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Introduction en Français

La localisation d'Anderson, découverte en 1958 par P. W. Anderson, se manifeste par un arrêt total de la propagation d'une onde en présence de désordre. A trois dimensions (3D), ce phénomène donne lieu à une transition de phase entre un régime localisée en présence de désordre fort et un régime diusif en désordre faible. Cette transition, appelée transition d'Anderson, a été intensivement étudiée aussi bien théoriquement qu'expérimentalement car elle constitue un paradigme de transition de phase métal-isolant pour les systèmes électroniques. Cependant des questions restent encore ouverte sur phénomène complexe mélangeant interférences et processus de diusion multiples, et aucune théorie microscopique n'a encore pu décrire précisément cette transition.

Au cours des dernières décennies, les atomes ultrafroids sont apparus comme d'excellents candidats pour étudier la localisation d'Anderson. Grâce aux techniques de refroidissement laser et par évaporation, les atomes peuvent atteindre des températures aussi basses que quelques nanoKelvin, régime où leur nature quantique prédomine et donne lieu au phénomène de condensation de Bose-Einstein. Les systèmes d'atomes ultrafroids orent une extrême contrôlabilité, avec la possibilité de créer potentiels lumineux en exploitant l'interaction entre la lumière et les atomes et d'observer directement les fonctions d'onde par imagerie de uorescence. En 2008, notre groupe a ainsi pu réaliser la première observation directe de la localisation d'Anderson d'ondes de matière, en utilisant des atomes ultrafroids se propageant se propageant en présence d'un potentiel désordonné créé par un champ de speckle. Cette première réalisée à une dimension (1D) a suscité un vif intérêt pour cette thématique de recherche, et a ouvert la voie à l'étude de la transition d'Anderson à 3D avec des atomes froids.

Ce travail de thèse a porté sur la première détermination expérimentale directe du seuil de mobilité , à savoir l'énergie critique de la transition d'Anderson à 3D entre les phases localisées et diusives. Les premières tentatives réalisées pour déterminer cette énergie critique avaient en eet été limitées jusqu'à présent par une diculté expérimentale : l'élargissement important de la distribution en énergie des atomes en présence du désordre. Cet élargissement empêche non seulement toute une mesure directe du seuil de mobilité, mais est également à l'origine de déviations importantes constatées entre les estimations expérimentales réalisées dans l'équpie en 2012 et au LENS à Florence en 2015 avec les simulations numériques réalisées dans le groupe de Dominique Delande en 2017.

Au cours de cette thèse, nous avons mis en place une nouvelle méthode, dite de transfert spectroscopique , en utilisant un potentiel désordonné créé par un champ de speckle bichromatique dépendant de l'état interne des atomes deux niveaux Zeeman hyperns du 87 Rb. Le transfert radiofréquence entre l'état initial |1⟩ (insensible au désordre) et l'état nal |2⟩ (sensible au désordre) permet de peupler sélectivement des états d'énergie bien déni dans le désordre. Une expérience de démonstration de principe a été réalisée en 2018 en utilisant un faisceau de speckle quasi-résonant pour l'état |2⟩. Cependant, la courte durée de vie dans l'état désordonné avait empêché l'étude des propriétés de transport. Le champ de speckle bichromatique mis en place au cours de cette thèse nous a permis d'obtenir une durée de vie de l'ordre de la seconde, c'est çà dire une durée de vie susante an de pouvoir observer les propriétés de transport des atomes dans le désordre.

Cette méthode originale nous a permis de mettre en évidence l'existence d'une énergie critique, en excellent accord avec les simulations numériques. Ces résultats, bien qu'encore préliminaires diérentes améliorations discutées dans le manuscrit devront être mise en place pour éliminer la présence d'excitations résiduelles constituent une avancée majeure du domaine et démontrent le potentiel de la méthode mise en place pour étudier précisément la transition d'Anderson à 3D. Ce travail ouvre ainsi la voie à l'étude du régime critique, de la mesure précise du seuil de mobilité à la mesure des exposants critiques caractérisant la transition. Ce manuscrit de thèse contient 8 chapitres. Après une introduction du domaine, nous abordons les connaissances fondamentales sur la localisation d'Anderson et les études expérimentales actuelles de la transition d'Anderson en 3D au chapitre 2. Ensuite, nous décrivons au chapitre 3 le dispositif expérimental, en se concentrant sur les diérentes étapes et outils utilisés pour créer le condensat de Bose-Einstein de 87 Rb . Dans le chapitre 4, nous décrivons les caractéristiques du potentiel désordonné crée par un champ de speckle bichromatique . Le principe du transfert spectroscopique ainsi que sa caractérisation est présenté au chapitre 5. À l'aide de ces outils, nous établissons le protocole pour la mesure du seuil de mobilité et présentons les premiers résultats expérimentaux obtenus dans le chapitre 6, les améliorations envisagées pour la suite étant discutées au chapitre 7. Enn, nous résumons ce projet et proposons des perspectives dans le chapitre 8. Ce travail de thèse a porté sur la détermination expérimentale directe du « seuil de mobilité », à savoir l'énergie critique de la transition d'Anderson à 3D entre les phases localisées et diffusives. Les premières tentatives réalisées pour déterminer cette énergie critique ont en effet été limitées jusqu'à présent par une difficulté expérimentale : l'élargissement important de la distribution en énergie des atomes en présence du désordre. Cet élargissement empêche non seulement toute une mesure directe du seuil de mobilité, mais est également à l'origine de déviations importantes constatées entre les estimations expérimentales et les simulations numériques réalisées plus récemment.

Au cours de cette thèse, nous avons mis en place une nouvelle méthode en utilisant un potentiel désor-donné créé par un champ de speckle « bichromatique » er dépendant de l'état interne des atomes -deux niveaux Zeman hyperfins du 87 Rb. Le transfert radiofréquence entre l'état initial (insensible au désordre) et l'état final permet de peupler sélectivement des états d'énergie bien défini dans le désordre. En outre le champ de speckle « bichromatique » permet d'obtenir une durée de vie suffisamment longue pour pouvoir observer les propriétés de transport des atomes dans le désordre.

Cette méthode, dite de « transfert spectroscopique », nous a permis de mettre en évidence l'existence d'une énergie critique, en excellent accord avec les simulations numériques. Ce résultat encore préliminaire, différentes améliorations discutées dans le manuscrit devront être mise en place pour éliminer la présence d'excitations résiduelles -constitue une avancée majeure du domaine et démontre le potentiel de la méthode mise en place pour étudier précisément la transition d'Anderson à 3D, du seuil de mobilité au comportement du régime critique. Abstract : The Anderson Localization has been intensively studied both theoretically and experimentally since its discovery in 1958. In recent decades, the ultracold atoms emerge as an excellent candidate to perform experiment on the Anderson Localization. The realization of Anderson Localization in 1D and 3D, performed on our setup, has been major breakthroughs on this topic, showing the encouraging potential to study this phenomenon with ultracold atom experiments.

Our research has focused on a direct experimental determination of the mobility edge in 3D, which is the energy at which the Anderson Transition occurs and divides the localized and diffusive phases. Previous experiments have shown large discrepancies with numerical predictions, which highlights the need for more accurate measurements. Additionally, the large energy distribution of atoms in disorder in those experiments prevents direct measurement.

In this work, we have developed a novel spectro-scopic scheme with bichromatic speckles that enables a direct and precise measurement of the mobility edge. We utilize the two hyperfine levels of 87 Rb atoms, making one of them sensitive to disorder and the other free to disorder. The radiofrequency transfer from the initial state to the disordered state enables energyresolved loading, and the bichromatic speckles ensure the long lifetime of disordered state atoms, allowing measurement of the slow diffusion dynamics. This method, known as "spectroscopic transfer," has allowed us to identify the presence of a critical energy, in excellent agreement with numerical simulations. This preliminary result, subject to various improvements discussed in the manuscript to eliminate the presence of residual excitations, represents a significant advancement in the field and demonstrates the potential of the method established for the precise study of the 3D Anderson transition, spanning from the mobility threshold to the behavior within the critical regime.

Table des matières 1 -Introduction

In 1958, Philip Anderson made a groundbreaking discovery when he found that electrons exhibit localized wave functions and cease to propagate in certain disordered lattices [START_REF] Philip W Anderson | Absence of diffusion in certain random lattices[END_REF]. This discovery marked a significant milestone in our understanding of the metalinsulator transition and introduced a new mechanism for this phenomenon, known as Anderson Localization [START_REF] Siegrist | Disorder-induced localization in crystalline phase-change materials[END_REF]. This phenomenon is later proven to be a universal nature of all kinds of waves [START_REF] Lagendijk | Fifty years of Anderson localization[END_REF]. It serves as a key mechanism in explaining the metal-insulator transition, a fundamental phenomenon in the study of condensed matter physics [START_REF] Evers | Anderson transitions[END_REF]. The research on this topic has been conducted intensively since then [START_REF] Lagendijk | Fifty years of Anderson localization[END_REF][START_REF] Abrahams | Scaling theory of localization : Absence of quantum diffusion in two dimensions[END_REF], including new theoretical tools as well as the experimental realization in all kinds of systems. The core of Anderson Localization's mystery lies in the interplay between scattering and interference. Unlike classical particles, coherent waves retain their phase as they scatter in a random medium. The interference of all possible wave paths effectively hinders wave transport, causing them to become localized within a limited spatial region.

Anderson Localization has been observed in a wide range of systems, spanning electrons in condensed matter to light in photonic crystals, acoustic waves in random elastic media, and microwaves in systems with random scatterers [START_REF] Diederik S Wiersma | Localization of light in a disordered medium[END_REF][START_REF] Hu | Localization of ultrasound in a three-dimensional elastic network[END_REF][START_REF] Figotin | Localization of classical waves I : Acoustic waves[END_REF][START_REF] Störzer | Observation of the critical regime near Anderson localization of light[END_REF][START_REF] Segev | Anderson localization of light[END_REF][START_REF] Lahini | Anderson localization and nonlinearity in one-dimensional disordered photonic lattices[END_REF][START_REF] Schwartz | Transport and Anderson localization in disordered two-dimensional photonic lattices[END_REF][START_REF] Az Genack | Observation of photon localization in a threedimensional disordered system[END_REF][START_REF] Dalichaouch | Microwave localization by two-dimensional random scattering[END_REF][START_REF] Aa Chabanov | Statistical signatures of photon localization[END_REF][START_REF] Richard | Anderson localization of ultrasound[END_REF]. These observations have illuminated the relevance and significance of this phenomenon across diverse fields of study.

In 3D, a significant phase transition known as the Anderson transition occurs, distinguishing between the localized regime and the diffusive regime [START_REF] Cord | Disorder and interference : localization phenomena[END_REF]. This transition, often referred to as the Anderson transition, plays a crucial role in understanding the behavior of transport in condensed matter systems. The direct measurement of Anderson transition remains a great challenge for experimentalists.

In recent decades, the tremendous success of the experimental realization of Bose-Einstein condensates [START_REF] Mike H Anderson | Observation of Bose-Einstein condensation in a dilute atomic vapor[END_REF][START_REF] Kendall B Davis | Bose-Einstein condensation in a gas of sodium atoms[END_REF] has provided a new candidate for the experimental study of Anderson Localization -Ultracold atom systems. This development has significantly expanded our ability to investigate and gain insights into the mystery of Anderson Localization. It also provides suitable tools for the long quest for the Anderson transition.

. Anderson localization with ultracold atoms

Ultracold atoms are exceptionally valuable systems for the experimental study of Anderson Localization due to their remarkable tunability and precise control. With laser cooling and evaporative cooling, the temperature of the atoms diminishes to several Nanokelvins, where the thermal motion is frozen and quantum mechanics dominates. The de Broglie wavelength associated with the ultracold atoms becomes significantly larger than the average interatomic distance, allowing for the formation of matter waves that interfere with one another. In the case of Bosonic atoms, they form a novel phase known as Bose-Einstein condensate, where a large proportion of atoms occupy the single ground state and form a macroscopic matter wave [START_REF] Cohen-Tannoudji | Advances in atomic physics : an overview[END_REF].

Researchers in this field have developed a versatile toolkit that includes lasers, magnetic fields, and microwaves, enabling them to precisely manipulate and control ultracold atoms. Fluorescence imaging is commonly used to detect the position and behavior of these atoms. The matter wave nature and precise controlling methods make the experimental study of Anderson Localization a highly promising avenue of research.

Since 2008, experiments of Anderson Localization with ultracold atoms have been achieved in 1D. The first direct observation of Anderson Localization in ultracold atom experiments was carried out in 2008 in Palaiseau [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF], as is shown in Figure 1.1. Applying an optical wave guide in 1D, that traps the atoms in transverse directions with a laser beam, the size of atomic cloud in transverse direction is much smaller than the speckle grains, which enables the implementation of a 1D system. A laser speckle generates the disordered potential for the atoms, acting as a disordered medium. A similar experiment was realized in Florence in the same year with a quasi-periodic potential, leading to the André-Aubry model [START_REF] Roati | Anderson localization of a non-interacting Bose-Einstein condensate[END_REF]. These two experiments have triggered the popularity of studying Anderson Localization with ultracold atoms.

Encouraged by the success in 1D, efforts have been made to observe the 3D Anderson Localization, in which case, the wave is not always localized. Experimentalists also started the quest of mobility edge, a threshold energy separating the localized regime and diffusive regime, where the Anderson transition happens. The first experiments of 3D Anderson Localization are performed in 2011, UIUC [START_REF] Ss Kondov | Three-dimensional Anderson localization of ultracold matter[END_REF] and Palaiseau, i.e. our group [START_REF] Jendrzejewski | Three-dimensional localization of ultracold atoms in an optical disordered potential[END_REF]. Similar experiment is also done in 2015, Florence [START_REF] Semeghini | Measurement of the mobility edge for 3D Anderson localization[END_REF].

These former experiments attempted to observe the Anderson Transition, as shown in Figure1.2 a. However, several challenges and limitations hindered their ability to measure this phenomenon with precision, resulting in significant discrepancies with numerical simulations. The huge discrepancy makes the experiment of UIUC highly debated [START_REF] Cord | Comment on "Three-Dimensional Anderson Localization in Variable Scale Disorder[END_REF]. One of the primary issues was the broad energy distribution of the matter wave when loaded into the disordered potential, as illustrated in Figure 1.2b. This distribution spans both the Figure 1.2 -Anderson Transition in 3D and the difficulty to observe it in ultracold atom systems : a) With spatially correlated disorder in 3D, the wave is localized at lower energy and diffusive at higher energy. The threshold distinguishing the 2 phases is the mobility edge, where the Anderson Transition occurs. b) A major challenge to perform the experiment of Anderson Transition in ultracold atoms is that when switching on the disorder, the BEC atoms, at a well defined state, will be mapped to a large distribution of energy levels. This distribution can depend on the scheme to turn on the speckle disorder, including abrupt switching and slow ramping. Nevertheless, in all the existing experiments, it remains quite broad. localized and diffusive regimes, making it challenging to observe the Anderson transition directly. It would thus be extremely interesting to have a method to launch atoms in the disorder at a precisely defined energy. In addition, the transport of the matter wave within the speckle disorder is very slow, and the limited transport time poses difficulties in distinguishing between slow diffusion and true localization. Consequently, a long transport time for matter wave in the disorder is preferable.

. Spectroscopic scheme with bichromatic speckles

In recent years, we have developed a novel approach, using a spectroscopic scheme and bichromatic speckles to achieve energy resolved loading as well as long lifetime, as documented in prior works [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF][START_REF] Baptiste Lecoutre | Bichromatic state-dependent disordered potential for Anderson localization of ultracold atoms[END_REF]. The new approach makes the direct and precise measurement of Anderson Transition possible.

Our strategy for launching atoms with a precisely defined energy consists in performing a RF transition from the Bose-Einstein condensate in a state insensitive to disorder (state |1⟩) to a state sensitive to disorder (state |2⟩). This spectroscopic scheme is illustrated in Figure 1.3. The energy of the populated eigenstates in the disorder can be adjusted by the control of the frequency of the RF. In the disorder, the atom energy levels form a continuum. Since the initial state is discrete, a priori one has a one-way transition characterized by a rate Γ given by the Fermi Golden Rule, which also sets the minimum energy dispersion of the transferred atoms. For an interaction time t RF shorter than Γ -1 , the energy dispersion of the arrival states, i.e., of the atoms transferred to the continuum, is Fourier-limited and given by ∆E = ℏ/t RF .

The effort to achieve this spectroscopic scheme started from a first implementation of that scheme demonstrated in [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF], where we used an RF atom transfer between states with different sensitivities to a monochromatic laser speckle disorder. As depicted in Figure 1.4a, these different sensitivities stemmed from the very different detunings of the laser that are used to produce the disorder, for the initial state |1⟩ and the final state |2⟩.

This configuration demonstrates its potential with a successful measurement of spectral function [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF]. However, it is limited by a serious problem. It relies on a laser tuned between the two resonances associated with the two atomic ground levels, and the detuning for the upper state |2⟩ cannot be large enough to avoid resonant scattering of photons in that state. This entails a rapid destruction of the coherence of the spatial wave function describing the atomic motion and thus of Anderson localization.

Bichromatic speckles, illustrated in Figure 1.4b, overcome this problem. It consists of two speckles due to lasers of almost identical frequencies for which the potentials are of opposite signs for the initial state of the RF transfer, and of same signs for the final state of the RF transfer. It yields a strong suppression of the sensitivity to the disorder in the initial state, together with a strong suppression of resonant scattering in the final-disorder sensitive-state. This scheme will allow one to operate with observation times around one second or more, which is required to study 3D localization phenomena [START_REF] Baptiste Lecoutre | Bichromatic state-dependent disordered potential for Anderson localization of ultracold atoms[END_REF]. The new approach paves the way to solve the large discrepancy between the numerics and previous experiments and to unveil the mysterious critical regime near the mobility edge.

In this thesis, our experimental efforts are centered around the implementation of a spectroscopic scheme using bichromatic speckles. This novel approach, applied within our experimental setup, yields preliminary indications of the Anderson Transition, which is a remarkable advance toward the first direct evidence of the transition. While these early signs are encouraging, several observations are still unclear and under investigation. In response, we conduct a meticulous analysis of our results and identify several imperfections in our experimental setup. To address these imperfections and strive for a clear and decisive measurement of the Anderson Transition, we propose several enhancements and refinements to our experimental configuration.

. Structure of thesis

The thesis is organized in 8 chapters.

Chapter 2 : Anderson Localization of ultracold atoms

In Chapter 2, we delve into the theoretical foundations of Anderson Localization, emphasizing its significance in research. We explore how interference in multi-scattering processes gives rise to Anderson Localization and introduce key theoretical methods for its study. We also provide an overview of the current state of research, particularly in ultracold atom experiments. Successful 1D experiments highlight the potential of ultracold atoms as a versatile tool. Furthermore, we discuss three pioneering 3D ultracold atom experiments aimed at estimating the Anderson transition's mobility edge. However, these results are either indirect or deviate significantly from numerical estimations. This discrepancy motivates our project : to conduct a direct and precise measurement of Anderson Localization, bridging the gap between experiments and theory.

Chapter 3 : Preparation of Bose-Einstein Condensate with two level atoms

In the third chapter, we outline the process of creating a Bose-Einstein condensate (BEC) using Rubidium-87 atoms within our experimental setup. We start with a brief introduction to BEC, emphasizing its emergence from statistical physics and its unique status as a macroscopic matter wave. Following this, we provide an overview of our experimental setup, highlighting the steps that enable us to cool 87 Rb atoms to temperatures of several nanokelvins, 11 orders of magnitude lower than the room temperature, leading to the formation of a BEC. We manipulate the BEC profiting the two hyperfine levels of the ground state of 87 Rb atoms. It serves as an experimental tool to study the Anderson transition.

Chapter 4 : The bichromatic laser speckle disorder

In this chapter, we introduce laser speckles, a crucial element for introducing disorder in our system. We begin by explaining how a diffuser's random properties transform light into speckle patterns. We emphasize the statistical nature of these patterns and present our experimental setup for illuminating the atomic cloud with speckles. Additionally, we discuss the implementation of bichromatic speckles and improvements made to minimize atom excitation from the speckle beam. This chapter provides an essential overview of our approach to generate disorder in our experiments.

Chapter 5 : Spectroscopic scheme in state-dependent disorder with bichromatic speckles

In this chapter, we introduce the core spectroscopic scheme of our research. While the measurement of spectral functions in 2018 provided a proof of principle for this scheme, extending the lifetime of atoms in the presence of the disordered potential is imperative to measure the mobility edge effectively. To address this, we implement bichromatic speckles, enabling us to create state-dependent disorder in our setup. We reproduce the spectral function measurement of 2018 experiment [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF][START_REF] Baptiste Lecoutre | Bichromatic state-dependent disordered potential for Anderson localization of ultracold atoms[END_REF]. Moreover, we measure the lifetime of atoms in the presence of disorder to be more than one second.

Chapter 6 : Direct measurement of mobility edge

In this chapter, we focus on the principal part of our research-the direct measurement of the mobility edge. We start with the numerical prediction from our theoretical collaborator, Dominique Delande, which provides the reference for experimental observation. We then introduce the protocol designed to measure the mobility edge. Preliminary results show the encouraging sign of critical energy which corresponds well with the numerical prediction of mobility edge. We analyze the data, trying to distinguish the difference of localized phase and diffusive phase. However, we found that unwanted excitations are still present, making the interpretation of the observation difficult. Potential imperfections necessitate further investigation and analysis.

Chapter 7 : Imperfections and improvement

Chapter 7 is dedicated to addressing imperfections in our research and proposing solutions for improvement. We explore both intrinsic imperfections within the spectroscopic scheme and experimental imperfections. Using numerical simulations in a 1D context, we examine how excessive energy transfer leads to broadening of the energy profile. We also analyze optical scattering from speckle beams and collision losses of atoms in state |2⟩ as experimental imperfections. In response, we introduce novel approaches to mitigate these issues, aiming to enhance the accuracy and reliability of our experiments. This chapter represents our ongoing efforts to refine our research methodology.

Chapter 8 :Conclusion and prospect

In the final chapter, we offer a comprehensive summary of our achievements in our quest to measure the mobility edge of the Anderson transition. We reflect on the progress made in our experiments and outline potential future improvements to address imperfections in our results. Furthermore, we present several promising research directions that can be pursued on the same experimental platform in the future. These possibilities pave the way for further exploration in the years to come, ensuring that our research continues to evolve and contribute to our understanding of Anderson Localization.

-Anderson Localization of Ultracold Atoms

The transport of electrons has long been a fundamental subject in condensed matter physics. For many years, the Drude model, proposed by Paul Drude [START_REF] Drude | Zur elektronentheorie der metalle[END_REF], served as a significant framework for explaining electrical resistance in materials. The Drude model is a classical approach that accounts for the scattering of free electrons by various sources in the material. With quantum mechanics, people began to realize that periodic lattice sites in crystals actually diffract the matter wave due to the interference of scattered matter wave and do not reduce the conductivity. Taking this into account, the Drude model could still be used by recognizing that the electrons are only scattered by the impurities in the crystals [START_REF] Lagendijk | Fifty years of Anderson localization[END_REF]. According to the Drude model, an increase in the impurity density within the material leads to a decrease in the mean free path of electrons, resulting in reduced conductivity. The model provides valuable insights into how scattering processes affect the flow of charge carriers, allowing researchers to better understand the behavior of electrical currents in various materials. Nevertheless, this classical model does not expect the mobility of electrons to be stopped by the impurities.

In 1958, Philip W. Anderson made a groundbreaking discovery [START_REF] Philip W Anderson | Absence of diffusion in certain random lattices[END_REF] that revealed a remarkable phenomenon called Anderson Localization. This discovery demonstrated that in certain conditions, the transport of electrons in disordered potentials can go beyond mere reduction and be completely halted. Anderson Localization introduced a new mechanism for understanding the metal-insulator transition, adding to the existing classes of insulators, such as Mott insulators and band insulators.

The key factor missing in the classical Drude model is the consideration of interference. Electrons, possessing matter wave nature, experience significant interference effects during multiple scattering processes. The interplay of interference and scattering leads to Anderson Localization.

The development of theory shows that in 1D and 2D systems, the wave is always localized, while in 3D, there is a phase transition from the localized regime to the diffusive regime, depending on the energy of the wave [START_REF] Abrahams | Scaling theory of localization : Absence of quantum diffusion in two dimensions[END_REF]. The transition energy is known as the mobility edge [START_REF] Lagendijk | Fifty years of Anderson localization[END_REF].

Since the discovery of Anderson localization, researchers have been intrigued by the prospect of performing experiments in real-world systems. Various physical systems have been utilized for this purpose, including light, acoustic waves, and microwaves [6, 7, 10, 12-14, 16, 30]. Among these systems, ultracold atoms stand out as an exceptional tool for the experimental investigation of Anderson Localization due to their high tunability and precise control. In 2008, a significant milestone was achieved by our group [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF] and the LENS group [START_REF] Roati | Anderson localization of a non-interacting Bose-Einstein condensate[END_REF], as they successfully realized Anderson localization in the ultracold atom system. This groundbreaking achievement allowed for the direct observation and study of Anderson Localization using ultracold atoms, paving the way for more in-depth investigations and advancing our understanding of this attractive phenomenon.

In this chapter, we delve into the fascinating physics underlying the counterintuitive phenomenon of Anderson localization. We explore the role of interference in the multiscattering process, the impact of dimensionality, and the Anderson transition in three dimensions. Moreover, we discuss the rationale behind choosing the ultracold atom system as a powerful tool to study Anderson localization. We present previous experiments that have successfully demonstrated Anderson localization in ultracold atoms in three dimensions.

However, it is important to note that significant challenges remain, particularly in achieving a direct and precise measurement of the mobility edge. Major bottlenecks in this regard are the energy broadening in the disordered potential and short transporting time, which lead to discrepancies between measurements and numerical predictions [START_REF] Delande | Mobility edge for cold atoms in laser speckle potentials[END_REF][START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF]. This thesis addresses these principal problems and aims to overcome the obstacles hindering a more accurate and comprehensive understanding of Anderson localization in the ultracold atom system.

. Transport in disordered medium : the origin of Anderson Localization

. Classical picture of diffusion

In a disordered medium, considering the motion of classical particles, we can easily establish a naive physical picture as follows : particles move ballistically for certain distance, then they see impurity in the medium and get scattered elastically. The new direction of their propagation is random, while their wave vector is preserved. Consider a point source of particles in a disordered medium. The particles diffuse due to the random scattering process. The size of diffusion at a certain time is actually the average distance the particles can move after that time. Same model can be established for classical wave, where all the interference is supposed to be washed out due to the random distances of free propagation. This classical picture can be described mathematically as a random walk.

To give a basic idea of classical diffusion, we consider the simplest case : the probability of the particles getting scattered is uniform over time, and the scattering is isotropic, which means that the probability distribution of the new direction of particle motion after scattering is uniform. In this ideal model, the probability distribution of the particles propagating freely in the distance |r| before a scattering event is

P (r) = 1 l * exp - |r| l * , (2.1) 
where l * is the mean free path, describing the average distance of ballistic transport between 2 neighboring scattering events. The average position and its variances of a single ballistic motion r i after i-th scattering can be calculated with the probability distribution :

⟨r i ⟩ = 0 ⟨r 2 i ⟩ = 2l * 2 (2.2)
Because the probability distribution of motion direction is isotropic after scattering, free transport steps have no correlation with each other. We can simply add the variance. Thus we can calculate the overall motion after N steps, where N is a large number :

⟨r⟩ = 0 ⟨r 2 ⟩ = 2N l * 2 (2.3)
Now we can identify that the diffusion distance, which is the average distance the particles can go, is proportional to √ t. More precisely, we define the diffusion constant D as ⟨r 2 ⟩ = 2dDt, where d is the dimension. We introduce mean free time τ * = l * /v, where v is the average speed of the particle. τ * is the average free transport time between two scattering events. After a large number N of scattering, the time is roughly t = N τ * . We can obtain the diffusion constant D, D = vl * d .

(2.4)

The classical model described here is illustrated in Figure 2.1. Now we can see that if the medium has a higher impurity density, the mean free path will be smaller, and the diffusion constant also reduces. But in this classical picture, the diffusion constant shall not go to zero. In the context of coherent waves, the classical picture of a random walk is no longer sufficient to fully understand the transport phenomena. The missing ingredient crucial to this understanding is interference. In quantum mechanics, particles are not treated as classical point-like objects with well-defined positions and velocities, but rather as coherent matter waves. This coherence gives rise to fascinating and dramatic effects in the transport of particles through a disordered medium, which we discuss here.

. Interference induces weak localization

Similar to the classical case, let us consider a point source of coherent quantum particles at position x. The coherent wave propagates naturally towards all possible paths. The probability of transporting from the initial position to a new position x ′ , P (x, x ′ ), is then a summation of the amplitude of all possible paths with phase [START_REF] Cord | Disorder and interference : localization phenomena[END_REF][START_REF] Akkermans | Mesoscopic physics of electrons and photons[END_REF] :

P (x, x ′ ) = j |A j (x, x ′ )|e iφ j 2 .
(2.5) j represents all possible routes. Here we separate the absolute values of the amplitudes |A j (x, x ′ )| and their phases φ j . The phase φ j is proportional to the length of a certain route. And • • • represents the statistical average for disorder patterns. An expansion of equation 2.5 leads to [START_REF] Cord | Disorder and interference : localization phenomena[END_REF][START_REF] Akkermans | Mesoscopic physics of electrons and photons[END_REF] 

P (x, x ′ ) = j |A j | 2 + j̸ =l |A j ||A l |e i(φ j -φ l ) .
(2.6)

We discuss the two terms separately. The first term Σ j |A j | 2 is simply a summation of the probabilities of every possible trajectory, which describes nothing but a classical model.

The second term Σ j̸ =l |A j ||A l |e i(φ j -φ l ) represents the effect of interference. Because the transport trajectory of waves in disorder is very random, we can intuitively consider those phases are randomly distributed over [0, 2π], and the average contribution cancels statistically, |e i(φ j -φ l ) | = 0. Although it's true for most trajectories, there are some exceptions that play a key role in the effect of weak localization. Figure 2.2 illustrates two kinds of trajectories. Figure 2.2a shows normal trajectories from x to x ′ , which have no loop. Their phases are random, and the overall contribution of the phase term is zero. Those trajectories lead to a classical diffusion. Nevertheless, Figure 2.2b shows loop trajectories that go back to the initial position. This kind of loop trajectories always has 2 different directions with the same phase. The interference of those pairs is thus constructive, which leads to a higher probability of staying at the initial position, P (x, x) = 2Σ j |A j | 2 . As a consequence, the probability to move towards elsewhere is reduced, which adds a negative correction to the diffusion constant

D = D 0 -δD. (2.7)
The correction term δD depends on the details of the disordered system, which decides the proportion of loop path. Generally, the dimension d and the size L of the disordered media play important roles. Theoretical analysis based on the probability of the loop trajectories shows that [START_REF] Akkermans | Mesoscopic physics of electrons and photons[END_REF] 

δD/D 0 =      O(L/l * ) . . . in 1D O( 1 kl * ln L l * ) . . . in 2D O( 1 (kl * ) 2 ) . . . in 3D . (2.8)
Here k is the wave number. This effect, induced by the interference, is weak localization.

It provides a physical picture showing that the interference can decrease diffusion. The phenomenon of weak localization has been intensively studied both theoretically and in many kinds of experimental systems, including solid, light, and ultracold atoms [START_REF] Bergmann | Weak localization in thin films : a time-of-flight experiment with conduction electrons[END_REF][START_REF] Meint | Observation of weak localization of light in a random medium[END_REF][START_REF] Jendrzejewski | Coherent backscattering of ultracold atoms[END_REF].

. Anderson localization : From 1D to 3D

The correction of weak localization shown in equation 2.8, astonishingly, could be as large as the diffusion constant when the size of the system is large enough in 1D and 2D cases, and the mean free path l * is of the same order of magnitude as the wavelength in 3D. In this regime, the diffusion could be completely suppressed. The absence of diffusion in this regime is known as Anderson localization. Although the perturbative approach in the regime of weak localization is no longer valid, we can get a qualitative view of the condition for Anderson localization.

Anderson localization was discovered by Philip W. Anderson in 1958 in the system of electrons in a disordered lattice [START_REF] Philip W Anderson | Absence of diffusion in certain random lattices[END_REF]. In matter-wave systems, the model is described by Schrödinger Equation

( ℏ 2 2m ∇ 2 + V (x))ψ = Eψ, (2.9) 
where V (x) is the disordered potential of the random medium for the matter-wave, and E is its eigenenergy. Theoretical tools, including transfer-matrix description and scaling theory, prove that in certain circumstances, the wave functions are localized and have exponential profiles

|ψ(x)| 2 ∝ e -|x|/ξ loc , (2.10) 
where ξ loc is the typical size of the localized wave function, defined as localization length.

As equation 2.8 suggests, the dimension is a key parameter for Anderson Localization. In the following paragraphs, we discuss cases from 1D to 3D.

For 1D systems, the equation 2.8 shows that δD/D = O(L/l * ). It scales linearly with the size of the system. A finite size L exists that leads to δD ∼ D, the Anderson Localization regime, which means the wave function is always localized to a large enough size. Using the transfer-matrix method, we can prove that in 1D case, the localization length ξ loc = 2l * , which is very short [START_REF] Cord | Disorder and interference : localization phenomena[END_REF]. The Anderson Localization in 1D is thus very efficient.

With weak disorder, we can observe a clearly localized wave function.

For 2D systems, the equation 2.8 shows that δD/D = O( In 3D case, the correction term is δD/D = O(1/(kl * ) 2 ), independent of the system size. We mainly consider the disorder strength, which affects the mean free path. As long as the mean free path is short enough(kl * ≪ 1), which means the disorder is strong enough, the system enters the Anderson Localization regime. Meanwhile, if the disorder is weak(kl * ≫ 1), we have δD/D ≪ 1. Thus the system is in the weak localization regime or diffusive regime. Similarly, if we fix the strength of disorder and tune the energy of the wave, which controls the wave vector k, we will see that at the low energy regime (kl * ≪ 1), the system is localized, while at high energy regime (kl * ≫ 1), the system is in diffusive regime [START_REF] Cord | Disorder and interference : localization phenomena[END_REF].

By analyzing the correction term of weak localization on diffusion constant, we draw a qualitative conclusion that in 1D and 2D systems, the wave is always localized in a disordered medium. In contrast, in 3D systems, both the Anderson Localization regime and the weak localization regime exist. It unveils the possibility of the existence of phase transition between the localized phase and diffusive phase in the same disordered medium, depending on the energy of the wave. In the following part, we have a glimpse into the scaling theory, which provides a more formal and precise view of the Anderson localization and Anderson Transition.

The scaling theory [START_REF] Abrahams | Scaling theory of localization : Absence of quantum diffusion in two dimensions[END_REF] describes the relevant properties of physical systems by considering their property change when the system size changes from L to bL. The Scaling theory of Anderson Localization is formulated by Abrahams, Anderson, Licciardello, and Ramakrishnan, known as the 'gang of four'. The scaling theory aims to capture the macroscopic feature insensitive to microscopic details. The basic idea of the scaling theory is to study β-function.

In this formalism, we start from the definition of a dimensionless parameter defined as g = T /R, the ratio of transmission and reflection probabilities, known as proper conductance or dimensionless conductance [START_REF] Cord | Disorder and interference : localization phenomena[END_REF][START_REF] Edwards | Numerical studies of localization in disordered systems[END_REF]. This dimensionless conductance is proportional to the conductance of materials. Classically the dimensionless conductance can be written as

g cl (L) = 2kl * d (kL) d-2 , (2.11) 
showing its relation with the dimension. Here k is the wavenumber, and d is the dimension of the system.

In one dimension in the quantum case, the transfer-matrix method predicts an exponential behavior of the typical transmission T , which, in this definition, transforms to

g(L) = 1 e L/2l * -1 = 2l * /L, L ≪ l * e -L/2l * L ≫ l * .
(2.12)

Since we want to see how the dimensionless conductance g evolves with the system size, we define the β-function [START_REF] Abrahams | Scaling theory of localization : Absence of quantum diffusion in two dimensions[END_REF][START_REF] Cord | Disorder and interference : localization phenomena[END_REF],

β = L d ln g dL = d ln g d ln(L/L 0 ) . (2.13)
The sign of β indicates the evolution direction of conductance g. A positive β suggests that the conductance increases as the size increases. In contrary, a negative β indicates that the conductance decreases.

In 1D systems, we use equation 2.12 to obtain the β function

β(L) = -L 2l * 1 1-e -L/2l * β(g) = -(1 + g) ln 1 + g -1 .
(2.14) For a very small system size L, the conductance is very large, while the β function is always negative ; the conductance thus keeps decreasing as the system size increase. Figure 2.3 shows that the β function is always negative. As a result, when L increases, the system goes towards the left side, and ln g keeps reducing towards -∞. That means the dimensionless conductance reduces exponentially. Thus the system is localized. For any dimensions, we combine the conclusion of the 1D system and the scaling law, equation 2.11. A general form of β function is never known. Nevertheless, the same analysis will qualitatively give its features presented in the schematic plot in Figure 2.3.

Although the shape looks similar, the general behavior of the systems is dramatically different in different dimensions. For the 2D case, the β function is still always negative ; the system goes towards the left side and is localized. Nevertheless, it takes a long distance for large initial conductivity to reduce to ln g = 1, where the systems enter the strong localization regime. That leads to a long localization length, a conclusion compatible with the analysis of weak localization [START_REF] Cord | Disorder and interference : localization phenomena[END_REF].

For 3D, the property is dramatically different. When the dimensionless conductance is large enough, β is positive, and as L increases, the conductance increases ; the system then goes towards right, towards ∞. The system is then diffusive. In contrast, the system goes towards the left if the conductance is small enough and the system is localized. The red point ln g c marks the position that distinguishes the localized regime and diffusive regime, where the Anderson transition happens.

. Anderson Transition in 3D

Now we focus on the Anderson Transition in 3D, the major problem we tackle. Equation 2.8 indicates that the transition happens near kl * ∼ 1. This condition is known as the Ioffe-Regel criteria. It's not difficult to realize that below the Ioffe-Regel criteria (kl * < 1) [START_REF] Af Ioffe | Non-crystalline, amorphous, and liquid electronic semiconductors[END_REF], the mean free path is smaller than the wavelength, so the wave undergoes multiple scattering in a single period. In this extreme disorder regime, the perturbation methods are not valid.

A more profound analysis of the scaling theory established by Abrahams [START_REF] Abrahams | Scaling theory of localization : Absence of quantum diffusion in two dimensions[END_REF] gives a general picture of Anderson transition in 3D. As illustrated in Figure 2.4 a, the phase diagram is separated by the mobility edge, the energy threshold that turns the wave from localized to diffusive. In the localization regime, the wave is described by a localized wave function as equation 2.10. In the diffusive regime, the wave propagation is described by the diffusion constant D. Figure 2.4 b shows that near the mobility edge, there is a critical regime where the two parameters are described by critical exponents ν and s [START_REF] Abrahams | Scaling theory of localization : Absence of quantum diffusion in two dimensions[END_REF] :

ξ loc ∝ |E -E c | -ν D ∝ |E -E c | s . (2.15)
Nevertheless, the scaling theory, or other exact theories, cannot give precise values of critical exponents, the localization length or diffusion constant. Some numerical works predict that s = ν = 1.58 [START_REF] Evers | Anderson transitions[END_REF]. Experimental validation in quantum kick rotor systems exhibits an analog of Anderson Localization mapped in momentum space [START_REF] Lopez | Experimental test of universality of the Anderson transition[END_REF]. However, measurement in real space remains a major challenge for experimentalists till now. This measurement is also among our future goals in our experiment.

. Experiments of Anderson Localization : Why ultracold atoms ?

The great discovery of Anderson localization in 1958 [START_REF] Philip W Anderson | Absence of diffusion in certain random lattices[END_REF] starts from the electrons in a random lattice. Then, people realize it is a general phenomenon for all kinds of waves [START_REF] Lagendijk | Fifty years of Anderson localization[END_REF]. The long quest for direct observation of Anderson localization in the experiment follows by investigating various systems. In condensed matter physics, several experiments manifest the presence of Anderson localization [START_REF] Siegrist | Disorder-induced localization in crystalline phase-change materials[END_REF][START_REF] Ying | Anderson localization of electrons in single crystals : Li x Fe7Se8[END_REF][START_REF] Shlimak | Determination of the critical conductivity exponent for the metal-insulator transition at nonzero temperatures : universality of the transition[END_REF][START_REF] Ma Paalanen | Critical scaling of the conductance in a disordered insulator[END_REF]. Nevertheless, the strong Coulomb interaction cannot be negligible, which makes the theoretical model more complicated and indirect. Moreover, the tunability of the random lattice is highly limited.

Classical waves are also candidates for the experiments of Anderson Localization. Those systems are usually macroscopic, which is easier to realize. In addition, interaction is absent in such a system. Classical waves include mechanical waves and electromagnetic waves. Multiple experiments have been carried out using light [START_REF] Diederik S Wiersma | Localization of light in a disordered medium[END_REF][START_REF] Störzer | Observation of the critical regime near Anderson localization of light[END_REF][START_REF] Segev | Anderson localization of light[END_REF][START_REF] Lahini | Anderson localization and nonlinearity in one-dimensional disordered photonic lattices[END_REF][START_REF] Schwartz | Transport and Anderson localization in disordered two-dimensional photonic lattices[END_REF][START_REF] Az Genack | Observation of photon localization in a threedimensional disordered system[END_REF], microwave [START_REF] Dalichaouch | Microwave localization by two-dimensional random scattering[END_REF][START_REF] Aa Chabanov | Statistical signatures of photon localization[END_REF], and acoustic waves [START_REF] Hu | Localization of ultrasound in a three-dimensional elastic network[END_REF][START_REF] Figotin | Localization of classical waves I : Acoustic waves[END_REF][START_REF] Richard | Anderson localization of ultrasound[END_REF]. Nevertheless, those waves are vectorial waves with different polarizations, which makes the scattering process much more complicated. In addition, recent work shows that the vectorial nature of light could eliminate Anderson localization in 3D [START_REF] Sergey | Absence of Anderson localization of light in a random ensemble of point scatterers[END_REF].

From the application of laser cooling [START_REF] William | Laser deceleration of an atomic beam[END_REF] to the fantastic realization of Bose-Einstein condensate (BEC) [START_REF] Mike H Anderson | Observation of Bose-Einstein condensation in a dilute atomic vapor[END_REF][START_REF] Kendall B Davis | Bose-Einstein condensation in a gas of sodium atoms[END_REF], the technology of ultracold atoms emerges as a perfect candidate to perform experiments on Anderson Localization. In such platforms, Boson atoms occupy a single ground state with a macroscopic number and behave collectively as a macroscopic matter wave, which is the phenomenon of BEC. This matter wave is a scalar wave. The disordered medium is usually a disordered pattern artificially generated by optics, which is highly controllable. In addition, direct imaging can be done with a resonant laser beam to excite the atoms to excited states. These advantages make ultracold atoms an outstanding candidate to perform the experiment of Anderson Localization [START_REF] Lagendijk | Fifty years of Anderson localization[END_REF].

Remarkable progress has been made in such systems. In 2008, Anderson Localization in 1D is observed and measured directly in Institut d'Optique, Palaiseau, with laser speckles [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF]. A similar experiment is also realized in Florence in 2008, using a quasi-periodic lattice which realizes the André-Aubry model [START_REF] Roati | Anderson localization of a non-interacting Bose-Einstein condensate[END_REF]. The focus then goes to 3D systems.

Anderson Localization in 3D is observed in Urbana-Champaign in 2011 [START_REF] Ss Kondov | Three-dimensional Anderson localization of ultracold matter[END_REF], Palaiseau in 2012 [START_REF] Jendrzejewski | Three-dimensional localization of ultracold atoms in an optical disordered potential[END_REF], and Florence in 2015 [START_REF] Semeghini | Measurement of the mobility edge for 3D Anderson localization[END_REF]. All these experiments tried to progress in the measurement of the mobility edge of the Anderson transition, which is detailed in the next section. In 2D, because of the exponentially long localization length, Anderson localization is only observed with a strong disorder [START_REF] Donald H White | Observation of two-dimensional Anderson localisation of ultracold atoms[END_REF], while studying in a weak disorder is very hard. Despite that, some mechanisms related to Anderson localization, such as coherent backscattering, are studied in 2D [START_REF] Jendrzejewski | Coherent backscattering of ultracold atoms[END_REF].

Apart from direct observation in real space, there is an alternative way to make analog in momentum space, known as dynamical localization, using a quantum kicked rotor. In such systems, the atoms are subjected to periodic kicks with a position-dependent amplitude. Using 1D systems as an example, we can write its Hamiltonian in the properly scaled unit :

H = p 2 /2 + k cos x +∞ n=-∞ δ(t -nT ), (2.16)
where T and k are the period and strength of the kick. After each kick, the atoms have half the possibility to acquire a positive momentum and half the possibility to acquire a negative momentum, which is a random walk in momentum space in a classical picture. Due to its wave nature, the interference of all the possible trajectories leads to dynamical localization in momentum space [START_REF] Delande | Kicked rotor and Anderson localization[END_REF]. It is a straightforward analog of Anderson Localization in real space. In a cold atom system, it's easier to image the momentum distribution with the 'time of flight' method. Thus quantum kicked rotor proves to be a powerful experimental tool to study Anderson Localization. It was first realized in an experiment in the 90s [START_REF] Fl Moore | Atom optics realization of the quantum δ-kicked rotor[END_REF].

Another major advantage of the quantum kicked rotor is the convenience of extending the system to 3D. By applying a quasi-periodic driven potential with several incommensurate frequencies, the system becomes the analog for transport in disorder in multidimension. The team to perform quantum kicked rotor in Lille measured the critical component of Anderson transition as ν = 1.4 ± 0.3 [START_REF] Chabé | Experimental observation of the Anderson metal-insulator transition with atomic matter waves[END_REF][START_REF] Lemarié | Observation of the Anderson metalinsulator transition with atomic matter waves : Theory and experiment[END_REF]. The experiment of the quantum kicked rotors is the only experimental result compatible with the numerics till now. Meanwhile, direct measurement in real space remains a complex problem.

. Anderson Localization in 3D : Towards the Anderson Transition

In the previous sections, we have introduced Anderson Localization and its experiments. From this section, we focus on the experiment of Anderson transition in 3D, which is the main topic of our project. Three major experiments of 3D have been carried out since 2011, all of which tried to obtain the information of Anderson transition [START_REF] Ss Kondov | Three-dimensional Anderson localization of ultracold matter[END_REF][START_REF] Jendrzejewski | Three-dimensional localization of ultracold atoms in an optical disordered potential[END_REF][START_REF] Semeghini | Measurement of the mobility edge for 3D Anderson localization[END_REF].

In this section, we analyze their results, including the achievement and the shortcoming. They provide the context of our experiment.

. Experiment of Urbana-Champaign

The first experiment of 3D Anderson Localization is in Urbana-Champaign. Their experiment is based on expanding a thermal cloud of polarized 40 K atoms in an anisotropic repulsive speckle. After a propagation time t ⩾ 20 ms, they interpret the observation of a double structure of atomic density profile as the coexistence of localized and diffusive states. Define the localized fraction f loc as the ratio of the atom number of localized atoms N loc to the total number of atoms N D ,

f loc = N loc /(N loc + N D ), (2.17)
where we denote N loc as the number of localized atoms and N D as the number of diffusive atoms, it is possible to estimate the mobility edge if the energy distribution of atoms D E (E) is known. To calculate the localized fraction, we integrate the energy distribution below the mobility edge,

f loc = Ec -∞ D E (E)dE. (2.18)
We rewrite the distribution of energy with the momentum distribution D k (k),

D E (E) = d d k (2π) d A(k, E)D k (k), (2.19) 
by introducing the spectral function A(k, E), which is the probability for atoms at momentum state |k⟩ be at energy state |E⟩ in the presence of disorder. To determine the distribution of energy D E (E), the authors hypothesize that the slow ramp of the disordered potential does not change the momentum distribution of the atoms, Maxwell-Boltzmann distribution 1 , and their energy. This hypothesis is actually assuming the spectral function

A(k, E) = δ(E - ℏ 2 k 2 2m
).

(2.20)

Then they use the experimental measurement of the fraction in the double structure to determine the mobility edge using equation 2.18 [START_REF] Ss Kondov | Three-dimensional Anderson localization of ultracold matter[END_REF].

The experiment described in the paper has faced several criticisms from the scientific community. One major issue raised by critics is the short expansion time used in the experiment, which is approximately 20ms. This short expansion time is not sufficient to fully distinguish the part of the slow expansion, leading to an overestimation of the mobility edge. Another problem pointed out by critics is that Anderson Localization in 3D typically occurs in the strong disorder regime, where the Ioffe-Regel criterion kl * ∼ 1 holds. In this regime, the spectral function of the system deviates significantly from a simple Dirac delta function (The details of spectral function are introduced in 5.2), and the detailed behavior of the spectral function becomes crucial for understanding the localization properties of the system. The paper lacks a detailed estimation of the spectral function, which is considered essential for interpreting the experimental results and drawing meaningful conclusions about Anderson Localization in 3D systems [START_REF] Cord | Comment on "Three-Dimensional Anderson Localization in Variable Scale Disorder[END_REF].

In conclusion, the experiment does not provide a reliable estimation of the mobility edge, which is an important parameter for characterizing Anderson Localization in disordered systems. Addressing these issues and conducting more refined experiments will be necessary to achieve a more accurate understanding of Anderson Localization in ultracold atom systems.

. Experiment of Palaiseau

The second experiment of Anderson Localization in 3D in the atomic platform is performed in Palaiseau in 2011 (published in 2012), on the platform that we still use today.

The experiment uses the expansion of a dilute BEC of 87 Rb atom in speckle disorder. Two crossed speckles are used to make the disorder more isotropic. Instead of ramping the disorder slowly, in this experiment, they turn on the speckle disorder potential instantaneously. In this case, the wave function does not change at that moment, and the spectral function is the direct mapping from the BEC state to eigenstates in strong disorder, which is inevitably broadened, crossing the localized regime and diffusive regime. The expansion of atoms in the strong disorder last as long as 6s, a time scale that easily distinguishes the slow diffusive part.

To estimate the localization fraction, we assume that the localization length is short enough to be negligible so that the localized part remains in its profile while the diffusive part expands. We can start with the temporal evolution of the atomic density : n(x, t) = f loc n i (x) + n D (x, t), (2.21) where n i (x) is the initial profile of atoms. We consider the central density of atoms. In such an assumption, the localized density f loc n i (0) will not change, and the diffusive part expands with respect to √ t. Its central density is thus proportional to 1/t 

f loc = Ec -∞ dED E (E). (2.22) 
This energy distribution, because the disorder is launched instantaneously, can be precisely estimated numerically. The BEC sample with low chemical potential is close to a plane wave |k = 0⟩. The energy distribution

D E (E) = A(k = 0, E), (2.23) 
equal to the spectral function mapping from a plane wave to a certain energy state in disorder. With the knowledge of this spectral function, we are able to estimate the mobility edge precisely. Because in the crossed speckle, the correlation length is very short. By using the correlation energy E σ = ℏ 2 mσ 2 as the reference of energy, the estimation is in a limited regime, where the quantum nature of the matter wave plays a significant role [START_REF] Jendrzejewski | Three-dimensional localization of ultracold atoms in an optical disordered potential[END_REF].

Compared to the experiment of Urbana-Champaign, this experiment executes the expansion with enough time (∼ 6 s). In addition, the analysis uses the numerically calculated spectral function, which is much more reasonable. Moreover, the observation is indirect, which is a mixture of experimental results with numerical estimations. Additionally, the regime of estimation is also limited. This experiment serves as unambiguous evidence of 3D Anderson Localization and provides an incomplete estimation of the mobility edge of the Anderson transition [START_REF] Delande | Mobility edge for cold atoms in laser speckle potentials[END_REF].

. Experiment of Florence

The third experiment of Anderson Localization in 3D in ultracold atoms is in Florence in 2015. Similar to the previous experiments, they use a crossed speckle to create a quasiisotropic speckle disorder. The atoms used are 39 K, whose interaction can be tuned to zero with a magnetic field via Fechbach resonance. In the disordered potential, they conduct the expansion for 0.5 s. In order to make a more complete and direct measurement, they choose a slow ramp of disorder to lower energy distribution in the disordered potential, and more importantly, they apply a spectroscopic method to study the mobility edge.

The experimental procedure is illustrated in Figure 2.6a. It starts with the preparation of BEC. After that, they apply a time period of 200 ms to ramp down the interaction, the harmonic trap, and ramp up the disordered potential. Supposing that the energy in disorder is relatively low, they start the spectroscopic method by modulating the disordered potential with a sinusoidal perturbation, V R (t) = V R (1 + A cos ωt). In the small A limit, this procedure allows exciting a fraction of atoms by exactly ∆E = ℏω. The final energy distribution can then be written as

D E (E, ℏω) = (1 -p)D E (E) -pD E (E -ℏω), (2.24)
where D E (E) is the initial energy distribution, and p = p(E, ℏω) is the probability to excite an atom from energy E to energy E + ℏω.

The initial energy distribution remains a wide curve in the experiment. The authors observe the momentum distribution of the atoms via TOF (Time of Flight) measurement and try to find a good energy distribution to reproduce this momentum distribution. Their choice of good energy distribution is

D E (E) = (E -E 0 ) α e (E-E 0 )/Em , (2.25)
where E 0 , α, and E m are given by the fitting of the momentum distribution. Knowing the approximate energy distribution, the authors scan the modulation frequency ω and measure the fraction of atoms that remain in the disorder. The result is shown in Figure 2.6b.

As illustrated in Figure 2.6a, if the modulation energy ℏω is above the mobility edge, all the excited atoms are diffusive and are supposed to leave disorder. The atoms imaged are thus the part that is not excited. While if the modulation energy ℏω is lower than the mobility edge, only a part of the excited atoms runs away. Thus more atoms are imaged in the cloud after expansion. The result in Figure 2.6b shows the trend same as the expectation : As the modulation frequency increase, the rest atoms reduce and then remain the same. This feature gives an estimation of mobility edge. By applying different strengths of the disordered potential, they are able to estimate the mobility edge for a broad regime, shown in Figure 2.6c [START_REF] Semeghini | Measurement of the mobility edge for 3D Anderson localization[END_REF].

This experiment proposed a new scheme to study Anderson transition with a spectroscopic method to select the energy to load in the disordered potential, which is an essential progress towards a direct measurement of mobility edge. Nevertheless, the energy distribution is not very narrow, even with a very slow ramp of disordered potential. Counting the localized fraction helps determine the mobility edge, but not quite direct. Furthermore, they rely on the numerical estimation of the energy distribution, which is again a mixture of theory and experiment, similar to the experiment of Palaiseau. In addition, the expansion time, 0.5 s, is likely not long enough to eliminate the diffusive fraction, risking an overestimation of the mobility edge [START_REF] Delande | Mobility edge for cold atoms in laser speckle potentials[END_REF].

. Discrepancy between the experimental measurements and numerics prediction of the Anderson Transtion

In the previous section, we introduced the three experiments that already exist trying to measure the mobility edge of Anderson transition in ultracold atoms in real space. Despite their scientific contributions, none of the experiments realize a narrow energy profile in the disordered potential, which is crucial to perform a direct and precise measurement of mobility edge. In this section, we make a synthesis and compare their results to the numerical prediction given by our theoretical collaborator. The incompleteness and the large discrepancy between the experimental results and numerics highlight the necessity to perform a more direct and precise measurement, which is our motivation for this thesis.

Pasek et al. simulate the mobility edge of ultracold atoms in speckle disorder numerically with the transmission matrix method [START_REF] Delande | Mobility edge for cold atoms in laser speckle potentials[END_REF][START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF]. They predict the mobility edge and demonstrate that the mobility edge and the amplitude of disordered potential follow a universal law :

E c V R = F V R E σ , (2.26) 
where V R is the amplitude of disordered potential, and E σ = ℏ 2 mσ 2 is the energy scale known as correlation energy, where σ is the correlation length of the speckle. presents a physical picture of the correlation energy. F is a univariate function that determine the relation between the dimensionless disorder amplitude V R Eσ and dimensionless mobility edge Ec V R .

In the regime where V R ≪ E σ , the wavelength of the atoms with energy E ∼ V R is much larger than the correlation length of the speckle disorder. As a result, each period of the matter wave extends over multiple speckle grains, and the quantum nature of the atoms plays a dominant role. Conversely, in the regime where V R ≫ E σ , the wavelength of the atoms becomes much smaller than the speckle grain size, leading to a classical picture where the atoms behave more like particles undergoing scattering in the disordered potential. Equation 2.26 captures the transition between these two distinct regimes and sheds light on the interplay between quantum and classical behaviors of atoms in the presence of speckle disorder. The insights provided by these simulations serve as a valuable theoretical framework for interpreting and understanding experimental results related to the mobility edge of Anderson transition in ultracold atoms.

In Figure 2.8, the theorists compare the numerical curve and the estimation from previous experiments. The green curve is the estimation from the experiment of Urbana Champaign. Their estimation has a huge discrepancy compared to the numerics. As discussed in the previous section, the expansion time of 20 ms is far too small to distinguish the slow diffusive part. They also have a naive assumption for the spectral function. These imperfections mentioned in the comment of Muller [START_REF] Cord | Comment on "Three-Dimensional Anderson Localization in Variable Scale Disorder[END_REF] lead to a huge overestimation of the mobility edge. The blue curve represents the estimation of the experiment of Florence.

Their results are correct in order of magnitude, but the expansion time of 0.5 s is still not long enough, and the mobility edge is still significantly overestimated. The red line is the The average energy of the disordered potential is set to zero. The black discontinuous curve of the numerics. The red line is the estimation in the experiment of Palaiseau. The blue curve is the measurement of the experiment of Florence. The green curve is the result of the experiment of Urbana Champaign [START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF].

estimation of the experiment of Palaiseau. It is close to the numerics thanks to its long expansion time of 6 s. Nevertheless, the estimation is rather indirect, relying highly on the numerical results of the spectral function. And the estimation limits to a small regime where V R ≪ E σ .

Although these previous experiments do not use the same setup for the generation of the optical disorder potential and hence have different potential correlation functions, they share the same technique to probe the mobility edge : Prepare a wave packet localized in configuration space and let it expand in the presence of disorder. However, the estimation of the mobility edge was based on the observation of a mixture of localized and diffusive parts in the atomic cloud's energy distribution after turning on the disordered potential. The accuracy of this estimation heavily relies on the numerical estimation of the energy distribution, making the measurements indirect in nature. As a result, there remains a need for a more decisive experiment that can directly measure the mobility edge with a high degree of control and precision.

To address this, our experiment is designed to meet specific requirements. Firstly, we aim to achieve a narrow and controllable energy distribution of the matter wave in the presence of the disordered potential, in comparison to the amplitude of the disordered potential. Secondly, we seek to create an atom sample with a long lifetime on the order of seconds. This will allow us to perform long expansion times, providing us with more precise measurements of the atomic cloud's energy distribution and mobility edge.

In the forthcoming chapters, we will introduce our experimental scheme that fulfills these requirements and present the results of our experiments. By employing this direct and precise experimental approach, we aim to offer new insights into the Anderson transition in ultracold atoms and provide a more comprehensive understanding of this fascinating phenomenon.

-Preparation of Bose-Einstein Condensate with two level system

. Bose-Einstein Condensate

The phenomenon of Bose-Einstein condensate(BEC) in Ultracold atoms, characterized by a macroscopic matter wave, provides us with a valuable tool to investigate the Anderson localization [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF]. BEC is known to appear at ultralow temperature. The de Broglie wavelength of particles, denoted as λ dB , is inversely proportional to momentum p, λ dB = h p . Taking the thermal motion of particles into account, the typical de Broglie wavelength at temperature T is

λ dB = 2πℏ 2 mk B T . (3.1)
At room temperature, the thermal momentum distribution is large, resulting in an extremely small wavelength. Conversely, at lower temperatures, the thermal momentum decreases, leading to a larger wavelength. When the wavelength becomes comparable to the average distance between particles, nλ 3 dB ⩾ 1, the interference of particles must be considered. nλ 3 dB is known as phase-space density. An increase in phase-space density, achieved by further cooling the gas, results in a higher degree of particle degeneracy. If the particles are bosons, this leads to the emergence of Bose-Einstein condensation, wherein a macroscopic number of particles form a collective matter wave occupying the same ground state [START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF].

The concept of Bose-Einstein condensation is initially based on an ideal non-interacting Bose gas. However, in reality, when a large number of particles occupy the same states, their interactions become significant. In the limit of dilute gas with low energy, bosonboson interactions are predominantly described by s-wave scattering. This interaction can be considered as contact interaction, U (x 1 , x 2 ) = gδ(x 1 , x 2 ), where the coefficient g describes the strength of the interaction. It can be expressed by scattering length a s , g = 4πℏ 2 m a s . As long as the scattering length a s is short enough (na 3 s ≪ 1), which is the limit of a dilute gas, this interaction will deform the ground state of the particles from the eigenstate of the Schrödinger equation but will not destroy the collective matter wave [START_REF] Perrin | Low-dimensional Bose gases Part 1 : BEC and interactions[END_REF]. By applying the mean-field approximation to the interaction, the new state for the collective matter wave is described by adding a non-linear term to the Schrödinger equation :

[- ℏ 2 2m ∇ + V (x) + g|φ(x)| 2 ]φ(x) = µφ(x), (3.2) 
where φ(x) denotes the collective wave function for the Bose-Einstein condensate and µ is the chemical potential. Analogous to the Schrödinger equation, the particle density is given by n(x) = |φ(x)| 2 , by defining φ(x) = √ N ψ(x), where N is the particle number and ψ(x) is a single body wave function. The non-linear term g|φ(x)| 2 describes the mean field interaction between particles as a pseudo-potential. This mean-field equation is commonly known as the Gross-Pitaevskii equation or the non-linear Schrödinger equation, which simplifies the description of this complex many-body system to a non-linear one-body problem [START_REF] Gross | Structure of a quantized vortex in boson systems[END_REF][START_REF] Pitaevskii | Vortex lines in an imperfect Bose gas[END_REF][START_REF] Lewenstein | Ultracold Atoms in Optical Lattices : Simulating quantum many-body systems[END_REF].

In this chapter, we present the details of our experimental setup and the process involved in achieving Bose-Einstein condensation (BEC) with 87 Rb atoms. Our experimental setup incorporates lasers, magnetic fields, and microwave techniques to effectively cool the atoms to temperatures on the order of several nanokelvins. At this ultracold temperature regime, the majority of atoms occupies the same ground state, resulting in the formation of a collective matter wave known as a Bose-Einstein condensate.

The generated BEC is used to explore its behavior in the presence of speckle disordered potentials and to investigate the concept of the mobility edge, which will be elaborated upon in subsequent chapters. Throughout my Ph.D., I have focused on maintaining and upgrading the experimental setup to enhance its performance and reliability. Regular maintenance, parameter optimization, and system stability improvements have been crucial to ensuring successful experiments and accurate measurements.

. Main properties of the atomic species : 87 Rb

The atoms used in our experiment are 87 Rb atoms. 87 Rb is an isotope of the alkali element with atomic number 37. As a bosonic isotope, it is the most commonly employed species for experiments involving Bose-Einstein condensation. This isotope exhibits two primary groups of transition lines, D 1 line and D 2 line, which arise from the fine structure considering the spin-orbit coupling. The energy level structure of 87 Rb is illustrated in Figure 3.1. The resonant frequency of D 2 line corresponds to the wavelength λ ∼ 780 nm, while it is λ ∼ 795 nm for D 1 line.

Due to the significant frequency difference between the two groups of lines, we can focus solely on the D 2 lines when the lasers' frequencies are around 780 nm. The D 2 line involves the transition between the 5 2 S 1/2 state and the 5 2 P 3/2 state in terms of fine structure. Lasers with frequencies in this range are readily available in the industry, providing a convenient tool for manipulation.The following table summarizes the principal properties of 87 Rb relevant to our cold atom experiments [START_REF] Daniel | Rubidium 87 D line data[END_REF]. Here the line width Γ describes the radiative decay rate of spontaneous emission for D2 line of 87 Rb).

The nuclear spin of 87 Rb is 3 2 . Due to the coupling to the nuclear spin, the hyperfine level of 5 2 S 1/2 state splits into 2 levels by an energy gap of ∆ hf ≈ 6.835 GHz. This energy gap falls within the microwave regime so that it can be manipulated by an RF pulse. The hyperfine levels of 5 2 P 3/2 state split into 4 levels. The transition between state |F = 2⟩ to state |F ′ = 3⟩ is widely employed in various processed including Doppler cooling, Zeeman slowing, magneto-optical trapping (MOT), and fluorescence imaging. These processes will be introduced in the following sections. Additional hyperfine levels within the 5 2 P 3/2 state are also used depending on the specific requirements of the experiment. In our experiment, we take advantage of the two hyperfine levels within the ground state 5 2 S 1/2 to create a two-level system using RF antennas to induce coupling.

. The experiment cycle to create BEC

The preceding sections have provided a foundation for understanding Bose-Einstein condensates and the properties of 87 Rb atoms. In this section, we will outline our experimental setup designed to create a Bose-Einstein condensate. Our setup takes advantage of the specific line structure of the atoms. The overall schematic of the experimental apparatus is presented in Figure 3.2. The experimental cycle is also seen in previous theses in our group [START_REF] Baptiste Lecoutre | Transport quantique d'atomes ultra-froids en milieu désordonné : Temps de diffusion élastique et fonctions spectrales[END_REF][START_REF] Denechaud | Vers une étude spectroscopique de la transition d'Anderson[END_REF][START_REF] Guo | 3D Anderson transition of ultracold atoms in disordered potentials : observation of the mobility edge[END_REF].

The experimental procedure begins with the atoms being emitted from an oven, where a tube containing rubidium metal is heated to temperatures of 100 ∼ 120 • C. At this temperature, the metal melts and a little amount of vapor evaporates into the vacuum. The vapor goes through a narrow tube and enters the cooling process, including the transverse molasses and Zeeman slowing. After going through the Zeeman slower, it arrives in the cooling chamber, a glass cell specifically designed for the Magneto-Optical Trap (MOT). The MOT is capable to capture more then 10 9 atoms. Subsequently, we load those atoms into a magnetic trap, with around 6×10 8 atoms remaining. In the magnetic trap, we conduct the RF-assisted evaporative cooling and further cool the vapor to around 5 µK, with around 6 × 10 7 atoms left.

After that, we load the atoms into an optical tweezer and transport them into the second chamber, the science chamber, by moving the focal lens of the optical tweezer with a translation stage. Within the science chamber, we apply a dimple beam to intersect the optical tweezer, creating a quasi-isotropic 3D optical trap. Through a controlled reduction of the optical trap's depth following a specific curve, we are ultimately able to conduct the evaporative cooling on the atoms to temperatures on the order of several nanokelvin, leading to the formation of Bose-Einstein condensates, with around 2 × 10 5 atoms. A process of adiabatic opening follows to increase the BEC fraction and reduce the chemical potential. Finally we create a BEC with around 7 × 10 4 atoms and BEC fraction of around 80%.

The entire path that the atoms traverse is maintained under vacuum conditions. In the chamber dedicated to transverse molasses, the pressure is maintained at approxi-mately 10 -9 mbar. Subsequently, in both the MOT chamber and the science chamber, the pressure is reduced to an even lower level of approximately 10 -11 mbar. The stringent vacuum requirements are necessary to prevent background molecules from colliding with the atomic sample, thereby minimizing losses and unwanted heating of the cold atoms, yielding the lifetime of BEC sample around 10 s. By maintaining such high vacuum conditions, we can create an environment conducive to the successful production and manipulation of Bose-Einstein condensates. During my thesis, we changed the atomic sample and re-established the vacuum. It is necessary to wait for sufficient time before operation.

. Laser sources

In our experimental setup, multiple lasers are employed to cool, trap, manipulate, and image the atoms. The laser used for trapping the atoms with an optical dipole trap is generated by an IPG laser, which provides more than 20W of power at a wavelength of 1070 nm. This laser is far detuned from all the main transitions between the 5 2 S 1/2 and 5 2 P 3/2 states (specifically, the D 2 line). The optical dipole potential, which is proportional to the intensity divided by the detuning (∝ I/∆), is equal for both hyperfine levels of the 5 2 S 1/2 state. The power of the laser is locked using a PID servo-loop controlled by an analog signal. The power lock, together with the large detuning, ensures precise control of the trap depth applied to the atom sample.

For the lasers used in cooling, manipulation, and imaging, their wavelengths need to be around 780nm, and their frequencies need to be controlled with accuracy in the Mega-Hertz range. We use three diode lasers with external cavities. One of the lasers is homemade following a designed model, while the other two are Cheetah lasers from Sacher-Lasertechnik. The homemade laser generates a power of 20 ∼ 30 mW, while the Cheetah lasers can generate power up to 100mW. The linewidth of cheetah lasers is less than 5 MHz, and the linewidth of the homemade laser is less then 100 kHz.

The optical setup for these laser beams is depicted in Figure 3 Similarly, the beating signal of L1 and L2 is mixed using a DRO (Dielectric Resonator Oscillator), which generates a fixed RF signal at approximately 6582 MHz. This RF signal is then acquired by a counter, and the subsequent locking procedure is the same as that for L3. Due to the frequency mixing, the L2 laser is quasi-resonant with the |F = 1⟩ state. It is typically employed as a repumper to pump atoms from |F = 1⟩ to |F = 2⟩.

. Pre-cooling : Transverse molasses and Zeeman slower

After the Rubidium vapor emerges from the oven at a temperature of around 100 • C, the atoms possess a significant thermal motion with velocities on the order of 10 2 m/s. These thermal atoms move in random directions. To address this, we employ two pairs of counter-propagating laser beams in a technique known as transverse Doppler cooling to slow down the thermal motion of the atom vapor.

The primary objective of transverse Doppler cooling is to reduce the thermal motion in the x and y directions, while allowing the atoms to predominantly move along the z axis, which aligns with the axis of the Zeeman slower. The frequency of the L3 laser is slightly red-detuned from the transition between the |F = 2⟩ and |F ′ = 3⟩ states, aiming at Doppler cooling. On the other hand, the L2 laser is responsible for pumping atoms from the |F = 1⟩ state to the |F = 2⟩ state.

By applying transverse Doppler cooling in two dimensions, a transverse molasses is created. As a result, the atom beam becomes more collimated along the z direction. Subsequently, the atom beam is passed through a spatial filter, consisting of a metal plate with a diaphragm pierced through it. This diaphragm is in contact with a "cold finger" maintained at a temperature of -30 • C. The purpose of this setup is to absorb and trap any atoms that do not pass through the tube between the transverse molasses and the Zeeman slower. By doing so, we prevent these atoms from contaminating the vacuum and affecting the subsequent stages of the experiment.

After the transverse molasses, the next step is to slow down the atom in the direc- As the velocity of the atoms reduces, the photon can no longer be resonant due to the Doppler effect. Thus a magnetic field ramping along z axis is necessary. The Zeeman effect induces an energy shift proportional to µ B B, varying with the magnetic field. Selecting the circular polarization of the Zeeman beam, we select the transition |F = 2, m F = ±2⟩ to |F ′ = 3, m F = ±3⟩, in which the sign depends on the direction of the magnetic field. Thus the resonant condition for the atoms is written as

ω 0 = ω + |k|v(z) - µ B B(z) ℏ , (3.3) 
where ω 0 is the resonant frequency, ω is the frequency of the laser, and k is the wave vector of the laser. As the velocity of atoms reduces along the z axis, the magnetic field changes to satisfy this resonant condition to maximize the cooling effect. The Zeeman slowing can reduce the typical velocity of atoms from about 100 m/s to 20 m/s in the distance of 1 m. The magneto-optical trap (MOT) is an essential component in our experimental setup for cooling and trapping atoms. It employs a combination of a gradient magnetic field and counter-propagating laser beams with opposite circular polarizations (σ + and σ -) to simultaneously cool and trap the atoms [START_REF] Dalibard | Une brève histoire des atomes froids[END_REF][START_REF] Bernard | Transport quantique d'ondes atomiques ultrafroides : localisation d'Anderson et laser à atomes guidé[END_REF]. Figure 3.5a illustrates the structure of the MOT.

. Magneto-optical Trap

After the atoms are slowed down by the Zeeman slower and enter the cooling chamber, the MOT's laser beams have a detuning of approximately -16 MHz(∼ -3Γ) with respect to the transition |F = 2⟩ to |F ′ = 3⟩ in the atomic system.

The magnetic field in the MOT is created by two coils arranged in an anti-Helmholtz configuration, resulting in a quadrupole magnetic field. In the center of this magnetic field, the situation is similar to Doppler cooling. However, away from the center, the Zeeman effect causes the resonant frequency to depend on the m F states and vary with the atoms' positions. The radiation force in average is towards the center 1 . This mechanism enables the MOT to simultaneously cool and trap the atoms [START_REF] Dalibard | Une brève histoire des atomes froids[END_REF][START_REF] Bernard | Transport quantique d'ondes atomiques ultrafroides : localisation d'Anderson et laser à atomes guidé[END_REF].

The atoms accumulate in the MOT and reach a point of saturation, where the atom number stabilizes. At that stage, a large number of atoms, approximately 2 × 10 9 , are captured. To prevent additional atoms from entering the vacuum cells and potentially 1. Take the direction of the magnetic field B(x)/|B(x)| as the axis, the transition from m F to m ′ F = m F + 1 requires more energy then the transition from m F to m ′ F = m F -1. Thus the transition from m F to m ′ F = m F -1 is less red-detuned and more likely to happen, and atoms are scattered by σ -beam more often. As the direction of the magnetic field B(x)/|B(x)| is aligned to be the same as the direction of σ + beam, the radiation force in average is towards the center [START_REF] Dalibard | Une brève histoire des atomes froids[END_REF][START_REF] Bernard | Transport quantique d'ondes atomiques ultrafroides : localisation d'Anderson et laser à atomes guidé[END_REF]. contaminating the experimental setup, a mechanical shutter is closed, blocking the atomic beam from the oven and transverse molasses. This step prevents the extra Rubidium atoms from contaminating the vacuum chamber.

At this stage, the temperature of the atoms in the MOT is estimated to be around 500 µK. Following the saturation of the MOT, the magnetic field of the trap is switched off, and the atoms are allowed to cool further in a 3D optical molasses. The cooling process in the 3D optical molasses effectively reduces the temperature of the atom cloud to approximately 300 µK2 .

By using the MOT and subsequently cooling the atoms in the 3D optical molasses, the temperature of the atoms is significantly lowered, bringing them closer to the desired ultracold regime. These cooling steps are crucial in preparing the atom cloud for further cooling processes that ultimately lead to the achievement of Bose-Einstein condensation (BEC).

. Magnetic Trap and RF-assisted Evaporative cooling

Loading into a magnetic trap and implementing RF-assisted evaporative cooling reduce the temperature of atoms significantly, pushing closer to the BEC regime.

The magnetic trap is of the type Ioffe-Pritchard [START_REF] Pritchard | Cooling neutral atoms in a magnetic trap for precision spectroscopy[END_REF], illustrated in Figure 3.5b [START_REF] Fauquembergue | Réalisation d'un dispositif de condensation de Bose-Einstein et de transport d'un échantillon cohérent d'atomes[END_REF]. It consists of an electromagnet and two pairs of coils generating a longitudinal field. The electromagnet generates a quadruple field in direction y and z. It is fulfilled by ferromagnetic material that enhances the gradient field. It generates a gradient of 830G/cm with a current of 60A. For the direction x, there are a pair of coils with Helmholtz configuration (See 'Dipole' in Figure 3.5b) and another pair of coils with anti-Helmholtz configuration (See 'Anti-dipole' in Figure 3.5b). The anti-Helmholtz pair generates the gradient field in direction x, and the Helmholtz pair generates a bias field. The two pairs generate the combined magnetic field with a minima at the center

|B x (r)| = B 0 + b ′ x + 1 2 b ′′ x 2 + ( b ′ 2 8B 0 - b ′′ 2 )(y 2 + z 2 ). (3.4) 
The bias field B 0 avoids the zero point in the magnetic field to avoid the Majorana loss.

The composition of all the fields from the coils and magnets has the form

|B(r)| = B 0 + b x (x -x 0 ) 2 + b y (y -y 0 ) 2 + b z (z -z 0 ) 2 , (3.5) 
Here r 0 = (x 0 , y 0 , z 0 ) determine the center of magnetic trap.

In order to efficiently load the atoms into the magnetic trap, it is necessary to manipulate the internal state of the atoms. This is achieved through a step called optical pumping. We apply a step of optical pumping. Using a beam with resonant frequency of transition magnetic trap U (r) is proportional to the magnetic field in the regime of a weak magnetic field.

|F = 2⟩ → |F ′ = 2⟩,
U (r) = m F g F µ B |B(r)|, (3.6)
where m F is the Zeeman state of the hyperfine level and g F is the Landé factor. For the state |F = 1, m F = -1⟩, the Landé factor g F = -1/2 in the low magnetic field regime. Thus the coefficient m F g F µ B is positive. Under this condition, the magnetic field generated by the coils and magnets described by equation 3.5 creates a 3D trapping potential for atoms in the state |F = 1, m F = -1⟩. In our experiment, we are able to load around 8 × 10 8 atoms with the temperature around 300 µK into the magnetic trap of the state

|F = 1, m F = -1⟩.
After trapping in the magnetic trap, we are able to use RF-assisted evaporative cooling to cool the atoms to a lower temperature. Evaporative cooling is widely used to cool down the atoms towards Bose-Einstein condensate regime [START_REF] Ketterle | Evaporative cooling of trapped atoms[END_REF]. The basic idea is to let the atoms with large momentum away from the trap and leave the rest to thermalize at lower temperatures, which is an analog of hot water cooling down because of evaporation. Two different techniques are used in this experiment.

In this step, we employ RF-assisted evaporative cooling, a widely used method to further cool down the atoms. The fundamental idea behind this technique is to remove atoms with large momentum from the magnetic trap, allowing the remaining atoms to thermalize at lower temperatures, analogous to the cooling of hot water through evaporation. The process involves the application of a so-called RF-knife, inducing spin flips in the |F = 1⟩ level for fast-moving atoms.

To gain a detailed understanding of this process, we refer to the illustration of Figure 3.6. In the magnetic trap, the potential energy for atoms in state |F = 1, m F = -1⟩ follows a harmonic profile, while atoms in state |F = 1, m F = 0⟩ only sense the gravity. The Zeeman energy splitting between the two states at the center of the trap is ∆U = m F g F µ B B 0 .

By choosing an RF frequency (ν rf ) higher than the Zeeman energy splitting at the magnetic field minima, we avoid disturbing the atoms near the trap center. Instead, atoms with significant momentum, moving away from the center, experience a matching RF frequency with the Zeeman energy splitting. This causes them to be resonantly transferred to the |F = 1, m F = 0⟩ state, leading to their release from the magnetic trap due to gravity. As a result, atoms with higher velocities are efficiently removed, reducing the average thermal energy of the atom cloud. This effect selectively removes atoms with velocities exceeding a certain threshold (indicated by the green regime in Figure 3.6. Subsequent collisions among the remaining atoms lead to their equilibrium at lower temperatures and higher phase-space density during RF-assisted evaporative cooling.

In our experimental setup, the RF-assisted evaporative cooling process takes approximately 9.25 s. Throughout this process, we perform a frequency scan of the RF-knife, ranging from 90 MHz to 6 MHz. This gradual frequency scan allows the RF-knife to adapt to the real-time velocity distribution of the atoms. As a result, we obtain an atom ensemble consisting of approximately 5 × 10 7 atoms in the |F = 1, m F = -1⟩ state. The density of this ensemble n is approximately 10 11 cm -3 , and the temperature reaches around 10 µK. The phase-space density nλ 3 dB reaches 10 -5 , indicating the increased degeneracy of the atom cloud.

To reach the regime of Bose-Einstein condensation (BEC), further cooling is required. This subsequent cooling process is performed in the science chamber, which is the final stage of our experimental setup.

. Transport to the science chamber

In our experimental setup, the transfer of atoms from the Magneto-Optical Trap (MOT) chamber to the science chamber involves the utilization of an optical tweezer. The optical tweezer operates by employing a highly focused Gaussian beam that is far red-detuned, creating an optical dipole trap. In the experiment, we use a Keopsis IPG laser operating at a wavelength of λ = 1070 nm with a power output of around 22 W. The structure of the optical tweezer is illustrated by Figure 3.7.

The precise positioning of the optical tweezer is achieved through the manipulation of a movable focal lens. This focal lens is securely mounted on a translation stage levitated by compressed air. The potential energy minima within the optical tweezer coincide with the focal point of the Gaussian beam. By finely adjusting the position of this focal lens, we gain precise control over the optical tweezer's location, allowing us to trap and transport the atoms as desired.

The general expression of the optical dipole trap is [START_REF] Grimm | Optical dipole traps for neutral atoms[END_REF] 

U dip = 3πc 2 2ω 3 0 Γ ∆ I(r), with 1 ∆ = 1 ω -ω 0 - 1 ω + ω 0 , (3.7) 
where ω is the frequency of the beam, ω 0 is the resonant frequency for 2-level system. The intensity of the Gaussian beam I(r) can be written with the power of laser and the position r = (x, y, z), in which the original point is the focal point,

I(r) = 2P πw 2 (z) e -2(x 2 +y 2 )/w 2 (z) , (3.8) 
where w(z) is the waist of the beam with respect to the distance to the focal plane, w(z

) = w 0 1 + z 2 z 2 R
, and the Rayleigh length z R = πw 2 0 /λ. In our experiment, the waist at the focal plane w 0 = 28 µm, and the Rayleigh length z R = 2.3 mm. Since the atoms are trapped near the focal point, we can expand the expression at the first order :

U (r) = 3πc 2 Γ 2ω 3 0 ∆ × 2P πw 2 0 (1 - 2(x 2 + y 2 ) w 2 0 - z 2 z 2 R
).

(3.9)

We define

U 0 = 3πc 2 Γ 2ω 3 0 ∆ × 2P πw 2 0
. Noticing that the harmonic trap can be written as 1 2 mω 2 r 2 , we can write the radial trapping frequency ω r and longitudinal frequency ω z as

ω r = 4U 0 mw 2 0 , ω z = 2U 0 mz 2 R . (3.10) 
In the experiment, as illustrated in Figure 3.7, the power we applied to the tweezer is about 1.5 W at the maximum. With the waist w 0 = 28µm and Rayleigh length z R = 2.3 mm, we calculate the maximum trap depth as ω r ≃ 2π ×1.03 kHz and ω z ≃ 2π ×89 Hz. The trap depth of the tweezer is around 2.5 × 10 -27 J, corresponding to η = U 0 /kT ∼ 10. Turning on the optical tweezer and then turning off the magnetic trap in 20 ms, we capture around 1 × 10 7 atoms at the temperature of 10 µK in the tweezer.

After the loading in the optical tweezer, the translation stage then moves the focal lens for 45 cm in 1 s so that the focal point is now in the science chamber. The translation stage is held by compressed air to make it smooth. After the transport, around 3 × 10 6 atoms at the temperature of 10 µK remain in the tweezer.

. Crossed ODT and optical evaporative cooling towards BEC

To address the anisotropy in the atomic cloud and enhance its density in the optical tweezer, we introduce an additional laser beam, which is focused along the vertical direction and referred to as the 'dimple beam'. This supplementary beam originates from the same laser source as the optical tweezer. Its purpose is to establish a three-dimensional quasi-isotropic optical dipole trap, commonly known as a 'crossed optical dipole trap' (crossed ODT). The configuration of the crossed ODT is illustrated in Figure 3.8a. This setup enables us to execute optical evaporation through the following steps.

The power of the dimple beam is approximately 7 W, and it is reshaped to be elliptical using a cylindrical telescope. At the focal point, the waist of the beam is w z = 91 µm along z axis and w x = 203 µm along x axis. The beam is wider along x axis to account for the significant trapping effect of the tweezer beam in that direction.

After transporting the atoms to the science chamber, we gradually increase the power of the dimple beam over a period of 350 ms. This process allows us to load approximately 2 × 10 6 atoms into the crossed ODT. At this stage, the temperature of the atom cloud is around 10 µK, and the phase-space density is on the order of 10 -2 .

With the atoms successfully loaded into the crossed ODT, we can proceed with optical evaporative cooling by gradually lowering the trap. This cooling technique enables further reduction of the atom cloud's temperature and increases its phase-space density, bringing us to the desired regime for the observation of Bose-Einstein condensation [START_REF] Charles S Adams | Evaporative cooling in a crossed dipole trap[END_REF][START_REF] Barrett | All-optical formation of an atomic Bose-Einstein condensate[END_REF]. The process is similar to the RF-assisted evaporative cooling introduced in 3.3.4. The difference is to directly lower the trap instead of using an RF knife. The optimal curve of the power of laser beams for crossed ODT is [START_REF] Km O'hara | Scaling laws for evaporative cooling in time-dependent optical traps[END_REF] 

P (t) = P 0 (1 + t/τ ) β . (3.11)
We have to search for the best choice of the parameters τ and β to get the best efficiency to cool down the atoms. In our experiment, the best condition is τ ≃ 1 s, β ≃ 6 for tweezer beam and τ ≃ 2 s, β ≃ 6 for dimple beam. In 2 s, we reduce the power of tweezer beam from 500 mW to 10 mW, and reduce the power of dimple beam from 7 W to 218 mW.

The trapping frequencies after the evaporative cooling in three dimensions are ω x ≃ 2π × 30 Hz, ω y ≃ 2π × 40 Hz, and ω z ≃ 2π × 25 Hz. We have around 2 × 10 5 atoms remaining in the trap with a temperature of around 30 nK. At this point, we already have a significant proportion of BEC (around 30%). Because the trap depth is finally very low, the gravity can plays a significant role in the loss of atoms during the evaporation. Thus we use a gradient magnetic field to compensate the gravity from the start of evaporation. This magnetic levitation is introduced in the following section.

We employ a dilution technique to achieve further cooling of the atoms and obtain a higher proportion of BEC. This technique allows us to lower the trapping frequency while reducing the temperature at the expense of expanding the volume occupied by the atomic cloud. It also involves further evaporation of thermal atoms. To decrease the trapping frequency further, we move the focal point of the tweezer beam for 6 mm along the z direction. Thus, the waist of the tweezer beam at the crossing point enlarges significantly from 28 µm to 78 µm. As a result, the volume of the atomic cloud increases by around 7 times, leading to a much more dilute condensate. By employing this technique, we finally cool the gas to around 4 nK. Moreover, the BEC ratio is now as high as 90%. We can treat the atomic cloud approximately as a collective matter wave at this stage. The trapping frequencies for BEC in all the three dimensions are measured by kicking the atoms with a short time magnetic field change. The atomic cloud start to oscillate in the trap after kicking by the magnetic field with the trapping frequency. The trapping frequencies are estimated as

ω x = 2π × 35 Hz, ω y = 2π × 11 Hz, ω z = 2π × 25 Hz. (3.12)
The chemical potential of the BEC is calculated as µ/h = 230 Hz, which is significantly reduced in adiabatic opening.

. Magnetic levitation

In the preceding subsection, we emphasized the vital role of magnetic levitation in achieving an extremely cold Bose-Einstein Condensate (BEC) within a shallow optical trap. Moreover, the experiment to perform expansion of matter wave in disorder also requires magnetic levitation to compensate for gravity. This technique involves the application of a gradient magnetic field to exert a force on the atoms.

As shown in Figure 3.10, the gradient field can be generated by a pair of coils in an anti-Helmholtz configuration, where the currents in the two coils are in different directions.

Nevertheless, this field is far from homogeneous. Since the magnetic field satisfies ∇•B = 0, the gradient at z direction must induce gradients along other directions. To address this homogeneity, we add another pair of coils in Helmholtz configuration, which provides a bias field B 0 . As shown in Figure 3.10, the bias field B 0 smooths out the transverse gradient. The total magnetic field is

|B(r)| = B 0 + b ′ y + 1 2 b ′′ y 2 + ( b ′ 2 8B 0 - b ′′ 2 )ρ 2 , (3.13) 
where ρ is the distance to the center in horizontal plane, ρ = √ x 2 + z 2 , B 0 is the bias field, b ′ is the gradient, and b ′′ is the curvature.

The magnetic potential on the atoms is 

U mag = g F,m F m F µ B B(r).
′ = mg m F g F,m F µ B , (3.15) 
where m is the mass of the atoms, and g F,m F = -1/2 is the Landé factor. g F,m F is a constant in weak field regime. Nevertheless, it is no longer linear in strong field, thus b ′ needed to compensate gravity is also slightly dependent on the bias field. In our experiment, we work with a bias field of B 0 = 3.23 G, which is called the magic point (See Subsection 3.5.3). This is necessary for the spectroscopic scheme. Under this condition, the linear gradient b ′ is set to around b ′ = mg/m F g F µ B ∼ 3.04 G/mm in order to cancel the gravity, and the curvature b ′′ is of the order of 10 -5 G/mm 2 . With this set of parameters, one can safely neglect the curvature in equation 3.13, yielding

B(r) ≃ B 0 + b ′ y + b ′ 2 8B 0 ρ 2 .
(3.16)

A well-noticed feature in equation 3.16 is the parabolic term of the horizontal radius, b ′2

8B 0 ρ 2 . This term induces a harmonic trap for the BEC atoms at state

|F = 1, m F = -1⟩, with the potential U ⊥ = g F,m F m F µ B b ′2 8B 0 ρ 2 = 1 2 mω 2 ⊥ ρ 2 .
In our experimental condition, the trapping frequency of this weak magnetic trap is ω ⊥ ≃ 2π × 7 Hz. This trap is weak but not negligible in long time evolution. We mention its effect and potential improvement in Subsection 7.3.3. In order to implement the spectroscopic scheme described in Chapter 5 3 , we require a two-level system. While one level is already determined as the state of the BEC atoms, specifically |F = 1, m F = -1⟩, we need to identify a suitable second level that fulfills certain criteria.

. Two level system of |1⟩ and |2⟩

Both the levels should meet the key property that they should sense the same magnetic potential, i.e. ∂E ∂B should be the same. Under this condition, atoms in the second level is levitated by the same magnetic field, counteracting the force of gravity, to maintain their position in the experimental setup.

The levels that satisfy the requirements are the state |F = 1, m F = -1⟩ (The state to produce the BEC) and |F = 2, m F = 1⟩. By selecting |F = 2, m F = 1⟩ as the second level in our spectroscopic scheme, we can ensure that the atoms in this state are levitated by Figure 3.12 -Illustration of energy splitting with respect to the bias magnetic field.

the same magnetic field. This choice allows us to establish an effective two-level system and perform the spectroscopic investigations outlined in Chapter 5.

. Magic point

As shown in Figure 3.11, in the weak field regime, the state |F = 2, m F = 1⟩ exhibits a magnetic susceptibility crossing with the state |F = 1, m F = -1⟩ at approximately 3.229, G. At this particular magnetic field strength, both states experience an equal magnetic force. This unique magnetic field point is referred to as the 'magic point.'

The determination of the magic point involves the following calculations. We begin with the Breit-Rabi formula [START_REF] Breit | Measurement of nuclear spin[END_REF], which allows us to express the energy shifts of the two states in the weak magnetic field regime up to the second order as follows :

E F =2,m F =1 ∼ h∆ hf 2 + g F =2 µ B B + 3(g J -g I ) 2 µ 2 B 16h∆ hf B 2 E F =1,m F =-1 ∼ - h∆ hf 2 + g F =1 µ B B + 3(g J -g I ) 2 µ 2 B 16h∆ hf B 2 , (3.17) 
where ∆ hf is the energy splitting of |F = 1⟩ and |F = 2⟩. Here g J ≈ 2, and g I ≈ -1 × 10 -3 [START_REF] Cw White | Determination of gfactor ratios for free Rb 85 and Rb 87 atoms[END_REF]. The Landé factors for the two states are g F =2 = (g J + 3g I )/4 and g F =1 = (-g J + 5g I )/4. The energy difference of the two levels

∆E = E F =2,m F =1 -E F =1,m F =-1 is ∆E = h∆ hf + 2g I µ B B + 3(g J -g I ) 2 µ 2 B 8h∆ hf B 2 = a B + b 2a 2 - b 2 4a + h∆ hf , (3.18) 
with a = 3(g J -g I ) 2 µ 2 B /8h∆ hf and b = 2g I µ B . This relation of energy splitting with respect to the bias field B is illustrated in Figure 3.12. The magic point is a magnetic field where ∂∆E ∂B = 0, which is

B * = - 8h∆ hf g I 3(g J -g I ) 2 µ B ≃ 3.229 G. (3.19)
At this magic point both the states have the same magnetic force. Moreover, the energy difference between the 2 levels is stable amid the magnetic field fluctuation.

. 2-photon transition

To establish a two-level system between the states |F = 1, m F = -1⟩ and |F = 2, m F = 1⟩, we require an RF signal to facilitate the coupling. However, these states possess a ∆m F value of ±2, which imposes a selection rule that prohibits a single-photon transition between them. Consequently, we must resort to a two-photon transition mechanism, involving the intermediary state |F = 2, m F = 0⟩. The underlying principle of this process is elaborated upon in Figure 3.13. Here we note state |F = 1, m F = -1⟩ as |1⟩, and state |F = 2, m F = 1⟩ as |2⟩. The energy splitting between the 2 levels is around 6.8347GHz.

To establish the required two-photon transition, we employ a microwave antenna operating at a frequency of ω mw = 6.832 GHz to deliver the first photon, with a slight detuning of δ mw ≃ 500 kHz. Additionally, we utilize an RF antenna with a frequency of ω RF = 2.7 MHz to provide the second photon. This configuration is employed for Raman transition, where the first photon is intentionally detuned to prevent atom population in the intermediate state 4 . To achieve this, the detuning δ mw must satisfy the condition :

|δ mw | ≫ Ω mw , Ω rf , (3.20) 
where Ω mw and Ω rf represent the Rabi frequencies of the two transitions. In this regime, the complex structure of the 3-level system can be simplified to an effective 2-level system.

The effective Rabi frequency for this two-photon transition from state |F = 1, m F = -1⟩ to state |F = 2, m F = 1⟩ is described by [START_REF] Grynberg | Introduction to quantum optics : from the semi-classical approach to quantized light[END_REF] :

Ω eff = Ω mw Ω rf 2δ mw . (3.21)
During the experiment, we can specifically measure the atom number in state |2⟩ without detecting atoms in state |1⟩. This allows us to determine the proportion of atoms that have undergone the desired transition. According to the theory of Rabi oscillation, the proportion at the transition time t p is given by :

|⟨2|ψ(t p )⟩| 2 = Ω 2 eff Ω 2 eff + δ 2 sin 2 π Ω 2 eff + δ 2 t p = π 2 Ω 2 eff t 2 p sinc 2 π Ω 2 eff + δ 2 t p , (3.22)
where δ represents the detuning of the two-photon transition. The effective Rabi frequency can be finely tuned within the range of 5 Hz to 100 Hz. 

. Experimental determination of magic point

In our experimental procedure, we determine the resonant frequency as a function of the magnetic field strength, with the expectation of identifying the minimal point, which is anticipated to coincide with the magic point described in Equation 3.19. To carry out this measurement, we maintain a fixed transition time, specifically t p = 1 2Ω eff , equivalent to half of a Rabi oscillation period (refer to Figure 3.15 a and b). We systematically scan the frequency δ for each magnetic field strength. Referring to Equation 3.22, we generate a Rabi spectrum featuring a prominent peak centered around the resonant frequency. This process is repeated for various magnetic field strengths as we search for the magic point.

Figure 3.15 illustrates examples of Rabi spectra under these conditions, each corresponding to different effective Rabi frequencies. Notably, the full width at half maximum (FWHM) of the principal peak is approximately twice the Rabi frequency. This observation underscores the precision of the energy transfer.

We perform the same procedure with varying currents applied to the Helmholtz coil, thereby scanning the bias field B 0 (refer to the coil configuration in Figure 3.10). It's worth noting that the zero point is arbitrarily set due to technical considerations and holds no significance in this context. As indicated by Equation 3.18, the resulting curve closely resembles a parabola. We fit this curve with a parabolic function to pinpoint the minimal point, which serves as the magic point for the magnetic field.

Having successfully established the magic point and facilitated the two-photon transition, we now possess a two-component Bose-Einstein Condensate (BEC), which represents the critical material for the subsequent experiments in this project.

. Imaging system : Identify the BEC

To observe directly the atoms, we have two imaging techniques, absorption imaging to calibrate the atom number in MOT chamber and fluorescence imaging for normal detection in the science chamber 6 .

. Absorption imaging

Absorption imaging is a technique that capitalizes on the property of atoms to absorb resonant photons, leading to transitions to excited states. As a result, the intensity of a laser beam passing through an atomic cloud diminishes. The degree of reduction in intensity serves as an indicator of atom density, demonstrating a linear relationship at low densities.

The scheme of absorption imaging is illustrated in Figure 3.16a. The probe laser is resonant with the transition |F = 2⟩ → |F ′ = 3⟩ (See Figure 3.1). The laser beam propagates along x axis towards the MOT camera that images the atoms at the MOT chamber. It illuminates the atoms for around 50 µs.

In the regime of weak light, characterized by laser beam intensity significantly lower than the saturation intensity, denoted as

I sat = ℏ 2 Γ 2 d 2 (
where Γ represents the line width of the transition, and d is the dipole moment of the transition aligned with the laser beam's polarization) [START_REF] Grynberg | Introduction to quantum optics : from the semi-classical approach to quantized light[END_REF], I ≪ I sat , the intensity of light traversing an atomic cloud adheres to Beer-Lambert's law :

I(y, z) = I 0 (y, z) exp(-σn 2D (y, z)), n 2D = dx n(x, y, z), (3.23)
where I 0 (y, z) denotes the intensity pattern of input beam, and I(y, z) signifies the intensity pattern of the beam after propagating through the atoms. n is the density of the atoms, n 2D is the atomic density integrated along x axis, and σ is the cross section of atoms and photons :

σ = C 3λ 2 2π 1 1 + ( 2δ Γ ) 2 + I I sat . (3.24) 
For 87 Rb, I sat ≃ 1.67 mW/cm 2 [START_REF] Daniel | Rubidium 87 D line data[END_REF][START_REF] Reinaudi | Strong saturation absorption imaging of dense clouds of ultracold atoms[END_REF] for circularly polarized beam. Here, δ is the detuning of the probe laser frequency with respect to the transition. C is a constant dependent on the polarization of the laser beam and multi-level structure of the atoms. In our specific experiment, the atoms within the magnetic trap are pumped to the |F = 2⟩ state for imaging purposes via a repumper beam. This repumper beam redistributes the atoms across all the Zeeman levels. Using the dipole elements for all these levels, as provided in [START_REF] Daniel | Rubidium 87 D line data[END_REF], we estimate C ≃ 7/15.

In the weak light regime, σ approximates a constant. Consequently, n 2D can be determined using the reduction in intensity

n 2D = 1 σ ln I(y, z) I 0 (y, z) . (3.25)
We notice that if I/I sat is not negligible, σ will not be a constant for different position along x axis, introducing the nonlinearity to the system, so that this equation is not valid. This fact highlights the importance of a weak probe beam.

In our experiment, to ensure compliance with the required condition, the power of the probe laser is maintained at approximately 50 µW, corresponding to an intensity of I ≃ 0.1 mW/cm 2 , satisfying the criterion I ≪ I sat . During the experiment, we capture an image with atoms and another without atoms, each with an exposure time of 100 µs, integrating the light during the whole period when the absorption imaging beam is on.

By comparing these two images, we can calculate I(y, z)/I 0 (y, z), which yields a density profile for the measured atomic cloud.

. Fluorescence imaging

Fluorescence imaging is a technique that captures the photons resulting from the spontaneous emission of excited atoms. This method possesses sensitivity similar to absorption imaging, primarily limited by shot noise. However, in practical applications, it exhibits superior sensitivity, particularly when imaging against a dark background, such as in the presence of a Bose-Einstein Condensate (BEC) [START_REF] Billy | Propagation quantique d'ondes de matière guidées : Laser à atomes et localisation d'Anderson[END_REF]. Consequently, fluorescence imaging is employed in the science chamber, where typically only 10 4 ∼ 10 5 atoms occupy a minuscule region of around 20 µm.

The schematic representation of fluorescence imaging in our experiment is illustrated in Figure 3.16b. We employ the same transition, |F = 2⟩ → |F ′ = 3⟩, as in absorption imaging. A resonant beam with an intensity of approximately 10 mW illuminates the atoms for a duration of 50 µs. Subsequently, the excited atoms emit photons in an isotropic manner. A portion of these photons is collected by two objectives : one situated on the side and the other at the bottom. These emitted photons are then captured by two Electron-Multiplying Charge-Coupled Device (EMCCD) cameras. The camera type is introduced in next subsection.

The intensity captured by the camera is

I fluo (y, z) ≃ Ω 4π Γℏω 0 n 2D (y, z), (3.26) 
where Ω ≃ π NA 2 is the solid angle of the objectives to capture the photons. For science chamber, the numerical aperture for imaging is NA ∼ 0.4, which provides spatial resolution of around 1 µm according to diffraction limit. Equation 3.26 reveals a linear relationship between fluorescence light intensity and atomic density. To establish a quantitative link between the two, we utilize absorption imaging within the MOT chamber. This allows us to calibrate the coefficient Ω 4π Γℏω 0 for fluorescence imaging, enabling the deterministic calculation of atomic density.

By combining the two images captured by the two EMCCD cameras, we obtain a threedimensional representation of the atomic cloud. The pixel size is 8 µm × 8 µm, which corresponds to resolution of these images of approximately 2.7 µm for atomic cloud. In practice, we capture one image with the presence of atoms and another image after a delay to facilitate the subtraction of background light.

The fluorescence imaging enables direct observation of the atomic density profile. Time of Flight (TOF) is the technique used with fluorescence imaging to allow atoms to move freely without external fields for a defined period. The shape of the atomic cloud following TOF provides insight into its momentum distribution. With no TOF time, we are able to image the initial shape of the atomic cloud, which is a crucial functionality to measure the transport property of matter wave in the presence of speckle disorder.

. Installation of the new camera

Our experimental setup employs three Hamamatsu EMCCD C9102 cameras. Each of these cameras features a 1000 × 1000 pixel sensor. However, starting from 2022, we ex-Figure 3.17 -Hamamatsu EMCCD C9102 camera and ANDOR Zyla sCMOS camera. The newly developed sCMOS technology introduced by ANDOR creates the possibility for CMOS to outperform EMCCD in various aspects, including the quantum efficiency, signal-to-noise ratio, intra-scene dynamic range and readout speed [START_REF] Technology | [END_REF]. perienced a significant decline in imaging quality, particularly with the bottom camera and the MOT camera. These issues were characterized by the emergence of random fringes in the images. To address this problem, we acquired two new cameras, namely the ANDOR Zyla sCMOS cameras.

Compared to the older Hamamatsu EMCCD C9102 cameras, the new sCMOS cameras offer several advantages owing to technological advancements and the inherent characteristics of eCMOS technology. Firstly, the maximum quantum efficiency of the new sCMOS cameras is notably higher, standing at 55% for a wavelength of 780nm, compared to the older cameras with a quantum efficiency of 40%. Secondly, when considering the signalto-noise ratio, sCMOS cameras outperform EMCCD cameras when the photon count per pixel exceeds approximately 5, because the amplification of EMCCD multiplies the shot noise by a factor 7 of √ 2 . In contrast, EMCCD cameras are more suitable for scenarios where the light is very weak, with fewer than 5 photons per pixel. Thirdly, the pixel size for the new cameras is smaller, measuring 6.5µm × 6.5µm as opposed to the older cameras' pixel size of 8µm × 8µm. This results in a resolution approximately 20% higher for the new cameras. Fourthly, the new cameras offer a minimum exposure time of around 10 µs, significantly shorter than the older cameras' minimum exposure time of 100 µs. This feature grants us more precise time-dependent control. Fifthly, for sCMOS, each pixel is read independently, yielding a higher readout speed. Moreover, each pixel is connected to dual amplifiers, which will select the low gain or high gain. The final image is reconstructed by combining pixel readings from both the high gain and low gain readout channels to achieve a wide intra-scene dynamic range. This feature is not available in an EMCCD camera [START_REF] Technology | [END_REF].

At the end of my PhD, efforts are made to integrate the new camera to our software.

7. The reason of the factor is that the avalanche process in EMCCD can generate 1 or 2 electrons for each photon.

The software we use to capture the images needed and process them is a homemade Matlab GUI program developed mainly by Baptiste Lecoutre, the previous PhD and Postdoc of our group, known as pimac. The Hamamatsu camera support build-in function of Matlab, videoinput(). It creates an object containing all the information available from the camera. The pimac relies on the this object to acquire the image at the time needed. Nevertheless, the new ANDOR Zyla camera does not support that function, creating difficulties to integrate it into pimac.

To tackle this challenge, I restructured the code to apply the Matlab SDK functions for the new cameras provided by the manufacturer. Moreover, this camera does not support reading the data right after a shot. We add a timer function which keeps request for image with a period of 250ms. This work is still ongoing. Parameters including exposure time, regime of interest, gain and coefficient to calculate atom number still need to be determined to finish the transition to new camera.

-The Bichromatic Laser Speckle Disorder

In addition to the macroscopic matter wave and the production process discussed in the previous chapter, a crucial component of our experiment involves the presence of a disordered medium. We achieve this by employing laser speckles to create disorder for our ultracold atoms.

Laser speckles are random patterns of light intensity that emerge when a coherent beam of light passes through or reflects off a rough diffractive surface, often referred to as a diffuser. Thanks to the dipole interaction between light and atoms, the laser speckles impose disordered potential on the atoms.

In this chapter, we will delve into the statistical properties of the speckle pattern and explore the methods used to manipulate this pattern and its interactions with the atoms in our experiment. Specifically, we will discuss the utilization of bichromatic laser speckles and the techniques employed to effectively control them. This is a crucial element for the spectroscopic scheme detailed in Chapter 5, where we aim to measure the mobility edge. The application of bichromatic speckles leads to a long lifetime for the atoms in the disordered potential, an essential property required by an effective observation of Anderson transition.

. Property of the diffuser

The speckle pattern exhibits a distribution of random power at different positions. Figure 4.1b provides an example of a speckle pattern, characterized by dark regions interspersed with bright grains. The formation of this pattern is attributed to the interference of the light waves. As depicted in Figure 4.1a, each position on the rough surface imparts a random phase to the passing wave, leading to a statistical distribution of phases. When these wavelets interfere on the imaging plane, they collectively generate the speckle pattern.

Diffuser is the principal element to generate the speckle pattern. The roughness of the diffuser, characterized by its thickness l(x 0 ) randomly distributed on the surface, is its major property. To simplify the analysis of the diffuser, we assume the histogram of the thickness is a Gaussian distribution irrelevant to the spatial position x 0 .

As shown in Figure 4.1a, we start from the simplest case, the incident beam is a homogeneous beam with a flat wavefront. As long as the thickness of the diffuser is negligible compared to the Rayleigh length of the incident beam, the phase shift acquired by the wave is

ϕ(x 0 ) = 2π λ (n -1)l(x 0 ), (4.1) 
where λ is the wavelength of the incident beam, and n is the refractive index of the diffuser. Referring Figure 4.2, x 0 is the spatial position on the diffuser. And the transmission factor is

t diff (x 0 ) = e iϕ(x 0 ) . (4.2) 
The expectation value of the transmission factor is written as

t diff = e iϕ(x 0 ) = dϕe iϕ p(ϕ), (4.3) 
where p(ϕ) is the probability distribution of the phase shift ϕ.

Applying the assumption that the histogram of thickness is a Gaussian, we notice that the phase shift, proportional to the thickness, also follows a Gaussian distribution :

p(ϕ) = 1 σ ϕ √ 2π e -(ϕ-ϕ) 2 /2σ 2 ϕ , (4.4) 
in which the width of the distribution is σ ϕ = 2π λ (n -1)σ l (σ l is the standard deviation of thickness). With equations 4.3 and 4.4, we obtain

t diff = e -σ 2 ϕ /2 . (4.5)
t diff describes the 'strength' of the diffuser. At the limit of an extremely rough glass, in which the standard deviation of the thickness is significantly larger than the wavelength (σ l ≫ λ, equivalently σ ϕ ≫ 2π), t diff tends to zero. This corresponds to the strong diffuser case, where the phase is fully scrambled by the diffuser, which leads to a fully random light pattern. On the contrary, a diffuser with very little roughness (σ l ≪ λ), t diff tends to 11 . The limit of an extreme roughness allow us to consider p(ϕ) as a uniform distribution in the interval [0, 2π]. ). r l is the grain size on the rough surface, σ l is the variance of the thickness, and r diff is the typical size of an 'independent emitter'. In the limit of extreme roughness, σ l correspond to many times of wavelength λ. r l refers to the correlation length of the l(x 0 ), which characterize the grain size on the diffuser.

The estimation of the spatial correlation is another key factor to describe the diffuser, characterizing the spatial correlation of field on the surface of the diffuser :

C diff (x 0 , x ′ 0 ) = t diff (x 0 )t * diff (x ′ 0 ) = e i(ϕ(x 0 )-ϕ(x ′ 0 )) (4.6) 
Assuming that ϕ(x 0 ) -ϕ(x ′ 0 ) is a Gaussian variable depending on the distance of the two points, we show that [55]

C diff (x 0 , x ′ 0 ) ≃ exp - |x 0 -x ′ 0 | 2 2r 2 diff , (4.7) 
where r diff = r l /σ ϕ , and r l is the correlation length of the fluctuation of thickness, or in another word the typical size of the grains on the surface of the diffuser.

To analyze the wave going through the diffuser, we see a small region on the diffuser where the phase is highly correlated as an 'independent emitter', while outside this region the phase is not correlated to this independent emitter. We notice that r diff characterizes the typical size of these 'independent emitters'.

Contrary to a naïve intuition, the typical size r diff is not equal to the size of diffuser grain, but can be much smaller in the case of extreme roughness (σ ϕ ≫ 2π). Figure 4.2 illustrates all the related parameter of a diffuser in the case of extreme roughness. We can write r diff as

r diff = r l /σ ϕ , (4.8) 
where r l is the grain size on the diffuser, and σ ϕ is the standard deviation of phase shift.

It's then possible to define a constant of diffuser, independent to the wavelength of incident laser,

θ diff = λ πr diff = λσ ϕ πr l = 2(n -1)σ l /r l , (4.9) 
known as the diffusion angle. The diffusion angle characterize the diffraction angle of a single 'independent emitter', which decides the angular size of the diffused pattern.

In our experiment, we utilize a Newport FSD10-3 diffuser with a diffusion angle θ diff ≈ 5 • .

. Statistics of the speckle pattern

With the knowledge of the diffuser, we discuss the field propagation after passing through the diffuser. We take into account diffraction and interference to study the statistics of speckle pattern. As shown in Figure 4.1, the field on the imaging plane is the summation of all the wavelets generated by all the independent emitters with a typical size of r diff ,

E(r) = N i=1
E 0 e iϕ i (r) .

(4.10)

In the experimental configuration, the incident beam is not a plane wave but focused by a focal lens in order to display the speckle pattern at a finite distance, the focal length, referring to Figure 4.3. Near the focal point, the phase factor during the propagation is the same for all the 'independent emitters'. In this case, the phases of wavelets from different emitters can be treated as independent phase factors induced by the diffuser :

ϕ i = 2π λ (n -1)∆l i . (4.11) 
Here ∆l i is the thickness fluctuation at ith 'independent emitter'. Thus {ϕ i } is an ensemble of independent random variables.

This configuration, known as Fourier speckle, enables us to study the property of speckle patterns with Fourier optics. With this model, we are capable to study the probability distribution, or the histogram of light intensity.

. The histogram of light intensity

We utilize the notion 'independent emitter' mentioned in the last section to analyze the probability distribution of light intensity. The complex field from each emitters can be decomposed to real part and imaginary part :

E 0 e iϕ i = E R,i + iE I,i .
(4.12) 

σ ex = θ diff f ∝ λf r diff .
Since the phase ϕ is an independent random variable, {E R,i } and {E I,i } are also independent random variables. Applying the central limit theorem, we obtain that both the real and the imaginary parts of total field, E R = Σ i E R,i and E I = Σ i E I,i are Gaussian distributed [START_REF] Joseph W Goodman | Speckle phenomena in optics : theory and applications[END_REF] :

p(E R,i ) = 1 √ 2πσ E exp - E 2 R,i 2σ 2 E , p(E I,i ) = 1 √ 2πσ E exp - E 2 
I,i 2σ 2 E . (4.13) 
Noticing that the light intensity

I = |E| 2 = E 2 R + E 2
I , we have the average intensity

I = E 2 R,i + E 2 I,i = 2σ 2 E . (4.14) 
We can rewrite the pair of {E R , E I } as { √ I cos ϕ, √ I sin ϕ}. Thus the probability distribution in this polar coordinate is

p(I, ϕ) = 1 4πσ 2 E exp - I 2σ 2 E . (4.15)
This probability distribution is independent to the overall phase ϕ, thus we can integrate it over ϕ and obtain the probability distribution of the light intensity :

p(I) = 2π 0 dϕ p(I, ϕ) = 1 2σ 2 E exp - I 2σ 2 E = 1 I exp - I I . (4.16)
The mean square value of the intensity is calculated as

I 2 = +∞ 0 dI I 2 p(I) = 8σ 4 E = 2I 2 .
(4.17)

Its variance σ I is the same as the average intensity :

σ I = I 2 -I 2 = I. (4.18)
The histogram of the intensity P (I) is very robust to the optical configurations [START_REF] Joseph W Goodman | Speckle phenomena in optics : theory and applications[END_REF].

. Spatial property of light intensity

Another crucial property of the speckle pattern is the spatial correlation, which characterizes the grain size on the pattern. Because of a finite numerical aperture, light cannot be focused on an infinitely small point. The grains on the speckle pattern have finite sizes due to similar reason.

We note {x 0 } = {x, y, z = 0} as the position on the incident wavefront, and {x f } = {x, y, z = f } as the position on the focal plane. In such a focal system with paraxial approximation, the parallel beam with a flat wavefront go through the lens and form a convex wavefront, which defines a Fourier plane at the focal plane of the lens, where E(x f ) is the Fourier transformation of the field passing through the speckle t(x 0 ) :

E(x f ) ∝ TF[t(x 0 )]( x f λf ) = dx 0 t(x 0 )e -i 2π λ f x 0 •x f . (4.19)
Here the field t(x 0 ) denotes as

t(x 0 ) = m(x 0 )t diff (x 0 ). (4.20) 
m(x 0 ) is the wavefront of the incident beam , with incident intensity

I(x 0 ) = |m(x 0 )| 2 .
To statistically analyze the spatial property of the speckle pattern, we introduce the concept of the autocorrelation function

E(x f )E * (x f + δx f ). Calculation shows that E(x f )E * (x f + δx f ) ∝ TF[C diff (δx 0 )] x f λf • TF[I 0 (x 0 )] δx f λf , (4.21) 
where I 0 (x 0 ) is the incident power going through the aperture. C diff is fast varying, leading to the slow variation of the first term, which determines the profile of the speckle halo. While I 0 (x 0 ) is slow varying, leading to the fast variation of the second term, which determines the correlation length.

The profile of the speckle halo can be evaluated using equation 4.21 by setting δx f to zero :

I(x f ) = E(x f )E * (x f ) ∝ TF[C diff (δx 0 )] x f λf ∝ exp - 2|x f | 2 σ 2 ex , (4.22) 
with σ ex = λf πr diff = θ diff f . σ ex characterizes the typical size of the speckle halo at the focal plane, referring Figure 4.3. This size is decided by the diffraction limit of each 'independent emitter'. As mentioned in 4.1, the diffusion angle given by the manufacturer denotes the angular width of the speckle halo, which is around 5 • in our case. In our experiment, the focal length f = 16.4mm and the diffusion angle θ diff ≈ 5 • . We can thus calculate the size of halo as σ ex ≈ 1.43mm. In the thesis of J. Richard [START_REF] Richard | Propagation d'atomes ultra-froids en milieu désordonné-Étude dans l'espace des impulsions de phénomènes de diffusion et de localisation[END_REF], σ ex is experimentally measured as 1.47 ± 0.01mm.

Another crucial spatial property of the speckle pattern is the spatial correlation of light intensity :

I(x)I(x + δx) = E(x)E * (x)E(x + δx)E * (x + δx). (4.23)
Noticing that the amplitudes are Gaussian variables (See equation 4.13), we can apply the Wick's probability theorem and establish its relation to the autocorrelation of amplitude : The autocorrelation of amplitude is expressed in equation 4.21. Due to the small grain size on the diffuser, the first part of equation 4.21 is a slow varying profile giving the shape of speckle halo. Thus, at the center of the halo, we can treat it as constant. We define the fluctuation of intensity δI(x) = I(x) -I(x). In the transverse direction(perpendicular to the optical axis), we apply van Cittert-Zernike theorem and have

I(x)I(x + δx) = I(x) I(x + δx) + |E(x)E * (x + δx)| 2 .
δI(x f )δI(x f + δx f ) = |E(x f )E * (x f + δx f )| 2 ∝ |TF[I 0 (x 0 )] δx f λf | 2 , (4.25) 
which is very similar to PSF function of the focal system 2 .

To describe the spatial correlation function in 3D, we define 3

c 3D (∆x f , ∆z) = δI(x f + ∆x f , z + ∆z)δI(x f , z) δI 2 . (4.26)
In a oversimplified case with a homogeneous plane incident wave, it is proportional to the profile of an Airy disk. Thus the transverse correlation length is determined by the diffraction limit of the aperture, σ ⊥ ∼ λ/2NA. It characterizes the grain size on the focal plane. While with a Gaussian incident wave of a standard waist radius w, the spatial correlation function at the focal plane is proportional to a Gaussian with the same width of a Gaussian beam focused by only the lens at the focal point. We have

c 3D (∆x f , ∆z = 0) = e - 2|∆x f | 2 σ 2 ⊥ , (4.27) 
with transverse correlation length σ ⊥ = λf πw .Here w is the waist of the illuminating beam.

Whereas the grain size in the longitudinal direction can be considered as Rayleigh length of a single grain. And the spatial correlation function along the optical axis c 3D (∆x f = 2. PSF is the point spread function describing the profile shape in absence of the diffuser at the focal plane, which is

|TF[I 0 (x 0 )] δx f λf | 2 
3. See also Appendix A. Here, Θ(x) is the Heaviside function, w eff = x scale w is the incident beam waist after scaling beyond paraxial approximation, and D eff = x scale D is the diameter of the aperture after scaling. Consequently, the estimation of the correlation length involves more complex numerical and experimental estimation, which is detailed in J. Richard's thesis [START_REF] Richard | Propagation d'atomes ultra-froids en milieu désordonné-Étude dans l'espace des impulsions de phénomènes de diffusion et de localisation[END_REF].

. Experimental configuration of speckle

In this section, we introduce our experimental implementation of speckle. The scheme is illustrated by Figure 4.5. It presents the optics of an enlarged beam to create the speckle pattern. Subsection 4.2.2 shows that the grain size of speckle σ ⊥ ∼ λ/2NA. To fulfill the requirement to study Anderson Localization, where multi-scattering process plays a key role, the grain size need to be much smaller than the atomic cloud. Consequently, large optical apperture is necessary to achieve small grain size. Meanwhile, the focal length has a lower bound due to the presence of the vacuum glass cell, requiring a wide aperture to achieve large NA.

Figure 4.5 illustrates the optical structure of the speckle. A wide Gaussian beam with a radius of 14.6 mm illuminates the diffuser and the lens mounted in a tube with inner diameter of 22.9 mm. This optical tube is placed extremely close to the glass vacuum chamber, with a distance of only 0.5 mm, yielding an almost maximum numerical aperture. The lens utilized is aspherical Thorlabs AL2520-B, whose working distance is 15.7 mm (From the plane surface of the lens to the focal point). The diffuser we utilize is Newport FSD10-3. Its thickness is reduced from 3 mm to 0.3 mm by the optical workshop of IOGS. It is attached to the plane surface of the lens. Because of the wall of the glass cell for ultracold atoms with a thickness of 3 mm, a correction needs to be added to the actual focal point of the beam, measured as around 1 mm. The final position of the focal point with respect to the surface of the diffuser is estimated to be f = 16.4 mm. The numerical aperture of the focal system is around 0.5.

The transverse and longitudinal correlation lengths (See Subsection 4.2.2), σ ⊥ and σ ∥ are estimated both numerically and experimentally by previous Ph.Ds in our group as [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF][START_REF] Baptiste Lecoutre | Bichromatic state-dependent disordered potential for Anderson localization of ultracold atoms[END_REF][START_REF] Richard | Propagation d'atomes ultra-froids en milieu désordonné-Étude dans l'espace des impulsions de phénomènes de diffusion et de localisation[END_REF] σ ⊥ = 0.42 ± 0.01µm, σ ∥ = 2.02 ± 0.03µm.

(4.29)
Details of the estimation of the distance is available in the thesis of J. Richard [START_REF] Richard | Propagation d'atomes ultra-froids en milieu désordonné-Étude dans l'espace des impulsions de phénomènes de diffusion et de localisation[END_REF].

. Statistics of Bichromatic Speckle Disorder

The statistical properties of a monochromatic speckle have been introduced in the previous subsections. Nevertheless, the spectroscopic scheme with state-dependent disorder that we implement requires bichromatic speckles, illuminated by lasers with two different frequencies. Mentioned in introduction, details of the spectroscopic scheme is introduced in Chapter 5. The principal goal of the bichromatic speckles is to cancel the disordered potential on one of the hyperfine levels of 87 Rb atoms. However, due to the different frequencies of the two lasers, the speckle patterns are slightly different. Consequently, the cancellation of the two disordered potentials is not perfect. It is worth to analyze the statistical property of the bichromatic speckles and to evaluate the strength of the residual field.

In this section, we start from detailing the optical dipole potential, the light-matter interaction that enables the generation of disordered potential and its cancellation. Then we discuss the statistical properties of the bichromatic speckles, including the correlation of the two fields and the decoherence that lead to the residual field. The bichromatic speckles paves the way towards a state dependent disordered potential with a long lifetime, the principal scheme of the measurement of Anderson transition. In Subsection 3.3.5, the optical dipole potential is mentioned to generate optical tweezer and 3D optical trap. The speckle field imposes the disordered potential on the atoms with the same mechanism. For two-levels atoms with energy gap of ℏω 0 , the potential imposed by a laser field with intensity I(x) and frequency ω can be written as

. Optical dipole potential of the speckle field

V (x) ∝ I(x) 1 ω -ω 0 + 1 ω + ω 0 . (4.30)
If the detuning δ = ω -ω 0 is much smaller than the resonant frequency ω 0 , 1 ω+ω 0 can be neglected. Then we have

V (x) ∝ I(x) δ . (4.31)
Hence the sign of the potential depends on the sign of the detuning. If δ > 0, known as blue-detuned, the potential is positive. On the contrary, if δ < 0, known as red-detuned, the potential is negative. For multi-levels atoms, the relation is the same at far detuning limit. Moreover, the intensity pattern decides the potential field. of the hyperfine level of 87 Rb atoms. This property is crucial to realize the state-dependent potential for the spectroscopic scheme, detailed in Chapter 5.

However, to realize a state-dependent disorder, the detuning of the lasers with respect to the atomic transition needs to be comparable to the energy difference of the two hyperfine levels, |F = 1⟩ and |F = 2⟩, at the order of Gigahertz, which in not so much larger than the hyperfine splitting of 5 2 P 3/2 (see Figure 3.1). Compared to the far detuned case of optical traps, all the possible hyperfine transition to different hyperfine levels needs to be calculated. In our experiment where the speckle beams have a linear π polarization parallel to the magnetic field, the calculations of the polarizibility of all possible transitions give the expression of the optical dipole potential for the atoms at |F = 1⟩ (V 1 ) and |F = 2⟩ (V 2 ) [START_REF] Daniel | Rubidium 87 D line data[END_REF][START_REF] Grimm | Optical dipole traps for neutral atoms[END_REF] :

   V 1 (x) = 3πc 2 ΓI(x) 2ω 3 0 × 3 5 24δ 1,1 + 1 8δ 1,2 V 2 (x) = 3πc 2 ΓI(x) 2ω 3 0 × 3 1 40δ 2,1 + 1 24δ 2,2 + 4 15δ 2,3 , (4.32) 
where δ F,F ′ are the detuning of the transition from |F ⟩ to |F ′ ⟩. All the transitions allowed by the selection rule contribute to the optical dipole potential. At the far detuning limit, the expression simplifies to equation 4.31. It is then possible to use a blue-detuned beam and a red-detuned beam to generate the potentials with opposite signs.

. Correlation of the bichromatic speckles

As shown in Figure 4.6, the potentials created by two lasers with different detuning signs are supposed to cancel each other in state |1⟩. Nevertheless, these two laser beams with different frequencies create slightly different speckle patterns due to the wavelength difference. Thus the potential cancellation will be imperfect. It is then necessary to analyze the correlation of the two speckles patterns and the residual field at potential canceling on the atoms. This analysis is developed in our paper on EPJD [START_REF] Baptiste Lecoutre | Bichromatic state-dependent disordered potential for Anderson localization of ultracold atoms[END_REF] and B. Lecoutre's thesis [START_REF] Baptiste Lecoutre | Transport quantique d'atomes ultra-froids en milieu désordonné : Temps de diffusion élastique et fonctions spectrales[END_REF].

The configuration to cancel the potential on state |F = 1⟩ requires

V 1 (x) = V p,1 (x) + V c,1 (x) = 0, (4.33) 
where V p,1 (x) and V c,1 (x) denote the potentials imposed by the two laser speckles, known as the principal laser and compensating laser. We define δV = V -V , and write the residual field as

δV 1 (x) = δV p,1 (x) + δV c,1 (x). 
(4.34)

The variance of the residual field is calculated as

σ 2 V 1 = δV 1 2 = (δV p,1 (x) + δV c,1 (x)) 2 = σ 2 V p,1 + σ 2 V c,1 + 2δV p,1 (x)δV c,1 (x) = V p,1 2 + V c,1 2 + 2δV p,1 (x)δV c,1 (x) = 2|V p,1 V c,1 | 1 - δV p,1 (x)δV c,1 (x) V p,1 V c,1 (4.35) 
We have applied the relation σ V = V , which is derived from σ I = I mentioned in Subsection 4.2.1. We define the bichromatic correlation function of the two disordered potential imposed by two lasers with frequencies λ p , λ c :

c 2λ (x, λ p , λ c ) = δV p,1 (x)δV c,1 (x) V p,1 V c,1 . 
(4.36) Equation 4.35 simplifies to

σ 2 V = 2|V p,1 V c,1 |(1 -c 2λ (x, λ p , λ c )) (4.37) 
To facilitate the calculation of the bichromatic correlation function, we apply the fact that the potential is proportional to the light intensity and convert its expression to the function of light intensity :

c 2λ (x, λ p , λ c ) = δI p (x)δI c (x) I 2 0 (4.38)
Therefore the potential correlation is a purely optical statistical property describing the intensity correlation of two speckle patterns.

The variance of the residual field σ 2

V relates directly to the bichromatic correlation function. If the two speckle patterns are not correlated, the variance is the summation of the variances of the two fields,

σ 2 V = σ 2 V p,1 + σ 2 V c,1 .
If the two speckle is perfectly correlated (c 2λ (x, λ p , λ c ) = 1), the residual field is zero, leading to a perfect cancellation. Consequently, we need to analyze the bichromatic correlation function to see if c 2λ (x, λ p , λ c ) ∼ 1 in the experimental condition. The calculation of bichromatic correlation function works mainly in four steps [START_REF] Baptiste Lecoutre | Bichromatic state-dependent disordered potential for Anderson localization of ultracold atoms[END_REF][START_REF] Baptiste Lecoutre | Transport quantique d'atomes ultra-froids en milieu désordonné : Temps de diffusion élastique et fonctions spectrales[END_REF] : First, we calculate the bichromatic correlation function of the transmission factor of the diffuser ; Second, we calculate the bichromatic correlation function of the amplitude ; Third, we derive the 3D monochromatic spatial correlation c 3D close to the Fourier plane ;

Finally we put all the elements together to derive the bichromatic correlation function. Due to the complexity, the detail of the derivation is presented in appendix.

We define δλ = |λ p -λ c | as the difference of the wavelengths, and ∆ϕ = ϕ p (x 0 )ϕ c (x 0 ) as the difference of the phase factors of the two lasers on the surface of diffuser. c 3D is the monochromatic correlation function near the Fourier plane. We define the finesse F = λ/δλ to characterize the frequency difference between the two lasers. A large finesse indicates a small difference of frequency. Rewriting the position x = {x, y, z} as the transverse position in Fourier plane and longitudinal position at optical axis {r ⊥ , z}, the bichromatic correlation function is finally expressed as

c 2λ (r ⊥ , z, λ p , λ c ) = e -σ 2 ∆ϕ c 3D r ⊥ F , z F . (4.39)
The behavior of the bichromatic correlation function is depicted in Figure 4.8. We discuss the interpretation of the two terms in equation 4.39. The first term e -σ 2 ∆ϕ takes into account the difference of the phases imprinted by the diffuser on the two lasers at the diffuser surface :

∆ϕ(x 0 ) = ϕ p -ϕ c = 2π(n -1)δl(x 0 )(λ -1 p -λ -1 c ). (4.40)
Because the depth of the diffuser is Gaussian distributed, the phase difference is also Gaussian distributed. Thus the mean value of the phase difference term e i∆ϕ = e -σ 2 ∆ϕ /2 . This fluctuation term of phase difference causes a decorrelation factor in the speckle pattern, e -σ 2 ∆ϕ ≃ e -4π 2 (n-1) 2 σ 2 l /λ 2 p F 2 , with σ ∆ϕ = 2π(n-1)σ l λpF .

The roughness of the diffuser σ l has been measured in the optical workshop of Institut d'Optique with a profilometer as σ l = 1.3 µm. The finesse in our experiment is F ≃ 4000 because the frequency difference in our bichromatic speckle system is around 100 GHz (See Figure 4.6). Then, we are able to estimate the factor σ ∆ϕ ∼ 10 -7 . The first term e -σ 2 ∆ϕ can be viewed as 1. Its effect will lead to a residual disordered potential of less than 1Hz at the cancellation point, which is negligible in our experiment.

The second term of equation 4.39, c 3D r ⊥ F , z F , describes the reduction of correlation between the two speckle patterns moving away from the focal point. As presented in Figure 4.8b, it has the same shape as a monochromatic correlation function of speckle pattern, but its size is amplified by a factor of finesse F, to the order of millimeters. This theoretical conclusion is confirmed by the experimental observation of our master student, Jean-Paul Nohra. Noticing that the size of our atomic cloud is around 10 µm, we will have an excellent correlation of the two speckle patterns if the atomic cloud is at the focal point, yielding negligible residual field.

. Experimental implementation of bichromatic speckles

In this section, we introduce our experimental implementation of our bichromatic speckles. Figure 4.9 provides a schematic representation of the setup.

To achieve bichromatic speckles, it is imperative that the spatial modes of both beams are identical. Additionally, precise control over the power of each beam is essential for achieving atomic-level potential cancellation. Figure 4.9 depicts the optical system designed to meet these requirements.

The laser source of the principal laser is Toptica TA-Pro, which provides a beam at 780 nm up to 1.5 W. The tunable range of wavelength is more than 10 nm. In the scheme of bichromatic speckles in Figure 4.6, we put its frequency around 100 GHz away from the D2 line of 87 Rb. The typical linewidth is around 50 kHz. The frequency drift is less than 0.2 GHz, negligible compared to its detuning, thus we do not lock its frequency.

The laser source of the compensating laser is Cheetah from Sacher-Lasertechnik. This laser is of the same type as the cooling laser (L3) and repumper laser (L2). It provides power up to 100 mW at the wavelength of 780 nm. The tunable range of the frequency is more than 20 GHz. And the linewidth is around 5 MHz. We set its detuning of around -1 ∼ -2 GHz. The reason of detuning for both the lasers will be detailed in Section 4.7. To prevent frequency drift, we lock it by beating this laser with the L2 laser, which is closely resonant with the state |F = 1⟩. The monitored beating frequency fluctuation, recorded by the counter, typically remains within 10 kHz. This method effectively curtails frequency drift to less than 6 MHz4 , well below the linewidth of the saturated absorption peak employed for locking L1 (refer to Figure 3.3).

Both the principal laser and the compensating laser, controlled via acousto-optic modulation (AOM), traverse single-mode, polarization-maintaining fibers before reaching the optical table for beam combination. The schematic of this optical table is represented by the left dashed box in Figure 4.9. A polarizing beam splitter (PBS) and a polarizer ensure identical polarization for both lasers. We apply beamsplitters for both beams to take around 10% power for servo-loops, which prevent the power fluctuation of more than 0.5% by controlling the power for AOMs. The servo-loops also enable linear power control for both beams with analog signals.

However, perfect spatial mode overlap is challenging to achieve. To address this, we employ another single-mode polarization-maintaining fiber, ensuring uniform spatial mode characteristics. The combined beam propagates through this fiber, reaching a second optical table, depicted in the right dashed box of Figure 4.9. A half-wave plate positioned before the fiber input allows precise polarization adjustment.

At the second optical table, the combined beam undergoes magnification to a beam waist of approximately 14.6 mm. This magnification is achieved using a telescope comprising two lenses with focal lengths of -75 mm and 200 mm. A small portion of the beam is diverted to a photodiode for continuous power stability monitoring. The enlarged beam illuminates the diffuser, as illustrated in Figure 4.5.

. Residual potential under experimental conditions

In Subsection 4.4.2, we delve into the residual potential from the cancellation of bichromatic speckles and its relationship with the bichromatic correlation denoted as c 2λ (x, λ p , λ c ).

We will now apply the parameters from our experiment to estimate this residual potential.

In our experimental setup, the frequency difference between the two lasers is approximately 100 GHz, corresponding to a finesse value F ≈ 4000. The bichromatic correlation length l c (refer to Figure 4.8) can be calculated as the monochromatic correlation length multiplied by the finesse, resulting in a value of around 2 mm,. This length significantly exceeds the size of our atomic sample, which is approximately 15 µm.

We estimate the decorrelation factor 1 -c 3D r ⊥ F , z F to be, at most, on the order of 2 × 10 -4 . Combining equations 4.32 and 4.37, we find that fundamental potential decorrelation typically results in a residual disorder in state |F = 1⟩ with a root-mean-square (r.m.s.) value approximately given by :

σ V 1 ∼ 0.02 × V R (4.41)
where V R is the average potential applied to state |F = 2⟩ [START_REF] Baptiste Lecoutre | Bichromatic state-dependent disordered potential for Anderson localization of ultracold atoms[END_REF]. The typical potential we apply on the state |F = 2⟩ is V R /h = 416Hz. Under this condition, σ V 1 is estimated to be 7.3 Hz, which is mentioned in Table 4.1. This estimation assumes the perfect power cancellation. In experiment, the power of each beam can fluctuate for around 0.5%, corresponding to around 2 Hz. The overall residual potential on the state |F = 1⟩ is around 7.8 Hz, close to the estimation in equation 4.41. This is much smaller than the chemical potential of the BEC, around 230Hz. Consequently, the BEC state remains largely insensitive to this residual disorder.

In summary, we have discussed the statistical properties of laser speckles, including their histogram and spatial correlation, and have extended these concepts to bichromatic speckles, which are a crucial element of our experiment's spectroscopic scheme. We have introduced the optical components necessary for generating bichromatic speckles and estimated the relevant parameters to ensure the feasibility of canceling disordered potential on one of the atomic levels.

. Lifetime improvement with Bichromatic Speckle Disorder

The spectroscopic scheme for measuring mobility edge hinges on two critical properties : a state-dependent potential and a long atomic lifetime. The state-dependent potential allows us to load atoms into well-defined energy states within a disordered potential, while a long lifetime enables the study of their transport properties, helping us determine whether the atoms are localized or exhibit diffusion. Both of these properties are crucial for determining the mobility edge. Nevertheless, due to the complexity of this experiment, the effort started with a monochromatic speckle quasi-resonant for state |2⟩ [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF][START_REF] Baptiste Lecoutre | Bichromatic state-dependent disordered potential for Anderson localization of ultracold atoms[END_REF][START_REF] Denechaud | Vers une étude spectroscopique de la transition d'Anderson[END_REF] (Details see Chapter 5).

The spectroscopic scheme employing monochromatic speckles effectively satisfies the first requirement : providing a state-dependent potential. However, there is a drawback. The small detuning for state |2⟩ results in significant atom loss due to photon scattering. Atoms in state |2⟩ can absorb photons from the speckle beam, transitioning to excited states, and subsequently return to the ground state via spontaneous emission. The photons absorbed travel along the optical axis of the speckle beam, while emitted photons propagate in random directions. Consequently, after this process, atoms acquire an average momentum equal to that of the absorbed photons.

For photons at 780 nm, each carries a momentum of approximately 1.7×10 -27 kg • m/s. The scattered atoms can attain velocities as high as ∼ 5 mm/s, which is two orders of magnitude larger than the velocities of atoms in the Bose-Einstein condensate (BEC). This leads to the rapid dispersion of the scattered atoms within the atomic cloud, on the order of milliseconds. Moreover, a majority of the scattered atoms land in different Zeeman levels than the levitated one, and the combined effects of magnetic forces and gravity cause them to move away even more rapidly. As a result, this photon-scattering process leads to a finite lifetime of the atomic cloud, given by Γ -1 sc , where Γ sc is the photon-scattering rate. It is thus necessary to estimate Γ sc .

In a semi-classical model, the interaction between light and atoms can be characterized by the atomic polarizibility α at the linear response regime, where the scattering is low and far from saturation. The real part of the polarizibility determines the potential shift on the atoms, which is used in the optical dipole trap and the disordered potential.

The scattering rate is proportional to the imaginary part of α [START_REF] Yurii | Optical dipole traps for neutral atoms[END_REF] :

Γ sc (r) = 1 ℏϵ 0 c Im{α}I(r). (4.42) 
In a two level system, the explicit expression for scattering rate for the linear response regime is

Γ sc (r) = 3πc 2 2ℏω 3 0 ω ω 0 3 Γ ∆ 2 I(r), with 1 ∆ = 1 ω -ω 0 - 1 ω + ω 0 . (4.43)
Here ω is the frequency of laser, ω 0 is the resonanct frequency of the two-level system. Γ = ω 3 0 3πϵ 0 ℏc 3 |⟨e|µ|g⟩| 2 , is the dipole matrix element of the transition interacting with the light, which corresponds to the spontaneous decay rate of the excited level |e⟩ and the linewidth of the transition. In this expression, we realize that the photon-scattering rate is roughly proportional to 1/δ 2 , where δ is the detuning. While the optical dipole potential is proportional to 1/δ, increasing the detuning will help to reduce the photon-scattering rate and increase the lifetime.

In the case of 87 Rb atoms, the multi-level transitions need to be taken into account.

Similar to equation 4.32, we neglect the term 1 ω+ω 0 and obtain the photon-scattering rate of a monochromatic beam for both state |1⟩ and |2⟩,

       Γ 1 (x) = 3πc 2 ΓI(x) 2ω 3 0 ℏ × 3 5 24δ 2 1,1 + 1 8δ 2 1,2 Γ 2 (x) = 3πc 2 ΓI(x) 2ω 3 0 ℏ × 3 1 40δ 2 2,1 + 1 24δ 2 2,2 + 4 15δ 2 2,3 , (4.44)
where Γ is shown in Table 3.1. δ F,F ′ is the detuning to the transition |F ⟩ → |F ′ ⟩. We are able to numerically calculate the Γ 1 and Γ 2 with the intensity and the frequency of the laser using this explicit expression. In the bichromatic case, we simply add the scattering rates for both the beams. The lifetime of atoms in the disordered potential is deduced by

τ 1 = Γ -1 1 and τ 2 = Γ -1 2 .
Quantity Monochromatic Bichromatic

δ/2π 81MHz - δ p /2π - 95GHz δ c /2π - -1.4GHz Γ -1 1 26.6s 73ms 
Γ -1 2 5.3ms 1.66s σ V 1 /h 6.3Hz 7.3Hz P 0.49µW - P p - 430µW P c -

4.6µW

Table 4.1 -Comparison of the state-dependent disordered potential parameters between the monochromatic configuration and the bichromatic one. Here δ, δ p and δ c are detuning for the transition |F = 1⟩ → |F ′ = 3⟩, δ 2,3 . σ V1 is the variance of residual disordered potential on state |1⟩. P is the power used for the monochromatic speckle. P p and P c are the powers for the principal laser and compensating laser.

In the initial experiment with monochromatic speckles, the detuning δ 2,3 is selected as around ±80 MHz (Figure 5.2), so that the detunings for state |1⟩ are 2 orders of magnitude larger (∼ 6.8 GHz). Attempting to increase the lifetime by orders of magnitude, we require the detuning increase the disordered potential. However, the disordered potential will no longer be negligible for the initial state |1⟩. This reason marks the necessity to apply the Bichromatic speckle scheme.

In the bichromatic scheme, the detunings are much larger, at the order of Gigahertz (Figure 4.6). In the Table 4.1, we compare the numerical calculation of parameters to realize a state-dependent potential, negligible at state |1⟩, and average disordered potential V 0 = h × 416Hz for state |2⟩, a typical value for the characterization of the experiment. This table takes the value we used in the recent experiment published in EPJD [START_REF] Baptiste Lecoutre | Bichromatic state-dependent disordered potential for Anderson localization of ultracold atoms[END_REF].

Here the detuning of the principal laser is δ p /2π = 95 GHz. We make it large enough to reduce the photon-scattering rate on state |2⟩. It's actual value is not strictly limited. Practically we put δ p /2π ∼ 100 ± 10 GHz. The detuning of the compensating laser is much smaller for both state |1⟩ and |2⟩, making it the main limitation to the lifetime. When |δ c | is smaller, less power for the compensating laser is needed, and its detuning for state |2⟩, δ c,2 ∼ ∆ hf + δ c , increases. These two factors decrease the photon-scattering rate on state |2⟩ and increase the lifetime. Nevertheless, the lifetime on state |1⟩ is reduced. We need to ensure Γ -1 1 at least larger than the transfer time, which is typically t RF = 20 ∼ 40 ms. δ c /2π = -1.4 GHz is a good selection after the trade off of the two effects, proven by the experiment 5 . It yields a lifetime around 73 ms on state |1⟩.

With this parameters, δ p /2π = 95 GHz, δ c /2π = -1.4 GHz and average potential on state |2⟩, V R = 416 Hz, we deduce the amplitude of the potential generated by each laser on state |1⟩ and state 2⟩ : 5. The mean tunable parameter is the detuning of the compensating laser. It's hard to evaluate the optimal condition because of the side effect of both the directions. We tried a few values in the experiment and decide this one as the good trade off.

V p,1 /h = -V c,1 /h = 366 Hz, V p,2 /h = 348 Hz, V c,2 /h = 68 Hz.

Thus we have

V R /h = V p,2 /h + V c,2 /h = 416 Hz. (4.46)
The most important element in Table 4.1 is the improvement of lifetime for state |2⟩ atoms, marked in red. In the initial monochromatic scheme, the lifetime for state |2⟩ atoms is only 5.3 ms, while with the bichromatic speckles, it increases to 1.66 s according to calculation. This improvement of almost 2 orders of magnitude enables to study the transport property and to measure the mobility edge. Moreover, the upper bound of the residual disordered potential on state |1⟩ increases only from 6.3 Hz to 7.3 Hz, well below the energy resolution determined by the transfer time (See Section 7.1), which is negligible.

The analysis for V R /h = 416 Hz can be easily generalized to a wide range V R by adjusting the powers of the principal laser and the compensating laser proportionally, yielding proportional change in V R and Γ. This analysis justifies the necessity of the bichromatic speckle scheme to increase the lifetime of atomic cloud in the disordered potential to the order of seconds. It serves as a key element to realize the spectroscopic scheme introduced in the next chapter.

-Spectroscopic Scheme in State-Dependent Disorder with bichromatic speckles

As said on section 2.2, three landmark experiments have been dedicated to measure the mobility edge of Anderson transition with ultracold atoms in speckle disorder. Nevertheless, a thorough and precise measurement is not yet done. A fundamental difficulty is the large energy dispersion of the atoms loaded into the disordered potential.

In our experiment, we propose a new method of the spectroscopic scheme utilizing the two level system with state dependent potential. This method, illustrated in Figure 5.1, allows us to load the atoms to certain energy states in disordered potential from a well defined energy state, so that the atoms in the disordered potential are also in a well defined energy level. Scanning the loading energy around the mobility edge would precisely determine the mobility edge. The experimental protocol will be detailed in Chapter 6.

In this chapter, we start by introducing our method of the spectroscopic scheme. The first implementation of this scheme is demonstrated in the measurement of spectral function done by our group in 2018 [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF]. They used a quasi-resonant monochromatic speckle to realize a state dependent potential. However, the lifetime of atoms in disordered potential is rather low. Thus, we manipulate bichromatic speckles, whose properties are introduced in Subsection 4.4.2. As analyzed in Section 4.7, bichromatic speckles significantly lower the photon-scattering rate of the atoms in disordered potential, providing the timescale of seconds to distinguish the transport property. We check the properties of this new scheme experimentally in the end of this chapter.

. Spectroscopic Scheme in State-Dependent Disorder

To have a spectroscopic scheme from a well-defined state, we profit the two hyperfine levels of our 87 Rb atoms described in Section 3.5, which introduces the experimental details of the manipulation of the two level system in our Bose-Einstein condensate, denoted as |1⟩ (|F = 1, m F = -1⟩) and |2⟩ (|F = 2, m F = 1⟩). The two levels are levitated by the same magnetic force and coupled with 2-photon transition induced by microwave pulses.

The scheme is illustrated in Figure 5.1. We let state |1⟩ be insensitive to the disordered potential, while state |2⟩ is sensitive to the disordered potential. We prepare the BEC at initial state |i⟩. The BEC has a large size (around 20 µm) compared to the correlation length of disordered potential (around 0.5 µm). Thus the external wavefunction of the BEC is approximately a homogeneous plane wave |k = 0⟩ [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF]. Consequently, the initial state of BEC atoms can be denoted as |i⟩ = |1⟩⊗|k = 0⟩. The final state in the disordered potential |f ⟩ has internal state |2⟩. Its external wavefunction can be projected to the eigenstates in the disordered potential |E α ⟩. The initial state |i⟩, as a BEC state, has well-defined energy, while the final state is in a quasi-continuum of energy levels in the disordered potential. By launching the atoms from the initial state |i⟩ to the disordered state |f ⟩, we load the atoms in the disordered potential with a well-defined energy determined by the detuning of RF pulse.

The energy difference between the initial state and final state is

ℏ∆ f,i = ℏ∆ 2,1 + E α , with E α = ℏδ RF , (5.1) 
where ℏ∆ 2,1 is the energy difference between the two internal states, |1⟩ and |2⟩. E α is the eigenenergy in the disordered potential. The detuning of the microwave pulses δ RF is with respect to the resonance of |1⟩ and |2⟩, referring to the Zeeman levels in Figure 3.11.

The energy of the populated eigenstates in the disorder E α can be adjusted by the control of the frequency of the RF pulse. Since the initial state is discrete, and the final state is a quasi-continuum, one has an irreversible transition characterized by a rate Γ given by the Fermi Golden rule.

In the weak coupling regime, where the transfered proportion is small enough, the transfer rate Γ is proportional to the spectral function1 

Γ ∝ A(k = 0, E δ ) = α |⟨k = 0|ψ α ⟩| 2 δ(E δ -E α ) = |⟨k = 0|ψ δ ⟩| 2 ρ(E δ ). (5.2)
Here, E δ = ℏδ RF is the energy corresponding to the detuning of RF, E α is the energy of the eigenstates in the disordered potential, ψ α is the eigenstate, ψ δ denotes the eigenstates with energy in the range of [E δ , E δ + δE δ ], and ρ is the density of states at this energy. We define A(k = 0, E δ ) as the spectral function [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF]. The spectral function provides essential information on the energy-momentum relation of one particle excitations in complex systems. This relation takes a nontrivial form in the presence of random scatterers or interparticle interactions [START_REF] Bruus | Many-body quantum theory in condensed matter physics : an introduction[END_REF]. This spectroscopic scheme enables the measurement of spectral function in the speckle disorder, which is performed in the proof of principle experiment in 2018 [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF].

For an interaction time t RF shorter than Γ -1 , the energy dispersion of the arrival state transferred to the continuum is Fourier-limited and given by ∆E = ℏ/t RF [START_REF] Baptiste Lecoutre | Bichromatic state-dependent disordered potential for Anderson localization of ultracold atoms[END_REF].

. Proof of principle experiment : Measurement of spectral function

The proof of principle experiment of the spectroscopic scheme with state dependent potential was performed in 2018 in our group. In that work, we apply a monochromatic speckle which is quasi-resonant to state |2⟩. We achieved the precise measurement of the spectral function, providing evidence that the atoms are indeed loaded into well-defined energy. Such measurement of spectral function is still needed in our experiment as a checking step, which will be described in Section 5.3. The optical dipole potential is roughly proportional to the light intensity divided by the detuning :

. Experimental scheme with monochromatic speckle

V (x) ∝ I(x) δ .
(5.3)

As illustrated in Figure 5.2, the light intensity I(x) is shared by both states, while the detuning δ can be different when it is small. The linewidth of the transition |1⟩ → |F ′ ⟩ Γ Rb /2π ≃ 6.07 MHz is much smaller than the hyperfine splitting ∆ hf /2π ≃ 6.8 GHz. It is then possible to work in the regime of Γ Rb ≪ δ ≪ ∆ hf . In that case, the ratio of the disordered potential on the two levels is

V 1 V 2 ∼ δ ∆ hf ≪ 1.
(5.4)

As illustrated in Figure 5.2, the laser beam for speckle is detuned by ±80MHz for state |2⟩, which leads to the radio [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF]). Thus the atoms in state |1⟩ sense a very weak red-detuned disorder, which is negligible. In this configuration, they can create the state dependent potential both red-detuned and bluedetuned.

| V 2 V 1 | ∼ 100 (Precise calculation is available in

. Direct measurement of spectral function

As mentioned in Section 5.1, the spectral function A(k = 0, E δ ) is proportional to the transfer rate Γ in the weak coupling regime. The Fermi Golden Rule predicts that when the proportion of atoms in state |2⟩ is small, the number of atoms in state |2⟩ grows linearly with respect to the transfer time. The transfer rate is measured by the atom number on the state |2⟩ after transferring for time t RF , with the relation N 2 (t RF ) = N 1 (0)Γt RF .

In the experiment, they do the measurement of spectral function of the spectral disorder by measuring the transfer rate in the regime of disordered potential V R ∈ ±[60Hz, 4kHz] with different detunings of the RF pulse, as presented in Figure 5.3. The disorder strength has been precisely calibrated by adjusting the experimental and numerical curves of V R = ±416 Hz, leading to a 14% correction of the amplitude estimated from photometric measurements. This calibration method is still used in our new experiments. The spectral function measurement is compared to the numerical calculation given by M. Pasek and D. Delande using an independent method [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF]. The agreement between the experimental measurement and numerical curves is remarkable without any fitting parameter. This is the first evidence that this spectroscopic scheme indeed loads the atoms to well-defined energy levels.

The nature of the spectral function for speckle disorder depends on the amplitude and the sign of the potential. The spectral functions for attractive speckle disorder and repulsive speckle disorder are intrinsically different due to the different geometries. In the attractive case (Figure 5.3I), we observe a smooth crossover from the weak disordered regime, where the spectral function is relatively narrow symmetrical and centered close to the average energy, to the strong disorder regime, where it becomes strongly asymmetrical.

The two regimes of disorder amplitudes are recognized by introducing an important energy scale of the problem,

E σ = ℏ 2 /m(σ 2 ⊥ σ ∥ ) 2/3
, determined by the geometrical average value of spatial correlation lengths of the disordered potential. Here, m is the atomic In the quantum regime where |V R | ≪ E σ , the amplitude of the disordered potential is too small to support bound state on the typical speckle grain size σ = (σ 2 ⊥ σ ∥ ) 1/3 . Atoms with an energy near V R have a large de Broglie wavelength compared to σ and their wave function extends over many speckle grains, leading to a smoothing of the disordered potential. In this regime, a perturbative approach of scattering allows us to interpret the width of the spectral function as the inverse lifetime ℏ/τ s , where τ s is the elastic scattering time of the initial state |k = 0⟩. This approach predicts a Lorentzian shape with a width ∼ πV 2 R /E σ [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF][START_REF] Richard | Elastic scattering time of matter waves in disordered potentials[END_REF]. This explains the quasi-Lorentzian shapes when V R is small.

In the classical regime where |V R | ≫ E σ , however, the de Broglie wavelength of the atoms is small compared to σ. The wave function oscillate so fast, and the atoms bounce almost classically on the disordered potential. In that case, the overlap of the wave function with the initial state is negligible except at the points where the loading energy E δ = V (the so-called 'Franck-Condon principle'). The spectral function is then a probe of points where V = ℏδ. And its shape reflects the potential distribution, an exponential distribution P (V ) [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF]. Alternatively it can be retrieved using the formal expression A(k, E) = ⟨k|δ(E -H)|k⟩. Neglecting the kinetic energy term when |V R | ≫ E σ , it yields directly A(k = 0, E) = P (V ) [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF], as indicated by the green dashed curve in Figure 5.3 I f and II f . For the repulsive case, the potential distribution is bounded from below with no state in the negative energy range. This has two consequences. First, the spectral function is strictly zero for negative energy. Second, in the strong disorder regime, the low energy states that are supported by local minima of the disordered potential lead to an accumulation of states around the averaged ground state harmonic oscillator energy E b = √ V 0 E σ [START_REF] Martin I Trappe | Semiclassical spectral function for matter waves in random potentials[END_REF][START_REF] Prat | Semiclassical spectral function and density of states in speckle potentials[END_REF]. This results in a pronounced and narrow peak in the spectral function , which is very visible in Figure 5.3II.

In conclusion, this experiment probes the spectral function of ultracold atoms in 3D laser speckle potentials. It allows us to study the crossover from the quantum to classical regime, which is not as intuitive as the two marginal regimes. It opens the possiblity to probe the 3D Anderson transition. Nevertheless, due to the small detuning of the speckle laser, the atoms on state |2⟩ are easily excited, yielding a lifetime as low as around 5 ms. It is thus impossible to distinguish the localized and diffusive regimes in such a small time scale.

. Relation to current experiment

During the first year of my Ph.D., the primary focus was on replicating the experiment following a prolonged breakdown of our setup. Additionally, the measurement of the spectral function remained a fundamental step in our experimental protocol.

The calculation of disorder amplitude relies on the power passing through the aperture, referring to Figure 4.5. To determine the power, the photometric measurement is not precise enough, with a large uncertainty of more than 20% [START_REF] Semeghini | Measurement of the mobility edge for 3D Anderson localization[END_REF]. The spectral function provides a much more precise probe. We employed the spectral function curves at ±416 Hz for this calibration process. By adjusting the power of the speckle beam, we aimed to make the spectral function as closely resemble the numerical curves as possible.

A significant concern during this process is the uncertainty associated with the disorder amplitude calibration. Due to the varying shape and different peak positions which are sensitive to disorder amplitudes, the uncertainty is relatively small. We determined this uncertainty by making slight variations in the control signal and measuring the spectral function curve to identify when it significantly deviated from the numerical curve associated with the initial amplitude (e.g., ±416 Hz). Using this method, we confirmed that the estimation of the speckle amplitude possesses a precision of less than 3%, equivalent to about 12 Hz. This level of precision remains comfortably below the energy resolution due to the transfer time, which is roughly on the order of δ ∼ h/t ∼ 30 Hz. Moreover, this method outperformed photometric measurement. Subsequently, the disorder amplitude at other control signal settings could be scaled linearly. The effectiveness of this calibration method was confirmed by doubling the control signal and comparing the measured spectral function curve to the ±832 Hz curve.

The agreement between the two was quite satisfactory, substantiating the validity and reliability of this calibration approach.

. Experiment Confirmation

In this section, we introduce the experimental realization of the spectroscopic scheme with bichromatic speckle. The experiment is based on the setup to produce BEC introduced in Chapter 3, the bichromatic speckle presented in Chapter 4 and the spectroscopic scheme detailed in this chapter. While the advantages of bichromatic speckles have been theoretically demonstrated, it is essential to validate their effectiveness through experimental evidence.

To achieve this validation, we present a series of experimental demonstrations. First of all, we demonstrate the disorder cancellation on state |1⟩ using a quenching scheme.

Then, we reproduce the spectral function measurement through the transfer rate, illustrating that the bichromatic scheme operates similarly to the monochromatic scheme. This replication offers further experimental confirmation of the configuration's functionality.

After that, we measure the lifetime of atoms in state |2⟩ with the presence of the disordered potential and compare the results to numerical predictions. The agreement between experimental observations and theoretical expectations provides additional confirmation of the feasibility of measuring the mobility edge-the primary objective of this thesis. Finally, we perform the step of kicking remaining atoms in state |1⟩, a crucial step to preserve the energy distribution when releasing the atoms.

. Probe the disorder cancellation on state |1⟩

In our experiment, we have a BEC with around 7 × 10 4 atoms, trapped in a very decompressed optical dipole trap with trapping frequencies ω x ≈ 35 Hz, ω y ≈ 11 Hz and ω z ≈ 25 Hz. This configuration corresponds to a chemical potential around µ/h ≈ 230Hz and Thomas-Fermi radius R TF ∼ 7 µm, 21 µm, 10 µm along each direction.

To study the disorder cancellation on state |1⟩, we employ the BEC as a probe. A 'quench' protocol is designed to detect the residual field after the cancellation. In this protocol, we switch on the two speckle beams abruptly within 100 µs and turn off the optical dipole trap simultaneously. The speckle beams are applied for 4 ms, during which the atoms can be excited by the disordered potential. Once we apply the quench protocol, we look at excitation in momentum distribution by TOF imaging. The atoms do not expand in the horizontal directions x and z because of the presence of the levitation field, leading to a horizontal magnetic trap of around 7 Hz (See Section 3.4). The TOF time before the imaging is selected to be t TOF = 200 ms, sufficiently long to distinguish small excitation.

The disordered potential excites the atoms at the moment when the disorder is turned on abruptly. Throughout the duration of the disorder, all excited states undergo dephasing, leading to a broadening of the momentum distribution. The dephasing time corresponds approximately to the elastic scattering time of the matter wave within the speckle disorder, denoted as τ s . In our experimental conditions, τ s is on the order of several milliseconds [START_REF] Richard | Elastic scattering time of matter waves in disordered potentials[END_REF], which is close to the duration of our quenching process. Subsequently, after undergoing time-of-flight (TOF), the momentum distribution transforms into the size of the atomic cloud. As a consequence, the additional kinetic energy induced by the disorder is quantified by the extra expansion of the atomic cloud size observed after the free expansion during TOF.

We take the typical configuration of bichromatic speckles described in Section 4.7 to perform this measurement, which is presented in Figure 5.5. We fix the power and frequency of the principal laser with the value already presented in Table 4.1, where the average potential of the principal laser is V p,1 /h = 366 Hz. We scan the power of the compensating laser with the fixed frequency (Also in Table 4.1) in the range of V c,1 /h ∈ [0, 700 Hz].

The observed size starts with a large value and decreases when the compensating beam power increase. In that regime, |V c,1 | < |V p,1 |, and the overall potential is repulsive. Thus increasing V c,1 , which is attractive, reduces the overall disorder amplitude. In the regime where |V c,1 | > |V p,1 |, however, the overall potential is attractive, increasing V c,1 adds up to the overall disorder amplitude, thus the measured size will increase. The size reach a minimum at where |V c,1 | = |V p,1 |, where the disordered potential is almost perfectly canceled out. We perform the same sequence with zero power of both the speckle beams to obtain the reference size without any excitation (Gray line). The mimimum of the size at the cancellation point is compared to the reference size. We see good agreement within the errorbar(∼ 5%). Thus this measurement serves as a clear evidence that the disordered potentials of the two beams cancel out, and the residual disorder on state |1⟩ is small enough to be insensitive for the BEC.

At the cancellation point, we have the average disordered potential on state |2⟩, V 2 = V p,2 + V c,2 = 416 Hz, which is confirmed by the spectral function measurement in this Section. According to Table 4.1, the residual disorder amplitude on state |1⟩ is as low as 7.3 Hz, which is negligible. This measurement validates the theoretical analysis in Subsection 4.4.2 with the real experiment. This disorder cancellation probe also serves as an important step in our protocol to measure the mobility edge, which is to verify the proper functioning of the bichromatic speckles.

. Reproduce the measurement of spectral function

The verification of the cancellation of the bichromatic potential validates that we obtain a state-dependent potential introduced in Figure 5.1. We can perform the RF-transfer scheme and reproduce the spectral function measurement (See Section 5.2). We use the cancellation point on Figure 5.5, which is also the same condition as Table 4.1, to generate the state-dependent potential : 416 Hz on state |2⟩ and 0 Hz on state |1⟩.

The RF power is chosen low enough to operate in the weak coupling regime where the transfer rate Γ(δ rf ) is well in the regime of Fermi Golden rule. The transfer time is chosen to be t RF = 40ms, smaller than the lifetime on state |1⟩ and large enough to have good resolution of energy, ∆E/h = 1/t RF = 25Hz. The transferred fraction is no more than 15% for all the loading energy, well in the regime of Γ(δ RF )t RF ≪ 1.

In Figure 5.6a, we present the measurement of the transfer rate and compare it to the numerical curve calculated by Dominique Delande. The procedure is the same as the spectral function measurement in monochromatic speckle. We prepare the BEC in an optical dipole trap, and then switch on the bichromatic speckle beams. After that we switch on the RF for t RF = 40 ms, while the optical dipole trap keeps on. After the transfer is finished, we remove the trap and speckle beams and release the atoms.This TOF process avoids 5) s (green) and 1.67( 6) s (blue). They are in good agreement with the numerical prediction 1.66s.

the saturation of the camera and makes the atom number measurement more precise.

We image the atoms in state |2⟩ after 50 ms TOF. We execute the same measurement at different RF detuning δ RF and plot the atom number curve. The curve is normalized and compared to the numerical curve. The agreement is remarkable. This is a strong evidence that our bichromatic scheme is working as good as the monochromatic scheme and we indeed load the atoms into well-defined and controllable energy levels. Moreover, the numerics serves as an excellent reference to calibrate the disorder amplitude.

. Lifetime improvement in the experiment

After successfully measuring the spectral function, we verify the lifetime improvement calculated in Section 4.7. In the experiment, we can select an RF detuning, perform the transfer scheme and hold the atoms in the disordered potential. We scan the holding time to observe the atom number decay in time.

We take again the same configuration as the previous experiment, corresponding to V R /h = 416Hz. Two loading energy are chosen to measure the lifetime, which are δ RF = 216Hz and δ RF = 356Hz, marked with green and blue blocks in Figure 5.6a. According the numerical prediction of the mobility edge [START_REF] Delande | Mobility edge for cold atoms in laser speckle potentials[END_REF][START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF], δ RF = 210Hz (green) is in the localized regime, while δ RF = 350Hz (blue) is in the diffusive regime. Both the points allow us to have a reasonable amount of atoms to perform precise measurement. Figure 5.6b presents the results for the atom number decay curve in logarithm frame, where the exponential decay can be fitted as a linear function. We perform the fitting and acquire the lifetimes, which are 1.85(5)s for δ RF = 216Hz and 1.67 [START_REF] Diederik S Wiersma | Localization of light in a disordered medium[END_REF]s for δ RF = 356Hz. The lifetime measured is close to the numerical calculation of 1.66s (See Table 4.1). This measurement validates the lifetime improvement to the order of seconds employing the bichromatic speckle, which is crucial to the direct measurement of mobility edge. A larger disorder amplitude leads to a reduction of the lifetime, because the photon-scattering rate is proportional to the light intensity.

. Release the atoms and preserve the energy distribution

To perform the measurement of mobility edge, we need to release the atoms from the harmonic trap. However, the eigenstates might change during this step, which could destroy the narrow energy distribution.

In Figure 5.7, we present an intuitive model for the spectroscopic scheme in real space 2 , where a small proportion of atoms are transferred to state |2⟩ but we still have a welldefined chemical potential. The atoms in state |2⟩ sense the harmonic trap as well as the repulsion from the interaction with the atoms in state |1⟩. Thus the overall potential has a flat bottom along with the speckle disorder. In order to minimize the negative effect of this step to the well-defined energy level we load into when releasing the trap, we must remove the repulsive interaction from the atoms still in state |1⟩ simultaneously. In this case, the extra energy broadening at the releasing point is negligible.

To achieve this goal experimentally, we impose a laser beam with a frequency selected to be resonant to the transition |F = 1⟩ → |F ′ = 0⟩ such that the excited atoms do not decay to state |2⟩ because of the selection rule. We take around 1 mW of repumper laser (L2) for this purpose. Those atoms in state |1⟩ are repeatedly excited and emit spontaneous photons. They acquire large momentum and leave the cloud in a very short time. In our experiment, we verify that more than 95% of them are kicked away within 100 µs, roughly the same timescale to turn off the optical dipole trap, controlled by an AOM. This step allows us to release the atoms in the disordered potential without significantly change its energy distribution.

In summary, we have experimentally verified the two key properties of the bichromatic transfer scheme, the state dependent potential and long lifetime. Every experimental tool towards a direct measurement of Anderson transition has been prepared.

-Direct measurement of mobility edge

The precise and direct measurement of the mobility edge in disordered potential presents a significant experimental challenge [START_REF] Ss Kondov | Three-dimensional Anderson localization of ultracold matter[END_REF][START_REF] Jendrzejewski | Three-dimensional localization of ultracold atoms in an optical disordered potential[END_REF][START_REF] Semeghini | Measurement of the mobility edge for 3D Anderson localization[END_REF]. In the preceding chapters, we have established a spectroscopic scheme using bichromatic speckles, which serves as the foundation for this actual measurement.

In this chapter, we start by introducing the numerical estimation by D. Delande, which serves as a reference point for our work [START_REF] Delande | Mobility edge for cold atoms in laser speckle potentials[END_REF][START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF]. Following this, we present our experimental protocol designed for conducting the measurement. Subsequently, we analyze and discuss the preliminary results in following sections. These preliminary experimental findings reveal distinct indications of the Anderson transition occurring near the numerically predicted loading energy. This encouraging data underscores the immense potential of our experimental scheme in advancing our understanding of the Anderson transition.

However, a deeper analysis of the behavior of the atomic profile reveals residual diffusive part, which remains unclear at this stage. We recognize that certain imperfections within the experimental setup may be contributing to these problems, as we will elaborate on in the next chapter.

. Numerics of the mobility edge in speckle disorder

The numerical estimation of the mobility edge of ultracold atoms in 3D speckle disordered potential is performed by the group of D. Delande in [START_REF] Delande | Mobility edge for cold atoms in laser speckle potentials[END_REF][START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF]. In [START_REF] Delande | Mobility edge for cold atoms in laser speckle potentials[END_REF], they propose the numerical method with the transfer-matrix approach and simulate the mobility edge in an isotropic speckle potential. In [START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF], they generalize the simulation to all optical configurations including isotropic and anisotropic cases. They unveil that the mobility edge E c displays a robust scaling property when the anisotropy and/or speckle geometry is varied, with the correlation energy of the potential-defined from the geometric mean of the correlation lengths-as the scaling parameter (Equation 2.26). This result validates our employment of a single anisotropic speckle, described in Section 4.3. The simulated mobility edge curve is plotted in Figure 2.8. It has been introduced that the previous experiments present large discrepancy compared to the numerical curve.

. Numerical method to determine the mobility edge

The numerical calculation of the mobility edge involves the transfer-matrix method.

They start by discretizing the 3D Schrödinger equation on a grid with spacing ∆, chosen to be the same along all the three dimensions. ∆ must be small compared to the correlation lengths of the disorder and the de Broglie wavelength. This procedure yields and Anderson model with hopping term J = ℏ 2 /(2m∆ 2 ) and correlated on-site disorder.

They then apply the transfer matrix method to recursively compute the total tranmis- sion of a bar-shaped grid with length L and square transverse section M × M , with M ≪ L. In the anisotropic case like our experiment, the direction for L must be the one with largest correlation length, x axis. This system can be viewed as quasi-1D and is thus Anderson localized (See Subsection 2.1.3). Its total transmission decays like exp{-2L/λ M }, where λ M is the quasi-1D localization length in units of the grid spacing ∆. We can find out that the localization length in 3D is lim M →∞ λ M in the localized regime, while it increases to infinity in the diffusive regime. They calculate the λ M with different M and compare it to the transverse size M . λ M depends on M , energy E, and disorder amplitude V R . According to scaling theory, the localization length λ M in quasi-1D scales with transverse mode number, which is proportional to M 2 , without taking 3D effect into account [START_REF] Cord | Disorder and interference : localization phenomena[END_REF]. Figure 6.1 presents the ratio λ M /M at a fixed disorder amplitude V R = 0.5E σ . At the low energy side, in the localized regime, λ M /M must decrease when M increases and eventually we have λ ∞ = lim M →∞ λ M . On the contrary, at the high energy side, λ M /M increases with M , a clear signature of the diffusive regime. At the mobility edge, λ M /M is a constant, meaning that the quasi-1D localization length is comparable to the transverse size of the system, a signature of marginal 3D localization. Thus the mobility edge locates at the cross point of all the curves in the figure. This is the method to determine the mobility edge in this simulation.

. Insensitivity to anisotropy

Different from the crossed speckle configuration in 2012 [START_REF] Jendrzejewski | Three-dimensional localization of ultracold atoms in an optical disordered potential[END_REF], we currently use only a single speckle, which gives correlation lengths of 0.42(1) µm in directions y and z and 2.02(3) µm in direction x (See Section 4.3). This is an anisotropic configuration. Conse- quently, question arises whether the simulated results stand for the anisotropic case. Their work in [START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF] suggests the insensitivity of the moblity edge to anisotropy.

They perform the same simulation for different speckle configurations to understand the effect of the anisotropy. Figure 6.2 illustrates the two different configurations : Single speckle and two crossed speckles. The two crossed speckles are used in previous experiment of 3D Anderson Localization [START_REF] Jendrzejewski | Three-dimensional localization of ultracold atoms in an optical disordered potential[END_REF]. Figure 6.3 presents their results. They calculate the mobility edge for both the single speckle configuration and two-crossed speckle configuration, with different numerical apertures. Figure 6.3 a and b gives the results for single speckle, which are very anisotropic. Figure 6.3 c and d gives the results for twocrossed speckles, which is much more isotropic. In 6.3 a and c, The normalized mobility edge E c /V R are plotted in the energy unit of E L = ℏ 2 k 2 L /m, the atomic kinetic energy at the wavelength of speckle beam, where k L is the wave vector of speckle beam. In 6.3 b and d, they are rescaled in the energy unit of E σ = ℏ 2 /m(σ x σ y σ z ) 2/3 , the correlation energy defined by the geometrical average of the correlation lengths in three directions.

The definition of correlation energy for isotropic disorder is E σ = ℏ 2 /mσ 2 . It is generalized to the anisotropic case :

E σ = ℏ 2 m(σ x σ y σ z ) 2/3 . (6.1)
Here σ x,y,z are the correlation lengths of the disorder along x, y, z axes. In [START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF], they define the correlation lengths as HWHM of the spatial correlation peak divided by the numerical factor γ ≈ 1.39156, such that they correspond to the distance from the central peak to where the height reduces to 1/ √ 2 of the peak, for the specific case of E σ calculation. Applying this definition in order to compare the experimental condition to the numerics, we have the redefined correlation lengths :

σ ⊥ = 0.31 ± 0.01µm, σ ∥ = 1.45 ± 0.03µm. (6.2) 
As discussed in Section 4.3, σ ⊥ is the correlation length along y, z axes, and σ ∥ is the correlation length along x axis. We calculate the correlation energy in this new definition, E σ /h = 441 ± 18 Hz. This is a crucial point to convert the numerics to predict the mobility edge in real experiment. d show that in the unit of E σ , the mobility edge predictions collapse into the same curve, ignoring the specific geometric configurations. The numerically predicted mobility edge varies only by several percents in all of the configurations with different anisotropy. This result demonstrate the insensitivity of the mobility edge to the anisotropy and justify the effectiveness of a single anisotropic speckle in our experiment.

. Experiment procedure to measure the mobility edge

In this section, we provide a comprehensive protocol outlining the steps required to conduct the measurement of the mobility edge. As an illustrative example, we use a fixed disorder amplitude of V R = 416 Hz, a condition specified in Table 4.1. This condition, which corresponds to V R /E σ ≃ 0.94 ± 0.05, serves as a calibration point within the procedure.

1. Produce a stable BEC on state |1⟩.The procedure to produce the BEC is covered in Chapter 3. Before the experiment, we optimize the optics and verify the atomic cloud from the step of the magnetic trap to the BEC. We ensure that the atom number of the BEC is stable in each cycle (Fluctuation less than 5%).

Correct the magnetic field on BEC.

It is imperative to guarantee that the levitation field effectively counteracts gravity for the BEC atoms, ensuring that the magnetic center aligns with the atomic cloud, and that the bias field is precisely set to the magic point. These measures serve to eliminate additional forces acting on the atoms and to maintain coherence during the RF transfer process.

However, due to the daily fluctuations in the magnetic field, we must make slight adjustments to the levitation and compensating fields. This correction involves monitoring the spatial center of the atomic cloud as it shifts with varying time-of-flight durations. Subsequently, we fine-tune the bias field in the vertical direction to attain the magic point for the two-photon transition, as discussed in Section 3.5 and illustrated in Figure 3.15.

Calibrate the bichromatic speckles.

Precise configuration of the bichromatic speckles is critical for the success of the experiment. The calibration process involves several steps : Initially, we image the speckle pattern at extremely low power using the science camera to confirm that its center aligns precisely with the atomic cloud. Then we meticulously inspect the powers and frequencies of the two speckle beams at a specific control signal. Although the exact power illuminating the diffuser is hard the measure, we can measure the powers before the telescope enlarging the beam (See Figure 4.9a). The ratio between the powers of the two beams, denoted as P p /P c , enables us to predict numerically the ratio of control signals required to achieve the disorder cancellation condition,

V 1 (r) = V p,1 (r) + V c,1 (r) with V 1 = 0 V 2 (r) = V p,2 (r) + V c,2 (r) with V 2 = V R (6.3)
knowing the fact that the control signal linearly determines the power.

Check the disorder-insensitivity of |1⟩.

To ensure the disorder-insensitivity of state |1⟩, we conduct a 'quenching' measurement, as outlined in Subsection 5.3.1. In this procedure, we maintain the power of the principal laser at a fixed value while varying the power of the compensating laser. A measurement similar to Figure 5.5 is performed, where we observe the momentum distribution after the quenching process. The point at which the Bose-Einstein condensate (BEC) exhibits minimal excitation signifies the cancellation point, which should align closely with the numerically predicted point. To validate this, we compare the results with the same experimental sequence conducted with the speckle lasers turned off. A negligible excitation in this comparison serves as signature of the disorder-insensitivity of state |1⟩.

Check the energy resolved loading and lifetime of atoms on state |2⟩.

Once we obtain the appropriate parameters for the bichromatic speckle, we perform the RF transfer scheme to measure the spectral function. We rescale the bichromatic powers together to make the measured curve fit into the numerical curve for V R /h = 416Hz.

As mentioned in Section 5.2, the uncertainty of the disordered potential calibration is around 3%.

After performing the RF transfer scheme, we simply add a holding step in the disordered potential to observe the decay in atom number. We calculate the lifetime with a linear fit in logarithm scale of atom numbers, resembling the behavior depicted in Figure 5.6b. A correct lifetime τ ∼ 1.6s enables an expansion in the disordered potential for a sufficiently long time, as discussed in Section 4.7.

These steps serve as crucial preparation before conducting the mobility edge measurement. A well-executed experiment should yield results consistent with Figure 5.6.

Kick the atoms in |1⟩.

In order to maintain the well defined energy after removing the optical dipole trap, we must remove the atoms still in state |1⟩, as already mentioned in Subsection 5.3.4. Before the experiment, we verify the kicking beam by applying it to BEC and observing the number of atoms remaining in the cloud to be less than 5%.

Expansion in the disordered potential.

After performing the transfer scheme described in Chapter 5, we switch off the optical dipole trap and kick away the atoms remaining in state |1⟩ at the same time. We let the atoms expand in the disordered potential V R for a duration t exp . We image atomic cloud in state |1⟩ almost right after the expansion, with a delay less than 1 ms. We can scan the holding time t exp to observe the time-evolution of the cloud at this loading energy.

In our experiment, we investigate the atomic profile along the y axis (vertical direction), because the magnetic levitation induces a harmonic trap in the horizontal directions (See 3.4) with the trapping frequency ω ⊥ ≃ 2π × 7 Hz. This harmonic trap avoids the expansion more than 30 µm. However, before reaching that size, the atomic cloud can expand almost freely in x and z axes. The size limit in horizontal direction is much larger than the grain size of the speckle, thus we consider the process of expansion as a locally 94 3D expansion1 .

. Preliminary results and data analysis

In a fixed disorder amplitude V R , we expect to observe a straightforward contrast between the localized regime and diffusive regime crossing the mobility edge E c . Ideally, for all the energy E f < E c , we should observe the profile of the atomic cloud frozen because the localization length is typically much smaller than the cloud size. For loading energies E f > E c , on the contrary, we expect the atomic profile to keep expanding, yielding a significantly larger cloud after the expansion. The size difference of the profile after expansion in different loading energy might allow us to determine the mobility edge.

The first successful experiment presenting the clear signature of Anderson transition was performed from October to December 2022. We focus mainly on two different amplitude of disorder : [START_REF] Ad Mirlin | Multifractality and critical fluctuations at the Anderson transition[END_REF]. For these two specific amplitudes of disorder, we have almost perfect agreement of the numerically calculated spectral functions and the measured ones, presented in Figure 6.4 b and c. The corresponding η of the spectral functions is marked with black dashed lines in the mobility edge diagram of Figure 6.4a.

V R /h = 416 Hz (η = V R /E σ ≃ 0.94) and V R /h = 832 Hz (η = V R /E σ ≃ 1.

. First signature of the Anderson transition

To detect the signature of the Anderson transition, we start from the disorder amplitude V R /h = 416 Hz. We perform the RF transfer in t RF = 40 ms. We select four points of loading energy on the spectral function spanning through the expected mobility edge, δ RF = {156 Hz, 216 Hz, 276 Hz, 336 Hz}. The four points are marked in Figure 6.4b with orange box. They cover the regime where we have significant number of atoms transferred to state |2⟩ (More than 5000 atoms but less than 12000, remaining a small proportion of total atoms). The sufficient number of atoms is crucial to achieve a good signal-to-noise ratio, particularly after a long expansion time. This mobility edge at this condition is predicted to be ∼ 240 Hz according to Figure 6.4a [START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF]. Thus as illustrated in Figure 6.4b, δ RF = {156 Hz, 216 Hz} should be below the mobility edge and localized, while δ RF = {276 Hz, 336 Hz} should be above the mobility edge and diffusive.

We perform the experimental sequence for expansion at a fixed loading energy δ RF and scan the expansion time t exp from 0.01 s to 2.71 s in order to capture the dynamics of the atomic cloud. Because we are only interested in the dynamics of the vertical direction (y axis), we integrate in the horizontal direction (z axis) and obtain the atomic profile along y axis. The science camera is along x axis, thus the fluorescence image already integrates in this direction (See the geometry of imaging in Figure 3.16). The same measurement is performed for 5 times. We average the profile for the 5 repetitions in order to increase the signal-to-noise ratio. Moreover, we apply a Gaussian function with a width of 4 pixels to smoothen the profiles, which further reduces the noise. The dynamics of the atomic profile in vertical direction is presented in Figure 6.5 for the four different loading energies. In order to avoid confusion, we plot the profiles at 4 selected expansion time, from t exp = 0.01 s to t exp = 2.71 s with interval 0.9s. Point of t exp = 0.01 s reflects the initial profile before expansion. From this figure, we extract two mean features : First, contradicting our naïve expectation, the atomic profile expands with all the loading energy ; Second, the behavior of expansion is significantly different below and above the mobility edge expected by numerics.

Below the mobility edge, our observations suggest a specific behavior in the atomic cloud's expansion profile. Initially, it appears that the atomic cloud tends to spread into a broader profile, with the central peak seemingly maintaining a reduced height. However, intriguingly, we also note a potential indication of a double structure within the profile, which includes the preserved sharp center peak alongside notably broad wings.

Conversely, when operating above the mobility edge, our observations hint at the absence of this double structure in the atomic profile following expansion. Instead, we tentatively observe significant broadening of the atomic profile within a relatively short time 97 frame of 0.91 s, which appears to continue increasing as the expansion time extends.

. Analysis of the profiles of atomic cloud

Further knowledge from the experimental data requires the analysis of the profiles of atomic cloud. A straightforward idea is to calculate the RMS (Root mean square) size of the profile σ y :

σ 2 y =
ρ(y)(y -y 0 )2 dy ρ(y)dy , with y 0 = ρ(y)ydy ρ(y)dy .

(6.4)

Here y 0 is the geometric center of the atomic profile, and ρ(y) is the density of the profile.

To investigate the RMS size with respect to the loading energies, we fix the expansion time t exp = 2 s and perform the experimental procedure for V R /h = 416 Hz with transfer time t RF = 40 ms. We calculate the RMS sizes and plot them with respect to the loading energies hδ RF in Figure 6.6. The same measurement is carried out for V R /h = 832 Hz by doubling the power of speckle lasers, where the RF transfer time is set to t RF = 20 ms 2 .

A general behavior is observed for both the disorder amplitudes. Below a certain energy, the sizes of the atomic profile remain constant. Above that energy, the sizes start to increase with loading energy with a roughly linear trend. We mark the trend of the RMS size with grey lines, with their widths marking the typical fluctuations. Regarding this behavior and the profile evolution in Figure 6.6, We observe by eyes a clear turning point, which determines the critical energy in the experiment. The critical energy in the figure yields We compare them to the numerical estimation [START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF], (6.6) and find the remarkable agreement.

E num c ≃ 240 ± 10 Hz for V R /h = 416 Hz, E num c ≃ 416 ± 20 Hz for V R /h = 832 Hz,
We mark the two measurement points of critical energy in the diagram of numerical estimation with uncertainties, where V R is used as a reference line. The horizontal uncertainty takes into account the uncertainty of the calibration of V R (∼ 3%) and the uncertainty of the correlation energy E σ (Originated from correlation length, ∼ 4%), resulting in an overall uncertainty of around 5%, which is 0.04 for V R /h = 416 Hz and 0.09 for V R /h = 832 Hz. The vertical uncertainty is estimated roughly by the observation of turning point, along with the uncertainty of correlation energy E σ . The overall vertical uncertainties are around 0.04 for V R /h = 416 Hz and around 0.03 for V R /h = 832 Hz.

We visualize more clearly the difference of profiles for different loading energy after expansion using V R /h = 416 Hz as an example. Similar to the previous figures, we see a significant difference between hδ RF < E c and hδ RF > E num c . This observation reassures the phenomenon observed by RMS size. Our measurements of critical energy show excellent agreement with the numerically predicted mobility edge within the uncertainty. This suggests a potential correspondence between the two, warranting further investigation and analysis.

. Central density analysis

Inspired by the direct observation of the atomic profiles, we use the central density to study their property with respect to the loading energy. This method is introduced in 3D Anderson localization experiment of our group in 2011 [START_REF] Jendrzejewski | Three-dimensional localization of ultracold atoms in an optical disordered potential[END_REF]. The central density n CD is defined as the ratio of the peak density of atoms divided by the total atom number :

n CD = ρ max (y) ρ(y)dy . (6.7) 
To visualize the difference of central density, we analyze the atomic profiles after t exp = 2 s expansion for loading energy from δ RF = 156 Hz to δ RF = 356 Hz with an interval of 20 Hz, small enough to capture any sudden change. The profiles are presented in Figure 6.8a. As mentioned in Subsection 6.3.1, the profile posses a narrow peak in the regime expected to be localized phase but not in the regime expected to be diffusive phase. We can expect a fast decreasing of central density near the mobility edge. We calculate the central density for each curve, and plot them with respected to the loading energies.

Similar to the profile behavior we already see in Figure 6.7, we observe a significant drop near the numerically predicted mobility edge. The central density seems to remain Theoretically, the decay of the central density is expected to be faster than that of the localized state. In the regime where the localization length is smaller than the typical size of the atomic cloud, we expect the central density insensitive to the loading energy. Near the mobility edge, where the localization length increases and surpasses the size of the atomic cloud, the central density will reduce. With even higher loading energy, the central density is governed by constant expansion, with atomic profile size increases like

σ 2 (E, t) = σ 2 0 + 2D(E)t, (6.8) 
where D(E) is the diffusion constant at certain loading energy E, and σ 0 denotes the initial size. The central density is then estimated approximately as

n CD (E, t) ∼ 1 σ 2 0 + 2D(E)t . ( 6.9) 
We find that 1/n 2 CD (E, t) reflects the size square of the atomic cloud. As illustrated in Figure 6.9, we see similar behavior to Figure 6.6,which qualitatively satisfies our expectation. This is another potential signature of the Anderson transition.

. Temporal evolution

The RMS size of the atomic profile, along with the central density analysis, provides suggestive evidence of the Anderson transition and offers an experimental estimate of the critical energy. However, a definitive determination of the Anderson transition requires a temporal analysis, which we will undertake based on the RMS size.

In Figure 6.10, Taking disorder amplitude 416 Hz as an example, we present the RMS size evolution with respect to the expansion time t exp in different loading energies. For all the loading energy, from δ RF = 156 Hz to δ RF = 336 Hz, we observe the RMS size increases constantly, and σ 2 y depends linearly on the expansion time. In a naïve expectation, below the mobility edge, the expansion rate D should be much smaller than the one above the mobility edge. Nevertheless, we do not observe the significant difference at the two sides of the mobility edge.

One of the major reason could be the fact that the number of the RMS size depends highly on the selection of the region of interest (ROI), due to the presence of the background noise. Moreover, the wings of the double structure of the profiles below the observed critical energy contribute predominantely to the RMS size. This double structure can be clearly observed in Figure 6.5 and 6.8b. These shortcoming expose when we look at the temporal evolution, which lead to constant increasing of the RMS size. This observation exposes the imperfections of the measurement. The existence of the double structure complicates the RMS size analysis. The possible reasons of the double structure will be discussed in following sections, although the exact reason has not been determined yet.

. Summary of experimental results

The spectroscopic scheme with bichromatic speckles provides us the experimental tool to detect the quantum transport of matter wave at certain energy in speckle disorder at the timescale of seconds. The experiment opens the possibility to explore the Anderson transition.

In this chapter, we present the preliminary results of our measurement towards the Anderson transition and its mobility edge. The measurement presents some potential signatures of Anderson transition near the energies predicted by the numerical method, developed by D. Delande [START_REF] Delande | Mobility edge for cold atoms in laser speckle potentials[END_REF][START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF]. In the measurement, we focus on the disorder amplitude V R /h = 416 Hz and V R /h = 832 Hz, where the spectral function measurement shows excellent agreement with numerical predictions. We are able to perform the expansion up to around 3 s to observe the dynamics of atomic cloud.

We perform the RMS size calculation, which presents the feature that the size remains almost a constant below a critical energy, and it starts to increase with loading energy above this critical energy. The critical energy observed shows excellent agreement with numerical prediction of the mobility edge. The significant difference at the two sides of the mobility edge is also confirmed by a direct observation of the spatial profiles of the atomic However, deeper analysis reveals the ambiguity of these results, which prevents us from a decisive claim of mobility edge measurement. Notably, the RMS size increases at a similar rate for all loading energies, posing a challenge in determining the mobility edge and highlighting certain imperfections in our experiment. The presence of a double structure and background noise actually complicates RMS calculations. To achieve a definitive measurement, it is imperative to address these imperfections. Next chapter will analyze the source of imperfections and propose new solutions for a clean measurement.

To conclude, the encouraging signatures of Anderson transition like behavior prove the great potential of this bichromatic spectroscopic scheme. The critical energy observed is most probably the mobility edge. However, the imperfections limit the reliability of these results. We need to overcome these imperfections with the methods we provide to perform a more convincing experiment. simultaneously. This approach aims to minimize the extra energy broadening during the release. Additionally, we aim to ensure that the atoms in state |2⟩ are located within the range of the Bose-Einstein condensate (BEC) to simplify the study of transport properties.

However, in practical experiments, various factors, such as interactions among particles and significant transfer fractions, can influence the validity of this model. Through our simulation efforts, we try to refine and adapt this model to ensure its accuracy and applicability to real-world experimental conditions. Moreover, the simulation results help to select more suitable parameters in the experiment. This numerical simulation opens the possibility to gain a deeper understanding of the energy distribution. It helps us refine our experimental techniques to achieve reliable and accurate results.

. Algorithm

The spectroscopic scheme with state-dependent potential described in Figure 5.1 can be modeled with the coupled Gross-Pitaevskii equations. Mentioned in equation 3.2, Gross-Pitaevskii equation (GPE) provides a simple description of the macroscopic matter wave in BEC by applying the mean field approximation. Due to the existence of the two components of atoms, state |1⟩ and |2⟩, and the rf coupling, we establish the coupled GPE in 1D as following :

   iℏ ∂φ 1 ∂t = -ℏ 2 2m ∂ 2 ∂x 2 + V 1,t (x) + g(|φ 1 | 2 + |φ 2 | 2 ) φ 1 + ℏΩ R 2 φ 2 iℏ ∂φ 2 ∂t = -ℏ 2 2m ∂ 2 ∂x 2 + V 2,t (x) -δ + g(|φ 1 | 2 + |φ 2 | 2 ) φ 2 + ℏΩ R 2 φ 1 . (7.1)
Here, φ 1 and φ 2 are the macroscopic wave functions on state |1⟩ and |2⟩, with the constrain of particle number conservation dx (|φ

1 | 2 + |φ 2 | 2 ) = N . V 1,
t and V 2,t are the overall potentials on the two states created by laser beams. Ω R is the coupling amplitude. δ is the detuning of the RF pulse. g is the strength of the contact interaction between atoms.

In the case of 87 Rb D 2 line, this interaction terms are almost the same for different states This coupled GPE is a general form describing the two component BEC coupled by the RF pulse. In our experiment, the potential for state |1⟩ is just the optical dipole trap, V 1,t (x) = 1 2 mω t x2 , where ω t is the trapping frequency. The potential for state |2⟩ is the optical dipole trap plus the disordered potential, V 2,t = V 1,t + V disorder . The disordered potential has a Gaussian correlation profile with a correlation length of σ r = 0.5 µm, which is the same as the geometrical average correlation length in the experiment 2 as mentioned in Section 6.1. To simulate the evolution of wave function with this partial differential equation, the first step is to normalize all the parameters to their non-dimensional counterpart. A reference of length, time, frequency and energy should be established. The reference can be selected flexibly depending on the system. In the simulation of optical disordered potential, the correlation length σ r is selected as reference of length. References of other parameters are established respectively, by defining the correlation energy E r = ℏ 2 mσ 2 r = ℏω r . Thus ω r is the reference for the frequency. We define the non-dimensional parameters 1. We verify in the simulation that the slight difference does not induce considerable change in the simulation results. Thus we approximately use the same value to simplify the problem. The scattering length between atoms in state |1⟩ is a 11 = 100.4a 0 .The scattering length between atoms in state |2⟩ is a 22 = 95.4a 0 . And the scattering length between atoms in state |1⟩ and in state |2⟩ is a 12 = 98.1a 0 [START_REF] Egorov | Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate[END_REF]. [83] :

t = ω r t x = x σ r δ = δ ω r Ω R = Ω R ω r g = g ℏω r σ 2 r V 1,2 = V 1,2 ℏω r φ 1,2 = σ r φ 1,2 . (7.2)
We rewrite the overall wave function as Φ(x, t) = φ 1 (x, t) φ 2 (x, t) .

(7.3)
We discretize the space with 8000 points so that the wave function can be written as an array in Matlab. In order to cope with the physics of BEC in the mean field regime, we should pay attention that the interval of spatial grid ∆x ≪ σ r , ξ, which yields ∆x ≪ 1 3 . It is set to ∆x = 0.05.

After the normalization, We design the step to calculate the wave function from t to t + ∆t. We rewrite the coupled GPE in a simplified form by dividing the Hamiltonian to the kinetic energy and the potential energy :

i ∂Φ ∂t = ( T + V )Φ, (7.4) 
in which

T =     - 1 2 ∂ 2 ∂x 2 0 0 - 1 2 ∂ 2 ∂x 2     (7.5)
3. The healing length of BEC ξ characterizes its scale of dynamics. It describes the minimum distance over which the order parameter can heal. The excitation in the BEC has a typical size of the healing length [START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF]. Consequently it's important to have discretization smaller than this value to precisely simulate the dynamics. and

V = v 11 v 12 v 21 v 22 =     V 1,t + g ∥Ψ∥ 2 Ω R 2 Ω R 2 V 2,t -δ + g ∥Ψ∥ 2     . (7.6)
The principle step of the simulation is to calculate the evolution operator Û (∆t) describing the evolution of the wave function in a small time ∆t, Φ(x, t + ∆t) = Û (∆t)Φ(x, t).

(7.7)

The evolution operator can be expressed as

Û (∆t) = exp -i( T + V )∆t . (7.8)
We notice the fact that the operator V is easy to calculate in real space, while the operator T is easier to calculate in momentum space, because the momentum states are eigenstates of T . Thus we can employ the Baker-Campbell-Hausdorff formula [START_REF] Rossmann | Lie groups : an introduction through linear groups[END_REF] to treat them separately with the approximation when ∆t ≪ 1,

Û (∆t) ≈ exp - i 2 V ∆t exp -i T ∆t exp - i 2 V ∆t . (7.9) 
The protocol to apply the evolution operator can be done in following steps : First, we apply exp -i 2 V ∆t on the wave function ; second, perform the Fourier transformation and apply exp -i T ∆t ; third, perform the inverse Fourier transformation and apply again exp -i 2 V ∆t . And we are able to calculate the wave function at t + ∆t from the wave function at t.

The first and third terms exp -i 2 V ∆t can be evaluated directly in the real space.

Referring to Equation 7.6, we can show that For the second term, it is easier to calculate in the momentum space. Thus we use the Fourier transformation :

exp - i 2 V ∆t = exp - i∆t 4 (v 11 + v 22 )    cos a -b v 22 -v 11 2 v 12 b v 21 b cos a + b v 22 -v 11 2    , (7 
Φ(k, t) = 1 2π
dx exp -ikx Φ(x, t).

(7.12) Then the second term exp -i T ∆t can be written as a diagonal matrix :

exp -i T ∆t Φ =       exp -i∆t k 2 2 0 0 exp -i∆t k 2 2       Φ.
(7.13)

. Initial state : BEC

The initial state is determined using imaginary time method [START_REF] Riou | Etude des propriétés de propagation d'un laser à atomes[END_REF] . The simulated profile is compared to the Thomas-Fermi distribution, which approximate the profile of BEC by neglecting the kinetic energy, |φ BEC | 2 ∼ µ BEC -V T g (See Chapter 3). The shape of the Thomas-Fermi distribution is an anti-parabola because of the harmonic trap. In the figure, the simulated ground state overlap very well with the Thomas-Fermi distribution except on the wings with a size given by the healing length ξ. The spatial size of the profile is also close to the BEC size in the actual experiment. This state is used as the initial state in the simulation.

. Simulation of spectral function

In Section 5.2, We introduced that the transfer rate Γ is proportional to the spectral function. The first test of this simulation is to simulate spectral function measurement.

The simulation results of Γ is compared to the numerical calculation of spectral function 4 using independent method developed by D. Delande [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF].

To perform this, we fix the amplitude of the disordered potential and simulate the wave function evolution on the initial state with a finite RF coupling Ω R , and certain detuning δ. The condition of Fermi Golden rule Γt RF ≪ 1 needs to be ensured to make the proportion of atoms in state |2⟩ small enough to be in the regime of Fermi golden rule. After a duration of transfer time, we can count the proportion of the atoms in state |2⟩ and calculate the transfer rate Γ.

4. We should notice here that the spectral functions are not the same in 1D and 3D. We use Delande's code to generate the spectral function in 1D for comparison. The code 'and-python' is a project written mainly in Python for numerical simulations of disordered quantum systems, oriented towards transport properties such as Anderson localization. It provides different methods for solving the Schroedinger equation. This allows to compute the Green function, and to deduce from it different quantities such as eigenergies/eigenstates, density of states, spectral function, total transmission across a sample, giving access to the localization length for the non-interacting Schrödinger system. It is aimed at computing quantities averaged over disorder realizations, although it can also provide the statistical distributions of some quantities.

The spectral function can be computed by Fourier transform of the autocorrelation function C(t) = ⟨ψ(0)|ψ(t)⟩, with ψ(0) an arbitrary state. For the standard spectral function, ψ(0) is a plane wave, but the program allows any initial state. And the spectral function is deduced with the relation [START_REF] Baptiste Lecoutre | Transport quantique d'atomes ultra-froids en milieu désordonné : Temps de diffusion élastique et fonctions spectrales[END_REF] C(k i , t) = ⟨k i |exp -it Ĥ/ℏ |k i ⟩ = dEe -iEt/ℏ A(k i , E).

(7.17) We carry out the same simulation for a list of detuning δ and have the spectroscopic curve, the same procedure as the experimental measurement. Due to the randomness of the disordered potential, we repeat for 50 times and average the results. Theoretically, the Γ curve is the spectral function convoluted by the Fourier transformation of the RF pulse. Regarding that the RF is a rectangle pulse, we have [START_REF] Cohen-Tannoudji | Quantum Mechanics[END_REF] 5

Γ(δ) ∝ A(k = 0, E δ ) ⊛ sinc 2 δ t RF 2 .
(7.18)

For k = 0, the spectral function peak has a typical width at the same order of V 0 in the classical regime 6 and at the order of πV Moreover, to observe the effect of limited energy resolution, we shorten the transfer time in simulation. Figure 7.6 use the disorder amplitude V 0 = 2 as an example to present the effect of limited transfer time. In Figure 7.6a where t RF = 5, the Γ curve is significantly broadened from the spectral function, but agrees well with the convoluted curve, indicating the energy broadening is still Fourier limited. In Figure 7.6b where t RF = 10, the Γ curve is slightly broadened from the spectral function. And in Figure 7.6c where t RF = 40, the Γ curve already agrees quite well with the spectral function. In this result, we do not observe the broadening due to other factors than the transfer time, indicating the resolution of energy is Fourier limited by the transfer time deeply in the regime of Fermi Golden rule. This fact corresponds to the perfect agreement of the spectral function measurement in experiments.

In conclusion, the simulation of spectroscopic scheme validates the measurement of spectral function with the transfer rate Γ in the regime of very weak coupling. In the regime where the transfer time is sufficiently long, the measurement of spectral function agrees well with the numerical prediction. It also serves as an indirect evident of energy resolved loading with the width of ∆E ∼ h/t RF . The interaction does not induce observable change in spectral function in this regime, which is consistent with the experiment of 2018 [START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF].

. Energy Profile

The simulation of the spectroscopic scheme allows us to directly look into the energy profile after the transfer with detuning δ by projection of φ 2 on the eigenstates in the speckle potential with average energy V 0 using direct diagnolization of Hamiltonian. Similar to the evaluation of Γ curve, the theoretical analysis shows that the energy distribution is [START_REF] Cohen-Tannoudji | Quantum Mechanics[END_REF] 

P (E) ∝ A(k = 0, E) × sinc 2 (E -δ) 2 t . (7.19) 
Due to the nonlinear nature of the GPE, we believe this theoretical estimation should work in the regime where the atoms in state |2⟩ takes a small proportion. When the Fourier term sinc 2 (E-δ) 2 t is sufficiently narrow, the spectral function can be considered as slowly varying, and the shape of sinc 2 function dominates. As mentioned in the last subsection, the width of energy profile should be ∆E = h/t (h = 2π in this non-dimensional unit.).

We use this estimation to compare our simulated results.

To simulate the energy profile, we write the Stationary Schrödinger Equation for the The correlation between simulated energy profile and theoretical reference in equation 7.19 with respect to transfer time for different coupling rates. For the coupling rate in the linear regime, the correlation is close to 1. For larger coupling, the correlation turns down after certain time. and b present the evolution of transferred proportion to state |2⟩. And Figure 7.9 c quantifies the similarity of the profile to the theoretical estimation with a correlation function. We can observe that the linearity of transferred proportion downgrades along with the agreement to theoretical estimations. For Ω = 0.017 (Red) and Ω = 0.034 (Blue), the transferred proportion is small and linear with respect to transfer time, and the similarity of the simulated the energy profile to the expected one is always high. For Ω = 0.138 (Purple) and Ω = 0.345 (Green), the transferred proportion shows sign of saturation, and the similarity of energy profiles reduces accordingly.

We notice here that the energy distribution is scratched when the transferred proportion is just above 7%. But we should remember that we simulate an 1D system, where the density of states is quite small compared to systems with higher dimension. Consequently this limit could be significantly higher in a 3D system. In our experiment, we usually transfer 10% ∼ 15% of the total atoms, using a coupling rate corresponding to around Ω = 0.069 or Ω = 0.138 (Near the blue and purple curves in Figure 7.9). It's not yet clear whether this proportion is too much for a 3D system. We need to check the linearity of the transferred proportion in the experiment.

. Profile of atomic cloud after the transition

At the beginning of this section, we introduced a naïve picture of the spectroscopic scheme in the atomic profile in Figure 7.2. In this picture, the transferred atoms have a spatial profile within BEC. Nevertheless, the complex behavior of the target states in the disordered potential during the evolution could induce excitation when interacting with atoms in state |1⟩ and break the well-defined chemical potential. It could then induce a larger spatial profile after the transfer, which is not preferable to perform the expansion. This simulation aims at checking this assumption by comparing the overall spatial profile after the transfer with the initial one.

The simulation is performed by fixing the disorder amplitude V 0 = 2 and loading energy δ = 1 and observing the evolution of the spatial profile of atoms |φ| 2 . Figure 7.10 presents the spatial profiles of atoms in state |1⟩ (Blue), state |2⟩ (Red) and in total (purple) after transferring for different times. We can clearly observe that up to t = 60 (The transfer time used in experiment), the overall profile almost superpose the initial profile, indicating the intuitive picture of the spectroscopic scheme shown in Figure 7.2 stands very well. The transferred atoms almost perfectly locate in the range of BEC.

As the transfer time increases, the agreement between the overall profile and the initial profile downgrades and small wings appear at the two edges. Both the two states contribute to this wing. We should notice that the coupling rate Ω = 0.34, corresponding to the green curve in Figure 7.9, is very large and the transfer is well beyond the linear regime. However, this deviation only happens with extremely strong coupling at the time scale significantly longer than the RF transfer time in the experiment. Thus we conclude that the spatial profile of transferred atoms indeed locates within the BEC in the range of experimental parameters.

. Summary of 1D simulation

With an 1D simulation of coupled Gross-Pitaevskii equations, we simulated the dynamics of the spectroscopic scheme during the RF transfer. This simulation offered insights into various aspects, including the spectral function, energy distribution, and spatial profile. The results of the simulation indicate that the dynamic evolution of the spectroscopic scheme is consistent with its designed purpose, to load the atoms at a well-defined energy ℏδ in disordered potential with a Fourier limited precision of ∆E ∼ h/t, without changing the spatial profile in the regime of N 2 ≪ N 1 .

However, this simulation gives a constrain in the selection of our experimental parameters. The main parameter we need to select is the coupling rate Ω (RF amplitude), which should not be too large. The simulation does not provide quantitative constraint because of the dimensionality, but indicates that the experiment should be performed in the regime where the transferred proportion increases linearly with respect the transfer time. Beyond this regime, an intrinsic broadening of the energy distribution is clearly visible in Figure 7.8, which confirms the suspicion illustrated in Figure 7.1. In practice, a lower transferred proportion will lead to a lower signal-to-noise ratio. Experimental work needs to be done to verify whether we are in this linear regime and find the best parameters meeting all the requirements.

. Imperfections in the experiment

In addition to the intrinsic imperfections associated with the transfer scheme, our experimental setup also presents some other challenges that may contribute to the complexity of the results. Two significant concerns that have drawn our attention are photon scattering from the speckle beams and fundamental collisions between atoms in state |2⟩. In this section, we will delve into these two effects and analyze their potential impact on the experimental observations.

. Optical scattering from the speckle beams

We employ bichromatic speckles to extend the lifetime to approximately 1.6 s for V R /h = 416 Hz (Presented in Table 4.1). While this extended lifetime is suitable for transport experiments, the speckle beams still scatter a finite fraction of atoms, which could contribute to the complexity of the experimental results.

The atoms in state |2⟩ are excited at the rate of Γ = 0.6 s -1 . And they can subsequently emit a photon in a random direction and return to ground states including state |2⟩. Due to the conservation of momentum, these atoms acquire a recoil velocity of around v recoil = 5 mm/s. In free space, it goes away from the atomic cloud in a short time(∼ 10 ms).

However, in the presence of the disordered potential, they remain for a much longer duration.

Based on previous research conducted by our group [START_REF] Richard | Elastic scattering time of matter waves in disordered potentials[END_REF], the elastic scattering time of the atoms with recoil momentum is at the order of τ s = 1 ms. This means that the recoiling atoms can experience multiple scattering events. After several scattering events, their movement direction becomes uncorrelated with their initial direction, effectively causing them to move in a new random direction. This process occurs on a timescale known as transport time or Boltzmann time τ B . For the matter wave in forward scattering regime8 k i σ r ≫ 1, the transport time can be estimated as [START_REF] Shapiro | Cold atoms in the presence of disorder[END_REF] 

τ B ≈ ℏE σ V 2 R 1 √ π k 3 i σ 3 r (7.22)
In the experiment, The recoil atoms have k i σ r ≈ 3.4, and the transport time is estimated to be τ B ≈ 10 ms. Thus the mean transport distance is l B = v recoil τ B ≈ 50 µm. These recoiling atoms undergo a Brownian motion in the speckle potential, and we can apply the Einstein-Smoluchowski equation to estimate the diffusion constant

D = l 2 B 2τ B ≈ 125 µm 2 /ms. (7.23) 
As observed in the spatial profiles of experimental data, we observe a regime with a size of ±200 µm. When we image the atoms, the scattered atoms that have traveled over approximately 160 ms will remain within the imaging range and produce a broad profile. The proportion of scattered atoms during that time should be around 10%.

In conclusion, the photon-scattering of speckle beams will make a proportion of atoms get recoil momentum but still stay in the imaging regime, creating a large profile in the background. This mechanism could at least partially explain the broad wings we observe in the regime expected to be localized. A significantly reduced photon-scattering rate, which means a much longer lifetime, is preferable in an improved experiment.

. Fundamental collision loss of state |2⟩

In our experiment, we use the two internal states of 87 Rb atoms to realize the spectroscopic scheme. We denote the initial state |F = 1, m F = -1⟩ as state |1⟩ and the target state |F = 2, m F = 1⟩ as state |2⟩ (See 3.5). The atoms stay on state |2⟩ for a long time to achieve the transport experiment. However, previous paper reports the instability of state |2⟩ with high atomic density [START_REF] Egorov | Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate[END_REF], which could lead to unwanted behavior in our experiment.

According to [START_REF] Egorov | Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate[END_REF], two atoms in state |F = 2, m = 1⟩ in BEC can collide inelastically with each other and change their spin states to |F = 2, m F = 0⟩ and |F = 2, m F = 2⟩, releasing a total kinetic energy calculated as 1.6 kHz . Both the atoms acquire an initial velocity of around 2.7 mm/s. They will then leave the optical dipole trap with a acceleration ∼ ±g due to the gravity and the magnetic force of the levitation field. Similar process can happen between atoms in state |F = 2, m = 1⟩ and |F = 1, m = -1⟩ and lead to atoms in state |F = 2, m = 0⟩ and |F = 1, m = 0⟩. They also fall because of the gravity. We can neglect this collision because we kick the atoms in state |1⟩ away before the transport.

In the mean field approximation, the atom losses of a two-component BEC due to inelastic collision are described by the equations [START_REF] Tojo | Spin-dependent inelastic collisions in spin-2 Bose-Einstein condensates[END_REF] 

dn 1 dt = -γ 12 n 1 n 2 dn 2 dt = γ 22 n 2 2 -γ 12 n 1 n 2 .
(7.24)

Here n 1 and n 2 are the atomic density in state |1⟩ and state |2⟩. Because in our experiment, the time when the atoms in both the states coexist is rather short (20 ∼ 40ms), we can focus on the effect of γ 22 .

If the atomic profile adiabatically follows the Thomas-Fermi distribution 9 , this inelastic collision loss leads to the reduction of the atom number of a BEC in state |2⟩ following

N -2 5 2 (t) = N -2 5 2 (t) + 2 5 
(2π) This loss can be observed on our setup. We prepare the atoms to BEC in state |1⟩, then perform a half-period Rabi oscillation without the presence of speckle beams. Around 80% atoms are now BEC in state |2⟩. We hold the optical dipole trap for a list of time and measure the atom number. We plot N -2/5 2 with respect to the holding time and fit with a linear function, which is shown in Figure 7.11. In Figure 7.11, we observe the rapid loss of atoms within 0.5 s. N -2/5 2 increases linearly with respect to the holding time. The slope is at the same order of magnitude with the prediction using equation 7.25 and the parameters in [START_REF] Egorov | Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate[END_REF]. In contrast, for BEC in state |1⟩, where such two-body loss does not exist, however, the lifetime of atoms is measured as around 8 s. This observation indicates that the two-body loss mechanism dominates the atomic loss in state |2⟩ when the atoms are confined by harmonic trap with trapping frequency ω t ∼ 2π × 21 Hz. This should not pose a problem in diffusive regime, where the atomic profile extends much further, and the probability of inelastic collisions decreases significantly. On the contrary, in localized regime, the size of the matter wave remains relatively small, two-body loss can significantly impact long-term dynamics. In this scenario, unlike in free space, the atoms in the target states of the inelastic collision can persist for a longer duration due to the scattering by the disordered potential. Additionally, they can be excited by the fluorescence beam and captured in the imaging process.

This mechanism serves as a potential candidate for the explanation of the double structure in the regime expected to be localized which we already see in Figure 6.5.The atoms in the narrow peak appear to deplete into a broad profile, and the presence of two-body loss in localized states may play a crucial role in this observed phenomenon.

. Experimental improvement

In 2023, we have initiated efforts to enhance our experimental setup and address the identified imperfections and challenges. In this section, we introduce several proposed solutions to mitigate these issues and outline potential improvements for our experimental platform. These endeavors aim to enhance the precision and reliability of our measurements, bringing us closer to achieving a decisive and accurate measurement of Anderson transition.

. Inverse the state 1 and state 2

To address the collision loss issues related to state |2⟩ during the expansion, we've recently introduced an innovative solution by reversing the roles of state |1⟩ and state |2⟩. As state |1⟩ lacks the two-body loss mechanism, the atoms in this state exhibit significantly greater stability compared to those in state |2⟩. We are implementing this reversed transfer scheme in our experimental setup to improve the reliability of our measurements. This modification is expected to contribute to more stable and accurate results in our pursuit of Anderson transition measurement.

We present the reversed scheme in Figure 7.12. In this setting, we require the insensti-123 vity of disorder on state |2⟩. To achieve this, we employ a red-detuned compensating laser for state |2⟩ with a detuning of ∆ c ∼ -8.8 GHz. This choice takes into account various factors, such as lifetime considerations, laser power, and the technical limitations of laser frequencies. With these parameters, we've calculated the disordered potential values for V R /h = 416 Hz and compared them to the original scheme. The average disordered potential for each beam on atoms in each level are as follows :

V p,2 /h = -V c,2 /h = 496 Hz, V p,1 /h = 527 Hz, V c,1 /h = -112 Hz. (7.26)
We list the comparison of the reversed scheme with the original scheme in Table 7.1. This analysis indicates that the photon scattering rates remain similar to those of the original scheme, and the laser powers are achievable on our setup, confirming the feasibility of the reversed scheme.

To implement the reversed scheme in our experimental protocol (See Section 6.2), we need to incorporate several new steps. Here's an outline of these additional procedures :

Prepare BEC in state |2⟩. After producing the BEC and calibrating the magnetic field, we should now apply a π pulse of the two-photon transition at the maximum power 10 with an RF transfer time typically around 5 ms. In the experiment, we can transfer around 80% of all the atoms to state |2⟩. Subsequently, we activate the repumper beam (from L2) with a frequency resonant to the transition |F = 1⟩ → |F ′ = 0⟩, using a power of around 1mW for a duration of 100 µs. This beam effectively removes any remaining atoms in state |1⟩. This process results in a BEC in state |2⟩ containing approximately 5 × 10 4 atoms.

Check the disorder-insensitivity of state |2⟩. Similar to the original protocol to check the insensitivity in state |1⟩, we use the same method to check the insensitivity in state |2⟩ using the 'quenching' measurement in Subsection 5.3.1. With the BEC in state |2⟩, we abruptly turn on the bichromatic speckle beams, scan one of the beam power and measure the size after TOF of 200 ms. The minimum size appears at the cancellation point. We also compare the minimum size to the size with the same experimental sequence with speckle lasers off. A negligible excitation proves the disorder-insensitivity.

Check the energy-resolved loading to state |1⟩. After determining the appropriate parameters for the bichromatic speckles, we proceed with the RF transfer scheme to measure the spectral function. Similar to the original procedure, we rescale the bichromatic powers together to make the measured curve fits into the numerical curve for V R /h = 416 Hz. It's important to note that in this configuration, the loading energy E is given by E = -ℏδ RF since the transfer originates from a level with higher energy. Following the RF transfer scheme, we apply a beam to kick the state |2⟩ atoms at the resonance of the transition |F = 2⟩ → |F ′ = 3⟩. This beam uses the same channel as the fluorescence beam (from L3) and eliminates the remaining state |2⟩ atoms after approximately 100µs.

By incorporating these modifications into the protocol, we effectively implement the reversed scheme on our experimental setup. This innovative approach enables us to transport atoms in a stable internal state, thereby enhancing the precision and accuracy of our experiments.

. Further improve the lifetime of state 2

Figure 7.13 -Experimental sequence for longer lifetime of atoms in disorder. Up to the step of rf-transfer, the sequence is the same as the normal sequence. Once the rf-transfer is finished, we ramp down the power of the compensating laser and change the power of the principal laser at the same time, to keep the total disorder amplitude the same. In the original scheme, the compensating laser is blue detuned to the target state, we need to ramp up the principal laser power (up). In the inverted scheme, the compensating laser is red detuned to the target state, we need to ramp down the principal laser power (down). In Subsection 7.2.1, we highlighted the unwanted effect of photon scattering from the speckle beams and its impact on the measurement, which is that the photon-scattered atoms might persist in the imaging regime and create phenomenon of double structure observed in Figure 6.5 and 6.7 in the low energy regime. We proposed that the lifetime limited by photon scattering should be further extended. In principle, this lifetime is restricted by the compensating beam, primarily because its detuning is significantly smaller than that of the principal laser.

The original purpose of employing bichromatic speckles is to execute the spectroscopic scheme with a state-dependent potential. They play a crucial role during the RF transfer. However, when it comes to the expansion step, their functionality is the same as a monochromatic speckle with a large detuning.

To create the same disordered potential with a monochromatic speckle using principal beam, we need the power of principal laser around 514 µW for initial scheme or around 509 µW for reversed scheme. In that case, the lifetime of atoms in the disordered potential due to photon-scattering is around 8 s, comparable to the lifetime of BEC in the vacuum.

To reduce the photon-scattering rate, a technique is to gradually ramp down the compensating beam to zero while simultaneously ramping the principal laser power, once after the transfer finishes. This adjustment keeps the disordered potential for the target state unchanged. The sequence of this ramping technique is illustrated in Figure 7.13. Due to the linearity of the potential concerning laser power, both beams ramp linearly over a period of approximately 10 ms, ensuring that the overall disordered potential remains constant. However, the optimal duration for this ramping process will require further in-vestigation.

In the original scheme, we initiate with the potential configuration described in equation 4.45. To maintain the overall disordered potential while decreasing the compensating laser to zero, we need to increase the power of the principal laser from 430 µW to 514 µW.

In the reversed scheme, we commence with the potential configuration detailed in equation 7.26. To uphold the overall disordered potential, we need to decrease the power of the principal laser from 645 µW to 509 µW when reducing the compensating laser to zero.

In both schemes, this ramping technique substantially extends the lifetime in the disordered potential, providing a theoretical lifetime of around 8 s. In our experiment, we measured a lifetime of approximately 5 s, slightly lower probably due to the background scattering of imperfect vacuum. This enhancement significantly reduces the presence of photon-scattered atoms during imaging mentioned in Subsection 7.2.1, resulting in a much more reliable measurement.

. Towards a true 3D expansion

As mentioned in the experimental protocol (Section 6.2), in our experimental setup, we primarily concentrate on the vertical expansion due to the influence of a horizontal magnetic trap because of the levitation field. This magnetic trap is dependent on bias field ω ⊥ ∝ 1/ √ B 0 , which has to be at the magic point B 0 = 3.23 G during the RF transfer. This bias field is quite low, which leads to a weak but non-negligible trap of ω ⊥ ∼ 2π × 7 Hz. In the experiment for V R /h = 416 Hz, the loading energy is typically around E/h ∼ 200 Hz, which corresponds to a typical radius of around 30 µm in the horizontal plane 11 . Although this size seems to be large enough to considering the expansion locally 3D, we are inclined to explore strategies that would enable a true 3D expansion, as this would offer more comprehensive insights into matter wave dynamics in the disordered potential. We discuss potential solutions in the following part.

Open the trap by increasing the bias field

Since the trapping frequency ω ⊥ ∝ 1/ √ B 0 decreases when the bias field increase, elevating the bias field B 0 to approximately 2000 G offers the possibility of reducing the transverse trapping frequency to ω ⊥ ∼ 0.3Hz after the RF transfer, thus allowing a genuine 3D expansion. However, practical implementation presents considerable challenges.

The first difficulty of this method lies in maintaining the levitation condition. As we already see in 3.4, the magnetic gradient need to satisfy b ′ = mg m F g F,m F µ B . The Landé factor g F,m F , however, changes with the bias field B 0 non linearly. When the bias field changes, we need to adjust the gradientb ′ correspondingly in real time. The yellow curve in Figure 7.14 presents the gradient field needed for different bias field B 0 to satisfy the levitation condition. This real time control of magnetic field is very difficult to perform without creating excitation. Moreover, to create a magnetic field as strong as 2000 G, a large current need to be applied to magnetic coil, and the fluctuation of current might also cause further complications.

In summary, this approach is impractical on our current experimental setup.

Optical anti-trap

Another natural method to suppress the magnetic trap along the horizontal plane is to apply a repulsive anti-trap to compensate the magnetic trap. The anti-trap can be realized by a far blue-detuned Gaussian laser beam with respect to atomic resonances. This laser beam produces a positive potential of Gaussian shape. Figure 7.15 illustrates the this configuration, where the Gaussian anti-trap (Green) compensates the harmonic trap (Orange) and creates a flat bottom for the overall potential (Blue).

The repulsive potential generated by the Gaussian beam can be expanded approximately : the second term cancels the potential of the harmonic trap V mag = 1 2 mω 2 ⊥ r 2 , and the residual potential is

V anti = U 0 exp -2
V total = V anti + V mag ≈ U 0 + U 0 2r 4 w 4 0 = U 0 + 1 2 mω 2 ⊥ r 2 r 2 w 2 0 . (7.29) 
The blue curve in Figure 7.15 illustrates a typical shape of the overall potential. It presents a feature of flat bottom.

We estimate the laser power needed to cancel the magnetic trap. The maximum potential U 0 can be calculated using the formula of optical dipole potential [START_REF] Grimm | Optical dipole traps for neutral atoms[END_REF],

U 0 = - 3πc 2 2ω 3 0 Γ ω 0 -ω + Γ ω 0 + ω I 0 , (7.30) 
where I 0 = 2P/(πw 2 0 ) is the intensity at the center.

In our experiment, the setup of this beam is illustrated in Figure 7.16. We use a Verdi laser from Coherent Inc. The frequency of the laser is 532 nm, far blue-detuned to 87 Rb levels at around 780nm. The output beam waist is measured as 1.12 ± 10 mm. We use an AOM to control the power of the beam, up to 10 W. Under this condition, in order to achieve an effective compensation, we require a beam waist w 0 < 440 µm. Thus we employ a telescope with a lens of f = 200 mm and another lens of f = -75 mm to reduce the beam waist to around 420 µm. The laser power needed is then calculated as P ≈ 8 W.

The reshaped beam illuminates the atoms along vertical direction (y axis). The Rayleigh length is around 1m in this condition, thus the variation along the propagation direction is insignificant. We also obtain I 0 = 29.7 W/mm 2 . The photon-scattering rate caused by this beam is calculated as Γ -1 verdi ≃ 50 s, which is negligible in our experiment.

We can estimate the radius of this flat bottom by calculating the radius of the regime where the residual potential is less than the loading energy. The radius of the flat regime is then r flat ≈ 110 µm. It is much larger than the typical size of atomic cloud after expansion. The laser comes from a high-power laser at the wavelength of 532 nm, which is far blue-detuned for Rubidium. The power of this laser can go up to 15 W, with around 10 W usable after going through the AOM for optical power control. The beam waist is initially as large as around 1.12 mm. The beam diffracted by the AOM go through a telescope which reduce the beam waist to around 420 µm. Then it illuminates the atoms. The beam is along y axis. It creates a repulsive harmonic potential for the x and z axes at the center of the beam.

Thus it is indeed possible to create a flat regime large enough for a true 3D expansion with this Verdi laser within the power range. We select this method for a true 3D expansion in the future.

-Conclusion and Prospect

This thesis represents a comprehensive exploration of the Anderson transition in three dimensions. Since the groundbreaking achievement of observing 3D Anderson localization in ultracold atomic systems in 2011, the quest to experimentally unveil the Anderson transition has been a central objective in this field. Building on prior research, our team introduced a spectroscopic scheme designed to address the intricate challenge of energyresolved loading for matter waves within a disordered potential. This development ultimately enabled the successful measurement of the spectral function in 2018.

Throughout this thesis, our work has continued along this trajectory. We have harnessed a bichromatic speckle scheme to achieve exceptionally long atomic lifetimes on the order of seconds, paving the way for the direct observation of the Anderson transition. In this new framework, we have replicated the spectral function measurement and confirmed the theoretical predictions for the lifetime of the atoms in disorder. We have further proposed and executed an experimental protocol designed for measurement of the mobility edge.

The measurement data presents preliminary features of Anderson transition. We observe a critical energy in the experimental results showing excellent agreement with the numerical predictions in Pasek et al. [START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF]. Nevertheless, certain imperfections within our experiments have introduced uncertainty regarding whether this critical energy genuinely represents the mobility edge. We provide possible solutions to address those issues. We are currently implementing these solutions towards a better measurement. This work marks a significant advancement in the experimental study of 3D Anderson transition with ultracold atoms, and opens new possibilities for future research.

. Explore different disorder configurations

Our current experiment focus on a single speckle pattern, which provides an anisotropic disorder potential. In the future, we can also explore different disorder configurations. As we already see in the simulation of mobility edge [START_REF] Pasek | Anderson localization of ultracold atoms : Where is the mobility edge ?[END_REF] in Figure 6.3, we can try single speckle configuration with different numerical apertures, leading to different anisotropy and different correlation energy E σ . And we can also use two-crossed speckle beams to generate a more isotropic disorder, the configuration used in 2011 [START_REF] Jendrzejewski | Three-dimensional localization of ultracold atoms in an optical disordered potential[END_REF]. Measuring the mobility edge with different speckle configuration help to test the universality of the scaling law of mobility edge with respect to the amplitude of disorder, already seen in equation 2.26,

E c V R = F V R E σ . (8.1)
With two crossed speckles, we can also achieve a much higher correlation energy E σ , because we have correlation lengths as small as ∼ 0.3 µm in all the three dimensions. This improvement will increase correlation energy from 441 Hz to 1.2 kHz and significantly decrease normalized amplitude of disorder V R Eσ , which could be preferable to study in weaker disorder case (Quantum regime).

In recent years, wavefront shaping devices including spatial light modulator (SLM) and digital micromirror device (DMD) become popular in the experiment of quantum gases. These devices open up the possibility to tailor the potential we apply to the atoms in 2D. Apart from speckle, there are other statistics of disorder which are widely studied by theorist including the Gaussian disorder, binary disorder, etc. The different statistics induce different properties. In the future, we can install an DMD replacing the diffuser to impose the different disorder patterns. This device will allow us to generate disordered potentials that were not experimentally accessible before. We can study novel physics in those systems. We can even combine the disorder to optical lattice and spin-orbit coupling, which could serve as a quantum simulator for doped solid state systems in the presence of magnetic field.

. Critical regime

Once we locate the mobility edge, we can focus on the dynamics on the critical regime near the mobility edge. In this regime, intriguing physics can happen. The energy-resolved loading method enables precise study in this regime. Two principal areas of interest in the research community of this field are the critical exponent of order parameters and the multifractality of the wave functions. 

. Critical exponent

As we have already seen in Subsection 2.1.4, the 3D Anderson transition is characterized by two order parameters : Below the mobility edge, the system is described by the localization length ξ loc ; Above the mobility edge, the system is described by the diffusion constant D. As a general property of phase transition, these order parameters follow a power law with respect to energy near the mobility edge :

ξ loc ∝ |E -E c | -ν D ∝ |E -E c | s . (8.2)
The scaling theory predicts the critical exponent in this system as s = ν = 1.58 [START_REF] Abrahams | Scaling theory of localization : Absence of quantum diffusion in two dimensions[END_REF]. This value has already been tested in the system of quasi-periodic atomic kicked rotor [START_REF] Lopez | Experimental test of universality of the Anderson transition[END_REF], which makes the analogy of Anderson transition in the momentum space. However, it has not been experimentally verified in the experiment of real space Anderson transition.

Our experiment may open the way to perform the measurement. After we resolve the imperfections, we expect to evaluate the size of atomic profile more precisely, if we load the atoms with the energy precise enough. In the localized regime, we can observe the size stabilize after a certain time of expansion. The final size reflects the localization length ξ loc . A measurement of the localization length with respect to the loading energy near the mobility edge will allow us to fit for a critical exponent ν. In the diffusive regime, we expect to observe the size of atomic profile constantly increasing following the rule of σ 2 r ∝ Dt. We will measure the dynamics for different loading energies slightly above the mobility edge. We will obtain diffusion constant D by fitting the RMS square size σ 2 r evolution with a linear function. The relation between the diffusion constant and loading energy will give us the estimation of critical exponent s. Nevertheless, the feasibility of this future experiment still requires further examination.

. Multi-fractality near the critical regime

Near the mobility edge, it is predicted that the wave function of the atoms in disorder ψ(r) exhibits multi-fractal structure [START_REF] Schreiber | Multifractal wave functions at the Anderson transition[END_REF][START_REF] Ad Mirlin | Multifractality and critical fluctuations at the Anderson transition[END_REF][START_REF] Ve Kravtsov | Universal spectral correlations at the mobility edge[END_REF]. The theoretical and numerical analysis indicate large fluctuations of the probability distribution of atoms |ϕ(r)| 2 in space. The critical eigenstates ψ(r) can be unexpectedly large in some regimes and unexpectedly small in other regimes [START_REF] Rodriguez | Multifractal finite-size scaling and universality at the Anderson transition[END_REF][START_REF] Akridas-Morel | Multifractality of the kicked rotor at the critical point of the Anderson transition[END_REF]. The fancy feature of the wave function at the mobility edge relates to fractal dimensions. A fractal dimension is an index for characterizing fractal patterns or sets by quantifying their complexity as a ratio of the change in detail to the change in scale [START_REF] Benoit | The fractal geometry of nature[END_REF]. With the notions of fractal dimension, multifractality quantifies the strong fluctuations of wave function.

We define the system size as L. To describe the fluctuations of wave function, we can define the Inverse Participation Ratio(IPR) [START_REF] Akridas-Morel | Multifractality of the kicked rotor at the critical point of the Anderson transition[END_REF][START_REF] Janssen | Multifractal analysis of broadly-distributed observables at criticality[END_REF] :

P q = L d d d r|ψ(r)| 2q , (8.3)
Here d is the dimension of the system, and q is a real number. In a localized function, wave function does not change when size increases, thus P q ∝ L 0 . In diffusive regime, P q scales as P q ∝ L -d(q-1) , indicating the ergodicity in the space. However, at criticality, it shows an anomalous scaling with P q ∝ L -τq in a system with dimension higher than 2 [START_REF] Wegner | Inverse participation ratio in 2+ ε dimensions[END_REF][START_REF] Evers | Fluctuations of the inverse participation ratio at the Anderson transition[END_REF]. This anomalous scaling shows the sign of multifractality.

Another interpretation involves the definition of wave function intensity α as |ψ(r)| 2 ≡ L -α , such that α ≡ -ln |ψ(r)| 2 / ln L. Now we focus on a set of points with the same α and consider how its volume depend on system size. This point size is the contour lines for the probability distribution |ψ(r)| 2 . As the system size L increase, the volume of point set with same α scales as N α ∼ L f (α) . This singularity spectrum f (α) reflect the dimensionality of the point set. In a trivial system with no multifractality, f (α) is a integer. In the critical regime of Anderson transition, however, nontrivial behavior happens with noninteger value of f (α), where the multifractality occurs. The two interpretations are linked by the relation between he multifractal exponent τ (q) and the singularity spectrum with Legendre transform, τ (q) = qα -f (α), α = τ ′ (q), q = f ′ (α). (8.4) In this formalism, researchers investigate the multifractality both theoretically and experimentally. However, a convincing measurement of the singularity spectrum remains missing. It requires high energy resolution as well as spatial resolution. The major difficulty is the fact that the multifractal behavior is the property of a single eigenstate, thus an mixture of energy levels could hide the signal of multifractality. In 2017, Werner et al. [START_REF] Miklós | Selective final state spectroscopy and multifractality in two-component ultracold Bose-Einstein condensates : a numerical study[END_REF] propose to the spectroscopic method in a state-dependent disorder to address the critical state with a narrow energy window, in order to address this bottleneck. Our spectroscopic scheme could help to achieve the observation of multifractality in the future.

. Landscape theory

By employing a DMD, we can generate a deterministic disordered potential on the ultracold atoms in 2D, which opens us numerous novel aspects to study in experiment. Particularly, it allows us to study experimentally the Landscape theory, developed by Marcel Filoche and Svitlana Mayboroda [START_REF] Filoche | Universal mechanism for Anderson and weak localization[END_REF] in recent years. In the formalism of their theory, the weak localization and Anderson localization is described universally by a landscape function u, with the equation (-∆ + V )u = 1. We call the minimas of the landscape function the valleys. At those valleys, the wave function is limited by a very small landscape, which should also be very small. As portrayed in Figure 8.4, the space is devided by the network of valleys into subspaces. The eigenstates is limited by the edge of the subspaces defined by the network. They cannot penetrate through the valleys so that the wave function is localized. Here we view the first term as the effective kinetic energy, and the second term 1/u as the effective potential.

This novel theoretical method is remarkably successful to predict lots of properties in the localization systems, including the prediction of the region of localization of the low energy states and the precise estimation of the spectral function [START_REF] Pelletier | Spectral functions and localization-landscape theory in speckle potentials[END_REF]. Recently, theorists apply this method to reinterpret the Anderson transition as a percolation transition of the 135 effective potential in the tight-binding model with a binary disorder [START_REF] Filoche | The Anderson mobility edge as a percolation transition[END_REF]. This remarkable discovery could transform the understanding of Anderson transition.

It could be interesting to directly observe the landscape in experiment, and we can inversely obtain the information of the disorder through the behavior of wave functions. In the future, we can create a 2D quantum gas with tight confinement in the third dimension. Performing energy resolved loading could allow us to study the properties of the eigenstates at different energy and observe the hidden landscape.

A.2 . Correlation function of the amplitude

To approach the correlation of the intensity, we first need to calculate the correlation function of the amplitude. First, we consider the amplitude of a monochromatic laser passing through the diffuser and converged by a lens right before the diffuser, its amplitude at position r d = {x, y, z} is :

E(r d ) =
e ikz iλz dr 0 E inc (r 0 )t diff (r 0 )exp -ik x 2 0 + y 2 0 2f exp -ik (x -x 0 ) 2 + (y -y 0 ) 2 2z .

(A.6)

In the expression, E inc (r 0 ) is the amplitude of the incident laser, t diff (r 0 ) is the transmission of the diffuser,the term exp -ik where the effective distance d eff are defined with respect to the focal plane by 1/d eff = 1/z -1/f . z = z + f is the longitudinal distance compared to the diffuser (z being the distance only to the Fourier plane, so for the distance to the diffuser, we need to add f , see Fig ? ?). Actually, remind that the bichromatic correlation function of the diffuser is just C diff (r 0 , r ′ 0 , λ p , λ c ) = t diff (r 0 , λ p )t * diff (r ′ 0 , λ c ).

Then we change the variables {r 0 , r ′ 0 } → {r c,0 = (r 0 + r ′ 0 )/2, ∆r 0 = r ′ 0 -r 0 }, we obtain : 2r diff,p r diff,c , so the typical width of C diff is in the order of r diff,p r diff,c . As shown in Chapter 4, r diff represents a typical size of the grain, and it is very small. So the region of interest that we consider is ∆r < r diff,p r diff,c , so in this regime, we can approximately suppose that : E inc (r c,0 -∆r 0 /2, λ p )E * inc (r c,0 +∆r 0 /2, λ c ) ≃ E inc (r c,0 , λ p )E * inc (r c,0 , λ c ) = I(r 0 ), I(r 0 ) being the incident illumination. Then we find : (A.9)

Γ(r,
Γ(r,

A.3 . 3D monochromatic correlation close to the Fourier plane

In this part, we will derive the expression of spatial autocorrelation function of monochromatic laser speckle field, in three dimension close to the Fourier plane. It will be used for the derivation of the bichromatic correlation function. The two point autocorrelation function is defiend as : consisting of two terms. The first one features the decorrelation effect induced by the diffuser, and the second one features the effect of the free space propagation after the diffuser. The first term can be computed as : (A. [START_REF] Kendall B Davis | Bose-Einstein condensation in a gas of sodium atoms[END_REF] 
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 11 Figure 1.1 -Anderson Localization in 1D with ultracold atoms : Experiment of Palaiseau. a) The illustration of the experiment : A laser beam serves as a waveguide for the matter wave in 1D, the BEC is created in a 3D optical trap, then it is released in the 1D waveguide with the presence of speckle disorder. b. The density profile after evolution time 0.8s, 1.0s, 2.0s. c) The size of the atomic wave packet stabilizes after long time evolution.

Figure 1 . 3 -

 13 Figure 1.3 -The figure illustrates the spectroscopic scheme we use to perform the energy resolved loading. We profit the 2 hyperfine levels of the atoms, making state |1⟩ of them insensitive to the disorder, and state |2⟩ sensitive to the disorder. We make the BEC in state |1⟩, and use an RF pulse to transfer the atoms to state |2⟩. The conservation of energy leads the atoms to an energy resolved state.
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 14 Figure 1.4 -Monochromatic speckles and bichromatic speckles. a) Monochromatic speckle scheme : the disorder potential of the laser speckle depends on the detuning. A laser speckle with very small detuning |δ| ≪ ∆ hf induce a strong disordered potential on state |2⟩ but a very weak potential on state |2⟩. b) Bichromatic speckle scheme : Manipulating the frequency of the two laser speckles with different frequencies enables the cancellation of potential on one of the states, leading to a state-dependent potential required in spectroscopic scheme. Here the detuning can be large enough to avoid strong excitation. For details see Figure 4.6.
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 21 Figure 2.1 -The figure shows the simple classical model of diffusion, The particle undergoes multiple independent scattering process. Its diffusion distance is proportional to √ 2dDt.
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 22 Figure 2.2 -The coherent wave transport in the disordered medium through all possible trajectories. There exist loop paths that go back to the initial position. For these paths, there is always another loop path that goes precisely in the opposite way. The constructive interference of the loop paths increases the probability of staying at the initial position and reduces diffusion. a) Transport trajectories without loop ; b) Trajectories of loop going back to the initial position, contributing to the weak localization.
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 23 Figure 2.3 -The Schematic plot of the β function in 1D, 2D and 3D. The arrow shows the direction of dimensionless conductance g evolve as the system size increases [17].
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 24 Figure 2.4 -The phase diagram of Anderson transion. a) In the presence of speckle disorder, the moblility edge E c distinguish the localization regime and diffusive regime. b) The Anderson transition is characterized by two parameters, the localization length in the localized regime and the diffusion constant in the diffusive regime. Near the mobility edge, the two parameters scale with the critical exponents, ν and s.

Figure 2 . 5 -

 25 Figure 2.5 -Main experimental results of the experiment of Palaiseau. a) The evolution of atom profile after releasing in the disordered potential. b) The time evolution of the central density, it gives the estimation of localized fraction. c) The estimation of localized fraction with respect to the strength of disorder, the continuous curve is the numerical estimation [24].
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 26 Figure 2.6 -The illustration of the experiment of Florence and it's main results. a) The experimental sequence after producing the BEC, it includes the period to ramp down the interaction, the trap, and to ramp up the disorder, the period of harmonic modulation to excite the atom to different energy, and the period of expansion in disorder of 500 ms. The 3 figures below show the energy distribution after harmonic modulation. b) The measurement of localized fraction by counting the atom number remaining in the disorder. c) The result of the mobility edge after the estimation [25].
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 27 

Figure 2 . 7 -

 27 Figure 2.7 -An intuitive picture of the physical meaning of the correlation energy. V R is the average potentail of the disorder. σ is the correlation length of the speckle potential, corresponding to the typical size of the local minima. The correlation energy E σ is seen as the energy gap between adjacent levels in the little trap formed by the local minima.
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 28 Figure 2.8 -Comparison between the numerical simulations and experimental results for the mobility edge. The horizontal axis is the amplitude of disordered potential rescaled by correlation energy. The vertical axis is the mobility edge rescaled by the amplitude of disordered potential. The average energy of the disordered potential is set to zero. The black discontinuous curve of the numerics. The red line is the estimation in the experiment of Palaiseau. The blue curve is the measurement of the experiment of Florence. The green curve is the result of the experiment of Urbana Champaign [32].
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 31 Figure 3.1 -The atomic level structure of 87 Rb atoms. It includes mainly the levels used in the experiment, the hyperfine levels of D 2 line. The transition for the Doppler cooling is called 'Deoppler'. And the transition pumping that atoms back to state |F = 2⟩ is called 'Repumper'. The reference laser L1 is locked to the crossover peak of |F = 2⟩ ↔ |F ′ = 2⟩ and |F = 2⟩ ↔ |F ′ = 3⟩ in saturated absorption spectrum.
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 32 Figure 3.2 -The global scheme of the experimental setup. In our experiment, the axis x, y, z are shown in the figure. It is conventionally used in our experiment and also this manuscript [55].

  .3. The L1 laser is locked to the crossover peak of the transitions |F = 2⟩ → |F ′ = 2⟩ and |F = 2⟩ → |F ′ = 3⟩ (refer to Figure 3.1) using the saturated absorption spectrum of a Rubidium vapor cell. The beating signals from L1 and L3 are processed by a counter, which generates a voltage signal proportional to the frequency difference, used as the error signal for locking. The frequency of the L3 laser is controlled by an analog signal added to the offset of the error signal. The L3 laser is primarily used for atoms in the |F = 2⟩ state and serves as the main laser for cooling and imaging.
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 33 Figure 3.3 -Optical setup of lasers for cooling, manipulating and imaging. L1 is the homemade laser with external cavity whose frequency is locked by the saturated absorption spectrum. L2 and L3 are cheetah lasers whose frequencies are locked by the beating signal with L1. TA is the tapered amplifier that amplifies the power of lasers.
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 34 Figure 3.4 -Principle of Zeeman slower. The coils covering the tube creates a varying magnetic field B(z). The slowing laser is red-detuned to the transition from |F = 2⟩ to |F ′ = 3⟩ by around 133MHz. The atoms scatter the photons to slow down. As the atoms slow down, the Doppler effect and the varying magnetic field keep the atoms resonant to the laser beam. The circular polarization of the laser beam ensure the cooling transition |F = 2, m F = ±2⟩ to |F ′ = 3, m F = ±3⟩, in which the sign depends on the direction of the magnetic field.

Figure 3 .

 3 Figure 3.5 -a) Magneto-optical trap in our setup. There are 3 pairs of counter-propagating lasers and a magnetic gradient coil that form the MOT, which is able to cool and trap atoms. The power of each laser beam is about 15 mW. b) The geometry of the magnetic trap. It consists of a quadruple field in direction y and z generated by a pair of electromagnets and a bias field in direction x generated by two pair of coils [59].

  we can pump the atoms to state |F = 1⟩ in 40 µs. The potential of
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 36 Figure 3.6 -Principle of the RF-assisted evaporation. Direction y is the vertical direction. The frequency of the RF ν rf is larger than the energy splitting of level |F = 1⟩. But for atoms going far enough from the center of the trap, there exist resonant regime where the atoms are transferred to state |F = 0, m F = 0⟩, which is not trapped and taken away by the gravity. Thus the atoms having high enough momentum to entering this regime are cut off. The rest of atoms thermalize in a lower temperature.
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 37 Figure 3.7 -Optical tweezer and transport of atoms. The laser beam is focused to the atoms by a lens with a waist of 28 µm. The maximum power of the beam is 1.5 W. The lens is installed on the translation stage. The atoms trapped by the tweezer are transported for 45 cm [55].
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 38 Figure 3.8 -The crossed ODT, evaporative cooling and adiabatic opening. a) The configuration of the crossed ODT. The focal points of both the beams are at the cross point. It starts from the maximum power and ramp down the power in 2 s, evaporating the hot atoms. b) Adiabatic openingof the cross ODT. To further lower the temperature, we need to further lower the trap depth. We move the focus of tweezer beam for 6 mm along z axis to realize this purpose.

  Figure 3.9 shows an example of the image of the BEC at this step. The atoms are at state |F = 1, m F = -1⟩. The atom number at this step is around 7 × 10 4 .
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 39 Figure 3.9 -Experimental image of BEC. The image of the BEC is taken after an 100 ms time of flight after removing the optical dipole trap. The shape of the cloud reflect its momentum distribution. It consists of an anti-parabola part (BEC) and a thermal Gaussian part.

  The force on the atoms should compensate the gravity, thus -∂U mag(r) ∂y = mg. (3.14) Neglecting the curvature b ′′ , we obtain the gradient needed to compensate the gravity b
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 310 Figure 3.10 -The scheme of the levitation field. It is generated by 2 pairs of coils, one in anti-Helmholtz configuration, giving the gradient field, the other in Helmholtz configuration, giving the bias field [61].

Figure 3 .

 3 Figure 3.11 -The energy dependence of Zeeman levels on the magnetic field : a) All the Zeeman levels of 5 2 S 1/2 and their energy with respect to the magnetic bias field. It shows the possibility to couple the states |F = 1, m F = -1⟩ and |F = 2, m F = 1⟩ with a two-photon transition. b) The magnetic susceptibility of the Zeemans levels. It shows in weak field B ≃ 3.229G, the states |F = 1, m F = -1⟩ and |F = 2, m F = 1⟩ share the same magnetic force.

Figure 3 .

 3 Figure 3.13 -The principle of 2-photon transition from state |F = 1, m F = -1⟩ to state |F = 2, m F = 1⟩ with the inermediate state |F = 2, m F = 0⟩.

Figure 3 .

 3 Figure 3.14 -A typical Rabi oscillation in our experiment. Here the x axis is the RF transfer time, and y axis is the atom number on state |2⟩. The blue dots are measured atom numbers. The red curve is the fitting with a sinusoidal function along with an exponential decay : f (t) = N (1/2cos(2πΩ eff t) exp(-t/τ )). Here the Rabi frequency is around Ω = 17 Hz, and the coherence time is around τ = 350 ms.

Figure 3 .

 3 Figure 3.14 presents a typical Rabi oscillation in our experiment. The atom number in state |2⟩ undergoes a sinusoidal oscillation along with an exponential decay due to the
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 315 Figure 3.15 -Rabi spectrum in different intensity of microwave and the determination of magic point. a,b) The Rabi spectrum in half a period of Rabi oscillation with different Rabi frequency, 12.5 Hz for a and 16.7 Hz for b. Orange dots are the measured point, and the blue curve is the fitting curve in the form of theoretical expression. c) The resonant peak with respect to the current for the coils generating the bias magnetic field. The bias field B 0 depend linearly on the current. The black dots are the measured resonant point, and the blue curve is the parabolic fitting based on equation 3.18.
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 316 Figure 3.16 -Absorption imaging and fluorescence imaging. a) Absorption imaging : A collimated resonant laser beam goes through the atomic cloud and some photons are absorbed. The MOT camera captures an image with the atoms and another image without the atoms. By comparing the two images we obtain the image of atomic cloud. b) Fluorescence imaging : A strong resonant beam sends the atoms to the excited states. The atoms fluoresce because of the spontaneous emission. The fluoresced photons are captured by the science camera along x axis and the bottom camera along y axis. The two images give a 3D view of the atomic cloud.
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 41 Figure 4.1 -An example of speckle pattern and its physical reason. a) The pattern is established via the interference of the wavelets from every point on the rough surface, or diffuser with random phase. b) An example of speckle pattern. The random pattern is generated by the summation of phase shifted wavefront I = | j e iϕj |.
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 42 Figure 4.2 -The parameters of a diffuser. The thickness of the diffuser at position x 0 is l(x 0 ). r l is the grain size on the rough surface, σ l is the variance of the thickness, and r diff is the typical size of an 'independent emitter'. In the limit of extreme roughness, σ l correspond to many times of wavelength λ. r l refers to the correlation length of the l(x 0 ), which characterize the grain size on

Figure 4 . 3 -

 43 Figure 4.3 -Imaging system of speckle : The imaging system consists of a focal lens glued to the diffuser. The speckle pattern is imaged at the focal plane of the lens, which gives the Fourrier transformation of the field going through the diffuser. The diffusion angle θ diff characterizes the angular size of the speckle pattern, with σ ex = θ diff f ∝ λf
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 44 Figure 4.4 -The spatial correlated pattern of speckle field. The correlation lengths of transverse and longitudinal directions are σ ⊥ ∼ λ/2NA and σ ∥ ∼ λ/NA 2
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 45 Figure 4.5 -Optical setup of the speckle. A wide Gaussian beam illuminates the diffuser as well as the focal lens. The optical parameters are detailed on the figure. Due to the presence of the glass cell of the vacuum chamber, the actual focal point is around 1 mm to the left side than the calculated focal point.
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 46 Figure 4.6 -Bichromatic speckle scheme for the state-dependent potential. The intention of the bichromatic speckle scheme is to increase the detuning and reduce the photon-scattering rate. Here ω p and ω c refer to the frequencies of the principal beam and compensating beam. the detunings for state |1⟩ are δ p ≈ 100 GHz for the principal laser and δ c ≈ -1 GHz for the conpensating laser. Both the beams are blue-detuned for state |2⟩. This configuration results in the cancellation of potential on state |1⟩ and a positive speckle potential on state |2⟩.

Figure 4 .

 4 Figure 4.7 depicts the probability distribution of the disordered potential pattern imposed by the laser speckle in both the red-detuned and blue-detuned case. Intuitively we can control the powers of the two laser beams to achieve the potential cancellation on one
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 47 Figure 4.7 -Propability distribution of intensity for red-detuned and blue-detuned speckle with an average energy of ±|V R |. For blue-detuned speckle(δ > 0), it is an exponential distribution at the positive side(Blue curve). For red-detuned speckle(δ < 0), it is an exponential distribution at the positive side(Red curve). The potential pattern for the two cases are also illustrated.
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 48 Figure 4.8 -Illustration of the bichromatic compensation of the two speckle fields. a) Near the Fourier plane, the two patterns are identical with a spatial scaling factor close to 1, yielding an almost perfect overlap of the potential at the center, but the decorrelation increases when the distance to the focal point increases. b) The bichromatic correlation function has a maximum close to 1 atthe center, while decreases when the distance to the center increases. Consequently, the variance of the residual field after the compensation has a minimum at the focal point, but increases when the distance to the center increase. The radius of correlation is l c = Fσ ⊥ . Thus the BEC needs to be at the center of speckle field in order to achieve a good cancellation.
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 49 Figure 4.9 -Experimental setup for bichromatic speckles. The dashed boxes represent the optical tables. Two lasers, principal laser and compensating laser, are combined by a PBS and injected into a single mode polarization maintaining fiber. The compensating laser frequency is locked by beating with L2. Small proportions of both the lasers are taken by 10 : 90 (R :T) beamsplitters for power servo-loop. The output of fiber ensures the same spatial mode for the two beams. A small proportion is taken from the output beams to monitor their power fluctuations. The output beam goes through a telescope to increase its waist. The combined beam illuminates the diffuser illustrated in Figure 4.5.
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 51 Figure 5.1 -Spectroscopic scheme with a state-dependent potential. The initial state |i⟩ has internal state |1⟩ insensitive to the disorder, and external state of a BEC, which is approximately |k = 0⟩. The final state |f ⟩ has internal state |2⟩, sensitive to the disorder and external state in the disorder. The initial and final states are coupled by the microwave pulse. The coupling rate is described by the spectral function A(k = 0, E). The blue dashed curve denotes the spectral function A(k = 0, E).
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 52 Figure 5.2 -State dependent potential with monochromatic speckle. The laser beam for the speckle is quasi-resonant for |2⟩ with a detuning of around ±80 MHz, while the detuning for state |1⟩ is around ∆ hf ∼ 6.8GHz. Here F ′ = 3.
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 53 Figure 5.3 -The measurement of spectral function in speckle disorder. I) Spectral function in reddetuned speckle : From a to f, the amplitudes of disorder V R /h are -60 Hz, -121 Hz, -416 Hz, -832 Hz, -2042 Hz, -4008 Hz. The blue dots are the measured data. The red curve are the numerical simulations from D. Delande. II) Spectral function in blue-detuned speckle : From a to f, the amplitudes of disorder V R /h are 60 Hz, 121 Hz, 416 Hz, 832 Hz, 2042 Hz, 4008 Hz. The blue dots are the measured data. The red curve are the numerical simulations. The time duration of the RF pulse t RF is adjusted for different V R to make the energy resolution much smaller than the width of spectral function. For large disorder amplitudes, the residual disorder for atoms in state |1⟩ excites the atoms and deforms the experimental curve, which leads to the mismatching in I f and II f.
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 54 Figure 5.4 -Schematics of the two marginal rigimes of spectral function of noninteracting atoms in disordered potential. (a)Quantum regime, |V R | ≪ E σ ; (b)Classical regime, |V R | ≫ E σ .
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 55 Figure 5.5 -Evolution of the size of atomic cloud in state |1⟩ by Time of Flight (TOF) measurement following the quenching protocol of the bichromatic speckle, where the disorder is switched on abruptly. The amplitude of the principal laser potential is fixed to V p,1 /h = 366 Hz, and we scan the compensating laser potential from 0 to 700 Hz. The dots corresponds to the size of atomic cloud measured after a TOF of 200 ms, averaged for 5 times repetition. And the error bar is determined by the standard deviation of the 5 times measurement. At the left side of the dashed line, the compensating laser potential is less than the principal laser potential (|V c,1 | < |V p,1 |), the overall speckle potential is repulsive, and the dots are blue. At the right side, the compensating laser potential is more than the principal laser potential (|V c,1 | > |V p,1 |), the overall speckle potential is attractive, and the dots are red. On the dashed line, the disorder is canceled out according to the calculation. The gray horizontal line provide a reference with zero power of both the beam. It gives the size without excitation.
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 56 Figure 5.6 -Reproduction of the measurement of spectral function in the bichromatic scheme and the improvement of lifetime. a). Normalized transfer rate Γ(δ RF ) from the disorder insensitve state |1⟩ to the disorder sensitive state |2⟩, with the disorder amplitude V R /h = 416 Hz. The experiment is implemented in the condition presented in Table 4.1, and the loading time t RF = 40 ms. The blue dots with error bar are the measured results in different loading energy δ RF . They agree well with the numerical curve given by M. Pasek and D. Delande [27]. b). Atom number decay curve in state |2⟩ after the transfer and held in the disordered potential. The loading energies are 216 Hz(green) and 356 Hz(blue), which are marked by blocks in a. The fits of exponential decay yield the lifetime of 1.82(5) s (green) and 1.67(6) s (blue). They are in good agreement with the numerical prediction 1.66s.
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 57 Figure 5.7 -Illustration of transfer and releasing process. We assume the total spatial density of atoms doesn't change. The blue block represent the atomic density in state |1⟩, and the red block represent the atomic density transferred to state |2⟩.The repulsive interaction between the atoms compensate the harmonic trap and create a flat bottom in potential. In the regime where the transferred proportion is small, by removing the harmonic trap and the repulsion from atoms in state |1⟩ simultaneously, we preserve the potential in the flat bottom during the releasing. This fact avoid the destruction of energy distribution.
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 61 Figure 6.1 -Numerical determination of the mobility edge of a cold atoms in a disordered 3D potential of a blue-detuned speckle with V R /E σ = 0.5. For a given energy, the localization length λ M is computed with respect to M . The figure shows λ M /M versus energy in different M . The main plot includes curves from M = 35 (less steep, black curve) to M = 80 (steepest magenta curve). The figure suggests a mobility edge near -0.18E σ .
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 62 Figure 6.2 -Single speckle and crossed speckle configurations : a) Single speckle configuration, the speckle grain is anisotropic ; b) Two crossed speckles configuration, the grain size is much more isotropic.

Figure 6 . 3 -

 63 Figure 6.3 -Mobility edge simulation for different speckle configurations [32]. a) Mobility edge for single speckle with different numerical aperture θ 0 = {0.4, 0.5, 0.7, 0.85, 1.0}(From lower to higher) in the unit of E L = ℏ 2 k 2 L /m, where k L is the wave vector of the speckle beam. b) Same data as (a) reploted in the unit of E σ = ℏ 2 /m(σ x σ y σ z ) 2/3 . c) Mobility edge for crossed speckle configurations with different numerical aperture θ 0 = {0.5, 0.8}(From lower to upper) in the unit of E L . d) Same data as c) reploted in the unit of E σ .
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 6 Figure 6.3 b and d show that in the unit of E σ , the mobility edge predictions collapse
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 64 Figure 6.4 -The working condition of the experiment and the spectral function measurement. a) Two deep blue dashed lines mark the working condition of V R /h = 416 Hz (right) and V R /h = 832 Hz (left) in the phase diagram predicted by D. Delande [32], the red dots are numerically predicted mobility edge. It is based on Figure 2.8. b) The spectral function measurement for V R /h = 416 Hz averaged by 5-time measurement. Blue dots are measured and red curve is numerics. The orange boxes mark the loading energy we use to observe the dynamics. The gray dashed line marks the expected mobility edge. The black line marks the reference energy used in (a), which is the average potential of the disorder. c) The spectral function measurement for V R /h = 832 Hz. Blue dots are measured and red curve is numerics. The gray dashed line marks the expected mobility edge. The black line marks the reference energy used in (a).

Figure 6 . 5 -

 65 Figure 6.5 -The dynamic of atomic profile with different loading energy. The profiles are along y axis, integrated along two horizontal axes. We visualize the profiles at expansion time t exp = 0.01 s (Blue), t exp = 0.91 s (Red), t exp = 1.81 s (Yellow), t exp = 2.71 s (Purple) in each figure. The profiles are normalized in each figure, taking into account the atom loss, so that they are comparable. The vertical axis is the normalized atomic density, and the horizontal axis is the position along vertical direction.
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 9 Hz for V R /h = 416 Hz, E mes c ≃ 420 ± 12 Hz for V R /h = 832 Hz.(6.5) 
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 66 Figure 6.6 -Size of atomic profile after expansion for 2s with respect to the loading energy. For disorder amplitude V R /h = 416 Hz (Left) (V R /E σ ≃ 0.94) and V R /h = 832 Hz (Right) (V R /E σ ≃ 1.89), we calculate the RMS size σ 2 y of atomic profile for different loading energies E f = hδ RF after expansion time t exp = 2 s. The RMS size posses a turning point of the trend, which is supposed to be the measured critical energy E mes c (red line). The numerically predicted mobility edge is marked by black dashed line. E mes c is marked in the diagram of mobility edge below with blue marks (See Figure 2.8), using the average energy of disordered potential as a reference. The error bars of blue marks present the uncertainty of the measurement. The horizontal uncertain comes from the uncertainty of the determination of V R and the uncertainty of the correlation length, which is around 0.05 for 416 Hz and around 0.1 for 832 Hz. The vertical uncertainty comes from the determination of V R and the observation of the turning points, which is around 0.04 for 416 Hz and 0.03 for 832 Hz.
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 67 Figure 6.7 -Profile at 2s with different loading energy. The loading energies are δ RF = {156 Hz, 196 Hz, 236 Hz, 276 Hz, 316 Hz, 356 Hz}. The color for each loading energy is marked in legend. A more complete data set is presented in Figure 6.8a. The vertical axis is the normalized atomic density in the vertical axis.
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 68 Figure 6.8 -Central density analysis. a) For disorder amplitude V R /h = 416 Hz, the atomic profile with loading energies from δ RF = 156 Hz to δ RF = 356 Hz with interval of 20Hz after expansion for t ex = 2 s. They are the averaged profiles of the 5-time repetition with a Gaussian smoothing of 4 pixels.b) The normalized central density with respect to the loading energy (red dots). the black dashed line marks the numerical predicted mobility edge. The gray curve marks the trends at the regime expected to be diffusive. All the points in the regime expected to be localized significantly deviate from this trend line.
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 69 Figure 6.9 -The relation between 1/n CD and the loading energy. It is reploted from Figure 6.8b reflecting the evolution of size. The dashed line marks the mobility edge predicted by numerics. The light gray lines marks the trend.
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 610 Figure 6.10 -Temperal dynamics of RMS size for different energies. The purple dots are the RMS size square σ 2 y with respect to expansion time t exp . The error bar is calculated from the uncertainty of 5-time repetitions. The diffusion constant D is estimated by fitting a linear function σ 2 y ∼ Dt+R 2 0 .
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 71 Figure 7.1 -Major concern of the energy distribution loaded into disordererd potential.In our expectation, its width is Fourier limit with ∆E ∼ h/t RF . However, in real experiment, we suspect a broad distribution along with a narrow peak.
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 72 Figure 7.2 -The intuitive picture of the profile after the RF transfer. Similar figure is already presented in Figure 5.7. The blue part refers to the profile in state |1⟩, and the red part refers to the profile in state |2⟩. Before the transfer, the parabolic profile creates the nonlinear term cancelling the harmonic trap. After the transfer, we assume the total profile of atoms does not change, still canceling the harmonic trap, which preserves the chemical potential. Then the trap and atoms in state |1⟩ is removed simultaneously. Only atoms in state |2⟩ evolve in disordered potential.
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 7 3 presents an example of the simulated 1D speckle pattern. Its exponential histogram and Gaussian spatial correlation obey the relation discussed in 4.2.
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 73 Figure 7.3 -Example of 1D speckle simulation. Here the correlation length defines the length unit, thus the correlation length σ r is 1. a) The simulated speckle disorder ; b) The histogram of the simulated speckle disorder (blue) and the theoretical curve (red) ; c) The spatial correlation function (blue) and the theoretical curve (red).
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 74 Figure 7.4 -Simulated 1D profile of BEC in the harmonic trap in state |1⟩. The parameters are taken from [27]. The blue curve is the simulated profile. The green dashed curve is the prediction of Thomas-Fermi distribution. The BEC radius is around 18 µm. The Healing length is estimated as around 1.6 µm.

Figure 7 .

 7 Figure 7.4 presents an example of ground state in the harmonic trap. Here we use the parameters in the measurement of spectral function in 2018. The correlation length is σ r ≈ 0.5 µm, yielding correlation energy ω r = 2π × 441 Hz. The trapping frequency is ω T = 2π × 13 Hz. The chemical potential µ BEC ∼ h × 140 Hz. The atom number is around 2 × 10 5 . The nonlinear term gN ∼ 14.5 is determined by the harmonic trap and the chemical potential. The healing length of the BEC is estimated as ξ = 1.6 µm. These parameters are comparable to our experimental configurations.

Figure 7 . 5 -

 75 Figure 7.5 -Spectral function simulation with different amplitudes of disordered potential. Here the red curve is the spectral function simulated by the code of D. Delande. The blue curve is our simulation of transfer rate Γ. The green curve is the spectral function convoluted by sinc 2 ( δ 2π t RF ), which is the theoretical estimation of the transfer rate. The amplitudes of speckle disorder are V 0 = 0.2 for (a), V 0 = 2 for (b) and V 0 = 20 for (c), crossing a vast range from 80Hz to 8kHz. The transfer time is selected long enough to avoid any apparent broadening ∆E = 1/t RF , with t RF = 200 for (a), t RF = 80 for (b), and t RF = 20 for (c). The loading energy δ is rescaled by the amplitude of disorder V 0 . Here the coupling rate Ω is set to be very low, with a transferred proportion Γt RF ∼ 10 -5 .
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 76 Figure 7.6 -Spectral function measurement broadened by limited transfer time.Here the red curve is the spectral function simulated by D. Delande. The blue curve the our simulation of transfer rate Γ. The green curve the the spectral function convoluted by sinc 2 ( δ 2π t RF ), which is the theoretical estimation of the transfer rate. Here the disorder amplitude V 0 = 2 (corresponding to 2π × 882 Hz) is fixed. The transfer times t RF are t RF = 5 for (a) (corresponds to 1.7 ms), t RF = 10 for (b) (corresponds to 3.4 ms), and t RF = 40 for (c) (corresponds to 13.6 ms).The loading energy δ is rescaled by the amplitude of disorder V 0 .

2 0 2 113term sinc 2 δt RF 2 has a width around t - 1 RF 1 RF ≪ V 0 , πV 2 0

 222112 at the quantum regime7 , and the broadening 5. The definition of sinc function is sinc x = sin x/x when x ̸ = 0 and sinc 0 = 1. 6. Because in the classical regime, the spectral function has the shape close to P (V ), an exponential curve with width V 0 .7. The definition of quantum and classical regime sees Section 5., corresponding to ∆E ∼ h/t RF . In the regime of t -, sinc 2 δt RF 2 is much narrower than the spectral function, thus the broadening due to the convolution is insignificant.

Figure 7 .

 7 Figure 7.5 presents the results of the simulation of Γ curve in this regime for three different amplitudes of disorder crossing two orders of magnitude, with V 0 = {0.2, 2, 20}. The Γ curves show excellent agreement with the spectral function curves simulated using D. Delande's code. As a first demonstration of the scheme, we set a very low coupling rate, yielding a transferred proportion of around 10 -5 .

Figure 7 . 7 -

 77 Figure 7.7 -Energy profile after loading into the disordered potential after different transfer times. The disorder amplitude is V 0 = 2 (corresponds to 2π × 882 Hz), and the detuning of RF, or loading energy is E = δ = 1 (corresponds to 2π × 441 Hz), marked by gray lines in the figure. Blue curves are the histogram of energy distribution simulated by coupled GPE with a discretization of δE = 0.01, and the red curves are the estimation based on the numerical spectral function and the RF transfer time. Transfer times for each picture are t RF = 10 (corresponds to 3.4ms and energy width of 2π × 250 Hz), t RF = 20 (corresponds to 6.8 ms and energy width of 2π × 120 Hz), t RF = 30 (corresponds to 10.2 ms and energy width of 2π × 80 Hz), t RF = 40 (corresponds to 13.6 ms and energy width of 2π × 60 Hz), t RF = 60 (corresponds to 20.4 ms and energy width of 2π × 40 Hz), t RF = 100 (corresponds to 34 ms and energy width of 2π × 25 Hz). Here the coupling rate Ω ∼ 0.017, and the transferred proportion is around Γt ∼ 10 -3 -10 -2 , which is in the regime of Fermi golden rule.

Figure 7 . 8 -

 78 Figure 7.8 -The energy profile for different coupling rate. The disorder amplitude and loading energy is the same as Figure 7.7. The RF transfer time t RF is fixed at 60, corresponding to around 20 ms. We compare the energy profile using a wide range of coupling rate from Ω = 0.017 to Ω = 0.345, corresponding to Rabi frequencies from 2π × 8 Hz to 2π × 160 Hz. Similar to previous figures, the red curves are the reference based on the transfer time and spectral function, and the blue curves are the simulated histogram of the energy population.

Figure 7 . 9 -

 79 Figure 7.9 -Transferred proportion evolution and energy distribution correlation to reference with different coupling rates used in Figure 7.8. The disorder amplitude and loading energy is the same as Figure 7.7. Red : Ω = 0.017 ; Blue : Ω = 0.034 ; Orange : Ω = 0.069 ; Purple : Ω = 0.138 ; Green : Ω = 0.345. a) and b) The transferred proportion with respect to transfer time with the coupling rates. The red and blue curve is roughly linear. The purple and green curves are clearly nonlinear. The orange one is slightly nonlinear. The nonlinearity shows that the transfer is beyond the regime of Fermi Golden rules, which could lead to the broadening seen in Figure 7.8. c)The correlation between simulated energy profile and theoretical reference in equation 7.19 with respect to transfer time for different coupling rates. For the coupling rate in the linear regime, the correlation is close to 1. For larger coupling, the correlation turns down after certain time.

Figure 7 .

 7 Figure 7.10 -The spatial profile of atomic cloud after the transfer for different times. The gray curve is the initial profile of the ground state in state |1⟩ ; the blue curve is the profile of atoms in state |1⟩ after the transfer ; the red curve is the profile of atoms in state |2⟩ after the transfer ; the purple curve the overall profile of all the atoms. Here we set disorder amplitude V 0 = 2 (2π × 882 Hz) and RF detuning δ=1 (2π × 441 Hz). The transfer times is t RF = 20 (6.8 ms) for a, t RF = 40 (13.6 ms) for b, t RF = 60 (20.4 ms) for c, t RF = 80 (27.2 ms) for d, t RF = 100 (34.0 ms) for e, t RF = 200 (68.0 ms). The curves are averaged over 200 simulations. The coupling rate is selected large enough so that the proportion transferred to state |2⟩ is almost saturated, in the range of 15% to 25%.
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 711 Figure 7.11 -Atom number decay of the BEC in state |2⟩. a) Atom number N 2 with respect to the holding time. b) N -2/5 2 with respect to holding time(blue dots). It is fitted by a linear function. The lifetime is much shorter than 1.6s because of high density of the atoms.

Figure 7 .

 7 Figure 7.12 -Reverse the state |1⟩ and state |2⟩ in the spectroscopic scheme. The normal spectroscopic scheme (Left) is introduced in Figure 4.6, the bichromatic speckles compensate the disordered potential on state 1⟩, and we use the RF transfer from disorder insensitive state |1⟩ to disorder sensitive state |2⟩. In the reversed scheme (Right), we perform the RF transfer from disorder insensitive state |2⟩ to disorder sensitive state |1⟩. The compensating laser is now red detuned for both the levels. In the compensating condition of state |2⟩ and V R /h = 416 Hz for state |1⟩, we set the detuning of compensating laser to ∆ c ∼ -8.8 GHz. The detuning of principal laser remains the same. In this case, the lifetime in bichromatic speckle for atoms in state |2⟩ is calculated as 1.4s.

Figure 7 .

 7 Figure 7.14 -a) The levitation condition for gradient field b ′ . The blue curve is for |F = 1, m F = -1⟩ (state |1⟩), the yellow curve is for |F = 2, m F = 1⟩ (state |2⟩), and the red curve is for |F = 2, m F = 2⟩, the state used for 3d Anderson localization experiment in 2011 [24]. b) The Zeeman spectrum of the levels. The levitation condition is calculated with the susceptibility of levels at certain bias field.

r 2 w 2 0≈ U 0 -U 0 2r 2 w 2 0Here U 0 2 + z 2

 22022 is the maximum potential at the center of beam, w 0 is the beam waist illuminating the atoms, and r is the distance to the center in the horizontal plane, with r = √ x
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 715 Figure 7.15 -Compensate the magnetic trap with a Gaussian anti-trap. The orange curve is the harmonic magnetic trap. The green curve is the Gaussian anti-trap created by the 532 nm laser.The blue curve is the summation at the compensating condition, which posses a flat bottom. In our experimental condition, this flat bottom has a radius of R flat ≈ 110 µm.

Figure 7 . 16 -

 716 Figure7.16 -Setup of the anti-trap. The laser comes from a high-power laser at the wavelength of 532 nm, which is far blue-detuned for Rubidium. The power of this laser can go up to 15 W, with around 10 W usable after going through the AOM for optical power control. The beam waist is initially as large as around 1.12 mm. The beam diffracted by the AOM go through a telescope which reduce the beam waist to around 420 µm. Then it illuminates the atoms. The beam is along y axis. It creates a repulsive harmonic potential for the x and z axes at the center of the beam.

Figure 8 .

 8 Figure 8.1 -a) The scheme of the experimental setup of the two crossed speckle beam in the experiment of 3D Anderson localization [24]. b) Typical 3D shape of the speckle pattern, red grains mark the regimes of high intensity.
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 82 Figure 8.2 -Anderson transition and critical component. Same figure as 2.4

Figure 8 . 3 -

 83 Figure 8.3 -Examples of wave function in different regimes. It is a simulation of eigenstates in 3D Anderson model in [91]. a) Wave function in diffusive regime. The wave function is largely extended b) Wave function in critical regime. The wave function is largely extended in some places but is peaked in other places. c) In localized regime, the wave function is localized.

Figure 8 .

 8 3 gives an illustration of wave function with a simulation of eigenstates in a 3D Anderson model, which presents this feature.

(8. 5 )

 5 The complex wave function behavior of Shrödinger equation (-∆ + V )ψ = Eψ is govern by this landscape function with an inequality |ψ(r)| ≤ Eu(r).

Furthermore, we can

  conjugate the Hamiltonian and develop the effective potential picture. We apply the transformation ψ = uϕ, which transform the Shrödinger equation to

Figure 8 . 4 -

 84 Figure 8.4 -(Left) Three-dimensional view of the landscape of u. (Middle) 2D view of the landscape with the valleys marked by black network. (Right) The eigenstates and the valleys. The valleys decide the sub space that limit the eigen wave function.

-

  mask of the converging lens, the term exp -ik (x-x 0 ) 2 +(y-y 0 ) 2 2z is the accumulation of the phase while propagation according to the principle of Fresnel diffraction. Now we consider the general two-point correlation function of bichromatic speckle field, at position r and r ′ , for lasers with different wavelength λ p and λ c . The correlation function is expressed as :Γ(r, r ′ , λ p , λ c ) = E(r ′ , λ c )E * (r ′ , λ p ) ikc z ′ + x ′2 +y ′2 2z ′ λ p λ c zz ′ × dr 0 dr ′ 0 t diff (r 0 , λ p )t * diff (r ′ 0 , λ c ) × E inc (r 0 , λ c )E * inc (

  r ′ , λ p , λ c ) = e ikp z+ x 2 +y 2 2z e -ikc z ′ + x ′2 +y ′2 2z ′ λ p λ c zz ′ × dr c,0 d∆r 0 C diff (∆r 0 , λ p , λ c ) × E inc (r c,0 -∆r 0 /2, λ p )E * inc (r c,0 + ∆r 0 /2, λ c ) C diff (∆r 0 , λ p , λ c ) ∝ exp -∆r 2

×

  r ′ , λ p , λ c ) = e ikp z+ x 2 +y 2 2z e -ikc z ′ + x ′2 +y ′2 2z ′ λ p λ c zz ′ × dr 0 I(r 0 )e d∆r 0 C diff (∆r 0 , λ p , λ c )e

c 2 =×∆r 0 •r 0 k∆z 2f 2 e i k∆r 0 •∆r ⊥ 2f 2 (A. 11 ) 2 , 2 dr 0 I(r 0 ) 2 . 2 , 2 d∆r 0

 22112202220 3D (∆r ⊥ , ∆z) = δI(r ⊥ + ∆r ⊥ , z + ∆z)δI(r ⊥ , z) δI2 , (A.[START_REF] Segev | Anderson localization of light[END_REF] with r ⊥ = {x, y}. Close to the Fourier plane, where z = 0, and close to the optical axis, where r ⊥ = 0, the numerator reads as δI(∆r ⊥ , ∆z)δI(0, 0), and is computed using Wick's theorem :δI(∆r ⊥ , ∆z)δI(0, 0) = |Γ(∆r ⊥ , ∆z)| E inc (∆r ⊥ , ∆z)E * inc (0, 0) d∆r 0 C diff (∆r 0 )e iAs mentioned in the previous part, C diff is a Gaussian distribution with width ∼ r diff , r diff is very small, and as the result, the second integral is negligible compared to the first integral. After normalization by I(0, 0) and identifying a Fourier transform, we obtain :c 3D (∆r ⊥ , ∆z) = FT I(r 0 )e c z 2 dr 0 I(r 0 )e kp)d∆r 0 C diff (∆r 0 , λ p , λ c ) ) the same approximation as in equation A.11 for the phase exponentials in the second integral, (ii) the normalization by the average intensity profile around the center I(0, 0) and (iii) δλ = |λ c -λ p | ≪ λ p,c ∼ λ, we obatin :c 2λ (r ⊥ , z, λ p , λ c ) =d∆r 0 C diff (∆r 0 , λ p , λ c ) C diff (∆r 0 , λ p ) d∆r 0 C diff (∆r 0 , λ c )

FT

  d∆r 0 C diff (∆r 0 , λ) = 2πr 2 diff .(A.[START_REF] Mike H Anderson | Observation of Bose-Einstein condensation in a dilute atomic vapor[END_REF] 148Thus at the end, the normalized bichromatic correlation function reads as :c 2λ (r ⊥ , z, λ p , λ c ) = C 2 diff (0, λ p , λ c )

  

  

  

  

  

  1 kl * ln L l * ). Again, a finite system size exists that reaches the Anderson Localization regime, and the wave function is always localized to a large enough size. Nevertheless, it scales with a logarithm. The localization length is then ξ loc ∼ l * e kl * . As a result, as the disorder decreases (kl * becomes larger), localization length increases exponentially. The localization length can easily be huge, which is a major obstacle for experimentalists in determining whether the system is localized.

Table 3 .

 3 1 -Main properties of 87 Rb regarding D 2 line

  Because we prepare a BEC in state |1⟩ before the spectroscopic scheme, which is a ground state in potential V 1,t , we need to calculate the ground state in state |1⟩ as the initial state. A method using imaginary time is applied to reach this purpose. Consider a general wave function |ψ⟩ and decompose it on the eigenstates of its Hamiltonian which forms a basis, All components in the excited states decay faster than the ground state component. When t is sufficiently large, only ground state finally survive. This process has no physical meaning, but can be easily carried out in the simulation, as a method to numerically determinate the ground state.

	|ψ⟩ =	c n |ϕ⟩.	(7.14)
		n	
	For a time-independent Hamiltonian, its temporal evolution can be written as	
	|ψ(t)⟩ =	e -i En ℏ t c n |ϕ⟩.	(7.15)
	n		
	If we replace the time t by imaginary time -it, it yields	
	|ψ(-it)⟩ =	e -En ℏ t c n |ϕ⟩.	(7.16)
		n	
	110	

Table 7 .

 7 1 -Comparison of the state-dependent disordered potential parameters between the monochromatic configuration and the bichromatic one. Here δ, δ p and δ c are detuning for the transition |F = 1⟩ → |F ′ = 3⟩, δ 2,3 . σ V1 is the residual disordered potential on state |1⟩. P is the power used for the monochromatic speckle. P p and P c are the powers for the principal laser and com-

	pensating laser.

The temperature of the atomic sample is much higher than other experiments, making it far from quantum degeneracy.

The sequence parameters, including cooling laser frequency, are not optimized for the step of optical molasses. This step is just a transition from the MOT to the magnetic trap, during which the cooling laser's frequency shifts from the one for the MOT to optical pumping. This could lead to a higher temperature than typical static molasses.

In the spectroscopic scheme, we make one level insensitive to disorder to produce a BEC on it, and make another level to be disorder-sensitive, so that we can apply an RF spin flip to transfer the atoms into disordered state with well-defined energy.

A small detuning δ mw avoids the population of state |F = 2, m F = 0⟩, which is not levitated by the magnetic field. Atoms in this state would fall due to gravity, causing significant incoherence, which is undesirable in our experiment.

Lots of imperfections can lead to decoherence, including thermal atoms, fluctuation of RF power, fluctuation of level splitting, etc. We keep the decoherence in a low level so that the coherence time is longer than Rabi period.

6. The absorption imaging is not available in the science chamber because the speckle implementation occupies the optical window. In the MOT chamber, the fluorescence is also available with the excitation of MOT beam.

This case corresponds to usual polished glass used in optical component, where the random fluctuation of phase is negligible and there is no diffusing.

This upper bound of frequency drift is given by the linewidth of the atomic level used for frequency stabilization.

The spectral function for energy E δ can be generally expressed with Green function asA(k, E δ ) = -1 π G(k, E δ ) = ⟨k|δ(E δ -H)|k⟩[START_REF] Valentin | Measurement of spectral functions of ultracold atoms in disordered potentials[END_REF][START_REF] Bruus | Many-body quantum theory in condensed matter physics : an introduction[END_REF]. It describes the probability of a plane wave with wavevector k to be at energy E δ in the disordered potential.

This issue is discussed more accurately in Section 7.1.

The side effect of this magnetic trap is not easy to analyze at this stage. In the experiment, the phenomenon we observe seems to confirm this hypothesis. We discuss potential improvement to avoid this trap in Section 7.3.3. 

The transfer time is chosen to be shorter for larger disorder amplitude because the lifetime of atoms in state |1⟩ is smaller.

The speckle disorder is generated numerically via Fourier transformation of a random phase array. The details of the mathematical forms see Chapter 4.

In the forward scattering regime, most of the scattered wave is redirected along the same general path as the incident wave.

The atomic density profile influences the loss curve because of the inhomogeneity of atomic density.

We design the sequence such that the atoms stay at state |2⟩ for a time as short as possible to minimize the decoherence because of two-body loss.

In another word, the atoms with typical loading energy can overcome the trapping potential up to 30 µm from the center in the horizontal plane.

I appreciate the resources and facilities provided by université Paris-Saclay and Institut d'Optique. The conducive research environment and access to libraries and laboratories signicantly contributed to the accomplishment of my dissertation.

-Imperfections and Improvement

The experimental measurement in October and November, 2022 presents promising results indicating possibility of the mobility edge near the numerically predicted value, which is an unprecedented success towards the direct Anderson transition measurement in real space. Nevertheless, the imperfections of the measurement still spark confusions.

A major concern is the real energy distribution loaded into the disordered potential.

We expect an energy resolved loading with a Fourier-limited width of ∆E ∼ h/t RF . However, because of the imperfections, the real energy distribution could be more complicated. Figure 7.1 illustrates the suspected energy profile in the experiment, which could consist of a broad distribution and a energy resolved peak. This possibility could lead to the complexity of the experimental observation.

In this chapter, we delve into these imperfections from two perspectives. In the first part, we explore the intrinsic imperfection given by the transfer scheme. To address this, we employ a numerical simulation in 1D to question the validity of the assumption regarding the narrow energy distribution. In the second part, we examine the imperfections created by our experimental setup. Finally, in the last part of this chapter, we propose a series of upgrades and improvements to rectify these imperfections. These enhancements are designed to pave the way for a more deterministic and precise measurement of the Anderson transition in the future.

. A numerical check of energy resolved loading

At the outset of my Ph.D. journey, we dedicated preliminary effort to developing a numerical simulation of the spectroscopic scheme featuring a state-dependent potential. Our primary objective is to gain direct insights into the energy distribution following energy-resolved loading, a critical aspect for validating the transfer scheme. Given the computational limitations, we perform an 1D simulation, acknowledging that it does not capture the complexity of the Anderson transition. However, we assume that it remains suitable for examining the radio frequency (RF) transfer step.

Theoretically, the energy resolution is dependent on the Fourier limit of the RF pulse duration, typically on the order of ∆E ∼ ℏ/t RF . Intuitively, we expect the overall profile of atoms to to remain the same as the initial profile. In Figure 7.2, we present a naive model with this assumption, where a small proportion of atoms is transferred to state |2⟩. In this simple model, we preserve the Thomas-Fermi distribution of the overall profile and still have a well-defined chemical potential. The atoms in state |2⟩ sense the harmonic trap as well as the repulsion from the interaction.Thus the overall potential has a flat bottom.

The significance of this assumption becomes apparent during the subsequent steps of the experiment. To release the atoms into the disordered potential while minimizing the adverse effects of the harmonic trap, we need to eliminate the atoms in state |1⟩ wave function in state |2⟩ in the speckle disorder,

Here φ 2,n is the eigenstate in the disordered potential. This equation calculates the eigenstates with only the speckle potential, as presented in the right part of Figure 7.2. They serve as a set of basis to analyze energy distribution.

In our discretization, we can rewrite this differential equation to difference equation with three point approximation

Thus the problem turns to the eigenstates and eigenvalues of the tridiagonal matrix applied to the vector {φ 2 (x i )}. By diagnolizing this matrix, we calculate directly the eigenstates and eigenvalues. We project the wave function in state |2⟩ and obtain the population for each eigenenergy.

Nevertheless, in each simulation, we generate the different speckle potential, and the eigenenergies are not the same. To do averaging, we divide the energy into discretized bars, and count the population of wave function in each bar to establish the histogram.

The histogram reflects the energy profile with a repetition for 100 times.

In the first attempt to simulate the energy profile, we set a coupling rate Ω ∼ 0.017 (corresponding to Rabi frequency of 2π ×8 Hz), relatively low but much more realistic than in the last subsection. Under this condition, around 1% of atoms are finally transferred, which is in the regime of Fermi Golden rule.

We compare the histogram to the theoretical estimation in equation 7. [START_REF] Kendall B Davis | Bose-Einstein condensation in a gas of sodium atoms[END_REF] and show some representative results in Figure 7.7. The results agree reasonably well with the theoretical estimation in a wide range of transfer time from 3.4 ms to 34 ms, although the limited repetition time leads to large fluctuations. The width of the simulated profile is ∆E = 2π/t RF , same as the theoretical estimation. As the transfer time increases, the energy profile becomes narrower. Moreover, the center of energy profile is around the loading energy δ.

However, if we increase the coupling, more atoms will be transferred. It is worth to check whether this agreement still holds beyond the small transferred proportion regime.

Here, we fix the RF transfer time to t RF = 60, corresponding to around 20 ms, and vary the coupling rate to observe the simulated energy distribution. This condition is comparable to our experiment. Figure 7.8 presents the typical behavior. When the transferred proportion is quite low (∼ 1%), the agreement between the simulation and theoretical estimation is almost perfect. However, the agreement degrades as the coupling rate increases, and the simulated energy profile broadens and tilts slightly to the low energy size. Finally, the energy distribution is fully scratched when the transferred proportion is high.

A deeper exploration of the parameters shows that the energy broadening happens when the transfer is significantly beyond the regime of Fermi Golden rule, where the atom number no longer increases linearly with respect to the RF transfer time t RF . Figure 7.9 a

A -Calculation of the normalized bichromatic correlation function

A.1 . Bichromatic correlation fucntion of the diffuser

Remind in Chapter 4, we have introduced the monochromatic correlation function of the diffuser in equation 4.6 :

Monochromatic correlation shows how the fluctuation of transmission through the diffuser of a laser with a single wavelength is correlated over the surface of the diffuser. There we define the bichromatic correlation function of the diffuser :

We can easily recover the monochromatic correlation function by setting λ p = λ c in the bichromatic correlation function. We have discussed that the fluctuation of the thickness of diffuser is Gaussian distributed with standard deviation σ e , therefore the phase fluctuation introduced to the laser by passing through the diffuser is also Gaussian distributed with standard deviation σ ϕ = 2π(n -1)σ e /λ. Therefore the phase difference ϕ p (r 0 ) -ϕ c (r 0 ′ ) in equation A.2 is Gaussian distribution as well and we can calculate the bichromatic correlation C diff (r 0 , r ′ 0 , λ p , λ c ) :

As mentioned in Chapter 4, the surface of the diffuser is considered to be extreme rough, and that leads to the condition σ e ≫ λ (equivalently σ ϕ ≫ 2π). The correlation of the thickness of diffuser δe(r 0 )δe(r ′ 0 ) can be expressed as :

r l is the correlation length of the thickness correlation of the diffuser and it characterizes the typical size of a grain in the surface of diffuser. Finally by sustituting the expression of δe(r 0 )δe(r ′ 0 ) into the bicrhomatic diffuser correlation fucntion C diff (r 0 , r ′ 0 , λ p , λ c ) :

where σ 2 ∆ϕ = (σ ϕp -σ ϕc ) 2 is the varaiance of the local phase difference ∆ϕ(r 0 ) = ϕ p (r 0ϕ c (r ′ 0 ), and r diff has been defined in Chapter 4, r diff = r e /σ ϕ (σ ϕ is different for principle and compensating lasers).

A.4 . Bichromatic correlation function of the speckle

With all the element above, now we can consider the bichromatic correlation function c 2λ (r ⊥ , z, λ p , λ c ) between the two potentials created at different wavelength speckle pattern at a single point located by r = {r ⊥ , z} compared to the center of the Fourier plane. As discussed in equation 4.36, the correlation between the two speckles disorder potentials is :