {δt,1, .., δt,N} denotes the realization of

Ct where δt,i is the realization of the random binary variable Ct,i. δt,i = 1 when Mt,i is

selected, otherwise δt,i = 0.

We call LI the Background loss and LF the Flow loss, as they exploit the Background

cue and the Flow cue respectively. Lp enforces consistent selections between consecutive

frames. We detail these three losses below.

4.2.3 BACKGROUND LOSS LI

We use LI to exploit the Background cue that hints at where the objects are. As shown in

Figure 4.3, to evaluate it, we compare a binary image generated for the selected masks and

the foreground/background probability map predicted by a binary segmentation network f

by calculating their cross entropy, as the image background should match the background

of the selected masks. By doing this comparison over all the image locations, we can

exploit information from the whole image to guide the mask selection—we will rely on

the same strategy for the other terms. Formally, we take

LI

(
It,∆t

)
= CE

(
Bg(It), 1− Fg(∆t)

)
, (4.7)
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Figure 4.3: To evaluate the background loss LI of Eq. (4.7), we compare the background
predicted for the image and the background of the selected masks.

where CE denotes the cross-entropy, Bg(It) is a probability map for each pixel to belong

to the background as predicted by the network f , and Fg(∆t) is the binary image of masks

inMt such that δt,i = 1. For f , we use the network architecture proposed in [128] trained

on the same training data as our baseline network for mask generation.

4.2.4 FLOW LOSS LF

We use LF to exploit the Flow cue: The optical flow is the result of the object motions and

the camera motion, and thus also hints at where the objects are. Even if an object is static

but the camera is in motion, when the distance between the camera and the background

is large enough, relative motion will make the optical flow of the object regions stand out

from the background optical flow.

Figure 4.4 shows how we evaluate this term. We compare the flow predicted by an

optical flow estimator g and a “synthetic optical flow” generated using the masks selected

inMt andMt+1. Similar to the LI term, this comparison allows us to exploit information

from all the image locations. In practice, we use the method of [243] for g. To generate

the synthetic optical flow, we use the colors of the pixels in the selected masks to compute

their optical flow. We average the flow in Ft on the pixels that do not belong to any mask
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Figure 4.4: To evaluate the flow loss LF of Eq. (4.8), we compare the optical flow es-
timated between two consecutive images and the optical flow computed for the masks
selected in the two images.

to assign these pixels the resulting value.

Using this procedure, the measured flow Ft = g(It, It+1) and the synthetic flow are

similar when all moving objects are correctly selected in both frames, even when the

camera is in motion. More formally, we take:

LF

(
Ft, It, It+1,∆t,∆t+1

)
=

∥∥Ft − F t

∥∥
1
, (4.8)

where F t = F t(It, It+1,∆t,∆t+1) is the synthetic flow generated for the selected masks

inMt andMt+1. We use the L1-norm to compare the two flows to be robust to outlier

values that are very common in the predicted flow. Figure 4.4 shows examples for Ft and

F t.

4.2.5 REGULARIZATION LOSS Lp AND CONSTRAINT

As discussed above, the optimization in Eq. (4.6) should be done under the constraint that

no masks selected for the same frame overlap each other.

Lp

(
∆t,∆t+1

)
is usually interpreted in tracking problems as a motion model. We use it

to enforce a consistent selection of masks between consecutive frames. Figure 4.5 shows
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Figure 4.5: To evaluate the regularization loss Lp of Eq. (4.9), we compare the binary
images of the selected masks in two consecutive images.

how we compute it: We use a very simple motion model and assume that the objects move

slowly, in other words, the areas segmented as objects do not change abruptly between

two consecutive frames. Formally, we take :

Lp

(
∆t,∆t+1

)
= −IoU

(
Fg(∆t),Fg(∆t+1)

)
, (4.9)

i.e. the negative Intersection-over-Union between the binary images of the masks selected

for frames It and It+1. It is set to 0 when no masks are selected for none of the two

images.

4.3 TWO-STAGE OPTIMIZATION

In this section, we introduce an efficient way to minimize Eq. (4.6). Note that minimizing

this function requires to optimize on all the frames simultaneously. A naive approach is to

apply exhaustive search for the solution of the problem, where the number of evaluations

of the objective function would be O(2NT ), with N the number of mask candidates per

frame and T the number of frames (typical values N = 15 and T = 180 would require

∼ 10810 evaluations). This is clearly computationally prohibitive. Recall that, in the first

stage, we select the most promising combinations of masks for each frame independently

using the background loss LI and under the constraint that the selected masks should not
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overlap, we formulate this problem as a K-shortest path search problem and detail our

method below in Section 4.3.1. Then, we detail in Section 4.3.2 the second stage where

we optimise the full objective function on the whole video while considering only the top

combinations selected during the first stage.

We provide here an efficient two-stage algorithm, depicted in Figure 4.9. In the first

stage, based on the background loss LI and the non-overlapping constraint, we select the

top-K most promising combinations of masks for each frame independently. Note that the

combinations violating the non-overlapping constraint are simply discarded. Then, in the

second stage, we optimize the complete objective function over all frames simultaneously

to find the best combinations for each frame. For both stages, we can use Dijkstra’s

algorithm [50] to significantly decrease the complexity of the computations. In the worst

case, the number of evaluations of the objective function becomes O(KTN3 + K2T 2).

We use K = 10 in practice, which reduces the required evaluations from∼ 10810 to∼ 107

for the numerical example above.

This optimization problem is related to many previous works on multiple object track-

ing [14, 171, 209, 274, 291, 292], which typically use graph-based methods to solve

related problems efficiently. One of the main differences with these works is that, in our

video-level optimization, each node corresponds to a combination of masks instead of a

single bounding box or mask. Besides, we do not have access to the object classes, and

our optimization is under the constraint that the masks do not overlap, while these works

typically rely on bounding boxes that can overlap when the objects are close to each other.

4.3.1 IMAGE-LEVEL OPTIMIZATION

At this stage, for each frame It, we look for the top-K combinations of masks in the

power set P(Mt) that minimize the Eq.(4.7) under the non-overlapping constraint. An

exhaustive search would take 2N evaluations of the objective function.

However, we note that this problem can be formulated as a K-shortest path search

problem in a binary tree, where each pair of branches of a node corresponds to the se-

lection or not of a mask, and each branch has an associated weight: This weight is set to
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infinity if the branch corresponds to the selection of a mask that overlaps with one of its

ancestors, otherwise it depends on the value of LI computed only on the mask. By itera-

tively applying Dijkstra’s algorithm to find the top-K combinations of masks, we reduce

the number of evaluations to O(KN3). Note that our proposed algorithm is agnostic to

the order of the mask candidates inMt.

In details, given a frame It, we obtain a set of mask candidatesMt using MP R-CNN.

To identify the top-K combinations of masks according to LI

(
It,∆t

)
without having to

perform an exhaustive evaluation, we iteratively apply Dijkstra’s algorithm [50]. To do

this, we first construct a binary tree B(V , E). As shown in Figure 4.6 for the easy case

where the masks inMt do not overlap, nodes Vi = {Vi,j}j at the same level in the tree

correspond to the state of the i-th mask Mi,t ∈ Mt i.e. if it is selected or not, and edges

Ei = {Ei,j}j at the same level are weighted with the contribution to LI

(
It,∆t

)
when mask

Mi,t is selected or not. j is the index of the submasks in the overlapping case, as shown

in Figure 4.7. In this way, the problem of finding the most promising combinations of

masks for a frame thus becomes to find the K-shortest paths in the binary tree B(V , E).

We iteratively apply Dijkstra’s algorithm [50] to efficiently find the top-K shortest paths.

We get the shortest path H1 by directly applying Dijkstra’s algorithm on the binary tree

B(V , E). To find the next shortest path, we consider a set U of paths, initialized with H1

as its only element. The whole procedure consists of two nested loops. The first loop is

over each path H in U . Given H, the second loop is over each edge Ei,j of H. We set the

weight of Ei,j to infinity and apply Dijkstra’s algorithm on the resulting tree. Each time

we run Dijkstra’s algorithm, we obtain an “intermediate shortest path” different from H.

After exiting the two loops, we add all the intermediate shortest paths to U and remove

H1 from it. The shortest path in U is now the second shortest pathH2 in the tree. We can

then repeat the above procedure to get the next shortest paths. This method decreases the

time complexity from 2N to O(KN3), where N is the number of masks per image and K

is the number of optimal combinations required.

Below, we start with the easier case, where there is no overlap among the mask candi-

dates inMt. In this case, each pixel in the image belongs to at most one mask candidate.
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Figure 4.6: Image-Level Optimization. Example of a tree B(V , E) in the non-overlapping
case. Nodes at the i-th level correspond to the selection (δt,i = 1) or non-selection (δt,i =
0) of the i-th mask. Edges at the i-th level are weighted according to the image term LI

and depending whether or not the i-th mask is selected. As there is no overlaps among
the three masks, the weights of edges can be calculated independently. A colored node
corresponds to the selection of the mask with the same color; a gray node corresponds to
the case where the mask is not selected.

The non-overlapping constraint is naturally satisfied, and the contributions of the masks

to LI

(
It,∆t

)
are independent of each other. Then, we dive into the overlapping case

and show that we can transform the overlapping case to the non-overlapping case with a

decomposing-then-hashing operation, and calculate LI

(
It,∆t

)
exactly.

Non-overlapping case. We first consider the easier case where there is no overlap be-

tween the mask candidates, illustrated by Figure 4.6. In such case, image term LI

(
It,∆t

)
can be written as a sum over the masks inMt plus a special additional mask made of the

pixels that do not belong to any mask (recall that ∆t = {δt,1, .., δt,N}):

LI

(
It,∆t

)
= CE

(
Bg(It), 1− Fg(∆t)

)
=

∑
Mt,i∈Mt

L′
I(It,Mt,i, δt,i) + L̄I(Mt,bg)

(4.10)

with
L′

I(It,Mt,i, δt,i) =−
∑

x∈Mt,i

(1− δt,i) logBg(It)(x)

+ δt,i log
(
1− Bg(It)(x)

)
,

(4.11)
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where the sum is over image locations x in mask Mt,i, and

L̄I(Mt,bg) = −
∑

x∈Mt,bg
logBg(It)(x) . (4.12)

Term L̄I(Mt,bg) in Eq. (4.10) is constant. Mt,bg represents the background image gen-

erated for the selected masks. We can ignore it here for the selection of the top-K mask

combinations. Note that it still needs to be included in LI for the Video-Level Opti-

mization. We can use the value of L′
I(It,Mt,i, 1) as weight for an edge corresponding to

the selection of mask Mi,t, L′
I(It,Mt,i, 0) as weight for an edge when mask Mi,t is not

selected.

Overlapping case. In general, the mask candidates predicted by MP R-CNN overlap,

and the contributions of masks {Mi,t}i to LI

(
It,∆t

)
are no longer independent. We pro-

pose a decomposing-then-hashing method which first decomposes each mask into a group

of non-overlapping sub-masks, then identify the contribution of each mask using the sum

of the sub-masks. When adding a novel node to the path, we fit the non-overlapping con-

straint by inspecting if there are some sub-masks selected in both the current node and the

nodes in this path.

As shown in Figure 4.7, we first decompose each mask Mt,i into a combination of

sub-masks {M ′
t,i,j}j depending on whether the pixels in the mask belong to other masks

or not. The whole image can thus be decomposed into the combination of all sub-masks

{M ′
t,i,j}i,j and Mt,bg, with no overlaps among the sub-masks in {M ′

t,i,j}i,j . Then, we can

construct a hash table where the key is the index of each mask Mt,i and the value is the

index of corresponding sub-masks {M ′
t,i,j}j for each mask Mt,i.

Similar to the non-overlapping case, with the help of non-overlapping sub-masks, we

have:
L′

I(It,Mt,i, δt,i) =−
∑

S∈{M ′
t,i,j}i,j

∑
x∈S

(
(1− δt,i) logBg(It)(x)

+ δt,i log
(
1− Bg(It)(x)

)) (4.13)

which means that the contribution of each mask to LI

(
It,∆t

)
can be decomposed
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Figure 4.7: Image-Level Optimization. Decomposing-then-hashing for the overlapping
case. The red mask represents the overlapping region between Mt,1 and Mt,2. The con-
tribution of M1,t can thus be decomposed into the sum of contributions of the two non-
overlapping green and red sub-masks.

Figure 4.8: Image-Level Optimization. Example of B(V , E) in the overlapping case.
Each time a node is added in the path, the weight of the edge is calculated by considering
all the previous nodes in the path.
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into the sum of the contributions of its corresponding sub-masks. Eq. (4.10) can thus be

written as:

LI

(
It,∆t

)
=

∑
S∈{M ′

t,i,j}i,j
L′

I(It, S) + L̄I(Mt,bg) . (4.14)

A tree for an overlapping case is shown in Figure 4.8. When searching for the shortest

path in the graph, given a path, each time a node is added to the path, with the help of the

hash table constructed aforementioned, we first check whether there are any sub-masks

M ′
t,i,j already being assigned a certain “state” in the previous nodes (by state, we mean

if it has been selected as foreground or selected as background). If not, like the non-

overlapping case, we consider the L′
I(It,Mt,i, δt,i) for the weight of the edge B, ∀i > 0.

If a sub-mask has already been assigned some state, there are two possible cases. The

first case is that the sub-masks M ′
t,i,j selected both in the current node and a previous

node have the same state. When the state is “background”, as we have already counted

the contribution of sub-masks in previous edges, the weight of the current edge is assigned

to the sum of the contribution of the rest of masks. When the state is “foreground”, since

the masks should not overlap, the weight of the current edge is set to infinity to prohibit

this path from becoming one of the top-K shortest paths. The second case is that some

sub-masks M ′
t,i,j selected both in the current node and a previous node possess different

states. In order to calculate the weight of the current edge, along with the contribution

of each sub-mask by considering the state assigned by the current node, we subtract the

contribution of the shared sub-masks according to their assigned state in the previous

node.

4.3.2 VIDEO-LEVEL OPTIMIZATION

As shown in Figure 4.9, we generate a graph with the remaining top-K combinations

of masks for each frame: Each node corresponds to one combination and each edge is

labeled with the loss given in Eq.(4.6) for the two combinations it links. Finding the

best combination for each frame becomes the problem of finding the shortest path in this

graph. Instead of doing 2KT evaluations of the objective function to find the shortest path,
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we can use Dijkstra’s algorithm [50] here as well to significantly accelerate the speed of

our algorithm. The number of evaluations is reduced to O(K2T 2).

Figure 4.9: Given a video, we first run the image-level optimisation on each frame and
get the top-K combinations of masks for each frame. The video-level optimisation selects
the best combination for each frame efficiently by solving a shortest path problem. For
this figure, K is set to 3. More details are given in Section 4.3.

In details, as shown in Figure 4.10, after the top-K combinations of masks for each

frame have been found by the first stage, we construct a graph G(V , E) to find the best

combinations of masks for each frame by optimizing the objective function over the whole

video. Node Vt,k represents the k-th combination of masks of frame It. Et,t+1,k,k′ repre-

sents the edge that connects node Vt,k and node Vt+1,k′ . The weight of edge is a sum over

the image term, the flow term and the motion model term:

WeightEt,t+1,k,k′
=λILI

(
It,∆t

)
+ λFLF

(
Ft, It, It+1,∆t,∆t+1

)
+ λpLp(∆t,∆t+1) .

(4.15)

In our case, as the weight of every edge is non-negative, we can use Dijkstra’s algo-

rithm [50] to select the combination of masks among the top-K combinations for each

frame.
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Figure 4.10: Video-Level Optimization. Example of graph G(V , E), represented only
between two consecutive frames It and It+1 for a video sequence of chimpanzees. Each
image in the column represents a combination of masks ∆t, different masks are shown in
different colors (Best seen in color).

4.4 IMPLEMENTATION DETAILS

In this section, we first present the implementation details of all the methods includ-

ing ours, then we present our benchmark for evaluating our approach. We compare our

method with several previous methods for the purpose of generating masks on unlabeled

videos and analyze the results. We also conduct a thorough ablation study to show the

influence of different components of our method. All our experiments were carried out

on 4 Nvidia RTX 2080Ti GPUs. During the training, mixed precision training is used to

reduce memory consumption and accelerate training.

4.4.1 NETWORK PRE-TRAINING

For the pre-training on the COCO dataset, we use the open source repo of Mask-RCNN [184]

and follow the training setting of [93], except that we adopt the class-agnostic setting,

where all 80 classes are merged into a single “object” category. We use ResNet-50-

FPN [154] as our backbone. As in [201], we call the Mask R-CNN model trained using

this class-agnostic setting “MP R-CNN” for Mask Proposal R-CNN. Our backbone net-

work is initialized with weights pre-trained on ImageNet [46]. During training, the shorter

edge of images are resized to 800 pixels. Each GPU has 4 images and each image has
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512 sampled RoIs, with a ratio of 1:3 of positives to negatives. We train our MP R-CNN

for 90k iterations. The learning rate is set to 0.02 at the beginning and is decreased by 10

at the 60k and 80k iteration. We use a weight decay of 0.0001 and momentum of 0.9.

4.4.2 NETWORK FINE-TUNING

We finetune MP R-CNN on the masks of Unseen-VIS-train generated by our method for

1k iterations. The initial learning rate is set to 0.002. The rest of the parameters and data

augmentation strategies are set to be the same with the parameters used for pre-training.

For the DAVIS Unsupervised benchmark, we finetune MP R-CNN on the masks generated

on the 60 training videos of DAVIS2017 dataset, using the same hyper-parameters as for

Unseen-VIS-train.

4.4.3 NETWORK RE-TRAINING

For retraining, we use a naive strategy to train MP R-CNN from scratch on the mixture

of COCO dataset and labels from Unseen-VIS-train. We add the images and annotations

of Unseen-VIS-train into the COCO dataset, the annotations can be either ground truth

or masks generated with our approach. Then we follow the training strategy given in

Section 4.4.1. MP R-CNN is trained on 120k training images of COCO for 90k iterations

with batch size 16. The mixture of COCO and Unseen-VIS-train has 20k additional

training images from Unseen-VIS-train, we therefore train the our MP R-CNN on the

mixture dataset for 110k iterations.

4.4.4 FOREGROUND/BACKGROUND SEGMENTATION

In order to estimate the background regions present in the image, similar to [128], we

adopt a FPN based network for segmentation. We use ResNest-200 [293] as our back-

bone. The regions that contain instances are considered as foreground and background

otherwise to generate binary mask for training. We set the initial learning rate to 0.02,
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(a) (b) (c)

Figure 4.11: Generation pipeline for ”synthetic optical flow” F t. (a) We first generate
two synthetic images I ′t and I ′t+1 by cropping and pasting the content of selected masks in
frame It and It+1 to a background image Ibg randomly selected from the Internet. (b) We
then feed the pair of synthetic images to a optical flow model g to generate a synthetic F

′
t.

(c) The pixels outside the selected masks are assigned the average flow in Ft computed
over the background.

then decrease it by 10 at the 240k and 255k iteration. The batch size is set to 16. Scale

augmentation is applied during training to further improve the performance.

4.4.5 OPTICAL FLOW ESTIMATION

We use the model released by [243] trained on FlyingThings [185]. FlyingThings is a

large-scale synthetic dataset for optical flow estimation. The dataset is generated by ran-

domizing the movement of the camera and synthetic objects collected from the ShapeNet

dataset [29]. The model for optical flow estimation is pre-trained on FlyingThings for

100k iterations with a batch size of 12, then for 100k iterations on FlyingThings3D with

a batch size of 6.

4.4.6 GENERATION OF SYNTHETIC FLOW F t

The motion of the selected objects should be consistent with the optical flow. To deal with

camera motion, we consider that the optical flow of the background can be different from 0

(but uniform). Given two consecutive frames It and It+1, together with two combinations

of masks ∆t and ∆t+1 for these frames, we propose a method to generate a ”synthetic

optical flow” which is then compared against the optical flow predicted by some optical

flow model.
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An overview of the generation pipeline is shown in Figure 4.11. We first generate two

synthetic images I ′t and I ′t+1 by cropping and pasting the content of selected masks in

frame It and It+1 to a background image Ibg randomly selected from the Internet. Then

we pass the pair of synthetic images into a optical flow model g to generate a synthetic

F
′
t. The pixels outside the selected masks are assigned the average flow in Ft computed

over the background.

The motivation for using a background image rather than a uniform background color

which seems more natural is to make sure the objects are visible before computing the

flow. For example, in the case of Figure 4.10, using a uniform black background would

make optical flow prediction fail for the dark chimpanzees. Using a real image is a simple

way to prevent this problem.

4.4.7 IMPLEMENTATION DETAILS OF OTHER METHODS

NLC [63]. We use the re-implementation code provided by [207]. In the original im-

plementation of the NLC algorithm, an edge detector pre-trained on labeled edge im-

ages [54] is used, while the re-implementation of [207] replaces the trained edge detector

with unsupervised superpixels. In order to obtain a motion segmentation for each frame,

a per-frame saliency map based on motion is computed then averaged over superpixels

calculated using method from [3]. Meanwhile, a nearest neighbor graph is computed

over the superpixels in the video using location and appearance as features. Finally, the

saliency is propagated across frames using a nearest neighbor voting scheme. For more

details, please refer to [63, 207].

FST [204]. We use the official code released by the authors to generate masks on the

videos from Unseen-VIS-train.

IOA [42]. We use the official code released by the authors. We first use the official

code of the VideoPCA algorithm [238] to find the saliency regions which stand out the

background in terms of motion and appearance. Then we follow the same approach as
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in [42] to keep only the top 20% saliency maps based on the mean score of the non-

zero pixels. The remaining saliency maps are used for training of the PSPNet [? ] with

ResNet-50 [95] as backbone, and initialized with ImageNet pre-trained weights [46].

UnOVOST [169]. We use the official code released by the authors, and use our MP R-

CNN for mask proposals generation. All the hyper-parameters are kept the same as in the

original work [169].

TWB [15]. We use the official code released by the authors, and replace the human

detector with our MP R-CNN. Since the confidence score for objects of unseen classes are

sometimes low, we lower the thresholds for filtering detection proposals and regression

results to 0.1. Note that [15] applies a Re-ID network to re-identify the persons that are

missing in previous frames, in order to re-identify the animals in Unseen-VIS-train, we

replace the Re-ID network trained on the pedestrian dataset with a ResNet-50 pretrained

on ImageNet [46].

Data distillation [218]. We use the official code released in Detectron2 [273] and follow

the same pipeline as stated in [218] for filtering and retraining.

UVC [151]. We use the model released by the authors for mask wrapping. The model

is trained in a self-supervised manner on the Kinetics [125] dataset. During inference,

we follow the same setting of UVC to resize the shorter edge of image to 480 pixels.

For Zero-Shot UVC, the masks for the first frame are obtained by selecting the masks

predicted by MP-RCNN on the first frame whose confidence score is larger than 0.1.

RVOS [255]. We use the official code released by the authors, and replace the backbone

of RVOS by ResNet-50. Input images are resized to 256×448. Each batch is composed

with 4 clips of 5 consecutive frames. The model is trained on the 1089 videos of seen

classes on YouTube VIS [284] for 50 epochs. The Adam optimizer is used to train our

network and the initial learning rate is set to 1e−6.
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4.5 EXPERIMENTS

4.5.1 EVALUATION

To benchmark our method, we created a dataset we call “Unseen-VIS”. The training part

of “Unseen-VIS” consists of videos collected from the YouTube Video Instance Segmen-

tation (YouTube VIS) [284] and is used for mask generation. The test part of “Unseen-

VIS” contains static images extracted from YouTube VIS for evaluation.

The original YouTube VIS dataset contains 2,883 videos with 131k object instances

spanning 40 classes, among which 24 coincide with COCO. Thus, we consider the re-

maining 16 classes, containing panda, lizard, seal, shark, mouse, frog, tiger, leopard,

fox, deer, ape, snake, monkey, rabbit, fish, turtle, as unseen classes which results in 795

videos in total. We randomly selected 595 videos as the training set, which we refer as

Unseen-VIS-train. The labeled static images in the remaining 200 videos are used for

evaluation, which we refer as Unseen-VIS-test. All the videos of Unseen-VIS-train are

used as unlabeled videos, and their ground truth masks are ignored.

For quantitative evaluation, we rely on the standard COCO metrics: AP , AP50, AP75,

and AR1, AR3 and AR5 as the maximum number of objects per image in our testing set

is 4. We do not use APS , APM , and APL as the object scales in COCO differ largely from

YouTube VIS.

4.5.2 VIDEO-ANNOTATION-FREE MASK GENERATION

We first compare our method to other approaches that can also generate masks given

video sequences without using any video annotations. Each method is first applied on

the Unseen-VIS-train dataset for mask generation, then we compare the performance of

MP R-CNN on the Unseen-VIS-test set after fine-tuning on these masks. As only one over

five frames is annotated in Unseen-VIS-train (19352 annotated frames in total), we there-

fore use only the masks of these frames for training for fair comparison among different

methods.
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Saliency/Flow-based methods. FST [204] and NLC [63] can generate masks from

videos by estimating the saliency and motion of the objects in videos. IOA [42] trains

a deep neural network on the output of an unsupervised soft foreground segmentation al-

gorithm [238] to segment objects in videos. These methods can identify moving regions

in the videos but can not separate adjacent objects in the images, thus a proposal generated

by these methods may actually correspond to several objects.

Tracking-based methods. TWB [15] and UnOVOST [169] rely on a frame-by-frame

tracking pipeline applied to mask proposals. These methods are the closest methods to

ours as we all rely on an instance segmentation model for proposal generation. However,

as we mentioned before, for our final goal (training a better object detector), we do not

need to keep track of the detected objects.

Similarity propagation methods. Given masks for a frame, UVC [151] warps these

masks to consecutive frames based on the estimated correspondences between consecu-

tive frames. For this experiment, we use it in a zero-shot setting (”ZS-UVC”), where the

masks of the first frame are instead generated by thresholding the confidence score on the

first frame prediction of MP R-CNN (we use a threshold of 0.1 in practice).

Self-training methods. We also compare our method with the self-learning Data Distil-

lation (DD) method [218]. We follow their proposed test time augmentation to generate

masks on each frame of the Unseen-VIS-train videos independently, as this method per-

forms on single images.

We report the results in Table 4.1. Compared with the Saliency/Flow-based methods

and Tracking-based methods, the masks generated by our method are of high quality and

can largely improve the performance of the baseline network in all metrics. Our method

also outperforms the state-of-the-art self-training method (DD) [218] for two-stage object

detection by a large margin.
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Method used for Unseen-VIS-test
mask generation AP AP50 AP75 AR1 AR3 AR5

(bef. fine-tuning) 35.8 61.2 38.1 33.3 47.3 50.3

NLC [63] 1.2 3.8 1.0 2.4 5.3 6.9
IOA [42] 2.4 8.5 0.9 6.9 8.7 9.5
FST [204] 17.0 41.8 11.3 22.0 30.6 33.1
UnOVOST [169] 31.1 55.6 32.2 29.9 44.5 48.2
TWB [15] 31.2 53.4 32.8 31.5 46.7 50.0
DD [218] 36.6 63.8 38.5 32.5 46.2 49.3
ZS-UVC [151] 21.2 42.6 19.9 26.3 40.0 43.2
Ours 39.0 67.9 41.3 35.2 48.9 51.4

Table 4.1: Mask Generation without Video Annotation. Performance of MP R-CNN
on Unseen-VIS-test after fine-tuning on masks generated by various methods applied to
Unseen-VIS-train without using any video annotation.

4.5.3 VIDEO-ANNOTATION-DEPENDENT MASK GENERATION

In addition to the aforementioned methods, we further compare with two methods that

adopt different settings and explore the upper bound of our method.

RVOS. RVOS [255] is an end-to-end video object segmentation framework that directly

runs on videos, which requires labeled videos for training. We adopt the Zero-Shot setting

for RVOS, where it is trained with ResNet50 [95] as backbone on 1089 videos (25869

annotated frames in total) of seen classes of YouTube VIS and directly applied to the

Unseen-VIS-train videos for mask generation.

OS-UVC. Here, we consider the One-Shot setting for UVC, where the ground truth

masks of the first frame are given for all Unseen-VIS-train videos.

Selected using ground truth. We use the ground truth mask labels of Unseen-VIS-train

to select the masks predicted by MP R-CNN. The similarity among masks is evaluated

based on their Intersection-over-Union, and the Hungarian algorithm is used to select the

masks that best match with the ground truth. This can be regarded as an upper bound that
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Method used for Video Annotations Unseen-VIS-test
mask generation Seen Unseen AP AP50 AP75 AR1 AR3 AR5

(bef. fine-tuning) 35.8 61.2 38.1 33.3 47.3 50.3

RVOS [255] ✓ 38.5 68.9 38.0 35.4 49.5 52.8
Ours - - 39.0 67.9 41.3 35.2 48.9 51.4
OS-UVC [151] ✓ 41.5 73.7 42.9 39.1 52.7 54.9
Selected using GT ✓ 42.7 75.1 45.3 37.3 53.4 53.6
Trained with GT ✓ 50.8 80.9 54.6 43.6 58.6 60.6

Table 4.2: Mask Generation with Video Annotations. Performance of MP R-CNN on
Unseen-VIS-test after fine-tuning on the masks generated by various methods that require
manual video annotations except ours. RVOS uses labeled videos of Seen classes for
training. OS-UVC uses the ground truth masks for the first frame for mask generation.
”Selected using GT” represents the masks generated by MP R-CNN selected using ground
truth masks and can be regarded as an upper-bound.

we can achieve given the predictions of MP R-CNN.

Trained with ground truth. We report the performance of MP R-CNN fine-tuned with

ground truth mask labels of Unseen-VIS-train. This can also be regarded as an upper

bound, where all the classes have already been Seen.

We report the results in Table 4.2. Compared to RVOS [255] trained with labeled

videos, our method can still achieve comparable results on recall while surpassing their

results by a large margin on AP75, which means that the masks selected by our method are

of better quality. Importantly for practical applications, our method was able to deal with

the large domain gap between the images in COCO on which we pre-train MP R-CNN

and the frames in YouTube VIS on which we apply and evaluate our method. RVOS was

trained and applied on videos from YouTube VIS, and therefore was not confronted to a

domain gap.

While OS-UVC [151] achieves higher results than our approach, it relies mainly on

a high-quality first frame mask: We observe a large performance drop when we replace

the ground truth masks (”OS-UVC” in Table 4.2) by the predicted masks (”ZS-UVC” in

Table 4.1). Besides, it can only track objects visible in the first frame as it does not handle



88 Chapter 4: Global Optimisation for Unseen Class Instance Segmentation

Figure 4.12: Qualitative results of selected masks on Unseen-VIS-train and detections of
new classes on Unseen-VIS-test after fine-tuning on these selected masks. Top: First row:
Masks detected by our baseline network MP R-CNN on two sequences from Unseen-VIS-
train; Second row: Masks selected by UnOVOST [169]; Third row: Masks selected by
our approach. Note that we keep the masks for the pandas and rabbits, and reject the
masks that do not correspond to real objects. Bottom: Masks detected in still images
from Unseen-VIS-test. Fourth row: Masks detected by MP R-CNN before we fine-tuned
it on the masks selected by our approach on Unseen-VIS-train; Fifth row: Masks detected
by MP R-CNN after fine-tuning. The masks generated by our method results in a signifi-
cantly better model for the new classes: We can now correctly segment pandas and rabbits
in new videos, even if no manual segmentations for pandas and rabbits were provided.

the emergence of new objects.

After simply retraining from scratch both on the 80 seen classes of COCO and the

masks generated by our approach on Unseen-VIS-train, MP R-CNN achieves 35.2 mask

AP on COCO minival and 38.9 mask AP on Unseen-VIS-test. Compared with the MP R-

CNN pre-trained only with COCO dataset, which achieves 35.3 mask AP on COCO

minival, we achieve better performance on Unseen-VIS-test while maintaining the per-

formance on COCO.

4.5.4 APPLICATION TO ZERO-SHOT VIDEO OBJECT SEGMENTATION

As one of the state-of-the-art zero-shot video object segmentation methods, UnOVOST [169]

segments the objects in the videos by linking the masks predicted by an instance segmen-

tation network on each frame. As show in Table 4.3, by fine-tuning the original mask

generation model on the masks generated on the DAVIS training dataset [208] using our
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Use Unla- J and F J F
Method beled Data Mean Mean Recall Decay Mean Recall Decay
UnOVOST [169] 56.2 54.4 63.7 -0.01 57.9 65.0 0.00
UnOVOST+ ✓ 59.9 59.1 70.0 -0.06 60.8 70.8 -0.03

Table 4.3: Zero-Shot Video Object Segmentation evaluation on the DAVIS dataset [208].
UnOVOST [169] relies on an instance segmentation network for mask generation. Un-
OVOST+ row: After fine-tuning its mask generation network on the DAVIS training
dataset using the masks generated by our approach, it achieves higher results on all met-
rics.

method, we achieve much better results. This demonstrates that downstream tasks can

benefit from the performance boost brought by our method.

4.5.5 ABLATION STUDY

Table 4.4 shows the positive impact made by each loss term and constraint in Eq. (4.6).

The masks obtained by applying only the background loss LI can already improve the

performance of baseline on unseen classes. Similarly, adding the constraint that the masks

should not overlap, the flow loss LF , or the regularization loss Lp has a positive impact.

In particular, this shows that both the flow loss LF and the regularization loss Lp help

reranking the combinations of masks given by the background loss.

4.5.6 RETRAINING VS FINE-TUNING

Detailed results are shown in Table 4.5. The performance of MP R-CNN on COCO-

2017-val degrades dramatically after finetuning on either the ground truth of Unseen-

VIS-train or the masks generated by our approach. Our guess is that this degradation

results from the significant domain gap between images in YouTube-VIS and COCO.

Interestingly, compared with the ground truth of Unseen-VIS-train, the performance of

MP R-CNN is much less affected by finetuning on the masks generated by our approach,

which demonstrates that our approach helps to preserve to some extent the information of

the dataset used for pre-training.
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LI Overl.Constr. LF Lp AP AP50 AP75 AR1 AR3 AR5

35.8 61.2 38.1 33.3 47.3 50.3
✓ 36.6 65.2 37.8 33.3 47.7 50.8
✓ ✓ 38.1 64.6 40.2 34.2 48.5 51.2
✓ ✓ ✓ 38.7 67.0 40.5 34.7 48.7 51.3
✓ ✓ ✓ ✓ 39.0 67.9 41.3 35.2 48.9 51.4

Table 4.4: Ablation study on the different components of our method.

Unseen-VIS-train Training Unseen-VIS-test COCO val
Pretrained on COCO GT Generated Masks Strategy AP AP50 AP75 AR1 AR3 AR5 AP AP50 AP75 APS APM APL

✓ – 35.8 61.2 38.1 33.3 47.3 50.3 35.3 62.6 35.9 20.8 40.6 52.4
✓ ✓ retrain 51.2 80.2 56.8 45.0 56.8 59.5 34.9 61.8 35.7 20.6 40.2 52.3
✓ ✓ retrain 38.9 67.8 41.2 35.2 48.9 51.4 35.0 62.0 35.8 20.5 40.2 52.3
✓ ✓ finetune 50.8 80.9 54.6 43.6 58.6 60.6 24.0 44.9 23.4 15.3 28.7 33.6
✓ ✓ finetune 39.0 67.9 41.3 35.2 48.9 51.4 32.1 57.0 32.8 17.5 39.3 51.1

Table 4.5: Results on the COCO2017 validation dataset and Unseen-VIS-test adopting
different training strategies. The performance of MP R-CNN fine-tuned on our generated
masks on Unseen-VIS-train is much less affected compared to MP R-CNN fine-tuned on
the ground truth masks. By training on the dataset created by naively mixing the training
dataset of COCO with our generated masks on Unseen-VIS-train, we can achieve the
same results on Unseen classes as fine-tuning while preserving the performance on Seen
classes.

4.6 CONCLUSION

In this chapter, we tackled the challenge of localizing and segmenting objects from unseen

classes without any manual mask labels. We demonstrated that our method, based on

an instance segmentation model pretrained on some seen classes, generates high-quality

masks for unseen classes by analyzing unlabeled videos without the need for hard-to-tune

hyper-parameters. Furthermore, we presented an efficient implementation by breaking

down the computationally expensive optimization into a two-stage process.

However, it should be noted that in the unsupervised case, the concept of objects is

often ill-defined. The boundary between ”things” and ”stuff” [25, 68] can be ambiguous

at times. For instance, should we consider a stone on the ground as an object or part of

the background? What if a person pushes this stone? Furthermore, the granularity of the

problem is also not clear. Should we consider a person as one object, or each item of
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clothing they wear as individual objects? This ambiguity does not arise in the supervised

case, as the annotators determine what constitutes an object, but it makes the evaluation of

unsupervised object detection difficult. It may be essential to reconsider the definition of

object based on either its shape or function to make the evaluation of unsupervised object

segmentation more meaningful.
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PART II:

HUMAN MOTION UNDERSTANDING
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In this part of the thesis, we tackle the human motion understanding problem, where

we aim to comprehend and forecast human motion from historical observations or partial

observations. Indeed, it is crucial for the robots to understand the human that they are

interacting with and prevent risky movements.

This part consists of two chapters, in the Chapter 5, we introduce a simple yet effective

method for forecasting future body poses from historically observed sequences. In partic-

ular, we show that a light-weight network based on multi-layer perceptrons(MLPs) with

only 0.14 million parameters can achieve superior performance on various benchmarks.

In the Chapter 6, we tackle the conditional motion synthesis problem, where only a

sparse tracking signal is available from standalone devices. We present a novel condi-

tional diffusion model specifically designed to track full bodies given sparse upper-body

tracking signals. It can predict accurate and smooth full-body motion, particularly the

challenging lower body movement. Our compact architecture can run in real-time, mak-

ing it suitable for online body-tracking applications. We demonstrate that our approach

outperforms state-of-the-art methods in generated motion accuracy and smoothness.



CHAPTER 5

A SIMPLE BASELINE FOR HUMAN

MOTION PREDICTION

95



96 Chapter 5: A Simple Baseline for Human Motion Prediction

In this chapter, we introduce our simple yet effective method for forecasting short time

human motion based on historical observations. The ability to anticipate short-term hu-

man motion holds tremendous significance across a multitude of domains, offering key

contributions to their success and progress. Our method is designed to be not only accu-

rate but also simple and adaptable, thus making it applicable to a wide array of applica-

tions. In the following sections, we delve into the technical details of our approach.

5.1 INTRODUCTION

The objective of human motion prediction is to forecast the subsequent 3D body poses in

a sequence. Precise prediction of future human motion is crucial for several applications,

including accident prevention in autonomous driving [203], people tracking [80], and

human-robot interaction [133].

Due to the spatio-temporal nature of human motion, the prevailing trend in the litera-

ture is to design models that can integrate spatial and temporal information. Traditional

approaches primarily relied on hidden Markov models [19] or Gaussian process latent

variable models [260]. However, while these approaches performed well on simple and

periodic motion patterns, they were severely inadequate for complex motions [178]. In re-

cent years, with the success of deep learning, various methods based on different types of

neural networks have been developed to handle sequential data. For instance, some works

use Recurrent Neural Networks (RNN)[182] to model human motion[69, 111, 182, 159,

40], and more recent works [178, 177, 84, 172, 43, 149, 148] propose networks based

on Graph Convolutional Networks (GCN)[178], or try with Transformers[5]-based meth-

ods [177, 5, 26] to fuse spatial and temporal information of the motion sequence across

human joints and time. However, the architectures of these recent methods are often com-

plex, and some of them require additional priors, which makes their network difficult to

analyze and modify. Therefore, a natural question arises: “Can we address human motion

prediction with a simple network?”

To address this question, we initially attempted a naive solution by simply repeating
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Figure 5.1: Comparison of parameter size and performance on the Human3.6M
dataset [108]. We report the MPJPE metric in mm at 1000 ms as performance on the
vertical axis. Our method (SIMLPE, in red) achieves the lowest error with significantly
fewer parameters. We also show the performance of two simple methods: ‘Repeating
Last-Frame’ systematically repeats the last input frame as output prediction, and ‘One-
FC’ uses only one single fully connected layer to predict the future motion. The closer to
the bottom-left, the better.

the last input pose and utilizing it as the output prediction. As depicted in Figure 5.1,

this naive solution already achieved reasonable results, indicating that the last input pose

is ”close” to the future poses. Motivated by this, we trained only one fully connected

layer to predict the residual between the future poses and the last input pose, achieving

better performance, demonstrating the potential of a simple network for human motion

prediction built on fundamental layers such as the fully connected layer.

Based on the above observations, we return to multi-layer perceptrons (MLPs) and de-

velop a simple yet effective network named SIMLPE, which comprises only three learn-

able components: fully connected layers, layer normalization [11], and 1D convolutional

layer with kernel size 1 [140]. The network architecture is illustrated in Figure 5.2. No-

tably, we discovered that even commonly used activation layers such as ReLU [193] are

unnecessary, rendering our network a completely linear model except for layer normal-
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ization. Despite its simplicity, SIMLPE achieves strong performance when appropriately

combined with three straightforward practices: applying the Discrete Cosine Transform

(DCT), predicting the residual displacement of joints, and optimizing velocity as an aux-

iliary loss.

SIMLPE attains state-of-the-art performance on several standard benchmarks, includ-

ing Human3.6M [108], AMASS [174], and 3DPW [258]. Moreover, SIMLPE is lightweight

and necessitates 20× to 60× fewer parameters than previous state-of-the-art approaches.

Figure 5.1 depicts a comparison between SIMLPE and previous methods, demonstrat-

ing the Mean Per Joint Position Error (MPJPE) at 1, 000ms on Human3.6M of different

networks versus their complexity. SIMLPE achieves the best performance with high effi-

ciency.

In summary, our contributions are as follows:

• We show that human motion prediction can be modeled in a simple way without

explicitly fusing spatial and temporal information. As an extreme example, a single

fully connected layer can already achieve reasonable performance.

• We propose SIMLPE, a simple yet effective network for human motion prediction

with only three learnable components: fully connected layers, layer normalization,

and 1D convolutional layer with kernel size 1, achieving state-of-the-art performance

with far fewer parameters than existing methods on multiple benchmarks such as

Human3.6M, AMASS and 3DPW datasets.

5.2 OUR APPROACH: SIMLPE

In this section, we formulate the problem and present the formulation of the DCT trans-

formation in Section 5.2.1, details of the network architecture in Section 5.2.2, and the

losses we use for training in Section 5.2.3.

Given a sequence of 3D human poses in the past, our goal is to predict the future

sequence of poses. We denote the observed 3D human poses as P1:T = [P⊤
1 , .., P⊤

T ]⊤ ∈
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Figure 5.2: Overview of our approach SIMLPE for human motion prediction. FC denotes
a fully connected layer, LN denotes layer normalization [11] and 1x1 Conv denotes a
1D convolutional layer with kernel size 1. DCT and IDCT represent the discrete cosine
transformation and inverse discrete cosine transformations respectively. The MLP blocks
(in gray), composing FC and LN, are repeated m times.

RT×C , consisting of T consecutive human poses, where the pose at the t-th frame Pt is

represented by a C-dimensional vector, i.e. Pt ∈ RC . In this work, similar to previous

works [182, 178, 177, 172], Pt is the 3D coordinates of joints at t-th frame and C =

3× J, where J is the number of joints. Our task is to predict the future N motion frames

GT+1:T+N = [P⊤
T+1, .., P

⊤
T+N ]

⊤ ∈ RN×C .

5.2.1 DISCRETE COSINE TRANSFORM (DCT)

We adopt the DCT transformation to encode temporal information, which is proven to be

beneficial for human motion prediction [178, 177, 172]. More precisely, given an input

motion sequence of T frames, the DCT matrix D ∈ RT×T can be calculated as:

Di,j =

√
2

T

1√
1 + δi,0

cos
( π

2T
(2j + 1)i

)
, (5.1)

where δi,j denotes the Kronecker delta:

δi,j =

1 if i = j

0 if i ̸= j .
(5.2)
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The transformed input is D(P1:T ) = DP1:T . We apply the Inverse Discrete Cosine

Transform (IDCT) to transform the output of the network back to the original pose repre-

sentation, denoted as D−1 and the inverse of D. Note that the DCT and IDCT operations

can be also merged to the first and last fully connected layers by matrix muliplication

once the network is trained.

5.2.2 NETWORK ARCHITECTURE

Figure 5.2 depicts the architecture of our proposed network, which consists of only three

components: fully connected layers, 1D convolutional layer with kernel size 1, and layer

normalization [11]. The input dimension of each fully connected layer is the same as its

output dimension.

Formally, given an input sequence of 3D human poses P1:T = [P⊤
1 , .., P⊤

T ]⊤ ∈ RT×C ,

our network predicts a sequence of future poses PT+1:T+N = [P ′⊤
T+1, .., P

′⊤
T+N ]

⊤ ∈

RN×C :

PT+1:T+N = D−1(F(D(P1:T ))) , (5.3)

where F denotes our network.

After the DCT transformation, we apply one fully connected layer to operate only on

the spatial dimension of the transformed motion sequence D(P1:T ) ∈ RT×C :

z0 = D(P1:T )W0 + b0 , (5.4)

where z0 ∈ RT×C is the output of the fully connected layer, W0 ∈ RC×C and b0 ∈ RC

represent the learnable parameters of the fully connected layer.

Then, a series of m blocks are introduced to only operate on the temporal dimension,

i.e., only to merge information across frames. Each block consists of a 1D convolutional

layer with kernel size 1 followed by layer normalization, formally:

zi = zi−1 + LN(Wiz
i−1 + bi) , (5.5)
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where zi ∈ RT×C , i ∈ [1, ..,m] denotes the output of the i-th MLP block, LN denotes the

layer normalization operation, and Wi ∈ RT×T and bi ∈ RT are the learnable parameters

of the 1D convolutional layer with kernel size 1 in the i-th MLP block.

Finally, after the MLP blocks, we add another fully connected layer to operate only on

the spatial dimension of the feature. The output of this layer is then passed through an

Inverse Discrete Cosine Transform (IDCT) to obtain the final prediction:

PT+1:T+N = D−1(z′Wm+1 + bm+1) , (5.6)

where Wm+1 and bm+1 are the learnable parameters of the last fully connected layer.

Note that the length of the input sequence T and the number of joints N do not neces-

sarily need to be equal. When T > N , we only take the first N frames of the prediction.

In the case of T < N , we can pad our input sequence to N by repeating the last frame,

as done in [178, 177]. This padding approach helps to make the input sequence size

consistent with the network input size.

5.2.3 LOSSES

As mentioned in Section 5.1 and shown in Figure 5.1, the last input pose is “close” to

the future poses. Inspired by this observation, instead of predicting the absolute 3D poses

from scratch, we let our network predict the residual between the future pose PT+t and

the last input pose xT . As we will show in Section 5.3.6, this eases learning and improves

performance.

Our objective function L includes two terms Lre and Lv:

L = Lre + Lv . (5.7)

Lre aims to minimize the L2-norm between the predicted poses PT+1:T+N and ground-

truth one GT+1:T+N :

Lre = L2(PT+1:T+N ,GT+1:T+N) . (5.8)
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Lv aims to minimize theL2-norm between the velocity of the predicted motion vGT
T+1:T+N

and the ground truth one vT+1:T+N :

Lv = L2(v
GT

T+1:T+N ,vT+1:T+N) , (5.9)

where vT+1:T+N = [v⊤T+1, .., v
⊤
T+N ]

⊤ ∈ RN×C , vt represents the velocity at frame t and is

computed as the time difference: vt = Pt+1 − Pt. We provide a full analysis of the loss

terms in Section 5.3.6.

5.3 EXPERIMENTS

This section covers our experimental setup and results. We begin by discussing the

datasets and evaluation metrics in Section 5.3.1. In Section 5.3.3, we provide details

of our implementation. In Section 5.3.4, we present the quantitative and qualitative re-

sults of our proposed method. Finally, we conduct an ablation analysis to evaluate the

contribution of different components of our approach in Section 5.3.6.

5.3.1 DATASETS

Human3.6M dataset [108]. The Human3.6M dataset consists of 7 actors performing

15 actions, and 32 joints are labeled for each pose. We adopt the same testing protocols

as [177] and use S5 as the test set, S11 as the validation set, and the remaining subjects

as the train set. Different test sampling strategies have been used in previous works,

including 8 samples per action [182, 178], 256 samples per action [177] or all samples

in the test set [43]. Since 8 samples are too few and taking all testing samples may lead

to an imbalance between different actions with varying sequence lengths, we follow the

strategy of using 256 samples per action for testing and evaluate the results on 22 joints,

as in [182, 178, 177, 172].

AMASS dataset [174] AMASS is a collection of multiple Mocap datasets [67, 174, 9,

135, 248, 251, 17, 166, 74, 31, 232, 176, 161, 192, 4, 252, 103, 249] unified by SMPL
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parameterization [163]. We follow [177] to use AMASS-BMLrub [248] as the test set

and split the rest of the AMASS dataset into training and validation sets. The model is

evaluated on 18 joints as in [177].

3DPW dataset [258]. 3DPW is a dataset that consists of indoor and outdoor scenes, and

provides 3D body pose annotations for 26 joints. However, to evaluate the generalization

ability of our model, we follow the same evaluation protocol as [177] and only use 18

joints for evaluation, which are the same as the joints in the AMASS dataset.

5.3.2 EVALUATION METRICS

We report the Mean Per Joint Position Error (MPJPE) on 3D joint coordinates as our

primary evaluation metric, which is the most widely used metric for evaluating 3D pose

errors. Specifically, we calculate the average L2-norm across different joints between the

predicted and ground-truth poses. Following the common practice in previous works [178,

177, 43, 172], we ignore the global rotation and translation of the poses and sample the

poses at a fixed rate of 25 frames per second (FPS) for all datasets. Note that for the

Human3.6M dataset, we evaluate our method on 22 joints as in [182, 178, 177, 172],

while for the 3DPW dataset, we evaluate our method on 18 joints as in [177] to evaluate

the generalization ability of our model.

5.3.3 IMPLEMENTATION DETAILS

In practice, we set the length of the input sequence to T = 50 and the length of the

output sequence to N = 10 for the Human3.6M dataset, and N = 25 for the AMASS

and 3DPW datasets. During testing, we apply our model in an auto-regressive manner to

generate motion for longer periods. The feature dimension is set to C = 3 × J, where

J is the number of joints in the dataset. Specifically, we set J = 22 for the Human3.6M

dataset and J = 18 for the AMASS and 3DPW datasets.

To train our network, we set the batch size to 256 and use the Adam optimizer [127].

Our network consumes approximately 1.5GB of memory during training and all experi-
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ments are conducted using the Pytorch [206] framework on a single NVIDIA RTX 2080Ti

graphics card. We train our network on the Human3.6M dataset for 35k iterations, where

the learning rate starts from 0.0003 at the beginning and drops to 0.00001 after 30k steps.

The training takes around 30 minutes. On the AMASS dataset, we train our network for

115k iterations, where the learning rate starts from 0.0003 at the beginning and drops to

0.00001 after 100k steps. The training takes approximately 2 hours. During training, we

only apply the front-back flip as data augmentation, which randomly inverts the motion

sequence during the training.

5.3.4 QUANTITATIVE RESULTS

In this section, we compare our approach to existing state-of-the-art methods on different

datasets. We report MPJPE in mm at different prediction time steps up to 1000ms.

Human3.6M dataset. In Table 5.1, we compare our method with other state-of-the-art

methods on the Human3.6M dataset. Our method outperforms all previous methods on

every frame with much fewer parameters. As explained in Section 5.3.1, some different

methods have taken different test sampling strategies. Following [177], we choose to test

with 256 samples on 22 joints. To make a fair comparison, we evaluate all the methods

using the same testing protocol. Our method outperforms all previous methods on every

frame with a much less number of parameters. Besides, previous works usually report

short-term (0 ∼ 500ms) and long-term (500 ∼ 1000ms) predictions separately, and [172]

reports short-/long- term results using two different models. In our tables, all the results

from 0 ∼ 1000ms are predicted by a single model, and for [172], we report the results

of their model which achieves the best performance on long-term prediction. In addition,

we also evaluate the two simple approaches mentioned in Section 5.1 on the Human3.6M

dataset in Table 5.1: ‘Repeating Last-frame’ takes the last input pose and repeats it N

times to serve as output, and ‘One FC’ uses only one single fully connected layer trained

on Human3.6m. These results show that the task of human motion prediction could be

potentially modeled in a completely different and simple way without explicitly fusing
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spatial and temporal information. Furthermore, similar to all the previous works, we also

detail the action-wise results in Table 5.2.

AMASS and 3DPW datasets. In Table 5.3, we report the performance of the model

trained on AMASS and tested on the AMASS-BMLrub and 3DPW datasets, following the

evaluation protocol of [177]. Different from the Human3.6M dataset where the training

and testing data are from the same types of actions performed by different actors, the

difference between training and testing data under this protocol is much larger, which

makes the task more challenging in terms of generalization. As shown in the table, our

approach performs consistently better on long-term prediction. Moreover, our model is

much lighter. For example, the parameter size of our model is ∼ 4% of Hisrep [177].

While it is common to evaluate the predicted error at different time steps, some recent

works, such as [234] and [299], report the average error from the first time step to a certain

time step. In our experiments, we report the predicted error at different time steps in all

tables except Table 5.4, where we report the average error for comparison with these two

methods. It is worth noting that our approach outperforms both [234] and [299] in terms

of average error.

5.3.5 QUALITATIVE RESULTS

In addition to presenting quantitative results, we also provide qualitative results of our

method in Figure 5.3, which shows some testing examples on the Human3.6M dataset.

These examples illustrate that our predictions perfectly match the ground-truth on short-

term predictions and generally fit the ground-truth on long-term predictions. However,

the error increases when predicting longer-term motions, which is a common problem for

all motion prediction methods, as shown in Table 5.1 and Table 5.3. This is because most

current methods use auto-regression for predicting a longer future, which causes the error

to accumulate. Additionally, uncertainty increases rapidly with time when predicting

human motions.
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MPJPE (mm) ↓
# Param.(M) ↓Time (ms) 80 160 320 400 560 720 880 1000

Repeating Last-Frame 23.8 44.4 76.1 88.2 107.4 121.6 131.6 136.6 0
One FC 14.0 33.2 68.0 81.5 101.7 115.1 124.8 130.0 0.003

Res-RNN † [182] 25.0 46.2 77.0 88.3 106.3 119.4 130.0 136.6 3.44
convSeq2Seq † [145] 16.6 33.3 61.4 72.7 90.7 104.7 116.7 124.2 15.58
LTD-50-25 † [178] 12.2 25.4 50.7 61.5 79.6 93.6 105.2 112.4 2.56
LTD-10-10 † [178] 11.2 23.4 47.9 58.9 78.3 93.3 106.0 114.0 2.55
Hisrep † [177] 10.4 22.6 47.1 58.3 77.3 91.8 104.1 112.1 3.24
MSR-GCN ⋆ [43] 11.3 24.3 50.8 61.9 80.0 - - 112.9 6.30
ST-DGCN-10-25 ⋆ [172] 10.6 23.1 47.1 57.9 76.3 90.7 102.4 109.7 3.80

SIMLPE (Ours) 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4 0.14

Table 5.1: Results on Human3.6M for different prediction time steps (ms). We report
the MPJPE error in mm and number of parameters (M) for each method. Lower is better.
256 samples are tested for each action. † indicates that the results are taken from the
paper [177], ⋆ indicated that the results are taken from the paper [172]. Note that ST-
DGCN [172] use two different models to evaluate their short-/long- term performance,
here we report their results of a single model which performs better on long-term for
fair comparison. We also show results of two simple baselines: ’Repeating Last-Frame’
repeats the last input frame 25 times as output, ’One FC’ uses only one single fully con-
nected layer for the prediction.

Figure 5.3: Qualitative results of our method SIMLPE. The skeletons in light colors are
the input (before 0ms) and the ground-truth (after 0ms). Those with dark colors represent
the predicted motions. Our prediction results are close to the ground-truth.
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Action walking eating smoking discussion

Time (ms) 80 400 560 1000 80 400 560 1000 80 400 560 1000 80 400 560 1000

Res-RNN † [182] 23.2 66.1 71.6 79.1 16.8 61.7 74.9 98.0 18.9 65.4 78.1 102.1 25.7 91.3 109.5 131.8
convSeq2Seq † [145] 17.7 63.6 72.2 82.3 11.0 48.4 61.3 87.1 11.6 48.9 60.0 81.7 17.1 77.6 98.1 129.3
LTD-50-25 † [178] 12.3 44.4 50.7 60.3 7.8 38.6 51.5 75.8 8.2 39.5 50.5 72.1 11.9 68.1 88.9 118.5
LTD-10-10 † [178] 11.1 42.9 53.1 70.7 7.0 37.3 51.1 78.6 7.5 37.5 49.4 71.8 10.8 65.8 88.1 121.6
Hisrep † [177] 10.0 39.8 47.4 58.1 6.4 36.2 50.0 75.7 7.0 36.4 47.6 69.5 10.2 65.4 86.6 119.8
MSR-GCN ⋆ [43] 10.8 42.4 53.3 63.7 6.9 36.0 50.8 75.4 7.5 37.5 50.5 72.1 10.4 65.0 87.0 116.8
ST-DGCN-10-25 ⋆ [172] 11.2 42.8 49.6 58.9 6.5 36.8 50.0 74.9 7.3 37.5 48.8 69.9 10.2 64.4 86.1 116.9

SIMLPE (Ours) 9.9 39.6 46.8 55.7 5.9 36.1 49.6 74.5 6.5 36.3 47.2 69.3 9.4 64.3 85.7 116.3
Action directions greeting phoning posing

Time (ms) 80 400 560 1000 80 400 560 1000 80 400 560 1000 80 400 560 1000

Res-RNN † [182] 21.6 84.1 101.1 129.1 31.2 108.8 126.1 153.9 21.1 76.4 94.0 126.4 29.3 114.3 140.3 183.2
convSeq2Seq † [145] 13.5 69.7 86.6 115.8 22.0 96.0 116.9 147.3 13.5 59.9 77.1 114.0 16.9 92.9 122.5 187.4
LTD-50-25 † [178] 8.8 58.0 74.2 105.5 16.2 82.6 104.8 136.8 9.8 50.8 68.8 105.1 12.2 79.9 110.2 174.8
LTD-10-10 † [178] 8.0 54.9 76.1 108.8 14.8 79.7 104.3 140.2 9.3 49.7 68.7 105.1 10.9 75.9 109.9 171.7
Hisrep † [177] 7.4 56.5 73.9 106.5 13.7 78.1 101.9 138.8 8.6 49.2 67.4 105.0 10.2 75.8 107.6 178.2
MSR-GCN ⋆ [43] 7.7 56.2 75.8 105.9 15.1 85.4 106.3 136.3 9.1 49.8 67.9 104.7 10.3 75.9 112.5 176.5
ST-DGCN-10-25 ⋆ [172] 7.5 56.0 73.3 105.9 14.0 77.3 100.2 136.4 8.7 48.8 66.5 102.7 10.2 73.3 102.8 167.0
SIMLPE (Ours) 6.5 55.8 73.1 106.7 12.4 77.3 99.8 137.5 8.1 48.6 66.3 103.3 8.8 73.8 103.4 168.7

Action purchases sitting sittingdown takingphoto

Time (ms) 80 400 560 1000 80 400 560 1000 80 400 560 1000 80 400 560 1000

Res-RNN † [182] 28.7 100.7 122.1 154.0 23.8 91.2 113.7 152.6 31.7 112.0 138.8 187.4 21.9 87.6 110.6 153.9
convSeq2Seq † [145] 20.3 89.9 111.3 151.5 13.5 63.1 82.4 120.7 20.7 82.7 106.5 150.3 12.7 63.6 84.4 128.1
LTD-50-25 † [178] 15.2 78.1 99.2 134.9 10.4 58.3 79.2 118.7 17.1 76.4 100.2 143.8 9.6 54.3 75.3 118.8
LTD-10-10 † [178] 13.9 75.9 99.4 135.9 9.8 55.9 78.5 118.8 15.6 71.7 96.2 142.2 8.9 51.7 72.5 116.3
Hisrep † [177] 13.0 73.9 95.6 134.2 9.3 56.0 76.4 115.9 14.9 72.0 97.0 143.6 8.3 51.5 72.1 115.9
MSR-GCN ⋆ [43] 13.3 77.8 99.2 134.5 9.8 55.5 77.6 115.9 15.4 73.8 102.4 149.4 8.9 54.4 77.7 121.9
ST-DGCN-10-25 ⋆ [172] 13.2 74.0 95.7 132.1 9.1 54.6 75.1 114.8 14.7 70.0 94.4 139.0 8.2 50.2 70.5 112.9

SIMLPE (Ours) 11.7 72.4 93.8 132.5 8.6 55.2 75.4 114.1 13.6 70.8 95.7 142.4 7.8 50.8 71.0 112.8
Action waiting walkingdog walkingtogether average

Time (ms) 80 400 560 1000 80 400 560 1000 80 400 560 1000 80 400 560 1000

Res-RNN † [182] 23.8 87.7 105.4 135.4 36.4 110.6 128.7 164.5 20.4 67.3 80.2 98.2 25.0 88.3 106.3 136.6
convSeq2Seq † [145] 14.6 68.7 87.3 117.7 27.7 103.3 122.4 162.4 15.3 61.2 72.0 87.4 16.6 72.7 90.7 124.2
LTD-50-25 † [178] 10.4 59.2 77.2 108.3 22.8 88.7 107.8 156.4 10.3 46.3 56.0 65.7 12.2 61.5 79.6 112.4
LTD-10-10 † [178] 9.2 54.4 73.4 107.5 20.9 86.6 109.7 150.1 9.6 44.0 55.7 69.8 11.2 58.9 78.3 114.0
Hisrep † [177] 8.7 54.9 74.5 108.2 20.1 86.3 108.2 146.9 8.9 41.9 52.7 64.9 10.4 58.3 77.3 112.1
MSR-GCN ⋆ [43] 10.4 62.4 74.8 105.5 24.9 112.9 107.7 145.7 9.2 43.2 56.2 69.5 11.3 61.9 80.0 112.9
ST-DGCN-10-25 ⋆ [172] 8.7 53.6 71.6 103.7 20.4 84.6 105.7 145.9 8.9 43.8 54.4 64.6 10.6 57.9 76.3 109.7

SIMLPE (Ours) 7.8 53.2 71.6 104.6 18.2 83.6 105.6 141.2 8.4 41.2 50.8 61.5 9.6 57.3 75.7 109.4

Table 5.2: Action-wise results on Human3.6M for different prediction time steps (ms).
Lower is better. 256 samples are tested for each action. † indicates that the results are
taken from the paper [177], ⋆ indicates that the results are taken from the paper [172].
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Dataset AMASS-BMLrub 3DPW
Time (ms) 80 160 320 400 560 720 880 1000 80 160 320 400 560 720 880 1000

convSeq2Seq [145] 20.6 36.9 59.7 67.6 79.0 87.0 91.5 93.5 18.8 32.9 52.0 58.8 69.4 77.0 83.6 87.8
LTD-10-10 [178] 10.3 19.3 36.6 44.6 61.5 75.9 86.2 91.2 12.0 22.0 38.9 46.2 59.1 69.1 76.5 81.1
LTD-10-25 [178] 11.0 20.7 37.8 45.3 57.2 65.7 71.3 75.2 12.6 23.2 39.7 46.6 57.9 65.8 71.5 75.5
Hisrep [177] 11.3 20.7 35.7 42.0 51.7 58.6 63.4 67.2 12.6 23.1 39.0 45.4 56.0 63.6 69.7 73.7

SIMLPE (Ours) 10.8 19.6 34.3 40.5 50.5 57.3 62.4 65.7 12.1 22.1 38.1 44.5 54.9 62.4 68.2 72.2

Table 5.3: Results on AMASS and 3DPW for different prediction time steps (ms). We
report the MPJPE error in mm. Lower is better. The model is trained on the AMASS
dataset. The results of the previous methods are taken from [177].

Dataset Human3.6M AMASS-BMLrub
Time (ms) 80 160 320 400 560 720 880 1000 80 160 320 400 560 720 880 1000

STS-GCN [234] 10.1 17.1 33.1 38.3 50.8 60.1 68.9 75.6 10.0 12.5 21.8 24.5 31.9 38.1 42.7 45.5
STG-GCN [299] 10.1 16.9 32.5 38.5 50.0 - - 72.9 10.0 11.9 20.1 24.0 30.4 - - 43.1

SIMLPE (Ours) 4.5 9.8 22.0 28.1 39.3 49.2 57.8 63.7 6.1 10.8 19.1 22.8 29.5 35.1 39.7 42.7

Table 5.4: Average results for different prediction time periods on Human3.6M and
AMASS. These results are obtained following the evaluation method of STS-GCN [234]
and STG-GCN [299], instead of the standard evaluation protocol adopted in [178, 177,
172].

Nb. Blocks # Param.(M) ↓ MPJPE (mm) ↓
80 160 320 400 560 720 880 1000

1 0.012 12.7 28.5 59.7 72.1 93.6 107.0 116.8 123.6
2 0.014 10.9 24.9 52.3 64.0 83.2 97.3 108.4 115.4
6 0.025 10.2 23.1 48.8 60.1 79.0 93.3 105.1 112.6
12 0.041 9.9 22.4 47.2 58.3 77.1 91.5 103.3 110.9
24 0.073 9.7 22.0 46.8 57.7 76.4 90.8 102.6 110.3
48 (Ours) 0.138 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4
64 0.180 9.6 21.8 46.5 57.5 76.0 90.1 101.9 109.7
96 0.266 9.7 21.9 46.7 57.8 76.3 90.5 102.1 109.8

Table 5.5: Ablation of the number of MLP blocks on Human3.6M. The network achieves
the best performance with 48 MLP blocks.

5.3.6 ABLATION STUDY

We evaluate below the influence of the different components of our approach on the Hu-

man3.6M dataset.
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Ablation 80 160 320 400 560 720 880 1000

w/o 1D Conv 23.8 43.0 73.4 85.2 102.0 116.3 125.3 131.9
w/o FC 9.9 22.4 47.2 58.4 77.2 91.1 102.8 110.5
w/o LN 12.7 29.0 62.3 76.2 97.4 111.6 121.6 127.3
w/o DCT 9.9 22.4 47.3 58.4 76.9 91.2 102.8 110.5

SIMLPE (ours) 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4

Table 5.6: Ablation of different components of our network on Human3.6M. For the case
of ’w/o 1D Conv’, we replace the 1D convolutional layers with fully connected layers to
maintain the network complexity. Similarly, in the case of ’w/o FC’, we replace the fully
connected layers with 1D convolutional layers with kernel size 1.

80 160 320 400 560 720 880 1000

w/o aug 10.0 22.6 48.3 59.7 78.2 92.0 103.4 110.8
w aug 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4

Table 5.7: Ablation of data augmentation on Human3.6M. We only use front-back flip as
our data augmentation, i.e., we randomly invert the motion sequence during the training.

Lre Lv 80 160 320 400 560 720 880 1000

✓ 9.6 21.8 46.5 57.5 76.7 91.5 103.5 111.3
✓ ✓ 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4

Table 5.8: Ablation of different loss terms on Human3.6M. The network performs better
with both positional loss Lre and velocity loss Lv.

Number of MLP blocks. We ablate the number of MLP blocks m in Table 5.5. Our

proposed architecture already achieves good performance using only 2 MLP blocks with

0.014M parameters. The network achieves its best performance with 48 MLP blocks.

Network architecture. In Table 5.6, we ablate the different components of our network.

As the table shows, temporal feature fusion and layer normalization are both of vital im-

portance to our network. If the network just operates along the spatial dimension of the

motion sequence without merging any information across different frames, it will lead to

degraded results. However, if the network just operates along the temporal dimension, the
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Residual 80 160 320 400 560 720 880 1000

w/o residual 12.4 25.1 50.7 61.6 80.1 93.9 105.5 113.0
Consecutive 9.7 22.0 46.8 57.8 76.5 90.7 102.4 110.1
Before IDCT 10.4 23.0 48.2 59.1 77.9 91.8 103.2 110.5

SIMLPE (ours) 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4

Table 5.9: Analysis of different types of residual displacement on Human3.6M. SIMLPE
predicts the differences of each future frame with the last observation (after IDCT). ‘Be-
fore IDCT’ learns the residual before applying the IDCT transformation. ‘Consecutive’
learns the velocity between consecutive frames. ‘w/o residual’ predicts directly the abso-
lute 3D poses.

network will still achieve comparable performance. Besides, the use of DCT transforma-

tion can further improve performance slightly.

Data augmentation. In Table 5.7, we ablate the use of front-back flip data augmentation

and find that the data augmentation slightly improves the performance.

Losses. In Table 5.8, we evaluate the importance of different loss terms used during

training. As shown in the table, with the help of the velocity loss Lv, the network achieves

better performance on long-term predictions while maintaining the same performance on

the short-term.

Learning residual displacement. In Table 5.9, we analyze the importance of the pro-

posed residual displacement and compare it to other types of residual used in previous

works [182, 178]. Our method aims to predict the differences between each future pose

and the last observed pose, after the IDCT transformation. When predicting directly the

absolute 3D pose (‘w/o residual’), the performance drops dramatically. We also test other

types of residual by either learning the residual in the DCT space, before applying the

IDCT transformation (‘Before IDCT’) following [178], or learning the velocity of the

motion (‘consecutive’) following [182], and both achieve inferior performance compared

to our proposed residual displacement.
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5.4 CONCLUSION

We presented SIMLPE, a simple yet effective network for human motion prediction.

SIMLPE is composed of fully connected layers, layer normalization, and 1D convlutional

layer with kernel size 1, and achieves state-of-the-art performance on various benchmarks

while using much fewer parameters compared to other state-of-the-art methods. Our re-

ported ablation study highlights the importance of temporal information fusion in this

task, and the simplicity of SIMLPE can serve as a baseline for future research. We hope

that our work will inspire the community to rethink the problem of human motion predic-

tion and encourage the development of simpler and more efficient models.
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Beyond forecasting human motion from historical observations as described in Chap-

ter 5, the prediction of whole body motion from partially observed keypoint movements

also presents a practical scenario, particularly in the realm of human-robot interaction.

Robots may be able to access motion data from a selection of keypoints via wearable

or carry-on devices. In this chapter, we introduce AGRoL, a novel conditional diffusion

model specifically designed to track full bodies given sparse upper-body tracking signals.

Based on SIMLPE, our model adopts also a multi-layer perceptron (MLP) architecture

and a novel conditioning scheme for motion data. It can predict accurate and smooth

full-body motion, particularly the challenging lower body movement. Our compact archi-

tecture can run in real-time, making it suitable for online body-tracking applications.

6.1 INTRODUCTION

Tracking full-body movement is in high demand for AR/VR and robotic applications,

where humans are the primary actors. While common approaches are capable of accu-

rately tracking upper bodies, such as in [283] and [118], moving towards full-body track-

ing would unlock more engaging experiences where users can interact with the virtual

environment with an increased sense of presence.

However, in the typical AR/VR setting there is no strong tracking signal for the en-

tire human body – only the head and hands are usually tracked by means of Inertial

Measurement Unit (IMU) sensors embedded in Head Mounted Displays (HMD) and

hand controllers. Some works suggest adding additional IMUs to track the lower body

joints [105, 118], those additions come at higher costs and the expense of the users com-

fort [124, 117]. In an ideal setting, we want to enable high-fidelity full-body tracking

using the standard three inputs (head and hands) provided by most HMDs.

Given the limited tracking signal of only the head and both hands, predicting full-

body pose is inherently an underconstrained problem. To address this challenge, different

methods rely on generative models such as normalizing flows [226] and Variational Au-

toencoders (VAE)[52] to synthesize lower body motions. However, in recent years, diffu-
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sion models have shown impressive results in image and video generation[235, 100, 197],

especially for conditional generation. This motivates us to employ the diffusion model

to generate fully-body poses conditioned on sparse tracking signals. To the best of our

knowledge, no existing work leverages the diffusion model solely for motion reconstruc-

tion from sparse tracking information.

While the diffusion model has shown promise for conditional generation, its imple-

mentation in the task of motion synthesis presents challenges. Current approaches for

using diffusion models in cross-modal conditional generation are not directly transferable

to motion synthesis due to significant differences in data representations. As a result,

novel methods need to be developed to adapt diffusion models for effective use in motion

synthesis.

In this chapter, we propose a novel diffusion architecture – Avatars Grow Legs (AGRoL),

which is specifically tailored for the task of conditional motion synthesis. Inspired by

the SIMLPE network proposed in Chapter 5, which uses an MLP-based architecture, we

find that a carefully designed MLP network can achieve comparable performance to the

state-of-the-art methods. However, we discovered that the predicted motions of MLP net-

works may contain jittering artifacts. To address this issue and generate smooth realistic

full body motion from sparse tracking signals, we design a novel lightweight diffusion

model powered by our MLP architecture. Diffusion models require time step embed-

ding [100, 196] to be injected in the network during training and inference; however, we

found that our MLP architecture is not sensitive to the positional embedding in the in-

put. To tackle this problem, we propose a novel strategy to effectively inject the time

step embedding during the diffusion process. With the proposed strategy, we can signifi-

cantly mitigate the jittering issues and further improve the performance of the model and

robustness against the loss of tracking signal. Our model accurately predicts full-body

motions, outperforming state-of-the-art methods as demonstrated by the experiments on

AMASS [174], large motion capture dataset. Please refer to our project page for more

visual results.

We summarize our contributions as follows:

https://dulucas.github.io/agrol/
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Figure 6.1: The architecture of our MLP-based network. FC, LN, and SiLU denote the
fully connected layer, the layer normalization, and the SiLU activation layer respectively.
1 × 1 Conv denotes the 1D convolution layer with kernel size 1. Note that 1 × 1 Conv
here is equivalent to a fully connected layer operating on the first dimension of the input
tensor RN×D, while the FC layers operate on the last dimension. N denotes the temporal
dimension and D denotes the dimension of the latent space. The middle block is repeated
M times. The first FC layer projects input data to a latent space RN×D and the last one
converts from latent space to the output space of full-body poses RN×S .

• We propose AGRoL, a conditional diffusion model specifically designed for full-

body motion synthesis based on sparse IMU tracking signals. AGRoL is a simple

and yet efficient MLP-based diffusion model with a lightweight architecture. To en-

able gradual denoising and produce smooth motion sequences we propose a block-

wise injection scheme that adds diffusion timestep embedding before every interme-

diate block of the neural network. With this timestep embedding strategy, AGRoL

achieves state-of-the-art performance on the full-body motion synthesis task without

any extra losses that are commonly used in other motion prediction methods.

• We show that our lightweight diffusion-based model AGRoL can generate realistic

smooth motions while achieving real-time inference speed, making it suitable for

online applications. Moreover, it is more robust against tracking signals loss then

existing approaches.
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6.2 METHOD

6.2.1 PROBLEM FORMULATION

Our goal is to predict the whole body motion given sparse tracking signals, i.e. the orien-

tation and translation of the headset and two hand controllers. To achieve this, we use a

sequence of N observed joint features p1:N = {pi}Ni=1 ∈ RN×C and aim to predict the cor-

responding whole-body poses y1:N = {yi}Ni=1 ∈ RN×S for each frame. The dimensions

of the input/output joint features are represented by C and S, respectively. We utilize

the SMPL [163] model in this thesis to represent human poses and follow the approach

outlined in [117, 52] to consider the first 22 joints of the SMPL model and disregard the

joints on the hands and face. Thus, y1:N reflects the global orientation of the pelvis and

the relative rotation of each joint. Following [117], during inference, we initially pose

the human model using the predicted rotations. Next, we calculate the global translation

by accounting for the known head translation and subtracting the offset between the root

joint and the head joint.

In the following section, we first introduce a simple MLP-based network for full-body

motion synthesis based on sparse tracking signals. Then, we show how we further im-

prove the performance by leveraging the proposed MLP-based architecture to power the

conditional generative diffusion model, termed AGRoL.

6.2.2 MLP-BASED NETWORK

Our network architecture comprises only four types of components commonly employed

in the realm of deep learning: fully connected layers (FC), SiLU activation layers [220],

1D convolutional layers [140] with kernel size 1 and an equal number of input and out-

put channels, as well as layer normalization (LN) [11]. It is worth noting that the 1D

convolutional layer with a kernel size of 1 can also be interpreted as a fully connected

layer operating along a different dimension. The details of our network architecture are

demonstrated in Figure 6.1. Each block of the MLP network contains one convolutional
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Figure 6.2: The architecture of our MLP-based diffusion model. t is the noising step.
x1:N
t denotes the motion sequence of length N at step t, which is pure Gaussian noises

when t = T . p1:N denotes the sparse upper body signals of length N . x̂1:N
t denotes the

denoised motion sequence at step t.

and one fully connected layer, which is responsible for temporal and spatial information

merging respectively. We use skip-connections as in ResNets [95] with Layer Norm [11]

as pre-normalization of the layers. First, we project the input data p1:N to a higher dimen-

sional latent space using a linear layer. And the last layer of the network projects from

the latent space to the output space of full-body poses y1:N .

6.2.3 DIFFUSION MODEL

Diffusion model [100, 235] is a type of generative model which learns to reverse random

Gaussian noise added by a Markov chain to recover desired data samples from the noise.

In the forward diffusion process, given a sample motion sequence x1:N
0 ∼ q(x1:N

0 ) from

the data distribution, the Markovian noising process can be written as:

q(x1:N
t |x1:N

t−1) := N (x1:N
t ;
√
αtx

1:N
t−1, (1− αt)I), (6.1)

where αt ∈ (0, 1) is constant hyper-parameter and I is the identity matrix. x1:N
T tends to

an isotropic Gaussian distribution when T → ∞. Then, in the reverse diffusion process,

a model pθ with parameters θ is trained to generate samples from input Gaussian noise
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xT ∼ N (0, I) with variance σ2
t that follows a fixed schedule. Formally,

pθ(x
1:N
t−1|x1:N

t ) := N (x1:N
t−1;µθ(xt, t), σ

2
t I), (6.2)

where µθ could be reformulated [100] as

µθ(xt, t) =
1
√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t)), (6.3)

where ᾱt = α1 · α2... · αt. So the model has to learn to predict noise ϵθ(xt, t) from xt and

timestep t.

In our case, we want to use the diffusion model to generate sequences of full-body

poses conditioned on the sparse tracking of joint features p1:N . Thus, the reverse diffusion

process becomes conditional: pθ(x1:N
t−1|x1:N

t , p1:N). Moreover, we follow [223] to directly

predict the clean body poses x1:N
0 instead of predicting the residual noise ϵθ(xt, t). The

objective function is then formulated as

Ldm = Ex1:N
0 ∼q(x1:N

0 ),t

[
∥ x1:N

0 − x̂1:N
0 ∥22

]
(6.4)

where the x̂1:N
0 = fθ(x

1:N , p1:N , t) denotes the output of our model fθ.

We use the MLP architecture proposed in Sect. 6.2.2 as the backbone for the model fθ

that predicts the full-body poses. At time step t, the motion features x1:N
t and the observed

joints feature p1:N are first passed separately through a fully connected layer to obtain the

latent features x̄1:N
t and p̄1:N :

x̄1:N
t = FC0(x

1:N
t ), (6.5)

p̄1:N = FC1(p
1:N). (6.6)

Then these features are concatenated together and fed to the MLP backbone: x̂1:N
0 =

MLP(Concat(x̄1:N
t , p̄1:N), t).
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When utilizing diffusion models, the embedding of the timestep t is often included

as an additional input to the network. To achieve this, a common approach is to con-

catenate the timestep embedding with the input, similar to positional embedding used in

transformer-based methods [254, 55]. However, since our network is mainly composed

of FC layers, that mix the input features indiscriminately [246], the time step embedding

information can easily be lost after several layers, which hinders learning the denoising

process and results in predicted motions with severe jittering artifacts, as shown in Sec-

tion 6.3.6. In order to address the issue of losing time step embedding information in

our network, we introduce a novel strategy that repetitively injects the time step embed-

ding into every block of the MLP network. This process involves projecting the timestep

embedding to match the input feature dimensions through a fully connected layer and a

SiLU activation layer. The details of our pipeline are shown in Figure 6.2. Unlike previ-

ous work, such as [100], which predicts a scale and shift factor for each block from the

timestep embedding, our proposed approach directly adds the timestep embedding pro-

jections to the input activations of each block. Our experiments in Sect. 6.3 validate that

this approach significantly reduces jittering issues and enables the synthesis of smooth

motions.

6.3 EXPERIMENTS

Our models are trained and evaluated on the AMASS dataset [174]. To compare with pre-

vious methods, we use two different settings for training and testing. In the first setting,

we follow the approach of [117], which utilizes three subsets of AMASS: CMU [251],

BMLr [248], and HDM05 [192]. In the second setting, we adopt the data split em-

ployed in several recent works, including [52, 6, 224]. This approach employs a larger

set of training data, including CMU [251], MPI Limits [4], Total Capture [250], Eyes

Japn [62], KIT [176], BioMotionLab [248], BMLMovi [74], EKUT [176], ACCAD [67],

MPI Mosh [162], SFU [252], and HDM05 [192] as training data, while HumanEval [232]

and Transition [174] serve as testing data.
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Method MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Jitter Upper Jitter Lower Jitter

Final IK 16.77 18.09 59.24 - - - - - - -
LoBSTr 10.69 9.02 44.97 - - - - - - -
VAE-HMD 4.11 6.83 37.99 - - - - - - -
AvatarPoser* 3.08 4.18 27.70 2.12 1.81 7.59 3.34 14.49 7.36 24.81
MLP (Ours) 2.69 3.93 22.85 2.62 1.89 6.88 3.35 13.01 9.13 18.61
AGRoL (Ours) 2.66 3.71 18.59 1.31 1.55 6.84 3.36 7.26 5.88 9.27
GT 0 0 0 0 0 0 0 4.00 3.65 4.52

Table 6.1: Comparison of our approach with state-of-the-art methods on a subset of
AMASS dataset following [117]. We report MPJPE [cm], MPJRE [deg], MPJVE [cm/s],
Jitter [102m/s3] metrics. AGRoL achieves the best performance on MPJPE, MPJRE and
MPJVE, and outperforms other models, especially on the Lower PE (Lower body Posi-
tion Error) and Jitter metrics, which shows that our model generates accurate lower body
movement and smooth motions.

Method MPJRE MPJPE MPJVE Jitter

VAE-HMD† [52] - 7.45 - -
HUMOR† [224] - 5.50 - -
FLAG† [6] - 4.96 - -

AvatarPoser* 4.70 6.38 34.05 10.21
MLP (Ours) 4.33 6.66 33.58 21.74
AGRoL (Ours) 4.30 6.17 24.40 8.32
GT 0 0 0 2.93

Table 6.2: Comparison of our approach with state-of-the-art methods on AMASS dataset
following the protocol of [52, 224, 6]. We report the MPJPE [cm], MPJRE [deg], MPJVE
[cm/s], and Jitter [102m/s3] metrics. The * denotes that we retrained the AvatarPoser us-
ing public code. † denotes methods that use pelvis location and rotation during inference,
which are not directly comparable to our method, as we assume that the pelvis informa-
tion is not available during the training and the testing. The best results are in bold, and
the second-best results are underlined.

In both settings, we adopt the SMPL [163] human model for the human pose represen-

tation and train our model to predict the global orientation of the root joint and relative

rotation of the other joints.

6.3.1 IMPLEMENTATION DETAILS

We represent the joint rotations by the 6D reparametrization [301] due to its simplicity and

continuity. Thus, for the sequences of body poses y1:N ∈ RN×S , S = 22×6. The observed
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joint features p1:N ∈ RN×C consists of the orientation, translation, orientation velocity and

translation velocity of the head and hands in global coordinate system. Additionally, we

adopt 6D reparametrization for the orientation and orientation velocity, thus C = 18× 3.

Unless otherwise stated, we set the frame number N to 196.

6.3.2 MLP NETWORK

We build our MLP network using 12 blocks (M = 12). All latent features in the MLP

network have the same shape of N × 512. The network is trained with batch size 256 and

Adam optimizer [127]. The learning rate is set to 3e-4 at the beginning and drops to 1e-5

after 200000 iterations. The weight decay is set to 1e-4 for the entire training. During

inference, we apply our model in an auto-regressive manner for the longer sequences.

6.3.3 MLP-BASED DIFFUSION MODEL (AGROL)

We keep the MLP network architecture unchanged in the diffusion model. To inject the

time step embedding used in the diffusion process in the network, in each MLP block, we

pass the time step embedding to a fully connected layer and a SiLU activation layer [220]

and sum it with the input feature. The network is trained with exactly the same hy-

perparameters as the MLP network, with the exception of using the AdamW [164] as

optimizer. During training, we set the sampling step to 1000 and employ a cosine noise

schedule [197]. However, to expedite the inference speed, we leverage the DDIM [236]

technique, which allows us to sample only 5 steps instead of 1000 during inference. All

experiments were carried out on a single NVIDIA V100 graphics card, using the PyTorch

framework [206].

6.3.4 EVALUATION METRICS

In line with previous works [117, 289, 52, 224], we adopt nine evaluation metrics that we

group into three categories.
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Figure 6.3: Qualitative comparison between AGRoL (top) and AvatarPoser [117] (bot-
tom) on test sequences from AMASS dataset. We visualize the predicted skeletons and
render human body meshes. Top: AvatarPoser predictions in red. Bottom: AGRoL pre-
dictions in green. In both rows, the blue skeletons denote the ground truth motion. We
observe that motions predicted by AGRoL are closer to ground truth compared to the pre-
dictions of AvatarPoser.

Rotation-related metric. Mean Per Joint Rotation Error [degrees] (MPJRE) measures

the average relative rotation error for all joints.

Velocity-related metrics. These include Mean Per Joint Velocity Error [cm/s] (MPJVE)

and Jitter. MPJVE measures the average velocity error for all joints, while Jitter [289]

evaluates the mean jerk (change in acceleration over time) of all body joints in global

space, expressed in 102m/s3. Jitter is an indicator of motion smoothness.

Position-related metrics. Mean Per Joint Position Error [cm] (MPJPE) quantifies the

average position error across all joints. Root PE assesses the position error of the root

joint, whereas Hand PE calculates the average position error for both hands. Upper PE

and Lower PE estimate the average position error for joints in the upper and lower body,

respectively.

6.3.5 EVALUATION RESULTS

We evaluate our method on the AMASS dataset with two different protocols. As shown in

Table 6.1 and Table 6.2, our MLP network can already surpass most of the previous meth-
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Method #Params MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Jitter

AGRoL-AvatarPoser 2.89M 4.31 6.71 27.65 1.47 2.56 12.69 6.69 9.57
AGRoL-AvatarPoser-Large 7.63M 2.86 4.04 21.90 1.29 1.62 7.53 3.64 9.94
AGRoL-Transformer 7.03M 3.01 4.41 20.33 2.97 2.13 7.71 3.88 6.45
AGRoL (Ours) 7.48M 2.66 3.71 18.59 1.31 1.55 6.84 3.36 7.26

Table 6.3: Ablation study of network architectures in our diffusion model. We replace
the proposed MLP backbone with other architectures and train several versions of the dif-
fusion model with the same hyperparameters. The AvatarPoser-Large denotes the back-
bone with the same architecture as AvatarPoser [117] but with more transformer layers.
AGRoL-Transformer is the AGRoL version with the transformer backbone from [244].
The AGRol (ours) with our MLP backbone outperforms all other backbones on most of
the metrics.

ods and achieves comparable results with the state-of-the-art method [117], demonstrating

the effectiveness of the proposed simple MLP architecture. By leveraging the diffusion

process and the proposed MLP backbone, the AGRoL model remarkably boosts the per-

formance of the MLP network, surpassing all previous methods in all metrics (except for

insignificant 0.2 mm difference in Root PE in Table 6.1). Moreover, our proposed AGRoL

model significantly improves the smoothness of the generated motion, as reflected by the

reduced Jitter error compared to other methods. We visualize some examples in Fig-

ure 6.3 and Figure 6.4. In Figure 6.3 we show the comparison of the reconstruction error

between AGRoL and AvatarPoser. In Figure 6.4, by visualizing the pose trajectories, we

demonstrate the comparison of the smoothness and foot contact quality between AGRoL

and AvatarPoser.

6.3.6 ABLATION STUDIES

In this section, we ablate our methods on AMASS dataset. We first compare our pro-

posed MLP architecture with other backbones in the context of the diffusion model in

Section 6.3.6 to highlight the superiority of our MLP network. Then we investigate the

importance of time step embedding for our diffusion model and evaluate different strate-

gies for adding the time step embedding in Section 6.3.6. Finally, we analyze the impact

of the number of sampling steps used during inference in Section 6.3.6.
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Network architecture. To validate the effectiveness of our proposed MLP backbone in

the diffusion model setup, we conduct experiments where we replace our MLP network in

AGRoL with other types of backbones and compare them. Specifically, we consider two

alternative backbone architectures: the network from AvatarPoser [117] and the trans-

former network from Tevet et al. [244]. In transformer networks, instead of repetitively

injecting the time positional embedding to every block, we concatenate the time positional

embedding with the input features x̄1:N and p̄1:N before being fed to transformer layers.

We apply the same technique to the AvatarPoser backbone as this model is also based on

transformer layers. To ensure a fair comparison, we train AGRoL with two versions of

AvatarPoser backbone. The first one, AGRoL-AvatarPoser, uses the architecture that fol-

lows exactly the same settings as described in the original paper [117], while the second

one, AGRoL-AvatarPoser-Large, incorporates additional transformer layers to achieve

a comparable size to our AGRoL model with MLP backbone. Similarly, we increase

the number of layers in the transformer backbone [244] and train AGRoL-Transformer.

As shown in Table 6.3, the AGRoL diffusion model with the proposed MLP backbone

achieves superior results compared to the versions with other backbones.

Diffusion time step embedding. We study the importance of time step embedding.

Time step embedding is often used in diffusion-based models [49, 294] to indicate the

noise level t during the diffusion process. We use the sinusoidal positional embed-

ding [254] as the time step embedding. Although the AGRoL without time step embed-

ding (see Table 6.4) can still attain reasonable performance on metrics related to position

errors and rotation errors, the performance on metrics related to velocity errors (MPJVE

and Jitter) is severely degraded. This outcome is expected as the absence of the time step

embedding implies that the model is not aware of the current denoising step, rendering it

unable to denoise accurately.

We now ablate three strategies for utilizing the time step embedding in our network:

Add, Concat, and RepIn. RepIn (Repetitive Injection) repetitively passes the time step em-

bedding through a linear layer and injects the results into every block of the MLP network.
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In contrast, Add and Concat inject the time step embedding only once at the beginning

of the network. Before inputting it into the network, the time step embedding is passed

through a fully connected layer and a SiLU activation to obtain a latent feature ut ∈ R1×D.

Add sums the ut with the input features x̄1:N
t and p̄1:N , the output of the network then be-

comes x̂1:N
0 = MLP(Concat(x̄1:N

t , p̄1:N) + ut), where vector ut is broadcasted along the

first dimension.Concat concatenates the ut with the input features x̄1:N
t and p̄1:N , result-

ing in x̂1:N
0 = MLP(Concat(x̄1:N

t , p̄1:N , ut)). RepIn is our proposed strategy for injecting

the time step embedding. Specifically, for each block of the MLP network, we project

the time step embedding separately using a fully connected layer and a SiLU activation,

then we add the obtained features ut,j to the input features of the correspondent block,

where j ∈ [0, ..M ] and M is the number of blocks. As shown in Table 6.4, our proposed

strategy can largely improve the velocity-related metrics and alleviate the jittering issues

and generate smooth motion.

Number of sampling steps during inference. We ablate the number of sampling steps

that we used during inference. In Table 6.5, we take the AGRoL model trained with 1000

sampling steps and test it with a subset of diffusion steps during inference. We opted to

use 5 DDIM [236] sampling steps as it enabled our model to achieve superior performance

on most of the metrics while also being faster.

Sampling steps during training. In Table 6.8 we ablate the number of sampling steps

T during training. Surprisingly, even when training with merely 10 sampling steps, the

model can achieve decent performance. Although we notice that the model converges to a

worse local minimum when only a few sampling steps is used. To achieve the best results,

more sampling steps is required.

Additional losses. In addition to Ldm, we explore three other geometric losses during

the training like previous works [210, 231]:

Lpos =
1

N

N∑
i=1

∥ FK(yi0)− FK(x̂i
0) ∥22 (6.7)
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Lvel =
1

N−1

∑N−1
i=1 ∥ (FK(yi+1

0 )− FK(yi0))− (FK(x̂i+1
0 )− FK(x̂i

0)) ∥22 (6.8)

Lfoot =
1

N − 1

N−1∑
i=1

∥ (FK(yi0)− FK(x̂i
0)) ·mi ∥22, (6.9)

where FK(·) is the forward kinematics function which takes local human joint rotations as

input and outputs these joint positions in the global coordinate space. Here y1:N0 = x1:N
0

is the original data without noise. Lpos represents the position loss the of joints, Lvel

represents the velocity loss of the joints in 3D space, and Lfoot is the foot contact loss,

which enforces static feet when there is no feet movement. mi ∈ {0, 1} denotes the

binary mask and equals to 0 when the feet joints have zero velocity. We train our model

with different combinations of extra losses, setting their weights equal to 1. As shown in

Table 6.7. In contrast to previous works [117], the extra geometric losses do not bring

additional performance to our diffusion model. Our model can achieve good results when

trained solely with the denoising objective function Ldm from Eq. (4). We hypothesize

that the lack of improvement in the performance of AGRoL with additional losses is due to

the intricacies of the reverse diffusion process. This process may not synergize effectively

with extra geometrical losses without appropriate adjustments.

Input/Output length. The proposed AGRoL model takes a sequence of sparse tracking

signals as input and predicts the full body motion of the same length. In Table 6.3.6 we

ablate the input & output length N of the AGRoL model. Our model benefits from longer

input sequences, especially decreasing the mean per joint velocity error and jitter. But the

performance saturates after the length of N = 196. In Table 6.10 we further compare our

method with AvatarPoser [117] by varying its input length. Note that with longer input

sequences our model can achieve significantly lower errors on velocity-related metrics

like MPJVE and jitter, while AvatarPoser still has large MPJVE and jitter even with longer

input length, thus failing to fully leverage the temporal information to generate smooth
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Method MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Jitter

w/o Time 2.68 3.63 22.80 1.36 1.54 6.67 3.25 15.23
Add 2.80 4.01 23.60 1.40 1.64 7.44 3.59 15.02
Concat 2.72 3.79 21.99 1.31 1.57 7.00 3.43 13.30
RepIn (Ours) 2.66 3.71 18.59 1.31 1.55 6.84 3.36 7.26

Table 6.4: Ablation of the time step embedding. w/o Time denotes the results of AGRoL
without time step embedding. Add sums up the features from time step embedding with
the input features. Concat concatenates the features from time step embedding with the
input features. In Add and Concat, the time step embedding is only fed once at the top
of the network. RepIn (Repetitive Injection) denotes our strategy to inject the time step
embedding into every block of the network. The time step embedding mainly affects
the MPJVE and Jitter metrics. Omiting the timestep embedding or adding it improperly
results in high MPJVE and causes severe jittering issues.

motions.

Number of blocks in the MLP network. In Table 6.11 we evaluate the impact of vary-

ing the number of blocks (described in Sect. 3.2) in the MLP network. The performance

of the model consistently improves as more blocks are added. However, the performance

gains approach a plateau when more than 12 blocks are used.

Predicting noise. Our diffusion model AGRoL follows [223] and directly predicts the

clean signal x̂1:N
0 in contrast to the original Denoising Diffusion Probabilistic Model

(DDPM) formulation [100], where the model predicts residual noise ϵθ(xt, t) at every

step. We further discuss the experiment presented in Table 6.12, where we implemented a

version of AGRoL model (“AGRoL - pred noise”) that predicts the residual noise ϵθ(xt, t).

Similar to [223], we also find it better to predict the unnoised x̂1:N
0 directly, which is

demonstrated by the results in Table 6.12. Since our simple MLP network can already

produce reasonable estimations of the full body motion using only one forward pass, we

hypothesize that the DDPM formulation of Ramesh et al. [223] allows to exploit the full

capacity of the network at every sampling step, in contrast to the original formulation

of [100].
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Figure 6.4: Motion trajectory visualization for predicted motions. (a) The ground truth
motion with blue skeletons; (b) motion predicted by AGRoL with green skeletons; (c)
motion predicted by AvatarPoser with red skeletons. The purple vectors denote the ve-
locity vectors of the corresponding joints. Observing the motion trajectories, we can see
jittering and foot sliding issues more clearly. Smooth motion typically exhibits regular
pose trajectories with the velocity vector of each joint changing steadily. The density of
joint trajectories varies with walking speed; trajectories become denser as the individual
slows down. Therefore, in the absence of foot sliding, we should observe a significantly
high density of points when a foot makes contact with the ground. The black dots in
the bottom row represent the trajectories of the foot joints. We notice more pronounced
spikes in the density of foot trajectories for AGRoL compared to AvatarPoser.

# Sampling Steps MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Jitter

2 3.17 4.93 20.03 2.19 2.12 8.98 4.61 6.90
5 2.66 3.71 18.59 1.31 1.55 6.84 3.36 7.26

10 2.68 3.69 19.55 1.39 1.55 6.77 3.31 7.51
100 2.84 3.93 23.50 1.62 1.67 7.19 3.51 9.64

1000 2.97 4.14 27.25 1.82 1.78 7.55 3.66 12.79

Table 6.5: Ablation of the number of DDIM [236] sampling steps during inference. The
input and output length is fixed to N = 196. To achieve superior performance while being
fast, we choose to use 5 sampling steps during inference.

6.3.7 ROBUSTNESS TO TRACKING LOSS

In this section, we study the robustness of our model against input joint tracking loss. In

VR applications, it is common for the joint tracking signal to be lost on some frames when

hands or controllers move out of the field of view, causing temporal discontinuity in the

input signals. We evaluate the performance of all available methods on tracking loss by
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Methods MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Jitter

AvatarPoser 5.69 10.34 572.58 8.98 5.49 17.34 8.83 762.79
MLP 5.37 10.76 107.82 12.43 6.48 16.94 8.74 92.51
Transformer 4.44 8.62 135.99 7.29 5.28 13.44 10.32 147.09
AGRoL (Ours) 4.20 6.38 96.85 5.27 3.86 10.03 6.67 33.35

Table 6.6: Robustness of the models to joints tracking loss. We evaluate the methods
by randomly masking a portion (10%) of input frames during the inference on AMASS
dataset. We test each method 5 times and take the average results. AGRoL achieves
the best performance among all the methods, which shows the robustness of our method
against joint tracking loss.

Lpos Lvel Lfoot MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Jitter

2.66 3.71 18.59 1.31 1.55 6.84 3.36 7.26
✓ 2.83 4.07 20.66 1.58 1.70 7.49 3.66 9.20

✓ 2.81 4.06 21.85 1.75 1.73 7.43 3.72 12.16
✓ ✓ 2.73 3.92 20.55 1.72 1.68 7.15 3.52 10.16
✓ ✓ ✓ 2.89 4.16 20.58 1.73 1.76 7.63 3.81 8.98

Table 6.7: Ablation of the additional losses used during training.

# Sampling Steps MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Jitter

10 2.69 3.70 19.41 1.47 1.55 6.80 7.63
100 2.65 3.62 18.74 1.33 1.52 6.66 6.71
1000 (Ours) 2.66 3.71 18.59 1.31 1.55 6.84 7.26

Table 6.8: Ablation of the number of sampling steps during training the AGRoL model.
The results become worse when the number of sampling steps is too small. More sampling
steps is beneficial during training the network.

Input & Output Length MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Jitter

41 2.59 3.64 23.24 1.28 1.50 6.73 13.67
98 2.61 3.70 20.71 1.58 1.57 6.76 10.59
196 (Ours) 2.66 3.71 18.59 1.31 1.55 6.84 7.26
256 2.81 3.81 19.05 1.27 1.57 7.03 7.76

Table 6.9: Ablation of the input & output length of the AGRoL model.
Our model can benefit from larger input length.

randomly masking 10% of input frames during inference, and present results in Table 6.6.

We observe that the performance of all previous methods is significantly degraded, indi-
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Methods Input Length MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Jitter

AvatarPoser [117] 41 3.08 4.18 27.70 2.12 1.81 7.59 14.49
AGRoL 41 2.59 3.64 23.24 1.28 1.50 6.73 13.67

AvatarPoser [117] 196 3.05 4.20 28.71 1.61 1.70 7.82 16.96
AGRoL (Ours) 196 2.66 3.71 18.59 1.31 1.55 6.84 7.26

Table 6.10: Comparison between AGRoL and AvatarPoser [117] while varying the num-
ber of input frames. Our method can benefit from longer inputs and generate smoother
motion. In contrast, AvatarPoser fails to gain consistent improvement from longer input
sequences and even degrades in some metrics, including MPJVE, Lower PE, and Jitter.

#Blocks #Params MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Jitter

2 2.08M 4.54 7.39 34.38 3.10 3.13 13.55 7.28 22.03
6 4.35M 2.89 4.12 19.51 1.38 1.69 7.62 3.72 6.29
12 (Ours) 7.48M 2.66 3.71 18.59 1.31 1.55 6.84 3.36 7.26
24 14.53M 2.73 3.61 18.33 1.08 1.50 6.65 3.28 7.23

Table 6.11: Ablation study of the number of blocks in the proposed MLP network. The
performance of the AGRoL model benefits keeps improving with more blocks and reaches
a plateau when the number of blocks reaches 12.

Method MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Jitter

AGRoL - pred noise ϵθ 5.41 8.88 28.67 4.38 3.91 16.06 8.76 9.80
AGRoL (Ours) 2.66 3.71 18.59 1.31 1.55 6.84 3.36 7.26

Table 6.12: Ablating different formulations of the diffusion model: Predicting clean sig-
nal directly (Ours) vs predicting noise ϵθ(xt, t). The AGRoL model that learns to predict
clean body motion at every diffusion step is substantially better in every metric.

cating their lack of robustness against tracking loss. In comparison, AGRoL shows less

degradation in accuracy, suggesting that our approach can accurately model motion even

with highly sparse tracking inputs.

6.3.8 INFERENCE SPEED.

Our AGRoL model achieves real-time inference speed due to a lightweight architecture

combined with DDIM sampling. A single AGRoL generation, that runs 5 DDIM sam-

pling steps, produces 196 output frames in 35 ms on a single NVIDIA V100 GPU. Our

predictive MLP model takes 196 frames as input and predicts a final result of 196 frames
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in a single forward pass. It is even faster and requires only 6 ms on a single NVIDIA

V100 GPU. We first show extra ablation experiments of our method on AMASS [174]

dataset following the protocol proposed in [117]. Then we show extra qualitative results

and comparison between our method and the state-of-the-art method [117].

6.3.9 EXTRA DATASETS

In addition to the AMASS [174] dataset, we also evaluate the performance of our ap-

proach on AIST++ [150] dataset. AIST++ dataset contains in total 5.1 hours of dancing

movements performed by professional dancers. The dataset has 10 genres of dances, in-

cluding some dances containing complicated movements like breakdancing, jazz etc. We

follow the train/test splits proposed in [150]. The global rotation and translation of the

hands and head are calculated using the SMPL human model [163] with the provided

model parameters. Compared to the AMASS dataset, which contains mostly everyday

life motions, the motions in the AIST++ dataset are much more diverse and challenging.

As shown in Table 6.13, the AGRoL achieves superior performance in all the metrics and

produces smoother motions compared to the AvatarPoser and the predictive MLP model.

While there is still room for improvement on such a challenging dataset, the proposed

AGRoL method significantly reduces the MPJVE, Jitter and lower body positional error

(Lower PE) compared to the AvatarPoser.

Method MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Jitter

AvatarPoser 4.37 9.11 97.24 4.31 3.32 17.47 8.11 65.18
MLP (Ours) 3.63 7.33 74.90 3.86 2.69 14.03 5.48 47.16
AGRoL (Ours) 3.56 6.83 65.58 2.17 2.04 13.74 4.91 41.95
GT 0 0 0 0 0 0 0 30.48

Table 6.13: Comparison of our approach with the competitors on AIST++ [150] dataset.
The AGRoL performs better than other methods.
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6.4 CONCLUSION

In this chapter, we presented a simple yet efficient MLP-based architecture with care-

fully designed building blocks which achieves competitive performance on the full-body

motion synthesis task. Then we introduced AGRoL, a conditional diffusion model for

full-body motion synthesis based on sparse tracking signal. AGRoL leverages a simple

yet efficient conditioning scheme for structured human motion data. We demonstrated

that our lightweight diffusion-based model generates realistic and smooth human motions

while achieving real-time inference speed, making it suitable for online AR/VR applica-

tions. A notable limitation of our and related approaches is occasional floor penetration

artifacts. Future work involves investigating this issue and integrating additional physical

constraints into the model.
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PART III:

ROBOTS LEARN FROM HUMAN
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In this part of the thesis, we tackle the challenge of transferring human motion to robot

movements, specifically, we focus on the task of converting human grasp demonstration

to any multi-fingered grippers. In Chapter 7, we propose a novel optimization-based ap-

proach, which produces robotic grasps that mimic the human hand orientation and the

contact area with the object, while alleviating interpenetration. Extensive experiments

show that our method leads to grasps more similar to the human demonstration than exist-

ing approaches, without requiring any gripper-specific tuning. We confirm these findings

through a user study and validate the applicability of our approach on a real robot.



CHAPTER 7

GRASPING LIKE HUMANS
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Beyond simply understanding human motion, our objective extends to enabling robots

to learn directly from human demonstrations. This step brings us closer to creating in-

telligent machines that can observe, understand, and replicate complex human actions,

thereby improving their functionality and integration into human-centric environments.

7.1 INTRODUCTION

To effectively aid individuals with their daily tasks, a robot must possess the ability to

manipulate objects in ways that are specific to the task at hand. This involves handling

objects differently depending on the current objective. For instance, a robot should not

handle a knife in the same manner when cutting vegetables as it would when passing it

to someone with limited mobility. A robot can learn such specificities by being taught

by a human through task demonstrations. In this study, we concentrate on the task of

grasping rigid objects, as depicted in the Figure 7.1. Reproducing exactly a human grasp

is impossible for a robot, because a robotic gripper is usually quite different from a human

hand: different size, number of fingers, actuation, etc. (see Figure 7.2 for a comparison).

Rather than simply handling objects in a predetermined way, the robot should be capa-

ble of grasping objects in a manner that emulates that of a human. However, most existing

grasp retargeting techniques [90, 216, 138] rely on manually crafted correspondences be-

tween the robot gripper and the human hand. These correspondences are usually based

on joint angles, surface contact points, or other key vectors, and they do not take the

object being grasped into account. Other methods, such as ContactGrasp [18] refine the

grasps produced by GraspIt! [189] through contact surface optimization and reranking.

However, this approach is time-consuming and requires a significant amount of effort to

generate and refine grasp candidates. Additionally, it may result in significant differences

from the human grasp.

Defining the concept of “grasping like a human” is a challenging task, as it lacks a

precise and well-defined meaning. However, in this research, we present some general

indicators of grasp similarity, namely the contact surface and the grasp orientation. In-
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Figure 7.1: Given an input human grasp (left), our method outputs a configuration of
a multi-fingered gripper grasping the same object like the human demonstration. We
experiment with the Allegro (top) and BarrettHand (bottom) grippers.

deed, the affordance [75] of a grasped object is typically dependent on the open space

surrounding this object. In general, replicating a human grasp of an object by gripping it

from a similar orientation and using a similar contact surface on the object should allow

the robot to perform similar actions with the object as the human did. In this study, we

examine the effectiveness of utilizing these grasp similarity indicators in generating robot

grasps that closely resemble human demonstrations.

Our research proposes a multi-step optimization-based approach that utilizes a human

grasp demonstration, represented by a 3D mesh of the object and a parametric MANO

model [227] of the hand pose, to generate a corresponding robotic grasp configuration.

We formulate an objective function that promotes similarity in contact surfaces and global

orientation between the human and robotic grasps, while penalizing collisions between

the gripper and the object. To prevent getting stuck in local minima, we perform a multi-

stage optimization process where the global position and orientation of the gripper are

initialized to match those of the human demonstration. Next, the fingers are closed by

minimizing the distance between the fingertips and the contact areas on the objects, fol-

lowed by optimizing for the complete objective function in the final step. To validate

the genericity of our approach, we experiment with two off-the-shelf robotic hands: the

Allegro [1] and the BarrettHand [2] grippers (see Figure 7.2).
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Figure 7.2: Comparison between different grippers at the same scale with a human hand
(left), Allegro (middle) and BarrettHand (right). Note that the size of the gripper and
in particular the fingers are significantly different. The blue vector represents the normal
vectors of the human hand and robot hands, the green vector represents the forward vector
(best seen in color).

We evaluate our method using human grasps from the YCB-affordance dataset [41]

with various quality metrics. In addition to the proposed optimization-based method, we

conducted a user study to qualitatively compare our approach with related techniques.

The results from both evaluations demonstrate that our approach generates reasonable

grasps that are superior to those produced by existing state-of-the-art grasp retargeting

methods, and are more similar to the human demonstration. Ultimately, we validate the

practicality of our approach by applying it to a Panda robotic arm in real-world scenarios.

In summary, the main contributions of this work are: (1) A novel objective function

consisting of four losses which encourages a valid grasp while capturing the similarity be-

tween the human hand grasp and robot gripper grasp. (2) A novel multi-step optimization-

based pipeline to transfer a human grasp demonstration to any multi-fingered gripper.

(3) An extensive quantitative and qualitative evaluation and comparison between our ap-

proach and other related methods.
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Figure 7.3: Contact heatmaps on the object mesh corresponding to a human (top) and
robotic (bottom) grasp. Our optimization-based approach tries to minimize the discrep-
ancy between these heatmaps. Red color denotes regions close to the hand/gripper while
blue color denotes regions far from the hand/gripper.

7.2 METHOD

In this section, we describe our optimization-based approach to generate a robot grasp

‘similar’ to a given human grasp. After formalizing the problem and notations (Sec-

tion 7.2.1), we introduce the optimized objective function in Section 7.2.2 and detail all

the steps of our approach in Section 7.2.3.

7.2.1 PROBLEM AND NOTATIONS

We consider as input a rigid object grasped by a human hand. We represent the object by a

3D meshMobject, and we adopt the MANO [227] model to represent the pose of the hand

by a global rigid transformation (Rhand, thand) ∈ SO(3) × R3 relative to the object and

by its local joints configuration θhand ∈ SO(3)20. Similarly, we assume that a kinematic

model of the robotic gripper is available. We aim to predict a global pose (Rrobot, trobot) ∈

SO(3) × R3 relative to the object and some joints configuration θrobot ∈ Rn describing a
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static grasp with this gripper similar to the human demonstration (n = 16 for Allegro, n =

7 for Barrett). We formulate this as an optimization problem and minimize an objective

function L(Rrobot, trobot, θrobot) representing the dissimilarity of the robotic grasp with the

human demonstration.

7.2.2 OBJECTIVE FUNCTION

Our objective function L is composed of a contact-heatmap loss LC that incites contacts

on the object to be similar, a hand orientation loss LO, as well as losses that penalize

interpenetration with the object LI and self-penetration of the gripper LS , i.e.:

L = λCLC + λOLO + λILI + λSLS (7.1)

with weights experimentally set to λC = 10, λO = 10, λI = 0.5 and λS = 1. We detail

these terms in the following paragraphs.

Contact heatmap loss LC . Intuitively, grasps are similar if their contact regions on the

target object are similar. Based on this observation, we propose an object-centric contact

heatmap loss term, which encourages the contact regions of the input human hand and the

robotic gripper on the object to be similar. Specifically, we represent the contact regions

of the human hand and the robot gripper by scalar contact heatmaps H on the object. At

each vertex oi ∈Mobject of the object mesh, we define the values of these heatmaps asHhand(oi) = exp(−d(oi,Mhand)/τ)

Hrobot(oi) = exp(−d(oi,Mrobot)/τ)
(7.2)

where d(oi,M) denotes the L2-distance of oi to the set of vertices of the meshM, and

where τ is a constant used to define contacts in a soft manner (i.e. H(oi) = 1 when

d(oi,M) = 0, and H(oi) ≈ 0 when d(oi,M) >> τ ). In our experiments, we use

uniformly sampled meshes and choose τ = 0.01m. Figure 7.3 shows examples of contact

heatmaps for different human grasps. We define our object-centric contact heatmap loss
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as the L1-distance between these generated heatmaps:

LC =
∑

oi∈Mobject

|Hhand(oi)−Hrobot(oi)| (7.3)

Hand orientation loss LO. Grasps have high similarity if the hands are oriented simi-

larly towards the object, thus resulting in a similar free space around the object, and thus

potentially to a similar affordance. Therefore, we introduce a loss to encourage the orien-

tation of the hand and the gripper to be similar. To this end, for each human/robot hand

model, we define two unit vectors which are inherent to the model, the forward vector f

and the normal vector n. Examples of these two vectors for different models are shown in

Figure 7.2. The normal vector n is defined as the unit normal vector of the palm surface.

The forward vector f is defined as the unit vector that is parallel to the palm surface and

pointing to the ‘pushing’ direction. We define the hand orientation loss as the L1-distance

between these two unit vectors:

LO = |nrobot − nhand|+ |frobot − fhand| (7.4)

Gripper-object interpenetration loss LI . To avoid interpenetration while ensuring re-

alistic contacts between the robotic gripper and the object, we take inspiration from

Müller et al. [191] and add a loss

LI = α1Lpush + β1Lpull + γ1Lnormal (7.5)

to our objective function. It consists of three weighted terms. The first term Lpush aims at
avoiding interpenetration by pushing the penetrated parts of the robotic gripper towards
their nearest surface on the object mesh. To do so, we consider Urobot ⊂Mrobot the set of
vertices on the robotic gripper mesh that are inside the object mesh, and Uobject ⊂Mobject

the set of vertices on the object mesh that are inside the robotic gripper mesh. In practice,
we detect these two sets of vertices using the generalized winding numbers [109]. We
define

Lpush =
∑

oi∈Uobject

tanh
(
d(oi,Mrobot)

α2

)
+

∑
rk∈Urobot

tanh
(
d(rk,Mobject)

α2

)
(7.6)
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Figure 7.4: Overview of our pipeline for transferring human hand grasp to robot gripper
grasp. We first initialize the gripper with open fingers at the location of the hand. We then
initialize the fingers position on the object surface by minimizing the distance between
the fingertips and the contact regions of the human demonstration. At last, we refine the
grasp by minimizing the overall objective function.

to penalize interpenetration. The second term Lpull encourages contacts for points of

the gripper closer than a threshold δ to the object, while being constant for points farther

away:

Lpull =
∑

rk∈Mrobot

tanh
(
min(d(rk,Mobject), δ)

β2

)
(7.7)

We use δ = 2mm in practice. To further ensure realistic contacts, a third term is added

that encourages normals of both meshes to be opposite at contact locations V = {rk ∈

Mrobot|d(rk,Mobject) < δ}:

Lnormal =
∑
rk∈V

1 + ⟨N(rk), N(oki )⟩ (7.8)

where N(·) denotes the unit normal vector at a given vertex, and oki = arg minoi∈Mobject
d(rk, oi)

denotes the closest point on the object for any vertex rk ∈ V . Hyperparameters values are

experimentally set to α1 = 2.4, β1 = 7, γ1 = 0.001, α2 = 4cm, β2 = 6cm.

Gripper self-penetration loss LS . LI considers griper-object penetration, but some

configurations of the gripper could also lead to self-penetration between different grip-

per components such as its fingers. We thus add a loss to avoid self-penetration. To this

end, we use the exact same loss as Lpush but apply it between the gripper mesh and itself,

resulting in a loss LS .
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7.2.3 OPTIMIZATION PIPELINE

Our objective function of Equation (7.1) admits many local minima, and several opti-

mization terms admit zero gradient when the gripper is far from the object. Having a

good initialization is therefore important, and we thus propose a multi-step optimization

pipeline whose overview is shown in Figure 7.4. It consists of 3 steps: (a) initializing the

robotic gripper with open fingers around the same location as the human hand, (b) closing

the fingers until contact with object, (c) refining all degrees of freedom.

(i) Open gripper initialization. Because of the hand orientation loss LO, the optimal

global position and orientation of the gripper (Rrobot, trobot) is likely to be close to the

global position and orientation of the human hand (Rhand, thand) in the object coordinate

system. This is why we initialize the gripper position and orientation at the same position

and orientation as the human hand. At this stage, we assume that the rest of the param-

eters, i.e., the angle of the finger joints correspond to a fully-open position and we thus

refer to this stage as ‘open gripper initialization’.

(ii) Fingers initialization. To initialize the fingers and make the fingers touch the object

at the right place, we first detect the contact region of the human grasp, then we minimize

the distance between the fingertips and their nearest contact region using the gripper-

object interpenetration loss LI defined in Equation (7.5) with the self-penetration loss

LS . In this way, we can put the fingers of the robot hand to their closest region of contact

and at the same time avoid gripper-object interpenetration and self-penetration.

(iii) Refining the results. We finally run the full optimization from this initialization.

We use AdamW [165] as our optimizer, the initial learning rate is set to 0.001 for the

translation Trobot and 0.01 for rotation Rrobot and pose parameters θrobot. Each grasp is

optimized for 100 iterations. The learning rate decreases by 10 at iteration #50. During

the optimization, we use the rotation parametrization introduced in [301].
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Grasp Max Penetration Penetration Orientation Contact Heatmap
ϵ-quality ↑ Depth (cm)↓ Volume (cm3)↓ Difference ↓ Difference ↓

A
lle

gr
o

H
an

d

DexPilot† [90] 0.535 2.91 5.04 0.011 0.176
ContactGrasp† [18] 0.460 3.53 6.94 1.818 0.195
GraspIt! (best LC + LO) [189] 0.345 2.76 1.27 0.420 0.254
Ours 0.466 2.57 4.89 0.001 0.153

B
ar

re
tt

H
an

d ContactGrasp† [18] 0.523 4.65 6.28 2.003 0.225
GraspIt! (best LC + LO) [189] 0.354 4.52 0.88 0.714 0.258
Ours 0.566 4.09 2.91 0.001 0.166

Table 7.1: Comparison of our approach with state-of-the-art methods. † indicates meth-
ods that use different hyperparameters for different grippers. For GraspIt!, we generated
100 grasps per human demonstration and selected the one with the lowest orientation dif-
ference and contact heatmap difference, i.e., the lowest LC + LO loss.

7.3 EXPERIMENTS

In this section, after presenting datasets and metrics (Section 7.3.1), we provide the re-

sults of an ablation study in Section 7.3.3 and a comparison to the state of the art in

Section 7.3.4. We then describe a user study (Section 7.3.6) that validates that our ap-

proach leads to grasps more similar to the human demonstrations than the state of the

art.

7.3.1 DATASETS

To measure performance, we consider the human grasps from the YCB-Affordance dataset [41].

For the 52 objects of the YCB-Objects [27], different types of human grasps are manually

annotated and refined using GraspIt! [189]. This leads to a diversity in terms of grasps,

including not only power grasps but also pinch grasps, etc., as shown by the annotations

of the grasp categories provided with the dataset [41] and illustrated in the top row of

Figure 7.5.

7.3.2 METRICS

For evaluation, we measure both the grasps quality using the Grasp ϵ-quality metric,

which corresponds to the radius of the largest ball centered at the origin which can
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be enclosed by the convex hull of the wrench space [188], as commonly used in, e.g.,

[66, 170, 27]. We also report the Max Penetration Depth, i.e., the maximum distance be-

tween a vertex of the gripper that is inside the object and its closest vertex on the object,

and the Penetration Volume, i.e., the estimated volume of penetration between the two

meshes. In addition to these grasp quality metrics, we propose two metrics that are used

to measure the similarity between the human hand grasp and the robot gripper grasp: the

Contact Heatmap Difference that measures contact similarity and the Orientation Differ-

ence that measures similarity in terms of contact angle. We use the metric LC introduced

in Section 7.2.2 to evaluate numerically the Contact Heatmap Difference and LO for the

Orientation Difference.

7.3.3 ABLATIONS

We first ablate our approach in Table 7.2 for the Allegro gripper. To start with, we replace

the second step of our optimization pipeline by another finger closing strategy inspired

by [41]: starting from an open configuration of the gripper, we discretize the gripper

configuration space and pick iteratively for each finger joint the bin corresponding to

the most closed configuration that does not penetrate the object. We observe that this

significantly degrades the grasp ϵ-quality, the penetration volume and the contact heatmap

similarity.

We then ablate the losses of the final optimization step of our approach by remov-

ing them one by one. Removing the contact similarity loss LC significantly degrades

the contact heatmap difference from 0.153 to 0.189, while also impacting negatively the

grasp ϵ-quality metric and the interpenetration. Additionally removing the loss on the

angle similarity LO leads to grasps that are even less similar and leads to higher pene-

tration volume. Furthermore, removing the self-penetration loss LI degrades the grasp

ϵ-quality even more. We finally evaluate the performance of our approach without the

global optimization (the third step of our pipeline) in the last row, to show its importance

for achieving good grasps.
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Fingers LI LS LO LC
Grasp Max Penetration Penetration Orientation Contact Heatmap

Init. (step 2) ϵ-quality ↑ Depth (cm)↓ Volume (cm3)↓ Difference ↓ Difference ↓
Discrete init. ✓ ✓ ✓ ✓ 0.294 2.59 5.83 0.011 0.213

Contact optim.

✓ ✓ ✓ ✓ 0.466 2.57 4.89 0.001 0.153
✓ ✓ ✓ 0.438 2.70 6.32 0.001 0.189
✓ ✓ 0.467 2.55 6.60 0.041 0.190
✓ 0.411 2.69 6.39 0.031 0.187

0.387 2.96 8.52 0.011 0.170

Table 7.2: Ablation study of our approach with the Allegro gripper. In the first row, we
replace the second step of our pipeline with contact optimization for the fingers initializa-
tion by a discrete closing strategy. In the rows below, we remove the losses one by one.
The last row without any loss corresponds to the absence of Step 3 of our optimization
pipeline.

7.3.4 COMPARISON WITH OTHER METHODS

We compare our approach to the state of the art and report performances for the Allegro

gripper as well as for the BarrettHand gripper in Table 7.1. We also show various ex-

amples in Figure 7.5. As a first approach, we compare to a manually-defined mapping

between the human hand and the Allegro gripper using a re-implementation of DexPi-

lot [90]. Note that this approach would require new manual annotations for another type

of robotic gripper. As a second approach, we use ContactGrasp [18] that proposes to

refine and rerank the grasps generated by GraspIt! by exploiting contact information.

For each object, GraspIt! generates grasps from different directions around the object

(we consider 100 grasps in practice). The generated grasps are fed to the ContactGrasp

pipeline with the contact region heatmaps generated using the code provided by the au-

thors. In the end, we consider the best-ranked robotic grasp for each reference human

grasp. As a third approach, we use GraspIt! [189] to generate 100 different grasps for an

object and select the one that minimizes the sum of Orientation Difference and Contact

Heatmap Difference. While DexPilot obtains a higher ϵ-quality metric than our approach

with the Allegro gripper, the grasps are actually less realistic as there are larger interpen-

etrations with the object, as illustrated in the left example of Figure 7.5. Additionally,

the grasp similarity in terms of both orientation and contact heatmap is lower than our

approach. Note also that DexPilot is not generic in that it has been handcrafted for the
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Allegro gripper. We also compare our method to the best grasp from ContactGrasp [18],

which uses different hyperparameters for the two grippers. We observe that our approach

leads to higher quality grasps, with less interpenetrations, and with higher similarity with

the input human grasps. This is particularly true for the orientation similarity as illustrated

in the examples of Figure 7.5: while ContactGrasp optimizes for similar contact regions,

it does not enforce the gripper to approach the object from a similar direction, which can

lead to grasps with significantly different properties than the human grasps in terms of

free space around the object. Lastly, our method outperforms GraspIt! on every metric

except for the penetration volume.

7.3.5 RUNNING TIME

We evaluated all the methods on a machine with 20 Intel(R) Core(TM) i9-9900X CPUs

and one NVidia GeForce RTX 2080Ti card. Our approach takes about 1 minute for a given

grasp. For comparison, our implementation of DexPilot takes about 1 second but does not

consider the geometry of the object, and ContactGrasp takes on average 43 minutes for

one input human grasp as it first requires to generate 100 robotic gripper grasps using

GraspIt! before refining all of them.

7.3.6 USER STUDY

We aim at enabling robots to grasp like humans, but the metrics above do not necessarily

express this notion well. We therefore conducted a user study to better evaluate the sim-

ilarity between human and robotic grasps. It is difficult for people to quantitatively eval-

uate this similarity, thus we resorted to a comparative evaluation. We randomly selected

120 human grasps from the YCB-Affordance [41] dataset. For each human grasp, we

generated corresponding robotic grasps using different methods and asked participants to

select the one which – in their opinion – is the most similar to the human demonstration.

For the Allegro gripper, we compared our method with ContactGrasp [18] and DexPi-

lot [90]. For BarrettHand, we compared our method with ContactGrasp [18]. We also

included an additional grasp generated randomly using GraspIt! [189] as baseline.



150 Chapter 7: Grasping Like Humans

Figure 7.5: Example of generated grasp transfers for our approach, DexPilot[90] and
ContactGrasp[18] for Allgro and BarrettHand grippers, our approach generated more
plausible robot grasps with less penetration.

We received in total 1,392 votes from 58 participants – each participant sharing its

preference regarding 24 human grasps. Results are summarized in Table 7.3. Overall, the

participants favored grasps produced by our method in 51% of the cases for the Allegro

gripper, and 73% of the cases for BarrettHand. These scores are way above random

chance (25% for Allegro, 33% for BarrettHand), and they suggest that our generated

grasps are considered significantly more similar to the human demonstrations than the

grasps generated using the other evaluated methods. Further analysis of the results showed

that the preference for our method could be explained in all cases by the smaller difference

of global orientation between the robot and human hands when using our method.

7.3.7 REAL WORLD EXPERIMENTS

We focus in this work on predicting static grasps that describe the pose and joints config-

uration of a robotic gripper with respect to an object. Grasping however is fundamentally



151

Grasp generation method Number of votes (total: 1392)

Allegro BarrettHand

GraspIt! (random) [189] 49 38
ContactGrasp [18] 117 101
DexPilot [90] 265 -
Ours 440 383

Table 7.3: User-study: “Which grasp is the most similar to the human demonstration?”

a dynamic process, involving robot motion and contact forces. To demonstrate the us-

ability of our approach in real scenarios, we performed grasping experiments using an

Allegro gripper mounted on a Panda robotic arm, from Franka Emika. A few examples

are shown in Figure 7.6. These experiments allowed to check that grasps produced by

our method are physically feasible, while being similar to the human demonstrations.

Robot perception is out of the scope of this study, therefore we used as input some human

demonstrations from the YCB-Affordance [27] dataset, and we manually placed the ob-

jects in known poses before attempting the grasps with the robot. We did not conduct any

quantitative evaluations because of this manual step. Note that state-of-the-art methods

for object [136] and hand+object pose estimation [92, 89, 12, 30, 241, 91] could be used

to overcome this limitation.

7.4 CONCLUSION

We propose a multi-step optimization-based approach for transferring grasps from a hu-

man demonstration to a multi-fingered robotic gripper, so as to enable a robot to grasp like

a human. The proposed approach is generic and can be applied to arbitrary multi-fingered

gripper, as shown by our experimental evaluation with both Allegro and BarrettHand grip-

pers. Our results – based on quantitative metrics and a qualitative user study – suggest

that it produces grasps significantly more similar to the human demonstrations than state-

of-the-art methods, and we validated its applicability in the real world using an Allegro

gripper mounted on a Panda arm.
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Figure 7.6: Real world examples. We performed grasping experiments using an Allegro
gripper mounted on a Panda robotic arm, from Franka Emika. The left column shows the
given human static grasp, the middle column shows the robot gripper grasp retargeted by
our method. The right column shows the success grasp on the real world robot arm. Real
world experiments carried out by Dr.Romain Brégier at Naver Labs Europe.



CHAPTER 8

CONCLUSION

8.1 SUMMARY

This thesis focuses on the development of methodologies that facilitate seamless inter-

action between robots and humans in complex environments. The main contributions

are threefold. First, we present two innovative strategies to boost a robot’s scene under-

standing capabilities. One approach enhances depth accuracy, while the other establishes

a framework for more precise and autonomous object segmentation in open-world envi-

ronments. Both methods are adaptable and can generalize to novel domains without the

need for labeled data. Second, we introduce two novel techniques aimed at improving the

ability of the robots to understand and predict human motion. Our approach accurately

forecasts full-body human movements, regardless of whether the body joint observations

are partial or complete. By utilizing these methods, robots can enhance their predictive

capabilities, leading to more effective collaboration with humans. Lastly, we address the

challenge of translating learned human motions into robotic movements. We propose a

method that adapts human grasp demonstrations for compatibility with any multi-fingered

gripper, allowing robots to manipulate objects more intuitively and efficiently.
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8.2 FUTURE WORK

Several lines of future works could be explored. In this section, we discuss some potential

future directions.

8.2.1 OBJECT DISCOVERY IN 3D DATA

Humans, as inhabitants of a three-dimensional world, are inherently adapted to recog-

nize and interact with objects in 3D spaces. However, the focus of most object discovery

methods has been primarily oriented towards 2D images or videos. There is a signif-

icant opportunity to broaden the scope of real-world object discovery applications by

enabling robots to interpret 3D cues and directly discover objects in three-dimensional

spaces. Such an advancement would not only have significant implications for a vari-

ety of applications, but it could also greatly expedite the process of automatic labeling.

Nonetheless, the processing of 3D data presents a considerable challenge. The volume of

3D data is typically much larger than that of 2D data, and the efficacy of algorithms often

depends heavily on the chosen method of 3D representation. Thus, an area of critical im-

portance lies in the development of a compact and efficient system of representation for

3D data. Achieving this goal would be of significant benefit to the broader community of

researchers and practitioners in this field.

8.2.2 INTERACTIVE HUMAN MOTION UNDERSTANDING

Many current approaches to understanding human motion are predominantly limited to

scenarios involving a single individual. However, in daily life, interactions play a pivotal

role in understanding human motion. Some recent studies have addressed this aspect of

interactive human motion understanding. Nevertheless, their methodologies often neces-

sitate a fixed number of individuals or require exhaustive exploration of pairwise relation-

ships between every pair of individuals in a scene. Thus, it is crucial that we envision a

method capable of considering all individuals in a scene as a unified entity. This approach

would more accurately reflect real-world situations, where human interactions are not just
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pairwise, but often involve dynamic groups of varying sizes. It could potentially lead to a

more holistic and sophisticated understanding of human motion, taking into account the

intricate web of interpersonal dynamics that characterize human interaction.

8.2.3 FINE-GRAINED CONTROLLABLE HUMAN MOTION SYNTHESIS

Recently, several studies have been conducted with the aim of generating human motion

sequences based on controllable signals. These studies typically use text or command

inputs to produce a sequence of movements that align with the given description. How-

ever, controlling the generation of fine-grained motions is still a challenge. For instance,

we might want to generate a continuous motion sequence where the human character is

sitting for the first three seconds, then gets up and walks for the remaining five seconds.

Alternatively, we might want to generate a motion sequence in which the character places

their hands on their legs while simultaneously shaking their legs. Enabling the synthesis

of such fine-grained, controllable human motion would significantly contribute to sectors

like the metaverse, digital human creation, and animation. This would allow for the cre-

ation of more nuanced, realistic, and dynamic virtual beings and scenarios, providing a

richer and more immersive user experience. Future research should therefore prioritize

the development of techniques that can handle this level of precision and flexibility in

motion generation.
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the confidence score threshold of Mask R-CNN [93] trained on COCO,

we can eventually localize and segment all the tortoises at the price of

introducing many false positives. We filter these false positives using

unlabeled video data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 To evaluate the background loss LI of Eq. (4.7), we compare the back-

ground predicted for the image and the background of the selected masks. 69

4.4 To evaluate the flow loss LF of Eq. (4.8), we compare the optical flow

estimated between two consecutive images and the optical flow computed

for the masks selected in the two images. . . . . . . . . . . . . . . . . . . 70

4.5 To evaluate the regularization loss Lp of Eq. (4.9), we compare the binary

images of the selected masks in two consecutive images. . . . . . . . . . 71

4.6 Image-Level Optimization. Example of a treeB(V , E) in the non-overlapping

case. Nodes at the i-th level correspond to the selection (δt,i = 1) or non-

selection (δt,i = 0) of the i-th mask. Edges at the i-th level are weighted

according to the image term LI and depending whether or not the i-th

mask is selected. As there is no overlaps among the three masks, the

weights of edges can be calculated independently. A colored node cor-

responds to the selection of the mask with the same color; a gray node

corresponds to the case where the mask is not selected. . . . . . . . . . . 74
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4.7 Image-Level Optimization. Decomposing-then-hashing for the overlap-

ping case. The red mask represents the overlapping region between Mt,1

and Mt,2. The contribution of M1,t can thus be decomposed into the sum

of contributions of the two non-overlapping green and red sub-masks. . . 76

4.8 Image-Level Optimization. Example of B(V , E) in the overlapping case.

Each time a node is added in the path, the weight of the edge is calculated

by considering all the previous nodes in the path. . . . . . . . . . . . . . 76

4.9 Given a video, we first run the image-level optimisation on each frame

and get the top-K combinations of masks for each frame. The video-

level optimisation selects the best combination for each frame efficiently

by solving a shortest path problem. For this figure, K is set to 3. More

details are given in Section 4.3. . . . . . . . . . . . . . . . . . . . . . . . 78

4.10 Video-Level Optimization. Example of graph G(V , E), represented only

between two consecutive frames It and It+1 for a video sequence of chim-

panzees. Each image in the column represents a combination of masks

∆t, different masks are shown in different colors (Best seen in color). . . 79

4.11 Generation pipeline for ”synthetic optical flow” F t. (a) We first generate

two synthetic images I ′t and I ′t+1 by cropping and pasting the content of

selected masks in frame It and It+1 to a background image Ibg randomly

selected from the Internet. (b) We then feed the pair of synthetic images

to a optical flow model g to generate a synthetic F
′
t. (c) The pixels outside

the selected masks are assigned the average flow in Ft computed over the

background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



162 LIST OF FIGURES

4.12 Qualitative results of selected masks on Unseen-VIS-train and detections

of new classes on Unseen-VIS-test after fine-tuning on these selected

masks. Top: First row: Masks detected by our baseline network MP R-

CNN on two sequences from Unseen-VIS-train; Second row: Masks se-

lected by UnOVOST [169]; Third row: Masks selected by our approach.

Note that we keep the masks for the pandas and rabbits, and reject the

masks that do not correspond to real objects. Bottom: Masks detected

in still images from Unseen-VIS-test. Fourth row: Masks detected by

MP R-CNN before we fine-tuned it on the masks selected by our ap-

proach on Unseen-VIS-train; Fifth row: Masks detected by MP R-CNN

after fine-tuning. The masks generated by our method results in a signif-

icantly better model for the new classes: We can now correctly segment

pandas and rabbits in new videos, even if no manual segmentations for

pandas and rabbits were provided. . . . . . . . . . . . . . . . . . . . . . 88

5.1 Comparison of parameter size and performance on the Human3.6M dataset [108].

We report the MPJPE metric in mm at 1000 ms as performance on the ver-

tical axis. Our method (SIMLPE, in red) achieves the lowest error with

significantly fewer parameters. We also show the performance of two

simple methods: ‘Repeating Last-Frame’ systematically repeats the last

input frame as output prediction, and ‘One-FC’ uses only one single fully

connected layer to predict the future motion. The closer to the bottom-left,

the better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Overview of our approach SIMLPE for human motion prediction. FC

denotes a fully connected layer, LN denotes layer normalization [11] and

1x1 Conv denotes a 1D convolutional layer with kernel size 1. DCT and

IDCT represent the discrete cosine transformation and inverse discrete co-

sine transformations respectively. The MLP blocks (in gray), composing

FC and LN, are repeated m times. . . . . . . . . . . . . . . . . . . . . . 99
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5.3 Qualitative results of our method SIMLPE. The skeletons in light colors

are the input (before 0ms) and the ground-truth (after 0ms). Those with

dark colors represent the predicted motions. Our prediction results are

close to the ground-truth. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1 The architecture of our MLP-based network. FC, LN, and SiLU denote

the fully connected layer, the layer normalization, and the SiLU activation

layer respectively. 1 × 1 Conv denotes the 1D convolution layer with

kernel size 1. Note that 1× 1 Conv here is equivalent to a fully connected

layer operating on the first dimension of the input tensor RN×D, while

the FC layers operate on the last dimension. N denotes the temporal

dimension and D denotes the dimension of the latent space. The middle

block is repeated M times. The first FC layer projects input data to a

latent space RN×D and the last one converts from latent space to the output

space of full-body poses RN×S . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 The architecture of our MLP-based diffusion model. t is the noising step.

x1:N
t denotes the motion sequence of length N at step t, which is pure

Gaussian noises when t = T . p1:N denotes the sparse upper body signals

of length N . x̂1:N
t denotes the denoised motion sequence at step t. . . . . 118

6.3 Qualitative comparison between AGRoL (top) and AvatarPoser [117] (bot-

tom) on test sequences from AMASS dataset. We visualize the predicted

skeletons and render human body meshes. Top: AvatarPoser predictions

in red. Bottom: AGRoL predictions in green. In both rows, the blue

skeletons denote the ground truth motion. We observe that motions pre-

dicted by AGRoL are closer to ground truth compared to the predictions

of AvatarPoser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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6.4 Motion trajectory visualization for predicted motions. (a) The ground

truth motion with blue skeletons; (b) motion predicted by AGRoL with

green skeletons; (c) motion predicted by AvatarPoser with red skeletons.

The purple vectors denote the velocity vectors of the corresponding joints.

Observing the motion trajectories, we can see jittering and foot sliding

issues more clearly. Smooth motion typically exhibits regular pose trajec-

tories with the velocity vector of each joint changing steadily. The density

of joint trajectories varies with walking speed; trajectories become denser

as the individual slows down. Therefore, in the absence of foot sliding, we

should observe a significantly high density of points when a foot makes

contact with the ground. The black dots in the bottom row represent the

trajectories of the foot joints. We notice more pronounced spikes in the

density of foot trajectories for AGRoL compared to AvatarPoser. . . . . . 129

7.1 Given an input human grasp (left), our method outputs a configuration of

a multi-fingered gripper grasping the same object like the human demon-

stration. We experiment with the Allegro (top) and BarrettHand (bottom)

grippers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Comparison between different grippers at the same scale with a human

hand (left), Allegro (middle) and BarrettHand (right). Note that the size

of the gripper and in particular the fingers are significantly different. The

blue vector represents the normal vectors of the human hand and robot

hands, the green vector represents the forward vector (best seen in color). 140

7.3 Contact heatmaps on the object mesh corresponding to a human (top) and

robotic (bottom) grasp. Our optimization-based approach tries to mini-

mize the discrepancy between these heatmaps. Red color denotes regions

close to the hand/gripper while blue color denotes regions far from the

hand/gripper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
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7.4 Overview of our pipeline for transferring human hand grasp to robot grip-

per grasp. We first initialize the gripper with open fingers at the location

of the hand. We then initialize the fingers position on the object surface

by minimizing the distance between the fingertips and the contact regions

of the human demonstration. At last, we refine the grasp by minimizing

the overall objective function. . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5 Example of generated grasp transfers for our approach, DexPilot[90] and

ContactGrasp[18] for Allgro and BarrettHand grippers, our approach gen-

erated more plausible robot grasps with less penetration. . . . . . . . . . 150

7.6 Real world examples. We performed grasping experiments using an Al-

legro gripper mounted on a Panda robotic arm, from Franka Emika. The

left column shows the given human static grasp, the middle column shows

the robot gripper grasp retargeted by our method. The right column shows

the success grasp on the real world robot arm. Real world experiments

carried out by Dr.Romain Brégier at Naver Labs Europe. . . . . . . . . . 152
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5.1 Results on Human3.6M for different prediction time steps (ms). We re-

port the MPJPE error in mm and number of parameters (M) for each

method. Lower is better. 256 samples are tested for each action. † in-

dicates that the results are taken from the paper [177], ⋆ indicated that the

results are taken from the paper [172]. Note that ST-DGCN [172] use two

different models to evaluate their short-/long- term performance, here we

report their results of a single model which performs better on long-term

for fair comparison. We also show results of two simple baselines: ’Re-

peating Last-Frame’ repeats the last input frame 25 times as output, ’One

FC’ uses only one single fully connected layer for the prediction. . . . . . 106

5.2 Action-wise results on Human3.6M for different prediction time steps (ms).

Lower is better. 256 samples are tested for each action. † indicates that

the results are taken from the paper [177], ⋆ indicates that the results are

taken from the paper [172]. . . . . . . . . . . . . . . . . . . . . . . . . . 107
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We report the MPJPE error in mm. Lower is better. The model is trained
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from [177]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
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AMASS. These results are obtained following the evaluation method of
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achieves the best performance with 48 MLP blocks. . . . . . . . . . . . 108
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5.6 Ablation of different components of our network on Human3.6M. For

the case of ’w/o 1D Conv’, we replace the 1D convolutional layers with

fully connected layers to maintain the network complexity. Similarly,

in the case of ’w/o FC’, we replace the fully connected layers with 1D

convolutional layers with kernel size 1. . . . . . . . . . . . . . . . . . . . 109

5.7 Ablation of data augmentation on Human3.6M. We only use front-back
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ter IDCT). ‘Before IDCT’ learns the residual before applying the IDCT

transformation. ‘Consecutive’ learns the velocity between consecutive

frames. ‘w/o residual’ predicts directly the absolute 3D poses. . . . . . . 110

6.1 Comparison of our approach with state-of-the-art methods on a subset

of AMASS dataset following [117]. We report MPJPE [cm], MPJRE

[deg], MPJVE [cm/s], Jitter [102m/s3] metrics. AGRoL achieves the

best performance on MPJPE, MPJRE and MPJVE, and outperforms other

models, especially on the Lower PE (Lower body Position Error) and

Jitter metrics, which shows that our model generates accurate lower body

movement and smooth motions. . . . . . . . . . . . . . . . . . . . . . . 121
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6.2 Comparison of our approach with state-of-the-art methods on AMASS

dataset following the protocol of [52, 224, 6]. We report the MPJPE

[cm], MPJRE [deg], MPJVE [cm/s], and Jitter [102m/s3] metrics. The

* denotes that we retrained the AvatarPoser using public code. † denotes

methods that use pelvis location and rotation during inference, which are

not directly comparable to our method, as we assume that the pelvis in-

formation is not available during the training and the testing. The best

results are in bold, and the second-best results are underlined. . . . . . . 121

6.3 Ablation study of network architectures in our diffusion model. We re-

place the proposed MLP backbone with other architectures and train sev-

eral versions of the diffusion model with the same hyperparameters. The

AvatarPoser-Large denotes the backbone with the same architecture as

AvatarPoser [117] but with more transformer layers. AGRoL-Transformer

is the AGRoL version with the transformer backbone from [244]. The

AGRol (ours) with our MLP backbone outperforms all other backbones

on most of the metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Ablation of the time step embedding. w/o Time denotes the results of

AGRoL without time step embedding. Add sums up the features from
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work. RepIn (Repetitive Injection) denotes our strategy to inject the time
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ding mainly affects the MPJVE and Jitter metrics. Omiting the timestep

embedding or adding it improperly results in high MPJVE and causes

severe jittering issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
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6.5 Ablation of the number of DDIM [236] sampling steps during inference.

The input and output length is fixed to N = 196. To achieve superior

performance while being fast, we choose to use 5 sampling steps during
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6.13 Comparison of our approach with the competitors on AIST++ [150] dataset.
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Cremers, and Luc Van Gool. One-Shot Video Object Segmentation. In CVPR,

2017.

[25] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. COCO-Stuff: Thing and Stuff

Classes in Context. In CVPR, 2018.

[26] Yujun Cai, Lin Huang, Yiwei Wang, Tat-Jen Cham, Jianfei Cai, Junsong Yuan, Jun

Liu, Xu Yang, Yiheng Zhu, Xiaohui Shen, and Others. Learning Progressive Joint

Propagation for Human Motion Prediction. In ECCV, 2020.

[27] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and

Aaron M Dollar. The ycb object and model set: Towards common benchmarks for

manipulation research. In ICAR, 2015.

[28] John Canny. A Computational Approach to Edge Detection. IEEE TPAMI, 8(6),

1986.

[29] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing

Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, and Oth-

ers. Shapenet: An Information-Rich 3D Model Repository. In arXiv, 2015.



178 BIBLIOGRAPHY

[30] Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa, Jonathan

Tremblay, Yashraj S Narang, Karl Van Wyk, Umar Iqbal, Stan Birchfield, et al.

Dexycb: A benchmark for capturing hand grasping of objects. In CVPR, 2021.

[31] Anargyros Chatzitofis, Leonidas Saroglou, Prodromos Boutis, Petros Drakoulis,

Nikolaos Zioulis, Shishir Subramanyam, Bart Kevelham, Caecilia Charbonnier,

Pablo Cesar, Dimitrios Zarpalas, and Others. HUMAN4D: A Human-Centric Mul-

timodal Dataset for Motions and Immersive Media. In IEEE Access, 2020.

[32] Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yongming Huang, and You-

liang Yan. BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation.

In CVPR, 2020.

[33] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun,

Wansen Feng, Ziwei Liu, Jianping Shi, Wanli Ouyang, et al. Hybrid Task Cascade

for Instance Segmentation. In CVPR, 2019.

[34] Liang-Chieh Chen, Raphael Gontijo Lopes, Bowen Cheng, Maxwell D. Collins,

Ekin D. Cubuk, Barret Zoph, Hartwig Adam, and Jonathon Shlens. Naive-Student:

Leveraging Semi-Supervised Learning in Video Sequences for Urban Scene Seg-

mentation. In ECCV, 2020.

[35] Xinlei Chen, Ross Girshick, Kaiming He, and Piotr Dollár. Tensormask: A Foun-

dation for Dense Object Segmentation. In ICCV, 2019.

[36] Yi-Wen Chen, Yi-Hsuan Tsai, Yen-Yu Lin, and Ming-Hsuan Yang. VOSTR: Video

Object Segmentation via Transferable Representations. IJCV, 128(4), 2020.

[37] Bowen Cheng, Maxwell D. Collins, Yukun Zhu, Ting Liu, Thomas S. Huang,

Hartwig Adam, and Liang-Chieh Chen. Panoptic-Deeplab: A Simple, Strong, and

Fast Baseline for Bottom-Up Panoptic Segmentation. In CVPR, 2020.

[38] Jingchun Cheng, Yi-Hsuan Tsai, Wei-Chih Hung, Shengjin Wang, and Ming-

Hsuan Yang. Fast and Accurate Online Video Object Segmentation via Tracking

Parts. In CVPR, 2018.



179

[39] Jingchun Cheng, Yi-Hsuan Tsai, Shengjin Wang, and Ming-Hsuan Yang. SegFlow:

Joint Learning for Video Object Segmentation and Optical Flow. In ICCV, 2017.

[40] Hsu-kuang Chiu, Ehsan Adeli, Borui Wang, De-An Huang, and Juan Carlos

Niebles. Action-Agnostic Human Pose Forecasting. In WACV, 2019.

[41] Enric Corona, Albert Pumarola, Guillem Alenya, Francesc Moreno-Noguer, and

Grégory Rogez. Ganhand: Predicting human grasp affordances in multi-object

scenes. In CVPR, 2020.

[42] Ioana Croitoru, Simion-Vlad Bogolin, and Marius Leordeanu. Unsupervised

Learning from Video to Detect Foreground Objects in Single Images. In ICCV,

2017.

[43] Lingwei Dang, Yongwei Nie, Chengjiang Long, Qing Zhang, and Guiqing Li.

MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Mo-

tion Prediction. In ICCV, 2021.

[44] Achal Dave, Pavel Tokmakov, and Deva Ramanan. Towards Segmenting Anything

That Moves. In ICCV, 2019.

[45] Bert De Brabandere, D. Neven, and L. Van Gool. Semantic Instance Segmentation

with a Discriminative Loss Function. In arXiv, 2017.

[46] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:

A Large-Scale Hierarchical Image Database. In CVPR, 2009.

[47] Ruoxi Deng, Chunhua Shen, Shengjun Liu, Huibing Wang, and Xinru Liu. Learn-

ing to Predict Crisp Boundaries. In ECCV, 2018.

[48] Akshay Dhamija, Manuel Gunther, Jonathan Ventura, and Terrance Boult. The

Overlooked Elephant of Object Detection: Open Set. In WACV, 2020.

[49] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image

synthesis. NeurIPS, 34:8780–8794, 2021.



180 BIBLIOGRAPHY

[50] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Nu-

merische mathematik, 1(1), 1959.

[51] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using

real nvp. ICLR, 2016.

[52] Andrea Dittadi, Sebastian Dziadzio, Darren Cosker, Ben Lundell, Thomas J Cash-

man, and Jamie Shotton. Full-body motion from a single head-mounted device:

Generating smpl poses from partial observations. In ICCV, pages 11687–11697,

2021.

[53] Piotr Dollár and C. Lawrence Zitnick. Structured Forests for Fast Edge Detection.

In ICCV, 2013.

[54] Piotr Dollár and C. Lawrence Zitnick. Structured Forests for Fast Edge Detection.

In ICCV, 2013.

[55] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for

image recognition at scale. arXiv, 2020.

[56] Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, and Art-

siom Sanakoyeu. Avatars grow legs: Generating smooth human motion from sparse

tracking inputs with diffusion model. In CVPR, 2023.

[57] Yuming Du, Philippe Weinzaepfel, Vincent Lepetit, and Romain Brégier. Multi-

finger grasping like humans. In IROS, pages 1564–1570. IEEE, 2022.

[58] Yuming Du, Yang Xiao, and Vincent Lepetit. Learning to better segment objects

from unseen classes with unlabeled videos. In ICCV, pages 3375–3384, 2021.

[59] David Eigen and Rob Fergus. Predicting Depth, Surface Normals and Semantic

Labels with a Common Multi-Scale Convolutional Architecture. In ICCV, 2015.



181

[60] David Eigen, Christian Puhrsch, and Rob Fergus. Depth Map Prediction from a

Single Image Using a Multi-Scale Deep Network. In NeurIPS, 2014.

[61] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and An-

drew Zisserman. The Pascal Visual Object Classes (VOC) Challenge. IJCV, 2010.

[62] Eyes, JAPAN Co. Ltd. Eyes, Jappan.

[63] Alon Faktor and Michal Irani. Video Segmentation by Non-Local Consensus Vot-

ing. In BMVC, 2014.

[64] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A Point Set Generation Network

for 3D Object Reconstruction from a Single Image. In CVPR, 2017.

[65] Zhibo Fan, Jin-Gang Yu, Zhihao Liang, Jiarong Ou, Changxin Gao, G. Xia, and

Y. Li. FGN: Fully Guided Network for Few-Shot Instance Segmentation. In CVPR,

2020.

[66] Carlo Ferrari and John F Canny. Planning optimal grasps. In ICRA, 1992.

[67] Advanced Computing Center for the Arts and Design. ACCAD MoCap Dataset.

[68] David A Forsyth, Jitendra Malik, Margaret M Fleck, Hayit Greenspan, Thomas Le-

ung, Serge Belongie, Chad Carson, and Chris Bregler. Finding Pictures of Objects

in Large Collections of Images. In ORCV, 1996.

[69] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. Recurrent

Network Models for Human Dynamics. In ICCV, 2015.

[70] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng

Tao. Deep Ordinal Regression Network for Monocular Depth Estimation. In CVPR,

2018.

[71] Pascal Fua. Combining Stereo and Monocular Information to Compute Dense

Depth Maps That Preserve Depth Discontinuities. In IJCAI, pages 1292–1298,

August 1991.



182 BIBLIOGRAPHY

[72] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision Meets

Robotics: the KITTI Dataset. IJRR, 2013.

[73] Davi Geiger, Bruce Ladendorf, and Alan Yuille. Occlusions and Binocular Stereo.

IJCV, 14:211–226, 1995.

[74] Saeed Ghorbani, Kimia Mahdaviani, Anne Thaler, Konrad Kording, Douglas James

Cook, Gunnar Blohm, and Nikolaus F. Troje. MoVi: A Large Multipurpose Motion

and Video Dataset, 2020.

[75] James Jerome Gibson. The ecological approach to visual perception. Houghton

Mifflin, 1979.

[76] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh R-CNN. In ICCV,

2019.

[77] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. JMLR, 9:249–256, 01 2010.

[78] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neural

Networks. In AISTATS, pages 315–323, 2011.

[79] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised Monoc-

ular Depth Estimation with Left-Right Consistency. In CVPR, 2017.

[80] Haifeng Gong, Jack Sim, Maxim Likhachev, and Jianbo Shi. Multi-Hypothesis

Motion Planning for Visual Object Tracking. In ICCV, 2011.

[81] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

NeurIPS, 2014.
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